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ABSTRACT 

Due to high penetration of renewable energy resources in today’s electricity 

generation, considerable voltage fluctuations are witnessed in power systems. As an 

attempt to solve this issue, in this study, multi-objective optimal placement and sizing of 

distribution-level battery storage system is performed using semidefinite programing. 

Placement of one or multiple battery system is studied under various objectives including 

the cost, voltage regulation, reactive power dispatch, renewable resource curtailment, and 

minimum network power losses. Power flow equations are solved in the form of 

semidefinite constraints and the rank constraint is ignored. Additionally, combination of 

these objectives to form a multi-objective problem and regularization of the number of 

battery sites are studied. Finally, simulation results are provided to analyze the proposed 

formulation. 
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1. INTRODUCTION 

Growing environmental concerns caused a considerable reduction in the use of 

fossil fuels in the past decade. Most of U.S. carbon dioxide emission is associated with 

electricity generation. About 35% of the total U.S. energy-related CO2 emissions in 2016, 

was related to emissions of carbon dioxide by the U.S. electric power sector [1]. As an 

attempt to replace fossil fuels, renewable energy resources including wind, solar, 

hydropower, and biomass were introduced. Among which solar photovoltaic (PV) 

technologies are one of the fastest growing. PV uses materials which absorb photons of 

lights and release electron charges, hence, it is the direct conversion of light into 

electricity [2]. The basis of a PV system is the PV cells which group together to form a 

panel or array [3]. These cells are made of different types of semiconductors [3]. Figure 

1.1. shows the equivalent circuit of the ideal and practical PV cell [3]. 

 

 

 

Figure 1.1. Equivalent circuit of the PV cell [3] 

 

 

In Figure 1.1., Ipv is the generated current by the light (directly proportional to the 

Sun radiation), Id is the Shockley diode equation, Rs and Rp are the equivalent series and 

parallel resistance of the array. 

A PV system can be either standalone or grid connected [4]. If a standalone 

application is used, the system must be able to handle power variations from the PVs with 

a sufficient storage capacity [4]. For a grid-connected application, PV arrays can 
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supply power to both utility grid and local loads. In a conventional PV system, the output 

is a dc current which highly depends on the solar irradiance, temperature, and voltage at 

the terminals of this system [5]. In grid-connected mode this dc power is transformed and 

connected to the grid using a PV inverter which converts the generated dc power to ac 

power used for ordinary power supply to electric devices [5], [6]. Additional elements are 

included in PV system configuration depending on local regulations, the converter 

topology and the modulation used to control it [5]. In general two groups of requirements 

can be considered when installing PV systems which are performance requirements and 

legal regulations [5]. A generic grid-connected PV is depicted in Figure 1.2. [5]. 

 

 

 

Figure 1.2. A generic grid-connected PV structure [5] 

 

 

Technical potential of PV systems deployed on rooftops varies in the continental 

United States. In a report presented by National Renewable Energy Laboratory (NREL), 
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how much energy could be generated by installing PV on all suitable roof areas, is 

investigated. Figure 1.3. shows that California has the greatest potential to offset 

electricity use since its rooftop PVs could generate 74% of the electricity sold by the 

local utilities in 2013. 

 

 

 

Figure 1.3. Potential rooftop PV annual generation from all buildings. Shown as a 

percentage of each state’s total electricity sales in 2013 [5] 

 

 

There is also another method to use solar energy which is referred to as 

concentrating solar power (CSP). CSP plants as shown in Figure 1.4. use mirrors or 

lenses to concentrate solar thermal energy which will be used to drive traditional steam 

turbines that produce electricity. However a considerable reduction in price of PVs over 

the last years resulted in wider application of them in power systems in compare to CSP. 
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Figure 1.4. CSP Plant 

 

 

According to a report published by U.S. Department of Energy’s NREL, since 

2006 U.S. annual electricity generation from solar and wind increased by a factor of 11 

[5]. Figure 1.5. illustrates this significant growth in the use of renewable resources.  

As the use of Solar Photovoltaics (PV) expanded in distribution networks, 

concerns about the impact of its voltage fluctuations on the operation of the network also 

grew. The increasing penetration of commercial and residential PV generations causes 

load imbalances and reverse power flow in the distribution system. Reverse power flow 

may result in several undesired conditions including over voltage of the distribution 

feeder (loss of voltage regulations), increased short circuit currents, and potential 

protection miscoordination [8]. Furthermore, when the generated power by the distributed 

resources exceed the load on a feeder line section, voltage may rise on that section [9]. 

Consequently, a significant increase in voltage forces on-load tap-changers (OLTC) and 

other voltage control devices such as line voltage regulators to operate continuously. 

Therefore, their lifespan will be shortened [10]. A research conducted on a system with 

an assumption of 20%PV penetration such a high level of penetration more than doubles 

transformer tap changes [11]. 

Among all the issues mentioned above, loss of voltage regulation, which is 

discussed in the following section, is the most probable one, therefore, it has received 

considerable attention in the past years. 
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Figure 1.5. U.S. Renewable Electricity Generation by Technology [5]. 
1Includes generation from CSP and grid-connected PV; assumes a 25% capacity factor 

for CSP and an 18% capacity factor for PV 

 

 

1.1. VOLTAGE REGULATION METHODS 

Voltage regulation in weak and highly penetrated distribution networks has 

become a challenge for distribution network operators [12]. This can be caused by cloud-

induced fluctuations in PV power [11]. In a data presented in [13] four typical days in 

November 2011 were chosen to indicate four classes of solar radiations. As seen in 

Figure 1.6., where a positive current shows a reverse power flow back to the substation, 

the specified feeder can easily have a peak reverse power flow of more than 3MW. This 

value varies drastically depending on how clouded it is. The data in this Figure is taken 

from SCADA system of Southern California Edison (SCE) [13]. 

In such networks, either the large impedance of distribution networks or the high 

level of renewable penetration and the resulting power flow excursions cause voltage 

fluctuations that can be outside of ANSI (American National Standard Institution) 

boundaries [12]. Such fluctuations can also create voltage flicker or excessive operation 

of the voltage regulating equipment [11]. 

Variation of node voltages in micro grids may even cause system instability [11]. 

An example of such issues is the growing concern with bi-directional power flow in 

distribution feeders [14], [15]. As a result, network operators have started to install 
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various voltage regulator technologies including on load tap changer (OLTC), fly wheel-

based voltage regulators, Ultracapacitors and Energy Storage Systems (ESSs), and 

solar/wind curtailment [16], [17]. Three of mentioned techniques are described in the 

following sections. 

 

 

 

Figure 1.6. Line current measurement at the substation for one of SCE’s feeders. 

 A positive current indicates reverse power flow into the substation and 

a negative current shows real power flowing into the feeder [13] 

 

 

1.1.1. OLTC.  Traditionally OLTC, switched capacitors (SC) and step voltage 

regulators (SVR) have been employed to achieve desired voltage. The most common 

voltage control technique on the distribution network is to use OLTCs. They use an 

efficient method to control the voltage by shifting phase angle and adjusting the voltage 

magnitude [18]. OLTC is an autotransformer which measures the voltage and current, 

estimates the voltage at a remote point then changes the tap if the voltage exceeds the 

limits. Typically, each tap provides a range of ±𝟏𝟎% of transformer rated voltage with 

32 steps. An intentional time delay of 30 to 60 seconds is always implemented in OLTCs 

to avoid unnecessary tap change operations during the transient voltage fluctuations [18]. 
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A simple radial feeder connected with a Distributed Generation (DG) is illustrated 

in Figure 1.7. [18]. Where, an OLTC transformer, a local load, a reactive power (Q) 

compensator, automatic voltage controllers (AVCs), a line drop compensator (LDC) and 

an energy storage device are also connected to the network [18]. 

 

 

 

Figure 1.7. Simple radial feeder with connected DG [18] 

 

 

OLTCs are used at the distribution systems to raise the starting voltage of a feeder 

so that some point along the feeder has a desired voltage. This strategy is referred to as 

line drop compensation and it is proportional to the load [19]. 

Typically low-voltage (LV) networks have off-load tap changing transformers, 

therefore, a number of studies in the literature analyze applicability of OLTC technology 

to such networks. In [20] a coordinated control of OLTC with ESS is used in a LV 

distribution network to solve the voltage rise caused by PV high penetration. Application 

of OLTC-fitted transformers to LV networks to increase the penetration of domestic-

scale PV systems is investigated in [21]. 

1.1.2. Solar Curtailment.  Unpredictable electricity generation of renewable 

energy resources forced the system operators to utilize less renewable energy than is 

generated. Term curtailment is used to refer to the use of less wind or solar power than is 

potentially available [22]. Curtailment can be used in distribution systems when the 

generation is more than consumption which may cause voltage control issues. In [23] a 

study was performed on a typical 240-V/75-kVA Canadian suburban distribution feeder 
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with 12 houses with roof-top PV systems. To investigate coordinated active power 

curtailment of grid connected PV inventers. As seen in Figure 1.8. for about an 11-h 

period, there is considerably more energy produced by PVs than consumed by the load 

[23]. 

 

 

 

Figure 1.8. Load profile and PV production of houses for a 24-h period [23] 

 

 

In general, three reasons for curtailment may include network constraints, 

security, and excessive generation relative to load levels [24]. Curtailment of primarily 

generators connected to distribution grid levels can also occur due to grid faults and 

scheduled grid maintenance which is a part of network security category [24]. In [25] the 

maximum amount of generation that can be connected to a power distribution system is 

referred to as hosting capacity. This will be defined by the network characteristics such as 

load requirements and generation unit parameters. The ability to curtail the power 

generation of certain PV arrays at times when otherwise the hosting capacity would be 

exceeded, will allow for larger installation of such energy resources. 

1.1.3. Ultra Capacitors and Batteries [26].  At night or on a cloudy day when 

PV array is not functional, to balance power supply and demand a storage unit is used. 
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ESS for distribution systems is mostly in the form of a Battery ESS (BESS) [27]. The 

lead acid batteries are the most popular ESSs used in the distribution systems because of 

their low cost. The energy in BESSs is stored in the chemical form and can be converted 

into electrical and vice versa by an electrochemical reaction. The battery behavior 

described by its voltage is written as below [28]. 

 

𝑉 = 𝑉𝑜𝑐 ± 𝐼𝑅 

 

Where 𝑉𝑜𝑐 is the open circuit voltage and R is the internal resistance and it 

depends on parameters such as charge and discharge current, temperature …etc. Current I 

is positive during charge and negative during discharge [28]. However, the unreliable and 

fluctuate output of Solar Panels deep discharges or overcharges batteries, therefore, it 

shortens their life spans. Figure 1.9. illustrates a typical charge and discharge 

characteristic of a lead-acid battery unit. In this Figure, C is in Ampere-hour (Ah) and it 

is the capacity of the battery storage unit. SoC denotes battery state of charge. The term 

rest that is shown in Figure 1.9., means that no current is moving through the cells and 

they are neither being charged or discharged [29]. 

 

 

 

Figure 1.9. Battery state of charge and discharge [29] 
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Another ESS which can be used in conjunction with BESSs is ultra capacitor. The 

energy is stored in ultra capacitors by physically separating positive and negative charges 

unlike batteries which store energy chemically. They have a much longer lifespan in 

compare to batteries, however, battery’s higher energy density allows them to store more 

energy over a longer period. In [26] both ESSs are employed in a hybrid system to reduce 

the battery size pack while expanding its life span. Among the mentioned voltage 

regulation methods BESS offers a promising solution that provides added features such 

as load-profile planning, reactive power control, and frequency excursion compensation. 

Figure 1.10. shows stationary BESSs. In this study lead acid batteries are assumed to be 

used at the proposed distribution system. 

 

 

 

Figure 1.10. Stationary battery units. Courtesy: Mitsubishi Electric [30] 

 

 

1.2. PROBLEM DESCRIPTION 

As mentioned in the previous section, employing BESSs is one of the most 

efficient methods to regulate voltage. It is widely used in the distribution systems today, 

however, the battery mechanism and its cost caused complexity in the network 

computations. Battery charge and discharge depend on various factors including 
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temperature and voltage. Therefore, while modeling the battery to solve the power flow 

for the network these factors must be considered. Furthermore, to optimally install a 

battery system, the location, power, and energy capacity of the battery system needs to be 

selected. Consequently, several methods have been proposed to optimally place and size 

BESS in the distribution systems. The location and size of BESS are derived so that the 

minimum number of batteries used can regulate the voltage at the maximum number of 

nodes possible. To achieve this goal, both active and reactive power must be considered 

in the optimization. The R/X ratio in the distribution systems causes the active power to 

be an influential factor in the voltage regulation. However, just considering the active 

power will not utilize the reactive power injection capabilities of the BESSs and hence, 

will lead to larger sizing than needed. The problem itself can be formulated using several 

optimization methods also each of those formulations have different solving approaches. 

In this thesis different OPF formulation approaches alongside possible solution methods 

are described. Among which Semidefinite Programming (SDP) is chosen to optimally 

locate the BESS in the distribution system. To solve the SDP problem a software package 

referred to as CVX in MATLAB is utilized.  

In the next section existing methods that are addressed in the literature are 

presented. 
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2. OPTIMIZATION 

Optimization problem involves choosing a value from a defined set to minimize 

(or maximize) a real function and computing the value of the function correspondingly. 

Many engineering problems such as power system operations, include the efficient use of 

limited resources to meet a defined objective [31]. Therefore, most of these problems can 

be modeled to an optimization problem of a specified objective function subject to given 

constraints [31]. 

There are constrained and unconstrained optimization problems. Most of the 

constrained problems can be converted to unconstrained ones. Some of major 

unconstrained optimization approaches used in power system operation are Newton-

Raphson optimization, Lagrange multiplier method, and line search. 

Optimal Power Flow (OPF) as well as different techniques which are used to 

solve power system operation problems are reviewed in the following sections [32]. 

 

 

2.1. OPTIMAL POWER FLOW 

Power flow (load flow) is a network solution showing current, voltage, active and 

reactive power at each bus in the system. The relationship between active and reactive 

power consumption and generation is nonlinear. Thus, the power flow solution requires 

nonlinear programming (NP) techniques. Since it provides valuable information 

regarding power system operation, power flow analysis is important for transmission 

planning. General form of power flow equations for any bus k is shown below. 

 

𝑃𝑘 = ∑ |𝑉𝑘||𝑉𝑗|(𝐺𝑘𝑗 𝑐𝑜𝑠(𝜃𝑘 − 𝜃𝑗) + 𝐵𝑘𝑗 𝑠𝑖𝑛(𝜃𝑘 − 𝜃𝑗))𝑁
𝑗=1     (2.1) 

𝑄𝑘 = ∑ |𝑉𝑘||𝑉𝑗|(𝐺𝑘𝑗 cos(𝜃𝑘 − 𝜃𝑗) + 𝐵𝑘𝑗 sin(𝑁
𝑗=1 𝜃𝑘 − 𝜃𝑗))    (2.2) 

 

Where 𝑃𝑘, 𝑄𝑘, and 𝜃𝑘 are active power, reactive power and voltage angle of bus k 

respectively. 𝐺𝑘𝑗 and 𝐵𝑘𝑗 as the real and imaginary parts of the admittance matrix 

element 𝑌𝑘𝑗. 
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The idea of OPF was presented in the early 1960s as an extension to the 

conventional economic dispatch [31]. It is used to determine the state of power system 

that guarantee affordability, reliability, security, and dependability [31]. In optimal power 

flow (OPF) values of one or more control variables must be found to optimize (maximize 

or minimize) a defined objective. It has various applications in power systems including 

Energy Management Systems (EMS) and transmission planning. 

2.1.1. Economic Dispatch.  The objective is to minimize the total system cost or 

generator fuel consumption by determining the output power generation of each unit 

while satisfying load demand constraints. The fundamental of economic dispatch 

problem is the knowledge of the fuel cost curve. 

A thermal unit system generally consists of a boiler and, the steam turbine and the 

generator. By combining the input-output characteristic of the boiler and the turbine- 

generator a convex curve (fuel cost curve) shown in Figure 2.1. will be obtained [32]. 

 

 

 

Figure 2.1. Input-output characteristic of the generating unit [32] 

 

Generator characteristics in a practical system including discontinues prohibited 

zones, ramp rate limits and cost functions, are non-linear [33]. Hence, generally objective 

function which is the function to be minimized (maximized) based on the fuel cost curve 
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of a generating unit is also nonlinear. The common form of the objective function is 

presented below. 

 

F =  ∑ (𝛼𝑖
𝑛
𝑖=1 𝑃𝑖

2 + 𝛽𝑖𝑃𝑖 + 𝛿)       (2.3) 

 

Where 𝑃𝑖 is the generated power (PG) at bus 𝑖 and 𝛼𝑖, 𝛽𝑖,and 𝛿 are coefficients of 

the generating unit function. 𝛿 is a constant shown in Figure 2.1. which is the fuel 

consumption without the power output. This function is followed by equality and 

inequality constraints which represent the network characteristics. These constraints 

include network power balance at each node (generation and injection), limitations on all 

variables, line-flow constraints, etc. Various methods are developed to solve such 

problems, including Genetic Algorithm (GA) and Dynamic Programing (DP).  

2.1.2. Power Loss Minimization.  To obtain a better voltage profile and a  

lower current flow through the lines in power system, power loss minimization is 

performed alongside cost minimization. This is beneficial in distribution networks where 

due to low voltage levels there is a major power loss. Generally, two methods can be used 

to solve this type of optimization problems. First, the slack bus generation minimization 

which has a linear objective function and therefore is easy to solve. Second, minimization 

of the summation of power losses on all lines which involves more complex 

computations. The second approach is more desirable since the first one only minimizes 

the total power loss in the system whereas sometimes only a specific area of the system is 

desired [31]. 

However, due to changing loads on feeders where the load density is high, power 

loss for a network will not remain minimum for all load cases. Therefore, in [34] 

reconfiguration of the network and placement of distribution generation (DG) units are 

suggested. In [35] it is stated that sizing of DGs play an important role in minimizing the 

losses. It can be observed from a 3D graph presented in this study (Figure 2.2.) that for a 

particular bus, as the size of DG is increased the losses are decreased to a minimum value 

and increased beyond the optimal DG size at that location. Therefore it is concluded that 

given the characteristics of a distribution system, size of a DG can only be as high as 

consumption within the system boundaries. 
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Figure 2.2. Effect of size and location of DG on system loss [35] 

 

 

2.1.3. Reactive Power (VAR) Planning.  This has different objectives including                           

improvement of voltage profile, minimization of system active power losses and 

determination of optimal VAR compensation dispatch. To achieve these objectives 

various methods such as transformer tap changing, shunt capacitors and SVCs (switched 

virtual circuit) have been employed. 

Reactive power balance and reactive power economic dispatch are classic VAR 

dispatch methods. Reactive power balance is calculating voltage balance of the system 

under the assumption that the generated reactive power by the generator and VAR 

compensation devices equals load reactive power and system reactive power loss. Also 

reactive power economic dispatch is minimization of active power loss by determination 

of reactive power of reactive power sources. This is done by considering the system load 

demand as a constraint [32]. 

VAR planning matters the most when additional devices need to be installed to 

improve voltage profiles in the network while minimizing the cost of the compensations. 
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These additional devices help balancing the reactive power in the system. Several factors 

including the transformer tap ratios, bus arrangements, etc., must be considered to 

localize the best place to install these reactive compensation devices. This can be 

formulated into an objective function presented below which was introduced in [36]. 

 

∑ 𝛼𝑖𝐶𝑐𝑖 + 𝑞𝑐𝑖𝐶𝑏𝑖
𝑚
𝑖=1          (2.4) 

 

Where there are 𝑖=1,2,…, 𝑚 buses, 𝛼𝑖 ∈ {0,1} indicates there is a capacitor placed 

at bus 𝑖 or not. 𝐶𝑐𝑖 is the fixed installment cost for each capacitor and 𝐶𝑏𝑖 is dollar per 

Mvar cost. 𝑞𝑐𝑖 is the size of capacitor. This is subject to constraints including the 

generated reactive power of the system, voltage limitations on bus 𝑖, the transformer 

ratios. The objective function and the constraints are nonlinear since they include mix of 

discrete (𝑞𝑐𝑖) and continuous (constraints like voltage and transformer ratio) variables. 

Several methods including Linear programing (LP), Nonlinear Programing (NP), 

quadratic programming, etc., have been employed to solve such problems. 

 

 

2.2. CONVENTIONAL METHODS 

2.2.1. Linear Programing.  Linear programing (LP) method is used when an 

optimization problem can be expressed by a linear objective function and constraints. A 

standard form of an optimization problem is shown below [31]: 

 

Maximize 𝑃(𝑥) = 𝑐𝑇𝑥 

Subject to    𝐴(𝑥) ≤ 𝑏 

𝑥𝑗 ≥ 0   ∀𝑗 ∈ {1, 𝑛}       (2.5) 

 

Where A is an 𝑚 × 𝑛 matrix, x is a 𝑛 × 1 vector, 𝑐𝑇 is a 1 × 𝑛 vector, and b is a 

𝑚 × 1 vector. When writing the constraints, we must distinguish between equality and 

inequality. The objective function and the constraints are assumed to be continuous and 

defined on a nonempty subset of ℜ. Also, the maximization of an objective function 𝑃(𝑥) 

is equal to minimization of - 𝑃(𝑥). 
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LP follows duality. In other words, the original linear problem is referred to as 

primal and can be converted to its dual: 

 

Minimize 𝑄(𝑦) = 𝑏𝐷𝑦 

Subject to 𝐴𝐷𝑦 ≥ 𝑐𝐷
𝑇 

𝑦𝑗 ≥ 0   ∀𝑗 ∈ {1, 𝑚}       (2.6) 

 

Where AD is an 𝑛 × 𝑚 matrix, y is a 𝑚 × 1 vector, 𝑐𝐷 is a 1 × 𝑚 vector, and bD is 

a 𝑛 × 1 vector. Duality in LP reduces the computation needed to solve multidimensional 

problems since the old objective function turns into constraints and the primal constraints 

are converted to objective function in the dual problem. 

In most applications when encountering practical problems and seeking their 

optimal solutions, it is also desirable to know the sequences of a change in the variable. 

Therefore, it is more convenient not to resolve the problem when a small change occurs 

to the variables. Sensitivity analysis is a study used to compute such solutions after 

performing the optimization. 

Throughout the years different methods have been presented to solve these 

problems including graphical method, simplex method, and revised simplex method. 

However, it must be considered that linearization will always perform poorly away from 

the operating point and it also neglects losses and couplings between real and reactive 

power which are important considerations for planning and operations [37]. 

2.2.2. Nonlinear Programing (NP).  Generally power system operation problems  

are nonlinear and the source of nonlinearity is most often a physical process that cannot 

be linearized. Therefore, NP solutions can easily handle OPF problems with nonlinear 

constraints and objective functions. NP problems can be classified into four types 

including NP Problems with nonlinear objective function and linear constraints, Quadric 

Programing (QP), Convex Programing, and separable Programing [31]. 

Quadric problems are often characterized by the following formulation [38]. 

 

Minimize 𝑓(𝑥) =
1

2
𝑥𝑇𝑄𝑥 + 𝑐𝑇𝑥    𝑥 ∈ ℝ𝑛 

Subject to 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0       (2.7) 
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If Q is a positive semidefinite matrix, then  𝑓(𝑥) is a convex function, and if Q is 

zero the problem will be a LP [38] 

There are different techniques to solve NP problems. In first-order methods such 

as the generalized reduced gradient (GRG), the first step is to choose a search direction in 

the iterative procedure. This direction is determined by the first partial derivatives of the 

equations (the reduced gradient). NP methods have global convergence which means 

regardless of the starting point the convergence can be guaranteed. In compare to LP 

approaches, this method provides more accurate results [32]. 

 

 

2.3. INTERIOIR POINT METHODS [31]. 

As mentioned before one of the most popular methods to solve LP problems is 

Simplex method. However, this method requires long calculations thus it increases the 

convergence time. The worst-case scenario in Simplex method happens when the solution 

visits every vertex in the feasible region before reaching the optimal solution. Therefore, 

to decrease the convergence time Narendra Karmarkar’s work on variations of interior 

point (IP) received much attention in the past decades. Karmarkar’s algorithm is very 

different than simplex method since it rarely visits many extreme points before an 

optimal point is found. This algorithm stays inside of the feasible region and tries to 

position a current solution as the “center of the universe’’ in finding a better direction for 

the next move. Although this approach may require more computational time in finding a 

moving direction, a better direction is achieved resulting in less iterations. For a large 

problem, IP method requires a fraction of number of iterations the simplex method would 

require. 

As illustrated in Figure 2.3., simplex method seeks the optimal solution from 

vertex to vertex along the edges of the feasible space whereas IP methods which finds the 

solution from inside of the feasible space. 

Variations of IP method proposed by Karmarkar include projective, affine-scaling 

and path-following. Projective scaling methods have a major benefit which is their 

superior worst case running time. Suppose that the size of the problem is defined by the 

number of bits, N, it required to present the problem in a computer. If the algorithm’s 
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running time never exceeds some fixed power of N, the algorithm is said to have a 

polynomial time. The projective scaling methods have such characteristics. Since 

Karmarkar’s discovery, many variants of IP methods have been proposed of which 

primal affine method is briefly discussed in the next section. 

 

 

 

Figure 2.3. Simplex versus IP method [39] 

 

 

In 1984 Karmarkar introduced first efficient practical, polynomial-time interior 

point method for LP. In this algorithm, each step must lie in the null space of A which is 

in parallel with the feasible space. In other words, there is a set of feasible solutions 

(𝑥0, 𝑥1, … ) that must satisfy 𝐴𝑥𝑖 = 𝑏. In IP method, the feasible point is moved to the 

center of the feasible space via a transformation. After computing the new direction, the 

interior point is moved back to its original space. This direction is called the Projected 

Gradient Direction or 𝑝𝑘 and the projection matrix P is introduced below [38]. 

 

𝑃 = 𝐼 − 𝐴𝑇(𝐴𝐴𝑇)−1𝐴        (2.8) 
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Where a vector v will be transformed into 𝑃𝑣 = 𝑝 and 𝑝 will be in the null space 

of A. There is also another transformation required to center the iterative which needs the 

scaling to show that the iterative is equidistant from all constraint boundaries in the 

transformed feasible space [38]. This transformation is done using 𝑥𝑘 = 𝑒 , where 𝑒 =

[1 1 … 1]𝑇 [38]. The steps of the method are summarized below [38]: 

 

1. Let 𝐾 = 0 

2. Let 𝐷 = 𝑑𝑖𝑎𝑔(𝑥𝑘) 

3. Compute �̂� = 𝐴𝐷, �̂� = 𝐷𝑐 

4. Compute �̂� from �̂� = 𝐼 − �̂�𝑇(�̂��̂�𝑇)−1�̂� 

5. Set 𝑝𝑘 = �̂��̂� 

6. Set 𝜃 = −𝑚𝑖𝑛𝑗𝑝𝑗
𝑘. The factor 𝜃 is used to determine the maximum step 

length that can be taken before exiting the feasible region. 

7. Compute �̂�𝑘+1 = 𝑒 +
𝛼

𝜃
 𝑝𝑘 

8. Compute 𝑥𝑘+1 = 𝐷�̂�𝑘+1 

9. If ‖𝑥𝑘+1 − 𝑥𝑘‖ < 휀, then done, Else set 𝑘 = 𝑘 + 1 and go step 2. 

 

 

2.4. DYNAMIC PROGRAMMING 

Dynamic programing was developed in 1950s through the work of Richard 

Bellman [31]. It can solve nonconvex, non-continuous, and nondifferentiable functions. 

DP can be considered as a transformation multiple vector decision process to a series of 

single vector decision processes [31]. 

In this method a large complex problem can be divided into a set of smaller 

simpler sub-problems. Each sub-problem is solved individually and the solution is saved, 

therefore next time the same sub-problem occurs the system uses the stored solution. 

Generally, these subproblems are easier to solve than the actual problem. 

Dynamic Programing (DP) is commonly utilized to solved optimization problems. 

By combining the solution of sub-problems DP finds the best way to solve these 

problems.  It is suitable for solving optimization problems that involve generation 
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schedule in power systems, where energy management and power balance can be 

considered simultaneously [40]. In [41] by discretizing possible levels of energy in each 

battery system to a step size of Estp, the problem is divided into sub-problems. After 

solving each sub-problem graph below showing all possible transitions is obtained. 

 

 

 

Figure 2.4. Dynamic programing graph of the economic dispatch problem [41] 

 

 

In Figure 2.4. nodes are possible energy levels in battery resources at time tk. In 

DP method the dimension of the problem is reduced by its ability to maintain the 

solution’s feasibility, Hence, it requires less computational burden in compare to LP [40]. 

In DP method the complexity increases drastically with the number of constraints. 

It comes to a point that even more than two constraints can be difficult to solve. 

 

 

2.5. GENETIC ALGORITHM [31] 

Genetic algorithms (GA) stem from both natural biological genetics and modern 

computer science. They are referred to as stochastic search methods that originate from 

Darwinian thinking of natural selection and natural genetics. GA operates on a population 
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of individuals, each of which is a potential solution to a given problem. This population is 

chosen randomly and lies in the feasible solution space. 

 

 

 

Figure 2.5. Flowchart of the GA approach [42] 

 

 

There are various operators used in GA to perform different stages of an 

optimization process. These operators ensure that integrity or fitness of new generation is 

continuously improved at each stage of optimization problem. These include production 

operator, mutation operator, and crossover operator. The production operator generates 

copies of any individual that passes the fitness test of the goal function and otherwise 

eliminates them from the solution space. The mutation operator helps finding a global 

extrema by randomly exploring the solution space. This action is done by flipping the bits 

of selected candidates from the population. The crossover operator is responsible of 
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finding better performing offspring by recombining individuals within the generation. 

GA can be applied to power systems in different areas including: 

 

1. Expansion or structural planning 

2. Operation planning 

3. Generation/transmission and distribution operation 

4. Power flow and harmonic analysis 

 

Genetic algorithms can be used in unit commitment problems which can be 

considered as a part of operation planning application. Generally, the unit commitment 

(UC) problem involves determining the optimal set of generating unit within the next one 

to seven days. 

In [42] application of GA for the solution of UC problem is demonstrated by the 

means of the flowchart illustrated in Figure 2.5. According to [43] for largescale 

problems the execution time of first-generation generations increases significantly and 

the solution quality decreases. 

 

 

2.6. CONVEX OPTIMIZATION [37] 

A function 𝑓 is convex if for any two points within its range, 𝑥 and 𝑦, the line 

between 𝑥 and 𝑦 lies above or on the function graph in a Euclidean space (a vector space) 

of at least two dimensions. In other words, any points on the straight line between 

(𝑥, 𝑓(𝑥)) and (𝑦, 𝑓(𝑦)) is greater than or equal to the value of 𝑓 at the corresponding 

point between x and y as illustrated in Figure 2.6. The optimization problem is convex if 

the objective function and the constraints are convex. 

Before the development of Convex Programing, LP was the most popular 

optimization method and many OPF problems were modeled based on linear power flow 

approximations. However, for more accuracy NLP algorithms were utilized for 

nonconvex models. 

Semidefinite programing (SDP), and second-order cone programing (SOCP) were 

formed as convex generalization of LP. Since then many researches involving the new 
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SOCP and SDP power flow approximations have been conducted, implementing these 

methods in different contexts. 

 

 

 

Figure 2.6. Convex (top) and nonconvex (bottom) sets [37] 

 

 

2.6.1. Second-Order Cone Programing.  Generally, a subset 𝑪 of a vector V is a 

cone if for each 𝒙 ∈ 𝑪 and a nonnegative scalar, 𝜶𝒙 ∈ 𝑪. The cone 𝑪 is convex if 𝜶𝒙 +

𝜷𝒚 belongs to 𝑪, for any positive scalars 𝜶, 𝜷 and any 𝒙, 𝒚 in 𝑪 [44]. The cone is convex 

it satisfies the convex function description. 

Second-order cone (SOC) or ice cream cone or Lorenz is described as the set 

below: 

 

{ (𝑦, 𝑡) ∈ ℝ𝑛+1: ‖𝑦‖ ≤ 𝑡}       (2.9) 

 

Since if ‖𝑦‖ ≤ 𝑡, then ‖𝛼𝑦‖ ≤ α𝑡 for any 𝛼 ≥ 0, it satisfies the definition of a 

cone. SOC shown in Figure 2.7. , is also referred to as quadric cone since it is defined by 

a quadric inequality.  
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Figure 2.7. A second-order cone in R3 [45] 

 

 

Using the convex function definition, triangle inequality and homogeneity of the 

two-norm, convexity of a second-order cone can be checked. (LMI) 

 

‖𝛼𝑦1 + (1 − 𝛼)𝑦2‖ ≤ 𝛼‖𝑦1‖ + (1 − 𝛼)‖𝑦2‖      

≤ 𝛼𝑡1 + (1 − 𝛼)𝑡2        (2.10) 

 

Where (𝑦1, 𝑡1) and (𝑦2, 𝑡2) are in SOC and 𝛼 ∈ [0,1]. It can be concluded from 

the equation above that (𝛼𝑦1 + (1 − 𝛼)𝑦2, 𝛼𝑡1 + (1 − 𝛼)𝑡2) is also in the SOC therefore 

it is convex. If we assume 𝑦 = 𝐴𝑥 + 𝑏 and 𝑡 = 𝑐𝑇𝑥 + 𝑑, the standard form of an SOCP 

shown below will be obtained. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑘𝑇𝑥         

subject to ‖𝐴𝑖𝑥 + 𝑏𝑖‖ ≤ 𝑐𝑖
𝑇𝑥 + 𝑑𝑖      (2.11) 

 

OPF formulations can be obtained using SOCP method. In [46] this method is 

employed to improve the economic efficiency of VSC (voltage source converter) type 

AC-DC grids. Furthermore, distribution system reconfiguration is modeled in [47] using 

convex programing including SOCP.  
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2.6.2. Semidefinite Programing.  In semidefinite programming (SDP), a positive 

semidefinite matrix is chosen to optimize a linear function that is subject to linear 

constraints. This type of optimization is similar to linear programming where the vector 

of the variables is replaced with a symmetrical matrix and nonnegative constraints with 

positive semidefinite ones [48]. Such constraints are nonsmooth and nonlinear, but 

convex so SDPs are convex optimization problems [49]. SDP problems like LP follow 

duality. Below is the most common standard formulation of SDP [49] 

 

Maximize 𝑐𝑇𝑥         

Subject to, 𝐹(𝑥) ≥ 0       (2.12) 

 

Where F(x) ≜ 𝐹0 + ∑ 𝑥𝑖𝐹𝑖
𝑚
𝑖=1 , and the problem data are the vector 𝑐 ∈ ℝ𝑚 and 

m+1 symmetric matrices 𝐹0, … , 𝐹𝑚 ∈ ℝ𝑛×𝑛. Also, the inequality sign in 𝐹(𝑥) ≥ 0 

indicates that F(x) is positive semidefinite [49]. 

SDP can be considered as an extension of LP where the inequalities are replaced 

by matrix inequalities or the first orthant is replaced by the cone of positive semidefinite 

matrices [49]. 

 

 

2.7. RELAXATIONS [37] 

Almost all formulations of power system optimization problems are nonconvex. 

These problems traditionally have been solved using linearization. However more 

accurate methods including convex relaxations now exist. Nonconvex problems can be 

approximated with conex relaxations. Consider blew optimization 

 

Minimize 𝑓(𝑥) 

Subject to 𝑥 ∈ 𝑋 

 

This can be converted to the equation below 

 

Minimize 𝑓(𝑥) 
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Subject to 𝑥 ∈ 𝑌 

 

The equation above is a relaxation if 𝑋 ⊆ 𝑌 (i.e., for any 𝑥 ∈ 𝑋, 𝑥 ∈ 𝑌). This 

definition is illustrated in the Figure 2.8. This means that the minimum objective of a 

relaxation is less than or equal to the original objective. They also provide bounds on the 

true optima. If 𝑋 ⊂ 𝑌. Then by constructration, 

 

min
𝑥∈𝑌

𝑓(𝑥) ≤ min
𝑥∈𝑋

𝑓(𝑥) ≤ 𝑓(𝑥),́ �́� ∈ 𝑋      (2.13) 

 

A relaxed optimum and a feasible solution gives a two sided bound on the optimal 

objective. 

 

 

 

Figure 2.8. A convex relaxation (dashed) of a nonconvex set (solid) [37] 
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3. LITERATURE REVIEW 

3.1. VOLTAGE REGULATIONS 

In this section different existing methods of voltage regulations, other than use of 

BESS, in the literature are reviewed. In [50], an optimum method to combine active and 

reactive power based on R/X ratio has been applied to achieve a good voltage regulation 

for each node. As an attempt to control OLTC positions, to calculate Distributed Energy 

Resources (DER) active power and minimize overall energy system costs, [51] used a 

mixed-integer linear programing algorithm. In [52] a multi-period AC OPF technique for 

evaluating network capacity for accommodating variable DG is proposed and voltage 

control of transformers and voltage regulators are also embedded with the formulation. 

This method is coded in AIMMS optimization modeling environment and solved using a 

NP solver. It is reported in [53] that using a four-port DC/DC converter which is suitable 

for renewable energy harvesting applications, maximum power point tracking was 

achieved while maintaining a regulated output voltage. In [54] the optimal coordination 

of switched capacitors and tap-changing transformers in a radial distribution system is 

considered and the voltage constraints are included in the formulation. The optimization 

problem is approximated by a constrained discrete quadric method and two algorithms 

are presented to solve the approximation [54]. First one is randomized algorithm that 

would not guarantee optimality and the second one is a deterministic algorithm [54]. A 

DP method for solving reactive power/voltage control problem in a distribution system is 

presented in [55]. The considered constraints in the study are maximum allowable 

switching operations in a day for under load tap changer and each capacitor and the 

voltage limit on the feeder, the secondary bus voltage is limited [55]. 

 

 

3.2. BATTERY PLACEMENT SIZING AND ALLOCATION 

Considering energy balance as a fundamental factor for transient stability of a 

micro grid, [56] has developed an energy function to allocate BESSs. In order to 

minimize costs associated with upgrades and network losses, [57] applies an optimal 

allocation of ESSs for load management. In [58] a multi-objective genetic algorithm is 
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presented to determine size, location, and OPF of BESS units in a grid. To incorporate 

depreciation costs and [59] used an estimation of battery life expectancy in a study on a 

single typical household with a rooftop PV installation in Belgium. As a continuation of 

previous work in [58] and [59], [60] analyzes the impact of location of the battery in the 

feeder. The BESS model proposed in that study also includes a three-phase inverted with 

bidirectional active and reactive power. An optimization is performed using DP in [61] 

with a focus on optimal scheduling of grid connected PV systems with BESS. Placement 

of BESSs to meet voltage regulation requirements in conjunction with smart PV inverters 

is investigated in [62] This method uses simulated annealing approach in conjunction 

with a set of rule-based placement heuristics that speed up convergence [62]. 

In this paper, the goal is to utilize a method capable of containing the power flow 

equations as a constraint so that the battery sizing is performed by considering both active 

and reactive capacity of the BESS to achieve voltage regulation as well as other 

objectives. 

 

 

3.3. SDP 

In general, including the non-convex power flow equations as an optimization 

constraint is a technical challenge. In such optimization problems, to reduce the 

computational burden convexification of the problem has been used [63]. In [64] a 

suboptimal approach of sequential convex programming was proposed. Semi-Definite 

Programing (SDP) relaxation is a promising convexification approach [17], [65]–[68]. In 

this approach, the non-convex rank constraint is eliminated after the problem is converted 

to a SDP relaxation. The challenge in derivation of the SDP relaxation is meeting the 

optimality under the rank one condition [65]. In particular, if the network is radial or is 

resistive, this method is very effective [69]. Recently, applications of SDP have been 

investigated for mesh networks in addition to the radial distribution networks [66]. 

Details on accuracy and feasibility of SDP is studied in [70]. In [71], semidefinite 

programing was deployed to optimize the placement and sizing of a BESS. To this end, a 

sensitivity matrix was introduced which contained the voltage sensitivity of each bus to 

the power injected at other buses. Using this matrix, first the main network was divided 
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into clusters. The clustering is performed based on the sensitivity and the number of 

clusters is the number of individual BESSs to be used. However, this method uses the 

sensitivity matrix as a linear entity and hence, this matrix will not present the nonlinear 

behavior of the system if multiple BESSs are installed. Hence, the results might be sub-

optimal. A proposed multi-iteration SDP is utilized in this study instead of the sensitivity 

matrix method of [71] to solve this issue. 
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4. SIMULATIONS 

4.1. AN INTRODUCTION TO CVX [72] 

CVX is a Matlab-based modeling language which is designed to solve convex 

optimization problems including SDP, SOCP. It supports a number of standard problems 

such as linear and quadratic programs (LPs/QPs), second-order cone programs (SOCPs), 

and semidefinite programs (SDPs). It uses a particular approach to convex optimization 

called disciplined convex programming (DCP), which is proposed by Michael Grant, 

Stephen Boyd, and Yinyu Ye. DCP implements a set of rules referred to as the DCP 

ruleset that are sufficient but not necessary for convexity. Hence, it is possible to write 

codes that violate this set but are convex in fact. Three supported disciplined convex 

programs followed by three possible constraints are written as below. 

 

• A minimization problem, which includes convex objective function and zero 

or more constraints. 

• A maximization problem, which includes concave objective function and zero 

or more constraints. 

• A feasibility problem, which includes one or more constraints and no 

objective. 

• An equality constraint, made using ==, where both sides are affine. 

• A less-than inequality constraint, indicated with <=, where the left side is 

convex and the right side is concave. 

• A greater-than inequality constraint, indicated with >=, where the left side is 

concave and the right side is convex. 

 

This program provides special modes for two specific problem cases including 

SDP mode and geometric (GP) mode. In SDP mode the constraints are typical expressed 

using linear matrix inequality (LMI). Various solvers are supported in CVX to solve 

different types of programming which are listed in the table below. 

Power functions and p-norms are converted using a method described in [73]. 

This method is presented as a linear approximation for conic quadric problems and it uses 
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Schur complex. This approach is exact as long as 𝑝 = 𝑝𝑛 𝑝𝑑⁄  is rational. Consider 𝑥𝑝 ≤

𝑦, 𝑝 = 2 as an example, which can be represented with exactly one 2x2 LMI: 

 

𝑥2 ≤ 𝑦 ⇔ [
𝑦 𝑥
𝑥 1

] ≥ 0       (4.1) 

 

The base CVX function library supports both common Matlab functions such as 

sum, trace, max, and min and new functions such as matrix fractional function 

(matrix_frac(x,Y)) which imposes constraint that Y is symmetric and positive definite.  

 

 

4.2. DISTRIBUTION SYSTEM 

In this study a real distribution system in Paradise Hill California is used. An 

interconnection map provided by San Diego Gas & Electric Company (SDG&E) showing 

transmission system, and substation area of SDG&E's distribution system is demonstrated 

in Figure 4.1. 

This map is drawn in Microsoft Visio (Figure 4.2.) to better picture the existing 

buses and loads. This will later simplify modeling of the distribution system. 

The Visio drawing presented in Figure 4.2. is consisted of 31 buses and 89 loads. 

Based on the map three locations are considered to place the batteries. Bus voltage 

profiles in four cases including the system before placing batteries, after placement of one 

battery, two batteries, and three batteries are studied and compared. In the next section 

the problem formulation is explained. 

 

 

4.3. PROBLEM FORMULATION 

In this study, lower-case and upper-case letters denote a vector and a matrix, 

respectively. ℑ(∙) and ℜ(∙) indicate the imaginary and real parts of the variables, 

respectively. [𝐴]𝑖𝑗 is the ij-th element of A. aT∗, aT, and a∗ denote the complex-conjugate 

transpose, transpose, and complex-conjugate of a. All zero and one matrices of 

appropriate dimensions are denoted by 0 and 1. Diag(a) returns a matrix A where [𝐴]𝑖𝑖 =

[𝑎]𝑖. I is the unity matrix. Tr(A) is the trace, 𝜆𝑚𝑎𝑥(𝐴) is the largest singular value. | ⋅ | is 
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the absolute value, ‖𝑎‖1 = ∑ |[𝑎]𝑗|𝑗  is the linear norm, and ‖𝑎‖2
2 = 𝑎𝑇∗𝑎 is the Euclidean 

norm of a. Additionally, 𝑒𝑘, 𝑘 ∈ {1, … , #𝑁} is the basis of R#N. Also, EEk,k = [Ek,k, 0; 0, 

Ek,k] and EEk,w = [(ek − ew)(ek− ew)T , 0; 0,(ek − ew)(ek − ew)T]. 

Element-wise (Schur) product of the two matrices is 𝑎 ∘ 𝑏 = 𝑑𝑖𝑎𝑔(𝑎)𝑏. 

Additionally, Schur complement of the block A of the matrix M = [A, B; BT, C] is 

defined as S = C − BTA−1B. S is positive semidefinite if A and M are both positive 

semidefinite. 

 

 

 

Figure 4.1. SDG&E’s Interconnection Map, Paradise Substation [74] 

 

 

4.3.1. SDP Relaxation.  Power system is often modeled as below [68] 

 

Minimize ∑ 𝑓(𝑝)          (4.2a) 

Subject to 𝑖 = 𝑌𝑣          (4.2b) 

𝑖𝑘
∗ 𝑣𝑘 = ∑ 𝑠𝑔 − 𝑠𝑑          (4.2c) 
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𝑝𝑚𝑖𝑛 ≤ 𝑝𝑔 ≤ 𝑝𝑚𝑎𝑥          (4.2d) 

𝑞𝑚𝑖𝑛 ≤ 𝑞𝑔 ≤ 𝑞𝑚𝑎𝑥          (4.2e) 

𝑝𝑘,𝑤
𝑡 ≤ 𝑝𝑘,𝑤

𝑡−𝑚𝑎𝑥, ∀𝑘, 𝑤 ∈ 𝑁         (4.2f) 

𝑆𝑘,𝑤
𝑡 ≤ 𝑆𝑘,𝑤

𝑡−𝑚𝑎𝑥, ∀𝑘, 𝑤 ∈ 𝑁         (4.2g) 

|𝑣𝑘 − 𝑣𝑤| ≤ 𝑣𝑘,𝑤
𝑑𝑟𝑜𝑝−𝑚𝑎𝑥

         (4.2h) 

 

Where 𝑓(𝑝) can be any semidefinite representative function and n ∈ N is the set 

of nodes within the distribution system. (4.2c) is the power balance equation where 𝑠𝑔 =

𝑝𝑔 + 𝑗𝑞𝑔 and is the generated complex power and 𝑠𝑑 = 𝑝𝑑 + 𝑗𝑞𝑑 is the demand complex 

power. 𝑝𝑔 and 𝑞𝑔 are the generated power and reactive power respectively. Similarly, 𝑝𝑑 

and 𝑞𝑑 are the load or demand active and reactive power at this node. 𝑝𝑔, 𝑝𝑑, 𝑞𝑔, and 𝑞𝑑 

represent the vectors of the generated and consumed active and reactive power 

throughout the distribution system, respectively. If a bus does not have each of these 

entities, then a value of zero is considered for the corresponding vector elements. pmin, 

qmin, pmax, and qmax indicate the minimum and maximum limitations on active and 

reactive power dispatch levels of each node. 𝑝𝑘,𝑤
𝑡  and 𝑆𝑘,𝑤

𝑡  are the active and complex 

power flowing between buses k, and w, which have nominal limits of 𝑝𝑘,𝑤
𝑡−𝑚𝑎𝑥 and 

𝑆𝑘,𝑤
𝑡−𝑚𝑎𝑥. Additionally, (4.2h) denotes the voltage drop on the line between nodes k and w. 

To turn (4.2) into a SDP relaxation, composing additional equations is required. 

Injected power into node k can be written as [65] 

 

𝑃𝑘 = ℜ{𝑉𝑘𝐼𝑘
∗} = ℜ{𝑉∗𝑒𝑘𝑒𝑘

∗𝐼} = ℜ{𝑉∗𝑌𝑘𝑉}         (4.4) 

 

The equation above is useful in composing 𝑣𝑇𝑒𝑘𝑒𝑘
𝑇𝑌∗𝑣∗ which is related to node 

k. Trace function is used in converting the power flow problem to an SDP problem. 

Particularly the rotational property of the trace function is needed (i.e. 𝑣𝑇𝑒𝑘𝑒𝑘
𝑇𝑌∗𝑣∗ =

𝑇𝑟(𝑣𝑇𝑒𝑘𝑒𝑘
𝑇𝑌∗𝑣∗) = 𝑇𝑟(𝑒𝑘𝑒𝑘

𝑇𝑌∗𝑣∗𝑣𝑇)). This will lead to extract a new variable 𝑉 = �̅��̅�𝑇. 

The admittance matrix can be written as  

 



 

 

35 

�̅�𝑘,𝑤 =
1

2
[

(𝑌𝑘,𝑤 + 𝑌𝑘,𝑤
𝑇 )∗ 𝐽(𝑌𝑘,𝑤 − 𝑌𝑘,𝑤

𝑇 )∗

𝐽(𝑌𝑘,𝑤 − 𝑌𝑘,𝑤
𝑇 )∗ (𝑌𝑘,𝑤 + 𝑌𝑘,𝑤

𝑇 )∗ ]       

𝑌𝑘,𝑤 = (𝑦𝑘,𝑤
𝐶 + 𝑦𝑘,𝑤)𝑒𝑘𝑒𝑘

𝑇 − 𝑦𝑘,𝑤𝑒𝑘𝑒𝑤
𝑇          (4.5) 

 

Where 𝑌𝑘,𝑘 = 𝑒𝑘𝑒𝑘
𝑇𝑌, and 𝑦𝑘,𝑤 = [𝑌]𝑘,𝑤, and 𝑦𝑘,𝑤

𝐶  is taken from the π-model of 

the line between buses k and w, and it is the admittance representing the shunt element. 

Now the symmetric matrices can be written as  

 

𝑌𝑘,𝑤
ℜ = ℜ(�̅�𝑘,𝑤)            (4.6) 

𝑌𝑘,𝑤
ℑ = ℑ(�̅�𝑘,𝑤)            (4.7) 

 

(4.6) and (4.7) are used to write the equations below which will be employed to 

compose several objective functions for the optimization. 

 

𝑝𝑘
𝑔

+ 𝑝𝑤
𝑑 = 𝑇𝑟(𝑌𝑘,𝑘

ℜ 𝑉), 𝑞𝑘
𝑔

− 𝑞𝑘
𝑑 = 𝑇𝑟(𝑌𝑘,𝑘

ℑ 𝑉)        (4.8) 

𝑝𝑘,𝑤 = 𝑇𝑟(𝑌𝑘,𝑘
ℜ 𝑉), 𝑞𝑘,𝑤 = 𝑇𝑟(𝑌𝑘,𝑤

ℑ 𝑉)         (4.9) 

𝑝𝑘,𝑤
𝑙𝑖𝑛𝑒 = 𝑝𝑘,𝑤 + 𝑝𝑤,𝑘, 𝑞𝑘,𝑤

𝑙𝑖𝑛𝑒 = 𝑞𝑘,𝑤 + 𝑞𝑤,𝑘       (4.10) 

|𝑣𝑞|
2

= 𝑇𝑟(𝐸𝑒𝑘𝑒𝑘
𝑇𝑉), |𝑣𝑘 − 𝑣𝑤|2 = 𝑇𝑟(𝐸𝑒𝑘𝑒𝑤

𝑇 𝑉)      (4.11) 

 

Finally, the OPF problem in (4.2) can be converted to a convex SDP relaxation as 

 

Minimize  𝑉(𝑉, 𝑝𝑔, 𝑞𝑔)       (4.12a) 

Subject to ∀𝑞, 𝑤 ∈ 𝑁        

𝑝𝑘
𝑔

− 𝑝𝑘
𝑑 = 𝑇𝑟(𝑌𝑘,𝑘

ℜ 𝑉), 𝑞𝑘
𝑔

− 𝑞𝑘
𝑑 = 𝑇𝑟(𝑌𝑘,𝑘

ℑ 𝑉)    (4.12b) 

𝑝𝑘
𝑚𝑖𝑛 ≤ 𝑝𝑘

𝑔
≤ 𝑝𝑘

𝑚𝑎𝑥,        (4.12c) 

𝑞𝑘
𝑚𝑖𝑛 ≤ 𝑞𝑘

𝑔
≤ 𝑞𝑘

𝑚𝑎𝑥        (4.12d) 

{𝑣𝑘
𝑚𝑖𝑛}2 ≤ 𝑇𝑟(𝐸𝑒𝑘𝑒𝑘

𝑇𝑉) ≤ {𝑣𝑘
𝑚𝑎𝑥}2      (4.12e) 

[

(𝑆𝑘,𝑤
𝑡−𝑚𝑎𝑥)2 𝑇𝑟(𝑌𝑘,𝑤

ℜ 𝑉) 𝑇𝑟(𝑌𝑘,𝑤
ℑ 𝑉)

𝑇𝑟(𝑌𝑘,𝑤
ℜ 𝑉) 1 0

𝑇𝑟(𝑌𝑘,𝑤
ℑ 𝑉) 0 1

] ≥ 0     (4.12f) 
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−𝑝𝑘,𝑤
𝑡−𝑚𝑎𝑥 ≤ 𝑇𝑟(𝑌𝑘,𝑤

ℜ 𝑉) ≤ 𝑝𝑘,𝑤
𝑡−𝑚𝑎𝑥      (4.12g) 

𝑇𝑟(𝐸𝑒𝑘𝑒𝑤
𝑇 𝑉) ≤ {𝑣𝑘,𝑤

𝑑𝑟𝑜𝑝−𝑚𝑎𝑥}2      (4.12h) 

𝑉 ≥ 0           (4.12i) 

𝑇𝑟(𝐸𝑟𝑒𝑓
ℜ 𝑉) = 1, 𝑇𝑟(𝐸𝑟𝑒𝑓

ℑ 𝑉) = 0       (4.12j) 

 

∑ 𝑓(𝑝) in (4.2) is replaced by a function where v is the vector of voltages within 

the distribution system. 𝑉 = �̅��̅�𝑇 was eliminated from (4.1) and replaced by (4.12i), since 

it is a non-convex constraint with a rank of one (Rk(v)=1). (4.12b) indicates power 

balance equations. Limitations on BESS active and reactive power are enforced by 

(4.12c) and (4.12d). Based on the gird requirements (such as ANSI C84.1- 2011 

standard), (4.12e) sets boundaries on the square Euclidean norm of the voltage of bus k. 

The complex power passing through the line between buses k and w is controlled by 

(4.12f). Similarly, the square Euclidean norm of total voltage and active power flowing in 

the line between buses k and w and voltage drop on this line is controlled by (4.12g) and 

(4.12h), respectively. 

The voltage of the slack bus or the reference bus of the distribution system should 

also be controlled. It is necessary since if the constraint related to this bus which is 

presented in (4.12j) is eliminated, the optimization will converge to a wrong feasible 

point. 𝐸𝑟𝑒𝑓
ℜ = [E1,1, 0; 0, 0] and 𝐸𝑟𝑒𝑓

ℑ  = [0, 0; 0, E1,1] extract the real and imaginary parts of 

the reference bus voltage, respectively. 

4.3.2. Optimized Voltage Extraction.  When the optimization problem (4.12) 

reaches a feasible point, V rank will be one and generated active and reactive powers 

values will be obtained. However, in the previous section to avoid a non-convex 

constraint, 𝑽 = �̅��̅�𝑻 was replaced with a semidefinite constraint (4.12i), therefore, 

extraction of v value is required. To do so, one might simply take the first column of V as 

the solution although this approach is not accurate. To calculate the rank of V small 

singular values generated as a result of numerical errors must be eliminated. Singular 

value decomposition can be utilized to eliminate these errors by generating (4.13) 

 

V = U ∑ 𝑊𝑇∗           (4.13) 
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Where U and W indicate the orthogonal basis of singular values. ∑ = [𝜎𝑖]𝑖𝑖 is a 

diagonal matrix containing singular values and 𝜎𝑖 is the i-th singular value of it. 

Commonly Σ is sorted from the largest singular value to the smallest. If 𝜎2 < 휀2𝜎1 in 

(4.12) it can be concluded that the rank 1 condition is satisfied (where 휀 is an arbitrary 

clamping assumption such as 1%). Then �̅� can be calculated using �̅� = √𝜎1𝑢1 where 𝑢1 

is the vector associated with the 𝜎1,. Finally, v can be extracted as 𝑣 = [𝑣]𝑖 = [�̅�]𝑖 +

𝐽[�̅�](𝑁+𝑖) which is the complex voltage vector for the underlying system. 

 

 

 

Figure 4.2. Paradise Distribution System 
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4.3.3. Multi-Objective Dispatch.  Using the method introduced in the last 

sections various objective functions can be convexified. In this section various objective 

functions will be combined. Each of them will be defined as an auxiliary variable Oi 

where o = [O]i is the vector of auxiliary variables deployed to form various objective 

functions. 

The cost of active power generation is one of the most common objective 

functions. To convert this function to SDP form, Schur complement is used as  

 

Minimize 𝑂1        (4.11a) 

Subject to (4.12)b − (4.12j), ∀𝑞 ∈ 𝑁𝐷 , 𝑂1 = ∑ 𝐶𝑘𝑘     

[
𝐶𝑘 − 𝑐1𝑘𝑝𝑘

𝑔
− 𝑐0𝑘

+ 𝐾 𝑐2𝑘𝑝𝑘
𝑔

𝑐2𝑘𝑝𝑘
𝑔

1
] ≥ 0     (4.11b) 

 

𝑁𝐷 represents the set of nodes with fuel consuming generators. K is a large 

constant to keep 𝐶𝑘 − 𝑐1𝑘𝑝𝑘
𝑔

− 𝑐0𝑘
> 0, otherwise, conditions of the Scur complement 

will not be satisfied. 

As stated in the previous sections, voltage regulations play an important role in 

the performance of the power system equipment. Therefore, it must be considered while 

solving the OPF problem. Below in the voltage regulation equations where the voltage 

values are regulated to a predefined 𝑣𝑘
𝑟𝑒𝑓

= 1 𝑝. 𝑢 and 𝑏1 is the slack bus. 

 

Minimize 𝑂2        (4.12a) 

Subject to (4.10b) − (4.10j), ∀𝑘 ∈ 𝑁\ {𝑏1}     

(𝑣𝑘
𝑟𝑒𝑓

)2 − 𝑂2 ≤ 𝑇𝑟(𝐸𝐸𝑘,𝑘𝑉) ≤ (𝑣𝑘
𝑟𝑒𝑓

)
2

+ 𝑂2    (4.12b) 

 

If the target is to minimize the total losses over the distribution lines, using (4.10) 

losses can be calculated. Note that no lower boundary is required since the active power 

loss is always positive. 

 

Minimize 𝑂3        (4.13a) 
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Subject to (4.10b) − (4.10j), ∀𝑘, 𝑤 ∈ 𝑁 

𝑇𝑟(𝑌𝑘,𝑤
ℜ 𝑉) + 𝑇𝑟(𝑌𝑤,𝑘

ℜ 𝑉) ≤ 𝑂3      (4.13b) 

 

Minimizing renewable resource curtailment can also be modeled when a cost 

function is associated with the total curtailed power �̂�𝑘
𝑔

− 𝑝𝑘
𝑔

 where �̂�𝑘
𝑔

 is expected 

generation and 𝑝𝑘
𝑔

 is the dispatched generation level. Hence, a second order curtailment 

penalty function, where 𝑁𝑅 is the set of nodes with renewable energy resources, can be 

considered as  

 

Minimize 𝑂4        (4.14a) 

Subject to (4.10b) − (4.10j), ∀𝑘 ∈ 𝑁𝑅 , 𝑂4 = ∑ 𝐶𝑘𝑘  

[
𝐶𝑘 − 𝑐3𝑘(�̂�𝑘

𝑔
− 𝑝𝑘

𝑔
) + 𝐾 𝑐4𝑘(�̂�𝑘

𝑔
− 𝑝𝑘

𝑔
)

𝑐4𝑘(�̂�𝑘
𝑔

− 𝑝𝑘
𝑔

) 1
] ≥ 0    (4.14b) 
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5. RESULTS 

5.1. CASE STUDY 

In this section four different cases mentioned before will be discussed. In Case #1 

bus voltages and active powers are evaluated without the presence of batteries. Case #2 

investigates voltage profiles and generated powers with the presence of one battery. In 

Case #3 observed changes when two batteries are placed in the distribution system, are 

discussed. Case #4 placement of all three batteries is compared to best results of each 

Case study. Note that the system is evaluated during peak hours at night when PVs are 

off and batteries are at the maximum discharge level. 

5.1.1. Case #1.  Bus Voltage profiles without any batteries in place are 

investigated in this scenario to use as a reference for the next case studies. Bus voltage 

values are presented in Table 5.1 and Figure 5.1. They are later compared with other 

scenarios to insure voltage improvement after placing the batteries. 

 

 

 

Figure 5.1. Bus voltages without the presence of batteries 
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Table 5.1. Bus voltages without the presence of batteries 

 

 

5.1.2. Case #2.  As shown in 1.10. stationary batteries take a considerable space 

therefore according to the existing plan of Paradise Hill neighborhood, three buses 

including bus 2 (inside the substation), 14, and 25 are chosen for placement of the 

batteries. Bus 1 is considered as a slack bus. After observing the system changes with 

different values of power, maximum generated power of batteries is assumed to be 400 

kW. Figure 5.2. illustrates the bus voltages after placement of a single battery on each of 

the mentioned buses separately. As seen in this figure, placing the battery on Bus #14 

provides the highest voltage values in compare to other two candidate buses. In this case 

if placing only one battery is desired, the best location would be on bus #14. 

Small voltage reduction levels can be observed in some buses, however the 

overall voltage profiles are improved when placing the battery on bus #14. Also, the 

generated power of battery on bus #14 is 300 kW which is very close to the predefined 

maximum generated power. The lowest voltage profiles would occur after placing the 

battery on bus #25. 

Bus 

Number
Voltage

Bus 

Number
Voltage

Bus 

Number
Voltage

2 0.9747 12 0.9507 22 0.9708

3 0.9709 13 0.9401 23 0.9678

4 0.9677 14 0.9314 24 0.9655

5 0.9653 15 0.9257 25 0.9638

6 0.9633 16 0.9206 26 0.9629

7 0.962 17 0.9177 27 0.9706

8 0.9616 18 0.9169 28 0.9672

9 0.9632 19 0.9289 29 0.9648

10 0.9629 20 0.9273 30 0.9631

11 0.9621 21 0.9266 31 0.9622
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Figure 5.2. Bus voltages after placing one battery 

 

 

Voltage values provided in Table 5.2. indicates a significant voltage improvement 

as a result of placing one battery at bus #14. 

 

 

Table 5.2. Bus voltages after placement of one battery 

Bus 

Number
Voltage

Bus 

Number
Voltage

Bus 

Number
Voltage

2 0.988 12 0.9899 22 0.9842

3 0.9842 13 0.9921 23 0.9812

4 0.9812 14 0.9961 24 0.979

5 0.9788 15 0.9909 25 0.9773

6 0.9768 16 0.9862 26 0.9764

7 0.9756 17 0.9835 27 0.9839

8 0.9752 18 0.9828 28 0.9806

9 0.9767 19 0.9938 29 0.9782

10 0.9765 20 0.9924 30 0.9766

11 0.9883 21 0.9917 31 0.9758
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5.1.3. Case #3.  Now two batteries are placed in three arrangements including 

buses 2 and 14, 2 and 25, and 14 and 25 (Figure 5.3.). As expected, the most proper 

arrangement is bus 14 and 25, since these buses have the highest generated power in 

compare to bus #2 at maximum discharge. At this point it is obvious that placing the 

battery on bus #2 is not efficient due to the little improvement that is makes in compare 

to other locations. 

 

 

 

Figure 5.3. Bus voltages after placing two batteries 

 

 

5.1.4. Case #4.  To achieve the accurate results, placing all three batteries is 

compared to the best results of each scenario. Also to better observe the results, system 

voltage profiles before placing batteries is included in the graph. Figure 5.4. shows that 

due to small power generated by placing the battery on bus #2, placing batteries in all 

three candidate locations has the same result as placing only 2 on bus #14 and #25. 

Furthermore, this study significantly improved the voltage profiles during peak hours by 

placing only two batteries in the entire proposed distribution system. 
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Figure 5.4. Bus voltages after placing three batteries. Best results of each case is also 

included 

 

 

Table 5.3. illustrates a significant increase in voltage profiles when adding two 

batteries at bus 14 and 25. Results show that most of the bus voltage values are close to 1. 

 

Table 5.3. Voltage profiles after adding two batteries to the system 

Bus 

Number
Voltage

Bus 

Number
Voltage

Bus 

Number
Voltage

2 0.9921 12 0.994 22 0.9924

3 0.9884 13 0.9962 23 0.9934

4 0.9853 14 1.0003 24 0.9953

5 0.983 15 0.9951 25 0.9977

6 0.981 16 0.9904 26 0.9968

7 0.9798 17 0.9877 27 0.9881

8 0.9794 18 0.987 28 0.9848

9 0.9809 19 0.998 29 0.9824

10 0.9807 20 0.9966 30 0.9808

11 0.9925 21 0.9959 31 0.9799
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All of the cases above were investigated during the peak hours at night and under 

an assumption that the solar panels are turned off. However, the impact of batteries on the 

distribution system with the presence of PVs also needs to be considered. Figure 5.5. 

shows the presence of rooftop solar panels on some of the loads (houses). 

 

 

 

Figure 5.5. Distribution system with the presence of solar panels 

 

 

Similar to Case #1, to better evaluate the results, system voltages at noon without 

any batteries in place are shown in Figure 5.6. This is compared to Case #1 to obtain the 

maximum voltage changes between two buses. As it can be observed in Figure 5.6. The 

maximum bus voltage difference between these two conditions in almost 0.03 P.U. 
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Figure 5.6. Bus voltages with and without the presence of PVs 

 

 

To discover the improvement in voltage differences as a result of placing two 

batteries at bus 14 and 25, this arrangement of batteries is shown both during peak hours 

and at noon (with and without the presence of PVs). This is illustrated in Figure 5.7. 

 

 

 

Figure 5.7. Bus voltages after placing batteries on buses 14 and 25. 
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As it can be seen in Figure 5.7. the difference between the bus voltages is reduced 

from 0.03 P.U. to 0.01 P.U. This shows the enhancement in voltage profiles caused by 

the battery placement. 

 

 

5.2. CONCLUSION 

Placement of batteries significantly improves the voltage profiles in the 

distribution systems. Utilities may use this method to control the voltage and power of 

the systems with high penetration of PVs. Furthermore, by storing the energy that was 

derived from PVs and releasing it when needed in the network, batteries allow the use of 

all existing resources. However, in most cases the excessive generated power by PVs are 

either fed back into the system which causes voltage imbalances or avoided by 

curtailment. 

 

 

5.3. FUTURE WORK 

Electric vehicles and transportation systems demand large charging powers and 

hence, grids with high number of electrified transportation systems need to cope with the 

newly added load profile by these systems. The combination of resource intermittencies 

and large loads induced by electric vehicles demand a method for coordination between 

the charging patterns of the vehicles and the energy management controller of the 

microgrid. 

Large loads such as electric vehicles and autonomous transportation systems can 

induce large stresses over the grid. To mitigate this problem, methods for dynamic 

coordination of electric vehicles and the microgrid controller is needed. Battery 

placement and dynamic allocation of charging stations for microgrids with high 

penetration of renewable resources and electrified transportation systems can be 

investigated as a multi-objective optimization problem. To incorporate power quality 

objectives, this optimization needs to consider voltage equations within the power flow 

problem. However, this will lead to a non-convex problem which may be solved by the 

algorithm presented in this thesis. 
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Sizing of the stationary batteries can also be investigated using a distributed 

optimization. In this method a day is divided into six time periods and each of them are 

considered to be a cluster. Distributed optimization can then be used to solve the 

problem. 



 

 

49 

BIBLIOGRAPHY 

[1]  Energy Information Agency (EIA). 2017. How much of the U.S. carbon dioxide 

 emissions are associated with electricity generation? 

 

[2]   Rekioua, Djamila, and Ernest Matagne. Optimization of photovoltaic power 

systems: modelization, simulation and control. Springer Science & Business 

Media, 2012. 

 

[3]   Villalva, Marcelo Gradella, Jonas Rafael Gazoli, and Ernesto Ruppert Filho. 

"Comprehensive approach to modeling and simulation of photovoltaic arrays." 

IEEE Transactions on power electronics 24.5 (2009): 1198-1208. 

 

[4] Dali, Mehdi, Jamel Belhadj, and Xavier Roboam. "Hybrid solar–wind system 

 with battery storage operating in grid-connected and standalone mode: control and 

 energy management–experimental investigation." Energy 35.6 (2010): 2587-

 2595. 

 

[5] Gagnon, P., Margolis, R., Melius, J., Phillips, C., & Elmore, R. (2016). Rooftop 

 Solar Photovoltaic Technical Potential in the United States. A Detailed 

 Assessment (No. NREL/TP--6A20-65298). NREL (National Renewable Energy 

 Laboratory (NREL), Golden, CO (United States)). 

 

[6] Eltawil, Mohamed A., and Zhengming Zhao. "Grid-connected photovoltaic power 

 systems: Technical and potential problems—A review." Renewable and 

 Sustainable Energy Reviews 14.1 (2010): 112-129. 

 

[7] U.S. Department of Energy - Energy Efficiency & Renewable Energy 

 

[8] Tanaka, H., & Yamashita, K. (Eds.). (2010). Photovoltaics: developments, 

applications and impact. New York: Nova Science Publ. 

 

[9] Hoke, A., Butler, R., Hambrick, J., & Kroposki, B. (2013). Steady-state analysis 

 of maximum photovoltaic penetration levels on typical distribution feeders. IEEE 

 Transactions on Sustainable Energy, 4(2), 350-357. 

 

[10] Agalgaonkar, Yashodhan P., Bikash C. Pal, and Rabih A. Jabr. "Distribution 

 voltage control considering the impact of PV generation on tap changers and 

 autonomous regulators." IEEE Transactions on Power Systems 29.1 (2014): 182-

 192. 

http://www.eia.gov/tools/faqs/faq.cfm?id=77&t=11
http://www.eia.gov/tools/faqs/faq.cfm?id=77&t=11
http://www.eere.energy.gov/


 

 

50 

[11] Ari, G. K., & Baghzouz, Y. (2011, June). Impact of high PV penetration on 

 voltage regulation in electrical distribution systems. In Clean Electrical Power 

 (ICCEP), 2011 International Conference on (pp. 744-748). IEEE. 

 

[12] L. Krevat, “Transportation electrification: San diego gas & electric’s 

 implementation of the smartgrid,” Nov. 2013. 

 

[13] Farivar, M., Neal, R., Clarke, C., & Low, S. (2012, July). Optimal inverter VAR 

 control in distribution systems with high PV penetration. In Power and Energy 

 Society General Meeting, 2012 IEEE (pp. 1-7). IEEE. 

 

[14] A. S. Masoum, P. S. Moses, M. A. Masoum, and A. Abu-Siada, “Impact of 

 rooftop pv generation on distribution transformer and voltage profile of residential 

 and commercial networks,” in 2012 IEEE PES Innovative Smart Grid 

 Technologies (ISGT). IEEE, 2012, pp. 1–7. 

 

[15] R. Tonkoski, D. Turcotte, and T. H. El-Fouly, “Impact of high pv penetration on 

 voltage profiles in residential neighborhoods,” IEEE Transactions on Sustainable 

 Energy, vol. 3, no. 3, pp. 518–527, 2012. 

 

[16] S. Gill, I. Kockar, and G. Ault, “Dynamic optimal power flow for active 

 distribution networks,” Power Systems, IEEE Transactions on, vol. 29, no. 1, pp. 

 121–131, Jan 2014. 

 

[17] E. Dall’Anese, S. Dhople, and G. Giannakis, “Optimal dispatch of photovoltaic 

 inverters in residential distribution systems,” Sustainable Energy, IEEE 

 Transactions on, vol. 5, no. 2, pp. 487–497, April 2014. 

 

[18] Xu, Tao, and P. C. Taylor. "Voltage control techniques for electrical distribution 

 networks including distributed generation." IFAC Proceedings Volumes 41.2 

 (2008): 11967-11971. 

 

[19] E. Liu and J. Bebic, “Distribution system voltage performance analysis for high-

 penetration PV,” Feb. 2008 [Online]. Available: 

 http://www1.eere.energy.gov/solar/pdfs/42298.pdf, NREL/SR-581-42298 

 

[20] Liu, X., Aichhorn, A., Liu, L., & Li, H. (2012). Coordinated control of distributed 

energy storage system with tap changer transformers for voltage rise mitigation 

under high photovoltaic penetration. IEEE Transactions on Smart Grid, 3(2), 897-

906. 

 



 

 

51 

[21] Navarro-Espinosa, A., & Ochoa, L. F. (2015, February). Increasing the PV 

hosting capacity of LV networks: OLTC-fitted transformers vs. reinforcements. In 

Innovative Smart Grid Technologies Conference (ISGT), 2015 IEEE Power & 

Energy Society (pp. 1-5). IEEE. 

 

[22] Lew, D., Bird, L., Milligan, M., Speer, B., Wang, X., Carlini, E. M., ... & Orths, 

A. (2013, September). Wind and solar curtailment. In International Workshop on 

Large-Scale Integration of Wind Power Into Power Systems. 

 

[23] Tonkoski, R., Lopes, L. A., & El-Fouly, T. H. (2011). Coordinated active power 

curtailment of grid connected PV inverters for overvoltage prevention. IEEE 

Transactions on Sustainable Energy, 2(2), 139-147. 

 

[24] Jacobsen, H. K., & Schröder, S. T. (2012). Curtailment of renewable generation: 

Economic optimality and incentives. Energy Policy, 49, 663-675. 

 

[25] Etherden, N., & Bollen, M. H. (2011, June). Increasing the hosting capacity of 

distribution networks by curtailment of renewable energy resources. In 

PowerTech, 2011 IEEE Trondheim (pp. 1-7). IEEE. 

 

[26] Glavin, M. E., & Hurley, W. G. (2007, September). Ultracapacitor/battery hybrid 

for solar energy storage. In Universities Power Engineering Conference, 2007. 

UPEC 2007. 42nd International (pp. 791-795). IEEE. 

 

[27] S. G. Jayasinghe, D. M. Vilathgamuwa, and U. K. Madawala, “Direct integration 

of battery energy storage systems in distributed power generation,” IEEE 

Transactions on Energy Conversion, vol. 26, no. 2, pp. 677–685, 2011. 

 

[28] Achaibou, N., Haddadi, M., & Malek, A. (2012). Modeling of lead acid batteries 

in PV systems. Energy Procedia, 18, 538-544. 

 

[29] R. Perez, “Lead-acid battery state of charge vs. voltage,” Home Power, vol. 36, 

pp. 66–69, 1993. 

 

[30] http://www.powermag.com/battery-storage-goes-mainstream 

 

[31] Momoh, J. A. (2001). Electric power system applications of optimization. CRC 

press. 

[32] Zhu, J. (2009). Optimization of Power System Operation. 

http://www.powermag.com/battery-storage-goes-mainstream-2/?pagenum=4


 

 

52 

 

[33] Gaing, Z. L. (2003). Particle swarm optimization to solving the economic 

dispatch considering the generator constraints. IEEE transactions on power 

systems, 18(3), 1187-1195. 

 

[34] Rao, R. S., Ravindra, K., Satish, K., & Narasimham, S. V. L. (2013). Power loss 

minimization in distribution system using network reconfiguration in the presence 

of distributed generation. IEEE transactions on power systems, 28(1), 317-325. 

 

[35] Acharya, N., Mahat, P., & Mithulananthan, N. (2006). An analytical approach for 

DG allocation in primary distribution network. International Journal of Electrical 

Power & Energy Systems, 28(10), 669-678. 

 

[36] Delfanti, M., Granelli, G. P., Marannino, P., & Montagna, M. (1999, July). 

Optimal capacitor placement using deterministic and genetic algorithms. In Power 

Industry Computer Applications, 1999. PICA'99. Proceedings of the 21st 1999 

IEEE International Conference (pp. 331-336). IEEE. 

 

[37] Taylor, J. A. (2015). Convex optimization of power systems. Cambridge 

University Press. 

 

[38] Crow, M. L. (2002). Computational Methods for Electric Power Systems. CRC 

Press. 

 

[39] "Optimization of Linear Problems: Linear Programming (LP) © 2011 Daniel 

Kirschen and University of Washington 1." 

 

[40] Nguyen, T. A., & Crow, M. L. (2012, May). Optimization in energy and power 

management for renewable-diesel microgrids using dynamic programming 

algorithm. In Cyber Technology in Automation, Control, and Intelligent Systems 

(CYBER), 2012 IEEE International Conference on (pp. 11-16). IEEE. 

 

[41] Shamsi, P., Xie, H., Longe, A., & Joo, J. Y. (2016). Economic dispatch for an 

agent-based community microgrid. IEEE Transactions on Smart Grid, 7(5), 2317-

2324. 

 

[42] Swarup, K. S., & Yamashiro, S. (2002). Unit commitment solution methodology 

using genetic algorithm. IEEE Transactions on Power Systems, 17(1), 87-91. 

 



 

 

53 

[43] Lee, K. Y., & El-Sharkawi, M. A. (Eds.). (2008). Modern heuristic optimization 

techniques: theory and applications to power systems (Vol. 39). John Wiley & 

Sons. 

 

[44] Nef, Walter (1988-01-01). Linear Algebra. Courier Corporation. p. 35. ISBN 

9780486657721] 

 

[45] www.joptimizer.com/secondOrderConeProgramming 

 

[46] Baradar, M., Hesamzadeh, M. R., & Ghandhari, M. (2013). Second-order cone 

programming for optimal power flow in VSC-type AC-DC grids. IEEE 

Transactions on Power Systems, 28(4), 4282-4291. 

 

[47] Taylor, J. A., & Hover, F. S. (2012). Convex models of distribution system 

reconfiguration. IEEE Transactions on Power Systems, 27(3), 1407-1413. 

 

[48] Baia, X., Weia, H., Fujisawab, K., & Wangc, Y. (2008). Semidefinite 

programming for optimal power flow problems q. Electrical Power and Energy 

Systems, 30, 383-392. 

 

[49] Vandenberghe, L., & Boyd, S. (1996). Semidefinite programming. SIAM review, 

38(1), 49-95. 

 

[50] Nazaripouya, H., Wang, Y., Chu, P., Pota, H. R., & Gadh, R. (2015, July). 

Optimal sizing and placement of battery energy storage in distribution system 

based on solar size for voltage regulation. In Power & Energy Society General 

Meeting, 2015 IEEE (pp. 1-5). IEEE. 

 

[51] Borghetti, A., Bosetti, M., Grillo, S., Massucco, S., Nucci, C. A., Paolone, M., & 

Silvestro, F. (2010). Short-term scheduling and control of active distribution 

systems with high penetration of renewable resources. IEEE Systems Journal, 

4(3), 313-322. 

 

[52] Ochoa, L. F., Dent, C. J., & Harrison, G. P. (2010). Distribution network capacity 

assessment: Variable DG and active networks. IEEE Transactions on Power 

Systems, 25(1), 87-95. 

 

[53] Qian, Z., Abdel-Rahman, O., & Batarseh, I. (2010). An integrated four-port 

DC/DC converter for renewable energy applications. IEEE Transactions on Power 

Electronics, 25(7), 1877-1887. 

 

http://www.joptimizer.com/secondOrderConeProgramming.html


 

 

54 

[54] Baldick, R., & Wu, F. F. (1990). Efficient integer optimization algorithms for 

optimal coordination of capacitors and regulators. IEEE Transactions on Power 

Systems, 5(3), 805-812. 

 

[55] Liang, R. H., & Cheng, C. K. (2001). Dispatch of main transformer ULTC and 

capacitors in a distribution system. IEEE Transactions on Power Delivery, 16(4), 

625-630. 

 

[56] Sun, Q., Huang, B., Li, D., Ma, D., & Zhang, Y. (2016). Optimal placement of 

energy storage devices in microgrids via structure preserving energy function. 

IEEE Transactions on Industrial Informatics, 12(3), 1166-1179. 

 

[57] A. S. Awad, T. H. El-Fouly, and M. M. Salama, “Optimal ess allocation for load 

management application,” IEEE Transactions on Power Systems, vol. 30, no. 1, 

pp. 327–336, 2015. 

 

[58] Geth, F., Tant, J., Haesen, E., Driesen, J., & Belmans, R. (2010, July). Integration 

of energy storage in distribution grids. In Power and Energy Society General 

Meeting, 2010 IEEE (pp. 1-6). IEEE. 

 

[59] Geth, F., Tant, J., Six, D., Tant, P., De Rybel, T., & Driesen, J. (2011, June). 

Techno-economical and life expectancy modeling of battery energy storage 

systems. In Proceedings of the 21st International Conference on Electricity 

Distribution (CIRED). 

 

[60] Tant, J., Geth, F., Six, D., Tant, P., & Driesen, J. (2013). Multiobjective battery 

storage to improve PV integration in residential distribution grids. IEEE 

Transactions on Sustainable Energy, 4(1), 182-191. 

 

[61] Riffonneau, Y., Bacha, S., Barruel, F., & Ploix, S. (2011). Optimal power flow 

management for grid connected PV systems with batteries. IEEE Transactions on 

Sustainable Energy, 2(3), 309-320. 

 

[62] Barnes, A. K., Balda, J. C., Escobar-Mejía, A., & Geurin, S. O. (2012, January). 

Placement of energy storage coordinated with smart PV inverters. In Innovative 

Smart Grid Technologies (ISGT), 2012 IEEE PES (pp. 1-7). IEEE. 

 

[63] Zhang, B., Lam, A. Y., Domínguez-García, A. D., & Tse, D. (2015). An optimal 

and distributed method for voltage regulation in power distribution systems. IEEE 

Transactions on Power Systems, 30(4), 1714-1726. 

 



 

 

55 

[64] Deshmukh, S., Natarajan, B., & Pahwa, A. (2012). Voltage/VAR control in 

distribution networks via reactive power injection through distributed generators. 

IEEE Transactions on smart grid, 3(3), 1226-1234. 

 

[65] Lavaei, J., & Low, S. H. (2012). Zero duality gap in optimal power flow problem. 

IEEE Transactions on Power Systems, 27(1), 92-107. 

 

[66] Madani, R., Sojoudi, S., & Lavaei, J. (2015). Convex relaxation for optimal 

power flow problem: Mesh networks. IEEE Transactions on Power Systems, 

30(1), 199-211. 

 

[67] Gan, L., & Low, S. H. (2014). Optimal power flow in direct current networks. 

IEEE Transactions on Power Systems, 29(6), 2892-2904. 

 

[68] Andersen, M. S., Hansson, A., & Vandenberghe, L. (2014). Reduced-complexity 

semidefinite relaxations of optimal power flow problems. IEEE Transactions on 

Power Systems, 29(4), 1855-1863.] 

 

[69] Tan, C. W., Cai, D. W., & Lou, X. (2015). Resistive network optimal power flow: 

uniqueness and algorithms. IEEE Transactions on Power Systems, 30(1), 263-

273. 

 

[70] Kocuk, B., Dey, S. S., & Sun, X. A. (2016). Inexactness of SDP relaxation and 

valid inequalities for optimal power flow. IEEE Transactions on Power Systems, 

31(1), 642-651. 

 

[71] Giannitrapani, A., Paoletti, S., Vicino, A., & Zarrilli, D. (2015, December). 

Algorithms for placement and sizing of energy storage systems in low voltage 

networks. In Decision and Control (CDC), 2015 IEEE 54th Annual Conference 

on (pp. 3945-3950). IEEE. 

 

[72] Grant, M., Boyd, S., & Ye, Y. (2008). CVX: Matlab software for disciplined 

convex programming. 

 

[73] Alizadeh, F., & Goldfarb, D. (2003). Second-order cone programming. 

Mathematical programming, 95(1), 3-51. 

 

[74] https://sempra.maps.arcgis.com/home/signin.html, San Diego Gas & Electric 

Company (SDG&E) 

 

https://sempra.maps.arcgis.com/home/signin.html


 

 

56 

[75] Kolar, J. W., & Round, S. D. (2006). Analytical calculation of the RMS current 

stress on the DC-link capacitor of voltage-PWM converter systems. IEE 

Proceedings-Electric Power Applications, 153(4), 535-543. 

 

[76] Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed 

optimization and statistical learning via the alternating direction method of 

multipliers. Foundations and Trends® in Machine Learning, 3(1), 1-122. 

 

 

 

 

 

 

 

 



 

 

57 

VITA 

Kiana Khalilnejad received her Bachelor’s degree in Electrical Engineering from 

Azad University in Semnan, Iran in February 2016. In August 2016 she started working 

as a Graduate Research Assistant in Missouri University of Science and Technology. Her 

research topic is focused on optimal battery placement in distribution networks with high 

penetration of Renewable Energy Resources. She has also worked on designing 

protection for distribution network. 

Her area of interest in Power Systems includes Power System Protection, 

Relaying, Power System Reliability, and Transmission Planning. 

In May 2018, she received her master of science degree in Electrical Engineering 

from Missouri University of Science & Technology in Rolla, MO. 


