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ABSTRACT OF DISSERTATION

Analysis of Binary Data via Spatial-Temporal Autologistic Regression Models

Spatial-temporal autologistic models are useful models for binary data that are mea-
sured repeatedly over time on a spatial lattice. However, the traditional parametriza-
tion presents difficulties in interpreting model parameters across varying levels of
statistical dependence.

In order to overcome interpretable parameters, a centered spatial-temporal autol-
ogistic regression model has been developed. Two efficient statistical inference ap-
proaches, expectation-maximization pseudo-likelihood approach (EMPL) and Monte
Carlo expectation-maximization likelihood approach (MCEML), have been proposed.
Also, Bayesian inference is considered and studied. In addition, We consider the im-
putation of missing values is for spatial-temporal autologistic regression models. Most
existing imputation methods are not admissible to impute spatial-temporal missing
values, because they can disrupt the inherent structure of the data and lead to a seri-
ous bias during the inference or computing efficient issue. Two imputation methods,
iteration-KNN imputation and maximum entropy imputation, are proposed, both of
them are relatively simple and can yield reasonable results.

In summary, the main contributions of this dissertation are the development of a
spatial-temporal autologistic regression model with centered parameterization, and
proposal of EMPL, MCEML, and Bayesian inference to obtain the estimations of
model parameters. Also, iteration-KNN and maximum entropy imputation methods
have been presented for spatial-temporal missing data.
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Chapter 1 Introduction

1.1 Overview

The values of spatial-temporal binary data are either 0 or 1, which are measured

repeatedly over time on a spatial lattice, and derived from the presence or absence of

a characteristic in the study. Binary data are more and more appeared in agriculture,

biology, ecology, geography, epidemiology, finance, and image analysis disciplines re-

cently. This dissertation focuses on spatial-temporal binary data observed on a lattice

over time.

Autologistic regression models are useful tools for analyzing spatial-temporal binary

data on a Markov random field, which account for effects of potential covariates and

spatial-temporal dependence among the data simultaneously. For binary data on a

spatial lattice, the traditional autologistic regression model was first introduced by

Besag (1972, 1974), and it was extended to account for the effects of covariates by

Gumpertz et al. (1997) and Huffer and Wu (1998). For binary data that are mea-

sured repeatedly over time on a spatial lattice, Zhu et al. (2005) and Zheng and Zhu

(2008) generalized the traditional spatial-temporal autologistic regression model to

account for covariates, spatial dependence, and temporal dependence simultaneously.

For statistical inference of spatail-temporal autologistic regression model, there are

three widely used statistical approaches: maximum pseudo-likelihood approach (PL),

Monte Carlo maximum likelihood approach (ML), and Bayesian inference. Maximum

pseudo-likelihood approach was first proposed by Besag (1975). It is the fastest and

most straightforward approach to obtian statistical inference, but it is statistical in-
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efficient. Zhu et al. (2005) considered MPLE for statistical inference, but it may be

statistically inefficient especially when spatial and/or temporal dependence is strong.

Monte Carlo maximum likelihood approach and Bayesian inference were presented

by Geyer (1974) and Møller et al. (2006), respectively. They are statistically efficient

but require more computation demand. A fully Bayesian approach for both model

parameter inference and prediction at future time points is proposed by Zheng and

Zhu (2008).

However, in the presence of positive spatial and temporal dependence, the tradi-

tional models have non-zero spatial and/or temporal neighbors and the conditional

expectation of binary response observation never decreases. This is unreasonable if

most of the neighbors are zeros and could bias the realizations towards 1. Hence, the

interpretation of regular parameterizations of a traditional spatial-temporal atuol-

ogistic regression model may not be straightforward and is difficult across varying

levels of statistical dependence.

In order to solve the above problem, a centered spatial-temporal autologistic re-

gression model has been proposed to analyze spatial-temporal binary data observed

on a lattice over time in this dissertation. Expectation-maximization pseudolike-

lihood (EMPL) and Monte Carlo expectation-maximization likelihood approaches

(MCEML) are developed for statistical inference. Also, Baysian inference is consid-

ered and studied. Furthermore, the statistical efficiency of the three approaches for

various sizes of sampling lattices and numbers of sampling time points has been com-

pared. Monte Carlo is used to obtain predictive distributions at future time points

in term of prediction, and compared with the performance of the the traditional

spatial-temporal autologistic regression model. The methodology is demonstrated

via simulation studies and a real data example concerning southern pine beetle out-

2



break in North Carolina.

Missing data arise in the modern massive data analysis, and the problems lie in

incorrect measurements, faulty equipment, and manual data entry errors, etc. For

statistical analysis of missing data, the simplest way is to delete the data points with

any missing values, but this is only valid for data missing completely at random

(MCAR) cases when the data contains relatively small numbers of missing values

by Little and Rubin (1987). The other ways are imputation methods to estimate

the missing values based on learning algorithms for missing at random cases. Here

we consider missing at random (MAR) cases and impute missing values to count for

spatial and temporal effects in statistical analysis.

Spatial-temporal regression models are time-consuming because spatial and temporal

effects are accounted for the statistical analysis process. The nearest neighbor and

mean substitution are the simplest and commonly suggested ways to deal with this

issue. However, these two imputation methods can disrupt the inherent structure of

the data, and lead to a serious bias during the inference. On the other hand, most

complex imputation methods, such as multiple imputation and Bayesian imputation,

are not computationally efficient. Considering efficiency and accuracy, two new im-

putation methods are presented: iteration-KNN imputation and maximum entropy

imputation. Both of them are relatively simple and can yield reasonable results.

Depending on research interests, both centered spatial-temporal autologistic regres-

sion model and new imputation methods are studied in this dissertation. In the

following sections, autologistic regression models and imputation methods will be in-

troduced, previous research on these topics will be reviewed, and our special goal and

the final outline of the dissertation will be presented.
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1.2 Spatial-temporal autologistic regression models on Lattice

In this section the autologistic regression models will be introduced, especially for

the traditional autologistic model based on Besag (1972, 1974) and the traditional

spatial-temporal autologistic regression model from Zheng and Zhu (2008). Before

the introduction of these models, a brief description of spatial data, lattice and neigh-

borhood will be provided.

1.2.1 Spatial data

Spatial data consist of measurements or observations taken at specific locations or

within specific regions. The locations or regions can be in 1, 2 or 3 dimensions. For

example, a segment along a lake is 1 dimensional, the surface of a lake is 2 dimen-

sional, and the entire lake is 3 dimensional. In this dissertation, this terminology is

specified to 2 dimensional space. According to Cressie (1993), spatial data can be

categorized to three main types: geostatistical data, lattice data, and spatial point

patterns data. The goals and approaches for the three types of spatial data in data

analysis are a little different.

Geostatistical data are measurements taken at fixed locations. Usually, the loca-

tions are spatially continuous in the region. One example is the rainfall recorded at

weather stations. Summarizing the spatial correlation and drawing inferences are the

main goals of geostatistical data analysis. Kriging is a famous interpolation method

based on linear least squares estimation algorithms, which is a fundamental tool and

widely used in geostatistcal data analysis from 1970s (Cressie, 1993).
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Before introducing lattice data, it is better to define and overview the terminology

“lattice”. Here the terminology lattice building on the spatial analysis refers to a

countable collection of regular or irregular spatial sites, and is linked to the spatial

neighborhood information by Cressie (1993). For a regular spatial lattice, the first

order neighborhood contains the four nearest neighbors, the second order neighbor-

hood contains the four second nearest neighbors, and so on. For example, figure 1.1

shows a map of the 100 counties of North Carolina numbered in alphabetical order;

their seats form a lattice.

Figure 1.1: Map of the 100 counties of North Carolina numbered in alphabetical
order.

The spatial lattice DN of the ith county, and the neighborhood set Ni can be speci-

fied,

DN ≡ {(i : Ni) : i = 1, ..., 100}

Ni ≡ {k : k is a spatial neighbor of i}, i = 1, ..., 100

For example, The county Alamance in North Carolina has site number 1 and its spa-

tial neighbors (adjacent neighbors on a lattice) are {17, 19, 32, 41, 76}. Although

the spatial lattice DN does not contain exact site-location information, it is enough

to build a model of spatial dependence between counties.

5



Lattice data are observations associated with spatial regions, where the regions can

be regularly or irregularly spaced. The purpose of the analysis is to draw inferences

and identify relationships among adjacent neighbors. Unlike geostatistical data, there

is no possibility of a response between data locations. A typical example is southern

pine beetle outbreaks (SPB), which shows presence or absence of a particular beetle

in North Carolina.

Spatial point pattern data arise when locations themselves are the variables of in-

terest. Spatial point patterns consist of a finite number of locations observed in a

spatial region. For example, locations of lung caner cases in relation to the location

of an incinerator. The objectives of a spatial point pattern are to identify, quantify

and model the inherent spatial pattern among the data.

This dissertation focuses on spatial-temporal binary data that are measured repeat-

edly over time on a spatial lattice.

1.2.2 Autologistic models

Autologistic regression models will be introduced here. For traditional autologistic

regression model and traditional spatial-temporal autologistic regression model, the

previous research and development will be reviewed, and special studies for this dis-

sertation will be outlined.

Traditional autologistic models

The traditional autologistic model was proposed by Besage (1972, 1974), unlike hier-

6



archical models, it models spatial dependence among random variables directly and

conditionally for binary data. In the last forty years it has proved to be a very use-

ful model in many disciplines, particularly in ecology, environment, and epidemiology.

With i = 1, ..., n, let si denote the ith representative site on a spatial lattice, and

let {Ni = j : sj is a neighbor of si} denote the collection of sites that are spatial

neighbors of si for a given neighborhood structure. Let Yi = Y (si) denote the binary

response variable at ith site such that Yi = 0 or 1. Let X0,i ≡ 1 and Xk,i = Xk(si)

denote the kth explanatory variable at the ith site, where p denotes the number of ex-

planatory variables. The full conditional distribution for the traditional autologistic

model is given by,

p(Yi = 1|Yj : j 6= i)

p(Yi = 0|Yj : j 6= i)
= exp{

p∑
k=0

θkXk,iYi + θp+1

∑
j∈Ni

YiYj}

Then,

p(Yi|Yj : j 6= i) = p(Yi|Yj : j ∈ Ni) =
exp{

∑p
k=0 θkXk,iYi +

∑
j∈Ni

θp+1YiYj}
1 + exp{

∑p
k=0 θkXk +

∑
j∈Ni

θp+1Yj}

Where θ0 is an intercept, θk is a slope for the kth covariate Xk,i, and θp+1 is a spatial

autoregressive coefficient.

Let θ = (θ0, ..., θp, θp+1)
′

denote the parameter vector of the model. Then the corre-

sponding joint distribution is,

L(θ) = p(Y1, . . . , Yn|θ)

= c(θ)−1 exp{
n∑
i=1

p∑
k=0

θkXk,iYi +
1

2

n∑
i=1

∑
j∈Ni

θp+1YiYj}

Where c(θ) is a normalizing constant, which does not have an analytical form and

usually creates a computational challenge for when using either maximum likelihood

or Bayesian inference.
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Traditional Spatial-temporal autologistic models

For binary data measured repeatedly over time on a spatial lattice, Zhu et al. (2005)

generalized the autologistic regression models to account for covariates, spatial de-

pendence, and temporal dependence simultaneously. Let t ∈ Z denote a set of time

points, let Yi,t = Y (si, t) denote the binary response variable at the ith site si and

the tth time point such that Yi,t = 0 or 1. Let X0,i,t ≡ 1 and Xk,i,t = Xk(si, t) de-

note the kth explanatory variable at the ith site and tth time point. The traditional

spatial-temporal autologistic regression model in Zheng and Zhu (2008) is defined via

the following full conditional distribution,

p(Yi,t|Yi′ ,t′ : (i
′
, t
′
) 6= (i, t)) = p(Yi,t|Yi′ ,t′ : (i

′
, t
′
) ∈ Ni,t)

=
exp{

∑p
k=0 θkXk,i,tYi,t +

∑
j∈Ni

θp+1Yi,tYj,t + θp+2Yi,t(Yi,t−1 + Yi,t+1)}
1 + exp{

∑p
k=0 θkXk,i,t +

∑
j∈Ni

θp+1Yj,t + θp+2(Yi,t−1 + Yi,t+1)}

(1.1)

Where Ni = {(j, t) : sj is a spatial neighbor of si} and Ni,t = {(j, t) : j ∈ Ni} ∪

{(i, t− 1), (i, t+ 1)} denote the spatial neighborhood and spatial-temporal neighbor-

hood for the ith site and tth time point, respectively. Compared to the traditional

autologistic model, one additional parameter θp+2, a temporal autoregressive coeffi-

cient, is included.

Let Y t = (Y1,t, ..., Yn,t)
′

denote the binary response on the entire spatial lattice for a

given time point t and Y 1, ...,Y T denote binary responses measured at T time points.

According to Hammersley-Clifford Theorem, the joint distribution of Y 2, ...,Y T−1

8



conditioned on Y 1 and Y T is,

L(θ) = p(Y 2, ...,Y T−1|Y 1,Y T ;θ)

= c(θ)−1 exp{
T−1∑
t=2

(
n∑
i=1

p∑
k=0

θkXk,i,tYi,t +
1

2

n∑
i=1

∑
j∈Ni

θp+1Yi,tYj,t)

+
T∑
t=2

n∑
i=1

θp+2Yi,t−1}

Similarly to the traditional autologistic model, c(θ) is a normalizing constant which

does not have an analytical form.

1.3 Statistical inference for autologistic models

Since the joint distribution of the autologistic regression model has a normalizing

constant which involves the model parameters and does not have an analytical form,

direct maximization of the likelihood function is not straightforward. There has been

much research on statistical inference for autologistic models and such work is gener-

ally based on pseudo-likelihood, Markov chain Monte Carlo (MCMC) approximation

of likelihood, and Bayesian hierarchical models. In particular, Besag (1975) proposed

to maximize pseudo-likelihood functions. Huffer and Wu (1998) used MCMC to

approximate the unknown normalizing constant and maximum likelihood estimates

(MLE) for spatial autologistic models. Huang and Ogata (2002) generalized the

pseduo-likelihood and proposed maximum generalized pseudo-likelihood estimates,

which connect maximum pseudo-likelihood estimates (MPLE) and MLE and show

better performance than MPLE in terms of standard errors and efficiencies relative to

MLE. Zheng and Zhu (2008) cast the inference problem under a Bayesian hierarchical

modeling framework and compared the performance of maximum pseudo-likelihood,

MCMC maximum likelihood, and Bayesian inference. They demonstrated that pa-

rameter inference via maximum pseudo-likelihood is statistically inefficient especially
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when spatial and/or temporal dependence is strong, whereas the performance of the

MCMC maximum likelihood is comparable to the Bayesian approach.

In addition to autologistic regression models, an alternative approach to analyze

spatial-temporal binary data is marginal models using quasi-likelihood (QL) estimat-

ing equations for statistical inference, which allows separate modeling of regression

and dependence of the response variables. Lin et al. (2009) developed an QL esti-

mating equation for non-separable spatial-temporal binary data and compared the

efficiencies of the QL estimates with MPLEs. Lin (2010) developed an QL estimating

equation for separable spatial-temporal binary data.

In this section, a brief review of the maximum pseudo-likelihood approach, Monte

Carlo maximum likelihood approach, and Bayesian inference will be presented. Since

Monte Carlo samples are widely used in these statistical approaches, we will start

with a basic introduction to two common Monte Carlo sampling methods: Gibbs

sampling and perfect sampling.

1.3.1 Monte Carlo sampling methods

In this dissertation, Monte Carlo samples are generated using three types of sampling:

Gibbs sampler after burn-in (BGS), perfect simulation (PS), and Gibbs sampler but

start at a perfect simulation sample (PGS). They are developed based on Gibbs sam-

pling and perfect sampling methods.

Gibbs sampling

To estimate the unknown normalizing constant in the joint distribution of autolo-
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gistic regression models, we need to generate Monte Carlo random samples from the

full conditional distribution. One of the important approaches is Gibbs sampling.

The Gibbs sampling is a special case of the Metropolis-Hastings sampling, whose

distinct feature is using conditional distributions to construct Markov chain moves

at each iteration, instead of joint distribution. Thus, it is a powerful tool especially

when the joint distribution is unknown or difficult to sample directly, but the condi-

tional distribution of each variable is known and easy or easier to sample.

The Gibbs sampling algorithm generates an instance from the distribution of each

variable in turn, conditional on the current values of the other variables. Thus, one

simulates k random variables sequentially from the k conditionals compared to gen-

erate a single k-dimensional vector using the full joint distribution. The sequence of

samples from Gibbs sampler consists of a Markov chain, and the stationary distribu-

tion of that Markov chain converges to the target joint distribution.

Same as other MCMC algorithms, Gibbs sampling generates a Markov chain of sam-

ples, each of which is correlated with nearby samples. As a result, every mth sample

is taken to form an independent sample. In addition, samples from the beginning of

the chain may not accurately represent the desired distribution, and must be thrown

away (“burn-in”). In this dissertation, BGS are repeatedly used to generate Monte

Carlo samples.

Perfect sampling

Perfect sampling (PS) is another important approach to generate Monte Carlo ran-

dom samples in autologistic regression models. According to Propp and Wilson (1996)

and Møller (1999), a perfect sampler for an autologistic model can be constructed as

11



follows.

Let LT (t, i) and UT (t, i) denote the ith observations at time t of the lower and

upper chains, respectively. These chains started at time T in the past with same

simulation seeds. Fix T < 0 and set the lower chain LT (t, ∗) = 0 and upper chain

UT (t, ∗) = 1. Update the chains according to

LT (t, i) = F−1i (R(t, i))|LT (t, 1 : i− 1),LT (t− 1, (i+ 1) : n)

UT (t, i) = F−1i (R(t, i))|UT (t, 1 : i− 1),UT (t− 1, (i+ 1) : n)

Where the R(t, i) are independent standard uniform variates and

F−1i (p) =


1, if p > 1− pi

0, if p ≤ 1− pi

with

pi = p(Yi,t = 1|θ)

If LT and UT coalesce at time t0 ≤ 0, return LT (0, ∗) as one sample from the joint

distribution. Otherwise, double time T and start over. Use new uniform variates

from T, T + 1, ..., T
2
− 1, but reuse the previously generated variates for time points

T
2
, T
2

+ 1, ...,−1.

Although perfect sampling requires more computational time than Gibbs sampling,

it can guarantee that the sample is drawn from the exact target distribution during

each iteration. Unlike Gibbs sampling, the sequential samples based on PS are from

the target distribution and do not need to “burn-in”.

Based on the advantages and disadvantages of Gibbs sampling and perfect sampling,
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one combination of Monto Carlo sampling method is Gibbs sampler started at a per-

fect simulation sample (PGS). Its first sample is drawn from PS to guarantee that

it is from the target distribution. Start from this sample, using Gibbs sampler to

generate the other independent samples. The subsequent samples are also from the

target distribution exactly. In this dissertation, some Monte Carlo samples are gen-

erated from PGS, especially when the spatial and/or temporal dependence is strong

such that BGS is not working well.

After reviewing Monto Carlo sampling methods, the next goal is to investigate the

parameter estimation and statistical inference approaches of autologistic regression

models.

1.3.2 Maximum pseudolikelihood

Maximum pseudo-likelihood approach, first introduced by Besag (1975), is a popular

and convenient way to obtain statistical inferences of autologistic regression models.

The maximum pseudo-likelihood estimate (MPLE) is the value of θ that maximizes

the product of the conditional likelihoods. Based on the above traditional spatial-

temporal regression model, it is as following,

θ̃ = argmaxLPL(θ)

Where,

LPL(θ) = log{
∏
i,t

p(Yi,t|Yi′ ,t′ : (i
′
, t
′
) 6= (i, t))}

=
∑
i,t

log{
exp{

∑p
k=0 θkXk,i,tYi,t +

∑
j∈Ni

θp+1Yi,tYj,t + θp+2Yi,t(Yi,t−1 + Yi,t+1)}
1 + exp{

∑p
k=0 θkXk,i,t +

∑
j∈Ni

θp+1Yj,t + θp+2(Yi,t−1 + Yi,t+1)}
}

Although pseudo-likelihood is not the true likelihood except in the trivial case of

independence, Besag (1975) showed that the MPLE converges almost surely to the
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MLE as the lattice size goes to ∞.

To maximize the pseudo-likelihood function and obtain the maximum pseudo-likelihood

estimate (MPLE) of θ, the easiest way is to use a standard logistic regression software

function such as proc logistic in SAS or glm in R. Also, the standard error and ap-

proximate confidence intervals using a parametric bootstrap can be computed. That

is, first generate M Monte Carlo samples from the target distribution using BGS,

PS, or PGS, and compute the MPLE for each sample. After that, the M bootstrap

samples are used to obtain the approximate variance of the MPLE, and construct

corresponding approximate confidence interval, where parallel parametric bootstrap

can greatly increase the efficiency of resampling process.

This statistical inference approach is the most efficient way in computation, but

it is well known it may be statistical inefficient, especially when the spatial and/or

temporal dependence is strong.

1.3.3 Monte Carlo maximum likelihood

Although, MPLE is straightforward and computationally efficient, it may be statis-

tically inefficient especially in the existence of strong spatial and/or temporal de-

pendence. An alternative approach is Monte Carlo maximum likelihood (MCML),

which is direct maximization of likelihood function using Markov chain Monte Carlo

(MCMC). It is statistically efficient but requires more computational time to simulate

Monte Carlo samples.

Based on the above traditional spatial-temporal regression model, the likelihood func-
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tion is,

L(θ) = p(Y 2, ...,Y T−1|Y 1,Y T ;θ)

= c(θ)−1 exp{
T−1∑
t=2

[
n∑
i=1

p∑
k=0

θkXk,i,tYi,t +
1

2

n∑
i=1

∑
j∈Ni

θp+1Yi,tYj,t]

+
T∑
t=2

n∑
i=1

θp+1Yi,tYi,t−1}

= c(θ)−1 exp(θ
′
Z)

where,

Z =(
T−1∑
t=2

n∑
i=1

Yi,t,
T−1∑
t=2

n∑
i=1

X1,i,tYi,t, . . . ,
T−1∑
t=2

n∑
i=1

Xp,i,tYi,t,

T−1∑
t=2

∑
i=1

1

2

∑
j∈Ni

Yi,tYj,t,
T∑
t=2

n∑
i=1

θp+1Yi,tYi,t−1)
′

c(θ) is an unknown normalizing constant in the sense that it can only be computed

analytically for small lattice sizes.

Based on a preselected parameter vector ψ = (ψ0, ..., ψp+2)
′, generate M Monte Carlo

samples from the joint distribution. Then the approximation of the following ratio of

two normalizing constant is,

c(θ)

c(ψ)
= Eψ[

exp(θ
′
Z)

exp(ψ
′
Z)

]

≈M−1
M∑
m=1

exp(θ
′
Zm)

exp(ψ
′
Zm)

= M−1
M∑
m=1

exp((θ −ψ)
′
Zm)

Where Zm is Z evaluated at the mth Monte Carlo sample of Y ; m = 1, ...,M . There-

fore MLE can be approximated by maximizing a rescaled version of the likelihood

function,

c(ψ)L(θ) =
c(ψ)

c(θ)
exp(θ

′
Z)
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Because c(θ) is free of ψ,

c(ψ)L(θ) = [M−1
M∑
m=1

exp((θ −ψ)
′
Zm)]−1 exp(θ

′
Z)

Following Huffer and Wu (1998) and Geyer (1994), The variances can be approxi-

mated by using the diagonal elements of the observed Fisher information matrix.

1.3.4 Bayesian inference

Møller et al. (2006) presented an auxiliary-variable MCMC algorithm that allows us

to construct a proposal distribution so that the normalizing constant cancels out in

the Metropolis-Hastings ratio. Recently, Zheng and Zhu (2008) proposed a Bayesian

approach for both model parameter inference and prediction at future time points

using Markov chain Monte Carlo (MCMC). Here we describe this method following

Zheng and Zhu (2008) for the traditional spatial-temporal regression model.

Let P (θ|Y ) denote the posterior distribution of θ with a prior distribution π(θ),

where Y denotes all the data. Consider Metropolis-Hastings (MH) algorithm to gen-

erate Monte Carlo samples for the parameter vector θ. Let θ(0) be a pre-selected

initial parameter vector, θ = θl be lth step parameter, and θ∗ be a new candidate

for (l + 1)th step parameter which is generated according to a proposal distribution

q(θ∗|θ). Then the metropolis-Hastings random walk acceptance probability for the

algorithm of Zheng and Zhu (2008) is given by,

α(θ∗|θ) = min{π(θ∗)p(Y 2, ...,Y T−1|Y 1,Y T ;θ∗)q(θ|θ∗)
π(θ)p(Y 2, ...,Y T−1|Y 1,Y T ;θ)q(θ∗|θ)

, 1}

Now drawing a random number U ∼ Uniform[0, 1]. Then at the (l + 1)th step,

θl+1 = θ∗ if α > U . Otherwise, θl+1 = θ.
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Now

p(Y 2, ...,Y T−1|Y 1,Y T ;θ∗)

p(Y 2, ...,Y T−1|Y 1,Y T ;θ)
=

1
c(θ∗)

exp{θ∗
′

Z}
1

c(θ)
exp{θ′Z}

=
exp{θ∗

′

Z}
exp{θ′Z}

× c(θ)

c(θ∗)

Consider a preselected parameter vector ψ = (ψ0, ..., ψp + 2)′, and generate M Monte

Carlo samples from the joint distribution p(Y 2, ...,Y T−1|Y 1,Y T ;ψ),

p(Y 2, ...,Y T−1|Y 1,Y T ;θ∗)

p(Y 2, . . . ,Y T−1|Y 1,Y T ;θ)
=

exp{θ∗
′

Z}
exp{θ′Z}

×
c(θ)
c(ψ)

c(θ∗)
c(ψ)

≈ exp{(θ∗ − θ)Z} ×
∑M

m=1 exp((θ −ψ)
′
Zm)∑M

m=1 exp((θ∗ −ψ)′Zm)

For the MH algorithm, a good choice of the parameter vector ψ would speed up the

convergence process. As ψ is closer to the posterior mode of θ, the results is better.

Usually, the MPLE is a first choice for ψ. However when the MPLE is far away

from the true value of θ, the MH algorithm requires a large number of Monte Carlo

samples to approximate the likelihood ratio by Sun (2004). Another way to obtain ψ

is by a stochastic approximation algorithm from Gu and Zhu (2001). Furthermore,

we need to adjust the variance of the proposal distribution to get a reasonable ac-

ceptance probability in the MH algorithm, if this acceptance probability is too low

or high, the posterior distribution may not be proper.

1.4 Imputation methods for massive spatial-temporal missing data

Missing data arise in the modern massive spatial-temporal data analysis, and the

problems lie in incorrect measurements, faulty equipment, and manual data entry

errors, etc. For statistical analysis of missing data, the simplest way is to delete the

data points with any missing values. However, this strategy maybe invalid to spatial-

temporal data analysis.
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In order to choose proper imputation methods for spatial-temporal data, it is im-

portant to understand why the data are missing.

1.4.1 Missing data mechanisms

For spatial-temporal data, assume that a sequence of measurements Yi,t are de-

signed to be meansured at site i = 1, ..., n over time point t = 1, ..., T . Let Y =

(Y1,1, ..., Y1,T , Y2,1, ..., Yn,T )
′
. Also partition Yi,t into observed and missing categories

as Y o
i,t and Y m

i,t ,

Yi,t =


observed dataY o

i,t

missing dataY m
i,t

In addition, the missing data indicator Ri,t is defined by,

Ri,t =


1, if Yi,t is observed

0, otherwise

Let R = (R1,1, ..., R1,T , R2,1, ..., Rn,T )
′

Therefore, the full data is (Y ,R) which is the

complete data together with the missing indicators.

There are three types of missing data by Rubin (1976) and Little and Rubin (1987):

missing completely at random (MCAR), missing at random (MAR), and missing not

at random (MNAR). MCAR exists when missing is independent of both the unob-

served (missing) and observed measurements. It is ignorable missing, and the model

of Ri,t (missing data indicator) does not contain information about parameters of

interest. MAR exists when missing is only independent of unobserved measurements,

18



but depends on observed measurements. It is ignorable missing, but the pattern of

missing is traceable or predictable. MNAR exists when missing depends on both the

unobserved and observed measurements. It is non-ignorable missing with not trace-

able or predictable, and model for Ri,t does contain information about parameters of

interest.

1.4.2 Imputation overview

For statistical analysis of missing data, the simplest way is to delete the data points

with any missing values. However, according to Litter and Rubin (1987) this method

is only valid under MCAR when the data contain relatively small numbers of missing

values. Alternative ways are using imputation methods to estimate the missing values

based on learning algorithms for MAR case, for example, expectation-maximization

(EM) imputation by Dempster, Laird and Rubin (1977), mean imputation, condi-

tional mean imputation (Buck’s Method), hot deck imputation, and multiple impu-

tation by Little and Rubin (1987), sequential imputations and Bayesian imputation

by Kong, Liu and Wong (1994), K-nearest neighbor (KNN) imputation by Batista

and Monard (2003), support vector machine (SVM) imputation by Pelckmansa and

Brabanter (2005) ect.

Here we consider the MAR case for spatial-temporal data and impute missing values

to estimate spatial and temporal effects in statistical analysis. The nearest neighbor

or mean substitution are the simplest and commonly suggested ways to deal with

this issue and are still used in many statistical software packages. However, these

two imputation methods can disrupt the inherent structure of the data, and lead

to a serious bias during the inference (Kim et al 2004). Moreover, most complex

imputation methods, such as multiple imputation and Bayesian imputation, are not
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admissible for computing efficiency issue. Recently, several imputation methods have

been applied to the imputation of spatial-temporal massive missing data, including

EM imputation Smith, Kolenikov, and Cox (2003) and KNN-based imputation (KNN

imputation, weighted KNN imputation, Sequential KNN imputation, etc.) by Crook-

ston and Finley (2008) and Meesad and Hengpraprohm (2008). In EM imputation

method, the procedure consists of iterations of the model based EM algorithm where

the conditional means and covariance matrices are estimated iteratively. KNN-based

imputation method is developed from hot deck imputation method, and uses K near-

est neighbor observations and KNN-based algorithms to estimate missing values. In

general, the recently developed KNN-based imputation method is most efficient, and

EM imputation method is most accurate by Weeks (2001).

Considering efficiency and accuracy, we propose two new imputation methods, iteration-

KNN imputation and maximum entropy imputation, for spatial-temporal massive

missing data in this dissertation. Iteration-KNN imputation uses a KNN imputation

repeatedly with EM-style algorithm to improve accuracy with high computing speed.

Maximum entropy imputation estimates missing values based on regression model

with maximum entropy. Both of them are relatively simple and can yield reasonable

results. We evaluate the efficiency and accuracy of these mthods through comparison

with mean substitution, KNN, and EM imputation across both different missing rates

and large scale probability in simulation data.

1.5 Outline of the dissertation

The remainder of this dissertation is divided into two major parts: centered spatial-

temporal autologistic regression model and missing data imputation methods, which

are organized as follows. In chapter 2, a centered spatial-temporal autologistic re-

gression model is developed in section 1. In section 2, new estimation and statistical
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inference approaches are proposed. And a simulation study is conducted in section

3, followed by a real data example in section 4. In Chapter 3, the iteration-KNN

and maximum entropy imputation methods, as well as KNN and EM imputation

methods are introduced in section 1. Simulation study is designed to investigate the

efficiency and accuracy across both different missing rates and large scale probability

in section 2. Imputation methods are applied to a real data example in section 3.

Finally, conclusion and discussion are presented in chapter 4.

Copyright c© Zilong Wang, 2012.
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Chapter 2 Centered Spatial-temporal Autologistic Regression Model

Parameters interpretation problem

the interpretation of model parameters for a traditional spatial-temporal autologistic

may not be straightforward when incorporating regression.

In the presence of positive spatial and temporal dependence, under the parameteriza-

tions in the traditional spatial-temporal autologistic regression model, the conditional

expectation of Yi,t given its neighbors is,

E(Yi,t|Yi′ ,t′ : (i
′
, t
′ ∈ Ni,t))

=
exp{

∑p
k=0 θkXk,i,t +

∑
j∈Ni

θp+1Yj,t + θp+2(Yi,t−1 + Yi,t+1)}
1 + exp{

∑p
k=0 θkXk,i,t +

∑
j∈Ni

θp+1Yj,t + θp+2(Yi,t−1 + Yi,t+1)}

which increases over,

exp{
∑p

k=0 θkXk,i}
1 + exp{

∑p
k=0 θkXk,i}

the expectation of Yi,t under independence, as long as Yi,t has non-zero spatial and/or

temporal neighbors and never decreases. This is unreasonable if most of the neigh-

bors are zeros and could bias the realizations towards 1. Hence, the interpretation of

parameters is difficult across varying levels of statistical dependence.

For non-Gaussian Markov random field models of spatial lattice data, the idea of

centered parameterization was first proposed by Kaiser and Cressie (1997), who con-

sidered a Winsorized Poisson conditional model. Recently, Kaiser and Caregea (2009)

explored the centered parameterization for general exponential family of Markow ran-

dom field models. In particular, Caragea and Kaiser (2009) studied the centered pa-

rameterization for spatial atuologistic regression models and showed that the centered
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parameterization overcomes the interpretation difficulties.

To solve this parameter interpretation problem, a centered spatial-temporal autol-

ogistic model is developed for analyzing spatial-temporal binary data observed on a

lattice over time in this dissertation. Moreover, expectation-maximization pseudo-

likelihood (EMPL) and Monte Carlo expectation-maximization likelihood (MCEML)

have been proposed for statistical inference of model parameters. Also, Bayesian in-

ference is considered and studied.

Recently, Huges et al. (2011) explored the performance of these inference approaches

under the centered parameterization of spatial-only autologistic regression models and

showed that when the spatial lattice is large enough, maximum pseudo-likelihood pro-

vides reliable inference for moderate spatial dependence.

Here we propose Expectation maximization pseudo-likelihood (EMPL) and Monte

Carlo expectation-maximization likelihood (MCEML) for statistical inference of model

parameters. The performance of Bayesian inference and further comparison of the

efficiency of these inference approaches for various sizes of sampling lattices and num-

bers of sampling time points through both a simulation study and a real data example

is also studied. Furthermore, for spatial-temporal data, prediction into the future is

of interest. We use Monte Carlo to obtain predictive distributions at future time

points and compare the forecasting performance between the models with uncentered

and centered parameterization.
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2.1 Centered Spatial-Temporal Autologistic Regression Model

Under a regularity condition of pairwise-only dependence, a centered spatial-temporal

autologistic regression model is defined with the full conditional distribution,

p(Yi,t|Yi′ ,t′ : (i
′
, t
′
) 6= (i, t)) = p(Yi,t|Yi′ ,t′ : (i

′
, t
′
) ∈ Ni,t)

=
exp{

∑p
k=0 θkXk,i,tYi,t +

∑
j∈Ni

θp+1Yi,tY
∗
j,t + θp+2Yi,t(Y

∗
i,t−1 + Y ∗i,t+1)}

1 + exp{
∑p

k=0 θkXk,i,t +
∑

j∈Ni
θp+1Y ∗j,t + θp+2(Y ∗i,t−1 + Y ∗i,t+1)}

(2.1)

where Y ∗i,t denotes the centered response for the ith site and tth time point,

Y ∗i,t = Yi,t − pi,t

and the center pi,t is the probability of Yi,t = 1 under independence,

pi,t =
exp{

∑p
k=0 θkXk,i,t}

1 + exp{
∑p

k=0 θkXk,i,t}
. (2.2)

Thus, the conditional expectation of Yi,t given its neighbors is,

E(Yi,t|Yi′ ,t′ : (i
′
, t
′
) ∈ Ni,t)

=
exp{

∑p
k=0 θkXk,i,t +

∑
j∈Ni

θp+1Y
∗
j,t + θp+2(Y

∗
i,t−1 + Y ∗i,t+1)}

1 + exp{
∑p

k=0 θkXk,i,t +
∑

j∈Ni
θp+1Y ∗j,t + θp+2(Y ∗i,t−1 + Y ∗i,t+1)}

Suppose both the spatial autoregressive coefficient θp+1 and the temporal autoregres-

sive coefficient θp+2 are positive. Compare the conditional expectation of the centered

model with the expectation of the independence model, as following,

E(Yi,t|Yi′ ,t′ : (i
′
, t
′
) ∈ Ni,t) > pi,t

when

θp+1

∑
j∈Ni

Yj,t + θp+2(Yi,t−1 + Yi,t+1) > θp+1

∑
j∈Ni

pj,t + θp+2(pi,t−1 + pi,t+1)

where
∑

j∈Ni
pj,t and pi,t−1 + pi,t+1 are the expected numbers of non-zero spatial and

temporal neighbors under the independence model (2.2), respectively.
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Specifically, if θp+2 = 0, under the situation that the observed number of non-zero

spatial neighbors is greater than the expected number of non-zero spatial neighbors

under independence, i.e.,
∑

j∈Ni
Yj,t >

∑
j∈Ni

pj,t, the conditional expectation of Yi,t

increases over pi,t , the expectation under independence. Similarly, if θp+1 = 0, then

the conditional expectation of Yi,t increases over pi,t only when the observed number

of non-zero temporal neighbors is greater than the expected number of non-zero tem-

poral neighbors under independence, i.e. Yi,t−1 + Yi,t+1 > pi,t−1 + pi,t+1.

By HammersleyClifford Theorem (Cressie 1993), the joint distribution of the spatial-

temporal process {Yi,t} specified by the conditional distributions (1) is well-defined,

the joint likelihood function of Y2, ..., YT−1 conditioned on Y1 and YT is defined as

following,

L(θ) = p(Y 2, ...,Y T−1|Y 1,Y T ;θ∗)

= c∗(θ)−1 exp{
T−1∑
t=2

[
n∑
i=1

p∑
k=0

θkXk,i,tY
∗
i,t +

1

2

n∑
i=1

∑
j∈Ni

θp+1Y
∗
i,tY

∗
j,t]

+
T∑
t=2

n∑
i=1

θp+1Y
∗
i,tY

∗
i,t−1}

= c∗(θ)−1 exp(θ
′
Z∗θ)

(2.3)

where,

Z∗θ = {(
T−1∑
t=2

n∑
i=1

Y ∗j,t,
T−1∑
t=2

n∑
i=1

X1,i,tY
∗
i,t, . . . ,

T−1∑
t=2

n∑
i=1

Xp,i,tY
∗
i,t,

T−1∑
t=2

∑
i=1

1

2

∑
j∈Ni

Y ∗i,tYj,t,
T∑
t=2

n∑
i=1

Y ∗i,tY
∗
i,t−1)}

′

Similar to the uncentered parameterization, where c∗θ is a normalizing constant with-

out a closed form.
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2.2 Parameter estimation and statistical inference

For statistical inference in the centered model, expectation-maximization pseudolike-

lihood (EMPL) and Monte Carlo expectation-maximization likelihood approaches

(MCEML)are proposed to estimate maximum pseudo-likelihood and MCMC maxi-

mum likelihood, respectively. Also, Bayesian inference is considered and studied. On

the other hand, because the model parameters θ is involved in the equations (2.1)

and (2.3) for the centered model, the parameter inference is computationally more

intensive than that for the model with uncentered parameterization. For the predic-

tion, a predictive distribution is defined similarly to Zheng and Zhu (2008).

2.2.1 Expectation-maximization pseudo-likelihood estimator

The pseudo-likelihood function is the product of the full conditional distributions

(2.1), and MPLE is the estimate of θ that maximizes the pseudo-likelihood function.

Guyon (1995) pointed out that MPLE are consistent and asymptotically normal under

suitable regularity conditions. However, MPLE may be statistically inefficient when

the spatial dependence and/or temporal dependence is strong (see, e.g., Gumpertz

et al. 1997; Wu and Huffer 1997; Zheng and Zhu 2008; Huges et al. 2011). EMPL

is proposed to obtain the MPLE for the centered model, which is a combination of

an expectation-maximization (EM) algorithm and a NewtonRaphson algorithm. The

EMPL algorithm proceeds as follows.

- Step 0: Start from a preselected θ0 and set θ̂
0

= θ0.

- E (expectation) step: Given θ̂
l−1

(1) Compute pl−1i,t , the expectation of Yi,t under the independent logistic regression

model.

(2) Compute Y
∗(l−1)
i,t = Yi,t − pl−1i,t , the centered responses for lth iteration.
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- M (Maximization) step: Obtain θ̂
l

by maximizing,

log{
∏
i,t

p(Yi,t|Yi′ ,t′ : (i
′
, t
′
) ∈ Ni,t; θ̂

l−1
)}

=
∑
i,t

log{
exp{

∑p
k=0 θkXk,i,tYi,t +

∑
j∈Ni

θp+1Yi,tY
∗(l−1)
j,t + θp+2Yi,t(Y

∗(l−1)
i,t−1 + Y

∗(l−1)
i,t+1 )}

1 + exp{
∑p

k=0 θkXk,i,t +
∑

j∈Ni
θp+1Y

∗(l−1)
j,t + θp+2(Y

∗(l−1)
i,t−1 + Y

∗(l−1)
i,t+1 )}

}

This step can be carried out by a Newton-Raphson algorithm using standard logistic

regression software function.

- Convergence criteria

Repeat step E and M until |θ̂
l
− θ̂

l−1
| < δ, then θ̂ = θ̂

l
.

where θ̂ is the EMPL estimate (EMPLE) of θ, and δ is a preselected precision

parameter.

The standard error of EMPLE can be computed using a parametric bootstrap.

That is, M Monte Carlo samples of spatial-temporal binary responses are gener-

ated from the likelihood function evaluated at the EMPLE using a Gibbs sampler

starting at a perfect simulation sample (PGS). Then, the EMPLE of each sample

θ̃
m
,m = 1, ...,M can be computed. These resampled EMPLEs consist of the boot-

strap sample θ̃ = {θ̃1, ..., θ̃M} and are used to approximate the standard error of

the EMPLE based on the original data. Also, the approximate confidence interval of

EMPLE based on the original data can be obtained from the quantiles of the boot-

strap sample θ̃. For PGS, PS is used to generate the first Monte Carlo sample and

guarantee that it is from the target monotone centered spatial-temporal autologistic

regression model exactly (e.g., Propp and Wilson 1996; Møller 1999). By starting a

Gibbs sampler at a perfect simulation sample, the chain starts at the equilibrium and

then the subsequent samples are also from the target distribution exactly (Zheng and

Zhu 2008).

For the starting value θ0 at step 0, maximum pseudo-likelihood estimate from the
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traditional spatial-temporal autologistic regression model would be a natural choice.

Different starting points would affect the time of convergence, data inherent struc-

ture, and data size. The computing time rapidly increases as the distance between

the staring point and true value increases. For the initial value θ0 at step 0, the esti-

mate of the model parameter under the independent logistic regression model would

be a good choice.

2.2.2 Monte Carlo expectation-maximization likelihood estimator

Let ψ = (ψ0, ..., ψp+2)
′ be a reference parameter for the centered model, and Z∗ψ is

Z∗ with centers evaluated at ψ. The rescaled version of the likelihood function is as

following,

c∗(ψ)L(θ) =
c∗(ψ)

c∗(θ)
exp(θ

′
Z∗θ) = exp(θ

′
Z∗θ){Eψ[

exp(θ
′
Z∗θ)

exp(θ
′
Z∗ψ)

]}−1 (2.4)

By generating M Monte Carlo samples of Y from the likelihood function evaluated

at ψ, we have,

Eψ[
exp(θ

′
Z∗θ)

exp(θ
′
Z∗θ)

] ≈M−1
M∑
m=1

exp(θ
′
Z
∗(m)
θ −ψ′Z∗(m)

ψ ) (2.5)

By (2.4) and (2.5), an MCMC approximate of the rescaled version of likelihood is as

following,

c∗(ψ)L(θ) ≈ exp(θ
′
Z∗θ)[M

−1
M∑
m=1

exp(θ
′
Z
∗(m)
θ −ψ′Z∗(m)

ψ )]−1 (2.6)

Based on (2.6), MCEML estimator by combining an EM algorithm and a Newton-

Raphson algorithm is developed as following.

- Step 0: Start from a preselected θ0 and set θ̂
0

= θ0.

(1) Choose a reference parameter vector ψ, and generate M Monte Carlo samples of

Y from the likelihood function evaluated at ψ.

(2) Compute pi,t,ψ, the expectation of Yi,t under the independent logistic regression
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model evaluated at ψ.

(3) Compute Y ∗i,t,m = Yi,t,m−pi,t,ψ,m = 1, ...,M , the centered responses for M Monte

Carlo samples evaluated at ψ.

- E (expectation) step: Given θ̂
l−1

(1) Compute pl−1i,t , the expectation of Yi,t under the independent logistic regression

model.

(2) Compute Y
∗(l−1)
i,t = Yi,t − pl−1i,t , the centered responses for lth iteration.

(3) Compute Y
∗(l−1)
i,t,m = Yi,t,m − pl−1i,t , the centered responses for M Monte Carlo sam-

ples (generated at step 0) at lth iteration.

- M (Maximization) step: Obtain θ̂
l

by maximizing the following function,

exp(θ
′
Z∗
θ̂l−1)[M−1

M∑
m=1

exp(θ
′
Z
∗(m)

θ̂l−1 −ψ
′
Z
∗(m)
ψ )]−1

Where Z∗
θ̂l−1 is Z∗ with centered responses Y

∗(l−1)
i,t , and Z

∗(m)

θ̂l−1 and Z
∗(m)
ψ are Z∗

evaluated at the mth Monte Carlo sample of Y (generated at step 0) with centered

responses Y
∗(l−1)
i,t,m and Y ∗i,t,m, respectively.

This step can be carried out using a Newton-Raphson algorithm.

- Convergence criteria

Repeat step E and M until
∣∣∣θ̂l − θ̂l−1∣∣∣ < δ, then θ̂ = θ̂

l
.

where θ̂ is the MCEML estimate (MCEMLE) of θ, and δ is a preselected precision

parameter.

The Fisher information matrix of the original data is approximated as the by prod-

uct of the MCEML estimation, the standard error of MCEMLE is obtained from the

diagonal of the matrix.

The MCEMLE provides a good approximation to the maximum likelihood estimate

(MLE) of model parameters when the reference parameter ψ is close to the true value
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(Geyer and Thompson 1992). The EMPLE is a natural choice for the reference pa-

rameter. However, when the spatial/temporal dependence is strong, EMPLE can be

far away from the true value. Under this situation, EMPLE is not a proper reference

parameter, the iteration leads to a sequence of estimates that drift off to infinity.

Alterative reference parameter can be an approximation obtained by a stochastic ap-

proximation algorithm (see, e.g., Gu and Zhu 2001; Zheng and Zhu 2008). For the

initial value θ0 at step 0, EMPLE would be a good choice.

2.2.3 Bayesian inference

For Bayesian inference, Monte Carlo samples of θ are generated from the posterior dis-

tribution p(θ|Y ) using MetropolisHastings (MH) algorithm. The metropolis-Hastings

random walk acceptance probability is computed as,

α(θ∗|θ) = min{π(θ∗)p(Y 2, ...,Y T−1|Y 1,Y T ;θ∗)q(θ|θ∗

π(θ)p(Y 2, ...,Y T−1|Y 1,Y T ;θ)q(θ∗|θ
, 1}

where π(θ) denotes a prior distribution for θ and q(θ|θ∗) denotes a proposal distribu-

tion , which is set to be a normal distribution with mean θ and and diagonal variance

matrix Σ = diag{σ2
0, σ

2
1, ..., σ

2
p, σ

2
p+1, σ

2
p+2} in the analysis. With a preselected refer-

ence parameter ψ, M Monte Carlo samples of Y are generated from the likelihood

function evaluated at ψ. Then the likelihood ratio in α(θ∗|θ) can be approximated

as,

p(Y 2, ...,Y T−1|Y 1,Y T ;θ∗)

p(Y 2, ...,Y T−1|Y 1,Y T ;θ)
=

exp(θ∗
′
Z∗θ∗)

exp(θ
′
Z∗θ)

×
c∗(θ)
c∗(ψ)

c∗(θ∗)
c∗(ψ)

≈ exp(θ∗
′

Z∗θ∗)

exp(θ∗
′
Z∗θ)

×
∑M

m=1 exp(θ
′
Z
∗(m)
θ −ψ′Z∗(m)

ψ )∑M
m=1 exp(θ∗

′
Z
∗(m)
θ∗ −ψ

′
Z
∗(m)
ψ )

where Z
∗(m)
θ , Z

∗(m)
θ∗ and Z

∗(m)
ψ are Z∗ evaluated at the mth Monte Carlo sample of

Y with centers computed based on θ, θ∗ and ψ, respectively.
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2.2.4 Prediction

Let Ỹ = (Y T+1, ...,Y T+T ∗
′) denote the responses at future time points Y T+1, ...,Y T+T ∗

with T ∗ ≥ 1. For prediction of Ỹ based on model parameter inference from EMPL

and MCEML, we use Gibbs samplers to obtain Monte Carlo samples of Ỹ from,

p(Ỹ |Y T ,Y T+T ∗+1;θ)

∝ exp{
T+T ∗∑
t=T+1

(
n∑
i=1

p∑
k=0

θkXk,i,tY
∗
i,t +

1

2

n∑
i=1

∑
j∈Ni

θp+1Y
∗
i,tY

∗
j,t) +

T+T ∗∑
t=T+1

n∑
i=1

θp+2Y
∗
i,tY

∗
i,t−1}

That is, generate Yi,t from the full conditional distribution (2.1) evaluated at the

EMPLE or the MCEMLE for i = 1, ..., n and t = T + 1, ..., T + T ∗. For prediction

of Ỹ under the Bayesian framework, the posterior predictive distribution of Ỹ is as

following,

p(Ỹ |Y T ,Y T+T ∗+1) =

∫
p(Ỹ |Y T ,Y T+T ∗+1;θ)p(θ|Y )dθ (2.7)

To draw Monte Carlo samples Ỹ from (2.7), first draw θ from its posterior distribu-

tion p(θ|Y ), then draw Ỹ from p(Ỹ |Y T ,Y T+T ∗+1;θ) for each given θ using a Gibbs

sampler (Zheng and Zhu 2008).

2.3 Simulation Studies

In this section, a simulation study is conducted to evaluate the performance of sta-

tistical inference approaches for the centered spatial-temporal autologistic regression

model.

2.3.1 Data simulation and model specification

In the simulation, the size of the sampling grid r×r is varied by letting r = 5, 10, or 20.

The number of sampling time points T is varied by letting T = 7, 12, or 22, which
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includes boundary time points. One covariate is considered in the model with Xi,t ∼

N(3, 1). For spatial dependence, only the first order neighbors are considered. Thus

the centered model is defined via the following full conditional distribution,

p(Yi,t|Yi′ ,t′ : (i
′
, t
′
) ∈ Ni,t)

=
exp{θ0Yi,t + θ1Xi,tYi,t +

∑
j∈Ni

θ2Yi,tY
∗
j,t + θ3Yi,t(Y

∗
i,t−1 + Y ∗i,t+1)}

1 + exp{
∑p

k=0 θkXi,t +
∑

j∈Ni
θ2Y ∗j,t + θ3(Y ∗i,t−1 + Y ∗i,t+1)}

(2.8)

where

Y ∗i,t = Yi,t − pi,t

Y ∗i,t is the centered response, Ni denotes the first order neighborhood for the ith site,

θ0 is an intercept, θ1 is a slope for the covariate, θ2 and θ3 are spatial and temporal

autoregressive coefficients, respectively. And pi,t is the expectation of Yi,j under the

independent logistic regression model,

pi,t =
exp{θ0 + θ1Xi,t}

1 + exp{θ0 + θ1Xi,t}
(2.9)

Let θ = (θ0, θ1, θ2, θ3)
′ denote the vector of all the model parameters. The corre-

sponding joint distribution is,

L(θ) = p(Y 2, ...,Y T−1|Y 1,Y T ;θ∗)

= c∗(θ)−1 exp{
T−1∑
t=2

[
n∑
i=1

θ0Y
∗
i,t +

n∑
i=1

θ1Xi,tY
∗
i,t +

1

2

n∑
i=1

∑
j∈Ni

θ2Y
∗
i,tY

∗
j,t]

+
T∑
t=2

n∑
i=1

θ3Y
∗
i,tY

∗
i,t−1}

The spatial and temporal autoregressive coefficients are generally positive in real

cases. When spatial and temporal autoregression coefficients exceed some critical

values, MCEMLE would fail to exist because almost all values of data are same. Ac-

cording to Huffer and Wu (1998), the critical values may vary with different values of

the coefficients of the covariates. In our simulation study, we consider θ2 and θ3 to be

from 0 to 1, for which MCEMLE exists for all samples using the proposed method. In
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applications, the spatial and temporal autoregressive coefficients are generally pos-

itive. We fix the intercept to be θ0 = 1 and the slop to be θ1 = −0.5, but vary

θ2 and θ3 to be 0.1, 0.5 and 0.9 to reflect different degrees of spatial and temporal

dependence. For each combination of θ, r, and T , a perfect simulation sample is

generated from the centered spatial-temporal autologistic regression model.

2.3.2 Centered parameterization versus uncentered parameterization

The first study is designed to identify the difficulties of uncentered parameterization

in interpreting model parameters across varying levels of spatial and/or temporal de-

pendence, and to demonstrate that centered parameterization can provide meaningful

interpretation.

For each combination of θ, M = 1, 000 data sets are generated from both the cen-

tered and traditional model using Gibbs sampler. Then, the expectation of Yi,t can

be approximated to the marginal data means of corresponding simulated data set.

For a simulated data set indexed by m and denoted by Y m = {Yi,t,m : i = 1, ..., n; t =

1, ..., T}, the marginal data mean is defined as,

DE{Y m} =
1

n

∑
i,t

Yi,t,m

The expectation of Y i,j under the independent logistic regression model is computed

from (2.8). Figure 2.1 displays a comparison of the expectation of Y i,j among the

centered, traditional and independent models across different spatial-temporal depen-

dence. As expected, with small spatial-temporal dependence (θ2 = θ3 = 0.1), there

is a very high agreement between them, and there is only a tiny difference between

centered and traditional model. Moreover, as spatial parameter θ2 and/or temporal

parameter θ3 increases, the marginal mean values for the centered model remain sim-

ilar to the expectation value of independent model, however, the marginal means of
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traditional model increases the realizations towards 1.

Figure 2.1: Comparison of the expectation of Yi,t among centered, traditional and
independent models for all combinations of θ.

Let Y s denote M Monte Carlo simulated data sets. The Monte Carlo estimate of the

expected average marginal data structure is defined as,

EM{Y s} =
1

M

M∑
m=1

DE{Y m}

95% confidence Monte Carlo confidence intervals are computed from the quantiles.

Figure 2.2 presents a comparison of the Monte Carlo expectation between centered

and traditional model. It points out that the parameters of traditional model in-

creases dramatically as the strength of the spatial-temporal dependence increases,
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while the parameters of the centered model give a reasonable interpretation across

varies levels of dependence. It can be seen from Figure 2.2, when both spatial and

temporal dependence are strong, the performance of the centered model decreases,

the main reason is that EMPL is statistically inefficient in this case (EMPL is used

to compute the center in generating Monto Carlo samples).
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Figure 2.2:

Comparison of Monte Carlo means among centered, traditional and independent mod-
els for all combinations of θ
The points from left to right are presenting cases with spatial and temporal coef-
ficients (θ2,θ3) = (0.1, 0.1), (0.1, 0.5), (0.1, 0.9), (0.5, 0.1), (0.5, 0.5), (0.5, 0.9),
(0.9, 0.1), (0.9, 0.5), (0.9, 0.9), respectively. Points with red, and blue color are
representing Monte Carlo means and corresponding 95% confidence intervals for the
centered models, points with red, and teal color are representing them for the tradi-
tional means, and point with black color are representing the expectation of Yi,t of
under independent model.
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2.3.3 Statistical efficiency and performance comparison

EMPLE

For each simulated data set, let the initial value θ0 be the estimate under the inde-

pendent logistic regression model, the EMPLEs are computed following the EMPL

algorithm, and the standard error of each EMPLE is computed from its corre-

sponding 100 resampled EMPLEs. Figures 2.3, 2.4, 2.5 and 2.6 show the EM-

PLEs and their 95% confidence intervals for all the simulated data sets. The re-

sults show that both the size of sampling lattices and the number of sampling

time points have a significant effect on the performance of EMPLEs. First, as

grid size increases, the general performance of EMPLEs improves with decreasing

estimation error in terms of both bias and standard errors. For example, when

r = 5, T = 7 and the spatial and temporal dependence are relatively weak θ2 =

θ3 = 0.1, the EMPLEs of θ are (0.432, 0.367, 0.221, 0.601) with standard errors

(0.696, 0.236, 0.364, 0.449). Fix T = 7 and let the size of lattice increase to r =

20 , the EMPLEs are (0.813, 0.455, 0.149, 0.181) with standard errors reduced to

(0.155, 0.049, 0.067, 0.093). Second, as the number of sampling time points increases,

the performance of EMPLEs also gets better with decreasing estimation errors. For

instance, fix r = 5 and let the number of sampling time points increase to T = 22, the

EMPLEs of model parameters are (0.904, 0.472, 0.228, 0.055) with smaller standard

errors (0.297, 0.095, 0.147, 0.196). For the other cases with different spatial and/or

temporal autoregressive coefficients, similarly, as grid size and the number of time

points increase, the performance of EMPLEs improves with decreasing estimation er-

rors. On the other hand, when both spatial and temporal autoregressive coefficients

are large, the realization of data tends to same values so that the EMPLE of the

intercept is not accurate.
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EMPLE and Bayesian

The MCEMLEs are also computed for each simulated data set. Figures 2.7, 2.8, 2.9

and 2.10 give the MCEMLEs and the corresponding 95% confidence intervals for all

simulated data sets. Here the size of Monte Carlo samples generated at Step 0 in

the algorithm is 100 using PGS. MCEMLEs are more accurate than EMPLEs with

smaller standard errors. Even when both spatial and temporal autoregressive coeffi-

cients are large, MCEMLEs are good estimators for all model parameters since they

have small bias and standard errors. The results of the Bayesian approach agree well

with MCEMLEs, which are not shown here.

Critical values of converge

Huffer and Wu (1998) pointed out that the critical values may vary with different val-

ues of the coefficients of the covariates. In this simulation study, with fixed intercept

θ0 and coefficient of covariate θ1, for a 20 sampling grid with the number of sampling

time points T = 22, we check the range of the spatial autoregressive coefficient θ2 and

the temporal autoregressive coefficient θ3 for which MCEMLE exists for the samples

using the proposed method. The results show when θ2 exceeds 1 and θ3 exceeds 1.2,

MCEMLE would fail to exist. Furthermore, the ranges of θ2 and θ3 where EMPLE

serves as a good reference point for the MCEML has been studied, and the results

are given in Table 2.1.

Computation demand

In Table 2, it shows the time that it takes to compute the statistical inference results

for EMPL, MCEML, and Bayesian inference approach for partial combinations of θ,

r, and T . For Bayesian inference, a total of 1,000 Monte Carlo samples are generated

with the first 1,000 samples discarded for burn-in. The computing time is based on R
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Figure 2.3: EMPLE of the intercept θ0 in the simulation study.
In each subplot, the points from left to right are presenting cases with spatial and
temporal coefficients (θ2,θ3) = (0.1, 0.1), (0.1, 0.5), (0.1, 0.9), (0.5, 0.1), (0.5, 0.5),
(0.5, 0.9), (0.9, 0.1), (0.9, 0.5), (0.9, 0.9), respectively. Points with black, green,
and red color are representing true values, estimates, and 95% confidence intervals,
respectively. The title of each subplot indicates the size of the spatial lattice and the
number of sampling time points r × r × (T - 2).

and C programs written by the authors and run on an AMD Phenom II X personal

computer. The results show that the computing time for EMPL and MCEML are

comparable. For EMPL, the parameter estimation part is fast and most of the com-

puting time is spent on computing the standard errors. For MCEML, although the

standard errors based on Fishers information are quickly computed, the parameter

estimation part is more time-consuming than EMPL since we need to generate Monte

Carlo samples from the reference point and at the E step we need to update centered
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Figure 2.4: EMPLE of the coefficient of the covariate θ1 in the simulation study.
In each subplot, the points from left to right are presenting cases with spatial and
temporal coefficients (θ2,θ3) = (0.1, 0.1), (0.1, 0.5), (0.1, 0.9), (0.5, 0.1), (0.5, 0.5),
(0.5, 0.9), (0.9, 0.1), (0.9, 0.5), (0.9, 0.9), respectively. Points with black, green,
and red color are representing true values, estimates, and 95% confidence intervals,
respectively. The title of each subplot indicates the size of the spatial lattice and the
number of sampling time points r × r × (T 2).

responses for each Monte Carlo sample. Bayesian approach is the most computa-

tionally intensive, which is not recommended for the centered parameterization. It is

interesting to note that additional computing time is spent for EMPL and MCEML

as spatial and temporal autoregression coefficients get larger. The reason is that it

takes more time for the coupled chains to achieve coalescence in perfect simulation.
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Figure 2.5: EMPLE of the spatial correlation coefficient θ2 in the simulation study.
In each subplot, the points from left to right are presenting cases with spatial and
temporal coefficients (θ2,θ3) = (0.1, 0.1), (0.1, 0.5), (0.1, 0.9), (0.5, 0.1), (0.5, 0.5),
(0.5, 0.9), (0.9, 0.1), (0.9, 0.5), (0.9, 0.9), respectively. Points with black, green,
and red color are representing true values, estimates, and 95% confidence intervals,
respectively. The title of each subplot indicates the size of the spatial lattice and the
number of sampling time points r × r × (T 2).

2.4 Application to the southern pine beetle data

The southern pine beetle is the most destructive insect to pines in the southern

United States, it will attack all Southern Yellow Pines, especially loblolly, shortleaf,

and pitch pines. The southern pine beetle (SPB) data consist of SPB outbreak (0 =

no outbreak; 1 = outbreak) in the 100 counties of North Carolina from 1960 to 1996.

Figure 2.11 is a time-series map of the outbreak. To make comparison with results

in Zheng and Zhu (2008), the average precipitation in the fall (in cm) is considered
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Figure 2.6: EMPLE of the temporal correlation coefficient θ3 in the simulation study.
In each subplot, the points from left to right are presenting cases with spatial and
temporal coefficients (θ2,θ3) = (0.1, 0.1), (0.1, 0.5), (0.1, 0.9), (0.5, 0.1), (0.5, 0.5),
(0.5, 0.9), (0.9, 0.1), (0.9, 0.5), (0.9, 0.9), respectively. Points with black, green,
and red color are representing true values, estimates, and 95% confidence intervals,
respectively. The title of each subplot indicates the size of the spatial lattice and the
number of sampling time points r × r × (T 2).

as the only covariate in the model (Fig. 2.12). Data from 1960 to 1991 are used for

model parameter inference, and data from 1992 to 1996 for model validation. Two

counties were considered to be neighbors if the corresponding county seats are within

30 miles of each other. The likelihood function of the centered model is same as that

in the simulation study as given in (2.8).
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Figure 2.7: MCEML of the intercept θ0 in the simulation study.
In each subplot, the points from left to right are presenting cases with spatial and
temporal coefficients (θ2,θ3) = (0.1, 0.1), (0.1, 0.5), (0.1, 0.9), (0.5, 0.1), (0.5, 0.5),
(0.5, 0.9), (0.9, 0.1), (0.9, 0.5), (0.9, 0.9), respectively. Points with black, green,
and red color are representing true values, estimates, and 95% confidence intervals,
respectively. The title of each subplot indicates the size of the spatial lattice and the
number of sampling time points r × r × (T 2).

Table 2.3 gives the model parameter inference using EMPL, MCEML, and the Bayesian

hierarchical model. For EM pseudo-likelihood, the EMPLEs and their standard errors

obtained by parametric bootstrap are reported. For each EMPLE, 1,000 resampled

EMPLEs are used to compute the standard error. For MCEM likelihood, the refer-

ence parameter is from the MCMC stochastic approximation algorithm, and both the

MCEMLEs and their standard errors obtained from the empirical Fisher information

are reported. Furthermore, for the Bayesian inference, set the prior distribution to
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Figure 2.8: MCEML of the coefficient of the covariate θ1 in the simulation study.
In each subplot, the points from left to right are presenting cases with spatial and
temporal coefficients (θ2,θ3) = (0.1, 0.1), (0.1, 0.5), (0.1, 0.9), (0.5, 0.1), (0.5, 0.5),
(0.5, 0.9), (0.9, 0.1), (0.9, 0.5), (0.9, 0.9), respectively. Points with black, green,
and red color are representing true values, estimates, and 95% confidence intervals,
respectively. The title of each subplot indicates the size of the spatial lattice and the
number of sampling time points r × r × (T 2).

be uniform on (10, 10) for all model parameters and variance components in the

proposal distribution to be σ2
0 = σ2

1 = σ2
2 = σ2

3 = 0.0122. A total of 200,000 Monte

Carlo samples are generated with the first 1,000 samples discarded for burn-in and

the means with the standard deviation of the posterior samples of the model param-

eters are reported.

The results suggest that the inference for the model parameters under centered pa-
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Figure 2.9: MCEML of the spatial correlation coefficient θ2 in the simulation study.
In each subplot, the points from left to right are presenting cases with spatial and
temporal coefficients (θ2,θ3) = (0.1, 0.1), (0.1, 0.5), (0.1, 0.9), (0.5, 0.1), (0.5, 0.5),
(0.5, 0.9), (0.9, 0.1), (0.9, 0.5), (0.9, 0.9), respectively. Points with black, green,
and red color are representing true values, estimates, and 95% confidence intervals,
respectively. The title of each subplot indicates the size of the spatial lattice and the
number of sampling time points r × r × (T 2).

rameterization using the posterior distribution matches well with MCEML, but the in-

ference from EM pseudo-likelihood is very different from both Bayesian inference and

MCEM likelihood. Also, estimation based on EM pseudo-likelihood results in higher

variance than Bayesian inference and MCEM likelihood. MCEML and Bayesian in-

ference show that there is a negative relation between SPB outbreaks and the mean

precipitation in the fall, while EMPL gives an opposite result. All the three ap-

proaches suggest that there is significant evidence of positive spatial and temporal
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Figure 2.10: MCEML of the temporal correlation coefficient θ3 in the simulation
study.
In each subplot, the points from left to right are presenting cases with spatial and
temporal coefficients (θ2,θ3) = (0.1, 0.1), (0.1, 0.5), (0.1, 0.9), (0.5, 0.1), (0.5, 0.5),
(0.5, 0.9), (0.9, 0.1), (0.9, 0.5), (0.9, 0.9), respectively. Points with black, green,
and red color are representing true values, estimates, and 95% confidence intervals,
respectively. The title of each subplot indicates the size of the spatial lattice and the
number of sampling time points r × r × (T - 2).

dependence for SPB outbreak. Furthermore, for comparison, the results from the

uncentered spatial-temporal autologistic regression model (Zheng and Zhu 2008) are

presented in Table 2.4. The parameter estimates and the corresponding standard

errors for the centered model are very close to those for the uncentered model using

all three inference approaches. The possible reason for this is that the influence of the

center is very small for this example. The average of the centers pi,t evaluated at the

MCEMLE is only 0.05 and the spatial and temporal autoregressive terms dominate

45



Table 2.1: Largest values for the spatial autoregressive coefficient θ2 and the temporal
autoregressive coefficient θ3 for which MCEMLE exists when using the EMPLE as
the reference point

Lattice r × r Time points T − 2 Spatial θ2 Temporal θ3
20*20 20 0.1 1.9

20*20 20 0.2 1.8

20*20 20 0.3 1.6

20*20 20 0.4 1.4

20*20 20 0.5 1.2

20*20 20 0.6 1

20*20 20 0.7 0.8

20*20 20 0.8 0.7

20*20 20 0.9 0.5

20*20 20 1 0.3

Table 2.2: Comparison of model parameter estimation for the centered spatial-
temporal autologistic model using expectation-maximization pseudo-likelihood
(EMPL), Monte Carlo expectation-maximization likelihood (MCEML), and Bayesian
inference. (Unit in second)

Lattice r × r Time T − 2 Spatial θ2 Temporal θ3 EMPL MCEML Bayesian
5*5 5 0.1 0.1 4.67 3.67 626

5*5 5 0.9 0.9 34.42 29.42 654

5*5 10 0.1 0.1 6.22 4.23 778

5*5 10 0.9 0.9 48.76 39.26 765

10*10 5 0.1 0.1 9.46 8.48 1057

10*10 5 0.9 0.9 82.25 66.94 1074

Table 2.3: Comparison of model parameter estimation for the centered spatial-
temporal autologistic model using expectation-maximization pseudolikelihood
(EMPL), Monte Carlo expectation-maximization likelihood (MCEML), and Bayesian
inference

Parameters EMPL Bayesian MCEML
Estimate SE Estimate SE Estimate SE

Intercept -4.9648 0.3199 -2.8577 0.2911 -2.4043 0.1554
Slope 0.2131 0.0796 -0.1345 0.0753 -0.1298 0.0505

Spatial 1.4706 0.1307 0.9504 0.0579 0.9534 0.0483
Temporal 1.7502 0.1774 0.8918 0.1024 0.8903 0.0728

the model, which makes the difference between the centered and uncentered param-

eterization not evident.
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Figure 2.11: Map of southern pine beetle outbreaks from 1960 to 1996 in North
Carolina. (For each county, black color implies an outbreak)

Table 2.4: Comparison of model parameter estimation for the uncentered spatial-
temporal autologistic model using maximum pseudolikelihood (MPL), Monte Carlo
maximum likelihood (MCML), and Bayesian inference (Zheng and Zhu 2008)

Parameters MPL Bayesian ML
Estimate SE Estimate SE Estimate SE

Intercept -5.1600 0.6606 -2.7075 0.2074 -2.7079 0.2033
Slope 0.2459 -0.1760 -0.1433 0.0546 -0.1433 0.0524

Spatial 1.4503 0.1379 0.9075 0.0583 0.9114 0.0537
Temporal 1.7135 0.2372 1.0257 0.1282 1.0198 0.1174

For prediction and model validation, the SPB outbreak from Year 1992 to 2001 is

predicted. The responses at the ending time point, i.e. Yi,2002
′
s, are generated from

independent Bernoulli trials with probability of outbreak
∑1991

t=1960
Yi,t
31
, i = 1, ..., 100.

For model parameter inference based on EMPL and MCEML, Gibbs samplers are

used to generate 1,000,000 Monte Carlo samples starting at a perfect simulated sam-

ple. Then every 50th of the 1,000,000 samples are used to form an approximately

independent Monte Carlo sample of size 20,000. For model parameter inference based
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Figure 2.12: Map of mean fall precipitation in North Carolina

on the Bayesian hierarchical model, every 10th of the 200,000 Monte Carlo samples

of the model parameters is taken to form an approximately independent Monte Carlo

sample of size 20,000. Then a Gibbs sampler with burn-in is used to generate a

prediction for each θ. Under each type of inference, the mean of the predicted val-

ues is used to predict whether that county has an outbreak for that year. For each

year between 1992 and 1996 where the data are available, a prediction error rate is

computed as the proportion of counties that are with outbreaks predicted differently

from the actual observation. The corresponding prediction error rates are reported

in Table 2.5. Again, the prediction results are close for the Bayesian approach and

MCEML, but the prediction is very poor using EMPL.

The prediction performance based on the centered spatial-temporal autologistic re-

gression model and traditional model are comparable (see Table 2.5). Since the statis-

tical inference based on the centered parameterization is much more computationally
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Table 2.5: Comparison of the prediction performance between the centered model
and the uncentered model

Year Centered Model Traditional Model
EMPL Bayesian MCEML MPL Bayesian MCML

1992 0.65 0.14 0.18 0.66 0.09 0.09
1993 0.72 0.12 0.19 0.65 0.13 0.13
1994 0.70 0.14 0.20 0.74 0.08 0.16
1995 0.63 0.13 0.23 0.68 0.14 0.13
1996 0.62 0.09 0.24 0.61 0.16 0.17

intensive, it appears that one can simply use the uncentered model if prediction is

of primary interest, although further investigation will be needed. If the focus is on

the interpretation of the model parameters, the centered parameterization would be

recommended.

Copyright c© Zilong Wang, 2012.
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Chapter 3 Imputation Methods for Spatial-Temporal Data

Missing data, i.e. incomplete data matrices, are important problems that are repeat-

edly encountered in spatial-temporal studies. Generally, the spatial-temporal study

is required to use complete data matrices, otherwise it could significantly distort

statistical conclusions (Kim et al 2004). There are a large number of imputation

techniques available, but most are invalid based on the efficiency and accuracy of

imputation. The main reason is that the missing data in spatial-temporal study

is related to location and time information. The main contribution of this chap-

ter is algorithm development for iteration-KNN and maximum entropy imputation

on spatial-temporal data. It should be pointed out that these two new imputation

methods are not limited to spatial-temporal data, they can be applied to any missing

data under the MAR assumption.

3.1 Imputation methods

In this section, the general schemes of iteration-KNN and maximum entropy impu-

tation methods are sketched, as well as those of KNN and EM imputation methods.

Let Y denote a data matrix for response variable. With i = 1, ..., n, let yi denote

the ith response observation. Let Ri be the missing data indicator, then Ri = 1 if

yi is observed, otherwise Ri = 0. Let Y m denote all missing data and Y o denote all

observed data, then the full data is Y = (Y o,Y m).
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3.1.1 KNN imputation

k-nearest neighbor (kNN) imputation is one of the most important and fastest im-

putation methods in incomplete data discovery, which has been developed with great

success on industrial data. There are two R packages, “Imputation” and “YaImpute”,

which can carry out in KNN imputation. KNN imputation is developed from hot-dect

imputation under using K nearest neighbor observations (Meesad and Hengpraprohm

2008). Hot-dect imputation is that the imputed values should be achieved from the

same data set where the missing values are from. Same as hot-deck imputation, KNN

imputation is preferred in the situation that it preserves the distribution of item val-

ues and thus can mostly keep the data properties as if they are not missing (Rao and

Shao, 1992).

In order to estimate a missing value yi, first, K references of non-missing values

whose contribution values are most similar to yi are selected from the whole data set.

Next, the imputed value of yi,j is estimated as the average value of them,

ỹi =
1

K

∑
j∈Ni

(yj) (3.1)

where Ni is the index set of non-missing K-nearest neighbor observations for ith miss-

ing response observation yi. On the other hand, it should be pointed out that there

is no theoretical criteria for selecting the best K-value. Generally the K-value is de-

termined by the experience of researchers from similar studies. For spatial-temporal

data, K values can be determined by the spatial and temporal neighborhood struc-

tures.
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3.1.2 EM imputation

EM imputation is a kind of regression-based imputation method, which is a general

framework for solving maximum likelihood/pseudo-likelihood problems when an ob-

servable model is derived from an underlying latent model. Based on the study of

Dempster, Laird, and Rubin (1977), EM imputation algorithm only requires a weaker

MAR assumption. This imputation method is based on estimated regression models

between missing data and observed data with combining EM algorithm. The impu-

tation procedure consists of iterations of EM algorithm where the expectation values

and covariance matrices of the incomplete data are estimated (Bolotin 2001). The

algorithm of EM imputation includes the following steps:

- Step 0: Start from a preselected θ0 and set θ̂
0

= θ0.

- E (expectation) step: Given θ̂
l−1

Replace missing values with estimated values Ỹ
m(l)

.

Where estimated values Ỹ
m(l)

are based on the expectations of the missing data,

which is conditional on the current stage parameter θ̂
l−1

and the observed data Y o.

- M (Maximization) step: Given Ỹ
m(l)

Obtain θ̂
l
by maximizing the likelihood/pseudo-likelihood function L(θ|{Y o, Ỹ

m(l)}).

- Convergence criteria

Repeat step E and M until L(θl;Y o) < L(θl−1;Y o), then Ỹ
m

= Ỹ
m(l−1)

.

Where a preselected θ0 can be obtained by maximizing the likelihood/pseudo-likelihood

function L(θ|{Y o, Ỹ
m(0)}) , Ỹ

m(0)
are imputed values of missing data using KNN

imputation or mean substitution.

Same as EM, the EM imputation algorithm converges monotonically in that the

likelihood/pseudolikelihood of the available data increases monotonically from itera-

tion to iteration. However, EM imputation algorithm converges only linearly, and the

rate of convergence depends on the fraction of values that are missing in the data set,
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and so it may need many iterations to converge, i.e. EM iteration is time intensive

requiring more computation. For spatial-temporal missing, EM is a good choice if

both the size of data is relatively small and the spatial-temporal model is relatively

simple.

3.1.3 Iteration-KNN imputation

When the missing rate is in high level or the non-missing data are biased and can

not keep the properties of whole data set, the performance of KNN is very poor and

it should lead to a serious bias during the inference. In this situation, iteration-KNN

imputation is developed based on KNN, which can improve accuracy but still keep

same level of computational demand compared to KNN (Caruana 2008).

Iteration-KNN is an EM style non-parametric imputing method, which uses an iter-

ative KNN for imputing missing values. The algorithm is similar to EM with using

KNN instead of parametric regression models. However, iteration-KNN combines E

and M steps into a single step because it updates the fill-in imputed values and the

model at the same time. It first estimates missing values from observed data by

KNN imputation and cuts the data into q unjoint subsets, then piecewise improves

accuracy of fill-in values through recursive process for all subsets. Compared to EM

imputation, iteration-KNN imputation is more efficient with acceptable accuracy.

Furthermore, the performance of iteration-KNN is better when regression models are

unknown or cannot fit the data well. The algorithm of iteration-KNN imputation is

developed for missing data as following.

- Step 1:

(1) Impute and fill in all missing values Ỹ
m(0)

by KNN imputation.

(2) Divide whole data set to q unjoint subsets {U1, ..., Uq},
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{y1, ..., yjU1
} ∈ U1

{yjU1
+1, ..., yjU2

} ∈ U2

...

{yjUq−1
+1, ..., yjUq

} ∈ U3

such that for each missing data yi ∈ Uc, its K nearest neighbors can be found in the

joint set {Uc−1 ∪ Uc ∪ Uc+1}, where q ∈ Z and q > 3.

- step 2:

(1) Impute and fill in missing values for subset U1 by KNN imputation, treating the

other subset {U2, ..., Uq} non-missing.

(2) Impute and fill in missing values for subset U2 by KNN imputation, treating the

other subset {U1, U3, ..., Uq} non-missing.

...

(q) Impute and fill in missing values for subset Uq by KNN imputation, treating the

other subset {U1, U3, ..., Uq−1} non-missing.

In the end of first iteration, all fill-in imputed values Ỹ
m(1)

are obtained.

- Convergence criteria

Repeat step 2 until sup{|Ỹ m(l)−Ỹ m(1−1)|} < δ in lth iteration, then Ỹ
m

= Ỹ
m(l−1)

.

Where δ is a preselected precision parameter for checking convergence.

Unlike EM imputation, iteration-KNN imputation has a fast rate of convergence,

usually the iteration number is less than 10 if the number of subsets q is not too

large. It should be pointed out that no theoretical criteria for selecting the best q

number, which is determined by the size and the inherent structure of the data. For

spatial-temporal data, the number of time points is a nature choice to determine a

reasonable q number.
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3.1.4 Maximum entropy imputation

The principle of maximum entropy was introduced by Bishop and Ulrych (1975) and

Guiasu and Shenitzer (1985). In statistics, a maximum entropy probability distribu-

tion is a probability distribution whose entropy is at least as great as that of all other

members of a specified class of distributions. That is, if nothing is known about a

distribution except that it belongs to a certain class, then the distribution with the

largest entropy should be chosen as default. For example, under specified mean µ

and standard deviation σ, the normal distribution N(µ, σ2) has maximum entropy

among all real-valued distributions.

Maximum entropy imputation is an imputation method which is based on the maxi-

mum entropy framework, the main idea is that the probability distribution with the

maximum entropy subject to additional constrains should be chosen, where these

constrains are based on what is known (Uffink 1995). Generally, constrains can be

achieved from the results of similar studies, statistical inference from a small training

data set, or even research background knowledge. The performance of maximum en-

tropy imputation depends on the additional constrains, i.e., quantity and quality of

external or internal information (Uffink 1996). But when missing rate is high, maxi-

mum entropy imputation has the best performance. The reason is that observed data

may not reserve enough information to discover the statistical inference under high

missing levels, the maximum entropy distribution is the only reasonable probability

distribution for producing proper imputation.

For the continuous variable, the entropy of the ith observation Yi is defined as,

H(Yi) = −
∫
p(Yi) log p(Yi)dYi (3.2)
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Here p(Yi) log p(Yi) = 0 if p(Yi) = 0. For discrete variable, the entropy of the ith

observation yi is defined as,

H(Yi) = −
k∑
j=1

p(Yij) log p(Yij) (3.3)

Here
∑k

j=1 p(Yi = Yij) = 1 and again p(Yi) log pYi = 0 if p(Yi) = 0.

When there are no missing values, the ith observation Yi would be known to be equal

to its observed values yi. In this situation, the entropy of Yi is,

H(Yi) = −p(yi) log p(yi) = 0

In contrast, suppose the variable Yi has missing values, and the missing belongs to

MAR. The missing observation Yi would be known to be suited within the confidence

interval from regression substitution. Let Y L
i and Y U

i be the lower and upper bound-

aries of the confidence interval for continuous variable, respectively. Then the entropy

of Yi would be,

H(Yi) = −
∫ Y U

i

Y L
i

p(Yi) log p(Yi)dYi

or L and U are the indexes of lower and upper boundary for discrete variable,

H(Yi) = −
U∑
j=L

p(Yij) log p(Yij)

Hence, it can be seen that the maximum entropy converges to its maximum values

allowed by those limitations, i.e., by our background knowledge about Y .

The algorithm of the maximum entropy is more depended on additional constrains.

Suppose there exists m constrains c1, ..., cm. Based on the entropy framework and

these constrains, the imputed value of yi is estimated as,
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MaxH(yi) = −
k∑
j=1

p(yij) log p(yij)

such that


∑k

j=1
p (yi = yij) = 1

satisfy constrians c1, ..., cm

(3.4)

For spatial-temporal missing data, most of them belong to missing at random (MAR)

cases. Therefore, some information of the missing values would be known from regres-

sion models, the confidence intervals from corresponding models are a good choice

as one reasonable additional constrain. With this model based constrain, the perfor-

mance of maximum entropy imputation should be similar to EM imputation in small

or median missing rates, and better than EM imputation in high missing rates.

3.2 Simulation Study and Application

To evaluate the efficiency and accuracy of iteration-KNN and maximum entropy im-

putation methods for spatial-temporal data under various missing rates, a comparison

among KNN, iteration-KNN, EM, and maximum entropy (with model based confi-

dence interval constrain) imputation methods is designed for this purpose. Further-

more, because the response variable is binary data with values 0 or 1, the influence

of the large scale probabilities is also studied.

3.2.1 Data simulation and imputation methods specification

In the study, a traditional spatial-temporal autologistic regression model with only

one covariate is considered, which is defined in (1.1). the conditional expectation of
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Yi,t given its neighbors is,

E(Yi,t|Yi′ ,t′ : (i
′
, t
′
) ∈ Ni,t)

=
exp{θ0 + θ1Xi,t +

∑
j∈Ni

θ2Yj,t + θ3(Yi,t−1 + Yi,t+1)}
1 + exp{θ0 + θ1Xi,t +

∑
j∈Ni

θ2Yj,t + θ3(Yi,t−1 + Yi,t+1)}

Set the size of the sampling grid to be r × r = 10 × 10, and the time points to be

T = 12. Here the observations of the first and last time points are the boundaries

with no missing values. One covariate is considered in the model with Xi,t ∼ N(3, 1).

For spatial dependence, only the first order neighbors are considered, let Ni denote

the first order neighborhood for the ith site. For model parameters θ, fix intercept θ0,

slope θ1 and temporal autoregressive coefficient θ3 to be 1, -0.5, and 0.5, respectively,

but vary θ2 from 0.1, 0.3 to 0.5 to reflect different large scale probabilities PL, which

are defined as,

PL =
1

r × r × (T − 2)

n∑
i=1

T−1∑
t=2

E[Yi,t]

=
1

r × r × (T − 2)

n∑
i=1

T−1∑
t=2

×
exp{θ0 + θ1Xi,t +

∑
j∈Ni

θ2Yj,t + θ3(Yi,t−1 + Yi,t+1)}
1 + exp{θ0 + θ1Xi,t +

∑
j∈Ni

θ2Yj,t + θ3(Yi,t−1 + Yi,t+1)}

The three simulation data sets are generated from the traditional spatial-temporal

autologistic regression model using a perfect simulation sampler. Then generate ran-

dom missing values at the rate 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6. Let Ri,t denote the

missing data indicator for ith site and tth time point. For simulated data sets, PL

can be approximated by marginal data mean,

PL ≈
1

r × r × (T − 2)

n∑
i=1

T−1∑
t=1

Ri,tYi,t

With missing values, PL would be approximated as,

PL ≈
1∑n

i=1

∑T−1
t=1 Ri,t

n∑
i=1

T−1∑
t=1

Ri,tYi,tRi,t

By 3.4, the approximate values of large scale probabilities PL are 0.56, 0.7, and 0.86

for θ2 = 0.1, 0.3, and 0.5, respectively. It is difficult to impute missing values Yi,t
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directly for binary response variable. An alternative way is using the expectation of

Yi,j instead of itself. Let Pi,t denote the the expectation of Yi,t, i.e.,

Pi,t = E[Yi,t] = p(Yi,t = 1)

The absolute difference between Pi,t and its imputed values is considered. Let Di,t

denote the absolute different between Pi,t and its imputed values in ith site and tth

time point.

Di,t = |Pi,t − P̃i,t|, , i = 1, ..., n; t = 2, ..., T − 1

To measure accuracy, except error rate, the average of absolute probability difference,

APD, is another good measurement.

APD =
1

n× (T − 2)

n∑
i=1

T−1∑
t=2

Di,t, i = 1, ..., n; t = 2, ..., T − 1

In additional, it is not suitable to randomly generate 0 or 1 based on imputed Pi,j,

since the error rate will increase rapidly by adding extra variance Pi,t(1−Pi,t). Thus,

the missing value Yi,t is imputed as,

Ỹi,t =


1, if Pi,t > 0.5

0, otherwise

Following the above definitions and conditions, we will describe the additional details

of the algorithms for KNN, EM, iteration-KNN, and maximum entropy imputation

methods. First, for KNN imputation, the nearest neighbors are selected same as the

spatial and temporal neighbors used in the model (1.1). That is,

NKNN
i = Ni ∪ {Yi,t−1, Yi,t+1}
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Then the imputed value p̃i,t is computed as the following,

p̃i,t =


Yi,t−1Ri,t−1+Yi,t+1Ri,t+1+

∑
j∈Ni

Yj,tRj,t

Ri,t−1+Ri,t+1+
∑

j∈Ni
Rj,t

, if Ri,t−1 +Ri,t+1 +
∑

j∈Ni
Rj,t 6= 0

∑n
j=1

∑T
t=1 Yj,tRj,t∑n

j=1

∑T
t=1Rj,t

, otherwise

Second, iteration-KNN imputation uses the same nearest neighbors as KNN. Based

on its algorithm, the imputed value Ỹ l
i,t in lth iteration is computed by,

Ỹ l
i,t =

1∑
j∈Ni

Rj,t + 2
{[Yi,t−1Ri,t−1 + Yi,t+1Ri,t+1 +

∑
j∈Ni

Yj,tRj,t]

+ [p̃li,t−1(1−Ri,t−1) + p̃l−1i,t+1(1−Ri,t+1) +
∑
j∈Ni

p̃l−1j,t (1−Rj,t)]}

Where

p̃li,t = E[Yi,j|{Y o,Y m(l−1)}]

p̃li,t denotes the lth imputed value of pi,t under all observed values and (l − 1)th

imputed expectation values. The convergence criteria is as following,

sup{|p̃m(l)
i,t − p̃

m(1−1)
i,t |} < δ

Third, for EM imputation, pseudo-likelihood is considered and the parameters esti-

mation can be carried out by standard logistic regression functions for the full data

with imputed missing values. In step 0, all missing values are first filled by KNN

imputation Y m(0), then initial parameters θ0 can be computed from the full data

with imputed missing values. Last, 95% confidence interval for missing values Pi,t

is used as the only constrain in maximum entropy imputation. For lth iteration,

the corresponding 95% confidence interval [p
L(l)
i,t , p

U(l)
i,t ] can be approximated from the

quantiles of the parametric bootstrap sample. That is, 100 Monte Carlo samples

of binary responses are drawn from the pseudo-likelihood function with θ(l−1) using

PGS, then compute p̃li,t for each Monte Carlo samples and p̃
l(b)
i,t , b = 1, ..., 100 con-

structs the parametric bootstrap sample. The steps of the maximum entropy are as
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following,

- Step 1: Replace missing values with imputed values Ỹ m(0) by KNN imputation.

- Step 2: Compute MPLE θ0 from the data {Y o, Ỹ m(0)} .

- Step 3: Compute approximately 95% confidence interval [p
L(1)
i,t , p

U(1)
i,t ] for each miss-

ing values.

- Step 4: Replace missing values with imputed values Ỹ m(1) by 3.4 with the constrain

pi,t ∈ [p
L(1)
i,t , p

U(1)
i,t ].

- Step 5: Compute MPLE θ1 from the data {Y o, Ỹ m(1)} .

- Step 5: Repeat step 3 to 5 until sup|pli,t − p̃l−1i,t | < δ, then p̃i,t = p̃li,t.

3.2.2 Imputation accuracy and efficiency comparison

For each simulated date set under various missing rate, let the initial imputed missing

values be estimated from KNN imputation. Then start from observed data and KNN

imputed data, impute the missing values from EM, iteration-KNN, and maximum

entropy imputation methods.

The results clearly show the performance of KNN, iteration-KNN, EM, and max-

imum entropy imputation methods are significantly different. Figure 2.1 shows that

their performance are same as predicted both in error rates and APD. That is, un-

der the large scale probability 0.56 (θ2 = 0.1), first, KNN is the fastest imputation

methods, but it has the worst performance in any missing rates and large scale prob-

ability. For example, when the missing rate is 0.15, KNN has 0.3967 error rate, but

the error rates are 0.3133, 0.2933 and 0.3022 for iteration-KNN, EM, and maximum

entropy imputation methods, respectively. Second, Iteration-KNN has faster conver-

gent speed and the number of iterations is from 3 to 8 in our study. Also it has better

performance than KNN, and the imputation results are stabler as the missing rates
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increase. For instance, when the error rates of iteration-KNN jump 0.082 (from 0.31

to 0.392) as the missing rates jump from 0.05 to 0.5, but KNN and EM imputation

methods jump 0.17 (from 0.31 to 0.48), and 0.212 (from 0.26 to 0.472) at the same

time. Third, EM has the best performance with missing rates under around 0.3, but

it need more computing time than others, especially when the missing rate is large.

For the same reason, the performance deteriorates rapidly as the missing rates higher

than 0.3, since the regression model will be invalid with higher missing rate. When

missing rate is less than 0,3, the error rates of EM is less than 0.296, it is the smallest

compared to 0.41, 0.335 and 0.3 for KNN, iteration-KNN and maximum entropy,

respectively. But when the missing rate is 0.3 or higher, the error rates increase

rapidly and EM has the worse performance than iteration-KNN and maximum en-

tropy. Last, maximum entropy has better performance than KNN and iteration-KNN

in any situation, but worse than EM if regression model is valid. When the missing

rate is higher than 0.3, i.e., the regression model is invalid, maximum entropy im-

putation can still keep a reasonable error rate under the properties of entropy itself.

Also, the rate of convergence for maximum entropy is faster than EM, but slower

than iteration KNN. Furthermore, the error rate is not a good criterion to show the

imputation performance for binary data; APD is a better choice. For example, under

large scale probability 0.86 (θ2 = 0.5), iteration-KNN has worst performance than

EM and maximum entropy; the APDs are 0.1225, 0.0596 and 0.0702 under missing

rate 0.2. respectively. But they are in same error rate level, 0.135, 0.13, and 0.135,

respectively.

Both missing rates and large scale probability are factors which has significant effect

on imputation. Figure 3.1 shows that the error rates and APDs increase as miss-

ing rates increases. Figure 3.2 shows that large scale probability is also needed to

consider in imputation if the response variable is binary data, or categorical data
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Figure 3.1: Comparison imputation performance by imputation methods.
The upper 3 subplots are error rates plots with the large scale probabilities 0.56,
0.7 and 0.86, respectively. Points with red, green, blue, and teal color represent
KNN, iteration KNN, EM and maximum entropy imputation methods, respectively.
The lower 3 subplots are APD plots with the large scale probabilities 0.56, 0.7 and
0.86, respectively. Points with red, green, blue, and teal color are representing KNN,
iteration KNN, EM and maximum entropy imputation methods, respectively.

with small levels. For example, if the large scale probability is close to 0.5 (average

probability of all possible levels), the inherent structure of original data is difficult

to be discovered, i.e., even small amount of missing values will disrupt the inherent

structure. In this case, imputation methods have more power to affect the results of

imputation. If the large scale probability close to 1, i.e., the extreme situation, the

inherent structure of original data can be discovered by small proportion data. So

these imputation methods tend to have similar performance.
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Figure 3.2: Comparison imputation performance by large scale probability.
The upper 4 subplots are KNN, iteration-KNN, EM and maximum entorpy imputa-
tion methods, respectively. Points with red, green, and blue, color represent the large
scale probabilities 0.56, 0.7 and 0.86, respectively. The lower 4 subplots are KNN,
iteration-KNN, EM and maximum entorpy imputation methods, respectively. Points
with red, green, and blue, color represent the large scale probabilities 0.56, 0.7 and
0.86, respectively.

3.2.3 Application to the mountain pine beetle data

The mountain pine beetle (MPB)is a species of bark beetle native to the forests of

western North America, which attacks pine trees by laying eggs under the bark. Usu-

ally, in dry summers and mild winters the population of MPB increases and spreads

quickly so that huge areas of pine trees will be killed. The mountain pine beetle
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(MPB) data consist of MPB outbreaks (0 = no outbreak; 1 = outbreak) in the

Chilcotin area of the central British Columbia (Canada) from 1998 to 2006, and the

data set is spatial-temporal binary data set with the size of study areas 17063. Fig-

Figure 3.3: Map of the study area in the Chilcotin (Canada).

ure 3.3 is a map of the study area in the Chilcotin. Because temperature plays a vital

role in the MBP outbreaks, the mean temperature of each year (in Celsius degree) is

considered as the only covariate in the model. Data from 1999 to 2005 are used for

imputation methods validation, and data in Year 1998 and 2006 are boundaries for

temporal part. Assume that the missing rates are 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5 and

0.6. For any study area, the four nearest study areas were considered to be neighbors

based on the distance. Figure 3.4 is a plot of outbreaks by year. We assume that the

performance of every imputation methods is good in that the large scale probability
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Figure 3.4: Map of the outbreaks MBP by year).

of MPB is approximated to 0.1026.

Figure 3.5 gives error rates using KNN, iteration-KNN, EM, and maximum entropy

for missing rate 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5 and 0.6. Same as predicted, all

of them have low error rates, the order of the performance from highest to lowest

is EM, maximum entropy, iteration-KNN and KNN. For example, with the largest

missing rate 0.6, the error rates are 0.0533, 0.0429, 0.0334, and 0.0392 for KNN,

iteration-KNN, maximum entropy and EM, respectively. In our research (not shown

here), we have also studied average of absolute probability difference (APD)for the

performance of imputation methods. Both the simulation study and the real data

example show that the performance of EM is best under a low missing level, when

missing increases, iteration-KNN and maximum entropy are good alternatives.
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Figure 3.5: Comparison of error rates for KNN, iteration-KNN, maximum entropy
and EM imputation methods.
Points with red, green, blue, and teal color represent KNN, iteration KNN, EM and
maximum entropy imputation methods, respectively.

On the other hand, they have significant differences in computer time. Figure

3.6 gives the time that it takes to impute missing values for various missing rate. For

instant, EM imputation is time-consuming for large data set, it requires 62.74 hours

to impute missing values for missing rate 0.6 compared to 7.57, 21.92 and 32.29 hours

for maximum entropy, iteration-KNN, and KNN imputation methods. As a conclu-

sion, both iteration-KNN and maximum entropy can yield acceptable error rates with

reasonable computation demand for massive missing data.
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Figure 3.6: Comparison of imputation time for KNN, iteration-KNN, maximum en-
tropy and EM imputation methods (Unit in hour).
Points with red, green, blue, and teal color represent KNN, iteration KNN, EM and
maximum entropy imputation methods, respectively.

Copyright c© Zilong Wang, 2012.
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Chapter 4 Summary and Discussion

This dissertation is devoted to the analysis of binary data via spatial-temporal au-

tologitic regression models. Specifically, we have carefully examined the traditional

spatial-temporal model and developed the centered spatial-temporal autologistic re-

gression model, where the centered model solves the parameters interpretation prob-

lems in the traditional model. We also propose two new imputation methods, iteration-

KNN and maximum entropy imputation, which are both effective ways to impute

spatial-temporal missing values considering efficiency and accuracy for spatial-temporal

missing data.

The centered spatial-temporal autologistic regression model is developed to obtain

reasonable parameter interpretations across varying levels of spatial and temporal

statistical dependence. The traditional spatial-temporal autologistic regression model

by Zheng and Zhu (2008) is an important and widely used model to analyze binary

data measured repeatedly over time on a spatial lattice, which can account for co-

variates, spatial dependence, and temporal dependence simultaneously. However, it

has been presented that the traditional spatial-temporal autologistic model fails to

provide meaningful interpretations in chapter 2., the traditional model’s non-negative

autocovariate could bias the realizations towards 1. To overcome this interpretation

problem, we have considered a spatial-temporal autologistic regression model with

centered parameterization, which is an alternative parameterization that can help to

alleviate this difficulty.

For centered model, we have developed statistical inference based on expectation-

maximization pseudo-likelihood (EMPL), Monte Carlo expectation-maximization like-

69



lihood (MCEML), and studied the performance of Bayesian inference for the centered

model. Both simulation study and real data example show that the performance of

the MCEML is comparable to the Bayesian approach and these two approaches are

more statistically efficient than EMPL. We compare the prediction performance of the

centered spatial-temporal autologistic regression model with the traditional one using

a real data example. It has been shown that these two models generate comparable

predictions. Since the statistical inference based on the centered parameterization is

much more computationally intensive for the centered model, we suggest to just use

the traditional model if prediction is of primary interest. In our simulation study (not

shown here), we have also studied the edge effect of the spatial lattice on inference.

The analysis shows that statistical inference is not sensitive to the shape of the lattice.

Spatial-temporal missing data are MAR cases required to impute missing values to

count for spatial and temporal effects in statistical analysis. Considering efficiency

and accuracy, we have proposed two new imputation methods: iteration-KNN impu-

tation and maximum entropy imputation. Iteration-KNN imputation is an iterative

non-parametric algorithm for imputing missing values, which uses a KNN imputation

repeatedly to improve accuracy with high computing speed. Also, it can suffer from

the negative effects of model failure, so that it has more stable performance when

observed data can not reserve the properties of original data set. Iteration-KNN im-

putation is a combination of point estimates by non-parametric KNN and distribution

estimates by EM, which estimates sequential multiple values for each missing value.

Moreover, we have proposed a maximum entropy imputation for spatial-temporal

incomplete data, which follows maximum entropy distribution with additional con-

strains. When missing rate is high, maximum entropy imputation is the only rea-

sonable way to estimate missing values. As is shown in chapter 3, both simulation

and real data application present iteration-KNN and maximum entropy imputation
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methods are effective ways to deal with missing values, which can yield smaller error

rates than KNN and need less computation time than EM for missing data.

The final purpose of every theoretical research is to be applied in the real world.

For the centered spatial-temporal autologistic regression model, future work focuses

on creating corresponding R package for spatial-temporal data researcher/user for

solving research/application problems. For missing data, future research can focus

on extending iteration-KNN and maximum entropy imputation to high-dimensional

space data, and discussion on more efficient and more accurate imputation methods

for spatial-temporal data.

Copyright c© Zilong Wang, 2012.
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Appendices

A. Tables for centered spatial-temporal autologistic regression model

Table 1: Simulation in 5*5 Lattice and 5 time points

True MPLE SE
(1, -0.5, 0.1, 0.1) (0.906, -0.471, -0.006, 0.038) (0.697, 0.231, 0.315, 0.334)

(1, -0.5, 0.1, 0.5) (1.001, -0.502, 0.049, 0.440) (0.695, 0.228, 0.343, 0.393)

(1, -0.5, 0.1, 0.9) (0.959, -0.526, 0.081, 0.947) (0.832, 0.229, 0.313, 0.417)

(1, -0.5, 0.5, 0.1) (0.924, -0.497, 0.489, 0.033) (0.778, 0.262, 0.324, 0.434)

(1, -0.5, 0.5, 0.5) (1.001, -0.539, 0.492, 0.548) (0.916, 0.259, 0.307, 0.370)

(1, -0.5, 0.5, 0.9) (0.999, -0.499, 0.495, 0.934) (1.247, 0.232, 0.343, 0.463)

(1, -0.5, 0.9, 0.1) (0.957, -0.510, 0.915, 0.080) (1.137, 0.243, 0.329, 0.412)

(1, -0.5, 0.9, 0.5) (1.185, -0.475, 0.863, 0.478) (1.334, 0.281, 0.354, 0.375)

(1, -0.5, 0.9, 0.9) (2.699, -0.479, 0.915, 1.025) (1.684, 0.284, 0.337, 0.434)

Table 2: Simulation in 10*10 Lattice and 5 time points

True MPLE SE
(1, -0.5, 0.1, 0.1) (1.062, -0.522, 0.120, 0.085) (0.276, 0.089, 0.155, 0.199)

(1, -0.5, 0.1, 0.5) (1.034, -0.509, 0.071, 0.523) (0.323, 0.105, 0.165, 0.214)

(1, -0.5, 0.1, 0.9) (0.939, -0.499, 0.111, 0.906) (0.296, 0.093, 0.151, 0.198)

(1, -0.5, 0.5, 0.1) (1.019, -0.512, 0.507, 0.096) (0.321, 0.103, 0.154, 0.160)

(1, -0.5, 0.5, 0.5) (0.946, -0.494, 0.460, 0.495) (0.351, 0.103, 0.148, 0.197)

(1, -0.5, 0.5, 0.9) (0.908, -0.491, 0.489, 0.882) (0.466, 0.096, 0.158, 0.166)

(1, -0.5, 0.9, 0.1) (0.899, -0.483, 0.895, 0.088) (0.449, 0.107, 0.130, 0.181)

(1, -0.5, 0.9, 0.5) (1.266, -0.494, 0.878, 0.500) (0.953, 0.092, 0.130, 0.188)

(1, -0.5, 0.9, 0.9) (3.266, -0.464, 0.888, 0.948) (0.728, 0.117, 0.158, 0.223)
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Table 3: Simulation in 20*20 Lattice and 5 time points

True MPLE SE
(1, -0.5, 0.1, 0.1) (1.005, -0.503, 0.113, 0.084) (0.158, 0.052, 0.069, 0.088)

(1, -0.5, 0.1, 0.5) (0.970, -0.490, 0.092, 0.486) (0.152, 0.048, 0.069, 0.088)

(1, -0.5, 0.1, 0.9) (1.015, -0.507, 0.108, 0.893) (0.138, 0.047, 0.079, 0.101)

(1, -0.5, 0.5, 0.1) (0.957, -0.485, 0.498, 0.098) (0.155, 0.051, 0.076, 0.092)

(1, -0.5, 0.5, 0.5) (0.934, -0.488, 0.512, 0.497) (0.188, 0.056, 0.070, 0.099)

(1, -0.5, 0.5, 0.9) (0.948, -0.490, 0.500, 0.894) (0.273, 0.053, 0.060, 0.087)

(1, -0.5, 0.9, 0.1) (0.891, -0.465, 0.879, 0.108) (0.247, 0.047, 0.070, 0.092)

(1, -0.5, 0.9, 0.5) (2.099, -0.479, 0.897, 0.506) (0.787, 0.048, 0.075, 0.093)

(1, -0.5, 0.9, 0.9) (3.485, -0.468, 0.899, 0.929) (0.249, 0.056, 0.075, 0.109)

Table 4: Simulation in 5*5 Lattice and 10 time points

True MPLE SE
(1, -0.5, 0.1, 0.1) (1.041, -0.523, 0.048, 0.092) (0.382, 0.118, 0.237, 0.287)

(1, -0.5, 0.1, 0.5) (1.052, -0.518, 0.098, 0.511) (0.445, 0.135, 0.231, 0.276)

(1, -0.5, 0.1, 0.9) (1.021, -0.530, 0.071, 0.949) (0.466, 0.148, 0.235, 0.300)

(1, -0.5, 0.5, 0.1) (1.031, -0.520, 0.458, 0.103) (0.484, 0.141, 0.245, 0.272)

(1, -0.5, 0.5, 0.5) (1.077, -0.534, 0.491, 0.525) (0.569, 0.153, 0.234, 0.322)

(1, -0.5, 0.5, 0.9) (1.003, -0.519, 0.493, 0.906) (0.618, 0.136, 0.212, 0.256)

(1, -0.5, 0.9, 0.1) (0.908, -0.489, 0.895, 0.106) (0.601, 0.163, 0.194, 0.278)

(1, -0.5, 0.9, 0.5) (1.034, -0.517, 0.883, 0.505) (0.876, 0.166, 0.204, 0.281)

(1, -0.5, 0.9, 0.9) (2.359, -0.478, 0.859, 0.953) (1.259, 0.154, 0.213, 0.336)

Table 5: Simulation in 10*10 Lattice and 10 time points

True MPLE SE
(1, -0.5, 0.1, 0.1) (1.009, -0.507, 0.106, 0.088) (0.212, 0.071, 0.106, 0.132)

(1, -0.5, 0.1, 0.5) (0.997, -0.502, 0.109, 0.488) (0.212, 0.068, 0.112, 0.134)

(1, -0.5, 0.1, 0.9) (0.977, -0.495, 0.077, 0.878) (0.216, 0.070, 0.104, 0.150)

(1, -0.5, 0.5, 0.1) (0.950, -0.483, 0.496, 0.083) (0.224, 0.071, 0.108, 0.113)

(1, -0.5, 0.5, 0.5) (0.994, -0.502, 0.498, 0.480) (0.251, 0.071, 0.108, 0.138)

(1, -0.5, 0.5, 0.9) (0.881, -0.482, 0.503, 0.899) (0.387, 0.083, 0.109, 0.133)

(1, -0.5, 0.9, 0.1) (0.965, -0.492, 0.906, 0.094) (0.315, 0.072, 0.096, 0.138)

(1, -0.5, 0.9, 0.5) (1.288, -0.502, 0.894, 0.507) (0.897, 0.087, 0.093, 0.122)

(1, -0.5, 0.9, 0.9) (3.404, -0.514, 0.902, 0.928) (0.434, 0.090, 0.104, 0.173)
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Table 6: Simulation in 20*20 Lattice and 10 time points

True MPLE SE
(1, -0.5, 0.1, 0.1) (1.013, -0.504, 0.104, 0.103) (0.107, 0.034, 0.051, 0.066)

(1, -0.5, 0.1, 0.5) (1.004, -0.500, 0.090, 0.499) (0.105, 0.034, 0.049, 0.059)

(1, -0.5, 0.1, 0.9) (0.995, -0.499, 0.096, 0.909) (0.123, 0.037, 0.051, 0.070)

(1, -0.5, 0.5, 0.1) (0.972, -0.493, 0.507, 0.105) (0.115, 0.036, 0.047, 0.066)

(1, -0.5, 0.5, 0.5) (0.979, -0.493, 0.494, 0.498) (0.120, 0.034, 0.051, 0.066)

(1, -0.5, 0.5, 0.9) (0.990, -0.499, 0.499, 0.903) (0.178, 0.037, 0.047, 0.063)

(1, -0.5, 0.9, 0.1) (0.950, -0.493, 0.897, 0.107) (0.181, 0.035, 0.048, 0.058)

(1, -0.5, 0.9, 0.5) (2.055, -0.487, 0.893, 0.505) (0.644, 0.040, 0.049, 0.071)

(1, -0.5, 0.9, 0.9) (3.530, -0.486, 0.893, 0.937) (0.191, 0.044, 0.063, 0.083)

Table 7: Simulation in 5*5 Lattice and 20 time points

True MPLE SE
(1, -0.5, 0.1, 0.1) (1.029, -0.509, 0.081, 0.085) (0.316, 0.108, 0.168, 0.202)

(1, -0.5, 0.1, 0.5) (1.049, -0.521, 0.059, 0.493) (0.316, 0.096, 0.180, 0.179)

(1, -0.5, 0.1, 0.9) (1.059, -0.514, 0.094, 0.875) (0.340, 0.101, 0.163, 0.210)

(1, -0.5, 0.5, 0.1) (0.968, -0.491, 0.463, 0.111) (0.343, 0.096, 0.151, 0.200)

(1, -0.5, 0.5, 0.5) (0.981, -0.503, 0.493, 0.499) (0.351, 0.103, 0.146, 0.170)

(1, -0.5, 0.5, 0.9) (0.937, -0.499, 0.495, 0.892) (0.408, 0.104, 0.161, 0.206)

(1, -0.5, 0.9, 0.1) (0.986, -0.507, 0.885, 0.105) (0.418, 0.106, 0.164, 0.197)

(1, -0.5, 0.9, 0.5) (0.814, -0.484, 0.901, 0.520) (0.631, 0.129, 0.150, 0.196)

(1, -0.5, 0.9, 0.9) (2.868, -0.513, 0.880, 0.942) (0.712, 0.114, 0.148, 0.195)

Table 8: Simulation in 10*10 Lattice and 20 time points

True MPLE SE
(1, -0.5, 0.1, 0.1) (1.013, -0.506, 0.094, 0.098) (0.152, 0.048, 0.090, 0.091)

(1, -0.5, 0.1, 0.5) (0.986, -0.496, 0.097, 0.495) (0.145, 0.049, 0.090, 0.096)

(1, -0.5, 0.1, 0.9) (1.011, -0.508, 0.095, 0.880) (0.170, 0.050, 0.066, 0.085)

(1, -0.5, 0.5, 0.1) (1.000, -0.499, 0.496, 0.089) (0.170, 0.058, 0.070, 0.101)

(1, -0.5, 0.5, 0.5) (0.996, -0.503, 0.502, 0.497) (0.167, 0.047, 0.063, 0.101)

(1, -0.5, 0.5, 0.9) (0.993, -0.497, 0.482, 0.912) (0.227, 0.057, 0.067, 0.098)

(1, -0.5, 0.9, 0.1) (1.005, -0.500, 0.895, 0.105) (0.227, 0.049, 0.061, 0.086)

(1, -0.5, 0.9, 0.5) (1.187, -0.496, 0.901, 0.498) (0.657, 0.048, 0.075, 0.091)

(1, -0.5, 0.9, 0.9) (3.357, -0.486, 0.888, 0.985) (0.282, 0.059, 0.073, 0.121)
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Table 9: Simulation in 20*20 Lattice and 20 time points

True MPLE SE
(1, -0.5, 0.1, 0.1) (1.003, -0.502, 0.107, 0.108) (0.080, 0.027, 0.033, 0.049)

(1, -0.5, 0.1, 0.5) (0.994, -0.498, 0.102, 0.499) (0.074, 0.024, 0.033, 0.047)

(1, -0.5, 0.1, 0.9) (1.008, -0.501, 0.101, 0.894) (0.087, 0.029, 0.033, 0.053)

(1, -0.5, 0.5, 0.1) (0.992, -0.498, 0.501, 0.101) (0.082, 0.026, 0.038, 0.055)

(1, -0.5, 0.5, 0.5) (0.978, -0.495, 0.501, 0.502) (0.088, 0.025, 0.033, 0.049)

(1, -0.5, 0.5, 0.9) (0.985, -0.496, 0.502, 0.890) (0.125, 0.029, 0.035, 0.051)

(1, -0.5, 0.9, 0.1) (0.991, -0.496, 0.897, 0.103) (0.123, 0.029, 0.031, 0.044)

(1, -0.5, 0.9, 0.5) (2.286, -0.495, 0.899, 0.513) (0.487, 0.029, 0.033, 0.048)

(1, -0.5, 0.9, 0.9) (3.571, -0.492, 0.899, 0.946) (0.143, 0.036, 0.042, 0.062)

B. Tables for missing data imputation

Table 10: Error Rates for Beta=(1,0.5,0.1,0.5)

Imputation 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6
KNN 0.31 0.36 0.3967 0.41 0.4333 0.43 0.48 0.485

Iteration-KNN 0.31 0.31 0.3133 0.335 0.3467 0.365 0.392 0.41

EM 0.26 0.28 0.2933 0.296 0.3567 0.3925 0.472 0.51

Maximum Entropy 0.28 0.3 0.3033 0.3 0.3233 0.335 0.33 0.3733

Table 11: Error Rates for Beta=(1,0.5,0.3,0.5)

Imputation 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6
KNN 0.24 0.28 0.2967 0.305 0.3267 0.3475 0.348 0.3483

Iteration-KNN 0.24 0.26 0.27 0.3 0.3033 0.3075 0.312 0.315

EM 0.22 0.22 0.23 0.26 0.27 0.3075 0.334 0.345

Maximum Entropy 0.22 0.23 0.2433 0.25 0.2767 0.2825 0.298 0.305

Table 12: Error Rates for Beta=(1,0.5,0.5,0.5)

Imputation 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6
KNN 0.12 0.12 0.1333 0.145 0.1567 0.1425 0.178 0.1883

Iteration-KNN 0.12 0.13 0.1333 0.135 0.1467 0.145 0.148 0.15

EM 0.12 0.12 0.1267 0.13 0.1367 0.14 0.142 0.1433

Maximum Entropy 0.12 0.12 0.1267 0.135 0.14 0.1425 0.14 0.1417
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Table 13: APD for Beta=(1,0.5,0.1,0.5)

Imputation 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6
KNN 0.1707 0.19 0.203 0.2155 0.2313 0.2392 0.2727 0.2856

Iteration-KNN 0.1626 0.1699 0.1728 0.1786 0.1797 0.1833 0.187 0.2012

EM 0.0983 0.1106 0.128 0.1293 0.1815 0.1839 0.2666 0.2889

Maximum Entropy 0.1179 0.1269 0.1327 0.1425 0.1453 0.1468 0.1559 0.1668

Table 14: APD for Beta=(1,0.5,0.3,0.5)

Imputation 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6
KNN 0.1311 0.1734 0.1831 0.1925 0.2158 0.2335 0.2515 0.2662

Iteration-KNN 0.1278 0.1329 0.141 0.1542 0.1634 0.1697 0.1807 0.1966

EM 0.0668 0.0739 0.0906 0.0936 0.0947 0.1547 0.2157 0.2676

Maximum Entropy 0.0824 0.0855 0.0931 0.1055 0.1061 0.1063 0.1154 0.1261

Table 15: APD for Beta=(1,0.5,0.5,0.5)

Imputation 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6
KNN 0.1003 0.1066 0.1173 0.1407 0.1514 0.1601 0.1804 0.1806

Iteration-KNN 0.1034 0.103 0.1167 0.1225 0.1245 0.125 0.1275 0.1283

EM 0.0452 0.0505 0.0523 0.0596 0.0642 0.0692 0.078 0.081

Maximum Entropy 0.0631 0.0648 0.0667 0.0702 0.0718 0.0721 0.08 0.0805

Table 16: Error Rates for MPB Data

Imputation 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6
KNN 0.0167 0.0198 0.0207 0.0239 0.0315 0.0377 0.0461 0.0533

Iteration-KNN 0.0159 0.0186 0.0195 0.0218 0.0285 0.0357 0.0403 0.0429

EM 0.0145 0.0152 0.0171 0.020 0.0268 0.0295 0.0317 0.0334

Maximum Entropy 0.0147 0.0159 0.0183 0.0206 0.0270 0.0329 0.0349 0.0392

Table 17: Computing Time for MPB Data (Unit in hour)

Imputation 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6
KNN 0.58 1.19 1.81 2.43 3.65 4.92 6.24 7.57

Iteration-KNN 1.18 2.41 3.59 4.82 10.56 14.55 18.07 21.92

EM 3.74 7.28 11.34 15.12 33.98 44.35 56.27 84.74

Maximum Entropy 3.02 5.98 9.15 12.82 19.23 23.86 26.3 32.29

C. R code for centered spatial-temporal autologistic regression model

### BGS

sample.gibbs = function(yt, xt, sidsloc, sidsnboor,

tt.tb, tt.te, n.sample, beta)
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{

y.sample = matrix(0, ncol=n.sample, nrow=nt)

pt.sample = matrix(0, ncol=n.sample, nrow=nt)

center = matrix(0, ncol=1, nrow=nt)

for (i in 1:nt)

{

temp = exp(beta0 + beta1*xt[i])

center[i] = temp/(1+temp)

}

order = sample(nt)

for (i in (1:(n.sample+1000))){

ttt=.C("gibbs_sim_100_4dim",

nt=as.integer(nt), m=as.integer(m),

tt=as.integer(tt), sidsloc=as.integer(sidsloc),

sidsnboor=as.integer(sidsnboor),

order=as.integer(order),

yt=as.double(yt), ytte=as.double(tt.te),

yttb=as.double(tt.tb), cp=as.double(center),

xtsp=as.double(matrix(0, ncol=1, nrow=nt)),

xtte=as.double(matrix(0, ncol=1, nrow=nt)),

beta0=as.double(beta0), beta1=as.double(beta1),

beta2=as.double(beta2), beta3=as.double(beta3),

pp=as.double(matrix(0,ncol=1, nrow=nt)),

xt=as.double(xt) )

yt = ttt$yt

y.sample[,i] = ttt$yt

pt.sample[,i] = ttt$pp
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}

return(y.sample)

}

### PS

yt.ub.ini=matrix(1, ncol=1, nrow=nt)

yt.lb.ini=matrix(0, ncol=1, nrow=nt)

perfect.sim=function(yt.ub.ini,yt.lb.ini,xt,

sidsloc,sidsnboor,

tt.tb,tt.te,beta){

center = matrix(0, ncol=1, nrow=n)

for (i in 1:n){

temp = exp(beta0 + beta1*xt[i*tt])

center[i] = temp/(1+temp)

}

mt = 0

repeat{

mt = mt+1

yt.ub = yt.ub.ini

yt.lb = yt.lb.ini

for (xxx in -(2^(mt-1)):-1)

{

for (jt in 1:nt)

{

ttt=.C("gibbs_PS_Test",

j=jt, m=as.integer(m), tt=as.integer(tt),

sidsloc=as.integer(sidsloc),

sidsnboor=as.integer(sidsnboor),
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order=as.integer(order), yt=as.double(yt.ub),

ytte=as.double(tt.te), yttb=as.double(tt.tb),

cp=as.double(center), xt=as.double(xt),

xtte=as.double(matrix(0, ncol=1, nrow=nt)),

xtsp=as.double(matrix(0, ncol=1, nrow=nt)),

beta0=as.double(beta0), beta1=as.double(beta1),

beta2=as.double(beta2), beta3=as.double(beta3),

py = 0 )$py

for (te in 1:mt){

if (xxx == -2^(te-1) && jt == 1){

set.seed(seeds[te])

}

}

yt.ub[jt] = rbinom(1,1,ttt)

}

}

for (yyy in -(2^(mt-1)):-1)

{

for (wt in 1:nt)

{

sss=.C("gibbs_PS_Test", j=wt, m=as.integer(m),

tt=as.integer(tt),

sidsloc=as.integer(sidsloc),

sidsnboor=as.integer(sidsnboor),

order=as.integer(order), yt=as.double(yt.lb),

ytte=as.double(tt.te), yttb=as.double(tt.tb),

cp=as.double(center), xt=as.double(xt),
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xtte=as.double(matrix(0, ncol=1, nrow=nt)),

xtsp=as.double(matrix(0, ncol=1, nrow=nt)),

beta0=as.double(beta0), beta1=as.double(beta1),

beta2=as.double(beta2), beta3=as.double(beta3),

py = 0 )$py

for (de in 1:mt){

if (yyy == -2^(de-1) && wt == 1){

set.seed(seeds[de])

}

}

yt.lb[wt] = rbinom(1,1,sss)

}

}

if ( sum(abs(yt.ub - yt.lb)) == 0 ){

cat ("UB & LB Match", fill=T)

break

}

else if (mt >= nps){

cat ("Exceeding the max MT", fill=T)

break

}

}

return(data.frame(yt.ub, yt.lb))

}

### EMPLs

pseudo=function(yt,xt,sidsloc,sidsnboor,

tt.tb,tt.te,niter,tol.low)
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{

res.0 = glm(yt ~ xt, family=binomial("logit"))

beta0 = as.numeric(res.0$coefficients[1])

iter = 0

repeat{

iter= iter+1

center = matrix(0, ncol=1, nrow=nt)

for (i in 1:nt)

{

temp = exp(beta0 + beta1*xt[i])

center[i] = temp/(1+temp)

}

datanew=.C("centerdata_sim_100_4dim",

n=as.integer(n), tt=as.integer(tt),

m=as.integer(m), yt=as.double(yt),

yttb=as.double(tt.tb),

ytte=as.double(tt.te),

xtsp=as.double(matrix(0,nrow=nt,ncol=1)),

xtte=as.double(matrix(0, nrow=nt, ncol=1)),

sidsloc=as.integer(sidsloc),

sidsnboor=as.integer(sidsnboor),

center=as.double(center) )

res=glm(yt~xt+as.matrix(datanew$xtsp)+

as.matrix(datanew$xtte),

family=binomial("logit"))

if (iter>=niter){

cat ("### exceed the maximum iteration number", fill=T)
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break

}

else if (

(abs(as.numeric(res$coefficients[1])-beta0)<tol.low) &

(abs(as.numeric(res$coefficients[2])-beta1)<tol.low)){

break

}

else {

beta0 = as.numeric(res$coefficients[1])

beta1 = as.numeric(res$coefficients[2])

}

}

out.beta = res$coefficients

return(out.beta)

}

### MCEML Function

MCEML=function(yi,xt,sidsloc,sidsnboor,

tt.tb,tt.te,niter,ini,base,ys)

{

center.base = matrix(0, ncol=1, nrow=nt)

for (i in 1:nt) {

temp = exp(base0 + base1*xt[i])

center.base[i] = temp/(1+temp)

}

z.base = matrix(nrow=mt, ncol=4, -999)

for (i in 1:mt)

{
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z.base.temp = .C("centerdata_sim_100_4dim", n=as.integer(n),

tt=as.integer(tt), m=as.integer(m),

yt=as.double(ys[i,]), yttb=as.double(tt.tb),

ytte=as.double(tt.te),xtsp=as.double(matrix(0,nrow=nt,ncol=1)),

xtte=as.double(matrix(0, nrow=nt, ncol=1)),

sidsloc=as.integer(sidsloc),sidsnboor=as.integer(sidsnboor),

center=as.double(center.base) )

y.center = ys[i,] - center.base

z.base[i,1] = sum(y.center)

z.base[i,2] = sum(xt*y.center)

z.base[i,3] = 0.5*sum(y.center*as.matrix(z.base.temp$xtsp))

temp.z4 = 0

temp.z4.board = 0 #for board points in temporal part

for (j in 1:n){

for (k in 2:tt)

{

temp.z4=temp.z4+y.center[(j-1)*tt+k]*y.center[(j-1)*tt+k-1]

}

temp.z4.board=temp.z4.board +

(tt.te[j]-center.base[j*tt-1])*y.center[j*tt-1] +

y.center[(j-1)*tt+1]*(tt.tb[j]-center.base[(j-1)*tt+1])

}

z.base[i,4] = temp.z4 + temp.z4.board

}

base.core = as.vector(t(as.matrix(base))%*%t(z.base))

iter = 0

center = matrix(0, ncol=1, nrow=nt)
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z.beta = matrix(nrow=mt, ncol=4, -999)

scale.newton = 1

repeat{

iter= iter+1

if (iter==1) {

for (i in 1:nt){

temp = exp(beta0 + beta1*xt[i])

center[i] = temp/(1+temp)

}

for (i in 1:mt) {

z.beta.temp = .C("centerdata_sim_100_4dim", n=as.integer(n),

tt=as.integer(tt), m=as.integer(m),

yt=as.double(ys[i,]), yttb=as.double(tt.tb),

ytte=as.double(tt.te),xtsp=as.double(matrix(0,nrow=nt,ncol=1)),

xtte=as.double(matrix(0, nrow=nt, ncol=1)),

sidsloc=as.integer(sidsloc),sidsnboor=as.integer(sidsnboor),

center=as.double(center.base) )

y.center = ys[i,] - center

z.beta[i,1] = sum(y.center)

z.beta[i,2] = sum(xt*y.center)

z.beta[i,3] = 0.5*sum(y.center*as.matrix(z.beta.temp$xtsp))

temp.z4 = 0

temp.z4.board = 0

for (j in 1:n){

for (k in 2:tt){

temp.z4=temp.z4+y.center[(j-1)*tt+k]*y.center[(j-1)*tt+k-1]

}
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temp.z4.board=temp.z4.board +

(tt.te[j]-center[j*tt-1])*y.center[j*tt-1] +

y.center[(j-1)*tt+1]*(tt.tb[j]-center[(j-1)*tt+1])

}

z.beta[i,4] = temp.z4 + temp.z4.board

}

z.true = z.beta[yi,]

beta.core.temp = matrix(nrow=mt, ncol=4, -999)

for (i in 1:mt){

beta.core.temp[i,] = z.beta[i,] - z.true

}

beta.core= s.vector(t(c(beta0,beta1,beta2,beta3))

%*%t(beta.core.temp))

wi = exp(beta.core - base.core)

w = sum(wi)

mle = log(mt) - log(w)

if (mle > 10^10 || mle < 10^(-10)){

cat ("!!!Initial MLE too small or big!!!", fill=T)

break

}

beta = c(beta0, beta1, beta2, beta3)

}

else {

if ( mle.new <= mle ) {

if (iter > 2 || scale.newton < 0.15){

# cat ("***Succeess***", fill=T)

break
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}

else{

scale.newton = scale.newton/2

iter = 0

}

}

else {

mle = mle.new

beta = c(beta0, beta1, beta2, beta3)

scale.newton = 1

}

}

der.1st = -t(as.matrix(wi/w))%*%beta.core.temp

der.2nd = matrix(nrow=4, ncol=4, 0)

der.2nd[1,1] = (der.1st[1,1])^2 - sum(wi/w*(beta.core.temp[,1])^2)

der.2nd[1,2] = der.1st[1,1]*der.1st[1,2] -

sum(wi/w*beta.core.temp[,1]*beta.core.temp[,2])

der.2nd[1,3] = der.1st[1,1]*der.1st[1,3] -

sum(wi/w*beta.core.temp[,1]*beta.core.temp[,3])

der.2nd[1,4] = der.1st[1,1]*der.1st[1,4] -

sum(wi/w*beta.core.temp[,1]*beta.core.temp[,4])

der.2nd[2,1] = der.2nd[1,2]

der.2nd[2,2] = (der.1st[1,2])^2 - sum(wi/w*(beta.core.temp[,2])^2)

der.2nd[2,3] = der.1st[1,2]*der.1st[1,3] -

sum(wi/w*beta.core.temp[,2]*beta.core.temp[,3])

der.2nd[2,4] = der.1st[1,2]*der.1st[1,4] -

sum(wi/w*beta.core.temp[,2]*beta.core.temp[,4])
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der.2nd[3,1] = der.2nd[1,3]

der.2nd[3,2] = der.2nd[2,3]

der.2nd[3,3] = (der.1st[1,3])^2 - sum(wi/w*(beta.core.temp[,3])^2)

der.2nd[3,4] = der.1st[1,3]*der.1st[1,4] -

sum(wi/w*beta.core.temp[,3]*beta.core.temp[,4])

der.2nd[4,1] = der.2nd[1,4]

der.2nd[4,2] = der.2nd[2,4]

der.2nd[4,3] = der.2nd[3,4]

der.2nd[4,4] = (der.1st[1,4])^2 - sum(wi/w*(beta.core.temp[,4])^2)

se.1 = 1/sqrt(abs(der.2nd[1,1]))

se.2 = 1/sqrt(abs(der.2nd[2,2]))

se.3 = 1/sqrt(abs(der.2nd[3,3]))

se.4 = 1/sqrt(abs(der.2nd[4,4]))

if( sum(is.nan(der.2nd)) > 0 || sum(is.infinite(der.2nd)) > 0){

cat ("@@@ inverse failed, der.2nd=", der.2nd, fill=T)

break

}

else{

inv.der.2nd = solve(der.2nd)

beta.new = beta- t(scale.newton*(inv.der.2nd%*%t(der.1st)))

if (iter>=niter){

cat ("### exceed the maximum iteration number", fill=T)

break

}

else{

beta0 = as.numeric(beta.new[1])

beta1 = as.numeric(beta.new[2])
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beta2 = as.numeric(beta.new[3])

beta3 = as.numeric(beta.new[4])

for (i in 1:nt){

temp = exp(beta0 + beta1*xt[i])

center[i] = temp/(1+temp)

}

for (i in 1:mt){

z.beta.temp = .C("centerdata_sim_100_4dim", n=as.integer(n),

tt=as.integer(tt), m=as.integer(m),

yt=as.double(ys[i,]), yttb=as.double(tt.tb),

ytte=as.double(tt.te),xtsp=as.double(matrix(0,nrow=nt,ncol=1)),

xtte=as.double(matrix(0, nrow=nt, ncol=1)),

sidsloc=as.integer(sidsloc),sidsnboor=as.integer(sidsnboor),

center=as.double(center.base) )

y.center = ys[i,] - center

z.beta[i,1] = sum(y.center)

z.beta[i,2] = sum(xt*y.center)

z.beta[i,3] = 0.5*sum(y.center*as.matrix(z.beta.temp$xtsp))

temp.z4 = 0

temp.z4.board = 0

for (j in 1:n){

for (k in 2:tt){

temp.z4=temp.z4+y.center[(j-1)*tt+k]*y.center[(j-1)*tt+k-1]

}

temp.z4.board=temp.z4.board +

(tt.te[j]-center[j*tt-1])*y.center[j*tt-1] +

y.center[(j-1)*tt+1]*(tt.tb[j]-center[(j-1)*tt+1])
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}

z.beta[i,4] = temp.z4 + temp.z4.board

}

z.true = z.beta[yi,]

beta.core.temp = matrix(nrow=mt, ncol=4, -999)

for (i in 1:mt){

beta.core.temp[i,] = z.beta[i,] - z.true

}

beta.core = as.vector(t(c(beta0, beta1, beta2, beta3))

%*%t(beta.core.temp))

wi = exp(beta.core - base.core)

w = sum(wi)

mle.new = log(mt) - log(w)

cat ("mle.new = ", mle.new, fill=T)

if (mle.new > 10^10 || mle.new < 10^(-10)){

beta = c(beta0, beta1, beta2, beta3)

cat ("!!!New MLE too small or big!!!", fill=T)

break

}

}

}

}

out.beta = beta

betase = c(beta, se.1, se.2, se.3, se.4)

return(betase)

}

### Main ###

89



dyn.load("gibbs_sim_100_4dim.dll")

dyn.load("centerdata_sim_100_4dim.dll")

MCEML = MCEML(yi = i, xt = as.numeric(xt.0), sidsloc = sidsloc,

sidsnboor=sidsnboor, tt.tb = tt.tb, tt.te = tt.te,

ini=beta.0, base=beta.0, ys=ys)

PL=pseudo(yt=as.numeric(ys[i,]),xt = as.numeric(xt.0),

sidsloc = sidsloc, sidsnboor=sidsnboor,

tt.tb = tt.tb,tt.te = tt.te)
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D. R code for Imputation

### KNN Imputation

imputation.knn = function(data.knn, count.m, sidsloc,

sidsnboor, loc.m, tt.tb, tt.te){

for (i.knn in (1:count.m)) {

temp.knn = 0

temp.i = 0

for (j.knn in (1:length(sidsloc))){

if((loc.m[i.knn]%%n!=0)&(sidsloc[j.knn]==loc.m[i.knn]%%n)){

vvv = sidsnboor[j.knn] + (loc.m[i.knn]%/%n)*n

temp.knn = temp.knn + data.knn[vvv,1]*data.knn[vvv,3]

temp.i = temp.i + data.knn[vvv,3]

}

if ( (loc.m[i.knn]%%n == 0) & (sidsloc[j.knn] == n) ){

uuu = sidsnboor[j.knn] + ((loc.m[i.knn]%/%n)-1)*n

temp.knn = temp.knn + data.knn[uuu,1]*data.knn[uuu,3]

temp.i = temp.i + data.knn[uuu,3]

}

}

if ( loc.m[i.knn] <= n ){

temp.knn = temp.knn + tt.tb[loc.m[i.knn]] +

data.knn[(loc.m[i.knn]+n),1]*data.knn[(loc.m[i.knn]+n),3]

temp.i = temp.i + 1 + data.knn[(loc.m[i.knn] + n), 3]

}

else if ( loc.m[i.knn] > (nt-n) ){

temp.knn = temp.knn +

data.knn[(loc.m[i.knn]-n), 1]*data.knn[(loc.m[i.knn] -n),3]+
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tt.te[loc.m[i.knn]+n-nt]

temp.i = temp.i + data.knn[(loc.m[i.knn] - n), 3] + 1

}

else{

temp.knn = temp.knn +

data.knn[(loc.m[i.knn]-n),1]*data.knn[(loc.m[i.knn]-n),3]+

data.knn[(loc.m[i.knn]+n),1]*data.knn[(loc.m[i.knn]+n),3]

temp.i = temp.i + data.knn[(loc.m[i.knn] - n), 3] +

data.knn[(loc.m[i.knn] + n), 3]

}

if (temp.i == 0){

data.knn[loc.m[i.knn],1] = rbinom(1,1,0.5)

}

else{

data.knn[loc.m[i.knn],2] = temp.knn/temp.i

if ( data.knn[loc.m[i.knn],2] >= 0.5) {

data.knn[loc.m[i.knn],1] = 1

}

else {

data.knn[loc.m[i.knn],1] = 0

}

}

}

return (data.knn)

}

### EM-KNN Imputation

imputation.EMknn = function(data.EMknn, count.m, sidsloc,
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sidsnboor, loc.m, tt.tb, tt.te, niter, tol.low){

iter = 0

repeat{

iter = iter + 1

old = data.EMknn

new = imputation.knn.v2(data.knn = old, count.m=count.m,

sidsloc=sidsloc, sidsnboor=sidsnboor,

loc.m=loc.m, tt.tb=tt.tb, tt.te=tt.te)

D = sum(abs(new[,2] - old[,2]))

if (iter >= niter){

cat ("### exceed the maximum iteration number", fill=T)

break

}

else if ( D < tol.low ){

break

}

data.EMknn = new

}

return (data.EMknn)

}

### EM Imputation

imputation.EM = function(data.EM, xt.0, count.m, sidsloc,

sidsnboor, loc.m, tt.tb, tt.te, niter, tol.low){

iter = 0

PL.EM=pseudo(yt=as.numeric(data.EM[,1]),xt=as.numeric(xt.0),

sidsloc=sidsloc,sidsnboor=sidsnboor,

tt.tb = tt.tb, tt.te = tt.te)
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beta.EM = PL.EM[1:4]

MLE.log.old = -0.5*PL.EM[5]

old.data = data.EM

repeat{

iter = iter + 1

for (i.EM in 1:count.m){

temp.s = 0

for (j.EM in 1:length(sidsloc)){

if((loc.m[i.EM]%%n!=0)&(sidsloc[j.EM]==loc.m[i.EM]%%n)){

vvv = sidsnboor[j.EM] + (loc.m[i.EM]%/%n)*n

temp.s = temp.s + data.EM[vvv,1]

}

if ( (loc.m[i.EM]%%n == 0) & (sidsloc[j.EM] == n) ){

uuu = sidsnboor[j.EM] + ((loc.m[i.EM]%/%n)-1)*n

temp.s = temp.s + data.EM[uuu,1]

}

}

temp.t = 0

if ( loc.m[i.EM] <= n ){

temp.t=temp.t+tt.tb[loc.m[i.EM]]+data.EM[(loc.m[i.EM]+n),1]

}

else if ( loc.m[i.EM] > (nt-n) ){

temp.t = temp.t + data.EM[(loc.m[i.EM] - n), 1]

+ tt.te[loc.m[i.EM]+n-nt]

}

else{

temp.t = temp.t + data.EM[(loc.m[i.EM] - n), 1] +
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data.EM[(loc.m[i.EM] + n), 1]

}

temp.EM = beta.EM[1] + beta.EM[2]*xt.0[loc.m[i.EM]] +

beta.EM[3]*temp.s + beta.EM[4]*temp.t

data.EM[loc.m[i.EM],2] = exp(temp.EM)/(1+exp(temp.EM))

if ( data.EM[loc.m[i.EM],2] >= 0.5){

data.EM[loc.m[i.EM],1] = 1

}

else{

data.EM[loc.m[i.EM],1] = 0

}

}

test = sum(abs(data.EM[,1] - old.data[,1]))

PL.EM=pseudo(yt=as.numeric(data.EM[,1]),

xt=as.numeric(xt.0),

sidsloc = sidsloc, sidsnboor=sidsnboor,

tt.tb = tt.tb, tt.te = tt.te)

beta.EM = PL.EM[1:4]

MLE.log.new = -0.5*PL.EM[5]

if (iter >= niter){

cat ("### exceed the maximum iteration number", fill=T)

break

}

else if ( MLE.log.new <= MLE.log.old + tol.low ){

break

}
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MLE.log.old = MLE.log.new

old.data = data.EM

}

return (data.EM)

}

### ME Imputation

imputation.ME=function(data.ME,xt.0,count.m,sidsloc,sidsnboor,

loc.m, tt.tb, tt.te, niter, tol.low){

iter = 0

PL.ME=pseudo(yt=as.numeric(data.ME[,1]),xt=as.numeric(xt.0),

sidsloc = sidsloc, sidsnboor=sidsnboor,

tt.tb = tt.tb, tt.te = tt.te)

beta.ME = PL.ME[1:4]

old.ME = data.ME

sample.ME = matrix(-999, nrow = nrow(data.ME), ncol = 100)

cip.ME = matrix(-999, nrow = nrow(data.ME), ncol = 3)

repeat {

iter = iter + 1

for (i.se in 1:100){

sample.ME[,i.se]=ME.gibbs(yt=data.ME[,1], xt = xt.0,

sidsloc=sidsloc,sidsnboor=sidsnboor,tt.tb=tt.tb,

tt.te=tt.te, n.sample=10, beta=beta.ME)[,2]

}

for (i.ME in 1:count.m){

se.temp = sd(sample.ME[loc.m[i.ME],])

upper = min (1, data.ME[loc.m[i.ME], 2] + 1.96*se.temp)

lower = max (0, data.ME[loc.m[i.ME], 2] - 1.96*se.temp)
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if (key.ME > upper){

data.ME[loc.m[i.ME], 2] = upper

}

else if (key.ME < lower){

data.ME[loc.m[i.ME], 2] = lower

}

if (data.ME[loc.m[i.ME],2] >= 0.5){

data.ME[loc.m[i.ME],1] = 1

}

else{

data.ME[loc.m[i.ME],1] = 0

}

}

test = sum(abs(data.ME[,1] - old.ME[,1]))

PL.ME=pseudo(yt=as.numeric(data.ME[,1]),xt=as.numeric(xt.0),

sidsloc = sidsloc, sidsnboor=sidsnboor,

tt.tb = tt.tb, tt.te = tt.te)

beta.ME = PL.ME[1:4]

diff = sum(abs(data.ME[,2] - old.ME[,2]))/count.m

if (iter >= niter{

cat ("###exceed the maximum iteration number",fill=T)

break

}

else if ( diff <= tol.low ){

break
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}

old.ME = data.ME

}

return (data.ME)

}

### Main ###

ptm <- proc.time()

res.imp.knn = imputation.knn (data.knn = as.matrix(imp.knn),

count.m=count.m, sidsloc=sidsloc, sidsnboor=sidsnboor,

loc.m=loc.m, tt.tb=tt.tb, tt.te=tt.te)

proc.time() - ptm

ptm <- proc.time()

imp.EMknn = imputation.knn (data.knn = res.spi, count.m=count.m,

sidsloc=sidsloc, sidsnboor=sidsnboor, loc.m=loc.m,

tt.tb=tt.tb, tt.te=tt.te)

res.imp.EMknn = imputation.EMknn (data.EMknn = imp.EMknn,

count.m=count.m, sidsloc=sidsloc, sidsnboor=sidsnboor,

loc.m=loc.m,tt.tb=tt.tb,tt.te=tt.te,niter=100,tol.low=0.0001)

proc.time() - ptm

ptm <- proc.time()

imp.EM = imputation.knn (data.knn = res.spi, count.m=count.m,

sidsloc=sidsloc, sidsnboor=sidsnboor, loc.m=loc.m,

tt.tb=tt.tb, tt.te=tt.te)

res.imp.EM = imputation.EM (data.EM = imp.EM, xt.0=xt.0,

count.m=count.m, sidsloc=sidsloc, sidsnboor=sidsnboor,

loc.m=loc.m,tt.tb=tt.tb,tt.te=tt.te,niter=20,tol.low=0.0001)

proc.time() - ptm
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ptm <- proc.time()

imp.ME = imputation.knn (data.knn = res.spi, count.m=count.m,

sidsloc=sidsloc, sidsnboor=sidsnboor, loc.m=loc.m,

tt.tb=tt.tb, tt.te=tt.te)

res.imp.ME = imputation.ME (data.ME = imp.ME, xt.0=xt.0,

count.m=count.m, sidsloc=sidsloc, sidsnboor=sidsnboor,

loc.m=loc.m,tt.tb=tt.tb,tt.te=tt.te,niter=20,tol.low=0.0001)

proc.time() - ptm

Copyright c© Zilong Wang, 2012.
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