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ABSTRACT OF DISSERTATION

NONPARAMETRIC COMPOUND ESTIMATION, DERIVATIVE ESTIMATION,

AND CHANGE POINT DETECTION

Firstly, we reviewed some popular nonparameteric regression methods during the

past several decades. Then we extended the compound estimation (Charnigo and

Srinivasan [2011]) to adapt random design points and heteroskedasticity and proposed

a modified Cp criteria for tuning parameter selection. Moreover, we developed a DCp

criteria for tuning paramter selection problem in general nonparametric derivative

estimation. This extends GCp criteria in Charnigo, Hall and Srinivasan [2011] with

random design points and heteroskedasticity. Next, we proposed a change point

detection method via compound estimation for both fixed design and random design

case, the adaptation of heteroskedasticity was considered for the method. Finally, we

applied our change point detection method to a glucose level data set and identified

the meal consumption time for five patients.
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Chapter 1 A review of nonparametric regression

1.1 Purpose and rationales for nonparametric regression

Suppose µ(X) is the mean response function for the regression model

Yi = µ(Xi) + εi (1.1)

for i ∈ {1, 2, ..., n} and Xi’s belong to a compact interval X ⊂ R or compact set

X ⊂ Rd and εi’s are independent zero-mean random errors with variance bounded

above by some constant. For a regression problem, our goal is to predict Y from X

given a new sample X. The optimal predictor will be µ(X).

In parametric regression, we need to pre-specify the determinant form of the mean

response function, like linear regression, polynomial regression. However, in our na-

ture, the patterns of data are sometimes very complex, it’s hard to make assumption

of the parametric form. Thus, we may need to apply the nonparametric regression

method to make predictions. Nonparametric regression is constructed based on the

information that is purely driven by the data. It does not assume a parametric form

of the function in advance. Figure 1.1 displays the measurements of the acceleration

of a motorcycle that runs into a solid object. Loader [2006]. There are 133 obser-

vations in the motorcycle data. Covariate X here (in milliseconds) is the time that

after a simulated impact on motorcycles. Response variable is the head acceleration

of a test object. Fan and Gijbels [1996]. The scatter plot of motor cycle data ob-

viously displays nonlinearity and heteroskedasticity. If we fit linear regression and

polynomial regression for the data, then the fitted line will be too smooth for the

data. Fan and Gijbels [1996]. In this case, nonparametric regression will be a more

appropriate method for modeling the relationship between the time and acceleration.

Also, we need to use some methods for dealing with the non-constant error variance

in the data.
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There are several rationales for the nonparametric regression. The first one is trying

Figure 1.1: Motor cycle plot. Head acceleration vs. time

to get the information from the data points that are close to the target point, such

as kernel regression, local polynomial regression, regression trees [Breiman, 1984].

Orthogonal series spline, regression spline and wavelets method try to approximate

the true mean function by linear combination of a series of basis functions. Basis

functions in a funtional space are used a lot for representing a specific function. Also,

there are some other nonparametric methods which are not commonly used, such as

sieve estimator, etc.

Different nonparametric regression methods are developed for various applications.

There is no method that can over compete any other nonparametric regression meth-

ods. For example, local polynomial regression can deal with the functions that are

not very smooth by adaptively choose local bandwidth. However, if the function have

too many spikes, wavelets method [Daubechies, 1992], which is used a lot for signal

process, may be much better than the local polynomial regression. Wavelets bases is

able to represent locally bumby functions in an efficient way. For example, Figure 1.2

is the plot of the NMR Signal data (the black line), it is fitted by the wavelet shrink

method via the green line. Friedman et al. [2001]

2



Figure 1.2: NMR Signal data fit with Wavelets

1.2 Kernel method and Local polynomial regression

Kernel estimator was proposed by Nadaraya [1964] and Watson [1964]. It uses kernel

function to control how the nearby data points impact on the prediction point. If a

symmetric kernel function W (x) ≥ 0 satisfy

∫
W (x)dx = 0 (1.2)∫
xW (x)dx = 0 (1.3)∫
x2W (x)dx > 0 (1.4)

Then the Nadaraya-Watson kernel estimator is defined as

µ̂(x) =

∑n
i=1W (|x−Xi|/h)Yi∑n
i=1W (|x−Xi|/h)

. (1.5)

Bandwidth h controls the smoothness of the estimation function. if h is large, then

many sample points will be used for predicting µ̂(x) for a given x. The prediction

will borrow ”information” from those sample points that have nonzero weights in the

formula of Nadaraya-Watson kernel estimator. Bandwidth choice is critical for the

3



kernel regression and the local polynomial regression, it controls the bias-variance

trade off for these methods. A too small bandwidth will lead to a wiggly plot with

large variance, a large bandwidth will undersmooth the data points and give large

bias. The kernel function help us to decide somehow the importance of information

from each sampling points. If xi is in the neighborhood of a prediction point x, then

Figure 1.3: Kernel functions

generally, the closer that x to xi, the larger the value of kernel function. Figure 1.3

shows us different kernel functions. The weight from a given sampling point for the

prediction at x is affected by the choice of the function. Gasser and Müller [1979]

proposed a modified kernel regression method. It is defined as

µ(x) = h−1

n∑
i=1

[∫ si

si−1

K(
x−Xi

h
)

]
Yi (1.6)

where si = xi−1+xi
2

.

The kernel estimator is a linear estimator, which means it can be written as

µ̂(x) =
n∑
i=1

li(x)Yi (1.7)

4



Then the kernel derivative estimation is obtain by taking the derivative of µ̂(x) respect

to x directly. However, the performance of derivative estimation of kernel estimator

depends on the smoothness of the kernel function.

It is shown that kernel estimator could be attained by minimizing the weighted

squared loss, which is the local linear estimation. Loader [2006]

n∑
i=1

W (|x−Xi|/h)(Yi − µ̂(x))2 (1.8)

For a close to x, we can write µ(a) ≈ β0(x) + β1(x)(a − x) + ... + 1
p!
βp(x)(Xi − x),

then we minimize

n∑
i=1

W (|x−Xi|/h)[Yi − (β0(x) + β1(x)(Xi − x) + ...+
1

p!
βp(x)(Xi − x))]2 (1.9)

to get β̂0(x) and β̂1(x).

Then the local polynomial estimator is

µ̂(x) = β̂0(x). (1.10)

The local polynomial regression has a good property that it has the same convergence

rate in both interior points and the boundary. (This was shown by [Fan and Gijbels,

1992]). However, the local polynomial derivative estimator is not self-consistent.

Namely, the derivative of the local polynomial estimator is not equal to the estimator

of the local polynomial derivative. We will define the self-consistency formly later. In

Loader [2006], he shows that the local derivative estimator is actually the local slope

estimate.

µ̂′(x) = β̂1(x) (1.11)

This is not the derivative of the fitted curve µ̂(x). The exact derivative of the fitted

curve is given in the book as (1.12),

µ̂′(x) = β̂1(x) + e1
T (XTWX)−1XTW ′ε̂ (1.12)

5



where e1 = (1, 0, 0..., 0)T , X is the design matrix and W is the matrix with kernel

functions K((x−Xi)/h), but it is computationally infeasible.

1.3 Other nonparametric regression methods

Orthogonal series estimator/regression spline [Ruppert et al., 2003] assumes that the

true underline function can be represented by a linear combination of some orthonor-

mal basis functions bj(x), j = 1, 2, 3..., namely

µ(x) =
∞∑
j=1

βjbj(x). (1.13)

Then we need to estimate βj for the specific series of basis function. Also, a finite

number of basis will be used to avoid overfitting of the mean response. The orthogonal

series estimator is

µ̂(x) =
J∑
j=1

β̂jbj(x), (1.14)

and β̂j is obtained by regress Y on the set of J basis functions. That is to minimize

RSS(β) =
n∑
i=1

[Yi −
J∑
j=1

βjbj(xi)]
2. (1.15)

Denote Bij = bj(xi), then we obtain the estimation of β

β = (BTB)−1B−1Y . (1.16)

If we differentiate the estimated mean response function (1.14) with respect to x, then

we’ll get the derivative estimator. However, some basis functions may not be smooth

enough for making the derivative estimation. Also, we need to choose number of basis

function and knot and the place of knots. Figure 1.4 is an example of 6 B-spline basis

functions with order 3. Regression splines minimize

n∑
i=1

(Yi − µ(Xi))
2 + λ

∫
µ
′′2dx (1.17)

6
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Figure 1.4: B-spline basis functions

to get µ̂(x). The regularization part is for controlling the smoothness of the fitted

function. Tuning parameter λ is often called smoothing parameter. The interesting

part about (1.17) is that the optimization problem has a finite-dimensional solution

even if it is minimized over a infinite functional space. The solution of (1.17) is

the natural cubic splines with knots at the values of design points xi, i = 1, ..., N .

Friedman et al. [2001].

1.4 Compound estimation

A derivative estimator is called self-consistent if

drµ̂(x)

dx
=
d̂rµ(x)

dx
(1.18)

Recovering derivatives is important for data analysis in some scenario. For example,

like studying human growth data, characterizing nanoparticles from scattering data

etc. The local derivative estimator is not self-consistent, and many spline basis func-

tions or kernel functions are not infinitely differentiable. Charnigo and Srinivasan
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[2011] developed a compound estimator to simultaneously estimate mean response

function and it Jth derivatives if we assume µ(x) have at least J + 1 derivatives. The

compound estimator is constructed by 2 steps. Firstly, a finite number of pointwise

estimators on grid points are obtained by some well-known nonparametric regression

methods. Then these pointwise estimators are combined by a weight function to make

sure the estimated mean responses are differentiable by at least J times. Compound

estimation will be introduced in the next section.

1.5 Modified compound estimation and parameter choice

A modified version of Compound estimation is proposed in chapter 2. In chapter 2, we

no longer assume x′s are fixed points, but random design points. Also, we incorporate

heteroskedasaticity in model (1.1) for the error term εi by modifying the weight

function (2.4) in the compound estimator. A Cp criteria is used for choosing the

tuning parameters for the modified compound estimation with heteroskedasaticity.

Cp criteria does not require a specific nonparametric regression method. It could be

used as long as the fitted model is a linear estimator like (1.7). It is motivated from

Tsybakov [2008]. Cp criteria tries to minimize the following quantity by a proxy

which satisfy (1.20).

E[
1

n

n∑
i=1

(µ̂(Xi)− µ(Xi))
2] (1.19)

E[Cp(λ)] = E[
1

n

n∑
i=1

(µ̂λ(Xi)− µ(Xi))
2] + C (1.20)

1.6 An DCp criterion for tuning parameter selection of first derivative

estimation

In chapter 3, we will aim to minimize the quantity (1.21) to choose our tuning param-

eters instead of using Cp criteria in chapter 2. The idea is from Charnigo, Hall and

Srinivasan [2011]. They developed a GCp criteria to minimize (1.21). However,our

method is different since they assume the x′s are equally spaced and to be fixed de-

8



sign. It is hard to find a appropriate proxy for (1.21) when the samples are from

random design.

DDIMSE = E[
1

n

n∑
i=1

(µ̂′λ(Xi)− µ′(Xi))
2] (1.21)

1.7 Estimation of piecewise smooth functions

In chapter 4&5, we’ll try to address the problem when the underline mean response

function is piecewise smooth. Then we need to detect the change point and fit

the model on each side of the jump location. For example, Figure 1.5 and Figure

1.6 show us the scatter plot of observations and the real underline mean response

function µ(x). We let µ(x) = I(x ≤ 0)(x + 1)2 + I(x > 0)(−x2 + 2x + 2). Then

we generate X ∼ Unif(−1, 1) and let Y = µ(X) + ε where ε ∼ N(0, 0.52). The

function is discontinuous with a change point at x = 0. Gijbels [2008] gives a brief

review of how to use local linear fitting when the mean response curve may have

some irregularities. Müller et al. [1999] developed a method for decide whether the

unknown function should be modeled as a globally smooth function or a piecewise

function with isolated discontinuities.

Copyright c© Sisheng Liu, 2017.
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Figure 1.5: scatter plot of the observations.
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Figure 1.6: Function µ(x) has a discontinuity x = 0.
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Chapter 2 Better convolution weights of compound estimation with or

without heteroskedasticity

2.1 Review of compound estimator

Suppose µ(x) is the mean response function for the nonparameric regression model

Yi = µ(xi) + εi (2.1)

for i ∈ {1, 2, ..., n} and xi’s belong to a compact interval X ⊂ R and εi’s are indepen-

dent zero-mean random errors with variance bounded above by some constant. µ(x)

has at least J + 1 continuous derivatives.

As in Charnigo and Srinivasan [2011], we assume X := [−1, 1] without loss of gener-

ality. For constructing compound estimator µ?(x) of µ(x), first we estimate the mean

function and its derivative at only a discrete set of points in [−1, 1], denoted by In.

The estimators are denoted by c̃j;a, where 0 ≤ j ≤ J and a is one of the points in the

discrete set In. Then a polynomial is defined as

µ̃J ;a(x) :=
J∑
j=0

c̃j;a(x− a)j. (2.2)

The compound estimator for µ(x) is then defined as a weighted average of (2.2),

µ?(x) :=
∑
a∈In

Wa,n(x)µ̃J ;a(x), (2.3)

where Wa,n is the weight for point a ∈ In. In Charnigo and Srinivasan [2011], the

weight is

Wa,n(x) :=
exp[−βn(x− a)2]∑
c∈In exp[−βn(x− c)2]

. (2.4)
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The idea for this weight is to give µ̃J ;a(x) more weight if a is close to x and less weight

if a is away from x. The convolution in (2.3) will ensure the compound estimator

is infinitely differentiable and self-consisent. Also,the compound estimation of jth

derivative µ(j)(x) will be

dj

dxj
µ?(x) :=

∑
a∈In

j∑
k=0

(
j

k

)
dk

dxk
µ̃J ;a(x)

dj−k

dxj−k
Wa,n(x), (2.5)

and because differentiation and estimation can be interchanged, we say that the com-

pound estimator is self-consistent.

2.2 Mathematical formulation of optimization problem

For the model (2.1), we assume that the variance of random error ε’s are bounded

above and below by some known positive constant. Furthermore, let

var(εi) = σ2
i , (2.6)

assume the design points are random: X1, X2, ...Xn instead of x1, ...xn in (2.1). In-

tuitively, the compound estimator from (2.2) or (2.5) should be adjusted to account

for non-constant variance. In the first step, the pointwise estimator c̃j;a can be some

nonparametric estimator with adaptation to non-constant variance. Moreover, the

compound estimator can be refined by choosing the weight function(2.4) to adapt to

the heteroskedasticity in the sense of minimizing integrated mean square error(IMSE).

In statistics, generally we give less weight to the observations which have larger vari-

ance, like weighted least square estimator.

We adjust the weight function by

Wa,n(x) :=
exp[−βn(a)(x− a)2]∑
c∈In exp[−βn(c)(x− c)2]

(2.7)
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and βn(a) is some function of a discrete set of points a ∈ In. βn : In → R+. The

motivation for this adaptation is somehow intuitive.Firstly, weights for each polyno-

mial can be adjusted by the variance of random error near each a. This is controlled

by choosing the function βn(a) such that if the variance of random error near a is

large, then we assign less weight to µ̃J ;a(x). By minimize the integrated MSE, we

will be able to get the optimal choice of βn(a). On the other hand, weight function

(2.7) inherits the nice property of (2.4). They still vary in x smoothly and the near

optimal convergence rate can be achieved under some appropriate assumptions.

The compound estimator requires some mild conditions on the pointease estimators.

In Charnigo and Srinivasan [2011], they assume c̃j;a satisfies

sup
a∈In
|c̃j;a| ≤ C (2.8)

and

sup
a∈In

MSE[c̃j;a] ≤ Cn−2αj (2.9)

for some constant C, α0, α1, ...αJ . Based on Stone [1980], to fulfill (2.9), the distri-

bution of X1...Xn should satisfy that their distribution is absolutely continuous and

their densities are bounded away from 0.

2.3 Solution and justification

The following theorem is an improved version of Theorem 1 in Charnigo and Srini-

vasan [2011] because random covariates are included and the methodology now ex-

plicitly adhering heteroskedasticity.

Theorem 2.3.1 Suppose the model (2.1) hold, and the design points X1, ...Xn are

random. Consider compound estimator from (2.3), (2.5) with the weight function

(2.7). Also the pointwise estimators satisfied (2.8) and (2.9). If there exist positive
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numbers δ, γ, φ, ω0, ...ωJ such that

δ + 2wjγ + φ < 2αj for 0 ≤ j ≤ J

and

0 ≤ αj − αj+1 ≤ γ for 0 ≤ j ≤ J − 1

then there exist sequence βn = {βn(a) : a ∈ In} and Ln such that

dj

dxj
µ?(x)− µ(j)(x) = Op

(
n(3j+1)δ+max{j−J+1,maxk∈{0,1,...j}(k−wj−k)}) .

The proof of the theorem is similar to Charnigo and Srinivasan [2011]. Note, however,

that the dimension of βn increases with the sample size.

Proof :

Let β0n(a) be the evaluation set at a function β0n : In → [ 1
M
,M ]. Choose βn(a) to

satisfy

βn(a) = β0n(a)n2(γ+δ)

Suppose [−1, 1] was divided to Ln intervals such that the ratio of maximum interval

length to the minimum interval length is bounded above and the mid points in each

interval form the set In. Choose Ln = O(n(γ+δ+ψ)).

Set I1n(x) := {a ∈ In : |a − x| < n−γ}, I2n(x) := {a ∈ In : |a − x| < βn(a)−1/2},

β?0n(a) = max{β0n(a)} and β?n = β?0nn
2(γ+δ)). Then we have

∑
c∈In

exp[−βn(c)(x− c)2] ≥
∑
c∈I2n

exp[−1]

≥ C1Ln(β?n)−1/2

In Chapter 2 and elsewhere, C’s denote positive constants. Let EJ,a(x) := µ̃J,a(x)−

µ(x), AJ,a(x) := µ̃J,a(x) −
∑J

j=0 cj,a(x − a)j, TJ,a(x) := AJ,a(x) − EJ,a(x). Then

TJ,a(x)µ(x)−
∑J

j=0(x− a)j.
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By (2.7) and mathematical induction, we have

dk

dxk
Wa,n(x) =

∑
zk∈In ...

∑
z1∈In Sa(x)

∏k
i=1 Szi(x)[Pa(x) + Pz1(x)...+ Pzi−1

(x)− iPzi(x)]

(
∑

c∈In exp[−βn(c)(x− c)2])k+1

(2.10)

where Sz(x) = exp[−βn(z)(x− z)2] and Pz(x) = 2βn(z)(z − x).

Similar to the proof in Charnigo and Srinivasan [2011],we consider In(x) and In(x)

separately.

Firstly, if a ∈ I1n(x), then by (2.10) and (2.11), there exist C2 and C
′
2 such that for

every a ∈ I1n(x) and 0 ≤ k ≤ j ≤ J .

∣∣∣∣ dkdxkWa,n(x)

∣∣∣∣ ≤ LknC2exp
[−β0n(a)n2δ](β?n)k

[Ln(β?n)−1/2]k+1

=
C2(β?n)(3k+1)/2exp[−β0n(a)n2δ]

Ln
(2.11)

Also,if a ∈ I1n(x), then∣∣∣∣ dj−kdxj−k
EJ ;a(x)

∣∣∣∣ ≤ ∣∣∣∣ dj−kdxj−k
AJ ;a(x)

∣∣∣∣+

∣∣∣∣ dj−kdxj−k
TJ ;a(x)

∣∣∣∣ ≤ C3 (2.12)

Combining (2.12) and (2.13) we can see∣∣∣∣∣∣
∑

a∈I1n(x)

dk

dxk
Wa,n(x)

dj−k

dxj−k
EJ ;a(x)

∣∣∣∣∣∣ ≤ C3C2(β?n)(3k+1)/2exp[−β0n(a)n2δ]

= C3C2(β?0n)(3k+1)/2n(3k+1)(γ+δ)exp[−β0n(a)n2δ]

= C4n
(3k+1)(γ+δ)exp[−β0n(a)n2δ]

= op
(
n(3j+1)δ+max{j−J+1,maxk∈{0,1,...j}(k−wj−k)})

(2.13)

Secondly,if a ∈ I1n(x):

1. If max{|z1 − x|, ...|zk − x|} ≥ n−γ,then each summand on top of (2.11) will be

dominated by C5n
2k(γ+δ)exp[−(a)n2δ] for some constant C5.

2. If max{|z1 − x|, ...|zk − x|} ≤ n−γ,then each summand on top of (2.11) will

16



be dominated by C
′
6

∏k
i=1(βn(zk)n

−γ) = C6n
2kδ+kγ for some constant C6. Also, the

number of these summands is O(Lknn
−kγ). Thus,

sup
a∈I1n(x)

∣∣∣∣ dkdxkWa,n(x)

∣∣∣∣ =
O(C6n

2kδ+kγLknn
−kγ) +O(C5n

2k(γ+δ)exp[−(a)n2δ]Lkn)

Lk+1
n (β?n)−(k+1)/2

=
O(n2kδ)

Ln(β?n)−(k+1)/2

= O

(
n(3k+1)(γ+δ)−2kγ

Ln

)
(2.14)

Then follow (2.16),(2.19) and (2.20) in Charnigo and Srinivasan [2011], we conclude

that ∣∣∣∣∣∣
∑

a∈I1n(x)

dk

dxk
Wa,n(x)

dj−k

dxj−k
EJ ;a(x)

∣∣∣∣∣∣
≤ card(I1n(x))O

(
dk

dxk
Wa,n(x)

)[
Op

(
dj−k

dxj−k
AJ,a(x)

)
+O

(
dj−k

dxj−k
TJ,a(x)

)]
≤ Lnn

−γO

(
n(3k+1)(γ+δ)−2kγ

Ln

)[
Op

(
n−wj−kγ

)
+O

(
n−γ(J+1+k−j))]

= O(n3kδ+δ+kγ)
[
Op

(
n−wj−kγ

)
+O

(
n−γ(J+1+k−j))]

≤ Op

(
n(3j+1)δ+max{j−J+1,maxk∈{0,1,...j}(k−wj−k)}) (2.15)

Since finitely many terms of the form
∣∣∣∑a∈I1n(x)

dk

dxk
Wa,n(x) dj−k

dxj−k
EJ ;a(x)

∣∣∣ constitute∑
a∈I1n(x)

dj

dxj−kWa,n(x)EJ;a(x)
, then (2.15) implies Theorem 2.3.1 holds. Then follow the

proof of the Corollary 1 in Charnigo and Srinivasan [2011], under (2.8) and (2.9),we

have
dj

dxj
µ?(x)− µ(j)(x) = op

(
n−(J+1−j)/(2J+3)+ν

)
(2.16)

for 0 ≤ j ≤ J ,x ∈ (−1, 1)] if we choose the α0, ...αJ ,ω0, ...ωJ ,δ,φ appropriately. ν is a

arbitrary small number.

Stone [1980] showed that n−(J+1−j)/(2J+3) is the optimal rate for the nonparamet-

ric estimator for jth derivative. Therefore, the previous theorem tells us that no

17



matter what function β0n(a) is, and with considerable flexibility regarding the weight

functions, the near optimal rate can still hold for the compound estimator. How-

ever, we want not only favourable asymptotics but also finite sample performance.

So our next step is to choose the optimal weight function (2.7), namely, choosing

function β0n(a). This could in principle be done to minimize the integrated MSE,

E
[∫

(µ?(x)− µ(x))2dx
]
. However the MISE is hard to quantify for compound esti-

mation, which may be based on different nonparametric regression methods for local

polynomial estimation. Actually, no method can analytically quantity the MISE

exactly. Local regression and Kernel method have an asymptotically formula for

quantifying the MISE, but they depend on the unknown quantity µ′′(x). Also, inte-

grated MSE approximately vary across different nonparametric regression estimators

and compound estimator is based on them. Therefore, instead we will minimize a

discretized version of integrated MSE(Tsybokav 2009 CITE!!!!!!). The discretized

version of Integrated MSE is define as (2.18). We then apply a Cp criterion which

accounts for heteroskedaticity to approach our goal of minimizing (2.18)

Theorem 2.3.2 Assume model (2.1) and (2.6) hold, and the estimator of µ(x) has

the form

µ?(x) =
n∑
i=1

Gn,i(Xi, x, s)Yi, (2.17)

Where s is the parameters and X1, ...Xn are the random design points.We denote

Gn,i(Xi, Xi, s) as Gn,i(Xi, s) for simplicity. Define

DMISE := E

[
1

n

n∑
i=1

(µ?(Xi)− µ(Xi))
2

]
and (2.18)

Cp(s) :=
1

n

n∑
i=1

(Yi − µ?(Xi))
2 +

2

n

n∑
i=1

σ2
iGn,i(Xi, s). (2.19)

Then

E (Cp(s)) = DMISE +
1

n

n∑
i=1

σ2
i (2.20)
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Proof: let

Q =
2

n
E

(
n∑
i=1

µ?(Xi)µ(Xi)

)
(2.21)

and

Q̂ =
2

n

n∑
i=1

Yiµ
?(Xi)−

2

n

n∑
i=1

σ2
iGn,i(Xi, s) (2.22)

We’ll have

n

2
E(Q̂|X1, ...Xn)

= E

[
n∑
i=1

Yiµ
?(Xi)

∣∣∣∣∣X1, ...Xn

]
−

n∑
i=1

µ?(Xi)µ(Xi) +
n∑
i=1

µ?(Xi)µ(Xi)−
n∑
i=1

σ2
iGn,i(Xi, s)

= E

[
n∑
i=1

εiµ
?(Xi)

∣∣∣∣∣X1, ...Xn

]
+

n∑
i=1

µ?(Xi)µ(Xi)−
n∑
i=1

σ2
iGn,i(Xi, s)

= E

[
n∑
i=1

n∑
k=1

εiεkGn,k,i(Xk, Xi, s)

∣∣∣∣∣X1, ...Xn

]
+

n∑
i=1

µ?(Xi)µ(Xi)−
n∑
i=1

σ2
iGn,i(Xi, s)

=
n∑
i=1

Gn,i(Xi, s)E
[
ε2i
∣∣X1, ...Xn

]
+

n∑
i=1

µ?(Xi)µ(Xi)−
n∑
i=1

σ2
iGn,i(Xi, s)

=
n∑
i=1

µ?(Xi)µ(Xi) (2.23)

By (2.23)

E(Q̂) = E(Q) (2.24)
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Therefore by(2.24)

DMISE

=
1

n
E

n∑
i=1

µ?(Xi)
2 +

1

n
E

n∑
i=1

µ(Xi)
2 − 2

n
E

n∑
i=1

µ(Xi)µ
?(Xi)

=
1

n
E

n∑
i=1

µ?(Xi)
2 +

1

n
E

n∑
i=1

µ(Xi)
2 − 2

n
E

n∑
i=1

Yiµ
?(Xi) +

2

n
E

n∑
i=1

σ2
iGn,i(Xi, s)

=
1

n
E

n∑
i=1

µ?(Xi)
2 +

1

n
E

[
n∑
i=1

(Yi − εi)2

]
− 2

n
E

n∑
i=1

Yiµ
?(Xi) +

2

n
E

n∑
i=1

σ2
iGn,i(Xi, s)

=
1

n
E

n∑
i=1

µ?(Xi)
2 +

1

n
E

n∑
i=1

Y 2
i −

2

n
E

n∑
i=1

Yiµ
?(Xi) +

2

n
E

n∑
i=1

σ2
iGn,i(Xi, s)− 1

n

n∑
i=1

σ2
i

=
1

n
E(µ?(Xi)− Yi)2 +

2

n
E

n∑
i=1

σ2
iGn,i(Xi, s)− 1

n

n∑
i=1

σ2
i

= E(Cp(s))− 1

n

n∑
i=1

σ2
i (2.25)

By (2.25), apparently (2.20) holds.

For selecting the function β0n(a) of the modified compound estimator µ?(x), the

parameters (β0(a1), ...β0(aLn))′ constitute s in Theorem 2.2.2. Then as long as c̃j,a is

a linear estimator

c̃j,a =
n∑
i=1

lj,i(a;Xi)Yi, (2.26)

we’ll see that

Gn,i(Xi,βn) =
∑
a∈In

Wa,n(Xi, a, βn(a))
J∑
j=0

lj,i(a;Xi)(Xi − a)j (2.27)

We can substitute (2.27) into (2.19) directly and combine with (2.7), the sequence

βn(a) can be chosen by numerical optimization. If σ2
i is unknown for our regression

model (2.1), then there are numerous methods for variance estimation in nonpara-

metric regression. We may plug σ̂i
2 into (2.24) instead of σ2

i . Moreover, we could

choose s to be a vector including not only the function βn(a), but also some other

tuning parameters for the method used in pointwise estimating, such as bandwidth
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in local regression.

2.4 Simulation study

The simulation study was done in two different parts. First, the Cp criteria (2.19) is

examined by comparing it with the quantity:

DIMSEprac =
1

n

n∑
i=1

(µ̂(Xi)− µ(Xi))
2, (2.28)

where prac stands for ”practical”.(i.e. without expectation). For visualization, we ex-

amine the relationship between Cp and DIMSEprac in two different parameter choice

problems: (1) Local regression with single bandwidth choice and (2) Compound es-

timation with previously determined h and a single βn.

We generate 300 X ′s from uniform distribution on (−1, 1) and error term εi is dis-

tributed as N(0, [ 1
(0.8+|Xi|)2 ]2).Figure (2.1) shows how the variance change with the

design points X ′s . The mean response function is µ(X) = sin(2πX) + cos(2πX) +

log(4/3+X). 10 different candidate bandwidths were evenly spaced from 0.1 to 0.37.

We first fit this data with local regression 10 times with different h and then calculate

Cp and DIMSEprac, also DIMSEprac + 1
n

∑n
1 σ

2
i . The simulation results appears as

table (2.1). From Table 2.1, we can see that when h = 0.3, Cp will be minimized

and DIMSEprac also attains its minimum. Figures to show the curve of Cp and

curve of DIMSEprac based on additional local regresion are provided as figure 2.2.

Then, h is fixed as 0.3 and we get the 15 pointwise estimators from 15 centering

points on [−0.95, 0.95]. Again, we pick 10 different values of logβn , and obtain Cp

and DIMSEprac from the compound estimation for each logβn . The simulation re-

sults are in table (2.2). We actually started with a large range of logβn , and it turns

out the optimal logbetan is obviously in a smaller range, namely, 3.5 to 6.5.
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Table 2.1: Results from simulation study from local regression with different h for
Cp

h Cp DIMSEprac DIMSEprac + 1
n

∑n
1 σ

2
i

0.10 0.6156 0.0372 0.6880
0.15 0.5928 0.0294 0.6802
0.20 0.5765 0.0209 0.6717
0.25 0.5701 0.0180 0.6688
0.30 0.5665 0.0159 0.6667
0.35 0.5689 0.0170 0.6678
0.40 0.5772 0.0227 0.6735
0.45 0.5916 0.0353 0.6860
0.50 0.6126 0.0553 0.7061
0.55 0.6401 0.0825 0.7333

Table 2.2: Results from simulation study from local regression with different h for
DIMSE

logβn Cp DIMSEprac DIMSEprac + 1
n

∑n
1 σ

2
i

3.500 0.5781 0.0328 0.6835
3.833 0.5725 0.0267 0.6775
4.167 0.5691 0.0227 0.6734
4.500 0.5674 0.0202 0.6709
4.833 0.5671 0.0187 0.6694
5.167 0.5678 0.0179 0.6686
5.500 0.5690 0.0175 0.6683
5.833 0.5704 0.0175 0.6682
6.167 0.5715 0.0177 0.6684
6.500 0.5722 0.0179 0.6686
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Figure 2.1: Variance function
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The figure Cp v.s logβn and DIMSEprac v.s logβn are provided as figure 2.3. Figure

2.3 shows us that when h is fixed, the Cp informed us that logβn should be around

4.8 for minimizing the DIMSE. Right plot in Figure 2.3 tells us logβn should be

around 5.5. This is due to the variance of both Cp and DIMSEprac. However, the

DIMSEprac from logβn = 4.8 and logβn = 5.5 do not have too much difference actu-

ally.

The Cp still tell us a lot about how to choose βn’s. We can see the curve ofDIMSEprac

seems flat after logβn = 5.5. This is because the local regression with h = 0.3 has
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Figure 2.2: Local regression with different bandwidth, Cp v.s. h and DIMSE v.s h
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already provided a good estimation of the function. A large value of βn means the

weight function (2.4) at a fixed x for its closest centering point is almost 1. Then the

estimate of µ(x) is almost the local regression estimator µ̂(x), witha small adjustment

to ensure self-consitency. Thus, for this specific example, local regression may be bet-

ter. However,in other example, the first derivative estimator of compound estimation

may be much better than the local regression if we choose βn appropriately. This is

an advantage of compound estimation over local regression, see figure 2.4. In figure

2.4, red line represents compound estimation, blue line represents local regression

estimation, h = 0.3 and βn = 12. Thus, Cp can help us to choose βn when looking

primarily at the estimation of mean response.

In the second step, we try to do simulation for choosing different βn in the weight

functions to adapt to the heteroskedasticity in (2.1). The Cp criteria is used for

choose parameters in four different ways when trying to fit the simulated functions:

(1) Choose bandwidth in local regression. (2) Choose bandwidth and single βn simu-

taneously. (3) Choose bandwidth and 15 β′ns simutaneously. (4)We reparameterize

β′ns by a quadratic function of a. Let logβn = r0 +r1a+r2a
2, then we choose r0,r1,r2,h

simultaneously.

The last procedure is for reducing the number of parameters. If there are many pa-

rameters in the model, then both the variance of quantity Cp and the variance of

quantity DIMSEprac will be inflated. Then minimizing Cp may not give a optimal

choice of β′ns since what we really want to minimize is the expectation of Cp. By

reparameterization, we have less number of tuning parameters, then variance of Cp

will then be reduced. In practice, the way of reparameterization should somehow

depend on the domain knowledge of the user and the implication of the form of het-

eroskedasticity from the scatter plot. For example, from the figure (2.5), we could see

that the variance in the area around 0 is apparently larger than near the boundary.

Thus, we may reparameterize logβn as a quadratic function of a.

In our simulation study, we let µ(x) = cos(2πx) + sin(2πx) + cos(3πx) + sin(3πx).
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Figure 2.4: plot of compound estimator of first derivative.
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Three hundred data points are generated according to a uniform distribution sup-

ported on (−1, 1), we pick grid points a′s to be equally spaced on [-0.95,0.95], the

random error εi ∼ N(0, [ 1
(0.6+|Xi|)2 ]2). Then we generate the 300 samples 20 times, in

each trial, we use Cp to choose the tuning parameters for 4 different methods, and

these methods are applied to the model fitting as mentioned before. For each method,

we track 2 quantities: DIMSEprac and DDIMSEprac defined below. Therefore, 8

quantities was recorded for each trial.
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Figure 2.5: Example of implication of heteroskedasticity
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We define DDIMSEprac is defined as a practical quantity from formula (1.21),

DDIMSEprac =
1

n

n∑
i=1

[µ̂′λ(Xi)− µ(Xi)]
2. (2.29)

Table 2.3: Look at DIMSEprac for 4 different methods

Trials DIMSELR DIMSE2 DIMSE3 DIMSE4

1 0.0528 0.0418 0.0623 0.0445
2 0.0464 0.0410 0.0443 0.0399
3 0.0105 0.0169 0.0211 0.0145
4 0.0862 0.0860 0.0955 0.0896
5 0.0713 0.0586 0.0830 0.0612
6 0.0367 0.0273 0.0438 0.0228
7 0.0744 0.0701 0.0699 0.0696
8 0.0371 0.0310 0.0386 0.0275
9 0.0691 0.0565 0.0794 0.0534
10 0.0618 0.0665 0.0764 0.0617
11 0.0403 0.0560 0.0656 0.0533
12 0.0227 0.0126 0.0323 0.0121
13 0.0230 0.0229 0.0281 0.0214
14 0.0316 0.0276 0.0415 0.0235
15 0.0434 0.0402 0.0398 0.0425
16 0.0459 0.0299 0.0419 0.0342
17 0.0500 0.0576 0.0685 0.0583
18 0.111 0.0777 0.0794 0.0775
19 0.0438 0.0372 0.0537 0.0348
20 0.0178 0.0164 0.0208 0.0154

Best Times 3 4 1 12

From table (2.3), we find several interesting points. First, if we compare DIMSE2

and DIMSE4, it turns out for most of the time, the reparameterization seems to

improve the practical DIMSE slightly over just using single βn, which is less than

what we expected. It may be that, in the first step of compound estimation, we

get estimation at a discrete set of grid points from local regression that has already
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Table 2.4: Look at DDIMSEprac for 4 different methods

Trials DIMSELR DDIMSE2 DDIMSE3 DDIMSE4

1 15.784 6.319 12.701 6.170
2 16.556 4.055 8.046 4.047
3 8.381 1.727 5.885 1.683
4 8.571 4.134 6.951 4.569
5 11.980 5.121 13.092 5.418
6 9.906 1.602 6.028 1.737
7 15.351 15.592 14.814 15.477
8 11.155 3.467 7.431 3.381
9 15.988 5.2884 8.972 4.845
10 14.494 7.587 12.964 7.119
11 9.381 3.135 8.021 2.851
12 7.333 1.296 8.217 1.566
13 5.791 1.657 3.714 1.617
14 9.975 3.235 11.215 3.965
15 11.764 8.242 7.920 11.007
16 6.845 3.251 7.450 3.837
17 4.656 2.087 7.099 2.544
18 17.864 4.797 11.008 4.811
19 11.619 2.235 7.492 2.123
20 11.205 1.404 3.972 1.325

Best Times 0 8 2 10

addressed the heteroskedasticity by letting the weights(in the local regression) vary

proportion to the inverse of the variance. Secondly, the local regression sometimes

performs the best. Naturally, βn’s need to be huge for compound estimation to have

a good performance as local regression when it does well. However, for the smooth-

ness of derivative estimation, we imposed constraints on βn values. Moreover, the

practical DIMSE from choosing 15 βn’s is not good in general. In practice, using lots

of tuning parameters is not a nice idea since the variance of Cp will be inflated a lot.

Also, the computational burden will be huge as the sample size increases.
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Note that DDIMSEprac in table (2.4) is in general optimized since we choose the

parameters by minimizing Cp to enhance mean response estimation but not deriva-

tive estimation. However, we still can gain insight. Obviously, the local regression

didn’t do a good job. The local first derivative estimation is the slope of a local

polynomial, which is not self-consistent. This will not perform well when the sample

size is relatively small. Compound estimation with single βn or reparameterization

did the best job for most of the times. Even if the β′ns we choose is definitely not the

optimal tuning parameters, if the user just wants to get the derivative estimation as

a by-product instead of going through the estimation by another set of parameters

again, compound estimator may be a satisfactory choice.

We also tried many other simulation settings, like µ(x) = sin(2πx) + cos(2πx) +

log(4/3+x) with 150 data points or 300 data points and σi = 1
0.6+|Xi| , µ(x) = sin(2πx)

with 150 data points and σi = 1
1+|Xi| etc. It turns out for most of the time, compound

estimator with single βn or reparameterization works well. The local regression also

sometimes did very good job for mean response estimation.

Copyright c© Sisheng Liu, 2017.
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Chapter 3 Tuning parameter selection for first derivative estimation

3.1 Motivation of tuning parameter selection for derivative estimation

In chapter 2, we mentioned that if βn is chosen appropriately, then the compound

estimator will be very good for estimating the first derivative. See Figure (2.3). How-

ever, how to choose the βn value is still a issue for the modified compound estimation.

Example in Figure (2.3) tell us local regression is already good enough for the mean

function estimation, however, it is not for derivative estimation and we will use com-

pound estimation to approximate the derivatives. Then, how do we choose βn for the

derivative estimation?

If βn is too large, then the weight function (2.4) or (2.7) will not be smooth enough

to get good derivative estimation. Figures (3.1) and (3.2) are extreme examples

for compound estimation with a huge value of single βn. We random generate

300 data points from the uniform distribution supported on (−1, 1). Let µ(x) =

sin(2πx) + cos(2πx) + log(4/3 + x) and Yi = µ(Xi) + εi, where εi ∼ N(0, 1
(0.6+|Xi|)2 ).

Figure (3.1) shows that Cp choosing h and single βn with compound estimator did

a decent job for the mean response estimation. The red line is the estimated func-

tion and the black one is the true mean response. However,Figure (3.2) tell us βn

is apparently too large for derivative estimation. In simulation study, Cp suggests

βn = 331.7 in this case, which is against our experience that βn should typically be

less than 100. If we want a nice curve for the derivative, Cp may not be a good

way for picking tuning parameters. On the other side, if βn is too small, then the

weight function will be too smooth, then we will oversmooth the derivative estimator.

Therefore, instead of minimizing Discrete Integrated MSE, we may try to minimize

the following quantity:

E

[
n∑
i=1

(
µ̂′λ(Xi)− µ′(Xi)

)2
]

(3.1)
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Figure 3.1: Mean response estimation by Compound estimation
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Figure 3.2: Example for bad derivative estimation
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as a function of tuning parameter λ. We name it DDIMSE. (First derivative discrete

Integrated MSE).

3.2 An empirical derivative from mean response estimation and its prop-

erties

At first, we introduce an empirical first derivative for model in (2.1) and (2.6) with

the random design data points X1, ..., Xn. Charnigo et al. [2011] proposed an empir-

ical first derivative for the fixed design, which is different from ours in that we allow

random weights. Note: in this chapter the notations will be similar to notations used

in Charnigo et al. [2011].

Let k be a positive integer, and w′ijs satisfy that
∑k

j=1wij = 1 for i ∈ {1, 2...n},

then the empirical first derivative is defined as

Y
(1)
i =

k∑
j=1

wij
Yi+j − Yi−j
Xi+j −Xi−j

. (3.2)

Since it is a linear combination of Y1, ..., Yn, we could also write it as

Y
(1)
i =

n∑
s=1

cisYs, (3.3)

where cis is random and depended on X1, ..., Xn. If we expand the RHS of (3.2) and

(3.3), it is easy to see that

E[Y
(1)
i |X] =

n∑
s=1

cisµ(Xs) =
k∑
j=1

wij
µ(Xi+j)− µ(Xi−j)

Xi+j −Xi−j
. (3.4)

As in Charnigo et al. [2011], expression (3.2) is valid for k+1 < i < n−k. If i ≤ k or

i ≥ n−k+1, then we define Y
(1)
i by replacing k by k(i), where k(i) := min{i−1, n−i}.

The purpose of using empirical derivative is to reduce the variance of derivative

estimation from ordinary difference quotients. Therefore, we could look for wij to
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minimize the conditional variance of (3.2).

Proposition 3.2.1 Consider model (2.1) with (2.6), we fixed k and let ηij =
(Xi+j−Xi−j)2
σ2
i+j+σ

2
i−j

,

then the conditional variance of Y
(1)
i will be minimized if wij =

ηij∑k
j=1 ηij

for k + 1 ≤

i ≤ n− k.

Proof: Let

hij =
σ2
i+j + σ2

i−j

(Xi+j −Xi−j)2
. (3.5)

Then

V ar
[
Y

(1)
i

∣∣∣X] = V ar

[
k∑
j=1

wij
Yi+j − Yi−j
Xi+j −Xi−j

∣∣∣∣∣X
]

= V ar

[
k∑
j=1

wij
Xi+j −Xi−j

(Yi+j − Yi−j)

∣∣∣∣∣X
]

=
k∑
j=1

σ2
i+j + σ2

i−j

(Xi+j −Xi−j)2
w2
ij

=
k∑
j=1

hijw
2
ij, (3.6)

subject to
∑k

j=1wij = 1

We introduce the Lagrange multiplier τ and let

L(wi) =
k∑
j=1

hijw
2
ij + λ(1−

k∑
j=1

wij). (3.7)

This yields
∂L(wi)

∂wit
= 2hitwit − τ. (3.8)

Then set (3.8) to be 0 for each t, leading to

wit =
τ

2hit
, (3.9)
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since
∑k

j=1wij = 1,

τ =
2∑k

j=1 1/hij
. (3.10)

Then we can get

wij =
1/hij∑k
j=1 1/hij

, (3.11)

let ηij = 1/hij, then

wij =
ηij∑k
j=1 ηij

, (3.12)

where ηij =
(Xi+j−Xi−j)2
σ2
i+j+σ

2
i−j

.

Since wik = 1−
∑k−1

j=1 wij, the conditional variance could be written as

V ar
[
Y

(1)
i

∣∣∣X] =
k−1∑
j=1

hijw
2
ij + hik(1−

k−1∑
j=1

wij)
2

Let w
(k)
i = [wi1, ..., wi(k−1)]

′, and H =


hi1 + hik 0

. . .

0 hi(k−1) + hk

. Then we

can calculate the Hessian matrix of V ar
[
Y

(1)
i

∣∣∣X], which is

∂2V ar
[
Y

(1)
i

∣∣∣X]
∂w

′(k)
i ∂w

(k)
i

= H .

Since each elements of H is greater or equal to 0, then V ar
[
Y

(1)
i

∣∣∣X] is a convex

function with respect to w
(k)
i . Thus, solution (3.12) minimizes the conditional vari-

ance of Y
(1)
i . �

36



3.3 Tuning parameter choice by minimizing DDIMSE

The empirical derivative bias conditional on X is

bi = E[Y
(1)
i |X]− µ′(Xi)

=
k∑
j=1

wij
µ(Xi+j)− µ(Xi−j)

Xi+j −Xi−j
− µ′(Xi). (3.13)

By (3.4), we get

bi =
n∑
s=1

cisµ(Xs)− µ′(Xi). (3.14)

Proposition 3.3.1 Assume model (2.1) and (2.6) hold, the range of X’s is a compact

interval instead of [−1, 1], and the estimator of µ′(x) has the form

µ̂′λ(x) =
n∑
s=1

ls,λ(x)Ys, (3.15)

where λ is the tuning parameter, we denote ls,λ(Xi) as lis for simplicity. Define

DDIMSE = E

[
n∑
i=1

(
µ̂′λ(Xi)− µ′(Xi)

)2
]
, (3.16)

and

DCp(λ) =
n∑
i=1

(
Y

(1)
i − µ̂′λ(Xi)

)2

+
n∑
i=1

n∑
s=1

cis(2lis − cis)σ2
s , (3.17)

then

DDIMSE = E [DCp(λ)] + E

[
n∑
i=1

2bi

(
µ̂′λ(Xi)− µ′(Xi)

)]
− E

[
n∑
i=1

b2
i

]
. (3.18)

Proof: Let

Ai = E

[
n∑
t=1

citεt

(
−

n∑
s=1

cisµ(Xs)−
n∑
s=1

cisεs + 2
n∑
s=1

lis(µ(Xs) + εs)

)∣∣∣∣∣X
]
, (3.19)

Bi = E
[
bi

(
−Y (1)

i − µ′(Xi) + 2µ̂′λ(Xi)
)∣∣∣X] . (3.20)
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Then

Ai =E

[
n∑
t=1

citεt

(
−

n∑
s=1

cisµ(Xs)−
n∑
s=1

cisεs + 2
n∑
s=1

lis(µ(Xs) + εs)

)∣∣∣∣∣X
]

=E

[
n∑
t=1

citεt

(
−

n∑
s=1

cisεs + 2
n∑
s=1

lisεs

)∣∣∣∣∣X
]

=E

[
n∑
s=1

(
−c2

isε
2
s + 2liscisε

2
s

)∣∣∣∣∣X
]

=
n∑
s=1

cis(2lis − cis)σ2
s , (3.21)

and

Bi =E
[
bi

(
−Y (1)

i − µ′(Xi) + 2µ̂′λ(Xi)
)∣∣∣X]

=E

[
bi

(
−

n∑
s=1

cisµ(Xs)−
n∑
s=1

cisεs − µ′(Xi) + 2µ̂′λ(Xi)

)∣∣∣∣∣X
]

=E
[
bi

(
−bi + 2µ̂′λ(Xi)− 2µ′(Xi)

)∣∣∣X]
=E

[
2bi

(
µ̂′λ(Xi)− µ′(Xi)

)∣∣∣X]− E [b2
i

∣∣X] . (3.22)
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Therefore, by (3.21) and (3.22)

E

[(
µ̂′λ(Xi)− µ′(Xi)

)2
∣∣∣∣X]

= E

[(
Y

(1)
i − µ̂′λ(Xi)

)2
∣∣∣∣X]+ E

[(
Y

(1)
i − µ̂′λ(Xi)

)(
−Y (1)

i − µ′(Xi) + 2µ̂′λ(Xi)
)∣∣∣X]

= E

[(
Y

(1)
i − µ̂′λ(Xi)

)2
∣∣∣∣X]

+ E

[(
n∑
s=1

cisµ(Xs) +
n∑
s=1

cisεs − µ̂′λ(Xi)

)(
−Y (1)

i − µ′(Xi) + 2µ̂′λ(Xi)
)∣∣∣∣∣X

]

= E

[(
Y

(1)
i − µ̂′λ(Xi)

)2
∣∣∣∣X]

+ E

[
n∑
s=1

cisεs

(
−Y (1)

i − µ′(Xi) + 2µ̂′λ(Xi)
)∣∣∣∣∣X

]

+ E

[(
n∑
s=1

cisµ(Xs)− µ′(Xi)

)(
−Y (1)

i − µ′(Xi) + 2µ̂′λ(Xi)
)∣∣∣∣∣X

]

= E

[(
Y

(1)
i − µ̂′λ(Xi)

)2
∣∣∣∣X]+ Ai +Bi. (3.23)

From the law of total expectation, we have

DDIMSE = E

[
n∑
i=1

(
µ̂′λ(Xi)− µ′(Xi)

)2
]

(3.24)

= EX

{
n∑
i=1

E

[(
µ̂′λ(Xi)− µ′(Xi)

)2
∣∣∣∣X]

}

= EX

{
n∑
i=1

E

[(
Y

(1)
i − µ̂′λ(Xi)

)2
∣∣∣∣X]

}
+ EX

[
n∑
i=1

Ai

]
+ EX

[
n∑
i=1

Bi

]

= E

[
n∑
i=1

(
Y

(1)
i − µ̂′λ(Xi)

)2
]

+ E

[
n∑
i=1

Ai

]
+ E

[
n∑
i=1

Bi

]
, (3.25)

which leads to (3.18). �

Define

Sn(λ) = E

[
n∑
i=1

2bi

(
µ̂′λ(Xi)− µ′(Xi)

)]
− E

[
n∑
i=1

b2
i

]
. (3.26)

We could minimize DDIMSE by minimizing the RHS of (3.18). In practice, we need

to minimize the RHS without expectation sign. Moreover, the second part of RHS
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of (3.18)(Sn(λ)) depends on unknown mean response, it is impossible to calculate.

Nevertheless, DCp(λ) could be computed by samples, if we could prove that Sn(λ)

is asymptotically negligible compared to DDIMSE, then we may just use DCp(λ) as

the proxy.

Theorem 3.3.2 Suppose Xi has a continuous probability density function f which

is bounded away from 0 and its CDF F is twice differentiable on support set , also

k is chosen appropriately as k = O(nα) where 1/4 < α < 1/2, and the conditions in

proposition 3.3.1 hold, let

Fn(λ) = E

[
n∑
i=1

(
Y

(1)
i − µ̂′λ(Xi)

)2
]

+ E

[
n∑
i=1

n∑
s=1

cis(2lis − cis)σ2
s

]
, (3.27)

and

λ̂n = argmin
λ

Fn(λ) λ̂∗n = argmin
λ

DDIMSE(λ). (3.28)

Then
DDIMSE(λ̂n)

DDIMSE(λ∗n)
−→ 1 as n→∞. (3.29)

Proof: From (3.13), we have

bi =
k∑
j=1

wij
µ(Xi+j)− µ(Xi−j)

Xi+j −Xi−j
− µ′(Xi)

=
k∑
j=1

wij

[
µ(Xi+j)− µ(Xi−j)

Xi+j −Xi−j
− µ′(Xi)

]
. (3.30)

By Taylor expansions,

µ(Xi+j) = µ(Xi) + (Xi+j −Xi)µ
′(Xi) + 1/2(Xi+j −Xi)

2µ′′(φi,i+j),

µ(Xi−j) = µ(Xi) + (Xi−j −Xi)µ
′(Xi) + 1/2(Xi−j −Xi)

2µ′′(φi,i−j), (3.31)

40



where φi,i+j is between Xi and Xi+j, φi,i−j is between Xi−j and Xi. The difference of

these two expansions will be

µ(Xi+j)− µ(Xi−j)

= (Xi+j −Xi−j)µ
′(Xi) +

1

2

[
(Xi+j −Xi)

2µ′′(φi,i+j)− (Xi−j −Xi)
2µ′′(φi,i−j)

]
,

(3.32)

Assuming i− k ≥ 1 and i+ k ≤ n, then∣∣∣∣µ(Xi+j)− µ(Xi−j)

Xi+j −Xi−j
− µ′(Xi)

∣∣∣∣ (3.33)

=

∣∣∣∣12 (Xi+j −Xi)
2µ′′(φi,i+j)− (Xi−j −Xi)

2µ′′(φi,i−j)

Xi+j −Xi−j

∣∣∣∣
≤ B[(Xi+j −Xi)

2 + (Xi−j −Xi)
2]

|Xi+j −Xi−j|

≤ B [|Xi+j −Xi|+ |Xi−j −Xi|]

≤ B [|Xi+k −Xi|+ |Xi−k −Xi|] , (3.34)

and B is a finite positive constant. The upper bound of the rate of bi depends on the

distance between Xi+j or Xi−j and Xi. Following argument will help us to bound bi

by Bahadur’s representation theorem Bahadur [1966]. Because CDF of continuous

random variableX is twice differentiable on its support set and the probability density

function f is bounded away from 0. Assume in
n

= p and jn = O(nα), α < 1/2. Also,

qn = in + jn, q′n = in − jn. Here 1 ≤ jn ≤ kn.

Then
qn
n

= p+O(nα−1)
q′n
n

= p+O(nα−1). (3.35)

By Bahadur [1966], we’ll have

Xin+jn = ζp +
qn/n− Fn(ζp)

f(ζp)
+ R̃n,

Xin−jn = ζp +
q′n/n− Fn(ζp)

f(ζp)
+ R̃n, (3.36)
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where R̃n = Op(n
−3/4(log n)1/2(δ+1)), δ ≥ 1

2
and ζp is the pth quantile of density f .

Therefore

Xin+jn −Xin−jn =
qn − q′n
nf(ζp)

+ R̃n

= O(nα−1)
1

f(ζp)
+Op(n

−3/4(log n)1/2(δ+1))

=

Op(n
α−1) 1/4 < α < 1/2

Op(n
−3/4(log n)1/2(δ+1)) 0 < α ≤ 1/4.

(3.37)

By (3.34), if 1/4 < α < 1/2, we’ll have

|bi| ≤
k∑
j=1

wij

∣∣∣∣[µ(Xi+j)− µ(Xi−j)

Xi+j −Xi−j
− µ′(Xi)

]∣∣∣∣
≤

k∑
j=1

wij

∣∣∣∣B[(Xi+j −Xi)
2 + (Xi−j −Xi)

2]

|Xi+j −Xi−j|

∣∣∣∣
≤ B

k∑
j=1

wij [|Xi+j −Xi|+ |Xi−j −Xi|]

≤ B
k∑
j=1

wij [|Xi+k −Xi|+ |Xi−k −Xi|]

≤ B [|Xi+k −Xi|+ |Xi−k −Xi|]

= Op(n
α−1), (3.38)

Thus b2
i ≤ B2(Xi+k −Xi−k)

2, which means

E[b2
i ] ≤ B2E

[
(Xi+k −Xi−k)

2
]
.

The probability density function f is bounded away from 0 implies that there is a

constant c1 > 0 such that f(x) ≥ 1
c1

for any points inside the support set. Since the

support set is bounded by [−1, 1], then there should exist a constant c2 > 0 such that

(u− v)2 ≤ c2(F (u)− F (v))2

42



holds for any u and v inside the support set. By the formula of joint density of two

order statistics Xi+k and Xi−k, we would have

E
[
(Xi+k −Xi−k)

2
]

=

∫∫
D

n!

(i− k − 1)!(2k − 1)!(n− i− k)!

(u− v)2F (v)i−k−1(F (u)− F (v))2k−1(1− F (v))n−i−kdF (u)dF (v)

=
n!

(i− k − 1)!(2k − 1)!(n− i− k)!∫∫
D

(u− v)2F (v)i−k−1(F (u)− F (v))2k−1(1− F (v))n−i−kdF (u)dF (v)

≤ c2n!

(i− k − 1)!(2k − 1)!(n− i− k)!∫∫
D

F (v)i−k−1(F (u)− F (v))2k+1(1− F (v))n−i−kdF (u)dF (v)

=
c2n!

(i− k − 1)!(2k − 1)!(n− i− k)!∫∫
D

F (v)(i+1)−(k+1)−1(F (u)− F (v))2(k+1)−1(1− F (v))(n+2)−(i+1)−(k+1)dF (u)dF (v)

=
c2n!

(i− k − 1)!(2k − 1)!(n− i− k)!

(i− k − 1)!(2k + 1)!(n− i− k)!

(n+ 2)!

=
c2(2k + 1)(2k)

(n+ 2)(n+ 1)
,

where D = {(u, v) : −1 ≤ v ≤ u ≤ 1}. Since k = O(nα),

E[b2
i ] ≤ O(n2α−2). (3.39)
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Also, by Cauchy Schwarz inequality∣∣∣∣∣E
n∑
i=1

[
bi

(
µ̂′λ(Xi)− µ′(Xi)

)]∣∣∣∣∣
≤ {E[

n∑
i=1

b2
i ]}1/2

{
E

[
n∑
i=1

(
µ̂′λ(Xi)− µ′(Xi)

)2
]}1/2

= {
n∑
i=1

E[b2
i ]}1/2

{
E

[
n∑
i=1

(
µ̂′λ(Xi)− µ′(Xi)

)2
]}1/2

≤ Op(n
α− 1

2 )

{
E

[
n∑
i=1

(
µ̂′λ(Xi)− µ′(Xi)

)2
]}1/2

. (3.40)

Notice (3.40) holds for any λn ∈ Λn, Λn is the parameter space. Now let

Fn(λn) = E

[
n∑
i=1

(
Y

(1)
i − ̂µ′λn(Xi)

)2
]

+ E

[
n∑
i=1

n∑
s=1

cis(2lis − cis)σ2
s

]
, (3.41)

Sn(λn) = E

[
n∑
i=1

2bi

(
̂µ′λn(Xi)− µ′(Xi)

)]
− E

[
n∑
i=1

b2
i

]
. (3.42)

Then DDIMSE(λn) = Fn(λn) + Sn(λn) for ∀ λn ∈ Λn, Λn is the parameter space.

Let

λ̂n = arg min
λn∈Λn

Fn(λn) λ∗n = arg min
λn∈Λn

DDIMSE(λn), (3.43)

and

M = max{|Sn(λ̂n)|, |Sn(λ∗n)|}. (3.44)

Therefore

DDIMSE(λ̂n) = Fn(λ̂n) + Sn(λ̂n)

≤ Fn(λ̂n) +M

≤ Fn(λ∗n) +M

= DDIMSE(λ∗n)− Sn(λ∗n) +M

≤ DDIMSE(λ∗n) + 2M. (3.45)
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⇒

1 ≤ DDIMSE(λ̂n)

DDIMSE(λ∗n)
≤ 1 +

2M

DDIMSE(λ∗n)
. (3.46)

We need to show that
M

DDIMSE(λ∗n)
−→0. (3.47)

From Stone [1980], we know that the optimal convergence rate of first derivative

estimation in nonparametric regression is Op(n
− 2J

2J+3 ) if the mean response is at least

(J + 1)th times continuously differentiable. Therefore

DDIMSE(λn) ≥ n ·Θp(n
− 2J

2J+3 ) = Θp(n
3

2J+3 ). (3.48)

Without loss of generality, assuming that |Sn(λ̂n)| > |Sn(λ∗n)|. Obviously we’ll have

M

DDIMSE(λ∗n)

=
|Sn(λ̂n)|

DDIMSE(λ∗n)

=
|Sn(λ̂n)|

DDIMSE(λ̂n)

DDIMSE(λ̂n)

DDIMSE(λ∗n)

Let Qn = |Sn(λ̂n)|
DDIMSE(λ̂n)

and Tn = M
DDIMSE(λ∗n)

. Then we get

Tn ≤ Qn(1 + 2Tn)

⇒ Tn ≤
Qn

1− 2Qn
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From (3.39), (3.40), (3.42) and (3.48), we have

Qn ≤

∣∣∣E [∑n
i=1 2bi

(
̂µ′
λ̂n

(Xi)− µ′(Xi)
)]∣∣∣

DDIMSE(λ̂n)
+

E [
∑n

i=1 b
2
i ]

DDIMSE(λ̂n)

≤ Op(n
α− 1

2 )

{
E

[
n∑
i=1

(
̂µ′
λ̂n

(Xi)− µ′(Xi)
)2
]}−1/2

+Op(n
2α−2)

{
E

[
n∑
i=1

(
̂µ′
λ̂n

(Xi)− µ′(Xi)
)2
]}−1

≤ Op(n
α− 1

2
− 3

4J+6 ) +Op(n
2(α−1− 3

4J+6
))

= Op(n
α− 1

2
− 3

4J+6 ).

Noting that 1/4 < α < 1/2. We’ll have α− 1
2
− 3

4J+6
< 0, therefore

M

DDIMSE(λ∗n)
= Tn ≤ Op(n

α− 1
2
− 3

4J+6 ), (3.49)

which means Tn goes to 0 as n→ 0, namely, (3.47) holds. �

Proposition 3.3.3 Let

Λ̂n = diag


λ̂n1

. . .

λ̂ns


and

Λ∗n = diag


λ∗n1

. . .

λ∗ns


Also, let

λ̂n = [λ̂n1, · · · , λ̂ns]′ λ∗n = [λ∗n1, · · · , λ∗ns]′, (3.50)
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φ̂n = [log λ̂n1, · · · , log λ̂ns]
′ φ̂∗n = [log λ∗n1, · · · , log λ∗ns]

′.

Φ̂n = log Λ̂n Φ̂∗n = log Λ∗n. (3.51)

Let Tn(λ) = DDIMSE(λ). Put

Un(φ̂) := Tn(exp φ̂) (3.52)

and assume Un(φ̂) is at least twice continuously differentiable and D2Un(φn)
Un(φn)

is positive

definite and its determinant is bounded below by some positive constant A for φn in

its parameter space, that is φn satisfied exp(φn) ∈ Λn. Then we’ll have

Λ̂nΛ∗n
−1 → I. (3.53)

where I is the identity matrix.

This results strengthen the Corollary 1 in Charnigo et al. [2011] since we extend it to

the case with multiple parameters and random design points.

Proof:

By Talyor expansion

Un(φ̂n) = Un(φ∗n)+(φ̂n−φ∗n)′DUn(φ∗n)+
1

2
(φ̂n−φ∗n)′D2Un(φ∗

′

n )(φ̂n−φ∗n), (3.54)

where φ∗
′

n is a vector lies on the line segment between φ̂n and φ∗n. Divide (3.54) by

Un(φ∗n) on each side,

Un(φ̂n)

Un(φ∗n)
= 1 + (φ̂n − φ∗n)′

DUn(φ∗n)

Un(φ∗n)
+

1

2
(φ̂n − φ∗n)′

D2Un(φ∗
′

n )

Un(φ∗n)
(φ̂n − φ∗n). (3.55)

Since φ∗n minimizes Un, then DUn(φ∗n) = 0, along with Un(φ̂n)
Un(φ∗n)

−→ 1, we’ll have

(φ̂n − φ∗n)′
D2Un(φ∗

′

n )

Un(φ∗n)
(φ̂n − φ∗n) −→ 0. (3.56)
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Because D2Un(φ∗
′

n )
Un(φ∗n)

is positive definite and its determinant is bound below by some

constant,

(φ̂n − φ∗n) −→ 0, (3.57)

⇒

Φ̂n − Φ̂∗n −→ O, (3.58)

⇒

exp(Φ̂n − Φ̂∗n) −→ I, (3.59)

⇒

Λ̂nΛ∗n
−1 −→ I. (3.60)

�

Since the optimal rate of the first derivative estimation from nonparameteric re-

gression is Op(n
− J

2J+3 ), we will have

bi = op(
∣∣∣µ̂′λ(Xi)− µ′(Xi)

∣∣∣), (3.61)

which implies that

∑n−k
i=k+1

[
2bi

(
µ̂′λ(Xi)− µ′(Xi)

)
− b2

i

]
∑n−k

i=k+1

(
µ̂′λ(Xi)− µ′(Xi)

)2

P−→ 0 as n→∞. (3.62)

In simulation study, we need to use DCp(λ), which is without expectation sign.

Therefore (3.62) could be a justification of ignoring the Sn(λ) in the simulation study.

However, we should be aware of the variation of DCp criteria. If DCp has a large

variance, then the difference between DCp(λ) and E[DCp(λ)] will be large and min-

imizing DCp(λ) may not indicate that E(DCp(λ)) attains its minimum, so is the

DDIMSE.

48



3.4 simulation study

We did the simulation study for two different scenarios. One is to use DCp criteria

to choose bandwidth in local regression for first derivative estimation. The other is

to choose bandwidth and weight βn in Gaussian convolutions simultanuously for first

derivative compound estimation. In both scenarios, we compared the performance of

DCp criteria and its several competitors, includes the Cp in the chapter 2; generalized

cross validation applied to the fitted and empirical derivatives with the appropriate

choice of k (GCV 1k); ordinary cross validation applied to the first empirical deriva-

tives with the appropriate choice of k (CV E1k). There are also some other criterias

for tuning parameter selection in nonparametric regression. However, some of them

were not designed for heteroskedasticity case or for the derivative estimation. All of

the methods we used above will incorporate the consideration of heteroskedasticity.

Charnigo et al. [2011] used a quantity

Q1 :=
n∑
i=1

si

(
d

dx
µ(Xi)−

̂d
dx
µλ̃(Xi)

)2

/
min
λ∈Λn

n∑
i=1

si

(
d

dx
µ(Xi)−

d

dx
µλ(Xi)

)2

(3.63)

to compare the GCp criteria with other tuning parameter selection methods, where λ̃

is the tuning parameter chosen by the specific method and λ is the tuning parameter

that minimize the bottom of the (3.63). Λn is the set of all the tuning candidate

parameters.

In this section, we will also use Q1 as the quantity for making comparison between

DCp and the methods mentioned above. In practice, it’s impossible to calculate

DDIMSE, we define DDIMSEprac as

DDIMSEprac =
n∑
i=1

si(
̂d

dx
µλ(Xi)−

d

dx
µ(Xi))

2. (3.64)
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Then Q1 could be written as

Q1 =
DDIMSEprac(λ̃)

DDIMSEprac(λ)
(3.65)

Local regression. Firstly, we use DCp criteria to pick an approriate bandwidth for lo-

cal regression. We generate the data set 20 times from model (2.1), and for each data

set, there are 800 X ′s distributed as uniform distribution on (−1, 1) and error term εi

is distributed as N(0, [ 1
(0.8+|Xi|)2 ]2). The mean response function is µ(X) = sin(2πX).

50 different candidate bandwidths were evenly spaced from 0.1 to 0.6. We fit each

data set with local regression 50 times with different h. Let k ∈ {10, 15, 20, 25, 30},

DCp values from different h and k was computed, and then we pick the bandwidth

which minimize the sum of the DCp values over 6 different k’s. We let si to be 1

when 21 ≤ si ≤ 780, otherwise si = 0. Simulation results are shown in Table 3.1.

DCpSum, CV E1kSum, GCV 1kSum means we minimize the sum of these three cri-

teria over 6 different values of k respectively. Then we select the bandwidth which

minimize the Sum’s. The Q1 values in (3.65) are computed for each trial and each

tuning parameter selection method. We also record the wining times of each method

and their average Q1 value as in Table 3.2.

As shown in Table 3.1 and 3.2, DCpSum performs much better than CV E1k and

GCV 1kSum. Cp has three wining times, which is not a surprise. We mentioned that

if the mean response is smooth, then the Cp may also give us moderate good tuning

parameters even if we are looking for optimal derivative estimation. Nevertheless,

DCpSum still outperformed Cp a lot. Therefore, the DCp will be a better choice

than Cp if we want specifically a nice derivative estimation.

However, there is a concern about DCp. When tried to approximate DDIMSE,

we proved that (3.26) is negligible comparing to DDIMSE as n→∞. If the sample
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Table 3.1: Comparison for local regresion with bandwidth selection

Trials DCpSum Cp CV E1kSum GCV 1kSum

1 1.2025 3.1254 8.1557 18.2407
2 1.0023 2.0721 8.0906 12.4772
3 1.7458 1.0171 6.1243 7.9359
4 1.1384 2.0319 4.5032 15.9404
5 1.2022 2.0875 4.1071 9.8594
6 1.3033 1.8424 5.0143 11.9014
7 1.0083 1.6542 3.0403 8.0436
8 1.0396 1.9145 6.4430 14.4529
9 1.0928 1.1534 5.6891 12.4176
10 1.2089 1.6436 3.4803 9.9332
11 1.8714 3.5124 6.7993 24.1581
12 1.0106 1.7787 4.8981 10.3792
13 2.0078 3.4274 8.1436 28.5114
14 1.2830 1.6668 2.0839 7.0453
15 3.7046 2.3706 8.8142 12.8036
16 1.0274 1.6893 3.9746 10.9566
17 1.0000 2.2344 7.5322 17.5417
18 1.1794 2.1717 4.2119 10.2884
19 1.2726 2.1774 5.4817 12.3370
20 1.1982 1.0386 4.7169 7.3177

Table 3.2: Comparison for local regresion with bandwidth selection

Methods DCpSum Cp CV E1kSum GCV 1kSum

Wining times 17 3 0 0
Average Q1 1.3750 2.0305 5.5652 13.1271
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Figure 3.3: Plot of bandwidth vs DDIMSE or DCp
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size is too small, this may not hold. Therefore, we recommend to use DCp for first

derivative estimation when the sample size is moderately large. If the sample size n

is too small and the mean response seems very smooth, Cp criteria in chapter 2 may

be a better choice, because DIMSE is exactly equal to E[Cp] plus a constant, like

(2.25). Also, in real data analysis, we won’t be able to know the variance of each

error term εi. We need to estimate the variance of σ2
i and then plug these estimators

into (3.17) to obtain the DCp criteria.

Visualization of relations between DDIMSEprac and DCp values are shown in Fig-

ure 3.3. It is from the 12th trial with k = 25. From Figure 3.3, the bandwidth

(h ≈ 0.2) which minimize the DCp will also approximately minimize the correspond-

ing DDIMSEprac value.
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Compound estimation. Secondly, we applied DCp criteria to pick two tuning pa-

rameters simultaneously for compound estimation. Charnigo et al. [2011]. Again,

we generate the data set 20 times from model (2.1) with mean response µ(X) =

sin(5πX) + sin(3πX) + cos(πX). For each time, there are 800 X’s from uniform

distribution on (−1, 1). The error term εi is distributed as N(0, [ 1
(0.8+|Xi|)2 ]2). To

clarify, the error term εi is independent from Xi, we let εi has variance [ 1
(0.8+|Xi|)2 ]2

just for convenience. We used 15 centering points equally spaced on [−0.95, 0.95] and

local polynomial of degree 2 in the compound estimation. The parameters we need

to choose are the bandwidth of local regression for pointwise estimation and a single

weight βn as in (2.4). The candidates for bandwidth h are 10 values equally spaced

on [0.05, 0.3] and for βn are 10 values equally spaced on [20, 100]. Then we calculate

the tuning parameters selection criteria 100 times for 100 pairs of {h, βn} for each

k ∈ {10, 15, 20, 25}. We let si to be 1 when 21 ≤ si ≤ 780, otherwise si = 0.

Very nicely, the Figure 3.4 shows us the similar behavior of DDIMSEprac and

DCp criteria when they are varying with different pair of tuning parameter selec-

tions and appropriate k. From this figure, it is clear that DCp will be a good proxy

for DDIMSEprac, especially when DDIMSEprac is close to its minimum.

The Q1 values are as in Table 3.3. Table 3.4 displays the wining times and aver-

age Q1 for each tuning selection method. The results in Table 3.2 and 3.3 tell us that

DCp will be the optimal choice of tuning parameter selection method. Surprisingly,

CV E1k works for several cases in simulation. However, it is not good at all for some

of the trials. Therefore, even if it works very well for 3 trials, it is not stable. Also,

Table 3.1 showed us CV E1k is not good for local regression when we need to estimate

first derivative. Our guess is that it may not work for general nonparametric first

derivative estimation. Cp criteria is worse than DCp in most of the case, however it

still have 5 times better than DCp criteria. We know that Cp will give a moderately

good bandwidth for first derivative estimation when the function is smooth, but it is
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not good at choosing the convolution weight βn. In most of the case, it will choose

the biggest βn for us. Here, Cp choose βn = 100, which is the largest in our can-

didate set. Figure 3.5 shows the Cp value for different pair of {h, βn}. Apparently,

for each bandwidth h, Cp is always a decreasing function of βn. If we don’t restrict

the upper bound of βn value, we’ll get plot like Figure 3.2 and a worse result for Cp.

However, that is not the main purpose of simulation study. If we choose βn based on

our previous experience (βn shouldn’t be too large), Cp still can be applied for the

choosing a bandwidth when we don’t want to be bothered to select tuning parameters

again after estimating the mean response. However, if we would like to obtain a good

estimation of first derivative, DCp with appropriate k would be the best choice from

the simulation study.

Figure 3.6 shows us in trial 12, the derivative estimation from the tuning param-

eters from DCp (red line) and from Cp (green line). Both of them select the same

bandwidth h, however, choices of βn are different. Cp pick the largest βn = 100 and

DCp pick βn = 64.4. The DCp pick the 36th pair of parameters {0.133, 64.4} and

Cp pick the 40th pair of parameters {0.133, 100}. We can see from Figure 3.6 the

derivative estimation is not that sensitive to a small βn value since the green line and

the red line are close, even if the green line is slightly bad than the red one. From the

other side, we recognize that even if the estimation is not that sensitive to the tuning

parameter choice, DCp may still give us a better choice of the tuning parameters.

Copyright c© Sisheng Liu, 2017.
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Figure 3.4: Plot of {h, βn} vs DDIMSE or DCp.
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Figure 3.5: Plot of {h, βn} vs Cp.
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Table 3.3: Comparison for compound estimation with parameters selection

Trials DCpSum Cp CV E1kSum GCV 1kSum

1 1.1283 1.6124 1.6124 20.018
2 1.4452 1.1194 1.1194 13.800
3 1.4718 1.7237 1.4230 21.407
4 1.4895 1.7333 7.5435 19.668
5 1.1440 1.3450 1.3450 14.929
6 1.0724 1.3279 1.3279 19.653
7 1.9226 1.7237 1.4230 21.407
8 1.4609 1.1735 1.1735 15.006
9 1.6091 1.8617 1.8617 27.177
10 1.7681 2.3759 6.6191 31.068
11 1.1340 1.5248 6.2000 14.415
12 1.0000 1.4814 1.4814 19.053
13 1.2599 1.6586 1.2411 22.090
14 1.3972 1.1392 1.1392 24.904
15 1.0154 1.3331 1.3331 14.393
16 1.3493 1.2718 1.2718 19.827
17 1.2756 1.3137 1.3137 27.535
18 1.1535 1.1860 1.1860 14.950
19 1.7379 1.3265 1.3265 22.814
20 1.1809 1.9607 1.9607 32.568

Table 3.4: Comparison for compound estimation with parameters selection

Methods DCpSum Cp CV E1kSum GCV 1kSum

Wining times 12 5 3 0
Average Q1 1.3508 1.5096 2.1951 20.8342
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Figure 3.6: Plot of estimated first derivative when choosing parameters from DCp or
Cp.
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Chapter 4 Jump Points Detection via Compound Estimation and

Empirical Derivatives

4.1 Almost smooth function

An almost smooth mean response piecewise function is continuous with only finitely

many discontinuities. The goal of this chapter is to find the location of a single discon-

tinuity point. For example, in Figure 4.1, there are 500 data points that are generated

from an almost smooth function µ(x) = sin(2πx)+ I(x ≥ 0)[0.5+sin(2πx)+cos(πx)]

with random error εi ∼ N(0, 0.92) in model (4.1). There is a discontinuity at x = 0

if we look at Figure 4.2. The red line is the mean response µ(x). However it is hard

to visulize from the scatter plot. We will propose a method for detecting the jump

point from the scatter plot.

For convenience, we continue to use some of the notations from Charnigo and Srini-

vasan [2011] and Chapter 2. Suppose µ(x) is the mean response of the nonparametric

regression model with fixed design points xi’s that equally spaced on a compact in-

terval X ⊂ R.

Yi = µ(xi) + εi, (4.1)

where µ(x) = h(x) + I(x > x0)f(x), and h(x), f(x) are continuous functions with at

least J + 1th derivative and bounded away from 0 when x is close to x0. Also, ε’s

are independent zero-mean random errors with equal variance σ2. With out loss of

generality, we assume X = [−1, 1].

4.2 Properties of “naive” compound estimation

From Figure 4.2, we can see there are three functions, h(x), h(x) + f(x) and h(x) +

I(x > 0)f(x), for simplicity, let g(x) = h(x) + f(x) and µ(x) = h(x) + I(x > 0)f(x).

And x0 = 0 as in Figure 4.2. Suppose the compound estimator for functions µ(x) is
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Figure 4.1: Scatter plot of the data points
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Figure 4.2: Almost smooth function

−1.0 −0.5 0.0 0.5 1.0

−
2

0
2

4

Functions with change point x=0

Design points

M
ea

n 
re

sp
on

se

h(x)
h(x) + f(x)
h(x) + I(x > 0)f(x)

59



denoted by µ?(x). Also, suppose that conceptually we had access to two compound

estimators for functions h(x) and g(x), we denote them as h?(x) and g?(x). Let ĥ(a),

ĝ(a), µ̃(a) be the pointwise estimators for h(a), g(a), and µ(a) at centering points

a′s. Then the compound estimators for these three functions are:

h?(x) =
∑
a

Wn(x− a)
J∑
j=0

ĥ(j)(a)(x− a)j/j! (4.2)

g?(x) =
∑
a

Wn(x− a)
J∑
j=0

ĝ(j)(a)(x− a)j/j! (4.3)

µ?(x) =
∑
a

Wn(x− a)
J∑
j=0

µ̃(j)(a)(x− a)j/j! (4.4)

The goal for this section is to study some interesting properties of these compound

estimators for detection of jump points. Suppose there is a change point x0 in µ(x).

First step of compound estimation is to get a set of pointwise estimators for each

centering point. Therefore, we need to make some appropriate assumptions of these

estimators to get valuable compound estimation. Even though the compound esti-

mator of µ(x) will be naive when there is a discontinuity in the mean response, we

still can get a ”useful” naive estimator when we want to detect the jump point.

We assume the compound estimator of h(x) and g(x) is essentially optimal,then

from Charnigo and Srinivasan [2011]

sup
x∈I

∣∣∣ĥ(j)(x)− h(j)(x)
∣∣∣ ≤ Op(n

−J−j+1
2J+3

+v) (4.5)

sup
x∈I

∣∣∣ĝ(j)(x)− g(j)(x)
∣∣∣ ≤ Op(n

−J−j+1
2J+3

+v) (4.6)

where v is an arbitrary small positive number, and I ⊂ (−1, 1) is a compact interval.

The assumptions about the convergence rate of µ(x) will be different because there is

a discontinuity point in the function. When a′s are very close to x0, the convergence

rate of µ̃(a) may not be very good because the pointwise estimators are obtained when
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assuming the mean response is continuous, which is actually not true at x = x0. Thus,

we need to consider the convergence rate when a is close to x0. We incorporate this by

assuming that the pointwise estimators at a small neighborhood of x0 will be Op(1).

Let a1 be all the a′s on the left side of x0 (or a1 ≤ x0) and a2 be all the a′s on the

right side of x0, and we assume that the pointwise estimators of µ(a) satisfy that if

|x0 − a1| > n−r1 or |x0 − a2| > n−r1 , then

sup
a1∈In

∣∣∣µ̃(j)(a1)− h(j)(a1)
∣∣∣ = Op(n

−dj) (4.7)

sup
a2∈In

∣∣∣µ̃(j)(a2)− g(j)(a2)
∣∣∣ = Op(n

−dj) (4.8)

sup
a1∈In

∣∣∣µ̃(j)(a1) + f (j)(a1)− ĝ(j)(a1)
∣∣∣ = Op(n

−αj) (4.9)

sup
a2∈In

∣∣∣µ̃(j)(a2)− f (j)(a2)− ĥ(j)(a2)
∣∣∣ = Op(n

−αj), (4.10)

where dj and αj are positive numbers satisfy that 0 < dj ≤ J−j+1
2J+3

− v and 0 < αj ≤
J−j+1
2J+3

− v, since −J−j+1
2J+3

+ v is the essentially optimal convergence rate for compound

estimator. Also, if |x0 − a1| < n−r1 or |x0 − a2| < n−r1 , we assume

sup
a1

∣∣∣µ̃(j)(a1)− h(j)(a1)
∣∣∣ = Op(1) (4.11)

sup
a2

∣∣∣µ̃(j)(a2)− g(j)(a2)
∣∣∣ = Op(1) (4.12)

sup
a1

∣∣∣µ̃(j)(a1) + f (j)(a1)− ĝ(j)(a1)
∣∣∣ = Op(1) (4.13)

sup
a2

∣∣∣µ̃(j)(a2)− f (j)(a2)− ĥ(j)(a2)
∣∣∣ = Op(1), (4.14)

The above assumptions (4.11)-(4.14) say that in the neighborhood of x0, the “naive”

compound estimator may have a bad performance.

Theorem 4.2.1 Suppose (4.1)-(4.14) hold, let In be the set of all the gridding points

a’s, δ = v
4J+6

, r = 1
2J+3

, r1 > 0, then the naive compound estimator µ∗(x) in (4.4)
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satisfy

| d
dx
µ?(x)− d

dx
µ(x)| = O(n4δ+ 1

2J+3 ) +Op(n
4δ+ 2

2J+3
−r1), (4.15)

for x 6= x0. However, we need to notice that formula (4.15) is obviously not sharp in

any neighborhood away from x0.

Proof:

First, suppose x < x0, Then we’ll have

µ?(x)− µ(x)

=µ?(x)− h?(x) + h?(x)− h(x)

=
∑
a

Wn(x− a)
J∑
j=0

[µ̃(j)(a)− ĥ(j)(a)](x− a)j + [h?(x)− h(x)]

=
∑
a1

Wn(x− a1)
J∑
j=0

[h̃(j)(a1)− ĥ(j)(a1)](x− a1)j +
∑
a2

Wn(x− a2)
J∑
j=0

[g̃(j)(a2)− ĥ(j)(a2)](x− a2)j

+ [h?(x)− h(x)]

=
∑
a1

Wn(x− a1)
J∑
j=0

[h̃(j)(a1)− ĥ(j)(a1)](x− a1)j

+
∑
a2

Wn(x− a2)
J∑
j=0

[g̃(j)(a2)− ĥ(j)(a2)− f (j)(a2)](x− a2)j

+
∑
a2

Wn(x− a2)
J∑
j=0

f (j)(a2)(x− a2)j + [h?(x)− h(x)]. (4.16)

From Charnigo and Srinivasan [2011], let r = 1
2J+3

, I1n(x) = {a ∈ In : |a−x| < n−r},

φ = δ = v/(4J + 6) and v is an abitrary small positive value, also, the number of

centering points Ln = Θ(nr+δ+φ). The Θ sign means that there exist two positive

constant k1 and k2 such that k1n
r+δ+φ ≤ |Ln| ≤ k2n

r+δ+φ. They showed the following

result:

sup
a∈I1n(x)

| d
k

dxk
Wn(x− a)| = O(n3kδ−φ+kr). (4.17)
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Also following Charnigo and Srinivasan (2011), we know that

sup
a∈I1n(x)

| d
k

dxk
Wn(x− a)| = Θ(Lknβ

k
n) exp[−β0n

2δ](∑
c∈In exp[−βn(x− c)2]

)(k+1)
, (4.18)

which will decay in exponential rate, and the numbers of a′s in In is Θ(nr+δ+φ). Thus,

summand of | dk
dxk
Wn(x− a)| when a ∈ I1n(x) could be negligible.

Let I2n(x) = {a ∈ In : |a− x| < n−r1}. Then

∑
a1

W ′
n(x− a1)[h̃(j)(a1)− ĥ(j)(a1)](x− a1)j (4.19)

=
∑

a1∈I2n(x)

W ′
n(x− a1)Op(n

−dj)(x− a1)j +
∑

a1∈I2n(x)

W ′
n(x− a1)Op(1)(x− a1)j

= O(n−r)×Θ(nr+φ+δ)×O(n3δ−φ+r)×Op(n
−dj)×O(n−jr)

+O(n−r1)×Θ(nr+φ+δ)×O(n3δ−φ+r)×Op(1)×O(n−jr1)

= Op(n
4δ−dj−(j−1)r) +Op(n

4δ+2r−(j+1)r1). (4.20)

Also,

∑
a1

Wn(x− a1)[h̃(j)(a1)− ĥ(j)(a1)]j(x− a1)j−1 (4.21)

=
∑

a1∈I2n(x)

Wn(x− a1)Op(n
−dj)j(x− a1)j−1 +

∑
a1∈I2n(x)

Wn(x− a1)Op(1)j(x− a1)j−1

= O(n−r)×Θ(nr+φ+δ)×O(n−φ)×Op(n
−dj)×O(n−(j−1)r)

+O(n−r1)×Θ(nr+φ+δ)×O(n−φ)×Op(1)×O(n−jr1+r)

= Op(n
δ−dj−(j−1)r) +Op(n

δ−jr1+r). (4.22)

In fact, (4.20) and (4.22) hold for all 1 ≤ j ≤ J . These two results lead to the
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convergence rate of following term,

d

dx

[∑
a1

Wn(x− a1)[h̃(j)(a1)− ĥ(j)(a1)](x− a1)j

]
(4.23)

=
∑
a1

W ′
n(x− a1)[h̃(j)(a1)− ĥ(j)(a1)](x− a1)j +

∑
a1

Wn(x− a1)[h̃(j)(a1)− ĥ(j)(a1)]j(x− a1)j−1

= Op(n
4δ−dj−(j−1)r) +Op(n

4δ+2r−(j+1)r1) +Op(n
δ−dj−(j−1)r) +Op(n

δ−jr1+r)

= Op(n
4δ−dj−(j−1)r) +Op(n

4δ+2r−(j+1)r1) +Op(n
δ−jr1+r). (4.24)

When j = 0, term (4.23) will be

∑
a1

W ′
n(x− a1)[h̃(a1)− ĥ(a1)]

=
∑

a1∈I2n(x)

W ′
n(x− a1)Op(n

−dj) +
∑

a1∈I2n(x)

W ′
n(x− a1)Op(1)

= O(n−r)×Θ(nr+φ+δ)×O(n3δ−φ+r)×Op(n
−dj) +O(n−r1)×Θ(nr+φ+δ)×O(n3δ−φ+r)×Op(1)

= Op(n
4δ−dj+r) +Op(n

4δ+2r−r1). (4.25)

The same deduction will show

d

dx

[∑
a2

Wn(x− a2)[g̃(j)(a2)− ĥ(j)(a2)− f (j)(a2)](x− a2)j

]
(4.26)

=
∑
a2

W ′
n(x− a2)[g̃(j)(a2)− ĥ(j)(a2)− f (j)(a2)](x− a2)j

+
∑
a2

Wn(x− a2)[g̃(j)(a2)− ĥ(j)(a2)− f (j)(a2)]j(x− a2)j−1

= Op(n
4δ−αj−(j−1)r) +Op(n

4δ+2r−(j+1)r1) +Op(n
δ−jr1+r), (4.27)
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where 1 ≤ j ≤ J .

If j = 0, (4.26) will be

∑
a2

W ′
n(x− a2)[g̃(a2)− ĥ(a2)− f(a2)](x− a2)j

= O(n−r)×Θ(nr+φ+δ)×O(n3δ−φ+r)×Op(n
−αj) +O(n−r1)×Θ(nr+φ+δ)×O(n3δ−φ+r)×Op(1)

= Op(n
4δ−αj+r) +Op(n

4δ+2r−r1). (4.28)

Now, let’s look at the third term at RHS of (4.16). Since each |f (j)(a)| is bounded

above by some constant, let

T (x) :=
∑
a2

Wn(x− a2)
J∑
j=0

f (j)(a2)(x− a2)j (4.29)

Tj(x) :=
∑
a2

Wn(x− a2)f (j)(a2)(x− a2)j (4.30)

T (x) =
J∑
j=0

Tj(x). (4.31)

When j = 0,

T ′0(x) =
∑
a2

W ′
n(x− a2)f(a2)

=O(n−r)Θ(nr+φ+δ)×O(n3δ−φ+r)

=O(n4δ+r). (4.32)

When 1 ≤ j ≤ J ,

T ′j(x) =
∑
a2

Wn(x−a2)f (j)(a2)j(x−a2)j−1 +
∑
a2

W ′
n(x−a2)f (j)(a2)(x−a2)j. (4.33)
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The first term on RHS of (4.33) is

∑
a2

Wn(x− a2)f (j)(a2)j(x− a2)j−1

=
∑
a2

Wn(x− a2)(x− a2)j−1f (j)(a2)

=O(n−r)×Θ(nr+φ+δ)×O(n−φ)×O(n−(j−1)r)

=O(nδ−(j−1)r). (4.34)

The second term on RHS of (4.33) is

∑
a2

W ′
n(x− a2)f (j)(a2)(x− a2)j

=O(n−r)×Θ(nr+φ+δ)×O(n3δ−φ+r)×O(n−jr)×O(nδ+φ)

=O(n4δ−(j−1)r). (4.35)

By (4.34) and (4.35),

T ′j(x) = O(n4δ−(j−1)r). (4.36)

Because there are finitely many of T ′j(x)′s, we’ll have

T ′(x) =
J∑
j=0

T ′j(x) = O(n4δ+r). (4.37)
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Combine (4.5), (4.24), (4.25),(4.27), (4.28),(4.29), (4.37), suppose x < x0

µ?(x)′ − µ′(x)

=
d

dx

[∑
a1

Wn(x− a1)
J∑
j=0

[h̃(j)(a1)− ĥ(j)(a1)](x− a1)j

]

+
d

dx

[∑
a2

Wn(x− a2)
J∑
j=0

[g̃(j)(a2)− ĥ(j)(a2)− f (j)(a2)](x− a2)j

]

+ T ′(x) + [h?(x)′ − h(x)]

=
J∑
j=0

[
Op(n

4δ−dj−(j−1)r) +Op(n
4δ+2r−(j+1)r1)

]
+

J∑
j=1

Op(n
δ−jr1+r)

+
J∑
j=0

[
Op(n

4δ−αj−(j−1)r) +Op(n
4δ+2r−(j+1)r1)

]
+

J∑
j=1

Op(n
δ−jr1+r)

+O(n4δ+r) +Op(n
−J−j+1

2J+3
+v)

=Op(n
4δ−minj∈{0,1...J}{dj+jr}+r) +Op(n

4δ+2r−r1) +Op(n
δ+r−r1) +Op(n

4δ−minj∈{0,1...J}{αj+jr}+r)

+O(n4δ+r) +Op(n
−J−j+1

2J+3
+v)

=O(n4δ+r) +Op(n
4δ+2r−r1). (4.38)

The same procedure as before will also lead to the results when x > x0. That is, if

x > x0, and we assume that (4.6), (4.8), (4.10),(4.12) and (4.14) hold, then

µ?(x)′ − µ′(x) = µ?(x)′ − g′(x)

= O(n4δ+r) +Op(n
4δ+2r−r1). (4.39)

In Charnigo and Srinivasan [2011], r = 1
2J+3

. Then, from (4.38) and (4.39), (4.15)

holds. �
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For convenience, let max{r, (2r − r1)} = η, we’ll have

µ?(x)′ − µ′(x) = Op(n
4δ+η). (4.40)

Therefore, (4.39) and (4.40) show an upper bound for divergence when x is in the

neighborhood of x0 if compound estimation was performed naively. When x is away

from jump point x0, by Charnigo and Srinivasan [2011], µ′(x) could be estimated

very well. Thus, if x is away from jump point x0, then

sup
x⊂I\[x0−τn,x0+τn]

∣∣∣µ̃(j)(x)− µ(j)(x)
∣∣∣ = Op(n

−J−j+1
2J+3

+v). (4.41)

Here, τn is a sequence of positive numbers depend on sample size n such that the

estimator of µ(j)(x) when x is outside of [x0 − τn, x0 + τn] will not be affected by

the change point x0. For example, τn could be the bandwidth hn of local regression.

Equation (4.39) and (4.41) tell us the distance between “naive” compound estimator

of first derivative and the true mean response function when x is away from x0 or x is

in the neighborhood of x0. However, we don’t know the true derivative. Suppose we

could find another first derivative estimator and its distance from µ′(x) will behave

different whether x is in the neighborhood of x0 or not. Then we can look at the gap

between this estimator and the naive compound estimator. Large gap may imply the

location of the jump point. The next section will show the Empirical first derivative

works for this purpose.

4.3 Properties of Empirical first derivatives

The Empirical first derivative was defined as (3.2) in chapter 3. From Charnigo, Hall

and Srinivasan [2011], they let the weights of empirical derivative to be wj = j2∑k
m=1m

2
.
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then
wj

xi+j − xi−j
=

3

2

nj

k(k + 1)(2k + 1)
, (4.42)

since x’s are equally spaced on [−1, 1]. Also, alone with these weights and k = Θ(nα),

they proved that

V ar[Y
(1)
i ] = O(n2−3α) Bias[Y

(1)
i ] = O(nα−1), (4.43)

uniformly for k + 1 ≤ i ≤ n− k.

Assume jump point x0 ∈ (xs, xs+1) and xi ≤ xs, then from the equation above,

the empirical first derivative of xi will be

Y
(1)
i =

k∑
j=1

wi
Yi+j − Yi−j
xi+j − xi−j

=
k∑
j=1

wj
xi+j − xi−j

[h(xi+j)− h(xi−j) + εi+j − εi−j + f(xi+j)I[x0 ∈ (xi, xi+j)]]

=
k∑
j=1

wj
xi+j − xi−j

[h(xi+j)− h(xi−j) + εi+j − εi−j] +
k∑
j=1

wjf(xi+j)

xi+j − xi−j
I[x0 ∈ (xi, xi+j)]

=
k∑
j=1

wj
xi+j − xi−j

[h(xi+j)− h(xi−j) + εi+j − εi−j]

+
3

2

n

k(k + 1)(2k + 1)

k∑
j=1

f(xi+j)I (i ≤ s < s+ 1 ≤ i+ j)

=
k∑
j=1

wj
xi+j − xi−j

[h(xi+j)− h(xi−j) + εi+j − εi−j]

+
3

2

n

k(k + 1)(2k + 1)

k∑
j=s+1−i

jf(xi+j). (4.44)
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Thus, if we let k = Θ(nα), then from (4.44),

Y
(1)
i − µ′(xi) =Y

(1)
i − E[Y

(1)
i ] + E[Y

(1)
i ]− h′(xi)

=Y
(1)
i − E[Y

(1)
i ] +

k∑
j=1

wj
xi+j − xi−j

[h(xi+j)− h(xi−j)]− h′(xi)

+
3

2

n

k(k + 1)(2k + 1)

k∑
j=s+1−i

jf(xi+j)

=Op(n
1− 3

2
α) +O(nα−1) +

3

2

n

k(k + 1)(2k + 1)

k∑
j=s+1−i

jf(xi+j). (4.45)

Without loss of generality, we can assume f(x0) > 2C > 0 where 2C is a fixed

constant. Since k = Θ(nα) implies |xi+k−xi−k| = O(nα−1) and f(x) is smooth, when

n is sufficient large, we’ll have f(xs+j) > f(x0)/2 > C for all j ∈ {1, 2, ...k}.

If i = s, then from (4.45),

Y
(1)
i − µ′(xi) =Op(n

1− 3
2
α) +O(nα−1) +

3

2

n

k(k + 1)(2k + 1)

k∑
j=1

jf(xs+j)

≥Op(n
1− 3

2
α) +O(nα−1) +

3C

2

n

k(k + 1)(2k + 1)

k∑
j=1

j

=Op(n
1− 3

2
α) +O(nα−1) +

3C

4

n

(2k + 1)

=Op(n
1− 3

2
α) +O(nα−1) + Θ(n1−α). (4.46)

If i = s+ 1− k, then

Y
(1)
i − µ′(xi) =Op(n

1− 3
2
α) +O(nα−1) +

3

2

n

(k + 1)(2k + 1)
f(xi+k)

=Op(n
1− 3

2
α) +O(nα−1) + Θ(n1−2α). (4.47)
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If i ≤ s− k, then

Y
(1)
i − µ′(xi) =Op(n

1− 3
2
α) +O(nα−1). (4.48)

Then let’s look at the empirical first derivative of xi if xi ≥ xs+1. Again from (4.42)

and (4.43), we’ll have

Y
(1)
i =

k∑
j=1

wi
Yi+j − Yi−j
xi+j − xi−j

=
k∑
j=1

wj
xi+j − xi−j

[g(xi+j)− g(xi−j) + εi+j − εi−j + f(xi−j)I[x0 ∈ (xi−j, xi)]]

=
k∑
j=1

wj
xi+j − xi−j

[g(xi+j)− g(xi−j) + εi+j − εi−j] +
k∑
j=1

wjf(xi−j)

xi+j − xi−j
I[x0 ∈ (xi−j, xi)]

=
k∑
j=1

wj
xi+j − xi−j

[g(xi+j)− g(xi−j) + εi+j − εi−j]

+
3

2

n

k(k + 1)(2k + 1)

k∑
j=1

f(xi−j)I (i− j ≤ s < s+ 1 ≤ i)

=
k∑
j=1

wj
xi+j − xi−j

[g(xi+j)− g(xi−j) + εi+j − εi−j]

+
3

2

n

k(k + 1)(2k + 1)

k∑
j=i−s

jf(xi−j). (4.49)
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From (4.49) and the same deduction as (4.45),

Y
(1)
i − µ′(xi) =Y

(1)
i − E[Y

(1)
i ] + E[Y

(1)
i ]− g′(xi)

=Y
(1)
i − E[Y

(1)
i ] +

k∑
j=1

wj
xi+j − xi−j

[g(xi+j)− g(xi−j)]− g′(xi)

+
3

2

n

k(k + 1)(2k + 1)

k∑
j=i−s

jf(xi−j)

=Op(n
1− 3

2
α) +O(nα−1) +

3

2

n

k(k + 1)(2k + 1)

k∑
j=i−s

jf(xi−j). (4.50)

Again, when n is sufficient large, we’ll have f(xs+1−j) > f(x0)/2 > C for all j ∈

{1, 2, ...k}. For the case xi > xs+1, we’ll have the following results.

If i = s+ 1, then from (4.50),

Y
(1)
i − µ′(xi) =Op(n

1− 3
2
α) +O(nα−1) +

3

2

n

k(k + 1)(2k + 1)

k∑
j=1

jf(xs+1−j)

≥Op(n
1− 3

2
α) +O(nα−1) +

3C

2

n

k(k + 1)(2k + 1)

k∑
j=1

j

=Op(n
1− 3

2
α) +O(nα−1) +

3C

4

n

(2k + 1)

=Op(n
1− 3

2
α) +O(nα−1) + Θ(n1−α). (4.51)

If i = s+ k, then

Y
(1)
i − µ′(xi) =Op(n

1− 3
2
α) +O(nα−1) +

3

2

n

(k + 1)(2k + 1)
f(xi−k)

=Op(n
1− 3

2
α) +O(nα−1) + Θ(n1−2α) (4.52)

If i ≥ s+ k + 1, then

Y
(1)
i − µ′(xi) =Op(n

1− 3
2
α) +O(nα−1). (4.53)
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The above results gave us the hint about the gap between Empirical first deriva-

tive and µ′(x) whether xi is away from x0 or not. These results will be applied in the

next section for the purpose of detecting the jump point.

4.4 Detection of the location of jump point

The last two sections showed us some properties of naive compound estimator and

empirical first derivatives when there is a discontinuity in the function. In this sec-

tion, we will try to detect the interval estimator of the jump point x0. The idea is

that if we appropriately choose k for the empirical first derivative, then the distance

between naive compound estimator and empirical first derivative will behave differ-

ently when x is outside of neighborhood of x0 comparing to x is in the neighborhood

of x0.

Theorem 4.4.1 Suppose the change point x0 is in the interval [xsn , xsn+1), and the

order of Empirical first derivative is kn = Θ(nα). Let tn be the integer such that

|Y (1)
tn − µ

?(xtn)′| = max
i∈{k+1,...,n−k}

{
|Y (1)
i − µ?(xi)′|

}
, (4.54)

and In = (xtn−kn , xtn+kn). Then there exist α such that P (x0 ∈ In) −→ 1.

Proof: By triangle inequality,

∣∣∣Y (1)
i − µ?(xi)′

∣∣∣ ≥ ∣∣∣Y (1)
i − µ′(xi)

∣∣∣− |µ?(xi)′ − µ′(xi)| (4.55)∣∣∣Y (1)
i − µ?(xi)′

∣∣∣ ≤ ∣∣∣Y (1)
i − µ′(xi)

∣∣∣+ |µ?(xi)′ − µ′(xi)| . (4.56)
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Choose α such that 1 − 3
2
α > 4δ + η, or equivalently, α < 2

3
(1 − 4δ − η), then

α− 1− (1− 3
2
α) = 5

2
α− 2 < −1

3
< 0.

If i = sn, from (4.40) and (4.46) we’ll have

∣∣∣Y (1)
i − µ?(xi)′

∣∣∣ ≥ Op(n
1− 3

2
α) +O(nα−1) + Θ(n1−α)−Op(n

4δ+η)

= Op(n
1− 3

2
α) + Θp(n

1−α). (4.57)

Also, if i ≥ sn + kn or i ≤ sn − kn + 1, then by (4.47), (4.48), (4.52) and (4.53),

∣∣∣Y (1)
i − µ?(xi)′

∣∣∣ ≤ Op(n
1− 3

2
α) +O(nα−1) +O(n4δ+η)

= Op(n
1− 3

2
α). (4.58)

Suppose tn ≤ sn − kn + 1 or tn ≥ sn + kn, then (4.58) tell us
∣∣∣Y (1)
tn − µ?(xtn)′

∣∣∣ =

Op(n
1− 3

2
α) < Θp(n

1−α) ≤
∣∣∣Y (1)
sn − µ?(xsn)′

∣∣∣, which is contradictory to that (4.54).

Therefore we must have

P (sn − kn < tn < sn + kn)→ 1, (4.59)

⇒

P (tn − kn < sn < tn + kn)→ 1, (4.60)

and

P (tn − kn + 1 < sn + 1 < tn + kn + 1)→ 1, (4.61)

⇒

P (xsn ∈ In)→ 1, (4.62)
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and

P (xsn+1 ∈ In) = P (sn − kn < sn + 1 < sn + kn)

≥ P (sn − kn + 1 < sn + 1 < sn + kn)

= P (sn − kn + 1 < sn + 1 < sn + kn + 1)− P (sn = tn + kn − 1)

= 1− P (tn = sn + 1− kn)

= 1. (4.63)

Then (4.62) and (4.63) lead to P (x0 ∈ In)→ 1. �

Corollary 4.4.2 The length of inteval In, len(In)→ 0 as n→∞.

Proof: It is easy to see that len(In) = xt2n − xt1n ≤ Θ(nα)/n = Θ(nα−1)→ 0. �

4.5 Simulation study

Simulation study was done by two different scenarios. In the first scenarios, we let

f(x) be a fixed constant, specifically, f(x) = 1 for any x ∈ [−1, 1] and 1000 sam-

ples were generated from the model (4.1). The mean response is µ(x) = sin(2πx) +

cos(πx) + I(x ≥ −0.2). The random error εi ∼ N(0, 0.82). Figure 4.4 displays the

location of jump point and the mean response. However, that is not clear at all if we

look at Figure 4.3. In real case, we can only observe the scatter plot like Figure 4.3,

then the jump detection method could be applied for the situation like this. For

the purpose of finding interval estimator of x0, we need to fit the “naive” compound

estimator of µ′(x). The pointwise estimators a’s could be fit with different nonpa-

rameteric regression method in the first step of compound estimation. We choose

local regression as before in chapter 2 and chapter 3. Then the tuning parameter

selection problem arise because we need to choose bandwidth h in the pointwise es-

timation step and the gaussian convolution weight βn in formula (2.4). In chapter

3, we develop the DCp criteria for tuning parameter selection of nonparametric first

derivative estimation. However, this should not be used for the “naive” compound
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Figure 4.3: The observed data points
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Figure 4.4: The mean response function
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estimation because the Sn(λ) in (3.26) is not negligible when there is a jump point

x0. Then the proxy like (3.17) won’t work since the DCp is highly affected by the

part we ignored. Nevertheless, we still have a way to obtain a fairly good “naive”

compound estimator. In chapter 3, we mentioned that if the function µ(x) is smooth,

the derivative estimation will be competitive if we choose bandwidth from Cp criteria

and βn from our experience (βn < 100). Here, even if the mean response µ(x) has one

jump point, the Cp could still work. In theorem 2.3.2, we can see that the DIMSE is

strictly equal to E(Cp) plus a constant and this does not require µ(x) to be a strictly

smooth function. Thus we can still approximately minimize DIMSE by minimizing

Cp, which tells us that if x is away from the jump point x0, µ∗(x) should be very

close to µ(x). Since µ(x) is almost smooth and compound estimator is self-consistent,

then the derivative of both should also be close when x is not in the neighborhood of

x0. Therefore, we fixed βn = 30 for the compound estimation and applied Cp to pick

the bandwidth h. These may not give us the best tuning parameters for the “naive”

compound estimation, but it will give us a moderately good one to present a big gap

from the Empirical first derivative when x is in the neighborhood of x0. Figure 4.5

and Figure 4.6 show us the “naive” compound estimator for the mean response and

the first derivative. We used 40 a’s equally spaced on the interval [−0.98, 0.98] and

the order of the local regression is 2. The estimation behaves very well except in the

neighborhood of the jump x0 = −0.2.

Next step is to attain the Empirical first derivative, which depends on the or-

der k. We let k = nα and n = 1000 is the sample size, then we pick α by maximizing

a quantity Qn. Let l = arg maxi∈{k+1,...n−k} |Y (1)
i − µ∗(xi)|, then Qn is defined as

Qn =
|Y (1)
l − µ∗(xl)|

maxj /∈{l−k,...l+k}∪{1,...k}∪{n−k+1,...n} |Y (1)
j − µ∗(xj)|

(4.64)

This is for picking α which can present the biggest signal of the jump point. Since

the Empirical derivative will behave badly on the boundary, we ignore the first and

the last k data points when calculating Qn. In our simulation, we select α from 100
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Figure 4.5: CPE from the bandwidth chosen from Cp
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Figure 4.6: CPE for derivative from the bandwidth chosen from Cp

−1.0 −0.5 0.0 0.5 1.0

−
10

−
5

0
5

Compound estimation for first derivative

Fixed design points

F
irs

t d
er

iv
at

iv
e

True derivative 
Compound Estimation

78



Figure 4.7: True Derivative, CPE, and Empirical derivative
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candidate values equally spaced on [0.4, 0.6]. Once we fixed k, location of where the

maximum of the difference between “naive” compound estimator and the Empirical

first derivative could be detected. Then the interval estimator will be as in Theorem

4.4.1. Figure 4.7 shows that the Empirical first derivative will present an abnor-

mally high spike when there is a jump point, which is expected from the deduction

in section 4.3. Figure 4.8 plots the xi vs |Y (1)
i − µ∗(xi)|, it is very clear that there

should be a jump point x0 around −0.2.

The procedure of the simulation described above could be exactly the guide when

doing the real data analysis. We actually simulated the data 20 times, each time we

record different bandwidth h, α, interval estimate etc. The results are displayed as in

Table 4.1. Table 4.1 shows that our method works pretty well, the interval estimate

contains the jump point x0 = −0.2 for all 20 times of simulations. The IndMax

stands for the index of xi that have the largest gap between Empirical derivative and

Compound estimator and LocMax means the location of the highest jump. From

the table, we can see the location of the maximum gap is always around −0.2. The
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Figure 4.8: Distance between CPE and Empirical derivative
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bandwidths h we chosen at each time are close, which indicates that Cp is stable and

works well for picking h. The best α value seems to be between 0.45 and 0.55, which

intuitively makes sense. First, we would like to have a large α such that the variance

of Empirical first derivative will increase as slowly as possible compared to the gap

when x is in the neighborhood of x0. However, the proof of Theorem 4.4.1 tells us

that there should be a upper bound for α value, which is 2
3
(1− 4δ − η).

In the second scenario, we let f(x) be a continuous function on [−1, 1]. The data

was simulated from model (4.1) with µ(x) = sin(2πx) + cos(πx)I(x ≥ 0.2) and error

term εi ∼ N(0, 0.42). We generate 1000 data points 20 times, Figure 4.9 is the scatter

plot from one of the generated data sets, and the mean response was added to the

scatter plot in Figure 4.10. It is clear there is a big jump at x0 = 0.2 from Figure

4.10. However, the noise ε’s blurred the jump in Figure 4.9. The same as in first

scenario, we pick bandwidth h from the Cp criteria and let βn = 30 for the “naive”

compound estimation. The 40 griding points a’s are equally spaced on the interval
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Table 4.1: Results from 20 trials.

Trials h α k IndMax LocMax Interval estimate percent
1 0.378 0.512 34 413 -0.175 (-0.243, -0.107) 6.81%
2 0.364 0.524 37 407 -0.187 (-0.261, -0.113) 7.41%
3 0.351 0.473 26 398 -0.205 (-0.257, -0.153) 5.21%
4 0.365 0.427 19 398 -0.205 (-0.243, -0.167) 3.80%
5 0.343 0.512 34 408 -0.185 (-0.253, -0.117) 6.81%
6 0.363 0.467 25 405 -0.191 (-0.241, -0.141) 5.01%
7 0.363 0.493 30 414 -0.173 (-0.233, -0.113) 6.01%
8 0.347 0.400 15 406 -0.189 (-0.219, -0.159) 3.00%
9 0.368 0.511 34 403 -0.195 (-0.263, -0.127) 6.81%

10 0.371 0.402 16 398 -0.205 (-0.237, -0.173) 3.20%
11 0.358 0.564 49 399 -0.203 (-0.301, -0.105) 9.81%
12 0.355 0.467 25 411 -0.179 (-0.229, -0.129) 5.01%
13 0.371 0.412 17 395 -0.211 (-0.245, -0.177) 3.40%
14 0.361 0.412 17 394 -0.213 (-0.247, -0.179) 3.40%
15 0.384 0.461 24 406 -0.189 (-0.237, -0.141) 4.81%
16 0.347 0.515 35 404 -0.193 (-0.263, -0.123) 7.01%
17 0.354 0.479 27 389 -0.223 (-0.277, -0.169) 5.41%
18 0.354 0.588 58 387 -0.227 (-0.343, -0.111) 11.6%
19 0.370 0.519 36 404 -0.193 (-0.265, -0.121) 7.21%
20 0.355 0.473 26 407 -0.187 (-0.239, -0.135) 5.21%

[−0.98, 0.98]. The compound estimates for the mean response and first derivative are

shown as Figure 4.11 and Figure 4.12. Figure 4.12 shows us the derivative is also

discontinuous at the jump point x0 = 0.2. However, the compound estimator still

behaves very well when x is not in the neighborhood of change point. Also, we let

k = nα and pick α from [0.4, 0.6] such that quantity (4.64) will be maximized. Visual-

ization of the relations among mean response, compound estimate and the Empirical

first derivative is in Figure 4.13. Obviously, the Empirical first derivative will have

a larger bias when it is close to the change point x0 = 0.2. Figure 4.14 displays the

absolute difference between compound estimation and the Empirical first derivative,

it gives us a very strong signal about where the change point is.

Table 4.2 presents the simulation results from 20 replications. For each replication,

we proceed with the same methods of choosing h and α as before, and then obtain the

interval estimate from that h and α. Again, the change point x0 = 0.2 was contained
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Figure 4.9: The observed data points
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in the interval estimate for all 20 replications. The index of xi that has the largest

gap is always around 600, which is the true index of the jump point. Therefore, the

method works well in this case.

Copyright c© Sisheng Liu, 2017.
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Figure 4.10: The mean response function
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Figure 4.11: CPE from the bandwidth chosen from Cp
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Figure 4.12: CPE from the bandwidth chosen from Cp
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Figure 4.13: True Derivative, CPE, and Empirical derivative
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Figure 4.14: Distance between CPE and Empirical derivative
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Table 4.2: Results from 20 trials.

Trials h α k IndMax LocMax Interval estimator percent
1 0.354 0.503 32 595 0.189 (0.125, 0.253) 6.41%
2 0.350 0.442 21 597 0.193 (0.151, 0.235) 4.20%
3 0.351 0.503 32 591 0.181 (0.117, 0.245) 6.41%
4 0.347 0.427 19 604 0.207 (0.169, 0.245) 3.80%
5 0.358 0.564 49 600 0.199 (0.101, 0.297) 9.81%
6 0.354 0.448 22 596 0.191 (0.147, 0.235) 4.40%
7 0.355 0.479 27 608 0.215 (0.161, 0.269) 5.41%
8 0.360 0.403 16 603 0.205 (0.173, 0.237) 3.20%
9 0.357 0.494 30 602 0.203 (0.143, 0.263) 6.01%

10 0.330 0.488 29 607 0.213 (0.155, 0.271) 5.81%
11 0.354 0.485 28 607 0.213 (0.157, 0.269) 5.61%
12 0.356 0.427 19 596 0.191 (0.153, 0.229) 3.80%
13 0.342 0.503 32 600 0.199 (0.135, 0.263) 6.41%
14 0.355 0.427 19 595 0.189 (0.151, 0.227) 3.80%
15 0.340 0.420 18 602 0.203 (0.167, 0.239) 3.60%
16 0.355 0.467 25 606 0.211 (0.161, 0.261) 5.01%
17 0.357 0.521 36 603 0.205 (0.133, 0.277) 7.21%
18 0.345 0.494 30 596 0.191 (0.131, 0.251) 6.01%
19 0.344 0.524 37 601 0.201 (0.127, 0.275) 7.41%
20 0.345 0.442 21 602 0.203 (0.161, 0.245) 4.20%
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Chapter 5 Jump Point Detection with random design points and

heteroskedasticity

5.1 Motivation

In chapter 4, the jump point detection procedure is followed from model (4.1), which

assumes fixed design points and equal variance of error terms. However, in real case,

the x’s may not be equally spaced and the data may present heteroskedasticity. For

example, some stock markets are closed on Sunday and some national holidays, if we

would like to analyze them, the time span is not uniform. In this scenario, the x’s is

fixed but not equally spaced. Another example is the recording of earthquakes in a

seismic zone. If we want to model the relation between time and the strength of earth-

quakes, timing of earthquakes will be random. Then the x’s will be realizations of

random points in this case. Therefore, we would like to extend the results in chapter

4 to the case with random designed X’s and heteroskedasticity. The idea of detecting

jump points will be the same as in chapter 4, there are only slight modifications for

the model and methodology. Figure 5.1 and Figure 5.2 show us an example of scatter

plot and mean response when X’s are random and errors have non constant variance

as model (5.1). We generated X’s from truncated normal distribution with mean 0

and standard deviation 1. The support set is (−1, 1). The mean response function

is µ(x) = sin(2πx)I(x ≤ 0.5) + [sin(2πx) + x3 + 1]I(x > 0.5). Also, the error εi are

generated from distribution N(0,
[

1
(|Xi|+1)2

]2

).

Suppose µ(x) is the mean response of the nonparametric regression model.

Yi = µ(Xi) + εi, (5.1)

where µ(x) = h(x) + I(x > x0)f(x), and h(x), f(x) are continuous functions as in

chapter 4 with at least (J + 1) derivatives and f(x) is bounded away from 0 when x
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Figure 5.1: Scatter plot from observations
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Figure 5.2: Mean response function
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is close to x0, and for i ∈ {1, 2, ..., n}. The random design points Xi’s are identically

distributed according to a continuous distribution F , which is twice differentiable,

and Xi’s belong to a compact interval X ⊂ R. The error terms εi are independent

zero-mean random errors with variance σ2
i . With out loss of generality, we assume

X = [−1, 1]. Also, the variance of error terms are finite, bounded away from 0, and

bounded above. That is there are some positive constants C1 and C2 such that,

C1 < min(σ2
i ) < max(σ2

i ) < C2. (5.2)

5.2 Properties of “naive” compound estimation with heteroskedasticity

and random design points

Chapter 2 has already showed us the properties of compound estimation of a smooth

function with random design points and heteroskedasticity. Chapter 4 made some

assumption for “naive” compound estimation with fixed designs. However, most of

these assumption could be the same and part of the conclusions during the proof

will follow from these assumptions. Therefore, some of the conclusion from chapter

2 and chapter 4 could be applied immediately. In this section, we’ll briefly describe

the proof of the following theorem instead of reinventing the wheel. We will use the

same notation of three mean response functions as in chapter 4. The only difference

is that the X’s will be random design points, which are not equally spaced over

the interval [−1, 1]. Thus, the assumptions (4.5) to (4.14) will still hold. However,

the assumptions (4.2) to (4.4) need to be changed on account of heteroskedasticity.

In chapter 2, we proved that the compound estimation still achieves near optimal

convergence rate with adaptive Gaussian convolution weights. Therefore, we can
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assume

h?(x) =
∑
a

Wa,n(x− a)
J∑
j=0

ĥ(j)(a)(x− a)j (5.3)

g?(x) =
∑
a

Wa,n(x− a)
J∑
j=0

ĝ(j)(a)(x− a)j (5.4)

µ?(x) =
∑
a

Wa,n(x− a)
J∑
j=0

µ̃(j)(a)(x− a)j, (5.5)

instead of (4.2)-(4.4). The weight function Wa,n(x − a) depends on both x and grid

point a. Also, the pointwise estimators ĥ(j)(a), ĝ(j)(a), and µ̃(j)(a) will be adapted

for heteroskedasticity by some nonparametric regression method in the first step of

compound estimation.

Theorem 5.2.1 Suppose we have a nonparametric regression model (5.1), and the

assumptions (5.2)-(5.5) and (4.5)-(4.14) hold, let In be the set of all the grid points

a’s, δ = v
4J+6

, r = 1
2J+3

, r1 > 0, then the naive compound estimator µ′(x) in (5.5)

satisfy

| d
dx
µ?(x)− d

dx
µ(x)| = O(n4δ+ 1

2J+3 ) +Op(n
4δ+ 2

2J+3
−r1) (5.6)

Proof:

The proof of theorem 5.2.1 will be very similar to the proof of theorem 4.2.1. The

only difference is that we need to find the convergence rate of the adaptive weights

Wa,n(x−a), which could be easily obtained from (2.11) and (2.14). Following from the

notation of chapter 4, we let Ln = Θ(nr+δ+φ) and I1n(x) = {a ∈ In : |a− x| < n−r}.

Also, the upper bound of Gaussian convolution weights is

β?n = β?0nn
2(γ+δ) = Θ(n2(r+δ)) (5.7)
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then (2.11), (2.14) and (5.7) immediately yields

sup
a∈I1n(x)

∣∣∣∣ dkdxkWa,n(x)

∣∣∣∣ ≤ LknC2exp
[−min{β0n(a)}n2δ](β?n)k

[Ln(β?n)−1/2]k+1

=
C2(β?n)(3k+1)/2exp[−min{β0n(a)}n2δ]

Ln

= Θ
(
n(3kr−φ+3kδ)exp[−min{β0n(a)}n2δ]

)
, (5.8)

and

sup
a∈I1n(x)

∣∣∣∣ dkdxkWa,n(x)

∣∣∣∣ = O

(
n(3k+1)(γ+δ)−2kγ

Ln

)
= O(n3kδ−φ+kr). (5.9)

As (4.18), formula (5.8) will decay in exponential rate, and the numbers of a′s in

In is Θ(nr+δ+φ). Therefore, summand of | dk
dxk
Wn(x − a)| when a ∈ I1n(x) could be

negligible. Equation (5.9) is identical to (4.17) as in the proof of theorem 4.2.1. The

rest of proof will be exactly the same as proof of theorem 4.2.1. �

Let max{r, (2r − r1)} = η, we’ll have

µ?(x)′ − µ′(x) = Op(n
4δ+η). (5.10)

If x is away from the jump point x0, then by (2.16) in chapter 2, we’ll have

∣∣∣µ̃(j)(x)− µ(j)(x)
∣∣∣ = op(n

−J−j+1
2J+3

+v), (5.11)

for x ⊂ I\[x0 − τn, x0 + τn] and τn is a sequence of positive numbers such that the

estimator of µ(j)(x) when x is outside of [x0 − τn, x0 + τn] will not be affected by the

change point x0. For example, if we apply the Nearest Neighbor regression, τn will

be decided by the number of nearest design points of x0, or if we use local regression,

τn is dependent on the bandwidth h.
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5.3 Properties of Empirical first derivatives with random designed points

and heteroskedasticity

Suppose the design points X’s are random, from chapter 3, the Empirical first deriva-

tive is defined as

Y
(1)
i =

k∑
j=1

wij
Yi+j − Yi−j
Xi+j −Xi−j

. (5.12)

The X’s are sorted from smallest to the largest. And the weights are

wij =
ηij∑k
j=1 ηij

(5.13)

for k + 1 ≤ i ≤ n− k, where ηij =
(Xi+j−Xi−j)2
σ2
i+j+σ

2
i−j

. Then

wij
Xi+j −Xi−j

=
Xi+j −Xi−j

σ2
i+j + σ2

i−j

/
k∑
j=1

(Xi+j −Xi−j)
2

σ2
i+j + σ2

i−j
. (5.14)

By (5.2)

C1

C2

Xi+j −Xi−j∑k
j=1(Xi+j −Xi−j)2

≤ wij
Xi+j −Xi−j

≤ C2

C1

Xi+j −Xi−j∑k
j=1(Xi+j −Xi−j)2

(5.15)
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Assume jump point x0 ∈ (Xs, Xs+1) and Xi ≤ Xs, then

Y
(1)
i =

k∑
j=1

wij
Yi+j − Yi−j
Xi+j −Xi−j

=
k∑
j=1

wij
Xi+j −Xi−j

[h(Xi+j)− h(Xi−j) + εi+j − εi−j + f(Xi+j)I[X0 ∈ (Xi, Xi+j)]]

=
k∑
j=1

wij
Xi+j −Xi−j

[h(Xi+j)− h(Xi−j) + εi+j − εi−j] +
k∑
j=1

wjf(Xi+j)

Xi+j −Xi−j
I[x0 ∈ (Xi, Xi+j)]

=
k∑
j=1

wij
Xi+j −Xi−j

[h(Xi+j)− h(Xi−j) + εi+j − εi−j]

+
k∑
j=1

wij
Xi+j −Xi−j

f(Xi+j)I[i ≤ s < s+ 1 ≤ i+ j]

=
k∑
j=1

wij
Xi+j −Xi−j

[h(Xi+j)− h(Xi−j)] +
k∑
j=1

wij
Xi+j −Xi−j

[ε(Xi+j)− ε(Xi−j)]

+
k∑

j=s+1−i

wij
Xi+j −Xi−j

f(Xi+j)I[i ≤ s < s+ 1 ≤ i+ j]. (5.16)

Since Xi < Xs, we have µ′(Xi) = h′(Xi), then from the equation above,

Y
(1)
i − µ′(Xi) = Y

(1)
i − h′(Xi)

= E(Y
(1)
i |X)− h′(Xi) + Y

(1)
i − E(Y

(1)
i |X)

=
k∑
j=1

wij
Xi+j −Xi−j

[h(Xi+j)− h(Xi−j)]− h′(Xi)

+
k∑
j=1

wij
Xi+j −Xi−j

[ε(Xi+j)− ε(Xi−j)]

+
k∑

j=s+1−i

wij
Xi+j −Xi−j

f(Xi+j) (5.17)
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Following from the same assumption of k as in Chapter 3, we let k = Θ(nα). Suppose

1
4
< α < 1

2
, then from (3.38),

k∑
j=1

wij
Xi+j −Xi−j

[h(Xi+j)− h(Xi−j)]− h′(Xi) = Op(n
α−1) (5.18)

From (3.37), we adopt the notations from Chapter 3 that p = in
n

, qn = in + jn,

q′n = in − jn. Also, let the density function be denoted by f1, then

Xin+jn −Xin−jn =
qn − q′n
nf1(ζp)

+ R̃n

=
2jn
n

1

f1(ζp)
+Op(n

−3/4(log n)1/2(δ+1))

and jn ∈ {1, 2, 3...kn}.

Since kn = Θ(nα) and 1
4
< α < 1

2
, then there are Θ(nα) of jn such that Xin+jn −

Xin−jn = Θp(n
α−1) and others will be Xin+jn − Xin−jn < Θp(n

α−1), number of jn

satisfy later condition will be O(nα). These lead to the following results:

k∑
j=1

(Xi+j −Xi−j) = Θ(nα)Θp(n
α−1) +O(nα)Op(n

α−1)

= Θp(n
2α−1), (5.19)

and

k∑
j=1

(Xi+j −Xi−j)
2 = Θ(nα)Θp(n

2α−2) +O(nα)Op(n
2α−2)

= Θp(n
3α−2) (5.20)
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Then by (3.6), (5.15) and (5.20),

V ar(Y
(1)
i |X) =

k∑
j=1

σ2
i+j + σ2

i−j

(Xi+j −Xi−j)2
w2
ij

≤ 2C2

k∑
j=1

[
wij

(Xi+j −Xi−j)

]2

≤ 2C2

k∑
j=1

(Xi+j −Xi−j)
2

4C2
1

/(
k∑
j=1

(Xi+j −Xi−j)
2

2C2

)2


=
8C3

2

4C2
1

∑k
j=1(Xi+j −Xi−j)

2[∑k
j=1(Xi+j −Xi−j)2

]2

=
2C3

2

C2
1

1∑k
j=1(Xi+j −Xi−j)2

= Θp(n
2−3α) (5.21)

From (5.21), we can infer the rate of
∑k

j=1
wij

Xi+j−Xi−j [ε(Xi+j)− ε(Xi−j)] in formula

(5.17). We let

Wn =
k∑
j=1

wij
Xi+j −Xi−j

[ε(Xi+j)− ε(Xi−j)] , (5.22)

then

V ar(Wn|X) =
k∑
j=1

σ2
i+j + σ2

i−j

(Xi+j −Xi−j)2
w2
ij (5.23)

where

wij =
ηij∑k
j=1 ηij

and ηij =
(Xi+j −Xi−j)

2

σ2
i+j + σ2

i−j
(5.24)

Therefore, we will have

V ar(Wn|X) =
k∑
j=1

σ2
i+j + σ2

i−j

(Xi+j −Xi−j)2

η2
ij

(
∑k

j=1 ηij)
2

=
1∑k

j=1 ηij
. (5.25)
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From (5.2), we’ll have

V ar(Wn|X) =
1∑k

j=1
(Xi+j−Xi−j)2
σ2
i+j+σ

2
i−j

≤ C
1

(Xi+j −Xi−j)2
. (5.26)

Where C is a fixed constant. Thus,

E [V ar(Wn|X)] ≤ CE

[
1

(Xi+j −Xi−j)2

]
≤ CE

[
1

k
2
(Xi+k/2 −Xi−k/2)2

]

≤ 2C

k
E

[
1

(Xi+t −Xi−t)2

]
, (5.27)

where t =
[
k
2

]
= Θ(nα). Now we look at the rate of E

[
1

(Xi+t−Xi−t)2

]
. Suppose the

CDF of each random variable X is F , then by the formula of joint distribution of two

order statistics, we could have

E

[
1

(Xi+t −Xi−t)2

]
=

∫∫
D

n!(u− v)−2

(i− t− 1)!(2t− 1)!(n− i− t)!
F (u)i−t−1[F (v)− F (u)]2t−1[1− F (v)n−i−t]dF (u)dF (v)

=

∫∫
D

n!F (v)i−t−1[1− F (v)]n−i−t

(i− t− 1)!(2t− 1)!(n− i− t)!
[F (v)− F (u)]2t−1

(u− v)2
dF (u)dF (v)

≤ C3
n!

(i− t− 1)!(2t− 1)!(n− i− t)!

∫∫
D

F (u)i−t−1[F (v)− F (u)]2t−3[1− F (v)n−i−t]dF (u)dF (v)

= C3
n!

(i− t− 1)!(2t− 1)!(n− i− t)!
(i− t− 1)!(2t− 3)!(n− i− t)!

(n− 2)!

= C3
n(n+ 1)

(2t− 1)(2t− 2)

= Θ(n2−2α) (5.28)

Combine (5.27) and (5.28), we get E[V ar(Wn|X)] ≤ Θ(n2−3α), which indicate that

V ar(Wn) = E[V ar(Wn|X)] + V ar[E(Wn|X)]

≤ Θ(n2−3α). (5.29)
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Therefore,

Wn = E(Wn) +Op (V ar(Wn)) ≤ Θp(n
1− 3

2
α). (5.30)

Without loss of generality, again, we can assume f(x0) > 2C > 0 where C is a fixed

constant. Since k = Θ(nα) implies |Xi+k −Xi−k| = Op(n
α−1)→ 0 in probability and

f(x) is smooth, when n is sufficient large, we’ll have f(Xs+j) > f(x0)/2 > C for all

j ∈ {1, 2, ...k}.

If i = s, by (5.2), (5.19) and (5.20), we will have

k∑
j=s+1−i

wij
Xi+j −Xi−j

f(Xi+j) =
k∑
j=1

wij
Xi+j −Xi−j

f(Xi+j)

≥ C
k∑
j=1

wij
Xi+j −Xi−j

≥
k∑
j=1

C1

C2

Xi+j −Xi−j∑k
j=1(Xi+j −Xi−j)2

C

=
C1C

C2

∑k
j=1(Xi+j −Xi−j)∑k
j=1(Xi+j −Xi−j)2

=
Θp(n

2α−1)

Θp(n3α−2)

= Θp(n
1−α) (5.31)

By (5.17), (5.18), (5.30) and (5.31), if i = s

Y
(1)
i − µ′(Xi) = Y

(1)
i − h′(Xi)

= Op(n
α−1) + Θp(n

1− 3
2
α) + Θp(n

1−α)

= Θp(n
1−α). (5.32)
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If i = s+ 1− k, then by (5.15)

k∑
j=s+1−i

wij
Xi+j −Xi−j

f(Xi+j) =
wik

Xi+k −Xi−k
f(Xi+k)

≤ C2

C1

Xi+j −Xi−j∑k
j=1(Xi+j −Xi−j)2

f(Xi+k) =
Θp(n

α−1)

Θp(n3α−2)

= Θp(n
1−2α) (5.33)

By (5.17), (5.18), (5.30) and (5.33) ⇒

Y
(1)
i − µ′(Xi) = Y

(1)
i − h′(Xi)

= Op(n
α−1) + Θp(n

1− 3
2
α) + Θp(n

1−2α)

= Θp(n
1− 3

2
α) (5.34)

If i ≤ s− k, then by (5.17), (5.18) and (5.21),

Y
(1)
i − µ′(Xi) = Y

(1)
i − h′(Xi)

= Op(n
α−1) + Θp(n

1− 3
2
α)

= Θp(n
1− 3

2
α) (5.35)

From (5.32), (5.34) and (5.35), we could see that the gap between Empirical first

derivative will be larger when X’s is in the neighborhood of the jump point x0. This

is very similar to the procedure in chapter 4. Now let’s look at the properties of the

Empirical first derivative when i ≥ s+ 1.
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Y
(1)
i =

k∑
j=1

wij
Yi+j − Yi−j
Xi+j −Xi−j

=
k∑
j=1

wij
Xi+j −Xi−j

[g(Xi+j)− g(Xi−j) + εi+j − εi−j + f(Xi−j)I[x0 ∈ (Xi−j, Xi)]]

=
k∑
j=1

wij
Xi+j −Xi−j

[g(Xi+j)− g(Xi−j) + εi+j − εi−j] +
k∑
j=1

wijf(Xi−j)

Xi+j −Xi−j
I[x0 ∈ (Xi−j, Xi)]

=
k∑
j=1

wij
Xi+j −Xi−j

[g(Xi+j)− g(Xi−j) + εi+j − εi−j]

+
k∑
j=1

wij
Xi+j −Xi−j

f(Xi−j)I[i− j ≤ s < s+ 1 ≤ i]

=
k∑
j=1

wij
Xi+j −Xi−j

[g(Xi+j)− g(Xi−j)] +
k∑
j=1

wij
Xi+j −Xi−j

[εi+j − εi−j]

+
k∑

j=i−s

wij
Xi+j −Xi−j

f(Xi−j). (5.36)

From the equation above,

Y
(1)
i − µ′(Xi) = Y

(1)
i − g′(Xi)

= E(Y
(1)
i |X)− g′(Xi) + Y

(1)
i − E(Y

(1)
i |X)

=
k∑
j=1

wij
Xi+j −Xi−j

[g(Xi+j)− g(Xi−j)]− g′(Xi)

+
k∑
j=1

wij
Xi+j −Xi−j

[εi+j − εi−j]

+
k∑

j=i−s

wij
Xi+j −Xi−j

f(Xi−j) (5.37)

Since k = Θ(nα) and 1
4
< α < 1

2
, then from (3.38),

k∑
j=1

wij
Xi+j −Xi−j

[g(Xi+j)− g(Xi−j)]− g′(Xi) = Op(n
α−1) (5.38)
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If i = s+ 1, then similar to (5.33), we’ll have

k∑
j=i−s

wij
Xi+j −Xi−j

f(Xi−j) =
k∑
j=1

wij
Xi+j −Xi−j

f(Xi−j)

≥ C

k∑
j=1

wij
Xi+j −Xi−j

≥
k∑
j=1

C1

C2

Xi+j −Xi−j∑k
j=1(Xi+j −Xi−j)2

C

=
C1C

C2

∑k
j=1(Xi+j −Xi−j)∑k
j=1(Xi+j −Xi−j)2

=
Θp(n

2α−1)

Θp(n3α−2)

= Θp(n
1−α). (5.39)

By (5.37), (5.38), (5.30) and (5.39) ⇒

Y
(1)
i − µ′(Xi) = Y

(1)
i − g′(Xi)

= Op(n
α−1) + Θp(n

1− 3
2
α) + Θp(n

1−α)

= Θp(n
1−α). (5.40)

If i = s+ k, then by (5.15)

k∑
j=i−s

wij
Xi+j −Xi−j

f(Xi−j) =
wik

Xi+k −Xi−k
f(Xi−k)

≤ C2

C1

Xi+k −Xi−k∑k
j=1(Xi+j −Xi−j)2

f(Xi−k) =
Θp(n

α−1)

Θp(n3α−2)

= Θp(n
1−2α). (5.41)
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Therefore, combine (5.37), (5.38), (5.30), (5.41)

Y
(1)
i − µ′(Xi) = Y

(1)
i − g′(Xi)

= Op(n
α−1) + Θp(n

1− 3
2
α) + Θp(n

1−2α)

= Θp(n
1− 3

2
α) (5.42)

If i ≥ s+ k + 1, then combine (5.38), (5.39) and (5.41),

Y
(1)
i − µ′(Xi) = Y

(1)
i − g′(Xi)

= Op(n
α−1) + Θp(n

1− 3
2
α)

= Θp(n
1− 3

2
α). (5.43)

5.4 Detection of the location of jump point

In section 5.2 and 5.3, we delved into the properties of “naive” compound estimation

and the Empirical first derivative when random design point Xi is in the neighborhood

of x0 or not. Then we detect the jump point through the distance between compound

estimation and the Empirical first derivative when Xi is near x0 or not. This section

is a modification of section 4.4.

Theorem 5.4.1 Suppose we have model (5.1), the change point x0 is in the interval

(Xsn , Xsn+1), and the order of Empirical first derivative is kn = Θ(nα). Let tn be the

integer such that

|Y (1)
tn − µ

?(Xtn)′| = max
i∈{k+1,...,n−k}

{
|Y (1)
i − µ?(Xi)

′|
}
, (5.44)

and In = (Xtn−kn , Xtn+kn). Then there exist α such that P (x0 ∈ In) −→ 1.

The proof of theorem 5.4.1 is identical to the proof of theorem 4.4.1. The α is similar

to the one specified in Theorem 4.4.1. The only difference is that we change the fixed

design point x to the random design point X.

Corollary 5.4.2 The length of interval In, len(In)→ 0 in probability as n→∞.
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Proof: It is easy to see that len(In) = Xtn−kn−Xtn+kn ≤ Θp(n
α)/n = Θp(n

α−1)→ 0

in probability. �

5.5 Simulation study

We investigated the method for a single nonparametric regression models as in (5.1).

The model assume mean response function is µ(Xi) = X2
i + cos(πXi) + 1

2
I(Xi > 0),

where Xi is distributed as uniform distribution on interval (−1, 1). Also, error term εi

is generated from N(0, [|0.2 cos(2πXi)|+ 0.1]2). Figure 5.3 displays the heteroskedas-

ticity of the error terms. Notice that the variance is bounded above and below by 0.3

and 0.1 respectively, which satisfy condition (5.2). From Figure 5.4, the jump point

is not very clear in the scatter plot and blurred by non-constant variance. However,

Figure 5.5 shows obviously a jump at x = 0 for the mean response function.

We generated the nonparametric regression model with n = 1000 samples 20 times,

then processed these 20 datasets with similar methodology as in chapter 4. The point-

wise estimators are obtained from local regression with degree 2 by 50 grid points a’s

that are equally spaced on [−0.98, 0.98].

At first, We let βn to be 30 from our experience and pick bandwidth h by Cp criteria

as (2.19) for the naive compound estimators of mean response and derivative. Figure

5.6 presents the compound estimator of mean response, which recovers µ(x) very well

except in the neighborhood of change point x = 0.

Next step is to figure out the order k of Empirical derivative as (5.12) such that

we could have a big signal of the jump point. Again, we let k = nα as in section

4.5 and n = 1000 is the sample size, then α is obtained by maximizing the quantity

Qn as (4.64). We ignored the first and last k data points when calculating Qn. In

our simulation, we selected α from 100 candidate values equally spaced on [0.45, 0.6].

Once k is picked, the Empirical derivative could be calculated as (5.12), and the in-

terval estimator of jump point is obtained by (5.35).
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Figure 5.7 presents the relations among true derivative, Compound derivative es-

timation and the Empirical derivative estimation. From the plot, we know both

Empirical derivative and the Compound estimation will behave abnormally when

near the change point x = 0. However, Empirical derivative will be much more ab-

surd. Therefore, the absolute difference of these two estimate will indicate where the

jump is, as in Figure 5.8. We should notice that non-constant variance does have

effects on the Empirical derivative. Figure 5.3 tells us the variance of error terms

achieve its maximum when x equals to −0.5 and 0.5, which corresponding to the

higher spikes on Figure 5.7 when x is around −0.5 or 0.5. However, condition (5.2)

ensure us that the effects of non-constant variance will not exceed the jump point as

n goes to infinity. In practice, the candidate value of α could be based on the plot of

compound estimation and Empirical first derivative. If the plot presents an obvious

big variance or bias of the Empirical derivative, then the α value may be too small

or large.

Table 5.1 shows us the simulation results from the model. For all 20 trials, change

point x = 0 was contained in the interval estimate. IndMax stands for the index of

xi that has the largest gap and LocMax means the location of the highest gap. We

could see the data point which gives us the biggest gap is always around the jump

point x = 0. Overall, our method seems to work well for moderately large data sets

with a single change point and moderate heteroskedasticity. However, practically,

the data with small samples and huge signal to noise ratio may lead to trouble with

the method. Theoretically, our method needs to assume that the sample size n goes

to infinity and variance is bounded by constants. Therefore, the assumption may

be seriously violated with small samples and huge SNR. In that case, a parametric

model for the change point may be a better choice (Reference?????).
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Figure 5.3: Variance function of εi
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Figure 5.4: Scatter plot
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Figure 5.5: Mean response function
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Figure 5.6: Compound Estimation
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Figure 5.7: True Derivative, CPE and Empirical derivative

−1.0 −0.5 0.0 0.5 1.0

−
2

0
2

4
6

8

Change point at x=0

Random design points

F
irs

t d
er

iv
at

iv
e

True derivative 
Compound Estimation 
Empirical derivative

Figure 5.8: Distance between CPE and Empirical derivative
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Table 5.1: Results from 20 trials for first model

Trials h α k IndMax LocMax Interval Estimator percent
1 0.262 0.492 30 523 0.030 (-0.032, 0.100) 6.62%
2 0.378 0.515 35 480 -0.018 (-0.088, 0.042) 6.53%
3 0.312 0.488 29 492 0.010 (-0.059, 0.059) 5.92%
4 0.283 0.461 24 496 0.010 (-0.027, 0.065) 4.60%
5 0.156 0.483 28 519 0.013 (-0.052, 0.059) 5.57%
6 0.417 0.503 32 460 -0.049 (-0.100, 0.049) 7.44%
7 0.057 0.461 24 485 -0.015 (-0.047, 0.037) 4.20%
8 0.097 0.450 22 529 -0.003 (-0.043, 0.036) 3.93%
9 0.311 0.488 29 494 -0.004 (-0.058, 0.042) 5.03%

10 0.370 0.461 24 486 0.004 (-0.067, 0.042) 5.46%
11 0.281 0.503 32 514 -0.001 (-0.052, 0.060) 5.58%
12 0.118 0.450 22 495 0.031 (-0.021, 0.073) 4.70%
13 0.156 0.450 22 480 -0.004 (-0.054, 0.033) 4.35%
14 0.198 0.461 24 480 -0.013 (-0.058, 0.029) 4.36%
15 0.225 0.511 34 506 -0.005 (-0.089, 0.056) 7.23%
16 0.047 0.508 33 485 0.030 (-0.047, 0.076) 6.16%
17 0.153 0.567 50 521 0.028 (-0.074, 0.112) 9.28%
18 0.102 0.455 23 514 0.004 (-0.046, 0.059) 5.24%
19 0.435 0.461 24 473 -0.018 (-0.058, 0.021) 3.94%
20 0.282 0.527 38 515 -0.002 (-0.070, 0.072) 7.10%

5.6 Real data application:

In this section, we will apply the method established in Chapter 4 to analyze glucose

data for several patients, some of whom may have diabetes. The patients’ data are

collected via a subcontract grant support from NIH 4P30DK020579-39 and a UK

CCTS pilot grant. Five patients had their glucose levels measured over two days.

The measurements were conducted every 5 minutes. If we number the patients from

1 to 5, the 4th patient had many missing measurements in the first day. All patients

have reported their own meal times in two days. If a patient eats a meal, then his or

her glucose level could have a big change, thus we may be able to locate an interval

of the meal time of each patient by our method in Chapter 4. Our interests are

focused on whether the intervals are consistent with the self-report times from the

patients. Plots in Figure 5.9 show the relations between the glucose level and the

timing of measurements for patients. Each plot exhibits a highly autocorrelation of

106



Figure 5.9: Patients’ glucose data
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their glucose levels. However, the jump point detection method assumes the error

terms are independent of each other. Therefore, we take differences between two

consecutive glucose levels and assume the increments of these two glucose levels are

independent. If each glucose level is denoted as Gi, then the model assumption is:

Gi+1 −Gi = µ(xi) + εi (5.45)

for i = 1, 2, 3...n. xi’s are the times of measurements. For applying our method

in Chapter 4, we looked at the time window between 7 hours before and 1 hour

after the self-reported bedtime and assume they have only one major meal between

these two times. Namely, there is only one jump point in this time window. These

won’t be strictly true, however, we could at least detect one of the major changes

during that time and possible find other meals in this time window. We may not

be able to give a theoretical justified interval estimate for other changes, however,

practically, a plausible rough statement of other changes could be possible. Adhocly,

for example, we could let the second interval estimate of another change to be the

(xj−k, xj+k), with j such that Y
(1)
j − µ̂(xj) has a the maximum peak outside the first

interval estimate. Let Yi = Gi+1 −Gi, also we will transform the times into interval

[−1, 1], since measurements are recorded every 5 minutes, the timing points xi’s will

be equally spaced on interval [−1, 1]. Figure 5.10 shows us the scale of 8 hours window

after transformation of time points and the glucose increments for the first day of the

first patient. It seems that the autocorrelations are reduced a lot after taking the

subtraction.

In our glucose data, the 8 hours window only include no more than 100 time points

for each patient in each day. Therefore, we let order k = 3 or 4 to avoid overfitting the

data with empirical derivative. Whether k equals to 3 or 4 relies on the bandwidth

of compound estimation. Moreover, since we are interested in the positive of glucose

increments, a little modification was imposed on the method in section 4.5. We
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Figure 5.10: Patient 1 Day 1
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maximize the quantity

Qn =
Y

(1)
l − µ∗(xl)

maxj /∈{l−k,...l+k}∪{1,...k}∪{n−k+1,...n}

(
Y

(1)
j − µ∗(xj)

) (5.46)

instead of the Qn defined as (4.64). The rest of the application will be the same as in

section 4.5. We pick 10 grid points for the compound estimation with the convolu-

tion weight β = 60 and polynomial order 2 of local regression. Bandwidth h in local

regression was chosen by Cp criteria from chapter 2. If we obtain a large bandwidth

from the Cp criteria, let k = 4 would be a better choice, or else, let k = 3. Because

if the bandwidth is small, compound estimation itself will be somehow wiggled, we

may need a wiggler empirical derivative to produce a visible difference between them.

First 4 peaks along with their interval estimates are computed as the ad hoc way we

mentioned before. However, these do not mean all the peaks we found make sense

biologically. Whether these point estimates or interval estimates make 100% sense

will depend on the decisions of specialists from other area. We could describe the

results numerically and trying to convert them into very limited knowledge about the

109



Figure 5.11: Patient 1, Day 2.
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Table 5.2 display the 4 peaks and the ad hoc interval estimates of them from plot

of distance between compound derivative estimate and Empirical derivative. Figure

5.11 is the example of plotting the difference from second day of the first patient. It

is similar to Figure 5.8 in previous simulation except they present several peaks and

negative differences are considered. We take these four design points and transform

them back to hours. The meal times and choices of k and bandwidths are shown in

the table.

Glucose level will be affected by many factors. It depends on a patient’s health

condition, whether they did exercise or consumed some food. Even if a patient had a

meal, their glucose may increase corresponding to what kind of food they consumed.

Their glucose level may increase immediately if they have some food called “fast

carbs”, like an ice-cream or coke. Also, if pizza or pasta was eaten, then the glucose

may increase several hours after the meal time. This kind of food is called “slow

carbs”. Thus, each patient may have multiple changes of glucose level. We will pick

the interval that is closest to the self-reported meal time as our interval estimate of
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the meal time. Figures 5.12 to 5.16 show us the locations of peaks and the interval es-

timates on the plots of time v.s. Glucose level. Four different colors (red, blue, green,

pink) in that order correspond to four peaks respectively. The thicker the lines are,

the higher the peaks. From Figures 5.12 to 5.16, the changes of increments of glucose

level somehow exactly correspond to the changes of glucose level. For instance, the

first three intervals we found in day 1 of Figure 5.12 contain three turning points.

The last interval also indicates a change of the glucose increment since the glucose

level was flat at first and increased suddenly. These may tell us that generally the

changes of glucose increments are stable unless at the turning point of the glucose

level, which may indicate the starting time of consumption. We also used a dashed

purple vertical line to represent the self-reported meal time.

From Table 5.2, we could see the self-reported meal times are generally very close or

inside one of the interval estimates except day 2 of third patient and fifth patient.

Nevertheless, second picture in Figure 5.14 shows us that the glucose has already

increased before the meal time and he may eat meal before 18:00 instead of the self-

reported time. Table 5.2 tells us he may eat meal during 16:54 to 17:33. Also, the

second picture on Figure 5.16 shows that the glucose level was decreasing after the

self-reported meal time. The patient may have eaten the meal before that time, like

during 17:16 and 17:45 from Table 5.2, or he may had some “fast carbs” before the

meal time and had something during the meal which will cost time to start affecting

the glucose.

Copyright c© Sisheng Liu, 2017.
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Table 5.2: Possible changes for each patients

Patient 1 1 2 2 3
Day 1 2 1 2 1

meal 18:00 18:00 18:00 18:00 18:00
k 3 3 3 4 4
h 0.32 0.25 0.22 0.88 0.62

Peak1 20:55 17 : 37 18 : 18 19:06 19:32
I1 (20:40, 21:10) (17:22, 17:52) (18:03, 18:32) (18:47, 19:25) (19:12, 19:51)

Peak2 21:54 21:25 16:26 17 : 44 18 : 28
I2 (21:39, 22:09) (21:10, 21:39) (16:12, 16:41) (17:24, 18:03) (18:08, 18:47)

Peak3 17 : 57 18:51 21:56 21:31 15:37
I3 (17:42, 18:12) (18:36, 19:06) (21:41, 22:10) (21:12, 21:51) (15:17, 15:56)

Peak4 16:28 19:56 19:21 23:23 20:35
I4 (16:13, 16:43) (19:41, 20:10) (19:06, 19:35) (23:03, 23:42) (20:16, 20:55)

Here, meal represent the self-reported meal time for each patient, k and h
correspond to the order of empirical derivative and the bandwidth we chosen for
Local regression. Peak1-Peak4 and I1-I4 correspond to the locations of peaks and
the interval estimates of consumption time.

Patient 3 4 5 5
Day 2 2 1 2

meal 18:00 20:30 18:00 18:00
k 4 3 4 3
h 0.88 0.37 0.88 0.31

Peak1 15:46 20 : 26 19:21 16:37
I1 (15:27, 16:05) (20:12, 20:41) (19:01, 19:40) (16:22, 16:52)

Peak2 19:29 16:53 21:36 19:53
I2 (19:09, 19:48) (16:39, 17:08) (21:17, 21:56) (19:38, 20:07)

Peak3 17:13 21:20 18 : 18 15:48
I3 (16:54, 17:33) (21:05, 21:34) (17:58, 18:37) (15:33, 16:03)

Peak4 16:30 19:28 16:41 17:31
I4 (16:10, 16:49) (19:14, 19:43) (16:21, 17:00) (17:16, 17:45)
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Figure 5.12: Patient 1
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Figure 5.13: Patient 2
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Figure 5.14: Patient 3

16 18 20 22

10
5

11
0

11
5

12
0

12
5

13
0

13
5

Day1

Hours

G
lu

co
se

 le
ve

l

19:3218:2815:37 20:35

16 18 20 22

11
5

12
0

12
5

Day2

Hours

G
lu

co
se

 le
ve

l

15:46 19:2917:1316:30

115



Figure 5.15: Patient 4
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Figure 5.16: Patient 5
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