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ABSTRACT OF DISSERTATION

Serial Testing for Detection of Multilocus Genetic Interactions

A method to detect relationships between disease susceptibility and multilocus genetic
interactions is the Multifactor-Dimensionality Reduction (MDR) technique pioneered
by Ritchie et al. (2001). Since its introduction, many extensions have been pursued
to deal with non-binary outcomes and/or account for multiple interactions simulta-
neously. Studying the effects of multilocus genetic interactions on continuous traits
(blood pressure, weight, etc.) is one case that MDR does not handle. Culverhouse
et al. (2004) and Gui et al. (2013) proposed two different methods to analyze such
a case. In their research, Gui et al. (2013) introduced the Quantitative Multifactor-
Dimensionality Reduction (QMDR) that uses the overall average of response variable
to classify individuals into risk groups. The classification mechanism may not be
efficient under some circumstances, especially when the overall mean is close to some
multilocus means. To address such difficulties, we propose a new algorithm, the Or-
dered Combinatorial Quantitative Multifactor-Dimensionality Reduction (OQMDR),
that uses a series of testings, based on ascending order of multilocus means, to identify
best interactions of different orders with risk patterns that minimize the prediction
error. Ten-fold cross-validation is used to choose from among the resulting models.
Regular permutations testings are used to assess the significance of the selected model.
The assessment procedure is also modified by utilizing the Generalized Extreme-Value
distribution to enhance the efficiency of the evaluation process. We presented results
from a simulation study to illustrate the performance of the algorithm. The proposed
algorithm is also applied to a genetic data set associated with Alzheimer’s Disease.

KEYWORDS: Multifactor dimensionality reduction; Cross Validation; Model selec-
tion; Continuous Trait; Continuous Phenotype; Ordered Combinatorial Parti-
tioning
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Chapter 1 A Review of Multifactor-Dimensionality Reduction

1.1 Introduction

Disease susceptibility is considered to be substantially linked to multilocus genetics on

the level of main effects and/or interaction effects [48]. Many parametric statistical

methods have been used to model the relationship between disease susceptibility

and genetic factors. The majority of these methods were derived from the concept

of linear and generalized linear modeling [24]. Yet, due to the high dimensionality

of genetic data and/or the relatively small sample size, these methods may not be

efficient to work with under such circumstances. To see this, recall that the ordinary

least squares (OLS) estimator of the vector of the linear regression coefficient (β) can

be obtained according to equation 1.1:

β̂ =
(
XTX

)−1
XTY (1.1)

where Y is an n-vector of the response variable, X is an n × p matrix of predictor

variables, β̂ is a p-vector of the OLS estimators of the regression coefficients, n is the

number of observations, and p is the number of the regression coefficients in the fitted

model.

When we run in a large p small n situation, i.e., the number of regression coeffi-

cients is larger than the number of observations p > n, then the rank of the matrix

XTX is at most n. Which means there is a multicollinearity problem in the data. In

such situation, the regular inverse for the matrix XTX does not exist. This implies

the OLS method is no longer applicable. When a generalized inverse is used to cal-

culate β̂ according to equation 1.1, a unique estimator would not exist. Even if an

approximated matrix inverse is used, the interpretation of the regression coefficients
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of the correlated predictors won’t be accurate [31]. In genetic studies, p could get

substantially large when an interaction of any order between genetic factors is con-

sidered in the analysis. For example, a second degree polynomial of a data set with

ten genetic factors may contains p = 56 coefficients, which is the number of intercept,

all main effects, and all 2-way effects coefficients in the model. This number gets

larger exponentially when the number of factors increases or a higher degree interac-

tion is considered in the study. Consequently, non-parametric alternatives have been

developed to overcome the difficulties of using parametric methods.

Multifactor-Dimensionality Reduction (MDR) algorithm, originally introduced by

Ritchie et al.[51], is one of the non-parametric methods that has been widely used and

extended to describe the relationship between disease susceptibility and multilocus

genetics interaction for case-control and discordant-sib-pair studies. The combina-

torial partitioning method, described by Nelson et al. [46], motivated Ritchie and

her colleagues to develop the MDR method. The main goal of the MDR method is

to capture the single most significant multilocus genetic interaction by reducing the

dimensionality of the genetics data to one single predictor via labeling each possi-

ble multilocus combination at high risk or low risk according to a certain criterion.

Cross-validation is used to assess the validity of the proposed k-way interaction for

k = 2, 3, ..., N − 1, where N is the number of factors in the data. Further, the

significance of a final proposed interaction is verified using permutation testing.

The MDR method can be summarized in the following steps [51]:

1. First, identify N genes and/or the discrete environmental factors in the data.

2. Next, the frequency distribution of the data is displayed in a k-dimensional

space for each considered k-way interaction. That is, the data of any 2-way

interaction are visualized using a 2-way contingency table. Similarly, a 3-way

contingency cube (or three 2-way contingency tables) is used to visualize the
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data of any 3-way interaction, and so forth. The dimensions of these cross tabu-

lations are determined by the number of levels in each factor. For instance, the

frequency distribution for the interaction between two factors each with three

levels is represented using a 3× 3 contingency table. Each cell in the represen-

tation contains the frequencies of the cases and controls that correspond to a

specific multilocus combination. A comparison between the case:control ratio in

each cell and a previously specified threshold is used to determine whether the

corresponding combination is considered high risk or low risk. The individuals

in each cell (combination) are considered at high risk if the case:control ratio

exceeds or equals to the specified threshold. Conversely, the individuals are

labeled as low risk if the case:control ratio is inferior to the threshold. In their

research, Ritchie and her colleagues suggested the threshold to be 1.0. The goal

of the classification process is to reduce the dimensionality of the data space to

a one-dimensional binary predictor variable.

3. Then, a proposed model (interaction) of order k is chosen as the one that has

the smallest classification error (CE) for each possible k-way model. To obtain

the CE for each model, the total number of misclassified individuals (patients

labeled as low risk, and controls labeled as high risk) is recorded for each model.

The misclassification of the patients is usually called false negative error (FN),

whereas the number of incorrectly allocated controls is termed as false positive

error (FP).

4. After that, in order to assess the validity of the proposed model, a 10-fold

cross-validation (CV) is used for each k-way interaction. To perform the CV

procedure, the data is randomly divided into ten approximately equally sized

groups, such that each group has the exact same number of cases and controls to

retain the case:control ratio equal to 1. In each fold, one group is excluded as a

3



testing data set, while the remaining 9 groups are deemed as a training data set.

Later, the data classification and model selection procedures described in steps

2 and 3 are performed on the training data set. Next, individuals belong to the

testing data set (the excluded group) are classified into high risk and low risk

according to the binary predictor obtained from performing steps 2 and 3 on

the training data set. The exclusion procedure is performed on each of the ten

groups and the CEs are reported for each possible k-way model constructed us-

ing the training data sets. In a similar way to calculate CE, the prediction error

(PE) is calculated for each excluded group in the ten folds. In particular, PE is

the number of falsely classified individuals in the testing data set. To eliminate

the possible effects of the random subsetting of the data, the entire CV proce-

dure is repeated several times (e.g. five times). New random sub-grouping of

the data into ten equally sized groups is carried out in each repetition. From all

acquired CEs, the average CE (CE) is calculated for each k-way model. Then,

the models that minimize the CE for each degree of interaction are reported.

Finally, the model that better represents the relationship between multilocus

genetic interaction and disease susceptibility among all selected models is the

one with the minimum average PE (PE), where PE is calculated in a similar

way to CE [24]. Cross-validation consistency (CVC) is used to evaluate the

validity of the selected model. That is, MDR calculates how many times each

specific model is selected from all ten folds. A final average cross-validation

consistency (CVC) is calculated for each proposed model based on the out-

comes of all repetitions. The CVC is used to evaluate the validity of the final

model because a true underlying effect should be recognizable regardless of the

randomized subsetting of the data.

5. Finally, to verify the significance of the selected model, permutation testing is

used with 1000 permuted data sets. Each time the labels of cases and controls
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are randomly shuffled while the remaining variables are kept untouched. To

examine the statistical significance of the winner model, the CVC derived from

the original data set is compared to the empirical distribution of the CVC

generated by 1000 permutation testings. The proposed model is considered

statistically significant if the permuted p-value is ≤ 0.05.

MDR method has been widely studied and extended to improve the overall algorithm

and/or to address some of its drawbacks. As described by Gola et al. [24], these

extensions generally focused on handling different phenotypic data [26, 36], different

data structure [5, 25], risk labels allocation [39, 30], classification result evaluation

[41, 7, 44], and p-value calculation procedures [43, 48, 17].

One common shortcoming of the MDR is that it only applies for evenly distributed

samples, i.e., the controls and cases are equally observed in the data set. Velez et

al. [53] proposed a few simple solutions to overcome the imbalanced data issue. The

proposed remedies mainly depend on over-sampling, under-sampling, or using the

cases:control ratio for the whole sample as a threshold. Another considerable weak-

ness of the MDR algorithm is utilizing a constant threshold to classify individuals into

high-risk and low-risk groups. Regardless of the benefits of using a fixed threshold,

as it cuts down the computational burden, it may lead to a huge power loss [30].

Hua et al. [30] modified the MDR algorithm by using a threshold that maximizes

the χ2 test statistic among all possible ordered 2×2 contingency tables that are formed

from a single 2×Πk
1li table, where k represents the number of factors which interact,

and li is the number of levels for the ith factor. In each possible k-way interaction,

there are Πk
i=1li−1 contingency tables of 2×2 dimensions, each table produces a single

χ2 test statistic. These Πk
i=1li − 1 contingency tables represent different patterns of

classifications of the data into risk groups. The partitioning and ordering procedures

are mainly based on the idea of Ordered Combinatorial Partitioning (OCP) method

[46]. Even though the OCP method considers only Πk
i=1li − 1 partitions, it provides
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the same benefits of scanning all possible partitionings of the data [30].

In practice, consider the following illustration inspired by an example from Hua

et al. [30]. Assume we have a case:control data set with two interacting factors, A

and B, such that each factor has two levels. Let a1 and a2 be the levels for factor A,

and b1 and b2 be the levels for factor B. We can represent the data of this interaction

by a 2× 22 table as shown in table 1.1 below.

Table 1.1: A 2 × 22 table represents the case:control data set with two interacting
factors

a1b1 a2b1 a1b2 a2b2 Total
Case 1 12 19 28 60

Control 11 13 20 16 60
Total 12 25 39 44 120

In this example, there are 22−1 different 2×2 tables that can be formed from the

original table, where three is the number of columns in the original table minus one.

Before we construct the new tables, we need to reorder the columns of the original

table in ascending order according to the case:control ratio in each column. Since the

columns of the table in our example are already sorted, we can proceed to the next

step. To form the first 2× 2 table, we keep the first column as it is, while we merge

the last three columns into one column. Then, combine the first two columns and the

last two columns into two separate columns to create the second 2× 2 table. Finally,

the third table is formed by collapsing the data of the first three columns into one

column and leaving the last column alone. Table 1.2 shows the three 2 × 2 tables

formed from table 1.1.

Now, in each one of the three tables, we label the first column as low risk and the

second column as high risk. This suggests that there are three different thresholds

floating around, one threshold for each table. The threshold for table 1.2a falls

between the case:control ratios of the first two columns of the original table, i.e.,

between 1/11 and 12/13. While for table 1.2b, its threshold is in between 12/13 and
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Table 1.2: The three 2× 2 tables formed from the original 2× 22 table

(a) 1 vs. 2, 3, 4

a1b1 a2b1, a1b2, a2b2 Total
Case 1 59 60

Control 11 49 60
Total 12 108 120

(b) 1, 2 vs. 3, 4

a1b1, a2b1 a1b2, a2b2 Total
Case 13 47 60

Control 24 36 60
Total 37 83 120

(c) 1, 2, 3 vs. 4

a1b1, a2b1, a1b2 a2b2 Total
Case 32 28 60

Control 44 16 60
Total 76 44 120

19/20, which are the ratios of the second and third columns in the original table.

Finally, the third threshold, which is for table 1.2c, is larger than 19/20 and smaller

than 28/16. The permuted p-values of the χ2 tests of these three tables are 0.0049,

0.0447, and 0.039 respectively. All p-values are calculated from 10000 permutation

testings using R software [50]. Obviously, the first table, and thus the first range of

thresholds, maximizes the χ2 test statistic among all three 2× 2 tables. Accordingly,

choosing any value between 1/11 and 12/13 as a cutoff point leads to maximizing the

test statistic and therefore a more powerful test [30]. If the fixed threshold suggested

by Ritchie et al., which is 1.0, were chosen to classify this data set, then the data

would be classified in accordance to table 1.2c with a permuted p-value of 0.039.

Thus, sticking with a constant threshold might lead one to propose a weaker model

to capture the genetic predisposition.

1.2 Quantitative Multifactor-Dimensionality Reduction (QMDR)

Another essential extension for the MDR method is to make it adequate for analyzing

data sets with continuous phenotypes such as plasma triglyceride levels [46], blood

pressure [14], and Body Mass Index [18]. In fact, the original MDR method can be

utilized to analyze data sets with continuous phenotypes, but only after converting
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the continuous trait variable to a binary response variable according to a certain crite-

rion or researcher prior experience. However, analyzing the data set with the original

quantitative response would probably be more precise and informative. General-

ized Multifactor-Dimensionality Reduction (GMDR) [39], Model-Based Multifactor-

Dimensionality Reduction [8], and Quantitative Multifactor-Dimensionality Reduc-

tion (QMDR) [26] are some expansion algorithms of the original MDR approach.

The QMDR developed by Gui et al. [26] modified the original MDR by using the

overall mean as the criterion of classifying the genotype combinations into high-risk

and low-risk groups for each k-way model. In particular, each multilocus genotype

combination in every possible k-way interaction is labeled high risk if its mean is

higher than the overall mean of the response. Otherwise, the genotype combination

is regarded as low risk. Similar to original MDR, all individuals will be placed in a

high-risk group or a low-risk group according to the preceding classification to form

a dichotomous predictor variable. A single Two-Sample t-Test for Equal Means is

employed to compare the high-risk group vs. the low-risk group in each possible

k-way model. The k-way interaction that maximizes the t-test statistic is selected

as a proposed model for that specific order of interaction. To choose the model that

better explains the variation in the continuous response among all suggested k-way

models, 10-fold cross-validation with repetitions is performed to compute the cross-

validation consistencies, t-scores, and Mean Squared Prediction Errors on testing

data for each model. The model that maximizes the testing t-score is chosen as the

best final model. The significance of the winner model is justified using permutation

testings. Under the null hypothesis (i.e., no factors effects involved), the mean of

the t-scores will approach zero. Thus, in their paper, Gui et al. [26] anticipated the

empirical distribution of testing t-scores to be approximately normal and centered at

zero. Hence, a normal distribution with a mean of zero was employed to estimate the

empirical p-value of the final model as a replacement of the permuted p-value.
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1.3 This framework

Despite its computational efficiency concerning fast evaluation, QMDR algorithm

may lead one to select a weaker model to explain the variation in the response vari-

able. For instance, let’s consider the genetic data with two biallelic single-nucleotide

polymorphisms (SNPs), with A and B being the major alleles for each SNP, and a

and b are the minor alleles (see figure 1.1a). The numbers in figure 1.1a represent

the means for multilocus interactions between the two SNPs, in the absence of sta-

tistical noise. According to the QMDR algorithm, every cell with a mean greater

than the overall mean, which is 125.11 in this example, will be regarded as high risk.

This suggests that all individuals with a mean of 128 are assumed at high risk of

manifesting the disease as shown in figure 1.1b. However, we may think that a mean

of 128 is not sufficiently large to classify the corresponding individuals at high risk;

whereas, only cells with means of 150 would probably be considered at high risk (see

figure 1.1c). Hence, we proposed a new algorithm to handle such cases. We named

our algorithm as the Ordered Combinatorial Quantitative Multifactor-Dimensionality

Reduction (OQMDR)

Figure 1.1: Interaction representation between two SNPs, and its two anticipated risk
patterns

(a) Interaction

AA

BB 120

Aa

120

aa

120

Bb 120 120 128

bb 120 128 150

(b) QMDR

AA

BB 120

Aa

120

aa

120

Bb 120 120 128

bb 120 128 150

(c) OQMDR

AA

BB 120

Aa

120

aa

120

Bb 120 120 128

bb 120 128 150

* Individuals in highlighted cells are at high risk.

In chapter 2, we will extend the idea of Ordered Combinatorial Partitioning

method introduced by [30] to data sets with quantitative traits to perform a se-

ries of t-tests to capture the genetic predisposition. For each possible k-way model,
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there will be Πk
i=1li − 1 different t-tests, where k is the degree of the interaction, and

li is the number of levels of the ith factor for i = 1, 2, ..., k. Each t-test corresponds

to a specific pattern to classify the data into high-risk and low-risk groups. From

each possible k-way model, we propose the pattern that corresponds to the largest

t-statistic among all Πk
i=1li − 1 computed t-statistics. From the pool of all maximum

t-statistics derived for all possible k-way models, a single maximum of the maximums

t-statistic will be selected, and the corresponding model along with its risk pattern

is considered our proposed model for that specific degree of interaction.

A 10-fold cross-validation procedure with five repetitions is carried out to calculate

the average cross-validation consistency (CVC), average testing t-score, and average

Mean Squared Prediction Errors (MSPE) for the proposed k-way models. A final

single model that maximizes the average testing t-score is selected as a winner model.

Average cross-validation consistency is used as a tiebreaker in case if the proposed

models of various orders end up with the same average testing t-score. A most

parsimonious model is selected when all criteria are tied between the selected models

of different degrees. Permutation testings with 1000 permuted data sets are used to

justify the significance of the final model. The p-value is calculated by comparing

the average permuted testing t-scores to the average testing t-score of the proposed

model. A comparison between the output from our method and QMDR is performed

for six different cases. Each case is repeated ten times at three different sample sizes

with a different simulated data set. The method that captures the actual model,

where applicable, and has smaller MSPE is considered better in each case.

In chapter 3, we modified the OQMDR algorithm to overcome the time consump-

tion issue and to increase the accuracy of model evaluation. The adjustment involves

utilizing the Generalized Extreme-Value Distribution (GEVD) to justify model sig-

nificance, which was used by Pattin et al. [48] and Hua et al. [30] for the same

purpose. The approach is initially suggested to reduce computation burdens of using
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regular permutation testings. We adapted the GEVD approach to fit with OQMDR

to assess both the test statistic and its p-value for further justification. The GEVD

is considered because the final model is selected upon maximizing the test statistic.

Permuting a small set of test statistics could be used to approximate the null dis-

tribution of the test statistic. Analogous to the test statistic, the significance of the

p-value of each suggested model is justified using the same approach. The idea follows

from the fact that a p-value is a smooth decreasing transformation of a test statis-

tic. Therefore, we tested multiple different distributions as well as three different

transformations of the p-value to find the best fit according to the graphical repre-

sentation. Among all considered distributions and/or transformations, the GEVD of

−log(−log(p-value)) is chosen to verify the validity of the p-value. The uniform(0,1)

distribution of the identity transformation shows a huge enhancement when a large

number of permuted samples is considered. However, the behavior of the GEVD of

the −log(−log(p-value)) is globally better than all other choices. A simulation as-

sessment is carried out on 120 different data sets to evaluate the new procedure. The

output is compared to the findings from chapter 2 regarding efficiency and significance

of proposed interactions.

In chapter 4, we presented some simple theoretical findings. Finally, in chap-

ter 5, we applied the OQMDR algorithm to Alzheimer Disease data set with three

continuous responses.

Copyright c© Zaid T. Al-Khaledi, 2019.
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Chapter 2 Ordered Combinatorial Partitioning and Quantitative

Phenotypes

2.1 Introduction

Quantitative Multifactor-Dimensionality Reduction (QMDR) is a modified version of

the MDR algorithm. The QMDR is suggested to handle genetic data sets with con-

tinuous phenotypes [26]. The method uses the overall mean of the continuous trait

as a threshold to classify individuals into high-risk and low-risk groups in each multi-

locus combination. A single Two-Sample t-Test for Equal Means is used to evaluate

the difference between the means of the two groups for each possible interaction of

a specific order. The best model of order k = 2, 3, ..., N − 1, where N is the total

number of factors in the data, with a particular risk pattern is the one that maximizes

the t-test statistic among all calculated t-statistics of all possible interactions. Under

certain conditions, utilizing the overall mean of the continuous variable might lead

to choosing a weaker model to explain the genetic predisposition. Even when the

QMDR method picks the most important interaction, it might miss the risk pattern

that better represents the relationship between the phenotype and the genetic factors.

To overcome the weaknesses in such cases, we developed a new algorithm, the Or-

dered Combinatorial Quantitative Multifactor-Dimensionality Reduction (OQMDR),

that considers all logical risk patterns for each interaction based on the idea of Com-

binatorial Partitioning (CP) [46]. To reduce the computational burden, we adapted

the Ordered Combinatorial Partitioning (OCP) strategy introduced by Hua et al.

[30] to work with continuous variables. The use of the OCP is anticipated to give

the same maximum t statistic obtained when the exhaustive testing over the set of

all possible Combinatorial Partitionings is performed.
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2.2 Adaptation of OCP to Handle Continuous Phenotypes

The new algorithm can be described as follows. First, determine the total number

of factors, N , in the data set. Then, reorganize the data into an N -dimensional

array, such that each element in the array contains data that belong to a certain

combination between N factors levels. Figure 2.1 shows the representation of the

data when the total number of the selected factors is four. Next, all possible k-way

interactions are considered for k = 2, 3, ..., N − 1, and a k-dimensional array is used

to represent the data. Then, the means of all possible multilocus combinations (cell

means) are calculated. There are Πk
i=1li possible multilocus combinations for each

interaction of order k, where li is the number of levels of the ith factor, and k is the

number of interacting factors. Then, we use the OCP procedure to capture the single

most important k-way interaction that better explains the variation in the continuous

phenotype. That is, the multilocus combinations are sorted in an ascending order

according to their means. then a set of size Πk
i=1li− 1 tables are formed by collapsing

the sorted cells into two groups (high-risk and low-risk groups). After that, a series

of Πk
i=1li− 1 t-testings are performed between the high-risk group versus the low-risk

group from each partitioning. Each calculated t-statistic corresponds to a certain

risk pattern of the multilocus interaction. The OCP procedure is applied to each

possible interaction of order k = 2, 3, ..., N − 1. This produces N − 2 sets of size(
N
k

)
models along with their risk patterns, in which each model is maximizing the

t-statistic. Afterward, a single model is selected from each of the N − 2 sets, such

that the selected model is maximizing the maximized t-statistics.

For better illustration of risk pattern selection, consider the following exam-

ple of three interacting factors (i.e., k = 3) with quantitative phenotype. Let X

be the continuous variable of interest, and assume there are three interacting fac-

tors A,B, and C, where each factor has three levels, i.e., li = 3, i = 1, 2, 3. Let

(a1, a2, a3), (b1, b2, b3), and (c1, c2, c3) be the levels of factor A,B, and C respectively.
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Figure 2.1: Representation of 4-factor interaction, each with three levels
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In this example, we have three possible 2-way interactions, which are (AB,AC, and

BC). Thus, if we consider the 2-way interaction between A and B, then we would

have Πk
i=1li = 9 different multilocus combinations between these two factors. There-

fore, the data can be represented in a 3 × 3 table (table 2.1). Next, calculate the

mean for each possible multilocus combinations, and let X̄j and X̄(j) be the mean

and the ordered mean of the jth combination for j = 1, 2, ..., 9. After that, we reorder

the cells of the 3 × 3 table based on their means in an ascending order. Now, the

data in each cell will be treated as a single subset from the original data set, which

means we divide the data into nine different groups (g(1), g(2), ..., g(9)) in this example,

where g(j) is the group of individuals that belong to the jth ordered cell. Next, we

aggregate the groups to perform a series of eight (Πk
i=1li − 1 = 8) different t-tests.

Each aggregation gives one distinct risk pattern. The first t-test will be between the

data from g(1) as a first sample and the data from (g(2), g(3), and g(9)) combined to-

gether as a second sample. Whereas, the second t-test will be between the data from
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g(1), and g(2) grouped together as a first sample and the data from (g(3), g(4), and g(9))

combined together as a second sample, and so forth. Finally, the first eight groups are

treated as one sample and tested against the data from the ninth group. Among the

eight risk patterns we have in this example, the one that maximizes the t-test statistic

will be chosen as the proposed risk pattern for the interaction between the factors A

and B. The procedure is repeated for each possible 2-way interaction, and a single

risk pattern is selected. The interaction that maximizes the maximized t-statistics is

selected as our proposed 2-way model in this example.

Table 2.1: Data presentation of the interaction between A and B

a1

Data with
a1, b1

X̄11

a2

Data with
a2, b1

X̄21

a3

Data with
a3, b1

X̄31

Data with
a1, b2

X̄12

Data with
a2, b2

X̄22

Data with
a3, b2

X̄32

Data with
a1, b3

X̄13

Data with
a2, b3

X̄23

Data with
a3, b3

X̄33

b1

b2

b3

A 10- fold cross-validation procedure with five repetitions is performed to justify

the validity of the selected model. That is, we divide the data into ten approximately

equal sized subsets, then we exclude one subset as a testing data set while treat

the remaining nine subsets as a training data set. The cross-validation consistency

(CVC) is calculated for the selected model from each order k for each repetition,

and the average CVC over repetitions is reported. The CVC is calculated as the

number of times out of ten the proposed model with its risk pattern from the original

data is completely reproduced from the cross-validation. Testing t-score, as well as

Mean Squared Prediction Errors, are calculated for each repetition. The testing t-

scores are the calculated t-test statistics from the testing data set that are classified

in accordance with the risk patterns obtained from performing the cross-validation

procedure on the training data set. Similarly, the Mean Squared Prediction Errors
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are calculated according to equation 2.1. A final CVC, average testing t-score, and

MSPE from all five repetitions are reported for each of the N − 2 selected models.

Where CVC, and MSPE are the average of the five CVC’s, and MSPE’s obtained

from each repetition, respectively.

MSPE = n−1

10∑
j=1

[
nj.low∑
i=1

(
Yij.low − Ŷj.low

)2

+

nj.high∑
i=1

(
Yij.high − Ŷj.high

)2
]

(2.1)

Above, n is the number of individuals in the whole data set, nj.low and nj.high

are the numbers of individuals classified as low risk and high risk respectively when

they are treated as a testing group in the jth fold, Yij.low and Yij.high are the observed

values of the continuous trait variable correspond to individuals classified at low and

high risk respectively in the jth fold, and Ŷj.low and Ŷj.high are the means response

of individuals classified at low and high risk respectively when they are treated as a

training group in the jth fold.

According to the results from cross-validation, the model with the corresponding

risk pattern that maximizes the average testing t-score is chosen as the best model

among all N − 2 proposed models of any degree. The CVC is used as a tiebreaker

when the average testing t-scores are tied between the selected models. Finally, a

most parsimonious model is chosen when both the average testing t-scores and the

CVCs are tied for two models.

The significance of the winner model is justified by permuting the original data

1000 times, and the average permuted CVC, the average permuted testing t-score, and

average permuted MSPE are calculated from each permuted data set. The p-value,

which is denoted by pt, is calculated according to equation 2.2, and it represents how

many times the calculated average testing t-score is smaller than the average permuted

testing t-score divided by 1000. The examined model is considered significant if its
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p-value is less than 0.05.

pt = 1
1000

1000∑
perm=1

I{t̄∗<t̄∗perm} (2.2)

where t̄∗ is the average testing t-score calculated from the original data set, t̄∗perm is

the average permuted testing t-score, and pt is the empirical p-value.

To summarize the model selection process in the OQMDR, let t1,j,k, t2,j,k, . . . , tr,j,k

be the t statistics of the ordered risk patterns of the jth k-way interaction, where

r = Πk
i li − 1 is the total number of the considered risk patterns of the jth k-way

interaction, where li is the number of levels of the ith factor. Then, for each possible

interaction of any order k, we choose the risk pattern that maximizes the test statistic:

tmax,j,k := max(t1,j,k, t2,j,k, . . . , tr,j,k)

where tmax,j,k is the largest test statistic produced from all examined risk patterns of

the jth k-way interaction.

Later, we choose the best k-way interaction by optimizing over all maximized test

statistics:

tmax,max,k := max(tmax,1,k, tmax,2,k, . . . , tmax,m,k)

where tmax,max,k is the largest t-statistic produced from all possible k-way interactions,

and m =
(
N
k

)
is the number of all possible k-way interactions.

Finally, we choose the final best model by optimizing over the testing t-scores of
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the proposed models of order k = 2, 3, ..., N − 1. That is, if t∗k is the testing t-score of

the proposed k-way interaction, then the final best interaction with its selected risk

pattern is the one with a testing score t∗kmax , such that:

t∗kmax := max(t∗2, t
∗
3, . . . , t

∗
N−1)

Comparing to QMDR method, that method will only consider one risk pattern

for each possible interaction of any degree, which is based on the overall mean of the

continuous trait variable. The QMDR requires a single t-test for each interaction,

and it selects the interaction with the largest t statistic among other examined in-

teractions. The two algorithms will likely end up proposing the same model and risk

pattern when the cause of the variation in the response is tremendously distinguish-

able. Yet, in many cases, some combinations have means that are very close to the

overall mean, which might lead to increase prediction error if QMDR is employed.

In the next section, we applied the OQMDR algorithm on several simulated data

sets. The QMDR algorithm also applied to the same simulated data sets to assess the

ability of the OQMDR to capture the correct model and/or to select a model with a

smaller MSPE comparing to QMDR.

2.3 Simulation Study

We tested our proposed method using multiple simulated data sets. The main goal

of the simulation study is to examine the ability of the OQMDR method to spot

the most important interaction and whether that captured model coincides with the

actual model that used to generate the data. In addition to that, we compared

the performance of both the QMDR and OQMDR methods in all simulated data

sets. Each simulated data set consists of five variables in which four of them contain
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individuals information about four genetic factors, each with three levels. In this

work, we are using upper case letters to represent genetic factors, i.e. A,B,C.., etc.

Whereas, the levels (allele combinations) of factor A are presented as (AA,Aa, aa),

and (BB,Bb, bb) for factor B, and so on. Finally, the fifth variable contains the

continuous phenotypic information of individuals.

The simulation procedure is accomplished as follows. First, the genetic informa-

tion is generated in accordance with the Hardy-Weinberg principle [16]. That is,

assuming each gene has two alleles (for example A and a) with a single locus frequen-

cies of p(A) = p and p(a) = q. Hence p(AA) = p2, p(Aa) = 2pq, and p(aa) = q2. In

all simulated data sets, genetic information are generated using p = q = 0.5. After

that, all possible combinations of all factor levels are represented in a four dimensional

space as shown in figure 2.1.

Next, the continuous trait variable is generated based on six different scenarios

in which each scenario links the high phenotype status of individuals to a certain

combination of the genetic factors. Ten different data sets for each sample size of 500,

1000, and 2000 are randomly generated according to each scenario. In our simulation

study, all data sets are generated based on either one or two 2-way interaction(s)

(equation 2.3), or a single 3-way interaction (equation 2.4) as the actual disease

predisposition interaction(s). Both QMDR and OQMDR algorithms are applied to

each of the generated data sets.

Yi = µ+
4∑

1≤a<b

3∑
la,lb≥1

αab.lalbI{Xai=la,Xbi=lb} + εi (2.3)

Above, Yi is the simulated value of the trait variable of the ith individual, µ is

a baseline mean, and it’s considered known for the purpose of simulation, αab is

a 3 × 3 matrix of coefficients of the 2-way interaction between the ath and the bth
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factors (there are a total of four factors in each simulated data set) and it’s considered

known for the purpose of simulation, I{·} is the indicator function, Xai and Xbi are

the generated allele combinations for the ath and bth factors respectively of the ith

individual, la and lb are the allele combinations (the levels) of the ath and bth factors

respectively, and εi is the random error term of the ith individual, and εi
iid∼ N(0, 400).

Yi = µ+
4∑

1≤a<b<c

3∑
la,lb,lc,≥1

βabc.lalblcI{Xai=la,Xbi=lb,Xci=lc} + εi (2.4)

Above,Yi is the simulated value of the trait variable of the ith individual, µ is

a baseline mean, and it’s considered known for the purpose of simulation, βabc is a

3 × 3 × 3 array of coefficients of the 3-way interaction between the ath, bth, and cth

factors and it’s considered known for the purpose of simulation, Xai, Xbi, and Xci are

the generated allele combinations of the ath, bth, and cth factors respectively of the ith

individual, la, lb, and lc are the allele combinations (the levels) of the ath, bth, and

cth factors respectively, and εi is the random error term of the ith individual, and

εi
iid∼ N(0, 400).

For the purpose of simulation, the allele combinations are defined as numbers

instead of letters. For example in factor A, we coded its allele combinations (or

levels) as (AA,Aa, aa) = (0, 1, 2).

The output of the six different simulated scenarios is demonstrated in the following

subsections.

2.3.1 Case 1: True Model = AB

In the first case, the continuous phenotype variable is generated according to equation

2.3 with α12 be the only non-zero matrix in this case and it’s given below. This

matrix of coefficients will make most of the variation in the response variable due
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to the 2-way interaction between factors A and B. Therefore, AB is the anticipated

proposed 2-way interaction, and one of ABC and ABD is likely to be selected as

the proposed 3-way interaction because both of these interactions contains the true

2-way interaction (AB) that causes the disease. The reason behind choosing a simply

spotted 2-way interaction is to assess the ability of the OQMDR method to capture

the actual model and to see whether it gives the same output given by QMDR or not.

First, we run both OQMDR and QMDR algorithms on ten different data sets of size

500, the output are summarized in table 2.2. Then, using the same model defined

in 2.3 with the matrix α12 defined in 2.5, two different data sets of sizes 1000 and

2000 respectively are randomly generated and analyzed using both algorithms. The

summarized results are presented in tables 2.3 and 2.4 respectively.

α12 =


20 20 20

20 0 0

20 0 0

 (2.5)
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Table 2.2: Case 1: True model= AB, and n = 500

Model t∗k-score CVC MSPE Final Model
Set New QMDR New QMDR New QMDR New QMDR New QMDR pt

1
AB AB 11.7287 11.7287 10 10 408.4470 408.4470

AB AB 0.000
ABD ABD 10.3067 11.3290 4.2 8.6 427.7721 414.4013

2
AB AB 10.0317 10.0317 10 10 388.1858 388.1858

AB AB 0.000
ABD ABD 8.5569 9.1548 4.6 6 405.6381 399.4966

3
AB AB 9.2992 9.5056 9.8 10 415.1356 413.2127

AB AB 0.000
ABC ABC 7.5275 8.0303 2.4 3 441.5868 434.3282

4
AB AB 10.1738 10.1738 10 10 394.1987 394.1987

AB AB 0.002
ABD ABD 8.5796 9.0350 4.4 3.2 414.5262 410.0920

5
AB AB 8.8108 8.8108 10 10 384.8257 384.8257

AB AB 0.001
ABC ABC 7.6971 8.0768 2.8 4 398.9528 394.6174

6
AB AB 9.4734 9.5716 9.8 10 412.9209 411.4114

AB AB 0.000
ABD ABD 9.4018 9.4370 6.4 7 413.7644 413.8329

7
AB AB 9.3303 9.8125 9 10 434.5222 426.9884

AB AB 0.000
ABC ABC 8.0843 8.3846 4.6 1.8 448.9833 448.7589

8
AB AB 11.8964 11.8964 10 10 385.3691 385.3691

AB AB 0.001
ABD ABD 10.2532 11.2503 4.6 7.6 409.5222 394.6645

9
AB AB 11.9762 11.9762 10 10 357.8918 357.8918

AB AB 0.000
ABD ABD 11.1572 11.5281 6.4 6.2 369.0396 363.5977

10
AB AB 10.0830 10.083 10 10 395.8701 395.8701

AB AB 0.002
ABD ABD 8.4653 8.3005 3.4 1.8 417.2304 421.1289

Both OQMDR and QMDR proposed the interaction AB with the pattern shown

in figure 2.2, which minimizes the prediction error and coincides with the real risk

pattern, as the best 2-way model in most of the ten data sets. In fact, QMDR

captured the risk pattern shown in figure 2.2 from all 10 samples. On the other hand,

our method failed to spot the risk pattern that minimizes the prediction error in two

cases, and it selected another risk pattern. This is showing that the QMDR performs

better (and faster) when the risk pattern is recognizable, especially when the sample

size is relatively small comparing to the number of multilocus combinations in the

data set.

For the proposed 3-way model, ABC and ABD are chosen as the best 3-way

models with the given risk pattern in figure 2.3, which minimizes the prediction error

and matches the actual risk pattern used to generate the data set. The proposed

risk pattern of the 3-way models shown in figure 2.3 is reproduced two out of ten

and three out of ten times from OQMDR and QMDR respectively. Notice that both
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ABC and ABD models proposed the same risk patterns, this is mainly because

factors C and D do not have a considerable effect on the continuous trait, and much

of the variation is originally from the 2-way interaction between A and B. This

can be seen clearly by looking at the testing t̄-scores, as well as the cross-validation

consistencies, of the proposed 2-way and 3-way models, where the 2-way models

are favored from all ten generated data sets. Both algorithms perform similarly

when capturing the best 2-way model, with QMDR performing better in samples

6 and 7, where the MSPEs are smaller for QMDR in these two cases. The reason

why the MSPEs are smaller is because the cross-validation consistencies are larger,

which means various risk patterns are proposed in some folds of the cross-validation

procedure for OQMDR. This will make the predicted values in equation 2.1 calculated

by OQMDR different from the ones predicted by QMDR, which in turn make the

two MSPEs different. Even though QMDR has lower MSPE in two data sets, the

two algorithms selected the same risk pattern of the model AB from the remaining

eight data sets. The p-values for the winner models from the OQMDR method are

calculated using equation 2.2 and reported in table 2.2. All proposed models show a

statistical significance at α = 0.05.

Figure 2.2: Case 1: Risk pattern for the proposed 2-way models
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Figure 2.3: Case 1: Risk pattern for the proposed 3-way models

AA

BB
1

Aa

2

aa

3
Bb 4

5
6

bb
7

CC or DD

8
9

AA

10

Aa

11

aa

12
13 14 15
16

Cc or Dd

17 18

AA

19

Aa

20

aa

21
22 23 24
25

cc or dd

26 27

Tables 2.3 and 2.4 show the results of analyzing data sets of size 1000 and 2000

generated in accordance with equation 2.3 with the matrix α12 defined in 2.5. Again,

both algorithms selected AB with the pattern shown in figures 2.2 as the best 2-

way interaction, and as the best final model from all ten data sets. All final ten

best models are minimizing the MSPEs, and are statistically significant at α = 0.05.

Similarly, ABC and ABD with risk pattern shown in figure 2.3 are proposed from all

data sets except sample 6 when n = 1000, where both algorithms failed to capture

the true risk pattern. As the sample size gets bigger, both algorithms propose 3-way

interactions with CVCs, t̄-scores, and MSPEssimilar to the ones of the selected 2-way

models in most cases. This is mainly because, as sample size increases, enough data

for multilocus combination is generated to capture the true risk pattern. However,

none of the selected 3-way models beat the chosen 2-way models in all cases. This

justifies the ability of both algorithms to detect the most important interaction among

all possible interactions of any degree.
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Table 2.3: Case 1: True model= AB, and n = 1000

Model t∗k-score CVC MSPE Best Model
Set New QMDR New QMDR New QMDR New QMDR New QMDR pt

1
AB AB 16.2091 16.2091 10 10 391.3797 391.3797

AB AB 0.000
ABD ABD 16.0485 16.2091 9.6 10 393.1263 391.3797

2
AB AB 14.9832 14.9832 10 10 394.2057 394.2057

AB AB 0.000
ABD ABC 14.3735 14.4725 4.4 5.6 399.5710 399.077

3
AB AB 16.8702 16.8702 10 10 415.5575 415.5575

AB AB 0.000
ABC ABC 16.0420 16.8702 6.6 10 425.2365 415.5575

4
AB AB 16.1570 16.1570 10 10 385.8023 385.8023

AB AB 0.000
ABD ABD 16.1570 16.0306 10 9.6 385.8023 386.9053

5
AB AB 15.7406 15.7406 10 10 418.5548 418.5548

AB AB 0.000
ABD ABD 15.1607 15.1955 6 6.8 424.3849 424.0121

6
AB AB 14.3067 14.3067 10 10 416.5734 416.5734

AB AB 0.000
ABC ABC 13.4176 13.8459 4.4 5 425.8612 421.7158

7
AB AB 15.7926 15.7926 10 10 396.3913 396.3913

AB AB 0.000
ABD ABD 15.7926 15.6330 10 9.6 396.3913 397.7595

8
AB AB 14.7499 14.7499 10 10 387.1103 387.1103

AB AB 0.000
ABC ABC 13.9113 14.4371 4.4 8.2 395.2781 390.1936

9
AB AB 15.1977 15.1977 10 10 386.0439 386.0439

AB AB 0.000
ABD ABD 14.5515 14.4102 5.8 6 391.7452 392.7678

10
AB AB 13.6602 13.6602 10 10 400.5872 400.5872

AB AB 0.000
ABD ABD 12.9908 13.2186 5.6 8.4 407.2909 405.0866

Table 2.4: Case 1: True model= AB, and n = 2000

Model t∗k-score CVC MSPE Best Model
Set New QMDR New QMDR New QMDR New QMDR New QMDR pt

1
AB AB 20.8692 20.8692 10 10 400.5952 400.5952

AB AB 0.000
ABD ABD 20.8311 20.8692 9.8 10 400.8953 400.5952

2
AB AB 22.1992 22.1992 10 10 419.1182 419.1182

AB AB 0.000
ABD ABD 22.1992 22.1992 10 10 419.1182 419.1182

3
AB AB 23.0960 23.0960 10 10 397.5907 397.5907

AB AB 0.000
ABC ABC 23.0960 23.0960 10 10 397.5907 397.5907

4
AB AB 22.2190 22.2190 10 10 403.6428 403.6428

AB AB 0.000
ABC ABC 22.2190 22.2190 10 10 403.6428 403.6428

5
AB AB 23.7884 23.7884 10 10 395.2871 395.2871

AB AB 0.000
ABC ABC 23.7884 23.7884 10 10 395.2871 395.2871

6
AB AB 23.3298 23.3298 10 10 409.8670 409.8670

AB AB 0.000
ABD ABD 23.7884 23.3298 9.8 10 410.2410 409.8670

7
AB AB 22.3034 22.3034 10 10 417.6942 417.6942

AB AB 0.000
ABC ABC 23.2794 22.3034 9.8 10 417.7373 417.6942

8
AB AB 22.9130 22.9130 10 10 380.0712 380.0712

AB AB 0.000
ABC ABC 22.2509 22.7141 9.6 9.2 380.8257 381.4304

9
AB AB 22.7459 22.7459 10 10 384.0000 384.0000

AB AB 0.000
ABC ABC 22.7077 22.7459 8.2 10 385.4606 384.0000

10
AB AB 22.0691 22.0691 10 10 401.2103 401.2103

AB AB 0.000
ABD ABD 22.0691 22.0691 10 10 401.2103 401.2103
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2.3.2 Case 2: True Model = ABD

In this case, the data is generated according to equation 2.4 to produce a 3rd-degree

interaction between A,B and D. The 3 × 3 × 3 array of coefficients of the 3-way

interaction between factors A,B and D is defined in array β124 below (2.6), which is

the only non-zero array in equation 2.4. The proposed 2-way model is anticipated to

be either AB, AD, or BD because all of them are related to the true 3-way model.

The two algorithms are applied to ten different data sets of sizes 500, 1000, and 2000

(i.e., a total of 30 different samples). The results are summarized in tables 2.5, 2.6,

and 2.7 for each distinct sample size, respectively.

β124 =


20 20 20

20 0 0

20 0 0

 |


20 20 20

20 0 0

20 0 0

 |


20 20 20

20 20 20

20 20 20

 (2.6)

Figure 2.4 shows the risk pattern of the proposed 2nd-degree interactions. Both

algorithms choose either AB, AD, or BD with the same pattern from nine different

data sets. The selected risk pattern, in fact, coincides with the true risk pattern for

the proposed models. That is, the data of the highlighted combinations in figure

2.4 are originally generated from normal distribution with µ = 140, so they are

anticipated to be at high risk. For the 3-way interaction, ABD with the risk pattern

shown in figure 2.5 are chosen as the best 3rd-degree interaction in both methods

from all simulated data sets. When n = 500, the OQMDR was able to catch the

true 3rd-degree interaction with the true risk pattern as a best final model three

times out of ten generated data sets. Similarly the QMDR did, however, OQMDR

minimized the MSPE six times comparing to three times for QMDR. This suggests

that, compared to Case 1 results, the OQMDR detects higher order interactions

better than QMDR when a considerable portion of the variation is linked to higher
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degree models. Permutation testing validates the significance of all final models at

α = 0.05.

Table 2.5: Case 2: True model= ABD, and n = 500

Model t∗k-score CVC MSPE Best Model
Set New QMDR New QMDR New QMDR New QMDR New QMDR pt

1
AB AB 6.5730 6.1691 7 6.2 455.9759 458.6748

ABD ABD 0.000
ABD ABD 10.7520 10.6366 9.6 9.2 398.7606 400.4112

2
BD BD 10.4849 9.9858 8 8 448.4179 453.5067

ABD ABD 0.001
ABD ABD 14.0163 13.357 9.8 8.2 390.9129 401.4832

3
AB AB 8.7770 8.9778 7.4 8.4 452.556 449.0203

ABD ABD 0.001
ABD ABD 12.9996 12.9996 9.8 10 386.422 386.4220

4
AB AB 6.8381 7.3701 7 8.6 456.0006 446.8594

ABD ABD 0.000
ABD ABD 11.3547 11.2875 9.6 9.8 392.2859 393.2927

5
BD BD 7.1715 7.1715 5.8 5.8 432.2053 432.2053

ABD ABD 0.002
ABD ABD 9.8944 9.8585 8.4 8 396.0920 396.8831

6
AD AD 8.2396 8.2396 10 10 447.0274 447.0274

ABD ABD 0.001
ABD ABD 10.1203 9.8981 9.6 9.4 422.0019 424.1579

7
AB AB 8.3741 8.7376 8 8.6 460.101 453.6067

ABD ABD 0.001
ABD ABD 12.3105 11.9923 8.4 7.8 403.2968 407.4371

8
BD BD 6.4064 6.5146 4 4.8 483.439 479.9112

ABD ABD 0.001
ABD ABD 8.1019 10.9400 7 8 443.2720 416.6436

9
AD AD 6.3084 6.6935 3 5.4 423.0105 418.6122

ABD ABD 0.005
ABD ABD 8.2252 8.5616 3.4 2 401.3948 396.7326

10
AD AD 10.8318 10.8318 10 10 448.6341 448.6341

ABD ABD 0.000
ABD ABD 12.2139 12.0012 9.8 9 422.3265 425.3305

Figure 2.4: Case 2: Risk patterns for the proposed 2-way models
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Figure 2.5: Case 2: Risk pattern for the proposed 3-way models
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As the sample size increases, both algorithms were able to catch the true 3rd

order interaction with true risk pattern in most cases. OQMDR did slightly better

than QMDR in most cases, which can be seen by looking at the MSPE. Similarly,

for 2-way interaction, both algorithms show better performance when n = 1000 and

n = 2000.

Table 2.6: Case 2: True model= ABD, and n = 1000

Model t∗k-score CVC MSPE Best Model
Set New QMDR New QMDR New QMDR New QMDR New QMDR pt

1
AD AD 10.5574 10.2271 9 9 441.5641 442.5816

ABD ABD 0.000
ABD ABD 15.1906 14.8834 9.8 8.8 396.6424 399.3344

2
AB AB 11.7607 12.1116 8.6 9 448.8092 445.3460

ABD ABD 0.000
ABD ABD 17.4943 17.1770 9.6 8 391.4856 394.3848

3
AB AB 10.1154 10.1833 8.4 8.6 449.8666 448.0307

ABD ABD 0.000
ABD ABD 15.2729 15.0277 10 9.4 402.2826 404.4142

4
AB AB 11.8645 11.8339 9.6 9.6 446.2381 445.5723

ABD ABD 0.000
ABD ABD 16.5129 16.4661 9.6 9.4 399.4253 399.8401

5
AD AD 11.0368 11.2362 7.6 8.2 419.1949 416.9439

ABD ABD 0.000
ABD ABD 16.4543 16.3527 9.4 8.8 367.1102 368.0519

6
AB AB 9.7263 10.1839 8 8.8 445.8096 441.5744

ABD ABD 0.000
ABD ABD 14.8798 14.5676 9.6 8.2 400.7890 403.5115

7
AD AD 12.7311 12.7311 9.8 9.8 461.7784 461.7784

ABD ABD 0.000
ABD ABD 16.3577 16.2499 9.8 9.6 419.8441 420.9200

8
AD AD 12.2878 12.2878 9.4 9.4 444.8018 444.8018

ABD ABD 0.000
ABD ABD 16.8883 16.8883 10 10 397.9913 397.9913

9
AB AB 11.3598 11.2036 8.8 9.2 430.9790 430.9132

ABD ABD 0.000
ABD ABD 15.0487 14.9694 10 9.8 394.3994 395.1003

10
AB AB 13.3458 13.3458 10 10 419.7528 419.7528

ABD ABD 0.000
ABD ABD 16.6502 16.6893 9.6 9.8 386.2950 385.9145
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Table 2.7: Case 2: True model= ABD, and n = 2000

Model t∗k-score CVC MSPE Best Model
Set New QMDR New QMDR New QMDR New QMDR New QMDR pt

1
AD AD 14.8645 15.0224 8.8 9 444.0846 442.5293

ABD ABD 0.000
ABD ABD 21.731 21.6413 10 9.8 397.6133 398.1759

2
AD AD 17.0628 16.9337 9.4 9.6 440.5959 440.621

ABD ABD 0.000
ABD ABD 22.2545 22.2545 10 10 403.5848 403.5848

3
AD AD 15.1775 15.3682 8.2 8.6 434.3665 432.7851

ABD ABD 0.000
ABD ABD 22.5347 22.5347 10 10 385.8353 385.8353

4
BD BD 14.7748 14.2952 3.8 3.8 426.5887 428.0045

ABD ABD 0.000
ABD ABD 23.6509 23.6509 10 10 366.8095 366.8095

5
AD AD 15.7685 15.9937 4 4.8 493.5584 491.1328

ABD ABD 0.000
ABD ABD 25.3687 25.3687 10 10 418.3394 418.3394

6
AB AB 17.2735 17.5525 9.2 9.6 459.3593 457.415

ABD ABD 0.000
ABD ABD 24.0497 24.0497 10 10 409.8031 409.8031

7
BD BD 14.4874 13.9843 8.4 8.4 440.5774 442.247

ABD ABD 0.000
ABD ABD 21.6227 21.6227 10 10 394.0755 394.0755

8
BD BD 15.8059 16.081 9 9 439.1698 437.3144

ABD ABD 0.000
ABD ABD 21.9942 21.9942 10 10 394.0679 394.0679

9
BD BD 15.511 15.511 6.6 6.6 478.2585 478.2585

ABD ABD 0.000
ABD ABD 22.2766 22.187 8.6 5.4 427.2937 428.0481

10
BD BD 15.4857 15.4857 5.4 5.4 429.6563 429.6563

ABD ABD 0.000
ABD ABD 21.9574 21.9574 10 10 384.8686 384.8686

The first two cases, in which the variation is generated to be spotted easily, prove

the ability of OQMDR method to spot the true source of variation precisely. However,

besides its fast performance, QMDR performs slightly better in a few cases in terms

of precision, especially when a low order of interaction is considered and the sample

size is relatively small. In the next two cases, we will test the ability of OQMDR of

detecting the true models when it is somewhat ambiguous.

2.3.3 Case 3: True Model = BD

In this case, we are considering an interaction with a risk pattern that is not easy

to identify. The data is generated using equation 2.3 such that the 2-way interaction

between factorsB andD with the multilocus coefficient matrix α24 defined in equation

2.7 is causing the variation. However, in this scenario, some multilocus combinations

are hard to tell whether they are at high risk or not because their averages are

very close to the overall mean of the continuous variable. Since QMDR is using the
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overall mean as a threshold to classify individuals, we expect these combinations to

be identified at high risk when QMDR is employed. This is because the fixed overall

mean of the simulated data is 125.112, and is slightly lower than 128, the fixed

average of the multilocus combinations bbDd and Bbdd. On the other hand, since

the OQMDR is optimizing over the t statistic as a criterion for classification, these

cells likely would not be classified as high risk when OQMDR is employed because

125.112 is not too far from 128.

α24 =


0 0 0

0 0 8

0 8 30

 (2.7)

The simulation study shows that with samples of size n = 500, OQMDR algorithm

selected the 2nd-degree model BD with a risk pattern that labels the combination

bbdd at high risk, and leaves the remaining eight combinations at low risk (figure 2.6a).

Conversely, QMDR detected a risk pattern that assumes individuals with bbDd, Bbdd,

or bbdd combinations are at high risk, while the remaining individuals get a low-risk

label (figure 2.6b). Results in table 2.8 show that the OQMDR algorithm proposed

models with lower MSPE than the one suggested by QMDR in eight different data

sets of size n = 500. OQMDR mistakenly proposed a three-way interaction from

one simulated data set. We believe this happened mainly due to over-fitting of the

three-way interaction. All proposed interactions show a statistical significance under

α = 0.05 level of significance.
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Table 2.8: Case 3: True model= BD, and n = 500

Model t∗k-score CVC MSPE Best Model
Set NEW QMDR NEW QMDR NEW QMDR NEW QMDR NEW QMDR pt

1
BD BD 12.5683 4.1713 10 2.8 434.0705 504.8569

BCD BD 0.000
BCD BCD 12.9882 3.3897 9.2 1 485.8083 518.4198

2
BD BD 8.7738 5.4023 10 7.8 408.2276 422.9147

BD BD 0.005
ABD BCD 7.6926 4.5184 9.6 3.4 410.2450 435.5922

3
BD BD 9.1315 4.4981 10 2.8 416.5782 457.2411

BD BD 0.002
BCD BCD 6.6742 3.4628 6.2 1 435.0735 475.9284

4
BD BD 7.9738 6.7334 10 9.2 449.8849 464.1022

BD BD 0.004
ABD ABD 4.3174 5.1466 5.6 2.2 479.8738 485.3993

5
BD BD 8.6924 5.9639 10 9.4 449.0318 470.4264

BD BD 0.003
BCD BCD 7.0404 5.3489 7.4 2.6 460.5493 479.8260

6
BD BD 9.8547 6.5190 10 10 399.2730 437.8976

BD BD 0.001
ABD BCD 6.1132 3.8583 4.2 0.6 444.9145 470.8817

7
BD BD 5.5904 7.3218 5 9.6 410.0513 394.3539

BD BD 0.006
BCD BCD 5.0521 6.5264 2.6 3.4 420.7200 405.2157

8
BD BD 7.0933 3.9189 10 8.2 426.6266 458.4983

BD BD 0.002
ABD ACD 2.0475 3.8924 4.4 2.8 465.5235 464.1423

9
BD BD 5.3883 5.7548 8.4 7.6 390.8981 397.7204

BD BD 0.008
BCD BCD 3.4575 4.5889 1 1.2 421.3202 411.4107

10
BD BD 7.5865 7.9369 9.2 9.2 407.7313 407.0326

BD BD 0.002
ABD ABD 6.7918 7.3485 4.2 5.2 418.4133 415.3837

Figure 2.6: Case 3: Risk patterns for the proposed 2-way models
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Figure 2.7 shows the suggested risk patterns for the proposed 3-way interaction

from both methods (for QMDR, only when n = 2000). These risk patterns coincide

with the one proposed for the 2-way interaction. However, our method selected the

one that minimizes the prediction error six times out of ten. That is, OQMDR

considers individuals from six different data sets with AAbbdd, Aabbdd, and aabbdd

only at high risk when ABD is selected (similarly, when BCD is selected) as the best

3-way interaction (figure 2.7a). On the other hand, QMDR could not select a certain
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risk pattern more than once, i.e., there was a distinct risk pattern for each simulated

data set.

Figure 2.7: Case 3: Risk patterns for the proposed 3-way models
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(b) QMDR
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Eventually, as sample size increases, both methods steadily proposed the risk

pattern of the chosen 2-way model described in figure 2.6. QMDR shows a higher

MSPE in eight out of ten different data sets. Likewise, OQMDR was able to capture

the pattern shown in 2.7a more frequently for the chosen 3-way model. While QMDR

failed to propose a frequent pattern when n = 1000, it suggested the one shown in

figure 2.7b from two different data sets of size n = 2000.
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Table 2.9: Case 3: True model= BD, and n = 1000

Model t∗k-score CVC MSPE Best Model
Set NEW QMDR NEW QMDR NEW QMDR NEW QMDR NEW QMDR pt

1
BD BD 11.0682 7.8971 10 10 380.8382 402.2249

BD BD 0.000
BCD BCD 10.4367 4.1576 9.4 0.6 383.8686 425.6393

2
BD BD 12.9821 9.8492 10 10 422.2082 435.4096

BD BD 0.000
BCD BCD 11.4207 7.6621 7.4 2.2 433.6829 451.3270

3
BD BD 6.3368 8.2012 7 10 442.1930 436.1841

BD BD 0.000
ABD BCD 2.9712 6.5175 5 3.8 461.4515 448.9053

4
BD BD 9.3511 6.7128 10 6.2 425.7843 439.5918

ABD BD 0.000
ABD BD 11.4646 5.7312 10 2.6 421.2707 446.2048

5
BD BD 12.9657 6.7591 10 7.2 432.7799 474.0929

BD BD 0.000
BCD BCD 12.8884 6.2155 9.8 1.6 433.1348 479.1019

6
BD BD 11.3902 8.8044 10 9.4 370.0498 383.7267

BD BD 0.000
ABD BCD 8.7654 8.1114 8.8 4.2 375.9737 387.5567

7
BD BD 10.2836 6.8308 10 8.2 408.8597 434.9666

BD BD 0.000
ABD BD 10.2836 6.7667 10 1.4 408.8597 436.3363

8
BD BD 10.0232 8.0489 10 8.6 414.0131 434.9144

BD BD 0.000
ABD BD 8.6775 7.1249 4.2 1.6 429.7187 442.5955

9
BD BD 8.4548 8.4579 9.6 10 425.9161 425.8094

BD BD 0.000
ABD BD 5.7513 8.3393 5.2 5 438.4999 427.1634

10
BD BD 8.5341 8.4838 9.4 9.4 419.9538 419.0005

BD BD 0.000
BCD BCD 6.7702 5.7943 3 1.4 431.3286 437.6684

Table 2.10: Case 3: True model= BD, and n = 2000

Model t∗k-score CVC MSPE Best Model
Set NEW QMDR NEW QMDR NEW QMDR NEW QMDR NEW QMDR pt

1
BD BD 11.6430 11.8266 9.6 10 396.1322 394.8831

BD BD 0.000
ABD ABD 8.6305 10.7238 5.6 5.8 405.4561 399.2102

2
BD BD 12.2938 14.0354 9.2 10 416.3105 415.0608

BD BD 0.000
BCD ABD 11.8194 12.5054 9 4.6 417.2390 421.9241

3
BD BD 14.3724 11.5847 10 10 392.2242 404.8032

BD BD 0.000
ABD ABD 14.3724 11.3747 10 6 392.2242 405.3948

4
BD BD 13.5646 11.3259 10 10 387.7859 396.5111

BD BD 0.000
BCD BCD 13.5646 11.0208 10 5.6 387.7859 397.9806

5
BD BD 19.5815 12.4247 10 10 406.9310 426.2756

BD BD 0.000
ABD ABD 19.5815 12.1834 10 5.4 406.9310 427.9580

6
BD BD 13.5869 11.5905 10 10 412.4245 420.8890

BD BD 0.000
ABD BCD 13.5869 10.2778 10 6.8 412.4245 426.7064

7
BD BD 15.2050 12.1491 10 10 418.1521 429.5760

BD BD 0.000
BCD ABD 15.2050 10.8154 10 3.4 418.1521 435.5389

8
BD BD 15.3370 10.2874 10 10 401.5109 419.0839

BD BD 0.000
BCD BCD 15.3370 8.7304 10 2.8 401.5109 426.8023

9
BD BD 16.1559 12.1680 10 10 414.2017 433.6866

BD BD 0.000
BCD ABD 16.1559 10.5314 10 2.6 414.2017 441.7923

10
BD BD 13.7691 8.4757 10 5.2 426.6336 456.4637

BD BD 0.000
BCD BCD 13.3682 7.6388 8.6 1.4 429.3549 460.3287

This case clearly shows the ability of the OQMDR method to capture the true
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2-way model with the risk pattern that minimizes the prediction error comparing to

the one selected by QMDR.

2.3.4 Case 4: True Model = ABC

In this case, we will inspect the behavior of both methods when the data is generated

using a true 3-way interaction with a vague risk pattern. That is, the data is generated

using equation 2.4 to make much of the variation comes from a 3-way interaction

between A, B, and C with the non-zero array β123 shown below (equation 2.8).

Similar to case 3, some individuals with a certain multilocus combination seem to

be affected by the interaction but not to the point where they can be diagnosed at

high risk. These individuals are the ones with a multilocus coefficient of 8 in β123.

Once again, we expect these individuals to be recognized at high risk of developing

the disease when the data is analyzed using QMDR. On the other hand, we think

that classifying these individuals at low risk could benefit the prediction error of the

proposed model.

β123 =


0 0 0

0 0 0

0 0 30

 |


0 0 0

0 0 8

0 8 30

 |


0 0 30

0 8 30

30 30 30

 (2.8)

Tables 2.11, 2.12, and 2.13 show the summarized result of all simulated data sets

for this case. We can see from these tables that the OQMDR method is able to capture

the true model with high CVC from all generated data sets regardless of sample size.

On the other hand, QMDR method couldn’t spot the right interaction from two

samples of size n = 500. In addition, CVC is too low for 3-way models comparing

to 2-way models, especially for small data sets. QMDR performance enhanced when

n = 2000 comparing to its performance with smaller samples. Even when QMDR
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catches the true 3-way interaction as the best final model, the proposed risk pattern

(figure 2.9b) still not similar to the one proposed by OQMDR (figure 2.9a). Therefore,

the calculated MSPE by QMDR is bigger in most cases comparing to the calculated

MSPE when our method is employed. The selected risk patterns for the 2-way models

(figure 2.8) coincide with the 3-way risk patterns suggested by both algorithms. All

final models are statistically significant at α = 0.05.

Table 2.11: Case 4: True model= ABC, and n = 500

Model t∗k-score CVC MSPE Best Model
Set NEW QMDR NEW QMDR NEW QMDR NEW QMDR NEW QMDR pt

1
AB AB 8.1592 4.3038 9.6 5.2 449.3350 463.3199

ABC ABC 0.004
ABC ABC 9.4425 6.1780 10 1.6 425.6279 448.3547

2
AC AB 6.7711 5.1319 7.8 3.0 491.2154 496.8703

ABC ABC 0.000
ABC ABC 13.0731 5.5268 10 1.6 422.3193 493.7586

3
AB AB 7.5528 6.7622 7.6 8.4 469.8370 474.9827

ABC ABC 0.000
ABC ABC 12.1367 10.7735 8.2 7.6 390.6237 408.4659

4
BC BC 7.2838 8.0747 8.2 9.6 443.4005 433.8597

ABC BC 0.002
ABC ABC 10.0161 7.6555 8.8 2 404.5911 443.1291

5
AB AB 7.0792 7.2978 7.8 8.0 419.0948 414.6803

ABC ABC 0.000
ABC ABC 9.4804 5.5522 6.2 1.8 388.8457 440.0572

6
AC BC 7.9512 5.2632 10 8.4 414.9305 431.8647

ABC ABC 0.000
ABC ABC 10.0555 5.4055 9.4 2.6 375.7701 433.6660

7
AC BC 3.4077 3.8853 2.6 2.8 496.2005 488.5971

ABC ABC 0.003
ABC ABC 9.4207 6.0516 9.4 3.6 421.7769 465.6457

8
AC AC 4.5705 6.1200 5.4 8.2 492.0345 481.0760

ABC ABC 0.000
ABC ABC 7.3506 8.5925 3.8 4.6 464.3512 448.5742

9
AB AC 7.5584 4.9344 9.2 6 413.3126 429.5232

ABC ABC 0.000
ABC ABC 11.3497 9.1189 9.6 7 356.4875 378.7932

10
AB BC 3.6775 7.3431 3 8.6 481.1166 445.0819

ABC BC 0.000
ABC ABC 12.0756 7.0335 10 1.6 392.1839 454.1246

Figure 2.8: Case 4: Risk patterns for the proposed 2-way models

(a) OQMDR

AA

BB 1

Aa

2

aa

3

Bb 4 5 6

bb 7 8 9

(b) QMDR

AA

BB 1

Aa

2

aa

3

Bb 4 5 6

bb 7 8 9

35



Figure 2.9: Case 4: Risk patterns for the proposed 3-way models
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(b) QMDR, n = 2000
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Table 2.12: Case 4: True model= ABC, and n = 1000

Model t∗k-score CVC MSPE Best Model
Set NEW QMDR NEW QMDR NEW QMDR NEW QMDR NEW QMDR pt

1
AB AC 5.3255 9.2554 5.6 10 437.9143 415.8413

ABC ABC 0.000
ABC ABC 14.6746 10.3055 9.2 1.6 375.0088 406.6042

2
AC AB 8.147 8.0186 7.2 6.4 477.4761 475.508

ABC ABC 0.000
ABC ABC 16.5818 9.4974 10 1.4 405.113 465.0731

3
AB AC 6.2362 8.6327 5.2 7 468.3818 457.2100

ABC ABC 0.000
ABC ABC 15.2867 10.331 10 3.2 402.3473 442.2342

4
AC BC 11.0101 8.1911 9.8 9 491.1019 500.1286

ABC ABC 0.000
ABC ABC 16.6098 9.5573 10 1.4 428.3733 489.5901

5
AB AB 6.2034 8.5717 3.4 7.4 464.496 447.0618

ABC ABC 0.000
ABC ABC 14.3892 12.0804 10 10 399.3435 417.3327

6
AB BC 7.7195 7.4988 7.6 4.4 520.3213 517.9386

ABC ABC 0.000
ABC ABC 15.5735 10.7579 8 2.8 447.6252 484.1171

7
AB AC 11.1854 9.2312 9.8 7.8 460.1744 466.6482

ABC ABC 0.000
ABC ABC 16.8849 14.0872 10 6.6 398.714 419.2578

8
AC AC 8.0931 7.9741 5.2 9 476.6604 469.4303

ABC ABC 0.000
ABC ABC 15.2774 9.7153 10 1.6 410.097 454.5966

9
AC BC 8.4073 6.0474 4.8 5.2 507.5589 522.2604

ABC ABC 0.000
ABC ABC 16.8113 11.807 10 5 419.8534 460.1074

10
BC BC 8.9735 7.2974 9 6.6 459.5296 465.8615

ABC ABC 0.000
ABC ABC 14.3775 10.557 10 4.8 409.0999 439.5665
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Table 2.13: Case 4: True model= ABC, and n = 2000

Model t∗k-score CVC MSPE Best Model
Set NEW QMDR NEW QMDR NEW QMDR NEW QMDR NEW QMDR pt

1
AC BC 12.7407 13.3746 4.6 7 493.361 480.8834

ABC ABC 0.000
ABC ABC 26.5165 18.2417 10 7.6 406.868 445.3642

2
AC BC 13.9946 10.7861 8.8 5.4 483.6113 493.7696

ABC ABC 0.000
ABC ABC 23.1537 17.0146 10 8.2 410.5839 451.5221

3
BC BC 14.4859 9.3923 10 5.4 475.9016 491.8175

ABC ABC 0.000
ABC ABC 21.8987 16.9541 10 8 413.9034 444.4705

4
BC AB 12.6492 11.7796 7.8 7.8 512.8168 507.7509

ABC ABC 0.000
ABC ABC 22.9638 17.1027 10 9.6 435.1123 470.0695

5
BC AB 13.9567 11.5544 10 9.4 484.6121 488.8457

ABC ABC 0.000
ABC ABC 20.6543 15.9273 10 4.2 427.4643 454.6603

6
AB BC 16.9326 14.4704 10 10 499.1951 495.6421

ABC ABC 0.000
ABC ABC 24.7238 19.1987 10 5.4 425.9687 457.8688

7
AB AB 14.7683 12.1203 9.2 8.4 469.6782 471.5572

ABC ABC 0.000
ABC ABC 23.5707 17.4366 10 9.4 404.9740 437.7395

8
AC AB 9.1476 13.0252 7.6 8.4 509.5984 494.44

ABC ABC 0.000
ABC ABC 22.8113 17.1016 10 4.2 428.3051 464.533

9
BC BC 14.6272 10.3086 10 4.4 473.948 489.892

ABC ABC 0.000
ABC ABC 22.4449 17.8233 10 8.4 418.9029 441.5572

10
BC BC 11.6949 12.5488 4.6 6 455.6321 452.4679

ABC ABC 0.000
ABC ABC 21.8562 17.5682 10 8.6 394.3332 418.256

The last two cases show that OQMDR method is superior to QMDR method in

terms of selecting the true model with a more realistic risk pattern that minimizes

the prediction error. However, OQMDR algorithm, similar to QMDR, attributes

the variation in the continuous phenotype to a single interaction, which is usually

the most significant interaction. In the following two cases, we will investigate the

drawback of capturing the true model when the true model comprises multiple gene-

gene interactions.

2.3.5 Case 5: True Models = AB and AD

We generated the data sets in accordance with equation 2.3 with the non-zero matrices

α12 and α14 given in 2.9 and 2.10, receptively. The way we generated the data

makes the variation mainly due to the 2-way interaction between factors A and D.

It also attributes a considerable portion of the variation to the 2-way interaction

between factors A and B, but not as potent as AD; however, it should be easily
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recognizable. Hence, we have two different 2-way interactions that can be deemed as

the primary sources of the variation in the continuous variable. Since OQMDR and

QMDR algorithms can only propose a single most significant interaction, we expect

the 2-way interaction between A and D, and the 3-way interaction between A, B,

and D to be detected as the best 2-way and best 3-way models, respectively. Notice

that factor A is a common factor in both true 2-way interactions, therefore, if we

combine the effects of the two 2-way interactions, we could end up with a true 3-way

interaction of ABD with the coefficient array given in 2.11. In fact, the means of

the cells with coefficients of 15 in β124 defined in 2.11 are slightly lower than 139.44,

the overall fixed mean of the response variable. In this case, we expect OQMDR,

opposite to QMDR, to propose a 3-way interaction with a risk pattern that deems

these cells at high risk rather than low risk, and this will likely benefit the prediction

error afterward.

α12 =


15 15 15

15 0 0

15 0 0

 (2.9)

α14 =


0 0 20

0 0 20

20 20 20

 (2.10)

β124 =


15 15 35

15 0 20

15 0 20

 |


15 15 35

15 0 20

15 0 20

 |


35 35 35

35 20 20

35 20 20

 (2.11)

Simulation results summarized in tables 2.14, 2.15, and 2.16 show the struggle of

38



both algorithms to spot a consistent model, particularly for small data sets. However,

both algorithms can recognize AD more frequently than AB as the single most sig-

nificant 2-way interaction, which agrees with the original model used to generate the

data. Similarly for the 3-way models, the interaction ABD is almost always selected

as the best 3-way model. In many cases, OQMDR favors the 3-way model ABD

over the 2-way model AD, which could be considered as an evidence of the ability

of the OQMDR method to detect most of the significant variations in the response

variable, which in turn, reduces the prediction error. Besides the struggle of choosing

the same model repeatedly, the two methods also struggled to select a typical risk

pattern for both studied orders of interaction for small samples. With the sample size

gets larger, the outcomes of selecting the 2-way models become more stable, and both

algorithms propose AD with the same risk pattern shown in figure 2.10. While for 3-

way models, a more frequent risk pattern (figure 2.11a), that coincides with the array

in 2.11, is steadily selected when OQMDR algorithm is used. Figure 2.11b shows the

most frequent risk pattern suggested by QMDR, which does not recognize cells with

coefficients of 15 in β124 given in 2.11 at high risk. Clearly, the risk pattern shown in

figure 2.11a is enhancing the MSPE for models suggested by OQMDR comparing to

QMDR. The final assessment shows a statistical significance for all selected models

under α = 0.05 level of significance.
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Table 2.14: Case 5: True models= AB and AD, and n = 500

Model t∗k-score CVC MSPE Best Model
Set NEW QMDR NEW QMDR NEW QMDR NEW QMDR NEW QMDR pt

1
AD AD 11.7314 9.7983 10 4.4 440.3874 468.9433

AD ABD 0.000
ABD ABD 9.4894 10.6699 3.2 3.4 468.8971 456.4106

2
AD AD 9.2082 8.9597 9.8 9.4 398.6205 400.5740

AD AD 0.003
ACD ACD 5.4320 7.7104 1.4 2.4 431.8312 418.2683

3
AD AD 6.5039 7.2341 7.2 7 473.7473 465.9969

AD AD 0.008
ABD ABD 5.0696 6.1065 0.2 1.6 495.1787 484.8954

4
AD AD 10.2775 10.1762 10 9.8 479.6339 482.1524

AD AD 0.000
ABD ABD 8.7677 7.7517 5.0 1.8 505.1238 522.5698

5
AD AD 6.1591 5.8608 2.6 4.6 476.7516 478.0475

ABD ABD 0.004
ABD ABD 7.3457 8.0023 2.4 3 461.2534 452.2448

6
AD AD 9.4226 9.3614 8 8.2 467.8078 468.3114

AD AD 0.000
ABD ABD 7.9864 7.3039 5.2 0.6 473.1573 503.1038

7
AD AD 9.6197 9.9817 7.2 9 431.1400 426.8027

ABD ABD 0.000
ABD ABD 10.5822 11.1982 2.2 6.8 419.0597 409.5560

8
AD AD 10.5357 9.2378 10 5.8 419.6213 435.2594

ABD AD 0.000
ABD ABD 11.5489 8.3165 9.6 1.2 407.8584 452.2779

9
AB AB 10.4754 10.7267 9.2 9.6 427.7591 423.9420

ABD AD 0.000
ABD ABD 12.0899 9.6891 8.2 2.2 409.9213 442.8068

10
AD AD 8.3815 7.6558 5.8 4 478.9403 495.3767

ABD AD 0.000
ABD ACD 11.4136 7.5647 9 2.6 439.0593 498.6284

Figure 2.10: Case 5: Risk pattern for the proposed 2-way models
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Figure 2.11: Case 5: Risk patterns for the proposed 3-way models
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Table 2.15: Case 5: True model= AB and AD, and n = 1000

Model t∗k-score CVC MSPE Best Model
Set NEW QMDR NEW QMDR NEW QMDR NEW QMDR NEW QMDR pt

1
AD AD 13.2596 13.1028 6.8 5 425.0486 429.4854

ABD ABD 0.000
ABD ABD 13.4813 14.4820 2.4 5.4 424.7562 417.4259

2
AD AD 12.9223 13.6241 7.2 9.4 440.5278 434.3656

AD AD 0.000
ABD ABC 12.1719 12.8069 3 5.6 447.2645 443.1458

3
AD AD 13.4657 12.6078 10 8.8 425.9823 432.2383

ABD AD 0.000
ABD ABD 14.9638 10.6318 10 0.8 417.5412 454.2127

4
AD AD 13.8768 12.6944 9.4 5.6 438.6083 450.0987

AD ABD 0.000
ABD ABD 12.7438 13.3979 3.4 2 447.9546 443.7380

5
AD AD 13.7833 13.1832 9.8 8.2 501.0047 507.0657

ABD ABD 0.000
ABD ABD 14.8234 13.2919 6 2 492.5713 508.7934

6
AD AD 13.7852 11.8361 10 4.8 471.9331 489.2642

ABD ABD 0.000
ABD ABD 14.1047 11.9281 5 3.4 471.0434 489.4899

7
AB AB 9.6469 9.7269 5.2 5.6 439.6363 437.3603

ABD AD 0.000
ABD ABD 13.3888 9.6629 9.6 1 405.5949 443.5348

8
AD AD 13.2426 11.9883 9.6 8 415.0823 422.7717

ABD AD 0.000
ABD ABD 13.6737 11.7685 8.2 3.4 416.6501 425.1808

9
AD AD 14.8311 14.8311 10 10 407.6052 407.4881

ABD AD 0.000
ABD ABC 15.3357 13.1694 5.6 4 402.7284 422.4762

10
AD AD 11.7728 11.8629 6.8 6.2 459.4256 459.6078

AD AD 0.000
ABD ACD 11.5622 11.7843 8.8 1.4 451.3953 460.4617

Table 2.16: Case 5: True model= AB and AD, and n = 2000

Model t∗k-score CVC MSPE Best Model
Set NEW QMDR NEW QMDR NEW QMDR NEW QMDR NEW QMDR pt

1
AD AD 19.5487 18.2254 10 6.8 436.7792 445.8609

ABD AD 0.000
ABD ABD 21.0317 17.6228 7.4 1.8 426.0936 451.9332

2
AD AD 20.7218 20.7218 10 10 430.2648 430.3555

ABD AD 0.000
ABD ABD 22.2465 19.4373 10 4.6 425.5934 439.8688

3
AD AD 18.4839 16.9137 9.6 5.2 457.5057 468.3477

AD ACD 0.000
ABD ACD 18.4156 17.3341 8.2 3.4 459.2096 465.4065

4
AD AD 15.6074 15.4906 8.4 6.8 472.9608 474.4019

ABD AD 0.000
ABD ABD 17.3775 15.0600 5.8 1.8 456.6554 477.7161

5
AD AD 18.2416 19.0254 7.4 10 442.8265 436.8549

AD AD 0.000
ABD ACD 17.1150 17.4120 7.2 5.2 441.0806 447.5459

6
AD AD 16.6251 17.6843 4.6 7.6 443.2278 438.9623

ABD ACD 0.000
ABD ACD 19.9968 18.1588 4.6 6 425.5457 436.0290

7
AD AD 19.8670 18.7648 10 6.6 452.6704 459.0022

ABD ABD 0.000
ABD ABD 22.0097 19.1501 10 2.8 442.1378 456.0802

8
AD AD 19.5662 18.8089 9.2 6.4 483.2015 488.6749

ABD ACD 0.000
ABD ACD 21.0144 19.1270 9.6 5.2 476.8636 487.4600

9
AD AD 18.8469 19.3615 7.4 10 465.6927 461.9549

ABD AD 0.000
ABD ABD 20.9963 17.1455 7.4 2.2 453.7394 478.1857

10
AD AD 19.2096 19.2096 10 10 431.6748 431.8430

AD AD 0.000
ABD ABD 19.1753 18.5053 6 3.4 435.6491 437.3304
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2.3.6 Case 6: True Models = AB and CD

In this last simulated scenario, we intend to examine the OQMDR behavior when

there are two distinct 2-way interactions affecting the response, i.e., no common

factor between the two interactions. Hence, the model given in equation 2.3 is utilized

along with the non-zero matrices α12 and α34 listed in 2.12 and 2.13, respectively, to

generate the response variable such that certain combinations of AB and CD are

causing the variation. Once again, none of the two algorithms can report a set of the

most significant interactions; therefore, CD is expected to be selected as the most

significant 2-way interaction because it has more weight on the Y . However, due to

the drawback of both algorithms to capture more than one interaction, it’s feasible

to end up with an interaction that does not agree with any of the components of the

actual model. Notice that the effects of both 2-way interactions can be combined to

form a single 4-way interaction with the array γ1234 shown in 2.14. Accordingly, the

all-way interaction has a higher chance to be proposed over lower order interactions.

However, we only consider all possible 2-way and 3-way interactions; thus, all-way

interactions are not an area of interest in this study.

α12 =


0 0 15

0 0 15

15 15 15

 (2.12)

α34 =


0 0 20

0 0 20

20 20 20

 (2.13)
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γ1234 =




0 0 15

0 0 15

15 15 15

 |


0 0 15

0 0 15

15 15 15

 |


20 20 35

20 20 35

35 35 35




0 0 15

0 0 15

15 15 15

 |


0 0 15

0 0 15

15 15 15

 |


20 20 35

20 20 35

35 35 35




20 20 35

20 20 35

35 35 35

 |


20 20 35

20 20 35

35 35 35

 |


20 20 35

20 20 35

35 35 35





(2.14)

Simulation results in tables 2.17, 2.17, and 2.17 show that the 2-way interaction

CD is almost always selected from both algorithms, regardless of sample size. No-

tice that the MSPE of the 2-way model is smaller, in most samples, comparing to the

MSPE of the proposed 3-way interactions; yet, it is not as small as the MSPE for pre-

vious cases. The reason why the MSPE is higher in this scenario is that the suggested

interaction does not explain all the distinction in the response variable. On the other

hand, both algorithms selected ACD or BCD as the best 3-way interaction, which

agrees with the actual model to some extent, because CD is stronger in the real model

than the other 2-way. Figure 2.12 shows that the risk pattern of the proposed 2-way

interaction coincides with the coefficients in α34 shown in 2.10. Finally, permutation

testing shows a statistical significance of all proposed model under α = 0.05.
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Table 2.17: Case 6: True model= AB and CD, and n = 500

Model t∗k-score CVC MSPE Best Model
Set NEW QMDR NEW QMDR NEW QMDR NEW QMDR NEW QMDR pt

1
BD AB 9.0069 7.0102 9.8 7.2 473.8596 473.471

BD ABD 0.001
BCD ABD 4.0438 10.7973 8.8 5.8 503.8610 422.9145

2
CD CD 11.8300 11.8300 10 10 489.5151 489.5151

CD CD 0.000
ACD ACD 9.2065 10.3003 2 4.8 539.7714 517.0491

3
CD CD 10.6991 10.6991 10 10 440.9293 440.9293

CD CD 0.002
BCD BCD 8.5849 9.7989 2 5.8 473.0339 453.8657

4
CD CD 11.3164 11.3164 10 10 475.2049 475.2049

CD CD 0.001
BCD ACD 6.6323 9.1011 2.4 3 552.0917 512.3414

5
CD CD 10.0542 10.313 9.6 10 452.8280 447.6891

CD CD 0.001
BCD BCD 9.1363 8.9036 3.6 2.6 466.6728 470.9822

6
CD CD 8.9645 9.0815 9.8 10 457.8634 456.4878

CD CD 0.003
ABC ABC 5.6587 7.9537 3.2 6.6 496.4742 474.6744

7
CD CD 11.4007 11.4007 10 10 462.4258 462.4258

CD CD 0.000
ACD ACD 9.7958 10.1877 3.4 4.8 490.1020 484.1013

8
CD CD 10.4819 10.4819 10 10 476.3193 476.3193

ACD ACD 0.001
ACD ACD 10.9939 10.7249 6.8 6.6 466.1766 470.4285

9
CD CD 10.9124 10.9124 10 10 424.9754 424.9754

CD ACD 0.002
ACD ACD 10.6844 11.0481 6.6 7.4 429.7659 423.9798

10
CD CD 7.7286 7.5909 5.6 5.4 489.9941 490.2981

BCD BCD 0.000
BCD BCD 10.0815 10.4887 5.8 7.4 449.8219 444.0032

Figure 2.12: Case 6: Risk pattern for the proposed 2-way models
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Figure 2.13: Case 6: Risk pattern for the proposed 3-way models
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Table 2.18: Case 6: True model= AB and CD, and n = 1000

Model t∗k-score CVC MSPE Best Model
Set NEW QMDR NEW QMDR NEW QMDR NEW QMDR NEW QMDR pt

1
CD CD 15.8692 15.8692 10 10 446.3464 446.3464

ACD ACD 0.000
ACD ACD 15.8810 16.3463 4.6 8.6 447.6558 441.7190

2
CD CD 15.4883 15.4883 10 10 439.9703 439.9703

CD CD 0.000
BCD BCD 13.4539 13.4441 3.4 2.2 463.9966 463.3633

3
CD CD 14.9038 14.9038 10 10 405.4913 405.4913

CD CD 0.000
BCD BCD 14.0032 13.4048 7.2 5.2 414.6212 419.7204

4
CD CD 14.8358 14.8358 10 10 460.2263 460.2263

CD CD 0.000
BCD BCD 14.0720 14.3682 2.2 1 469.7958 465.2314

5
CD CD 14.7896 14.7896 10 10 429.2789 429.2789

CD ACD 0.000
ACD ACD 14.1741 14.8106 7.6 9 436.9781 429.8223

6
CD CD 13.3759 13.3759 10 10 450.7268 450.7268

CD CD 0.000
ABD ABD 12.2997 13.0095 4.6 5.2 461.1326 452.5986

7
CD CD 11.1334 10.8941 9.2 9 494.0292 496.4412

BCD BCD 0.000
BCD BCD 11.0531 11.1747 5.8 3.8 492.6775 492.4458

8
CD CD 15.0628 15.0628 10 10 463.5435 463.5435

CD CD 0.000
BCD BCD 14.7724 13.8812 6.4 5.2 467.5203 477.2938

9
CD CD 14.5080 14.5080 10 10 478.4491 478.4491

CD CD 0.000
BCD BCD 13.4828 13.8369 5.8 5.6 489.0802 486.0552

10
CD CD 15.5132 15.5132 10 10 440.6888 440.6888

CD CD 0.000
BCD BCD 14.8498 14.1504 6 4.2 448.3133 456.5098

Table 2.19: Case 6: True model= AB and CD, and n = 2000

Model t∗k-score CVC MSPE Best Model
Set NEW QMDR NEW QMDR NEW QMDR NEW QMDR NEW QMDR pt

1
CD CD 21.1057 21.1057 10 10 430.2597 430.2597

CD CD 0.000
ACD ACD 20.0069 20.1394 3 6.6 438.8670 437.5555

2
CD CD 20.1353 20.1353 10 10 473.6575 473.6575

CD CD 0.000
BCD BCD 18.3900 18.7932 2.2 3.4 486.3417 483.3645

3
CD CD 22.0497 22.0497 10 10 455.8369 455.8369

CD CD 0.000
BCD BCD 20.7965 18.8983 5.6 2.4 466.3449 481.0303

4
CD CD 21.8425 21.8425 10 10 467.6960 467.6960

CD CD 0.000
ACD ACD 20.8895 21.7709 4.2 7.0 475.5016 467.9811

5
CD CD 21.8637 21.8637 10 10 431.9311 431.9311

CD CD 0.000
ACD ACD 20.4798 20.1306 3.6 5.8 442.8755 444.8904

6
CD CD 20.8501 20.8501 10 10 435.0721 435.0721

CD CD 0.000
BCD BCD 19.9172 19.2205 4.2 2.8 442.4099 448.0044

7
CD CD 20.1937 20.1937 10 10 460.0336 460.0336

ACD ACD 0.000
ACD ACD 20.7405 20.9611 8 9.6 455.9089 454.3679

8
CD CD 20.9419 20.9419 10 10 469.1425 469.1425

CD CD 0.000
BCD BCD 19.1011 19.0341 2.2 3.8 483.0796 483.8075

9
CD CD 19.8520 19.8520 10 10 442.7585 442.7585

ACD CD 0.000
ACD ACD 20.4027 18.5823 8.6 3.2 440.0263 452.3520

10
CD CD 19.9674 19.9674 10 10 456.0138 456.0138

BCD BCD 0.000
BCD BCD 20.7447 20.2638 7 5.4 450.4488 453.7931

Finally, it’s important to mention that all proposed models from applying the
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QMDR algorithm showed a statistical significance at α = 0.05, regardless of whether

they minimize the prediction error or not.

Copyright c© Zaid T. Al-Khaledi, 2019.
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Chapter 3 Modification of The OQMDR Algorithm

3.1 Preliminary

In chapter 2, we presented our new suggested algorithm to analyze genetic data sets

with a continuous phenotypic response. We showed that the risk patterns of the

proposed models by the OQMDR algorithm minimize the prediction error (smaller

MSPE) compared to the risk patterns of the models suggested by the QMDR al-

gorithm when both methods are applied to same data sets. However, taking into

account the new algorithm digs deeper into the data to detect the final risk pattern

for each interaction, the computation time can be substantial. Recalling that the

OQMDR algorithm, similar to MDR and some other MDR-based algorithms, uses

1000 permutation testings to justify the significance of the final model. Therefore,

this part of the algorithm has the lion’s share when talking about time consump-

tion. Besides, the computational burden gets heavier with bigger data sets. It is also

affected by the complexity of the examined models. Coding experience shows that

evaluating a 3-way model requires almost twice the time as long as a 2-way model

does with the same data set analyzed on the same machine. Accordingly, finding

a time-efficient replacement procedure to the permutation testing may benefit the

proposed approach.

In 2009, Pattin et al. [48], and later in 2010, Hua et al. [30] both introduced a

time-effective procedure that uses a theory-based technique to evaluate the proposed

model instead of using the regular machine learning procedure. They suggested using

the Generalized Extreme Value Distribution (GEVD), described by Jenkinson in 1955

[32], as an approximated theoretical distribution of the test statistic of the proposed

model. The suggested approach does not eliminate the permutation testing procedure

completely; instead, it reduces the number of permuted data sets required to assess the
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final model to 20 permutations [48], or at most 50 permutations [30]. The idea behind

employing the GEVD to evaluate the final model is merely based on the fact that the

statistic of the final model is chosen as the maximum of all computed statistics of all

examined models. Hence, we can generate a set of permuted maximized statistics to

estimate the parameters of the approximated theoretical distribution of the original

maximized statistic. Since we are choosing between models by optimizing over the

testing t-score in our work, we think that utilizing the GEVD is applicable, and it

would likely improve the computation speed of our algorithm.

3.2 The Generalized Extreme Value Distribution

The Generalized Extreme Value Distribution (GEVD) initially described by Jenk-

inson in 1955 [32] is used to model the maximum (or minimum) of a sequence of

independent and identically distributed random variables. That is, let X1, X2, X3, ...

be a sequence of independent and identically distributed random variables. And de-

fine Yn to be the largest order statistic:

Yn := max(X1, X2, ..., Xn)∀n ∈ Z+

Then for some constants an > 0 and bn ∈ R, we have (Yn − bn)/an has a limiting

distribution called the Generalized Extreme Value distribution with the cumulative

distribution function (CDF) given in equation 3.1[15]. That is:

P

(
Yn − bn
an

≤ y

)
−→ FY (y), as n→∞

where F is the CDF of the GEVD and it is defined as follows:
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FY (y) =


exp

[
−
(
1 + ξ y−µ

σ

)−1/ξ
]

for ξ 6= 0

exp
[
−exp

(
−y−µ

σ

)]
for ξ = 0

(3.1)

defined on 1+ξ
(
y−µ
σ

)
> 0 for ξ 6= 0, and y ∈ (−∞,∞) for ξ = 0, where µ ∈ (−∞,∞)

is the location parameter, σ > 0 is the scale parameter, and ξ ∈ (−∞,∞) is the shape

parameter of the distribution. In fact, three different distributions can be derived

from the GEVD. These distributions are Weibull distribution when ξ < 0, Fréchet

distribution when ξ > 0, and Gumbel distribution as ξ → 0 [15]. Some references

[32, 11] use a different parametrization to the one shown in equation 3.1 by defining

the shape parameter as k = −ξ. This reparametrization does not affect the maximum

likelihood estimates of the parameters except for the sign of the estimated value of

the shape parameter, ξ̂. In this work, we will consider the parametrization given

in equation (3.1) when deriving the maximum likelihood estimators of the GEVD.

Adequate changes are considered when we used R functions that rely on the alternative

parametrization.

The mean, the variance, and the skewness of a random variable following the

GEVD can be obtained as follows [22]:

Mean =


µ+ σ g1−1

ξ
if ξ 6= 0, ξ < 1

µ+ σγ if ξ = 0

∞ if ξ ≥ 1

, (3.2)
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Variance =


σ2 +

g2−g2
1

ξ2 if ξ 6= 0, ξ < 0.5

σ2 π
6

if ξ = 0

∞ if ξ ≥ 0.5

, (3.3)

Skewness =


sgn(ξ)

g3−3g1g2+2g3
1

(g2−g2
1)3/2 if ξ 6= 0, ξ < 1

3

12
√

6ζ(3)
π3 if ξ = 0

∞ if ξ ≥ 1
3

(3.4)

where gi = Γ(1 − iξ) for i = 1, 2, 3, ..., γ is the Euler’s constant, sgn(·) is the sign

function, and ζ(x) =
∑∞

n=1 n
−x is the Euler-Riemann zeta function.

We will make use of these three measures to initiate the estimation process of the

parameters of the GEVD.

3.3 Parameter Estimation

The Generalized Extreme Value distribution with the CDF given in equation 3.1 has

three parameters, the location µ, the shape σ, and the scale ξ. These parameters can

be estimated by the Probability-Weighted Moments method [29], or the maximum

likelihood estimator (MLE) method [47, 49, 34]. The estimation procedure has to

be done numerically, for example by using the multivariate version of the Newton-

Raphson algorithm [38] because the derivatives of the log-likelihood cannot be solved

for the three parameters. Otherwise, we may use the profile likelihood function with a

fixed range of values assigned to ξ, then calculate the regular MLE’s of the other two

functions [15]. In this work, the analytical approach is utilized to obtain the MLE’s

of the three parameters. To proceed with the calculation of the MLE’s, we need to

derive the formulas of the gradient vector, g(θ), and the inverse of the Hessian matrix
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of the log-likelihood, H−1. Next, we calculate the MLE’s iteratively according to the

formula defined in 3.5 below:

θ̂t = θ̂t−1 −H−1(θ̂t−1)g(θ̂t−1) (3.5)

where:

θ =

[
µ σ ξ

]′
,

g(θ) =

[
∂l(θ)
∂µ

∂l(θ)
∂σ

∂l(θ)
∂ξ

]′
,

H(θ) =


∂2l(θ)
∂µ2

∂2l(θ)
∂µ∂σ

∂2l(θ)
∂µ∂ξ

∂2l(θ)
∂µ∂σ

∂2l(θ)
∂σ2

∂2l(θ)
∂σ∂ξ

∂2l(θ)
∂µ∂ξ

∂2l(θ)
∂σ∂ξ

∂2l(θ)
∂ξ2

 ,

and the index t denotes iterations for t = 1, 2, ....

Notice that the Hessian matrix is symmetric (i.e., H = HT ). The final forms of

the elements of g(θ) and H(θ) are given by Joe in an unpublished technical report

[33]. We decided to verify the derivation of all derivatives needed to calculate the

MLE’s, where the case of ξ 6= 0 is considered in the derivation.

Let Y1, Y2, ..., Yn be a sequence of independent and identically distributed random

variables that follow the GEVD with the CDF defined in equation 3.1 for ξ 6= 0.

Therefore, the common probability density function (PDF) can be written as:
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fY (y;µ, σ, ξ) =
1

σ

[
1 + ξ

y − µ
σ

]−(1+ 1
ξ

)

e−[1+ξ y−µ
σ ]
− 1
ξ

defined on 1 + ξ
(
y−µ
σ

)
> 0 for ξ 6= 0, µ ∈ (−∞,∞) is the location parameter , σ > 0

is the scale parameter, and |ξ| > 0 is the shape parameter.

Thus, the likelihood function for Y1, Y2, ..., Yn is:

L(µ, σ, ξ) = Πn
i=1fYi(yi;µ, σ, ξ)

= Πn
i=1

1

σ

[
1 + ξ

yi − µ
σ

]−(1+ 1
ξ

)

e−[1+ξ
yi−µ
σ ]

− 1
ξ

=
1

σn

[
Πn
i=1

[
1 + ξ

yi − µ
σ

]−(1+ 1
ξ

)
]
e−

∑n
i=1[1+ξ

yi−µ
σ ]

− 1
ξ

=
1

σn

[
Πn
i=1(1 + ξzi)

−(1+ 1
ξ

)
]
e−

∑n
i=1(1+ξzi)

− 1
ξ

where zi = yi−µ
σ

.

Then, the log-likelihood is:

l(µ, σ, ξ) = −nlogσ − (1 +
1

ξ
)

n∑
i=1

log(1 + ξzi)−
n∑
i=1

(1 + ξzi)
− 1
ξ (3.6)

and the elements of the gradient are:

∂l

∂µ
=

ξ + 1

σ

n∑
i=1

(1 + ξzi)
−1 − 1

σ

n∑
i=1

(1 + ξzi)
−(1+ 1

ξ
)
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∂l

∂σ
= −n

σ
+
ξ + 1

σ

n∑
i=1

(1 + ξzi)
−1zi −

1

σ

n∑
i=1

(1 + ξzi)
−(1+ 1

ξ
)zi

∂l

∂µ
=

1

ξ2

n∑
i=1

log(1 + ξzi)− (1 +
1

ξ
)

n∑
i=1

(1 + ξzi)
−1zi

+
1

ξ

n∑
i=1

(1 + ξzi)
−(1+ 1

ξ
)zi −

1

ξ2

n∑
i=1

(1 + ξzi)
− 1
ξ log(1 + ξzi)

and the Hessian matrix elements are:

∂2l

∂µ2
=

ξ(ξ + 1)

σ2

n∑
i=1

(1 + ξzi)
−2 − ξ + 1

σ2

n∑
i=1

(1 + ξzi)
−(2+ 1

ξ
)

∂2l

∂µ∂σ
= −ξ + 1

σ2

n∑
i=1

(1 + ξzi)
−1 +

ξ(ξ + 1)

σ2

n∑
i=1

(1 + ξzi)
−2zi

+
1

σ2

n∑
i=1

(1 + ξzi)
−(1+ 1

ξ
) − ξ + 1

σ2

n∑
i=1

(1 + ξzi)
−(2+ 1

ξ
)zi

∂2l

∂µ∂ξ
=

1

σ

n∑
i=1

(1 + ξzi)
−1 − ξ + 1

σ

n∑
i=1

(1 + ξzi)
−2zi

+
1 + ξ−1

σ

n∑
i=1

(1 + ξzi)
−(2+ 1

ξ
)zi −

1

ξ2σ

n∑
i=1

(1 + ξzi)
−(1+ 1

ξ
)log(1 + ξzi)
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∂2l

∂σ2
=

n

σ2
− 2

ξ + 1

σ2

n∑
i=1

(1 + ξzi)
−1zi +

ξ(ξ + 1)

σ2

n∑
i=1

(1 + ξzi)
−2z2

i

+
2

σ2

n∑
i=1

(1 + ξzi)
−(1+ 1

ξ
)zi −

ξ + 1

σ2

n∑
i=1

(1 + ξzi)
−(2+ 1

ξ
)z2
i

∂2l

∂σ∂ξ
= −ξ + 1

σ

n∑
i=1

(1 + ξzi)
−2z2

i +
1

σ

n∑
i=1

(1 + ξzi)
−1zi

+
1 + ξ−1

σ

n∑
i=1

(1 + ξzi)
−(2+ 1

ξ
)z2
i −

1

ξ2σ

n∑
i=1

(1 + ξzi)
−(1+ 1

ξ
)log(1 + ξzi)zi

∂2l

∂ξ2
= (1 +

1

ξ
)

n∑
i=1

(1 + ξzi)
−2z2

i − (1 +
1

ξ
)
1

ξ

n∑
i=1

(1 + ξzi)
−(2+ 1

ξ
)z2
i

+
2

ξ2

n∑
i=1

(1 + ξzi)
−1zi −

2

ξ2

n∑
i=1

(1 + ξzi)
−(1+ 1

ξ
)zi

+
2

ξ3

n∑
i=1

(1 + ξzi)
−(1+ 1

ξ
)log(1 + ξzi)zi −

2

ξ3

n∑
i=1

log(1 + ξzi)

+
2

ξ3

n∑
i=1

(1 + ξzi)
− 1
ξ log(1 + ξzi)−

1

ξ4

n∑
i=1

(1 + ξzi)
− 1
ξ (log(1 + ξzi))

2

The MLE’s are calculated numerically according to equation 3.5 using R. Due to

the poor behavior of the likelihood function of the GEVD, the procedure requires

the initial values of the three parameters to be chosen deliberately close to the final

estimated values. Otherwise, the estimation process may diverge in some cases [33].

Since Gumbel distribution is a special case of the GEVD and can be obtained by

letting ξ −→ 0, Castillo et al. [11] suggested using the MLE formulas of the location

and scale parameters of Gumbel distribution to estimate µ0 and σ0, respectively, and

set ξ0 := 0 to initiate the iterative estimation process. This could be an easy way to
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determine the initial values of θ. However, coding experience shows that it is very

unusual to end up with an empirical distribution with ξ̂MLE ≈ 0. Hence, setting

ξ0 := 0 may not lead to convergence always. Accordingly, we think that solving the

mean, the variance, and the skewness, which are given in equations 3.2, 3.3, and 3.4,

receptively, would provide a more logical selection of the starting points. Solving these

equations requires calculating the mean, Ȳ , the variance, S2
Y , and the skewness, η̂3

from an observed sample. Here, the coefficient of skewness is the third standardized

central moment and is defined as follows:

η3 =
E(Y − E(Y ))3

[E(Y − E(Y ))2]3/2

and it can be estimated as follows [42]:

η̂3 =
n
∑n

i=1(yi − ȳ)3

(n− 1)(n− 2)S3
Y

where

S2
Y =

1

n− 1

n∑
i=1

(yi − ȳ)2

Next, we use the uniroot function in R to obtain the root of equation 3.7 below:

sgn(ξ)
g3 − 3g1g2 + 2g3

1

(g2 − g2
1)3/2

− η̂3 = 0 (3.7)

The root of equation 3.7 only exists when we assume ξ < 1
3
. This root will be

used in the Newton-Raphson algorithm as ξ0. To obtain µ0 and σ0, we solve equation
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3.2 for µ, and equation 3.3 for σ, respectively, to get the following formulas:

σ0 =

√
S2

g2 − g2
1

ξ2
0

µ0 = Ȳ − (g1 − 1)
σ0

ξ0

where g1 and g2 are calculated using ξ0.

Finally, the approach of selecting the initial values described above does not assure

convergence of the Newton-Raphson algorithm always. Therefore, we might need

to adjust the initial values (θ̂0), or the value of θ̂s for s < t, manually until we

achieve the convergence [33]. A further modification to the estimation algorithm is

recommended by Prescott and Walden [49] and by Otten and Van Montfort [47].

The adjustment, which involves adding an optional correction step to the analytical

estimation process, was mainly proposed to reduce the number of iterations required

to achieve the maximum of the likelihood and to increase the chance of convergence.

We write our own R code to compute the MLE’s of the GEVD. The code involves

using the library EnvStats [42] to call the function Skewness required to calculate

the skewness of the sample. The results of our code are compared to the output

of the function fitdist from the library fitdistrplus [19], which can be used to

obtain the MLE of the GEVD. Both codes are supplemented with the same set of

initial values produced from the mechanism described earlier. Despite returning the

same MLE’s, both codes fail to converge in some cases, especially when the number

of permuted statistics is less than 20. In our code, we impose some constraints on

the value of θ̂s for s < t within the algorithm to reduce the chance of divergence by

keeping the value of θ̂s under control.
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3.4 Utilizing The GEVD in OQMDR Algorithm

As mentioned earlier, the GEVD has been used to assess the significance of the pro-

posed interactions as a time-efficient replacement to the regular permutation testings

procedure in some MDR-based algorithms [48, 30]. Since we are optimizing over many

t-test statistics, we think that employing the GEVD in the OQMDR algorithm would

likely benefit the efficiency of model assessment. That is, the GEVD can be used to

approximate the behavior of the maximized testing t-score. To do this, we generate

a relatively small number of permuted samples and report the permuted maximized

testing t-score from each permutation. The number of permuted data sets needed

to estimate the approximated distribution of the optimized test statistic could be as

low as 20 permuted data sets [48], or 50 permuted data sets [30] instead of the 1000

permuted data sets we used in chapter 2.

To proceed with the calculation, assume we have a data set of size n. And let Y

be the continuous response variable of interest in the data set, and let N be the total

number of genetic factors in the data set. The selection of the final model process

is going to be similar to the approach described in chapter 2; therefore, we will skip

directly to the model assessment component of the algorithm. Let t
∗(0)
k be the testing

t-score of the proposed k-way interaction when computed from the original data set,

for k = 2, 3, . . . , N − 1. Now, define T
∗(0)
kmax

to be the largest order statistic of the

random variable T
∗(0)
k , i.e.:

T
∗(0)
kmax

:= max(T
∗(0)
2 , T

∗(0)
3 , . . . , T

∗(0)
N−1)

Since T
∗(0)
kmax

is a maximum of a sequence of random variables, we assume that the

GEVD would be a plausible approximation to model the behavior of T
∗(0)
kmax

. To esti-

mate the approximated null distribution of T
∗(0)
kmax

, we permute the original data set m
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times and re-perform the OQMDR algorithm on each of the permuted data sets to get

t
∗(1)
kmax

, t
∗(2)
kmax

, . . . , t
∗(m)
kmax

. Next, we apply the numerical estimation algorithm described

earlier in equation 3.5 on the permuted sample of t-scores (t
∗(1)
kmax

, t
∗(2)
kmax

, . . . , t
∗(m)
kmax

) to

obtain the MLE’s of the parameters characterizing the null distribution of T
∗(0)
kmax

. Once

we are done estimating the GEVD parameters, we can calculate the approximated

p-value of t
∗(0)
kmax

as follows (cf. Hua et al., 2010 [30]):

p
(0)
kmax

= 1− F
T
∗(0)
kmax

(t
∗(0)
kmax

; µ̂
t
∗(0)
kmax

, σ̂
t
∗(0)
kmax

, ξ̂
t
∗(0)
kmax

)

where F
T
∗(0)
kmax

is the GEVD distribution function of the random variable T
∗(0)
kmax

evalu-

ated at T
∗(0)
kmax

= t
∗(0)
kmax

, and µ̂
t
∗(0)
kmax

, σ̂
t
∗(0)
kmax

, and ξ̂
t
∗(0)
kmax

are the MLE’s of the parameters

of the GEVD of T
∗(0)
kmax

.

Next, we need to justify the validity of p
(0)
kmax

, which can be done by approximat-

ing the null distribution of P
(0)
kmax

. Since p
(0)
kmax
∈ (0, 1) and is a monotone decreasing

function of T
∗(0)
kmax

, we thought we could consider following Hua et al. [30] and utilizing

the GEVD again to approximate the distribution of −log(P
(0)
kmax

) in order to verify

the validity of the computed p-value. However, based on numerical investigation, the

GEVD doesn’t seem to be an appropriate choice to approximate the distribution of

−log(P
(0)
kmax

) in our case. Therefore, we tested a few other distributions to find the

best fit for the null distribution of P
(0)
kmax

, −log(P
(0)
kmax

), and −log(−log(P
(0)
kmax

)). We

tested uniform and beta distributions for P
(0)
kmax

, Weibull and GEV distributions for

−log(P
(0)
kmax

), and GEVD for −log(−log(P
(0)
kmax

)). Among all considered distributions

and transformations, GEVD for −log(−log(P
(0)
kmax

)) appears to be the best choice

per the graphical representation of the simulated data. Notice that because p
(0)
kmax

is

monotone decreasing in t
(0)
kmax

, the transformation −log(−log(p
(0)
kmax

)) is monotone de-

creasing in t
(0)
kmax

. The reason why we consider the −log(−log(P
(0)
kmax

)) transformation
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is because typically the null distribution of the p-value is uniform(0,1). Therefore,

since we know that p
(0)
kmax
∈ (0, 1), we can assume that the null distribution of P

(0)
kmax

is approximately uniform(0,1). Hence, under this assumption, the random variable

−log(P
(0)
kmax

) would follow the exponential distribution with a scale parameter σ = 1.

Now, since the exponential distribution is a special case of Weibull distribution with

a shape parameter µ = 1 and a scale parameter σ = 1, we may assume that the

random variable −log(P
(0)
kmax

) is distributed as Weibull(1, 1) [10]. Subsequently, the

log transformation (so as the −log transformation) of a Weibull(1, 1) random variable

follows Gumbel distribution, which is a special case of the GEVD when ξ → 0 [10].

To see this, let X ∼Weibull(µ, σ) with the CDF defined as follows:

FX(x;µ, σ) = 1− exp(−x
σ

)µ for x > 0;µ, σ > 0

Now, let Y = g(X) = µ(1 − σlogX
σ

). Since Y is a monotonic decreasing trans-

formation on X, the CDF of Y can be obtained using the monotone transformation

formula [10]. That is:

FY (y) = 1− FX(g−1(y))

= 1− FX(σexp(−y − µ
σ

)
1
µ )

= exp

[
−
σexp(−y−µ

σ
)

1
µ

σ

]µ
= exp

[
−exp

(
−y − µ

σ

)]
for y ∈ R;µ, σ > 0

The latter form of FY (y) is the CDF of the Gumbel distribution as defined in equa-

tion 3.1. Therefore, the GEVD, which includes Gumbel distribution as a particular

case, would be a plausible candidate to describe the behavior of −log(−log(P
(0)
kmax

)).
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The preceding described assessment can be practically done by applying the

OQMDR algorithm on m1 permuted data sets to get p
(1)
kmax

, p
(2)
kmax

, . . . , p
(m1)
kmax

. Then,

this permuted sample of minimized p-values is used to approximate the null GEV

distribution of −log(−log(P
(0)
kmax

)) using the multivariate Newton-Raphson method

for parameter estimation defined in 3.5. The final assessment of p
(0)
kmax

is given in the

form:

pv = FV (v; µ̂v, σ̂v, ξ̂v)

where V = −log(−log(P
(0)
kmax

)), µ̂v, σ̂v, and ξ̂v are the MLE’s of the location, the scale,

and the shape parameters of the distribution of V , respectively, and pv is the CDF

of V calculated at v = −log(−log(p
(0)
kmax

)).

Finally, the p-value p
(0)
kmax

of the model with t
∗(0)
kmax

is considered statistically signif-

icant if pv ≤ 0.05.

A simulation study will be discussed in the next section to demonstrate the de-

scribed assessment approach and compare the result to our finding in chapter 2.

3.5 Numerical and Graphical Assessments

In this section, we regenerated all data sets of the first four cases from section 2.3 to

carefully examine the modified component of the OQMDR algorithm. The simulation

process is performed in R using the same mechanism that we described in chapter 2.

That is, the two alleles’ frequencies that are used to generate the factors’ information

are p = q = 0.5. Similarly, we generated the continuous response using one of

the models described in equations 2.3 and 2.4, depending on the desired order of

interaction. Then, we applied the modified approach on each of the 120 simulated

data sets of cases 1− 4 described in sections 2.3.1, 2.3.2, 2.3.3, and 2.3.4 to evaluate
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the effectiveness of the suggested GEVD procedure for assessing the significance of

the proposed models. Furthermore, a comparison between the permutation testings

and the GEVD procedures, in terms of the statistical significance and calculation

time, is carried out for all simulated data sets.

For each generated data set, the described approach in equation 3.5 is employed

to estimate the null GEVD of the testing t-score of the final model, T
∗(0)
kmax

, using m

permuted testing t-scores, where m is a relatively small number of permuted samples.

Coding experience shows that a permuted sample of any size less than 30 might cause

the analytical estimation process of the MLE’s to diverge more frequently. In details,

the m permuted t-scores (t
∗(1)
kmax

, t
∗(2)
kmax

, . . . , t
∗(m)
kmax

) are utilized to estimate the location,

the scale, and the shape parameters of the GEVD using our own written R program.

The outputs are verified with the results obtained by applying the function fitdist

from the library fitdistrplus [19] on the same permuted samples.

In addition to obtaining the MLE’s, we established a graphical representation of

the empirical and theoretical null distributions of T
∗(0)
kmax

. The graphical representation

comprises four different plots: a histogram with empirical and theoretical densities’

curves overlaid, empirical and theoretical cumulative probabilities against quantiles

plot (CDF plot), a quantile-quantile (Q-Q) plot, and a probability-probability (P-P)

plot. The plotted empirical and theoretical densities are obtained using the functions

density from R based library, and dgevd from the library EnvStats [42], respectively.

Similarly, the CDF curves are produced using the function cdfcomp from the library

fitdistrplus [19], with the function pgevd from the library EnvStats [42]. Further-

more, the Q-Q plot, which plots the quantiles of the empirical distribution against the

quantiles produced from the theoretical distribution [13], is schemed using the func-

tion qqplot from R based library, with the function qgevd from the library EnvStats

[42]. Finally, the P-P plot, which compares the empirical CDF versus the theoretical

CDF [13], is created by sketching the empirical cumulative probabilities against the

61



probabilities from the theoretical CDF. Notice that the empirical cumulative prob-

abilities in the CDF plots and the P-P plots are calculated using (1 : m − 0.5)/m,

where m is the number of permuted statistics [19, 42]. Due to space limitations,

the graphs are plotted only for one data set for each case and a distinct sample size

(AB & n = 500, AB & n = 1000, ..., ABC & n = 2000). The graphical represen-

tations are produced for the same selected data sets with 1000 permuted t-scores to

justify the selection of the GEVD to model the behavior of T
∗(0)
kmax

for large numbers

of permutations.

Analogous to T
∗(0)
kmax

, the null GEVD of the −log(−log(P
(0)
kmax

)) is approximated

using m1 permuted p-values (p
(1)
kmax

, p
(2)
kmax

, . . . , p
(m1)
kmax

). The estimated parameters of

the null distributions are reported for each of the transformed P
(0)
kmax

that corresponds

to a certain T
∗(0)
kmax

in various data sets corresponding to a given case. In addition, the

four-plot schemes (see previous paragraph) are carried out for selected set of samples.

The probability plots are initially produced from m1 permuted p-values, whit m1 be-

ing a relatively small number, such that each permuted p-value is originated from a

distinct permuted sample of size m. Later, a larger number of permuted p-values is

considered to generate the plots. Moreover, we fit a set of different distributions of

P
(0)
kmax

or a transformation of P
(0)
kmax

to compare to the GEVD of the −log(−log(P
(0)
kmax

),

and the result is partially presented in the appendices. The approximated null dis-

tributions of T
∗(0)
kmax

and −log(−log(P
(0)
kmax

)) are utilized to determine the significance

of the calculated t-score, t
∗(0)
kmax

. Finally, the results from this simulation study are

compared to the findings in chapter 2 regarding calculation time and significance

of suggested models. All simulations are done using R software [50] installed in a

machine powered by an Intel Core i7-4500u CPU.
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3.5.1 Case 1: True model = AB

Refer to section 2.3.1, the same ten generated data sets of each sample size (500, 1000,

and 2000) are used again to evaluate the modification of the OQMDR algorithm.

The summarized outputs are listed in tables 3.1, 3.2, and 3.3. Similar to the regular

permutation testing, all proposed models show a statistical significance at α = 0.05

regardless of the sample size. It can be seen by looking at the p
(0)
kmax

values in each

table. In addition, the GEVD assessment of these p
(0)
kmax

’s is carried out and the

final theoretical p-values are listed under the pv column. Once again, all p
(0)
kmax

’s

are considered significant at α = 0.05 level of significance except for one case when

n = 2000 (case 8, table 3.3), where the MLE approach fails to converge even after

trying many different initial values.
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Table 3.1: Case 1: True model = AB, n = 500, and m = m1 = 30

GEVD procedure Permutation

Set t
∗(0)
kmax

µ̂
t
∗(0)
kmax

σ̂
t
∗(0)
kmax

ξ̂
t
∗(0)
kmax

p
(0)
kmax

µ̂v σ̂v ξ̂v pv Time (min) pt Time (min)

1 11.7287 0.1945 1.0630 0.2844 0.0071 -0.1564 1.2699 0.2295 0.0239 29.6343 0.000 29.6763
2 10.0317 -0.1092 1.1286 -0.1420 0.0000 0.5375 0.9291 0.1437 0.0000 30.6164 0.000 30.3414
3 9.2992 -0.2410 0.9569 -0.3926 0.0000 -0.1275 1.2581 -0.0058 0.0000 28.6911 0.000 31.4487
4 10.1738 -0.0730 1.2086 -0.1575 0.0000 0.1610 1.1165 -0.0390 0.0000 30.0305 0.000 32.0555
5 8.8108 -0.0071 1.1363 -0.2591 0.0000 -0.1611 0.6310 0.209 0.0000 29.8299 0.002 30.6594
6 9.4734 0.1556 1.3150 -0.3104 0.0000 -0.1160 0.9250 0.2105 0.0000 28.8816 0.001 32.1799
7 9.3303 0.0202 1.3270 -0.0583 0.0001 0.5502 1.1931 0.1403 0.0000 28.2546 0.000 31.0413
8 11.8964 -0.0357 0.9912 -0.0356 0.0000 0.0684 1.0479 0.1989 0.0000 29.7952 0.001 29.8212
9 11.9762 -0.1403 0.9967 0.1082 0.0004 0.2656 1.1461 0.0801 0.0001 30.5986 0.000 29.6083
10 10.0830 -0.1037 1.2199 -0.0105 0.0002 -0.0284 1.0644 0.0063 0.0005 30.7604 0.002 31.1963

* Column headers are defined as follows:

• t
∗(0)
kmax

: The maximized testing t-score for the proposed model of the kth order, calculated from
the original data set.

• µ̂
t
∗(0)
kmax

: The MLE of the location parameter of the null GEVD of T
∗(0)
kmax

observed at t
∗(0)
kmax

.

• σ̂
t
∗(0)
kmax

: The MLE of the scale parameter of the null GEVD of T
∗(0)
kmax

observed at t
∗(0)
kmax

.

• ξ̂
t
∗(0)
kmax

: The MLE of the shape parameter of the null GEVD of T
∗(0)
kmax

observed at t
∗(0)
kmax

.

• p
(0)
kmax

: The theoretical p-value of t
∗(0)
kmax

obtained from the null GEVD of T
∗(0)
kmax

.

• µ̂v: The MLE of the location parameter of the null GEVD of V observed at v.

• σ̂v: The MLE of the scale parameter of the null GEVD of V observed at v.

• ξ̂v: The MLE of the shape parameter of the null GEVD of V observed at v.

• pv: The theoretical p-value of p
(0)
kmax

obtained from the null GEVD of −log(−log(P
(0)
kmax

)).

• Time: The required time to apply the algorithm on each data set in minutes.

• p-value: The simulated p-value from the regular permutation testing.

The graphical representation (figures 3.1 and 3.2) compares the empirical behavior

of T
∗(0)
kmax

with the theoretical GEVD when n = 500. Looking at figure 3.1, where only

30 permuted t-scores are used to approximate the distribution, all four plots show a

decent fit between the empirical distribution and the theoretical GEVD of T
∗(0)
kmax

. In

fact, the fit between the two PDFs may not look ideal when we look at the histogram

with PDF curves; However, this lack of fit is likely due to the small number of

permuted statistics used to establish the fit. Besides the slight deficiency between

the two PDF curves, there is not a considerable migration from the fit that can be
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spotted from the other three plots. Likewise, figure 3.2 provides a better evidence to

deem the GEVD as a plausible choice to explain the variation in T
∗(0)
kmax

. Further, the

Q-Q plot shows a minor migration from the 45-degree reference line on the right tail

of the distribution, which also agrees with the long right tail shown in the histogram.

This slight departure from the fit on the right tail is due to observing a few large

quantiles, as we can see from the CDF plot. Other than that, it seems there is no

doubt that T
∗(0)
kmax

behaves approximately per the GEVD, which can be inferred by

looking at the P-P plot.
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Figure 3.1: Case 1: True model = AB, n = 500; Graphical representation of the null
distribution of T

∗(0)
kmax

based on 30 permuted t-scores
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 for details.

The histogram with the empirical PDFs shows how the empirical distribution of T
∗(0)
kmax

looks like

compared to the theoretical GEVD. The Q-Q plot reveals whether there is any shifting in location

or scale between the two distributions, and detects outliers. The empirical and theoretical CDFs

plot displays the nature of the empirical CDF compared to the theoretical CDF. The P-P plot shows

whether there is a departure from the fitted GEVD or not [13].
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Figure 3.2: Case 1: True model = AB, n = 500; Graphical representation of the null
distribution of T

∗(0)
kmax

based on 1000 permuted t-scores

Empirical and theoretical PDFs
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.

On the other hand, the graphical comparison between the empirical distribution

and the theoretical GEVD of the −log(−log(P
(0)
kmax

)) is presented on figure 3.3 with

m1 = 30 permuted p-values, and on figure 3.4 with m1 = 500 permuted p-values,

respectively. Originally, we considered multiple different transformations and/or dis-

tributions besides the GEVD of the −log(−log(P
(0)
kmax

)). It turns out that the GEVD

of the −log(−log(P
(0)
kmax

)) does a decent job explaining the variation in the response

compared to other considerations, especially for small number of permuted p-values

(m1 = 30). Keep in mind that the generated distribution of the p-values is somehow

affected by the generated distribution of the permuted t-scores because each per-
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muted p-value is originated from a particular permuted sample of t-scores; Hence, we

might not have a smooth fit unless we simulate a large enough number of permuted

t-scores in the first place (m ≥ 30). That explains why we observe a distinguishing

smooth fit in figure 3.4 compared to the fit in figure 3.3. For the same reason, we

considered different numbers of permuted t-scores and p-values with many different

scenarios to detect the permutation size that provides enough information to maintain

a remarkable fit.

For a fact, we still need to choose a relatively small number of permutations

to retain a reasonable calculation time. Therefore, the time of calculation and the

precision of fit are the main two elements that we kept in mind when we decide which

size is ideal. Subsequently, the approximation in figure 3.3 is done using m1 = 30

permuted p-values, such that each p-value is originated from a set of m = 30 permuted

t-scores, which is what we ended up choosing after many simulation attempts. To

examine the behavior of the −log(−log(P
(0)
kmax

)) for large number of permutations, we

also tested a multiple different large numbers of permuted p-values that are generated

from a fairly small number of t-scores. Among the ones we considered, which are (40,

200), (50, 200), (50, 500), (60, 400), and (200, 200) for the number of permuted

t-scores (m) and the number of p-values (m1), respectively. Simulation experience

shows that a set of size m ≥ 50 permuted t-scores is enough to produce a well

behaved p-value (smoothly follow the fit). Accordingly, we considered using m = 50

with m1 = 500, m = 60 with m1 = 400, or m = 200 with m1 = 200 to closely examine

the nature of the −log(−log(P
(0)
kmax

)).
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Figure 3.3: Case 1: True model = AB, n = 500; Graphical representation of the null
distribution of −log(−log(P

(0)
kmax

)) based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.4: Case 1: True model = AB, n = 500; Graphical representation of the null
distribution of −log(−log(P

(0)
kmax

)) based on 500 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.

Afterward, the figures 3.3 and 3.4 clearly show that the GEVD is a legitimate

choice to approximate the distribution of the transformed p-value. In fact, the se-

lected transformation of the p-value better facilitates the GEVD compared to other

transformations.

On the contrary, increasing the original sample size (the number of individuals

in the data set) from 500 to 1000 or 2000 did not help improving the precision of

the estimation process nor the quality of the fitting. Indeed, as we increase the

sample size, the divergence problem of the MLE process becomes more frequent than

when n = 500, which might seem counterintuitive. However, the ambiguity will be
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revealed if we recall that the testing t-score tends to be proportional to the square

root of the sample size; thus, as n increases, outliers become more influential on

the fitting process. Therefore, we encountered a divergence problem in about 10%

of the cases when n = 1000, and about 30% of the cases for n = 2000. Anyhow,

we overcome the divergences in the Newton-Raphson algorithm by suppressing the

value of the estimated shape parameter, ξ̂t, from getting larger than 1/3 within each

iteration until we reach a complete convergence. Notice that the permuted p-values

are inversely related to the t-scores; therefore, we expected to encounter a more

frequent divergence while approximating the distribution of the transformed p-values.

After all, the suppression adjustment does help achieving the convergence in almost

all problematic cases (16 out of 17 different data sets of sizes 1000 and 2000) except

for one data set of size 2000 (see table 3.3).

Table 3.2: Case 1: True model= AB, and n = 1000, and m = m1 = 30

GEVD procedure Permutation

Set t
∗(0)
kmax

µ̂
t
∗(0)
kmax

σ̂
t
∗(0)
kmax

ξ̂
t
∗(0)
kmax

p
(0)
kmax

µ̂v σ̂v ξ̂v pv Time (min) pt Time (min)

1 16.2091 -0.0445 1.1873 -0.0985 0.0000 0.2032 1.3173 -0.0360 0.0000 40.6546 0.000 44.0068
2 14.9832 0.2131 1.1328 0.2649 0.0035 -0.1580 1.1380 -0.0532 0.0225 40.3236 0.000 43.4187
3 16.8702 0.2045 1.3272 -0.5083 0.0000 0.0750 1.1692 -0.1453 0.0000 40.3071 0.000 43.2199
4 16.1570 0.2231 1.5331 -0.3267 0.0000 0.1361 0.8681 0.0778 0.0000 43.5178 0.000 42.8729
5 15.7406 0.0244 1.2803 -0.2479 0.0000 -1.6937 1.8093 -0.1436 0.0000 38.8186 0.000 42.4825
6 14.3067 0.0222 0.8995 0.1408 0.0002 0.2123 0.9702 -0.1482 0.0004 38.7839 0.000 42.3103
7 15.7926 -0.1886 1.0923 -0.1232 0.0000 0.7177 1.2127 -0.3567 0.0000 38.8247 0.000 42.3003
8 14.7499 0.2934 1.3505 -0.2286 0.0000 -0.0187 1.2324 -0.0194 0.0000 38.7957 0.000 42.1112
9 15.1977 -0.0190 1.3157 -0.2970 0.0000 -0.2423 0.9008 0.0811 0.0000 40.2208 0.000 42.2298
10 13.6602 -0.2700 1.1455 -0.1818 0.0000 -0.3651 1.9043 -0.2396 0.0000 38.9530 0.000 42.0930

* Column headers are defined as in table 3.1.

Either way, even though increasing the sample size adds a little bit of complication

to the estimation process, it does not worsen the the quality of fitting besides to

the increased chance of having more influential extreme values. This can be seen by

looking at figures 3.5 and 3.6 for the approximated distribution of the t-score, and 3.7

and 3.8 for the −log(−log(P
(0)
kmax

)). Similarly, we have a reasonable fit when n = 2000

for both the t-score and the transformed p-value (see figures 3.9, 3.10, 3.11, and 3.12).
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It’s important to point out that, in some cases, we have some permuted p-values are

practically equal to zero, which would make the log transformation undefined for

some p-values. Accordingly, we add an infinitesimal quantity to the zero p-values

before applying the transformation. The Q-Q plot in figure 3.12 shows three points

at the very bottom end of the 45◦ reference line, where these points are originally

zero p-values. These values do not influence or change the approximated distribution

substantially because usually there is a tiny number of them, plus they are not too

far in distance from other permuted p-values.

Figure 3.5: Case 1: True model = AB, n = 1000; Graphical representation of the
null distribution of T

∗(0)
kmax

based on 30 permuted t-scores

Empirical and theoretical PDFs
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.6: Case 1: True model = AB, n = 1000; Graphical representation of the
null distribution of T

∗(0)
kmax

based on 1000 permuted t-scores

Empirical and theoretical PDFs

Permuted t−scores

D
en

si
ty

−4 −2 0 2 4 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

GEVD

emp.

−2 0 2 4

−
2

0
2

4

Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

−4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

Permuted t−scores

C
D

F

GEVD

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities

E
m

pi
ric

al
 p

ro
ba

bi
lit

ie
s

* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.7: Case 1: True model = AB, n = 1000; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.8: Case 1: True model = AB, n = 1000; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 400 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.

Finally, and probably most importantly, even though the suggested GEVD ap-

proach successfully helps to evaluate the proposed models that agree with the un-

derlying interactions used to generate the data, the new proposal does not benefit,

compared to the ordinary permutations method, the calculation time aspect of the

OQMRD, which is opposed to what we anticipated. This can be inferred by com-

paring the calculation times between the GEVD and the regular permutations from

tables 3.1, 3.2, and 3.3. Yet, after digging deeper into what caused the new proce-

dure to fail dominating the original assessment technique, we come out with a few

elements that could influence the calculation time aspect of the GEVD procedure.
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Besides coding complication of the new approach compared to the permutation proce-

dure, we think that the leading cause of raising the calculation time is the evaluation

of the p-value of the examined model. This component has been added to the al-

gorithm, after introducing the GEVD approach, to make a rigorous decision about

the reliability of the chosen model. In fact, the assessment of the p-value portion

of the GEVD proposal absorbs an enormous amount of time compared to the test

score evaluation, i.e., obtaining the p-value itself. Although it’s possible, the regular

permutation procedure does not validate the p-value of the suggested model because

it would consume a tremendous amount of time (re-permute the 1000 permutations

many times to obtain the null distribution of the p-value).

On the other hand, the GEVD approach can provide a more accurate p-value

than the permuted p-value. That is, the permuted p-value can be reported up to

three decimal places only; whereas, the new approach can provide a p-value as small

as 2.225074E − 308, which is the machine epsilon in R, yet no additional time is

needed. However, in our simulation, we rounded all outputs to four decimal places

for the sake of space limitation. Once again, to obtain a more exact permuted p-value,

we need to permute the original data set beyond 1000 times, which in turn would

exceedingly increase the computation burden.

Another aspect that influences the computation time is the selection of the GEVD

over uniform(0,1) distribution to evaluate the p-value, which is inspired by Hua et al.,

2010 [30]. That is, if we assume that P
(0)
kmax

follows a continuous uniform(0,1) distri-

bution, then we wouldn’t need to estimate the null GEVD of the −log(−log(P
(0)
kmax

)),

which ingests about 95% of the calculation time. This assumption seems to be rea-

sonable to some extent, particularly when the number of the permuted p-values is

large enough (m1 > 400). With this intention, we graphically examined the behav-

ior of P
(0)
kmax

with respect to the uniform(0,1) distribution, and the results is briefly

presented in the appendix. From the output presented in this chapter and in the
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appendix, we certainly can presume that the GEVD of the −log(−log(P
(0)
kmax

)) sur-

passes other considered distributions when the number of the permuted p-values is

relatively small (m1 = 30). However, the performance of the uniform(0,1) distribu-

tion, contrary to the other fitted distributions, enhanced substantially with larger

number of permuted samples. In addition, if we utilize the uniform(0,1) distribution

to evaluate the observed value of P
(0)
kmax

, then the observed value of P
(0)
kmax

numerically

matches its p-value in up to more than ten decimal places, which agrees with the

Probability Integral Transformation principle of a standard uniform random variable

[10]. In short, employing a uniform(0,1) distribution seems feasible as it helps reduc-

ing the computation time; however, it has to be done with caution, specifically for

small number of permuted samples.

Under those aforementioned circumstances, we think that the suggested GEVD

assessment is still predominating the regular permutation testing approach in terms

of time and precision. However, further investigation might lead to a more efficient

approach to evaluating the selected interactions.

Table 3.3: Case 1: True model= AB, and n = 2000, and m = m1 = 30

GEVD procedure Permutation

Set t
∗(0)
kmax

µ̂
t
∗(0)
kmax

σ̂
t
∗(0)
kmax

ξ̂
t
∗(0)
kmax

p
(0)
kmax

µ̂v σ̂v ξ̂v pv Time (min) pt Time (min)

1 20.8692 -0.4323 1.2426 -0.1523 0.0000 0.1250 0.9952 -0.0963 0.0000 61.8658 0.000 59.3812
2 22.1992 0.4960 1.4690 -0.5333 0.0000 -0.1322 1.2277 0.2275 0.0000 61.3719 0.000 59.7195
3 23.0960 0.1785 1.0632 -0.1225 0.0000 0.4089 1.2740 -0.2172 0.0000 60.0602 0.000 59.8337
4 22.2190 0.5902 1.6001 -0.4643 0.0000 -0.4802 1.2874 -0.0896 0.0000 59.4864 0.000 60.8675
5 23.7884 0.3335 1.5638 -0.2755 0.0000 -0.3527 1.0300 0.1059 0.0000 59.5922 0.000 59.7674
6 23.3298 -0.0323 1.0901 -0.0872 0.0000 -0.0283 1.3411 -0.2265 0.0000 59.7866 0.000 59.8626
7 22.3034 0.1401 1.1893 -0.2912 0.0000 0.0336 1.2075 0.0470 0.0000 59.6857 0.000 59.6379
8 22.9130 0.5555 1.3248 -0.3482 0.0000 NA NA NA NA 59.2123 0.000 59.7593
9 22.7459 -0.0507 1.3052 -0.1459 0.0000 -0.0840 1.2365 -0.3177 0.0000 59.4446 0.000 59.8364
10 22.0691 -0.0590 1.2525 -0.1865 0.0000 -0.1803 0.9519 0.1870 0.0000 59.3913 0.000 59.9434

* Column headers are defined as in table 3.1.
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Figure 3.9: Case 1: True model = AB, n = 2000; Graphical representation of the
null distribution of T

∗(0)
kmax

based on 30 permuted t-scores

Empirical and theoretical PDFs
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.10: Case 1: True model = AB, n = 2000; Graphical representation of the
null distribution of T

∗(0)
kmax

based on 1000 permuted t-scores

Empirical and theoretical PDFs
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.11: Case 1: True model = AB, n = 2000; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.12: Case 1: True model = AB, n = 2000; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 500 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.

3.5.2 Case 2: True model = ABD

Once again, we regenerated the data sets that we used in section 2.3.2, where the un-

derlying interaction is ABD, to evaluate the modification of the OQMDR algorithm.

We listed all results in tables 3.4, 3.5, and 3.6.

The results in table 3.4 show that p
(0)
kmax

of the suggested model from the ninth

data set is not significant (pv = 0.0736 > 0.05). Whereas, the same interaction is

considered significant when evaluated using the regular permutation testing. While

this issue could occur more often with small samples, yet the real issue is not the model

evaluation procedure itself. It’s, in fact, the selected risk pattern from this data set

81



does not coincide with the true risk pattern used to generate the data (figure 2.5).

Knowing that the proposed risk pattern is chosen from both algorithms, QMDR and

OQMDR, which means that the issue is from the data generation in the first place.

Recall that a 3rd-degree interaction has 27 different allele combinations; hence, we

might end up with very few observations in some combinations, which would affect

the risk status of individuals in these combinations. Accordingly, the proposed risk

pattern could be misleading under such circumstances. As a matter of fact, the

GEVD approach does not recognize this risk pattern as a valid risk pattern, while

the conventional approach does. This could be considered as a strength favoring the

GEVD approach; however, we would need to do more investigation for confirmation.

Table 3.4: Case 2: True model= ABD, and n = 500, and m = m1 = 30

GEVD procedure Permutation

Set t
∗(0)
kmax

µ̂
t
∗(0)
kmax

σ̂
t
∗(0)
kmax

ξ̂
t
∗(0)
kmax

p
(0)
kmax

µ̂v σ̂v ξ̂v pv Time (min) pt Time (min)

1 10.5026 0.4516 1.1913 -0.1902 0.0000 -0.1173 0.9337 -0.0489 0.0000 29.7165 0.000 29.4977
2 14.0163 0.4222 1.3083 0.0014 0.0000 -0.1447 0.9801 0.0328 0.0000 28.8601 0.001 29.4172
3 12.8563 0.2675 1.1150 -0.1480 0.0000 0.0555 1.0197 0.0295 0.0000 28.7999 0.001 29.4198
4 11.3547 0.2179 1.0836 0.0603 0.0003 -0.1761 0.8652 0.0385 0.0000 28.8446 0.000 29.3971
5 9.8944 -0.3290 1.0816 0.1321 0.0022 -0.3280 0.9294 0.1096 0.0030 28.7975 0.002 29.3120
6 10.1203 0.2842 0.8315 -0.0255 0.0000 -0.2759 1.4626 0.0160 0.0057 28.8144 0.001 29.4565
7 12.3105 0.7376 1.3469 -0.5025 0.0000 0.1243 0.9594 0.0521 0.0000 28.7748 0.001 30.4116
8 8.1019 0.5767 1.6743 -0.6075 0.0000 0.1750 1.6290 -0.0849 0.0000 28.8483 0.001 29.8514
9 8.2252 -0.4021 1.1873 0.2409 0.0149 0.1759 1.6697 -0.0146 0.0736 29.6636 0.005 29.4499
10 12.2139 0.4257 1.0817 -0.1678 0.0000 0.4180 1.2153 -0.3737 0.0000 30.1630 0.000 29.5340

* Column headers are defined as in table 3.1.

On the other hand, similar to case 1, all graphs show that the GEVD is nicely

approximating the distributions of both T
∗(0)
kmax

and −log(−log(P
(0)
kmax

)). Once again,

changing the sample size doesn’t have any noticeable influence on the quality of fitting.

Similarly, the order of the examined interaction does not affect the approximation

process, which can be inferred by comparing the output of this case with case 1

results.
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Figure 3.13: Case 2: True model = ABD, n = 500; Graphical representation of the
null distribution of T

∗(0)
kmax

based on 30 permuted t-scores
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.

83



Figure 3.14: Case 2: True model = ABD, n = 500; Graphical representation of the
null distribution of T
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.15: Case 2: True model = ABD, n = 500; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.16: Case 2: True model = ABD, n = 500; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 500 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.

Table 3.5: Case 2: True model= ABD, and n = 1000, and m = m1 = 30

GEVD procedure Permutation

Set t
∗(0)
kmax

µ̂
t
∗(0)
kmax

σ̂
t
∗(0)
kmax

ξ̂
t
∗(0)
kmax

p
(0)
kmax

µ̂v σ̂v ξ̂v pv Time (min) pt Time (min)

1 15.1322 -0.0821 1.2545 -0.2901 0.0000 -0.0012 0.9089 0.1936 0.0000 39.6350 0.000 39.3132
2 17.3736 -0.1201 0.9489 -0.0843 0.0000 0.2674 0.9975 0.1897 0.0000 39.3425 0.000 39.1848
3 15.2270 -0.0243 1.3561 -0.3010 0.0000 -0.1651 1.3763 -0.0733 0.0000 39.9399 0.000 40.3263
4 16.6369 0.1515 1.3768 -0.4173 0.0000 0.1778 1.1726 -0.1029 0.0000 42.3773 0.000 39.1652
5 16.5188 0.0180 1.3193 -0.1383 0.0000 -0.2254 0.8843 0.2302 0.0000 41.7511 0.000 39.1250
6 14.8783 0.6393 1.2252 -0.3503 0.0000 -0.2497 0.8293 0.2476 0.0000 40.7742 0.000 39.1751
7 16.3628 0.5519 1.4818 -0.3753 0.0000 0.2564 1.0828 0.0534 0.0000 42.1615 0.000 39.0741
8 16.8883 0.0523 1.2285 0.0091 0.0000 0.1017 1.2990 -0.1449 0.0025 41.1971 0.000 39.1690
9 15.0487 0.0027 1.1268 -0.2555 0.0000 -0.2092 0.8168 0.1044 0.0000 40.5250 0.000 39.1192
10 16.6091 0.1178 1.2885 -0.3730 0.0000 -0.0452 1.2771 0.0162 0.0000 41.9034 0.000 39.2857

* Column headers are defined as in table 3.1.
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Figure 3.17: Case 2: True model = ABD, n = 1000; Graphical representation of the
null distribution of T

∗(0)
kmax

based on 30 permuted t-scores
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.18: Case 2: True model = ABD, n = 1000; Graphical representation of the
null distribution of T
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.19: Case 2: True model = ABD, n = 1000; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.20: Case 2: True model = ABD, n = 1000; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 500 permuted p-values

Empirical and theoretical PDFs

− log(− log(p − value))

D
en

si
ty

−2 0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

GEVD

emp.

−2 0 2 4 6

−
2

0
2

4
6

8

Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

−2 0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

− log(− log(p − value))

C
D

F

GEVD

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities

E
m

pi
ric

al
 p

ro
ba

bi
lit

ie
s

* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.

Table 3.6: Case 2: True model= ABD, and n = 2000, and m = m1 = 30

GEVD procedure Permutation

Set t
∗(0)
kmax

µ̂
t
∗(0)
kmax

σ̂
t
∗(0)
kmax

ξ̂
t
∗(0)
kmax

p
(0)
kmax

µ̂v σ̂v ξ̂v pv Time (min) pt Time (min)

1 21.6356 0.3843 1.2571 -0.2417 0.0000 0.1747 1.5326 -0.1341 0.0000 60.6626 0.000 61.0031
2 22.2545 0.3189 1.3060 -0.2431 0.0000 -0.0167 0.9431 0.3275 0.0000 60.6943 0.000 59.9010
3 22.5347 0.0560 1.2461 -0.2748 0.0000 0.3476 0.9832 0.3668 0.0000 59.9240 0.000 60.6521
4 23.6509 0.1157 1.2808 -0.0871 0.0000 -0.0634 1.2076 -0.0828 0.0000 60.5431 0.000 59.7909
5 25.3687 1.0186 1.4955 -0.4187 0.0000 -0.2790 0.9754 0.0860 0.0000 60.7385 0.000 59.6732
6 24.0497 0.9217 1.2136 -0.4777 0.0000 -0.0663 0.9990 0.0078 0.0000 60.5031 0.000 59.8435
7 21.6227 0.2589 1.0186 -0.0087 0.0000 -0.3698 0.8484 -0.0006 0.0000 60.3570 0.000 60.0786
8 21.9942 -0.1910 1.1896 0.0245 0.0000 -0.0330 1.0626 0.1146 0.0000 61.4807 0.000 60.3793
9 22.2720 0.2202 1.1159 -0.3454 0.0000 0.6094 1.2382 -0.0615 0.0000 60.3046 0.000 59.7811
10 21.9574 0.2130 1.4370 -0.1831 0.0000 -0.0967 0.9100 0.1297 0.0000 60.7451 0.000 59.7573

* Column headers are defined as in table 3.1.
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Figure 3.21: Case 2: True model = ABD, n = 2000; Graphical representation of the
null distribution of T

∗(0)
kmax

based on 30 permuted t-scores

Empirical and theoretical PDFs
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.22: Case 2: True model = ABD, n = 2000; Graphical representation of the
null distribution of T
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.23: Case 2: True model = ABD, n = 2000; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.24: Case 2: True model = ABD, n = 2000; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 400 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.

3.5.3 Case 3: True model = BD

Another second degree interaction is considered in this case for additional confirma-

tion of the validity of the GEVD approach. Basically, we applied the GEVD procedure

on the data sets simulated in section 2.3.3. Tables 3.7, 3.8, and 3.9 summarize the

output from these data sets.

Similar to the previous case, we experience two insignificant proposed interactions

when we employ the GEVD to evaluate the suggested models, and it happens only

when n = 500 (see table 3.7, sets 7 and 10). After investigation, we discovered that

these two examined models are the only two models that suggested the interaction
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BD with the risk pattern shown in figure 2.6b; whereas the rest suggested the risk

pattern presented in figure 2.6a. Recall that we learned from chapter 2 that the risk

pattern shown in figure 2.6a minimizes the MSPE compared to the other risk pattern

from 2.6b (see table 2.8), which means, there are better models than the examined

ones embedded in these data sets. Therefore, the GEVD procedure might deem these

two models as insignificant for that same reason. On the other hand, the regular

testing procedure recognizes all interactions as significant, regardless of the proposed

risk patterns. Once again, this point could suggest that the GEVD procedure does

a better job evaluating the significance of the suggested models compared to the

permutation testings.

Table 3.7: Case 3: True model= BD, n = 500, and m = m1 = 30

GEVD procedure Permutation

Set t
∗(0)
kmax

µ̂
t
∗(0)
kmax

σ̂
t
∗(0)
kmax

ξ̂
t
∗(0)
kmax

p
(0)
kmax

µ̂v σ̂v ξ̂v pv Time (min) pt Time (min)

1 12.9882 0.7660 1.1297 -0.2731 0.0000 0.2540 0.9493 0.0597 0.0000 29.0405 0.000 29.5849
2 8.7738 -0.0150 1.1439 0.1630 0.0068 0.6481 1.6289 0.0551 0.0147 28.9430 0.005 29.3935
3 9.1315 0.2059 1.2138 -0.2635 0.0000 -0.1481 0.8663 0.1473 0.0000 29.0621 0.002 29.5588
4 7.9738 0.2739 1.3288 -0.1470 0.0000 0.3673 0.9211 0.0279 0.0000 30.7999 0.004 29.6322
5 8.6924 0.1631 1.0311 0.1730 0.0059 -0.1094 1.0436 -0.0665 0.0176 30.2448 0.003 33.6082
6 9.8547 -0.2433 1.1950 0.0820 0.0016 0.0563 0.9907 -0.1222 0.0034 29.6046 0.001 34.6892
7 5.5904 0.1358 1.0554 -0.0452 0.0028 0.0562 1.3315 -0.5744 0.0637 29.2609 0.006 31.6696
8 7.0933 0.1428 1.1205 -0.0640 0.0004 -0.0118 1.0452 0.1023 0.0001 29.1880 0.002 30.9975
9 5.3883 0.2930 0.9601 -0.1205 0.0002 -0.1909 0.6152 0.5063 0.0000 29.2257 0.008 30.8168
10 7.5865 0.1655 1.1768 0.1325 0.0102 -0.1917 1.2223 -0.2984 0.0766 29.2464 0.002 30.7754

* Column headers are defined as in table 3.1.

Finally, the graphical representation did not reveal any noticeable migration from

the fit neither for T
∗(0)
kmax

nor for −log(−log(P
(0)
kmax

)) except for a slight lack of fit that

could be spotted from a small number of permutations (see the histograms on figures

3.25, 3.27, 3.29, 3.31, 3.33, and 3.35). Besides, the GEVD seems a very reasonable

choice to evaluate both T
∗(0)
kmax

and P
(0)
kmax

.
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Figure 3.25: Case 3: True model = BD, n = 500; Graphical representation of the
null distribution of T

∗(0)
kmax

based on 30 permuted t-scores
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.26: Case 3: True model = BD, n = 500; Graphical representation of the
null distribution of T

∗(0)
kmax

based on 1000 permuted t-scores
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.27: Case 3: True model = BD, n = 500; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.28: Case 3: True model = BD, n = 500; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 200 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.

Table 3.8: Case 3: True model= BD, and n = 1000, and m = m1 = 30

GEVD procedure Permutation

Set t
∗(0)
kmax

µ̂
t
∗(0)
kmax

σ̂
t
∗(0)
kmax

ξ̂
t
∗(0)
kmax

p
(0)
kmax

µ̂v σ̂v ξ̂v pv Time (min) pt Time (min)

1 11.0682 0.7401 1.4035 -0.2022 0.0000 0.1948 1.0660 -0.0195 0.0000 43.0924 0.000 41.9711
2 12.9821 0.4320 1.4931 -0.4267 0.0000 0.1701 0.9123 0.0147 0.0000 41.2146 0.000 40.7905
3 6.3368 -0.1106 1.2203 -0.0767 0.0011 -0.0537 1.2973 -0.1499 0.0257 40.9804 0.000 41.7732
4 11.4646 0.3605 1.1072 -0.1243 0.0000 0.0711 1.6141 -0.2356 0.0000 41.4339 0.000 42.7985
5 12.9657 0.2149 1.2809 -0.2058 0.0000 0.0209 1.0337 -0.0775 0.0000 41.6909 0.000 45.7260
6 11.3902 -0.0538 1.1338 -0.3668 0.0000 0.1543 1.0346 0.0867 0.0000 44.1730 0.000 42.0594
7 10.2836 0.3404 1.0226 -0.3115 0.0000 -0.0272 1.2894 -0.3138 0.0000 41.3094 0.000 42.1066
8 10.0232 0.0516 1.2395 -0.0617 0.0000 0.0135 1.3031 -0.2907 0.0120 41.6469 0.000 43.0061
9 8.4548 0.1327 1.3908 -0.2435 0.0000 -0.1412 0.7047 0.2337 0.0000 41.7274 0.000 44.0856
10 8.5341 0.2593 1.4394 -0.3475 0.0000 -0.5682 0.8772 0.0597 0.0000 39.9479 0.000 42.2784

* Column headers are defined as in table 3.1.
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Figure 3.29: Case 3: True model = BD, n = 1000; Graphical representation of the
null distribution of T

∗(0)
kmax

based on 30 permuted t-scores
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.

100



Figure 3.30: Case 3: True model = BD, n = 1000; Graphical representation of the
null distribution of T

∗(0)
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based on 1000 permuted t-scores
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.31: Case 3: True model = BD, n = 1000; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.32: Case 3: True model = BD, n = 1000; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 500 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.

Table 3.9: Case 3: True model= BD, and n = 2000, and m = m1 = 30

GEVD procedure Permutation

Set t
∗(0)
kmax

µ̂
t
∗(0)
kmax

σ̂
t
∗(0)
kmax

ξ̂
t
∗(0)
kmax

p
(0)
kmax

µ̂v σ̂v ξ̂v pv Time (min) pt Time (min)

1 11.6430 0.2859 1.1569 -0.2044 0.0000 -0.1837 1.5392 -0.2311 0.0000 64.9627 0.000 64.1316
2 12.2938 0.2190 1.1905 -0.2233 0.0000 0.0688 0.9159 -0.1721 0.0000 65.1735 0.000 63.9616
3 14.3724 0.1580 1.1395 -0.2001 0.0000 0.1110 0.7740 -0.1198 0.0000 64.8242 0.000 63.7335
4 13.5646 -0.1723 1.1201 -0.3950 0.0000 0.5113 1.4053 -0.8522 0.0008 64.2101 0.000 63.5998
5 19.5815 -0.0342 1.0346 -0.1840 0.0000 0.0819 0.9170 -0.0923 0.0000 62.0592 0.000 62.5083
6 13.5869 -0.0984 1.3070 -0.4082 0.0000 -0.3689 0.8679 0.1498 0.0000 60.8961 0.000 62.1566
7 15.2050 0.4950 1.4679 -0.6029 0.0000 -0.2058 1.3508 -0.1262 0.0000 60.8463 0.000 62.2635
8 15.3370 0.3098 1.3324 -0.2556 0.0000 0.2848 1.2500 -0.2846 0.0000 60.8577 0.000 62.1972
9 16.1559 0.8818 1.3687 -0.5594 0.0000 0.2727 1.2604 -0.1606 0.0000 60.4628 0.000 62.9126
10 13.7691 -0.0942 1.4842 -0.2872 0.0000 0.1223 1.2820 -0.2542 0.0000 60.4286 0.000 62.0273

* Column headers are defined as in table 3.1.
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Figure 3.33: Case 3: True model = BD, n = 2000; Graphical representation of the
null distribution of T

∗(0)
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based on 30 permuted t-scores
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.34: Case 3: True model = BD, n = 2000; Graphical representation of the
null distribution of T

∗(0)
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based on 1000 permuted t-scores
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.35: Case 3: True model = BD, n = 2000; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.36: Case 3: True model = BD, n = 2000; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 500 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.

3.5.4 Case 4: True model = ABC

In this last case, we evaluate the GEVD approach using the generated data sets from

section 2.3.4, which uses ABC as the true disease predisposition. The output coin-

cides with the findings from previous cases, which suggest that all proposed models

are significant, and the GEVD is a reliable replacement of the permutation testings

to study the behavior of the test statistic and its p-value.
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Table 3.10: Case 4: True model= ABC, and n = 500, and m = m1 = 30

GEVD procedure Permutation

Set t
∗(0)
kmax

µ̂
t
∗(0)
kmax

σ̂
t
∗(0)
kmax

ξ̂
t
∗(0)
kmax

p
(0)
kmax

µ̂v σ̂v ξ̂v pv Time (min) pt Time (min)

1 9.4425 0.5531 1.5466 -0.3279 0.0000 0.2812 0.8262 -0.1939 0.0000 30.4723 0.004 30.0196
2 13.0731 0.5741 1.1391 -0.1103 0.0000 0.0087 1.3556 -0.4597 0.0000 31.9494 0.000 31.1732
3 12.1367 0.2399 1.1930 0.1283 0.0016 0.4865 1.3148 -0.2867 0.0146 30.3629 0.000 29.6430
4 10.0161 0.5916 1.3926 -0.4213 0.0000 -0.2422 1.0116 0.1057 0.0000 30.7973 0.002 29.6669
5 9.4804 0.2371 1.2477 -0.2209 0.0000 0.1889 1.2612 0.0570 0.0000 29.0575 0.000 29.6187
6 10.0555 0.5593 1.5019 -0.5503 0.0000 -0.0829 0.8782 0.0146 0.0000 30.8309 0.000 29.6438
7 9.4207 -0.1154 1.1543 0.1353 0.0039 0.4073 1.4548 -0.4648 0.0477 29.5905 0.003 29.6449
8 7.3506 -0.0983 1.2103 -0.1924 0.0000 0.0590 1.4408 -0.0593 0.0000 30.8074 0.000 31.0272
9 11.3497 0.1141 1.3360 -0.3719 0.0000 0.0325 1.3855 -0.2364 0.0000 29.0184 0.000 29.7044
10 12.0756 0.2474 1.1116 -0.0975 0.0000 -0.1997 0.8700 -0.0961 0.0000 28.2528 0.000 29.5465

* Column headers are defined as in table 3.1.

Figure 3.37: Case 4: True model = ABC, n = 500; Graphical representation of the
null distribution of T
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.38: Case 4: True model = ABC, n = 500; Graphical representation of the
null distribution of T
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.39: Case 4: True model = ABC, n = 500; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.40: Case 4: True model = ABC, n = 500; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 200 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.

Table 3.11: Case 4: True model= ABC, and n = 1000, and m = m1 = 30

GEVD procedure Permutation

Set t
∗(0)
kmax

µ̂
t
∗(0)
kmax

σ̂
t
∗(0)
kmax

ξ̂
t
∗(0)
kmax

p
(0)
kmax

µ̂v σ̂v ξ̂v pv Time (min) pt Time (min)

1 14.8271 -0.1240 1.2508 -0.2212 0.0000 -0.3596 0.9174 0.0056 0.0000 39.0442 0.000 39.6043
2 16.5818 0.1330 0.8206 -0.1821 0.0000 0.4874 1.1700 0.1070 0.0000 39.0856 0.000 39.5326
3 15.2867 0.0679 1.1469 -0.0586 0.0000 0.0807 1.3305 -0.3509 0.0024 39.1061 0.000 39.4339
4 16.6098 0.0140 1.4397 -0.0597 0.0000 -0.0767 1.0196 0.2809 0.0000 39.0468 0.000 39.5011
5 14.3892 0.1779 1.0973 -0.1218 0.0000 -0.3756 1.4787 -0.3100 0.0000 39.2719 0.000 39.4693
6 15.5734 0.4229 0.8905 -0.1027 0.0000 0.0195 0.9763 0.1767 0.0000 39.1094 0.000 39.4865
7 16.8849 0.1002 1.0957 -0.1849 0.0000 0.4833 0.9222 0.2140 0.0000 40.3319 0.000 39.5207
8 15.2774 -0.6211 1.1544 -0.0600 0.0000 -0.1937 1.3755 -0.1884 0.0011 39.0103 0.000 39.5045
9 16.8113 -0.0017 1.1742 -0.1877 0.0000 0.0840 0.7758 0.2378 0.0000 39.0729 0.000 39.5146
10 14.0856 -0.0377 1.3131 -0.6788 0.0000 -0.2527 0.9694 0.1891 0.0000 39.0179 0.000 39.5048

* Column headers are defined as in table 3.1.
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Figure 3.41: Case 4: True model = ABC, n = 1000; Graphical representation of the
null distribution of T

∗(0)
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based on 30 permuted t-scores

Empirical and theoretical PDFs

Permuted t−scores

D
en

si
ty

−1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

GEVD

emp.

−1 0 1 2 3

−
1

0
1

2
3

Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

−1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

Permuted t−scores

C
D

F

GEVD

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities

E
m

pi
ric

al
 p

ro
ba

bi
lit

ie
s

* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.42: Case 4: True model = ABC, n = 1000; Graphical representation of the
null distribution of T
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.43: Case 4: True model = ABC, n = 1000; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.44: Case 4: True model = ABC, n = 1000; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 400 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.

Table 3.12: Case 4: True model= ABC, and n = 2000, and m = m1 = 30

GEVD procedure Permutation

Set t
∗(0)
kmax

µ̂
t
∗(0)
kmax

σ̂
t
∗(0)
kmax

ξ̂
t
∗(0)
kmax

p
(0)
kmax

µ̂v σ̂v ξ̂v pv Time (min) pt Time (min)

1 26.5165 -0.1392 1.6560 0.3515 0.0000 0.3468 1.0736 -0.3888 0.0000 60.9639 0.000 60.4848
2 23.1537 -0.4237 0.9656 0.0246 0.0000 0.1836 1.5028 0.4012 0.0033 60.6772 0.000 60.4309
3 21.8987 -0.2714 1.5365 0.1351 0.0000 0.5274 1.5966 0.0936 0.0000 60.7499 0.000 60.4446
4 22.9638 0.2467 1.3306 0.4938 0.0000 -0.2975 1.5185 0.3015 0.0000 60.9498 0.000 60.4343
5 20.6543 0.4167 1.6659 0.2720 0.0000 -0.0020 1.4295 0.1710 0.0000 61.5221 0.000 60.5223
6 24.7238 0.0681 1.1493 0.2970 0.0000 0.1034 0.9738 -0.1946 0.0000 60.6067 0.000 60.3343
7 23.5707 0.1032 1.4913 0.2549 0.0000 0.2271 1.0676 0.0752 0.0000 60.4514 0.000 60.4536
8 22.8113 0.3707 1.1092 0.1829 0.0000 0.1750 1.4578 0.3079 0.0000 60.5447 0.000 60.4828
9 22.4449 -0.0021 1.1052 0.2827 0.0000 0.0977 0.8729 0.1447 0.0000 60.5211 0.000 60.5020
10 21.8562 0.5149 1.2811 0.4050 0.0000 0.1427 0.9142 0.0719 0.0000 60.7040 0.000 60.3734

* Column headers are defined as in table 3.1.
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Figure 3.45: Case 4: True model = ABC, n = 2000; Graphical representation of the
null distribution of T
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.46: Case 4: True model = ABC, n = 2000; Graphical representation of the
null distribution of T
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.47: Case 4: True model = ABC, n = 2000; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3.48: Case 4: True model = ABC, n = 2000; Graphical representation of the
null distribution of −log(−log(P

(0)
kmax

)) based on 500 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.

3.6 Summary

A GEVD approach of model evaluation on MDR-based approaches was initially pro-

posed by Pattin et al. [48], and then by Hua et al. [30]. An approach was suggested

to evaluate the t-test statistic in Pattin et al. [48] using 20 permuted data sets; they

assumed that the p-value is distributed as uniform(0,1). On the other hand, Hua et

al. [30] used 50 permuted samples to utilize the GEVD to explain the variation of

the χ2 statistic of the 2× 2 contingency table. Further, the GEVD parameters of the

−log(p) were estimated using a set of 50 permuted p-values to validate the observed

119



p-value.

In our research, we adapted the GEVD approach to the OQMDR algorithm to

assess the significance of the proposed models. After considering several permuta-

tion sizes, we deduced that a set of 20 permuted test statistics provides insufficient

information to maintain a high chance of convergence when obtaining the MLE’s. In

contrast, even though using 50 permuted samples could improve the quality of the

approximation, it also leads to a substantial inflation in the calculation time. There-

fore, we think that a set of 30 permuted t-statistics is sufficient to ensure convergence

and to produce satisfactory approximation at an acceptable pace. Similarly, a set of

30 permuted p-values is used to obtain the MLE’s of the approximated distribution

of the p-value.

From the simulation results, the GEVD is demonstrated to be a plausible choice,

compared to other examined distributions in this study, to evaluate the observed t-

score and its p-value. Our study shows that a double logarithmic transformation of

the p-value fits better than a single logarithm (see the appendix), which was suggested

by Hua et al. [30].

On the other hand, the GEVD approach is primarily proposed to reduce the com-

putation burden and enhance the efficiency of the OQMDR algorithm. However, the

simulation study did not reveal a significant improvement in this aspect. Regard-

less, the GEVD procedure increased the precision of the calculated p-values, which

requires a huge amount of time if the regular permutations are employed. Another

consideration is that the evaluation of the p-value portion, which consumes about

95% of the time, seems to be necessary, especially for small number of permutations

because our study shows that the assumption of the p-value following a uniform(0,1)

is invalid for small number of permutations. In addition, the GEVD approach showed

a more realistic evaluation than the regular permutations do, specifically, for the cases

where wrong risk patterns are selected. However, a further investigation is required
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to confirm this feature because it wasn’t our primary intention in this study.

Copyright c© Zaid T. Al-Khaledi, 2019.
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Chapter 4 Theoretical Findings

4.1 Derivation of MLE’s required formulas

In this section we will give a full step-by-step derivation of the first and second

derivatives of the log-likelihood function of the GEVD (equation 3.6) with respect to

each of its three parameters. The case where ξ 6= 0 in equation 3.1 is considered in

the derivation. The MLE’s of Gumbel distribution (when ξ → 0) are easy to obtain

with no further analytical approach needed.

Let Y1, Y2, ..., Yn be a sequence of independent and identically distributed random

variables that follow the GEVD with the CDF defined in equation 3.1 for ξ 6= 0.

Therefore, the common probability density function (PDF) can be written as:

fY (y;µ, σ, ξ) =
1

σ

[
1 + ξ

y − µ
σ

]−(1+ 1
ξ

)

e−[1+ξ y−µ
σ ]
− 1
ξ

defined on 1 + ξ
(
y−µ
σ

)
> 0 for ξ 6= 0, µ ∈ (−∞,∞) is the location parameter , σ > 0

is the scale parameter, and |ξ| > 0 is the shape parameter.

Thus, the likelihood function for Y1, Y2, ..., Yn is:

L(µ, σ, ξ) = Πn
i=1fYi(yi;µ, σ, ξ)

= Πn
i=1

1

σ

[
1 + ξ

yi − µ
σ

]−(1+ 1
ξ

)

e−[1+ξ
yi−µ
σ ]

− 1
ξ

=
1

σn

[
Πn
i=1

[
1 + ξ

yi − µ
σ

]−(1+ 1
ξ

)
]
e−

∑n
i=1[1+ξ

yi−µ
σ ]

− 1
ξ

=
1

σn

[
Πn
i=1(1 + ξzi)

−(1+ 1
ξ

)
]
e−

∑n
i=1(1+ξzi)

− 1
ξ

122



where zi = yi−µ
σ

.

Then, the log-likelihood is:

l(µ, σ, ξ) = −nlogσ − (1 +
1

ξ
)

n∑
i=1

log

[
1 + ξ

yi − µ
σ

]
−

n∑
i=1

[
1 + ξ

yi − µ
σ

]− 1
ξ

= −nlogσ − (1 +
1

ξ
)

n∑
i=1

log(1 + ξzi)−
n∑
i=1

(1 + ξzi)
− 1
ξ

Therefore, the first derivative of the log-likelihood function with respect to (w.r.t.)

µ is:

∂l

∂µ
=

∂

∂µ

[
−nlogσ − (1 +

1

ξ
)

n∑
i=1

log

[
1 + ξ

yi − µ
σ

]
−

n∑
i=1

[
1 + ξ

yi − µ
σ

]− 1
ξ

]

= 0 + (1 +
1

ξ
)
ξ

σ

n∑
i=1

[
1 + ξ

yi − µ
σ

]−1

− 1

ξ

n∑
i=1

[
1 + ξ

yi − µ
σ

]−(1+ 1
ξ

)(
ξ

σ

)

=
ξ + 1

σ

n∑
i=1

[
1 + ξ

yi − µ
σ

]−1

− 1

σ

n∑
i=1

[
1 + ξ

yi − µ
σ

]−(1+ 1
ξ

)

=
ξ + 1

σ

n∑
i=1

[1 + ξzi]
−1 − 1

σ

n∑
i=1

[1 + ξzi]
−(1+ 1

ξ
)

Then, w.r.t. σ is:
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∂l

∂σ
=

∂

∂σ

[
−nlogσ − (1 +

1

ξ
)

n∑
i=1

log

[
1 + ξ

yi − µ
σ

]
−

n∑
i=1

[
1 + ξ

yi − µ
σ

]− 1
ξ

]

= −n
σ

+ (1 +
1

ξ
)

n∑
i=1

[
1 + ξ

yi − µ
σ

]−1

ξ
yi − µ
σ2

−1

ξ

n∑
i=1

[
1 + ξ

yi − µ
σ

]−(1+ 1
ξ

)

ξ
yi − µ
σ2

= −n
σ

+
ξ + 1

σ

n∑
i=1

[
1 + ξ

yi − µ
σ

]−1
yi − µ
σ
− 1

σ

n∑
i=1

[
1 + ξ

yi − µ
σ

]−(1+ 1
ξ

)
yi − µ
σ

= −n
σ

+
ξ + 1

σ

n∑
i=1

[1 + ξzi]
−1 zi −

1

σ

n∑
i=1

[1 + ξzi]
−(1+ 1

ξ
) zi

Finally, w.r.t. ξ is:

∂l

∂ξ
=

∂

∂ξ

[
−nlogσ − (1 +

1

ξ
)

n∑
i=1

log(1 + ξzi)−
n∑
i=1

(1 + ξzi)
− 1
ξ

]

=
∂

∂ξ

[
−nlogσ − (1 +

1

ξ
)

n∑
i=1

log(1 + ξzi)−
n∑
i=1

e−
1
ξ
log(1+ξzi)

]

= 0− (1 +
1

ξ
)

n∑
i=1

[1 + ξzi]
−1 zi +

1

ξ2

n∑
i=1

log(1 + ξzi)

−
n∑
i=1

e−
1
ξ
log(1+ξzi)

[
−1

ξ
[1 + ξzi]

−1 zi +
1

ξ2
log(1 + ξzi)

]
=

1

ξ2

n∑
i=1

log(1 + ξzi)− (1 +
1

ξ
)

n∑
i=1

[1 + ξzi]
−1 zi

− 1

ξ2

n∑
i=1

[1 + ξzi]
− 1
ξ log(1 + ξzi) +

1

ξ

n∑
i=1

[1 + ξzi]
−(1+ 1

ξ
) zi

Now, differentiating the log-likelihood function w.r.t. µ twice yields:
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∂2l

∂µ2
=

∂

∂µ

[
ξ + 1

σ

n∑
i=1

[
1 + ξ

yi − µ
σ

]−1

− 1

σ

n∑
i=1

[
1 + ξ

yi − µ
σ

]−(1+ 1
ξ

)
]

=
ξ + 1

σ

ξ

σ

n∑
i=1

[
1 + ξ

yi − µ
σ

]−2

− 1

σ
(1 +

1

ξ
)
ξ

σ

n∑
i=1

[
1 + ξ

yi − µ
σ

]−(2+ 1
ξ

)

=
ξ(ξ + 1)

σ2

n∑
i=1

[1 + ξzi]
−2 − ξ + 1

σ2

n∑
i=1

[1 + ξzi]
−(2+ 1

ξ
)

And w.r.t. σ twice yields:

∂2l

∂σ2
=

∂

∂σ

[
−n
σ

+
ξ + 1

σ

n∑
i=1

[
1 + ξ

yi − µ
σ

]−1
yi − µ
σ

− 1

σ

n∑
i=1

[
1 + ξ

yi − µ
σ

]−(1+ 1
ξ

)
yi − µ
σ

]
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1st & 2nd terms =
∂

∂σ

[
−n
σ

+
ξ + 1

σ

n∑
i=1

[
1 + ξ

yi − µ
σ

]−1
yi − µ
σ

]

=
∂

∂σ

[
−n
σ

+
ξ + 1

σ2

n∑
i=1

[
1 + ξ

yi − µ
σ

]−1

(yi − µ)

]

=
n

σ2
+
ξ + 1

σ2

n∑
i=1

[
1 + ξ

yi − µ
σ

]−2 [
ξ
yi − µ
σ

]2

−2
ξ + 1

σ3

n∑
i=1

[
1 + ξ

yi − µ
σ

]−1

(yi − µ)

=
n

σ2
+
ξ2(ξ + 1)

σ2

n∑
i=1

[1 + ξzi]
−2 z2

i − 2
ξ + 1

σ2

n∑
i=1

[1 + ξzi]
−1 zi

3rd term =
∂

∂σ

[
− 1

σ

n∑
i=1

[
1 + ξ

yi − µ
σ

]−(1+ 1
ξ

)
yi − µ
σ

]

= − 1

σ2
(1 +

1

ξ
)

n∑
i=1

[
1 + ξ

yi − µ
σ

]−(2+ 1
ξ

) [
ξ
yi − µ
σ

]2

+
2

σ2

n∑
i=1

[
1 + ξ

yi − µ
σ

]−(1+ 1
ξ

)
yi − µ
σ

= − 1

σ2
(1 +

1

ξ
)

n∑
i=1

[1 + ξzi]
−(2+ 1

ξ
) [ξzi]

2 +
2

σ2

n∑
i=1

[1 + ξzi]
−(1+ 1

ξ
) zi

∂2l

∂σ2
=

n

σ2
+
ξ2(ξ + 1)

σ2

n∑
i=1

[1 + ξzi]
−2 z2

i − 2
ξ + 1

σ2

n∑
i=1

[1 + ξzi]
−1 zi

− 1

σ2
(1 +

1

ξ
)

n∑
i=1

[1 + ξzi]
−(2+ 1

ξ
) [ξzi]

2 +
2

σ2

n∑
i=1

[1 + ξzi]
−(1+ 1

ξ
) zi

Then, w.r.t. ξ two times:
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∂2l

∂ξ2
=

∂

∂ξ

[
1

ξ2

n∑
i=1

log(1 + ξzi)− (1 +
1

ξ
)

n∑
i=1

[1 + ξzi]
−1 zi

− 1

ξ2

n∑
i=1

[1 + ξzi]
− 1
ξ log(1 + ξzi) +

1

ξ

n∑
i=1

[1 + ξzi]
−(1+ 1

ξ
) zi

]

1st& 2nd terms =
∂

∂ξ

[
1

ξ2

n∑
i=1

log(1 + ξzi)− (1 +
1

ξ
)

n∑
i=1

[1 + ξzi]
−1 zi

]

=
1

ξ2

n∑
i=1

[1 + ξzi]
−1 zi −

2

ξ3

n∑
i=1

log(1 + ξzi)

+(1 +
1

ξ
)

n∑
i=1

[1 + ξzi]
−2 z2

i +
1

ξ2

n∑
i=1

[1 + ξzi]
−1 zi

3rd term =
∂

∂ξ

[
− 1

ξ2

n∑
i=1

[1 + ξzi]
− 1
ξ log(1 + ξzi)

]

=
∂

∂ξ

[
− 1

ξ2

n∑
i=1

e−
1
ξ
log(1+ξzi)log(1 + ξzi)

]

= − 1

ξ2

n∑
i=1

e−
1
ξ
log(1+ξzi) [1 + ξzi]

−1 zi

− 1

ξ2

n∑
i=1

log(1 + ξzi)e
− 1
ξ
log(1+ξzi)

[
−1

ξ
[1 + ξzi]

−1 zi +
1

ξ2
log(1 + ξzi)

]
+

2

ξ3

n∑
i=1

e−
1
ξ
log(1+ξzi)log(1 + ξzi)

= − 1

ξ2

n∑
i=1

[1 + ξzi]
−(1+ 1

ξ
) zi +

1

ξ3

n∑
i=1

[1 + ξzi]
−(1+ 1

ξ
) zilog(1 + ξzi)

− 1

ξ4

n∑
i=1

[1 + ξzi]
− 1
ξ [log(1 + ξzi)]

2 +
2

ξ3

n∑
i=1

[1 + ξzi]
− 1
ξ log(1 + ξzi)
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4th term =
∂

∂ξ

[
1

ξ

n∑
i=1

[1 + ξzi]
−(1+ 1

ξ
) zi

]

=
∂

∂ξ

[
1

ξ

n∑
i=1

e−(1+ 1
ξ

)log(1+ξzi)zi

]

=
1

ξ

n∑
i=1

e−(1+ 1
ξ

)log(1+ξzi)zi

[
−(1 +

1

ξ
) [1 + ξzi]

−1 zi +
1

ξ2
log(1 + ξzi)

]
− 1

ξ2

n∑
i=1

e−(1+ 1
ξ

)log(1+ξzi)zi

= −(1 +
1

ξ
)
1

ξ

n∑
i=1

[1 + ξzi]
−(2+ 1

ξ
) z2

i +
1

ξ3

n∑
i=1

[1 + ξzi]
−(1+ 1

ξ
) zilog(1 + ξzi)

− 1

ξ2

n∑
i=1

[1 + ξzi]
−(1+ 1

ξ
) zi

∂2l

∂ξ2
=

2

ξ2

n∑
i=1

[1 + ξzi]
−1 zi −

2

ξ3

n∑
i=1

log(1 + ξzi) + (1 +
1

ξ
)

n∑
i=1

[1 + ξzi]
−2 z2

i

− 2

ξ2

n∑
i=1

[1 + ξzi]
−(1+ 1

ξ
) zi +

2

ξ3

n∑
i=1

[1 + ξzi]
−(1+ 1

ξ
) zilog(1 + ξzi)

− 1

ξ4

n∑
i=1

[1 + ξzi]
− 1
ξ [log(1 + ξzi)]

2 +
2

ξ3

n∑
i=1

[1 + ξzi]
− 1
ξ log(1 + ξzi)

−(1 +
1

ξ
)
1

ξ

n∑
i=1

[1 + ξzi]
−(2+ 1

ξ
) z2

i

Now, the second derivative of the log-likelihood function w.r.t. σ first, then w.r.t.

µ is:
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∂2l

∂µ∂σ
=

∂

∂µ

[
−n
σ

+
ξ + 1

σ

n∑
i=1

[
1 + ξ

yi − µ
σ

]−1
yi − µ
σ

− 1

σ

n∑
i=1

[
1 + ξ

yi − µ
σ

]−(1+ 1
ξ

)
yi − µ
σ

]

=
∂

∂µ

−n
σ

+
ξ + 1

σ

n∑
i=1

[[
yi − µ
σ

]−1

+ ξ

]−1

− 1

σ

n∑
i=1

[
1 + ξ

yi − µ
σ

]−(1+ 1
ξ

)
yi − µ
σ

]

= −ξ + 1

σ2

n∑
i=1

[[
yi − µ
σ

]−1

+ ξ

]−2 [
yi − µ
σ

]−2

+
1

σ2

n∑
i=1

[
1 + ξ

yi − µ
σ

]−(1+ 1
ξ

)

−ξ + 1

σ2

n∑
i=1

[
1 + ξ

yi − µ
σ

]−(2+ 1
ξ

)
yi − µ
σ

= −ξ + 1

σ2

n∑
i=1

[
1 + ξ

yi − µ
σ

]−2

+
1

σ2

n∑
i=1

[
1 + ξ

yi − µ
σ

]−(1+ 1
ξ

)

−ξ + 1

σ2

n∑
i=1

[
1 + ξ

yi − µ
σ

]−(2+ 1
ξ

)
yi − µ
σ

And w.r.t. ξ first, then w.r.t. µ is:
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∂2l

∂ξ∂µ
=

∂

∂ξ

[
ξ + 1

σ

n∑
i=1

[1 + ξzi]
−1 − 1

σ

n∑
i=1

[1 + ξzi]
−(1+ 1

ξ
)

]

=
∂

∂ξ

[
ξ + 1

σ

n∑
i=1

[1 + ξzi]
−1 − 1

σ

n∑
i=1

e−(1+ 1
ξ

)log(1+ξzi)

]

= −ξ + 1

σ

n∑
i=1

[1 + ξzi]
−2 zi +

1

σ

n∑
i=1

[1 + ξzi]
−1

− 1

σ

n∑
i=1

e−(1+ 1
ξ

)log(1+ξzi)

[
−(1 +

1

ξ
) [1 + ξzi]

−1 zi +
1

ξ2
log(1 + ξzi)

]
= −ξ + 1

σ

n∑
i=1

[1 + ξzi]
−2 zi +

1

σ

n∑
i=1

[1 + ξzi]
−1

+
1

σ
(1 +

1

ξ
)

n∑
i=1

[1 + ξzi]
−(2+ 1

ξ
) zi −

1

σξ2

n∑
i=1

[1 + ξzi]
−(1+ 1

ξ
) log(1 + ξzi)

Finally, w.r.t. to σ then for ξ yields:

∂2l

∂ξ∂σ
=

∂

∂ξ

[
−n
σ

+
ξ + 1

σ

n∑
i=1

[1 + ξzi]
−1 zi −

1

σ

n∑
i=1

[1 + ξzi]
−(1+ 1

ξ
) zi

]

=
∂

∂ξ

[
−n
σ

+
ξ + 1

σ

n∑
i=1

[1 + ξzi]
−1 zi −

1

σ

n∑
i=1

e−(1+ 1
ξ

)log(1+ξzi)zi

]

= 0− ξ + 1

σ

n∑
i=1

[1 + ξzi]
−2 z2

i +
1

σ

n∑
i=1

[1 + ξzi]
−1 zi

− 1

σ

n∑
i=1

e−(1+ 1
ξ

)log(1+ξzi)zi

[
−(1 +

1

ξ
) [1 + ξzi]

−1 zi +
1

ξ2
log(1 + ξzi)

]
= −ξ + 1

σ

n∑
i=1

[1 + ξzi]
−2 z2

i +
1

σ

n∑
i=1

[1 + ξzi]
−1 zi

+
1

σ
(1 +

1

ξ
)

n∑
i=1

[1 + ξzi]
−(2+ 1

ξ
) z2

i −
1

σξ2

n∑
i=1

[1 + ξzi]
−(1+ 1

ξ
) zilog(1 + ξzi)

Since the Hessian matrix is symmetric (i.e., H = HT ), therefore, we don’t need

to derive the remaining three elements. All derived formulas are used in R code to
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obtain the MLE’s of the GEVD according to the Newton’s method (equation 3.5).

4.2 Validating the Law of Total Probability on Hau et al. paper [30]

In their simulation study, Hua et al. [30] generated an interaction effect between

two of the ten simulated biallelic genetic factors (table 4.1). The association was

generated so that no main effect is appreciated.

Table 4.1: The original penetrance of the two factors suggested by Hua et al. [30]

Factor A
AA Aa aa

Factor B
BB φK (1 + p1

2q1
(1− φ))K K

Bb (1 + p1

2q1
(1− φ))K (1− p1p2

4q1q2
(1− φ))K K

bb K K K
* p1, p2, q1, and q2 are the minor and the major allele frequencies of factors A and B, respectively;

K is the proportion of individuals with the disease; and φ is a tuning parameter [30].

Since the entries of table 4.1 represent the disease penetrance on the population,

the total probability of acquiring the disease has to add up to K, which was defined

as the population prevalence. Given that the authors assigned p1 and p2 as the

minor allele frequencies of factors A and B, respectively; then, per the Law of Total

Probability, the probability of having the disease (P (D)) can be calculated as follows:

P (D) =
∑

i∈{AA,Aa,aa}

∑
j∈{BB,Bb,bb}

P (D|ij)P (ij) (4.1)

where the conditional probabilities of disease given a specific multilocus combination

(P (D|ij)′s) are given in table 4.1 listed earlier; whereas, the joint probabilities of

multilocus combinations (P (D|ij)P (ij)′s) are defined in table 4.2 below.
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Table 4.2: The joint probabilities of disease and multilocus combinations of the two
factors per the definition of the authors [30]

Factor A
AA Aa aa

Factor B
BB q2

1q
2
2φK 2p1q1q

2
2(1 + p1

2q1
(1− φ))K p2

1q
2
2K

Bb 2q2
1p2q2(1 + p1

2q1
(1− φ))K 4p1q1p2q2(1− p1p2

4q1q2
(1− φ))K 2p2

1p2q2K

bb q2
1p

2
2K 2p1q1p

2
2K p2

1p
2
2K

* Refer to table 4.1 for details.

However, the P (D) defined in equation 4.1 cannot add up to K with the given

penetrance in table 4.1. We can simply show the contradiction by substituting any set

of values of p1, p2, and φ. For instance, K−1P (D) = 0.595 when p1 = p2 = 0.05 and

φ = 0.5, while it should be sum up to 1. Therefore, we proposed an alteration (tables

4.3 and 4.4) to the penetrance provided in the paper that should fix the imbalances

in table 4.1.

Table 4.3: The suggested penetrance of the two factors

Factor A
AA Aa aa

Factor B
BB (1 + φp1p2)K (1− φ q1p2

2
)K K

Bb (1− φp1q2
2

)K (1 + φ q1q2
4

)K K
bb K K K

* Refer to table 4.1 for details.

Table 4.4: The joint probabilities of disease and multilocus combinations of the two
factors per the definition of the authors [30] and our suggested penetrance

Factor A
AA Aa aa

Factor B
BB q2

1q
2
2(1 + φp1p2)K 2p1q1q

2
2(1− φ q1p2

2
)K p2

1q
2
2K

Bb 2q2
1p2q2(1− φp1q2

2
)K 4p1q1p2q2(1 + φ q1q2

4
)K 2p2

1p2q2K
bb q2

1p
2
2K 2p1q1p

2
2K p2

1p
2
2K

* Refer to table 4.1 for details.

Now, the joint probabilities of disease and multilocus combinations are balanced,

and they sum up to K as we can see from the vitrification listed below:
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P (D) =
∑

i∈{AA,Aa,aa}

∑
j∈{BB,Bb,bb}

P (D|ij)P (ij)

= K
[
q2

1q
2
2(1 + φp1p2) + 2q2

1p2q2(1− φp1q2

2
) + q2

1p
2
2

+2p1q1q
2
2(1− φq1p2

2
) + 4p1q1p2q2(1 + φ

q1q2

4
)

+2p1q1p
2
2 + p2

1q
2
2 + 2p2

1p2q2 + p2
1p

2
2

]
=⇒ K−1P (D) = q2

1q
2
2 +������

φp1q
2
1p2q

2
2 + 2q2

1p2q2 −������
φp1q

2
1p2q

2
2 + q2

1p
2
2

+2p1q1q
2
2 −������

φp1q
2
1p2q

2
2 + 4p1q1p2q2 +������

φp1q
2
1p2q

2
2

+2p1q1p
2
2 + p2

1q
2
2 + 2p2

1p2q2 + p2
1p

2
2

Now, recall that q1 = 1− p1 and q2 = 1− p2. So:

K−1P (D) = (1− p1)2(1− p2)2 + 2(1− p1)2p2(1− p2) + (1− p1)2p2
2

+2p1(1− p1)(1− p2)2 + 4p1(1− p1)p2(1− p2) + 2p1(1− p1)p2
2

+p2
1(1− p2)2 + 2p2

1p2(1− p2) + p2
1p

2
2

= 1−
(1)

2p2 +
(2)

p2
2 −

(3)

2p1 +
(4)

4p1p2 −
(5)

2p1p
2
2 +

(6)

p2
1 −

(7)

2p2
1p2 +

(8)

p2
1p

2
2

P (AABB)

+
(1)

2p2 −
(2)

2p2
2 −

(4)

4p1p2 +
(5)

4p1p
2
2 +

(7)

2p2
1p2 −

(8)

2p2
1p

2
2

P (AABb)

+
(2)

p2
2 −

(5)

2p1p
2
2 +

(8)

p2
1p

2
2

P (AAbb)

+
(3)

2p1 −
(6)

2p2
1 −

(4)

4p1p2 +
(7)

4p2
1p2 +

(5)

2p1p
2
2 −

(8)

2p2
1p

2
2

P (AaBB)

+
(4)

4p1p2 −
(5)

4p1p
2
2 −

(7)

4p2
1p2 +

(8)

4p2
1p

2
2

P (AaBb)

+
(5)

2p1p
2
2 −

(8)

2p2
1p

2
2

P (Aabb)

+
(6)

p2
1 −

(7)

2p2
1p2 +

(8)

p2
1p

2
2

P (aaBB)

+
(7)

2p2
1p2 −

(8)

2p2
1p

2
2

P (aaBb)

+
(8)

p2
1p

2
2

P (aabb)

= 1

=⇒ P (D) = K
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4.3 Theorem: Ordered Combinatorial Partitioning in OQMDR

Assume that we have a data set of size n with a continuous response variable Y and

a single categorical covariate with three levels. Therefore, there are three possible

Combinatorial Partitionings that can be applied to Y , {1} versus {2, 3}, {1, 2}

versus {3}, and {1, 3} versus {2}. Let ni and Ȳi; for i = 1, 2, 3, be the sample size

and the arithmetic mean of the data from the ith level (or category) of the covariate,

respectively. Now, without loss of generality, let Ȳ1 < Ȳ2 < Ȳ3; then, per the Ordered

Combinatorial Partitioning principle, t2|13 < max(t3|12, t23|1), given that:

t2|13 =
Ȳ2 − Ȳ13√
S2

2

n2
+

S2
13

n13

t3|12 =
Ȳ3 − Ȳ12√
S2

3

n3
+

S2
12

n12

t23|1 =
Ȳ23 − Ȳ1√
S2

23

n23
+

S2
1

n1

where nij, Ȳij, and S2
ij represent the sample size, the average, and the variance of the

combined data from the ith and the jth level of the covariate, respectively.

Proof:

For a more tractable situation, let n1 = n2 = n3 = n̄. Also assume that all group

variances are equal and known, i.e. σ2
1 = σ2

2 = σ2
3 = σ2. Hence:
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t2|13 =
Ȳ2 − Ȳ13√
σ2

2

n2
+

S2
13

n13

t3|12 =
Ȳ3 − Ȳ12√
σ2

3

n3
+

S2
12

n12

t23|1 =
Ȳ23 − Ȳ1√
σ2

23

n23
+

S2
1

n1

where:

Ȳij =
niȲi + njȲj
ni + nj

=
n̄(Ȳi + Ȳj)

2n̄

=
Ȳi + Ȳj

2

and

S2
ij =

(ni − 1)σ2
i + (nj − 1)σ2

j + niȲ
2
i + njȲ

2
j − (ni + nj)Ȳ

2
ij

n1 + n2 − 1

=
(n̄− 1)σ2 + (n̄− 1)σ2 + n̄Ȳ 2

i + n̄Ȳ 2
j − (n̄+ n̄)

(
Ȳi+Ȳj

2

)2

n̄+ n̄− 1

=
2(n̄− 1)σ2 + n̄Ȳ 2

i + n̄Ȳ 2
j − 2n̄

Ȳ 2
i +Ȳ 2

j +2ȲiȲj

4

2n̄− 1

=
2(n̄− 1)σ2 + n̄Ȳ 2

i + n̄Ȳ 2
j − n̄

2
Ȳ 2
i − n̄

2
Ȳ 2
j − n̄ȲiȲj

2n̄− 1

=
2(n̄− 1)σ2 + n̄

2
(Ȳ 2

i + Ȳ 2
j − 2ȲiȲj)

2n̄− 1

=
2(n̄− 1)σ2 + n̄

2
(Ȳi − Ȳj)2

2n̄− 1
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Now:

t2|13 =
Ȳ2 − Ȳ13√
σ2

2

n2
+

S2
13

n13

=
Ȳ2 − Ȳ1+Ȳ3

2√
σ2

n̄
+

2(n̄−1)σ2+ n̄
2

(Ȳ1−Ȳ3)2

2n̄(2n̄−1)

=
Ȳ2 − Ȳ1+Ȳ3

2√
2(2n̄−1)σ2+2(n̄−1)σ2+ n̄

2
(Ȳ1−Ȳ3)2

2n̄(2n̄−1)

=
Ȳ2 − Ȳ1+Ȳ3

2√
(6n̄−4)σ2+ n̄

2
(Ȳ1−Ȳ3)2

2n̄(2n̄−1)

Similarly:

t3|12 =
Ȳ3 − Ȳ1+Ȳ2

2√
(6n̄−4)σ2+ n̄

2
(Ȳ1−Ȳ2)2

2n̄(2n̄−1)

t23|1 =
Ȳ2+Ȳ3

2
− Ȳ1√

(6n̄−4)σ2+ n̄
2

(Ȳ2−Ȳ3)2

2n̄(2n̄−1)

Notice that:
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t2|13 =
Ȳ2 − Ȳ1+Ȳ3

2√
(6n̄−4)σ2+ n̄

2
(Ȳ1−Ȳ3)2

2n̄(2n̄−1)

<
Ȳ2 − Ȳ1+Ȳ3

2√
(6n̄−4)σ2+ n̄

2
(Ȳ2−Ȳ3)2

2n̄(2n̄−1)

follows by Ȳ1 < Ȳ2 < Ȳ3

Therefore:

t23|1 − t2|13 > t23|1 −
Ȳ2 − Ȳ1+Ȳ3

2√
(6n̄−4)σ2+ n̄

2
(Ȳ2−Ȳ3)2

2n̄(2n̄−1)

=⇒ t23|1 − t2|13 >
Ȳ2+Ȳ3

2
− Ȳ1√

(6n̄−4)σ2+ n̄
2

(Ȳ2−Ȳ3)2

2n̄(2n̄−1)

−
Ȳ2 − Ȳ1+Ȳ3

2√
(6n̄−4)σ2+ n̄

2
(Ȳ2−Ȳ3)2

2n̄(2n̄−1)

=
Ȳ2+Ȳ3

2
− Ȳ1 − Ȳ2 + Ȳ1+Ȳ3

2√
(6n̄−4)σ2+ n̄

2
(Ȳ2−Ȳ3)2

2n̄(2n̄−1)

=
Ȳ3 − Ȳ1+Ȳ2

2√
(6n̄−4)σ2+ n̄

2
(Ȳ2−Ȳ3)2

2n̄(2n̄−1)

> 0

again, follows by Ȳ1 < Ȳ2 < Ȳ3

Similarly:

t2|13 =
Ȳ2 − Ȳ1+Ȳ3

2√
(6n̄−4)σ2+ n̄

2
(Ȳ1−Ȳ3)2

2n̄(2n̄−1)

<
Ȳ2 − Ȳ1+Ȳ3

2√
(6n̄−4)σ2+ n̄

2
(Ȳ1−Ȳ2)2

2n̄(2n̄−1)
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follows by Ȳ1 < Ȳ2 < Ȳ3

Therefore:

t3|12 − t2|13 > t3|12 −
Ȳ2 − Ȳ1+Ȳ3

2√
(6n̄−4)σ2+ n̄

2
(Ȳ1−Ȳ2)2

2n̄(2n̄−1)

=⇒ t3|12 − t2|13 >
Ȳ3 − Ȳ1+Ȳ2

2√
(6n̄−4)σ2+ n̄

2
(Ȳ1−Ȳ2)2

2n̄(2n̄−1)

−
Ȳ2 − Ȳ1+Ȳ3

2√
(6n̄−4)σ2+ n̄

2
(Ȳ1−Ȳ2)2

2n̄(2n̄−1)

=
3
2
(Ȳ3 − Ȳ2)√

(6n̄−4)σ2+ n̄
2

(Ȳ1−Ȳ2)2

2n̄(2n̄−1)

> 0

again, follows by Ȳ1 < Ȳ2 < Ȳ3

Hence, t2|13 < max(t3|12, t23|1).

In fact, under the aforementioned restriction about the equality of group sizes and

variances we assumed at the beginning of the proof, we achieved a stronger conclusion

than we claimed. That is, we just proved that t2|13 < min(t3|12, t23|1).

Copyright c© Zaid T. Al-Khaledi, 2019.
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Chapter 5 Real data analysis

5.1 Alzheimer’s Disease (AD) overview

Since the beginning of the past century, life expectancy has dramatically increased

in the United States. The United States Life Tables of 2004 show a steady posi-

tive trend from 1900 to 2004 where life expectancy jumped from 49.24 years in 1900

to 68.07 years in 1950, then to 77.8 years in 2004 (a total of 28.56 years increase)

[4]. As a result, age-related medical conditions became more frequent than before,

especially neurodegenerative1 issues [52]. Alzheimer’s Disease (AD) is one of these

neurodegenerative disorders that affects about 10% of people aged 65+ years [2].

The disease, which was first identified by the German psychiatrist Alois Alzheimer

in 1906 [28], progresses over time causing many mental and physical health compli-

cations to patients. Soon after it occurs, AD causes brain cell loss, which leads to

brain size shrinkage, which in turn reduces a patient’s brain capability to function

normally. Consequently, AD patients could face short term memory impairment,

talking difficulties, struggling to remember well-known people and places, problems

accomplishing daily living and self-care activities, and eventually mental disability

and dementia [45]. Thus far, no medical treatment has been proven to help to re-

verse or suppress Alzheimer’s Disease from advancing to late stage; however, some

treatment might help reducing the symptoms of AD [3].

The majority of Alzheimer’s Disease cases (about 95%) occur after age 65 (late-

onset). The remaining 5% of the cases occur in younger people, often after age 30.

On the other hand, about 75% of Alzheimer’s Disease cases occur sporadically (only

one patient in a family), which is known as Sporadic Alzheimer’s Disease. Whereas,

1Neurodegenerative refers to a degeneration of human brain neurons, which results in a degra-
dation in human cognitive functions [27].
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25% of the cases are family related (multiple cases in one family), which is, therefore,

known as Familial Alzheimer’s Disease. Most of the early-onset cases are Familial AD.

Both types, sporadic AD and familial AD, are believed to be linked to mutations in

certain genes or occurrence of certain combinations of genes. Namely, the early-onset

AD is linked to mutations in amyloid precursor protein (APP), presenilin 1 (PSEN1),

and presenilin 2 (PSEN2) genes. Whereas the late-onset AD is significantly linked

with the apolipoprotein E (ApoE) gene, specifically the ApoE-e4 allele [40, 23].

Besides symptoms, patients of Alzheimer’s Disease typically develop some other

biochemical characteristics, for instance, significant elevations in the level of the cere-

brospinal fluid tau (CSF) and the urine neuronal thread protein (NTP) in patients

with AD compared to controls [35]. Many studies have been conducted to investigate

connections between AD and genetics [6]. The majority of the studies modeled the

relationship between specific gene information and certain measured indicators of AD

or comparing the gene expressions in case versus control groups.

In our research, we are interested in investigating an effect of combinations of

genetic factors on some continuous response. Therefore, Alzheimer’s Disease data

set with a continuous biochemical marker would satisfy our need. In fact, we are

inspecting the connection between three different continuous measures of cognition

impairment and a set of bio-markers that are linked to AD [37]. The data set is

explored in details in the next section.

5.2 Data presentation

As we pointed out earlier, we are trying to discover a relationship between human cog-

nition and some genetic factors in AD patients. Accordingly, we obtained our data set

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI: http://adni.loni.ucla.edu/)

with help from Dr. David Fardo. The size of the original data set is 612 individuals

with 32 measured variables; three of them are continuous responses. These responses
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are cognitive resilience (CRs), cognitive reserve (CRv), and global resilience (GRs).

In general cognitive resilience refers to the human ability to overcome or resist the

negative impacts of specific life circumstances, like poverty [21], family crises [12],

and aging-related issues [54]. However, in our data set, the cognitive variables are

outcomes of cognitive performance evaluation compared to what is expected, given

the underlying pathology and other AD risk factors. Essentially, they are different

residuals for cognitive performance after adjusting in various ways [20]. Subjects

underwent various neuropsychological assessments, and an overall memory score was

derived [9]. The rest of the variables provide information about some environmental

(or biological) markers and genetic information.

The effects of all variables but the genetics (except the ApoE-e4) have been re-

gressed out through multiple linear regression models, and hence the three responses

in the given data set represent residuals from each fitted model [20]. Thus, we elimi-

nated all non-gene markers and the ApoE-e4 factor from the data set, which reduces

the total number of variables to 25 instead of 32. Besides, since our proposed method

does not handle data sets with missing or unreported gene information, we eliminated

all variables that contain 40 or more NA entries from the data set. Finally, we per-

form the analysis on cases with no missing information only. The exclusion reduces

the total number of observations to 480 with 15 variables, in which three of them are

responses. The entries of all genetic variables are {0, 1, or 2}, which represent allele

combinations of each factor. We also use Latin alphabet letters to label all factors for

easy presentation. Refer to table 5.1 for details about included and excluded SNPs

in the study.
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Table 5.1: Genetic-variable list

SNP Gene Missing Included Label

rs6656401 CR1 118 No —
rs6733839 BIN1 323 No —
rs35349669 INPP5D 246 No —
rs190982 MEF2C 114 No —

rs75932628 TREM2 33 Yes A
rs10948363 CD2AP 0 Yes B
rs2718058 NME8 39 Yes C
rs1476679 ZCWPW1 65 No —
rs11771145 EPHA1 0 Yes D
rs28834970 PTK2B 70 No —
rs9331896 CLU 323 No —
rs10838725 CELF1 1 Yes E
rs983392 MS4A6A 131 No —

rs10792832 PICALM 4 Yes F
rs11218343 SORL1 7 Yes G
rs17125944 FERMT2 0 Yes H
rs17125721 PSEN1 29 Yes I
rs10498633 SLC24A4 0 Yes J
rs8093731 DSG2 53 No —
rs4147929 ABCA7 46 No —
rs3865444 CD33 0 Yes K
rs7274581 CASS4 27 Yes L

Refer to table 5.2 and figures 5.1, 5.2, and 5.3 for data exploration of the three

response variables in the data set. Recall that these responses are stored as residuals

after regressing out the effects of all non-genetic factors and the ApoE-e4 from the

data set. Also, recall that errors from multiple linear regression models are assumed

normally distributed with mean zero and positive standard deviation. Now, from

looking at the summary statistics, it seems like all three responses have a mean

close to zero and a standard deviation of one. Therefore, it seems like normally-

distributed errors is a valid assumption about the responses. However, the medians

and the graphical representations suggest that the marginal distributions of the three

variables are slightly skewed to the left, which suggests that there might be some

non-spotted variation left in the residuals, mainly for the CRv variable. Regardless,
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this unexplained variation might not be strong enough to be caught, especially for

the CRs and GRs variables, in which their distributions are almost symmetric.

Table 5.2: Statistical summary

Statistics Cognitive Resilience Cognitive Reserve Global Resilience

n 480 480 480
min -3.2178 -3.8218 -3.1058
max 2.6790 1.6232 2.4172
range 5.8968 5.4450 5.5230

median 0.0487 0.1493 0.1160
mean 0.0315 -0.0318 0.0012
SD 0.9998 1.0032 0.9885

middle 95% (-2.3193, 1.8280) (-2.1106, 1.4083) (-2.1610, 1.6691)

Figure 5.1: Empirical distribution of Cognitive Resilience compared to Normal dis-
tribution
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 5.2: Empirical distribution of Cognitive Reserve compared to Normal distri-
bution

Empirical and theoretical PDFs

Cognitive Reserve

D
en

si
ty

−4 −3 −2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

Normal

emp.

−3 −2 −1 0 1 2 3

−
4

−
3

−
2

−
1

0
1

Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

−4 −3 −2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

Cognitive Reserve

C
D

F

Normal

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities

E
m

pi
ric

al
 p

ro
ba

bi
lit

ie
s

* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 5.3: Empirical distribution of Global Resilience compared to Normal distribu-
tion

Empirical and theoretical PDFs
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.

5.3 Data analysis

We applied the OQMDR algorithm on the AD data set separately for each response.

All possible 2-way and 3-way interactions between the genetic factors are examined

along with their best risk patterns per the OCP procedure. Refer to tables 5.3 and

5.4 for the output of the analysis.
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Table 5.3: Model selection of the three cognitive scores

Best 2-way Best 3-way

Response Model t∗k-score Model t∗k-score MSPE

CRs CL 0.1525 DJL 0.2373 1.0061
CRv FI -0.1713 JKL 0.2881 1.0238
GRs EG -0.9722 DJL -0.0774 0.9948

As we can see from table 5.3, the selected 2-way and 3-way models for CRs are

(NME8 and CASS4) and (EPHA1, SLC24A4, and CASS4), for CRv are (PICALM

and PSEN1) and (SLC24A4, CD33, and CASS4), and for GRs are (CELF1 and

SORL1) and (EPHA1, SLC24A4, and CASS4), respectively. Per the OQMDR algo-

rithm, the best final models for all responses are the 3-way interaction (the one that

maximizes the testing t-score). The risk patterns for each selected 2-way and 3-way

interaction are demonstrated in figures 5.4 and 5.5, respectively. However, it’s clear

from table 5.4 that none of the proposed models are statistically significant.

This could be attributed to one or more of the following issues: First, the sample

size is relatively small (480) to make it possible to correctly spot a statistically signif-

icant interaction. Second, there is little or no true relationship between the responses

and the considered factors from the current data set. Third, the eliminated variables

might have heavy influence on the response variables, and are no longer accessible be-

cause of the elimination. Fourth, there could be a true relationship but the OQMDR

algorithm is not able to catch it.

Table 5.4: Proposed model evaluation

GEVD procedure Permutation

Response t
∗(0)
kmax

µ̂
t
∗(0)
kmax

σ̂
t
∗(0)
kmax

ξ̂
t
∗(0)
kmax

p
(0)
kmax

µ̂v σ̂v ξ̂v pv p-value

CRs 0.2373 0.2139 0.4841 -0.0612 0.6144 0.1716 0.9719 0.0930 0.5708 0.617
CRv 0.2881 0.2872 0.7864 -0.0984 0.6317 0.0412 0.9165 0.0078 0.6399 0.720
GRs -0.0774 0.2282 0.5282 -0.2963 0.8483 -0.1221 0.9612 0.0544 0.8872 0.651

* Column headers are defined as in table 3.1.
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Figure 5.4: Risk patterns of the proposed 2-way interactions for each response
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Figure 5.5: Risk patterns of the proposed 3-way interactions for each response
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(c) Global Resilience
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On the other hand, the 3-way models that the OQMDR selected for the CRs and

GRs response are the same (EPHA1, SLC24A4, and CASS4), with the exact same

risk pattern (see figure 5.5). Also, two factors (SLC24A4, and CASS4) are chosen

to form the 3rd-degree interaction for all three responses. This consistency could

be a sign of true but weak interactive effect of the three factors on the cognitive

impairment scores, especially because we know that (CASS4) is selected as the most

important main effect factor (1-way) for all three scores.

Also, a Principal Components (PC) analysis on the three responses is carried out,

and two of the PCs have been selected as alternative formulations of cognitive scores.

Then, the OQMDR method is applied to the AD data set with the new responses from

each selected PCs (See table 5.5). The third degree interaction (EPHA1, SLC24A4,

and CASS4), with the same risk pattern that is selected for CRs and GRs (figures 5.5a

and 5.5c), has been proposed again as the best final model but it failed to pass the

significance assessment once again. Regardless of the insignificance, it’s interesting to

notice that the output from the PC analysis supports the importance of the selected

3-way model per the analyzed data set.

Table 5.5: Principal Components analysis

CRs CRv GRs SD Model t∗k-score

PC1 0.5397 0.5278 0.6559 1.5046 DJL 0.1474
PC2 -0.6911 0.7227 -0.0129 0.8433 DJL -0.1059
PC3 0.4808 0.4463 -0.7548 0.0008 — —

* The rows in columns CRs, CRv, and GRv represent the eigenvectors of the covariance matrix of
the matrix of responses.

Technically, the OQMDR performed decently to examine all possible interactions.

The evaluation process is done using m = 30 permuted test statistics and m1 =

30 permuted p-values for each response. The MLE estimation procedure failed to

diverge in one of the permuted cases of the CRv; therefore, we approximated the

null distribution from m1 = 29 permuted p-values only (see figures 5.8 and 5.9).

The graphical presentations show that the GEVD well approximated the distribution
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of the testing score and the transformed p-value; yet, the transformed p-values and

their p-values are close. This suggests that a uniform(0,1) distribution might be a

valid assumption about the p-values of the test statistic. Both the GEVD and the

permutation testings agree about the non-significance of the proposed models, which

could explain why the p-values of the test statistics and their p-values are so close .

The evaluations procedure was a bit faster for the GEVD procedure (about 16 hours

for the GEVD compared to 17 hours for the regular permutations). Although it’s not

an enormous enhancement, it might be a positive indication on the GEVD side when

there are many interacting factors in the study.

Figure 5.6: Cognitive Resilience; Graphical representation of the null distribution of
T
∗(0)
kmax

based on 30 permuted t-scores
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 5.7: Cognitive Resilience; Graphical representation of the null distribution of
−log(−log(P

(0)
kmax

)) based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 5.8: Cognitive Reserve; Graphical representation of the null distribution of
T
∗(0)
kmax

based on 29 permuted t-scores
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 5.9: Cognitive Reserve; Graphical representation of the null distribution of
−log(−log(P

(0)
kmax

)) based on 29 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 5.10: Global Resilience; Graphical representation of the null distribution of
T
∗(0)
kmax

based on 30 permuted t-scores
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 5.11: Global Resilience; Graphical representation of the null distribution of
−log(−log(P

(0)
kmax

)) based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.

5.4 Conclusion

Statistical analysis of the AD data set shows a consistent selection of the (SLC24A4,

and CASS4) factors to explain the variation on the cognitive scores. The combination

(EPHA1, SLC24A4, and CASS4) is chosen, as the best 3-way interaction, twice with

the same risk pattern to model the relationship between genetic factors and patients’

cognition. However, the contribution of these factors doesn’t seem strong enough to

approach statistical significance. Increasing the size of the data set might help for bet-

ter recognizing the disease disposition. Model selection in OQMDR algorithm seems
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to work well choosing the most important interaction among all possible interactions;

however, with such a small sample size, the sparsity of some multilocus allele com-

binations could substantially influence the selection mechanism. Regardless of weak

significance of proposed models, the model evaluation component of the OQMDR

method satisfactorily approximated the null distributions of the test statistic and the

transformed p-value, which can be inferred by the graphical representation of the

GEV and empirical distributions. Therefore we think that the GEV distribution is

an ideal choice for assessing the validity of the interactions.

5.5 Further work

In this research, we proposed a new machine learning algorithm, the OQMDR, to

handle genetic data sets with continuous trait response. The OQMDR is an adapted

combination of the QMDR and the Optimal MDR algorithms [26, 30]. The modifica-

tion was done by utilizing the concept of the Ordered Combinatorial Partitions (OCP)

[46]. The new method shows a legitimate performance compared to QMDR in terms

of selecting the most critical risk pattern that minimizes the prediction errors. The

performance of the new method is presented in details in chapter 2. A comparison

with the QMDR algorithm is carried out also in chapter 2. To enhance the efficiency

and the accuracy of evaluation, the permutation testing for model assessment has

been replaced with a parametric approach based on extreme value theory in chapter

3. Simulation studies in chapter 2 and chapter 3 exhibited an acceptable practical

performance to capture the true models; however, there are some drawbacks of the

OQMDR method that could be addressed in future works. One of the drawbacks

is that the algorithm shows a poor performance with small size data sets, notably

when high order interactions are examined due to the sparsity of information in some

combinations. In addition, the OQMDR is vulnerable to missing information (NA),

which is a pervasive issue with genetic data set [1]. Another weakness is the inability
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to analyze data sets with multiple responses simultaneously. For instance, we might

have wished to do the analysis of the AD data set with all responses at once rather

than performing three separate analysis. While this could be handled by doing a

principal components (PC) analysis to aggregate all responses into one variable and

apply the OQMDR on the new variable, a multivariate version of the OQMDR would

be an interesting area to investigate in future research.

On the other hand, regardless of its complication, the modified GEVD evaluation

component of the OQMDR has higher accuracy, compared to the regular permutation

testings, in evaluating the significance of the proposed models and is more efficient

under specific considerations. Despite, simplifying the theory-based approach could

substantially benefit the efficiency of the algorithm. The simplification could involve

revising the analytical MLE approach to lessen the required iterations to achieve

convergence, or using a more efficient programming language.

Further, theoretical validation and power estimation studies would strengthen the

findings of this research. In addition, utilizing the OCP approach on other MDR-

based algorithms, where applicable, might benefit the performance of model selection

and reduce the prediction error.

Copyright c© Zaid T. Al-Khaledi, 2019.
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Appendix

Presentation of other fitted distributions

In this appendix, we presented some graphical results from chapter 3 for some fitted
distributions and/or transformations besides the GEVD of the −log(−log(P

(0)
kmax

)),
which was demonstrated earlier in chapter 3. The case where the underlying interac-
tion is AB with n = 500 is the only considered case in this appendix.

Figure 1: True model = AB, n = 500; Graphical representation of the null GEVD of
the −log(P

(0)
kmax

) based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 2: True model = AB, n = 500; Graphical representation of the null Weibull
distribution of the −log(P

(0)
kmax

) based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 3: True model = AB, n = 500; Graphical representation of the null uni-
form(0,1) distribution of the P

(0)
kmax

based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 4: True model = AB, n = 500; Graphical representation of the null GEVD of
the −log(P

(0)
kmax

) based on 500 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 5: True model = AB, n = 500; Graphical representation of the null Weibull
distribution of the −log(P

(0)
kmax

) based on 500 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 6: True model = AB, n = 500; Graphical representation of the null uni-
form(0,1) distribution of the P

(0)
kmax

based on 500 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 7: True model = AB, n = 1000; Graphical representation of the null GEVD
of the −log(P

(0)
kmax

) based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 8: True model = AB, n = 1000; Graphical representation of the null Weibull
distribution of the −log(P

(0)
kmax

) based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 9: True model = AB, n = 1000; Graphical representation of the null uni-
form(0,1) distribution of the P

(0)
kmax

based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 10: True model = AB, n = 1000; Graphical representation of the null GEVD
of the −log(P

(0)
kmax

) based on 400 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 11: True model = AB, n = 1000; Graphical representation of the null Weibull
distribution of the −log(P

(0)
kmax

) based on 400 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 12: True model = AB, n = 1000; Graphical representation of the null uni-
form(0,1) distribution of the P

(0)
kmax

based on 400 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 13: True model = AB, n = 2000; Graphical representation of the null GEVD
of the −log(P

(0)
kmax

) based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 14: True model = AB, n = 2000; Graphical representation of the null Weibull
distribution of the −log(P

(0)
kmax

) based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 15: True model = AB, n = 2000; Graphical representation of the null uni-
form(0,1) distribution of the P

(0)
kmax

based on 30 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 16: True model = AB, n = 2000; Graphical representation of the null GEVD
of the −log(P

(0)
kmax

) based on 500 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 17: True model = AB, n = 2000; Graphical representation of the null Weibull
distribution of the −log(P

(0)
kmax

) based on 500 permuted p-values
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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Figure 18: True model = AB, n = 2000; Graphical representation of the null uni-
form(0,1) distribution of the P

(0)
kmax

based on 500 permuted p-values

Empirical and theoretical PDFs
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* The four plots are produced using R. Refer to the second paragraph of section 3.5 and figure 3.1
for details.
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