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ABSTRACT OF DISSERTATION

UNDERGRADUATE MATHEMATICS STUDENTS” CONNECTIONS
BETWEEN THEIR GROUP HOMOMORPHISM AND LINEAR
TRANSFORMATION CONCEPT IMAGES

It is well documented that undergraduate students struggle with the more formal and
abstract concepts of vector space theory in a first course on linear algebra. Some of
these students continue on to classes in abstract algebra, where they learn about alge-
braic structures such as groups. It is clear to the seasoned mathematician that vector
spaces are in fact groups, and so linear transformations are group homomorphisms
with extra restrictions. This study explores the question of whether or not students
see this connection as well. In addition, I probe the ways in which students’ stated
understandings are the same or different across contexts, and how these differences
may help or hinder connection making across domains. Students’ understandings
are also briefly compared to those of mathematics professors in order to highlight
similarities and discrepancies between reality and idealistic expectations.

The data for this study primarily comes from clinical interviews with ten un-
dergraduates and three professors. The clinical interviews contained multiple card
sorts in which students expressed the connections they saw within and across the
domains of linear algebra and abstract algebra, with an emphasis specifically on lin-
ear transformations and group homomorphisms. Qualitative data was analyzed using
abductive reasoning through multiple rounds of coding and generating themes.

Overall, I found that students ranged from having very few connections, to be-
ginning to form connections once placed in the interview setting, to already having
a well-integrated morphism schema across domains. A considerable portion of this
paper explores the many and varied ways in which students succeeded and failed in
making mathematically correct connections, using the language of research on analog-
ical reasoning to frame the discussion. Of particular interest were the ways in which
isomorphisms did or did not play a role in understanding both morphisms, how stu-
dents did not regularly connect the concepts of matrices and linear transformations,
and how vector spaces were not fully aligned with groups as algebraic structures.
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Chapter 1 Introduction

1.1 TImpetus for Research and Research Questions

Multiple factors contributed to the genesis of this project. First, the tools that stu-
dents learn in a linear algebra class have immediate applications to applied problems
in the sciences. Vector space theory also serves as a bedrock tool for most all of the
subfields of pure mathematics. As linear algebra lies at such an important nexus in
mathematics education, I desired to contribute to the young and burgeoning body of
research on its teaching and learning.

Another factor was my reading of Tall’s How Humans Learn to Think Mathemati-
cally (Tall,2013). Among many other things, Tall introduces in this book the concept
of a met-before. Inspired by the research of Lakoff and his colleagues on the role of
metaphor in learning (e.g. Lakoff & Johnson, 1980; Lakoff & Nuiiez, 1997)), Tall notes
that the term is a play on the word metaphor itself. While Lakoff and others are
focused on a grander scale of human cognition, Tall focuses on the individual learner,
asking a student what they have met before that influenced their thinking on the
mathematics at hand. Sometimes, a concept can be a helpful met-before, such as the
addition of natural numbers naturally extending to the addition of negative integers.
Other times, such as when familiarity with multiplication of natural numbers leads
a particular student to believe that multiplication of fractions will always make a
number larger, met-befores can be more problematic. Of course, the idea that prior
knowledge can have beneficial and negative impacts on learning and understanding is
not new. But, it was this individual take that influenced my present research. I began
thinking about what met-befores students bring to bear during and after a semester
in linear algebra. Following the line of reasoning given below, I then transitioned

to thinking about concepts in linear algebra as met-befores for concepts in abstract



algebra.

Over the last few decades, the number of studies focusing on the teaching and
learning of both undergraduate linear algebra and abstract algebra has increased.
With this has come preliminary research into how students understand the core con-
cepts of each subject. However, there is little regarding the connections students
make between similar concepts from both classes.

Since the 1970’s, a strong emphasis has been placed on beginning linear algebra
classes in the United States with matrices and computations. At institutions where
students usually only take one semester of linear algebra, abstract theory is placed
at a later point in the semester, and students’ understanding of real vector spaces
is leveraged to teach abstract vector spaces (Uhlig, 2003). According to Stewart
(2008), the issue with this approach is that “while students seem to learn matrix
algebra rather efficiently, very few students ever learn the more advanced concepts,
which require understanding the more abstract material” (p. 3). Consequently, many
studies have given attention to solutions for crossing the divide into the formal realm
of abstract linear algebra.

Of course, building up students’ abstract algebraic reasoning is a central goal of
any undergraduate abstract algebra course. Thus, it seems reasonable to ask if stu-
dents in such a course are able to reason more abstractly about linear algebra upon
revisiting the subject. While most undergraduate abstract algebra courses may only
tangentially mention linear algebra, there are many hopeful points of crossover from a
higher point of view. For example, linear transformations and group homomorphisms
are both morphisms in their respective categories which must satisfy more require-
ments than being simply set functions (Awodey, 2010). They are uniquely tied to the
structure of vector spaces or groups.

In thinking of a starting point for the teaching of linear algebra which permeates

the entirety of the subject, Uhlig (2003) states that “we only have one candidate



for this role: ‘Linear Transformations’ This notion satisfies our basic requirement
of being fundamental to the whole field” (p. 152). Likewise in abstract algebra,
Hausberger (2013) states that “the (homo)morphism and isomorphism concepts [are]
central in abstract algebra” (p. 2348). The centrality of these concepts, and their
similarities, led me to study how students who have taken abstract algebra under-
stand both morphisms. By centering the research around group homomorphisms and
linear transformations, many other related concepts fit naturally into the conversa-
tion. Once a student creates a mental link between morphisms, it seems reasonable to
believe the next natural link would be between the objects: vector spaces and groups.
One could also talk about the structure preserved by these morphisms, bringing bi-
nary operations, sub-objects, or generators into the conceptual landscape. It is thus
important not only to study students’ understandings of group homomorphisms and
linear transformations in the abstract, but to discuss how they are conceived by
students in relation to other concepts.

What should be the expectations for the connections that students make? There
are three possibilities regarding the possible helpful or problematic links students
make between group homomorphisms and linear transformations. The first possibil-
ity is that students taking abstract algebra and learning about group homomorphisms
for the first time will recognize their similarity to linear transformations, and use their
prior knowledge to inform their understanding of group homomorphisms. The sec-
ond is that students, upon learning of group homomorphisms, reflect upon linear
transformations and use their newly learned concept to recall and inform their un-
derstanding of linear transformations. Both of these possibilities could occur with
the same student. The last possibility is that students see no connections between
the two morphisms. These same three possibilities likewise apply to those concepts
closely related to morphisms.

Seeing as each of these possibilities seem plausible, initial exploratory work is



needed to determine what connections students are making without intervention,
and if students regularly make these connections at all. In either case, it is important
to understand what mental images students have regarding group homomorphisms
and linear transformations individually. It could then be possible to find insight into
problematic conceptions preventing connections, and helpful mental images leading
to connections. Finally, I do not wish to pit the connections students make against
my own mental connections. I could cite various undergraduate and graduate math-
ematics texts about the ways in which structures from vector space theory are also
structures in group theory. However, this carefully curated “ideal” would be unfair
as a comparison to students, who would be asked to generate or recite connections
on the spot in an interview setting. It would be fairer to compare students’ insights
to those of professors who have taken both graduate linear algebra and graduate
abstract algebra.

All of these considerations led me to form the following three guiding research

questions:

(1) How are students’ understandings of group homomorphisms and linear transfor-
mations the same or different?

(2) What connections do students make between the concepts related to group ho-
momorphisms and linear transformations?

(3) How do students’ understandings of these morphisms compare to those of pro-
fessors?

1.2 Frameworks for Students’ Conceptualizations of Mathematics

In mathematics, the mental conjuring of a particular term can immediately give rise
to a host of related concepts. Simply mentioning the term “function” to a Calculus

7 a mathematical definition

student will trigger perhaps the written notation “f(x),
requiring 1 = x9 implying f(x;) = f(z2), a vague connection to something called

a “vertical line test,” related terms such as domain and range, examples such as



f(z) = /z or g(x) = sin(z), or even misconceptions such as h(z) = 5 not being a
function. The collection of relations, notations, images, examples, and representations
conjured by an expert would of course be even larger and richer than this, and
would vary from person to person. To give a name to this personalized collection of
immediate knowledge, Tall and Vinner (1981) introduced the terms concept image
and concept definition to the lexicon of mathematics education. The concept image
is used to “describe the total cognitive structure that is associated with the concept,
which includes all the mental pictures and associated properties and processes” (Tall
& Vinner, [1981], p. 152). This definition attempts to capture not only the logical
connections and imagery held by learners, but also the illogical and incoherent parts as
well. While concept image is used to describe the ideal whole, the term evoked concept
image is used to describe the subset of mental constructs conveyed by a student at
a particular time. Different stimuli, social contexts, emotional states, and so forth
can trigger a specific portion of a learner’s understanding. It is thus technically the
evoked concept images which comprise the data for analysis in a study such as my
own. By piecing together these evoked concept images, one can abstractly speak of a
theoretical overall concept image. On the utility of the concept image framework, Tall
(2003) ruminates, “Speaking of concept image can sometimes be vague, but... this
is precisely what makes it so useful. It helps us to grasp that there are subtleties in
mathematical thinking that cannot be precisely conveyed by the apparent precision
of mathematics” The term concept image highlights the various, and potentially
conflicting, aspects of mathematics central to a person’s understanding.

A part of one’s concept image is one’s concept definition. A concept definition,
which is unique to each individual, is not always the same as a formal mathematical
definition. Rather, a concept definition is the learner’s “form of words used to specify
that concept” (Tall & Vinner, |1981) p. 152). This likewise can change between

conveyances, as a concept definition is drawn from an evoked concept image. A



concept definition can have its own surrounding concept images, or it can be a simple
rote utterance of a formal definition.

The theoretical framework of concept images is very much related to that of the
ubiquitous schema theory in cognitive psychology. Rumelhart and Ortony (1977)
defined schemata as “data structures for representing the generic concepts stored in
memory” (p. 101). Both concept images and schemata are collections of conceptual
networks available to a student when encountering a relevant situation. The frame-
work of concept image/definition simply places more emphasis on the fact that the
human brain is hardly a consistent input-output machine. While a student may be
able to recite a particular mathematical definition, they may instead apply under-
standing from their concept image in order to solve a problem (Edwards & Ward,
2004; Vinner & Dreyfus, [1989; Wawro, Sweeney, & Rabin, 2011). This incongru-
ence is potentially not fully captured if one attempts to describe a student schema
with either their concept definition or evoked concept image. By being aware of the
image/definition distinction, the researcher can design a study in a way that gauges

both aspects of students’ thinking.

1.3 Research on the Teaching and Learning of Linear Transformations

and Group Homomorphisms

Unlike abstract algebra, which by nature strongly focuses on teaching students ab-
stract, formal mathematics, linear algebra asks students to work within three distinct,
yet intertwined, modes of thinking. Hillel (2000)) refers to the modes of description
as abstract, algebraic, and geometric. The abstract mode, and its associated lan-
guage, are at the heart of this study; it concerns the notions of vector spaces, linear
transformations, and vector space theory in general. The algebraic mode, perhaps a
term more misleading when placed in the context of my research, is the mode used

when speaking of R™ and its vectors, matrices, and associated matrix computations.



Finally, the geometric mode of description is when students describe the concepts of
linear algebra in terms of points, drawn vectors, lines, planes, and visual transforma-
tions. In a very similar description of the nature of linear algebra, Sierpinska (2000))
first splits students’ modes of thinking into two domains: synthetic and analytic. The
synthetic mode is a practical way of thinking, where students can directly describe
something such as a line or plane, without concern for its axiomatic definition. The
analytic mode of thinking, according to Sierpinska, is theoretical in nature, and is
the realm of intangible concepts given birth through definitions. This difference be-
tween practical and theoretical thinking fits nicely with Tall’s and Vinner’s rationale
for introducing the distinction between mathematical definitions, concept definitions,
and concept images. According to Sierpinska, the synthetic mode of thinking in lin-
ear algebra is by-and-large geometric in nature, as discussed with Hillel’s modes of
description. Thus, Sierpinska’s first mode of thinking is synthetic-geometric. Sierpin-
ska breaks the analytic mode into analytic-arithmetic and analytic-structural. The
analytic-arithmetic mode is characterized by computing values through algorithms
with matrices and vectors, while the in the analytic-structural mode students work
directly with concepts in the theory of vector spaces, using their characteristic prop-
erties to make deductions. Clearly, Sierpinska’s analytic-arithmetic and analytic-
structural modes are similar to Hillel’s algebraic and abstract modes, respectively.
The main emphasis here is that students’ concept images of linear algebra are of-
ten woven together with an intermingling of the above three modes. For the rest
of this paper, I will refer to these three modes as simply geometric, arithmetic, and
structural. Though I have not encountered any research comparing these modes of
thinking and description to those in abstract algebra classes, I would venture to say
that the structural and arithmetic modes have similar counterparts for students in
abstract algebra (with the emphasis on matrix calculations being replaced with cal-

culations of integers, rational numbers, or real numbers for the arithmetic mode).



There is research to show that students learning group theory, in encountering and
attempting to reduce multiple levels of abstraction, sometimes reduce abstraction
by instead thinking of number systems they are familiar with, such as the integers
(Hazzan, [1999). Thus, concepts from abstract algebra also are conceived on multiple
planes similar to the structural and arithmetic modes mentioned above, but it is not
quite the same as the threefold ways of thinking found in linear algebra. Geometry
is present in abstract algebra for certain groups, such as permutation groups, but it
does not permeate every fiber of the subject as it does in linear algebra.

In my review of the literature, I found a handful of studies explicitly discussing
how students conceive of linear transformations. In a study of two students’ responses
to interview questions concerning their understanding of linear transformations, de
Oliveira and Lins (2002) found that their participants did not understand linear trans-
formations as morphisms between structures. Instead, the students seemed to think
about vector spaces functionally as a “naturalized space” such as the space we live in,
and linear transformations as moving or stretching within that space. Vector spaces
were not part of their understanding, but simply the insignificant quasi-physical place
where vectors exist. The students in this study had a strong desire to see vectors,
even those not in R”, visually in order to understand a linear transformation.

Zandieh, Ellis, and Rasmussen (2017)) studied the similarities and differences be-
tween students’ concept images of function and linear transformation. In their analy-
sis of ten students’ responses to an in-class questionnaire and interview questions, they
found that students’ evoked concept images centered on certain properties, computa-
tions, and “clusters of metaphorical expressions.” Students often discussed functions
in terms of input and output or equations, while they discussed linear transforma-
tions in terms of morphing one thing into another or as a machine that produces
something based on an action. Some students had particularly well-aligned concept

images, while others struggled to align across contexts or were still actively working to



reconcile the two. In specifically looking at how students viewed one-to-one functions
and linear transformations, they found that certain procedures, such as the horizon-
tal line test or linear independence of columns of a matrix representation, presented
barriers to making connections. The authors suggest continued research into unified
concept images.

A few other studies have discussed students’ reasoning on linear transformations
as part of a larger conversation on geometric transformations. Dreyfus, Hillel, and
Sierpinska (1999) found that with their particular CABRI learning environment, stu-
dents confused the notation 7'(v) for the image of a single vector v shown on the
screen, rather than being the transformation T' of an arbitrary vector v. In a study
on geometric transformations, primarily with students in mathematics education,
Portnoy, Grundmeier, and Graham (2006) found that students primarily view trans-
formations as processes rather than objects; they are actions which are performed on
other things, but not concepts which in their own right can be the objects of other
processes.

Meanwhile, my review of the literature turned up very little on students’ con-
ceptions of group homomorphisms. Homomorphisms appear incidentally in studies
focused on students’ proof writing techniques in the abstract algebra classroom (e.g.
Selden & Selden, 1987; Weber, 2001, 2002), or in exploring how students grapple
with other concepts such as group, subgroup, isomorphisms, quotient groups, and so
forth (e.g. Dubinsky, Dautermann, Leron, & Zazkis, 1994; Larsen, 2009)). Concerning
the research on students’ use and understanding of isomorphisms, Weber and Alcock
(2004) and Leron, Hazzan, and Zazkis (1995) both found that undergraduate students
may have knowledge of the definition of isomorphism, but not an intuition regarding
the sameness conveyed by isomorphisms. Such an intuition was used instead by grad-
uate students and professors interviewed by Weber and Alcock (2004). Leron et al.

(1995) also go on to point out how isomorphisms have their own conceptual pitfalls,



such as isomorphisms as objects to be used in proof having a directionality arising
from their nature as a function. This directionality is not present in the simpler idea

of sameness.

1.4 Analogical Reasoning

A common way of comparing two concepts, such as those at the heart of this study,
is to place them in an analogy. Outside of its use in bygone national testing, the
intention of an analogy is to bring understanding of a more well-understood domain
into the realm of a less well-grasped domain. Again using the concept of function
as an example, teachers often make analogies when teaching students mathematical
functions for the first time. Often, the instructor will ask students to think of a
function like a “machine,” perhaps a machine that one might see on a conveyor
belt in a factory. Students already have the prior knowledge that machines take an
input, perform a pre-programmed process on that input, and produce an output. The
instructor hopes that this prior knowledge will serve as a springboard in the learning
process, and identifies the inputs of the machine with the concept of domain, the
machine itself with the function, and the outputs of the machine with the range. The
analogy can then lend itself easily to certain extensions, such as the composition of
functions. However, the same analogy can also lead to misunderstandings, such as a
student picturing a machine that always changes its input then leading to confusion
surrounding an identity function.

The key feature of an analogy, such as the example above, is the juxtaposition of
parallel relations in different domains (Holyoak, 2012; Gentner & Maravilla, 2018)).
According to Gentner’s (1983) structure-mapping theory, an analogy is established via
a mapping of objects and relations from a base domain into a target domain. Both the
target and the base are placed in structural alignment, a one-to-one correspondence

between some objects of the two structures which preserves the relations by ensuring

10



that parallel relations are also mapped to one another (Gentner & Markman, 1997).
The surface attributes of the base and target objects are less important than the
relations when creating a sound structural alignment. What constitutes a surface
attribute varies from researcher to researcher (Holyoak, 2012), and what is considered
a surface attribute to an expert may be an important attribute or relation to a novice
(Lobato, [2008a). Relations between the objects not only dictate the mapping, but also
determine the scope and effectiveness of the analogy. A guiding aspect of structure
mapping theory is that of the systematicity principle, the idea that having a high level
of connectedness — higher-order relations between lower-order relations, increases the
likelihood that a relation will be mapped across domains (Gentner, 1983), a principle
that has also played out in practice (Wharton et al., [1994])). If there is a relationship
between two objects that has little bearing on the other relationships in the base, it
will be ignored in the structural alignment and not carried over into the target of
the analogy. The strength of the analogy is also determined by systematicity. The
more higher-order relations that can be mapped to corresponding relations in the
target, the more likely it is that the person making the analogy rates it as a good
analogy (Gentner, Ratterman, & Forbus, 1993). Gentner and Maravilla (2018) posit
that “this desire for systematicity reflects an implicit preference for coherence and
inferential power” (p. 188).

Once an analogy has been established via structure mapping, objects and rela-
tions in the source are used to infer new relationships between objects in the target
(Holyoak, 2012)). In other words, the next natural step after aligning clear structural
parallels is to begin aligning potential new parallels. It is thus by this process of
inference that learners can use prior knowledge of an understood source and apply it
to new targets. A series of analogical mappings can also lead to the creation of a new
schema. By focusing on the relational similarities of domains, a learner may develop a

schema which abstracts the structure of the base and target (Gick & Holyoak, 1983).
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This schema can then be used to more easily identify future analogical mappings
(Gick & Holyoak, [1983)).

The initiation of structure mapping depends on the presence of both the base and
target in working memory (Holyoak, 2012). This means that one potential barrier
to constructing and using analogies in this way is the retrieval of the domains. For
example, if a learner is provided with a target by an instructor, and asked what
structure(s) in their education “look similar” to the target, the learner is given the
extra burden of sifting through long-term memory for a potential source. Should
not enough cues be provided to the learner, no source will be found, and the learner
will be unable to produce a mapping. Failure to retrieve a source with relational
similarity (at least a source intended for by a researcher) has been shown to be quite
common, even in a setting where the source was encountered not too long before the
target (Gentner & Maravilla, |2018)). Interestingly, sometimes all that is required to
greatly increase the likelihood of a successful analogy is simply a hint that a recent
topic is a good source candidate (Gick & Holyoak, 1983).

There are also certain caveats to the findings on retrieval. Some studies have
shown that retrieval is much more common in the real world than the narrow definition
found in laboratory settings would imply (Dunbar, |1995] [1997). In fact, giving a
person the ability to choose their own sources (rather than hoping for a specific
source to be chosen) increases retrieval and still leads to analogies with deep structural
alignment (Blanchette & Dunbar, 2000)). Additionally, if a target has a corresponding
source with a high degree of surface similarity (so that their objects have shared
characteristics), the rate of retrieval greatly increases (Gentner et al., [1993)).

Unfortunately, surface similarity is a double-edged sword for recall. Despite the
systematicity principle, and the evidence that analogies with a high degree of rela-
tional similarity are highly rated, surface similarities are in fact the strongest pre-

dictors of retrieval (Gentner et al., |1993)). Surface similarities can be particularly
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problematic in a cross-mapping, where similar objects appear in both domains, but
play different roles. In this case, the surface similarity has been shown to interfere
with a proper mapping of the relations in the analogy (Gentner & Toupin, [1986)).

Once a structural mapping and its subsequent inferences are made, the analogy is
evaluated for its soundness (Gentner & Maravilla,|[2018)). In the event that the analogy
leads to clearly problematic inferences, the analogy may be discarded or ignored by
its creator. Or as mentioned earlier, in some clinical studies, the analogy is reported,
but rated by its creator as having poor soundness to the researchers. According to
Gentner and Maravilla (2018)), the evaluation of an analogy is determined by the
adaptability of its inferences to the target, the relevance of the analogy to the goals
of the subject, and the power of the analogy to generate novel inferences.

The use of analogical structure mapping to generate inferences based on a source
and a target is part of a much wider body of research on transfer. Specifically, the
above description aligns with what some may call a traditional conceptualization of
transfer. Lobato (2008b) characterizes this more classical view of transfer as “The
application of knowledge learned in one situation to a new situation” (p. 291). In
recent decades, this definition and the academic culture surrounding it have come
into question. One of the first main critics was Lave, who noted that the traditional
model measures successful transfer in terms of pre-defined researcher outcomes, and
attempts to separate the cognitive processes of the learner from their experience
situated in the real world (Lobato, [2006). In response to criticisms such as these,
Lobato and her colleagues developed a framework called Actor-Oriented Transfer
(AOT). Under this view, transfer is more broadly defined as any “generalization
of learning” made by the learner or, as named in the theory, the actor (Lobato,
2008b)). In contrast to the traditional experimental approaches, AOT asks researchers
to look for any relational similarities found by learners in a more naturalistic setting,

and encourages the use of ethnographic methods (Lobato, [2008b)). Transfer is also
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not determined by correct or incorrect mathematical notions. It is possible that
a learner finds similarities and makes inferences that are mathematically incorrect.
From the point of view of AOT, a study should take note of these generalizations
of knowledge, and look for what aspects of the environment encouraged this transfer
(Lobato, 2008b). Finally, transfer is not seen as a static application of knowledge
from one setting to another, but more so as a dynamic creation of new relationships
and the restructuring of knowledge (Lobato, 2008b).

In this thesis, I use a synthesis of the mainstream and actor-oriented transfer
frameworks. The emphasis on what prior knowledge the learner has transferred,
rather than just if transfer has occurred for a very specific researcher-driven out-
come, aligns well with my research question concerning what concepts students align
across algebraic domains. It also aligns with Tall’s idea of met-before, asking indi-
vidual students what concepts they have met before that cause them to think about
a process or object in a certain manner. However, the level of detail in the theo-
retical frameworks of mainstream analogical reasoning researchers such as Gentner
and Holyoak provides a language for describing and theorizing about the ways that
students use analogies to make sense of mathematics. Thus, I approach the data
with an open-minded, student-focused lens, while also looking for schema alignment
and comparisons of relational structures. To place these two frameworks as more
synergistic than discordant is not new, as researchers such as Reed (2012) see alter-
native transfer frameworks as natural extensions of the classical frameworks. In his
article, Reed (2012)) proposes a taxonomy of analogical mapping, placing the various
viewpoints of transfer on a two-dimensional grid indexed by the type of mapping
(one to one, one to many, or partial) and type of situation (problems, representa-
tions, solutions, or contexts). In the taxonomy, Reed places classical studies such as
Gick and Holyoak (1983)) or Gentner (1983)) under the “problems” situation, where a

one-to-one or partial mapping is used in solving a specific problem of interest to the
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researcher. Meanwhile, a piece such as Lobato (2008b) is categorized as analyzing
partial mappings of “representations.” Rather than specific problems, the research
is focused on mapping “information from diagrams, formal concepts, mathematical
symbols, and formulas” (Reed, 2012, p. 19).

Of course, Reed (2012) is specifically choosing to focus on the commonalities of the
theories in order to draw the field together and highlight the advantages of Gentner’s
mapping perspective in new settings. There are still important differences between
classical and AOT transfer frameworks. Classical analogical mapping theory deals ex-
plicitly with abstract objects, relations, and schemata as if they are actual structures
within the mind of the learner. These are aligned and then used to make inferences in
one direction. AOT focuses on the social, physical, and cultural aspects of the situa-
tion of knowledge, in addition to the mental (Lobato, [2008b). Various pieces of these
aspects gain the attention of the learner, and the result of their focus encourages the
construction of relations that actively change and restructure knowledge of all planes
and domains simultaneously. I recognize that by using clinical one-on-one interviews,
I am unable to capture the social, physical, and cultural aspects of students’ learning
processes. | also recognize that, because of their fundamental differences in the way
they view the restructuring of knowledge, analogical transfer and AOT are not fully
compatible. Nevertheless, I find the emphasis on actors’ point of view indispensable
in an exploratory endeavor such as my own.

For this analysis, anytime I make use of classical cognitive language and theory,
I use it with an understanding that the knowledge structures and mappings are only
a tool, and that the mental plane is only one small part of the overall context of
learning and understanding mathematics. The theoretical discussions of ethereal
mental constructs are meant to reveal potential barriers to learning mathematics, and
not a one-to-one account of the cognitive processes of a student. A single analogical

mapping could be just one small fragment of a much larger simultaneous cognitive

15



restructuring. Additionally, when a student makes mention of various other planes
of knowledge, and their role in the process, I will also be sure to include these as

important factors.

Copyright © Jeffrey Slye, 2019.
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Chapter 2 Research Design and Methodology

2.1 Participants

In order to identify departments within a reasonable proximity with potential student
research subjects, I conducted a review of the course offerings for all four year under-
graduate institutions in the state of Kentucky. Once I compiled a list of colleges and
universities offering both a linear algebra and at least one abstract algebra class, I
contacted department heads of potential mathematics programs in Kentucky. Inter-
ested departments forwarded an advertisement email to potential student subjects.
I also posted fliers at my home campus. Interested students were then contacted
directly by email. The main bottlenecks of recruitment of subjects were the timing
of abstract algebra courses (often offered once every two years, with potential stu-
dents graduating before the time of this study), and lack of responses from either
departments or individual students. The final sample of students was eleven under-
graduates (one being part of a pilot version of the study) across three institutions in
the state of Kentucky. All participating students had either completed or were near
completing both classes. In the event that a student was still taking the course, the
interview date was set late in the semester, and students were asked about having
seen certain terms in their course. Linear algebra and abstract algebra grades were
self-reported. Every student interviewed was either a mathematics or mathematics
education major, though many students were pursuing multiple majors. All students
were still undergradutes at the time of interview. However, both Chaz and Kyle had
both taken multiple graduate classes in mathematics, including graduate abstract
algebra. See for details on the demographics of these students.

A convenience sampling of three mathematics professors was used for comparison

to students’ responses. Two of these professors had taught undergraduate linear
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algebra, and the other had taught a section of undergraduate abstract algebra (second

semester). Their research areas included algebra and topology.

2.2 Data Collection

Format and Instruments

All participants individually completed two semi-structured clinical interviews. Be-
cause of the time frame for this research and the logistics of being able to follow the
particular type of students needed for this research, the clinical interview format was
chosen over a naturalistic, longitudinal study. The clinical interview format is very
appropriate for research concerning students’ cognitive structures. This is expressed
by Ginsburg (1981)), who said, “We see then that at least for the identification and
description of complex cognitive structure, it is desirable and usually necessary to
employ a method other than naturalistic observation or standard tests. For Piaget,
and for researchers concerned with mathematical thinking, the method of choice is
the clinical interview” (p. 7). A semi-structured format was chosen to adapt to the
emergent lines of thought in student thinking, while maintaining a consistent ques-
tion set for all participants. Protocols for both interviews were created, piloted, and
revised before collecting the main data for this study.

The first interview centered around two main activities: definition writing and
card sorts. The cards sorts in this study were primarily open, single-criterion sorts.
What this means is that participants were presented with a set of cards with related
terms, and then asked to create groupings based on a single criterion, which is open to
their choosing (Rugg & McGeorge, 2005). While card sorts often require participants
to partition the complete set of cards into groups (e.g. Whaley & Longoria, 2009; Rugg
& McGeorge, 2005)), this particular study was less restrictive. Instead, participants
were asked only to group at least two cards together and explain how they are related.

These cards were then placed back into the grid and the procedure was repeated. The
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Table 2.1. Student Participants and Demographics

Pseudonym Interview Sem. Campus Status Majors LA Sem. AA III Sems. LA Grade AA Grade
Arthur Fall 2017 B Soph. Math, Comp. Sci.  Fall 2017 I Fall 2017 A A
Chaz Fall 2017 B Junior  Math, Economics  Unknown Unknown A A A
Emilie Fall 2017 B Senior  Math, Education ~Spring 2015 T Fall 2017 C B
Flint Fall 2017 C Senior  Math Education Fall 2016 I Fall 2017 A B
Jake Fall 2017 A Junior  Math Fall 2016 I Fall 2017 A A
Kyle Fall 2017 B Senior  Math, Economics  Fall 2014 I Spring 2014, II Spring 2015 A AA
Lucas Fall 2017 B Senior  Classics, Math Fall 2016 I Fall 2016, IT Spring 2017 A A A
Maureen Fall 2017 B Senior  Math Fall 2017 I Fall 2017 C A
Robyn Fall 2017 B Soph. Math, Education  Spring 2017 I Spring 2017, II Fall 2017 A B, A
Sander Fall 2017 B Senior  Math, Bio., Chem. Spring 2017 I Fall 2017 B B
Tamara Spring 2018 C Senior  Math Education ~Spring 2015 II Spring 2017, T Fall 2017 A C

AA = abstract algebra
LA = linear algebra

I, II = first/second semester in abstract algebra
~ = student could not recall exact semester



inspiration for this style of card sort came from Eli, Mohr-Schroeder, and Lee (2013).
In every open card sort, participants were allowed to create their own cards. This
option was included in order to allow participants to feel free to express their concept
images and connections without feeling restrained by the given terms. Card sorts can
also be closed, where part of the above procedure is limited in some way (Fincher &
Tenenberg, [2005). The closed card sort in this study was limited in the sense that
the cards were given to participants, and they were asked to determine if they were
related or not. All cards were reviewed by three other mathematics educators for
their appropriateness in relation to group homomorphisms or linear transformations.
According to Rugg and McGeorge (2005)), all cards should be on “the same semantic

" so only individual concepts, rather than equations, definitions,

level as each other,’
and theorems, were included. The purpose of the card sorts was twofold: 1) to serve
as a framing device for students to expand on their concept images of the included

terms, and 2) to create a quantitative record of connections within and between

domains.

Group
Homomorphism

Isomorphism Subgroup

Generating Set Codomain Inverse
Homomorphism

One-to-One

Figure 2.1. Layout of Group Homomorphism Card Sort

These card sorts were interspersed throughout the duration of the first interview.
After collecting demographic data, participants were asked to define group homo-

morphisms. If the participant was unable recall this definition, they were asked to
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write whatever came to mind, and then were shown a definition which was prepared
and printed beforehand (see . This was followed by a series of questions
asking students to describe their understanding of the nature and purpose of a group
homomorphism. Participants were then shown an example of the open card sort for-
mat, which involved cards labeled with ten concepts related to derivatives as they
normally appear in a first year calculus course. Once a participant expressed their
comfort with the format, they were asked to complete an open card sort using 16
terms related to group homomorphisms. This process of definitions, questions, and
card sort was then repeated with linear transformations. The section for linear trans-
formations included additional questions asking participants about the relatedness of
linear transformations and group homomorphism, as well as the impact of recalling
group homomorphisms on linear transformation recall. The linear transformation
card sort included 19 cards. Before starting this card sort, participants were shown
any groupings from the previous sort that could still be created in the new grid.
(For example, the cards for domain, range, and function were present in both of the
first two card sort grids.) Each participant was asked if they would still create such
a grouping in the new grid, and if their description of such connections would still
remain the same. If a participant indicated that such a grouping still would have the
same connections in linear algebra (e.g. “Functions, regardless of what class you're
in, still have a domain and a range.”), then the grouping was included in the records
for the second card sort, as well. A third card sort activity followed, using all cards
from the previous two sets. Because cards with the exact same concept name were
only included once, this final card sort involved 24 pre-made cards. Any participant
created cards from the prior two sorts were included as well. Participants were then
asked to complete a closed card sort involving seven pairs of words in succession, in
which they were asked if the two cards were related and, if so, how. Some pairs were

across domains (e.g. subspace and subgroup), while others were within a single do-
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main (e.g. matrix and linear transformation). The protocol in [Appendix Al contains

lists of all cards included in each card sort.

The order of group homomorphisms and related concepts first, followed by lin-
ear transformations and related concepts second, was intentional. Because students
typically study linear algebra before (or at least concurrently with) abstract algebra,
it was presumed that concepts from the latter would be recalled more clearly than
the former. Placing abstract algebra concept recall at the beginning of the interview
would thus provide the more ideal setting for students to make connections between
domains. It was also assumed that placing the more easily recalled domain first
would build students’ confidence, and avoid at least some of the impact of anxiety on
students’ ability to make analogies (Tohill & Holyoak, 2000).

All interviews were videotaped, and all written artifacts, such as definitions and
spontaneous written explanations, were saved and scanned. The entirety of students’
interviews were transcribed by myself. Card groupings were recorded during the

interview.

Pilot Study

The format of the study was piloted informally with two graduate students before
their first semester in graduate school. In the informal pilot, the first interview orig-
inally used concept maps as a framing mechanism, instead of card sorts. Students
were asked to create a concept map centered around group homomorphisms, and then
a separate concept map focusing on linear transformations. At the end, they were
asked to talk about the similarities of the two. Students had difficulty recalling the
needed definitions to create the necessary concept maps. However, it was hypothe-
sized that the increased length of time since taking the classes involved was a strongly
influential factor. The informal pilot also revealed that the second problem solving

interview contained too many problems, and would often likely take longer than the
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targeted two hour time. Thus, questions were cut to reduce the length of the second
interview.

In the formal pilot for the study, I interviewed the undergraduate by the pseudonym
of Chaz using an updated concept map protocol format. At this time, another version
of the interview protocol using the card sort format had already been drafted. The
intention was to pilot both versions and choose the version best suited for the study.
After Chaz’s first interview, it was clear that the card sort interview format would be
chosen. The concept map format asked students to connect concepts using markers,
sticky notes, and a large whiteboard. It was evident that Chaz had a good grasp
of both linear transformations and group homomorphisms. However, the format left
him to sit and ponder all possible connections at one time. Despite being prompted
to explore his thoughts aloud, the number of possibilities for both the number of con-
cepts and how they should be connected led to long periods of silence as he thought
deeply about his concept maps. Chaz’s reticence to draw an arrow spreading across
the diagram also revealed the difficulty that students would face in this format to
create a digestible two-dimensional picture of their connections within a subject. In
retrospect, this probably would have caused certain connections between concepts
not to be drawn due to the pictorial aspect of the format. Additionally, Chaz created
groupings of sticky notes as he brainstormed his concept maps, indicating a natu-
ral fit for the card sort format. After drawing the two concept maps focusing on
individual algebraic domains, Chaz was asked to look for and discuss aspects of the
two concept maps that “play similar roles” in their respective domains. Despite the
depth of knowledge shown by Chaz in each subject, he only connected two items.
The format made it difficult for students to seek out related terms, and it was also
clear that a portion of the interview needed to ask directly about terms that students
may have simply forgotten to mention. Overall, the concept map format was too

lengthy, yielded sparse data on student thinking due to periods of silence, and placed
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too much cognitive burden on students for the wrong reasons. The card sort format
more adequately addressed these concerns, and was chosen for the main format for

the first interview.

2.3 Analysis of the Data

Development of Themes and Assertions from Qualitative Data

Each transcribed student card sort interview was initially coded with a combination
of descriptive coding, structural coding, and concept coding methods (Saldana, 2016)).
I performed all coding using Nvivo 12. For those unfamiliar with qualitative analysis,
coding refers to the process of using words and phrases to summarize and assign
meaning to portions of qualitative data (Saldana, [2016). Coffey and Atkinson (1996)
describe how this labeling of the data plays a different role than in quantitative
analysis, saying,

In this sense, coding qualitative data differs from quantitative analysis,
for we are not merely counting. Rather, we are attaching codes as a way of
identifying and reordering data, allowing the data to be thought about in
new and different ways. Coding is the mechanics of a more subtle process
of having ideas and using concepts about the data. (p. 29)

According to Saldana (2016|), codes are not necessarily the themes that appear in
the final assertions or theory at the end of a research project. Rather, themes arise
from the analysis and categorization of the codes.

Due to the exploratory nature of this study, I did not have an a priori coding
scheme; the initial codes were formed inductively from the data. However, this does
not mean that I entered into coding as a blank slate. Instead, my research questions
guided the coding process, and my prior understanding of the preexisting theories,
such as concept images, Tall’s met-befores, transfer, and others not mentioned in
this text, shaped the lens through which descriptive codes and concept codes were

formed. This means that during the process of coding, I was simultaneously looking
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for emergent patterns in student thinking, evidence of connections between mathe-
matical concepts, and indications of transfer or problematic concept images. As I
coded more passages from the transcripts, the number of codes increased to reflect
the different thought processes and perspectives of students. The presence of these
new codes then warranted new passes through previous transcripts. This process of
continual inductive coding passes continued until all transcripts were coded and a
saturation point was reached regarding the number of new codes coming from a new
pass through the data.

Because interviews were semi-structured, students answered a set of common in-
terview questions between card sorts. These common prompts made it easier for me
to compare and contrast students’ responses for this portion of the data. Thus, I
constructed structural codes marking the beginning and ending of answers to inter-
view questions to quickly find each student’s response in Nvivo. These responses
were then summarized and placed into a spreadsheet organized by students on one
axis, and interview questions on the other. This allowed me to analyze this portion
of the data both within individual cases and across cases. This occurred concurrently
with the descriptive coding and concept coding process above. Insights gained from
this spreadsheet were integrated into the above coding process by finding the original
passages and coding them accordingly.

After these first rounds of coding, the list of codes was pared down through two
processes. The first of these was the coalescence of related codes either through
merging codes or making one a subcode of the other. The other process was the
pruning of codes from full consideration in the theoretical analysis. Codes were
pruned either due to their presence in only a single passage, or their irrelevance to
the research questions.

Through these processes, I found that most of the connections formed by stu-

dents were either stated directly as analogies, or could be interpreted as such. While
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the theoretical framework of concept image and concept definition proved useful for
discussing students’ understandings of group homomorphisms and linear transfor-
mations, it did not provide a sufficient framework for analyzing students’ reasoning
through analogies. Rather than build an entirely new framework from induction
alone, I continued research into preexisting theories on transfer through analogies.
This is what led to the use of Gentner’s and Holyoak’s writings on analogical reason-
ing as a lens for viewing student connections. Similar to my use of both student-driven
and theory-driven codes, my later analysis was thus neither purely inductive nor de-
ductive. Instead, I engaged in what Coffey and Atkinson (1996) refer to as abductive
reasoning. According to Coffey and Atkinson, most qualitative researchers do not
engage in purely inductive or deductive logic to analyze their data. In pursuit of
the generation of ideas and theories from the data, researchers oscillate back and
forth between the two, looking to “go beyond the data themselves, to locate them in
explanatory or interpretive frameworks,” but also to use data to “come up with new
configurations of ideas” when these existing frameworks do not fit (p. 156).

With the theoretical framework of analogical reasoning in mind, I constructed
another spreadsheet, this time listing all coded analogies with a summary of a stu-
dent’s wording and the concepts aligned in the analogy. This, together with other
overlapping codes, led to the summaries found in This also gave rise to
the use of mapping diagrams to convey visually the important analogies at work in
students’ reasoning. In each diagram, the abstract algebra domain is given on the
left, while the linear algebra domain is on the right. Parallel structures are displayed
in similar layouts across domains, with one structure being either a translation or
reflection of the other. Concepts are shown as ellipses, and are linked by arrows rep-
resenting relations expressed or implied by the student being discussed. Key concepts
aligned across domains are also connected by arrows either labeled as “is analogous

to” or using a more precise wording given by the student. Connections and relations
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shown with a dashed line were inferences generated by students based on the existing
relations and connections indicated by arrows with solid lines. Dotted lines with “x”
represent an important concept which has a mathematical parallel in the diagram,

but is not present in the student’s structural alignment.
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Figure 2.2. Example of Diagram for Displaying Analogical Reasoning

I regularly make assertions about participants’ concept images, their analogical
reasoning, and general themes across cases. As a form of triangulation, during the
process of constructing assertions, I searched the data for other times a student
described a relevant concept or connection. As a form of transparency, when the
data is sparse or contains a discrepant case counter to the general assertion, I have

reported as much in my analysis.

Construction of Adjacency Matrices

Transfer across domains requires an understanding of both the base and target do-
mains in order for an individual to begin engaging in structural alignment. Thus, it
was important to find a way to communicate the overall structure of participants’

understandings of each individual domain. Analogies between domains constructed
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by participants, either verbally or with explicit cards in the combined card sort, lent
themselves nicely to qualitative coding and analysis. The one-to-one nature of struc-
tural alignment, and common linguistic indicators such as similarly, parallel, like, and
so forth, made finding and reporting between-domain connections easy with the tools
of qualitative analysis. However, within-domain connections are made by participants
for a variety of reasons often not including analogical reasoning, and are particularly
much more numerous. A qualitative discussion of these other connections, when they
are not subservient to the analogical reasoning at the heart of this study, is beyond
my current scope.

The first step in reducing the potential data is the card sort itself. Participants
were asked to create groupings based on a thematic criterion of their choosing. This
allowed me to immediately gain a record of a within-domain connection, and the
reason for making that connection. However, lists of card sort groupings from each
participant are still difficult to compare between students and between card sorts. If
one student makes three large seven-card groupings in a card sort, and another makes
twelve small two-card groupings, how are we to compare the connectedness of their
schema within that particular domain? This hypothetical example shows that simply
reporting the number of groupings made by individuals could greatly misrepresent the
interconnected nature of their schema. For this study, the solution to this problem
comes in the form of adjacency matrices.

In this paper, an adjacency matrix is an integer-valued matrix which encodes
the edges connecting the vertices of a graph. While these can be used to describe
directed graphs, all adjacency matrices herein will represent undirected graphs. An
n x n adjacency matrix A = [a;;] encodes the edge data for a graph with n vertices.
The entry a;; represents the number of edges joining vertex i with vertex j. For
undirected graphs, this means that a;; = aj;, i.e. all adjacency matrices throughout

this writing will be symmetric.
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Two adjacency matrices were constructed for each participant: one for the group

homomorphism card sort and one for the linear transformation card sort. All matri-

ces can be found in [Appendix E| and [Appendix k| Each concept written on a card

(including participant-contributed cards) is a vertex of a participant’s adjacency ma-
trix. Two vertices are connected with one edge for each time their respective concept
cards were grouped together by the participant during the card sort. Each card is
counted as grouped with itself, so that the diagonal of the adjacency matrix gives the
number of times each card was used by a participant. While this practice is help-
ful for displaying information about the card sorts when reading through individual
adjacency matrices, creating loops does not have a meaningful purpose in calcula-
tions involving the numeration of edges, and so in the calculations for these
loops were removed and the diagonal set to all zeros. For the presentation of the
adjacency matrices, a different order was chosen than the random order given to par-
ticipants. In the group homomorphism matrices, the given 16 cards are listed, then
student-contributed cards, then professor-only contributed cards — each alphabeti-
cally. Similar contributed cards, such as normal and normal subgroup, were combined
and counted as a single concept. For the linear transformation matrices, the 16 cards
having the same name or parallel role to their counterparts in the previous card sort
were listed in the same order as the group homomorphism matrices. The remaining
three given cards of column space, matrix, and null space come next. This is fol-
lowed by student-contributed cards and then professor-contributed cards, each again
alphabetically.

At the individual level, the graphs represented by the adjacency matrices were
compared quantitatively using two measures: number of components and edge-to-
vertex ratios. The inspiration for this second metric comes from Ferrari and Munarini
(2014), wherein the authors cite a variety of other studies displaying the usefulness

of such a metric in pure and applied graph theory. Together, these provide a quick
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picture of the connectedness and density of students’ schema surrounding group ho-
momorphisms and linear transformations.

Because participants were able to create their own cards, choices had to be made
concerning their impact on the above two quantities. The main objective is to com-
pare participants’ connections between the given 16 group homomorphism cards, the
parallel 16 linear transformation cards, and the full 19 linear transformation cards.
The most straightforward way to do this is to use the submatrix of the desired cards.
However, performing this action gives a subgraph where some vertices that were once
connected in the parent graph become disconnected in the subgraph. For example, a
student could connect matrix and determinant in one grouping and then determinant
and isomorphism in another. Matrix and isomorphism would be connected in the
parent graph, but not in a subgraph which does not contain determinant. Failing
to report such a connection could be seen as a misrepresentation of participants’
understandings. Thus, [Table 3.2 contains columns for both scenarios. One column
gives the number of components in the subgraph with no modifications. The other
accounts for these “missing” connections. This was done by performing a slight mod-
ification to the parent graph before taking a desired subgraph. Given a vertex that
would be dropped in the subgraph, every other vertex which was an immediate neigh-
bor to that particular vertex was identified. Edges were then added to the graph to
form the complete graph on all identified neighbors, thus connecting concepts which
were previously linked through the soon-to-be-discarded concept. This technique was
only used for the secondary measure of graph components. Because the number of
edges on a complete graph K, is n!, using this version of the graph would only be a
detriment to the reliability of the edge-to-vertex ratio.

Almost all groupings presented by participants were recorded as displayed on
the table during the interview. The only exception was surface-level connections

devoid of any mathematical content. Such groupings included timing of content in
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the curriculum (e.g. “I've seen these together in class...”) or “gut” feelings without any
backing (e.g. “I feel like there’s a connection that could be made here...”). These were
excluded from the adjacency matrices due to the groupings representing connections
clearly tangential to the purpose of the study. The inclusion of such reasoning in
an argument was not enough to bar a grouping from being present in an adjacency
matrix. It was only when such statements were presented in isolation from any

mathematical backing that they were excluded.

Copyright © Jeffrey Slye, 2019.
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Chapter 3 Results

3.1 On the Definitions of the Morphisms

Concept Images of Group Homomorphisms

Of the ten students interviewed, four (Arthur, Jake, Kyle, and Robyn) were able to
recall the definition of a group homomorphism with no errors or one minor error.
Minor errors included the presence of the extraneous condition f(a™') = (f(a))™?,
and restriction of the domain to only certain elements. Two other students (Mau-
reen and Sander) provided definitions containing the group homomorphism property
somewhere in a related definition. When asked to define a group homomorphism,
Sander requested to give the definition of group isomorphism, as he could only recall
learning about isomorphisms. The definition of isomorphism which he produced was
fully correct. Maureen also attempted to recall the definition of a group isomorphism,
rather than group homomorphism. However, the definition Maureen produced was
actually a ring homomorphism (without the identity preservation property).

Of the four remaining students, three (Emilie, Flint, and Lucas) proposed that
a group homomorphism is a function or mapping. Interestingly, both Lucas and
Flint initially assumed that the morphism maps a group to itself, with Lucas later
realizing that this would instead be a requirement for a group automorphism. Tallying
up all of the cases above, nine out of the ten students interviewed recalled group
homomorphisms were related to either functions or mappings. Only Tamara was
unable to recall anything at all about group homomorphisms on her own. At a bare
minimum, this means that for a majority of the students, the core idea of a group
homomorphism being a function or mapping is present in their evoked concept images

before being reminded of the mathematical definition.
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Once students had either produced or seen a correct mathematical definition of
group homomorphism, they were asked in various ways to explain the concept in
their own words. Many students at some point described the characteristic property
of a group homomorphism in a very literal fashion. For example, Jake, in his initial
description of group homomorphism, stated, “A group homomorphism is a function
that holds the property that if you take an element from a group — or, two elements
from a group, and you have f of two — the multiplication of those two elements
equals f of the multip— f of the first element times f of the second element of that
group.” For a few students, the interpretation ended there or shortly after. Emilie
attempted to make sense of the group homomorphism property by describing it as a
type of “commutativity” or “smushing.” For her, the symbols and letters were being
“pulled together” in a similar manner to the commutative property. The imagery
of her evoked concept image at that time was limited to the literal symbols on the
paper. At the farthest end of the spectrum, Tamara was hesitant to make any claims
about group homomorphisms beyond rereading the given definition.

However, for the majority of students, some extra meaning was ascribed to group
homomorphisms beyond their own concept definition. In these cases, discussion on
the larger concept image centered around three main themes: preservation of the
group structure, relating or comparing groups, and sameness under isomorphism.
Upon reflection, it is easy to see that all three of these themes are intertwined with
one another. This is reflected by the fact that some students drew on multiple core
tenants within the same breath. However, the subtle differences in these themes —
and the fact that multiple students made use of only one or two of them instead of
all three — warrant a look at each individually. It is also important to note that
these themes inevitably mirror or mimic those used in both students’ textbooks and
classrooms. The discussion below is not to assert that students’ concept images exist

in vacuum, but rather to identify those aspects of morphisms that stick with students
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and remain at the core of their concept images.

Table 3.1. Themes of Students’ Concept Images of Morphisms

GH Compares GH Preserves I Denotes LT Compares LT Preserves Geometric
Pseudonym Structures Structure Sameness (AA) Structure Structure Reasoning (LA)
Arthur X X X X X
Emilie
Flint X
Jake X X X
Kyle X X X X X
Lucas X X X X
Maureen X X X
Robyn X X
Sander X X
Tamara

AA = abstract algebra

LA = linear algebra

GH = group homomorphism
LT = linear transformation

I = isomorphism

Preserving Group Structure

The core purpose of a group homomorphism is to preserve group structure. With a
set-function being too relaxed to prove meaningful results in group theory, and an
isomorphism being too rigid, the group homomorphism serves as the desired function
to map between groups while maintaining structure. For those that can interpret
the symbols in the definition, it is clear that group homomorphisms preserve the
group operation. However, the morphism’s minimalist definition hides the fact that
it preserves the identity and inverses so that the image of a group is a subgroup
(though this is often the first theorem to be proved after the introduction of the
definition of group homomorphism). It is then important to observe whether or not
students are able to communicate this key feature of group homomorphisms.

Half of the students interviewed (Arthur, Jake, Kyle, Lucas, and Maureen) showed
some evidence of perceiving group homomorphisms as preserving group structure.
With the exception of Jake, this evidence was given without the context of isomor-
phism. Specific examples of group homomorphism structure preservation were given

by Arthur, Kyle, and Maureen.
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Perhaps due to his continued experience with structure-preserving morphisms in
graduate classes, Kyle in particular saw group homomorphisms as structure preserv-
ing at their core. He described a group homomorphism in his own words as “a map...
or... a way of comparing two groups, where there’s some structure in the first group
that is carried over into the structure of the second group.” In line with this concept
image, his initial concept definition included the preservation of identity and inverses
directly in its formulation. When asked if all three conditions were necessary and
sufficient, he concluded that the identity property was indeed already given by the
core group homomorphism property, but he maintained the preservation of inverses
as necessary. Though Kyle’s definition is not minimal, his work in constructing the
definition and his subsequent description show a clear awareness of the structure
preserving nature of this morphism. Kyle would later go on to describe how group
homomorphisms send subgroups to subgroups and generating sets to generating sets
of images.

Despite claiming that she had a stronger understanding of abstract algebra than
linear algebra, Maureen was the only student to transfer consistently her intuition
from the base domain of linear transformations into the target domain of group
homomorphisms. Similar to Kyle, she began by describing a group homomorphism
as “a relationship between the groups that preserves the structure of the groups.”
And, later in the first interview, Maureen would make note of the fact that group
homomorphisms preserve cyclic groups. But interestingly, when asked to describe a
group homomorphism to a theoretical other person, Maureen said, “I would describe it
as a linear transformation.” Maureen then relied on her linear transformation concept
image, describing the preservation of the operations (as her group homomorphism
definition contained requirements for a ring homomorphism) as preserving distances.
She later described seeing groups as being geometrically similar to vector spaces,

being comprised of vectors in R?. This geometric notion of preserving distances would
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be repeated by others concerning linear transformations, as will be discussed later.
Maureen indeed drew a coordinate grid (R?) when solving a group homomorphism
problem involving Z x Z, but it is unknown how helpful or hurtful this particular
concept image of preserving distances would be for group homomorphisms outside of
this very particular context.

The notion of structure preservation was less prevalent for Arthur, Jake, and Lu-
cas, but still present in some capacity. Arthur made mention that group homomor-
phisms preserve the identity element, and that one must be aware of group structures
in general when working with group homomorphisms. Jake noted that isomorphisms
allow mathematicians to classify abelian groups, implying the preservation of the
abelian nature of a group. Finally, Lucas expressed that with group homomorphisms
(and linear transformations), the “work” that is done in the domain has a clear re-
lationship with its image; the addition “holds up” (i.e. is preserved) after taking the
morphism. Overall, there is good evidence that a subset of students recognized the

role of group homomorphism as preserving group structure.

Relating or Comparing Groups

Lucas’s previously mentioned phrasing leads nicely into the second theme of stu-
dents’ group homomorphism concept images. A few students (Arthur, Kyle, Lucas,
and Robyn) described the idea that a group homomorphism relates or compares two
groups. On its own, the phrase “relates two groups” can be ambiguous when trying
to interpret what a particular student means by the phrase. On the one hand, all
functions are themselves relations, in both a colloquial sense and an exact mathe-
matical sense. So, when a student explains that a group homomorphism relates two
groups without further elaborating, that student could simply be appealing to the
fact that a group homomorphism is a function between two groups. Indeed, some-

times the language chosen by students leans this way, such as when Arthur stated,
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“they’re functions that relate one group to another group” when speaking of group
homomorphisms, inverse homomorphisms, and isomorphisms. On the other hand, be-
cause group homomorphisms preserve group structure, this relationship can be used
to leverage knowledge about one group and understand properties of another. Thus,
a student observing that a group homomorphism “relates” two groups could in fact
be making a deeper statement about the nature of group homomorphisms than their
status as a function. This is evident when Robyn noted that the “comparison [given
by a group homomorphism] is able to give you more properties about that specific
group and what’s happening from... G to G prime.” Robyn’s and Kyle’s specific
use of the word “comparison” (or “compare”) indicates a purpose for the relation
that makes use of group properties. Recall that this is also reflected in Kyle’s ini-
tial description of group homomorphism, which blends the ideas of comparison and
preservation. Sources such as Vinner and Dreyfus (1989)) and Zandieh et al. (2017)
make mention of students’ noticing of the relational aspect of a function, labelling it

7«

as “correspondence,” “rule,” or “mapping.” However the notions mentioned in these
sources (which deal with functions in high school, calculus, and linear algebra classes)
possess the more intentional nature of the comparison notion expressed here, indicat-
ing that this particular notion of morphism is more regularly expressed in abstract
algebra.

Like the preservation theme, the typical example for comparing and relating
groups was most often the idea of isomorphism. All three of the students who men-
tioned this theme were sure to point out that an isomorphism allows one to understand
one of the two related groups in terms of the other in the most direct sense. Beyond
this, only Kyle attempted to provide details in the case where an isomorphism is
not present. He recalled that a surjection in the absence of an injection will imply

that one group is larger than the other, and made a similar observation regarding

an injection in the absence of a surjection. This particular example does not convey
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how the comparison or relation leverages the group homomorphism property. Thus,
it is interesting to note that, even for students that mentioned the relational power
of the group homomorphism, there was a lack of immediate example for what such
relational power is outside of isomorphisms. Arthur’s reflections on as much provide

a very fitting firsthand summary of the above findings.

A: T mean, we haven’t necessarily gone over any, like, super great examples
of the use of a homomorphism, but I feel like it is something that’s really
interesting, and something that you would want to take a note of, because
it could be very helpful later on.

I: Do you know why it would be interesting or helpful?

A: Tt allows you to figure out how the two group structures can relate to
each other, which if they end up being like an isomorphism, for example,
then it’s really nice to work with because practically the same.

Isomorphism as Sameness

As just seen with both the structural preservation and relational sections, isomor-
phisms play a role in students’ (Arthur, Jake, Kyle, and Sander) understandings of
homomorphisms. Arthur’s and Jake’s use of isomorphism was already mentioned
above. Both responses were given in the context of being asked why mathematicians
would define group homomorphisms the way they do. While Arthur’s description of
categorizing abelian groups is more concrete, both responses highlight how the defi-
nition of homomorphism ties into isomorphism, and that isomorphisms are “nice” for
mathematicians to work with. Kyle’s response to mathematicians’ use of homomor-
phism is also met with a succinct “you can use them to show that two groups are the
same — that they’re isomorphic.” This notion of sameness is then described as the
ability to align elements side-by-side (as in a comparison of group operation tables)
in a way that the multiplication of elements is exactly the same, with only a change
in the names of the elements. Kyle later referred to this method when attempting to

prove that a particular map in the problem solving interview is a group homomor-
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phism. In this problem, Kyle put forth that he would draw a table of the domain
elements, a table of the elements in the image, and compare the two. Thus, for Kyle,
the notion of sameness in isomorphism is useful when carried over to understanding
group homomorphisms in an enacted way.

Compare this with the interesting case of Sander. Recall that Sander was unable
to produce a definition of group homomorphism — only group isomorphism. Even
after being shown the definition of homomorphism, Sander’s understanding remained
very couched in the notion of isomorphism. Asked to describe the homomorphism
property, Sander said he would think of it like a “group of apples” and a “group
of oranges,” and that “they’re the same group, they're just being represented by
different pieces. So there’s some way to imply that even though this [motions to
left with hands| is a group of apples [motions to right with hands] and this is a
group of oranges, they're the same group overall. If you... got rid of the individual
elements and just simplified it.” This is similar to the name change notion brought
up by Kyle. However, unlike Kyle, this was never contrasted against situations in
which a homomorphism is not one-to-one, and there was no notion of preserving or
relating only a portion of the structure. Sander’s well-developed concept image of
isomorphism was not yet transferred to an understanding of homomorphisms as a
broader concept.

Emily, Flint, and Maureen also discussed isomorphisms in relation to homomor-
phisms. However, none of these three used isomorphisms to discuss sameness, or
even group structure at all. Emilie could only recall that an isomorphism is a group
homomorphism, but not how the two were different. Flint consistently referred to
isomorphism as “the function that actually maps the group onto the other group”
whenever a group homomorphism is used. It is possible that Flint only recalled
seeing the homomorphism property as an aspect of isomorphisms, and not its own

concept. This would account for Flint’s assertion. Finally, like many others, Maureen
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described an isomorphism as a bijective homomorphism. It was also in attempting
to recall isomorphisms that Maureen in fact produced a ring homomorphism. Thus,
as will also be clear later in [Table 3.1] students linked the concepts of isomorphism
and homomorphism a sizeable number of times. That said, only the previous four
students above used this link to more fully understand homomorphisms and how they

relate algebraic structures.

Concept Images of Linear Transformations

Three of the ten students (Arthur, Kyle, and Maureen) were able to produce a def-
inition of a linear transformation close to the standard definition. For Arthur, his
original definition was defined in terms of R™ and R™, as is standard in many text-
books for the first introduction of linear transformations. In the case of Kyle, who had
taken various graduate classes in mathematics, he attempted to give the definition
more generally as a module homomorphism. This was mostly correct, and contained
the critical condition preserving addition and scalar multiplication. However, this
definition indirectly defined modules as a group with a group action, rather than an
abelian group with a ring action. Finally, Maureen’s definition contained the minor
error that both the domain and codomain are given as V. Maureen never referred to
the domain and codomain as being the same vector space for the rest of the interview.

In contrast to how nine of the ten students initially linked group homomorphisms
to functions, only six did the same with linear transformations. Additionally, while
almost every student recalled that a group homomorphism is a function between
groups, only four students indicated the involvement of some type of vector space
when attempting to recall linear transformations (before being shown the mathe-
matical definition in the interview protocol). Three of these students were discussed
above, with the remaining fourth being Lucas, who knew that a linear transformation

was a function from R™ and R™, but could not recall more. For those students that
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conjectured that linear transformations relate to functions, but made no mention of
vector spaces, their guesses were based on surface level features. Sander stated that
he guessed a linear transformation was a function (between groups) because of the
discussion on group homomorphisms earlier. Tamara remarked that she picked up on
the “linear” aspect, and so guessed that a linear transformation must be a function
involving lines, such as y = 2z + 5.

This influence of the appearance of the words used to describe mathematical
concepts was a common theme across various terms, but was especially notable here.
In a manner similar to the above, Emilie, Flint, and Jake all initially proposed that
a linear transformation must involve one of the two eponymous terms. In the case
of Emilie, she wrote that a linear transformation must involve “taking a line and
transferring it to another line.” Flint and Jake, meanwhile, both picked up on the
transformation portion of the term, triggering recall of transformations of graphs in
college algebra. While Jake quickly discarded the notion that this prior knowledge
would be helpful in a linear algebra context upon seeing the correct definition, Flint
continued to make use of such imagery throughout his interview. For Flint, a linear
transformation must be like the transformation of a graph. However, instead of
translating and scaling graphs, in this context the transformation must be doing the
same to vectors, as seen in the quotation below.

[: Mmhmm. Okay. Uh, how would you describe a linear transformation
to someone else? How would you help them think about it intuitively?

F: I would probably start out with the s— again, something simple, maybe
drawing a picture of moving a graph and like asking how you got from
one place to the other, and like that’s your transformation. Um, and then
probably bringing that back to vectors and how you can do the same thing
with vectors. You can just add them together, or you can — like if you
had this vector and you were trying to make it, you know, bigger, this
much [points] bigger, you know, how would you do that? Something like
that.

It would stand to reason that if the appearance and structure of the term “linear

transformation” influenced recall of problematic prior knowledge, then appearance
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and structure of “group homomorphism” may have triggered potential helpful prior
knowledge. The presence of “group” in the term immediately ties it to its respective
object, while the presence of “morphism” may have allowed students to orient their
concept images to isomorphisms and connected notions and properties. Note Sander’s
response when he was first asked to define group homomorphism, and recall that he
eventually was only able to define isomorphism. His process started out as in the
quote below.

I guess isomorphism is what first comes to my mind, and connection
between all the z’s and y’s, x’s would be in the set of the — or in the
first group, and then y’s would be in the... group of the second one. And
then there’s some correspondence between them. I don’t understand what
homomorphism is.

For students attempting to recall terminology from months or even years ago, the
wording of linear transformation places it at a disadvantage as compared to group
homomorphism.

Before discussing the themes present in students’ linear transformation concept
images, it is important to note the themes which were not prevalent in the context
of linear transformations. Mentions of comparing or relating two structures dropped
significantly, with only Robyn attempting to make an analogy connecting each mor-
phism’s comparative nature (discussed in [Section 3.2)), and Lucas making parallel
statements to his group homomorphism statement concerning the morphism allowing
one to transfer work from one structure to the other.

Additionally, the theme of isomorphism as sameness is completely absent in the
context of linear transformations. Isomorphisms are mentioned in terms of bijective
functions, as an idea that spans across multiple subjects. However, the preservation
of structure, which for homomorphisms was often immediately tied to the idea of
isomorphism as an example, is no longer tied to isomorphisms in this context. Likely
due to its presence in the abstract algebra curriculum before group homomorphisms,

isomorphisms were discussed by half of all students when they were asked what con-
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cepts were most critical to understanding group homomorphisms. For the theme of
“isomorphisms as sameness” to be missing in the context of linear transformations
marks a large distinction between students’ understanding of group homomorphisms
and their understanding of linear transformations. This stands out as one of the
largest differences between student thinking on morphisms between classes, alongside
the later geometric theme of linear transformations. It also likely marks a differ-
ence in how these two subjects are both taught and utilized by mathematicians in
teaching. For some students, they directly expressed that they had not encountered
isomorphisms in linear algebra. It is also greatly possible that in many linear algebra
classes, the emphasis on R" for a majority of the course leads to a much lesser need
for a discussion on isomorphisms of vector spaces.

There were then two main themes in students’ linear transformation concept im-
ages: geometric reasoning and preservation of structure. As with the themes present
with group homomorphisms, these overlapped and intertwined in some students’ ex-
planations. However, the geometric situations described by students varied, and
sometimes tied into aspects of linear algebra which are tangential to linear transfor-

mations.

Geometric Reasoning

For six of the ten students, geometric reasoning was either displayed or referenced
with regards to linear algebra. In the cases of Jake and Maureen, these were general
references to “seeing” linear algebra more geometrically, or referring to vectors as
existing in different planes. They made no attempt to describe linear transformations
geometrically.

For Flint and Sander, both students attempted to reason through the properties of
a linear transformation using prior knowledge of geometric representations of vector

addition and scalar multiplication. Using the aforementioned knowledge of transfor-
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Figure 3.1. Flint’s Geometric Reasoning on the Scalar Multiple Property

mations from college algebra, Flint first reasoned that the scalar multiple property of
a linear transformation is scaling a vector. When drawing the picture in [Figure 3.1}
Flint stated of the second property,

I would say that that’s, like, your scalar multiple or whatever... just like
that’s what I was talking about when you're trying to make something
bigger. Like if you're trying to get to this point up here [draws dot], this
is the only vector you've got [drawing in direction of point but stopping
short], you know, what would be your multiple to make this, like how
many of these, you know, are you going to need, basically, to get up
there?

Likewise, when Flint reasoned about the first linear transformation property, he
drew out a triangle representative of vector addition. (Note that this particular
passage is from a portion of the interview where Flint was asked to compare group
homomorphisms and linear transformations, which led to the notation of 7'(x *y) in
instead of the standard T'(x + y).) Explaining this property, he stated,
“like these two added together [points at T'(x), T'(y), and then left side of equation
containing T'(x * y)] is going to give you this one thing [points at longest vector
in triangle].” It is important to note that throughout these examples, and in all of
Flint’s other similar explanations, there is a lack of recognition of the function 7" in
the geometric reasoning. Both are explanations of scalar multiplication and vector
addition, with T" existing in the algebraic symbols but having no impact on the actual
geometric imagery. This is an extension of the above remark on students’ lesser
understanding of linear transformation as a function. A similar pattern of thinking

occurred in Sander’s interview. In Sander’s case, the picture drawn was that of a
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Figure 3.2. Flint’s Geometric Reasoning on the Vector Addition Property

parallelogram, usually drawn to represent the commutativity of vector addition in a
visual manner. Scalar multiplication was represented in the same manner as Flint, in

the same diagram. In this case, the properties were verbally described as “closure”

Figure 3.3. Sander’s Geometric Reasoning on Both Properties

of the operations of addition and scalar multiplication. Similar to Tamara, Sander
seemingly latched onto the idea of x and y to the first power as being related to
lines from college algebra. At one point Sander referred to the sum x + y as a line,
and posited that in a different vector space, the contents of T'((J) could instead be
a different “equation” (non-linear function), so that the transformation isn’t linear.
Thus, linearity is not a property of the function, but of the space and the lines (or line
segments / vectors) drawn in that space. In both Sander and Flint’s interviews, their

attempts to draw on geometric reasoning from class ignored the algebraic statements
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in the definition. This then lead to misconceptions about linear transformations, and
the oversight of the functional nature of linear transformations.

Finally, it was Arthur and Kyle who described their concept images of linear trans-
formation geometrically. The core of Kyle’s concept image was matrices, which he
stated as much when he said, “When I think about linear transformations, I think —
I see a matrix.” However, Kyle was not limited to this arithmetic mode of thinking.
When asked why mathematicians define linear transformations as they do, Kyle’s
initial response was “It keeps the “shape” [uses air quotes] of the spaces the same. So
if you start with two vectors that are on the same line originally, you will end — the
transformation will send them to vectors that are on the same line. They’re multiples
of each other, up to scalars.” This indicates that while geometric reasoning was not
Kyle’s primary mode in his concept image, he was able to synthesize the two modes
successfully in order to construct a unified schema. Arthur instead consistently em-
phasized the importance of geometry in understanding linear transformations, saying
“That’s just the main thing I think, for linear transformations, is, very visually, what
does it look like?” Arthur’s geometric explanation of a linear transformation is based
more off of concrete examples than on a synthesis of algebra and geometric as Kyle’s

was. This is illustrated when Arthur described:

[A linear transformation| kind of preserves like, the term I use is like
the rigidity of the space. Um, not necessarily, not necessarily preserving
distances, but, preserving relative distances, like everything — say I'm
just going like a two-dimensional to a two-dimensional, you could have
like just your regular grid plane, and then you could shear it in like a
shear transformation, um, everything is preserved there, granted your
distances changed, but they still have the same relative distance.

Arthur’s use of the phrase “relative distance” is similar to Kyle’s use of “shape”
in his geometric explanation of a linear transformation. However, there is no direct
reference to the properties of a linear transformation, and Arthur later directly says

that he hasn’t given the second property of linear transformations much thought
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beyond simply memorizing it. While this more intuition-based concept image proved
problematic in some ways, such as when Arthur offhandedly seems to imply that
a map from a two-dimensional space to a one-dimensional space does not preserve
enough structure, it did not hamper his ability to produce and work with linear
transformations in an arithmetically-heavy problem-solving context later on. Finally,
it is interesting to see that Arthur’s use of the word “distance” for what is being
preserved echos Maureen’s description of group homomorphisms (through the lens of

the linear transformation concept image).

Preserving Structure

As seen above, much of Arthur’s and Kyle’s geometric reasoning pertains to the
preservation of the structure of a vector space. Because the entirety of Arthur’s
evoked concept image pertaining to preservation of structure is geometric in na-
ture, it stands in contrast to his algebraic intuition concerning isomorphic sameness
and preservation of identity in describing group homomorphisms. Meanwhile, Kyle’s
statements concerning preservation of structure greatly mirror those from his de-
scription of group homomorphisms, again likely due to his continued exposure to
morphisms in graduate classes. In addition to his geometric statements above, Kyle
makes mention of the algebraic ideas of the translation of addition through linear
transformation, image of basis as basis for the image, and subspaces as being thought
of as images of injective linear transformations. Each of these notions was described
using very similar language and with the corresponding group equivalents. The only
missing parallel statement was already addressed earlier — there is no use of isomor-
phism in the linear algebra context to describe preservation of structure or sameness.
Isomorphism is only described as a bijection. Even with this exception, there is a
great deal of mirroring of language between contexts, and the overall body of Kyle’s

interview gives good evidence of Kyle’s integrated morphism schema. Because group
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homomorphisms and linear transformations are part of a greater concept image, ac-
tivation of this integrated schema results in similar statements regarding the shared
properties and intuitions of these morphisms. More about this will be discussed later.

Lucas and Maureen likewise discussed preservation of structure by linear trans-
formations in a similar manner to how they presented group homomorphisms. In the
case of Lucas, this is because he described preservation of structure at a point in the
interview when he was discussing a common feature to both morphisms. As noted
earlier, for Lucas this preservation is the idea that “work” (such as addition) is main-
tained by the morphism from one space to the next. This is not elaborated upon in
either context besides slight variations of the theme. As with group homomorphisms,
Maureen directly describes linear transformations as preserving structure. Like Lu-
cas, these references are in tandem with statements about group homomorphisms.
Specifically, Maureen makes reference to the preservation of the addition operation.
For both Lucas and Maureen, there is clearly a connection being made between the
two morphisms and their preservation of structure. The lack of elaboration beyond
the connection of the first condition of linear transformations and the group homo-
morphism property makes it unclear how robust this connection is compared to that

of Kyle’s integrated morphism schema.

More on the Connections Between Morphisms

Though the levels of detail varied, it is evident from the above that some students are
actively making some connections between these morphisms, without directly being
told of said connections. Not only were Arthur, Kyle, Lucas, and Maureen using
similar notions to describe both morphisms, but they made direct statements about
how these notions manifested in both settings. Whether geometric or algebraic in
nature, most of these links between overall intuition in concept images hinged on the

common theme just discussed — that of the preservation of structure in a category by
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its respective morphism. However, for most of these students, the connections forged
between concepts were not just similarities or intuitions. Arthur, Kyle, and Lucas
all successfully recognized that the presence of the group homomorphism condition
in the definition of linear transformation mathematically implied that a linear trans-
formation is in fact a group homomorphism. The arc of this realization was different
for each student.

Taking linear algebra and abstract algebra concurrently, Arthur saw the similar-
ities between isomorphism, homomorphism, and linear transformation at different
points during the semester. As he was ending this semester at the time of interview,

he was able to recall the time line of these connections in detail, saying,

I was looking up some definitions... to make sure I was understanding it,
and it explained isomorphism as a specific type of homomorphism, and I
was like, ‘Well we didn’t learn about homomorphisms. So I kind of saw
through there, I was like, ‘Oh, okay, it’s just a broadened isomorphism.
And then, I remembered seeing that and thought, ‘Huh, that looks similar
to a linear transformation,” but I didn’t think much of it then.

When Arthur’s linear algebra class progressed further into abstract vector spaces
and linear transformations, this connection remained with Arthur, and he decided to

ask his professor, as he recounts,

When we were learning about it — not necessarily linear transformations,
but I think this was once we got further into vector spaces... we talked
about transformations with respect to vector spaces, specifically. 1 asked
our professor after class, like, I explained I was in [abstract| algebra. I
was like, ‘Is this essentially the same thing?’ And she was like, ‘Yeah, it’s
practically the same thing. It is the same thing. ... So it is a connection
that I made, but then I did confirm it, I guess, is how I’d put that.

Thus, for Arthur, seeing the definitions in one class (concurrent with the other)
was enough to trigger a sense of similarity and curiosity. By the time of interview,
Arthur was able to clarify that the linear transformations and group homomorphisms

were not the same, per se, but that “a linear transformation is a specific group
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homomorphism where it has that extra condition.” Arthur was now able to categorize
the morphisms into a clear hierarchy.

Kyle makes a similar, but more extended, statement regarding the two morphisms,
when he says a linear transformation is “the group homomorphism that you would
want for vector spaces. So, it has more conditions that make sense for the additional
structure that a vector space has, in the sense that there are scalars and there are
vectors, as opposed to just one type of element in a group.” When Arthur came
to the scalar condition, he remarked that it was just a condition that needed to be
memorized, and that it probably helped with the “linearity” in some sense. Kyle,
having taken abstract algebra at both the undergraduate and graduate levels, sees
that the second condition is tied to the fact that vector spaces have the additional
action of a field on the abelian group. Because this action (scalar multiplication) is
an integral part of the structure of vector spaces, it must be included in the morphism
for that space as well. Kyle does not give a full account of how his integrated schema
of morphisms came to be, but does recall that taking abstract algebra before linear
algebra helped to contextualize the latter subject as a specific case of the former.

Lucas’s timeline for connecting concept images across morphisms was rather dif-
ferent than the two accounts above, as the progression happened in the course of the
first interview. Lucas was not able to recall either definition when initially prompted.
However, upon seeing both definitions, Lucas immediately saw the similarities. When
asked how he would explain linear transformations to someone else, he responded
that he would in fact use the “very clear” connection to group homomorphisms. This
is when he first used the preservation of “work” language discussed above. Then,
when grouping elements in the combined card sort, Lucas reformulates the connec-
tion between the two morphisms as being “essentially equivalent.” By the end of this
grouping, this is then reformulated again, as he says, “Perhaps equivalent wouldn’t

be the best word, but a more specific example... Linear transformations with a vector
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space is a more specific example of group homomorphisms.” This quick evolution from
noticing similar conditions, to equivalency, to a more nuanced statement of equiva-
lency was perhaps due to Lucas’s experience in two semesters of abstract algebra
— though this wasn’t true for the other students in a similar situation. It is also
interesting to see that Lucas learned about both morphisms in the same semester,
like Arthur, but had not made these connections during the semester, unlike Arthur.

The remaining question one might have is if students found such common in-
tuitions helpful in the production of their concept definitions. Specifically, in this
interview, did thinking about group homomorphisms help students recall linear trans-
formations? Recall that only Arthur, Kyle, and Maureen were able to produce linear
transformation definitions. Each of the other three students was someone who had
already produced a definition containing the group homomorphism property without
being shown the definition. Maureen had already thought of group homomorphisms
in terms of linear transformations, and was the only person to do so during the group
homomorphism portion of the interview. Thus, there is little surprise that Mau-
reen believed that the first half of the interview was helpful in recalling the linear
transformation definition — she had already begun drawing parallels in the concept
images and concept definitions before being prompted. Arthur noted that the similar
“form” of the morphisms’ properties indeed helped him (in some part) to recall the
definition of linear transformation correctly. Finally, Kyle was unique in saying that
while the format of the interview did not help recall on that particular day, he did
find group homomorphisms helpful in learning about linear transformations originally
while taking linear algebra.

For the remaining students, seeing the definition of group homomorphism before
being asked for the definition of linear transformation was not very helpful. The only
impact that this may have had on recall was for Emilie, Lucas, and Sander. These

students were able to recall (or guess) that a linear transformation must be a function,
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as with the first term they were asked to define. Sander took this one step further in
guessing that a linear transformation must also be a function between groups. How-
ever, this was as far as the priming activity was able to facilitate recall of the definition
of linear transformation. Thus, for a majority of the students interviewed, despite the
presence of the group homomorphism property in the linear transformation require-
ments, thinking about group homomorphisms was not sufficient to trigger recall on
its own. Instead, those students that did find such priming helpful were those that
had already taken time to forge a connection between morphisms before the time of
interview.

While only a few students entered into the interview with unified schema from
which to draw, it is important to note that other students also were able to make
connections during the course of the interview. In fact, nine of the ten students in-
terviewed pointed out a similarity between the definitions of group homomorphism
and of linear transformation. Already discussed in detail above is the case of Lucas,
who went on to describe a linear transformation as a specific type of group homomor-
phism. Jake and Robyn both discovered that the group homomorphism condition
exists within the linear transformation conditions. Jake pointed to each part of the
notation in the first property, described how the T' is just f, and that the name of
the operation, multiplication or addition, doesn’t matter with regards to the group
homomorphism definition. Robyn phrased this connection as “you see with a group
homomorphism if you have two groups that are both, um, groups with addition, then
it’s... the same definition as linear transformation. Um, you see [they?] replace [it?]
with a T, you've got a phi of x plus y is equal to phi of x plus phi of y, so that’s
very similar.” In the remaining cases of Emilie, Flint, and Tamara, this similarity
was remarked upon without explicitly stating that the first property was the same as

a group homomorphism condition.
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3.2 Greater Connections Across Domains

In addition to gathering data on how students think about linear transformations and
group homomorphisms themselves, one of the expressed purposes of this project was
to study how students make connections between the greater networks of concepts
related to these morphisms. The delimitations of which terms were explicitly provided
to students in the card sorts are detailed in the protocol in Recall that
students were also given space to create their own concept cards for the card sort, as
well.

The students in this study ranged across a spectrum of understandings regarding
the connections that can (and cannot) be made across mathematical domains. Stu-
dents also varied on the amount of connections made prior to the time of interview.
Both axes of quality of connections and timing of connections would be valid ways
to present the data. For the purpose of this thesis, I will choose the latter, and
will group students into three roughly bounded categories: students with substantial
prior analogical reasoning, students primarily engaged in new analogical reasoning,
and students engaged in little analogical reasoning. After a brief discussion of the
results of the adjacency matrices in the first two card sorts, each category will be ex-
emplified by one to two case studies following students through their respective card
sorts and highlighting the analogies that they used to demonstrate prior connections
or gain understanding across domains. This will be followed by a briefer discussion
of the similarities and differences of other students’ responses in the same category.
Using this format will allow for the analysis to stay close to the data and provide
a look at the unique ways in which students displayed their reasoning, while also
condensing these varied stories into a more digestible format.

Recall that one potential barrier to analogy formation is the failure to retrieve in-
formation from a particular domain. Thus, it is worth considering students’ prepared-

ness in both abstract and linear algebra. shows the number of components

23



Table 3.2. Adjacency Matrix Components and Connections

Pseudonym GH Card Sort LT Card Sort, Parallel LT Card Sort, All Cards
C (R) E vV E/V C ([R) E vV E/V C ([R) E vV E/V
Prior
Arthur 1 1 127 16 794 1 1 62 16 388 1 1 7 19 4.05
Kyle 1 1 70 16 4.38 1 1 32 16 2.00 1 1 49 19 2.58
Maureen 4 39 16 244 4 2 31 16 1.94 3 2 40 19 2.11
Current
Emilie 8 8 9 16 056 8 8 11 16 069 10 10 14 19 0.74
Jake 3 3 41 16 256 4 4 51 16 3.19 6 6 52 19 2.74
Lucas 3 3 29 16 181 4 4 30 16 1.8 5 5 35 19 1.84
Robyn 4 4 25 16 156 4 2 26 16 1.63 2 2 37 19 1.95
Little
Flint 4 4 40 16 250 9 9 25 16 156 11 11 29 19 1.53
Sander 5 5 21 16 1.31 6 3 16 16 1.00 3 3 44 19 2.32
Tamara 5 5 48 16 3.00 8 8 24 16 1.50 11 11 24 19 1.26
Professors
Brady 1 1 87 16 544 1 1 80 16 5.00 1 1 97 19 5.11
Greer 1 1 70 16 438 1 1 107 16 6.69 1 1 125 19 6.58
Powell 2 2 64 16 4.00 2 2 76 16 4.7 2 2 90 19 4.74
Stud. Mean 3.7 3.7 450 - 281 49 42 308 - 193 53 52 401 - 211
Prof. Mean 1.3 1.3 737 - 460 13 1.3 87.7 - 548 1.3 1.3 104.0 - 5.47

C = number of components in graph of adjacency matrix truncated to only given cards

(R) = number of components of graph of adjacency matrix obtained through vertex replacement
E = number of edges in graph of adjacency matrix truncated to only given cards

V = number of vertices in graph of adjacency matrix truncated to only given cards

E/V = edges divided by vertices

and edges in participants’ adjacency matrices, as well as their edge-to-vertex ratios.
As discussed in [Section 2.3| these two numbers together are used to give a rough
overview of the quality of students’ within-domain connections. Each section of the

table describes an adjacency matrix obtained by truncating the full matrices shown

in [Appendix Ef and [Appendix F| down to a submatrix containing certain common

concepts. The results under the first two headings, GH Card Sort and LT Card Sort,
Parallel, were each truncated to the first 16 terms — the initial given grid of terms in
the group homomorphism card sort and their closest respective parallels in the linear
transformation card sort. The final heading refers to the first 19 terms of the linear

transformation adjacency matrices, which include all of the previous 16 terms plus
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matrix, null space, and column space. Additionally, diagonal entries, which would
produce loops for each included term, are not included in the calculations in this
table.

On average, students had more connected adjacency matrices in the group homo-
morphism card sort than the linear transformation card sort, in terms of both number
of components and edge-vertex ratios. Statistically, however, the difference in edge-
to-vertex ratios is not significant. Comparing the means using a paired-differences
t-test (Agresti, 2009), I obtained o = 0.083 for the comparison between GH Card
Sort and LT Card Sort, Parallel edge-to-vertex ratio means, and o = 0.164 for the
GH Card Sort and LT Card Sort, All Cards means. Neither of these is significant at
the 0.05 level. However, this difference would make sense, because for many students,
abstract algebra was the more recent class, and presumably slightly easier to recall.
Students were grouped into categories based on the qualitative data analysis, and
before consulting this quantitative component. Thus, it is a bit odd that the second
category of students are almost exclusively the only students to run (ever so slightly)
counter to this trend in terms of edge-to-vertex ratios. In terms of comparing groups
of participants, the professors and those in the Prior category have, as expected,
higher edge-to-vertex ratios and a lower number of components on the whole. How-
ever, there appears to be no trend between those in the Current and Little categories.
Thus, the reason for some of these students’ willingness or ability to create analogies

between subjects is either unknown or requires a deeper look at the qualitative data.

Students with Substantial Prior Analogical Reasoning

The breakdown of which students were able to successfully make connections between
classes before the time of interview can be partially surmised from the prior section
on the definitions of the morphisms alone. The students who successfully made

connections between linear transformations and group homomorphisms were the same
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students who continued on to connect other terms across domains. Thus, in this

section I discuss the more highly connected schema of Arthur, Kyle, and Maureen.

Arthur

For both the group homomorphisms card sort and the linear transformation card sort,
Arthur had among the most connected adjacency graphs (1 component for both), and
among the highest edge-to-vertex ratios. Thus, Arthur entered into the study with
a strong understanding of both domains. If any analogies were to be made, Arthur
seemed an ideal candidate for placing the worlds of linear and abstract algebra into
structural alignment to prepare for such analogies.

In an earlier quote from Arthur about the analogy between group homomorphisms
and linear transformations, Arthur recalled that he did not think much of the simi-
larities between the two until his class began studying vector spaces as an abstract
structure. To continue his above account, Arthur continued:

So I guess that made it — once... we talked about linear transformation
of just a general vector space, not just of vectors, I think that definitely
resonated, because it — [ was able to — at that point I had made the
parallel between a group and a vector space, so that made it very easy to
parallel between that transformation and a homomorphism.

The commonalities of groups and vector spaces, specifically that vector spaces are
groups with respect to addition of vectors, was the initial “parallel” (analogy) which,
as Arthur put it, resonated with him. This analogy is then what allowed Arthur
to infer that linear transformations are group homomorphisms, and further extend
the analogy. This analogy based off of the respective objects is exactly what Arthur
used to explain how thinking about group homomorphisms helped him to recall the
definition of linear transformation. Thus, there is some evidence that once students
make these connections, they remain useful when recalling information.

Arthur continued to align terms during the linear transformation card sort —

before most students would draw such parallels in the combined card sort. The very
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Figure 3.4. Arthur’s Use of Object Structure to Align Morphisms

first grouping in Arthur’s linear transformation card sort was of kernel and null space.
Arthur was able to identify that the identity element concerned in the null space is
specifically the zero vector in the setting of vector spaces. From there, the next
alignment was of column space and image, or range. For both this and the previous
grouping, Arthur correctly described the role of the matrix, the multiplication by
which yields the linear transformation.

Another interesting use of analogical reasoning came when Arthur described sub-
spaces. Similar to other students, Arthur provided the analogy that subspaces of
vector spaces are similar to subgroups of groups. At the same time, Arthur could
not recall the exact properties of or requirements for subspaces. Thus, Arthur drew
upon his concept definition of subgroups. First, Arthur presumed, because “a homo-
morphism in a subgroup still applies to the subgroup,” then a “linear transformation
within the subspace is still going to be within the subspace.” This could be inter-
preted as “the image of a subgroup/subspace element is contained within the image
of the subgroup/subspace,” though Arthur’s wording is a bit unclear. More clearly,
however, Arthur recalled that a subgroup contains the identity element, has inverses,
is associative, and is closed under the operation. Thus, he said, a subspace must have
similar properties, with the zero vector, additive inverses, associativity of addition,
and closure under addition. Of course, this particular analogy failed to trigger the

subspace requirement for closure under scalar multiplication. However, this indeed
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gives another instance of well-developed schema leading to helpful recall through

analogical reasoning.
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After this, Arthur described the similarity of isomorphisms across subjects, where
bijectivity is still a requirement, but linear transformation takes the place of group
homomorphism. Next, Arthur made another inference, this time because he had not
seen inverse transformations. Based on his experience with inverse homomorphisms
(and, most likely, inverse functions in general), Arthur easily surmised that these
transformations must be “the transformation that undoes a standard linear transfor-
mation” and swaps the codomain and domain.

One of the final analogies constructed by Arthur was one of his most interesting.
His previous analogies were all between structures that Arthur had already mentally
connected at some level before the interview. Mid-interview, though, Arthur realized
that there is a connection between the generating set of a group and the basis of a
vector space. According to Arthur, both “generate the entire space,” with a difference
being in exactly how the elements are combined in order to generate either a group
or a vector space. By progressing through the interview, constantly placing algebraic

structures in structural alignment, Arthur was able to extend the analogy between
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structures and generate a new (correct) connection. At the end of the interview,
Arthur remarked on as much, saying, “the activity actually helped me make connec-
tions between them [concepts from both subjects|, like for basis and generating set,
for example.” This extension of his structural analogy will then become a part of
the larger schema storing these common features, and will likely strengthen Arthur’s

understanding of both algebraic structures.

are the
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Figure 3.6. Arthur’s New Connection Between Generating Set and Basis

The ability to make such a connection in the moment is dependent upon a
student’s understanding of at least one of the two algebraic structures considered.
Arthur’s strong understanding of both subjects, reflected by the high density and
connectivity in his adjacency matrices, allowed him to create a useful overarching
analogy. This abundance of relations leading to productive analogies shows that
the systematicity principle of analogical mapping is at play in Arthur’s process of

connecting between abstract and linear algebra.

Comments on Remaining Students

Recall that Kyle had already taken some graduate classes in mathematics. Addition-
ally, he had taken some abstract algebra classes before linear algebra. Kyle’s time
spent thinking about these concepts across many mathematics classes corresponded
to a great deal of connections within and across domains. Kyle’s interview paralleled
Arthur’s in various fashions. Both of Kyle’s adjacency matrices yielded a graph with

a single component, and the ratios of edges-to-vertices for both his graphs were some
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of the highest among students. At the beginning of his linear transformation card
sort, Kyle remarked, “A lot of these [groupings| will be the same... up to a change
of one card,” referencing the idea that linear transformation would take the place of
group homomorphism. After that, Kyle referenced the connections between column
space and image/range, basis and generating set, group and vector space, subgroup
and subspace, and null space and kernel. There were also similar mentions about
how isomorphisms are the bijective morphisms in each case. Also similar to Arthur,
Kyle was unsure of what inverse homomorphisms/transformations were, but put forth
that they would be functions in the opposite directions for their respective structures.
In fact, this was true of almost all students, regardless of their categorization here.
Both terms seemed unfamiliar to students, but they were able to surmise that be-
cause group homomorphisms and linear transformations were similar, then “inverse”
should be taken at face value, and the inverse of each must be related in the sense
that they go in a backwards direction. Thus, this will be the last comment on inverse
morphism connections.

Maureen grouped many of these same cards, but was much more unsure of how
to verbalize the connections between them. Some examples of this are when Mau-
reen said, “I know that the null space and the kernel of a matrix are really similar,
but I don’t remember the difference,” or that her grouping of basis and generating
set was just “a reflex association.” Statements like this show that at some point,
Maureen saw (at least partially) the connections between these concepts. Maureen
made enough of these intuition-based statements to indicate that she had heard or
considered many of the related concepts in terms of one another before the time
of interview. Unfortunately, similar to the students in the little connections cate-
gory, Maureen was sometimes a bit reluctant to expand her thinking beyond initial
intuition, usually due to being unable to remember mathematical definitions. Her

difficulty in recalling concepts from each individual content domain is reflected in her
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open card sorts. While her overall numbers were higher than a number of students in
other categories, Maureen’s adjacency matrix graphs are more disconnected and less
dense than Arthur’s and Kyle’s. Part of this is due to the fact that a large number of
Marueen’s later groupings focused on her own added concepts such as determinant,
eigenvalues, and eigenvectors.

An example of Maureen’s attempts to align algebraic structures based on tenuous
associations, despite her difficulty in recalling some key mathematical definitions,
came when she spoke about the relationship between subgroup and subspace. This
can be seen in the exchange below.

M: T associate these concepts — I associate groups and vector spaces and
subgroups and subspaces.

I: Okay, would you be able to say how so?

M: I see them as having the same underlying structure. Like I see a
subgroup of a group as similar to a subspace of a vector space.

I: Okay. Is there any sense in which they’re similar at all? Like would you
be able to say how you see — yeah, just how you see them as similar?

M: T see them as subsets of these larger groups or spaces that fulfill certain
attributes. For subgroups, you know, a subgroup must include an identity
element, um... the inverse — identity, inverse, associativity, and it must
be closed. So I think of that similarly as a subspace of vector spaces,
although I'm not sure of the formal definition of a subspace.

Maureen’s analogy went beyond the idea of subsets. She recalled that subgroups
must have certain attributes, and used this fact and her running analogy to bolster
her claim that subspaces must have certain attributes as well. However, Maureen
stopped the analogy short of identifying the additive structure of subspaces with that

of subgroups.

General Comments

Common among all the students in this category is their interconnected view of the
subjects of abstract algebra and linear algebra. Already noted above is how Kyle,

who took abstract algebra first, came to view linear algebra as a special case of the
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other subject, and how Arthur actively looked for and asked his professor about the
connections between the two. Arthur also discussed how drawing parallels can be
more time consuming, but that trying to think of one in terms of the other will help
him to remember it better in the future. Maureen described how taking abstract
algebra moved her away from a calculation mentality, and toward a more connected
understanding. As she put it,

I think for a long time I was very engrossed with just the calculation of
math... but I don’t think I had ever considered that it was actually doing
something, like, that math doesn’t happen in a void. And I think that
has changed a lot after having [abstract] algebra.... And this is all very
much closer related than I thought it was....

All three of these students show evidence that some aspect of abstract algebra,
whether taking it before, concurrently with, or after linear algebra led to connections
which helped some of these students construct more robust concept images. Some-
times, these connections were leveraged to learn one subject at the time it was taken.
Other times, they were used to help with recall. At one point, these connections led to
a new, undiscovered connection during the interview. In Maureen’s case, though her
analogies were more tenuous in nature, she gained an appreciation for mathematics
as an interconnected field of study. Given more experience, as in the case of Kyle,
it is not far-fetched to conjecture that Maureen’s initial connections would blossom

into a more robust larger concept image for objects and morphisms.

Students Primarily Engaged in New Analogical Reasoning

A plurality of students attempted to make connections across domains at the time of
interview, but had not considered such connections prior to it. For some, such as Jake
and Lucas, multiple pieces fell into place during the interview, and connections were
made more clear. For others, namely Emilie and Robyn, they engaged in inference
making based on analogies, but were unsure of the conclusions they drew. In either

case, there was a clear effort to align the two algebraic structures, and understand
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one in terms of the other. All of these students did not initially recall the definition
of linear transformation. However, upon seeing both definitions, they expressed some

form of connection between the two.

Robyn

Robyn outright verbalized the key difference between students in this category and

the last when she said,

I've never thought about math, these connections, this way before. It’s
really interesting.... I think in the classes I've taken between abstract
[algebra] and [linear algebral, I very much just tried my best to understand
like one concept at a time. And there have been times where it’s like, ‘Oh
yeah, I recognize that from [linear algebral’ or from abstract [algebra], but
I’ve never seen all of the connections that exist, like I’ve never seen that...
the definition of linear transformation and group homomorphism can be
the same thing. And, honestly, this helps me understand both of those
things: better understand [linear algebra] and remember [linear algebral,
and understand how abstract [algebra| relates to [linear algebra] and all
of those things. Because I understood [linear algebra| so much more, and
enjoyed that class so much more than I have my abstract [algebra] classes
because I don’t feel the concreteness in abstract [algebra] that I did in
[linear algebra).

Like Arthur, Robyn mentioned that certain terms that showed up in one class
reminded her of the other. However, Robyn hadn’t taken the time to return to such
surface-level connections and form stronger analogies based on relational structures.
Now that Robyn had seen both the definitions of the morphisms and the similar
grid items of the card sorts, she immediately saw the power of using one class to
understand another.

Before delving into Robyn’s analogies across domains, it is necessary to look at
her concept image of matrix, and how it was linked to other concepts in certain
ways. Because her linear algebra class contained a large focus on computations with
matrices (as many linear algebra classes do), Robyn linked many concepts to the

idea of matrix. Originally, Robyn grouped function, matrix, domain, and codomain
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together. However, eventually Robyn asked for function to be dropped from the
grouping, and asserted that domain and codomain mainly related to matrix. This
came from the prominence of augmented matrices in Robyn’s concept image. By
Robyn’s account, a matrix is composed of individual functions, such as 2x+3y+42 =
7. The left-hand portion of the (augmented) matrix, also known as the coefficient

matrix, is the domain, while the right-hand portion is the range. This stands in
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Figure 3.7. Robyn’s Account of Domain and Range of a Matrix

contrast to both the previous group’s and instructors’ more standard usage of domain
and codomain with linear transformation. Here, a matrix was imagined as a composite
of individual actions, rather than a single object to be multiplied times vectors in order
to yield a linear transformation. An emphasis on computations with matrices means
that Robyn’s concept image was firmly focused on processes from class, rather than
theory. Matrix computations continued to take the spotlight throughout Robyn’s
second card sort. She described how, in her linear algebra class, they found the null
space, column space, vector spaces, and basis of a matrix. For null space and column
space, these indeed usually appear as aspects of a matrix in an undergraduate course.
However, this led Robyn to speculate that a vector space is also an aspect of a matrix.
In the case of basis, the repeated exposure to routine problems asking for a basis,
using a matrix composed of a spanning set, had caused Robyn to view basis as an
aspect of a matrix. The role of the vector space had been downplayed to the point

where Robyn said, “So I definitely — I remember that the basis related — or, was
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a vector space? I think. They were very related in some way, that if you could find
the basis of a matrix, or if you could find the basis of a vector space, or if you could
find the vector space of a matrix, then you could find the other one.” Vector space
was almost certainly included in the directions along side basis and vectors/matrix,
but because the matrix was the main tool in finding the basis for the vector space,
the other terms only have some vague link to matrix, rather than to each other.
This role of matrix as the main object or tool of linear algebra then resulted in
a sort of cross mapping error in Robyn’s combined card sort. Robyn herself stated
that the grouping of group, group homomorphism, linear transformation, and matrix
is composed of “the two different... types of learning.... A linear transformation... is
a way... to classify what is happening to a matrix. And then group homomorphism
explains what a map is doing to a group.” The surface-level feature of being the
main object of study provided interference as Robyn attempted to recall the rela-
tionship between matrices and linear transformations. The language of “classify” to
describe the two morphisms is unclear, though it could stem from directions asking
students whether a function is a group homomorphism/linear transformation, so that

the students are classifying functions.
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The next connection between subgroup and subspace, while correct, has both
tenuous and problematic reasoning. The analogy began similarly to Arthur’s, as
Robyn said, “the subspace is basically the [linear algebra] version of the subgroup for
groups.” Robyn then recounted that subgroups must have the identity element, must
be well defined under the group operation (i.e., closure), and that “the inverse must
exist in the subgroup.” However, the well-defined stipulation was then connected
by Robyn to a subspace being a linear transformation, possibly due to the similar
requirements on vector addition and scalar multiplication. Then, the inverse property
was linked to to a subspace being an invertible matrix. The prominence of this term
was mostly likely due to the much stronger emphasis on inverses of matrices in a
linear algebra class, rather than additive inverses of vectors. Note that in both this

and the last analogy, vector spaces are not present.
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Figure 3.9. Robyn’s Attempt to Align Sub-Objects

The first time that vector space was used across domains was in a pairing with

generating set. Misremembering the term for basis, Robyn remarked that the two are
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similar in that a generating set determines the elements of a group, while a vector
space defines all matrices in the “space.” This was finally rectified near the end of the
interview, when Robyn realized that the term she was looking for was basis, and that
a basis creates all matrices (note that she still did not use the term “vectors”) in the
vector space. This example, combined with the previous two, shows both Robyn’s
difficulty with remembering and aligning vector spaces and ever-changing conception
of the role of matrices.

One other important example of Robyn’s interesting placement of the term ma-
trix came when describing the similarities of the kernel across contexts. Kernel was
mistaken for the order of the element of a group. Thus, because Robyn’s concept def-
inition for the kernel of a group was the number of times an element must be raised
to a certain power or multiplied by an integer in order to get the identity element, she
attempted to make the analogy that a kernel in linear algebra must be the number of
times a matrix is added to itself in order to get the identity matrix. This, for Robyn,
was strengthened by the fact that the kernel of a matrix yields the null space of a
matrix (or possibly the column space, she also proposed). A matrix has a null space,

which is like a kernel, and so a matrix must be the correct parallel to group element.
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Figure 3.10. Robyn’s Attempt to Align Group Element and Matrix

The difficulties presented in aligning matrices and vector spaces persisted into

Robyn’s closed card sort. Asked directly about the connection between group and
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vector space, Robyn decided that there was no relation to be expressed. Concerning
vector space and linear transformation, Robyn at first proposed that a vector space
could be a linear transformation, but ultimately decided this was incorrect. Her
final statement on this pairing was that there was a definite connection, but she
remained unsure of what that connection would be. Finally, of linear transformation
and matrix, Robyn repeated her original analogy at the beginning of this section

asserting how linear transformations compare matrices.

Jake

Jake began his linear transformation card sort by saying, “So... some of these things
I don’t really remember talking about, but... if this is similar to a... group homo-
morphism, I'm willing to assume it’s similar for in vector space as well.” This trend
continued throughout Jake’s interview; there were many terms that Jake had for-
gotten from linear algebra, but he was able to align both structures enough to infer
properties of linear transformations and vector spaces from his knowledge in abstract
algebra. This was evidenced by his constant use of “I imagine” before constructing
an analogy between domains. Thus, for Jake, the discussion aligning linear trans-
formations and group homomorphisms triggered a willingness to extend the analogy
and transfer his knowledge from abstract algebra into linear algebra.

The first of Jake’s connections in the linear transformation card sort stemmed
from the terms closest to functions in general. As with most all students in the
study, Jake was confident that injections/one-to-one functions and surjections/onto
functions were “basically the same thing” as how he described them in the context of
group homomorphisms. Kernels, according to Jake, must still be the set of elements
mapped to the identity, but there was no indication of whether or not Jake was aware
of what the identity element of a vector space is. Jake also concluded isomorphism

must have the same requirements as in the previous context. He correctly stated
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that linear transformations are between vector spaces, in the same way that group
homomorphisms are between groups. Later in the closed card sort, however, Jake was
unwilling to say that groups and vector spaces were closely related, beyond both being
sets of elements. Thus, while Jake was indeed beginning to form connections across
domains, the analogy of similar requirements in morphisms had not yet been extended
to objects and their similarities as algebraic structures. Part of this confusion may
have stemmed from Jake’s understanding of vector spaces in linear algebra. At the end
of the closed card sort, Jake was unsure of how to define the relationship between
matrix and linear transformation. Unsure of whether or not vector spaces include
matrices, Jake concluded that linear transformations must map matrices as they do
vectors. This, for Jake, was supported by the fact that in abstract algebra, the group
operation could be addition or multiplication. Matrices can be multiplied, so the
linear transformation must map multiplication of matrices as well. Jake later noticed
that the definition given referred to addition of x and y. Thus, after Jake stated that
in order to understand linear transformations, “You would have to understand the
multiplication of elements in that group, so multiplication of matrices or vectors and
stuff like that,” he then followed up with “..or addition of vectors, actually it looks
like.” It is unclear if this was meant to finally exclude matrices from vector spaces, or
exclude multiplication as an operation of vectors. Regardless, this shows how Jake’s
concept definition of vector space interferes with his ability to make analogies.

The remaining connections also occurred during the closed card sort. Jake recalled
a generating set as the set of elements generated by an element coprime to the order of
the group (most likely thinking of cyclic groups), and a basis as a linearly independent
set of vectors that generates all of a vector space. Based on this, Jake (correctly)
believed the two to be similar in the sense of generating a larger set.

In contrast to this, Jake did not recall subspaces from his linear algebra class.

However, he used his knowledge of subgroups and his analogy-in-progress between
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Figure 3.11. Jake’s Inclusion of Matrices as Elements of Vector Spaces

domains to infer that a subspace of a vector space is probably like a subgroup of a
group. As a subgroup has all the properties of a group, a subspace must have all the
properties of a vector space, with each being “portions of their bigger brother.” So,
while Jake had still not connected the actual structural similarities between groups
and vector spaces, he had started the process of extending his concept image of sub-

structure gained from studying abstract algebra to include structures from linear
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Figure 3.12. Jake’s Analogy Between Sub-Objects

Comments on Remaining Students

The two accounts above are representative of the breakdown in this category of stu-
dents still forming substantial connections. All of these students made multiple at-

tempts to extend the analogy between morphisms to include other concepts from
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the card sort. In some cases these attempts proved fruitful, and allowed for a path
to recall or new insight. Other times, the attempt to integrate new parallels led to
problematic connections based on surface features or incorrect concept definitions.

Emilie’s reasoning throughout her interview was similar to Robyn’s in a few im-
portant ways. The first of these is Emilie’s concept image of matrix, and the most
dominant features within that concept image. Emilie noted that matrices are com-
posed of vectors, but, like Robyn, saw a matrix as a function (or a collection of
functions) rather than producing a function by way of matrix multiplication. The
left-hand side represents multiples of “x’s,” and the “domain is all the x’s.” This
description is similar to Robyn’s picture in [Figure 3.7, where the domain was labeled
as the left hand side of an augmented matrix.

The other large similarity between these two interviews is each student’s difficulty
in recalling and aligning vector spaces and linear transformations to their respective
structures in abstract algebra. Part of this difficulty lay in the fact that Emilie’s
concept images of vector spaces, basis, and linear transformations also proved to be
problematic. Like Robyn, Emilie noticed the similarities between generating set and
basis, but had trouble with the structural alignment of terms related to these two
ideas. Instead of aligning group and vector space, Emilie claimed that the parallel
to group in such an analogy would be a linear transformation. By her account, “The
generating set can kind of create the whole group. It’s like an element that can create
the whole group, whereas the basis can create the whole... linear transformation.”
At an earlier point, Emilie also described the basis as being a “function” that makes
other functions in a linear transformation go to the identity. These statements can
be interpreted in a variety of manners. For example, Emilie could have been thinking
of the linear independence condition on vectors, and calling the vectors functions (as
she did in describing the rows of a matrix). Or, Emilie could have also been using

the term linear transformation while in fact attempting to describe a vector space.
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Or, Emilie could have been describing part of a process of Gaussian elimination. Re-
gardless, it is still remarkable that Emilie was not able to align groups and vector
spaces after the alignment of generating set and basis. This confusion persisted when
Emilie was asked about the relationship between linear transformations and vector
spaces, and she conjectured, “Since linear transformations are basically vectors just
kind of dealing with each other, I would guess that there’s a vector space within lin-
ear transformations?” Though their particular analogies were different, both Robyn
and Emilie made non-standard, problematic alignments of linear transformation, re-
mained unsure of the role of vector spaces, and did not place vector spaces in analogy
to groups in crucial alignments.

It is clear from Jake’s and Robyn’s interviews that recall of concepts from both
domains was a substantial barrier to analogy construction. This was true for most
all students in both this and the following category. However, Emilie stands out
especially in this regard. Having taken linear algebra about two years before the
time of interview, it would stand to reason that this domain would prove difficult to
recall. However, Emilie’s numbers in display an equally telling story for her
recall of abstract algebra concepts — a class which she was taking at the time. This
struggle to recall definitions from both classes was certainly a large factor in Emilie’s
construction of non-standard and problematic analogies later on.

As a final point of discussion on Emilie’s analogical reasoning, despite the above
difficulties, Emilie also made the parallel between subgroups and subspaces. Unlike
Robyn, Emilie used this analogy to infer that vector spaces must be similar to groups.
Asked at the end of the closed card sort whether there was any relationship between
groups and vector spaces, Emilie said, “Well I did say a subgroup and a subspace
were similar, so I guess it would be fitting that group and vector space would also be
related — since a group can be broken down into subgroups and vector space can be

broken down into subspaces. They’re both just kind of the big pictures.” This was
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as far as the elaboration of the analogy extended, but it provides an interesting look
at the potential of the sub-object analogy as a seed for working against problematic
concept images and toward an understanding of vector spaces.

Lucas’s analogical reasoning was similar to Jake’s, in the sense that many other
correct analogies fell into place after the initial alignment of group homomorphism
and linear transformation. That being said, Lucas’s analogies were stated as facts,
whereas Jake’s analogies were stated as conjectures. Part of this may have been
that Lucas recalled more of linear algebra than Jake, so his analogies were not being
used to transfer knowledge from abstract algebra in order to recall linear algebra.
Nevertheless, Lucas was placed in this category due to his surprise in seeing the
similarity of the morphisms’ conditions. The realization that the two functions had
such parallels seemed to be the catalyst for Lucas’s confidence in future groupings.
For example, it was immediate to Lucas that a group and a vector space must also
be parallels because of the fact that they are the structures their respective functions
are “transforming.” Lucas stated that “we can look at the elements of some vector
space as a group of elements,” but this was the extent of his elaboration at the time.
When pressed in the closed card sort about how vector spaces were a special case of
groups, Lucas just stated, “Elements of a vector space are linear. Group elements
are not necessarily.” Thus, it is not clear if Lucas was ready to view vector spaces
as containing a group structure or not. Whatever the case, the original analogy of

objects ended with the justification falling back to morphisms, with the exchange:

L: Linear transformations with vector space is a more specific example of
group homomorphisms.

I Okay, and function is there because?

L: Oh, because there’s some f— in both cases the idea is that you have
some function going from one group to another or from one vector space
to another.

I: Okay.

L: Or sending elements from one into the other.
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This was immediately followed up by, “I think there are actually a lot of them

I

that are sort of like that, where you get things that are similar,” again indicating a
newfound propensity for seeing connections across domains. During the remainder
of the card sort interview, Lucas went on to describe basis, inverse homomorphism,
and subspace as special cases or specific examples of their analogous abstract algebra
counterparts. For sub-objects, Lucas also aligned the identity element of a group and

the “zero element” of a vector space as being similar requirements for subgroup and

subspace, a slight addition to Jake’s analogy.

General Comments

The first category of students brought to light the important fact that there are indeed
undergraduates who display a great deal of analogical reasoning without intervention.
This second category category showed the equally important ways in which students
first attempt such analogical reasoning. While students’ ability or inability to recall
concepts from individual domains impacted their ability to create mathematically

correct analogies, it did not impact their willingness to explore potential connections.

Students Engaged in Little Analogical Reasoning

The three remaining students — Flint, Sander, and Tamara — made fewer connec-
tions between linear and abstract algebra than the others in this study. This is not
to say that they did not see similarities here or there. Recall that Flint and Tamara
were able to recognize the group homomorphism property as present in the definition
of linear transformation. Yet, brief glimpses of similarity didn’t seem to spark many
attempts to align algebraic structures as in the previous set of students. Students in
this final category were less likely to form analogies in the final open card sort, or
were more likely to make surface level guesses in the closed card sort. Sometimes,

this was due in part to an inability to remember one or both classes. It may have

74



also been possible that these students’ concept images of group homomorphism and

linear transformation were too different to inspire deeper connections.

Sander

Sander was the only student to consistently question that there was even a relation-
ship between group homomorphism and linear transformation. Asked at the end of
the card sorts if he had any more comments about the relationship between group
homomorphism and linear transformation, Sander replied, “Are they analogous? Are
they supposed to be seen as the same thing?” Sander clearly had the feeling that
the study was implying with its constant questioning that the two must be similar,
but he did not see how this was the case. One of the barriers to Sander’s willingness
to group these terms was perhaps brought to light when he was asked about the
relationship between linear transformation and matrix. Asked about his phrasing of

“linear transformation of a matrix” when discussing null space, Sander responded,

That’s what I was going back [to the definition paper] — so I didn’t
really understand [why the definitions were given the way they were in the
study]... T think this is how we did — it was like A— A x, something to b,
or some — it was some way of doing a... linear transformation, and if the
null space is where b equals zero. So if you did a linear transformation of
a matrix, where you applied some matrix to some conditions you decided
to — and then set the null space equals zero — or, set the set the goal
equal to zero, which is the null space, and you would get different... I
think... it would be x values? You’d have a set of x values that map
the null space. And these [pointing around the x part of Ax] would be,
I don’t know if these would be — but this [underlines A] would be the
matrix. This [pointing around x| would be vectors, I believe. And then
the null space would just be all [pointing at b] zeros.

Sander correctly recalled, at least partially, that a linear transformation is given
by T(x) = Ax. Additionally, it seems that this was the most prominent feature
of Sander’s concept image: a working concept definition of linear transformation as
involving Ax somehow. Similar to how some of the previously mentioned students

maintained a focus on equations of an augmented matrix that may have caused diffi-
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culty in seeing vector spaces as objects connected by linear transformations, Sander’s
view may have allowed the computational aspect of matrix multiplication to obscure
the role of vector spaces. Similarly, Sander’s understanding of group homomorphism
as one aspect of isomorphism, which is “sameness” rather than a function, further
prevented an object-morphism understanding to blossom across domains.

However, the notion that matrix multiplication was the primary aspect of Sander’s
linear transformation concept image is complicated by his grouping of function, linear
transformation, and matrix. In this grouping, Sander seemed much less confident
about the role of a matrix and its relationship with linear transformation, similar
to the confusion of the role of matrix found in earlier discussions above. This time,
Sander said, “I think a linear transformation is like a function, where a matrix is
the variable?” This is similar to Jake’s internal debate about whether to include
matrices alongside vectors as the input of a linear transformation. Regardless, this
shows Sander’s difficulty to place linear transformation as a function between vector
spaces.

Sander’s difficulty to recall vector space was further highlighted when he at-
tempted to make a parallel between subgroup and subspace. Sander paired group
and subgroup correctly, but when faced with subspace, Sander said, “Is that similar
to subgroup? I guess if there’d been a card for ‘space’ and subspace, I would have
put them together in the same way I did group and subgroup.” The concept of vector
space was unfamiliar to Sander. Instead, in a manner quite similar to Robyn above,
null space, column space, and subspace were described by Sander as “subspaces of

2

a matrix,” and later, “a way to represent the matrix.” According to Sander, a vec-
tor space must be a “space” similar to these, with its own requirements, but these
requirements were unclear. When asked about the relationship between groups and

vector spaces, Sander did not believe that they were related, saying “I guess maybe

if it said ’set,” it would have been okay,” since vectors are a part of a set. The

76



only recognition of vector spaces as the objects of linear transformations came when
Sander recalled that the definition given in the study, where he said “I think linear
transformations are applied over vector spaces, based on the definition that we saw.”
However, Sander had not yet integrated this new information from the definition into
his concept image for linear transformation, based on his remaining responses in the

interview.

Comments on Remaining Students

In contrast to Sander, Flint attempted to align group and vector space. His com-
parison of the two was similar to Emilie’s final conclusion that the two objects are
both “big pictures.” Flint described groups and vector spaces as being “all the possi-
bilit[ies]” or the “containment.” Flint elaborated on this later when talking about the
relationship between vector spaces and linear transformations. Recall that Flint (as
well as Sander) ignored the function aspect of the definition of linear transformation
and focused on the addition and scalar multiplication of vectors. Flint also heavily
drew upon his understanding of transformations of graphs. Thus, Flint explained,
a vector space is all possible linear transformations, all multiples of the vectors you
are working with, similar to all integers when discussing the group of integers. Basis
and generating set, as well as subgroup and subspace, were not seen as connected by
Flint. Additionally, Flint saw inverse morphisms as related in the sense that one takes
the inverse of a homomorphism and one can also take the inverse transformation of
a graph or vector. Interestingly, Flint described matrices in much the same way as
Robyn and Emilie: a matrix is composed of functions (each “function” is a line of the
system of equations represented by an augmented matrix), and a function has a do-
main and range. This, combined with Flint’s concept image of linear transformation,
may have been a barrier to allowing Flint to capitalize on the connections between

morphisms and infer more connections.
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Tamara’s difficulties in aligning structures and making analogies seemed to stem
from her difficulty in recalling the prerequisite concepts from each domain. This was
more pronounced than other students in the study. This also shows a particular
shortcoming in using the edge-to-vertex ratio of the adjacency matrices to broadly
summarize student performance. Tamara’s first grouping links together group, group
homomorphism, inverse homomorphism, isomorphism, and subgroup. Her reasoning
for this grouping was that all terms involved are groups. This is incorrect, but still
creates a large number of edges in her adjacency matrix graph. Tamara followed this
up with a large single grouping of terms related to functions of all settings (domain,
range, onto, etc.), once again adding many connections. By the end of the first
card sort, Tamara’s adjacency matrix graph still has five components, but a high
edge-to-vertex ratio.

Tamara’s other card sort groupings beyond function-related concepts showed that
she was unsure of many of the details of the group theory. One of the abstract
algebra concepts that Tamara was able to recall correctly was that isomorphism. She
knew that an isomorphism must be injective, bijective, and surjective, though she
couldn’t remember which of these three terms had which definition. Across domains,
she guessed that inverse transformations and inverse homomorphisms must be alike,
because she had just seen a similarity between group homomorphisms and linear
transformations. There was no mention of the inverse aspect, so this is entirely based
on the presence of homomorphism and transformation in the names of the terms.
Tamara also guessed that subspace and subgroup must be related, possibly due to
the presence of “sub” in their monikers, since she gave no justification of this guess.
Similar to Emilie, though, this caused Tamara to change her answer for groups and
vector spaces and guess that the two must be related. Again, there was no justification
for this relationship, giving some evidence toward the idea that Tamara’s inability

to recall algebraic structures meant that most parallels were based on features of the
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given words instead of their conceptual meanings.

General Comments

For all of these students, there was less of a willingness to form analogies across
domains. Sander and Tamara both confirmed that concepts like domain, codomain,
onto, and one-to-one continue to hold their meanings across domains. Flint confirmed
domain and codomain. Like most all students (and professors) these were seen as
properties of functions, true across all domains of math. Particular emphasis has
not been placed on these particular terms in this analysis, as they do not involve
analogical reasoning when discussed in this manner. But, it is important to highlight
this to display that these students maintained at least some concepts across domains.

The difficulties these students experienced in widening these connections through
analogy could partially be explained due to difficulty in recalling or understanding
prerequisite concepts in either domain. However, this difficulty existed in both cate-
gories above to some extent in each student. This was especially true for Maureen,
Jake, Robyn, and Emilie. Between this category and the previous, there also does
not appear to be a pattern or clear correlation between the number of components
in students’ adjacency matrices, their edge to vertex ratios, the substance of their
groupings, or semesters of instruction and their use of analogy across domains. The

difference remains unclear in this study.

3.3 General Findings Across All Cases

Summary Tables

As a supplement to the qualitative themes explored both above and later below, in

this section I will present tables which summarize all connections made by students

in both the open and closed card sorts. [Table 3.2 in [Section 3.2 already displays

the number of components and edge-to-vertex ratios from students’ and professors’
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adjacency matrices, which were created from the first two open card sorts. The
discussion below focuses on exactly which connections were and were not made over
the course of the interview, from a vantage point higher than the case analyses in the

previous section.

Table 3.3. Students’ Levels of Connections Between Concepts

Pseudonym Gen. Set/ Group/ Inv. Hom./ Subgroup/ Lin. Trans./ Kernel/ Image/ Group/ Vec. Sp./
Basis Vec. Sp. Inv. Tran. Subspace  Matrix Null Sp. Col. Sp. Group Hom. Lin. Trans.
Prior
Arthur Y Y Y Y Y* Y Y Y Y
Kyle Y Y Y* Y Y Y Y Y Y
Maureen S Y S* Y P S - Y Y
Current
Emilie P Y* Y* Y p* - - Y* p*
Jake Y* Y* Y Y* p* - - Y* Y*
Lucas Y Y Y Y* Y P - Y Y
Robyn p* N* S P p* P - Y p*
Little
Flint N* S p* N* p* - - P I
Sander N* N* S* P P S - Y Y
Tamara N* S* S S* S* - - P Y

Y = correct connection

S = surface-level connection or guess with no rationale
P = problematic concept image or connection

N = verbal confirmation of no relationship

- = connection never discussed

* indicates connection was not discussed until the closed card sort

shows students’ connections between key concepts from the study. All
of these pairs were explicitly addressed in the closed card sort, with the exception
of kernel/null space and image/column space. Entries marked with “P” are connec-
tions which students identified, but which they discussed in a way that contained
mathematical errors or other mathematically problematic analogies. Many of these
particular entries were discussed in more detail in [Section 3.2, Entries marked with
“S” represent connections which students identified, but defended only on the basis of
guesses and feelings, with no mathematical backing. This label also includes connec-
tions which students directly identify as not being present except for a minor surface
level feature. All other student connections are represented with “Y” as being correct
connections. These entries do not imply that a student fully understands the connec-
tion between the two parallel concepts, but that they successfully identified them as

connected and provided at least some mathematically correct reasoning which they
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deemed as sufficient. To demonstrate the timing of the connection, an asterisk is
used to denote that the connection was confirmed or denied by the student only after
being asked directly in the closed card sort. Thus, the absence of an asterisk indicates
that a student identified the connection without being prompted.

Students in the Prior category identified most of the connections correctly. Though,
as discussed earlier, Maureen was sometimes operating off of intuition. All three of
these students made most of their connections without having to be prompted. With
the Current category, there is a shift towards more items being left undiscussed until
the closed card sort. This pattern is likely connected to the fact that in both this and
the Little categories, the parallels to kernel and image with null space and column
space arose much less often. Genearlly, students in the Current and Little categories
also made more problematic statements. The reason that Lucas, the main outlier
to this observation, was still included in the Current category was discussed above
in [Section 3.2} Finally, students in the Little category understandably denied more
connections than students in the other two categories.

The standout column of is that of linear transformation/matrix. As will
be discussed later, professors agreed that the relationship of linear transformations
and matrices is of paramount importance. This theme of students failing to connect
linear transformations and matrices appropriately will be discussed in detail shortly
in the subsection on general themes.

It is also clear from that a greater deal of students had difficulty con-
necting generating set/basis, kernel /null space, and image/column space. These are
significant, but do not require a greater discussion in the subsection on general themes
for a few reasons. The first is that there is not much elaboration from students on
these topics. The few items marked as problematic connections have mostly been
explored earlier in Beyond that, students either expressed that there

was no connection, or did not address the connection at all. The second is that
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these three sets of connections share the distinction, in some sense, of being one step
away from the analogy between morphisms and objects. Inverse morphisms and sub-
objects, while also not directly concerning the main objects and morphisms in their
categories, have a similar naming scheme across domains, causing some students to
initiate structural alignment based on this surface feature. The other remaining con-
nections strictly concern the morphisms and objects themselves. However, generating
set/basis, kernel /null space, and image/column space lack a common naming scheme.
They also have slight quirks that make the parallels more opaque. Generating set
would have a more direct parallel to the concept of spanning set in linear algebra.
Linking basis to generating set must be nuanced in that a basis is a specific type
of spanning set with the extra requirement that its vectors are linearly independent.
Kernel and image are terms used not only in abstract algebra, but in linear algebra
as well, and could be considered their own parallels across domains. While the null
space and column space are subspaces, just as the kernel and image are subgroups, the
nuance here comes from the fact that null space and column space are terms almost
always associated to the matrix representation of a linear transformation. Given that
students in this study had difficulty making the connection between matrices and
linear transformations, it is understandable that these last two connections would
prove difficult as well.

The final comment on concerns the way that the group/vector space
column does not convey the entire story to be told concerning this connection. As
entries in this table were only marked as surface level for a very narrow criteria, a
few students have been marked as identifying the connection correctly for reasoning
that was technically correct, but lacking in terms of identifying algebraic parallels.
For this reason, this connection is discussed in greater detail in the section on general

themes.

[Table 3.4 and [Table 3.5| show the totals found by taking the sum of all student
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Table 3.4. Student Group Homomorphism Card Sort Adjacency Matrix Totals
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Table 3.5. Student Linear Transformation Card Sort Adjacency Matrix Totals
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group homomorphism adjacency matrices and linear transformation adjacency ma-

trices, respectively. Adjacency matrices for individuals, including those of the three

interviewed professors, can be found in [Appendix E|and [Appendix F| Recall that the

diagonal of the adjacency matrices lists the number of groupings in which a card was
used. The off-diagonal entries give the number of times the concept in the heading
of a column was placed in a grouping with the concept given in the heading of that
row. Looking at the first two card sorts through the lens of this quantitative data
immediately shows the regularity with which students grouped together “function”
concepts, such as domain, codomain, range, function, injection, and surjection. In-
deed, these were also often the first cards for students to group together, due to their
familiarity with them from classes before linear and abstract algebra. Range was
more often chosen over range. “Matrix” was the second most used card in the linear
transformation card sort, with its pairings being spread out over almost every other
term.

As T am also concerned with how students’ concept images are different between
domains, one of the most useful tables to explore is[lable 3.6, Each of the terms in the
first sixteen rows and columns of the group homomorphism and linear transformation
adjacency matrices either was present in both sorts or had a mathematically parallel
concept in the other card sort. These parallel concepts were placed in correspondingly
numbered rows/columns. Subtracting the top left 16 x 16 submatrices, in the order
of (linear transformation submatriz) — (group homomorphism submatriz), yields
As is evident from the order of subtraction, a negative entry represents a card
(on the diagonal) or grouping (in the off-diagonal) which was used more frequently
in the group homomorphism card sort, while a positive entry represents a card or
grouping that was used more frequently in the linear transformation card sort. As a
rough measure of which items show the most significant difference between domains,

I used Tukey’s test for outliers; data points greater than 1.5 times the interquartile

85



range (IQR) from the third quartile or less than 1.5 times the IQR from the first
quartile were marked as outliers (Gonick & Smith, 1993)). As the diagonal and off-
diagonal measure different types of frequencies, I split the data sets into diagonal and
off-diagonal sets and calculated separate IQRs. Let @), be the n-th quartile. On the
diagonal data set, @)1 = —2.25, o = —1, and @3 = 2.25, so that the lower cutoff
is —6.75 and the upper cutoff is 9. On the off-diagonal data set (specifically using
only the upper triangular entries so as not to duplicate every entry, as the matrix is
symmetric) ¢y = —2, Q2 = —1, and @3 = 0, so that the lower cutoff is —5 and an

upper cutoff is 3.
Table 3.6. Difference in Core Cards Between Adjacency Matrix Totals

I:Q: ~ 8 % g +
£ = B g Z g = % 5 2 g
E 2 £ 9 3 < o € & & T 8 e 3
2 £ 2 £ & 5 2 2 ¢ E E ¢& g2 2 L %
S o = o Q2 S g = é 3 5} = = < = =
O A = o O P M O O M~ «»m m
Codomain = -3 0 -4 0 2 -1 -2 -2 -1 -2 0 -2 4 0 -1 -3
Domain 0 -1 -1 1 2 -1 1 -3 0 3 -1 5 3 -2 0 -2
Function -4 -1 -2 1 -5 1 1 -3 -2 4 -2 4 4 1 -1 -4
Gen. Set/Basis 0 1 1 3 -2 3 1 0 0 6 0o 0 O 0 -1 o0
Object -2 -2/ -5 2 5 -1 2 3JBW 3 -3 -3 -2pEsi 2
Morphism -1 -1 1 3 S 2 -1 4 8t .1 0 0 0 -3 -2
Image -2 1 1 1 -1 2 8 0 0 ol 4 o -2 2 1 -1
Injection -2 -3 -3 0 2 -1 0 0 1 -1 -1 0 0 -1 0 -1
Inverse Morphism = -1 0 -2 0 -3 4t 0 1 2 -3 o -1 -1 -1 -1 0
Isomorphism -2 -3 -4 0 -10f 8 0 -1 -3 9 -1 0 0 -2 -3 -1
Kernel 0 -1 -2 0 3 -1 4 1 0 -1 4 0 1 1 -1 0
One-to-One -2 -5 -4 0 -3 0 0 0 -1 o 0 -1 0 -4 0 O
Onto | -4 -3 -4 0 -3 0 -2 0 -1 o 1 0 -2 -3 0 -1
Range 0 -2 1 0 -2 0o 2 -1 -1 2 1 4 3 1 0 -1
Sub-object = -1 0 -1 -1 8t 3 1 0 -1 3 -1 0 0 0 -6 0
Surjection -3 2 4 o0 -2 -2 -1 -1 0 -1 0 O -1 -1 0 -2

x = outlier among diagonal entries
1 = outlier among non-diagonal entries

Using the cutoffs above shows some interesting patterns. Groups were discussed
much more frequently than vector spaces, while group homomorphisms and linear
transformations showed the exact opposite pattern. It was already clear from the
qualitative data that students were less sure about vector spaces than groups as far

as their respective algebraic structures are concerned. The difficulty that students
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had in connecting these two objects is discussed later in the section on general themes.
Linear transformations received a small boost in frequency from being discussed with
column space, null space, and matrices, which are not seen in this matrix. However,
this does not account for the full discrepancy between domains. From the data col-
lected, it is not completely clear why this difference is present. The final item along
the diagonal, isomorphism, has a difference more clearly backed by the qualitative
data. As mentioned earlier in students did not defer to isomorphisms as
sameness as one of their main examples for their concept images for linear transfor-
mations, which stood in contrast to their more regular use of isomorphism imagery
when speaking of group homomorphisms. This lack of prominence of isomorphisms
in the linear transformation setting is also clear from [lable 3.6l The most likely
explanation for this is that isomorphisms, while often being an important piece of
scaffolding in learning group homomorphisms, are almost an afterthought in linear
algebra. While there is not much more to say in terms of the data that has not
already been said in I will return to the implications of this difference in
Section 4.2

Among the non-diagonal entries, students’ use of isomorphism with both objects
and morphisms was heavily skewed towards groups and group homomorphisms. This
is expected given my remarks above. Sub-objects barely missed the cutoff for card us-
age, but the lower usage of subspaces, combined with the already discussed low usage
of vector spaces, also correlated to significantly more students discussing the connec-
tion between subgroups and groups than subspaces and vector spaces. This reflects
the focus of study on subgroups as identifiers of group structure in abstract algebra,
which is in contrast to the goals of teaching subspaces in linear algebra. In linear
algebra, subspaces are unnecessary for discerning the structure of a given vector space
from other vector spaces, due to all real vector spaces of a given dimension being iso-

morphic. The last remaining significant entries, kernel /image and morphism /inverse
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morphism are mysterious even upon reviewing the transcripts or reflecting on the
nature of abstract and linear algebra instruction. It would be reasonable to assume
that the latter occurs more frequently due to students having experience with inverse
matrices, but this hypothesis does not play out upon inspection of the data. A simi-
lar hypothesis could be made about kernels and images being grouped together more
frequently in reference to null spaces and column spaces, but this too is not reflected

in the data.

General Themes

When reviewing the above qualitative findings and summaries of the open card sorts,
a few overarching themes become evident. I have attempted to comment on similar-
ities shared by students across cases. While some of these are shared by just two or
three students, others extend across the study to an extent that they deserve their
own mention here. These findings suggest that some of the largest barriers to form-
ing mathematically correct analogies across domains are students’ understandings of

matrix and vector space.

The Role of Matrix

It is clear from and the above accounts that the relationship between ma-
trices and linear transformations remains unclear to many students. Matrices were
not mentioned in the definition of linear transformation given to students. It is also
the only term in the card sort that (for these students) does not have a shared mean-
ing across domains or a parallel in abstract algebra. Because matrices are at the
heart of undergraduate linear algebra, students remember many of their uses and
properties. However, it is this same overabundance of concepts tied to matrices that
presents students difficulty in remembering the relationship between matrices and

linear transformations.
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For a few students, it was unclear what elements serve as the input of a linear
transformation. The symbols in the definition of linear transformation, x and vy,
are said to be from a vector space V. As will be discussed later, the concept of
vector space also proved problematic for students. Thus, students had to determine
what sort of mathematical objects x and y must be. Sander mentioned that a linear
transformation is a function with a matrix as the variable, though this statement
conflicted with some of Sander’s other notions of matrix and linear transformation.
Jake debated whether or not to include matrices in addition to vectors as the inputs
of linear transformations. In Jake’s case it was clear that the confusion arose because
a matrix is composed of vectors, and because of matrix multiplication serving as a
potential parallel to group element multiplication. Robyn’s analogies placed matrix
in alignment with group, possibly due to matrices and groups both being the main
foci of their respective classes. Later, it was seen that Robyn also paralleled matrix
with group element.

Some of these parallels are of course not without their merits. Rather, they can
form the building blocks for understanding matrix groups and matrix rings. Or, other
parts of these students’ statements could be interpreted as correct when discussing a
vector space of n x m matrices. However, in the context of these interviews, where
students were most often recalling properties of vector spaces with vectors of real-
numbered entries, these aspects of matrices only served as problematic met-befores
leading to troublesome cross mappings.

Another less troublesome, but still prevalent, evoked concept image of matrix
was that of the augmented matrix. Though the term was never stated outright by
students, it was alluded to in both words and pictures, with Robyn’s drawing in
being the clearest example. Emilie, Flint, and Robyn all referred to the
horizontal lines of an augmented matrix as functions. Each horizontal line represents

one equation in a system of equations. Since each has inputs such as z, y, and z,
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as well as an equals sign followed by another number, each is a function. All three
grouped matrix with domain and range not because of linear transformations and
vector spaces, but because of the idea of input and output of systems of equations
(where a problem-solver is finding the input, given an output). This most likely arises
because systems of equations are the foundational starting topic for many undergrad-
uate linear algebra classes. The purpose of this common starting point is that the
familiar process of solving systems can serve as motivation for the matrix equation
Av = b. Such a notation, used regularly throughout a linear algebra course, should
suggest thinking of “input” and “output” as vectors, each a singular gestalt rather
than three individual real numbers. Yet, these students relied more heavily on the
notation and imagery of systems of equation, probably due to the abundance of Gaus-
sian elimination students continue to use to solve linear algebra problems, even when
new notation and concepts are introduced. Thus, the concept of an input vector

T in R?, is obscured when these students

from a vector space, such as v = (z,y, 2)
reason through analogies using augmented matrices as their primary evoked concept
image. Function, domain, and range are tied to systems of equations, rather than
linear transformations. This in turn makes the analogy between linear transforma-
tions/vector spaces and group homomorphisms/groups as a morphism/object pair
less immediate.

Arthur, Kyle, and Lucas were the only students to correctly describe the main
relationship between linear transformations and vector spaces. Kyle was the only
student whose primary evoked concept image of linear transformation was entwined
with matrix; he described how he “sees” a matrix when he thinks of linear transfor-
mation. This was obviously very prevalent in Lucas’s concept image as well, since his

first linear transformation grouping was with matrix. Arthur was the only of these

three to not describe the relationship until the closed card sort.
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Difficulty in Aligning Vector Space

Continuing the above discussion of morphism/object pairs, one surprising aspect of
this study was number of students who did not extend their analogy between mor-
phisms to include objects. Both groups and vector spaces were identified as the
domain and range on the definitions given to students unable to recall a particu-
lar morphism. Yet, few students made reference to this parallel in their interviews.
Robyn and Sander were unable to describe any similarities between the two. Em-
ilie, Flint, and Jake described both as sets of elements, containments, or the big
picture. Tamara and Emilie revised their answers concerning similarity after being
asked about subgroup and subspace. The common “sub-” naming scheme for both
was a surface feature that led to more students grouping sub-objects rather than the
objects themselves. Sander also made this grouping, but unlike Emilie and Tamara,
he was unable to capitalize on it and infer a group/vector space parallel. This is in
part due to Sander referring to “space” as the container for a subspace, a term he
saw as different from vector space.

The above shows that most students forming new connections or struggling to
make analogies had difficulties recalling the definition of vector space. The subset of
these students who were able to successfully make mathematically correct analogies
did so either based on the newly established link of morphisms, or of sub-objects. In
either case, the connection drawn was mainly that of their common identity as sets.
No mention was made of a vector space in fact being a type of group — a statement
that would display an understanding of how to align algebraic structures based on
their theoretical, mathematical definitions.

Compare this with some of the students with prior analogical reasoning. Arthur
directly described a vector space as a specific example of a group, and identified the
operation of addition as the group operation. Kyle identified this relationship as well.

Also recall that Kyle’s definition of linear transformation was in fact a morphism of
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modules. For Kyle, a vector space is an example of a module, and modules are
examples of groups. Further classes in abstract algebra correlated to Kyle developing
a hierarchical schema for algebraic structures and their morphisms. Maureen knew
that a vector space could be described in terms of a group, and made various parallels
between the structures, but always remained unsure of the exact details. Also recall
that Lucas described a vector space as a specific example of a group, but like Maureen
did not align the additive structures in the way that Arthur and Kyle did above.
Thus, simply seeing the definitions of linear transformation and group homomor-
phism, with their inclusion of the terms vector space and group, is often not enough
for students to align algebraic structures as a whole. Students need to have already
considered the similarities of the algebraic structures over a longer period of time.
Part of this struggle to align algebraic objects may stem from the way in which vector
spaces must be defined in a first undergraduate course. In a more typical sequence,
students of linear algebra have not seen groups, so it would not make pedagogical
sense to define a vector space as an abelian group with the action of a field. However,
this results in a deluge of addition and scalar multiplication properties. Given that
students had difficulty recalling the two properties of a linear transformation, it is
unlikely that students would be able to list all the properties of a vector space. This,
in turn, makes it difficult for students to place the additive structures in structural

alignment.

3.4 Comparison with Professors

Preservation of structure was by far the most used theme for both linear trans-
formations and group homomorphisms, being used by all three professors for both
morphisms. Dr. Brady, Dr. Greer, and Dr. Powell all used language similar Kyle
and his idea of what kind of function one would “want” for the given setting. The

rationale for the conditions of the morphism was the structure of a group or a vector
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space. Asked how she would describe a linear transformation to a student, Dr. Powell
said,

[T would explain it] almost the same way I would think of group homomor-
phisms. I would assume that if the conversation came up, then I'd have
reason to believe they were already familiar with the objects themselves,
either the vector spaces or the groups. And, if not, that would be the first
step is to understand what the ingredients are. But once you understand
what the ob— what the domain and codomain spaces are, then I would
use the same intuition in relating it back to what they know about func-
tions and saying that instead of just having the name for any function, we
give this name to those that preserve the operations that we care about
in the objects.

Less prevalent was the notion of comparing groups or vector spaces. Only Dr.
Brady explicitly mentioned this idea. However, Dr. Brady heavily relied on this lan-
guage, and gave specific examples of permutations of roots of polynomials or changing
basis to an eigenbasis as times when morphisms are used to transfer structure in a
way that helps to understand a mathematical phenomenon. Isomorphism as sameness
and geometric reasoning were also not as prevalent, with only Dr. Powell specifically
utilizing such language. These differences are almost definitely an example of evoked
concept image over concept image as an abstract ideal. Given a sample of ten profes-
sors, it is likely more than one would exhibit the same themes in the context of the
study. However, it remains that the themes expressed by students in this study are
indeed present in the language of even a few professors.

Also interesting is these professors’ comments on their explanations of linear trans-
formation and group homomorphism. All three professors consistently expressed that
the way they would describe each concept to a student would depend on the students
themselves. A student with substantial prior knowledge and experience hypotheti-
cally could be engaged more directly in a conversation about preservation of structure.
Meanwhile, professors noted that whether they were teaching group homomorphisms
or linear transformations for the first time, or explaining them to an individual stu-

dent early on in the undergraduate curriculum, they were much more likely to use
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examples. For group homomorphisms, professors saw the definition as too “abstract”
or “not illuminating” enough on its own. Rather, students should get a better under-
standing of homomorphisms through repeated examples. For linear transformations,
students should have repeated exposure to matrices. For both concepts, they should
consider familiar examples from the real numbers and integers, such as the squaring
function, or multiplication by a constant. Thus, for these professors, the concept
image of preservation of structure should be initially born out of repeatedly seeing
structure successfully preserved or destroyed in tangible situations, rather than ab-
stract symbolic contemplation.

For the card sorts and connecting concepts related to the given morphisms, a
few key themes and differences presented themselves. First, all three professors had
a markedly different reaction to the card sorts than most students. Whereas some
students were not sure what connections to make beyond the first few groupings, all
three professors expressed a sense of being overwhelmed by the potential number of
connections between the cards. This reaction, and the data from their adjacency
matrices, show the deeply interconnected schema of individuals who have spent years
making sense of the concepts at the heart of the study.

A small, but interesting, difference between students and professors was their
descriptions of the role of inverse morphisms. Many students never recalled seeing
inverse homomorphism or inverse transformation. Only Kyle and Lucas mentioned
the relationship between an isomorphism and the presence of an inverse morphism.
Yet at the same time, every professor was sure to mention either this relationship
(Brady and Greer), or an inverse’s relationship with injective morphisms (Powell).
Dr. Brady went as far as to state that the presence of an inverse homomorphism is
one of the most important things about a group isomorphism. For a few students,
this was missed perhaps due to their thinking of isomorphisms as sameness as being

a literal relabeling of a group (e.g. Sander’s concept image of apples and oranges).

94



The idea of an isomorphism as a function is downplayed when thinking of one group
being relabeled. Many students (and professors) in this study referred to functions
“sending” elements from one thing to another. But, if one imagines an isomorphism
as taking one group and changing the labels, there is no aspect of “sending” and
less focus on two structures with elements. It would then make sense that inverse
homomorphism would not play a prominent role in students’ evoked isomorphism
concept images. Of course, this difference between students and professors could also
just as likely be due to a mismatch in what these professors identify as important
and what was emphasized in the students’ curricula.

Another similar and even more important difference was the role of matrix for
professors. Of course, it was expected that the professors would discuss the con-
nection between linear transformation and matrix. Yet even with this expectation,
the difference is still striking. For all three, the idea that a matrix can represent
any given linear transformation, and that every matrix yields a linear transforma-
tion, was one of the defining highlights of undergraduate linear algebra. Essentially,
with a choice of basis, matrices and linear transformations are the same entity. Part
of the reason for the study of matrices, and the emphasis on their various related
computations, is to be able to understand linear transformations. For example the
null space, column space, and determinant of a matrix all inform one about the na-
ture of its related linear transformation. That this relationship between matrix and
linear transformation would be described by professors as a keystone of the course,
but be so overlooked by students, displays a substantial mismatch in expectations
versus the reality of what students remember at the end of a linear algebra course.
This disconnect was not lost on the professors. Dr. Brady described the transition
from systems of equations, to augmented matrices, to matrices and vectors as steps
of understanding which progressively cause more students to have difficulty in linear

algebra. Dr. Powell expressed how students can complete matrix computations with-
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out actually knowing what they are computing. However, it is hard to conceive of
these professors imagining the unique ways in which students attempted to integrate
the concept of matrix into a budding analogy between linear transformations and

group homomorphisms.

Copyright © Jeffrey Slye, 2019.
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Chapter 4 Discussion

4.1 Summary and Conclusions

Having examined the many and varied responses of both students and professors, I
now return to my original research questions. In this section, I will summarize the

results of the study as they pertain to these guiding questions.

(1) How are students’ understandings of group homomorphisms and linear

transformations the same or different?

As expected, the span of time between students’ linear algebra class and the inter-
views for this study had an impact on students’ ability to recall linear transformations.
However, this was not the only disadvantage students faced when attempting to recall
linear transformations. The term “group homomorphism” contains both the name of
the objects (groups) and a word very similar to “isomorphism.” This gives two poten-
tial routes to recalling the concept of group homomorphism. Meanwhile, the presence
of “linear” and “transformation” each led to recall of problematic prior knowledge.
“Linear” caused two students to guess that a linear transformation concerns lines,
while “transformation” triggered thoughts of transformations of graphs.

Whether it be time passed or the physical structures of the terms, it remains that
students had a slightly harder time recalling linear transformations than they did
recalling group homomorphisms. Six students recalled some function containing the
homomorphism property, versus three of those same students that recalled a defini-
tion relating to linear transformations — though two of the six did not recall group
homomorphisms proper. Before the reveal of the linear transformation definition, sig-
nificantly fewer students recalled that linear transformations were functions, or that

they were related to vector spaces. Even after the reveal of the linear transformation
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definition, some students continued to talk about linear transformations as if there
were no function involved. The presence of vector addition and scalar multiplication
triggered certain geometric or algebraic images, but these notions of addition and
scalar multiplication were sometimes described in a way devoid of the actual linear
transformation, 7T'.

The theme of preserving structure remained constant across domains, largely with
the same subset of students. As structure preservation is not a property often dis-
cussed in classes before linear algebra and abstract algebra, it is significant to see this
theme appear in both settings. On the whole, students who made use of such lan-
guage or notions did not provide many examples of what structure is preserved. In the
linear transformation setting, this structure preservation was sometimes intertwined
with the geometric notion of preserving distances. The language of comparing re-
spective structures was used more heavily in the group homomorphism setting. This
can probably partially be attributed to the fact that the emphasis of most linear
algebra classes is on linear transformations of R™ to R" for some m and n. Without
more foreign vector spaces such as polynomial spaces or matrix spaces for students
to consider over a long period of time, the notion of using linear transformations
to compare vector spaces would seem rather silly. A student would not need linear
transformations to compare the usual examples of R? and R?; they already have an
understanding of these spaces without linear transformations.

Isomorphisms played a larger role in students’ understandings of group homo-
morphisms than their understandings of linear transformations. As is clear from
isomorphisms were discussed in tandem with groups and group homomor-
phisms much more than they were with their respective parallels in linear algebra.
Additionally, isomorphisms provided an immediate example for students to talk about
how a group homomorphism preserves or compares structures: isomorphisms are a

type of homomorphism in which the two groups being related are in fact “the same.”
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This theme was completely absent from students’ evoked concept images of linear

transformations.

(2) What connections do students make between the concepts related to group

homomorphisms and linear transformations?

The quantity and quality of connections varied greatly from student to student.
Whether or not students made connections before or during the interviews also var-
ied. Even the mathematical correctness and descriptive detail of connections varied
within the categorizations of Students with Substantial Prior Analogical Reasoning
and Students Primarily Engaged in New Analogical Reasoning. Students’ propensity
for engaging in structural alignment and analogy construction could sometimes be ex-
plained in terms of the strength of their connections within target and base domains,
but this was not universally true.

Some students had already reached the conclusion that linear transformations
are special group homomorphisms with an extra condition. One of these students
reached this conclusion because the interview promoted their structural alignment.
However, most students did not state the connection so directly. While only a few
students found the connection between the two morphisms helpful for initial recall,
most students saw the similarities between the group homomorphism condition and
the first condition for linear transformations almost immediately after seeing the
linear transformation definition.

Most students, regardless of their categorization in this study, saw domain, range /image,
onto/surjection, and one-to-one/onto as properties of functions which they would
have recognized before taking linear algebra or abstract algebra. They attested to
these properties as still holding in these later settings for linear transformations and
group homomorphisms. However, some students could not recall which definition

of surjection and injection belonged to which term. The vast majority of students
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did not connect image/range to column space, and most were not able to correctly
describe the relationship between kernel and null space. Inverse homomorphisms and
inverse transformations seemed foreign to most students, though they were able to
piece together their meaning through the presence of the word “inverse” and correctly
conjecture on their relatedness.

One important finding of this study is that there are students who make connec-
tions between various morphism-related concepts across linear algebra and abstract
algebra without an explicit component for this instruction in their curriculum. Two
of these students were taking the classes simultaneously, while the other had revis-
ited the concepts multiple times through both undergraduate and graduate classes.
The strengths of these connections varied, from vague notions of relatedness, to a
fully developed singular morphism schema covering an array of algebraic structures.
Students in this category found their connections useful in different ways, including
influencing the formation of a new connection during the interview, helping a stu-
dent to contextualize their linear algebra class, and helping another student to see
mathematics as a connected subject.

Students who began engaging in analogical reasoning as a result of the design
of the study made both mathematically correct and mathematically incorrect con-
nections across domains. Vector spaces proved problematic in the analogy-making
process for a certain subset of students. There is some evidence that the structures
of the words “subspace” and “subgroup,” both containing the “sub-” prefix, served
as surface-level features which led to students placing the sub-objects into in struc-
tural alignment. A few students attempted to use this analogy to infer that vector
spaces and groups are parallel concepts, but, on the whole, this was met with varying
levels of success. Even among those for whom groups and vector spaces were placed
in structural alignment, there remained students that only related the two as sets.

The recognition of the group homomorphism property in the linear transformation
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definition was not enough for some students to see the group structure as present
within vector spaces.

Matrices also presented a challenge for some students’ structural alignments.
Many students in this study did not recall the relationship between matrices and
linear transformations once they had passed linear algebra, or even while they were
enrolled. Some students placed matrices as parallel to group elements. Another
student connected matrices to groups. Instead of yielding a function through multi-
plication by a matrix, a subset of students saw matrices as containing functions in

each row of the matrix.

(3) How do students’ understandings of these morphisms compare to those of

professors?

Professors’ connections and understandings were similar to those of students with
substantial prior analogical reasoning. Overall, both of these two groups had very
interconnected morphism schema, and connected the items listed in [Table 3.3 show-
ing that it was reasonable to expect each of the connections in to appear
in the context of a clinical interview, supposing a certain level of experience with the
material. This of course includes the connection between groups and vector spaces,
with which some students had particular trouble.

The themes derived from students’ responses also appeared in the professors’
responses. This supports the notion that these aspects of students’ concept images
are fairly normal in the larger mathematical community. Students’ language is likely
a reflection of that of their professors’ and books’ language. However, every professor
did not express every theme.

Inverse homomorphisms and inverse transformations were almost universally called
out by students as concepts which they had not heard of specifically. In contrast,

professors universally identified the relationship between isomorphisms (or injective
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morphisms) and inverse morphisms.

The relationship between matrices and linear transformations was much more
prominent for professors. Professors saw this connection as one of the key aspects of
an undergraduate linear algebra class. Such an emphasis on its importance serves to
highlight the significance of the fact that many students in this study did not or could

not verbalize the correct link between linear transformations and their matrices.

4.2 Implications

The students in this study used isomorphisms as a reference point for understanding
group homomorphisms more heavily than for understanding linear transformations.
In retrospect, such a finding is expected, as many textbooks use isomorphisms as a
gateway to group homomorphisms, and isomorphisms are greatly downplayed in lin-
ear algebra. Yet it is still important to discuss this issue from the viewpoint of helping
students make connections across the curriculum. Presenting group homomorphisms
as group isomorphisms with relaxed requirements shapes students’ concept images
in a different way than how presenting linear transformations as heavily geometric
entities does. A stronger emphasis on isomorphisms as sameness in linear algebra
could encourage structural alignment and strengthen the link between students’ un-
derstandings of morphisms. The presumable appeal of isomorphisms as sameness is
that it is easier to grasp this intuitive notion of isomorphism than to dive into the nuts
and bolts of a functional understanding. A similar appeal to intuition could be made
geometrically in linear algebra. Lines in R? and R? “look like” a copy of R!. Planes in
R3 “look like” R?. Using this intuition as a stepping stone to introducing the formal
definition of isomorphism in linear algebra would serve as a contextual parallel to its
introduction in abstract algebra. Alternatively, these same examples could be used
or revisited early in an abstract algebra class as examples of isomorphisms of groups.

Change of notation across domains was not an issue for students regarding mak-
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ing the connection between morphisms. It was not difficult for students to see that
the group homomorphism property is contained within the requirements for a lin-
ear transformation. However, the fact that many of these same students either did
not continue to see parallels across domains or constructed mathematically incorrect
parallels means that educators should not consider the alignment of properties to be
evidence for alignment of algebraic structures. Educators who wish to encourage con-
nection making will need to devote instructional time to more than a simple example
or exercise highlighting this definitional similarity.

One crucial connection which students need assistance discovering and articulat-
ing is the connection between groups and vector spaces. What could be considered the
most “obvious” parallel to make after connecting linear transformations and group
homomorphisms is in fact not so obvious. This is probably partially due to a much
heavier emphasis on R™ than other real vector spaces in the undergraduate linear
algebra curriculum. One of the hopes of this study was to find that students in ab-
stract algebra would retroactively gain an understanding of abstract concepts such
as vector spaces. This was not the case for the majority of the students in this study.
Thus, students of abstract algebra would benefit from a more direct discussion of the
relationship between vector spaces and groups. As the axiomatic definition for a vec-
tor space in undergraduate linear algebra is rather lengthy, students’ ability to recall
the definition would likely be improved by condensing some of the requirements into
a single requirement that a vector space be an abelian group under vector addition.
Students more readily connected subgroup and subspace in terms of intuition formed
from their concept images. Thus, following a direct instruction of the objects’ connec-
tions with a more student-driven exercise in aligning the sub-objects’ mathematical
requirements hopefully would prove fruitful.

Finally, many students in this study did not or could not articulate the relationship

between matrices and linear transformations. If one were to hope for students to
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align linear transformations and group homomorphisms without the aid of directly
being reminded of their definitions, this presents a large problem. Students of linear
algebra spend a considerable amount of time working with matrices. In a typical
linear algebra classroom, null spaces/kernels, column spaces/images, surjectivity, and
injectivity are often discussed or computed using matrices. If a student cannot recall
the connection between matrices and linear transformations, a significant piece of
their linear algebra morphism concept image is excluded. Based on the findings of
this study, care should be taken to emphasize emphasize linear transformations in
a way that prevents students from glossing over the term and proceeding directly
to matrix calculations. In the setting of abstract algebra, routing students’ recall of
linear transformations first through matrices would potentially help to mitigate some
of the difficulties found in this study.

The subset of students who visualize matrices as being composed of functions,
each stemming from a corresponding row of the matrix, also highlight an important
conceptual shift that must occur when learning of linear transformations. Func-
tions in undergraduate calculus most regularly return a single real number, i.e., their
codomain is R. When encountering matrices representing systems of equations, it
seems that some students continue to focus on individual outputs, so that an aug-
mented matrix (and eventually a linear transformation derived from a matrix) is pri-
marily coordinating functions with single real number outputs. Such a view sidesteps
the need for using the language of vectors, vector spaces, and linear transformations.
This is another reason that revisiting these structures in abstract algebra, comparing
and contrasting them to groups and group homomorphisms, could prove beneficial
to students’ understanding of linear transformations. The current state of matters
shows that for some of these students, matrix computations and systems of equations
are potential barriers to allowing such retroactive benefits to take hold.

This study shows that it is not unreasonable to expect students in abstract algebra
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to make analogies to structures from linear algebra. A few students at various points
in their mathematical journeys were able to express these connections quite well.
However, the majority of students’ responses in this study suggest that leaving the
responsibility of seeing connections completely up to students would be a mistake. It
also suggests that simply helping students to align one set of concepts, such as linear
transformations and group homomorphisms, is not always enough to trigger further
connections between other, closely related concepts. If students are not readily using
concept images and definitions from linear algebra in abstract algebra, this would lead
one to question why linear algebra is required as a prerequisite for abstract algebra at
some institutions, as is recommended by the 2015 CUPM Curriculum Guide’s course
report on abstract algebra (Isaacs, Bahls, Judson, Pollatsek, & White, |2015)).

Yet just because many students do not make these connections on their own does
not mean that I am implying we should abandon the effort to have students engage in
their creation. Instead, I encourage educators to continue looking into ways to facil-
itate students’ deeper understanding across the undergraduate curriculum. We need
to continue making efforts to improve students’ understandings of how matrices are
intricately tied to linear transformations of vector spaces. This will lay the ground-
work for future structural understanding. In abstract algebra, students are ready
to begin linking concepts such as linear transformations and group homomorphisms,
despite surface level notational differences. However, care should be taken to scaffold
such connection making. In the end, there is evidence in this study suggesting that
taking time to encourage this analogical reasoning can lead not only to new individual

insights, but a deeper appreciation for the overall connectedness of mathematics.

4.3 Limitations and Recommendations for Future Research

Due to logistical limitations, I only was able to interview ten students in a clinical

interview setting for the main results of this thesis. I did not have access to students’
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lectures, notes, quizzes, conversations with other students or professors, etc. It is
important to realize that students’ understanding of mathematics is constructed at
both the individual and social levels (e.g. Cobb & Yackel, [1996; Rasmussen, Wawro,
& Zandieh, 2014). Certain evoked concept images of morphisms, which could have
surfaced in a more naturalistic classroom environment, were not captured by this
restricted form of data collection. The students (or even professors) in this study may
have been able to recall or connect more concepts with the support of a peer. And,
despite my best attempts to place interviewees at ease, a few students I interviewed
were visibly nervous during the interview process. Some converted this nervous energy
into words and actions that kept their thoughts flowing throughout the interview.
Others became a bit more reticent. It was beyond the scope of this particular study
to extend beyond the level of individual and add a social component, but I hope that
future studies integrate a social learning component in order to create a richer data
set and mitigate students’ anxieties. Observing students in a classroom setting or
using a paired interview setting could provide data on concept images and analogies
beyond what I found with clinical interviews with individual students.

Following students through their linear algebra and algebra classes in addition
to interviews would provide a richer data set. This would also give insight into
differences in instruction in abstract and linear algebra that lead to some of the diffi-
culties students faced during this study. However, such a study would require specific
circumstances. The linear algebra classroom(s) observed would need to contain a
respectable number of students whom the researcher knows will be taking abstract
algebra together in a later semester. Such a study would likely yield new themes and
insights into the driving questions of this research.

An alternative route for future research would be examining the efficacy of mini-
lessons in an abstract algebra class which directly ask students to make connections

between related concepts. As discussed above, this study indicates that some stu-
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dents need more reminders and scaffolding than the minimal amount provided in the
interviews. The results of this study also suggest that care should be taken to more
explicitly outline the connection between vector spaces and groups. Providing stu-
dents with access to definitions of the other terms in this study would help with recall.
Given this scaffolding, it would be interesting to know if having students engage in
analogy creation in a collaborative setting would yield much richer connections for a
greater proportion of students. This could be extended to observing the impact of
such an intervention on students’ long term understanding of linear algebra concepts.
Data could be collected at the start of the semester, at the end of the semester, and
in a following semester to gauge how students who are actively asked to link these

concepts recall said concepts over time.

Copyright © Jeffrey Slye, 2019.
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Appendix A Card Sort Interview Protocol
Card Sort Interview Protocol (Semi-Structured)

Before Starting
e Camera check

Mic check

Regular marker

Card sets E,A,B,C

Blank cards

Blank paper
o Consent form

Basic Information
Interviewee:

Time:

Place:

Status in Program:

Majors/Minors/Field of Study:

Names of Classes: /
Self-Reports of Linear Algebra/Modern Algebra Grades: /
Introduction

o Introduce self
e Purpose of overall study
o Consent form

o Ask if any questions before start
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Purpose of Today’s Interview

e Today we will talk about some concepts from abstract algebra and linear algebra. The purpose
of today’s interview is to see how you think about these concepts. We will not be solving any
problems today.

Definition of Group Homomorphism
e Place a marker and paper in front of student.

1. First, I would like you to write out the definition of group homomorphism, as best you can

remember it.

o Clarify any unclear notation.

o If student cannot remember definition at all or partially after 8 or 4 minutes, provide
definition from book.

2. How would you describe a group homomorphism to someone else? How would you help them
think about it intuitively?

3. Why would mathematicians define group homomorphisms as they do?

Card Sort Activity Introduction

Purpose of Card Sort

e Today I will ask you to do something called a “card sort.”
o (If student: This is not an exam. This will not have an impact on any of your grades.)
e There are no right or wrong answers in this activity, as it is meant to convey what you believe.

e This will give me some insight into how you understand and connect certain mathematical
concepts.

Card Sort Example
o Place example (E) cards in front of interviewee. These cards are (in 2 X 5 grid):

Derivative

Limit

Difference Quotient
Rate of Change

Function

S St e v~

Slope
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7. Variable
8. Continuous
9. Secant Line

10. Tangent Line

e In front of you is a small example of a card sort. It contains cards with concepts relating to

derivatives in Calculus I.

e In this activity, I will ask you to select groups of cards that you believe are related. Say I was
asked to select a group from this array. Perhaps I would select (pick up cards) Derivative,
Rate of Change, and Variable. When asked how these are related, I might say that the
derivative calculates the instantaneous rate of change between an independent variable x and

a dependent variable y.

e When asked to select another group, I may pick Slope, Rate of Change, Function, Secant
Line, and Tangent Line. Notice that I am reusing Rate of Change, which is fine. When asked
how these are related, I might say that the slope of the secant and tangent lines to a function
are measures of the rate of change of that function. I could clarify that the slope of a secant
line gives an average rate of change, while the slope of a tangent line gives instantaneous rate

of change.
e So there was an example of two rounds of a card sort. Do you have any questions?

e I'll get out our first set of cards and you can feel free to ask questions as we go along.
Group Homomorphisms Card Sort

e The grid of cards I am about to place in front of you contains topics from abstract algebra.

e Place group homomorphism (A) cards, blank cards, and marker in front of interviewee. These

cards are (in 4 x 4 grid):

Group Homomorphism
Isomorphism

Injection

Subgroup

Kernel

Generating set
Codomain

Inverse homomorphism

© % NS S e v =

Range

~
S

Group
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11. Function
12. Image

13. Domain
14. Onto

15. Surjection
16. One-to-one

Please select a group of two or more cards that you believe are related.

Additionally, if there is a concept you believe would be useful to include, you are welcome to

create your own cards, add them to the grid, and use them in groupings.
Follow-up questions once group is selected:

o How do you believe these concepts are connected?

o Would you like to add any other cards from the grid to this group?

When student is done explaining answers to all questions: Please return the cards to the grid

and select another group of cards you believe are related.

Repeat group selection and follow-ups until it appears interviewee cannot make any more

groups.

Are you unable to create any more groupings? Would you like to move on to the next activity?

Definition of Linear Transformation

4.

Place a marker and blank paper in front of student.

First, I would like you to write out the definition of linear transformation, as best you can
remember it.
o Clarify any unclear notation.

o If student cannot remember definition at all or partially after 8 or 4 minutes, provide

definition from book.

. Did thinking about group homomorphisms help you recall the definition of linear transfor-

mation?

How would you describe a linear transformation to someone else? How would you help them
think about it intuitively?

Why would mathematicians define linear transformations as they do?

How is the definition of linear transformation related to the definition of group homomor-
phism, if at all?
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Linear Transformations Card Sort

e The grid of cards I am about to place in front of you contains topics from linear algebra.

e Place linear transformation (B) cards in front of interviewee. These cards are (in 4 x5 grid):

Linear transformation
Kernel

Surjection

Onto

Inverse transformation
Null space

Matrix

Codomain

© % NS S e v~

Image

~
S

One-to-one

~
~

. Domain

~
IS

. Range

~
o

. Basis

~
B

. Isomorphism

~
R

Vector space

~
D

. Function

~
=

Subspace

~
o

. Injection

19. Column space

e You'll notice many of the same cards, but remember that now we are thinking of these
concepts in terms of a linear algebra class. I will present you with any groupings from the
previous set which can be repeated in this set and ask you if this grouping still applies in the
context of linear algebra. If a previous grouping contains at least one card which is not on

the current grid, then I will not present it to you.
Present any previous overlapping groupings one at a time and ask: Do you believe this
grouping still applies in the context of linear algebra?

e Now, once again, please select a group of two or more cards that you believe are related.
These may be similar to groupings from the previous activity, or completely different.

Additionally, if there is a concept you believe would be useful to include, you are welcome to

create your own cards, add them to the grid, and use them in groupings.
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Follow-up questions once group is selected:

o How do you believe these concepts are connected?

o Would you like to add any other cards from the grid to this group?

When student is done explaining answers to all questions: Please return the cards to the grid
and select another group of cards you believe are related.

Repeat group selection and follow-ups until it appears interviewee cannot make any more

groups.

e Are you unable to create any more groupings? Would you like to move on to the next activity?

Combined Card Sort

Open Card Sort

e The grid of cards I am about to place in front of you contains all terms from the previous

two grids.

e Place combined (C) cards set, including interviewee-made cards, in front of interviewee. The

pre-made cards are (in grid with 6 columns):

Vector space
Isomorphism

Image

Group

Linear transformation
Basis

Subspace

Surjection

© % RS S e v~

Function

~
S

One-to-one

~
~

. Codomain

~
IS

. Group Homomorphism

~
o

. Matrix

~
B

. Column space

~
(N

. Kernel

~
D

. Null space

~
=

Subgroup
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18. Generating set

19. Range

20. Onto

21. Domain

22. Inverse homomorphism
23. Injection

24. Inverse transformation

e [ will present you with any groupings from the previous sets so that you do not need to repeat
them.

e Now that all cards are together, please select a group of two or more cards that you believe
are related. These may be similar to groupings from the previous activity, or completely
different.

e Additionally, if there is a concept you believe would be useful to include, you are welcome to

create your own cards, add them to the grid, and use them in groupings.
o Follow-up questions once group is selected:

o How do you believe these concepts are connected?

o Would you like to add any other cards from the grid to this group?

o When student is done explaining answers to all questions: Please return the cards to the grid

and select another group of cards you believe are related.

e Repeat group selection and follow-ups until it appears interviewee cannot make any more

groups.

e Are you unable to create any more groupings?

Closed Card Sort

e Now I will select some cards and ask if you believe the cards are related. Don’t assume that
the cards are necessarily related. If you do not believe they are related, you may state so.

e Present the following pairs to students:

o Group/vector space
o Basis/generating set
o Group/group homomorphism

o Inverse homomorphism/inverse transformation

[¢]

Subgroup/subspace

(@]

Vector space/linear transformation
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o Linear transformation/matrix

Combined Follow-Up Questions

9.

10.

Finally, I will ask you a few questions about group homomorphisms and linear transforma-
tions.

What concepts would you say are most critical to understanding group homomorphisms?

What concepts would you say are most critical to understanding linear transformations?

(For students:)

11.

12.

13.

14.

Reflecting on the activities today, are there any concepts surrounding linear transformations
that were not clear the first time, but are now clarified after learning about group homomor-
phisms?

o Could you explain how learning about group homomorphism concepts clarified that

concept for you?

Are there any concepts surrounding linear transformations that you find less clear after learn-
ing about group homomorphisms?

o Could you explain how learning about group homomorphism concepts affected your

understanding of that concept?

Are there any concepts surrounding linear transformations that helped you understand any
group homomorphism concepts?

o Could you explain how those linear transformation concepts helped you to understand
the group homomorphism concepts?

Are there any concepts surrounding linear transformations that got in the way of your un-

derstanding of any group homomorphism concepts?

o Could you explain how those linear transformation concepts got in the way of under-
standing the group homomorphism concepts?

(For experts:)

11.

Reflecting on the concepts on your maps, are there any concepts surrounding linear trans-
formations that may not be clear the first time for students, but are clarified after learning
about group homomorphisms?

o Could you explain how?
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12.

13.

14.

Are there any concepts surrounding linear transformations that students may find less clear

after learning about group homomorphisms?
o Could you explain how?

Are there any concepts surrounding linear transformations that may help students understand

any group homomorphism concepts?
o Could you explain how?

Are there any concepts surrounding linear transformations that may get in the way of students

understanding of any group homomorphism concepts?

o Could you explain how?

(For all:)

15.

16.

17.

18.

19.

Any other comments about the connections between concept of group homomorphism and

the concept of linear transformation?

How well do you believe the activities today reflect your knowledge of concepts related to group
homomorphisms (if expert: as it pertains to an undergraduate abstract algebra course)?

What part of your knowledge of group homomorphisms (if expert: as it pertains to an un-
dergraduate abstract algebra course) is not reflected in the activities today?

How well do you believe the activities today reflect your knowledge of concepts related to

linear transformations (if expert: as it pertains to an undergraduate linear algebra course)?

What part of your knowledge of linear transformations (if expert: as it pertains to an under-

graduate linear algebra course) is not reflected in the activities today?

e Anything else you would like to add today?

Before Leaving

o Review date and time for next meeting.

e Thank them for their time!
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Appendix B Provided Definitions of Morphisms

Group Homomorphism

Definition: A map f of a group G into a group H is a homomorphism if the
property

f(ab) = f(a)f(b)
holds for all a, b in G.
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Linear Transformation

Definition: A transformation (or map) 7" of a vector space V into a vector
space W is a linear transformation if the properties

Tx+y)=Tx)+T(y)

and
T(cx) = T'(x)

hold for all x, y in V' and scalars c.

118



Appendix C Institutional Review Board Exemption Approval Letter

% University of
Office of Research Integrity
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Qualifications, Records and Documentation of Human Subjects Research" from the Office of Research Integrity's Guidance and Policy Documents web page.
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Appendix D Consent Form

Consent to Participate in a Research Study

STUDENT TRANSFER BETWEEN HOMOMORPHISMS IN ABSTRACT ALGEBRA AND LINEAR
TRANSFORMATIONS IN LINEAR ALGEBRA

WHY ARE YOU BEING INVITED TO TAKE PART IN THIS RESEARCH?

You are being invited to take part in a research study about student connections between maps in linear algebra
and abstract algebra. You are being invited to take part in this research study because (1) you were previously or
are currently enrolled in a linear algebra course and (2) you were previously or are currently enrolled in an

abstract algebra course. If you volunteer to take part in this study, you will be one of about fifteen students and
four professors to do so.

WHO IS DOING THE STUDY?

The person in charge of this study is Jeffrey Slye, a Ph.D. candidate of the University of Kentucky Department of
Mathematics. He is being guided in this research by David Royster, Ph.D., of the University of Kentucky
Department of Mathematics.

WHAT IS THE PURPOSE OF THIS STUDY?

By doing this study, we hope to learn about what connections, if any, students make between certain concepts in
linear algebra and in abstract algebra.

ARE THERE REASONS WHY YOU SHOULD NOT TAKE PART IN THIS STUDY?

Participants should be at least 18 years in age. Otherwise, there are no known reasons for you to not take part in
this study.

WHERE IS THE STUDY GOING TO TAKE PLACE AND HOW LONG WILL IT LAST?

The research procedures will be conducted on your campus, in an interview room provided by your college or
university. You will need to come to be interviewed twice during the study. The first visit should take about 1.5
hours. The second visit should take about 2 hours.

WHAT WILL YOU BE ASKED TO DO?

At a time after you have completed your class studies on group theory, you will be asked to schedule two
interview times within about one week of one-another. These times will be chosen by you to fit into your
schedule. Your interviews will be video- and audio-recorded, and may be transcribed for use in the study. One
interview will involve talking about concepts from classes using markers, paper, and/or cards. The other interview
will involve the solving of math problems by hand while explaining aloud.

WHAT ARE THE POSSIBLE RISKS AND DISCOMFORTS?

To the best of our knowledge, the things you will be doing have no more risk of harm than you would experience
in everyday life.
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WILL YOU BENEFIT FROM TAKING PART IN THIS STUDY?
You will not get any personal benefit from taking part in this study.
DO YOU HAVE TO TAKE PART IN THE STUDY?

If you decide to take part in the study, it should be because you really want to volunteer. You will not lose any
benefits or rights you would normally have if you choose not to volunteer. You can stop at any time during the
study and still keep the benefits and rights you had before volunteering. As a student, if you decide not to take
part in this study, your choice will have no effect on your academic status or grade in the class.

IF YOU DON’T WANT TO TAKE PART IN THE STUDY, ARE THERE OTHER CHOICES?

If you do not want to be in the study, there are no other choices except not to take part in the study.

WHAT WILL IT COST YOU TO PARTICIPATE?
There are no costs associated with taking part in the study.
WILL YOU RECEIVE ANY REWARDS FOR TAKING PART IN THIS STUDY?

You will receive a $10 gift card for taking part in this study. This will be provided upon completion of the second
interview session.

WHO WILL SEE THE INFORMATION THAT YOU GIVE?
We will make every effort to keep confidential all research records that identify you to the extent allowed by law.

Your information will be combined with information from other people taking part in the study. When we write
about the study to share it with other researchers, we will write about the combined information we have gathered.
You will not be personally identified in these written materials. We may publish the results of this study; however,
we will keep your name and other identifying information private.

We will make every effort to prevent anyone who is not on the research team from knowing that you gave us
information, or what that information is. All physical documents and data-storage devices will be kept in a locked
filing cabinet. Electronic files on computing devices or cloud services will be password protected. These
electronic files will have any personally-identifiable information removed or censored.

We will keep private all research records that identify you to the extent allowed by law. However, there are some
circumstances in which we may have to show your information to other people. For example, the law may require
us to show your information to a court. Also, we may be required to show information which identifies you to
people who need to be sure we have done the research correctly; these would be people from such organizations
as the University of Kentucky. This does not include your linear algebra or abstract algebra professors.

CAN YOUR TAKING PART IN THE STUDY END EARLY?

If you decide to take part in the study you still have the right to decide at any time that you no longer want to
continue. You will not be treated differently if you decide to stop taking part in the study.

The researcher may need to withdraw you from the study. This may occur if you are not able to follow the
directions they give you.
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WHAT IF NEW INFORMATION IS LEARNED DURING THE STUDY THAT MIGHT AFFECT YOUR DECISION
TO PARTICIPATE?

If the researcher learns of new information in regards to this study, and it might change your willingness to stay in
this study, the information will be provided to you. You may be asked to sign a new informed consent form if the
information is provided to you after you have joined the study.

WHAT ELSE DO YOU NEED TO KNOW?

There is a possibility that the data collected from you may be shared with other investigators in the future. If that
is the case the data will not contain information that can identify you unless you give your consent or the UK
Institutional Review Board (IRB) approves the research. The IRB is a committee that reviews ethical issues,
according to federal, state and local regulations on research with human subjects, to make sure the study
complies with these before approval of a research study is issued.

WHAT IF YOU HAVE QUESTIONS, SUGGESTIONS, CONCERNS, OR COMPLAINTS?

Before you decide whether to accept this invitation to take part in the study, please ask any questions that might
come to mind now. Later, if you have questions, suggestions, concerns, or complaints about the study, you can
contact the investigator, Jeffrey Slye, at 717-638-8890. If you have any questions about your rights as a
volunteer in this research, contact the staff in the Office of Research Integrity at the University of Kentucky
between the business hours of 8am and 5pm EST, Mon-Fri. at 859-257-9428 or toll free at 1-866-400-9428. We
will give you a signed copy of this consent form to take with you.

Signature of person agreeing to take part in the study Date

Printed name of person agreeing to take part in the study

Name of (authorized) person obtaining informed consent Date
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Appendix E Group Homomorphism Card Sort Adjacency Matrices
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Table E.1. Arthur’s Group Homomorphism Card Sort Adjacency Matrix
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Table E.10. Tamara’s Group Homomorphism Card Sort Adjacency Matrix
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Table E.11. Dr. Brady’s Group Homomorphism Card Sort Adjacency Matrix
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Table E.12. Dr. Greer’s Group Homomorphism Card Sort Adjacency Matrix
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Table E.13. Dr. Powell’s Group Homomorphism Card Sort Adjacency Matrix
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Table F.2. Emilie’s Linear Transformation Card Sort Adjacency Matrix
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Table F.3. Flint’s Linear Transformation Card Sort Adjacency Matrix
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Table F.4. Jake’s Linear Transformation Card Sort Adjacency Matrix
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Table F.5. Kyle’s Linear Transformation Card Sort Adjacency Matrix
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Table F.6. Lucas’s Linear Transformation Card Sort Adjacency Matrix
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Table F.7. Maureen’s Linear Transformation Card Sort Adjacency Matrix
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Table F.10. Tamara’s Linear Transformation Card Sort Adjacency Matrix
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Table F.11. Dr. Brady’s Linear Transformation Card Sort Adjacency Matrix
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Table F.12. Dr. Greer’s Linear Transformation Card Sort Adjacency Matrix

IO [RIALLT, MM OO =T MNOOANMANMmO

gouumedg [ cccoococ oo ococoocooo
TRPRUIPION)) [©O O O OO O OO O OO O OO
coocoocococo

I0J)Op [ OO oo oo
...moawpm%m [eNoNoNoNoNoNoNoNoNoNoNoNo N ol
mwd§ |l cocoococococoocococococoococo

wedg MO [ ccococoocococo

0
0
0
0
0
0

CPUIROUN] [ O © © 0 o o o O

0
0
0
0
0
0

0
0
0
0
0
0

TURISSNRY) | © © © © O o o o

SIOJRAUNSIH |0 o o o © © © ©

0
0
0
0
0
0

SNRAUNSI |cccoc oo o o

00

UOISTOUI(] |[© © © © © © © ©

0
0
0
0
0
0

JURUIUIINN(] [© © © 0 0 o o O

wnellg |l ccocoocococ oo

0
0
0
0
0
0

MedS N |[cc o —~oc o oo

0
0
1
0
0
0

XIJEN | © © &N — — o O

0
0
0
0
0
0
0

Tguuno) [ e o oo oo

0
0
1
0
0
0

wn»ng [ccocccococococoococo —o
vodgwﬁﬁm H A A OM A A OO O
WY | ~cococo—~coococo o~
OO [P MNM OO = =W~ FmF OO
UO-0)-0U) [N N O O = S — = < D H O
PUOY [¥F M OO0 " ¥ OO0 MmO
WSIYAIOWOS] | i o — © — — N O — 10 N O
CILOSIAT] [O O 000000 A =0 A HO
wnN»ll] |lcccococoococ~coco—~oo
MWRU[ v m oo —MNi1dD OO N <+ ™o
CILIOUIT [N A A N - N OO~ NO O
MRAGINIOA [~ w N O F N O S O
SIS [ OO O NO 100000000
wRun (oY oNF oo o 0000
URUWO( [N W OO = = MO ONMmA MmO
UIRUWIOPO)) |10 M © © — N 10 © © & < ™ 00
= w O (O =] = QO o)
EEELEE9EEETES Y
T g ssEcscsE 80 % =
HHCBQnWamcahe 7 O &
o o g == Qg A 9 o't
= = = T E = i)
a = =] = g = O ]
3 E g5 HES§S d
O £ £ £ 8 =
O g g &
> = &
= =
=1 D
g 5
5 :
—=

149

1

1

Subspace

0

0

0 0

0
0

0

0

Surjection 0 0 0 0 0

Column Space

0

0000 0 0O0OO0O O 0O O0©O0O0
0 0 0

0

3

0

0

00 01

0

0

0

1 0 0 3

0 0

0 0
10

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0

Matrix
Null Space

0
00 0 0
00 00
00 0 O
00 0 0
00 0 0
00 0 O
0 0 0 0
0 0 0

0

0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

010

0

0

00 000
00 000

Bijection
Determinant

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0

Dimension 0 0 0 0 O

Eigenvalues

00 000
00 000

Gaussian Elimination 0 0 0 0 0
Linear Independence

Eigenvectors

00 000

0
0

0

0

0
0

0

0
0
0

0

0

Row Space

0
0

0 0
00 0 0
00 0 0
00 0 0
00 0 0
32 30

0
0

0
0

Span

System of Equations

0

0 0 0 O

0

000 0 000

0

0 0 0

0
0
0
0
1

0
0
0
0
2

0
0
0
0
0

0
0
0
0
0

0
0
0
0
3

0
0
0
0
1

0 0

0
0
0
0

Vector 0 0 0 0 O
00 0 00
000 00

Coordinate Vector

Spanning Set
Trivial Homomorphism 3 3 0 0 1




Table F.13. Dr. Powell’s Linear Transformation Card Sort Adjacency Matrix
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