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ABSTRACT OF DISSERTATION

IMPROVED MODELS FOR DIFFERENTIAL ANALYSIS FOR GENOMIC DATA

This paper intend to develop novel statistical methods to improve genomic data
analysis, especially for differential analysis. We considered two different data type:
NanoString nCounter data and somatic mutation data. For NanoString nCounter
data, we develop a novel differential expression detection method. The method con-
siders a generalized linear model of the negative binomial family to characterize count
data and allows for multi-factor design. Data normalization is incorporated in the
model framework through data normalization parameters, which are estimated from
control genes embedded in the nCounter system. For somatic mutation data, we
develop beta-binomial model-based approaches to identify highly or lowly mutated
genes and to compare somatic mutations between patient groups. An empirical Bayes
shrinkage approach is used to improve estimation of model parameters in all projects.

KEYWORDS: Differential Analysis, Empirical Bayes Shrinkage Methods , NanoS-
tring nConter, Somatic Mutation, Negative Binomial Distribution, Beta Bino-
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Chapter 1 Introductions

1.1 Introduction for differential expression analysis based on NanoString

nCounter Data

The advanced medium-throughput NanoString nCounter technology has been in-
creasingly used for mRNA or miRNA differential expression (DE) studies due to its
advantages. The NanoString nCounter system provides a simple and cost-effective
way to profile specific nucleic acid molecules in a complex mixture. The system uses
target-specific color-coded barcodes that can hybridize directly to target molecules.
The expression level of a target molecule is measured by counting the number of times
the barcode for that molecule is detected by a digital analyzer. The system does not
need amplification and is sensitive enough to detect low abundance molecules. It can
simultaneously quantify up to 800 different interesting targets, making it ideal for
miRNA profiling and targeted mRNA expression analysis.

Figure 1.1 is an example of NanoString nCounter data with two groups. NanoS-
tring nCounter system provide Positive controls, Negative controls, Housekeeping
controls and Endogenous. Endogenous is an interesting class of target we want to
investigate, which can be a gene, an exon, or any region of interest. We use the term
gene hereafter to refer to gene, exon, or region for convenience. Positive controls
can be used to adjust system variation. Negative controls can be used to account

for background noise, since negative controls have no expected expression. So the



11D OmM-2  O0mM-2 30mM-1 30mM-3
2 |Code Class Name Accession

3 Positive POS_A(128) nmiR00813.1 10423 14214 14535 13209
4 |Positive POS_B(32) nmiR00809.1 2262 3225 3388 2903
5 Positive POS_C(8) nmiR00811.1 510 742 741 603
& |Positive POS D(2) nmiR00822.1 139 263 304 227
7 |Positive POS_E(0.5) nmiR00801.1 42 74 78 48
& |Positive POS_F(0.125) nmiR00825.1 15 21 3l 13
9 |Negative NEG_A(0) nmiR00810.1 6 9 14 12
10 |Negative NEG_B(0) nmiR00828.1 15 24 17 13
11 |Negative NEG_C(0) nmirR00803.1 5 16 14 11
12 |Negative NEG_D(0) nmirR00823.1 7 14 14 13
12 |Negative MEG_E(0) nmiR00827.1 11 11 14 12
14 |Negative NEG_F(0) nmiR00805.1 8 12 7 8
15 |Housekeeping ACTB|O NM_001101.2 170 353 275 249
16 |Housekeeping B2M|0 NM_004048.2 2489 4767 3061 2606
17 |Housekeeping GAPDH|0 NM_002046.3 1057 1920 2654 2146
18 |[Endogenousl  hsa-let-7a-5p|0  MIMATO000062 5282 9813 8704 7503
19 |[Endogenousl  hsa-let-7b-5p|0  MIMATO000063 1671 2831 2525 2179
20 |[Endogenousl  hsa-let-7c|0 MIMATO000064 155 299 313 252
21 |[Endogenousl  hsa-let-7d-5p |0 MIMATO000065 25 42 40 37
22 |[Endogenousl  hsa-let-7e-5p|0  MIMATOO00066 107 209 276 264
23 |[Endogenousl  hsa-let-7f-5p |0 MIMATOO00067 59 128 102 97
24 |[Endogenousl  hsa-let-7g-5p |0 MIMATO000414 362 674 584 575

Figure 1.1: An example of NanoString nCounter Data

observed expression levels of negative controls can be treated as background noise.
Housekeeping controls, also called reference genes, can be used to adjusts for the
variation in the amount of input sample material. The nCounter system suggests the
use of housekeeping genes, whose expressions are stable across samples, to inform this
factor. NanoString provides a variety of housekeeping genes for users to choose from.
Typically, at least three housekeeping genes are included in the CodeSet.

The NanoString nCounter system provides more accurate quantifications of mRNA
expressions than PCR-based methods and microarrays in formalin-fixed paraffin em-

bedded (FFPE) samples, where RNA degradation is commonly observed (Reis et al.,



2011). FFPE is a standard protocol for the long-term storage of human clinical
specimens, which provide valuable disease, diagnostic and treatment information for
clinical research. However, the fixation and embedding process modifies and degrades
RNA, presenting challenges for differential expression analysis using FFPE samples.
The quality of results from common gene expression profiling methods such as PCR-
based techniques and microarrays decrease significantly for FFPE samples. However,
NanoString nCounter system can provide stable and accurate results for FFPE sam-
ples offer great potential to further clinical research.

One of the fundamental tasks for molecule expression studies is to identify differ-
ential expression (DE) for mRNAs or miRNAs across experimental conditions. Most
current methods for DE detection in nCounter data, such as NanoStringNorm (Wag-
gott et al.; 2012) and NanoStriDE (Brumbaugh et al., 2011), are based on t-tests.
Although popular, the t-test is most appropriate for analyzing continuous, prefer-
ably normally distributed data. However, data produced by nCounter Analyzer are
counts. Therefore, it is more natural to use a discrete distribution to characterize
the data. Brumbaugh et al. (Brumbaugh et al., 2011) suggested the use of DESeq
(Anders and Huber, 2010), a tool developed for RNA-seq, to analyze nCounter data
because the method uses a negative binomial model for count data from RNA-seq.
However, nCounter data and RNA-seq data are different, especially in data normal-
ization, as we discuss in the following paragraph. To our knowledge, there has not
been a discrete statistical model specifically designed for nCounter data.

Data normalization is a crucial step for using nCounter to quantify gene expres-

sion. The nCounter platform provides positive controls, housekeeping genes, and



negative controls to quantify lane-specific variation, differences in sample input, and
non-specific background, respectively. A common data normalization procedure in-
cludes dividing the raw data by size factors and subtracting background level (Wag-
gott et al., 2012, Brumbaugh et al., 2011). This procedure, however, spoils the discrete
nature of the data and makes them ineligible to be analyzed as counts. As an al-
ternative approach, methods developed for RNA-seq data analysis, e.g. DESeq and
edgeR (Robinson and Smyth, 2007, 2008, Robinson et al., 2010), treat the size factor
as a scaling parameter in the negative binomial model for data normalization. How-
ever, since those methods were developed for RNA-seq, they do not utilize positive
controls and housekeeping genes when calculating the size factor. They also do not
adjust for background noise, which can lead to biased quantification of gene expres-
sion, especially when the expression level is relatively low. Therefore, the results of
normalization based on them may be less than optimal.

In this paper, we present a novel DE detection method specifically designed for
nCounter data, which fully takes into account the discrete nature of the data and the
critical need for data normalization. Our method, named NanoStringDiff, utilizes a
generalized linear model (GLM) of the negative binomial family to characterize count
data and allows for multi-factor design. We incorporate size factors, calculated from
positive controls, housekeeping genes, and background level, obtained from negative
controls, in the model framework, so that all the normalization information provided
by the nCounter Analyzer is fully utilized. As demonstrated by simulations and
real data analysis, our method provides more accurate and powerful results in DE

detection compared to existing methods.



1.2 Introduction for differential analysis based on somatic mutation Data

Cancer arises from a clone that has accumulated the requisite somatically acquired ge-
netic mutations. In recent years, somatic mutation profiling has become available by
using the next-generation sequencing, especially the whole-exome sequencing (WES),
which allows the sequencing of the protein coding portion of the genome.The WES
technology has already been shown to be an advanced technology to characterize
complex genomic alterations, find novel mutations, and identify potential therapeu-
tic targets (Alexandrov et al., 2013, Ellis et al., 2012, Liang et al., 2012, Stephens
et al., 2013, Stransky et al., 2011, Wang et al., 2012). According to different effect
and location, somatic mutation can be classified as silent and non-silent. Non-silent
mutations almost always receive more attention because they result in a change in
phenotype often due to a change in the amino acid sequence of a protein. Despite
the huge success of WES studies that have identified thousands of novel somatic mu-
tations, the epidemiological and clinical interpretations of the findings are still very
limited. One basic yet challenging task is to identify genes that are highly mutated
compared to the background mutation rate, which are likely to be cancer-associated.
The other fundamental question is how to compare somatic mutation patterns be-
tween patients with varying characteristics such as geographic region, tumor stage,
or response to therapy.
Also, mutational processes are complex and heterogeneous processes. Lawrence(Lawrence

et al., 2013) pointed out that failing to account for heterogeneity in mutational pro-

cesses can lead to incorrect results in detecting differential mutation patterns. There



are three main types of heterogeneity associated with mutational processes. First,
heterogeneity across patients in the same group. Since mutation is a stochastic pro-
cess affected by a lot of factors, patients even in the same treatment group do not
share identical mutation rate. Second, heterogeneity in the mutational spectrum of
the tumor. The rate of mutations at CpG dinucleotides is much higher than that at
other sites. Moreover, the rate of transition mutations is higher than that of transver-
sion mutations. Published literature classify mutations into several categories, each
with different mutation rates (see Chapter 3 for details). Third, regional heterogene-
ity across the genome. Different genes have different mutation rates.

To identify highly mutated genes, Lawrence et al proposed a new algorithm Mut-
SigCV (Lawrence et al., 2013), which accurately accounts for mutational process het-
erogeneity, improving the accuracy of identifying new cancer-associated genes. But
MutSigCV only can detect mutated genes with higher non-silent mutation rate as
compared to its background mutation rate. However, genes with a lower non-silent
mutation rate as compared to the background are also of interest. Those genes may
play critical roles in cell survival and development. So mutations in these genes are
not permitted. Therefore, researchers need to be very careful not targetting those
genes when developing targeted cancer therapies. We have proposed a beta-binomial
model-based approach to detect cancer-associated genes while fully taking into ac-
count all the complexities that are ignored by current methods. Specifically, our
method, accounts for various types of variations in mutation rate and adjusts for
baseline covariates. We propose an empirical Bayes shrinkage approach to estimate

the dispersion parameter in the beta-binomial model and a likelihood ratio test to



identify differentially mutated genes.

In terms of comparing somatic mutation patterns between different groups, it is
well know that the most frequently used statistical method for differential analysis
between two groups is the Fisher’s exact test (Ellis et al., 2012). For each gene,
the test compares the proportions of patients with non-silent mutations in that gene
between the two groups. Despite its popularity, the Fisher’s exact test has several
drawbacks. First, all types of mutations are treated in the same way. However, it is
well known that mutation rates vary in different types of mutations. Second, it does
not consider biological variation across patients from the same group. Third, it does
not adjust for background mutation rate, which is the rate for silent mutations that
do not significantly alter the phenotype. Fourth, it does not adjust for demographic
and clinical characteristics. Patients from the two groups may differ in age, gender,
and other baseline characteristics, which may confound the association between gene
mutation and group assignment. Fifth, it does not adjust for sequencing coverage.
A sample that has more complete coverage of a gene region tends to identify more
mutations in that gene than a sample that only has partial coverage of the gene. To
conclude, the Fisher’s exact test oversimplifies the comparison problem and may lead
to less than optimal results.

By incorporating mutational heterogeneity into the analyses, we propose a beta-
binomial model-based approach to compare somatic mutation patterns between two
groups while fully taking into account the complexities that are ignored by the Fishers
exact test. Specifically, our proposed method accounts for various sources of varia-

tion, normalizes data based on background mutation rate, and adjusts for baseline



characteristics. As demonstrated by simulations, our method provides more accurate
and powerful results in differential mutation pattern detection compared to existing
methods.

Our method has been applied to identify novel somatic mutation patterns that
are unique to squamous cell lung cancer (SCLC) patients in Appalachian Kentucky
by comparing mutations between Appalachian and non-Appalachian samples. Ap-
palachian Kentucky is home to the highest incidence rate of lung cancer in the United
States (Lag et al., 1975). The disproportionately high incidence is not explained by
tobacco alone, and it is thought that other factors such as genetic predisposition may
play a key role in this disparity. It is therefore critical to understand the molecular

characteristics based on evaluation of somatic genomic alterations in this population.

Copyright© Hong Wang, 2016.



Chapter 2 NanoStringDiff: A Novel Statistical Method for Differential

Expression Analysis Based on NanoString nCounter Data

2.1 Introduction

The advanced medium-throughput NanoString nCounter technology has been in-
creasingly used for mRNA or miRNA differential expression (DE) studies due to its
advantages, including direct measurement of RNA expression levels without amplifi-
cation, digital readout, and superior applicability to formalin-fixed paraffin embedded
(FFPE) samples. However, the analysis of nCounter data is hampered because most
methods developed are based on t-tests, which do not fit the count data generated
by the NanoString nCounter system. Furthermore, data normalization procedures of
current methods are either not suitable for counts or are not specific for NanoString
nCounter data. Therefor we have developed a novel DE detection method designed to
specifically handle NanoString nCounter data. The method, named NanoStringDiff,
uses a generalized linear model of the negative binomial family to characterize count
data and allows for multifactor design. Data normalization is incorporated into
the model framework through data normalization parameters, which are estimated
from positive controls, negative controls, and housekeeping genes embedded in the
nCounter system. We applied an empirical Bayes shrinkage approach that estimates
the dispersion parameter in the model and performs a likelihood ratio test to identify

differentially expressed genes. Simulations and real data analysis demonstrate that



the proposed method performs better than existing methods.

2.2 Data description

The following four real nCounter datasets were used to generate simulation studies
to evaluate the performance of our proposed method.

Horbinski data: Horbinski et al. studied human glioma cell lines expressing GFP
or GFP with IDH1 mutation (R132H) (GSE80821). The cells were grown in vitro for
six days. 800 miRNAs were profiled with three replicates in each group. The data
for the mutant group were used in this paper.

Mori data: Mori et al.(Mori et al., 2014) studied the possible reasons respon-
sible for the widespread miRNA repression observed in cancer, global microRNA
expression in mouse liver normal tissues, and liver tumors induced by deletion of Nf2
(merlin) were profiled by nCounter Mouse miRNA Expression Assays (GSE52207).
Expressions of 599 miRNAs were measured with two replicates in each group. The
data for the normal group were used in this paper.

Busskamp data: Busskamp et al.(Busskamp et al., 2014) profiled miRNAs of iPS
cells (PGP1) at 0, 1, 3, and 4 days post-doxycycline induction of murine NGN1 and
NGN2 using the nCounter human miRNA assay kit vl (GSE62145). Expression of
734 miRNAs were profiled for three replicates in each group. The data from day 3
were used in this paper.

Teruel-Montoya data: Teruel-Montoya et al.(Teruel-Montoya et al., 2014) used the
nCounter human miRNA assay kit vl and v2 to profile miRNAs in normal human

platelets, T-cells, B-cells, granulocytes and erythrocytes from 5 healthy male donors
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(GSE57679). The data for B-cells were used in this paper, where expression of 730
miRNAs were profiled for five replicates in the B-cell group.

In addition, as a real data analysis, we applied our method to identify differentially
expressed miRNAs between the mutant and GFP control groups for the Horbinski

data.

2.3 Normalization parameters

Data generated by the nCounter system have to be normalized prior to being used to
quantify gene expression and compare expression rates between different experimental
conditions. Data normalization includes adjustment for sample preparation variation,
background noise, and sample content variation. We introduce three normalization
parameters to quantify these variations and noise, respectively. These parameters
can be directly informed from the internal controls of the nCounter system.

Positive control size factor (c;): this size factor accounts for lane-by-lane variation.
The nCounter Analyzer has six spike-in positive hybridization controls with different
concentrations for each sample, which can be used to infer ¢;.

Background noise parameter (0;): this parameter quantifies the non-specific back-
ground level. The nCounter Analyzer includes six to eight negatives control probes
that have no target in the sample. The observed expression levels of those negative
controls characterize 6;.

Housekeeping size factor (d;): this size factor adjusts for the variation in the
amount of input sample material. The nCounter system suggests the use of house-

keeping genes, whose expressions are stable across samples, to inform this factor.
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NanoString provides a variety of housekeeping genes for users to choose from. Typi-

cally, at least three housekeeping genes are included in the CodeSet.

2.4 The data model

Denote the observed count from gene g in sample ¢ by Yj;, and the unobserved ex-

pression rate by Ag. We assume a Poisson model for Yy; given Ag;:

Y,i|Agi ~ Poisson(c;d; Ay + 6;).

Our model incorporates the positive control size factor, ¢;, and the housekeeping
size factor, d;, to adjust for the sample-by-sample difference due to experimental
variations. It also includes the background noise parameter, 6;, to adjust for non-
specific background. Using the additive property of the Poisson distribution, we can

decompose Yy; into Z,;+ By;, where Z,;|\;; ~ Poisson(c;d;Ay;) denotes the count from

gis
the expression of gene g and B,; ~ Poisson(f;) denotes the background noise.

Due to biological variation, expression rates among samples from the same treat-
ment group are not identical. This results in the over-dispersion problem, where the
observed variation is larger than expected by the Poisson model. This problem is well
recognized in RNA-seq experiments, where the data are also in counts (Robinson and
Smyth, 2007, Anders and Huber, 2010). A common approach to address the problem

is to consider a Bayesian hierarchical model, where a Gamma distribution is used to

characterize the variation in the underlying expression rate:
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Agi|Ugi, Mg ~ Gamma(ug, 1)

Here the Gamma distribution is parameterized with mean uy; and log dispersion
14, Where 7, is the negative of logarithm of the shape parameter in the common pa-
rameterization. Let vy = ¢;d;jug,, then based on the hierarchical model, the marginal
distribution of Z,; given v, and 7, is negative binomial with mean v,; and variance
Vgi + vgi exp(n,). Therefore, the marginal distribution of Y, is the convolution of a
negative binomial distribution and a Poisson distribution.

Consider a general, multifactor experiment. Let X be the design matrix, where
the number of rows is the number of samples and the number of columns is the num-
ber of covariates. The mean parameter ugy; is specified based on a generalized linear

model with logarithmic link function:

1Og Ug; = Xzﬁg)

where X; represents the 7" row of the design matrix X, which is a vector of covariates
that specifies the treatment conditions applied to sample i, and 3, is a vector of
regression coefficients quantifying the covariates effects for gene g. The DE analysis
for experimental factor j can be performed by evaluating the hypothesis Hy : 8, = 0,
where f3,; is the j element of 3,.

Accurate estimation of the dispersion parameter plays an important role in DE
detection and shrinkage estimators have been shown to be useful in typical RNA-seq

experiments when the number of replicates is small (Anders and Huber, 2010, Hard-
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castle and Kelly, 2010, Robinson et al., 2010, Wu et al., 2013). Because the nCounter
data is most similar to the RNA-seq data in the aspects of data discreteness and very
limited number of replicates, we borrow the shrinkage method developed for RNA-
seq data to estimate the dispersion parameter. Specifically, we consider an empirical
Bayes shrinkage method (Wu et al., 2013), which introduces a prior distribution for
the dispersion parameter and borrows information from the ensemble of genes to esti-
mate the dispersion parameter for a specific gene. For example, we want to estimate
log dispersion parameter 7; for Genel in the Figure 2.1, the traditional method is
only using 4 samples from Genel to estimate 7, such small sample size can’t provide
enough information to estimate stable and accurate dispersion parameter. Empiri-
cal Bayes shrinkage method assume a prior distribution for the dispersion parameter
and estimate 7; using posterior distribution which include information from prior
distribution to improve accuracy of the estimation.

The key challenge associate with empirical Bayes shrinkage method is how to
choose prior distribution for the dispersion parameters. Figure 2.2 depicts the empir-
ical distribution of the maximum likelihood estimates of gene-specific log dispersion
ny for four real datasets. Solid curves are fitted normal densities. The four NanoS-
tring nCounter datasets we considered all have limited replicates in one group, which
were not sufficient to obtain a reliable maximum likelihood estimate of the disper-
sion parameter. Therefore, data from two groups are pooled together to increase the
sample size for estimating log dispersion use maximum likelihood method. Those

histograms show that 7, can be approximately modeled by a normal distribution.
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Gene Mame Mormal 1| MNormal 2 | Tumorl | Tumor2 | Dispersion

Genel | ESIFTGINTASITIO M| |

Gene2 3 7 8 4 N2
Gene3 8 5 4 5 Ns
Gened 30 26| 310| 106 Na
Geneb 3 4 5 1 Ns

Consider a Prior

Gene796 2 6 24 5 N7e6 distribution for 1
Gene/97 533| 417| 101| 853 N797
Gene/98 11 6| 28 10 MN708
208 M799
Gene7/799 663| 642 1| 847
Gene800 283| 614| 877| 509 MNaoo |-

Figure 2.1: Example data set for empirical Bayes shrinkage method

Thus, we consider the following prior:

n, ~ Normal(my, 72),

where mg and 72 are hyper-parameters representing mean and variance for the normal

distribution, respectively.
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Figure 2.2: Empirical distribution of the log dispersion 7,

To sum up, the hierarchical model we consider is as follows:

Yyi|Agi ~ Poisson(c;d; A\, + 6;)
Agiltgi, ng ~ Gamma(ugi, 1)
ny ~ Normal(my, 7°)
log u, = Xiﬁg-
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2.5 Parameter estimation and differential expression analysis

Estimating size factors and background noise

Appropriate estimation of the positive control size factor, background noise parameter
and housekeeping size factor can effectively improve the accuracy of DE detection.
The nCounter system suggests using the spike-in positive and negative control genes
to estimate positive size factor and background noise. For each sample, nCounter
provides six positive controls corresponding to six different concentrations in the 30
ul hybridzation: 128tM, 32fM, 8fM, 2fM, 0.5fM, and 0.125fM. It also provides six to
eight negative controls, which can be seen as corresponding to 0fM, as no transcript
is expected. We consider a Poisson model for those spike-in control genes. For each
sample 7, let My denote the read count for spike-in control gene g, 6; denote the
sample-specific background noise, ¢; denote the expression rate, and con, denote the

concentration for spike-in control gene g, we assume:

Mg; ~ Poisson(6; + ¢; x cony).

By fitting the Poisson model, we obtain the maximum likelihood estimates (MLESs)
6; and G;- Then the background noise parameter can be estimated by él-, and the

positive size factor can be estimated by

Ci= =,
no_ 4
Eizl%/n

where n is the number of samples.
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The housekeeping size factor can be estimated from housekeeping genes. Because
the expressions of housekeeping genes are also affected by platform source of variation
and background noise, we standardize the observed read counts for housekeeping

genes, H,;, as follows:

Hy — 0;
HSy = =2 —.

Then we calculate the ratio of HS, for sample i relative to its average across all
samples and use the median of the ratios for all housekeeping genes as the estimate

of the housekeeping size factor. Mathematically,

9 . Hng
d; = median = Ta
{g:9chousekeeping genes} X HSy /n

Estimating hyper-parameters for the prior distribution of the dispersion

parameter

The hyper-parameters are empirically estimated using expression data for endogenous
genes (i.e. the target genes). Specifically, for each endogenous gene, we get the MLE of
the log dispersion parameter, denoted by 7),. Because data contain background noise
and endogenous genes with very low read counts cannot provide effective information,
we only use 7), from endogenous genes with read counts larger than the the maximum
value of negative controls to estimate the hyper-parameters. We use the median of
7y for those endogenous genes to estimate my, i.e. my = medianyr,. The estimation
of 7% is more complex. As pointed out by Wu et al.(Wu et al., 2013), var(n,) =

72 + var(f,|n,), where var(n,|n,) is the variation due to estimating 7n,. Therefore,
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the sample variance of 7, overestimates 72. Similar to Wu et al. Wu et al. (2013), we
first use an ad hoc method to create some pseudo datasets with 72 = 0 to estimate
var(7,|n,), then subtract it from the sample variance of 7, to obtain an estimate of
72

To be specific, we create a pseudo-dataset with 72 = 0 by simulating Y;i from
NB(vg;,M0), where 1y = 1y is used as common dispersion for all genes. Then we

calculate the sample log dispersion ﬁ; for each gene, we then assume ﬁ; is normally

distributed and estimate var(7y|n,) as SE? using IQR method, that is

SE? = [IQR(i,)/1.349]*. (2.2)

We generate a number of pseudo-datasets, and calculate the mean SE? as the

baseline. The last step of this procedure is estimate 72 as

# = max([IQR(1,)/1.349)" — SE” to)

using IQR method. Where t, is the lower bound for 72. In practice, we use ty = 0.01

The details steps to derive Equation 2.2 using IQR method is as follows:
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IQR(),) = Q3 — Q1 = 2% Zyz5 % SE
SE = IQR(),)/1.349

SE* = [IQR(#,)/1.349].

Estimating model coefficients and dispersion

Using the additive property of the Poisson distribution, we can decompose Yy; into
Zgi + By;, where Zy| A, ~ Poisson(c;d;A\y;) denotes the count from the expression
of gene g and B,; ~ Poisson(§;) denotes the background noise. In order to address
over dispersion problem, we use gamma distribution to describe unobserved expres-
sion rate A, that is A\g|ug, n, ~ Gamma(ug,,n,). Let vy, = ¢;djug;, then based on
the hierarchical model, the marginal distribution of Z,; given vy and 7, is negative
binomial with mean vy and variance vgy; + vgi exp(ny). Therefore, the marginal dis-
tribution of Y, is the convolution of a negative binomial distribution and a Poisson

distribution.

Proposition 2.5.1. Let Z;, ~ NB(vg,n,) with probability mass function:

5 — 2ditexp(=mg)} r_vgiexp(ng) 1j 1 exp(—1g)
P(Zgi =j) = j!v{exp(*ngg)} {1+gvgi exp(%g)}j{lﬂgiexr)(ng)} n

and Bg; ~ Possion(6;) with probability mass function:

Y, —j
6, o exp(—6;)

(Ygi 7])'

P(Bgi:qui_j):
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Then, Yy = Zg + Bgi is the convolution of a negative binomial distribution and a

Poisson distribution with probability mass function:

exp(—0;) 1

}exp(*ng)
*y{exp(—"r]g)} 1+ vy eXp(ng)

p(YgilBgsmg) =

Z ’Y{] + eXp( 779)}9 " Ygi exp(ng) }j>

J (Vg — )! 1 + vy exp(n,)

Proof.

p(YeilBg,mg) = ZP(Zg%—J)P(B =Yy —J)

_ eXP<—9z> 1 yexp(—ny)

v{eXp(—ng)} 1+ vy; exp(ng)

% Z Hj+ exp( ng)}ngi—j{ Ugi eXP(Uy) }j
J'(Ygi — 5)! 1+ vg; exp(1,)

We estimate 3, and 7, using an iterative procedure.

To estimate 3,, we consider its likelihood function for a given 7,:

L(ﬁgmq) X Hip(ygmg’ﬁg)a

and obtain the MLE, Bg.

(2.3)

To estimate 7,4, we consider its posterior distribution given Y; and 3,. In order to

derive posterior penalize log likelihood function for n,, we assume a normal prior on

the log dispersion 7,, e.g., 1, ~ N(mq, 72), with density function:
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p(ny) = \/2;77 exp{— 272 }
Then the conditional posterior distribution for 7, given all the observed counts and
By is:
Pyl Yy, Byt = 1, ...;m) o< p(ng) ILip(Ygalng, By)-

Therefore,

log{p(ny|Yyi, Bgri =1,...,n)}

o« log{p(ny)} + Z log{p(Yyi|ng, B¢)}

x Z]og ZV{]*'GXP( 779)}9 - J{ Vgi exp(n,) i

[(Ygi — 7)! 1 + vy exp(ng)
— np{exp(—ng)} — exp(—ny) > _log{l + vgexp(ng)} — > _0;
_ 2
. (779 27-72”0) “logT,

(2.4)

where 1(.) is the log gamma function. Equation (2.4) also can be viewed as a penalized
log likelihood function with penalty —%, penalizing values that deviate far
from the common prior mg. Estimates of size factors, background noise, and hyper-
parameters are plugged into Equation (2.4) and treated as constants. For a given f,,
we obtain the estimate of 7,, denoted by 7,, by maximizing Equation (2.4).

We start with 7, as the initial value of 7,, plug it into Equation (2.3) to obtain Bg.

Then we plug Bg into Equation (2.4) to obtain 7),. By iteratively updateing Bg and
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1y until convergence, we obtain estimates for 8, and 7n,. Figure 2.3 show the work

flow of this procedure.

Plug in size factors, hyper-parameters and treat them as constant

Roughly estimate ng,
plug in and treat
them as constant

; ;

Log-likelihood Posterior penalize
function for Bg | .| Log-likelihood
~._ | function forn
/\.( g
| / —— Plugin
1 / 3 N
/ =—— Estimation
2 4 .
Be 4 1 Ne Ilteration

Figure 2.3: Work flow of estimating model coefficients and dispersion

Hypothesis testing and false discovery rate

We consider a likelihood ratio test for DE detection. For each gene, we compare the
maximum of the log of the likelihood in Equation (2.3) under the null hypothesis ver-
sus that without any constraint. We extend our model using generalize linear model
to handle more complex experimental situation,such as multi-group comparison and
multi-factor experimental design. In general, user can define their specific hypothesis

test based on their scientific question and experimental design. Consider simplest
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setting, two group comparison without any covariate, the hypothesis test for gene g

is straightforward:

Hol Ug1 = Ug2

Hy:ugr # ugo.

For likelihood ratio multiple testing, the chi-square approximation is used to ob-
tain a p-value. The Benjamini and Hochberg procedure(Benjamini and Hochberg,
1995) is used to calculation the false discovery rate (FDR), which provide a choice of

a cutoff for statistical significance.

2.6 Q-PCR validation of miRNAs

Total RNA was extracted using TRizol reagent (Life Technologies, Grand Island, NY).
For miRNA including internal control U6, the single-stranded cDNA from total RNA
(20 ng) was synthesized using specific miRNA primers from the TagMan MicroRNA
Assays and reagents from the TagMan MicroRNA Reverse Transcription (RT) Kit
according to the manufacture’s instruction. For [-actin and 18S internal controls,
cDNA was prepared from the total RNA using the High Capacity cDNA Reverse
Transcription Kit (Life Technologies). Expression of target genes was then assessed by
Comparative Ct (AACt) using commercially available probes and TagMan Universal
PCR master mix and performed on a StepOnePlusTM 96-well instrument as described

by the manufacturer (Life Technologies). The expression level of each miRNA targets
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was normalized by [-actin, 18S, or U6 RNA and reported as a relative level to a

specified control, as noted. The data were analyzed by two-sample t-tests.

2.7 Simulations

Simulation settings

We performed comprehensive simulation studies to evaluate the performance of our
NanoStringDiff method and to compare with two other software packages that have
been proposed for analyzing NanoString data (Waggott et al., 2012, Brumbaugh et al.,
2011): NanoStringNorm (version 1.1.21) and DESeq2 (version 1.10.0). For NanoS-
tringNorm, we called function NanoStringNorm with one recommended setting, that
is using geometric mean to estimate positive size factor and housekeeping size factor,
and using mean background value plus 2 standard deviation as background thresh-
old. For DESeq2, we called the function DESeq with default settings. The DESeq
method (Anders and Huber, 2010) was originally developed for RNA-seq data and
had been suggested to analyze NanoString data by Brumbaugh et al. (Brumbaugh
et al., 2011). Here, we considered its successor, DESeq2 (Love et al., 2014), in the
methods comparison. To more generally assess the difference between NanoStringDiff
and RNA-seq data analysis methods, we also compared our method to edgeR (version
3.12.0) (Robinson and Smyth, 2007, 2008, Robinson et al., 2010), which is another
frequently used method for RNA-seq data analysis.

To evaluate DE detection under known truth, and to conduct the comparison

under realistic scenarios encountered in nCounter experiments, data were generated
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based on model (2.1) using parameters estimated from the four real datasets de-
scribed above. We focused on the two-group comparison situation and simulated
data based on four real nCounter datasets: Horbinski data, Mori data, Busskamp
data, and Teruel-Montoya data. For the log dispersion parameter, 7,, we considered
two different approaches to generate the data: (a) One approach is to use a normal
distribution with distribution parameters calculated from real data. Explicitly, we
obtained 7, ~ N(—4.636,1.177?) from Horbinski data, n, ~ N(—5.03,0.8162) from
Mori data, 1, ~ N(—3.956,0.923?) from Busskamp data and 1, ~ N(—2.418,1.0262)
from Teruel-Montoya data. We denoted this approach as initial simulation setting.
(b) The other approach is a distribution-free approach, where the log dispersion was
randomly re-sampled from the log dispersions calculated using the real datasets. We
considered this approach as secondary simulation setting.

For both simulation settings, expressions of 800 endogenous genes were generated
from Poisson(c;d; Ay +0;), where model parameter values were set based on real data.
Specifically, the normalization parameters, ¢;, d;, and 6;, were calculated from the
source real datasets. The mean parameter, \,, was randomly re-sampled from the
means calculated from the real datasets. We considered 150 endogenous genes as
truly differentially expressed with the log fold change randomly generated from a
mixture distribution 0.5N (1, —0.3) + 0.5N(1,0.3). In our simulations, expressions of
the positive and negative control genes were generated from Poisson(6; + ¢; x con,)
with 6; and ¢; calculated from the real data. Expressions of housekeeping genes
were also generated from a Poisson distribution, with the Poisson mean parameter

calculated from the real data. We considered 3, 5 or 8 replicates in each treatment
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group and ran 100 simulations for each simulation scenario.

We first present the results under initial simulation setting for using a normal
distribution to generate the dispersion parameter. The results under secondary sim-
ulation setting for using the other method to generate the dispersion parameter are

provided in later section.

Simulation results under initial simulation setting

We first evaluated the estimation of size factors based on NanoStringDiff, and com-
pared to DESeq2 and edgeR. Figure 2.4(a-c) plot the NanoString estimated positive
size factor, housekeeping size factor, and sample specific background noise against
their true values, respectively. NanoStringDiff provides accurate estimation of those
parameters. For comparison with DESeq2 and edgeR, we define an overall size fac-
tor as the product of the positive size factor and the housekeeping size factor. The
overall size factor is used in DESeq2 and edgeR, where it is estimated by using data
from endogenous genes. Figure 2.4(d) plots the estimated overall size factor against
the true value based on NanoStringDiff, DESeq2, and edgeR. The overall size factor
estimated from NanoStringDiff has a much smaller variation compared to DESeq2
and edgeR. This is because NanoStringDiff fully utilizes the positive controls and
housekeeping genes information provided by nCounter to estimate the size factor. In
contrast, such information is not used by DESeq2 and edgeR.

We next evaluate the estimation of log dispersion parameters. Figure 2.5 shows
the estimated versus true log dispersions for four real datasets. Our empirical Bayes

shrinkage estimator tracks the real dispersion for genes with higher counts (> 20).
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Figure 2.4: Estimation of normalization parameters. (a) Positive size factor esti-
mated from NanoStingDiff against its true value;(b) Housekeeping size factor es-
timated from NanoStingDiff against its true value;(c) Background noise estimated
from NanoStingDiff against its true value; (d) The overall size factor estimated from
NanoStringDiff, DESeq2, and edgeR against its true value; For NanoStringDiff, the
estimated overall size factor was the product of the estimated positive and house-
keeping size factors; For DESeq2 and edgeR: the estimated overall size factor was
directly calculated from the algorithm. Results were from a dataset simulated based
on the Horbinski data with 3 replicates and averaged across the replicates.

For genes with lower counts (<= 20), the dispersion parameter estimates were shrunk
more towards the average log dispersion, because there was little information about

dispersion for those genes in the data. It also appeared that our algorithm worked
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better when the true log dispersion was larger than —4. When the true log dispersion
was very small, the estimator tended to overestimate the log dispersion, as shown

from the Horbinski data and Mori data.
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Figure 2.5: Estimation of log dispersion

We then assessed the control of type I error rate for the likelihood ratio test in
NanoStringDiff. Figure 4.9 plots the reported type I error rate against the true type I
error rate based on simulated data. For data simulated based on Horbinski data and

Mori data, our method provided good control of the type I error rate: the reported
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Figure 2.6: Type I error rate for data simulated based on four real datasets. For
each given p-value threshold (reported type I error rate), the true type I error rate
was calculated as the proportion of non-DE genes having p-values smaller than the
threshold. Results were averaged over 100 simulations.

value was close to the true value. But for some other simulation scenarios, the type
I error rate was inflated. To be specific, When the sample size was not very small
(n = 5 or 8) or the biological variation was not large (for data simulated based on
Horbinski data or Mori data), our method provided good control of the type I error
rate, i.e. the reported value was close to the true value. However, when the sample

size was very small (n = 3) and the biological variation was large (for data simulated
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based on Busskamp data or Teruel-Montoya data), the reported type I error rate was
smaller than the true value. This was due to the use of the chi-square approximation
in calculating the p-value from the likelihood ratio test. Although the approximation
performed well in most situations, it appeared to be inaccurate and could cause an
inflated type I error rate when sample size was very small and the biological variation
was large. As a result, the FDR was also inflated (Figure 2.10 Busskamp data and
Teruel-Montoya data, n=3), so that our method was anti-conservative under such
situation.

An important task of DE analysis is to rank genes based on their evidence of
being differentially expressed. From this point of view, the ability to have as many
true positives as possible in the top-ranked genes is a critical part of evaluating the
performance of a method. We compared the receiver operating characteristic (ROC)
curve, which shows true positive rate and false positive rate at various thresholds,
among NanoStringDiff, NanoStringNorm, DESeq2, and edgeR (Figure 2.7 and Figure
2.8). Note that we only used genes having at least one average expression count after
adjusting background noise because there was no classification power for genes with
average count lower than background noise (area under the ROC curve (AUC) close
to 0.5 for all three methods, data not shown). Separate ROC curves were generated
for genes with average count, after adjusting background noise, between 1 and 100
(Figure 2.7), and higher than 100 (Figure 2.8). From Figure 2.7, we found that for
genes with average count between 1 and 100, ROC curves from NanoStringDiff were
higher than those for DESeq2 and NanoStringNorm, indicating better performance

of NanoStringDiff in providing higher true positive rates at given false positive rates.
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The ROC curves from NanoStringDiff and edgeR were close to each other. From
Figure 2.7, we found that for genes with average count larger than 100, as expected,
the ROC curves were higher for all methods exclude Teruel-Montoya data. The
difference across methods were also much smaller due to the less impact of background
noise adjustment at large read counts. For Teruel-Montoya data, the ROC curves
provided by three other methods still not perform good even when average count
great than 100, might be due to the large biological variation associated with human
data.

In practice, DE genes are often declared based on a user-specified FDR threshold.
Given the threshold, a powerful method is expected to identify as many true DE
genes as possible. We compared the number of DE genes identified under a given
FDR threshold (0.05, 0.1, or 0.2) among different methods. As shown in Figure
2.9, NanoStringDiff detected more true DE genes than NanoStringNorm, DESeq2
and edgeR in all simulation scenarios especial when sample size is small (n=3). The
colorful bars represent DE genes identified by different methods, and the shaded area
represents false discoveries, that is the number of non-DE genes within positive calls.

We also investigated the control of FDR for different methods. Figure 2.10 plots
the reported FDR against the true FDR for each method. The reported FDR curves
from NanoStringDiff were close to true FDR curves. In contrast, the true FDR
from NanoStringNorm and DESeq2 were much smaller than the reported FDR. The
true FDR from edgeR was also much smaller than the reported FDR in most cases.
Therefore, those methods were over conservative, which partially explains the limited

number of true DE genes they could identify for a given FDR threshold.
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Figure 2.7: ROC curves comparing different methods. Curves were generated for
genes with average read count after adjusting background noise between 1 and 100.
Results were from data simulated based on four real data sets with 3 replicates.

For Busskamp data, NanoStringDiff provided good estimate of the FDR when the
sample size was 5 or 8. The FDR was inflated when the sample size was 3, due to the
inaccurate chi-square approximation in claculating p-values for the likelihood ratio
test (Figure 4.9).

Fot Teruel-Montoya data, NanoStringDiff provided better estimate of the FDR
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Figure 2.8: ROC curves comparing different methods. Curves were generated for
genes with average read count after adjusting background noise higher than 100.
Results were from data simulated based on four real data sets with 3 replicates.

compared to the other three methods. For the situation with 3 replicates, none
of NanoStringDiff, NanoStringNorm and DESeq2 provided satifying FDR estimate.
This is because the Teruel-Montoya data have large biological variations. Statistical

inference is more difficult under such situation, especially when the sample size is

very small. For NanoStringDiff, the small sample size led to inaccurate chi-square
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Figure 2.9: Bar charts for number of positive calls under a given FDR threshold
comparing different methods. Results were averaged across 100 datasets simulated
based on the four real data sets with 3, 5 or 8 replicates. For each simulation scenario,
three different FDR thresholds, 0.05, 0.1 and 0.2, were considered. The shaded area
represents false discoveries, i.e. the number of non-DE genes within positive calls.

approximations in claculating p-values for the likelihood ratio test (Figure 4.9). The
performance of NanoStringDiff improved as the number of replicates increased. The
estimated FDR from edgeR appeared to be close to the true FDR for the situation

of 3 replicates. However, the FDR estimate became conservative as the number of
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Figure 2.10: FDR estimation comparing different methods. Results were averaged
across 100 datasets simulated based on the four real data sets with 3, 5 or 8 replicates.

replicates increased.

Simulation results under secondary simulation setting

To demonstrate the robustness of our method to the distributional assumption for

the prior distribution of the log dispersion parameter, we considered a distribution-
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Figure 2.11: Number of positive calls for data simulated based on the four real
datasets when the log dispersion parameter was generated by randomly re-sampling
from the dispersions calculated from the real data

free method to generate the dispersions in our simulations, that is, the dispersion
parameter was randomly re-sampled from the dispersions calculated from the real
datasets. The other simulation settings remained the same. Figure 2.11 shows the

number of positive callings for a given FDR threshold using data simulated from the
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Figure 2.12: FDR estimation for data simulated based on the four real datasets
when the log dispersion parameter was generated by randomly re-sampling from the
dispersions calculated from the real data

four real datasets. These results have similar patterns as we presented under the
original simulation settings. NanoStringDiff was able to detect more true DE genes
than the other three methods. Figure 2.12 presents results about FDR estimation.

Similar to the original simulation settings, NanoStringDiff showed a better estimation
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of FDR than the other three methods. The reported FDR from NanoStringDiff was
very close to true FDR when sample size was 5 or 8. Both Figure 2.11 and Figure
2.12 indicate that NanoStringDiff is not sensitive to the assumption on the prior

distribution of the log dispersion parameter.

2.8 Real data analysis

We applied NanoStringDiff to the Horbinski data to identify miRNAs differentially
expressed between IDH1 mutant and GFP control. For methods comparison, we also
considered NanoStringNorm, DESeq2, edgeR, and NanoStriDE (Brumbaugh et al.,
2011), which is an online application to perform DE analysis for NanoString nCounter
data. NanoStriDE provided two options: DESeq and t-test. We considered both op-
tions with their default settings in our analysis. Choosing 0.01 as the FDR threshold,
NanoStringDiff identified 14 DE miRNAs, which are listed in Table 1. In contrast,
DESeq2 only identified 2 DE miRNAs (indicated by * in Table 1), both edgeR and
NanaStriDE with the DESeq option only identified 1 DE miRNA (indicated by * in
Table 1), neither NanoStringNorm nor NanoStriDE with the t-test option identified
any DE miRNAs.

Almost all the identified DE miRNAs were downregulated in IDH1 mutant, which
is consistent with the role of IDH1 mutation as a general suppressor of many genes via
promoter hypermethylation. Many of the DE miRNAs have been previously reported
to be related to glioma and/or other types of cancer. Agrawal et al.(Agrawal et al.,
2014) showed that miR-145-5p is upregulated in hypoxic glioblastoma cells. The

upregulation of miR-~145-5p is associated with more advanced colorectal cancer stage
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Table 2.1: Differential expression analysis results for Horbinski data. FDR threshold
was chosen as 1%. The table lists the 14 DE miRNAs identified by NanoStringDiff.
Two of those miRNAs (indicated by *) were also identified by DESeq2 and one of those
(indicated by T) was also identified by both edgeR and NanoStriDE with the DESeq
option. NanoStringNorm and NanoStriDE with the t-test option did not identify
any DE miRNA. The log, fold change quantifies difference in miRNA expression
comparing IDH1 mutant vs. wild type.

miRNA log, fold change qg-value
hsa —miR — 145 — 5p|0** -1.843 < 0.001
hsa — miR — 374a — 5p|0 -1.190 < 0.001
hsa —miR — 181a — 5p|0 -1.042 < 0.001
hsa —miR — 221 — 3p|0* -1.087 < 0.001
hsa — miR — 151a — 3p|0 -1.437 < 0.001
hsa —miR — 374b — 5p|0 -1.191 < 0.001
hsa — miR — 152|0 -2.438 < 0.001
hsa —miR — 29b — 3p|0 -1.136 < 0.001
hsa —miR — 130a — 3p|0 -0.885 < 0.001
hsa — miR — 361 — 5p|0 -0.982 < 0.001
hsa —miR — 93 — 5p|0 -0.802 < 0.001
hsa —miR — 143 — 3p|0.012 -1.032 0.0016
hsa — miR — 23b — 3p|0 -0.823 0.0023
hsa — miR — 142 — 3p|0 2.642 0.0060

(Slattery et al., 2014) and invasive breast cancer (Sun et al., 2014). miR-374a-5p
upregulation is associated with reduced risk of dying from colorectal cancer (Slattery
et al., 2014). miR-374b-5p contributes to gastric cancer cell metastasis and invasion
via inhibition of RECK expression (Xie et al., 2014). miR~181a-5p is elevated in triple
negative breast cancer and associates with chemoresistance (Ouyang et al., 2014). It is
also upregulated in gastric cancer, with positive correlation with lymph node invasion,
nerve invasion and vascular invasion (Chen et al., 2013). miR-221 is downregulated
in IDH1 mutant gliomas based on The Cancer Genome Atlas (Wang et al., 2013). It
promotes cell invasion and angiogenesis in human glioma cells (Zhang et al., 2012,

Yang et al., 2015). The upregulation of miR-221 is associate with poor prognosis
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in glioma (Zhang et al., 2012) and colon cancer (Tao et al., 2014). miR-152 was
known as a tumor suppressor in glioma stem cells (Ma et al., 2014, Yao et al., 2015),
and reduces glioma cell invasion and angiogenesis via MMP-3 (Zheng et al., 2013).
miR-23b-3p is upregulated in hypoxic glioblastoma cells (Agrawal et al., 2014). miR-
142-3p is heavily downregulated in glioblastoma-infiltrating macrophages. It induces
selective apoptosis in M2 macrophages via interacting with the transforming growth
factor beta receptor 1 pathway (Xu et al., 2014).

We selected the top 5 miRNA targets identified by NanoStringDiff listed in Table
1 to further confirm their DE patterns. The original total RNA samples used for
NanoString were analyzed by Q-PCR. Figure 2.13 presents results using S-actin, 18S
or U6 as the internal control. All five targets were validated by Q-PCR analysis. In
addition, in order to explore the false negative rate of NanoStringDiff, we selected
four miRNAs that were not significantly differentially expressed (non-DE) based on
NanoStringDiff and performed Q-PCR analysis to further confirm their non-DE pat-
terns. The 4 miRNAs were selected based on the following criteria: 1) large p-vlaues
by NanoStringDiff; and 2) expression level > 20. Figure 2.14 presents results using
[-actin, and all of the four targets were validated as non-DE by Q-PCR analysis.

We also compared the ranking of miRNAs based on different methods. We an-
alyzed Horbinshi data to identify miRNAs differentially expressed between IDHI1
mutant and GFP control using NanoStringDiff, DESeq2, edgeR, NanoStringNorm,
and NanoStriDE. For NanoStriDE, we considered two available options: DESeq and
t-test.

Figure 2.15 shows the intersections of the top 5 DE miRNAs identified by each
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Figure 2.13: microRNA validation using Q-PCR. Total RNA used for NanoString
was reversed transcribed to cDNA using specific miRNA primers from the TagMan
MicroRNA Assays and reagents from the TagMan MicroRNA Reverse Transcription
(RT) Kit. Individual miRNA expression levels were assessed by Q-PCR. Values were
normalized to [-actin (top panel), 18S (middle panel), or U6 (bottom panel) as
indicated and reported relative to GFP control. Experiments are depicted as the
mean relative miRNA expression + /- standard deviation based on at least triplicate
determinations. * indicates P < 0.05 based on a two-sample t-test. Q-PCR analysis
performed by Dr. Min Chen’s lab

method. The top 5 miRNAs ranked by NanoStringDiff, which were validated by
Q-PCR (Figure 2.13), were not all in the top 5 list for any of the other methods.

Since the top 5 miRNAs ranked by NanoStringDiff had been validated by Q-PCR,
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Figure 2.14: Non-DE microRNA validation using Q-PCR. Total RNA used for NanoS-
tring was reversed transcribed to cDNA using specific miRNA primers from the Taq-
Man MicroRNA Assays and reagents from the TaqgMan MicroRNA Reverse Tran-
scription (RT) Kit. Individual miRNA expression levels were assessed by Q-PCR.
Values were normalized to [-actin and reported relative to GFP control. Experi-
ments are depicted as the mean relative miRNA expression +/- standard deviation
based on at least triplicate determinations. All of the 4 miRNAs were non-DE based
on two-sample t-tests. Q-PCR analysis performed by Dr. Min Chen’s lab

they were considered as true positives. For those 5 validated DE miRNAs, DESeq2
had 4 of them, NanoStriDE with the DESeq option had 3 of them, edgeR had 1 of

them, and NanoStringNorm and NanoStriDE with the t-test option did not have any
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Figure 2.15: Intersections of top 5 ranked miRNAs based on NanoStringDiff, DESeq?2,
edgeR, NanoStringNorm, and NanoStriDE for the analysis of Horbinski data. The
figures were generated by using the upset package in R.

of them in their top 5 lists.

We also compared the top 20 ranked miRNAs from each method. The intersections
are presented in the Figure 2.16. None of the miRNAs was commonly identified by
all methods and each method had several miRNAs that were only identified by that
method alone. As the miRNAs rankings varied from one method to another, different

methods had different abilities in selecting most promising candidate miRNAs for
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further testing. Therefore, there were large variations in ranking miRNAs for the

methods we compared.
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Figure 2.16: Intersections of top 20 ranked miRNAs based on NanoStringDiff, DE-
Seq2, edgeR, NanoStringNorm, and NanoStriDE for the analysis of Horbinski data.
The figures were generated by using the upset package in R.

2.9 NanoStringDiff

NanoStringDiff is an R package, which is designed for differential analysis based on

NanoString nCounter data. NanoStringDiff consider a generalized linear model of
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the negative binomial family to characterize count data and allows for multi-factor
design. Data normalization is incorporated in the model framework by including
data normalization parameters estimated from positive controls, negative controls
and housekeeping genes embedded in the nCounter system. The present method use
an empirical Bayes shrinkage approach to estimate the dispersion parameter and a

likelihood ratio test to identify differential expression genes.

2.10 Availability

The proposed methods are implemented in an open source R package NanoStringDiff,
which is available at Bioconductor. The code for performing all the analyses in this
paper is available at http://sweb.uky.edu/~cwa236/NanoStringDiff/.

The NanoString nCounter data, referred to as the Horbinski data, are available

at Gene Expression Omnibus under accession number GSE80821.

Copyright© Hong Wang, 2016.

46



Chapter 3 A Beta-Binomial Model to Identify Genes with Altered

Mutation Rate in Cancer

3.1 Introduction

Cancer arises from somatically acquired genetic and epigenetic alterations. While
large consortia like The Cancer Genome Atlas (TCGA) (Collins and Barker, 2007)
and the International Cancer Genome Consortium (ICGC) (Hudson et al., 2010)
have profiled genomic somatic mutations of thousands of tumor samples from var-
ious cancer types based on whole-genome/exome sequencing (Network et al., 2015,
McLendon et al., 2008, Network et al., 2012, 2014), meaningful mechanistic interpre-
tation of these gene variation results are still very limited. One basic yet challeng-
ing task is to distinguish driver mutations, which are causally implicated in cancer
development, from passenger mutations, which occur randomly with neutral effect.
Tumor genomes contain from tens to thousands of somatic mutations. However,
the general understanding in the field is that only a few of them are driver muta-
tions. One approach of finding driver mutations/genes is to identify genes that have
different non-silent mutation rate compare to silent mutation rate. Lawrence et al
proposed a new cancer-associated gene search algorithm MutSigCV (Lawrence et al.,
2013). MutSigCV accurate accounting of mutational processes improve the accuracy
of identification of new cancer-associated genes.

One limitation of the MutSigCV is that it only can detect mutated genes with
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higher non-silent mutation rate compare to it’s background mutation rate. How-
ever, some mutated genes with lower non-silent mutation rate also play important
biological role. We developed a beta-binomial model-based approach to detect cancer-
associated genes while fully taking into account all the complexities that are ignored
by current methods. Specifically, our method, accounts for various types of variations
in mutation rate and adjusts for baseline covariates. We propose an empirical Bayes
shrinkage approach to estimate the dispersion parameter in the beta-binomial model

and a likelihood ratio test to identify differentially mutated genes.

3.2 Mutation Data Structure

We propose a novel statistical model to characterize mutation rates while taking into
account heterogeneity in mutational process. We classify mutations into three types:
1) non-silent; 2) silent and 3) non-coding mutation in the surrounding regions. We
add silent mutation and non-coding mutation together and treat the sum as back-
ground mutation. Our focus of interest is the mutation rate of non-silent mutations
after adjusting for the background (silent and non-coding) mutation rate. We also
follow the approach of Lawrence et al. (Lawrence et al., 2013) to classify muta-
tions into seven categories and assume a separate mutation rate for each category:
(i) transition mutations at CpG dinucleotides; (ii) transversion mutations at CpG
dinucleotides; (iii) transition mutations at C:G basepairs not in CpG dinucleotides;
(iv) transversion mutations at C:G basepairs not in CpG dinucleotides; (v) transition
mutations at A:T basepairs; (vi)transversion mutations at A:T basepairs; and (vii)

small insertions/deletions, nonsense and splice site mutations.
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In model building and parameters estimation section, we organized data in the
gene-category level. In the Hypothesis testing section, we consider data in gene level,
to detect mutated gene. Figure 3.1 shows a small part of mutation data arranged in
the gene-category level. Figure 3.2 shows the coverage data corresponding to Figure

3.1.

gene-cateory genename category samplel sample? sample3 sampled sample5 sampleé sample? sampled

AlBG-1 AlBG 1 0 ] ] 0 ) 0 0 0
AlBG-2 AlBG 2 0 0 0 0 ) 0 0 0
AlBG-3 AlBG 3 0 0 0 0 1) 0 1 0
AlBG-4 AlBG 4 ] ] ] o ) 0 1 0
AlBG-5 AlBG 5 0 0 0 0 1) 0 0 0
AlBG-B AlBG ] 0 ] ] 0 ) 0 0 0
ALBG-7 AlBG 7 0 0 0 o ) 0 0 0
AICF-1 ALCF 1 ] ] 1 0 ) 0 0 0
ALCF-2 ALCF 2 0 0 1 0 1) 0 0 0
ALCF-3 AlCF 3 0 ] ] 0 ) 0 0 0
ALCF-4 ALCF 4 0 0 0 o ) 0 0 0
ALCF-5 ALCF 5 ] ] ] 0 ) 0 0 0
ALCF-6 ALCF B 0 0 0 0 1) 0 0 0
ALCF-7 ALCF 7 0 0 0 0 ) 0 0 0
AZM-1 AZM 1 0 0 0 o ) 0 0 0
AZM-2 AZM 2 ] ] ] 1 ) 0 0 0
AZM-3 AZM 3 0 ] ] 0 ) 0 0 0
AZM-4 AZM 4 0 0 0 0 ) 0 0 0
AZM-5 AZM 3 0 0 0 o ) 0 0 0
AZM-B AZM B ] ] ] 0 ) 1 0 0
AZM-T AZM 7 0 ] ] 0 ) 0 0 0
AZMLI-1 AZML 1 0 1 0 0 ) 0 0 0
A2MLI-2 A2MLL 2 ] ] ] o ) 0 0 0
AZMLI-3 AZML] 3 0 0 0 0 1) 0 0 0
AZMLI-4 AZMLL 4 0 ] 2 0 ) 0 0 0
AZMLI-5 AZML1 3 0 0 0 o ) 0 0 0
AZMLI-B AZML B ] ] ] 0 ) 0 0 0

Figure 3.1: Example of mutation data at gene-category level

3.3 Data description

The following two real somatic mutation datasets were used to perform real data
analysis and generate simulation studies to evaluate the performance of our proposed

method in the next two chapters.
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gene-cateory genename category samplel sample2 sampled sampled sampleS sampleé sample? sampleg

AlBG-1 AlBG 1 23 25 26 26 23 24 24 25
AlBG-2 AlBG 2 36 41 42 42 37 37 39 41
AlBG-3 AlBG 3 110 114 116 115 113 112 114 115
AlBG-4 AlBG 4 112 115 118 116 116 114 116 117
AlBG-5 AlBG 5 29 28 29 29 29 29 29 29
AlBG-6 AlBG & 37 36 38 37 37 38 38 38
AlBG-7 AlBG 7 351 363 371 368 359 357 362 368
AICF-1 AILCF 1 5 5 5 5 5 5 5 5
ALCF-2 ALCF 2 12 12 12 12 12 12 12 12
ALCF-3 ALCF 3 7l 7l 73 73 72 73 73 73
ALCF-4 AILCF 4 72 72 72 73 72 72 73 72
ALCF-5 ALCF 3 114 115 115 116 115 114 116 115
ALCF-6 ALCF & 120 121 121 121 121 120 121 121
AICF-7 ALCF 7 397 400 402 404 402 399 404 402
AZM-1 AZM 1 15 15 15 15 15 15 15 15
AZM-2 AZM 2 23 23 23 23 23 23 23 23
AZM-3 AZM 3 247 247 248 247 248 248 248 248
AZM-4 AZM 4 230 230 232 230 232 232 232 231
AZM-5 AZM 3 223 222 224 223 224 224 224 223
AZM-6 AZM B 253 252 254 252 254 254 254 252
ALM-7 AZM 7 995 992 999 994 993 993 ] 945
AZMLI-1 AZMLL 1 17 17 17 17 17 17 17 17
AZMLI-2 AZMLL 2 31 32 31 32 31 32 32 32
AZMLI-3 AZMLL 3 253 252 253 252 250 253 253 253
AZML1-4 AZMLL 4 218 216 217 215 215 218 218 217
AZMLI-5 AZMLL 5 212 210 211 210 208 212 212 211
AZMLI-B AZMLL B 235 235 234 234 231 236 236 235

Figure 3.2: Example of corresponding coverage data at gene-category level

LUSC data set (Network et al., 2012): tumor samples were obtained from 178
patients with previously untreated stage IIV squamous cell lung cancer. Germline
DNA was obtained from adjacent, histologically normal tissues resected at the time of
surgery (n = 137) or from peripheral blood (n = 41). DNA and RNA were extracted
from patient specimens and measured by several genomic assays, which included
standard quality-control assessments.

LUAK data set: Appalachian Kentucky is home to the highest incidence rate
of lung cancer in the United States (108.48 per 100,000 (Collins and Barker, 2007)
compared to 55.50 per 100,000 nationally (Hudson et al., 2010)). In this Genomics

Research in Lung Cancer in Appalachia Study, Drs. Susanne Arnold and Chi Wang

20



Table 3.1: Percentage for mutation counts based on LUAK data set

Number of mutation Non-Silent Mutation Background Mutation

0 90.8% 74.8%
1 7.9% 17.6%
>=2 1.3% 7.6%

Table 3.2: Percentage for mutation counts based on LUSC data set

Number of mutation Non-Silent Mutation Background Mutation

0 73.5% 65.4%
1 18.4% 19.3%
>=2 8.1% 15.3%

at UK performed whole exome sequencing on matched tumor and normal tissue pairs
from 51 lung squamous cell carcinoma patients in Appalachian. Data anlaysis showed
that the number of somatic mutations identified varies dramatically across patients.
A patient could have as few as 10 mutations or as many as 1542 mutations. Similar
phenomenon was also observed from LUSC data.

Table 3.1 and Table 3.2 showed the component of the mutation data, we found
that mutation data is very sparse, less than 10% genes have more than 2 mutation
counts across all samples for non-silent mutation data. Extreme sparsity is a special
and major property for the mutation data, which presents challenge in model building

and data analysis.

3.4 The data model

Let Y. and 7y be the number and rate of mutations for gene g in category c¢ from
patient i, respectively. The number of mutations is a binomial random variable given

mutation rate:

quci |7Tgci ~ Binomial (Ngci7 Wgci)
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where N, is the number of possible sites for this mutation type and category
that have sufficient coverage in the sequencing data. Note background mutation and
non-silent mutation follow the same date model.

Due to biological variation, the mutation rates among patients from the same
treatment group are not identical. This results in the over-dispersion problem, where
the observed variation is larger than expected by the Binomial model. Figure 3.3
plot the estimated variance for the observed date against the variance predicted by
Binomial distribution. We found for each data set that the observed variance was
greater than the variance estimated if we assume the model is binomial distributed.

A common approach to address the overdispersion problem is to consider a Bayesian
Hierarchical model, where a Beta distribution is used to characterize the variation in

the underlying mutation rate:

Tgei ™ Beta(ugcia fgc)

Here the Beta distribution is parameterized with mean u,.; and dispersion parame-
ter fge. We assume all samples for one specific gene-category share the same dispersion
1—f 1—f

and = (1 —u) * :
S f

It can be shown that the marginal distribution of Y is a beta-binomial:

parameter. In common parameterization, o = u %

Y,ei ~ BetaBinomial(Nyei, Ugei, fge)

In order to adjust other important factors such as demographic and clinical co-
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Figure 3.3: plot the estimated variance for the observed date against the variance
predicted by Binomial distribution. The observed variance directly estimated using
function ”Var(.)” in R. The predicted variance estimated using formula derived from
Binomial distribution.

variates, we use generalized linear model to describe the data. To be specific, we

column bind background mutation data and non-silent mutation data together and

treat them as two groups, and we want to test if the difference of mean rate between

these two groups is equals to zero or not. The mean parameter ugy.; is specified based

on a generalized linear model with logit link function:
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ugci = X. T

log i
ge’
1-— ugci

where X represents the i*" row of the design matrix, which is a vector of covariates
that specifies the mutation type (background mutation and non-silent mutation) and
other clinical factors applied to sample i. B4 is a vector of regression coefficients
quantifying the covariates effects for gene ¢ category c. Let element B;c denote the
log odds of mean background mutation rate for gene ¢ in category ¢ and B;C is
corresponding log odds ratio of mean non-silent mutation rate compare to it’s mean
background mutation rate. The mutated gene can be detected by evaluating the
hypothesis Hy : 52, = 0, where (2, is the 2" element of Sy

Accurate estimation of the dispersion parameter plays an important role in mu-
tation detection. As we mentioned in the data description section, the most cases
of mutation data are too sparse to provide enough information to obtain accurate
estimates. From our first project, the shrinkage estimators have been shown to be
useful when the information is limited from data. Specifically, we consider an empir-
ical Bayes shrinkage method, which introduces a prior distribution for the dispersion
parameter and borrows information from the ensemble of genes and categories to
estimate the dispersion parameter for a specific gene-category. Figure3.4 show the
empirical distribution of log(f,.) for LUSC data set and LUAK data set

Motivated by empirical distribution from real data(Figure3.4), we choose Log-
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Figure 3.4: Histogram for the logarithm of estimated dispersions fy. from LUSC data
and LUAK data. The solid lines are density curves for normal distribution with
parameters estimated from log(f,.) . It can be seen that f,. can be approximately
modeled as a log-normal distribution.

normal distribution as prior. Thus, we consider the following prior:

fge ~ log-normal(m, %),

where m and 72 are hyper-parameters representing mean and variance for the normal

distribution respectively.
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To sum up, the hierarchical model we consider is as follows:

chi ~ BetaBinomial(Ngci, Ugei fg6>

u .
log —22— = x,57 3.1
og 1 — tye gc (3.1)

fye ~ log-normal(m, 7%).
3.5 Parameter estimation and differential detection analysis

Estimating hyper-parameters for the prior distribution of the dispersion

parameter

The estimation of hyper-parameters for the prior distribution of the dispersion pa-
rameter is not straightforward. First of all, we roughly estimate hyper parameters

and denoted as m” and 7" using a five step procedure. First step, we roughly estimate

—

the variance and mean mutation rate from the real data, and denote as Var(Y') and

U respectively. Second step, estimate the dispersion parameter using formula derived

—

Var(Y) — Nu(l — a)
Nu(l—a)(N —1)

from Beta Binomial distribution , that is f = , Where N is
corresponding coverage data. Third step, due to the sparsity of the mutation data,
we can observed some elements of f are negative, which means these data are not
beta binomial distributed, Therefore we estimate the proportion of this kind of data,
denote as p". Fourth step, we filter the dispersion parameter f using two criterion:

(1) f >0; and (2) at least have 2 mutation counts across all samples. Fifth step, after

filtering, we have a new dispersion vector ', and estimate mr = mean(log( f’)) and

T = Uar(log(f')).
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Since the simulation study showed that 7" overestimate the true value of 7. And
we consider if we know the true value of m; and 7, we can simulate pseudo data Y™*.
Using the above five steps methods, we can estimate proportion parameter p*, mean
parameter m* and variance parameter taus. Let d = [pr —ps|+|m" —ms|+|77+7%|. We
expect the true value of m and 7 can minimize the distance d, so we finally estimate
hyper parameters by minimizing the distance d, and denote as m and 7. Figure 3.5
shows the work flow for estimating hyper-parameters for the prior distribution of the

dispersion parameter.

Real data Find mandrt

l ,,

f Simulate pseudo data
h J
f p°, i, ¥
pl, M, T »| Minimizing the distance d

Figure 3.5: Work flow for estimating hyper-parameters for the prior distribution of
the dispersion parameter

Estimating model coefficients and dispersion parameter

The marginal distribution of Y, is BetaBinomial(Ngei, Ugeis foe), Where Nygitige; is

the mean and Nyeittgei (1 — Ugei) + Nyeittgei (1 — gei) (Ngei — 1) fge is the variance. The
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probability mass function is as follows:

B(k + tgeivge, Ngei — Kk + (1 — gei)Vge)

B(tgeivge, (1 — Ugei)Vge)

P(Yyei = k) = (M)

— fgc
f gc

where vy, = and B(.) is beta function.

To estimate f,., we consider its posterior distribution given Y., Ny and Bg.
In order to derive posterior penalize log likelihood function for f,. we assume a
log normal prior on the dispersion fy., e.g., fye ~ log-normal(m,7?), with density

function:

1 (log fyem)?*y.

p(fge) = W exp{— =535

Then the conditional posterior distribution for fy. given all the observed counts

and By, is:

p(fgc'%ciaﬁgc) X p(fgc) zp< gcz’fgc; gczaﬂgc)

Therefore,
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log{p(fgc|ygyci7 Ngci> 6gcvi - 17 ceey ’I’L)}
o 1og{p(foe)} + D Log{p(Yyeil fyer Nocis B9}
(S8 Z log B(}/gcz + ugcivgca Ngci - }/gci + (1 - ugci)vgc)

- Z 10g B(ugcivgca (1 - ugci)'Ugc)

log f,. —m)?
— % —log fgc — log T,

(3.2)

where log B(.) is the log beta function. Equation (3.2) can be viewed as a penalized

log likelihood function with penalty _ (ogfoem)? log fge. The first term in the

272

penalty, —W penalizing values that deviate far from the common prior m and

the second term adds an additional penalty for positive value of log f,.. Estimates
of hyper-parameters are plugged into Equation (3.2) and treated as constants. For
a given u,.;, we obtain the estimate of fy., denoted by fgc, by maximizing Equation
(3.2).

To estimate 4., we consider its likelihood function for a given fy.:

L(ﬁgc|fgca Ngcz’) X Hip(}/gci|fgc7 Bgca Ngci)7

therefor, the log likelihood function is:
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1og{L(Bye| fge: Ngei) }
x Z log{p(Yyei| fgcs Bges Nyei) }
x Z log B(Yygei + UgeiVge, Ngei — Ygei + (1 — Ugei)Vge)
— Z log B(tgeiVge, (1 — tgei)Vge),

(3.3)

exp(X;5..)
1 + exp(X; g;)

where uye; = . We obtain the MLE, Bgc by maximizing Equation

(3.3).

In this procedure, we first roughly estimate uy.; and plug it into Equation (3.2)
to obtain fgc. Then we plug fgc into Equation (3.3) to obtain Bgc. Second step is we
plug Bgc into Equation (3.2) to obtain fgc again and treat them as final estimation.
Then we plug fgc into Equation (3.3) again to update Bgc and treat them as final

estimation. Figure 3.6 shows the work flow of this procedure.

Hypothesis testing and false discovery rate

A Likelihood ratio test has been used for mutated gene detection. For each gene
category level, we compare the maximum of Equation (3.3) under the null hypothesis
versus that without any constraint, the chi-square approximation is used to obtain
a p-value. We consider two approach to obtain p-value for each gene: In the first

approach, for a given gene, we assume all categories are independent and the test

60



Roughly estimate g

Plug in
Equation 3.2 | Equation 3.2
Obtain fg s/ Obtain fg
. & .
l Plug in l Plug in
Equation 3.3 Equation 3.3
Obtain figc Obtain fgc

Figure 3.6: Work flow of estimating model coefficients and dispersion

statistic for that gene is the sum of the test statistics from all categories. Using the
feature of the chi-square distribution, the gene test statistic approximately follow
chi-square distribution with degree freedom is number of categories. The second
approach is minP method. For each gene, we order the category p-value from low
to high pay < p2) < ... < Pem), Where m is number of category. Then we assume
p1y ~ Beta(1,m) and obtain gene level p-value using Beta distribution.
For likelihood ratio multiple testing, the Benjamini and Hochberg procedure(Benjamini

and Hochberg, 1995) is used to calculation the false discovery rate (FDR), which pro-

vides a choice of a cutoff for statistical significance.
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Table 3.3: Differential mutation analysis results for highly mutated gene based on
LUSC data. Gene level p-value obtained using chi-square distribution. The table
lists the top 10 significantly mutated genes. Five of those mutated genes (indicated
by *) were also identified by MutSig

Gene p-value g-value
TP53" < 0.001 < 0.001
CSMD3 < 0.001 < 0.001
PIK3CA* < 0.001 0.029
TTN < 0.001 0.106
CDKN2A* < 0.001 0.111
MLL2* < 0.001 0.145

KEAP1* < 0.001 0.199
COL11A1 < 0.001 0.228
BAI3 < 0.001 0.243
RYR2 < 0.001 0.268

3.6 Real data analysis

The Cancer Genome Atlas Research Network using a modified version of the MutSig
algorithm to identify mutated genes associate with squamous cell lung cancers based
on LUSC data.(Network et al., 2012) Choosing 0.01 as the false discover rate(FDR)
threshold, they identified 10 significantly mutated genes: TP53, CDKN2A, PTEN,
PIK3CA, KEAP1, MLL2, HLA-A, NFE2L2, NOTCH1 and RB1. Those mutated
gene have significantly higher non-silent mutation rate compare to it’s background
mutation rate. For method comparison, we also applied our method to LUSC data
to identify significantly mutated genes with higher mutation rate. We rank the genes
by FDR and p-value, then we pick top 10 genes list in Table 3.3 and Table 3.4 based
on two different p-value adjust approaches.

As we mentioned before, MutSig only can identify mutated gene with higher
mutation rate. However, the genes with significantly lower mutation rate also play

specific and important role in cancer development. Based on LUSC data, we identify
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Table 3.4: Differential mutation analysis results for highly mutated gene based on
LUSC data. Gene level p-value obtained using minP method. The table lists the top
10 significantly mutated genes. Five of those mutated genes (indicated by *) were
also identified by MutSig

Gene p-value g-value
T P53* < 0.001 < 0.001
CSMD3 < 0.001 < 0.001
PIK3CA* < 0.001 0.002
TTN < 0.001 0.009
MLL2* < 0.001 0.024

COL11A1 < 0.001 0.03
CDKN2A* < 0.001 0.054

BAI3 < 0.001 0.107
RB1* < 0.001 0.181
TPTE < 0.001 0.187

Table 3.5: Differential mutation analysis results for lowly mutated gene based on
LUSC data. Gene level p-value obtained using chi-square distribution. FDR threshold
was chosen as 5%

Gene p-value  g-value
OR2L13 < 0.001 < 0.001
ZNF595 < 0.001 < 0.001
RMNDSA < 0.001 < 0.001
NACA < 0.001 <0.017
POTEH < 0.001 <0.017
PLEKHB2 < 0.001 < 0.019
Marl <0.001 <0.02
PSG6 < 0.001 < 0.029

Table 3.6: Differential mutation analysis results for lowly mutated gene based on
LUSC data. Gene level p-value obtained using minP method. FDR threshold was
chosen as 5%

Gene p-value g-value
OR2L13 < 0.001 < 0.001
ZNF595 < 0.001 < 0.016

lowly mutated genes and list result in Table 3.5 and Table 3.6 based on two different

approaches. FDR threshold was chosen as 1% .

Copyright© Hong Wang, 2016.
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Chapter 4 A Beta-Binomial Model to Compare Somatic Mutation Rates

Between Groups of Cancer Patients

4.1 Introduction

whole exome sequencing (WES) provides a powerful approach to profile somatic gene
mutations in cancer genomes. A fundamental question in the analysis of WES data
is how to compare somatic mutation patterns between groups of patients with vary-
ing characteristics such as geographic region, tumor stage, or response to therapy.
Mutational processes are complex and stochastic processes, which affected by a lot
of factors, including patients, treatments and environment. As show in Figure 4.1,
mutation rate different across different categories, different patients and different
groups.

Currently, the most frequently used statistical method for differential analysis
between two groups is the Fisher’s exact test (Ellis et al., 2012). One major limita-
tion for using the Fisher’s exact test to compare somatic mutation patterns between
groups is that it assumes a constant mutation rate for patients from the same group.
However, as shown in Figure 4.1, mutation rates are highly variable within different
category and patients. In addition, Fisher’s exact tests, do not recognize different
types of mutations, e.g. transition vs. transversion, that have different mutation
rates, do not account for the background mutation rate, and do not adjust for demo-

graphic and clinical covariates. The Fisher’s exact test oversimplifies the comparison
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Figure 4.1: Plot mutation rate against different samples for one selected gene from
LUSC data set and LUAK deata set

problem and may lead to less than optimal results.

We developed a beta-binomial model-based approach to compare somatic muta-
tions between patient groups while fully taking into account the complexities that are
ignored by current methods. Specifically, our method, named MutDiff, accounts for
various types of variations in mutation rate, normalizes data based on background

mutation rate, and adjusts for baseline covariates. We propose an empirical Bayes
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shrinkage approach to estimate the dispersion parameter in the beta-binomial model
and a likelihood ratio test to identify differentially mutated genes. Our method is
applied to a squamous cell lung cancer genomic study to identify unique somatic
mutation patterns in Appalachian Kentucky, which has the highest lung cancer rate
in the nation, by comparing mutation rates between Appalachian samples from the

study and non-Appalachian samples from The Cancer Genome Atlas.

4.2 Data description

In this chapter, we compared Appalachian samples (LUAK data) to non-Appalachian
samples (LUSC data) from The Cancer Genome Atlas (TCGA) to identify genomic
alteration patterns that are unique to patients in Appalachian Kentucky. Real data
analysis and simulation study all based on these two data sets. The detail description
about LUAK data and LUSC data presented in chapter 3, real data description

section.

4.3 The data model

In this chapter, we still using beta binomial distribution to describe the number of
mutation, let Y. and w4 be the number and rate of mutations for gene g in category

c from patient 7, respectively. We have

Y,ei ~ BetaBinomial (N gei, Ugei, fge),

where N, in corresponding sequencing coverage data and f,. is dispersion pa-
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rameter to address over-dispersion problem caused by mutational heterogeneity and
biological variation.

For two group comparison, the model also can adjust other important demo-
graphic and clinical factors such as smoking status, we use generalized linear model
to describe the data, the mean parameter u, is specified based on a generalized

linear model with logit link function:

u .

gce - X T

log 1 - 7 gc’
- ugci

where X is design matrix with intercept column as first column and X; represents
the " row of the design matrix, which is a vector of covariates that specifies the
treatment conditions applied to sample 7. [, is a vector of regression coefficients
quantifying the covariates effects for gene g category c.

We consider a simple example without any other covariates, we have two groups
with sample size are 2 and 3 respectively. In this example, we have four data sets:
groupl background mutation data, group2 background mutation data, groupl non-
silent mutation data and group non-silent mutation. We column bind these four data
sets in data analysis, correspondingly we have 4 elements in the (3, vector, that is
Bge = (Bger Bier Birer Bae)- Bge represent the log odds of background mean mutation rate
for groupl; B;C represent the log odds ratio of background mean mutation rate for

group?2 compare to groupl; SC represent the log odds ratio of non-silent mean mu-

tation rate for groupl compare to it’s background mean mutation rate; gc represent
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the difference of log odds ratios. Note that the first 4 elements in the S, vector are
fixed. If we want to adjust other covariates, we can extend 3 from the fifth element.

The design matrix is as follows:

1 111

Letting (ug,, u2,., ud., uy.) represent mean mutation rate for groupl background

mutation data, group2 background mutation data, groupl non-silent mutation data

and group2 non-silent mutation data respectively, we have
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1
gc

Bae + B2,

1 3
gc + Bgc

1 2 3
gc+ﬂgc+ gc T

4

ger

Then, we can derive gc as the difference of log odds ratios:

4
gc

The differential mutation(DM) pattern analysis can be performed by evaluating

Shrinkage estimators have been shown to be useful when the information is lim-

the hypothesis Hy : 3,

= 0, where f;

ey
1-— gc
B _y_q
1 gc
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. is the 4™ element of 3,..

ited from data. In the two group comparison project, we still consider an empirical
Bayes shrinkage method , which introduces a prior distribution for the dispersion

parameter and borrows information for the estimate dispersion parameters by bor-



rowing information from other genes. Motivated by empirical distribution from real
data(Figure3.4), we choose a Log-normal distribution as prior. Thus, we consider the
following prior:

fge ~ log-normal(m, 7%),

where m and 72 are hyper-parameters representing mean and variance for the normal
distribution respectively.

A key challenge in analysis of mutation data is the data sparsity and the limitation
of sample size. The common phenomenon observed from real data set is that there
is no any mutation for one gene across all samples. In this case, it is impossible to
obtain stable and accurate mean estimators only using information from this gene,
it is often useful to combine information from other genes to improve the estimation.
We again employ an empirical Bayes procedure and choose normal distribution as
prior motivated by naive estimators from real data(Figure 4.2) . Thus, we consider

the following prior:

Bge ~ Normal(Ug, X)),

where U = (uq, ug, us, uy) and 3 are hyper-parameters representing mean vector and
variance covariance matrix for the normal distribution, respectively. We assume ' s

are independent, so the variance covariate matrix ¥ has the form
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o2 0 0 0
0 62 0 0
0 0 o2 0
0 0 0 o2

To sum up, the hierarchical model we consider is as follows:

Y,ei ~ BetaBinomial(Nyei, Ugei, fgc)

Ugei T
log 1— - X’L gc

~ Yge (4.1)
fge ~ log-normal(m, 72)

Bge ~ Normal(Uge, ).

gc)H

4.4 Parameter estimation and differential detection analysis

Estimating hyper-parameters for the prior distribution of the dispersion

parameter

We used the same method and five step procedure described in chapter 3, to esti-
mate the the hyper-parameters for the prior distribution of the dispersion parameter.

Figure 3.5 show the work flow for this method.

Estimating hyper-parameters for the prior distribution of the 5 coefficients

As we mentioned before, 52 and 3% are log odds ratio and 3% is the difference of the
log odds ratios, so they are zero centered, we set us = uz = uy = 0. Estimating u; is

straightforward. First, we roughly estimate coefficients and denote as Bl, BQ, 53 and

71



b A

[ | T T T 1 [ T
-3 -12 -11 -10 -9 -8 -7 -3 -2 -1
a

i\ o~

L

[ I I 1
-4 -3 -2 -1 0 1 2 3

O o

Figure 4.2: Histogram for the estimated mean parameters using LUAK data and
LUSC data. Histogram (a) represent the log odds of mean silent mutation rate for
LUAK data; Histogram (b) represent the log odds ratio of mean silent mutation rate
for LUSC data compare to LUAK; Histogram (c) represent the log odds ratio of
mean non-silent mutation rate for LUAK data compare to it’s mean silent mutation
rate; Histogram (d) represent the log odds ratio of mean non-silent mutation rate
for LUSC data compare to it’s mean silent mutation rate; The solid lines are density
curves for normal distribution with parameters estimated from mean parameters. It
can be seen that these mean parameters can be approximately modeled as a normal
distribution.

3*. And then we estimate 1) = mean(3%).
In order to get robust estimators against outliers, we using quantile matching

procedure to estimate the prior variance of the [ coefficients. For zero centered
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coeflicients, we use the (1-p) empirical quantile of the observed absolute value of 3;
which matches the (1-p/2) theoretical quantile of the prior, N(u;,0;), where j =
2,3,4 and set P = 0.05 by default. If we denote the empirical upper quantile of the

observed absolute value of Bj as Q|pi|1—p) and the theoretical quantile of a normal

1-p

distribution as Z(;_,/2)0;, then the prior variance is calculated as:

_ Q1o 55y

O'.
’ Z(l—p/Q)

Since (! is not zero centered, we using the (1-p) empirical quantile of the observed

Qp11-p)

; matches the (1-p) theoretical quantile of the prior, then calculate oy = Za
-p

Estimating model coefficients and dispersion parameter

The marginal distribution of Y,; is BetaBinomial(Nye;, tgei, foe) with the probability

mass function is as follows:

B(k + UgciVgces Ngci —k + (]- - ugci)vgc)

PV = 1) = ()

" B(ugeivge, (1 — tgei)vge)
1- c . . . . . .
where v, = o and B(.) is beta function. The likelihood function for f,. is:
gc
L(/Bgc|Ngci7 fgc) X Hip(ytqci|Ngci7 fgca Bgc)- (42)

We assume a log normal prior on the dispersion f,., then we derive the penalize

log likelihood function(Detail steps described in chapter 3):
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log{p(fgct|ygyctia Ngctia ﬁgca 1= ]-7 sy TL)}
o log{p(fget)} + Z log{p(Yyetil fget, Nycti» B9) }
X Z log B<qucti + ugctivgch Ngcti - }/gcti + (1 - ugcti)vgct)

- Z lOg B(”gctivgcta (1 - ugcti)vgct)

log foet — my)?
- ( 922_2 t) - log fgct - 1Og Tt,
i

(4.3)

Estimates of hyper-parameters are plugged into Equation (4.3) and treated as
constants. For a given ug,, we obtain the estimate of f,c by maximizing Equation
(4.3).

To estimate 3,4, we need consider its posterior distribution given Y., Ny and
fge- In order to derive posterior penalize log likelihood function for §,. we assume

normal distributions as prior , e.g., Bgc ~ Normal(Uge, )., with density function:

1 C_Ugc 2
p(ﬁgc) = \/ﬁexp{_%}'

Then the conditional posterior distribution for S, given all the observed counts

and fg. is:

p(ﬁgcnfgm‘a Ngcifgc) X p(ﬁgt:)Hip(l/gci’ﬁgc; fgc; Ngm')‘

Therefore,
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1Og{p(6gc|ytqci; Ngcz‘a fgc»i - 17 ceey n)}
o< log{p(Bye)} + Z log{p(Yycil fge, Ngei> Bg) }
X Z 10g B(}/gcz + ugcivgca Ngci - }/gci + (1 - ugci)vgc)

- Z 10g B(ugcivgca (1 - ugci)'Ugc)

(log By, — u1)?

— 557 — log oy
1
(log B2.)?
T gz logon
2
(log 33.)*
T T2 loeos
3
(log 33,)*
4

(4.4)

Equation (4.4) can be viewed as a penalized log likelihood function with penalty

(log B3, —u1)? (log 82,.)? (log 83.)*

log 82.)? .
— 55— —logoy —— 3 —log oy — — %~ —log o3 — % —log o4. Estimates
1 2 3 4

of hyper-parameters are plugged into Equation (??) and treated as constants. For
a given fg., we obtain the estimate of ,., denoted by Bgc, by maximizing Equation
(4.4).

We used the same procedure we described in chapter 3 to estimate model coeffi-
cients and dispersion parameter iteratively. We first roughly estimate ug.; and plug
it into Equation (4.3) to obtain f,. and plug into Equation (4.4) to obtain f,.. In the
second step, we put Bgc back into Equation (4.3) to obtain fgc again and treat them

as the final estimation. Then we put fgc into Equation (4.4) again to update Bgc and

75



treat them as the final estimation.

Hypothesis testing and false discovery rate

We still consider a likelihood ratio test for differential mutation pattern detection.
For each gene category level, we compare the maximum of Equation (4.2) under the
null hypothesis versus that without group constraint. The hypothesis test for gene g

category c is straightforward:

Hy: By, =0

H,: ﬂgc # 0.

To obtain p-value for each gene, we assume all categories are independent and
sum the test statistics together for each gene, and assume that the summation ap-
proximately follows a chi-square distribution with the degree of freedom is equal to
the number of categories.

For likelihood ratio multiple testing, the Benjamini and Hochberg procedure(Benjamini
and Hochberg, 1995) is used to calculate the false discovery rate (FDR), which pro-

vides a choice of a cutoff for statistical significance.
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4.5 Simulations

Simulation setting

We performed comprehensive simulation studies to evaluate the performance of our
MutDiff method and to compare with Fisfer’s exact test that is the most frequently
used statistical method for differential analysis between two groups. For Fisher’s exact
test, we ignore coverage data set, silent mutation data set and only focus on non-silent
mutation data set for each group. For each gene, the test compares the proportions
of patients with non-silent mutations in that gene between the two groups.

To evaluate differential mutation pattern detection under known truth, and to
conduct the comparison under realistic scenarios encountered in experiments, simu-
lated data were generated based on a model (4.1) using parameters estimated from
the two real datasets described above. We focused on the two-group comparison
situation and simulated two group of data based on two real data sets respectively.
To be specific, we simulated group 1 mutation data and coverage data for both non-
silent and background mutation data based on parameters estimated from LUAK
data; We simulated group 2 mutation data and coverage data for both non-silent and
background mutation data based on parameters estimated from LUSC data.

Expressions of 5000 genes with their categories were generated from

Y,ei ~ BetaBinomial(Nyei, Ugei, fgc),

for two groups, where model parameter values were set based on two real datasets.
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Coverage data Ny, were randomly generated from a Poisson distribution. Specif-
ically, for groupl, we obtain N, ~ Poisson()\}) for background coverage data,
Ny ~ Poisson(A]) for non-silent coverage data, where A} and A{ were calculated
from LUAK background mutation coverage data and non-silent mutation coverage
data respectively. Here 0 denotes background data and 1 denotes nonsilent data.
For group2, we get Ny ~ Poisson(A3) for silent coverage data, Ny ~ Poisson(A3)
for non-silent coverage data. Again, A3 and A\? were calculated from LUSC back-
ground mutation coverage data and non-silent mutation coverage data respectively.
The mean parameter, u,.;, was randomly re-sampled from the parameters calculated
from the real datasets for each group. We considered 5% genes as truly differen-
tially mutated with the log odds ratio randomly generated from a mixture distri-
bution 0.5N(4,0.5) + 0.5N(—4,0.5). For the log dispersion parameter, f,., we use
a normal distribution with distribution parameters calculated from real data. Ex-
plicitly, we obtained f,o ~ LogN(—10.68,2.75%) for background mutation data,
foer ~ LogN(—10.68,3.63%) for non-silent mutation data. We considered 100 sim-
ulations for each simulation scenario.

In the simulation study, we considered the simulation settings with non-consistent
category mutation rate for differential mutation gene. Explicitly, for one specific DM
gene, we randomly selected some categories with non-silent mutation rate from groupl
higher than those from group2, but the other categories on the opposite way. The

non-silent mutation rate all adjusted by their own background mutation rate.
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Simulation results

We first evaluated the estimation of dispersion parameters. Figures 4.3 and 4.4 show
the estimated versus true dispersions for background mutation and non-silent mu-
tation based on two simulated datasets. Our empirical Bayes shrinkage estimator
tracks the real dispersion for gene-category levels with higher mutation counts. For
gene-category levels with lower mutation counts, the dispersion parameter estimates
were shrunk more towards the average dispersion, because there was little information

about dispersion for those gene-category levels in the data.

1 2 3 4).

We next evaluate the estimation of coefficient parameters By = (B,., Boc: Bocs Bye

Figure 4.5(a) plots the estimated log odds of background mean mutation rate for
groupl against it’s true value. Figure 4.5(b) plots the estimated log odds ratio of
background mean mutation rate for group2 compare to groupl against it’s true value;
MutDiff provides accurate estimation of those parameters. Figure 4.5(c) plots the es-
timated log odds ratio of non-silent mean mutation rate for groupl and background
mean mutation rate against it’s true value. Figure 4.5(d) plots the estimated differ-
ence of log odds ratio. As expected, the plot has three separate parts, one part is
zero centered non-differential mutated gene-category levels and the other two parts
are truly differentially mutated with the log odds ratio randomly generated from a
mixture distribution 0.5N(—4,0.5) 4+ 0.5N(4,0.5).

We then evaluate the estimation of mean mutation rate for both non-silent and
background mutation data based on two simulated datasets. Figure 4.6 shows the

estimated versus true mean mutation rate. The plot shows that the estimated mean
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Figure 4.3: Estimation of dispersion based on background mutation data

mutation rate track the true value well especially for the non-silent mutation rate.
An important task of differential mutation pattern analysis is to rank genes based
on their evidence of being differentially mutated. From this point of view, the ability
to have as many true positives as possible in the top-ranked genes is a critical part
of evaluating the performance of a method. We first compared the number of true
differential mutation genes identified for a given top ranked genes (150, 200, or 250)

between different methods. As shown in Figure 4.7, MutDiff perform well to have
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Figure 4.4: Estimation of dispersion based on non-silent mutation data

as many true positives as possible in the top-ranked genes compare to Fisher’s exact
test. To be specific, top 150 genes ranked by MutDiff include 148 true DM genes,
top 200 genes include 196 true DM genes and top 250 genes include 217 true DM
genes.The including true DM genes increase smoothly as rank increase. Note that
we have 250 true DM genes in the simulated dataset, around 86.8% true DM genes
include in top 250 genes ranked by MutDiff and around 67.7% true DM genes include

in top 250 genes ranked by Fisher’s exact test.
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Figure 4.5: Estimation of coefficients

In practice, DM genes are often declared based on a user-specified FDR threshold.
Given the threshold, a powerful method is expected to identify as many true DM genes
as possible. We compared the number of DM genes identified under a given FDR

threshold (0.005, 0.01, 0.05, 0.1 or 0.2) between two methods. As shown in Figure
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Figure 4.6: Estimation of mean mutation rate

4.8, MutDiff detected more true DM genes than Fisher’s exact test. The colorful bars

represent DM genes identified by different methods, and the shaded area represents

false discoveries, that is the number of non-DM genes within positive calls.

4.6 Real data analysis

We applied MutDiff to identify novel somatic mutation patterns that are unique to

squamous cell lung cancer patients in Appalachian Kentucky by comparing mutations
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Figure 4.7: Bar charts for number of true differential mutation pattern for a given
top ranked gene. Results were averaged across 50 datasets simulated based on the
real data with 100 replicates.

between Appalachian (LUAK data) and non-Appalachian (LUSC data) samples.For
methods comparison, we also considered Fisher’s exact test. We compared the top
10 genes identified by each method and found only one gene that were identified by
both method. Figure 4.9 shows that MutDiff and Fisher’s exact test have different

ranking mechanism. We will further explore the biological meaning and function for
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Figure 4.8: Bar charts for number of positive calls under a given FDR threshold
(0.005, 0.01, 0.05, 0.1 or 0.2) comparing different methods. Results were averaged
across b0 datasets simulated based on the real data sets with 100 replicates. The
shaded area represents false discoveries, i.e. the number of non-DE genes within
positive calls.

these genes to evaluate whether our method is able to identify more biologically and
clinically-relevant genes to squamous cell lung cancer and whether the Fisher’s exact

method tends to make more false positive calls.
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Figure 4.9: Gene level p-value obtained from MutDiff against gene level p-value from
Fisher’s exact test.

Copyright©® Hong Wang, 2016.
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Chapter 5 Discussion

5.1 Discussion for project based on NanoString nCounter data

NanoStringDiff offers a comprehensive and general framework to characterize NanoS-
tring nCounter data and to detect DE genes for both simple and complex experi-
mental designs. As a method specifically designed for nCounter data, it utilizes a
negative binomial-based model to fit the discrete nature of the data and incorporates
several normalization parameters in the model to fully adjust for platform source of
variation, sample content variation and background noise. Simulation and real data
analyses results show that this new method outperforms the existing methods in DE
detection.

The choice of housekeeping genes is a crucial part of the experimental design. It is
expected that those housekeeping genes are stable in their expression levels, that is,
the observed read counts should not vary much across samples or replicates. In real
data analysis, however, this is not always the case. We therefore recommend checking
the variation of housekeeping genes, removing those showing large variation, prior to
estimating housekeeping size factor. One possible approach is to use only the top
three housekeeping genes with the smallest variation to calculate the housekeeping
size factor. Further investigation of this issue to develop an optimal approach to
select and use housekeeping genes will be very important.

We first choose a normal distribution as the prior for the log-dispersion parameter.
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Our model appears to be robust to this specification. In simulations where the disper-
sions were generated by randomly re-sampling from the dispersions estimated from
the real data, our method still provided satisfactory results in terms of the number
of positive calls and FDR control.

The NanoStringDiff is computationally more intensive than NanoStringNorm, DE-
Seq2, and edgeR. In order to adjust the effect of background noise, we assume the
distribution of read count is the convolution of a negative binomial and a Poisson dis-
tribution, which introduces a summation from zero to the observed read count within
the log operator in Equation (2.4) and makes the algorithm more time consuming.
This is not a big issue when the observed read counts are not too large. But when
many of the observed counts are larger than a thousand, the algorithm can be slow.
Developing an approximation approach to enable faster calculation of Equation (2.4)
is an objective of our future research.

The likelihood ratio test in our algorithm utilizes a chi-square approximation to
calculate p-values. The performance of this approximation was evaluated in Figure
4.9, where we plotted the reported type I error rate against the true type I error rate
based on simulated data. When the sample size was not very small or the biological
variation was not large, the reported type I error rate was close to the true value,
suggesting the approximation was accurate. However, when the sample size was
very small and the biological variation was large, the reported type I error rate was
smaller than the true value. Therefore, the approximation led to an inflated type
I error rate under such situation. As a result, the FDR was also inflated, making

our method anti-conservative. An important topic for future research is to develop a
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correction method to improve the performance of the chi-square approximation under

such situation.

5.2 Discussion for projects based on mutation data

In the proposed study, we harness state-of-the-art statistical and bioinformatics tech-
niques to address the gap in differential analysis of somatic mutation data from WES.
We are the first to propose a comprehensive statistical model to rigorously account
for the background mutation rate and various sources of variation in mutation data.
One important source of variation is the biological variation in mutation rate for
patients within a certain group, which is characterized by a gene-specific dispersion
parameter in our model. Due to the small sample size and limited number of mu-
tations in each gene, estimation of the dispersion parameter can be unstable. We
therefore propose an empirical Bayes shrinkage method to borrow information from
the ensemble of genes, which can provide more stable estimation of the dispersion
parameter and mean parameter about each gene individually. To our knowledge, this
is the first time this method will be used for somatic mutation differential analysis.
Our project will have great translational potential. Our short-term goal is to
continue to build collaborations with clinician scientists as well as molecular epi-
demiologists. For example, we may discover novel markers amenable for targeted
treatment. In collaboration with clinicians, our findings can shed light on potentially
more appropriate and personalized strategies for therapeutic interventions in the Ap-
palachian KY population that can be developed into clinical trials. Collaborations

with a molecular epidemiologist will allow development of population-based studies
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and interventions within the community:.

The likelihood ratio test in our algorithm utilizes a chi-square approximation to
calculate p-values. However, we estimate the mean parameters using empirical Bayes
shrinkage method to borrow information from other genes and shrink the parameters
to the prior mean. In this case, the chi-square distribution might not be an appro-
priate model to describe the test statistics form likelihood ratio test. As a result,
the type I error and false discovery rate can’t control well in the algorithm. An im-
portant topic for future research is to develop a correction method to improve the
performance of the chi-square approximation under such situation. An alternative
approach is to use Wald test to calculate the p-values in the project.

Mutational processes is a complex processes, there are three main types of hetero-
geneity associate within this process: heterogeneity across patients in the same group,
heterogeneity in the mutational spectrum of the tumor and regional heterogeneity
across the genome. In our algorithm, we considered the first two heterogeneities. To
be specific, we developed a beta-binomial model-based approach to compare somatic
mutations between patient groups accounts for various types of variations in mutation
rate, normalizes data based on background mutation rate, and adjusts for baseline
covariates. However, in this project, we haven’t consider the regional heterogeneity
across the genome. Gene expression level and replication time are two important
factors in explaining the regional heterogeneity. An important step in the future
study is try to consider regional heterogeneity and include gene expression level and
replication time in the model framework.

The MuDiff is computationally more intensive than Fisher’s exact test. For each
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gene, the Fisher’s exact test compares the proportions of patients with non-silent
mutations in that gene between the two groups, which oversimplifies the comparison
problem and may lead to less than optimal results. We propose a beta-binomial
model-based approach to compare somatic mutation patterns between two groups
while fully taking into account the complexities that are ignored by the Fishers exact
test and provides more accurate and powerful results in differential mutation pattern
detection in cost of time consuming. Developing an approximation approach to enable
faster calculation is an other objective of our future research.

In our algorithm, we using empirical Bayes shrinkage method to estimate mean
parameters and and shrink the parameters to the prior mean. Based on the current
design matrix used in the algorithm, the order of the dataset is fixed. To recover
the symmetry problem between all levels, the future work will consider an alternative
approach to introduce an expanded design matrix, which include an indicator variable
for each level of each factor, in addition to an intercept column.

The method proposed in this project tries to detect differential somatic mutation
patterns and/or driver mutations at the gene level. Due to the low mutation rates
in most genes, the power of the differential analysis is limited. As genes are usually
involved in biological pathways, an extension of our work is to perform differential
mutation analysis at the pathway level. As a pathway contains a set of genes, its mu-
tation rate is much higher than individual genes. Therefore, the differential pathway

analysis is likely to yield higher power to detect biologically interesting patterns.

Copyright© Hong Wang, 2016.
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Appendix

Main Functions in the first project

R function glm.LRT

glm .LRT <—_function (NanoStringData , _design. full ,_Beta_.=_ncol(design. full
) ,-contrast .=_NULL) _{

c.=.positiveFactor (NanoStringData)
d_.=_housekeepingFactor (NanoStringData)
ko=ccoxed

lamda_i_=_negativeFactor (NanoStringData)

if_(length(k).=—_0)_{
stop (" Before_calling .function _glm.LRT, _should_get_normalization.factors.

\n

first .using._function_.estNormalizationFactors”)

}

Y_=_exprs(NanoStringData)

Y _n.—.sweep(Y, .2, lamda_i, FUN_=."-")
Y_nph.=_.sweep(Y_n, .2, .k, FUN.=." /")
Y_nph[Y_nph.<=_0] .=.0.1

X. full .=.design. full
nsamples.=.ncol (Y)
Beta.names.=_colnames (design. full)

result . full =_glmfit. full (NanoStringData , _design. full)
Beta. full =_result. full$Beta. full

U. full .=_result. full $mean. full
phi.hat_=_result.full$dispersion

df. full =_result . full$df. full

mO_=_result . full $m0

sigma_=_tesult . full $sigma

V. full .=_sweep (U. full , .2, .k, FUN.=."%")

## _Make_reduced _design_matrix.

##_Here_we_borrow_the_idea_from_paskage_edgeR_to_make_reduced._design.
matrix

if (is.null(contrast)).{

if _(length (Beta).>_1)

Beta_.=_unique (Beta)

if_(is.character (Beta))._{
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check . Beta_=_Beta_%in%.Beta.names

if .(any(!check.Beta))

stop (? The_name(s)._of _Beta_arguments_do_not._match_the_\n
name(s)_of .the_.design_matrix.”)

Beta.=.match (Beta , .Beta.names)

}

logFC_=_Beta. full [, _.Beta,_drop.=_FALSE] /log (2)
}oelse o {

contrast.=.as.matrix(contrast)
qrco=.qr(contrast)

ncontrasts._.=_qrc$rank

if _(ncontrasts.=—._0)
stop (”Need.at._.least _one_none._zero.contrast”)

Beta_.=_1l:ncontrasts

if .(ncontrasts_<.ncol(contrast))
contrast.=.contrast[,.qrc$pivot [Beta]]

logFC _=_drop ((Beta. full “%+%_contrast)/log(2))
Dvec_=_rep.int (1,_nsamples)
Dvec[Beta] .=_diag(qrc$qr) [Beta]

Q.=.qr.Q(qrc,.complete =_TRUE, .Dvec.=.Dvec)
design . full =_design. full %%.Q

}

design.reduce_=_design. full [, _—Beta, _drop .=_FALSE]

if .(ncol(design.reduce).—.1).{

result .reduce_=_glmfit .OneGroup (NanoStringData , .m0, .sigma , .phi.hat)
}oelseo{

result .reduce.=_glmfit.reduce (NanoStringData ,_design.reduce ,.m0, _sigma , .
phi.hat)

}

Beta.reduce_=_result .reduce$Beta.reduce
U.reduce._=_result .reduce$mean.reduce
df.reduce_=_result.reduce$df.reduce

V.reduce._=_.sweep (U.reduce , .2, .k, FUN.=."%")
get.loglikelihood .<—_function (dat)_{
y-=.dat [1:nsamples]

Ey._=.dat [nsamples.+.(1:nsamples) ]
phi.=_dat[2 _x_.nsamples. +_1]
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93 alpha.=.1/phi

94 tmpl_=_1/(1 4_Ey_*_phi)

95 tmp2.=.1_—_tmpl

96 tmp2[tmp2==0].=.1e—08

97

98 iteml._=_function (yy)-{

99 y_gi=_yy[1]

100 lamda_gi_=_yy[2]

101 tmp2_gi._=_yy[3]

102 t.=cc(0:y_gi)

103 tmp33.t.=cexp (lgamma(t _+_alpha) +.(y-gi-—-t).x.log(lamda_gi) +-to*x_log(
tmp2_gi).—

104 lfactorial (t).—_1factorial (y_-gi-—-t))

105 tmp33.tt =_log (max(sum(tmp33.t),_1e—08))

106 }

107

108 tmp3.=_apply (cbind (matrix(y,.ncol_.=_1) ,.matrix (lamda_i,.ncol.=_1) ,._
matrix (tmp2,

109 ncol.=.1)),.1,_iteml)

110

111 sum (tmp3) _.—.nsamples._x*._lgamma (alpha) _+.alpha_x.sum(log (tmpl) ) .—_sum/(
lamda _1i)

112 }

113

114 ##._compute.likelihood cunder._null

115 tmpll =.cbind (Y, .V.reduce ,.phi.hat)

116 10 .=_apply (tmpll,_1,_get.loglikelihood)
117

118 ##_compute_likelihood _under_alternative
119

120 tmpl2.=.cbind (Y, .V. full ,_phi.hat)

121 la._=_apply (tmpl2,.1,_get.loglikelihood)
122 Ir =.—2.x.(10.—_1a)

123 1r [which (lr <=.0)].=.0

124 df =_df. full —_df.reduce

125 pval.=_1.—_pchisq(lr, . df.=.df)

126 qval.=.p.adjust (pval , _method . =."BH")

127

128 if _(length (Beta).—._1)

129 logFC_<—_as.vector (logFC)
130

131 table.=.data.frame (logFC._=_logFC, .1r .=.1r , .pvalue_.=.pval , .qvalue _=_qval)

132

133 list (table_=_table ,._.dispersion.=_phi.hat,_log.dispersion.=_log (phi.hat),
~design. full =.X. full ,

134 design.reduce_.=_design .reduce,_.Beta. full .=_Beta. full , _mean. full =_U. full

b
135 Beta.reduce._=.Beta.reduce ,_.mean.reduce._=_U.reduce , .m0.=.m0, .sigma.=.

sigma)
136 }

R function glmfit.full

1 glmfit. full <—_function (NanoStringData ,_design. full).{
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26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

c=_positiveFactor (NanoStringData)
d_=_housekeepingFactor (NanoStringData)
ko=ccoxod

lamda_i._=.negativeFactor (NanoStringData)
Y_=_exprs(NanoStringData)
Y_n.—.sweep(Y,.2, lamda_i, FUN_=."-")
Y_nph_=_sweep (Y-n, .2, .k, FUN.=."/7)
Y_nph [Y_nph.<=.0].=.0.1

nsamples._=.ncol (Y)
ngenes._=.nrow (Y)
nbeta_=_ncol (design. full ). _# number_of_full _parameters._(Beta)

#.Beta.matrix_from._linear _model, .starting.value_for _Betas.in._.optim
Blm.=_.matrix (NA, .ngenes , .nbeta)

for_(i-in_1l:ngenes).{

model .=_.1Im (log (Y_nph[i,.])."o0.+_.design. full)
Blm[i,.].=.model$coefficients

}

U_=_exp (Blm %%t (design . full))
Ve=osweep (U, .2, .k, FUN=." ")

phi.g._=_est.dispersion (Y,_Y_nph, _lamda_i,_.c,.d)$phi
ii .=_rowMins(Y)._>_max(negativeControl (NanoStringData))

l.=_length (which(ii . —_TRUE))
ifo(1o>00) o f

phi.g0_=_phi.g[ii]

Iphi.g0.=.log (phi.g0)

m0_=.median (1phi.g0, .na.rm.=_TRUE)

sigma?2 . mar.—_ (IQR(1phi.g0, _na.rm.=_TRUE)/1.349) "2
#_Here_we_borrow._the_.idea_to_compute_the_base_sigma._for _DSS_.The_function

#._compute.baseSigma._borrow._the_idea_from_Hao_.Wu' s_function
#.compute . baseSigma . nontrend.in _DSS_Package

sigma2 . base _=_compute . baseSigma (exp (m0) ,.Y[ii ,.],.V[ii,-],-nsamples)
sigma._=_sqrt (max(sigma?2.mar_.—._sigma2.base,.0.01))

oelseo{

cat (" There_is._no_data_satisied .that_min_of_endo._great._than.max
of _negative_control.” ,.”\n")

m0_=.—2

sigma.=.1

lphi.g0.=.10

}

max . phi_=_max(lphi.g0,.10,.na.rm.=_TRUE)

max . mean _.=.max (rowMeans (Y_nph) )
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56 get.phi_<—_function (dat).{

57 y.—-dat [1: nsamples]

58 Ey_=_dat [nsamples_+._(1:nsamples) ]

59

60 obj.=_function (phi).{

61 alpha._=.1/phi

62 tmpl_=_1/(1 _+_Ey_*_phi)

63 tmp2_=_1_—_tmpl

64 tmp2[tmp2==0].=.1e—08

65

66 iteml_=_function (yy).{

67 y-gi-=.yy[1]

68 lamda_gi_—_yy[2]

69 tmp2_gi_—=_yy[3]

70 to=oc(0:y_gi)

71 com.=.matrix (700,_length(t),.1)

72

73 tmp33.t.=_exp (rowMins(cbind (lgamma(t_+_alpha) +.(y-gi-—-t)_*_log(lamda._
gi) .+

74 tox.log (tmp2_gi).—_lfactorial (t).—_1factorial (y_-gi.—.t),.com)))

75 tmp33. tt .=_log (max(sum (tmp33.t),.1e—08))

76

77}

78 tmp3_=_apply (cbind (matrix (y,-ncol_=.1),.matrix(lamda_i,_ncol_=_1) ,_
matrix (tmp2,

79 ncol.=.1)),.1, iteml)

80

81 —(sum(tmp3) _—_nsamples._*_lgamma (alpha)_+_alpha_x_sum(log (tmpl))._—_((log(
phi).—

82 m0) "2)/(2.x_(sigma”"2))_—_log(sigma)._—_sum(lamda_i))

83 }

84 return (optimize (obj,.interval _=_c(0.005, _max.phi))$minimum)

85 }

86

87 get.beta. full .<—_function (dat)_{

88

89 n_—=.nsamples

90 y_.=.dat [1:n]

91 phi_.=_dat[n_+_1]

92 Bstart.=_dat[(n_4-2):(n_+_.1_+_nbeta)]
93

94 obj.=_function (beta).{

95

96 alpha.=.1/phi

97 xb=beta Y%+%._t (design. full)

98 xb [xb>700]=7000c oo ##_control _upper._band_for _exp_operation
99 tmpl.=.1/(1_4.exp(xb) . x_koxophi)

100 tmp2.=.1_—_tmpl

101 tmp2 [tmp2==0]_.=_1e—08

102

103 iteml._=_function (yy)-{

104

105 y_gi.=_yy[1]

106 lamda_gi._=_yy[2]
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107 tmp2_gi.=_yy[3]

108 to=_c(0:y_gi)

109 com.=_matrix (700, _length (t),.1)

110

111 tmp33.t.=.exp (rowMins (cbind (lgamma(t._+.alpha) 4.(y_gi.—ct).x.log (lamda _
gi) .+

112 to*x.log (tmp2_gi).—_1factorial (t).—_lfactorial (y_gi.——t),_com)))

113 tmp33.tt =_log (max(sum (tmp33.t),_1e—08))

114 }

115

116 tmp3.=_apply (cbind (matrix(y,.ncol.=_1) ,.matrix (lamda_i,.ncol.=.1) ,._
matrix (tmp2,

117 ncol.=.1)),.1,_iteml)

118

119 —(sum(tmp3) .—.n.x*._lgamma (alpha)._+.alpha_x_sum(log (tmpl)).—.((log(phi).—

120 m0) "2) /(2 .%o (sigma”2)) . —_log (sigma)._—_sum(lamda_i))

121 }

122

123 return (optim ( Bstart ,.obj)$par)

124 }

125

126 id =.c (1:ngenes)

127 Beta. full .=_matrix (0,_ngenes,._.nbeta)

128 phi.full =_rep(0,._ngenes)

129

130 phi.s.=_apply(cbind (matrix (Y, .ncol_=.nsamples) ,_.matrix(V,.ncol._=_
nsamples) ),

131 1,_get.phi)

132 B. s =_Blm

133 Y.t =Y

134

135 conll._=_1

136 con2l._=_1

137

138 j.=.0

139 while.((conll >=.0.5.].con21.>=.0.001) &.j.<_50)-{

140 jo=oj o+l

141 Beta.=_apply (cbind (matrix(Y.t,.ncol_=.nsamples) ,.matrix(phi.s,_ncol_.=_1)

b

142 matrix(B.s,.ncol_=_nbeta)),_1,_get.beta.full)

143
144 xb=t (design . full %%.Beta)
145 xb [xb>700]=700c.ccciiiicicconnnnooon ##_control _the_upper_band_of_exp.

operation

146 U.t_=_exp(xb)

147 V.t .=_sweep (U.t, .2, k, FUN_=."%")

148

149 phi.t.=_apply (cbind (matrix(Y.t,.ncol_.=.nsamples) ,.matrix(V.t,_.ncol._—=.
nsamples) ),

150 1,_get.phi)

151 conl._=_rowMaxs(abs ((B.s_—_.t(Beta))/t(Beta)))

152 con2._=_abs ((phi.s.—_phi.t)/phi.s)

153 conll._=.max(conl)

154 con2l _=.max(con2)
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155
156 idx .=_which(conl.<.0.5_&_con2.<_.0.001)

157

158 if. ('length(ldx)u 20) o {

159 Beta. full [id [idx],.] .=t (Beta) [idx,.]
160 phi. full [id [idx]] c.=cphi.t[idx]

161 }

162

163 phi.s.=.phi.t

164 B.s.=_t (Beta)

165

166 if_(!length(idx).=—=_0.&_!length (idx)_—=_length(id))_{
167 Y.t =Y. t[—idx , ]

168 phi.s_=_phi.s[—idx]

169 B.s.=_B.s[—idx , .]

170 id .=.id[—idx]

171 }

172

173 }

174

175 if o (jo—=—=.50&.!length (idx).—_length (id)).{
176

177 if (length (idx).=—_.0) -{

178 Beta. full [id,.].=_t (Beta)

179 phi. full [id]_=_.phi.t

180 }oelse(

181 Beta. full [id,.].=_t (Beta)[—idx ,]

182 phi. full [id]_=_phi.t[—idx]

183 cccmen }

184 }

185

186 U. full .=_exp (Beta. full J%«%.t (design . full))
187 V. full .=_sweep (U. full , .2, k, FUN_=_"%")

188 eta.=_log (phi. full)

189 list (Beta. full .=_Beta.full ,_design._=_design.full ,_dispersion._=_phi. full ,
~log.dispersion._=_eta,

190 m0_=.m0, .sigma.=.sigma , _.df. full .=_.nbeta , .mean. full .=_U. full , _nineration.
—.j)

191 }

R function glmfit.reduce

1 glmfit.reduce.<—_function (NanoStringData ,_design.reduce ,.m0, .sigma, .phi)

A

c=_positiveFactor (NanoStringData)
d_=_housekeepingFactor (NanoStringData)
ko=_cox.d

lamda_i.=.negativeFactor (NanoStringData)
7 Y_=_exprs (NanoStringData)

8 Y_n.=_sweep(Y,-2,.lamda_i, FUN.=_"-")

9 Y_nph_=_sweep(Y_n,.2,_k, FUN.=."/")
10 Y_nph [Y_nph.<=.0] .=.0.1

11

S UL s W N
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12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55

56
57
58
59
60
61
62

nsamples._=_ncol (Y)
ngenes._=.nrow (Y)
nbeta.=_ncol(design.reduce).__#_number_of_parameters.(Beta)

#_.Beta_matrix_from.linear _model,_.starting_value_for_Betas_.in_optim
Blm.=_.matrix (NA, _ngenes , .nbeta)

for_(i-in_1l:ngenes).{

model .=_.1lm (log (Y_nph[i,.]) . o0.+_design.reduce)
Blm[i,.].=.model$coefficients

}

get.beta.reduce <—_function (dat).{

n_=.nsamples

y-=-dat [1:n]

phi_=_dat [n_+_1]

Bstart.=.dat [(n.+.2):(n.t+.1_4.nbeta)]

obj.=.function (beta)._{

alpha_=_1/phi

xb=beta Y+%._t (design .reduce)

Xb [xb>T00]=700 oo cm e e ##.control upper_band.for .
exp.operation

tmpl_=_1/(1_+_exp(xb)_x_k_x_phi)

tmp2_=_1_—_tmpl

tmp2 [tmp2==0]_.=_1e—08

iteml.=_function (yy).{

y-gi-=_yy[1]

lamda_gi._—=_yy[2]

tmp2_gi =.yy 3]

te=oc(0:y_gi)

com_=_matrix (700, .length (t),.1)

tmp33.t._=_exp (rowMins (cbind (lgamma(t_+_alpha) _+_(y_-gi.——t)_x_log (lamda _
gi) .+

toxolog (tmp2_gi).—o.1factorial (t).—_1factorial (y_gi.—.t),.com)))

tmp33. tt.=.log (max(sum(tmp33.t),.1e—08))

}

tmp3._=_apply (cbind (matrix (y, -ncol_.=_1),_.matrix (lamda_i,_ncol_=_1) ,._
matrix (tmp2,
ncol.=.1)),.1,.item1)

—(sum (tmp3) .—.n_x*._lgamma (alpha) _+_alpha_x_sum(log (tmpl)).—_((log (phi)_—
m0) "2)/(2.x_(sigma”"2))_—_log (sigma)._.—_sum(lamda_i))

}

return (optim (Bstart , _obj)$par)
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63
64
65

66
67
68
69
70

71
72
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33
34
35
36
37

}

Beta.reduce _=_apply (cbind (matrix (Y, .ncol_=_.nsamples) ,_matrix (phi,_ncol._=

1),

matrix (Blm, .ncol.=.nbeta)),.1,.get.beta.reduce)
U.reduce_=cexp(t(design.reduce Y%*%_Beta.reduce))

list (Beta.reduce.=.t (Beta.reduce) ,.mean.reduce.=_U.reduce,.dispersion.—.

V.reduce._=_sweep (U.reduce , .2, _k, FUN.=_"%")
phi,
df.reduce._=.nbeta)

}
R function glmfit.OneGroup

glmfit . OneGroup.<—_function (NanoStringData , .m0, .sigma , .phi).{

c.=.positiveFactor (NanoStringData)
d_=_housekeepingFactor (NanoStringData)
ko=_coxod

lamda_i_=_negativeFactor (NanoStringData)
Y_=_exprs(NanoStringData)

Y _n.—.sweep(Y, .2, lamda_i, FUN_.=."-")
Y_nph.=_sweep(Y.n,.2,.k, FUN.=." /")
Y_nph[Y_nph.<=_0] .=.0.1

n.=.ncol (Y)
max . mean _=.max (rowMeans (Y_nph) )

get .mu_<—_function (dat)_{

y.=.dat [1:n]

phi.=_dat [n.4.1]
obj.=.function (mu) .{
alpha.=_1/phi

tmpl._=_.1/(1 _4_mu_x_k_x_phi)
tmp2.=_1_—_tmpl

tmp2 [tmp2==0].=._1e—08

iteml.=_function (yy)-{
y-gi=_yy[1]

lamda_gi._—=_yy[2]

tmp2_gi =.yy 3]

te=ec(0:y_gi)

com_=_matrix (700, .length (t),.1)

tmp33.t._=_exp (rowMins (cbind (lgamma(t._+_alpha) _+_(y-gi.——t)_x_log (lamda_

gi) .+

toxolog (tmp2_gi).—o.1factorial (t).—_1factorial (y_gi.—.t),.com)))

tmp33. tt .=.log (max(sum(tmp33.t),.1e—08))

}

tmp3._=_apply (cbind (matrix (y, -ncol.=_1),_.matrix (lamda_i,_ncol_=_1) ,._

matrix (tmp2,
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38 ncol_.=_1)),.1,_iteml)

39

40 —(sum (tmp3) .—_n_*._lgamma(alpha) _+_alpha_x_sum(log (tmpl)).—_((log(phi).—
41 m0) "2)/(2.x.(sigma”2)).—_log(sigma)._—_sum(lamda_i))

42 }

43

44 return (optimize (obj,_interval =_c (0.1, _max.mean) )$minimum)

45 }

46

47 mu.=_apply (c¢bind (matrix (Y, .ncol.=cn) ,.matrix (phi,.ncol.=.1)),.1,_get .mu)
48

49 Beta.reduce._=_log (mu)

50
51
52
53
54

55
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U.reduce._=_-matrix(rep (mu,.n) ,.ncol_=.n)
V.reduce _=_sweep (U.reduce , .2, %k, FUN_.=."%")
eta.=.log (phi)

list (Beta.reduce._=_.Beta.reduce,._mean.reduce_=_U.reduce ,_dispersion._=._phi
,~df.reduce_=_1)
¥

Main function in the third project

R function MutDiff

MutDiff<—function (Datalistl ,Datalist2){

nl=ncol(Datalist1$mut. base)—
n2=ncol(Datalist2$mut. base)—
nc=nl+4n2

m=2%nc

[N )

T A A A A A A A AT

H#H#HE Make _data.sets_for_analysis:._data.mut.all ,_data.cov.all ##

S ) ) ) g ) ) ) ) ) ) )

T i i i i i i i i i i i i i i i i i i i i i i i i it

datalistl1=CleanDatal (Datalistl)
datalist2=CleanDatal (Datalist2)

data=prepare.data(datalistl ,datalist2)
data.mut. all=data$data.mut. all
data.cov. all=data$data.cov. all
gene=data$gene

categ=data$categ

///I////I/I/I /I/I//////I/I/I /I/I////////I/I /I/I/,I/’I///

+ £ A o= vamm

/I// 7 I/ 7 // // T TrTrTrTT I’/ TTTTrTrrTrTT I’/I

s i e e e e e

/I 1/ i /,/ //,I/,I/ L)L) ) ]
Ty

dmake full o design o mati XAttt

group=c(rep (0,nl) ,rep(1,n2))
group=as . factor (group)
X0=model. matrix (~group)
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29 Xl=rbind (X0,X0)

30 Z=c(rep (0,(nl4n2)) ,rep(1,(nl4n2))) .. ##_0_indicate_base_and_l_indicate._
nonsilent

31 X2=7xX1

32 design. full=cbind (X1,X2)

35 T T T T T Ty

36 FHHAHHHHHH A ake data_sets_and_calculate_prior_mean_and._variavtion##H#

37 LU ) ) ) ) ) )

v o v mamms i o mns i e i e e e e e e

THI T i i i i i i i i i i i i i it

38

39 datalist3=CleanData2(Datalistl)

40 datalist4=CleanData2(Datalist2)

41

42 coeffO=prepare.prior(datalist3 ,datalist4 ,design.full)

43

44 gamma=coeff0 [,1]

45 dgamma—=coeff0 [ ,2]

46 beta=coeff0 [,3]

47 dbeta=coeff0 [ ,4]

48

49 gamma. mean=mean (gamma )

50 #gamma . sd=sd (gamma)

51 dgamma . mean=mean (dgamma)

52 #dgamma . sd=sd (dgamma)

53 beta .mean=mean (beta)

54 #beta .sd=sd (beta)

55 dbeta.mean=mean(dbeta)

56 #dbeta .sd=sd (dbeta)

57

58 gamma.sigma=quantile (gamma,0.95) /qnorm (0.95 ,gamma.mean,1)
59 dgamma. sigma=quantile (dgamma,0.95) /qnorm (0.975 ,dgamma. mean, 1)
60 #dgamma . sigma=quantile (dgamma,0.95) /qnorm (0.975,0,1)

61

62 beta.sigma=quantile (beta ,0.95) /qunorm(0.95,beta.mean,1)

63 dbeta.sigma=quantile (dbeta ,0.95) /qnorm (0.975,dbeta.mean,1)
64 #dbeta.sigma=quantile (dbeta ,0.95) /qnorm (0.975,0,1)

67 N N N e e I NIRRT e

T i i1
68 ##_get_prior._for_dispersion._parameter . #HHH
69 datalistb=CleanData3(Datalistl)
70 datalist6=CleanData3(Datalist2)
71
72 nsim=1
73 hyper=EstimateHyper(datalist5 ,datalist6 ,nsim)
74 m0. base=hyper$base [1]
75 tao.base=hyper$base [2]
76 m0.non=hyper$nonsilent [1]
77 tao.non=hyper$nonsilent [2]
78

79 S L ) ) ) ) ) ) ) ) ) L) ) L) L
T A A i i i i i i i i i i i i i i i it
QO HHHHHHHA Y

/
TH A A A

81
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82 data.base.mut=data.mut.all [,1:(nl+4n2)]

83 data.base.cov=data.cov.all[,1:(nl+4n2)]

84

85 data.nonsilent .mut=data.mut. all [, (nl4n2+1):(2%nl4+2%n2) |

86 data.nonsilent.cov=data.cov.all[,(nl4+n2+1):(2*n1+2%n2)]

87

88 U. base=matrix (rep (rowSums(data.base.mut)/rowSums(data.base.cov) ,nc),ncol
=nc)

89

90 ##._get _dispersion .parameter.for _base_data##

91 tmp=cbind (data.base.mut,data.base.cov,U.base)

92 s=apply (tmp,1,get.skrinkage.s,nc=nc,m0=m0. base , tao=tao.base)

93 f.base=1/(1+exp(s))

94

95 S ) ) ) ) ) ) ) ) ) )

96

97 U.non=matrix (rep (rowSums(data.nonsilent .mut) /rowSums(data.nonsilent .cov)
,nc) ,ncol=nc)

98

99 ##._get _dispersion .parameter.for_nonsilent _.data##

100 tmp=cbind (data.nonsilent .mut,data.nonsilent .cov,U.non)

101 s=apply (tmp,1,get.skrinkage.s,nc=nc,m0=m0.non, tao=tao.non)

102 f.nonsilent=1/(1+exp(s))

103

104 f=cbind (matrix(rep (f.base,nc),ncol=nc),matrix(rep(f.nonsilent ,nc),ncol=

105
106

107 T A A A A A A A A

108 #H#Efirst ctime_to_get_coefficient cunder_alternative HHHHHHHHH

109

110 get.coeff.a<—function (dat){

111

112 Y=dat [1:m]

113 N=dat [ (m+1) : (2 *m) |

114 f=dat [(2+m+1):(3+m) ]

115

116 obj<—function (coeff){

117 gamma=coeff [1]

118 dgamma=coeff [2]

119 beta=coeff [3]

120 dbeta=coeff [4]

121 U=exp (coeff%%t (design . full))/(14+exp(coeff%+%t (design. full)))

122 V=(1-1) /f

123 1llog=—(sum(1beta (Y4V*U,N-Y+(1-U) «V)—lbeta (UsV,(1 -U) xV))

124 —(gamma—gamma.mean) "2/ (2*gamma.sigma "~ 2)

125 —(dgamma) "2/ (2*dgamma.sigma " 2)
(
(

126 —(beta—beta.mean) "2/ (2xbeta.sigma " 2)

127 —(dbeta) "2/ (2xdbeta.sigma”2))

128 print (llog)

129 }

130

131 starts=c (gamma.mean ,dgamma.mean, beta .mean, dbeta .mean)
132 return (optim(starts ,obj)$par)
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133 }

134

135 tmp=cbind (data.mut. all ,data.cov.all ,f)
136

137 coeff.a=t (apply (tmp,1,get.coeff.a))

138

139 ul=exp(coeff.a[,1])/(1+exp(coeff.a[,1]))

140 Ul=matrix (rep(ul,nl) ,ncol=nl)

141

142 u2=exp(coeff.a[,1]+ coeff.a[,2])/(14+exp(coeff.al,1]+ coeff.a[,2]))

143 U2=matrix (rep (u2,n2) ,ncol=n2)

144

145 u3=exp (coeff.a[,1]+ coeff.a[,3])/(1+exp(coeff.a[,1]+ coeff.a[,3]))

146 U3=matrix (rep (u3,nl),ncol=nl)

147

148 ud=exp(coeff.a[,1]+ coeff.a[,2]+ coeff.a[,3]4+ coeff.a[,4])/(1+exp(coeff.a
[,1]+ coeff.a[,2]+ coeff.a[,3]+ coeff.a[,4]))

149 U4=matrix (rep (u4,n2) ,ncol=n2)

150 N N NN IR R IR e eT
T A A A A A A A A A A A A A A
151 S L ) ) g ) ) ) ) ) L) ) L L ) L) L
T i i i i i i i i i i i i i1t

152 ##.Get o f using .new._mean_parameters HHHHHHHHHHHHHHHHHHHH
153 U. base=cbind (U1,U2)

154 #t_get _dispersion .parameter.for _base_data##

155 tmp=cbind (data.base.mut, data.base.cov,U. base)

156 s=apply (tmp,1,get.skrinkage.s,nc=nc,m0=m0. base ,tao=tao.base)
157 f.base=1/(1+exp(s))

158

159

160 U.non=cbind (U3,U4)

161 ##_get .dispersion .parameter_for _nonsilent .data##

162 tmp=cbind (data.nonsilent .mut,data.nonsilent.cov,U.non)

163 s=apply (tmp,1,get.skrinkage.s,nc=nc,ml=m0.non , tao=tao.non)
164 f.nonsilent=1/(1+exp(s))

165

166 f=cbind (matrix (rep (f.base,nc),ncol=nc),matrix(rep(f.nonsilent ,nc),ncol=

nc))

167
168
169
170 ##H#ESecond time_to_get _coefficient _under_alternative FHHHHHHHHH
171 tmp=cbind (data.mut. all ,data.cov.all ,f)

172

173 coeff.a=t (apply (tmp,1,get.coeff.a))

174

S ) L ) L

175 T T T T T i i ey // // 71 I/ U
176 S L ) ) L ) ) ) ) ) L

T A A A A A A A A it

é U Sy gy g gy g gy g g g g ) ) ) ) ) ) ) ) )]
177 ‘—‘ebtlma‘te‘—‘coeffl(jlentb ‘—‘llnder‘—‘DUIl‘—‘/II/I//I/II////I//I////I//I//I/II/I//I/II/I//I//I///

178
179 design.reduce=chind (X1,Z)

180

181 get.coeff.n<—function (dat){
182

183 Y=dat [1:m]

1
184 N=dat [ (m+1) : (2 *m) |
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185 f=dat [(2+m+1):(3*m) |

186

187 obj<—function (coeff){

188 gamma=coeff [1]

189 dgamma=coeff [2]

190 beta=coeff [3]

191 U=exp ( coeff%%t (design .reduce))/(14+exp (coeff%«%t (design.reduce)))
192 V=(1-1) /f

193 1log=—(sum(1beta (Y4V*U,N-Y+(1-U) *xV)—lbeta (U«V,(1-U)xV))
194 —(gamma—gamma.mean) "2/ (2*gamma.sigma "~ 2)

195 —(dgamma) "2/ (2*dgamma. sigma " 2)

196 —(beta—beta.mean) "2/ (2*beta.sigma”2))

197 print (llog)

198 }

199

200 starts=c (gamma.mean ,dgamma.mean, beta .mean)
201 return (optim (starts ,obj)$par)

202 }

203

204 tmp=cbind (data.mut. all ;data.cov.all ,f)

205

206 coeff.n=t (apply (tmp,1,get.coeff.n))

207

208 N N N N e N I NIRRT ey
T i i i i i1t

209 N N R NIRRT e ]
T A i A

210 get.likelihood<—function (dat){

211

212 1=length (dat)

213 Y=dat [1:m]

214 N=dat [ (m+1):(2xm) ]

215 f=dat [(2+m+1):(3*m) ]

216 coeff=dat [(3+m+1):1]

217

218 U=exp (coeff%«%t (X)) /(14+exp (coeff%%t (X)) )

219 V=(1-1)/f

220 sum (lbeta (YHV+U,N-Y+(1-U)*V)—1beta (UxV,(1-U)*V))
221

222 }

223

224 X=design . full

225 tmp=cbind (data.mut. all ,data.cov.all ,f coeff.a)
226 llog .a=apply (tmp,1,get.likelihood)

227
228 X=design .reduce

229 tmp=cbind (data.mut. all ,data.cov.all ,f coeff.n)
230 llog .n=apply (tmp,1,get.likelihood)

231 S ) ) ) g ) )
T i i i i i i i i i i i i i i i i i i i i i 1 11

232

233 lr .=.—2.%_(llog .n_—_llog .a)

234

235 length (which (1r <0))

236 1r [which (1r <0)]=0

237 pval.=.1.—_.pchisq(lr ,.df.=.1)

238 qval.=_p.adjust (pval, _method_=_."BH")
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239
240
241
242
243

244

245
246
247
248
249
250
251
252

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

datal.base.cov=ceiling (rowMeans(data.cov.all[,1:n1]))
data2.base.cov=ceiling (rowMeans(data.cov.all [,(nl+1):(nl4n2)]))

datal.nonsilent.cov=ceiling (rowMeans(data.cov.all [,(nl4+n2+1):(2xnl4n2)])

)

data2.nonsilent.cov=ceiling (rowMeans(data.cov.all [,(2*n14n2+41):(2*nl+2x

n2)]))

datal.base.mut=rowSums(data.mut.all[,1:nl])
data2.base.mut=rowSums(data.mut. all [,(nl+1):(nl4n2)])

datal.nonsilent .mut=rowSums(data.mut. all [,(nl+n2+1):(2*nl4+n2)])
data2.nonsilent .mut=rowSums(data.mut. all [,(2*nl4n2+41):(2*nl+2+n2)])

table.position=data.frame (genename=gene , category=categ , pvalue=pval,
qvalue=qval , Ir=Ir ,

f.base=f.base,f.nonsilent=f.nonsilent ,

v.base=(1—f.base)/f.base,v.non=(1—f.nonsilent)/f.nonsilent ,

coeffa=coeff.a,.coeffn=coeff.n,

base.covl=datal.base.cov,._base.cov2=data2.base.cov,

nonsilent .covl=datal.nonsilent .cov,

nonsilent .cov2=data2.nonsilent .cov,

base.mutl=datal . base.mut, base.mut2=data2. base.mut,

nonsilent .mutl=datal.nonsilent .mut,

nonsilent .mut2=data2.nonsilent . mut)

index=order (table.position ["qvalue”],table.position[”pvalue”])

table.position=table.position [index ,]

S L ) ) L g ) ) ) L L L

T A A A A A AT
S ) L ) g ) ) ) L ) L L

T i i i i i i i i i i it

df=get . df(gene)
genename=unique (gene)

llog .ga=PositionSum (1log .a, df)

llog .gn=PositionSum (llog .n, df)

Ir .g=—2x(1llog.gn—1log.ga)

length (which(1r.g<0))

Ir . g[which(1lr.g<0)]=0
pval.g.=.1.—.pchisq(lr.g,.df =_df)
qval.g.=_p.adjust (pval.g, _method =_."BH")

table . gene=data.frame (pvalue=pval.g, qvalue=qval.g, lr=Ilr.g)
row.names(table.gene)=genename

index=order (table.gene[” qvalue”],table.gene[” pvalue”])
table.gene=table.gene [index ,]

return (list (table.gene=table.gene,_table.position=table.position))

}
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