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ABSTRACT OF DISSERTATION

BAYESIAN SEMIPARAMETRIC GENERALIZATIONS

OF LINEAR MODELS USING POLYA TREES

In a Bayesian framework, prior distributions on a space of nonparametric continuous

distributions may be defined using Polya trees. This dissertation addresses statistical

problems for which the Polya tree idea can be utilized to provide efficient and prac-

tical methodological solutions.

One problem considered is the estimation of risks, odds ratios, or other similar

measures that are derived by specifying a threshold for an observed continuous vari-

able. It has been previously shown that fitting a linear model to the continuous

outcome under the assumption of a logistic error distribution leads to more efficient

odds ratio estimates. We will show that deviations from the assumption of logistic

error can result in great bias in odds ratio estimates. A one-step approximation to the

Savage-Dickey ratio will be presented as a Bayesian test for distributional assumptions

in the traditional logistic regression model. The approximation utilizes least-squares

estimates in the place of a full Bayesian Markov Chain simulation, and the equiva-

lence of inferences based on the two implementations will be shown. A framework for

flexible, semiparametric estimation of risks in the case that the assumption of logistic

error is rejected will be proposed.

A second application deals with regression scenarios in which residuals are cor-

related and their distribution evolves over an ordinal covariate such as time. In the

context of prediction, such complex error distributions need to be modeled carefully



and flexibly. The proposed model introduces dependent, but separate Polya tree pri-

ors for each time point, thus pooling information across time points to model gradual

changes in distributional shapes. Theoretical properties of the proposed model will

be outlined, and its potential predictive advantages in simulated scenarios and real

data will be demonstrated.

KEYWORDS: Polya trees, risk estimation, logistic regression, Bayesian nonparamet-

rics, longitudinal data.
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Chapter 1 Introduction

The strict parametric assumptions of standard model theory, while simplifying

computations for estimation and inference, in practice are rarely met by real data.

At least for large sample sizes, deviations from parametric assumptions may not af-

fect estimation of the mean structure dramatically, but in the context of prediction of

individual observations distributional misspecifications may have a great effect and

lead to inappropriate inferences. For example, we will show that common violations

of parametric assumptions, such as skewness, in the context of risk estimation can

lead to dramatic biases. Nonparametric methods, on the other hand, make no as-

sumptions about the general shape of distributions and are therefore more flexible in

accommodating patterns observed in the data.

Gelfand [1999] describes the objective of semiparametric modeling as enriching the

class of standard parametric models by specifying at least portions of the model non-

parametrically, while retaining the main linear structure. This dissertation presents

two semiparametric generalizations of linear models using nonparametric Bayesian

methods. In the models presented here, the residual error distribution will be mod-

eled nonparametrically, while the remaining parametric formulation of the model is

maintained. This results in a median, rather than a mean, regression model.

The remainder of this chapter presents an overview of methods that will be em-

ployed in the method development in this dissertation. Section 1.1 discusses nonpara-

metric methods that have been developed for the Bayesian framework. Specifically,

the concept of the Polya tree prior, which is a generalization of the Dirichlet pro-

cess, and computational aspects of Polya tree models are explained. Furthermore,

approaches to model selection in the Bayesian setting, such as Bayes factors and

log-pseudo marginal likelihood, are presented in Section 1.2, as these metrics will be

employed in model comparisons. Section 1.3 gives an outline of the remainder of the

dissertation.
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1.1 Priors on spaces of distributions

Parametric statistical models specify a probability model fθ that is completely known

up to a parameter vector θ, where θ ∈ Θ ⊂ Rp. In parametric Bayesian statistics,

uncertainty about θ is addressed by assigning it a prior distribution pθ(θ), which

quantifies how likely or unlikely sets A ∈ Θ are to contain the “true” value of θ.

Nonparametric statistical models add flexibility by allowing the entire function f ∈ F

to be arbitrary. Here f is the parameter and Bayesian nonparametrics attempts to

put a prior P(.) on the space of probability distributions F .

First developments in Bayesian nonparametric methods were presented by Freed-

man [1963] and Fabius [1964]. After further theoretical developments in the 1960’s and

1970’s (see, e.g., Kraft [1964], Kraft and van Eeden [1964], Ferguson [1973, 1974], An-

toniak [1974]), applications of Bayesian nonparametric methods became widespread

in the 1990’s, following developments in computational sampling methods such as

the Gibbs sampler [Gelfand and Smith, 1990, Casella and George, 1992] and the

Metropolis-Hastings algorithm [Tierney, 1994], which allowed flexible posterior sim-

ulation for complex models. Possibly the most popular method for nonparametric

Bayesian modeling has been the Dirichlet process (DP). Polya trees, a generaliza-

tion of DPs, have been slightly less common in applications. Other nonparamet-

ric priors include Pitman-Yor processes [Pitman and Yor, 1997], gamma processes

[Kalbfleisch, 1978], extended gamma processes [Dykstra and Laud, 1981], and beta

processes [Hjort, 1990]. For an overview of Bayesian nonparametric methods, see

Gelfand [1999] and Walker et al. [1999]; for an overview of their applications to com-

mon inference problems, see Müller and Quintana [2004].

In the following sections, Dirichlet processes and Polya trees are explained in

detail. Polya trees are the distribution of choice for method development in this

dissertation, and Dirichlet process models will be used as an alternative model in an

application presented in Chapter 3.
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1.1.1 Dirichlet processes

The Dirichlet process (DP) and its properties were introduced by Ferguson [1973]:

Definition 1.1. Let α > 0 be a scalar and G0 a probability measure. A random proba-

bility measure G on the space Ω is said to have a Dirichlet process prior with parameter

αG0, written G ∼ DP (αG0), if for any finite measurable partition (A1, . . . , Ak) of Ω,

the random vector
(
G(A1), . . . , G(Ak)

)
has a Dirichlet distribution with parameter(

αG0(A1), . . . , αG0(Ak)
)
.

G0 is the base measure, or centering distribution, of the Dirichlet process, and

the weight parameter α gauges the variability of G around G0. For fixed sample

size, with increasing values of α, G is forced to follow the shape of G0 more closely.

Sampling in DP models is facilitated by the fact that DPs are conjugate priors: if

G ∼ DP (αG0), the posterior distribution G|y upon observing data y = (y1, . . . , yn) is

DP
(
(α+ n)G∗

0

)
, where G∗

0 = α(α+ n)−1G0 + (α+ n)−1
∑n

i=1 δ(yi) and δ(yi) denotes

the measure giving mass one to the point yi.

A Dirichlet process gives probability 1 to the set of discrete distributions. To

obtain continuous distributions and avoid issues that could arise from misspecification

of the base measure, G0 may be defined as coming from a parametric family of

distributions {Gθ}θ. By defining a prior pθ(θ) and G|α,Gθ ∼ DP (αGθ), a mixture of

DPs is obtained, where marginally G ∼
∫
DP (αGθ)pθ(dθ) [Antoniak, 1974].

A more popular alternative to a mixture of DPs is a Dirichlet process mix-

ture (DPM) model. The nonparametric distribution G is then defined as com-

ing from a mixture of parametric distributions, where the mixing distribution is

a DP: G(·) ∼
∫
Gθ(·)dF (θ), where the kernel Gθ is a parametric distribution and

F |α, F0 ∼ DP (αF0) [Hanson et al., 2005]. This construction results in a continuous

G with probability 1 as long as the kernel function Gθ is continuous.

Escobar [1994] and Escobar and West [1995] develop a Gibbs sampler algorithm

3



for posterior computation for DPMs without explicitly drawing posterior iterates of

G. Further computational developments for DPMs were presented, e.g., by Bush and

MacEachern [1996], MacEachern and Müller [1998], and Neal [2000].

Inferences about G and functionals thereof may be of interest in certain appli-

cations. Explicit sampling is simplified by an alternative, constructive represen-

tation of the Dirichlet process, which was introduced by Sethuraman [1994]. Let

G =
∑∞

i=1 piδ(θi), where the vectors θ = (θ1, θ2, . . .) and p = (p1, p2, . . .) are inde-

pendent, the distribution of the θi’s is that of an independent, identically distributed

sample from G0, and pi = vi

∏i−1
j=1(1 − vj), vi

iid∼ beta(1, α). Then G(·) ∼ DP (αG0).

Gelfand and Kottas [2002] use this representation to develop a computational ap-

proach that samples from the posterior distribution of G and therefore allows for

inferences about G.

Dirichlet processes and mixtures have been employed in a variety of data anal-

ysis problem, for example in semiparametric median regression models [Kottas and

Gelfand, 2011], to model random effects distributions [Bush and MacEachern, 1996,

Kleinman and Ibrahim, 1998], survival analysis [Kuo and Mallick, 1997, Pennell and

Dunson, 2006], and to evaluate goodness of fit of parametric distributions [Carota

and Parmigiani, 1998, Viele, 2007].

1.1.2 Polya trees

Polya trees (PT) were introduced by Ferguson [1974], and Lavine [1992, 1994] as well

as Mauldin et al. [1992] gave an overview of their definition and properties. To define a

Polya tree, let ej(k) be the j-fold binary representation of the number k−1. Let Ω be

a separable measureable space, and define a separating binary tree of partitions of Ω

such that for every level j = 1, 2, . . . of the tree, the collection {B(j, k) : k = 1, . . . , 2j}

partitions Ω such that Ω = B(1, 1) ∪ B(1, 2), B(1, 1) ∩ B(1, 2) = ∅, and for all j =

1, 2, . . . , B(j, k) = B(j+1, 2k−1)∪B(j+1, 2k), and B(j+1, 2k−1)∩B(j+1, 2k) = ∅.

Further, let Π = {B(j, k) : j = 1, 2, . . . ; k = 1, . . . , 2j}, i.e., the set of partitioning

4



sets.

Definition 1.2. A random probability measure G on Ω is said to have a Polya tree

distribution, or a Polya tree prior, with parameter (Π,A), written G ∼ PT (Π,A), if

there exist nonnegative numbers A = {αj,k : j = 1, 2, . . . ; k = 1, . . . , 2j} and random

variables Y = {Yej(k) : j = 1, 2, . . . ; k = 1, . . . , 2j} such that the following hold:

1. all random pairs (Yej(2k−1), Yej(2k)) in Y are independent;

2. for every j = 1, 2, . . . , k = 1, . . . , 2j−1, Yej(2k−1) ∼ beta(αj,2k−1, αj,2k), and

Yej(2k) = 1− Yej(2k−1);

3. for every j = 1, 2, . . . and every k = 1, . . . , 2j, G
(
B(j, k)

)
=

∏j
i=1 Yej(dk2i−je).

Polya trees fall into the more broad category of tail-free processes [Freedman,

1963]. A tail-free process is defined analogously to Definition 1.2, with the general-

ization that there is no specific distribution imposed on Yej(k) [Ferguson, 1974]. A

Dirichlet process is a special case of a Polya tree that is attained if for every j and k,

αj,k = αj+1,2k−1 + αj+1,2k.

Figure 1.1 visualizes the idea of the construction of a Polya tree for the sample

space Ω = (0, 1]. The PT prior is defined by a sequence of binary partitions on

the sample space and conditional branch probabilities Yej(k). At each level j, the

probability of any set B(j, k) is defined as the product of all conditional branch

probabilities along the path leading from the top node of the tree to that set. By

defining a distribution on the branch probabilities, a distribution on G
(
B(j, k)

)
is

induced.

In applications, the partitions in Π are induced by “centering” G on a fixed dis-

tribution G0. To do this, the sets B(j, k) are defined as the intervals
(
G−1

0 ((k −

1)/2j), G−1
0 (k/2j)

]
, for j = 1, 2, . . .; k = 1, . . . , 2j. Partitions induced in this way will

be denoted by Π0. We further choose αj,2k−1 = αj,2k,∀j = 1, 2, . . . ; k = 1, . . . , 2j.

5



Figure 1.1: Schematic of the construction of a Polya tree
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With these selections, the prior distributions on Yej(k) are symmetric around 1/2

and the prior mean of G
(
B(j, k)

)
is E

[
G

(
B(j, k)

)]
=

∏j
i=1E[Yej(dk2i−je)] = 1/2j =

G0

(
B(j, k)

)
by the independence of the Yej(k)’s, where the expectation is with respect

to the PT distribution. Therefore, we write E[G] = G0.

Lavine [1992] outlines three aspects of Polya trees that are affected by the choice

of A. First, the αj,k’s control the rate at which the updated predictive distribution

changes from the prior distribution to the distribution of the sample. For large αj,k’s

the predictive distribution is close to G0, while for small αj,k’s its shape is mainly

determined by the empirical distribution function of the data. Second, αj,k affects

the smoothness of G. For instance, choosing αj,k = j2 yields a prior on the space

of absolutely continuous distributions with probability one [Kraft, 1964, Ferguson,

1974, p. 621]. Finally, the αj,k’s impact the extent to which random G can vary

around its prior mean G0. In particular, larger αj,k’s allow for less variability of G

about its mean. A common choice is αj,k = cρ(j), where c > 0 is fixed and ρ(j) is

an increasing, positive function, as used, e.g., in Berger and Guglielmi [2001], Walker

and Mallick [1999], among many others. Alternatively, a prior distribution on c could

be introduced. For Polya trees centered around a distribution G0 with αj,k = cρ(j),

we will use the notation PT (c, ρ(.), G0).

Polya trees are conjugate priors [Ferguson, 1974], which follows from the conjugacy

of the beta priors defined on the branch probabilities Yej(k). Specifically, if G ∼

PT (Π0,A) and y = (y1, . . . , yn), where yi|G
iid∼ G, then upon observing data y, the

posterior G|y ∼ PT (Π0,A|y) = PT (Π0,A∗) with A∗ = {α∗j,k = αj,k + n(j, k, y)},

where n(j, k, y) is the number of observations in y that fall into set B(j, k).

A simple PT is characterized by an infinite number of parameters, the branch prob-

abilities. In practice, fitting PT models is done computationally by either marginal-

ization or truncation to a finite tree. A finite Polya tree is a PT truncated at a fixed

level J . The resulting prior is no longer nonparametric in the sense that it has an

7



infinite number of parameters, but rather richly parametric (i.e., it has a large, but

finite, number of parameters).

Let ΠJ = {{B(j, k)} : j = 1, . . . , J ; k = 1, . . . , 2j}. A finite Polya tree is defined

as follows:

Definition 1.3. A random probability measure G on Ω is said to have a finite Polya

tree prior with parameter (ΠJ ,AJ), written G ∼ FPT (ΠJ ,AJ), if there exist non-

negative numbers AJ = {αj,k : j = 1, . . . , J ; k = 1, . . . , 2j} and random variables

Y = {Yej(k) : j = 1, . . . , J ; k = 1, . . . , 2j} such that the following hold:

1. all random pairs (Yej(2k−1), Yej(2k)) in Y are independent;

2. for every j = 1, . . . , J, k = 1, . . . , 2j−1, Yej(2k−1) ∼ beta(αj,2k−1, αj,2k), and

Yej(2k) = 1− Yej(2k−1);

3. for every j = 1, . . . , J and every k = 1, . . . , 2j, G
(
B(j, k)

)
=

∏j
i=1 Yej(dk2i−je).

4. On sets B(J, k), G follows G0.

The predictive Polya tree density for a future observation yn+1 that is obtained

upon observing data y is

g(yn+1|y) = g0(yn+1)2
J

J∏
j=1

cj2 + n
(
j, k(j, yn+1), y

)
2cj2 + n

(
j − 1, k(j − 1, yn+1), y

)
where k(j, yn+1) is the partition at level j into which yn+1 falls. Lavine [1994] shows

that the updated predictive density g for J → ∞ can be bounded above and that

by truncating the Polya tree at a finite level J , g(yn+1|y) can be estimated within

a factor δ ≤ exp(n
2

∑∞
j=J j

−2). Hanson and Johnson [2002] show that Condition 4

in Definition 1.3 leads to predictive distributions that are exact if J is chosen to be

sufficiently large, in the sense that in any partition into which no elements of y fall,

the predictive density from a finite PT is exactly the same as from an infinite PT.
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Figure 1.2: Possible posterior density estimates from a finite PT distribution for
various levels J

They suggest the rule of thumb of choosing J
.
= log2 n, which allows for a more

detailed estimation of G when more data are available. This choice of J derives from

the prior expectation that at least one observation should fall into each set at level

J .

Figure 1.2 visualizes what the densities of posterior iterates from a finite PT might

look like for levels J = 2, 3 and 4 when G0 = N(0, 1). With increasing J , the shape

of the density becomes more flexible and is able to capture any arbitrary distribution

found in data. Condition 4 in Definition 1.3 ensures that in the case that all branch

probabilities Yej(k) are equal to 0.5, the centering distribution G0 is obtained.

The densities in Figure 1.2 also exemplify a problem that naturally arises from

finite Polya trees: iterates from the posterior Polya tree distribution are necessarily

discontinuous at the partition points G−1
0 (k/2j). Paddock et al. [2003] address this

problem by proposing a randomized Polya tree, which adds random jitter to the

partition points. An second issue with simple Polya tree arises with a choice of G0

that puts a lot of prior mass on an interval of Ω in which little or no data occur. This
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results in all the posterior mass in the tails of G0 where sets B(j, k) are larger and

densities are thus fit with less precision and convergence of the posterior in sampling

algorithms will be very slow [Barron et al., 1999].

Employing a mixture of Polya trees rather than a simple Polya tree avoids issues

arising from having to choose a single centering distribution G0. Here, we replace

G0 with Gθ and place a prior distribution on θ. In posterior calculations, the sample

distribution now informs the choice of the centering distribution, avoiding the problem

of a bad choice of G0. Additionally, with varying θ, the partitions in Π change at

each step of the Gibbs sampler, and mixing over the different partitions results in a

smoother (differentiable) predictive density [Hanson, 2006].

The general mixture of Polya trees model is

G|θ ∼ PT (Πθ,A)

θ ∼ pθ(θ)

where now ΠJ
θ = {Bθ(j, k) = (G−1

θ ((k − 1)2−j), G−1
θ (k2−j)) : j = 1, . . . , J, k =

1, . . . , 2j}.

We can define a mixture of finite Polya trees analogously by truncating the tree

at a fixed level J <∞:

G|θ ∼ PT (ΠJ
θ ,AJ)

θ ∼ pθ(θ)

Empirical studies have shown that the particular choice of J affects results only

slightly or not at all. As a result, (mixtures of) finite Polya trees are the model most

used in PT applications, and they will be used throughout this dissertation.

Polya trees have been used in a variety of data analysis problems. Applications

include nonparametric error distributions in regression models [Hanson and Johnson,

10



2002, Hanson, 2006], and distributions of mixed effects in hierarchical generalized

linear models as presented in Walker and Mallick [1997]. Polya trees have also been

employed in analysis of survival data [Walker and Mallick, 1997, 1999, Hanson, 2006,

Zhao et al., 2009], nonparametric meta-analysis [Branscum and Hanson, 2008], time

series [Denison and Mallick, 2006], and modeling ROC curves [Hanson et al., 2008].

Applications that involved testing a parametric model versus a nonparametric alter-

native have been presented in Berger and Guglielmi [2001] and Hanson [2006]. Mul-

tivariate versions of Polya trees have been developed in Hanson [2006], Yang et al.

[2008], Trippa et al. [2011] and Hanson et al. [2011], of which the latter proposes an

efficient approximate sampling algorithm for the complex model.

1.1.3 Fitting Polya tree models

To outline computational aspects of fitting Polya tree models, we first introduce some

additional notation. Let nθ(j, k, y) be the number of elements in the data vector y

that fall into set Bθ(j, k), and let kθ(j, yi) ∈ {1, . . . , 2j} identify the set at level j into

which observation yi falls.

The partition cut points at level j are {G−1
θ (k/2j)}2j−1

k=1 , from which we obtain the

following computational formulas [Hanson, 2006]:

nθ(j, k, y) =
n∑

i=1

I{b2jGθ(yi)c = k − 1}

kθ(j, yi) = b2jGθ(yi)c+ 1

We take c and ρ(.) to be fixed (usually at c = 1 or smaller for moderate sample

sizes, and ρ(j) = j2). G is completely defined by Y and θ and G[Bθ(j, k)|Y , θ] =∏j
i=1 Yei(dk2i−je). We will define pY(k) as the probability of the k-th partition on the

lowest level (J) of a finite tree:
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pY(k) = G[Bθ(J, k)|Y , θ] =
J∏

j=1

Yej(dk2j−Je))

The cumulative distribution function G(y|Y , θ) is given by

G(y|Y , θ) =

kθ(J,y)−1∑
k=1

pY(k) + pY(kθ(J, y))[2
JGθ(y)− kθ(J, y) + 1]. (1.1)

The corresponding density function is

g(y|Y , θ) = 2JpY(kθ(J, y))gθ(y). (1.2)

Sampling from the posterior Polya tree distribution in a Gibbs sampler for a

general model is straightforward. The likelihood function is calculated using a form

of (1.2) and the current iterates of the branch probabilities. After drawing samples

from the full conditional distributions of each of the other model parameters, a new

set of branch probabilities Y(i) is generated as a random draw from the updated beta

distribution of each branch probability.

At the same time, explicit estimation of both (1.1) and (1.2), as well as functionals

of G, is possible. For example, the qth quantile of G can be estimated as

G−1(q|Y , θ) = G−1
θ

{q −∑K
k=1 pY(k) +KpY(K)

2JpY(K)

}
,

where K is such that
∑K−1

k=1 pY(k) < q ≤
∑K

k=1 pY(k).

Figure 1.3 shows samples from the posterior distribution G|y for a sample y from a

bimodal distribution. The observations were generated by selecting the (i− 0.5)/100

quantiles for i = 1, . . . , 100 from the mixture (0.5N(5, 1) + 0.5N(13, 1)). To these
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data, we fit the mixture of finite PTs model

yi|G
iid∼ G

G|(µ, σ) ∼ FPT (c, j2, N(µ, σ))

(µ, σ) ∼ N(0, 100)× Γ(2, 2)

truncating the tree at J = 4. To show the effect of the scale parameter, c was fixed

at 0.1, 1, 5 and 10.

We plotted 50 samples from the posterior PT distribution, randomly chosen from

10,000 iterations after a burn-in period of 1,000 iterations. It becomes clear that for

smaller values of c the posterior distribution more closely follows the empirical distri-

bution of the data and the samples have greater variability. For larger c, samples from

the posterior are more concentrated around the normal centering distribution, and at

the same time the functions are smoother. Figure 1.4 graphs estimated distribution

functions G|y from the mixture of Polya trees and as expected, for smaller values of

c, G|y is able to capture the bimodality of the distribution more closely.
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Figure 1.3: Posterior samples from a mixture of Polya trees for bimodal data (n = 100)
with a normal centering distribution for c = 0.1, 1, 5 and 10, J = 4
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Figure 1.4: Estimated distributions from a mixture of Polya trees for bimodal data
(n = 100) with a normal centering distribution for c = 0.1, 1, 5 and 10, J = 4
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1.2 Bayes factors

Bayes factors (BFs) are a method of comparing competing models or hypotheses in

the Bayesian framework. In general, the Bayes factor comparing two hypotheses H0

and H1 is [Kass and Raftery, 1995]

BF =
Pr(y|H1)

Pr(y|H0)
=
Pr(H1|y)p(H0)

Pr(H0|y)p(H1)
. (1.3)

In the non- or semiparametric context, Bayes factors have been employed to test

parametric goodness of fit, generally by nesting the parametric model within a more

general nonparametric alternative. In a sense the Bayes factor measures how strongly

the data support or contradict the parametric model. Testing for goodness of fit has

been proposed for various nonparametric prior families, such as Dirichlet process

mixtures [Carota and Parmigiani, 1996, Basu and Chib, 2003], Polya trees [Ghosal

et al., 1998, Berger and Guglielmi, 2001, Hanson, 2006], and Gaussian process priors

[Verdinelli and Wasserman, 1998].

Gelfand and Dey [1994] provide a discussion of asymptotic behavior and calcula-

tions for Bayes factors in the case that the two hypotheses are parametric models.

For comparing parametric priors to a Polya tree alternative, conditions for the con-

sistency of Bayes factors have been presented by Ghosal et al. [1999], Dass and Lee

[2004] and McVinish et al. [2009]. Ghosal et al. [2008] give general sufficient con-

ditions for consistency of the BF for nonparametric hierarchical priors. For similar

model comparisons for continuous data using Dirichlet processes, problems of incon-

sistency of the BF for some models are discussed by Berger and Guglielmi [2001] and

Carota [2006].

Table 1.1 lists the cutoff values as suggested by Jeffreys [1961] for rejecting H0

based on values of the Bayes factor. The table also assigns numbers to each of the

categories, which will be used in evaluating test performance in a later chapter. Note
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Table 1.1: Cutoff values for Bayes factors according to Jeffreys [1961, Appendix B]
with categories 0-5 assigned for later reference

log10(BF ) BF Evidence against H0 Category
< 0 < 1 no evidence 0
0 - 0.5 1 - 3.2 barely worth mentioning 1
0.5 - 1 3.2 - 10 substantial 2
1 - 1.5 10 - 32 strong 3
1.5 - 2 32 - 100 very strong 4
> 2 > 100 decisive 5

that in the Bayesian framework, the two hypotheses are interchangeable, and the

ratio in (1.3) can be reversed and the Bayes factor may be interpreted as evidence

against H1 or evidence for H0.

Alternative methods for Bayesian model choice include, for example, the deviance

information criterion (DIC) [Spiegelhalter et al., 2002], posterior predictive p-values

[Gelman et al., 1996] or distance measures [Goutis and Robert, 1997]. For example, in

a nonparametric setting, the Kullback-Leibler distance has been employed to measure

the distance between the prior and the posterior distribution [Carota et al., 1996,

Carota and Parmigiani, 1998], or the distance between a parametric family and the

distribution that generated the data [Viele, 2007].

In settings in which prediction of individual observations is of interest, one mea-

sure for model selection among models Mk is based on the conditional predictive

ordinate CPOi = fi(yi|y(−i),Mk) proposed by Geisser and Eddy [1979] and Geisser

[1980], where y(−i) are the data with the ith observation omitted. Gelfand and Dey

[1994] utilize the CPO to calculate a pseudo Bayes factor based on a simple sampling

approach. They propose estimating the CPO based on MC Gibbs-sampler iterates

ψ(m) from the posterior distribution of the parameter vector ψ

f̂(yi|y(−i),Mk) = E−1
Mk|y

{ 1

f(yi|Mk)

}
= MC

MC∑
m=1

{ 1

f(yi|ψ(m),Mk)

}−1

.
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The log-pseudo marginal likelihood (LPML) for a given model is then defined as

LPMLMk
= log

n∏
i=1

CPOi.

The pseudo Bayes factor PSBF for comparing two models is

PSBF = exp(LPMLM2 − LPMLM1),

which can then be interpreted analogously to Jeffrey’s categories for Bayes factors.

1.3 Dissertation outline

The remainder of this dissertation presents two Polya tree models in regression set-

tings. In Chapter 2, a Bayesian semiparametric model for risk regression with con-

tinuous response data is proposed. The method includes an Empirical Bayes test

procedure for evaluating goodness of fit of a parametric residual distribution. Both

theoretical and computational results about the performance of the test and risk

estimation procedure are presented.

Chapter 3 presents a novel approach for defining dependent priors on function

spaces. In a regression setting, this method models nonparametric error distribu-

tions across ordinal covariates flexibly while allowing dependencies between errors at

different covariate values.

Appendix A.1 contains a summary of notation. Symbols defined for Polya trees

are summarized in Table A.1. Additionally, notation for parametric distributions

used in this dissertation is outlined in Table A.2.
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Chapter 2 Bayesian Semiparametric Risk Regression with Measurement

Data

Logistic regression models are a popular tool for risk estimation in medical and

biological data analysis. With continuous response (i.e., measurement) data, it is

common to create a dichotomous outcome by specifying a threshold for positivity.

Fitting a linear regression via least squares to the original, non-dichotomized re-

sponse assuming a logistic error distribution has previously been shown to yield more

efficient estimators of odds ratios than ordinary logistic regression of the dichotomized

endpoint. This chapter develops a novel test for assessing goodness of fit of logistic

regression based on a Bayesian semiparametric Polya tree model.

Bayes factors are calculated using the Savage-Dickey ratio for testing the null

hypothesis of logistic regression versus a semiparametric generalization. The pro-

posed empirical Bayes approach is computationally efficient since it does not require

MCMC sampling, and we show that results from it are equivalent to results from a

fully Bayesian implementation for large sample sizes. A method for semiparametric

estimation of risks, risk ratios, and odds ratios is developed, which can be employed

when the hypothesis of a logistic error distribution is rejected.

2.1 Introduction

In the context of medical or public health research, interest often lies in quantify-

ing the risk of adverse outcomes and identifying at-risk subpopulations. Although

outcomes may be communicated as binary, they are often defined based on an un-

derlying continuous variable. The actual endpoint of interest may not be directly

observable because procedures to precisely determine a patient’s status are invasive

or even destructive. In such a case, biomarkers or other variables may serve as surro-

gate measures. As an example, the gold-standard for determining lower than normal

bone turnover to identify renal osteodystrophy in patients with chronic kidney disease
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is an invasive and time consuming bone biopsy, the classification of which should be

made only by highly trained experts. As an alternative, clinicians may use levels of

the parathyroid hormone (PTH), of which levels below 150 in a particular PTH assay

indicate low bone turnover [Malluche and Monier-Faugere, 2006].

The metabolic syndrome diabetes mellitus is marked by elevated blood sugar levels

and glucose intolerance due to insulin deficiency or impaired effectiveness of insulin

action [Zimmet et al., 2004]. For the purpose of individual diagnosis of diabetes,

multiple testing and other criteria would be considered by the diagnosing clinician,

however for epidemiologic purposes testing is rarely repeated and fasting plasma glu-

cose measures are most commonly used to identify a subpopulation with diabetes. A

person with fasting plasma glucose level at or above 126mg/dL is considered diabetic

[WHO06].

In other scenarios, the endpoint of interest is directly defined based on a threshold

for a continuous variable. For example, the classification of an overweight or obese

individual is generally based on the body mass index, which is a continuous variable

calculated from a person’s height and weight. A person with a BMI of 30kg/m2

or above is considered obese, while the cutoff for considering a person overweight is

25kg/m2. This classification is of epidemiologic interest, as overweight and obesity

are risk factors for other diseases such as diabetes and heart disease.

In a multitude of scenarios, well-established thresholds are used by practition-

ers to make clinical diagnoses and treatment decisions, or by epidemiologic studies

to quantify the health of subpopulations. Traditionally, risk assessment models for

binary outcomes are built using logistic regression. If the outcome is based on an

underlying continuous variable, much of the information contained in the original

variable is lost by reducing it to a 0/1 outcome. From a statistical perspective, it

would be preferable to retain all the information of the continuous response and cre-

ate a model that predicts mean response. Not only will the loss of information result
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in more uncertainty about the model parameters, but the adherence to rigid cutoffs

classifies individuals into groups, with no measure of how different they are in terms

of the original variable. For example, an individual with a BMI of 29.8 and another

with a BMI of 30.2 are most likely very similar in terms of body fat percentage and

other physical measures, but they are classified as not-obese and obese, respectively,

the same way that two individuals with BMIs of 25 and 40 would be classified, who

would undoubtedly have greater physiological dissimilarities.

However, if clinical diagnoses or epidemiologic characterizations are based on es-

tablished, hard cutoff values, models of the mean continuous response may not directly

address the clinical questions at hand [Ragland, 1992]. Additionally, risks and related

measures are easier to interpret and communicate to clinicians, patients, policy mak-

ers and the general public. It is therefore desirable to retain all the information of

a continuous response throughout the model-building process and then translate the

model into risk inference for a binary outcome at the end of the analysis process.

Moser and Coombs [2004] show that by fitting a linear model via least squares with

the original, non-dichotomized response variable assuming a logistic error distribution,

risk and odds ratio parameters are equivalent to those under the ordinary logistic

regression model for the dichotomized data. This connection has been employed and

empirically confirmed, for example by Bakhshi et al. [2008]. Moreover, Moser and

Coombs [2004] illustrate that large gains in efficiency are achieved by modeling the

original continuous response data. Specifically, much smaller sample sizes are needed

for the same power seen in ordinary logistic regression.

The connection between parameters of interest for continuous and binary logistic

regression depends on the condition that data follow a logistic distribution. Sections

2.2 and 2.3 will demonstrate this equivalence and explore biases in estimates when the

data distribution deviates from logistic. In Section 2.4, a Polya tree-based goodness

of fit test for the parametric distributional assumption is proposed, and two com-
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putational approaches are compared. An Empirical Bayes approach that provides a

one-step estimation of the Savage-Dickey ratio is compared to a fully Bayesian MCMC

sampling approach and theoretical results on consistency of the Bayes factor under

the Empirical Bayes approach are presented. Methods for semiparametric estimation

of risks, risk ratios, and odds ratios are presented in Section 2.5. Performance of the

proposed method on simulated data and on survey data sets is evaluated in Sections

2.6 and 2.7, respectively.

2.2 Background

Dichotomizing a continuous outcome according to a cutoff d may arguably have some

interpretative advantages. For statistical modeling and inference, however, reducing

the information contained in a continuous variable to a binary outcome results in loss

of efficiency, as explored theoretically by Selvin [1987] and demonstrated empirically

by Moser and Coombs [2004] and Ragland [1992]. Also, building risk prediction

models using measurement data does not preclude subsequent thresholding to aid in

decision making. For instance, we can determine the predictive density of BMI for

a certain type of person and base decisions on whether that density largely supports

BMI values above 30.

Moser and Coombs [2004] investigated differences in statistical efficiency for lo-

gistic linear regression of measurement data and ordinary logistic regression of di-

chotomized data. They start with a standard linear model for continuous responses

yi = x′iβ + εi, i = 1, . . . , n, where x′ = (1, x1, . . . , xp−1) and β = (β0, . . . , βp−1)
′. If

the residuals are independent, identically distributed and follow a logistic distribu-

tion with mean 0 and standard deviation σ, a natural connection between β, σ, odds

ratios, and coefficients from logistic regression of dichotomized data arises.

The cumulative distribution function for a random variable Y that follows a lo-
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gistic distribution with mean x′β and standard deviation σ is

P (Y ≤ d|x, β, σ) =
1

1 + exp[−λ(d− x′β)/σ]
(2.1)

where λ = π/
√

3. Letting x(−1,j) = (1, x1, . . . , xj − 1, . . . , xp−1), the odds ratio for the

event Y > d comparing individuals that differ by one unit on xj but are otherwise

the same, can be expressed as

ORj =
P (Y > d|x, β, σ)/[1− P (Y > d|x, β, σ)]

P (Y > d|x(−1,j), β, σ)/[1− P (Y > d|x(−1,j), β, σ)]

=
exp[λ(d− x′(−1,j)β)/σ]

exp[λ(d− x′β)/σ]

= exp(λβj/σ).

Now consider the common alternative in which a dichotomized variable Y ∗
i =

I(Yi > d) is modeled by ordinary logistic regression with

P (Y > d|x, φ) = P (Y ∗ = 1|x, φ) =
exp(x′φ)

[1 + exp(x′φ)]

where φ = (φ0, . . . , φp−1)
′.

The odds ratio for the same effect under this model is
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OR∗
j =

P (Y ∗ = 1|x, φ)/[1− P (Y ∗ = 1|x, φ)]

P (Y ∗ = 1|x(−1,j), φ)/[1− P (Y ∗ = 1|x(−1,j), φ)]

=
exp(x′φ)

exp(x′(−1,j)φ)

= exp(φj).

Since the odds ratios ORj and OR∗
j are defined equivalently, it follows that

ORj = OR∗
j ⇒ exp(λβj/σ) = exp(φj),

which leads to the following connection between regression coefficients from the two

modeling approaches:

λβj/σ = φj.

Therefore, we can derive statistical tests and estimates for the usual odds ratio cor-

responding to the effect of xj for any cutoff d based on the least squares estimates

for the regression model. Statistical inference for risks, risk ratios, and other related

parameters are also available from this model.

Citing the similarity between the two distributions, Moser and Coombs [2004]

substituted a normal for the logistic distribution on the residuals and applied standard

linear model theory to determine approximate confidence interval formulas for odds

ratios. Instead of applying normal theory to non-normal data, an alternative approach

would generate asymptotic confidence intervals from theory for a logistic accelerated

failure time (AFT) model [Hosmer and Lemeshow, 1999], which is commonly used in
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the field of survival analysis. Numerical procedures for fitting AFT models are built

into most statistical software packages, including R and SAS.

2.3 Impact of model misspecification

The direct connection between regression coefficients from the models for the di-

chotomized and the continuous response data, as well as the proportionality of the

odds independent of the cutoff d, hinges upon the assumption of a logistic error

distribution. Real data, however, very often do not meet parametric assumptions.

The following demonstrations visualize the effect of deviations from the logistic error

distribution on bias of risk and odds ratio estimates.

For the linear model with a single continuous covariate xi and yi = βxi + εi, with

εi ∼ logistic(0, σ), the log odds ratio is equal to λβ/σ for any value of x and any

cutoff d. For other error distributions, however, the odds ratio is no longer constant

with x. To demonstrate this effect, 10,000 residuals for this simple linear model were

simulated from three different distributions: the normal, skew-normal [Azzalini, 1985]

and student-t(3) distribution. All distributions were normalized to have mean 0 and

standard deviation βλ, which in the case of a logistic distribution would result in a

log odds ratio of 1. Values of x were generated as a sequence of evenly distributed

values between -1 and 10. The log odds ratio for the events Y > 4 and Y > 5 were

estimated using ordinary logistic regression and the AFT model with logistic error

for β = 0.5, 1, and 2.

Figure 2.1 compares the true risks of Y > 4 to the estimated risks from the two

parametric models for β = 1. In the case of the two symmetric distributions (Figures

2.1(a) and 2.1(c)) the risk estimates from the two parametric models are very similar,

but do not model the shape of the risk function appropriately. The deviation in

shape is less dramatic in the case of the normal distribution than for t(3), because

the normal is similar to the logistic distribution. For the skew-normal distribution

(Figure 2.1(b)) the two models result in different estimates, and both models are not
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able to capture the general shape of the asymmetric risk function.

The inadequacy of the parametric models becomes even more evident when com-

paring true and estimated log odds ratios (Figure 2.2). The shapes of the true odds

ratio functions cannot be captured by the estimates from either logistic regression or

the linear model of the continuous response, as they estimate a constant close to the

value of 1 (estimates of log odds ratio functions not presented). Note that the odds

ratios are not properly modeled although the mean structure in this simple scenario

is correctly specified, i.e., the shape of the log odds ratio function is solely due to the

shape in the error distribution. The location of the true (log) odds ratio curves here

is not independent of the cutoff. Changing the cutoff from d = 4 to d = 5 retains

the shape of the curves, but shifts them along the x-axis. In addition, the shape of

the functions changes with the error standard deviation, even though the ratio β/σ

is held constant at λ.

Although we focus on logistic regression without cutoffs, alternative families of

parametric distributions may be fit to the data. In the case of a normal error distri-

bution, a standard normal model could be fit, and a direct link between its parameters

and those from a probit regression of dichotomized data can be made. The relation-

ship between the probability of the event Y > d and linear predictors x in probit

regression is modeled as P (Y > d|x, φ) = P (Y ∗ = 1|x, φ) = Φ(x′φ), where Φ(·)

is the cumulative distribution function of the standard normal. Fitting the model

yi = x′iβ + εi to continuous data with a normal error distribution results in the

relationship φj = βj/σ.

However, such models for continuous response data are not necessarily readily

available for all parametric distributions, and this strategy fails if the correct family

of parametric error distributions is not identified. For dichotomous response models,

nonparametric generalizations of link functions have been proposed, for example, us-

ing mixtures of beta distributions [Mallick and Gelfand, 1996] or Polya trees [Hanson,
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(c) Student-t(3) error

Figure 2.1: True risk (solid line) and estimated risk from ordinary logistic regression
(dotted line) and AFT model of the continuous response (dot-dashed line) for three
non-logistic error distributions.
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Figure 2.2: True log odds ratios for the events Y > 4 (black) and Y > 5 (grey), for
β = 0.5 (dotted lines), β = 1 (solid lines) and β = 2 (dot-dashed line) and three
non-logistic error distributions.
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2006]. To retain the efficiency gains from modeling continuous response data and at

the same time model risk and odds functions of arbitrary shape more appropriately,

a new model based on nonparametric error distributions will be developed in the

following section.

2.4 Testing for goodness of fit in logistic regression

We use Bayes factors to test whether the assumption of a logistic error distribution

is violated in a linear model for measurement data. To this end, we embed a logistic

regression in a semiparametric Polya tree model. Specifically, for i = 1, . . . , n,

yi = x′iβ + σεi; εi|G
iid∼ G; G ∼ PT (c, ρ(·), G0).

We refer to G as the residual distribution, although it is the distribution of the usual

errors scaled by σ.

The Polya tree prior expectation of G is G0(y) = [1 + e−yλ]−1, the logistic dis-

tribution with mean 0 and variance 1. To ensure identifiability of the intercept β0,

the median of G is fixed at 0 by setting the probabilities at the first level of the tree,

namely Y0 and Y1, equal to 0.5. The underlying logistic distribution is obtained when

H0 : Y = Y0 ≡ 0.5 is true, i.e., when all PT probabilities are equal to 0.5, so that

(Yej(2k−1), Yej(2k)) = (0.5, 0.5), j = 1, . . . , J ; k = 1, . . . , 2j−1.

To test the null hypothesis that the εi’s follow a logistic distribution against a

nonparametric alternative, we will employ the Savage-Dickey ratio [Verdinelli and

Wasserman, 1995, Hanson, 2006]. The Savage-Dickey ratio gives the general form

of a Bayes factor for testing nested hypotheses, and is used in this study for the

particular case of a logistic distribution nested within a flexible alternative that is a

generalization of logistic regression.

In the case of the particular hypotheses considered here, Y and θ = (β, σ) are as-

sumed to be a priori independent, and we can assume that p(θ|H0) =
∫
p(θ,Y|H1) dY ,
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which implies that p(θ|H0) = p(θ|H1). Following some general results in Kass and

Raftery [1995] and Verdinelli and Wasserman [1995], we can derive the Savage-Dickey

ratio for this particular model.

Proposition 2.1. The two conditions stated above are sufficient to simplify the Bayes

factor BF = Pr(y|H1)/Pr(y|H0) to the Savage-Dickey ratio [Kass and Raftery, 1995,

Verdinelli and Wasserman, 1995]

BF =
p(Y0)

p(Y0|y)
, (2.2)

where y = (y1, . . . , yn).

Proof. [Verdinelli and Wasserman, 1995]

BF =
Pr(y|H1)

Pr(y|H0)
=

∫∫
p(y|Y , θ)p(Y , θ) dY dθ∫
p(y|Y0, θ)p0(θ) dθ

=
p(y)

p(Y0|y)

∫
p(Y0|y)

p(y|Y0, θ)p0(θ)
dθ

=
p(y)

p(Y0|y)

∫
p(Y0|y)p(θ|Y0, y)

p(y|Y0, θ)p0(θ)p(θ|Y0, y)
dθ

=
p(y)

p(Y0|y)

∫
p(Y0, θ, y)/p(y)

p(y|Y0, θ)p0(θ)p(θ|Y0, y)
dθ

=
1

p(Y0|y)

∫
p(Y0, θ)

p0(θ)p(θ|Y0, y)
dθ

=
1

p(Y0|y)

∫
p(Y0)p(θ)

p(θ)p(θ|Y0, y)
dθ
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=
p(Y0)

p(Y0|y)

∫
1

p(θ|Y0, y)
dθ

=
p(Y0)

p(Y0|y)

For fixed c, β and σ, the Savage-Dickey ratio is

BF =
p(Y0)

p(Y0|ε̄)
(2.3)

where ε̄ = (ε1, . . . , εn),

p(Y0) =
J∏

j=1

2j−1∏
k=1

beta(0.5|cρ(j), cρ(j)) (2.4)

is the joint prior density of all branching probabilities evaluated at 0.5, and

p(Y0|ε̄) =
J∏

j=1

2j−1∏
k=1

beta(0.5|cρ(j) + n(j, 2k − 1, ε̄), cρ(j) + n(j, 2k, ε̄)) (2.5)

is the joint posterior density of all branching probabilities evaluated at 0.5, given the

residuals.

2.4.1 Empirical Bayes test

As a single-step approximation of the Savage-Dickey ratio in (2.3), least-squares esti-

mates β̂ and σ̂ may be calculated as consistent and unbiased estimators of β and σ,

which gives residuals ε̂i = (yi− x′iβ̂)/σ̂ that are substituted into (2.4) and (2.5). The
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least-squares estimators are defined as

β̂ = (X ′X)−1X ′y

σ̂ =
√
y′(In −X(X ′X)−1X ′)y/(n− p),

where X is the n× p matrix [x1, · · · , xn]′.

This gives an approximation to the Bayes factor that is much less computationally

expensive than a traditional MCMC sampling approach for the fully Bayesian analysis

described in Section 2.6.1, which involves sampling branching probabilities in Y and

calculating Polya tree density estimates at each step of the Gibbs sampler. On the

other hand, this single-step calculation has negligible computational requirements

and, as shown in later sections, performs similar to a full MCMC approach.

2.4.2 Theoretical results

In the context of Bayes factors, consistency is defined as follows [McVinish et al.,

2009], [Diaconis and Freedman, 1986]: The Bayes factor BFn for testing H0 : f = f0

versus H1 : f 6= f0 is said to be consistent if for f = f0, limn→∞BFn = 0, in

probability, and for any f 6= f0, limn→∞BFn = ∞, in probability. A stricter definition

demands that convergence under both hypotheses be almost surely [Dass and Lee,

2004].

Consistency under H0. The numerator of the Bayes factor defined in (2.3) is

constant for fixed c and J , and only its denominator depends on the data y. Under

the null hypothesis it is therefore sufficient to show that 1/p(Y0|ε̄) as defined in (2.5)

converges to 0 with increasing sample size.

The consistency of β̂ and σ̂ under relatively weak assumptions has been established

[Lai et al., 1978], even if the error distribution is misspecified [Gould and Lawless,

1988]. Considering only the left branch probabilities Yej(2k−1) of the Polya tree, it
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follows from the conjugacy result that

Yej(2k−1)|ε̄ ∼ beta(cj2 + n(j, 2k − 1, ε̄), cj2 + n(j, 2k, ε̄)),

and therefore

E(Yej(2k−1)|ε̄) =
cj2 + n(j, 2k − 1, ε̄)

2cj2 + n(j, 2k − 1, ε̄) + n(j, 2k, ε̄)

as well as

V ar(Yej(2k−1)|ε̄) =
[cj2 + n(j, 2k − 1, ε̄)][cj2 + n(j, 2k, ε̄)]

[2cj2 + n(j, 2k − 1, ε̄) + n(j, 2k, ε̄)]2

× 1

[2cj2 + n(j, 2k − 1, ε̄) + n(j, 2k, ε̄) + 1]
.

By the Strong Law of Large Numbers and the consistency of β̂ and σ̂,

n(j, k, ε̄)/n
a.s.−→ P

(
εi ∈ B(j, k)

)
as n→∞, for all j, k. Under H0, P

(
εi ∈ B(j, k)

)
=

2−j and therefore

E(Yej(2k−1)|ε̄) =
cj2/n+ n(j, 2k − 1, ε̄)/n

2cj2/n+ n(j, 2k − 1, ε̄)/n+ n(j, 2k, ε̄)/n

a.s.−→ 0 + 2−j

0 + 2−j + 2−j
= 0.5

as n→∞. Additionally,

V ar(Yej(2k−1)|ε̄) =
[cj2/n+ n(j, 2k − 1, ε̄)/n][cj2/n+ n(j, 2k, ε̄)/n]

[2cj2/n+ n(j, 2k − 1, ε̄)/n+ n(j, 2k, ε̄)/n]2

× 1/n

[2cj2/n+ n(j, 2k − 1, ε̄)/n+ n(j, 2k, ε̄)/n+ 1/n]

a.s.−→ 0
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as n→∞.

As a result, the posterior distribution of each Yej(2k−1) is consistent, i.e., deteri-

orates to point mass at 0.5 with n → ∞. Therefore, expression (2.5) does indeed

diverge to +∞ and in turn BFn
n→∞−→ 0 under H0.

Consistency under H1. The following proposition will be used to demonstrate

consistency under the alternative hypothesis:

Proposition 2.2. Let F and f be the true distribution and density functions gen-

erating the data and B(J, k(J, x)) be the set at level J of the Polya tree partition

induced by some centering distribution G, into which observation x falls. Then,

J log 2 ≥ −
∫
f(x) logF

(
B(J, k(J, x))

)
dx, with equality only if f(x) = g0(x).

Proof.

∫
f(x) logF

(
B(J, k(J, x))

)
dx =

∫
B(J,1)

f(x) logF
(
B(J, 1)

)
dx+ . . .

+

∫
B(J,2J )

f(x) logF
(
B(J, 2J))

)
dx

= logF
(
B(J, 1)

) ∫
B(J,1)

f(x)dx+ . . .

+ logF
(
B(J, 2J)

) ∫
B(J,2J )

f(x)dx

=
2J∑

k=1

F
(
B(J, k)

)
logF

(
B(J, k)

)
.

As entropy −
∑n

i=1 pi log pi is maximized if pi = 1/n,∀i = 1, . . . , n, 2.6 is minimized

if F
(
B(J, k)

)
= 2−J , i.e., under the null hypothesis, and generally

2J∑
k=1

F
(
B(J, k)

)
logF

(
B(J, k)

)
≥

2J∑
k=1

2−J log 2−J = −J log 2. (2.6)

To show consistency in the case of the alternative hypothesis when the true error
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distribution is not logistic, let the Kullback-Leibler neighborhood of the density f be

defined as

Kε(f) =
{
g ∈ G :

∫
f(x) log

f(x)

g(x)
µ(dx) < ε

}
for ε > 0,

where G is the class of all densities with respect to Lebesgue measure on R. Let P

denote the probability under the nonparametric Polya tree prior. Then f is said to

be in the Kullback-Leibler support of P if P
(
Kε

(
f)) > 0 for all ε > 0.

Dass and Lee [2004, Theorem 3] show that if the true density f , where f 6= f0,

is in the Kullback-Leibler support of the prior distribution, then the Bayes factor is

consistent under H1. For the specific case of an infinite Polya tree prior, Ghosal et al.

[1998] showed that f will be in the Kullback-Leibler support if
∑∞

j=1 ρ(j)
−1/2 < ∞.

This property is not satisfied for our choice of ρ(j) = j2, however, we do not employ

an infinite Polya tree and can therefore invoke the following approximation.

In the case of a finite Polya tree truncated at level J , the true density f is not

guaranteed to lie in the support of the finite Polya tree prior. We can, however, find

a δ > 0 where

δ = inf
{∫

f(x) log
f(x)

g(x)
dx : g is in the support of FPT (c, ρ(j), G0)

}
(2.7)

and δ is no larger than δ0 =
∫
f(x) log[f(x)/g0(x)]dx, which is the Kullback-Leibler

divergence D(g0, f) for the logistic centering distribution g0. To establish that δ < δ0,
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note that

D(g, f) =

∫
f(x) log

f(x)

g(x)
dx

=

∫
f(x) log

f(x)

g0(x)2JpY(k(J, x))
dx

=

∫
f(x)

{
log

f(x)

g0(x)
− log

[
2JpY

(
k(J, x)

)]}
dx

=

∫
f(x) log

f(x)

g0(x)
dx−

∫
f(x)J log 2dx−

∫
f(x) log pY

(
k(J, x)

)
dx.

By the definition of a finite Polya tree and the fact that the interval [0, 1] is the

support for each branch probability, we can guarantee that there is a set of branch

probabilities Y for which pY
(
k(J, x)

)
= F

[
B

(
J, k(J, x)

)]
for all x, where F is the

distribution function corresponding to the true density f . Therefore,

∫
f(x) log

f(x)

g(x)
dx = δ0 − J log 2−

∫
f(x) logF

(
B(J, k(J, x))

)
dx,

where by proposition 2.2, J log 2 ≥ −
∫
f(x) logF

(
B(J, k(J, x))

)
dx, with equality

only if f(x) = g0(x). Therefore, under the alternative hypothesis there exists a

δ < δ0, i.e., there is a density in the support of the FPT that is closer to f in the

Kullback-Leibler sense than the logistic density g0.

Walker et al. [2004] rewrite the Bayes factor as BF = I1/I0, where Ij =∫ ∏n
i=1 gj(xi)/f(xi)P (dgj) and gj is the (conditional) sampling model for the data

under model Mj, j = 0, 1. They show that if a δ > 0 as in (2.7) exists and

lim infnD(gn, f) ≥ δ, a.s., then n−1 log I1 → −δ. Additionally, since I0 =
∏n

i=1
g0(xi)
f(xi)

,

we have
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1

n
log I0 = − 1

n

n∑
i=1

log
f(xi)

g0(xi)

→ −Ef

[
log

f(x)

g0(x)

]
= −

∫
f(x) log

f(x)

g0(x)
dx = −δ0.

As a result,

n−1 logBFn = n−1 log I1n/I0n

→ δ0 − δ, a.s. (2.8)

Therefore, when H1 holds the Bayes factor tends to infinity as n goes to infinity,

so the goodness of fit test is consistent under H1.

2.5 Estimation

Should the goodness of fit test indicate that the residuals do not follow a logistic

distribution, our methodology has a built-in semiparametric approach to estimating

risks, relative risks, odds ratios and related measures. We use the nonparametric

residual distribution modeled by the Polya tree to estimate the risk of an observation

falling above any cutoff d, which is equivalent to the risk of a residual falling above (d−

x′β)/σ. This risk can be estimated for any covariate vector of interest, as visualized

in Figure 2.3. Note that risks can be estimated for multiple cutoffs simultaneously

within the same model, and estimation for multinomial outcomes can be performed

analogously to the case of dichotomous classification.

Hanson [2006] presents several computational aspects of finite Polya tree models.

In particular, we are interested in probabilities at the lowest level of a Polya tree. If c

and ρ(·) are fixed, G is completely defined by Y , with G[B(j, k)|Y ] =
∏j

i=1 Yei(kd2i−je).
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(d−x'β)/σ

Figure 2.3: Risk estimation for the event Y > d can be performed for any covariate
vector x and any arbitrary shape of the residual distribution.

Let k(J, ε) ∈ {1, . . . , 2J} index the set at level J of the tree into which scalar ε falls,

and let pY(k) be the probability of the k-th partition on the lowest level (J) of a finite

tree. Where d∗ = (d − x′β)/σ and M is the number of generated samples from the

posterior distribution, the risk P (Y > d|x) of a response greater than cutoff d for an

individual with covariate vector x is

P ((Y − x′β)/σ > (d− x′β)/σ) = P (ε > d∗)

=
2J∑

m=k(J,d∗)+1

pY(m) + pY(k(J, d∗))[k(J, d∗)− 2JG0(d
∗)]

.
=

1

M

M∑
i=1

{ 2J∑
m=k(J,d∗(i))+1

pY(i)(m) + pY(i)(k(J, d∗(i)))[k(J, d∗(i))− 2JG0(d
∗(i))]

}
. (2.9)

For the Empirical Bayes approach, where β and σ are set equal to their least-

squares estimates, we generate posterior realizations of Polya trees by sampling from

the posterior distributions of the PT probabilities. Risks and functions thereof (e.g.,

odds ratios) are calculated according to (2.9), and credible intervals for any of these

parameters are derived based on appropriate posterior percentiles. For this calcula-

tion, the two PT probabilities at level 1 of the tree are not fixed at 0.5, as we are no
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longer estimating a location parameter, but merely the shape of the error distribution.

In the case of a fully Bayesian implementation, a risk value would be generated

from its posterior distribution at each iteration of the Gibbs sampler based on the

current values β(i), σ(i) and Y(i). Estimates for other quantities of interest such as

risk ratios, risk differences, odds and odds ratios, can be obtained by both methods

based on the risks estimated at each iteration of the Gibbs sampler.

2.6 Simulation study

Simulations on data from known distributions compare the performance of the Em-

pirical Bayes goodness of fit test to that of a full Bayesian MCMC implementation.

For risk estimation, we compare results from the Empirical Bayes estimation proce-

dure to estimates from traditional logistic regression and a linear model fit to the

continuous response.

2.6.1 Full Bayesian approach

The Bayes factor under a fully Bayesian analysis for testing goodness of fit of a

logistic distribution is BF = p(Y0)/p(Y0|y), where p(Y0|y) =
∫
p(Y0|θ, y)p(θ|y)dθ

.
=

1
M

∑M
i=1 p(Y0|θ(i), y). Here, (θ(1), . . . , θ(M)) is an MCMC sample from the posterior

distribution of θ, and p(Y0|θ(i), y) is the full conditional of Y evaluated at 0.5 at

iteration i, namely p(Y0|θ(i), y) = p(Y0|ε̄(i)) =
∏J

j=1

∏2j−1

k=1 beta(0.5|cρ(j) + n(ej(2k −

1), ε̄(i)), cρ(j) + n(ej(2k), ε̄
(i))).

We use independent priors of the following form on β and σ:

log σ ∼ N(µσ, s
2
σ); β ∼ Np(µβ,Σβ).

These priors may be diffuse or informative, the latter being constructed using

methods similar to those detailed in Bedrick et al. [1996]. The posterior distribution

of (β, σ) is approximated numerically by using output from a Gibbs sampler that con-

tains a Metropolis-Hastings step for sampling (β, log σ), specifically using a random
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walk chain with a multivariate normal proposal distribution. In our applications, the

covariance matrix of the proposal distribution was determined by running the chain

for an initial 5000 iterations and computing the sample covariance of the simulated

(β(i), σ(i)) iterates. This matrix was scaled to achieve reasonable mixing and accep-

tance rates. The full conditionals used in the Gibbs sampler to generate samples from

the posterior distribution are listed below.

Sampling branch probabilities. Based on the conjugacy result for Polya trees,

the distribution of a branch probability, given all other parameters and the data, is

an updated beta distribution, namely

Yej(2k−1)|(β, σ, c, y) ∼ beta
(
cρ(j) + n(j, 2k − 1, ε̄), cρ(j) + n(j, 2k, ε̄)

)
for k in {1, . . . , 2j−1} and Yej(2k) = 1− Yej(2k−1).

Sampling (β, σ). The full conditional density for the distribution of β, σ|Y , c, y is

p(β, σ|Y , c, y) ∝ p(y|Y , β, σ)p(β)p(σ)p(Y|c)

∝

{
n∏

j=1

g(yj|Y , β, σ)

}
p(β)p(σ)p(Y|c),

where g(yj|Y , β, σ) is the Polya tree density as defined in (1.2).

After drawing θcand = (βcand, σcand) from the proposal distribution, the candidate

iterate is accepted with probability

min

{
1,
p(θcand|Y , c, y)
p(θcurr|Y , c, y)

}
= min

{
1,

∏n
j=1 g(yj|Y , βcand, σcand)p(βcand)p(σcand)∏n
j=1 g(yj|Y , βcurr, σcurr)p(βcurr)p(σcurr)

}
.

(2.10)
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Each iteration of the Gibbs sampler will result in an iterate of the Bayes factor,

calculated from the current iterates Y(i), β(i), σ(i) according to (2.3). The final Bayes

factor is determined as the mean across all post burn-in MCMC iterates.

2.6.2 Simulation data

The algorithms were implemented and all simulations were run in R version 2.7.0

or 2.7.1 [R Development Core Team, 2009]. Data were generated for scenarios with

and without covariates. The model that generated the data for the case without

covariates was yi = 25 + εi, with εi being generated from the following distributions:

logistic(0, 2), N(0, 2), t(3), a mixture of two normals, the N(−4, 2) with probability

0.4 and N(4, 2) with probability 0.6, and exp(1). For the scenarios with covariates,

the generating model for the simulated observations had yi = 15 + x1i + 0.3x2i + εi,

where the distributions generating εi were the same as in the no-covariate case. For

each observation, x1i was generated from a Bernoulli(0.4)-distribution, while x2i was

generated from the N(40, 8). For each scenario, 100 simulated data sets of size n =

50, 100, 200, and 400 were generated.

To investigate the performance of the Empirical Bayes approach to testing and

estimation, results were generated based on 10,000 posterior samples from the updated

Polya tree distributions. For the full MCMC implementation, the prior distribution

for β was chosen to be N(0, Ip · 100) and for log σ it was N(2, 2). The MC chains

were run for 100,000 iterations with the first 20,000 iterations discarded as a burn-in

period.

2.6.3 Test performance

One-sample data

As a first look at the performance of our proposed goodness of fit test, we considered

a scenario without covariates. Tables 2.1 and 2.2 present the number of simulated

data sets for which the Bayes factor fell into each category of Jeffreys’ classification
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(see Table 1.1) for each of the error distributions investigated. These tables present

results for both the full Bayesian model and the Empirical Bayes (EB) approach. To

consolidate the tables, and because there is little practical difference between “strong

evidence” and “very strong evidence,” categories 3 and 4 have been collapsed. For

the full Bayesian approach, results are listed for J = 4, while for the EB approach we

compare results for J = 4 to those for J = 8 to investigate the influence of the size of

the finite Polya tree. The two methods give comparable results across all scenarios

considered, especially with relatively large sample sizes (n ≥ 100).

The size of the parameter c affects how far the nonparametric posterior distribu-

tion of the residuals can deviate from the logistic centering distribution, with larger

values of c putting more prior weight on logistic regression. Results in Tables 2.1 and

2.2 are presented for c = 0.1, 0.5, 1, 5, 10. In the case of a truly logistic error distribu-

tion, for c as large as 5 or 10, Bayes factors are somewhat less likely to accept the null

hypothesis. In the case of alternative error distributions, Bayes factors under larger

values of c are less likely to pick up deviations from the null distribution for smaller

sample sizes. A value for c as small as 0.5 is therefore recommended, in particular for

small sample sizes, to allow data-driven deviations from the centering distribution.

With increasing sample size, the data will overwhelm the effect even of larger c in the

posterior branch probabilities, particularly in higher levels of the tree.

Comparing the full Bayesian MCMC sampling approach to the EB method, we

find that in the case of a true logistic distribution, we are slightly more likely to find

evidence against H0 with the MCMC approach, although the proportion of cases for

which we find no substantial or no evidence against H0 is still at 0.94 or higher. In

the case of a logistic error distribution, the EB test finds no evidence against H0 in

almost all cases (97%-100% for n = 50, 100% for greater n), and never results in a

Bayes factor higher than category 1 (“barely worth mentioning”). The full MCMC

implementation indicates at least “substantial” evidence against H0 in about 1% -
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Table 2.1: From 100 simulated data sets, the number of Bayes factors that fall into
the categories defined by Jeffreys (see Table 1.1) for a scenario without covariates for
the fully Bayesian and empirical Bayesian goodness of fit test of logistic distribution.

Fully Bayesian approach Empirical Bayes approach

J=4 J=4 J=8

Jeffreys’ categories
Distribution c n 0 1 2 3&4 5 0 1 2 3&4 5 0 1 2 3&4 5

logistic 0.1 50 99 1 0 0 0 100 0 0 0 0 100 0 0 0 0
100 100 0 0 0 0 100 0 0 0 0 100 0 0 0 0
200 98 0 0 1 1 100 0 0 0 0 100 0 0 0 0
400 98 0 0 1 1 100 0 0 0 0 100 0 0 0 0

0.5 50 95 5 0 0 0 99 1 0 0 0 99 1 0 0 0
100 97 1 1 1 0 100 0 0 0 0 100 0 0 0 0
200 95 2 2 0 1 100 0 0 0 0 100 0 0 0 0
400 99 0 0 1 0 100 0 0 0 0 100 0 0 0 0

1 50 96 4 0 0 0 97 3 0 0 0 97 3 0 0 0
100 95 3 1 1 0 100 0 0 0 0 100 0 0 0 0
200 94 4 1 1 0 99 1 0 0 0 99 1 0 0 0
400 98 2 0 0 0 100 0 0 0 0 100 0 0 0 0

5 50 95 5 0 0 0 96 3 1 0 0 96 3 1 0 0
100 95 4 0 1 0 98 2 0 0 0 97 3 0 0 0
200 91 7 1 1 0 97 3 0 0 0 97 2 1 0 0
400 96 3 0 0 1 100 0 0 0 0 100 0 0 0 0

10 50 91 9 0 0 0 96 3 1 0 0 96 3 1 0 0
100 95 4 1 0 0 96 4 0 0 0 96 4 0 0 0
200 92 7 0 1 0 95 5 0 0 0 95 5 0 0 0
400 99 0 0 1 0 100 0 0 0 0 99 1 0 0 0

normal 0.1 50 95 1 2 1 1 100 0 0 0 0 100 0 0 0 0
100 100 0 0 0 0 100 0 0 0 0 100 0 0 0 0
200 97 2 0 0 1 100 0 0 0 0 100 0 0 0 0
400 93 0 1 3 3 100 0 0 0 0 100 0 0 0 0

0.5 50 96 0 1 2 1 100 0 0 0 0 100 0 0 0 0
100 88 7 4 1 0 100 0 0 0 0 100 0 0 0 0
200 91 2 2 2 3 100 0 0 0 0 99 1 0 0 0
400 87 2 4 4 3 100 0 0 0 0 100 0 0 0 0

1 50 96 0 2 2 0 100 0 0 0 0 100 0 0 0 0
100 86 8 3 3 0 99 1 0 0 0 98 2 0 0 0
200 88 5 3 3 1 100 0 0 0 0 99 0 1 0 0
400 83 3 5 4 5 98 2 0 0 0 98 2 0 0 0

5 50 96 4 0 0 0 97 3 0 0 0 97 3 0 0 0
100 87 12 1 0 0 88 11 1 0 0 89 10 1 0 0
200 87 7 6 0 0 93 3 4 0 0 93 3 4 0 0
400 75 14 3 6 2 91 5 2 2 0 88 9 0 3 0

10 50 96 4 0 0 0 96 4 0 0 0 96 4 0 0 0
100 86 14 0 0 0 86 13 1 0 0 87 12 1 0 0
200 86 9 5 0 0 91 5 4 0 0 91 5 4 0 0
400 74 15 6 4 1 83 13 1 3 0 82 14 1 3 0
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Table 2.2: From 100 simulated data sets, the number of Bayes factors that fall into
the categories defined by Jeffreys (see Table 1.1) for a scenario without covariates for
the fully Bayesian and empirical Bayesian goodness of fit test of logistic distribution.

Fully Bayesian approach Empirical Bayes approach

J=4 J=4 J=8

Jeffreys’ categories
Distribution c n 0 1 2 3&4 5 0 1 2 3&4 5 0 1 2 3&4 5

t(3) 0.1 50 22 7 2 7 62 30 11 5 12 42 36 8 4 15 37
100 1 2 4 3 90 9 1 1 4 85 12 2 1 5 80
200 1 0 0 0 99 0 0 0 0 100 2 0 0 1 97
400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100

0.5 50 11 6 8 15 60 10 7 3 16 64 12 5 6 15 62
100 1 0 0 3 96 1 1 0 2 96 2 0 0 3 95
200 0 0 0 1 99 0 0 0 0 100 0 0 0 0 100
400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100

1 50 10 8 6 24 52 6 5 7 19 63 6 7 6 17 64
100 1 0 1 2 96 1 0 1 1 97 1 1 0 1 97
200 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100

5 50 7 23 30 32 8 3 11 15 32 39 3 11 15 32 39
100 1 1 2 17 79 0 1 1 2 96 0 1 1 2 96
200 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100

10 50 6 39 38 15 2 2 20 24 31 23 2 20 24 31 23
100 1 1 7 27 64 0 1 2 13 84 0 1 2 13 84
200 0 0 0 1 99 0 0 0 0 100 0 0 0 0 100
400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100

bimodal 0.1 50 4 7 2 13 74 66 9 7 7 11 75 5 4 7 9
100 0 0 0 0 100 31 6 8 14 41 46 3 8 14 29
200 0 0 0 0 100 1 1 1 0 97 5 1 1 4 89
400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100

0.5 50 3 6 8 22 61 24 15 15 26 20 25 15 15 25 20
100 0 0 1 1 98 2 1 4 15 78 2 0 2 14 82
200 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100

1 50 3 7 13 28 49 12 19 23 28 18 12 20 22 28 18
100 0 0 1 2 97 0 1 2 16 81 0 1 1 14 84
200 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100

5 50 3 40 34 20 3 5 40 37 18 0 6 39 36 19 0
100 0 0 3 29 68 0 0 4 29 67 0 0 4 27 69
200 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100

10 50 3 70 22 5 0 5 61 29 5 0 6 60 29 5 0
100 0 2 17 57 24 0 2 10 59 29 0 1 10 60 29
200 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100

exp(1) 0.1 50 24 8 13 11 44 52 10 8 11 19 54 6 6 16 18
100 0 0 0 0 100 5 0 0 4 91 5 1 5 6 83
200 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100

0.5 50 8 14 16 27 35 24 4 19 22 31 23 5 13 27 32
100 0 0 0 0 100 0 0 2 2 96 0 0 0 3 97
200 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100

1 50 8 20 25 26 21 16 12 22 27 23 15 12 17 31 25
100 0 0 0 1 99 0 0 1 3 96 0 0 0 3 97
200 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100

5 50 20 43 27 9 1 10 35 24 26 5 9 33 26 27 5
100 0 0 6 41 53 0 0 3 12 85 0 0 3 11 86
200 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100

10 50 21 56 18 5 0 7 47 26 18 2 7 46 26 19 2
100 0 6 25 55 14 0 0 6 42 52 0 0 6 41 53
200 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
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2% of cases.

One would not expect great power to detect the subtle difference between a Nor-

mal and a logistic distribution, as they are very similar in shape. For larger samples

(n = 400), the MCMC approach is able to pick up the slight deviation from a logistic

distribution in only a handful of cases and finds at least substantial evidence against

H0 in 7% - 14% of simulated data sets. As with the logistic distribution, the EB ap-

proach is less likely to find evidence against the null hypothesis and in our simulations

does not detect any deviation from the null hypothesis when c is small.

For scenarios with a t(3), bimodal or exponential(1) error distribution, each of

which deviates from the null hypothesis more prominently than the Normal distribu-

tion does, we find that with sample sizes of 200 and 400, both methods for calculating

the Bayes factor find decisive evidence against the null in almost 100% of the cases.

With data from an exponential distribution, differences between the two ap-

proaches are overall small; with a sample size of 100 or greater, the deviation from the

null hypothesis was picked up in all cases by both methods. Similarly, for regression

error from a t(3) distribution, with the recommended value of c the performance of

the two approaches is practically identical. At the smaller sample sizes considered

here, the MCMC test proves more powerful than the EB method. These differences

show particularly in the data sets generated from a bimodal distribution, where, for

c = 0.5 or 1, the EB approach finds little or no evidence against H0 in 30%− 40% of

the data sets of size 50, while for the full Bayesian approach these percentages drop

to about 10%.

For small sample sizes the full Bayesian implementation appears to have some

advantages over the EB approach. In the simulations presented here, a sample size

of 100 is however large enough to diminish those advantages. This is particularly

encouraging as computational savings achieved by the EB method are especially rel-

evant for larger sample sizes for which running a full MCMC implementation would
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be costly or not feasible at all.

For all practical purposes, results from the EB approach were the same for J = 4

and J = 8. Using a Polya tree with 28 = 256 partitions versus a tree with 24 = 16

partitions at the lowest level does not appear to affect the conclusion of this goodness

of fit test. Given that computational effort increases exponentially with the number

of levels in a Polya tree, this is an important finding that supports the use of a

relatively small J when interest lies in testing for a logistic residual distribution.

However, estimation is affected by J , so that for estimation purposes a larger value

of J should be preferred.

For a different look at the simulation results, Table 2.3 presents the median Bayes

factor (on the log10 scale) for each method for J = 4. As discussed above, in most

scenarios both methods seem to agree on when to reject H0 or not. In the case of a

logistic or a Normal distribution, although both methods tend to not find evidence

against H0, the Bayes factor derived by the EB method tends to be smaller than that

based on the full Bayesian approach, i.e., the EB methods tends to find more evidence

for H0. In the case of the other three distributions investigated, Bayes factors again

tend to be higher when calculated based on MCMC iterates, which leads to the higher

rates of rejecting H0 discussed above. The exponentially distributed data is the only

case in which there is no consistent relation between the Bayes factors calculated by

the two approaches; for small c the full Bayesian approach tends to find more evidence

against H0, while for larger values of c there tends to be less evidence.

Regression data

In a regression setting, in addition to testing for a parametric logistic error distri-

bution, parameters β and σ need to be estimated either using least-squares (EB) or

MCMC sampling. As results indicate in the previous section, values of c larger than 1

tend to give posterior estimates very close to the centering distribution and thus tests

do not indicate evidence against a logistic error distribution except for large sample
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Table 2.3: Median of log10(BF ) across 100 simulations without covariates, J = 4

Fully Bayesian approach Empirical Bayes approach

Distribution
c n logistic Normal t(3) bimodal exp(1) logistic Normal t(3) bimodal exp(1)

0.1 50 -3.21 -2.74 2.99 3.62 1.35 -4.91 -4.88 1.25 -1.10 -0.08
100 -4.40 -3.80 11.44 11.57 7.06 -6.56 -6.34 8.47 1.35 5.17
200 -6.26 -5.35 27.36 27.55 18.50 -8.53 -8.13 22.18 8.25 15.87
400 -8.71 -6.81 60.01 55.25 42.47 -10.85 -10.01 52.80 20.67 38.23

0.5 50 -1.39 -1.30 2.52 2.43 1.37 -1.97 -1.91 2.82 0.73 1.18
100 -1.88 -1.53 9.53 7.38 6.57 -2.76 -2.63 10.85 3.61 6.10
200 -2.72 -2.16 26.54 19.97 18.13 -3.90 -3.49 24.68 10.69 16.37
400 -4.07 -2.88 57.50 48.93 41.58 -5.59 -4.78 55.00 23.55 38.16

1 50 -0.97 -0.92 2.05 1.96 0.94 -1.34 -1.30 2.78 0.89 1.03
100 -1.24 -1.03 7.55 5.82 5.27 -1.84 -1.72 10.32 3.56 5.35
200 -1.84 -1.46 23.47 17.26 15.91 -2.62 -2.28 24.09 10.38 14.86
400 -2.74 -1.79 52.39 38.31 38.75 -3.99 -3.19 53.83 23.50 35.71

5 50 -0.37 -0.34 0.85 0.60 0.30 -0.50 -0.50 1.57 0.53 0.58
100 -0.53 -0.41 3.64 2.42 2.04 -0.67 -0.58 6.33 2.39 2.85
00 -0.76 -0.55 12.83 9.91 8.27 -1.02 -0.76 17.45 7.45 9.03

400 -1.14 -0.65 33.75 27.04 24.39 -1.65 -1.02 44.28 18.83 24.03
10 50 -0.23 -0.22 0.55 0.32 0.17 -0.32 -0.31 1.09 0.36 0.46

100 -0.33 -0.27 2.39 1.54 1.24 -0.43 -0.37 4.68 1.69 2.07
00 -0.51 -0.36 8.69 6.18 5.21 -0.67 -0.45 13.27 5.62 6.57

400 -0.81 -0.43 25.23 19.27 17.30 -1.12 -0.62 36.47 15.28 18.28

sizes. Results presented in this section are therefore limited to values c = 0.1, 0.5, 1.

For true logistic error (Table 2.4), the results show only small differences compared

to simulations without covariates. The full Bayesian approach is now even more

likely to find evidence against H0. While without covariates 94%-100% of tests found

no evidence against the null hypothesis, now only 84%-99% correctly fall into this

category. On the other hand, the percentage of Bayes factors that falsely find at least

“substantial evidence again H0” is as great as 10% in one scenario (c = 0.5, n = 100).

The EB method is once again less powerful in detecting the difference between a

logistic and a normal distribution. The full Bayesian implementation is in fact more

powerful in this scenario with covariates than in the previous setting. This gain,

however, comes with the increase of falsely discovered deviations from the logistic

distribution discussed above.

In the three cases where the error distribution deviates more strongly from the

null hypothesis (Table 2.5), the need to estimate additional parameters results in a

less powerful test for small sample sizes, indicated by overall smaller median Bayes
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Table 2.4: From 100 simulated data sets, the number of Bayes factors that fall into
the categories defined by Jeffreys (see Table 1.1) for a scenario with two covariates for
the fully Bayesian and empirical Bayesian goodness of fit test of logistic distribution.

Fully Bayesian approach Empirical Bayes approach

J=4 J=4 J=8

Jeffreys’ categories
Distribution c n 0 1 2 3&4 5 0 1 2 3&4 5 0 1 2 3&4 5

logistic 0.1 50 92 2 1 0 1 100 0 0 0 0 100 0 0 0 0
0.1 100 96 2 1 0 1 100 0 0 0 0 100 0 0 0 0
0.1 200 99 0 0 1 0 100 0 0 0 0 100 0 0 0 0
0.1 400 99 0 0 1 0 100 0 0 0 0 100 0 0 0 0
0.5 50 91 5 3 1 0 100 0 0 0 0 100 0 0 0 0
0.5 100 84 6 5 4 1 99 1 0 0 0 100 0 0 0 0
0.5 200 89 6 4 1 0 100 0 0 0 0 100 0 0 0 0
0.5 400 96 2 1 1 0 100 0 0 0 0 100 0 0 0 0

1 50 93 6 1 0 0 99 1 0 0 0 99 1 0 0 0
1 100 88 6 2 3 1 99 0 1 0 0 99 1 0 0 0
1 200 88 4 6 1 1 99 1 0 0 0 99 1 0 0 0
1 400 94 3 2 0 1 100 0 0 0 0 100 0 0 0 0

normal 0.1 50 84 5 5 4 2 100 0 0 0 0 100 0 0 0 0
0.1 100 91 1 2 2 4 100 0 0 0 0 100 0 0 0 0
0.1 200 95 3 0 1 1 100 0 0 0 0 100 0 0 0 0
0.1 400 96 0 0 0 4 100 0 0 0 0 100 0 0 0 0
0.5 50 86 5 5 1 3 100 0 0 0 0 100 0 0 0 0
0.5 100 83 6 6 3 2 98 1 1 0 0 98 1 1 0 0
0.5 200 84 5 3 4 4 100 0 0 0 0 100 0 0 0 0
0.5 400 82 5 6 2 5 99 0 0 1 0 100 0 0 0 0

1 50 91 3 4 2 0 100 0 0 0 0 99 1 0 0 0
1 100 84 5 6 5 0 96 3 0 1 0 96 3 0 1 0
1 200 73 14 3 8 2 99 1 0 0 0 99 1 0 0 0
1 400 72 5 8 6 9 99 0 0 1 0 99 0 0 1 0

factors (see Table 2.6). This loss of power affects both the Empirical Bayes and the

MCMC implementations, therefore observations about comparisons between MCMC

and Empirical Bayes implementations remain the same as made above for the case of

no covariates. Again, the full Bayesian approach has more power to detect deviations

in the error distribution. However, at a sample size of 100, differences in conclusions

according to Jeffreys’ categories are diminishing. Moreover, the differences disappear

at a sample size of 200, even though differences in the median value of the Bayes

factor are maintained.
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Table 2.5: From 100 simulated data sets, the number of Bayes factors that fall into
the categories defined by Jeffreys (see Table 1.1) for a scenario with two covariates for
the fully Bayesian and Empirical Bayesian goodness of fit test of logistic distribution.

Fully Bayesian approach Empirical Bayes approach

J=4 J=4 J=8

Jeffreys’ categories
Distribution c n 0 1 2 3&4 5 0 1 2 3&4 5 0 1 2 3&4 5

t(1) 0.1 50 27 5 4 9 55 71 0 4 9 16 71 2 7 4 16
0.1 100 8 3 0 1 88 16 3 8 6 67 31 4 2 4 59
0.1 200 0 0 0 1 99 0 0 0 2 98 4 0 0 2 94
0.1 400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
0.5 50 23 7 14 18 38 32 6 11 17 34 33 6 8 21 32
0.5 100 2 2 1 5 90 3 1 2 7 87 3 3 0 4 90
0.5 200 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
0.5 400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100

1 50 23 13 15 18 31 23 11 8 23 35 22 12 7 26 33
1 100 2 2 1 7 88 1 2 3 2 92 1 2 3 1 93
1 200 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
1 400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100

bimodal 0.1 50 2 6 7 12 73 83 7 2 4 4 88 1 3 4 4
0.1 100 0 0 0 2 98 38 7 6 16 33 57 7 4 13 19
0.1 200 0 0 0 0 100 3 1 0 3 93 8 1 2 3 86
0.1 400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
0.5 50 13 12 14 16 45 51 16 12 11 10 51 15 12 13 9
0.5 100 0 1 0 1 98 6 3 5 11 75 6 3 7 10 74
0.5 200 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
0.5 400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100

1 50 16 20 16 21 27 27 34 14 16 9 29 33 12 18 8
1 100 1 0 0 5 94 1 3 6 12 78 1 4 4 12 79
1 200 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
1 400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100

exp(1) 0.1 50 28 9 7 15 41 74 4 3 12 7 76 3 5 10 6
0.1 100 1 0 2 2 95 20 5 4 14 57 28 6 9 15 42
0.1 200 0 0 0 0 100 0 0 0 2 98 1 1 2 1 95
0.1 400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
0.5 50 16 13 21 27 23 46 12 11 15 16 46 10 14 14 16
0.5 100 0 0 0 1 99 2 1 4 10 83 1 2 1 11 85
0.5 200 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
0.5 400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100

1 50 18 31 20 24 7 41 14 9 24 12 39 15 12 21 13
1 100 0 0 1 1 98 1 1 3 11 84 1 1 2 9 87
1 200 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
1 400 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100
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Table 2.6: Median of log10(BF ) across 100 simulations with two covariates, J = 4.

Fully Bayesian approach Empirical Bayes approach

Distribution
c n logistic Normal t(3) bimodal exp(1) logistic Normal t(3) bimodal exp(1)

0.1 50 -2.22 -1.49 2.28 3.46 1.19 -4.87 -4.99 -1.36 -2.21 -1.62
100 -3.19 -2.75 9.96 9.71 6.5 -6.75 -6.47 4.94 0.92 2.51
200 -4.98 -4.3 25.57 20.3 16.82 -8.72 -8.34 17.3 7.24 11.48
400 -7.26 -6.03 54.12 36.94 43.25 -10.8 -10.13 46.07 20.92 35.73

0.5 50 -0.9 -0.87 1.52 1.72 0.99 -1.93 -1.94 1.07 -0.03 0.22
100 -1.1 -0.95 8.33 8.55 5.8 -2.9 -2.61 7.14 3.18 4.32
200 -1.78 -1.24 22.88 18.64 16.08 -4.08 -3.71 19.93 9.8 12.78
400 -3.34 -2.15 51.55 37.24 41.15 -5.58 -4.96 48.61 23.86 36.17

1 50 -0.71 -0.69 0.93 0.98 0.55 -1.28 -1.27 1.19 0.3 0.38
100 -0.91 -0.76 6.87 6.74 4.69 -1.93 -1.7 7.06 3.16 4.06
200 -1.32 -0.83 19.29 16.59 14.54 -2.8 -2.49 19.65 9.74 11.86
400 -2.11 -1.17 46.18 36.06 38.51 -3.94 -3.38 47.64 23.52 33.87
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2.6.4 Estimation

Performance of risk estimation under the proposed EB approach is compared to es-

timation under frequentist logistic regression and accelerated failure time modeling

using 1000 simulated data sets that were generated under two scenarios. In the first

case, the underlying error distribution is logistic. In the second scenario, residuals

are simulated from the exponential distribution with scale parameter 1. Risk esti-

mates and their credible intervals under the EB approach are obtained as outlined

in Section 2.5. The Polya tree priors were chosen with J = 8 levels and c = 0.5.

Confidence intervals for the two parametric methods can be easily generated from

standard output by statistical software.

For data with a logistic error distribution, maximum likelihood and posterior mean

risk estimates with root mean squared error (MSE) in parentheses, are presented in

Table 2.7. In this scenario, odds ratios as described in Section 2.2 are constant across

covariates for all values of the cutoff d. Therefore, assumptions for both logistic

regression and the accelerated failure time model are fulfilled. All three methods

correctly estimated the risk for all covariate combinations even for small sample sizes.

Notably, the proposed EB approach does not overfit these data sets and provides

accurate and precise risk inference. Comparing mean squared error, logistic regression

results in greater error than the other two methods, due to the fact that the other

methods directly model the linear relationship between covariates and response, while

logistic regression models a dichotomized response. Empirical Bayes estimation and

the accelerated failure time model give comparable MSE, with a slightly higher MSE

for the EB approach. This stems from the fact that using a nonparametric model for

the error distribution introduces additional uncertainty and thus variability into the

estimation procedure.

Both parametric logistic regression and the AFT model assume constant odds

ratios, and are therefore by design unable to account for the fact that for non-logistic
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Table 2.7: Results for risk estimation under logistic regression (LR), accelerated fail-
ure time (AFT) model with a logistic baseline distribution, and empirical Bayes (EB)
with J = 8, c = 0.5. The true error distribution is logistic(0, 1). Results across 1000
simulated data sets are maximum likelihood and posterior mean estimates of risk,
with root mean squared error in parentheses.

x1 x2 true risk n LR AFT EB
40 0 0.062 50 0.057 (0.047) 0.058 (0.026) 0.061 (0.029)

100 0.062 (0.034) 0.062 (0.018) 0.063 (0.021)
200 0.061 (0.023) 0.061 (0.013) 0.062 (0.015)
400 0.061 (0.017) 0.061 (0.009) 0.061 (0.011)

1 0.140 50 0.130 (0.094) 0.136 (0.056) 0.140 (0.059)
100 0.139 (0.064) 0.141 (0.039) 0.144 (0.043)
200 0.139 (0.048) 0.139 (0.027) 0.141 (0.029)
400 0.139 (0.033) 0.139 (0.019) 0.139 (0.021)

45 0 0.204 50 0.194 (0.111) 0.198 (0.064) 0.202 (0.067)
100 0.206 (0.070) 0.206 (0.045) 0.208 (0.049)
200 0.204 (0.051) 0.205 (0.031) 0.206 (0.034)
400 0.203 (0.036) 0.204 (0.021) 0.204 (0.023)

1 0.389 50 0.382 (0.178) 0.383 (0.102) 0.385 (0.106)
100 0.391 (0.116) 0.390 (0.071) 0.390 (0.075)
200 0.390 (0.084) 0.388 (0.052) 0.388 (0.055)
400 0.388 (0.057) 0.388 (0.035) 0.389 (0.038)

error distributions, odds ratios are not generally independent of the covariate vector

xi or the cutoff d. The results presented in Table 2.8 for exponentially distributed

error show the resulting bias in risk estimates under these parametric models. For

logistic regression and the AFT model, the bias does not decrease with increasing

sample size, whereas as n increases, the EB estimates approach the true risks.

For the AFT model in this setting, bias tends to be smaller than for logistic

regression when the true risk is close to 0.5 (i.e., 0.223 or 0.607). For risks closer to

the edges of the parameter space, in our simulations with risks of 0.05 and 0.14, the

AFT estimates are farther from the true risks than estimates from logistic regression.

Among the three methods, only the EB approach allows for sufficient flexibility in

modeling risks so that estimates tend towards the true values with increasing sample

size.

2.7 Examples

To demonstrate differences in estimated odds ratios provided by the semiparametric

Empirical Bayes model when compared to the two parametric alternatives, estimation
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Table 2.8: Results for risk estimation under logistic regression (LR), accelerated fail-
ure time (AFT) model with a logistic baseline distribution, and empirical Bayes (EB)
with J = 8, c = 0.5. The true error distribution is exponential(1). Results across
1000 simulated data sets are maximum likelihood and posterior mean estimates of
risk, with root mean squared error in parentheses.

x1 x2 true risk n LR AFT EB
40 0 0.050 50 0.035 (0.045) 0.015 (0.037) 0.029 (0.031)

100 0.034 (0.036) 0.015 (0.036) 0.031 (0.025)
200 0.032 (0.028) 0.014 (0.036) 0.035 (0.020)
400 0.031 (0.024) 0.014 (0.036) 0.039 (0.015)

1 0.135 50 0.145 (0.131) 0.096 (0.069) 0.123 (0.060)
100 0.141 (0.091) 0.094 (0.056) 0.128 (0.040)
200 0.145 (0.062) 0.092 (0.051) 0.130 (0.028)
400 0.146 (0.045) 0.092 (0.047) 0.133 (0.019)

45 0 0.223 50 0.281 (0.191) 0.213 (0.082) 0.224 (0.070)
100 0.279 (0.136) 0.213 (0.058) 0.224 (0.047)
200 0.279 (0.097) 0.214 (0.043) 0.224 (0.034)
400 0.280 (0.079) 0.214 (0.031) 0.224 (0.024)

1 0.607 50 0.697 (0.222) 0.672 (0.106) 0.642 (0.127)
100 0.683 (0.148) 0.670 (0.086) 0.631 (0.094)
200 0.687 (0.119) 0.666 (0.073) 0.619 (0.070)
400 0.685 (0.098) 0.668 (0.068) 0.616 (0.050)

will be performed on data sets from two nationwide surveys. Risk factors for obesity

will be modeled on a subset drawn from the Health and Retirement Study, and risk

factors for diabetes, defined as plasma glucose levels above a clinical threshold, are

modeled on a data set from the National Health and Nutrition Examination Survey.

The intention of these investigations is not to discover new relationships between risk

factors and outcomes, but instead to demonstrate that distributional assumptions

may be violated in commonly analyzed data sets and how inferences may be affected.

2.7.1 Risk factors for obesity in the Health and Retirement Study

Moser and Coombs [2004] considered a subset of data collected by the Health and

Retirement Study, which is sponsored by the National Institute of Aging and con-

ducted by the University of Michigan [Health and Retirement Study, 1992]. The

survey has been conducted yearly since 1992, and the collected data have been the

source of a large number of publications. A search of the publication list on the

study’s website (http://hrsonline.isr.umich.edu/ index.php?p=biblio) retrieved over

1,800 related publications between 1992 and 2011. Moser and Coombs employed a
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Table 2.9: Risk factors included in the analysis of the Health and Retirement data.

Variable Range
Exercise 1 = vigorous exercise at least once a week, 0 = otherwise
Smoking 1 = regular smoker, 0 = otherwise
Alcohol 1 = at least occasional alcohol consumption, 0 = otherwise

subsample of the data set in 1992 to demonstrate that their suggested method of

estimating odds ratios without dichotomizing yielded similar point estimates of odds

ratios, but smaller confidence intervals than ordinary logistic regression. The data

analyzed here were selected from the survey in 1992, and included a total of 4673

Caucasian women who were between 40 and 70 years old. The risk factors included

in the analysis were exercise, smoking and alcohol. An attempt at a perfect reproduc-

tion of the data set used by Moser and Coombs was not successful due to the limited

information provided on how exactly their data were selected. The definitions of the

binary covariates are outlined in Table 2.9.

Residuals from a parametric AFT model fit to the data using the risk factors ex-

ercise, smoking and alcohol, as well as the covariates age and education (ranging from

0 to 17 years of completed education) indicate that the distribution of residuals is

skewed to the right (Figure 2.4), implying that the assumption of a logistic distribu-

tion is not appropriate here. The Bayes factor for testing a logistic error distribution

versus a nonparametric PT alternative (J = 8, c = 0.5) is 1097.5, providing decisive

evidence against the null hypothesis.

Figure 2.5 presents risk curve estimates as a function of age for the different levels

of exercise, smoking and alcohol consumption for logistic regression, the AFT model,

and the semiparametric Empirical Bayes estimation procedure. In each plot, black

lines represent the estimated risk of obesity for a woman who does not exercise, smoke,

or consume alcohol and has completed 12 years of education. The grey lines represent

the risk estimates for a woman who indicated 1 on either exercise, smoking or alcohol,
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Figure 2.4: Histogram of residuals from the AFT model fit to the Health and Retire-
ment data, compared to a logistic distribution with empirically estimated standard
deviation.

but has the same values on all other predictors. All three methods give slightly

different results, which agrees with simulation results that showed that disagreement

even between the two parametric methods is greatest when the error distribution is

skewed. Logistic regression suggests a higher risk of obesity for a woman who smokes

or consumes alcohol than the other two methods. The AFT model, on the other

hand, tends to suggest a lower risk than the two alternatives. Overall, EB estimation

tends to suggest less of a risk difference than the two parametric methods.

Odds ratios corresponding to the three risk factors as a function of age (in black)

and their point-wise 95% confidence/credible intervals (in grey) are graphed in Figure

2.6. For the variables exercise and alcohol the odds ratio estimates from the EB and

the AFT model are similar, while the odds ratios estimated by logistic regression are

smaller than the EB estimates for all three factors. In these two cases, the credible

intervals from the EB estimates just barely overlap with the logistic regression confi-

dence intervals. Overall, EB odds ratio estimates are closer to 1, suggesting a smaller

“protective” effect of exercise, smoking and alcohol than the two parametric models.

Based on simulation results, we can speculate that the estimates from logistic regres-

sion and the AFT model are biased, and the EB estimates are more representative of

55



40 45 50 55 60 65 70

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Age

R
is

k 
of

 o
be

si
ty

(a) Exercise

40 45 50 55 60 65 70

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Age

R
is

k 
of

 o
be

si
ty

(b) Smoking

40 45 50 55 60 65 70

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Age

R
is

k 
of

 o
be

si
ty

(c) Alcohol

Figure 2.5: Estimated risk of obesity from the Empirical Bayes method (solid lines),
AFT (dot-dashed lines) and logistic regression (dotted lines) for variables exercise,
smoking and alcohol equal to 0 (black lines) compared to an individual with only
exercise = 1 (a), smoking = 1 (b) or alcohol = 1 (c).
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the true relationship of the odds of obesity.

2.7.2 Risk of diabetes in NHANES

Diagnosis of diabetes is generally driven by repeated observation of several clinical

factors. One common indicator of diabetes is fasting plasma glucose (FPG). A patient

with (repeated) FPG levels at or above 126 mg/dL is considered diabetic. With

diabetes being an increasing public health concern, monitoring diabetes levels across

populations and identifying risk factors for diabetes has been of great concern in the

public health community. Fasting plasma glucose is a common measure of identifying

at-risk groups in epidemiologic studies, even if collecting multiple observations on

individuals is not feasible [WHO06].

The National Health and Nutrition Examination Study (NHANES) is a U.S. sur-

vey conducted by the National Center for Health Statistics, which is part of the

Centers for Disease Control and Prevention [NCHS11]. Survey data are released in

two-year intervals. Among hundreds of variables, fasting plasma glucose levels, mea-

sured after 9 hours of fasting, are measured on thousands of participants. The data

set analyzed here was selected from the 2007-08 database [CDC09]. The data set

included the variables gender, age (18-80 years) and BMI, collected on 2699 individ-

uals.

As a first step toward demonstrating the differences between the three estimation

techniques that have been considered in this chapter, an AFT model was fit with

quadratic terms in age and BMI as well as all possible interactions. This model was

then reduced using backward step-wise selection. The final model using either AIC

or p-values below 0.05 as elimination criterion was

FPGi = β0 + β1 ∗ I(female)i + β2 ∗ agei + β3 ∗BMIi + β4 ∗ agei ∗BMIi + εi

(2.11)
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Figure 2.6: Estimated odds ratios of obesity for risk factors exercise, smoking and al-
cohol with 95% confidence/credible intervals in grey from the Empirical Bayes method
(solid lines), AFT (dot-dashed lines) and logistic regression (dotted lines).
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Figure 2.7: Histogram of residuals from the AFT model fit to the NHANES data set,
compared to a logistic distribution with empirically estimated standard deviation.

The same variables were retained when model selection was performed on a logistic

regression model.

Figure 2.7 shows the histogram of residuals for the AFT model. As with the

previous data set, the distribution of the residuals is greatly skewed to the right.

Reasons for the observed skewness might lie in a combination of a natural skewness

of the fasting plasma glucose measure, measurement and recording errors, as well as

the fact that potentially not all measures were in fact taken after at least 9 hours of

fasting. Fitting the model in (2.11) using the proposed EB method, the Bayes factor

derived by the goodness of fit test is 10568.9, indicating decisive evidence against a

logistic error distribution.

Figure 2.8 plots the odds ratio for diabetes comparing female versus male across

a range of BMI values for individuals that are 20, 40 and 60 years old. The logistic

regression and AFT models did not indicate an interaction between gender and BMI

or age, therefore odds ratios are estimated to be constant by these two methods.

However, odds ratio estimates from the EB method are decreasing with BMI values,

indicating that differences in odds between genders increase with BMI. Specifically,

odds of diabetes are greater for men than for women, and this gender effect increases
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Figure 2.8: Odds ratios for gender estimated by the EB method with 95% credible
intervals for ages 20, 40 and 60, compared to estimates from logistic regression and
an accelerated failure time model (AFT).

with BMI. Also, odds ratio estimates differ greatly between ages. With increasing

age, the effect of gender appears to be greater, particularly for large BMI values.

Figure 2.9 presents graphs of odds ratio estimates comparing two male individuals

who differ by one BMI unit for ages 20, 40 and 60 years. Due to the age-by-BMI

interaction that all models include, odds ratio estimates differ with age even for the

logistic regression and AFT models. However, in the EB approach an additional

interaction between age and BMI becomes apparent. Overall, the adverse effect of

increased BMI becomes more dramatic in higher ranges of BMI, and additionally this

effect is exacerbated with increasing age.

More strongly than in the example of risk estimation on data from the Health and

Retirement Study, differences in inference based on the three models become apparent

in this analysis of an NHANES data set. In the linear models, interactions between

gender and age or gender and BMI were not significant, although the EB model

suggests that these variables do not affect odds independently. An interaction between

age and BMI is modeled even by the two parametric models, however, this interaction
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Figure 2.9: Estimated odds ratios of diabetes for males differing by one unit in BMI
for different ages based on EB methods with 95% credible intervals (CI).
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does not seem to completely capture the interplay between the two variables.

2.8 Summary

Building upon the observation that risk estimation is more efficient when based on

continuous measurement data rather than dichotomized data, this chapter presented

a method for flexible risk estimation for any arbitrary residual distribution. A one-

step test procedure can verify the goodness of fit of a logistic error distribution and

a semiparametric estimation framework models risk-related measures without para-

metric assumptions about the shape of the error distribution. Theoretical results

have demonstrated the consistency of our goodness of fit EB test. Simulations have

demonstrated that if the true underlying distribution is not logistic, the increased

flexibility to model the distribution found in the data results in reduced bias in risk

estimates compared to accelerated failure time and logistic regression models. The

applications of our novel semiparametric model to subsets of two large-scale surveys

show that deviations from parametric assumptions can be found in data sets that

have been the basis of many investigations, and that modeling the error distributions

nonparametrically can lead to inferences different from those based on parametric

models.

The Polya tree model that has been proposed here can be implemented in a

traditional Bayesian fashion using a Gibbs sampler, but as a fast alternative an es-

timation procedure that samples only from the posterior distribution of the residual

distribution has been proposed. This Empirical Bayes procedure results in dramatic

computational savings but equivalent results compared to the full Bayesian implemen-

tation. The intended advantage of such a computational approach is that application

of the model is facilitated for practitioners, as both programming effort and compu-

tational time are reduced. Additionally, with capacities to collect and store data ever

increasing, full MCMC implementations for large scale analyses are often no longer

feasible and approximate solutions are necessary. Simulations presented in this chap-
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ter show that with large sample sizes, results from the Empirical Bayes method are

equivalent to those from the full MCMC implementation, so that our method does

not compromise statistical inference.
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Chapter 3 A Dependent Polya Tree Model for Regression Analysis

This chapter introduces a semiparametric model for linear regression analysis using

dependent Polya trees. The methods are particularly suited to longitudinal repeated

measures data. By modeling error distributions at consecutive time points using

separate, but dependent Polya tree priors, distributional information can be pooled

across time points while allowing for enough flexibility to accommodate changes in

error distributions.

3.1 Introduction

Standard linear models assume a homoscedastic, parametric error distribution, which

generally does not represent patterns in real data. Due to the central limit theo-

rem and its variations, the effect of deviations from these assumptions may not dra-

matically affect estimation of mean response, however, proper models are of special

importance in prediction of individual observations [MacEachern, 1999].

In many scenarios, not only are error distributions not parametric, but they also

are not homogenous across covariates. In the case of a longitudinal study following

different treatments groups, for example, individuals within a certain group may

respond differently to the treatment, resulting in a skewed or multimodal distribution.

There may also be a time-varying treatment effect, resulting in changes in the response

distribution over time.

The method that will be presented here is a new way of describing correlated error

distributions, irrespective of the median structure. The method is highly flexible in

that it can be incorporated into a wide range of models, such as linear and nonlinear

fixed effects, random effects, and mixed effects models. Standard posterior inferences

about model parameters are still possible in the sense of median regression, but

more flexibility and predictive accuracy are gained by modeling the error distribution

nonparametrically.
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Section 3.2 gives an overview of previous approaches to introducing dependencies

among prior distributions on function spaces. A new dependent Polya tree model

and its theoretical properties are outlined in Section 3.3. The performance of the

proposed model on simulated data and on real data is evaluated in Sections 3.4 and

3.5.

3.2 Background

The model that will be developed in this chapter introduces a dependence structure

among residual distributions, which can be incorporated into a model with arbitrary

mean structure. In the most general setting, we consider a nonlinear mixed model

y|u ∼ fy|u(g(X,Z; β, u),Σ) (3.1)

where β is a vector of fixed effects, u a vector of random effects, X and Z are the fixed-

effects and random-effects covariate matrices, and Σ a collection of scale parameters.

A special case of this model is ordinary linear regression. The ordinary linear

mixed model

y|u ∼ N(X ′β + Z ′u,Σ), u ∼ N(0,Σu)

is also a special case, along with the commonly used random intercept, random slope,

and random intercept and slope models.

In equation 3.1, the density f is traditionally modeled parametrically, although

examples listed in Chapter 1 show that the density can be extended to be nonpara-

metric within the Bayesian framework. In the simplest models, the scale and shape

of f are homogeneous across covariate values, and observations are independently

distributed, which will not accommodate many scenarios encountered with real data.

Several models for introducing dependencies among random probability distribu-
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tions have been suggested and employed in a variety of applications. One of the

earliest attempts to define dependencies among Dirichlet processes was presented in

Cifarelli and Regazzini [1978], who introduced a regression for the baseline measure

G0x of marginally DP-distributed random measures in a product of mixtures of Dirich-

let processes [De Iorio et al., 2004]. Such models were used by Muliere and Petrone

[1993], who defined a regression of the base measure, G0x = N(xβ, σ2), and defined

the dependent processes as Fx ∼ DP (αG0x), and Carota and Parmigiani [2002], who

employed regression for the baseline measure for count data.

MacEachern [1999] defined a dependent Dirichlet process (DDP) based on Sethu-

raman’s representation of a Dirichlet process (see Section 1.1.1), by defining the point

masses θi as realizations of stochastic processes θix, x ∈ X . Gelfand et al. [2005] ap-

plied this idea to a model for point-referenced spatial data using realizations of Gaus-

sian processes. Additional applications of this idea include linear regression θix = x′iβ

in the context of an ANOVA model [De Iorio et al., 2004] and nonproportional haz-

ards survival modeling [De Iorio et al., 2009]. Additionally, the shape of the base

measure G0x may vary with x ∈ X , and variates vi from the Sethuraman construc-

tion of the DP may also be replaced by stochastic processes, viX , resulting in marginal

distributions Gx ∼ DP (αxG0x). Griffin and Steel [2006] propose a related dependent

Dirichlet process, in which dependence is introduced by modeling the parameters of

the beta distributions of the weights vi as a function of covariates. MacEachern [1999]

points out that a similar approach, replacing countable sets of variates by stochastic

processes, can be applied to other nonparametric methods, such as Polya trees.

Dunson et al. [2007] propose a weighted mixture of Dirichlet process priors, by

mixing over independent samples Gxj
from a Dirichlet process with common base

measureG0 and α. The weight function is dependent on the relative distances between

the covariate values. For the estimate of Gx, greater weight is assigned to those Gxj

for which x and xj are close. The approaches for dependent Dirichlet processes
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listed here introduce a relationship between covariates and elements of the Dirichlet

process prior, and then mix a smooth kernel f(yi|xi) =
∫

Ψ
f(yi|xi, ψ)Gxi

(dψ) over the

nonparametric distribution Gxi
.

Until recently, little work on dependent Polya trees had been done. Jara and

Hanson [in press] propose a class of dependent processes centered around the idea of

Polya trees, or more generally, around tailfree processes, that regress density shape

on predictors. Rather than modeling branch probabilities Yjk in a tree as arising

from beta distributions, they are defined as Yjk = h{ηjk(x, ω)}, where h is a strictly

increasing continuous function with range [0,1]. Specifically, Jara and Hanson use the

logistic link Yjk(x, ω) = exp{ηjk(x, ω)}/[1 + exp{ηjk(x, ω)}]. Although this model is

not technically a Polya tree process, marginal asymptotic equivalence can be shown

for the logistic link if the ηjk’s are realizations from independent zero-mean Gaussian

processes [Jara and Hanson, in press, Prop. 3]. While this model presents a way to

introduce dependencies across continuous covariate values, in the case of categorical

covariates, such as discrete points of observation in longitudinal or repeated measures

data, the resulting distributions are independent.

3.3 Dependent Polya tree model

In the case of continuous response data, either from repeated measures studies or

cross-sectional studies with ordinal covariates indexed by t, error distributions Gt may

evolve both in terms of scale and shape across levels of the covariate t = 1, . . . , T . For

concreteness, our presentation focuses on longitudinal data, but other data structures

can be modeled. We consider the following model:

yit = g(xit, zit; β, u) + εit

εit ∼ Gt

Gt ∼ FPT (c, ρ(j), G0).
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Additionally, the Polya tree prior for each Gt may be based on a different centering

distribution G0(t), which can, for example, differ by a scale parameter σt. However,

due to temporal or spatial dependencies, the error distributions might not be com-

pletely independent for different t. In fact, if we suspect a gradual evolution of the

error process over time, information can be gained by letting estimates of the error

distribution at time point t be informed by error distributions at previous time points.

Dependencies between error distributions might be modeled by introducing a

Markov-type relationship between the branch probabilities of Polya trees at consecu-

tive time points. We modelG1 using a standard Polya tree prior: G1 ∼ PT (cj2, G0(1)).

In keeping with standard choices for mixed models, and to potentially test for de-

viations from parametric normal models, the centering distribution G0(1) might be

chosen to be normal, i.e., define the prior distribution G1|σ1 ∼ PT
(
cj2, N(0, σ1)

)
.

Starting at t = 2, the dependent Polya tree (DPT) prior distribution on Gt is

defined such that it is dependent on the Polya tree at point t−1. For t > 1, Gt|Gt−1 ∼

DPT (cj2, G0(t)), where Gt−1 and Gt are related through their branch probabilities.

Left branch probabilities Yej(k),t, k = 1, 3, ..., 2j − 1 are modeled conditional on the

corresponding branch probability at time t− 1:

Yej(k),t|Yej(k),t−1 ∼ beta(cj2Yej(k),t−1, cj
2(1− Yej(k+1),t−1)). (3.2)

A sequence of Polya tree priors defined in this way and truncated at a finite level J

will be referred to as dependent finite Polya trees (DFPT). The posterior distributions

of the conditional branch probabilities are updated analogously to updating in a

simple Polya tree, i.e., for k = 1, 3, . . . , 2j − 1

Yej(k),t|Yej(k),t−1, y ∼ beta
(
cj2Yej(k),t−1 + n(j, k, y), cj2(1− Yej(k),t−1) + n(j, k + 1, y)

(3.3)
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3.3.1 Theoretical structure

The prior expected value of each branch probability at time t for t > 1 is equal to

the corresponding branch probability at time t− 1:

E[Yej(k),t|Yej(k),t−1] =
cj2Yej(k),t−1

cj2Yej(k),t−1 + cj2(1− Yej(k),t−1)
= Yej(k),t−1.

The prior variance of each branch probability at time t = 1 is

V ar(Yej(k),1) =
c2j4

(2cj2)2(2cj2 + 1)
=

1

4(2cj2 + 1)
,

while for branch probabilities at all following time points it is

V ar[Yej(k),t+1|Yej(k),t] =
c2j4Yej(k),t(1− Yej(k),t)

[cj2Yej(k),t + cj2(1− Yej(k),t)]2(cj2Yej(k),t + cj2(1− Yej(k),t) + 1)

=
c2j4Yej(k),t(1− Yej(k),t)

c2j4(cj2 + 1)

=
Yej(k),t(1− Yej(k),t)

(cj2 + 1)
.

The covariance between each pair of corresponding branch probabilities Yej(k),t

and Yej(k),t+1 given Yej(k),t−1 is

Cov[Yej(k),t, Yej(k),t+1|Yej(k),t−1] =
Yej(k),t−1(1− Yej(k),t−1)

(cj2 + 1)
,

and the correlation is

Cor[Yej(k),t, Yej(k),t+1|Yej(k),t−1] = Cor[Yej(k),t, Yej(k),t+1] =

√
cj2 + 1

2cj2 + 1
. (3.4)

Proof. Let u = Yej(k),t−1,v = Yej(k),t, w = Yej(k),t+1 and B(v, w) = Γ(v)Γ(w)
Γ(v+w)

be the beta
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function.

E[VW |U ] =

∫ ∫
vwp(w|v)p(v|u)dwdv

=

∫ ∫
v
wcj2v(1− w)cj2(1−v)−1

B
(
cj2v, cj2(1− v)

) p(v|u)dwdv

=

∫
vp(v|u)

Γ
(
cj2

)
Γ
(
cj2v + 1

)
Γ
(
cj2(1− v)

)
Γ
(
cj2v

)
Γ
(
cj2(1− v)

)
Γ
(
cj2 + 1

)dv
=

∫
v2p(v|u)dv

=

∫
vcj2u+1(1− v)cj2(1−u)−1

B
(
cj2u, cj2(1− u)

) dv

=
u(cj2u+ 1)

cj2 + 1
.

Hence

Cov[V,W |U ] = E[VW |U ]− E[V |U ]E[W |U ] =
u(cj2u+ 1)

cj2 + 1
− u2 =

u(1− u)

cj2 + 1
.

By a similar derivation, V ar[W |U ] = (2cj2+1)u(1−u)
(cj2+1)2

and therefore

Cor[V,W |U ] =
u(1− u)

cj2 + 1

√
(cj2 + 1)(cj2 + 1)2

[u(1− u)]2(2cj2 + 1)
=

√
(cj2 + 1)

(2cj2 + 1)
.

The posterior predictive density of a finite Polya tree with J levels is [Hanson and

Johnson, 2002]

p(w|y) = g0(w)2J

J∏
j=2

cj2 + n(j, k, y)(w)

2cj2 + n(j − 1, k, y)(w)
, (3.5)

where n(j, k, y)(w) is the number of elements in the data vector y that fall into the

same partition as w at level j of the Polya tree.

For a finite Polya tree, with dependencies modeled as in (3.2), the predictive
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density is defined as in (3.5) only for the first time point. For all following time

points, the posterior predictive density is

p(w|y,Gt−1) = g0(w)
J∏

j=1

2 · P
[
w ∈ B0

(
j, k(j, w)

)]
= g0(w)

J∏
j=1

2 · Yej(k),t

≈ g0(w)2J

J∏
j=1

cj2Y ∗
ej(k),t−1 + n(j, k, y)(w)

cj2Y ∗
ej(k),t−1 + cj2(1− Y ∗

ej(k),t−1) + n(j − 1, k, y)(w)

= g0(w)2J

J∏
j=1

cj2Y ∗
ej(k),t−1 + n(j, k, y)(w)

cj2 + n(j − 1, k, y)(w)

where Y ∗
ej(k),1 = 2cj2+2n(j,k,y)(w)

2cj2+n(j−1,k,y)(w)
and Y ∗

ej(k),t =
2cj2Y ∗

ej(k),t−1
+2n(j,k,y)(w)

cj2+n(j−1,k,y)(w)
. The approxima-

tion in the third step of this derivation follows from Lavine [1992, Theorem 2].

3.4 Simulation study

Performance of the proposed dependent Polya tree model is investigated for a longitu-

dinal data model, with three scenarios of evolving distributions: a normal distribution

changing into a skewed distribution or a bimodal distribution over time, and a dis-

tribution changing its shape from left to right skewed. Additionally, we consider

scenarios in which the shape of the error distribution remains the same over time,

but the scale may vary. The predictive performance of the proposed model is com-

pared to two alternative Polya tree models, namely a model that defines independent

Polya tree priors for the error distribution at each time point, and a single common

Polya tree prior for errors across all time points.
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3.4.1 Error models

The general model fit to each simulated data set is

yit = µt + εit

(µ1, . . . , µT ) ∼ N(0, IT · 100).

The distribution of the errors εit is modeled according to the proposed dependent

Polya tree prior, as well as by two alternative finite Polya tree models. The three

models are defined as follows.

Dependent finite Polya tree model (DFPT)

We model the distribution of εit as Gt, relating the distributions on the individual Gt

as:

εit|Gt
iid∼ Gt

G1|σ1 ∼ FPT (cj2, N(0, σ1))

Gt|σt ∼ DFPT (cj2, N(0, σt), Gt−1) for t ≥ 2

σ2
t ∼ p(σ2

t ) for t = 1, . . . , 4.

Independent finite Polya tree model (IFPT)

If great changes in error distributions are expected, and preceding time points are

not expected to inform the shape of the distribution at subsequent time points, one

might consider imposing an independent Polya tree prior at each time point, resulting
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in the model

εit|Gt
iid∼ Gt

Gt|σt ∼ FPT (cj2, N(0, σt)) for t = 1, . . . , 4

σt ∼ p(σ2
t ) for t = 1, . . . , 4.

Single finite Polya tree model

The two previous models are compared to a model with errors arising from a single

error distribution G1 across all time points.

εit|G1
iid∼ G1 for t = 1, . . . , 4

G1|σ1 ∼ FPT (cj2, N(0, σ1))

σ1 ∼ p(σ2
1).

3.4.2 Simulation settings

To simulate a scenario in which the shape of the error distribution changes from a

normal distribution into a right-skewed distribution, data yit were generated according

to yi1 ∼ N(0, 1), and for t = 2, 3, 4, yit = uit + vit, where uit ∼ N(0, 1), and vit ∼

Γ(1, t − 1). A sequence of distributions that change from a normal distribution into

a bimodal distribution over time was generated with yi1 ∼ N(0, 1), and for t =

2, 3, 4, yit ∼ N(a · mt, 0.5) where m2 = .4, m3 = .8, m4 = 1.2 and a = −1 with

probability 0.5 and a = 1 otherwise. Finally, a distribution that changes its direction

of skew was generated from a skew normal distribution, which was first introduced as

a distributional family by O’Hagan and Leonard [1976]. Using notation from Azzalini

[1985], the density function of a skew-normal random variable Z is defined as

f(z|λ) = 2φ(z)Φ(λz) (−∞ < z <∞)
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where φ and Φ are the density and distribution function of a standard normal distri-

bution, respectively. For the simulation scenario described here, the shape parameter

was chosen to be λ = −6,−3, 3, and 6 for t = 1, 2, 3, and 4, respectively, resulting

in a distribution that changes from left to right skewed. For the two cases in which

the shape of the error distribution did not change over time, errors were modeled

as coming from a skew-normal distribution with λ = 3 that was scaled to ensure

standard deviation σt = t/4 or σt = 1 for t = 1, . . . , 4, respectively.

Data were generated for sample sizes n = 50, 100 and 200 by selecting
[
(100i −

50)/n
]th

percentiles for i = 1, . . . , n of the respective distributions. This ensures

samples in which the empirical distribution function at each observation corresponds

to the true generating distribution function. Finite Polya trees were truncated at

depth J = 4, and the parameter c was fixed at 1. Prior distributions for σt were

chosen to be Γ(2, 2). Samples from the posterior distributions were generated from

a Gibbs sampler using the Metropolis-Hastings algorithm. Chains stabilized very

quickly and were run for 50, 000 iterations after a burn-in period of 5, 000 iterations.

Posterior iterates for µt were generated using a random-walk Metropolis-Hastings

algorithm, while iterates of σt were generated using an independence chain in Metropolis-

Hastings. The likelihood function for the DFPT model is

L(µ, σ,Y1, . . . ,Y4) = p(y|β, σ,Y1, . . . ,Y4)

=
4∏

t=1

n∏
i=1

g(εit|Yt, σt)

=
4∏

t=1

n∏
i=1

2JpY(kσt(J, εit))gσt(εit)

where µ = (µ1, . . . , µ4)
′ and σ = (σ1, σ2, σ3, σ4)

′.
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The full conditional distribution for µ is

p(µ|y, σ,Y1, . . . ,Y4) ∝ L(µ, σ,Y1, . . . ,Y4)p(µ1, . . . , µ4). (3.6)

The resulting acceptance probability for µ∗ generated from the proposal distribution

N4(µ, 0.2 · I4) given the previous iterate µ in a random-walk Metropolis-Hastings step

is

min
{

1,

∏4
t=1

∏n
i=1 g(ε̂

∗
it|Yt, σt)∏4

t=1

∏n
i=1 g(ε̂it|Yt, σt)

φ4(µ
∗)

φ4(µ)

}
(3.7)

where φ4 is the density function of N4(0, I4 ·100). Iterates of σ1, . . . , σ4 were generated

separately using an independence chain algorithm. The full conditional for each σt is

p(σt|y, µ,Y1, . . . ,Y4) ∝ L(µ, σ,Y1, . . . ,Y4)p(σt) (3.8)

and the acceptance probability for σ∗t generated from the proposal distribution Γ(2, 1)

with density function γ2,1 is

min
{

1,

∏n
i=1 pYt(kσ∗t

(J, εit))gσ∗t
(εit)∏n

i=1 pYt(kσt(J, εit))gσt(εit)

γ2,2(σ
∗
t )

γ2,2(σt)

γ2,1(σt)

γ2,1(σ∗t )

}
= min

{
1,

∏n
i=1 pYt(kσ∗t

(J, εit))gσ∗t
(εit)∏n

i=1 pYt(kσt(J, εit))gσt(εit)

Γ(2)22σ∗t exp(−σ∗t /2)

Γ(2)22σt exp(−σt/2)

Γ(2)12σt exp(−σt/1)

Γ(2)12σ∗t exp(−σ∗t /1)

}
= min

{
1,

∏n
i=1 pYt(kσ∗t

(J, εit))gσ∗t
(εit)∏n

i=1 pYt(kσt(J, εit))gσt(εit)
exp

σ∗t − σt

2

}
.

3.4.3 Results

Model fit was evaluated using log-pseudo marginal likelihood (see section 1.2). LPML

values for the three models and five distributional scenarios are listed in Table 3.1

and predictive error densities generated by the three models are presented in Figures

3.2, 3.3 and 3.4.
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For data with homoscedastic error across all four time points, the single finite

Polya tree model, which indeed models one common error distribution, performs best

in terms of LPML. Out of the two alternative models, the DFPT model has slightly

higher LPML, indicating that borrowing information across time points does im-

prove the model fit compared to a model with four independent trees. These results

demonstrate that the proposed model presents a compromise between independent

error distributions and a single error distribution for all time points. For identically

distributed error, the single FPT model appropriately pools information from residu-

als across all time points to estimate their distribution. The DFPT takes advantage

of only part of this information, resulting in lower LPML values. The IFPT model, on

the other hand, considers residuals at each time point separately, and thus performs

the worst among the models considered here.

For all four scenarios with changing error distributions, the model with a depen-

dent finite Polya tree prior has the highest LPML values across all simulated scenarios.

For skewed error with increasing variance, the DFPT model results in LPML values

that are 0.9, 2.6 and 4.8 units higher than the IFPT model, for sample sizes 50, 100

and 200, respectively. This results in Bayes factors on the log10-scale of 0.4, 1.1 and

2.1, indicating strong evidence for the predictive superiority for sample sizes 100 and

200. Visually, the differences in posterior density estimates are subtle (Figure 3.1).

For the case in which error distributions were constructed to evolve from normal

to skewed or from normal to bimodal, the differences in LPML values between the

dependent Polya tree and the independent Polya tree models are substantial, of a

magnitude between 4.2 and 7.6, which corresponds to Bayes factors on the log10-scale

between 1.8 and 3.3 and indicates superior predictive power of the newly proposed

model. The differences in predictive densities (Figures 3.2 and 3.3) are especially

apparent at later time points.

For the scenario of error distributions that change shape from left skewed to
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right skewed, the differences in the distributions generating the data were far more

subtle than for the previous two scenarios. But even with such a slight evolution in

distributions over time, the DFPT model continues to outperform both alternative

models in terms of LPML. The differences in LPML values are of smaller magnitude

– in the range of 0.7 to 3.2 compared to the IFPT model, and 2.3 to 10.1 compared to

the SFPT models. Visually, the differences between predictive densities generated by

the DFPT and IFPT models (Figure 3.4) are also much smaller than in the previous

two scenarios.

By construction of the simulation scenarios, the model with only a single Polya

tree prior for errors across all time points is the least appropriate model of the three

considered here, and does indeed result in the lowest values of LPML for all sample

sizes and all four scenarios in which the error distribution evolves. Represented by

the dotted lines in Figures 3.1 through 3.4, it is clear that this simple model is not

able to capture the shape of the true error distribution in any of these scenarios.

Simulation results show that in scenarios in which error distributions change over

time, predictive power may be gained by pooling information across time points.

Even in scenarios in which the shape of the error distribution changed dramatically

(e.g., the distribution changed the direction of the skew, or developed a bimodal

shape), introducing dependencies outperformed the model that assumed completely

independent error distributions.
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Table 3.1: LPML values for model comparison for three sample sizes n.
n

Distribution Model 50 100 200
right skewed Dependent Finite Polya Trees -284.7 -562.6 -1116.7
homoscedastic Independent Finite Polya Trees -285.4 -565.2 -1122.1

Single Finite Polya Tree -281.7 -559.5 -1114.0

right skewed Dependent Finite Polya Trees -166.4 -326.2 -643.7
heteroscedastic Independent Finite Polya Trees -167.3 -328.8 -648.5

Single Finite Polya Tree -198.8 -391.3 -774.9

normal Dependent Finite Polya Trees -390.2 -774.2 -1524.2
to right skew Independent Finite Polya Trees -394.4 -781.0 -1531.5

Single Finite Polya Tree -411.0 -814.0 -1600.7

normal Dependent Finite Polya Trees -376.6 -745.6 -1485.3
to bimodal Independent Finite Polya Trees -381.0 -751.9 -1492.9

Single Finite Polya Tree -438.9 -880.5 -1692.3

left to Dependent Finite Polya Trees -192.2 -376.5 -737.3
right skew Independent Finite Polya Trees -192.9 -378.7 -740.5

Single Finite Polya Tree -194.5 -386.4 -767.4
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Figure 3.1: Predictive error densities from a dependent finite Polya tree model
(DFPT), an independent finite Polya tree model (IFPT), and a single finite Polya tree
model (FPT) compared to the true error density, which is a skew-normal distribution
with skew equal to 0.66 and variance increasing over time.
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Figure 3.2: Predictive error densities from a dependent finite Polya tree model
(DFPT), an independent finite Polya tree model (IFPT), and a single finite Polya
tree model (FPT) compared to the true error density, which changes from a normal
to a right skewed distribution over time.
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Figure 3.3: Predictive error densities from a dependent finite Polya tree model
(DFPT), an independent finite Polya tree model (IFPT), and a single finite Polya
tree model (FPT) compared to the true error density, which changes from a normal
to a bimodal error distribution over time.
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Figure 3.4: Predictive error densities from a dependent finite Polya tree model
(DFPT), an independent finite Polya tree model (IFPT), and a single finite Polya tree
model (FPT) compared to the true error density, which changes from a left skewed
to a right skewed distribution over time.
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3.5 Example

3.5.1 Growth data

Jara and Hanson [in press] demonstrate the performance of their proposed model of

dependent tailfree processes on a data set previously explored by Royston and Wright

[1998] and Kapitula and Bedrick [2005]. The data set consists of measurements of the

serum concentration of immunoglobulin G (IgG) for 298 children between the ages of

6 and 72 months [Isaacs et al., 1983]. All 298 observations are independent, i.e., there

are no true repeated measures on the same individual in the data set. Therefore,

unlike in the simulation study of longitudinal data, this analysis illustrates how our

method can be applied to modeling ordinary regression error with a dependent Polya

tree.

Kapitula and Bedrick [2005] fit an exponential normal growth model, which is a

parametric approach to estimating percentile curves, to the log-transformed IgG val-

ues using the covariate age (x). Under their model, the density for the log-transformed

response is

f(zi) =
1√
2π

exp
[
−{exp(γzi)− 1}2

2γ2
+ γzi

] 1

Φ(1/|γ|)
(3.9)

where zi = (log yi − µi)/σi, σi = θ0 + θ1x
−2
i , Φ(·) is the standard normal distribution

function, and

µi = β0 + β1x
2
i + β2x

−2
i + εi. (3.10)

Jara and Hanson [in press] fit the median regression model

log(yi) = β0 + β1

√
xi + β2x

−2
i + εi, (3.11)
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Table 3.2: Age groups defined for the IgG data set.

Age group a(x) Age in months (x) Age group a(x) Age in months (x)
1 6-11 4 36-47
2 12-23 5 48-59
3 24-35 6 60-72

and define εi|Gxi

indep∼ Gxi
where {Gx : x ∈ X} has a dependent tailfree process

prior. It is not clear that the difference in the median function between the two

models was intentional, and in what follows the two alternatives will be compared.

We allow for changes in error distributions over time by modeling a different

nonparametric error distribution for the six age groups defined in Table 3.2. The

distribution of ages in the data set (see Figure 3.5) shows spikes at 6, 12, 24, and 36

months of age, suggesting that for a large number of children, age was possibly not

recorded precisely but rounded to full years. The resulting models are thus

log(yi) = β0 + β1x
2
i + β2x

−2
i + εi (3.12)

εi ∼ Gt, t = a(xi)

where a(xi) is the age group for subject i, and

log(yi) = β0 + β1

√
xi + β2x

−2
i + εi (3.13)

εi ∼ Gt, t = a(xi).

Posterior estimates were generated using a Gibbs sampler with Metropolis-Hastings

sampling. The prior distribution for β = (β0, β1, β2) was N(0, I3 · 100) and a Γ(2, 2)

prior was used for the standard deviations σt of the centering distributions of the
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Figure 3.5: Distribution of ages of 298 children

Polya trees. The likelihood function for the dependent Polya tree model is

L(β, σ,Y1, . . . ,Y6) = p(y|β, σ,Y1, . . . ,Y6)

=
6∏

t=1

∏
i∈At

g(εi|Yt, σt)

=
6∏

t=1

∏
i∈At

2JpY(kσ(J, εi))gσ(εi)

where At = {i : a(xi) = t} is the set of indices for the observations that fall into age

category t. The full conditional distribution for β = (β0, β1, β2)
′ is

p(β|σ,Y1, . . . ,Y6) ∝ L(β, σ,Y1, . . . ,Y6)p(β),

resulting in an acceptance of the proposal β∗ generated from N(β,Σβ) in a random-
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walk Metropolis-Hastings step with probability

min
{

1,

∏6
t=1

∏
i∈At

pYt(kσt(J, ε
∗
i ))gσt(ε

∗
i )∏6

t=1

∏
i∈At

pYt(kσt(J, εi))gσt(εi)

φ(β∗/100)

φ(β/100)

}
. (3.14)

Each σt was sampled in an independent step from the full conditional distribution

p(σt|β,Yt) ∝ L(β, σ,Y1, . . . ,Y6)p(σt),

and consequently the acceptance probability of the proposal σ∗t generated from the

proposal distribution Γ(2, 1) in the independence chain algorithm is

min
{

1,

∏
i∈At

pYt(kσ∗t
(J, εi))gσ∗t

(εi)∏
i∈At

pYt(kσt(J, εi))gσt(εi)

γ2,2(σ
∗
t )

γ2,2(σt)

γ2,1(σt)

γ2,1(σ∗t )

}
min

{
1,

∏
i∈At

pYt(kσ∗t
(J, εi))gσ∗t

(εi)∏
i∈At

pYt(kσt(J, εi))gσt(εi)
exp

{σ∗t − σt

2

}}
. (3.15)

The full conditionals for the branch probabilities in sets Y1, . . . ,Y6 are derived as

outlined in previous sections. The Gibbs sampler was run for 150,000 iterations after

discarding iterates from a burn-in period of 50,000 iterations. Polya tree parameters

were fixed at J = 4 and c = 1 or c = 0.5. The covariance matrix Σβ for the

proposal distribution of β was updated to a scaled version of the empirical covariance

matrix based on the first 25,000 iterations of the burn-in period to improve mixing

of the chains. The scale factor was chosen to be 0.2, which allowed the acceptance

probabilities for each parameter to lie within the range of approximately 0.2 to 0.35.

Table 3.3 presents the LPML values obtained by the two median models considered

here. For both models, c = 0.5 results in a clear improvement over c = 1. Simulations

with c = 0.1 were attempted, but failed to mix appropriately. Comparing the two

different median structures, the model proposed by Kapitula and Bedrick [2005] (see

equation 3.12) performs better, with a difference in LPML of about 3 for either value

of c, which results in a Bayes factor of 101.3, indicating substantial evidence in favor
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Table 3.3: LPML values obtained for the IgG data set from the DFPT model.

Model c LPML
µ(xi) = β0 + β1x

2
i + β2x

−2
i 1 -118.8

0.5 -114.2

µ(xi) = β0 + β1
√
xi + β2x

−2
i 1 -121.8

0.5 - 117.4

Table 3.4: Parameter estimates for two models from the DFPT model, J = 4, c = 0.5.

Model Covariate Estimate 95% Credible interval
µ(xi) = β0 + β1x

2
i + β2x

−2
i β0 1.508 [1.419, 1.663]

β1 0.018 [0.008, 0.022]
β2 -0.141 [-0.223,-0.056]

µ(xi) = β0 + β1
√
xi + β2x

−2
i β0 1.089 [0.879, 1.380]

β1 0.349 [0.201, 0.484]
β2 -0.087 [-0.167, -0.004]

Kapitula and Bedrick’s model.

Parameter estimates from the two DFPT models for c = 0.5 are presented in

Table 3.4. The DFPT estimates obtained for Kapitula and Bedrick’s median model

are comparable to the point estimates reported from their analysis (β̂0 = 1.569,

β̂1 = 0.013 and β̂2 = −0.167).

Predictive densities calculated by the two models for five arbitrary time points as

well as the estimated median functions and their 95% credible intervals are presented

in Figure 3.6. Differences in the two models become particularly apparent with in-

creasing age. Starting at about 50 months, the two median functions deviate, and

differences in predictive densities become more prominent.

Jara and Hanson [in press] compared the performance of their proposed model in

terms of LPML to several alternative models Jara and Hanson [in press], including

a model with normal error on the log-scale, the exponential normal model suggested

by Kapitula and Bedrick [2005], a Dirichlet Process mixture model, and a linear
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Figure 3.6: Predictive densities for five selected time points and estimated median
function with 95% credible interval from the DFPT model (J = 4, c = 0.5) for median
functions 3.12 (K&B, solid lines) and 3.13 (J&H, dashed lines).
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dependent Dirichlet Process model [De Iorio et al., 2004, 2009]. Table 3.5 lists the

LPML values that Jara and Hanson reported for these models.

Clearly, the Normal error model on the log-scale and the Dirichlet process mixture

model, both of which model a uniform error distribution, are not appropriate for this

data set, having the smallest LPML values of the models considered here. Overall, the

models employing Polya trees seem to outperform all other models in this comparison.

There is a significant advantage over modeling the error distribution using a linear

dependent Dirichlet process. However, an important finding is that the proposed

DFPT model, which models data at discrete time intervals, has equivalent predictive

power as the dependent tailfree process proposed by Jara and Hanson, which models

a continuously evolving error distribution.

Table 3.5: LPML values from various models for the IgG data set presented by Jara
and Hanson [in press]) for the median function µ(xi) = β0 + β1

√
xi + β2x

−2
i .

Model LPML
Dependent Tailfree Process -121
Normal Error on log-scale -143
Exponential Normal Model -136
Dirichlet Process Mixture -143
Linear Dependent Dirichlet Process -139

3.6 Summary

A novel approach to defining dependent priors on error distributions in regression

models has been presented in this chapter. For data scenarios in which error distribu-

tions slowly evolve over time or over an ordinal covariate, the proposed model allows

for information to be pooled across ordered points. The model specifically assumes

an ordered relationship between points, i.e., the shape of the error distribution at

time point t may be informed by the shape at time point t− 1.

In particular in the context of describing predictive densities for individual obser-

vations, flexible modeling of the error distribution becomes important. This model
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poses a solution between the two extremes of homogeneous error and independent

error distributions for each category, and simulations have shown that for gradual

changes in distributions, this method results in increased predictive accuracy.
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Chapter 4 Summary and Outlook

Two semiparametric generalizations of popular linear models using Polya trees

have been presented in this dissertation. We have demonstrated that in the case

of deviations from parametric assumptions, a one-step approximation of the mean

structure still leads to a consistent goodness of fit test and reduced bias in estimation.

The second proposed method is a novel approach to introducing dependencies between

nonparametric error models.

Chapter 2 presented a generalized model for risk estimation that extends the

parametric idea of logistic regression for a dichotomized response that is based on

measurement data. The gains in efficiency resulting from modeling the continuous

response rather than the dichotomized outcome leads to smaller samples sizes required

to detect an effect of a given size. To take advantage of such savings in terms of sample

size, a method for sample size calculation for this semiparametric approach needs to

be developed.

This model can easily be extended to more general ordinal responses. For example,

risk factors for an individual falling into either of the categories overweight or obese

can be modeled simultaneously. In each sampling step, the nonparametric risk would

simply be calculated for both cutoffs. The Empirical Bayes version of the Savage-

Dickey ratio provides a powerful test to detect deviations from a logistic distribution,

but equally applies to other parametric distributions. For example, by centering the

Polya tree prior on G at a normal rather than a logistic distribution, a test for the

appropriateness of probit regression can be implemented, while the framework for

nonparametric risk estimation would remain the same as described above.

In the context of epidemiologic studies, it would be of great interest to extend the

risk estimation procedure to various sampling schemes, such as case-control studies.

The additional challenge of incorporating priors beliefs about outcome prevalence

would need to be addressed carefully. For clinical diagnoses that are based on mul-
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tiple outcomes, a multivariate extension of the approach could be developed. For

example, the diagnosis of diabetes is generally based on measurements of several dif-

ferent factors. We could formulate a general rule that a patient is diagnosed with a

disease if at least a certain number of factors indicate the disease. Then, the risk of an

individual falling above the critical cutoff for at least that number of indicators could

be calculated. Recent developments in the area of multivariate Polya trees [Trippa

et al., 2011, Hanson et al., 2011] might be extended to such a model.

In its current form, the semiparametric model for risk estimation assumes a fixed

error distribution. Future work will develop a more flexible model that allows for

changes in error distribution with covariate values. The basic idea for nonparamet-

ric risk estimation would remain the same, however, the finite Polya tree prior for

the error distribution would be extended to accommodate such changes. Methods

developed in Chapter 3 are an obvious starting point for such a model.

Chapter 3 presented a novel approach to introducing dependencies between Polya

tree distributions associated with ordered covariates. The approach might be ex-

tended to allow for covariate-dependent effects on the shape of the distribution. Pur-

suing an extension of the proposed approach with some aspect of the dependent

tailfree processes developed by Jara and Hanson [in press] would be of great interest.

Another potential extension of the model is a generalization of the dependency

structure to define relationships in multiple dimensions to model, for example, spatio-

temporal processes. In addition to the theoretical development of such an approach,

computational challenges specific to Polya trees would need to be addressed, as an

increase in dimensions greatly increases the computational cost of any MCMC imple-

mentation of the model.

92



Chapter A Appendix

A.1 Notation

Table A.1: Polya tree notation

ej(k) the j-fold binary representation of the number k − 1
Bθ(j, k) = (G−1

θ ((k − 1)2−j), G−1
θ (k2−j)] for k = 1, ..., 2j

the k-th set in the partition of Ω at level j
Yej(k) random branch probability: conditional probability of setBθ(j, k)
Y set of random branch probabilities Yej(k), j = 1, 2, ...
ΠJ

θ = {Bθ(j, k) : j = 1, ..., J, k = 1, ...2j}
collection of partitions induced by Gθ up to level J

nθ(j, k, y) the number of observations in y that fall into set Bθ(j, k)
kθ(j, y) ∈ 1, ..., 2j, index of set on level j into which observation y falls

pY(k) = G{Bθ(J, k)|Y , θ} =
∏J

j=1 Yej(dk2j−Je)

g(y|Y , θ) = 2JpY(kθ(J, y))gθ(y), Polya tree density

Table A.2: Distributions

N(µ, σ) Normal distribution with mean µ and standard deviation σ
logistic(µ, σ) Logistic distribution with mean µ and standard deviation σ
Γ(a, b) Gamma distribution with shape parameter a and scale parameter

b
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