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Chapter 1 Introduction

1.1 Microarray Technology

A microarray is an arrangement of miniaturized test sites or ‘spots’ on a surface.

Typically each spot is less than 250 micrometers in diameter and contains biological

molecules–usually DNA or protein–which act as probes for a test sample applied to

the array. The surface may be a glass slide, a plastic plate with wells or a polymer

bead. The microarray format allows many tests or experiments to be performed

simultaneously, in parallel, leading to the generation of huge amounts of biological

information. Several features of DNA microarray technology make it particularly well

suited to exploratory research. It is (relatively) cheap, flexible and universal, fast and

user-friendly (Brown and Botstein, 1999). A comprehensive review of the biological

and technological aspect of the microarray technology can be found in Nguyen et al.

(2002).

Microarrays have many uses. For example, they can disclose the correlated loss

and increase of gene expression, allowing gene interactions to be studied. And they

can be used to design and screen drugs, wherein compounds that affect the expression

of important genes are disclosed. The examples of microarray use are myriad because

of this simple technique’s power.

Two of the most commonly used microarrays for gene-expression measurements

are oligonucleotide GeneChip expression arrays made by Affymetrix and custom-made

cDNA arrays. Oligonucleotide arrays use small 25 base pair gene fragments as the

DNA to be spotted onto an array. To combat non-specific hybridization, that is, DNA

fragments, often called probes, have cross-reactivity with other genes, a second probe

that is identical to the first except for a mismatched base at its centre is placed next

to the first. This is called the Perfect Match/Mismatch (PM/MM) probe strategy.
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Any background hybridization with the MM probe is subtracted from the PM probe

signal which results in perfect hybridization.

It is important to note that in oligonucleotide arrays, only one sample is hybridized

to a single array during these experiments. Such samples are prepared by extracting

mRNA from a cell and turning it back into DNA through reverse transcription of

the mRNA into a cDNA (see Figure 1.1). This is followed by a labeling step during

which the cDNA is then transcribed to cRNA while incorporating a label (e.g., biotin).

Once labeled, the sample of cRNAs can be hybridized to the array and bound by the

various oligonucleotide probes. Finally, a staining reaction is performed in order to

visualize the amount of hybridization.

By contrast, two samples are prepared in cDNA microarray for hybridization to

the array: a control sample and an experimental sample (see Figure 1.2). mRNA

are extracted from cells and reverse transcribed into cDNA. During the reverse tran-

scription step a fluorescent dye is incorporated into the newly formed cDNA and a

different dye is employed to label the different samples. For example, the control

sample can be labeled with a green-fluorescing dye called Cy3 and the experimental

sample labeled with a red-fluorescing dye called Cy5. The differently labeled samples

are then combined and hybridized to the microarray together (see Figure 1.2). The

two samples will competitively bind to the probes on the array and the sample con-

taining more gene expression for a particular probe will win out. That is, if there is

more of an mRNA transcript in the control sample than in the experimental sample

(i.e., the gene is downregulated in the experiment) then more Cy3 will bind to the

probe on the array and the spot will fluoresce green. Conversely, if there is more

mRNA transcript in the experimental sample, the reverse will happen and the spot

will fluoresce red. When the two samples have the same amount of transcript, the

dyes will cancel each other out and the spot will fluoresce yellow.

When oligonucleotide and cDNA arrays are compared with one another, one will
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note a few distinctions between them. Affymetrix oligonucleotide arrays are created

using a combination of DNA synthesis and photolithographic techniques, whereas

cDNA arrays are constructed by spotting or printing PCR products or oligonu-

cleotides onto glass slides. Affymetrix arrays contain sets of multiple 25 oligonu-

cleotide probes specific for each gene or expressed-sequence tag (EST), whereas spot-

ted arrays generally contain longer cDNA probes (usually 500 to 1,000 bases) or

oligonucleotide probes (usually 25 to 60 bases) for each gene.

Although a large number of genes are believed to be mostly inactive, there are

many genes whose activities are associated with various physiological effects. An

interesting and important task in analyzing human genomic data is to relate gene

activities to phenotypic or clinical information. Hence, microarray technology has

garnered considerable attention in the statistics, bioinformatics and medical commu-

nities.

1.2 Statistical Problems Associated with Microarray Data

The analysis of DNA microarrays poses a large number of statistical problems,

including the normalization of the data, multiple comparisons, and small sample sizes.

Normalization involves adjusting the microarray data for effects which arise from

variation in the technology rather than from biological differences between the RNA

samples or between the printed probes. Much research has been done to address the

problem of normalization (Yang et al., 2001; Wolfinger et al., 2001; Tseng et al., 2001;

Huang et al., 2005).

The problem of multiple comparisons is that even if the statistical P-value assigned

to a gene indicates that it is extremely unlikely that differential expression of this

gene was due to random rather than treatment effects, the very high number of genes

on an array makes it likely that differential expression of some genes in fact represent

false positives. The false discovery rate (FDR) of a test, defined as the expected
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proportion of false positives among the declared significant results (Benjamini and

Hochberg, 1995; Keselman et al., 2002) has been proposed to address the problem of

false positives in multiple comparisons in microarray data. Because of this directly

useful interpretation, FDR is a more convenient scale to work with than the P-value

scale. Some statistical methods have been proposed either to transform a P-value

into an FDR or to compute FDR directly (Storey and Tibshirani, 2003; Aubert et

al., 2004; Reiner et al., 2003; Benjamini and Hochberg, 1995; Benjamini and Yekutieli,

2001; Storey, 2002). .

The sample size n is typically small in microarray studies. The rapid accumulation

of microarray gene expression data suggests that combing microarray data obtained

from different studies may be a useful way to increase sample size. Recently, several

methods have been proposed to combine inter-study microarray data at different

levels in cancer research (Choi et al., 2003; Jiang et al., 2004; Rhodes et al., 2002;

Shen et al., 2004). Instead of integrating microarray gene expression values, some

methods, referred to as meta-analysis, combine results (e.g., t-statistic) of individual

studies to increase the power of identifying genes differentially expressed between

normal and diseased samples (Choi et al., 2003; Rhodes et al., 2002).

In this dissertation, we will discuss three microarray related statistical topics: first,

regularized estimation in accelerated failure time (AFT) model with high-dimensional

covariates; second, linear quantile regression to identify equine cartilage biomarkers;

finally, planned linear combinations to normalize and analyze cDNA array data. For

the first topic, we will address the problem from background, statistical methods,

simulation studies, and real data application. For the second and third topics, we

will organize the problems under the headings of background, results and discussion,

conclusion, and methods (statistical algorithm or microarray experiments).
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Figure 1.1: The use of Oligonucleotide arrays
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Figure 1.2: An example of a cDNA microarray experiment
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Chapter 2 Regularized Estimation in Accelerated Failure Time (AFT)

Model with High-dimensional Covariates

2.1 Background

Cancer is a highly complex disease which can encompass multiple genomic alter-

ations. These changes may be inherited or somatically acquired during progression

from a normal to a cancerous cell. A comprehensive characterization of all of the

genetic, genomic, and epigenetic modifications associated with the cancer is critical

for the understanding of the origins of tumor process, and for finding the targets of

therapeutic interventions. In recent years advances in microarray technology have

allowed us to measure the expression levels of tens of thousands of genes or even en-

tire genomes simultaneously, thus reducing time and cost considerably (Lockhar and

Winzler, 2000; Brown and Botstein, 1999). Cancer is an especially pertinent target of

microarray technology due to the well-known fact that this disease causes, and may

even be caused by, changes in gene expression. Microarrays have allowed the rapid

identification of which genes are turned on and off in tumor development, resulting

in a much better understanding of the disease.

Use of microarray technology, either Affymetrix or cDNA array, often leads to

high-dimensional and low-sample size data settings where the number of genes typi-

cally far exceeds sample size. Table 2.1 gives an example of dimensionality of microar-

ray data. Sample size n is equal to 100 while the number of covariates p is 10,000. It

is obviously that p� n. The high dimensional property makes the statistical analysis

of microarray data complicated .

Suppose that the data set has n observations with p predictors. Let Y = (y1, . . . , yn)T

be the response and X = (x1, . . . ,xp) be the model matrix, where xj = (x1j, . . . , xnj)
T ,

j = 1, . . . , p are the predictors. The linear model is E(Y |X = x) = β0 + XT β, where
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β = (β1, . . . , βp). The traditional linear regression method has problems with an-

alyzing high dimensional data. The most prominent problems are colinearity and

overfitting. The colinearity problem occurs when covariates are so highly correlated

that reliable estimates of their individual regression coefficients can not be found.

The overfitting problem occurs when the statistical model describes random error or

noise rather than the underlying relationship. Such a model which has been overfit

typically has poor predictive performance, as it exaggerates minor fluctuations in the

data.

To handle such high-dimensional data, two kinds of statistical methods are pro-

posed. One way to handle high dimensional data is dimension reduction, which

searches for low-dimensional projections of the covariates to optimize the tradeoff be-

tween bias and variance and thus achieve reduced mean squared errors (MSE) (Park,

1981). Examples include principal component regression (Jolliffe, 1986) and partial

least square methods (Martens and Naes, 1989). The other way to handle high dimen-

sional data is by penalized estimation, such as ridge regression (Hoerl and Kennard,

1970); support vector machines (Vapnik, 1995); the LASSO (Tibshirani, 1996); and

the gradient directed regularization method (Friedman and Popescu, 2004). We will

give more detailed discussion on penalized methods in the following section.

Penalized Methods

It is well known that ordinary least squares (OLS) often performs poorly in both

prediction and interpretation for high dimensional data. Penalization methods have

been proposed to improve OLS. For example, ridge regression (Hoerl and Kennard,

1970) using L2-norm (
∑

β2) is known to shrink the coefficients of correlated covariates

towards each other, allowing them to borrow strength from each other. In the extreme

case of k identical covariates, they each get identical coefficients, each 1/k the size

that any single one would get if fit alone. From a Bayesian point of view, the ridge
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penalty is ideal if there are many covariates and all have non-zero coefficients. One

limitation of L2-norm penalty is that it uses all covariates in the prediction and

does not provide a way of selecting relevant covariates for prediction. Best subset

selection in contrast produces a sparse model, but it is extremely variable because

of its inherent discreteness. A promising technique called the LASSO using L1-norm

(
∑
|β|) is somewhat indifferent to very correlated covariates, and will tend to pick

one and ignore the rest. In the extreme case above, the LASSO problem breaks down.

The LASSO penalty corresponds to a Laplace prior, which expects many coefficients

to be zero or close to zero, and a small subset of non-zero coefficients. L1-norm

penalty suffers from two drawbacks (Zou and Hastie, 2005). First, the expression

levels of genes that share one biological pathway are highly correlated. The L1-

norm penalty can only select one gene instead of automatically selecting the whole

group of relevant and yet highly correlated genes. Second, the L1-norm penalty can

select at most n genes where n is the sample size. However, for microarray data,

the number of covariates p is much larger than the sample size n (say, 10000 versus

100 as in Table 2.1). This limitation of selecting at most n genes instead of an

arbitrary number of genes relevant to the clinical outcome seems unrealistic for many

biomedical studies. Elastic net (Zou and Hastie, 2005) performs much like LASSO,

but removes any degeneracies caused by extreme correlations. Similar to LASSO, the

elastic net simultaneously does automatic variable selection and continuous shrinkage,

and it can select groups of correlated variables. It is like a stretchable fishing net that

retains ‘all the big fish’. More generally, it creates a useful compromise between ridge

and LASSO. Some details are as follows.

For simplicity we assume the xij are standardized:
∑n

i=1 xij = 0, 1/n
∑n

i=1 x2
ij = 1.

The elastic net solves the following problem:

min(β0,β)∈Rp+1 [
1

2n

n∑
i=1

(yi − β0 − xT
i β)2 + λPα(β)] (2.1)

9



where

Pα(β) =
1

2
(1− α)

p∑
j=1

β2
j + α

p∑
j=1

|βj|

We call Pα the elastic net penalty, which is a convex combination of ridge-regression

penalty (α = 0) and the LASSO penalty (α = 1). This penalty is particularly useful

in the p� n situation, or in any situation where there are many correlated predictors.

As α increases from 0 to 1, for a given λ, the sparsity of the solution of equation 2.1

(i.e., the number of coefficients equal to 0) increases monotonically from 0 to the

sparsity of the LASSO solution. For all α ∈ [0, 1), the elastic net penalty function is

singular (without first derivative) at 0 and is strictly convex for all α > 0, thus having

the characteristics of both the LASSO and ridge regression. Note that the LASSO

penalty is convex but not strictly convex. These arguments can be seen clearly from

Figure 2.1. The red curve shows that singularities at the vertexes are necessary for

sparsity and that strict convex edges are important for grouping.

Cyclical coordinate descent methods have been proposed for the LASSO a number

of times, but only recently was their power fully appreciated. Early references (Fu,

1998; Daubechies, et al., 2004; Van der Kooij, 2007) use coordinate descent for solving

elastic net penalized regression models. Recent rediscoveries include Wu and Lange

(2008a) and Friedman et al. (2007). The first paper recognized the value of solving

the problem along an entire path of values for the regularization parameters, using the

current estimates as warm starts. This strategy turns out to be remarkably efficient

for this problem. Friedman et al. (2008) develop fast algorithms glm net based on

cyclical coordinate descent for fitting generalized models with elastic net penalties.

The glm net can work on very large data sets and can take advantage of sparsity in

the feature set.

Consider a coordinate descent step for solving equation 2.1. That is, suppose we

have estimates β̃0 and β̃l for l 6= j, and we wish to partially optimize with respect

to βj. Denote by R(β0, β) the object function in equation 2.1. We would like to
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compute the gradient at βj = β̃j, which only exists if β̃j 6= 0. If β̃j > 0, then

∂R

∂βj

|β=β̃ = − 1

N

n∑
i=1

xij(yi − β̃0 − xT
i β̃) + λ(1− α)βj + λα

A similar expression exists if β̃j < 0. Simple calculus shows (Donoho and Johnstone,

1994; Friedman et al., 2007) that the coordinate-wise update has the form

β̃j ←
S( 1

N

∑n
i=1 xij(yi − ỹi

(j)), λα)

1 + λ(1− α)

where ỹi
(j) = β̃0 +

∑
l 6=j xilβ̃l is the fitted value excluding the contribution from xij,

and hence yi− ỹi
(j) the partial residual for fitting βj. Because of the standardization,

1/n
∑n

i=1 xij(yi− ỹi
(j)) is the simple least-squares coefficient when fitting this partial

residual to xij. S(z, γ) is the soft-thresholding operator with value

sign(z)(|z| − γ)+ =


z − γ if z > 0 and γ < |z|

z + γ if z < 0 and γ < |z|

0 if γ ≥ |z|.

Thus glm net computes the simple least-squares coefficient on the partial residual,

applies soft-thresholding to take care of the LASSO contribution to the penalty,

and then applies a proportional shrinkage for the ridge penalty. This algorithm is

suggested by Van der Kooij (2007).

If weight is added to equation 2.1, we have

min(β0,β)∈Rp+1 [
1

2n

n∑
i=1

wi(yi − β0 − xT
i β)2 + λPα(β)] (2.2)

And the coordinate-wise update has the form

β̃j ←
S(

∑n
i=1 wixij(yi − ỹi

(j)), λα)∑n
i=1 wix2

ij + λ(1− α)

The presence of weights does not change the computational costs of algorithm much,

as long as the weights remain fixed.

The program glmnet is available in the R environment, that is, glmnet(X, Y ,

weights, α, nlambda, lambda.min). It is very simple to use. The program accepts
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X, Y data for the regression model, and produces the regularization path over a grid

of values for the tuning parameter λ. We could supply λ sequence. However, typical

usage is to have the program compute its own λ sequence based on nlambda and

lambda.min. nlambda is the number of λ values and default is 100. lambda.min is

the smallest value for λ. The default is 0.05 if n < p and 0.0001 if n > p. The glmnet

computes the solutions for a decreasing sequence of values for λ, starting at the λmax

for which the entire vector β̂ = 0. Apart from giving a path of solutions, this scheme

exploits warm starts, and leads to a more stable algorithm. From equation 2.1, we

see that as λ decreases, the number of covariates entering the model increases.

For low dimensional data, n > p, the target function is

min(β0,β)∈Rp+1

1

2n

n∑
i=1

wi(yi − β0 − xT
i β)2 (2.3)

which is similar to (2.2), but without penalty. Since n > p, we do not need to use

any penalty to shrink some coefficients towards 0 and to perform variable selection

which are required for p � n. The program lm in R could be used to estimate β0

and β.

Weights are required in both (2.2) and (2.3). For censored data, weights could

be determined by inverse probability of censoring weighting (IPCW) which will be

discussed in the next section.

AFT Model and IPCW

The problem of cancer class prediction using gene expression data, which can

be formulated as predicting binary or multi-category outcomes, has been studied

extensively (Alon et al., 1999; Golub et al., 1999; Alizadeh et al., 2000). There

has also been active methodological research in relating gene expression profiles to

censored survival phenotypes such as time to cancer recurrence or time to death.

In addition to the challenge of high dimensionality of the gene expression data that

all statistical methods need to deal with, another major challenge is the incomplete
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survival outcome due to limited follow-up time in such studies. Because patients

under a follow-up study are typically observed up to a follow-up time, some lifetimes

are generally right censored, meaning that they are only known to be larger than a

given follow-up time, also called a right censoring time.

The Cox regression model (Cox, 1972) is the most popular method in regression

analysis for censored survival data. Much work is based on the Cox model. Li and

Luan (2003), treating the negative log cox partial likelihood as a loss function, propose

using kernel transformations to overcome the difficulties introduced when p > n. Gui

and Li (2005b) suggest modification of the transformation outlined by Tibshirani

(1997) as the foundation for a Cox proportional hazards variable selection approach

based on the LARS (Efron et al., 2004) formulation of the LASSO penalty. A more

comprehensive review of related literature can be found in Li (2008). However, the

proportional hazards assumption may not be appropriate for certain applications.

Also, there are no residuals in the traditional sense for the Cox model.

The accelerated failure time (AFT) model (Wei, 1992) is a useful alternative to

the Cox model. The AFT model is an extension of linear regression to the analysis

of survival data. It is of methodological and practical interest to develop computa-

tionally feasible methods for model fitting and variable selection in the AFT model

since it has the advantage of modeling event times directly. In addition, Wei (1992)

discussed some advantages of using such AFT models over the Cox regression model,

including easy interpretation of the model parameters and better fits for some data

sets.

The AFT model is a linear regression model in which the response variable is

the logarithm or a known monotone transformation of a failure time (Kalbfleisch

and Prentice, 1980). Let Ti be the logarithm of the failure time and Xi a length-p

covariate vector for the ith subject in a random sample of size n. The AFT model
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assumes

Ti = β0 + XT
i β + εi, i = 1, . . . , n, (2.4)

where β0 is the intercept, β ∈ Rp is the vector of regression coefficients, and εi is

the error term. Since Ti is subject to right censoring, we can only observe (Yi, δi, Xi),

where Yi = min{Ti, Ci}, Ci is the logarithm of the censoring time, and δi = I{Ti ≤

Ci} is the censoring indicator. It is assumed that a random sample (Yi, δi, Xi), i =

1, . . . , n, from the same distribution is available. This model has emerged as a useful

alternative to the popular Cox proportional hazards model for analyzing censored

data, since it provides a direct interpretation of the results in terms of quantification

of survival times instead of the more abstract hazard rates. Inference procedures for

the regression parameters under the AFT model include the inverse probability of

censoring weighting (IPCW) method and Buckley-James method. IPCW does not

require iteration in the calculation of the estimator, as opposed to the Buckley-James

estimator.

Weighted least squares has been proposed by Zhou (1992b), Stute (1993, 1996).

The estimator b can be expressed as the solution of the estimating equation

n∑
i=1

wi(Yi −XT
i b)Xi = 0 (2.5)

Two weighting schemes are known in the literature to determine the weights wi. One

is IPCW and the other is based on jumps of the Kaplan-Meier estimator.

Let the ordered failure or censoring times be Y(i), i = 1, . . . , n, δ(i) is the censoring

indicator δ corresponding to the ith order statistic Y(i). We assume that no person

can have a failure time equal to their censoring time. Then, the risk set R(t) (number

of persons at risk for failure at time t) can be written as

R(t) =
n∑

i=1

I[Y(i) ≥ t].
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The Kaplan-Meier estimator Ŝ(t) of the survival function S(t) is

Ŝ(t) =
∏

{i|Y(i)≤t}

(1−
δ(i)

R(Y(i))
)

We can also estimate the survival function for censoring times G(t), using the Kaplan-

Meier approach but considering failure events as ‘censored’ observation and censored

observations as ‘failure’. The Kaplan-Meier estimator of G(t) is then similar to Ŝ(t),

that is,

Ĝ(t) =
∏

{i|Y(i)≤t}

(1−
1− δ(i)

R(Y(i))
)

The IPCW weight wi is then defined as

w(i) =
δ(i)

Ĝ(ti−)

On the other hand, Stute (1993, 1996) used the jumps in the Kaplan-Meier esti-

mator as weights and they can be expressed as w∗
(i), where

w∗
(1) =

δ(1)

n
, and w∗

(i) =
δ(i)

n− i + 1

i−1∏
j=1

(
n− j

n− j + 1
)δ(j) , i = 2, . . . , n.

IPCW is in fact equivalent to weighting by the jumps of the Kaplan-Meier. This can

be shown as follows. For all t,

Ŝ(t)Ĝ(t) = 1− Ĥ(t) (2.6)

where Ŝ(t) and Ĝ(t) are defined as above and Ĥ(t) is the empirical distribution

based on Yi. Then from (2.6), we observe that when t = Y(i) with δ(i) = 1, then

w∗
(i)Ĝ(t) = 1/n, from which it follows that

w∗
(i) =

δ(i)

nĜ(Y(i))
=

w(i)

n

2.2 Statistical Methods

Problems with IPCW Method for Data with a High Censoring Rate

Wang et al. (2008) apply the elastic net method to the Buckley-James estimator

for the AFT model. However, the Buckley-James approach entails an iterative least
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squares procedure that suffers from convergence problems and is more computation-

ally intensive. Huang et al. (2006) and Datta et al. (2007) apply LASSO regular-

ization to the IPCW for the AFT model, i.e., 1
2n

∑n
i=1 wi(yi − β0 − xT

i β)2 + λPα(β)

with weights as defined in the previous section. However, simulation studies in Li

and Wang (2003) indicate that the estimator obtained by using IPCW method is

biased and is particularly bad for data with a high censoring rate. In addition, there

is another problem with the application of regularization methods to IPCW. That is,

if the highest survival time is censored, then the two weighting schemes above yield

w(n) = 0. In fact, current studies (Huang et al., 2006; Datta et al., 2007) assign the

weight of this observation as 0, which is problematic. We will use the redistribution

algorithm to explain this problem in more detail.

Efron’s (1967) redistribution to the right algorithm provides a useful heuristic

for understanding weights obtained from jumps in the Kaplan-Meier estimator. We

illustrate Efron’s procedure with sample data for 10 persons undergoing maintained

chemotherapy. The data is represented in Figure 2.2, where the X’s denote failures

and the arrows denote withdrawals (censors). Figure 2.2a and 2.2b represent the

last observation fails and censors after order the survival time, respectively. If all 10

patients were failures, then the mass of each failure would be 0.10. In our sample,

however, the 3rd departure time is censored. Its failure mass of 0.10 is therefore

redistributed to the right among the remaining 7 departure times, assigning (0.1)/7

= 0.01429 to each future time, so that each future time now has its original failure

mass of 0.10 plus the redistributed amount, for a total of 0.11429. The mass of

0.11429 is assigned to 4th and 5th departure time. When we reach the next censored

time at t6, the total mass of 0.11429 is redistributed to the right over the remaining

4 departure times, so that each one now has 0.11428+(0.11429)/4=0.14286. The

weight of 0.14286 is assigned to t7 and t8. Finally, the total mass of 0.14286 assigned

to the last censored time t9 is redistributed over the one remaining failure time at
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t10, for a total of 0.28571 at that point (Figure 2.2a). As a check on the arithmetic

of this procedure, we have weights at our 10 departure times (censor as well as

failure) of 0.10, 0.10, 0, 0.11429, 0.11429, 0, 0.14286, 0.14286, 0, 0.28571. And these

weights add up to 1. By contrast, if the last departure time (t10) instead of t9 is

censored (Figure 2.2b), then the weight of 0.14286 of the departure time t10 cannot

be redistributed to larger failure times since larger failure times do not exist. In this

case, the weights for our 10 departure times would be 0.10, 0.10, 0, 0.11429, 0.11429,

0, 0.14286, 0.14286, 0.14286, 0. The sum of the weights is 0.85716, which is less than

1. The weight of 0.14286 for the last observation is absent in this case. For the data

with a high censoring rate, for example, the data in the simulation study, when the

last observation is censored, then w(n) = 0, which implies that weight of about 0.3 is

discarded. Two reasons why this is wrong are as follows. First, if w(n) = 0, then the

term of w(n)(Y(n)−XT
(n)β)2 is equal to 0. In other words, this term will be missing in

the sum of weighted residual squares. Since (Y(n) − XT
(n)β)2 is always non-negative,

therefore w(n) = 0 would lead to a smaller sum of weighted residual squares compared

to the true value. This results in an inefficient estimation of β. Second, weighting

the last observation as 0 implies that this observation is deleted in the study. Such

deletion is not random since it always occurs at w(n), so that the largest observed

survival time Y(n) is deleted. This results in a biased estimation of β and a biased

estimation of the sum of weighted residual squares.

This problem also exists for low dimensional data. However, no study has yet been

done to investigate the problem. Therefore in the next section, for high dimensional

data, we will apply glmnet regularization to IPCW with focus on different methods

of weighting the last censored observation, after ordering the survival times. We also

investigate the low dimensional case.
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Weighting Methods

Two weighting approaches are proposed in this section. One approach modifies

δ(n) (methods 1 to 4 below). The other approach fixes δ(n) = 1 and modifies Y(n)

(methods 5 to 7 below).

Modifying δ(n)

Method 1 (weight 1): Treat the last observation as uncensored, i.e., δ(n) = 1 , so

w(n) = 1

nĜ(Y(n)−)

Method 2 (weight 0): Treat the last observation as censored, i.e., δ(n) = 0, so

w(n) = 0 (this is the currently used method).

Method 3 (weight average): Average the weight from method 1 and weight from

method 2, that is w(n) = 0.5

nĜ(Y(n)−)

Method 4 (weight depending): The explanation of this method is more involved

than the explanation of methods 1 - 3. Since the last observation is censored, the true

survival time is larger than the observed survival time. The ideal approach would

therefore obtain an estimated survival time greater than observed. Hence, we let the

residual of Y(n) be 0 if the estimated survival time is in the correct direction. Based

on this guideline, we first set δ(n) = 0 and δ(n) = 1 and we designate the resulting two

estimates of β as β0 and β1 respectively (Note that β0 and β1 absorb the intercept

term). Then depending on the sign of the residuals, we have three possible cases, as

follows:

w(n) =


0 if (Y(n) −XT

(n)β
0) < 0

1

nĜ(Y(n)−)
if (Y(n) −XT

(n)β
0) ≥ 0 and (Y(n) −XT

(n)β
1) ≥ 0

0.25

nĜ(Y(n)−)
if (Y(n) −XT

(n)β
0) ≥ 0 and (Y(n) −XT

(n)β
1) < 0

In case 1, where (Y(n) − XT
(n)β

0) < 0, the direction is correct, then we consider

the residual of the last observation to be 0. This implies that w(n)(Y(n)−XT
(n)β) = 0,

which in turn implies that w(n) = 0 and we proceed accordingly. In case 2, where
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(Y(n)−XT
(n)β

0) ≥ 0 and (Y(n)−XT
(n)β

1) ≥ 0, treating the last observation as censored

pushes the estimator in the wrong direction, so we would not want to weight this

observation as 0. Instead, we treat the last observation as uncensored, as in method

1 above. This still pushes the estimation in the wrong direction, but the result will be

less biased than case 1 where we set w(n) = 0. Then we calculate w(n) as in method 1,

that is, w(n) = 1

nĜ(Y(n)−)
. In the case 3, where (Y(n)−XT

(n)β
0) ≥ 0 and (Y(n)−XT

(n)β
1) <

0, we need to treat the last observation as uncensored since (Y(n)−XT
(n)β

0) ≥ 0. How-

ever, if the last observation is uncensored, then (Y(n)−XT
(n)β

1) < 0, so residual equal

to 0 based on the guideline mentioned before, which is equivalent to w(n) = 0. Hence,

we find ourselves in an ‘oscillation’ as follows: δ(n) = 0→ estimator in wrong direction

→ δ(n) = 1 → estimator in right direction, but residual is 0 → equivalent to δ(n) = 0.

In order to avoid this oscillation, we choose some arbitrary constant between 0 and

1, i.e., 0.25, and let w(n) = 0.25

nĜ(Y(n)−)
for case 3. Simulations suggest that case 1 and

case 2 are most common, and case 3 is less common.

Modifying Y(n)

This approach fixes δ(n) = 1 and uses different methods to impute Y(n). For the

censored Y(n), we know that the observation will fail at some time after Y(n). So we

let δ(n) = 1 and Y ∗
(n) = Y(n) + c, where c is a non negative number which can be

determined by various methods. We then replace Y(n) by Y ∗
(n) in (2.2), that is

min(β0,β)∈Rp+1 [[
1

2n

n−1∑
i=1

wi(Yi−β0−xT
i β)2 +w(n)(Y

∗
(n)−β0−xT

(n)β)2]+λPα(β)] (2.7)

For low dimensional data, we remove the penalty so that (2.7) becomes

min(β0,β)∈Rp+1 [
1

2n

n−1∑
i=1

wi(Yi − β0 − xT
i β)2 + w(n)(Y

∗
(n) − β0 − xT

(n)β)2] (2.8)

Methods 5 to 7 below use different approaches to identify c. The rationale is to impute

the least influential value of Y(n), consistent with observed Y(n). Other imputation
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rationales are possible, but without a model they are not ‘clean’. At least the following

imputation rationales are more reasonable than taking δ(n) = 0, which is equivalent

to delete this observation.

Method 5 (Constant adding):

Step 1: A sequence of non-negative c are generated and the corresponding Y ∗
(n) =

Y(n) + c are imputed. If (residual of Y(n)) < 0, then the sequence of c is generated

from 0 to (|residual| +3) with an increment of 0.01. If (residual of Y(n)) > 0, the

sequence of c is generated from 0 to 100 with an increment of 1.

Step 2: For each c, a weighted residual sum of squares (wRSS) is calculated from

equation 2.7 (or 2.8).

Step 3: The c that produces the smallest wRSS is chosen as the optimal value of c.

Step 4: The optimal c is added to Y(n) to produce an estimator of β according to

equation 2.7 (or 2.8) based on updated Y(n).

Methods 6 and 7 below use an idea similar to Buckley-James to impute a value

for Y(n). Buckley-James (1979) proposed a least squares estimator taking censoring

into account. For un-censored data, solving the equation
∑n

i XT
i (Yi − XT

i β) = 0

or
∑n

i XT
i ei = 0 results in the least squares estimator of β. Similarly, if δ = 0, let

E(εi|εi > ei) replace ei, that is

E(εi|εi > ei, Xi)

=

∫ ∞

−∞
εidF (εi|εi > ei)

=

∫ ∞

−∞
εip(x < εi < x + ∆x|εi > ei)

=

∫ ∞

−∞
εi

p(x < εi < x + ∆x, εi > ei)

p(εi > ei)

=

∫ ∞

ei

εi
dF (εi)

1− F (ei)

=
∑

j:ej>ei

ej∆F̂ (ej)

1− F̂ (ei)
(2.9)
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where F̂ (.) is the Kaplan-Meier estimator computed from (ei, δi).

Method 6 (Conditional mean adding):

Step 1 : Set δ(n) = 1 and get an estimator of β from equation 2.7 (or 2.8)

Step 2: Calculate residuals based on the estimated β from Step 1 and compute the

Kaplan-Meier estimator of the residuals according to equation 2.9

Step 3: Add the Kaplan-Meier estimator of the residuals to Y(n)

Step 4: Get an improved new estimator of β based on imputed Y(n) from equation

2.7 (or 2.8).

Method 7 (Conditional median adding): It is the same as method of conditional

mean adding except that it replaces E(εi|εi > ei) by median(εi|εi > ei) and adds

median(εi|εi > ei) to Y(n).

2.3 Simulation Studies

p < n Case

For the simulation studies we first consider the low dimensional case (p < n).

We focus on the situation that the highest observation is censored (δ(n) = 0). The

logarithm of the true survival time is simulated by

T = XT β + σε, where ε ∼ N(0, 1). (2.10)

We choose n = 100, p = 4 with X = (X1, X2, X3, X4) where X1 = 1, X2 ∼

Bin(1, 0.5), X3 ∼ N(140, 60) and X4 ∼ U(30, 70). Since X1 = 1, therefore β1 is

the intercept. We choose β = (100, 5,−0.5,−0.5) and σ = 15. The logarithm of cen-

soring time C is generated from both a uniform distribution U(−65, 80) and from an

extreme value distribution, in both cases such that a 50% censoring rate is achieved.

The observed log-transformed survival time is Y = min(T, C). 1000 runs are simu-

lated.
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For prediction performance, since the true survival time for each subject is avail-

able in simulated data, we use relative prediction error (RPE) obtained from an

independent test data set, where RPE = (1/n)
∑n

i=1(Ti − β0 − XT
i β̂)2/σ2 and β̂ is

obtained from a training data set. For each of the following simulations, we generate

two independent data sets: a training set of size n1 for model fitting and a test set

of size n2 for RPE calculation. In this simulation we choose n1 = 100 and n2 = 400.

The bias, variance, MSE and RPE are summarized in Table 2.2.

The column ‘uncensored’ contains the true survival time for each patient. That

is why it has smallest bias, variance, MSE for all βs, and smallest RPE as well.

Columns 3 - 9 compare 7 different methods for handling the last censored patient.

The methods in columns 3 - 6 modify δ(n) and the methods in columns 7 - 9 modify

Y(n). The method of conditional mean adding gives the smallest bias for all β’s among

7 methods. The method of weight 0 gives the smallest variance for all β’s. Weight

depending method gives the smallest mean square error (MSE) for β1 and β3, while

weight 0 method gives the smallest MSE for β2 and β4. Since weight 0 method discards

the largest observation (‘outlier’), it behaves like a shrinkage estimator, which may

make the variance smaller than other 6 methods. MSE is determined by bias and

variance. If the proportion of variance is large, then MSE is mostly determined by

variance. However, if proportion of bias is large, then bias dominates the MSE. That

is one possible reason that weight depending method obtains smallest MSE for β1

and β3 since bias has a big influence on MSE, and weight 0 method obtains smallest

MSE for β2 and β4 since variance contributes more to the MSE.

The methods of weight depending and constant adding end up with exactly the

same results. Recall that if R(n) < 0 (R(n) represents residual of last censored patient),

method of weight depending keeps w(n) = 0. Method of constant adding chooses c

to be | R(n) | and adds c back to Y(n) which makes updated R(n) = 0. The last term

in equation 2.8 is w(n)R(n). Hence, either w(n) = 0 or R(n) = 0 results in same effect:
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throwing away the last term in equation 2.8. If R(n) > 0, method of constant adding

chooses c = 0 and changes δ(n) = 1. It is the same as method of weight depending

which modifies δ(n) to be 1.

Similar patterns are observed for censoring times simulated by the extreme value

distribution (Table 2.3). However, in this case the method of weight average gives

the smallest variance for all βs and the smallest MSE for β2 and β4.

p >> n Case

Group Selection of Correlated Covariates

We now consider the high dimensional case (p >> n). As before we focus on the

situation that the highest observation is censored. We use 50 samples simulated from

model 2.10 with p = 120 and σ = 15. The first 60 coefficients are nonzero and are

drawn from N(3, 0.5); and their values are then fixed for all simulation runs. The

remaining 60 coefficients are set to zero. The covariate matrix X is generated from a

multivariate normal distribution with mean zero and covariance matrix as

Σ =



Σ0

Σ0 0.2J

0.2J Σ0

Σ0


where Σ0 is a 30× 30 matrix with diagonal elements equal to 1 and off-diagonal ele-

ments equal to 0.7; and J is a 30× 30 matrix with all elements equal to 1. The loga-

rithm of censoring time C is generated from both a uniform distribution U(−190, 190)

and from an extreme value distribution to yield a 50% censoring rate. 1000 runs are

simulated. Let number of λ to be 100 to include as many covariates as possible in the

model. For each covariate we record the frequency of being selected among 1000 sim-

ulation runs, the mean and the standard deviation. We assess α = 0, 0.1, 0.5, 0.9, 1.

The results are summarized in Table 2.4.
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We use method of weight depending in Table 2.4 to illustrate the selection fre-

quency at different α values. The coefficients in blocks 1 and 2 are nonzero, so the

corresponding covariates in these two blocks should be selected. By contrast, the

coefficients in blocks 3 and 4 are zero, so the covariates in these two blocks should

not be included in the model. α = 0 (ridge regression) selects almost all covariates in

all 4 blocks. By contrast, α = 1 (LASSO) includes essentially no covariate in blocks 3

and 4, but it only selects about one third of the covariates in blocks 1 and 2. α = 0.1

gives a good compromise: about 80%(24.3/30 or 24.4/30) covariates in blocks 1 and

2 are correctly selected while about 5% (1.7/30 or 1.2/30) of the covariates in blocks

3 and 4 are falsely selected. Similar patterns are observed in the uncensored case and

in the other 6 methods.

The uncensored case selects the largest number of informative covariates and

selects the smallest number of non-informative covariates for all α’s.

Since α = 0.1 is a good compromise between LASSO and ridge regression, we

compare 7 imputation methods for α = 0.1. The method of weight depending per-

forms the best among the 4 methods modifying δ(n). The method of constant adding

performs the best among the 3 methods modifying Y(n). In fact, the method of con-

stant adding performs best among all 7 methods. The methods of weight depending

and constant adding do not perform identically (as they did in the low dimensional

case).

Similar results (Table 2.5) are obtained where the log of the censoring time C is

generated from an extreme value distribution.

Comparison of Prediction Performance

We now compare the prediction performance of the different methods. We gener-

ate log-transformed survival time from equation 2.10. We also generate log-transformed

censoring time from both an extreme value distribution and from a uniform distribu-
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tion (U (-20,20) in example 1 and U (-190,190) in example 2). In all 4 cases such that

a 50% censoring rate is achieved. We use relative prediction error (RPE) mentioned

in low dimensional case to evaluate the prediction performance.

Example 1 and example 2 represent the case of p > n with several groups of

correlated covariates as follows:

Example 1 has the same simulation setting as the example of group selection of

correlated covariates with n1 = 50 and n2 = 400.

Example 2 considers two groups of moderately correlated covariates with n1 = 50,

n2 = 400, and p = 120. We choose σ = 5 and set the first six slope parameters to be

(3, 3, 2, 3, 3, 2) and all other 114 slope parameters to be zero. The first three covariates

comprise a group and the next three comprise another group. Within each group,

the pairwise correlation between any two predictors Xj1 and Xj2 is 0.5.

We conduct 1000 simulations for each example. The RPE values and correspond-

ing standard deviations are listed in Table 2.6 for uniform censoring distribution and

Table 2.7 for extreme value censoring distribution.

The uncensored case always obtains not only the smallest RPE, but also the

smallest standard deviation for any (α, λ) pair in study. The method of weight

depending obtains the smallest RPE as well as the smallest standard deviation among

the 4 methods modifying δ(n). When λ is large, corresponding to only a few covariates

entering the model, the method of weight depending obtains exactly the same RPE

as method of weight 1. As more and more covariates enter the model, method of

weight depending obtains a smaller RPE than method of weight 1. The comparisons

of methods modifying δ(n) are shown in Figure 2.3a. Method of weight 0 or current

method (black line) always has the largest RPE. The method of weight 1 (green

line) overlays with method of weight depending (red line) for large λ but falls above

the method of weight depending for small λ. For methods modifying Y(n), method

of conditional mean adding performs better than other 2 methods when λ is large.
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However, when λ is small, method of constant adding performs better than the other

two. In Figure 2.3b, method of conditional mean adding (dark red line) obtains

smallest RPE at 25th and 50th λ, but thereafter rises and falls above the method of

constant adding (dark green line) at 100th λ.

Here we just evaluate 5 particular values of λ (10th, 25th, 50th, 75th and 100th

λ) for each fixed α. For all methods, as the value of λ decreases (10th λ→ 25th λ→

50th λ → 75th λ → 100th λ), the number of non-zero covariates increases and RPE

decreases, representing a better prediction.

Similar results are observed for censoring times generated from an extreme value

distribution as shown in Table 2.7.

Example 2 (Table 2.8 and Table 2.9) has results a little bit different from example

1. For methods modifying δ(n), method of weight 1 and weight average perform

similarly and both are better than method of weight depending in prediction. Three

methods modifying Y(n) obtain close RPEs with method of conditional mean adding

performing slightly better than the other two methods.

Summary of Simulation Studies

We propose 7 methods (4 methods modify δ(n) and 3 methods modify Y(n)) to

improve the estimation and prediction of the IPCW method with AFT model. The

improvement is especially profound for data with a high censoring percentage.

For the low dimensional case, method of weight depending performs best among

the methods modifying δ(n) in terms of estimation bias and prediction error. For

methods modifying Y(n), method of conditional mean adding obtains the least bias

and method of constant adding obtains smallest RPE.

Elastic net regularization is applied to the weighted residual sum of squares in

high dimensional data. Method of constant adding performs best in selecting corre-

lated covariates among all 7 methods. In example 1, method of weight depending
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obtains smallest RPE among methods modifying δ(n). For methods modifying Y(n),

method of conditional mean adding obtains smallest RPE when few covariates enter

the model and method of constant adding obtains smallest RPE when many covari-

ates are included in the model. By contrast, in example 2, for methods modifying

δ(n), methods of weight 1 and weight average perform similarly in prediction and both

are better than method of weight depending. Three methods modifying Y(n) perform

similarly in prediction.

We recommend these modifications to the IPCW method at all times. The addi-

tional computational cost that the two methods brought about is minimal to modest.

2.4 Squamous Cell Lung Carcinoma Data Analysis

Non-small-cell lung cancers (NSCLC) compose about 80% of all lung carcino-

mas with squamous cell carcinomas (SCC) and adenocarcinoma representing the

majority of these tumors. Although patients with early-stage NSCLC typically

have a better outcome, 35% to 50% will relapse within 5 years after surgical treat-

ment. The goal of the Michigan squamous cell lung carcinoma study is to predict

the survival of early-stage lung cancer patients using microarray gene expression

data. The data can be download from Gene Expression Omnibus (GEO) website

(http://www.ncbi.nlm.nih.gov/sites/GD Sbrowser?acc=GDS2373). In this study, 130

lung SCC samples from 129 individual patients (LS-71 and LS-136 were duplicate

samples from different areas of the same tumor) from all stages of squamous cell lung

carcinoma are evaluated. The censor rate is 48.1% with the last subject being cen-

sored after sorting the survival time. RNA samples are analyzed by using Affymetrix

U133A microarray chips. Since LS-71 and LS-136 are duplicate, the average of log

gene expression levels of these two samples were used for analysis. Gene expression

values are log transformed. Those probe sets expressed at extremely low levels were

excluded from the final data set, that is, all probe sets with a measure of their 75th
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percentile value less than 100 were excluded from further study. The rest of 18082

probe sets are assessed by running univariate weighted linear regression (treating last

censored subject to be dead) on all 129 subjects, 1000 probe sets with the smallest

P-values are selected (corresponding to P-value cut off at 0.0000297 ).

Subjects are randomly divided into a training set that has 65 subjects with the

last subject to be censored after sorting the survival time and a test set that has 64

subjects. Starting with these 1000 probe sets, the AFT model is fitted by glmnet

using different last observation weighting methods on the training data set.

We use the V-fold cross-validation (Stone, 1974; Wahba, 1990) to determine the

tuning parameters. For a pre-defined integer V, partition the data randomly into V

nonoverlapping subsets of equal sizes. We define the cross-validation (CV) score and

the AIC (Akaike, 1973) type of score as

L = 1
2n

∑n
i=1 wi(yi − β0 −XT

i β)2

CV score =
∑V

v=1[L(β̂(−v))− L(−v)(β̂(−v))]

AIC score = log (CV score)+2K/n

Here β̂(−v) is glmnet estimator of β based on the data without the vth subset, L(−v)

is the function L evaluated without the vth subset. K is the number of nonzero

coefficients in β̂ for fixed (α, λ). α and λ are chosen to minimize the AIC score. For

this data set, we let α range from 0 to 1 with 0.1 increment. For each fixed α, 100

program automatically generated λs are fitted. Hence one out of 1100 pairs of (α,

λ) is selected to minimize AIC score. The optimal pair of (α, λ) determined by the

training set is (0.5, 93).

Methods of weight 0 and weight 1 are fitted to training data set. Weight 0 selects

35 probe sets and weight 1 selects 30 probe sets with 25 probe sets are in common.

The βs obtained from methods of weight 0 and weight 1 are used to predict the

survival time in test data set respectively. 3-year survival time is used as cut off to

distinguish the high risk group from low risk group. A subject is assigned to the
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high-risk group if the predicted survival time is less than 3 years, or to the low-risk

group otherwise. Kaplan-Meier curves for these two groups are plotted in Figure 2.4

and log rank tests are performed.

Figure 2.4 shows that method of weight 1 uses less probe sets but separates survival

curves of high/low risk groups better than method of weight 0. When we look at

the cut off survival time at 3 years corresponding to 7 in the scale of log(days), this

separation also performs better using method of weight 1 than using method of weight

0 (the length of black vertical line is larger in weight 1 than that in weight 0).

The identified 30 probe sets from method of weight 1 could be the lung cancer

biomarkers, a small subset of genes that distinguish normal tissue from cancer tissue.

The biomedical processes that these probe sets are involved in deserve the further

investigation.

The observed survival time after log-transformation is 8.37. Methods of weight 0

and weight 1 get estimated survival time equal to 8.21 and 8.35 respectively. Both

methods underestimate the true survival time, but method of weight 1 obtains less

bias. According to the method of weight depending, this training data set belongs

to the second case in the method of weight depending. Hence, the method of weight

depending prefer to treat last observation as ‘death’, which is the same as method of

weight 1.

We also apply method of constant adding to this data set, it turns out that c is

equal to 0, implying that constant adding is equivalent to method of weight 1. The

methods of conditional mean adding and conditional median adding are also applied

to this data set. The method of conditional mean adding adds 5.44 days and method

of conditional median adding adds 14.45 days to Y(n), respectively. Based on updated

Y(n), (α, λ) are selected using minimizing AIC score mentioned above. It turns out

that (α, λ) are (0.8, 100) and (1, 99) for methods of conditional mean adding and

conditional median adding, respectively. The β obtained from these two methods are
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used to predict survival time of patients in test data set. Using method of conditional

mean adding, the separation between high/low risk groups is better than method of

weight 0 and worse than method of weight 1. The high/low risk groups are not

well separated for method of conditional median adding and logrank test shows the

differences of survival time between two groups are not significant (Figure 2.4). From

simulation study, we know that as value of λ decreases, i.e., 100th λ, the method

of constant adding performs better in prediction than methods of conditional mean

and conditional median adding. In this data set, the 99th or 100th λ is chosen by

cross validation, which makes the method of constant adding (c = 0) better predict

survival time than the other two methods modifying Y(n) (methods of conditional

mean/median adding). The result for method of conditional median adding is much

worse than method of conditional mean adding. One possible reason is the survival

time in this data set could be normally distributed, adding conditional median is not

as robust as adding conditional mean.

Therefore, for this particular training data set, method of weight 1 performs better

than method of weight 0 (current method). Method of constant adding performs

better than methods of conditional mean and conditional median adding. Methods

of weight depending and constant adding yield same results as method of weight 1.
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Table 2.1: The dimensionality of the microarray data

patient X1 X2 . . . X10000 Y
1 100 500 · · · 1500 151
2 500 300 · · · 900 75
...

...
...

...
...

...
100 1000 550 · · · 1000 57

Here Xj , j = 1, . . . , 10000 is jth gene expression level, Y = (Y1, . . . , Y100) is response variable.
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Table 2.2: Comparison of the different methods using uniform censoring time

Methods
β′s weight weight weight weight constant mean median

uncensored 1 0 average depending adding adding adding
Bias
β1 -0.05 -5.30 -6.07 -5.76 -2.52 -2.52 0.25 -1.20
β2 0.05 -0.31 -0.22 -0.29 -0.12 -0.12 -0.02 -0.08
β3 -0.001 0.023 0.025 0.024 0.010 0.010 -0.002 0.004
β4 0.003 0.026 0.029 0.028 0.012 0.012 -0.001 0.007

Variance
β1 62.3 208.5 172.9 179.0 182.5 182.5 214.5 201.1
β2 8.5 23.8 22.3 22.3 24.0 24.0 28.0 25.7
β3 0.0007 0.0023 0.0017 0.0028 0.0017 0.0017 0.0021 0.0019
β4 0.018 0.048 0.044 0.045 0.047 0.047 0.054 0.050

MSE
β1 62.3 236.6 209.7 212.2 188.8 188.8 214.5 202.5
β2 8.5 23.9 22.4 22.4 24.0 24.0 28.0 25.7
β3 0.0007 0.0028 0.0023 0.0024 0.0018 0.0018 0.0021 0.0020
β4 0.018 0.049 0.045 0.046 0.047 0.047 0.054 0.050

RPE 1.017 1.107 1.096 1.096 1.085 1.085 1.099 1.092
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Table 2.3: Comparison of the different methods using censoring time with extreme
value distribution

Methods
β′s uncensored weight weight weight weight constant mean median

1 0 average depending adding adding adding
Bias
β1 0.30 -3.68 -4.46 -4.10 -1.62 -1.62 0.62 -0.64
β2 -0.03 -0.16 -0.22 -0.19 -0.08 -0.08 0.02 -0.04
β3 -0.000 0.017 0.021 0.019 0.007 0.007 -0.003 0.003
β4 -0.003 0.018 0.018 0.018 0.007 0.007 -0.003 -0.003

Variance
β1 62.5 175.0 171.1 163.0 165.9 165.9 181.0 172.7
β2 9.2 21.7 20.8 20.6 22.0 22.0 25.1 23.1
β3 0.0007 0.0019 0.0018 0.0017 0.0017 0.0017 0.0019 0.0018
β4 0.017 0.042 0.042 0.041 0.042 0.042 0.045 0.043

MSE
β1 62.6 188.5 191.0 179.8 168.6 168.6 181.4 173.1
β2 9.2 21.7 20.8 20.7 22.0 22.0 25.1 23.1
β3 0.0007 0.0022 0.0023 0.0020 0.0018 0.0018 0.0019 0.0018
β4 0.017 0.042 0.042 0.041 0.042 0.042 0.045 0.043

RPE 1.025 1.095 1.097 1.091 1.087 1.087 1.094 1.089

33



Table 2.4: Selection frequency at different α’s (uniform censoring)

Block α
Number 0 0.1 0.5 0.9 1

Uncensored
Block 1 30.0(0.00) 27.9(1.46) 18.7(2.13) 15.6(2.03) 15.2(1.99)
Block 2 30.0(0.00) 27.8(1.44) 18.6(2.13) 15.6(2.04) 15.2(2.01)
Block 3 23.9(5.55) 0.8(1.43) 0.2(0.64) 0.2(0.56) 0.2(0.56)
Block 4 19.0(5.14) 0.3(0.76) 0.1(0.35) 0.1(0.32) 0.1(0.31)

Method of weight 1
Block 1 29.9(0.50) 24.0(2.89) 12.7(2.52) 9.2(2.11) 8.7(2.03)
Block 2 29.9(0.55) 23.6(2.81) 12.8(2.45) 9.1(2.11) 8.6(2.08)
Block 3 24.7(3.99) 2.0(2.34) 0.5(0.96) 0.4(0.78) 0.4(0.74)
Block 4 23.3(4.06) 1.5(1.87) 0.3(0.73) 0.3(0.59) 0.3(0.59)

Method of weight 0
Block 1 29.8(0.59) 23.7(2.89) 12.6(2.45) 9.3(2.07) 8.8(2.07)
Block 2 29.8(0.81) 23.6(2.81) 12.6(2.39) 9.4(2.14) 8.8(2.10)
Block 3 24.4(3.94) 2.0(2.34) 0.6(1.01) 0.4(0.80) 0.4(0.75)
Block 4 23.2(3.90) 1.5(1.87) 0.4(0.82) 0.3(0.65) 0.3(0.62)

Method of weight average
Block 1 29.9(0.45) 23.8(2.92) 12.7(2.46) 9.3(2.07) 8.8(2.07)
Block 2 29.9(0.64) 23.7(2.98) 12.8(2.41) 9.4(2.14) 8.8(2.10)
Block 3 24.3(3.97) 1.9(2.22) 0.5(0.98) 0.4(0.80) 0.4(0.75)
Block 4 22.8(3.99) 1.3(1.75) 0.4(0.73) 0.3(0.65) 0.3(0.62)

Method of weight depending
Block 1 29.9(0.50) 24.3(2.78) 13.0(2.44) 9.4(2.07) 8.9(2.03)
Block 2 29.9(0.55) 24.4(2.84) 13.1(2.40) 9.4(2.11) 8.9(2.10)
Block 3 24.7(3.99) 1.7(2.20) 0.5(0.92) 0.4(0.74) 0.3(0.71)
Block 4 23.3(4.06) 1.2(1.63) 0.3(0.66) 0.2(0.56) 0.2(0.55)

Method of constant adding
Block 1 29.9(0.50) 25.0(2.82) 13.1(2.49) 9.3(2.09) 8.8(2.01)
Block 2 29.9(0.55) 24.9(2.86) 13.2(2.38) 9.3(2.06) 8.7(2.00)
Block 3 24.7(3.99) 1.6(2.22) 0.4(0.87) 0.3(0.69) 0.3(0.66)
Block 4 23.3(4.06) 1.0(1.54) 0.2(0.56) 0.2(0.49) 0.2(0.46)

Method of mean adding
Block 1 29.9(0.61) 24.2(2.93) 12.9(2.52) 9.3(2.07) 8.8(2.01)
Block 2 29.8(0.66) 24.1(3.09) 12.9(2.46) 9.3(2.08) 8.7(2.06)
Block 3 24.9(3.89) 1.7(2.26) 0.5(0.95) 0.3(0.72) 0.3(0.71)
Block 4 23.5(3.98) 1.1(1.61) 0.3(0.64) 0.2(0.51) 0.2(0.49)

Method of median adding
Block 1 29.9(0.49) 24.2(2.94) 12.8(2.49) 9.2(2.08) 8.7(2.03)
Block 2 29.9(0.58) 24.1(3.12) 12.9(2.45) 9.2(2.08) 8.7(2.04)
Block 3 24.7(3.99) 1.7(2.23) 0.5(0.96) 0.4(0.72) 0.3(0.72)
Block 4 23.3(4.06) 1.1(1.61) 0.3(0.68) 0.2(0.55) 0.2(0.52)
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Table 2.5: Selection frequency at different α’s (extreme value censoring)

Block α
Number 0 0.1 0.5 0.9 1

Uncensored
Block 1 30.0(0.00) 27.9(1.42) 18.8(2.13) 15.7(2.04) 15.2(2.05)
Block 2 30.0(0.00) 27.9(1.38) 18.6(2.10) 15.6(1.98) 15.1(1.98)
Block 3 23.7(5.48) 0.8(1.38) 0.2(0.60) 0.2(0.56) 0.2(0.55)
Block 4 19.4(5.27) 0.4(0.89) 0.1(0.45) 0.1(0.38) 0.1(0.37)

Method of weight 1
Block 1 29.9(0.43) 24.2(3.07) 12.9(2.59) 9.4(2.15) 8.8(2.08)
Block 2 29.9(0.43) 24.0(2.99) 12.8(2.53) 9.3(2.14) 8.7(2.10)
Block 3 24.3(4.07) 1.7(2.19) 0.5(0.91) 0.4(0.71) 0.3(0.70)
Block 4 23.3(3.97) 1.3(1.79) 0.4(0.75) 0.3(0.64) 0.3(0.62)

Method of weight 0
Block 1 29.9(0.64) 23.8(2.92) 12.7(2.54) 9.4(2.09) 8.9(2.03)
Block 2 29.9(0.50) 23.8(2.63) 12.6(2.36) 9.3(2.08) 8.8(2.02)
Block 3 24.2(3.95) 1.9(2.31) 0.5(0.98) 0.4(0.82) 0.4(0.78)
Block 4 23.2(3.78) 1.5(1.89) 0.4(0.81) 0.3(0.68) 0.3(0.66)

Method of weight average
Block 1 30.0(0.64) 23.8(2.92) 12.7(2.54) 9.4(2.09) 8.9(2.03)
Block 2 29.9(0.50) 23.8(2.63) 12.6(2.36) 9.3(2.08) 8.8(2.02)
Block 3 24.2(3.95) 1.9(2.31) 0.5(0.98) 0.4(0.82) 0.4(0.78)
Block 4 23.2(3.77) 1.5(1.89) 0.4(0.81) 0.3(0.68) 0.3(0.66)

Method of weight depending
Block 1 29.9(0.43) 24.5(2.73) 13.2(2.50) 9.5(2.11) 9.0(2.06)
Block 2 29.9(0.43) 24.5(2.62) 13.0(2.43) 9.4(2.14) 8.9(2.09)
Block 3 24.3(4.08) 1.6(2.15) 0.4(0.85) 0.3(0.71) 0.3(0.69)
Block 4 23.3(3.97) 1.2(1.71) 0.3(0.71) 0.2(0.57) 0.2(0.56)

Method of constant adding
Block 1 29.9(0.43) 25.1(2.74) 13.3(2.54) 9.4(2.10) 8.9(2.06)
Block 2 29.9(0.43) 24.9(2.71) 13.2(2.46) 9.3(2.14) 8.8(2.07)
Block 3 24.3(4.08) 1.5(2.19) 0.4(0.83) 0.3(0.65) 0.3(0.65)
Block 4 23.3(3.97) 1.0(1.70) 0.3(0.67) 0.2(0.51) 0.2(0.52)

Method of mean adding
Block 1 29.9(0.57) 24.4(2.98) 13.1(2.55) 9.4(2.14) 8.9(2.12)
Block 2 29.9(0.55) 24.2(3.89) 12.9(2.51) 9.4(2.15) 8.8(2.10)
Block 3 24.6(4.02) 1.6(2.17) 0.4(0.90) 0.3(0.68) 0.3(0.66)
Block 4 23.4(3.97) 1.2(1.79) 0.3(0.77) 0.3(0.64) 0.3(0.61)

Method of median adding
Block 1 29.9(0.44) 24.3(2.92) 13.0(2.56) 9.4(2.13) 8.9(2.08)
Block 2 29.9(0.44) 24.2(2.87) 12.8(2.51) 9.3(2.12) 8.8(2.08)
Block 3 24.4(4.07) 1.6(2.19) 0.4(0.89) 0.3(0.70) 0.3(0.69)
Block 4 23.3(3.97) 1.2(1.76) 0.3(0.75) 0.3(0.65) 0.3(0.63)
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Table 2.6: Comparison of RPE for different methods using uniform (-20, 20) censoring
distribution for example 1

α
λ 0.1 0.5 0.9

Uncensored
10th λ 46.02(4.02) 42.16(3.99) 40.79(3.98)
25th λ 25.75(3.38) 22.83(3.06) 22.53(3.05)
50th λ 8.47(1.48) 8.47(1.43) 9.02(1.51)
75th λ 3.30(0.68) 4.03(0.77) 4.55(0.82)
100th λ 1.90(0.41) 2.62(0.49) 2.98(0.53)

Method of weight 1
10th λ 48.05(4.28) 44.65(4.28) 43.41(4.32)
25th λ 31.75(4.63) 28.82(4.70) 28.56(4.84)
50th λ 14.51(3.90) 14.42(3.70) 15.31(3.88)
75th λ 7.57(2.96) 8.64(2.80) 9.67(3.00)
100th λ 4.92(2.41) 6.23(2.33) 7.13(2.49)

Method of weight 0
10th λ 51.98(6.31) 48.13(6.17) 46.63(6.12)
25th λ 35.44(6.36) 31.36(6.09) 30.68(6.11)
50th λ 15.67(4.69) 15.20(4.29) 15.84(4.35)
75th λ 7.51(2.94) 8.73(3.00) 9.70(3.17)
100th λ 4.49(2.00) 6.11(2.32) 7.01(2.51)

Method of weight average
10th λ 48.95(4.67) 45.36(4.66) 44.02(4.69)
25th λ 32.40(4.88) 29.09(4.88) 28.70(6.11)
50th λ 14.47(3.86) 14.30(3.67) 15.09(3.83)
75th λ 7.40(2.83) 8.48(2.73) 9.46(2.94)
100th λ 4.79(2.28) 6.12(2.27) 6.97(2.46)

Method of weight depending
10th λ 48.05(4.28) 44.65(4.28) 43.41(4.32)
25th λ 31.75(4.63) 28.82(4.70) 28.56(4.83)
50th λ 14.32(3.79) 14.19(3.58) 15.05(3.79)
75th λ 6.93(2.49) 8.15(2.52) 9.17(2.75)
100th λ 4.14(1.69) 5.69(1.90) 6.61(2.13)

Method of constant adding
10th λ 48.05(4.28) 44.65(4.28) 43.40(4.32)
25th λ 31.75(4.63) 28.82(4.70) 28.56(4.84)
50th λ 14.31(3.80) 14.29(3.65) 15.15(3.81)
75th λ 6.79(2.39) 8.16(2.50) 9.16(2.71)
100th λ 3.86(1.57) 5.53(1.81) 6.55(2.10)

Method of mean adding
10th λ 48.05(4.42) 44.50(4.41) 43.15(4.48)
25th λ 30.84(4.73) 27.71(4.80) 27.39(4.87)
50th λ 13.36(3.64) 13.35(3.46) 14.25(3.58)
75th λ 6.90(2.60) 8.02(2.51) 9.07(2.68)
100th λ 4.52(2.04) 5.84(2.03) 6.74(2.17)

Method of median adding
10th λ 48.05(4.28) 44.65(4.28) 43.40(4.32)
25th λ 31.68(4.61) 28.69(4.66) 28.40(4.79)
50th λ 14.22(3.72) 14.10(3.52) 14.95(3.66)
75th λ 7.28(2.70) 8.39(2.61) 9.41(2.81)
100th λ 4.69(2.13) 6.03(2.14) 6.93(2.29)
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Table 2.7: Comparison of RPE for different methods using extreme value censoring
distribution for example 1

α
λ 0.1 0.5 0.9

Uncensored
10th λ 45.85(4.06) 41.98(4.02) 40.63(3.98)
25th λ 25.65(3.48) 22.70(3.19) 22.40(3.16)
50th λ 8.42(1.50) 8.43(1.47) 8.97(1.57)
75th λ 3.28(0.67) 4.01(0.76) 4.53(0.85)
100th λ 1.90(0.41) 2.61(0.50) 2.97(0.55)

Method of weight 1
10th λ 48.01(4.40) 44.63(4.30) 43.39(4.28)
25th λ 31.53(4.47) 28.61(4.41) 28.39(4.53)
50th λ 14.11(3.65) 14.13(3.49) 15.03(3.63)
75th λ 7.22(2.71) 8.43(2.67) 9.48(2.83)
100th λ 4.65(2.15) 6.08(2.23) 7.01(2.39)

Method of weight 0
10th λ 51.76(6.15) 47.93(6.03) 46.44(5.99)
25th λ 35.10(6.12) 31.07(5.79) 30.42(5.73)
50th λ 15.33(4.49) 14.99(4.11) 15.68(4.17)
75th λ 7.30(2.89) 8.63(2.92) 9.58(3.02)
100th λ 4.37(2.04) 6.06(2.32) 6.97(2.47)

Method of weight average
10th λ 51.76(4.61) 45.35(4.55) 44.01(4.54)
25th λ 32.20(4.66) 28.91(4.57) 28.51(4.64)
50th λ 14.11(3.58) 14.04(3.46) 14.84(3.62)
75th λ 7.08(2.58) 8.30(2.60) 9.29(2.77)
100th λ 4.54(2.05) 6.00(2.18) 6.89(2.35)

Method of weight depending
10th λ 48.00(4.40) 44.63(4.30) 43.39(4.28)
25th λ 31.53(4.47) 28.60(4.41) 28.37(4.53)
50th λ 13.99(3.62) 13.97(3.43) 14.86(3.58)
75th λ 6.70(2.34) 8.06(2.47) 9.11(2.67)
100th λ 4.00(1.64) 5.63(1.93) 6.58(2.16)

Method of constant adding
10th λ 48.01(4.40) 44.63(4.30) 43.38(4.28)
25th λ 31.52(4.47) 28.60(4.41) 28.37(4.53)
50th λ 13.91(3.57) 14.00(3.42) 14.88(3.57)
75th λ 6.55(2.33) 8.01(2.48) 9.07(2.67)
100th λ 3.73(1.59) 5.47(1.85) 6.46(2.07)

Method of mean adding
10th λ 47.92(4.44) 44.39(4.38) 43.03(4.39)
25th λ 30.72(4.52) 27.67(4.42) 27.38(4.56)
50th λ 13.12(3.46) 13.15(3.26) 14.09(3.36)
75th λ 6.63(2.46) 7.88(2.46) 8.94(2.58)
100th λ 4.30(1.91) 5.75(2.01) 6.68(2.16)

Method of median adding
10th λ 48.01(4.40) 44.63(4.30) 43.38(4.28)
25th λ 31.48(4.45) 28.53(4.36) 28.29(4.48)
50th λ 13.90(3.48) 13.85(3.28) 14.70(3.40)
75th λ 7.00(2.53) 8.21(2.53) 9.25(2.69)
100th λ 4.47(2.00) 5.92(2.10) 6.87(2.27)
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Table 2.8: Comparison of RPE for different methods using uniform (-190, 190)
censoring distribution for example 2

α
λ 0.1 0.5 0.9

Uncensored
10th λ 4.17(0.34) 3.73(0.34) 3.57(0.34)
25th λ 3.29(0.30) 2.40(0.29) 2.23(0.29)
50th λ 2.04(0.22) 1.39(0.19) 1.32(0.19)
75th λ 1.38(0.18) 1.13(0.16) 1.11(0.16)
100th λ 1.13(0.16) 1.07(0.15) 1.07(0.15)

Method of weight 1
10th λ 4.25(0.34) 3.89(0.35) 3.74(0.35)
25th λ 3.54(0.34) 2.78(0.38) 2.63(0.39)
50th λ 2.32(0.31) 1.69(0.31) 1.64(0.32)
75th λ 1.59(0.27) 1.33(0.25) 1.32(0.26)
100th λ 1.29(0.23) 1.24(0.23) 1.24(0.23)

Method of weight 0
10th λ 4.41(0.40) 4.06(0.41) 3.91(0.41)
25th λ 3.73(0.40) 2.93(0.43) 2.75(0.44)
50th λ 2.49(0.37) 1.77(0.34) 1.69(0.34)
75th λ 1.70(0.30) 1.37(0.27) 1.35(0.26)
100th λ 1.35(0.25) 1.25(0.23) 1.25(0.23)

Method of weight average
10th λ 4.29(0.36) 3.93(0.36) 3.78(0.37)
25th λ 3.58(0.35) 2.80(0.38) 2.63(0.39)
50th λ 2.35(0.32) 1.69(0.31) 1.62(0.31)
75th λ 1.61(0.27) 1.33(0.25) 1.32(0.25)
100th λ 1.30(0.23) 1.23(0.22) 1.23(0.23)

Method of weight depending
10th λ 4.41(0.40) 4.06(0.41) 3.91(0.41)
25th λ 3.73(0.40) 2.93(0.43) 2.75(0.44)
50th λ 2.48(0.36) 1.76(0.34) 1.68(0.33)
75th λ 1.68(0.30) 1.36(0.26) 1.34(0.26)
100th λ 1.34(0.25) 1.25(0.23) 1.25(0.23)

Method of constant adding
10th λ 4.25(0.34) 3.89(0.35) 3.74(0.35)
25th λ 3.54(0.34) 2.78(0.38) 2.63(0.39)
50th λ 2.32(0.31) 1.68(0.31) 1.62(0.31)
75th λ 1.58(0.26) 1.31(0.24) 1.30(0.24)
100th λ 1.27(0.22) 1.21(0.21) 1.22(0.22)

Method of mean adding
10th λ 4.26(0.35) 3.88(0.35) 3.72(0.36)
25th λ 3.52(0.35) 2.72(0.38) 2.57(0.40)
50th λ 2.25(0.31) 1.63(0.30) 1.59(0.31)
75th λ 1.53(0.26) 1.30(0.25) 1.30(0.25)
100th λ 1.25(0.22) 1.22(0.23) 1.23(0.24)

Method of median adding
10th λ 4.25(0.34) 3.89(0.35) 3.74(0.35)
25th λ 3.54(0.34) 2.77(0.38) 2.62(0.39)
50th λ 2.31(0.31) 1.66(0.30) 1.61(0.31)
75th λ 1.57(0.26) 1.30(0.24) 1.30(0.24)
100th λ 1.26(0.22) 1.21(0.22) 1.22(0.22)
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Table 2.9: Comparison of RPE for different methods using extreme value censoring
distribution for example 2

α
λ 0.1 0.5 0.9

Uncensored
10th λ 4.18(0.33) 3.75(0.33) 3.59(0.33)
25th λ 3.30(0.29) 2.41(0.29) 2.24(0.29)
50th λ 2.05(0.22) 1.39(0.20) 1.33(0.20)
75th λ 1.38(0.18) 1.13(0.17) 1.11(0.17)
100th λ 1.13(0.16) 1.06(0.16) 1.06(0.16)

Method of weight 1
10th λ 4.27(0.33) 3.91(0.34) 3.77(0.35)
25th λ 3.57(0.34) 2.83(0.39) 2.68(0.41)
50th λ 2.37(0.32) 1.74(0.32) 1.69(0.33)
75th λ 1.63(0.27) 1.36(0.26) 1.35(0.26)
100th λ 1.32(0.24) 1.25(0.24) 1.26(0.24)

Method of weight 0
10th λ 4.45(0.41) 4.11(0.41) 3.97(0.42)
25th λ 3.79(0.41) 3.01(0.45) 2.83(0.46)
50th λ 2.56(0.38) 1.83(0.37) 1.75(0.37)
75th λ 1.75(0.32) 1.41(0.29) 1.39(0.29)
100th λ 1.39(0.27) 1.28(0.25) 1.28(0.25)

Method of weight average
10th λ 4.32(0.35) 3.96(0.36) 3.82(0.37)
25th λ 3.62(0.35) 2.86(0.40) 2.70(0.41)
50th λ 2.41(0.32) 1.74(0.32) 1.68(0.32)
75th λ 1.65(0.27) 1.36(0.25) 1.35(0.26)
100th λ 1.33(0.23) 1.25(0.23) 1.25(0.23)

Method of weight depending
10th λ 4.45(0.41) 4.11(0.41) 3.97(0.42)
25th λ 3.79(0.41) 3.01(0.45) 2.82(0.46)
50th λ 2.56(0.38) 1.82(0.36) 1.74(0.36)
75th λ 1.74(0.31) 1.40(0.28) 1.38(0.28)
100th λ 1.37(0.26) 1.27(0.23) 1.27(0.25)

Method of constant adding
10th λ 4.27(0.33) 3.91(0.34) 3.77(0.35)
25th λ 3.57(0.34) 2.83(0.39) 2.68(0.41)
50th λ 2.37(0.32) 1.72(0.32) 1.67(0.33)
75th λ 1.62(0.27) 1.33(0.25) 1.33(0.25)
100th λ 1.29(0.22) 1.23(0.22) 1.23(0.23)

Method of mean adding
10th λ 4.27(0.33) 3.91(0.35) 3.75(0.35)
25th λ 3.55(0.35) 2.76(0.40) 2.61(0.41)
50th λ 2.29(0.32) 1.67(0.31) 1.63(0.32)
75th λ 1.56(0.26) 1.32(0.24) 1.32(0.25)
100th λ 1.27(0.22) 1.23(0.23) 1.24(0.24)

Method of median adding
10th λ 4.27(0.33) 3.91(0.34) 3.77(0.35)
25th λ 3.57(0.34) 2.82(0.39) 2.67(0.40)
50th λ 2.35(0.32) 1.70(0.31) 1.65(0.32)
75th λ 1.60(0.26) 1.32(0.24) 1.32(0.25)
100th λ 1.28(0.22) 1.23(0.22) 1.23(0.23)
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Figure 2.1: Geometry of elastic net
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Figure 2.2: Diagram of redistribution to right. X denotes failures and ↓ denotes
withdraws (censors)

 

Figure 2.2 Diagram of redistribution to right 

a. 

 

 

b. 

 

 

 

41



Figure 2.3: Comparison of methods at α = 0.1. a) methods modifying δ(n) and b)
methods modifying Y(n)
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Figure 2.4: Survival curves for test data set using different methods

  

 

     

 

 

Survival Time (log (days)) Survival Time (log (days)) 

S
u

rv
iv

a
l 

P
ro

b
a

b
il

it
y

 

S
u

rv
iv

a
l 

P
ro

b
a

b
il

it
y

 

P-value = 0.097 P-value = 0.018 

Weight 0 Weight 1 
S

u
rv

iv
a

l 
P

ro
b

a
b

il
it

y
 

S
u

rv
iv

a
l 

P
ro

b
a

b
il

it
y

 

P-value = 0.072 P-value = 0.328 

Conditional Mean adding  Conditional Median adding  

Survival Time (log (days))   Survival Time (log (days)) 

Copyright c© Liping Huang 2009

43



Chapter 3 Linear Quantile Regression to Identify Equine Cartilage
Biomarkers

3.1 Background

DNA microarrays provide information about expression levels for thousands of

genes simultaneously at the transcriptional level. It is being applied to determine

how global (cell type, tissue, or organismal) differential transcription may affect bi-

ological systems. The development of microarray technology has motivated interest

in their use for disease research and diagnosis. Many studies have attempted to find

disease-specific biomarkers, a small subset of genes that distinguish normal tissue

from diseased tissue. A wide variety of statistical methods have been applied to

biomarker identification, including sparse logistic regression (SLogReg) (Shevade et

al., 2003), receiver operating characteristic (ROC) curve approach (Pepe, 2003; Pepe

et al., 2005) and Gaussian process models (Chu et al., 2005). However, most of these

focus on disease classification, while far fewer studies have been done to identify tis-

sue biomarkers or genes with a tissue-restricted pattern of expression. Genes with

a high level of expression in one tissue compared to other tissue types in the body

are likely to have corresponding tissue-restricted functional annotation. Further, loss

of the functional product encoded by these genes will frequently be associated with

tissue pathology. In general, the identification of tissue-specific biomarkers or genes

with a tissue-restricted pattern of expression can provide important new insight into

the biology of that tissue or the etiology/pathogenesis of diseases that impact that

tissue.

Quantiles are measures of relative standing. For example, a student scoring at

the τth quantile on a standardized test means that he/she performs better than a

proportion τ and worse than a proportion (1− τ) of the reference group of students.

For any 0 < τ < 1 , F−1(τ) = inf{x : F (x) ≤ τ} is called the τ quantile of the
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distribution F (Koenker, 2005). Quantile regression as introduced by Koenker and

Bassett (1978) extends this idea to the estimation of conditional quantile functions

modeling quantiles of the conditional distribution of the response variable as func-

tions of observed covariates. An ordinary least squares (OLS) regression models the

relationship between covariates X and the conditional mean of the response variable

Y given X = x. However, covariates X often influence the whole distribution of Y,

not only the mean, thereby severely weakening OLS (Koenker and Bassett, 1978).

For example, a change in covariates may have an opposite effect on the high and low

percentiles of Y. Unlike OLS, quantile regression methods offer a mechanism for es-

timating models across the full range of conditional quantile functions given X = x.

Two models of quantile regression can be distinguished, depending on whether or

not independent identically distributed (iid) error terms are assumed. We will call

the model without assumption of iid error terms the non iid error model. In linear

quantile regression, if the slopes of the regression lines are different for different quan-

tiles, then the non iid error model is more appropriate (Koenker, 2005). Recently,

Wang and He proposed a rank score test (Wang and He, 2007 and 2008) for detecting

differential gene expression by modeling and analyzing the quantiles of gene intensity

distributions through probe-level measurements. Though also based on the quan-

tile regression idea, Wang and He’s method is otherwise not related to the approach

presented here.

Fold change has been widely used in microarray experiments to identify genes

with different expression levels between two types of samples (e.g., diseased versus

normal tissue). A cut off of 2-fold up or down regulation has been chosen to define

differential expression in most published studies (Schena et al., 1996; Vaishnav et

al., 2008). However, the commonly used 2-fold change criterion does not take into

account the magnitude of gene expression.

In this study, we propose an intensity-dependent linear quantile regression, us-
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ing statistical and biological information to identify tissue-restricted patterns of gene

expression. We demonstrate our methods on the analysis of cDNA microarray data

to compare articular cartilage with ten different body tissues to identify genes with

a cartilage-restricted pattern of expression representing potentially novel cartilage

biomarkers. Chondrocytes are the only cell type in cartilage and they synthesize

several proteins that are expressed in a highly tissue-restricted pattern, including

type II procollagen and aggrecan core protein. Screening for novel genes that have a

cartilage-restricted pattern of expression can expand our understanding of chondro-

cyte function and potentially improve our understanding of important diseases that

involve cartilage, such as arthritis.

3.2 Results and Discussion

Implementation

A MA plot was used to remove intensity dependent dye bias and array-specific

effects where M = log2(R/G) and A = log2

√
RG with R representing the gene

expression level in cartilage and G representing the gene expression level in one of

the other 10 tissues in our study. After scanning, the median intensities adjusted

for background intensities of each pair of spots were Lowess (LOcally WEighted

polynomial regreSSion) normalized for each individual slide. Two MA plots in Figure

3.1 represented the twenty cDNA microarray slides used for this study. The first plot

illustrated unnormalized data and the second plot was the same data after Lowess.

The MA plots in Figure 3.1 showed that the intensity dependent bias had been

removed after lowess normalization (Yang et al, 2002; Dudoit et al., 2002). Because

of some bad-flagged spots, the number of probesets available for analysis ranged from

9333 in the cartilage/lung comparison to 9411 in the cartilage/cerebellum comparison.

For each comparison, a piecewise nonparametric approach was used to reveal the

relationship between percentiles of M and A. The range of A was divided into 10
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regions with a minimum of 900 probe sets and a maximum of 1000 probe sets in

each region. The corresponding 1st, 5th, 10th, 20th, 50th, 80th, 90th, 95th, 99th

percentiles of M were calculated for each region of A. Scatter plots of the mean of

A for each region and quantiles of M in the corresponding region were plotted. For

the cartilage versus bladder comparison (Figure 3.2a), the scatter plot showed an

approximate linear relationship between A and each of the considered conditional

quantiles of M given A, with slight deviations from a linear relationship at the high

intensities. Similar patterns were also observed in the other 9 tissue comparisons (data

not shown). Since the scatter plots for different quantiles were not parallel, the non

iid error quantile regression model is more reasonable. Hence for each comparison,

linear quantile regression (containing intercept and a linear term) under the non iid

error model (He and Wei, 2005; Chen) (Figure 3.2b) was fitted to the data. Generally,

the fit was good, except for small deviations at extreme high intensities (Figure 3.2c).

The corresponding nine conditional percentiles (1st, 5th, 10th, 20th, 50th, 80th, 90th,

95th, 99th) of M were estimated for each observed A. Observed M was compared to

the estimated nine conditional percentiles of M, and a cartilage specific Z-score was

calculated according to Table 3.1. The average Z score and standard deviation were

also calculated. Genes were considered potential cartilage biomarkers if the observed

values for M were above the estimated 95th conditional percentile of M in all 10 of

the cartilage/tissue comparisons analyzed (all Z-scores ≥ 1.96).

Cartilage Biomarkers Identified

Two red straight lines in Figure 3.3 corresponded to estimated 95th percentile

and 5th percentile of log2(R/G) in cartilage versus bladder comparison, respectively.

Thirty-seven probe sets (cyan spots in Figure 3.3) were identified that exhibit expres-

sion above the 95th conditional quantile in all 10 of the cartilage/tissue comparisons

analyzed (Z-scores ≥ 1.96). Of these, 13 (35%) have existing annotation associ-
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ated with cartilage including several well-established cartilage biomarkers (Table 3.2).

BLAST hits for the remaining 24 probe sets (65%) in which the cartilage-specificity

score was at least 1.96 in all 10 tissue comparisons have no reported sequence anno-

tation associated with established functional roles in cartilage. From Table 3.2, we

can also see that the means of the Z scores for these probe sets were high, with small

standard deviations. In contrast, six probe sets (blue spots in Figure 3.3) exhibited

expression levels below the 5th conditional quantile in all 10 of the cartilage/tissue

comparisons analyzed (Z-scores < -1.96). These 6 probe sets represent the ones on

this microarray (cDNAs from an equine articular cartilage library) with consistently

low relative gene expression in cartilage compared to the other tissue types studied.

With microarrays that contain probe sets for all genes in the genome of an organism,

an analysis of the lowest quantiles should be useful in identifying genes with a near

absence of expression in the reference tissue of interest.

Probe sets with high fold change but very low intensities should be excluded.

For example, a probe set might be reported with an intensity of 2 in bladder but

20 in cartilage, thus the fold change was 10. However, if the intensity reading in

cartilage is low, then we cannot reliably identify this kind of probe set as one that is

exhibiting cartilage-specific expression. For each chip, we calculate the 10th percentile

of averaged log2 intensities, denoted as A*. If a probe set’s A value (averaged log2

intensity) was less than A*, we excluded it from the candidate list even when the M

value (log2 fold change) for this probe set was very large. In other words, all 37 probe

sets were selected from probe sets with values of A larger than A*. For one of the ten

comparisons (cartilage vs. bladder), Figure 3.3 illustrates that A for all 37 probe sets

was larger than 6 and M was larger than 1 which implies that the intensity reading in

cartilage was at least greater than 64 after lowess normalization. Similar ranges of A

values for these 37 probe sets were found in the other 9 cartilage/tissue comparisons.

Taking COMP as an example in Table 3.3, we see that the intensity readings in
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cartilage were high and the relative expression differences between cartilage and each

of the ten other tissues (fold change) were large. Similar ranges of intensity and

relative expression differences were found with the other 36 probe sets. Therefore,

data for these thirty-seven probe sets were interpreted as consistent with a cartilage-

restricted pattern of expression.

In this study, cartilage-specific scores were used in place of percentiles of M (Table

3.1). We have compared cartilage with ten other body tissues and have identified

37 probe sets with expression all above the 95th percentile of M. However, with a

larger number of tissue comparisons, the criterion of above the 95th percentile of

M in all tissue comparisons may be too stringent to identify a cartilage-restricted

expression pattern. The idea of transforming percentiles of M into Z-scores and then

choosing probe sets with a high average Z-score and low standard deviation makes

the criterion more feasible to identify probe sets of interest. One of the advantages of

the standardized Z-scores is that it is relatively simple to make adjustments that take

the number of comparisons into account. The appropriate cutoff for average Z-score

and standard deviation deserves further investigation.

Due to the fact that genes were classified as cartilage-specific only when they

showed high relative expression in all 10 tissue comparisons, the probability of falsely

identifying a chance outlier as a cartilage-specific gene is rather low. Loguinov et

al. (2004) distinguish five different circumstances represented by ‘outliers’: a gene

with higher individual variability than the majority of genes; an outlier by chance;

a sporadic technical or biological outlier; a systematic technical outlier (due to, for

example, heteroscedasticity); or a systematic biological outlier due to differential

expression. Our result is based on limited biological replicates, so it is important

to distinguish between differentially-expressed probe sets and the other four types

of outliers. We define genes as potential cartilage biomarkers if the observed values

for M were above the estimated 95th conditional percentile of M in all 10 of the
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cartilage/tissue comparisons analyzed (all Z-scores ≥ 1.96). The probability that

anyone of the thirty-seven probe sets identified would be due to the other four types

of outliers in all 10 of cartilage/tissue comparisons is very small. For example, if we

assume that the probability of probe set being one of the other four types of outliers

is 20% in one cartilage/tissue comparison, then the probability of this probe set being

such an outlier in all 10 cartilage/tissue comparisons is 0.210, which is 1.024e-07, a

rather small value.

Feasibility and Appropriateness of Linear Quantile Regression

Volcano plots, which consider both statistical tests of differences between sample

types (P-value) and biological effects (fold change) are commonly used in microarray

experiments to identify genes with different expression levels between two experimen-

tal groups. With microarray experiments in which the design requires comparisons

between many experimental groups, the number of biological replicates can be con-

strained by logistical variables. For example, with the sample set analyzed in this

study, the articular cartilage and eight of the comparative tissues were collected from

a single donor while placental villous and testis samples were each collected from

other donors. The absence of biological replicates made statistical inference (e.g.,

t-test) of expression differences between cartilage and the other 10 tissues impossible.

In addition, a 2-fold change criterion does not take into account the varied magnitude

of gene expression. Hence, quantile regression was used to determine quantiles of M

conditional on A. Microarray data consists of thousands of probe sets. Dividing the

range of A into several regions still makes each region have enough probe sets (corre-

sponding to spots in the graph) to calculate the quantiles of M. Thus, the piecewise

nonparametric method is feasible and appropriate to reveal the relationship between

A and percentiles of M.

In this study, scatter plots showed percentiles above the 50th percentile of M
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(99th, 95th, 90th, 80th) linearly increasing with A while percentiles below 50th per-

centiles of M (1st , 5th , 10th , 20th) were linearly decreasing with A. Hence, linear

quantile regression with a linear term was fitted to the data. Expression levels above

the 95th percentile were defined as cartilage-restricted expression. Thirty-seven probe

sets were identified as exhibiting a cartilage-restricted pattern of expression. Within

this group are widely recognized cartilage biomarkers, including genes encoding type

II procollagen and aggrecan core protein. The presence of genes encoding these estab-

lished cartilage biomarkers validate the linear quantile regression approach. Hence

we recognize that the expression pattern for the remaining genes that currently lack

established functional annotation linked to cartilage needs to be confirmed with ad-

ditional studies.

Simple linear regression (mean regression) should not be applied to these data

since different quantiles of M behave differently (Figure 3.2d) and the iid error as-

sumption (implying equal variances) which is used in simple linear regression is ob-

viously violated. In Figure 3.2d, at medium and high intensities, the 95th linear

quantile regression line (red) was above the 95% confidence interval upper bound of

the simple linear regression line (purple). As a result, the approach of fitting a lin-

ear regression and then calculating a 95% confidence interval of individual predicted

values of M conditional on each A would lead to the false positive identification of

cartilage-specific probe sets at medium and high intensities.

Based on the M-A plots, one of the reviewers has suggested the following iter-

ated logarithm approach for normalization. Let log2(log2R)− log2(log2G) be M and

(log2(log2R)+log2(log2G))/2 be A to perform Lowess normalization. After normaliza-

tion, for each comparison, linear quantile regression of M on A was fitted to the data.

39 probe sets were above the estimated 95% conditional percentile of M in all 10 tissue

comparisons. In contrast, 37 probe sets were above the estimated 95% conditional

percentile of M in all 10 tissue comparisons using the originally proposed log2 transfor-
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mation method. There were 32 probe sets common in both approaches. However, the

iterated logarithm approach failed to identify 3 well-established cartilage biomarkers,

which could be identified by the single log2 transformation approach. One possible

reason is that the iterated logarithm may not remove intensity-dependent bias as well

as the single logarithm.

3.3 Conclusions

Quantile regression is appropriate for the analysis of two color array experiments,

especially for studies with only one replicate and hence highly limited quantifiable

sources of experimental error. We used a nonparametric approach to reveal the re-

lationship between A and quantiles of M and then applied the appropriate quantile

regression (in this study, it is linear quantile regression with intercept and a lin-

ear term) to select genes with a high level of expression in specific tissue or tissue

biomarkers.

3.4 Methods

Microarray Experiments

Articular cartilage and eight comparative tissues (kidney, lung, lymph node, cere-

bellum, spleen, bladder, liver, and muscle) were collected from a two-year old donor

horse. Placental villous and testis samples were obtained independently from other

donor horses. Total RNA was isolated from all of these eleven tissues by a tra-

ditional guanidinium isothiocyanate and phenol/chloroform separation protocol for

total RNA isolation. Dye-coupled probes from the articular cartilage and each of

the 10 tissues individually (cartilage/kidney, cartilage/lung, cartilage/lymph node,

cartilage/placental villus, cartilage/cerebellum, cartilage/spleen, cartilage/bladder,

cartilage/testis, cartilage/liver, and cartilage/muscle) were then hybridized to a 9852
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element equine-specific cDNA microarray. All hybridizations were performed in du-

plicate with a dye swap to eliminate possible dye bias. After the post-hybridization

washes, each slide was then immediately scanned using a GenePix 4100A scanner and

spot intensities were computed using GENEPIX 6.0 image analysis software (Axon

Instruments/Molecular Devices). Following background correction, the median in-

tensities of each pair of spots were Lowess normalized for each individual slide. The

bad-flagged spots on each slide were removed from the analyses.

Algorithm and Analysis

The statistical model in this study is that the τth conditional quantile of Yi

is Xiβ(τ) where Yi is the observed M, Xi = (1, xi) and xi are the A, β(τ) =

(β0(τ), β1(τ))T . We have employed τ values 1, 5, 10, 20, 50, 80, 95 and 99%. An-

other way of writing this model is Yi = Xiβ(τ) + εi(τ) with εi(τ) quantile zero.

The parameter β(τ) can be estimated by solving the minimizing problem: β̂(τ) =

arg minβ∈R2

∑n
i=1 ρτ (Yi −Xiβ), 0 < τ < 1 where ρτ (z) = z(τ − I(z < 0)) and I(.) is

the indicator function. Based on the estimated β̂(τ), the predicted τth quantile of Y

given covariate value xi is Xiβ̂(τ).
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Table 3.1: Transforming quantiles of log2(R/G) to Z score

Quantile of log2(R/G) Z-score
observed log2(R/G) ≥99th estimated quantile 2.57

99th estimated quantile > observed log2(R/G) ≥ 95th estimated quantile 1.96
95th estimated quantile > observed log2(R/G) ≥ 90th estimated quantile 1.44
90th estimated quantile > observed log2(R/G) ≥ 80th estimated quantile 1.04
80th estimated quantile > observed log2(R/G) ≥ 50th estimated quantile 0.39
50th estimated quantile > observed log2(R/G) ≥ 20th estimated quantile -0.39
20th estimated quantile > observed log2(R/G) ≥ 10th estimated quantile -1.04
10th estimated quantile > observed log2(R/G) ≥ 20th estimated quantile -1.44
5th estimated quantile > observed log2(R/G) ≥ 10th estimated quantile -1.96

observed log2(R/G) < 1st estimated quantile -2.57
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Table 3.2: Cartilage specific score for genes with functional annotation linked to
cartilage

Gene Symbol Gene Name Cartilage-Specificity Score
Mean S.D. Low High Median

Hapln1 Hyaluronan and proteoglycan 2.57 0 2.57 2.57 2.57
link protein 1

COMP Cartilage oligomeric 2.51 0.19 1.96 2.57 2.57
matrix protein

COL11A1 Collagen, type XI, alpha 1 2.51 0.19 1.96 2.57 2.57
AGC1 Aggrecan core protein 2.51 0.19 1.96 2.57 2.57

COL2A1 Collagen, type II, alpha 1 2.39 0.29 1.96 2.57 2.57
TNC Tenascin C 2.33 0.32 1.96 2.57 2.57
PRG4 Proteoglycan 4 2.33 0.32 1.96 2.57 2.57
SOX9 SRY-box 9 2.20 0.32 1.96 2.57 1.96

ITGA10 Integrin, α10 2.20 0.32 1.96 2.57 1.96
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Table 3.3: Intensities of COMP expression in all ten cartilage/tissue omparisons

Tissue Comparison Original Intensity After Lowess Normalization

Cartilage Tissue A M Fold Change
Cartilage/Bladder 4797.70 214.07 9.17 7.63 194.01

Cartilage/Cerebellum 7860.70 947.79 10.36 5.35 40.79
Cartilage/Kidney 3249.25 264.16 8.69 5.89 59.30
Cartilage/Liver 5685.64 420.13 9.58 5.91 60.13
Cartilage/Lung 4494.31 166.70 8.77 5.83 56.89

Cartilage/Lymph node 10382.70 706.12 10.43 7.25 152.22
Cartilage/Muscle 6191.20 621.54 9.68 5.66 50.56

Cartilage/Placental villus 4256.93 238.23 8.83 7.27 154.34
Cartilage/Spleen 11358.35 806.09 10.52 7.18 145.01
Cartilage/Testis 8075.92 1774.16 11.04 4.60 24.25

56



Figure 3.1: MA plot to remove intensity dependent bias 
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Figure 3.2: Nonparametric approach to reveal the relationship between A and quan-
tiles of M and linear quantile regression fitting 
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Figure 3.3: 37 probe sets identified in cartilage/bladder comparison
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Chapter 4 Normalization and Analysis of cDNA Microarray Using
Linear Combinations

4.1 Background

Two-color cDNA microarray technology has evolved into a routine laboratory pro-

cedure. A key purpose of a cDNA microarray experiment is to quantify the relative

gene expression between experimental samples for thousands of probe sets simultane-

ously. In a cDNA microarray experiment, two mRNA samples are linearly amplified,

reverse-transcribed into cDNA, labelled with green (AlexaFluor555) and red (Alex-

aFluor647) fluorescent dyes, and mixed in equal proportions and hybridized with the

immobilized probe sequence on the microarrays. The pixel intensities from green and

red wavelength images are measured for the amount of hybridization between the

mRNA samples and the probe sequence on the microarrays.

A key concern in the analysis of cDNA microarray data is normalization, the

purpose of which is to adjust for effects arising from variation in the microarray

technology rather than from biological differences between the RNA samples. Sys-

tematic variation in microarray experiments may arise from imbalances between the

red and green dyes (dye bias), uneven hybridizations, differences in print quality, etc.

Dye bias, the most common source systematic variation, can be obviously seen in an

experiment where two identical mRNA samples are labeled with different dyes and

subsequently hybridized to the same slide. In this situation, it is rare to have the

dye intensities equal on average and often the intensities are higher for the green dye.

Dye bias may stem from physical properties of the dyes, differential efficiency of dye

incorporation, and scanner settings at the data collection step. A proper normaliza-

tion procedure ensures that red/green ratios are unbiased and thus representative of

relative gene expression levels.

In recent years, several methods have been proposed for normalization. Let log2R
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and log2G be the green and red background corrected intensities, then M and A

are defined by M = log2R/G and A = log2

√
RG. Yang et al. (2001) discussed

several normalization methods, including global normalization, intensity dependent

linear normalization and intensity dependent nonlinear normalization. Global method

assumes that the red and green intensities are related by a constant factor and nor-

malization model can be expressed as M = β0 + ε, where β0 is estimated by the

median of M and ε is a vector of random error. For linear normalization, the model is

M = β0+β1A+ε, here β0 and β1 are obtained by least squares estimation. The model

for nonlinear normalization is in the form of M = c(A) + ε, where c(A) is estimated

using Lowess smoothing. All three normalization methods are based on regression

models of M in terms of A. The analysis of variance (ANOVA) method was presented

by Kerr et al. (2000) and Wolfinger et al. (2001) extended the ANOVA approach,

including random effects to model the dependence among observations relative to the

same spots or arrays and allowing for gene-specific variance components. A two-step

approach was proposed by Wolfinger et al. (2001). First stage is referred to as ‘global

normalization’. From the global normalization, the estimated residuals are saved. In

the second stage, the mixed model performs independent analyses for each gene using

estimated residuals from the first step as response variable.

Lowess normalization is one of the most widely used normalization methods. How-

ever, this method is appropriate when at least one of the two biological assumptions

is satisfied: (a) the majority of genes are not differentially regulated, or (b) there is

symmetry in the expression levels between up-regulated and down-regulated genes

(Zien et al., 2001). For experiments that these two assumptions are violated, Tseng

et al. (2001) suggested using a rank-based procedure, first selecting a set of genes

with constant expression levels, then carrying out lowess normalization based on this

set of genes. Huang et al. (2005) presented a two-way semilinear model (TW-SLM)

that does not make the assumptions underlying the lowess normalization method and
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does not require preselection of invariant genes in an array.

In this study, we propose using well-planned linear combinations to remove dye

and array effects and further to identify differentially expressed genes. We demon-

strate our method in two datasets: (1) a comparison of normal cartilage to repair

tissue to profile genes playing a key role in the process of cartilage repair, and (2)

a dataset with a 2x2 factorial design with two main effects: oxygen concentration

(hypoxia versus normoxia) and cell culture methods (monolayer versus aggregate).

4.2 Results and Discussion

Implementation

After scanning, log2 transformation was applied to the median intensities adjusted

for background intensities of each pair of spots. If the median intensities adjusted

for background was less or equal to 0, then 1 was used to replace it. There were

36 (0.38%) probe sets in first data set and 34 (0.36%) probe sets in the second data

set had such replacement. Only a few probe sets had such replacement in both data

sets, so statistical analysis based on data after replacing was reliable. Our statistical

models were based on intensities after log2 transformation.

First dataset: Table 4.1 represents the model equation for one array set in a

microarray experiment with dye swap design. The model can be written as yijkl(m) =

µi +τj +λjk +γjkl +ηjkm(i,l) +εijkl(m) with i = 1, 2; j = 1, . . . , 4; k = 1, 2; l = 1, 2; m =

1, 2. yijk(m) = (y1jk1(1), y1jk2(2), y2jk1(2), y2jk2(1)) are gene expression levels (intensities)

for jth horse kth leg; µ = (µ1, µ2) are mean response with µ1 corresponding to mean

response for repair tissue and µ2 representing mean response for normal cartilage;

τj is jth horse effect; λj = (λj1, λj2) are right and left leg effects for jth horse,

respectively; γjk = (γjk1, γjk2) are array 1 and array 2 effects for jth horse kth leg.

Since dye effect is confounded in treatment and array effect, we defined m(i, l) in this

way: m(1, 1) = 1, m(2, 1) = 2, m(1, 2) = 2 and m(2, 2) = 1 so that different pairs
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of (i, l) determine different dye effects. Therefore ηjk = (ηjk1, ηjk2) are red and green

dye effects for jth horse kth leg respectively. Under this definition, dye effects differ

across the horse and leg. εijk = (ε1jk1(1), ε1jk2(2), ε2jk1(2), ε2jk2(1)) is random effect for

jth horse kth leg. The sum of the first row minus the sum of second row, cancels

out the dye, array, horse and leg effects thus leaving the difference of mean response

between repair cartilage and normal cartilage plus a random error term. Cancelling

out horse and leg effects results in eight observations instead of four observations

per probe set. Assuming that the error vectors are i.i.d. multivariate normal with

mean vector zero, a one sample t-test is applied to these 8 observations (differences of

row sum) to select genes with differential expression level between repair tissue and

normal cartilage. Benjamini and Hochberg (1995) procedure of controlling FDR at

2% is used for comparing P-values of the t tests.

Second dataset: M and A are used to represent two chondrocyte culture meth-

ods: monolayer and aggregate; N and H are used to represent two oxygen tensions:

normoxia and hypoxia. MH, MN, AH and AN represent 4 treatment groups in this

2x2 factorial design. Table 4.2 displays the assumed statistical model. µkj is the

mean response for treatment group with k = 1 (M), 2 (A) and j = 1 (H), 2 (N).

ηi = (η1i, η2i) are red and green dye effects, respectively; γi = (γ1i, γ2i) are array 1

and array 2 effects; εi = (ε11i, ε12i, ε21i, ε22i) is random effect for the ith array set,

i = 1, 2, 3. The difference is obtained by subtracting sum of second row from sum of

first row. These differences are free of extraneous dye and array effects. Based on

these differences, linear combinations have been constructed as shown in Table 4.3 to

estimate interactions, main effects, and pairwise comparisons. The test statistic is

F =
3 ∗ (

∑4
k=1 ckD̄k.)

2

s2
p

∑4
k=1 c2

k

(4.1)

where D̄k. is the average difference for the kth block type as shown in Table 4.2.

Let s2
k be the estimated variance of Dki , i = 1, . . . , 3, and s2

p the pooled variance
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estimate. ck is the corresponding coefficient given in Table 4.3. The test statistic is

F (1 , 8 ) distributed.

First Data Set

Differentially Expressed Probe Sets Identified with Linear Combinations

The equine cDNA array contains 9413 probe sets. For the first data set, lin-

ear comparisons identified 4269 probe sets with differential expression levels between

repair tissue and normal cartilage (P-value < 0.01). After Benjamini Hochberg ad-

justment at 1%, 3327 probe sets remained. Of these probe sets, 1454 demonstrated

greater transcript abundance in repair tissue relative to normal articular cartilage,

and 1873 demonstrated greater transcript abundance in normal articular cartilage

relative to repair tissue. Assessment of probe set annotation by BLAST queries iden-

tified 2688 significant probe sets representing 2101 unique gene symbols. Of these,

858 gene symbols were present at higher levels in repair cartilage while 1243 of the

gene symbols were at higher levels in normal cartilage.

Evaluation of Other Normalization Methods

Lowess normalization method cannot be applied to this data set since a high

proportion of differentially expressed genes between repair tissue and normal cartilage

would be expected according to biological knowledge. Also, there is no evidence

to show the symmetric expression levels between up-regulated and down-regulated

genes. Alternatively, the approach of Lowess normalization using probe sets with

constant expression levels can be used with this data set. The bottom row of each

array contains a constant set of positive and negative controls. These probe sets

are buffer and some house keep genes, which are considered to express constantly

across the arrays. Figure 4.1 used the array representing right leg of horse 1 as an

example to show this method. A is log2

√
RG and M is log2R/G with R denoting
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repair cartilage and G being normal cartilage. After Lowess normalization, the M

values of control probe sets were approximately symmetric around M = 0 (Figure

4.1b). Then the normalization curve (red curve) obtained from control probe sets

was applied to all probe sets on the same array (Figure 4.1c) to remove the intensity-

dependent dye bias. Figure 4.1d depicted the result of all probe sets on this array after

Lowess normalization. Other arrays used same procedure to eliminate bias (data not

shown). After Lowess normalization, one sample t-test was performed on the average

of log2R/G obtained from left and right legs of one horse.

The comparisons of two methods (linear combinations versus Lowess using probe

sets with constant expression levels) were summarized in Table 4.4. It is obvious

that linear combinations identified much more differentially expressed probe sets.

Using P-value < 0.01 and FDR adjustment at 0.02 as a cut off, linear combinations

identified 4156 probe sets and Lowess using probe sets with constant expression levels

identified 1791 probe sets. Both methods shared identification of 1529 probe sets.

Fold change has been widely used in microarray experiments to identify genes with

different expression levels between two types of samples (e.g., diseased versus normal

tissue). A cut off of 2-fold up or down regulation has been chosen to define differential

expression in most published studies (Schena et al., 1996; Vaishnav et al., 2008).

Hence in this study, we used 2 fold up or down as an additional criterion to further

select probe sets with differential expression levels between repair tissue and normal

cartilage. Table 4.4 showed that taking P-value, FDR and fold change into accounts,

linear combinations identified not only much more probe sets, but also all the probe

sets identified by Lowess procedure (last two rows in Table 4.4).

Quantitative Polymerase Chain Reaction Validation of Data

Real time qPCR was further performed on probe sets with biological interests

to validate the statistical approaches. For each probe set, means of gene expression
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levels of left and right legs obtained from real time qPCR were used to do paired

t-test. In Table 4.5, Lowess is Lowess using probe sets with constant expression

levels. FC is fold change, mean gene expression levels in repair cartilage/ mean

gene expression levels in normal cartilage. It showed that real time qPCR identified

DPT, COMP and COL2A1 to be differentially expressed between repair and normal

cartilage (P-values < 0.05) (Table 4.5). If we choose the FDR-pvalue cut off at

0.01, linear combinations identified DPT and COMP and failed to find COL2A1.

However, Lowess identified none of them. If we relax the cut off of FDR-pvalue to

be 0.05, linear combinations successfully identified probe sets corresponding to these

three genes. In contrast, Lowess using probe sets with constant expression levels

only identified DPT and COMP and failed to identify the majority of probe sets

representing COL2A1 (P-values were greater than 0.05 and highlighted). One possible

reason is that the leg and horse effects cannot be canceled out by Lowess procedure.

The average of log2R/G from right and left legs of each horse was considered as

one ‘replicate’. Hence the effective sample size using Lowess method was 4. In

contrast, using linear combinations, the chip, dye, horse and leg effects were removed

by calculating the described differences in Table 4.1. Since there were 4 horses with 2

knees per horse, eight such differences were obtained which thus resulted in increased

statistical power because it allowed for an increased of the effective sample size to

eight. For fold change, real time qPCR showed that DPT transcript abundance

was up-regulated in repair tissue while COMP and COL2A1 transcripts were down-

regulated in repair tissue. Both linear combinations and Lowess using probe sets with

constant expression levels showed the same directions (up or down) of fold change as

real time qPCR did. However, compared to Lowess method, the magnitudes of fold

change identified by linear combinations were closer to results from real time qPCR.

Lowess method tried to draw the M value which is log2 (fold change) towards 0 during

normalization, therefore possibly reducing the fold change measured. It may explain
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why Lowess identifies the smaller magnitudes of fold change in either direction (up

or down). Note that in normalizing intensities regionally, there were not enough

control probe sets to normalize the entire chip (Figure 4.1a). So using probe sets

with constant expression levels may not provide a good fit for non-linear normalization

curves (Tseng et al., 2001) and therefore may influence both P-values and fold change

identified.

Second Data Set

Differentially Expressed Probe Sets Identified with Linear Combinations

For the second data set, linear comparisons identified 87 probe sets with inter-

action effects (P-value < 0.01). Among 9326 probe sets without interaction effect,

1211 probe sets have culture method effect (P-value < 0.01) and 620 probe sets have

oxygen tension effect (P-value < 0.01). Partial pressure of oxygen has been shown

to be an important regulator of cell function and gene expression (Henrotin et al.,

2005). The aggregate culture method mimics hypoxic condition. Hence for four com-

binations of oxygen tension and culture methods (AH, AN, MH and MN), aggregate

and hypoxia (AH) creates the lowest oxygen condition and monolayer and normoxia

(MN) gives the highest oxygen condition. Table 4.6 showed results of pairwise com-

parisons. These six probe sets in Table 4.6 did not have interaction effect but had

both oxygen tension and culture method effects. There is a significant difference

between two extreme oxygen conditions (AH vs MN) and the significant difference

disappears in two medium oxygen conditions comparison (MH vs AN). When oxygen

tension is fixed and we compare two culture methods, we can detect the significant

difference between aggregate and monolayer under normoxic oxygen tension and fail

to find this difference under hypoxic oxygen tension. One possible reason is that hy-

poxia weakens the difference of oxygen condition between aggregate and monolayer.

Similarly, when culture method is fixed and two oxygen tensions are compared, the
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significant difference can be observed only under monolayer culture method. Table

4.6 also showed that PGK-1 expression levels increase under low oxygen condition,

which is consistent with findings from Pfander et al. (2003). When we take into

account fold change in addition to P-values, the upper three probe sets in Table 4.6

have same gene expression pattern and lower three probe sets have an opposite gene

expression pattern. Therefore, the upper two probe sets may have same function as

PGK-1 while the lower three probe sets may inhibit this function. This needs to be

confirmed with additional biological studies.

Evaluation of Other Normalization Methods

The mixed model approach, which performs independent analyses for each gene,

one at a time, is often used to analyze experiments with factorial designs. The

drawback of this method is that, it does not suffice to include biological replication

in the experiment and to include random effects into the model (Rosa et al., 2005).

Many factors may be included into the model, depending on the treatment structure

(e.g., factorial experiments) and design settings (e.g., patch effects, spot effects and

interactions involving random factors). Steibel et al. (2009) discussed the choice of

fixed and random effects in microarray experiment. The choice of fixed and random

effects may influence the final results. In contrast with the mixed model approach,

the linear combinations procedure avoids estimation of the random effects. Because

of the balanced design, dye and chip effects are eliminated by the process of taking

difference of row sums in Table 4.2.

4.3 Conclusions

Planned linear combinations first eliminate dye and chip effects by negation and

then construct a sequence of comparisons to identify probe sets with differential ex-

pression levels. This method is not based on strong biological assumptions and cancels
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out the dye and chip effects instead of modeling them. Hence, under the appropri-

ate experimental design, planned linear comparisons can be a powerful alternative to

Lowess and mixed model approaches for two-color microarray data analysis.

4.4 Microarray Experiments

First Experiment

One-cm2 full-thickness articular cartilage lesions were arthroscopically made bilat-

erally with subseqent microfracture into the subchondral bone of the medial femoral

condyles for four adult Quarterhorses (2-3 years) as previously described by Frisbie et

al. (1999, 2003). Four months after treatment, repair tissue from the lesions and full-

thickness grossly normal articular cartilage from within the same joint were collected

from each femorotibial joint (knee). For each horse, two-color cDNA chips were used

with each treatment applied on each chip , and the dye combinations swapped on the

second chip.

Second Experiment

Chondrocytes were isolated from full-thickness articular cartilage shavings of a one

year old horse, split into 12 units and randomly allocated to four treatment groups;

2x2 factorial combination of culture method and oxygen tension. Two chondrocyte

culture methods were used, 1) adherent monolayer (M) and 2) non-adherent aggregate

(A); and two oxygen tensions were applied, 1) normoxia (20% oxygen concentration)

(N) and 2) hypoxia (2% oxygen concentration) (H). Treatments were allocated in an

incomplete block arrangement with two treatments per block and three replications

of each block. Two chips were used per block as in the first experiment.

For these two experiments, total RNA was isolated from tissue or cell samples,

linearly amplified, and hybridized to cDNA microarrays. After the post-hybridization

washes, each slide was then scanned using a GenePix 4100A scanner and spot intensi-
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ties were computed using GENEPIX 6.0 image analysis software (Axon Instruments

/ Molecular Devices). After scanning, the median intensities adjusted for background

of each pair of spots were used for statistical analysis.
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Table 4.3: Linear combinations to identify interaction, main effects and pairwise
comparisons

µ11 − µ21 µ12 − µ22 µ11 − µ12 µ21 − µ22

Effects Linear Combinations
Interaction 0.5 -0.5 0.5 -0.5

Culture method 0.5 0.5 0 0
Oxygen tension 0 0 0.5 0.5

AH vs MN -0.5 -0.5 0.5 0.5
MH vs AN 0.5 0.5 0.5 0.5
MH vs AH 0.5 0.5 0.5 -0.5
MN vs AN 0.5 0.5 -0.5 0.5
MH vs MN 0.5 -0.5 0.5 0.5
AH vs AN -0.5 0.5 0.5 0.5
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Table 4.4: Comparisons of linear combinations with Lowess using probe sets with
constant expression levels

Linear In
Criteria Combinations Lowess Common
P-value<0.01 4269 2891 2356
P-value<0.01 and FDR adjustment at 0.02 4156 1791 1529
P-value< 0.01, FDR adjustment at 0.02
and 2 fold up in repair cartilage 1134 278 278
P-value<0.01, FDR adjustment at 0.02
and 2 fold down in repair cartilage 1148 186 186
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Figure 4.1: Lowess normalization based on probe sets with constant expression levels
in one array representing right leg of horse 1

 

 

                                                               

 

 

Copyright © Liping Huang 2009 
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Appendix: R or SAS Source Codes

R Codes for First Topic

Count Frequency - High Dimensional Case

library(mvtnorm) library(Matrix) library(glmnet) library(lars)

library(quantreg) library(emplik)

c11<-matrix(0.7,nrow=30,ncol=30) diag(c11)<-1

c12<-matrix(0,nrow=90,ncol=30) c21<-matrix(0,nrow=30,ncol=30)

c22<-matrix(0.7,nrow=30,ncol=30) diag(c22)<-1

c23<-matrix(0.2,nrow=30,ncol=30) c24<-matrix(0,nrow=30,ncol=30)

c31<-matrix(0,30,30) c32<-matrix(0.2,30,30) c33<-matrix(0.7,30,30)

diag(c33)<-1 c34<-matrix(0,30,30) c41<-matrix(0,90,30)

c42<-matrix(0.7,30,30) diag(c42)<-1 c1<-rbind(c11,c12)

c2<-rbind(c21,c22,c23,c24) c3<-rbind(c31,c32,c33,c34)

c4<-rbind(c41,c42) cov<-cbind(c1,c2,c3,c4)

# out function returns non-zero betas out<-function(betaini){

tempnames <- row.names(betaini) index<-!(betaini[ ] == 0 )

row.names(index) <- NULL tempnames[as.vector( index ) ]

r0<-as.matrix(cbind(tempnames[as.vector(index)],betaini[betaini!=0]))

return(r0) }

# count function counts number of non-zero betas

count<-function(bjr){ a<-out(bjr)[,1] nr<-length(a)

b<-as.numeric(out(bjr)[,2]) bnoint<-b[2:nr]

an<-as.numeric(substr(a,2,100)) ann<-an[!is.na(an)]

in1<-ann[ann<=30] in2<-ann[ann>30 & ann<=60]

in3<-ann[ann>60&ann<=90] in4<-ann[ann>90 & ann<=120] f1<-length(in1)

f2<-length(in2) f3<-length(in3) f4<-length(in4)

return(c(f1,f2,f3,f4)) }

#addindC is function to add conditional mean to last observed

#survival time

addingC <- function (x, y, delta, beta) {

#### input must be ordered according to Y and last Y being censored

#### this code is to impute the last Y value.

N <- length(delta)

u <- cbind(1,x) %*% beta
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res <- y - u

#### kk <- rank(res)[N]

niceorder <- order(as.vector(res), -delta)

kk <- which( niceorder == N ) #### this should work with tie

resorder <- res[niceorder]

dorder <- delta[niceorder]

dorder[N] <- 1

uorder <- u[niceorder]

ystar <- y[niceorder]

xorder <- as.matrix(x[niceorder, ])

temp <- WKM(x = resorder, d = dorder, zc = 1:N)

jifen <- rev(cumsum(rev(resorder * temp$jump)))

Sresorder <- temp$surv

if( Sresorder[kk] >0 ) {

ystar[kk] <- uorder[kk] + jifen[kk]/(Sresorder[kk])

}

return( ystar[kk] )

}

#addingM is a function to add conditional median to observed

#survival time addingM <- function (x, y, delta, beta) {

#### input must be ordered according to (y, -delta). Typically the

#### last y is censored (so needs to be imputed). This code impute

#### the last y value by median and return this value.

N <- length(delta)

u <- cbind(1,x) %*% beta

res <- y - u

delta[N] <- 1 ### do we need this?

niceorder <- order(as.vector(res), -delta)

kk <- which( niceorder == N )

resorder <- res[niceorder]

dorder <- delta[niceorder]

dorder[N] <- 1

uorder <- u[niceorder]

ystar <- y[niceorder]

xorder <- as.matrix(x[niceorder, ])

temp <- WKM(x = resorder, d = dorder, zc = 1:N)

Sresorder <- temp$surv

if( Sresorder[kk] >0 ) {

Ptheta <- Sresorder[kk]/2

pivec <- temp$jump

pivec[1:(kk-1)] <- 0

posi <- sum( cumsum(pivec) < Ptheta )

theta <- temp$times[ posi +1]
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ystar[kk] <- uorder[kk] + theta

}

return( ystar[kk] )

}

simcen<-function(cov){ repeat{

x<-rmvnorm(50,mean=rep(0,120),sigma=cov)

a<-x%*%as.matrix(betafix)

e<-rnorm(50) y<-a+15*e c<-140*log(rexp(50,1))+59.7

#c<-runif(50,-190,190) z<-rep(NA,50) d<-rep(NA,50) for (i in 1:50){

if (y[i]<c[i]) {

z[i]<-y[i]

d[i]<-1}

else {z[i]<-c[i]

d[i]<-0}

} sorted <- order(z) sz<- as.double(z[sorted])

sy<-as.double(y[sorted]) sstat <- as.integer(d[sorted])

sx<-x[sorted,] me<-mean(sstat[41:50]) if (sstat[50]==0) break sz<-sz

sstat<-sstat sx<-sx sy<-sy }

w0<-rep(1/50,50) w1<-WKM(x=sz,d=sstat)$jump

###w1 treats the last obs to be dead. w2<-w1*sstat

###w2 treats the last obs to be what it originally is (=0).

w<-w1[50] w3<-c(w1[1:49],0.5*w1[50]) w5<-c(w1[1:49],0.25*w1[50])

object30a<-glmnet(sx,sy,weight=w0,alpha=0)

beta30a<-predict(object30a,s=object30a$lambda[100],type="coefficients")

object30b<-glmnet(sx,sy,weight=w0,alpha=0.1)

beta30b<-predict(object30b,s=object30b$lambda[100],type="coefficients")

object30c<-glmnet(sx,sy,weight=w0,alpha=0.5)

beta30c<-predict(object30c,s=object30c$lambda[100],type="coefficients")

object30d<-glmnet(sx,sy,weight=w0,alpha=0.9)

beta30d<-predict(object30d,s=object30d$lambda[100],type="coefficients")

object30e<-glmnet(sx,sy,weight=w0,alpha=1)

beta30e<-predict(object30e,s=object30e$lambda[100],type="coefficients")

object31a<-glmnet(sx,sz,weight=w1,alpha=0)

beta31a<-predict(object31a,s=object31a$lambda[100],type="coefficients")

object31b<-glmnet(sx,sz,weight=w1,alpha=0.1)

beta31b<-predict(object31b,s=object31b$lambda[100],type="coefficients")

object31c<-glmnet(sx,sz,weight=w1,alpha=0.5)

beta31c<-predict(object31c,s=object31c$lambda[100],type="coefficients")
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object31d<-glmnet(sx,sz,weight=w1,alpha=0.9)

beta31d<-predict(object31d,s=object31d$lambda[100],type="coefficients")

object31e<-glmnet(sx,sz,weight=w1,alpha=1)

beta31e<-predict(object31e,s=object31e$lambda[100],type="coefficients")

object32a<-glmnet(sx,sz,weight=w2,alpha=0)

beta32a<-predict(object32a,s=object32a$lambda[100],type="coefficients")

object32b<-glmnet(sx,sz,weight=w2,alpha=0.1)

beta32b<-predict(object32b,s=object32b$lambda[100],type="coefficients")

object32c<-glmnet(sx,sz,weight=w2,alpha=0.5)

beta32c<-predict(object32c,s=object32c$lambda[100],type="coefficients")

object32d<-glmnet(sx,sz,weight=w2,alpha=0.9)

beta32d<-predict(object32d,s=object32d$lambda[100],type="coefficients")

object32e<-glmnet(sx,sz,weight=w2,alpha=1)

beta32e<-predict(object32e,s=object32e$lambda[100],type="coefficients")

object33a<-glmnet(sx,sz,weight=w3,alpha=0)

beta33a<-predict(object33a,s=object33a$lambda[100],type="coefficients")

object33b<-glmnet(sx,sz,weight=w3,alpha=0.1)

beta33b<-predict(object33b,s=object33b$lambda[100],type="coefficients")

object33c<-glmnet(sx,sz,weight=w3,alpha=0.5)

beta33c<-predict(object33c,s=object33c$lambda[100],type="coefficients")

object33d<-glmnet(sx,sz,weight=w3,alpha=0.9)

beta33d<-predict(object33d,s=object33d$lambda[100],type="coefficients")

object33e<-glmnet(sx,sz,weight=w3,alpha=1)

beta33e<-predict(object33e,s=object33e$lambda[100],type="coefficients")

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32a)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31a)>0)==1 )

w4a<-w1

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32a)<0)==1) w4a<-w2

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32a)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31a)<0)==1 )

w4a<-w5

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32b)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31b)>0)==1 )

w4b<-w1

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32b)<0)==1) w4b<-w2

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32b)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31b)<0)==1 )

w4b<-w5

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32c)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31c)>0)==1 )
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w4c<-w1

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32c)<0)==1) w4c<-w2

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32c)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31c)<0)==1 )

w4c<-w5

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32d)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31d)>0)==1 )

w4d<-w1

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32d)<0)==1) w4d<-w2

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32d)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31d)<0)==1 )

w4d<-w5

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32e)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31e)>0)==1 )

w4e<-w1

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32e)<0)==1) w4e<-w2

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32e)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31e)<0)==1 )

w4e<-w5

object33a<-glmnet(sx,sz,weight=w3,alpha=0)

beta33a<-predict(object33a,s=object33a$lambda[100],type="coefficients")

object33b<-glmnet(sx,sz,weight=w3,alpha=0.1)

beta33b<-predict(object33b,s=object33b$lambda[100],type="coefficients")

object33c<-glmnet(sx,sz,weight=w3,alpha=0.5)

beta33c<-predict(object33c,s=object33c$lambda[100],type="coefficients")

object33d<-glmnet(sx,sz,weight=w3,alpha=0.9)

beta33d<-predict(object33d,s=object33d$lambda[100],type="coefficients")

object33e<-glmnet(sx,sz,weight=w3,alpha=1)

beta33e<-predict(object33e,s=object33e$lambda[100],type="coefficients")

object34a<-glmnet(sx,sz,weight=w4a,alpha=0)

beta34a<-predict(object34a,s=object34a$lambda[100],type="coefficients")

object34b<-glmnet(sx,sz,weight=w4b,alpha=0.1)

beta34b<-predict(object34b,s=object34b$lambda[100],type="coefficients")

object34c<-glmnet(sx,sz,weight=w4c,alpha=0.5)

beta34c<-predict(object34c,s=object34c$lambda[100],type="coefficients")

object34d<-glmnet(sx,sz,weight=w4d,alpha=0.9)

beta34d<-predict(object34d,s=object34d$lambda[100],type="coefficients")

object34e<-glmnet(sx,sz,weight=w4e,alpha=1)

beta34e<-predict(object34e,s=object34e$lambda[100],type="coefficients")

n<-50 c<-seq(0,100,1) resi<-rep(0,101) for (i in 1:101){ usz<-sz
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usz[50]<-sz[50]+c[i] object35a1<-glmnet(sx,usz,weight=w1,alpha=0)

beta35a1<-predict(object35a1,s=object35a1$lambda[100],type="coefficients")

resi[i]<-sum(w1*(usz-cbind(1,sx)%*%beta35a1)^2)

} c1<-which(resi == min(resi), arr.ind = TRUE) cu<-c1-1 nsz<-sz

nsz[n]<-sz[n]+cu object35a<-glmnet(sx,nsz,weight=w1,alpha=0)

beta35a<-predict(object35a,s=object35a$lambda[100],type="coefficients")

c<-seq(0,100,1) resi<-rep(0,101) for (i in 1:101){ usz<-sz

usz[50]<-sz[50]+c[i] object35b1<-glmnet(sx,usz,weight=w1,alpha=0.1)

beta35b1<-predict(object35b1,s=object35b1$lambda[100],type="coefficients")

resi[i]<-sum(w1*(usz-cbind(1,sx)%*%beta35b1)^2)

} c1<-which(resi == min(resi), arr.ind = TRUE) cu<-c1-1 nsz<-sz

nsz[n]<-sz[n]+cu object35b<-glmnet(sx,nsz,weight=w1,alpha=0.1)

beta35b<-predict(object35b,s=object35b$lambda[100],type="coefficients")

c<-seq(0,100,1) resi<-rep(0,101) for (i in 1:101){ usz<-sz

usz[50]<-sz[50]+c[i] object35c1<-glmnet(sx,usz,weight=w1,alpha=0.5)

beta35c1<-predict(object35c1,s=object35c1$lambda[100],type="coefficients")

resi[i]<-sum(w1*(usz-cbind(1,sx)%*%beta35c1)^2)

} c1<-which(resi == min(resi), arr.ind = TRUE) cu<-c1-1 nsz<-sz

nsz[n]<-sz[n]+cu object35c<-glmnet(sx,nsz,weight=w1,alpha=0.5)

beta35c<-predict(object35c,s=object35c$lambda[100],type="coefficients")

c<-seq(0,100,1) resi<-rep(0,101) for (i in 1:101){ usz<-sz

usz[50]<-sz[50]+c[i] object35d1<-glmnet(sx,usz,weight=w1,alpha=0.9)

beta35d1<-predict(object35d1,s=object35d1$lambda[100],type="coefficients")

resi[i]<-sum(w1*(usz-cbind(1,sx)%*%beta35d1)^2)

} c1<-which(resi == min(resi), arr.ind = TRUE) cu<-c1-1 nsz<-sz

nsz[n]<-sz[n]+cu object35d<-glmnet(sx,nsz,weight=w1,alpha=0.9)

beta35d<-predict(object35d,s=object35d$lambda[100],type="coefficients")

c<-seq(0,100,1) resi<-rep(0,101) for (i in 1:101){ usz<-sz

usz[50]<-sz[50]+c[i] object35e1<-glmnet(sx,usz,weight=w1,alpha=1)

beta35e1<-predict(object35e1,s=object35e1$lambda[100],type="coefficients")

resi[i]<-sum(w1*(usz-cbind(1,sx)%*%beta35e1)^2)

} c1<-which(resi == min(resi), arr.ind = TRUE) cu<-c1-1 nsz<-sz

nsz[n]<-sz[n]+cu object35e<-glmnet(sx,nsz,weight=w1,alpha=1)

beta35e<-predict(object35e,s=object35e$lambda[100],type="coefficients")

####add conditional mean sstat1<-sstat sstat1[n]<-1 szz<-sz

szz[n]<-addingC(x=sx,y=sz,d=sstat1,beta=beta31a)

object31aa<-glmnet(sx,szz,weight=w1,alpha=0)

beta31aa<-predict(object31aa,s=object31aa$lambda[100],type="coefficients")

szz<-sz szz[n]<-addingC(x=sx,y=sz,d=sstat1,beta=beta31b)
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object31ba<-glmnet(sx,szz,weight=w1,alpha=0.1)

beta31ba<-predict(object31ba,s=object31ba$lambda[100],type="coefficients")

szz<-sz szz[n]<-addingC(x=sx,y=sz,d=sstat1,beta=beta31c)

object31ca<-glmnet(sx,szz,weight=w1,alpha=0.5)

beta31ca<-predict(object31ca,s=object31ca$lambda[100],type="coefficients")

szz<-sz szz[n]<-addingC(x=sx,y=sz,d=sstat1,beta=beta31d)

object31da<-glmnet(sx,szz,weight=w1,alpha=0.9)

beta31da<-predict(object31da,s=object31da$lambda[100],type="coefficients")

szz<-sz szz[n]<-addingC(x=sx,y=sz,d=sstat1,beta=beta31e)

object31ea<-glmnet(sx,szz,weight=w1,alpha=1)

beta31ea<-predict(object31ea,s=object31ea$lambda[100],type="coefficients")

####add conditional median order7<-order(sz, -sstat) ssz<-sz[order7]

ssx<-sx[order7,] ssd<-sstat[order7] sszz<-ssz

sszz[n]<-addingM(x=ssx, y=ssz, d=ssd, beta=beta31a)

object31aaa<-glmnet(ssx,sszz,weight=w1,alpha=0)

beta31aaa<-predict(object31aaa,s=object31aaa$lambda[100],

type="coefficients")

sszz<-ssz sszz[n]<-addingM(x=ssx, y=ssz, d=ssd, beta=beta31b)

object31baa<-glmnet(ssx,sszz,weight=w1,alpha=0.1)

beta31baa<-predict(object31baa,s=object31baa$lambda[100],

type="coefficients")

sszz<-ssz sszz[n]<-addingM(x=ssx, y=ssz, d=ssd, beta=beta31c)

object31caa<-glmnet(ssx,sszz,weight=w1,alpha=0.5)

beta31caa<-predict(object31caa,s=object31caa$lambda[100],

type="coefficients")

sszz<-ssz sszz[n]<-addingM(x=ssx, y=ssz, d=ssd, beta=beta31d)

object31daa<-glmnet(ssx,sszz,weight=w1,alpha=0.9)

beta31daa<-predict(object31daa,s=object31daa$lambda[100],

type="coefficients")

sszz<-ssz sszz[n]<-addingM(x=ssx, y=ssz, d=ssd, beta=beta31e)

object31eaa<-glmnet(ssx,sszz,weight=w1,alpha=1)

beta31eaa<-predict(object31eaa,s=object31eaa$lambda[100],

type="coefficients")

r0a<-count(beta30a) r0b<-count(beta30b) r0c<-count(beta30c)

r0d<-count(beta30d) r0e<-count(beta30e) r1a<-count(beta31a)

r1b<-count(beta31b) r1c<-count(beta31c) r1d<-count(beta31d)
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r1e<-count(beta31e) r2a<-count(beta32a) r2b<-count(beta32b)

r2c<-count(beta32c) r2d<-count(beta32d) r2e<-count(beta32e)

r3a<-count(beta33a) r3b<-count(beta33b) r3c<-count(beta33c)

r3d<-count(beta33d) r3e<-count(beta33e) r4a<-count(beta34a)

r4b<-count(beta34b) r4c<-count(beta34c) r4d<-count(beta34d)

r4e<-count(beta34e) r5a<-count(beta35a) r5b<-count(beta35b)

r5c<-count(beta35c) r5d<-count(beta35d) r5e<-count(beta35e)

r6a<-count(beta31aa) r6b<-count(beta31ba) r6c<-count(beta31ca)

r6d<-count(beta31da) r6e<-count(beta31ea) r7a<-count(beta31aaa)

r7b<-count(beta31baa) r7c<-count(beta31caa) r7d<-count(beta31daa)

r7e<-count(beta31eaa)

return(c(r0a,r0b,r0c,r0d,r0e,r1a,r1b,r1c,r1d,r1e,

r2a,r2b,r2c,r2d,r2e,r3a,r3b,r3c,r3d,r3e,

r4a,r4b,r4c,r4d,r4e,r5a,r5b,r5c,r5d,r5e,

r6a,r6b,r6c,r6d,r6e,r7a,r7b,r7c,r7d,r7e))

}

set.seed(321) betafix1<-rnorm(60,3,0.5)

betafix<-c(betafix1,rep(0,60)) set.seed(123)

result1<-matrix(NA,1000,140) for (i in 1:1000)

result1[i,]<-simcen(cov)

Calculate RPE

betafix<-c(c(3,3,2,3,3,2),rep(0,114)) c11<-matrix(0.5,3,3)

diag(c11)<-1 c12<-matrix(0,3,3) c1<-rbind(c11,c12)

c2<-rbind(c12,c11) cc<-cbind(c1,c2) c3<-matrix(0,120,114)

c4<-matrix(0,114,6) cov1<-rbind(cc,c4) cov<-cbind(cov1,c3)

simcen<-function(m1,m2){

repeat{ x<-rmvnorm(100,mean=rep(0,120),sigma=cov)

a<-x%*%as.matrix(betafix)

e<-rnorm(100) y<-a+5*e #c<-runif(100,-k,k) c<-m1*log(rexp(100,1))+m2

z<-rep(NA,100) d<-rep(NA,100) for (i in 1:100){ if (y[i]<c[i]) {

z[i]<-y[i]

d[i]<-1}

else {z[i]<-c[i]

d[i]<-0}

} sorted <- order(z) sz<- as.double(z[sorted])

sy<-as.double(y[sorted]) sstat <- as.integer(d[sorted])

sx<-x[sorted,] if (sstat[100]==0) break sz<-sz sstat<-sstat sx<-sx

sy<-sy }
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w0<-rep(1/100,100) w1<-WKM(x=sz,d=sstat)$jump

###w1 treats the last obs to be dead. w2<-w1*sstat ###w2 treats the

last obs to be what it originally is (=0). w<-w1[100]

w3<-c(w1[1:99],0.5*w1[100]) w5<-c(w1[1:99],0.25*w1[100])

#noncensor object30a<-glmnet(sx,sy,weight=w0,alpha=0.1)

beta30a1<-predict(object30a,s=object30a$lambda[10],type="coefficients")

beta30a2<-predict(object30a,s=object30a$lambda[50],type="coefficients")

beta30a3<-predict(object30a,s=object30a$lambda[100],type="coefficients")

object30b<-glmnet(sx,sy,weight=w0,alpha=0.5)

beta30b1<-predict(object30b,s=object30b$lambda[10],type="coefficients")

beta30b2<-predict(object30b,s=object30b$lambda[50],type="coefficients")

beta30b3<-predict(object30b,s=object30b$lambda[100],type="coefficients")

object30c<-glmnet(sx,sy,weight=w0,alpha=0.9)

beta30c1<-predict(object30c,s=object30c$lambda[10],type="coefficients")

beta30c2<-predict(object30c,s=object30c$lambda[50],type="coefficients")

beta30c3<-predict(object30c,s=object30c$lambda[100],type="coefficients")

#weight 1 method object31a<-glmnet(sx,sz,weight=w1,alpha=0.1)

beta31a1<-predict(object31a,s=object31a$lambda[10],type="coefficients")

beta31a2<-predict(object31a,s=object31a$lambda[50],type="coefficients")

beta31a3<-predict(object31a,s=object31a$lambda[100],type="coefficients")

object31b<-glmnet(sx,sz,weight=w1,alpha=0.5)

beta31b1<-predict(object31b,s=object31b$lambda[10],type="coefficients")

beta31b2<-predict(object31b,s=object31b$lambda[50],type="coefficients")

beta31b3<-predict(object31b,s=object31b$lambda[100],type="coefficients")

object31c<-glmnet(sx,sz,weight=w1,alpha=0.9)

beta31c1<-predict(object31c,s=object31c$lambda[10],type="coefficients")

beta31c2<-predict(object31c,s=object31c$lambda[50],type="coefficients")

beta31c3<-predict(object31c,s=object31c$lambda[100],type="coefficients")

#weight 0 method object32a<-glmnet(sx,sz,weight=w2,alpha=0.1)

beta32a1<-predict(object32a,s=object32a$lambda[10],type="coefficients")

beta32a2<-predict(object32a,s=object32a$lambda[50],type="coefficients")

beta32a3<-predict(object32a,s=object32a$lambda[100],type="coefficients")

object32b<-glmnet(sx,sz,weight=w2,alpha=0.5)

beta32b1<-predict(object32b,s=object32b$lambda[10],type="coefficients")

beta32b2<-predict(object32b,s=object32b$lambda[50],type="coefficients")

beta32b3<-predict(object32b,s=object32b$lambda[100],type="coefficients")
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object32c<-glmnet(sx,sz,weight=w2,alpha=0.9)

beta32c1<-predict(object32c,s=object32c$lambda[10],type="coefficients")

beta32c2<-predict(object32c,s=object32c$lambda[50],type="coefficients")

beta32c3<-predict(object32c,s=object32c$lambda[100],type="coefficients")

#weight average method object33a<-glmnet(sx,sz,weight=w3,alpha=0.1)

beta33a1<-predict(object33a,s=object33a$lambda[10],type="coefficients")

beta33a2<-predict(object33a,s=object33a$lambda[50],type="coefficients")

beta33a3<-predict(object33a,s=object33a$lambda[100],type="coefficients")

object33b<-glmnet(sx,sz,weight=w3,alpha=0.5)

beta33b1<-predict(object33b,s=object33b$lambda[10],type="coefficients")

beta33b2<-predict(object33b,s=object33b$lambda[50],type="coefficients")

beta33b3<-predict(object33b,s=object33b$lambda[100],type="coefficients")

object33c<-glmnet(sx,sz,weight=w3,alpha=0.9)

beta33c1<-predict(object33c,s=object33c$lambda[10],type="coefficients")

beta33c2<-predict(object33c,s=object33c$lambda[50],type="coefficients")

beta33c3<-predict(object33c,s=object33c$lambda[100],type="coefficients")

# constant adding n<-100

min1<-as.numeric(sz[n]-c(1,sx[n,])%*%beta32a1)

c<-seq(0,100,1) resi<-rep(0,101) for (i in 1:101){ usz<-sz

usz[n]<-sz[n]+c[i] object35aa<-glmnet(sx,usz,weight=w1,alpha=0.1)

beta35aa<-predict(object35aa,s=object35aa$lambda[10],type="coefficients")

resi[i]<-sum(w1*(usz-cbind(1,sx)%*%beta35aa)^2)

} c1<-which(resi == min(resi), arr.ind = TRUE) cu<-c[c1] cc1<-cu

nsz<-sz nsz[n]<-sz[n]+cu

object35a1<-glmnet(sx,nsz,weight=w1,alpha=0.1)

beta35a1<-predict(object35a1,s=object35a1$lambda[10],type="coefficients")

min2<-as.numeric(sz[n]-c(1,sx[n,])%*%beta32a2)

c<-seq(0,100,1) resi<-rep(0,101) for (i in 1:101){ usz<-sz

usz[n]<-sz[n]+c[i] object35aa<-glmnet(sx,usz,weight=w1,alpha=0.1)

beta35aa<-predict(object35aa,s=object35aa$lambda[50],type="coefficients")

resi[i]<-sum(w1*(usz-cbind(1,sx)%*%beta35aa)^2)

} c1<-which(resi == min(resi), arr.ind = TRUE) cu<-c[c1] cc2<-cu

nsz<-sz nsz[n]<-sz[n]+cu

object35a2<-glmnet(sx,nsz,weight=w1,alpha=0.1)

beta35a2<-predict(object35a2,s=object35a2$lambda[50],type="coefficients")

min3<-as.numeric(sz[n]-c(1,sx[n,])%*%beta32a3)

c<-seq(0,100,1) resi<-rep(0,101) for (i in 1:101){ usz<-sz

usz[n]<-sz[n]+c[i] object35aa<-glmnet(sx,usz,weight=w1,alpha=0.1)
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beta35aa<-predict(object35aa,s=object35aa$lambda[100],type="coefficients")

resi[i]<-sum(w1*(usz-cbind(1,sx)%*%beta35aa)^2)

} c1<-which(resi == min(resi), arr.ind = TRUE) cu<-c[c1] cc3<-cu

nsz<-sz nsz[n]<-sz[n]+cu

object35a3<-glmnet(sx,nsz,weight=w1,alpha=0.1)

beta35a3<-predict(object35a3,s=object35a3$lambda[100],type="coefficients")

min4<-as.numeric(sz[n]-c(1,sx[n,])%*%beta32b1)

c<-seq(0,100,1) resi<-rep(0,101) for (i in 1:101){ usz<-sz

usz[n]<-sz[n]+c[i] object35aa<-glmnet(sx,usz,weight=w1,alpha=0.5)

beta35aa<-predict(object35aa,s=object35aa$lambda[10],type="coefficients")

resi[i]<-sum(w1*(usz-cbind(1,sx)%*%beta35aa)^2)

} c1<-which(resi == min(resi), arr.ind = TRUE) cu<-c[c1] cc4<-cu

nsz<-sz nsz[n]<-sz[n]+cu

object35b1<-glmnet(sx,nsz,weight=w1,alpha=0.5)

beta35b1<-predict(object35b1,s=object35b1$lambda[10],type="coefficients")

min5<-as.numeric(sz[n]-c(1,sx[n,])%*%beta32b2)

c<-seq(0,100,1) resi<-rep(0,101) for (i in 1:101){ usz<-sz

usz[n]<-sz[n]+c[i] object35aa<-glmnet(sx,usz,weight=w1,alpha=0.5)

beta35aa<-predict(object35aa,s=object35aa$lambda[50],type="coefficients")

resi[i]<-sum(w1*(usz-cbind(1,sx)%*%beta35aa)^2)

} c1<-which(resi == min(resi), arr.ind = TRUE) cu<-c[c1] cc5<-cu

nsz<-sz nsz[n]<-sz[n]+cu

object35b2<-glmnet(sx,nsz,weight=w1,alpha=0.5)

beta35b2<-predict(object35b2,s=object35b2$lambda[50],type="coefficients")

min6<-as.numeric(sz[n]-c(1,sx[n,])%*%beta32b3)

c<-seq(0,100,1) resi<-rep(0,101) for (i in 1:101){ usz<-sz

usz[n]<-sz[n]+c[i] object35aa<-glmnet(sx,usz,weight=w1,alpha=0.5)

beta35aa<-predict(object35aa,s=object35aa$lambda[100],type="coefficients")

resi[i]<-sum(w1*(usz-cbind(1,sx)%*%beta35aa)^2)

} c1<-which(resi == min(resi), arr.ind = TRUE) cu<-c[c1] cc6<-cu

nsz<-sz nsz[n]<-sz[n]+cu

object35b3<-glmnet(sx,nsz,weight=w1,alpha=0.5)

beta35b3<-predict(object35b3,s=object35b3$lambda[100],type="coefficients")

min7<-as.numeric(sz[n]-c(1,sx[n,])%*%beta32c1)

c<-seq(0,100,1) resi<-rep(0,101) for (i in 1:101){ usz<-sz

usz[n]<-sz[n]+c[i] object35aa<-glmnet(sx,usz,weight=w1,alpha=0.9)

beta35aa<-predict(object35aa,s=object35aa$lambda[10],type="coefficients")

resi[i]<-sum(w1*(usz-cbind(1,sx)%*%beta35aa)^2)

} c1<-which(resi == min(resi), arr.ind = TRUE) cu<-c[c1] cc7<-cu

nsz<-sz nsz[n]<-sz[n]+cu

object35c1<-glmnet(sx,nsz,weight=w1,alpha=0.9)

88



beta35c1<-predict(object35c1,s=object35c1$lambda[10],type="coefficients")

min8<-as.numeric(sz[n]-c(1,sx[n,])%*%beta32c2)

c<-seq(0,100,1) resi<-rep(0,101) for (i in 1:101){ usz<-sz

usz[n]<-sz[n]+c[i] object35aa<-glmnet(sx,usz,weight=w1,alpha=0.9)

beta35aa<-predict(object35aa,s=object35aa$lambda[50],type="coefficients")

resi[i]<-sum(w1*(usz-cbind(1,sx)%*%beta35aa)^2)

} c1<-which(resi == min(resi), arr.ind = TRUE) cu<-c[c1] cc8<-cu

nsz<-sz nsz[n]<-sz[n]+cu

object35c2<-glmnet(sx,nsz,weight=w1,alpha=0.9)

beta35c2<-predict(object35c2,s=object35c2$lambda[50],type="coefficients")

min9<-as.numeric(sz[n]-c(1,sx[n,])%*%beta32c3)

c<-seq(0,100,1) resi<-rep(0,101) for (i in 1:101){ usz<-sz

usz[n]<-sz[n]+c[i] object35aa<-glmnet(sx,usz,weight=w1,alpha=0.9)

beta35aa<-predict(object35aa,s=object35aa$lambda[100],type="coefficients")

resi[i]<-sum(w1*(usz-cbind(1,sx)%*%beta35aa)^2)

} c1<-which(resi == min(resi), arr.ind = TRUE) cu<-c[c1] cc9<-cu

nsz<-sz nsz[n]<-sz[n]+cu

object35c3<-glmnet(sx,nsz,weight=w1,alpha=0.9)

beta35c3<-predict(object35c3,s=object35c3$lambda[100],type="coefficients")

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32a1)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31a1)>0)==1 )

w4a1<-w1

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32a1)<0)==1)

w4a1<-w2

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32a1)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31a1)<0)==1 )

w4a1<-w5 object34a1<-glmnet(sx,sz,weight=w4a1,alpha=0.1)

beta34a1<-predict(object34a1,s=object34a1$lambda[10],type="coefficients")

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32a2)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31a2)>0)==1 )

w4a2<-w1

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32a2)<0)==1) w4a2<-w2

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32a2)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31a2)<0)==1 )

w4a2<-w5 object34a2<-glmnet(sx,sz,weight=w4a2,alpha=0.1)

beta34a2<-predict(object34a2,s=object34a2$lambda[50],type="coefficients")

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32a3)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31a3)>0)==1 )

w4a3<-w1

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32a3)<0)==1)
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w4a3<-w2

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32a3)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31a3)<0)==1 )

w4a3<-w5 object34a3<-glmnet(sx,sz,weight=w4a3,alpha=0.1)

beta34a3<-predict(object34a3,s=object34a3$lambda[100],type="coefficients")

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32b1)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31b1)>0)==1 )

w4b1<-w1

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32b1)<0)==1)

w4b1<-w2

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32b1)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31b1)<0)==1 )

w4b1<-w5 object34b1<-glmnet(sx,sz,weight=w4b1,alpha=0.5)

beta34b1<-predict(object34b1,s=object34b1$lambda[10],type="coefficients")

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32b2)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31b2)>0)==1 )

w4b2<-w1

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32b2)<0)==1)

w4b2<-w2

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32b2)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31b2)<0)==1 )

w4b2<-w5 object34b2<-glmnet(sx,sz,weight=w4b2,alpha=0.5)

beta34b2<-predict(object34b2,s=object34b2$lambda[50],type="coefficients")

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32b3)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31b3)>0)==1 )

w4b3<-w1

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32b3)<0)==1)

w4b3<-w2

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32b3)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31b3)<0)==1 )

w4b3<-w5 object34b3<-glmnet(sx,sz,weight=w4b3,alpha=0.5)

beta34b3<-predict(object34b3,s=object34b3$lambda[100],type="coefficients")

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32c1)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31c1)>0)==1 )

w4c1<-w1

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32c1)<0)==1)

w4c1<-w2

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32c1)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31c1)<0)==1 )

w4c1<-w5 object34c1<-glmnet(sx,sz,weight=w4c1,alpha=0.9)

beta34c1<-predict(object34c1,s=object34c1$lambda[10],type="coefficients")
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if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32c2)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31c2)>0)==1 )

w4c2<-w1

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32c2)<0)==1)

w4c2<-w2

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32c2)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31c2)<0)==1 )

w4c2<-w5 object34c2<-glmnet(sx,sz,weight=w4c2,alpha=0.9)

beta34c2<-predict(object34c2,s=object34c2$lambda[50],type="coefficients")

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32c3)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31c3)>0)==1 )

w4c3<-w1

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32c3)<0)==1)

w4c3<-w2

if (as.numeric((sz[50]-c(1,sx[50,])%*%beta32c3)>0)==1 &

as.numeric((sz[50]-c(1,sx[50,])%*%beta31c3)<0)==1 )

w4c3<-w5 object34c3<-glmnet(sx,sz,weight=w4c3,alpha=0.9)

beta34c3<-predict(object34c3,s=object34c3$lambda[100],type="coefficients")

#add conditional mean sstat1<-sstat sstat1[n]<-1 szz<-sz

szz[n]<-addingC(x=sx,y=sz,d=sstat1,beta=beta31a1)

object31a1a<-glmnet(sx,szz,weight=w1,alpha=0.1)

beta31a1a<-predict(object31a1a,s=object31a1a$lambda[10],

type="coefficients")

szz<-sz szz[n]<-addingC(x=sx,y=sz,d=sstat1,beta=beta31a2)

object31a2a<-glmnet(sx,szz,weight=w1,alpha=0.1)

beta31a2a<-predict(object31a2a,s=object31a2a$lambda[50],type="coefficients")

szz<-sz szz[n]<-addingC(x=sx,y=sz,d=sstat1,beta=beta31a3)

object31a3a<-glmnet(sx,szz,weight=w1,alpha=0.1)

beta31a3a<-predict(object31a3a,s=object31a3a$lambda[100],type="coefficients")

szz<-sz szz[n]<-addingC(x=sx,y=sz,d=sstat1,beta=beta31b1)

object31b1a<-glmnet(sx,szz,weight=w1,alpha=0.5)

beta31b1a<-predict(object31b1a,s=object31b1a$lambda[10],type="coefficients")

szz<-sz szz[n]<-addingC(x=sx,y=sz,d=sstat1,beta=beta31b2)

object31b2a<-glmnet(sx,szz,weight=w1,alpha=0.5)

beta31b2a<-predict(object31b2a,s=object31b2a$lambda[50],type="coefficients")

szz<-sz szz[n]<-addingC(x=sx,y=sz,d=sstat1,beta=beta31b3)

object31b3a<-glmnet(sx,szz,weight=w1,alpha=0.5)
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beta31b3a<-predict(object31b3a,s=object31b3a$lambda[100],

type="coefficients")

szz<-sz szz[n]<-addingC(x=sx,y=sz,d=sstat1,beta=beta31c1)

object31c1a<-glmnet(sx,szz,weight=w1,alpha=0.9)

beta31c1a<-predict(object31c1a,s=object31c1a$lambda[10],type="coefficients")

szz<-sz szz[n]<-addingC(x=sx,y=sz,d=sstat1,beta=beta31c2)

object31c2a<-glmnet(sx,szz,weight=w1,alpha=0.9)

beta31c2a<-predict(object31c2a,s=object31c2a$lambda[50],type="coefficients")

szz<-sz szz[n]<-addingC(x=sx,y=sz,d=sstat1,beta=beta31c3)

object31c3a<-glmnet(sx,szz,weight=w1,alpha=0.9)

beta31c3a<-predict(object31c3a,s=object31c3a$lambda[100],

type="coefficients")

#adding conditional median order7<-order(sz, -sstat) ssz<-sz[order7]

ssx<-sx[order7,] ssd<-sstat[order7] sszz<-ssz

sszz[n]<-addingM(x=ssx, y=ssz, d=ssd, beta=beta31a1)

object31a1aa<-glmnet(ssx,sszz,weight=w1,alpha=0.1)

beta31a1aa<-predict(object31a1aa,s=object31a1aa$lambda[10],

type="coefficients")

sszz<-ssz sszz[n]<-addingM(x=ssx, y=ssz, d=ssd, beta=beta31a2)

object31a2aa<-glmnet(ssx,sszz,weight=w1,alpha=0.1)

beta31a2aa<-predict(object31a2aa,s=object31a2aa$lambda[50],

type="coefficients")

sszz<-ssz sszz[n]<-addingM(x=ssx, y=ssz, d=ssd, beta=beta31a3)

object31a3aa<-glmnet(ssx,sszz,weight=w1,alpha=0.1)

beta31a3aa<-predict(object31a3aa,s=object31a3aa$lambda[100],

type="coefficients")

sszz<-ssz sszz[n]<-addingM(x=ssx, y=ssz, d=ssd, beta=beta31b1)

object31b1aa<-glmnet(ssx,sszz,weight=w1,alpha=0.5)

beta31b1aa<-predict(object31b1aa,s=object31b1aa$lambda[10],

type="coefficients")

sszz<-ssz sszz[n]<-addingM(x=ssx, y=ssz, d=ssd, beta=beta31b2)

object31b2aa<-glmnet(ssx,sszz,weight=w1,alpha=0.5)

beta31b2aa<-predict(object31b2aa,s=object31b2aa$lambda[50],

type="coefficients")

sszz<-ssz sszz[n]<-addingM(x=ssx, y=ssz, d=ssd, beta=beta31b3)

object31b3aa<-glmnet(ssx,sszz,weight=w1,alpha=0.5)
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beta31b3aa<-predict(object31b3aa,s=object31b3aa$lambda[100],

type="coefficients")

sszz<-ssz sszz[n]<-addingM(x=ssx, y=ssz, d=ssd, beta=beta31c1)

object31c1aa<-glmnet(ssx,sszz,weight=w1,alpha=0.9)

beta31c1aa<-predict(object31c1aa,s=object31c1aa$lambda[10],

type="coefficients")

sszz<-ssz sszz[n]<-addingM(x=ssx, y=ssz, d=ssd, beta=beta31c2)

object31c2aa<-glmnet(ssx,sszz,weight=w1,alpha=0.9)

beta31c2aa<-predict(object31c2aa,s=object31c2aa$lambda[50],

type="coefficients")

sszz<-ssz sszz[n]<-addingM(x=ssx, y=ssz, d=ssd, beta=beta31c3)

object31c3aa<-glmnet(ssx,sszz,weight=w1,alpha=0.9)

beta31c3aa<-predict(object31c3aa,s=object31c3aa$lambda[100],

type="coefficients")

xtest<-rmvnorm(400,mean=rep(0,120),sigma=cov) xtest1<-cbind(1,xtest)

ap<-xtest%*%as.matrix(betafix)

ep<-rnorm(400) yp<-ap+5*e

yesti0a1<-xtest1%*%beta30a1

yesti0a2<-xtest1%*%beta30a2

yesti0a3<-xtest1%*%beta30a3

yesti0b1<-xtest1%*%beta30b1

yesti0b2<-xtest1%*%beta30b2

yesti0b3<-xtest1%*%beta30b3

yesti0c1<-xtest1%*%beta30c1

yesti0c2<-xtest1%*%beta30c2

yesti0c3<-xtest1%*%beta30c3

yesti1a1<-xtest1%*%beta31a1

yesti1a2<-xtest1%*%beta31a2

yesti1a3<-xtest1%*%beta31a3

yesti1b1<-xtest1%*%beta31b1

yesti1b2<-xtest1%*%beta31b2

yesti1b3<-xtest1%*%beta31b3

yesti1c1<-xtest1%*%beta31c1

yesti1c2<-xtest1%*%beta31c2
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yesti1c3<-xtest1%*%beta31c3

yesti2a1<-xtest1%*%beta32a1

yesti2a2<-xtest1%*%beta32a2

yesti2a3<-xtest1%*%beta32a3

yesti2b1<-xtest1%*%beta32b1

yesti2b2<-xtest1%*%beta32b2

yesti2b3<-xtest1%*%beta32b3

yesti2c1<-xtest1%*%beta32c1

yesti2c2<-xtest1%*%beta32c2

yesti2c3<-xtest1%*%beta32c3

yesti3a1<-xtest1%*%beta33a1

yesti3a2<-xtest1%*%beta33a2

yesti3a3<-xtest1%*%beta33a3

yesti3b1<-xtest1%*%beta33b1

yesti3b2<-xtest1%*%beta33b2

yesti3b3<-xtest1%*%beta33b3

yesti3c1<-xtest1%*%beta33c1

yesti3c2<-xtest1%*%beta33c2

yesti3c3<-xtest1%*%beta33c3

yesti4a1<-xtest1%*%beta34a1

yesti4a2<-xtest1%*%beta34a2

yesti4a3<-xtest1%*%beta34a3

yesti4b1<-xtest1%*%beta34b1

yesti4b2<-xtest1%*%beta34b2

yesti4b3<-xtest1%*%beta34b3

yesti4c1<-xtest1%*%beta34c1

yesti4c2<-xtest1%*%beta34c2

yesti4c3<-xtest1%*%beta34c3

yesti5a1<-xtest1%*%beta35a1

yesti5a2<-xtest1%*%beta35a2

yesti5a3<-xtest1%*%beta35a3

yesti5b1<-xtest1%*%beta35b1

yesti5b2<-xtest1%*%beta35b2
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yesti5b3<-xtest1%*%beta35b3

yesti5c1<-xtest1%*%beta35c1

yesti5c2<-xtest1%*%beta35c2

yesti5c3<-xtest1%*%beta35c3

yesti6a1<-xtest1%*%beta31a1a

yesti6a2<-xtest1%*%beta31a2a

yesti6a3<-xtest1%*%beta31a3a

yesti6b1<-xtest1%*%beta31b1a

yesti6b2<-xtest1%*%beta31b2a

yesti6b3<-xtest1%*%beta31b3a

yesti6c1<-xtest1%*%beta31c1a

yesti6c2<-xtest1%*%beta31c2a

yesti6c3<-xtest1%*%beta31c3a

yesti7a1<-xtest1%*%beta31a1aa

yesti7a2<-xtest1%*%beta31a2aa

yesti7a3<-xtest1%*%beta31a3aa

yesti7b1<-xtest1%*%beta31b1aa

yesti7b2<-xtest1%*%beta31b2aa

yesti7b3<-xtest1%*%beta31b3aa

yesti7c1<-xtest1%*%beta31c1aa

yesti7c2<-xtest1%*%beta31c2aa

yesti7c3<-xtest1%*%beta31c3aa

p0a1<-mean((yp-yesti0a1)^2)/5/5 p0a2<-mean((yp-yesti0a2)^2)/5/5

p0a3<-mean((yp-yesti0a3)^2)/5/5

p0b1<-mean((yp-yesti0b1)^2)/5/5 p0b2<-mean((yp-yesti0b2)^2)/5/5

p0b3<-mean((yp-yesti0b3)^2)/5/5

p0c1<-mean((yp-yesti0c1)^2)/5/5 p0c2<-mean((yp-yesti0c2)^2)/5/5

p0c3<-mean((yp-yesti0c3)^2)/5/5

p1a1<-mean((yp-yesti1a1)^2)/5/5 p1a2<-mean((yp-yesti1a2)^2)/5/5

p1a3<-mean((yp-yesti1a3)^2)/5/5

p1b1<-mean((yp-yesti1b1)^2)/5/5 p1b2<-mean((yp-yesti1b2)^2)/5/5

p1b3<-mean((yp-yesti1b3)^2)/5/5
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p1c1<-mean((yp-yesti1c1)^2)/5/5 p1c2<-mean((yp-yesti1c2)^2)/5/5

p1c3<-mean((yp-yesti1c3)^2)/5/5

p2a1<-mean((yp-yesti2a1)^2)/5/5 p2a2<-mean((yp-yesti2a2)^2)/5/5

p2a3<-mean((yp-yesti2a3)^2)/5/5

p2b1<-mean((yp-yesti2b1)^2)/5/5 p2b2<-mean((yp-yesti2b2)^2)/5/5

p2b3<-mean((yp-yesti2b3)^2)/5/5

p2c1<-mean((yp-yesti2c1)^2)/5/5 p2c2<-mean((yp-yesti2c2)^2)/5/5

p2c3<-mean((yp-yesti2c3)^2)/5/5

p3a1<-mean((yp-yesti3a1)^2)/5/5 p3a2<-mean((yp-yesti3a2)^2)/5/5

p3a3<-mean((yp-yesti3a3)^2)/5/5

p3b1<-mean((yp-yesti3b1)^2)/5/5 p3b2<-mean((yp-yesti3b2)^2)/5/5

p3b3<-mean((yp-yesti3b3)^2)/5/5

p3c1<-mean((yp-yesti3c1)^2)/5/5 p3c2<-mean((yp-yesti3c2)^2)/5/5

p3c3<-mean((yp-yesti3c3)^2)/5/5

p4a1<-mean((yp-yesti4a1)^2)/5/5 p4a2<-mean((yp-yesti4a2)^2)/5/5

p4a3<-mean((yp-yesti4a3)^2)/5/5

p4b1<-mean((yp-yesti4b1)^2)/5/5 p4b2<-mean((yp-yesti4b2)^2)/5/5

p4b3<-mean((yp-yesti4b3)^2)/5/5

p4c1<-mean((yp-yesti4c1)^2)/5/5 p4c2<-mean((yp-yesti4c2)^2)/5/5

p4c3<-mean((yp-yesti4c3)^2)/5/5

p5a1<-mean((yp-yesti5a1)^2)/5/5 p5a2<-mean((yp-yesti5a2)^2)/5/5

p5a3<-mean((yp-yesti5a3)^2)/5/5

p5b1<-mean((yp-yesti5b1)^2)/5/5 p5b2<-mean((yp-yesti5b2)^2)/5/5

p5b3<-mean((yp-yesti5b3)^2)/5/5

p5c1<-mean((yp-yesti5c1)^2)/5/5 p5c2<-mean((yp-yesti5c2)^2)/5/5

p5c3<-mean((yp-yesti5c3)^2)/5/5

p6a1<-mean((yp-yesti6a1)^2)/5/5 p6a2<-mean((yp-yesti6a2)^2)/5/5

p6a3<-mean((yp-yesti6a3)^2)/5/5

p6b1<-mean((yp-yesti6b1)^2)/5/5 p6b2<-mean((yp-yesti6b2)^2)/5/5
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p6b3<-mean((yp-yesti6b3)^2)/5/5

p6c1<-mean((yp-yesti6c1)^2)/5/5 p6c2<-mean((yp-yesti6c2)^2)/5/5

p6c3<-mean((yp-yesti6c3)^2)/5/5

p7a1<-mean((yp-yesti7a1)^2)/5/5 p7a2<-mean((yp-yesti7a2)^2)/5/5

p7a3<-mean((yp-yesti7a3)^2)/5/5

p7b1<-mean((yp-yesti7b1)^2)/5/5 p7b2<-mean((yp-yesti7b2)^2)/5/5

p7b3<-mean((yp-yesti7b3)^2)/5/5

p7c1<-mean((yp-yesti7c1)^2)/5/5 p7c2<-mean((yp-yesti7c2)^2)/5/5

p7c3<-mean((yp-yesti7c3)^2)/5/5

cc<-c(p0a1,p1a1,p2a1,p3a1,p4a1,p5a1,p6a1,p7a1,

p0a2,p1a2,p2a2,p3a2,p4a2,p5a2,p6a2,p7a2,

p0a3,p1a3,p2a3,p3a3,p4a3,p5a3,p6a3,p7a3,

p0b1,p1b1,p2b1,p3b1,p4b1,p5b1,p6b1,p7b1,

p0b2,p1b2,p2b2,p3b2,p4b2,p5b2,p6b2,p7b2,

p0b3,p1b3,p2b3,p3b3,p4b3,p5b3,p6b3,p7b3,

p0c1,p1c1,p2c1,p3c1,p4c1,p5c1,p6c1,p7c1,

p0c2,p1c2,p2c2,p3c2,p4c2,p5c2,p6c2,p7c2,

p0c3,p1c3,p2c3,p3c3,p4c3,p5c3,p6c3,p7c3)

return(cc) }

set.seed(123) result1<-matrix(NA,1000,72) for (i in 1:1000)

#result1[i,]<-simcen(20) result1[i,]<-simcen(12,5)

SAS Codes for Second Topic

/*read data*/

%macro impdata(exceldata, sasdata);

proc import out=&sasdata

datafile="D:\RA\horsedata\wenying\data\&exceldata..xls"

dbms=excel2000 replace;

getnames=yes;

run; proc sort data=&sasdata; by id; run;

%mend;

%impdata(cartcerea,cartcerea)

%impdata(cartcerem,cartcerem)

%impdata(cartspleea,cartspleea)

%impdata(cartspleem,cartspleem)

%impdata(cartlyma,cartlyma)

%impdata(cartlymm,cartlymm)
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%impdata(cartblada,cartblada)

%impdata(cartbladm,cartbladm)

%impdata(cartlivera,cartlivera)

%impdata(cartliverm,cartliverm)

%impdata(cartmusca,cartmusca)

%impdata(cartmuscm,cartmuscm)

%impdata(cartplacea,cartplacea)

%impdata(cartplacem,cartplacem)

%impdata(carttesta,carttesta)

%impdata(carttestm,carttestm)

%impdata(cartlunga,cartlunga)

%impdata(cartlungm,cartlungm)

%impdata(cartkida,cartkida)

%impdata(cartkidm,cartkidm)

%macro re(cartdata,cartdata1,cartdata2,a1,a2,m2,m1);

data &cartdata; merge &cartdata1 &cartdata2; by id;

log_a=(&a1+&a2)/2; log_m=/*(&m1-&m2)/2-for lung and kidney*/

(&m1+&m2)/2; keep id log_a log_m; run;

%mend;

%re(cartcere,cartcerea,cartcerem,cartcerea1,cartcerea2,cartcerem2,

cartcerem1)

%re(cartsplee,cartspleea,cartspleem,cartspleea1,cartspleea2,cartspleem2,

cartspleem1)

%re(cartlym,cartlyma,cartlymm,cartlyma1,cartlyma2,cartlymm2,

cartlymm1)

%re(cartblad,cartblada,cartbladm,cartblada1,cartblada2,cartbladm2,

cartbladm1)

%re(cartliver,cartlivera,cartliverm,cartlivera1,cartlivera2,cartliverm2,

cartliverm1)

%re(cartmusc,cartmusca,cartmuscm,cartmusca1,cartmusca2,cartmuscm2,

cartmuscm1)

%re(cartplace,cartplacea,cartplacem,cartplacea1,cartplacea2,cartplacem2,

cartplacem1)

%re(carttest,carttesta,carttestm,carttesta1,carttesta2,carttestm2,

carttestm1)

%re(cartlung,cartlunga,cartlungm,cartlunga1,cartlunga2,cartlungm2,

cartlungm1)

%re(cartkid,cartkida,cartkidm,cartkida1,cartkida2,cartkidm2,

cartkidm1)

%macro reg(cartout,out);

proc transreg design data=&cartout details; model

bspline(log_a/knots= 6 8 10 12 14 /*6 8 10 12 14 -for lung and

kidney*/); output out=&out(drop=_: int:); proc sort data=&cartout;by
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log_a; proc sort data=&out;by log_a; run;

%mend;

%reg(cartcere,cere)

%reg(cartsplee,splee)

%reg(cartlym,lym)

%reg(cartblad,blad)

%reg(cartliver,liver)

%reg(cartmusc,musc)

%reg(cartplace,place)

%reg(carttest,test)

%reg(cartlung,lung)

%reg(cartkid,kid)

/*quantile regression*/ proc quantreg data=cere alpha=0.1

ci=resampling; model log_m= log_a / quantile= .95

seed=0;

output out=cere95 pred=predcere95; run;

proc sort data=cere95;by id;run;

proc quantreg data=cere alpha=0.1 ci=resampling; model log_m= log_a

/ quantile= .99

seed=0;

output out=cere99 pred=predcere99; run;

proc sort data=cere99;by id;run;

proc quantreg data=cere alpha=0.1 ci=resampling; model log_m= log_a

/ quantile= .80

seed=0;

output out=cere80 pred=predcere80; run;

proc sort data=cere80;by id;run;

proc quantreg data=cere alpha=0.1 ci=resampling; model log_m= log_a

/ quantile= .50

seed=0;

output out=cere50 pred=predcere50; run;

proc sort data=cere50;by id;run;

proc quantreg data=cere alpha=0.1 ci=resampling; model log_m= log_a

/ quantile= .10

seed=0;

output out=cere10 pred=predcere10; run;
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proc sort data=cere10;by id;run;

proc quantreg data=cere alpha=0.1 ci=resampling; model log_m=log_a /

quantile= .05

seed=0;

output out=cere05 pred=predcere05; run;

proc sort data=cere05;by id;run;

proc quantreg data=cere alpha=0.1 ci=resampling; model log_m= log_a

/ quantile= .01

seed=0;

output out=cere01 pred=predcere01; run;

proc sort data=cere01;by id;run;

proc quantreg data=cere alpha=0.1 ci=resampling; model log_m= log_a

/ quantile= .20

seed=0;

output out=cere20 pred=predcere20; run;

proc sort data=cere20;by id;run;

data all1; merge cere01 cere05 cere10 cere20 cere50 cere80 cere90

cere95 cere99;by id;run;

SAS Codes for Third Topic

%macro impdata(exceldata, sasdata);

proc import out=&sasdata

datafile="C:\huangliping\RA\RA\horsedata\naoki\2oxigen2culture

\data\data\&exceldata..xls"

dbms=excel2000 replace;

getnames=yes;run;

data &sasdata;

set &sasdata(rename=(F635_Median___B635=&sasdata._red

F532_Median___B532=&sasdata._green));

keep id &sasdata._red &sasdata._green Flags; run;

proc sort data=&sasdata; by id; run;

%mend;

%impdata(IA-AN7-1-AH7-1-1 092805,a1)

%impdata(IA-AN7-1-AH7-1-A 092805,a1a)

%impdata(IA-Re-AN7-2-AH7-2-1_032306,a2)
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%impdata(IA-Re-AN7-2-AH7-2-A_032306,a2a)

%impdata(IA-AN7-3-AH7-3-1 093005,a3)

%impdata(IA-AN7-3-AH7-3-A 093005,a3a)

%impdata(IA-MN7-1-MH7-1-1 091605,b1)

%impdata(IA-MN7-1-MH7-1-A 091605,b1a)

%impdata(IA-MN7-2-MH7-2-1 092305,b2)

%impdata(IA-MN7-2-MH7-2-A 092305,b2a)

%impdata(IA-MN7-3-MH7-3-1 092305,b3)

%impdata(IA-MN7-3-MH7-3-A 092305,b3a)

%impdata(IA-AH7-1-MH7-1-1 101205,c1)

%impdata(IA-AH7-1-MH7-1-A 101205,c1a)

%impdata(IA-AH7-2-MH7-2-2 101205,c2)

%impdata(IA-AH7-2-MH7-2-A 101205,c2a)

%impdata(IA-AH7-3-MH7-3-1 101405,c3)

%impdata(IA-AH7-3-MH7-3-B 101405 ,c3a)

%impdata(IA-AN7-1-MN7-1-1 100705,d1)

%impdata(IA-AN7-1-MN7-1-A 100705,d1a)

%impdata(IA-AN7-2-MN7-2-1 100705,d2)

%impdata(IA-AN7-2-MN7-2-A 100705,d2a)

%impdata(IA-AN7-3-MN7-3-1 093005,d3)

%impdata(IA-AN7-3-MN7-3-A 093005,d3a)

%macro red(sasdata,rsasdata);

ods listing close; ods noresults; ods output

BasicMeasures=red_&sasdata; proc univariate data=&sasdata; by ID;

var &sasdata._red; run; ods listing; ods results; data &rsasdata;

set red_&sasdata(rename=(LocValue=&sasdata._rred)); where

LocMeasure=’Median’; keep id &sasdata._rred; run;

%mend;

%red(a1,ra1)

%red(a1a,ra1a)

%red(a2,ra2)

%red(a2a,ra2a)

%red(a3,ra3)

%red(a3a,ra3a)

%red(b1,rb1)

%red(b1a,rb1a)

%red(b2,rb2)

%red(b2a,rb2a)

%red(b3,rb3)

%red(b3a,rb3a)

%red(c1,rc1)
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%red(c1a,rc1a)

%red(c2,rc2)

%red(c2a,rc2a)

%red(c3,rc3)

%red(c3a,rc3a)

%red(d1,rd1)

%red(d1a,rd1a)

%red(d2,rd2)

%red(d2a,rd2a)

%red(d3,rd3)

%red(d3a,rd3a)

%macro green(sasdata,gsasdata);

ods listing close; ods noresults; ods output

BasicMeasures=green_&sasdata; proc univariate data=&sasdata; by ID;

var &sasdata._green; run; ods listing; ods results; data &gsasdata;

set green_&sasdata(rename=(LocValue=&sasdata._ggreen));

where LocMeasure=’Median’; keep id &sasdata._ggreen; run;

%mend;

%green(a1,ga1)

%green(a1a,ga1a)

%green(a2,ga2)

%green(a2a,ga2a)

%green(a3,ga3)

%green(a3a,ga3a)

%green(b1,gb1)

%green(b1a,gb1a)

%green(b2,gb2)

%green(b2a,gb2a)

%green(b3,gb3)

%green(b3a,gb3a)

%green(c1,gc1)

%green(c1a,gc1a)

%green(c2,gc2)

%green(c2a,gc2a)

%green(c3,gc3)

%green(c3a,gc3a)

%green(d1,gd1)

%green(d1a,gd1a)

%green(d2,gd2)

%green(d2a,gd2a)

%green(d3,gd3)

%green(d3a,gd3a)
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%macro revise(ra1,a1_rred,a1_red);

data &ra1; set &ra1; if &a1_rred<=0 then &a1_red=1; if &a1_rred>0

then &a1_red=&a1_rred;drop &a1_rred; proc sort data=&ra1; by id;run;

%mend;

%revise(ra1,a1_rred,a1_red)

%revise(ra1a,a1a_rred,a1a_red)

%revise(ra2,a2_rred,a2_red)

%revise(ra2a,a2a_rred,a2a_red)

%revise(ra3,a3_rred,a3_red)

%revise(ra3a,a3a_rred,a3a_red)

%revise(rb1,b1_rred,b1_red)

%revise(rb1a,b1a_rred,b1a_red)

%revise(rb2,b2_rred,b2_red)

%revise(rb2a,b2a_rred,b2a_red)

%revise(rb3,b3_rred,b3_red)

%revise(rb3a,b3a_rred,b3a_red)

%revise(rc1,c1_rred,c1_red)

%revise(rc1a,c1a_rred,c1a_red)

%revise(rc2,c2_rred,c2_red)

%revise(rc2a,c2a_rred,c2a_red)

%revise(rc3,c3_rred,c3_red)

%revise(rc3a,c3a_rred,c3a_red)

%revise(rd1,d1_rred,d1_red)

%revise(rd1a,d1a_rred,d1a_red)

%revise(rd2,d2_rred,d2_red)

%revise(rd2a,d2a_rred,d2a_red)

%revise(rd3,d3_rred,d3_red)

%revise(rd3a,d3a_rred,d3a_red)

%revise(ga1,a1_ggreen,a1_green)

%revise(ga1a,a1a_ggreen,a1a_green)

%revise(ga2,a2_ggreen,a2_green)

%revise(ga2a,a2a_ggreen,a2a_green)

%revise(ga3,a3_ggreen,a3_green)

%revise(ga3a,a3a_ggreen,a3a_green)

%revise(gb1,b1_ggreen,b1_green)

%revise(gb1a,b1a_ggreen,b1a_green)

%revise(gb2,b2_ggreen,b2_green)

%revise(gb2a,b2a_ggreen,b2a_green)

%revise(gb3,b3_ggreen,b3_green)

%revise(gb3a,b3a_ggreen,b3a_green)
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%revise(gc1,c1_ggreen,c1_green)

%revise(gc1a,c1a_ggreen,c1a_green)

%revise(gc2,c2_ggreen,c2_green)

%revise(gc2a,c2a_ggreen,c2a_green)

%revise(gc3,c3_ggreen,c3_green)

%revise(gc3a,c3a_ggreen,c3a_green)

%revise(gd1,d1_ggreen,d1_green)

%revise(gd1a,d1a_ggreen,d1a_green)

%revise(gd2,d2_ggreen,d2_green)

%revise(gd2a,d2a_ggreen,d2a_green)

%revise(gd3,d3_ggreen,d3_green)

%revise(gd3a,d3a_ggreen,d3a_green)

data all;

merge ra1 ga1 ra1a ga1a ra2 ga2 ra2a ga2a ra3 ga3 ra3a ga3a

rb1 gb1 rb1a gb1a rb2 gb2 rb2a gb2a rb3 gb3 rb3a gb3a

rc1 gc1 rc1a gc1a rc2 gc2 rc2a gc2a rc3 gc3 rc3a gc3a

rd1 gd1 rd1a gd1a rd2 gd2 rd2a gd2a rd3 gd3 rd3a gd3a ;

by id;run;

data all1; set all;

hmha1=log2(c1_green)+log2(c1a_red)-log2(c1_red)-log2(c1a_green);

hmha2=log2(c2_green)+log2(c2a_red)-log2(c2_red)-log2(c2a_green);

hmha3=log2(c3_green)+log2(c3a_red)-log2(c3_red)-log2(c3a_green);

nmna1=log2(d1_green)+log2(d1a_red)-log2(d1_red)-log2(d1a_green);

nmna2=log2(d2_green)+log2(d2a_red)-log2(d2_red)-log2(d2a_green);

nmna3=log2(d3_green)+log2(d3a_red)-log2(d3_red)-log2(d3a_green);

hmnm1=log2(b1_green)+log2(b1a_red)-log2(b1_red)-log2(b1a_green);

hmnm2=log2(b2_green)+log2(b2a_red)-log2(b2_red)-log2(b2a_green);

hmnm3=log2(b3_green)+log2(b3a_red)-log2(b3_red)-log2(b3a_green);

hana1=log2(a1_green)+log2(a1a_red)-log2(a1_red)-log2(a1a_green);

hana2=log2(a2_green)+log2(a2a_red)-log2(a2_red)-log2(a2a_green);

hana3=log2(a3_green)+log2(a3a_red)-log2(a3_red)-log2(a3a_green);

keep id hmha1 hmha2 hmha3 nmna1 nmna2 nmna3 hmnm1 hmnm2 hmnm3 hana1

hana2 hana3; run;

data array; set all1; array x(i) hmha1 hmha2 hmha3 nmna1 nmna2 nmna3

hmnm1 hmnm2 hmnm3 hana1 hana2 hana3; do i=1 to 12; signal=x; if i in

(1,2,3) then treat=’hmha’; if i in (4,5,6) then treat=’nmna’; if i

in (7,8,9) then treat=’hmnm’; if i in (10,11,12) then treat=’hana’;

keep id treat signal; output; end; run;
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ods listing close; ods noresults; ods output

Contrasts=contrast

lsmeans=lsmeans

PredictedValues=resi;

proc glm data=array; /*where id=’CT020023B1E01’;*/ by id;

class treat; model signal=treat/p; contrast ’inter’ treat -0.5 0.5

0.5 -0.5; contrast ’hanm’ treat 0.5 -0.5 0.5 -0.5; lsmeans treat;

run; quit; ods listing; ods results;

/*get pvalue for inter and hanm*/ data inter(keep=id probf)

hanm(keep=id probf); set contrast; if source=’inter’ then output

inter; if source=’hanm’ then output hanm; run;

/*get means for 4 treatment group*/ data hmha nmna hmnm hana; set

lsmeans; if treat=’hmha’ then output hmha; if treat=’nmna’ then

output nmna; if treat=’hmnm’ then output hmnm; if treat=’hana’ then

output hana; run;

%macro m(ahan,ahanmean);

data &ahanmean; set &ahan(rename=(signalLSMean=&ahan._mean)); keep

id &ahan._mean; proc sort data=&ahan; by id; run;

%mend;

%m(hmha,hmha_mean)

%m(nmna,nmna_mean)

%m(hmnm,hmnm_mean)

%m(hana,hana_mean)

data mean; merge hmha_mean nmna_mean hmnm_mean hana_mean; by id;

run;

data array1; set array; if treat=’hmha’ then c1=1; if treat=’nmna’

then c1=-1; if treat=’hmnm’ then c1=1; if treat=’hana’ then c1=-1;

time=signal*c1; run;

ods listing close; ods noresults; ods output

Contrasts=contrast1;

proc glm data=array1; by id; /*where id=’CT020023B1E01’;*/ class

treat; model time=treat; contrast ’cult’ treat 0 0.5 0 -0.5;

contrast ’oxy’ treat -0.5 0 0.5 0; contrast ’hmna’ treat -0.5 0.5

0.5 -0.5; run; quit; ods listing; ods results; data cult(keep=id

probf) oxy(keep=id probf) hmna(keep=id probf); set contrast1; if

source=’cult’ then output cult; if source=’oxy’ then output oxy; if

source=’hmna’ then output hmna; run;
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%macro cont(a);

data &a; set &a(rename=(probf=&a._pvalue)); keep id &a._pvalue;

proc sort data=&a; by id;run;

%mend;

%cont(inter)

%cont(hanm)

%cont(cult)

%cont(oxy)

%cont(hmna)

data pvalue; merge inter hanm cult oxy hmna /*hmha nmna hmnm hana*/;

by id;run; proc sort data=pvalue; by id; run;

data result; merge pvalue mean; by id; run; data hasinter nointer;

set result; if inter_pvalue<0.01 then output hasinter;/*87*/ if

inter_pvalue>=0.01 then output nointer;/*9326*/ run; data cul ox;

set nointer; if cult_pvalue<0.01 then output cul;/*1211*/ if

oxy_pvalue<0.01 then output ox;run;/*620*/

%macro his(result,inter_pvalue,interaction);

proc capability data=&result; histogram &inter_pvalue/

vscale=percent endpoints=0 to 1 by 0.01 cfill=blue cframe=ligr;

title "&interaction"; run;

%mend;

%his(result,inter_pvalue,interaction_contrast)

%his(result,cult_pvalue,cult_contrast)

%his(result,oxy_pvalue,oxy_contrast)

%his(result,hanm_pvalue,hanm_contrast)

%his(result,hmna_pvalue,hmna_contrast)

Copyright c© Liping Huang 2009
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