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Chapter 1 A Review of Mixture Models and Their Applications

1.1 Microarray Data Analysis

Mixture modeling has numerous applications. One of particular interests to us is mi-

croarray data analysis. Indeed, since our review of mixture modeling in this chapter

will prominently feature papers that have applied mixture modeling to microarray

data analysis, and since we will interpret mixture model parameters in that context,

we begin this chapter with a brief overview of microarray data analysis.

Biologists are becoming more and more interested in studying the genome-wide

patterns of gene expression because these patterns can reveal the functional impor-

tance of correlations between gene expression and the development of a phenotype

(Gibson 2002 [24]). DNA (deoxyribonucleic acid) microarrays have emerged as pow-

erful tools to allow biologists to study the genome-wide patterns of gene expression

across many conditions. Basically, there are two types of microarrays, cDNA (Com-

plementary DNA) probes and oligonucleotide. For the cDNA arrays, cDNAs are

spotted onto glass slides. The mRNA (Messenger RNA) samples labeled with one

of the red or green fluorescent dyes are hybridized to the microarray. Then the

expression levels can be derived for each spot on the microarray by analyzing the

fluorescence signal intensity. The other class, oligonucleotide arrays, is thought to

be more specific in the measurement by correcting for estimates of noise. The ma-

jor difference of oligonucleotide arrays from cDNA arrays lies in how the genes are

probed. Instead of the full length cDNAs, oligos are spotted onto the chips. Since
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oligos are usually shorter, the high density of the chips makes them more sensitive

to weakly expressed transcripts.

The DNA microarray technology makes it possible to view the expression of

thousands of genes from an experimental sample simultaneously. Accompanying its

unprecedented capability of measurement in the areas of medicine, genetics, molecu-

lar biology, and physiology, many statistical questions still remain unresolved about

the appropriate analysis of microarray data. The main purposes of DNA microarray

analysis may include but are not limited to answering the questions like whether the

observed differences in expression are statistically significant or not, what proportion

of genes are differentially expressed, what biological or physiological relationships

there may be among differentially expressed genes? These generate a large-scale hy-

pothesis testing problem corresponding to thousands of genes. Hence, there comes

the first statistical question: how to decrease the genome-wise false negative rate

(Type II error rate), while the genome-wise false positive rate (Type I error rate) is

under control? Also, due to the fact that microarray data is always of high dimen-

sion, low replication and large variation, how to accommodate these properties into

the statistical inference forms another important research question. There are many

other statistical problems involved that are worth working on. For example, how to

model differential expression, how to interpret parameters in such a model, and how

to obtain point and interval estimates of such parameters?

Of course, the application of mixture modeling is not just limited to microarray

data analysis. In the field of health sciences, Wilcox and Russell (1983) [43] proposed

a contaminated normal model for birthweight, where a predominant normal distri-

bution accounts for most birthweights while a contaminating residual distribution
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yields most very low birthweights and extremely low birthweights. In the field of

finance, hierarchical Markov normal mixture models can be used to discribe stock

returns, dollar-pound returns and bond returns (Geweke and Amisano (2007) [23]).

More introduction of mixture models will be presented in the next section.

1.2 Mixture Models

As mentioned in the first section, mixture models are widely used in many ap-

plications especially in biology, psychology and genetics (see, e.g., Titterington et

al., (1985) [40], Lindsay, (1995) [32], McLachlan and Peel (2000) [36], Geweke and

Amisano (2007) [23], Charnigo and Chesnut, LoBianco, and Kirby (2010) [10]). They

are often used to determine whether data come from homogeneous or heterogeneous

population. If there is heterogeneity, mixture modeling may be useful for describing

the nature of that heterogeneity. For the application of mixture models in DNA

microarray data, for instance, some genes may be differentially expressed while oth-

ers are not. Formally a mixture model corresponds to a mixture distribution that

represents the probability distribution of observations in the overall population. For

finite mixture models, let {f(x;φ) : φ ∈ Θ} be a parametric family of probability

density functions (PDFs). φ can be a scalar or vector. The corresponding finite

mixture distributions have the form:

g(x;φ1, . . . , φp, π1, . . . , πp) =

p∑
i=1

πif(x;φi)

where x is a generic element of the support set of X1, . . . , Xn and πi ∈ [0, 1] and∑p
i=1 πi = 1. φ1, . . . , φp, π1, . . . , πp are often treated as unknown, although in some

models (called ”contamination models”) φ1 is treated as known while the others are
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treated as unknown. Two examples are explained to see the applications of finite

mixture models in DNA microarray data.

Beta contamination model for P-values

Blalock et al. (2003) [5] analyzed the hippocampal tissue of male Fischer rats to

identify genes related to aging and cognition. Three groups of rats(10 old, 1o middle-

aged, and 10 young) received 7-day memory training, after which hippocampal tissue

was collected and analyzed on an individual microarray (one chip per rat). In total,

8,799 probe sets were scanned on each microarray chip. Let Yijk be the ith gene of kth

mouse in jth group, where i = 1 . . . 8, 799, j = 1 . . . 3, k = 1 . . . 10. Assume Yijk ∼

N(µij, σ
2
i ) independently. For each i = 1 . . . 8, 799, we wish to test the hypothesis:

H0 : µi1 = µi2 = µi3

ANOVA is applied to all of the 8,799 hypothesis testing problems. A P -value can be

computed from each hypothesis test.

A mixture of Beta distributions can be used to model the P -values in such large-

scale hypothesis testing. The P -values for genes without expression alterations are

viewed as independently and identically distributed according to Beta(1, 1), while

the P -values for differentially expressed genes are treated as a sample from another

Beta distribution. In the hippocampal aging example, let P1, . . . , P8799 be the P -

values from 8,799 hypothesis tests. For i = 1, . . . , 8, 799, let Ti be the latent variable

indicating the group membership of the ith gene. That is,

Ti =

 1 if the ith gene is differentially expressed

0 otherwise
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Conditioning on Ti, then

Pi|(Ti = 0) ∼ Beta(1, 1) and Pi|(Ti = 1) ∼ Beta(α, β)

where α > 0 and β > 0. Let π ∈ [0, 1] be the proportion of genes in the batch that

are differentially expressed, and 1− π be the proportion of genes without expression

alterations. Hence the marginal distribution of Pi is a mixture Beta distribution

with the form:

(1− π)Beta(1, 1) + πBeta(α, β)

where π ∈ [0, 1], α > 0 and β > 0. Technically, the Beta contamination model allows

Beta(α, β) = Beta(1, 1), but in practice we anticipate α ∈ (0, 1) and β ∈ (1,∞).

Since the Beta contamination model technically allows Beta(α, β) = Beta(1, 1),

the omnibus null hypothesis is not as simple as π = 0 but rather has the form

π(α− 1) = π(β − 1) = 0.

Normal contamination model for Z statistics

The second example is about real microarray data for 10 SARS patients and 4

healthy controls. The data are available at the Gene Expression Omnibus of the

National Center for Biotechnology Information. (see Dai and Charnigo (2010) [18]).

For each of the 8,793 genes, one can compute the Z statistic Zi or T statistic Ti

for i = 1 . . . 8, 793 such that Zi has a standard normal distribution or Ti has a T

distribution on ν degrees of freedom for some ν > 0 under the null hypothesis of

no differential expression. Let Φ(·) denote the cumulative distribution function for

a standard normal random variable, and Ψ(·) denote the cumulative distribution

function for a T random variable on ν degrees of freedom. Thus Ψ(Ti) has a uniform

distribution on [0, 1], and then Φ−1(Ψ(Ti)) has a standard normal distribution under
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the null hypothesis. In analogy to the Beta contamination model, let π ∈ [0, 1] be

the proportion of genes in the batch that are differentially expressed, and 1 − π be

the proportion of genes that are not differentially expressed. Also the Z statistics

for the genes that are without expression alteration are N(0, σ2) for some σ2 > 0,

while the Z statistics for genes that are differentially expressed are N(µ, σ2), where

µ ∈ R. The normal contamination model technically allows µ = 0, but in practice

we anticipate µ 6= 0. Each Zi has a contaminated normal distribution:

(1− π)N(0, σ2) + πN(µ, σ2)

σ2 is a nuisance parameter common to both components of the normal contamination

model and σ2 may be treated as either known or unknown. Moreover, whether

σ2 is treated as known or unknown has implications for testing the omnibus null

hypothesis. Since the normal contamination model technically allows µ = 0, the

omnibus null hypothesis is not as simple as π = 0 but rather has the form πµ = 0.

1.3 Likelihood Ratio Test and Modified Likelihood Ratio Test

The ordinary likelihood ratio test (LRT) is widely used in parametric hypothesis

testing problems. Under standard regularity conditions, it has a simple and elegant

asymptotic χ2 distribution under the null hypothesis (Wilks, 1938) [44]. But when it

comes to the mixture model problems, most of the asymptotic results of LRT can’t

be applied. The three reasons that might cause complications of the asymptotic null

distribution of the ordinary LRT, as Lemdani and Pons (1999) [28], Lindsay (1989)

[31], and Zhu and Zhang (2004) [45] mentioned, are:

• The parameters are not identifiable when H0 is true.
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• Possible values for the parameters when H0 is true are on the boundary of the

parameter space.

• The Fisher information matrix may be singular.

A lot of research has been done to study the asymptotic properties of LRT for mix-

ture models. Except where otherwise indicated all theoretical results mentioned in

Chapter 1 regard tests of homogeneity (i.e., one component versus two) under the

null hypothesis. Hartigan (1985) [26], Bickel and Chernoff (1993) [3] mentioned that

the LRT goes to infinity with probability 1 if Θ is unbounded even under the nor-

mal kernel N(θ, 1). Chernoff and Lander (1995) [13] suggested an approach based

on Kullback Leibler information when the Fisher information matrix is singular.

Lemdani and Pons (1999) [28], Chen and Chen (2001) [15] proved that the limiting

distribution of the likelihood ratio statistic is the squared supremum of a truncated

standard Gaussian process. The reason why the result of Lemdani and Pons (1999)

[28], Chen and Chen (2001) [15] contradicts with that of Hartigan (1985) [26] is that

Lemdani and Pons, Chen and Chen took the parameter space Θ to be compact while

Hartigan did not.

Lindsay (1989) [31] proposed the method of moments to solve the problem of de-

termining an unknown mixing distribution. The bootstrap method was first derived

by McLachlan (1987) [35] to assess the null distribution of the LRT for a single normal

density versus a mixture of two normal densities in the univariate case. The asymp-

totic distributions of maximum likelihood estimators and likelihood ratio statistics

were derived by Self and Liang (1987) [38] when the true parameter value may be

on the boundary of the parameter space. Although the large sample behavior of
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the likelihood ratio statistic for a mixture model has been studied extensively, it is

still not easy to implement mainly because the determination of the critical value

involves the supremum of a Gaussian process.

Chen et al. (2001) [14] proposed a modified likelihood ratio test (MLRT) for

homogeneity by adding a penalty term C log(4π(1− π)), where C is a positive con-

stant, to the ordinary log likelihood function. The maximizers for the modified log

likelihood function are called maximum modified likelihood estimators (MMLEs).

The MMLEs are consistent under the null hypothesis f(x;φ0), which means φ̂1 and

φ̂2 converge in probability to φ0. For 0 < π < 1, φ1, φ2 ∈ Θ, the modified likelihood

is defined to be

ln(π, φ1, φ2) =
n∑
i=1

log{(1− π)f(Xi;φ1) + πf(Xi;φ2)}+ C log{4π(1− π)}.

The modified likelihood function is one method to address the non-identifiability

problems. By adding the penalty term C log(4π(1−π)), the estimator of π is bounded

away from 0 and 1, so that a null hypothesis of π(φ2 − φ1) = 0 effectively becomes

a null hypothesis of φ2 − φ1 = 0.

The other method used to circumvent the non-identifiability problems is reparametriza-

tion. See Lemdani and Pons (1999) [28]. We do this reparametrization by defining

v := π(φ2 − φ1). And then the null hypothesis

H0 : π = 0 or φ1 = φ2

is changed into

H0 : ν = 0

Then the null hypothesis under reparametrization is a point instead of a set of pa-

rameters. The Beta contamination model, for example, can be reparametrized by
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taking ν = π((α, β)t − (1, 1)t). As shown by Dai and Charnigo (2008) [18], one may

also combine the modified likelihood and reparametrization approaches.

The modified likelihood function can be viewed from a Bayesian perspective. Re-

member the general relationship among a posterior distribution, a prior distribution,

and a likelihood function,

h(φ|X) ∝ h(φ)h(X|φ),

where X = (X1, . . . , Xn)t. Taking the logarithm on both sides, we get

log h(φ|X) = log h(φ) +
n∑
i=1

log h(Xi|φ) + g(X),

where g(X) is a quantity not depending on φ. Let log h(φ) = C log(4π(1 − π)),∑n
i=1 log h(Xi|φ) =

∑n
i log[(1 − π)f(X;φ1) + πf(X;φ2)], then the form of the pos-

terior distribution coincides with the modified likelihood function. Let (π̂, φ̂1, φ̂2) be

the maximizer of ln(π, φ1, φ2) over the full parameter space, and let φ̂0 maximize

ln(0.5, φ0, φ0) over the parameter space for the null hypothesis. The MLRT statistic

is then defined as:

λn := 2ln(π̂, φ̂1, φ̂2)− 2ln(0.5, φ̂0, φ̂0)

where π̂, φ̂1, φ̂2 are the MMLEs. The null hypothesis is rejected for large values of λ.

The asymptotic behavior of the MLRT has been studied for several different

mixture models. For instance, let λN and λB be the test statistics for the normal

contamination model and Beta contamination model respectively. Dai and Charnigo

(2010) [19] showed that λN
L−→ χ2

1 under the null hypothesis of no contamination

and under any fixed alternative, n−1λN converges in probability to some positive

constant. Dai and Charnigo (2008) [18] proved that λB has a limiting distribution of

χ2
2 under the null hypothesis. More generally, for any contamination density model,
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when satisfying appropriate regularity conditions, the MLRT statistic converges in

law to χ2
k under the null hypothesis of no contamination, where Θ ⊂ Rk. They also

established the asymptotic consistency of the MLRT under fixed alternatives and

derived a limiting distribution under contiguous local alternatives, revealing that the

MLRT is asymptotically locally unbiased.

1.4 D-test

D-test was first proposed by Charnigo and Sun (2004) [9], to test homogeneity in

mixture models. It uses the Lebesgue-measure L2 distance between a fitted homo-

geneous model under the null hypothesis and a fitted heteogeneous model under

the alternative hypothesis to do the hypothesis testing problem. Large value of D-

test statistic rejects the null hypothesis of homogeneity. The D-test statistic for a

contamination model is

d :=

∫
R
w(x)([(1− π̂)f(x;φ0) + π̂f(x; φ̂)]− f(x;φ0))2dx

where φ̂ and π̂ are estimators under the alternative hypothesis, φ0 is the known pa-

rameter defining the homogeneous distribution under the null hypothesis. MMLE’s

are recommended for these estimators because that gives tractable asymptotic null

distributions. w(x) is positive, which is a weighting function. For w(x) = 1, it is

an ordinary D-test statistic. For other w(x), it is a weighted D-test statistic. The

choice of the weighting function may have a big effect on the performance in many

situations. A weighting function carefully chosen based on the anticipated shape of

the contaminating density can enhance the power of the D-test while keeping the

actual Type I error probability close to the nominal Type I error probability.
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Sometimes the original data including some private information may not be re-

leased to the public. One advantage of the D-test statistic is that it does not depend

on the whole data set directly. In particular, the D-test is purely a function of the

parameter estimators, and often this function can be expressed in closed form ( i.e.,

the integral defining the D-test statistic can be evaluated analytically).

Taking the Beta contamination model and Normal contamination model as ex-

amples, the D-test statistic for the Beta contamination model is

d :=

∫ 1

0

w(x)([(1− π̂)f(x;α0, β0) + π̂f(x; α̂, β̂)]− f(x;α0, β0))2dx

Assuming that w(x) has the form xc1(1− x)c2 , for some constants c1 and c2, this

D-test statistic can be expressed in closed form

d :=
2∑
i=0

2∑
j=0

π̂iπ̂j
B(c1 + α̂i + α̂j − 1, c2 + β̂i + β̂j − 1)

B(α̂i, β̂i)B(α̂j, β̂j)

where π̂0 := −1, π̂1 := 1− π̂, π̂2 := π̂, α̂0 = α̂1 := α0, α̂2 := α̂, β̂0 = β̂1 := β0, β̂2 := β̂,

and

B(γ, η) :=

∫ 1

0

xγ−1(1− x)η−1dx

The D-test statistic for the Normal contamination model is

d :=

∫
R
w(x)([(1− π̂)f(x;µ0, σ̂

2) + π̂f(x; µ̂, σ̂2)]− f(x;µ0, σ̂
2
0))2dx

Assuming that w(x) = exp[c(x− µ0)2], for some constant c, this D-test statistic

can also be expressed in closed form

d :=
2∑
i=0

2∑
j=0

π1π2
√

2π
√
σ̂2
i + σ̂2

j − 2cσ̂2
i σ̂

2
j

exp[−1

2

(µ̂i − µ̂j)2 − 2cσ̂2
i (µ̂j − µ0)2 − 2cσ̂2

j (µ̂i − µ0)2

σ̂2
i + σ̂2

j − 2cσ̂2
i σ̂

2
j

]
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with π̂0 = −1, π̂1 = 1− π̂, π̂2 = π̂, µ̂0 = µ̂1 = µ0, µ̂2 = µ̂, and σ̂2
1 = σ̂2

2 = σ̂2.

The asymptotic behavior of the D-test statistic was also analyzed. Charnigo and

Sun (2010) [11] provided asymptotic results for the D-test statistic when φ1 was

unknown, including the case of a normal kernel with unknown nuisance parameter

σ2 common to all components. Dai and Charnigo (2008) [18] provided asymptotic

results when φ1 was known, while Dai and Charnigo (2010) [19] covered the case of a

normal kernel with unknown nuisance parameter σ2 common to all components. To

be more specific, Dai and Charnigo (2008) [18] established when w(x) is defined to be

1/f(x;φ0), the weighted D-test statistic multiplied by the sample size nd converges in

law to χ2
k under the null hypothesis of no contamination under regularity conditions,

where Θ ⊂ Rk. The weighted D-test is asymptotically locally unbiased under con-

tiguous local alternatives and consistent under fixed alternatives. Dai and Charnigo

(2010) [19] proved for the Normal contamination model, when σ2 is unknown, as-

suming that σ2
0 is the true value of σ2 and there is an open neighborhood about σ2

0 in

the parameter space, then 4π1/2nσ0d converges in law to χ2
1 under the null hypothesis.

Copyright c©Feng Zhou 2014
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Chapter 2 Moment-Based Inference for Contaminated Chi-Square Model

2.1 Introduction

Consider the mixture model (Titterington et al, 1985 [40]; Lindsay, 1995 [32]; McLach-

lan and Peel, 2000 [36]) with probability density function (pdf)

(1− γ)χ2
ν(0) + γχ2

ν(µ), (2.1)

where 0 ≤ γ ≤ 1, χ2
ν(0) denotes the central Chi-Square pdf on ν > 0 degrees of free-

dom (df), and χ2
ν(µ) denotes the Chi-Square pdf on ν df with non-centrality parame-

ter µ ≥ 0. Recall that the pdf of χ2
ν(µ) is fX(x; ν, µ) = 1

2
e−(x+µ)/2(x

µ
)(ν/4−1/2)Iν/2−1(

√
µx),

where Iν(z) is a modified Bessel function of the first kind. We assume that ν is known,

while γ and µ are unknown. We refer to (2.1) as the Contaminated Chi-Square (CCS)

model, since we regard χ2
ν(0) as being contaminated by χ2

ν(µ).

In this chapter, we develop a convenient procedure for testing

H0 : γµ = 0 vs. H1 : γµ > 0, (2.2)

we analyze its asymptotic and finite-sample properties, and we propose estimators

of these parameters in the event that H0 is rejected. For a reason that will become

apparent later, we refer to H0 as the omnibus null hypothesis. The CCS model sim-

plifies to χ2
ν(0) if and only if the omnibus null hypothesis is true.

The CCS model and the omnibus null hypothesis relate to large-scale ANOVA

testing and can be used in the microarray data analysis. Consider the example in

Blalock et al (2003) [5], the hippocampal tissue was collected and analyzed on an
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individual microarray of three groups of rats (10 old, 10 middle-aged and 20 young).

In total, 8,799 probe sets were scanned on each microarray chip. For each of 8,799

genes, a one-way ANOVA was conducted to compare expression levels across the

three groups. If the F statistics from ANOVA for each gene are transformed to

the Chi-Square statistics, for example, by using a probability integral transform:

Xi := cdf−1
χν1

(cdfFν1,ν2 ), where ν1 and ν2 are the numerator and denominator df for

the F statistic, then we may use CCS model to test the omnibus null hypothesis.

The CCS model may be similarly applied in other scenarios involving large num-

bers of ANOVA tests. For instance, the CCS model may be employed to analyze

data on copy number variation, transcript splicing variation, or DNA methylation

(Breheny et al, 2012 [6], Vandiedonck et al, 2011 [41], Herman, 1995 [27]).

The Chi-Square statistics (obtained by transforming F statistics) associated with

CCS model are introduced for two reasons. First, in the situation when the microar-

ray data analyses compare more than two populations, the Chi-Square statistics

should be applied here since ANOVA does not yield a Z score. In this case, the

methodology of Dai and Charnigo (2010) [19] is inapplicable. However, the method-

ology proposed herein is applicable. In fact, the methodology proposed herein is

still applicable when only two populations are compared, since a Z score may be

converted to a Chi-Square statistic via squaring.

Second, since the omnibus null hypothesis for the beta mixture model has a two-

sided alternative, the differential expression is not the only reason that may lead to

the rejection of the uniform distribution from a beta mixture model for P -values.

Recall that the beta mixture model studied by Dai and Charnigo (2008) [18] has the

form (1 − γ)Beta(1, 1) + γBeta(α, β), where 0 ≤ γ ≤ 1 and α > 0, β > 0. Another
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possible reason for rejection of the uniform distribution is that there may be too

many large P -values instead of too many small P -values as would be the case with

0.5 Beta(1,1) + 0.5 Beta(2,0.5). The tests of Dai and Charnigo (2008) [18] will detect

an excess in either direction. Thus, the power to detect a specific alternative that

is indicative of systematic differential expression may be lower than desired. But

the Chi-Square statistics transform the alternative to the omnibus null hypothesis

to a one-sided test, which overcomes the aforementioned limitation by rejecting the

omnibus null hypothesis only when there is an excess of large Chi-Square statistics

(or, equivalently, small P -values). As such, the test proposed herein may have bet-

ter power to detect systematical differential expression than the tests of Dai and

Charnigo (2008) [18].

2.2 Testing

Suppose that X1, X2, . . . , Xn are a random sample from the CCS model (2.1). Our

procedure for testing the omnibus null hypothesis in (2.2) is an intersection-union

test based on the method of moments. More specifically, let

S := n−1
∑

1≤k≤n

Xk−ν and W := ν2+2ν(1−n−1
∑

1≤k≤n

Xk)+n
−1
∑

1≤k≤n

X2
k−4n−1

∑
1≤k≤n

Xk.

(2.3)

Lemma 1. S converges in probability to γµ and W converges in probability to γµ2.

Proof. Since X1, X2, . . . , Xn are a random sample from the CCS model (2.1), we

may get E[X1] = ν + γµ and E[X2
1 ] = 2ν + ν2 + 4γµ + 2γνµ + γµ2. Then E[S] =

E[n−1
∑

1≤k≤nXk] − ν, which converges in probability to γµ by the weak law of
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large numbers. And E[W ] = ν2 + 2ν(1−E[n−1
∑

1≤k≤nXk]) +E[n−1
∑

1≤k≤nX
2
k ]−

4E[n−1
∑

1≤k≤nXk], which converges in probability to γµ2 by the weak law of large

numbers and slutsky’s theorem.

This motivates us to reject the omnibus null hypothesis if S > scrit and W > wcrit,

where scrit and wcrit are chosen to achieve the desired Type I error probability.

Theorem 1 below indicates how scrit and wcrit may be chosen. Before stating Theorem

1, we establish some notations.

Let φ denote the standard normal cumulative distribution function and zc the

c quantile of the same, i.e. φ(zc) = c. Let rj denote the jth moment of χ2
ν(0) for

1 ≤ j ≤ 4, R the 2 x 2 matrix whose ijth entry is ri+j− rirj, and B the 2 x 2 matrix

whose first column is (1, 0) and whose second column is (−2ν − 4, 1).

Theorem 1. Let 0 < δ < 1 and 0 < ε < 1 satisfy δε = α. Under the omnibus null

hypothesis,

limn→∞P [S > z1−δn
−1/2a

1/2
11 and W > z1−εn

−1/2a
1/2
22 ] = α, (2.4)

where a11 and a22 are the diagonal entries of the 2× 2 matrix A := BTRB.

Moreover, under any fixed alternative (γ, µ) = (c1, c2) with 0 < c1 ≤ 1 and c2 > 0,

limn→∞P [S > z1−δn
−1/2a

1/2
11 and W > z1−εn

−1/2a
1/2
22 ] = 1. (2.5)

Proof. Under the omnibus null hypothesis, γµ = γµ2 = 0 Since we know that E[S] =

E[n−1
∑

1≤k≤nXk] − ν = γµ = 0, and E[W ] = ν2 + 2ν(1 − E[n−1
∑

1≤k≤nXk]) +

E[n−1
∑

1≤k≤nX
2
k ]−4E[n−1

∑
1≤k≤nXk] = γµ2 = 0, then S and W will both converge
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in probability to 0. More specifically, n1/2(n−1
∑

1≤k≤nXk − nv, n−1
∑

1≤k≤nX
2
k −

2ν− ν2)T converges in law to the multivariate normal distribution with mean vector

(0, 0)T and covariance matrix R by the Central Limit Theorem. Then (S,W )T

converges in law to the multivariate normal distribution with mean vector (0, 0)T and

covariance matrix A by Cramer’s Theorem, since B contains the partial derivatives

relating (S,W )T to n1/2(n−1
∑

1≤k≤nXk − nv, n−1
∑

1≤k≤nX
2
k − 2ν − ν2)T . The key

observation to obtain (2.4) is that the off-diagonal entries of A are 0, whence P [S >

z1−δn
−1/2a

1/2
11 and W > z1−εn

−1/2a
1/2
22 ] converges to (1−φ[z1−δ])(1−φ[z1−ε]) = δε = α.

Under the fixed alternative (γ, µ) = (c1, c2), S converges in probability to c1c2 > 0

and W converges in probability to c1c
2
2 > 0, so that P [S ≤ z1−δn

−1/2a
1/2
11 ] and P [W ≤

z1−εn
−1/2a

1/2
22 ] converge to 0. Since P [S > z1−δn

−1/2a
1/2
11 and W > z1−εn

−1/2a
1/2
22 ] ≥

1− P [S ≤ z1−δn
−1/2a

1/2
11 ]− P [W ≤ z1−εn

−1/2a
1/2
22 ], the former must converge to 1.

A few comments are in order. First, one may choose ε := 1 (i.e.,choose wcrit :=

−∞) and effectively base the test on only S rather than on both S and W. In this

case, one may replace z1−δn
−1/2a

1/2
11 by n−1qνn,1−α − ν, where qνn,1−α denotes the

1−α quantile of χ2
νn(0). Then the Type I error probability is exactly α for all finite

n, not just converging to α in the limit. However, a potential problem with this

choice is that one may reject the omnibus null hypothesis when W < 0. Since W is a

moment-based estimator of γµ2, moment-based estimation of γ and µ when W < 0

leads to the estimator of γ and/or that of µ not belonging to the appropriate param-

eter space. Taking the hippocampal aging data as an example, the moment-based

test only depending on S will lead to a negative estimation of either γ or µ , which

is outside of the parameter space.
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Second, choosing ε ≤ 1/2 and δ ≤ 1/2(i.e., choosing wcrit ≥ 0 and scrit ≥ 0)

guarantees that γ and µ may be estimated using moments when the omnibus null

hypothesis is rejected. This is described in Theorem 2 and its Corollary below. More

specific choices of ε and δ can be recommended based on power considerations. How-

ever, while S and W are asymptotically may be independent under the omnibus null

hypothesis, they may be correlated when the omnibus null hypothesis is false. Thus,

analytically evaluating the power in relation to ε and δ is difficult. However, we can

gain some insights from simulation studies, which we pursue in Section 2.4.

Two advantages of the moment-based approach can be listed here. One is, in con-

trast with a likelihood ratio test for the number of components in a mixture model,

the testing procedure of Theorem 1 does not require a compact parameter space;

note that no upper bound for µ was assumed. The other one is, the critical value is

known and thus need not be estimated via resampling or random field theory.

We remark that the problem in (2.2) is not, strictly speaking, determining the

number of components in a mixture model. This is because, although (2.1) reduces

to one components under the omnibus null hypothesis, (2.1) also reduces to one com-

ponent when γ = 1 and µ > 0.

2.3 Estimation

We have known that E[S] = γµ, E[W ] = γµ2. So intuitively, S2

W
and W

S
can

be used to estimate γ and µ respectively when the omnibus null hypothesis is

false. We can theoretically prove that S2

W
and W

S
are n1/2−consistent estimators

of γ and µ under the alternative hypothesis. To state Theorem 2, we introduce
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some more notations. Let mj := E[Xj
1 ] for 1 ≤ j ≤ 4,M the 2 × 2 matrix

whose ijth entry is mi+j − mimj, and D the 2 × 2 matrix whose first column is

((m1−ν)(−m2−4m1−2νm1), (m1−ν)2)T/(m2 +2ν+ν2−4m1−2νm1)2 and whose

second column is (−m2 + 2ν + ν2,m1 − ν)T/(m1 − ν)2.

Theorem 2. Under any fixed alternative (γ, µ) = (c1, c2) with 0 < c1 ≤ 1 and c2 > 0,

n1/2(S2/W − c1,W/S− c2)T converges in law to the multivariate normal distribution

with mean vector (0, 0)T and covariance matrix DTMD.

Proof. By the Central Limit Theorem, n1/2(n−1
∑

1≤k≤nXk−ν−c1c2, n
−1
∑

1≤k≤nX
2
k−

(ν + c1c2)2 − c2
2c1(1− c1)− 4c1c2 − 2ν)T converges in law to the multivariate normal

distribution with mean vector (0, 0)T and covariance matrix M. The desired result

then follows from Cramer’s Theorem.

Although the probability that S < 0 or W < 0 is nonzero (in which case the

estimator or γ and/or that of µ will not belong to the appropriate parameter space),

with ε ≤ 1/2 and δ ≤ 1/2, this event is a subset of accepting the omnibus null

hypothesis. Hence, if one agrees to take ε ≤ 1/2 and δ ≤ 1/2 as well as to estimate

γ and µ only if the omnibus null hypothesis is rejected, then this event will not be

encountered in practice. The following corollary, an immediate consequence of (2.5)

from Theorem 1, also demonstrates that such an agreement does not disturb the

conclusion of Theorem 2.

Corollary 1. Under any fixed alternative (γ, µ) = (c1, c2) with 0 < c1 ≤ 1 and c2 >

0, the conditional distribution of n1/2(S2/W − c1,W/S − c2)T given that W > wcrit
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and S > scrit converges in law to the multivariate normal distribution with mean

vector (0, 0)T and covariance matrix DTMD.

Proof. By Bayes’ Theorem, the conditional pdf of n1/2(S2/W − c1,W/S− c2)T given

that W > wcrit and S > scrit is the unconditional pdf of n1/2(S2/W − c1,W/S− c2)T

multiplied by an indicator for these inequalities, divided by the probability that these

inequalities hold. Since the denominator converges to 1 by Theorem 1, the result

follows immediately from Theorem 2.

2.4 Simulation Studies

To investigate the performance of the moment-based test, we conducted a number

of simulation studies to assess the Type I error probability and the power of our

testing procedure in finite samples. In Figure 2.1 and in the following text, we use

this shorthand:

CCS1 The procedure for testing the omnibus null hypothesis in (2.2) is applied di-

rectly to a random sample X1, X2, . . . , Xn from the CCS model (2.1), with

δ = 1/2 and ε = 1/10. These choices of δ and ε emphasize W over S for rejec-

tion of the omnibus null hypothesis, requiring only that the latter be positive.

CCS2 Proceed as above but with δ = ε =
√

0.05. These choices emphasize W and S

equally.

CCS3 Proceed as above but with δ = 1/10 and ε = 1/2 . These choices of δ and

ε emphasize S over W for rejection of the omnibus null hypothesis, requiring
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only that the latter be positive.

CB A random sample X1, X2, . . . , Xn from the CCS model (2.1) is transformed by

the survival function of the central Chi-Square distribution on ν df to yield

”p-values” P1, P2, . . . , Pn. These are treated as if they had arisen from the

Contaminated Beta (CB) model with pdf

(1− γ)10<p<1 + γ10<p<1p
α−1(1− p)β−1/B(α, β), (2.6)

where B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt The MLR test is applied to P1, P2, . . . , Pn

to see whether the CB model can be reduced to a uniform distribution (Dai

and Charnigo, 2008 [18]).

For each sample size n ∈ {50, 100, 250, 500, 1000}, we generated 10,000 random sam-

ples X1, X2, . . . , Xn from CCS model (2.1) with γµ = 0. Then we determine how

many times out of 10,000 we reject H0. These are Type I error rates, which are dis-

played in the top left panel of Figure 2.1. For methods CCS1, CCS2 and CCS3, the

Type I error rates are between 0.0504 and 0.0613 at all n. Thus, the critical values

for our testing procedure, which were based on the asymptotic result of Theorem 1,

appear satisfactory for finite samples. For method CB, the calculated Type I error

rates decrease from 0.0701 at n=50 to 0.0338 at n=1000, indicating that the MLR

test applied to p-values is slightly anticonservative for small n.

The remaining panels of Figure 2.1 present the power curves for these five models

(γ, µ) = (0.2, 1), (γ, µ) = (0.4, 1), (γ, µ) = (0.2, 2), (γ, µ) = (0.4, 2), (γ, µ) = (0.2, 3)

respectively. Power is calculated as the number of omnibus null hypothesis rejections

divided by 10,000. In all scenarios, power increases with n for each method as what

we anticipated.
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In the panel of power for γ = 0.2 and µ = 1, Method CCS3 exhibits better power

than method CCS2, which in turn is more powerful than method CCS1. Method

CB appears relatively strong for large n but comparatively weak for small n. The

power of method CB for γ = 0.4 and µ = 1 starts with weak power for small n

but performs much better than other methods for large n. The powers for the three

Contaminated Chi-Square methods are still in the order of CCS3, CCS2 and CCS1.

Actually, when looking into the last three panels, all of these scenarios maintain the

relative ordering of methods CCS3, CCS2, and CCS1. Roughly speaking, method

CB fares well with larger γ, µ, and n but does not perform as well with smaller γ,

µ, and n.

Figure 2.1: Type I Error Rates and Powers for CCS1, CCS2, CCS3 and CB Models

Based on the results of these simulation studies, CCS3 has better power than

CCS1 and CCS2. So we recommend taking δ := 1/10 and ε := 1/2 when applying
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our testing procedure. If n is large, or if γ and µ are anticipated to be large, then one

may also wish to consider transforming Chi-Square statistics to P -values and then

analyzing P -values using the CB model (2.6). However, referring to the problem we

mentioned in section 2.1, a naive analysis of P -values may lead to an inappropriate

declaration of systematic differential expression; therefore, care must be exercised in

any decision to transform Chi-Square statistics to P -values.

We also note that our moment-based procedure has its own advantages of no

resampling required and no compactness restriction on the parameter space. But it

may be less powerful than other approaches yet to be developed. In particular, we

will investigate in chapter 3 how the EM test (Chen and Li, 2009 [16]; Li, Chen, and

Marriott, 2009 [29]) can be adapted to this setting.

2.5 Case Study

Dai and Charnigo (2008) [18] applied the CB model (6) to analyze the P -values

generated from a microarray experiment conducted by Blalock and colleagues (2003)

[5]. The hippocampal tissue was collected and analyzed on an individual microarray

for three groups of rats (10 old, 10 middle-aged, and 10 young). In total, 8799

probe sets were scanned on each microarray chip. For each of 8,799 genes, a one-way

ANOVA was conducted to compare expression levels across the three groups. This

produced 8,799 F statistics, which in turn yielded the P -values. Blalock et al. (2003)

[5] introduced a filtration procedure to reduce the number of gene probe sets and

P -values by three steps:
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1A Exclude all probe sets rated absent.

2A Exclude all present transcript sets representing unannotated expressed sequence

tags.

3A Exclude genes for which the young and old groups did not differ by at least

75% of the maximal difference among groups.

One problem emerged when Dai and Charnigo (2008) [18] analyzed the P -values

and, in particular, employed the MLR test (Chen, Chen, and Kalbfleisch, 2001 [14])

and D test (Charnigo and Sun, 2004 [10]) to see whether the CB model could be

reduced to a uniform distribution. For the genes eliminated at step 3, the MLR test

and D test decisively rejected the omnibus null hypothesis of a uniform distribution

because there are fewer large P -values in the right tail. In this case, the departure

from a uniform distribution may not indicate differential expression but rather, as

suggested by Allison et al (2002) [2], correlations among the P -values correspond-

ing to different genes. One can also see that the estimated values of parameters,

γ̂ = 0.696, α̂ = 1.01, and β̂ = 1.28, do not indicate an excess of small P -values.

Thus, the alternative to the omnibus null hypothesis of a uniform distribution may

be too broad if our main interest is in ascertaining differential expression.

To avoid this problem, Chi-Square statistics can be applied. Instead of analyzing

P -values, we transform the F statistics to the Chi-Square statistics based on the

probability integral transformation (Casella and Berger, 2002 [7]). More specifically,

we first converted the F statistics to their corresponding P -values by successively

applying the cumulative distribution function (cdf) of the central F distribution on

2 and 27 df. Since the P -values follow the uniform(0,1) distribution, under the om-
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nibus null hypothesis the inverse cdf of the central Chi-Square distribution on 2 df

leads to the Chi-Square statistics.

Figure 2.2 shows histograms of Chi-Square statistics for all 8,799 genes, for the

genes eliminated in the first two steps, and for the genes remaining after each step.

The fitted CCS model and the null model χ2
2(0) are superimposed against each his-

togram. Also the parameter estimates are displayed in Table 2.1. From six panels,

each fitted model is in much better concordance with its respective histogram than

the null model, though the fitted model yields a smaller density between 0 and 2 but

a larger density between 5 and 10 compared to the null model. This is most apparent

in the last panel. Correspondingly, our procedure for testing the omnibus null hy-

pothesis in (2.2) yields a P -value less than 0.0001, regardless of whether one defines

the P -value by taking δ = 1/2, ε = 2α or δ = ε = α1/2 or δ = 2α, ε = 1/2. Here, P -

value is defined as the smallest α at which one rejects H0. For example, consider the

case in which δ = 1/2 and ε = 2α, we have a series of choices of ε and corresponding

α. For instance, we have ε1 = 0.20, α1 = 0.10, ε2 = 0.10, α2 = 0.05, ε3 = 0.05, α3 =

0.025, ε4 = 0.02, α4 = 0.01, ε5 = 0.01, α5 = 0.005, ε6 = 0.005, α6 = 0.0025. Sup-

pose we reject the omnibus null hypothesis at ε1 = 0.20, α1 = 0.10, ε2 = 0.10, α2 =

0.05, ε3 = 0.05, α3 = 0.025, then the P -value is no larger than 0.025.

The top panel of Figure 2.3 shows a histogram of Chi-Square statistics for the

1,483 genes eliminated in step 3, along with the null model χ2
2(0). A fitted CCS

model is not superimposed because W is negative in the notation of Section 2.3.

This precludes valid moment-based estimation of γ and µ. Even if a likelihood-based

approach can be applied to estimate γ and µ, this is not called for because the om-

nibus null hypothesis is not rejected at any α ≤ 0.25, regardless of whether one takes
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Table 2.1: Parameter Estimations for All Genes, Remaining Genes and Eliminated
Genes Groups by CCS Model

Genes Estimated γ Estimated µ
All genes 0.231 3.25
Remaining after 1A 0.236 4.13
Eliminated in 1A 0.389 1.28
Remaining after 2A 0.223 4.54
Eliminated in 2A 0.314 2.77
Remaining after 3A 0.308 5.19

δ = 1/2, ε = 2α or δ = ε = α1/2 or δ = 2α, ε = 1/2. In fact, the null model is not a

bad fit to the histogram, except for overstating the number of very small Chi-Square

statistics.

The bottom panel of Figure 2.3 shows a histogram of the P -values for the same

Figure 2.2: Null Models and CCS Models for All Genes, Remaining Genes and
Eliminated Genes

1,483 genes, along with the fitted CB model (2.6) and the null model of a uniform
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distribution. From this panel, one may find there are noticeably fewer extremely

large P -values than would be compatible with a uniform distribution. And both

the MLR test and D test decisively reject the omnibus null hypothesis of a uniform

distribution for this reason rather than a surplus of small P -values. This rejection is

inappropriate insofar as one uses it to infer differential expression.

In summary, employing the CCS model to analyze Chi-Square statistics instead

Figure 2.3: Eliminated Genes in Step 3 fitted by CB Model and CCS Model

of the CB model to assess P -values resolves the aforementioned concern, because the

omnibus null hypothesis from (2.2) is not rejected for the genes eliminated in step

3. Thus, using the CCS model avoided an inappropriate declaration of differential

expression.
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2.6 Discussion

In this chapter, we have developed a moment-based testing procedure for testing the

omnibus null hypothesis of no contamination of a central Chi-Square distribution by a

non-central Chi-Square distribution. This procedure is based on the first two sample

moments, which permits critical values to be derived from quantiles of the standard

normal distribution. One of the advantages of this moment-based testing procedure

is that even for small sample sizes, there is excellent agreement between the nominal

and actual significance levels. Another advantage is that since the asymptotic null

distribution is not as complicated as the one from likelihood ratio tests for mixture

models (Dacunha-Castelle and Gassiat, 1999 [17]; Chen and Chen, 2001 [14]; Liu and

Shao, 2003 [33]; Chambaz, 2006 [8]), there is no need for re-sampling (McLachlan,

1987 [35]) or random field theory (Sun, 1993 [39]) to obtain critical values. Besides,

the Chi-Square statistics can overcome an inappropriate declaration of differential

expression which may not be avoided by analyzing P -values. Moreover, our simu-

lation studies show that, under certain conditions, analysis of Chi-Square statistics

may actually yield better power to detect differential expression than analysis of P -

values.

As for the estimating procedure, moment-based estimators of the contamination

fraction and non-centrality parameter of the contaminating distribution have been

proposed when the omnibus null hypothesis is rejected. Provided that the fraction

and parameter are both nonzero, our estimators are n1/2-consistent. Moreover, our

estimators have probability 1 of being positive, conditional on rejection of the om-

nibus null hypothesis, with a good choice of δ and ε. This differs from previous work
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in that moment-based estimators in mixture models ordinarily do not belong to their

respective parameter spaces with probability 1, as noted by Charnigo and colleagues

(2013) [12] for another type of contamination model.

Our testing and estimation procedures are primarily motivated by the modeling

of numerous Chi-Square statistics arising from microarray data analysis specifically

or large-scale testing generally. A filtration process similar to that employed by

Blalock et al (2003) [5], which can reduce Type II errors by justifying lighter controls

for Type I errors can also be applied here.

While we only investigate the application of CCS model to Chi-Square statistics

related to F statistics from one-way ANOVA, the potential applications of the CCS

model are considerably broader. For example, if the normality and equal variance

assumptions underlying one-way ANOVA are violated, then one may employ the

nonparametric Kruskal-Wallis test for equal medians. Since the Kruskal-Wallis test

statistic is distributed approximately χ2
k−1(0) when the medians are equal, the CCS

model can be applied in conjunction with Chi-Square statistics from Kruskal-Wallis

tests as easily as with F statistics from one-way ANOVA.

Moreover, sophisticated experimental designs or sampling schemes may preclude

using either one-way ANOVA or Kruskal-Wallis tests. For instance, Mao and col-

leagues (2005) [34] obtained multiple tissue samples from some of their subjects, so

that linear mixed models were required to test genewise null hypotheses. However, as

long as genewise null hypotheses are tested using Chi-Square or F statistics (or even

Z or T statistics, since these can be squared), the CCS model remains applicable.

A number of promising avenues exist for future research. One of them is to in-

vestigate whether the EM test (Chen and Li, 2009 [16]; Li, Chen, and Marriott, 2009
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[29]) can be profitably employed in the setting of the CCS model and, in particular,

whether power to reject a false omnibus null hypothesis is improved; we will pursue

this investigation in Chapter 3.

Another topic for future research is to generalize the CCS model to provide greater

flexibility for describing real data. For instance, suppose that each Xi has its own

non-centrality parameter µi under the genewise alternative hypothesis. Then we may

consider a new model,

(1− γ)χ2
ν(0) + γ

∫
χ2
ν(µ)dG(µ), (2.7)

where G is some cumulative distribution function defined on the nonnegative real

numbers. Note that the first sample moment of data from (2.7) is ν if and only if

(2.3) reduces to χ2ν(0), as both are equivalent to γ{1−G(0)} = 0. Thus, one obtains

a consistent level α test for whether (2.7) reduces to χ2
ν(0) by asking whether the

first sample moment exceeds n−1qνn,1−α, where qνn,1−α denotes the 1 − α quantile

of χ2
νn(0). However, the subsequent estimation of γ and G are anticipated to be

considerably more delicate.

But one potential problem is that our testing and estimation procedures are based

on iid data. In practice, F1, F2, . . . , Fn or X1, X2, . . . , Xn will not be independent.

How robust are these testing procedures to the iid assumption? i.e. if X1, X2, . . . , Xn

are correlated, will our tests still work? Will the type I or type II error go up?

Copyright c©Feng Zhou 2014
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Chapter 3 Modified Likelihood Ratio Test and EM Test for

Contaminated Chi-Square Model

3.1 Introduction

In Chapter 2, we developed a moment-based method for inference in the Contami-

nated Chi-Square model. Generally speaking, a moment-based approach can yield

consistent point estimators and hypothesis testing procedures under mild conditions.

However, a moment-based approach is problematic for complicated statistical models

such as large mixtures of high-dimensional distributions. The reason for that is the

equations determining the estimators of parameters are typically based on moments

of order equal to the number of model parameters, and high-order moments are ex-

ceedingly difficult to estimate accurately due to their large variances (Anandkumar

et al, 2012) [1].

An alternative to the moment-based method for testing homogeneity in finite

mixture models is the modified likelihood ratio method. Likelihood-based methods

play a central role in parametric testing problems, and among these the likelihood

ratio test (LRT) is often preferred (Chen, Chen and Kalbfleisch, 2001 [14]). Under

standard regularity conditions, the LRT statistic has a simple and elegant asymp-

totic χ2 distribution under the null hypothesis (Wilks, 1938 [44]). But most of the

asymptotic results of LRT can’t be applied to mixture models. In this chapter, we

propose a modified likelihood ratio test (MLRT), implemented with the aid of the

Expectation-Maximization (EM) algorithm (a local search heuristic for likelihood-
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based estimation) (Dempster, Laird and Rubin, 1977 [20]), for the Contaminated

Chi-Square model by introducing a penalty term C log (1− |1− 2γ|) to the log like-

lihood. We show in later sections that the MLRT has better power than the moment-

based test and enjoys an elegant asymptotic theory. The MLRT is also appealing as

a general strategy in that a large number of parameters in the model can be accom-

modated.

However, the EM algorithm has its limitations in practice, including slow con-

vergence and suboptimal local optima (Redner and Walker, 1984 [37]). Recognizing

these difficulties, we also develop an EM-test which shares the same simple limiting

distribution with the MLRT. The EM-test requires no more than two to three itera-

tions of the EM algorithm, which is time efficient. Simulation studies show that the

EM-test has accurate type I error rates and appealing power.

Chapter 3 is organized as follows. Section 3.2 states the regularity conditions

based on which the theorems and lemmas in Chapter 3 are built. Section 3.3 de-

scribes the major theorems and lemmas of inference via the MLRT and EM-test for

CCS model. The asymptotic distribution of the MLRT statistic under the omnibus

null hypothesis of homogeneity is investigated. In particular, the asymptotic null

distribution of the MLRT is 1
2
χ2

0 + 1
2
χ2

1. The estimator µ̂ is convergent in probability

to 0 under the omnibus null hypothesis. Then the EM-test statistic is proved to have

the same limiting distribution as the MLRT statistic. Section 3.4 presents the proofs

regarding asymptotic distributions. To study the type I error rates and the power

of these two test statistics, simulation studies are conducted. Section 3.5 presents

simulation results and section 3.6 analyzes data from the microarray experiment by

Blalock and colleagues (2003) [5]. These data have been studied by a moment-based
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method in section 2.5, but now will be studied using the MLRT and the EM-test.

Section 3.7 is a brief summary of the two new tests.

3.2 Regularity Conditions on the Kernel Function

Before introducing the MLRT statistic and the EM test statistic, five regularity con-

ditions are stated. These conditions are adapted from Chen, Chen and Kalbfeisch

(2001) [14]. All lemmas and theorems in Chapter 3 are built based on the following

regularity conditions. The proofs that these five regularity conditions are statisfied

for the CCS model appear in Appendix I. Below let fν(X;µ) = χ2
ν(µ), denoting the

pdf of the non-central Chi-Square distribution on ν > 0 df with non-central param-

eter µ ∈ Θ, where Θ is defined to be [0,M ], M is a large positive constant.

Condition 1. Wald’s integrability conditions. The kernel function χ2
ν(µ) satisfies Wald’s

integrability conditions for consistency of the maximum likelihood estimator,

i.e. for each µ ∈ Θ, (i) E‖ log fν(X;µ)‖ < ∞, and (ii) for sufficiently small

ρ > 0 the expected values E log f(X;µ, ρ) <∞, where

f(X;µ, ρ) = 1 + sup‖µ′−µ‖≤ρ{f(X;µ′)}.

Condition 2. Smoothness. The kernel function χ2
ν(µ) has common support for all µ ∈ Θ and

is twice continuously differentiable with respect to µ.

Condition 3. Strong identifiability. For any two mixing distribution functions Ψ1 and Ψ2
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such that ∫
fν(X;µ)dΨ1(µ) =

∫
fν(X;µ)dΨ2(µ), for all x,

we must have Ψ1 = Ψ2. The mixing distribution Ψ is defined as

Ψ(µ) = (1− γ)I(µ1 ≤ µ) + γI(µ2 ≤ µ).

Condition 4. Uniform strong law condition of large numbers. There exists integrable g

with some δ > 0 such that ‖Yi(µ)‖3 ≤ g(Xi) for all µ ∈ Θ, where Yi(µ) =

fν(Xi;µ)−fν(Xi;0)
µfν(Xi;0)

; Y (0) = f ′ν(Xi;0)
fν(Xi;0)

.

Condition 5. Tightness. The processes n−1/2
∑
Yi(µ) is tight.

3.3 Modified Likelihood Ratio Test and EM-test

Let X1, X2, . . . , Xn be a random sample of size n from a two-component CCS model

(2.1). We define the penalized log-likelihood function for CCS model as

pln(γ, µ) =
n∑
i=1

log {(1− γ)fν(Xi; 0) + γfν(Xi;µ)}+ p(γ) (3.1)

where p(γ) is a penalty function on γ. We choose p(γ) to be C log (1− |1− 2γ|)

for some positive C. The penalty term is minimized at γ = 0.5 and γ̂ is bounded

away from zero or one in probability. Li, Chen and Marriott’s paper in 2008 [29]

found this penalty function could best balance the type I error rate and the power.

However, we emphasize that the theoretical results of Li, Chen and Marriott are

not applicable to the CCS model because they did not assume one of the mixture

component parameters be to known nor did their mixture component parameters lie

on the boundary of their parameter space under the null hypothesis.
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The modified log-likelihood ratio statistic we proposed for testing homogeneity is

Ln(γ̂, µ̂) = 2{pln(γ̂, µ̂)− pln(0.5, 0)} (3.2)

where γ̂ amd µ̂ maximize the modified likelihood function (3.1) over the parameter

space γ ∈ (0, 1), µ ∈ [0,M ]. The EM algorithm is used to iteratively approximate

these maximizers. We assume that the largest number of iterations for the EM

algorithm is K. Let

γ(1) = γ0,

where γ0 is the initial value, γ(1) is the estimated value of γ in the 1st iteration, and

k goes from 0 to K. Then we calculate

µ(1) = argmaxµml(γ
(1), µ)

and

L(1)
n = 2{pln(γ(1), µ(1))− pln(0.5, 0)}.

The following procedure is the main part of the EM algorithm for k goes from 2 to

K.

• Get the conditional expectation w
(k)
i in E-step for each i = 1, 2, . . . , n.

w
(k)
i =

γ(k)fν(Xi;µ
(k))

γ(k)fν(Xi;µ(k)) + (1− γ(k))fν(Xi; 0)

• Maximize the approximation to the complete data penalized log likelihood in

M-step. Let

γ(k+1) = argmaxγ{(n−
n∑
i=1

w
(k)
i ) log(1−γ)+

n∑
i=1

w
(k)
i log(γ)+C log (1− |1− 2γ|)},
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and

µ(k+1) = argmaxµ{
n∑
i=1

w
(k)
i log f(Xi;µ)}.

• Compute

L(k+1)
n (γ(k+1), µ(k+1)) = 2{pln(γ(k+1), µ(k+1))− pln(0.5, 0)}.

Let k = k+1 and repeat the above procedure until k = K or
∣∣∣L(k+1)

n (γ(k+1), µ(k+1))− L(k)
n (γ(k), µ(k))

∣∣∣
is less than a pre-specified tolerance.

Let γ̂ and µ̂ maximize the penalized likelihood. These maximizers are numerically

approximated by the EM algorithm with γ(K) and µ(K) or γ(k+1) and µ(k+1). Like-

wise, the MLRT statistic 2{pln(γ̂, µ̂) − pln(1
2
, 0)} is numerically approximated with

L
(K)
n (γ(K), µ(K)) or L

(k+1)
n (γ(k+1), µ(k+1)). The following lemma and theorem show

that the modified maximum likelihood estimator (MMLE) µ̂ converges in probabil-

ity to 0 under the null hypothesis.

Lemma 2. Under the null hypothesis, C log (1− |1− 2γ̂|) = Op(1).

Proof. Let Ln be the MLRT statistic defined in (3.2). Let Rn = 2{ln(γ(k), µ(k)) −

ln(0.5, 0)} be the ordinary LRT statistic. First we need to prove that Ln is stachas-

tically bounded. Since C log (1− |1− 2γ|) is non-positive for γ ∈ (0, 1), it is obvious

0 ≤ Ln ≤ Rn. (3.3)

By Theorem 1 in Di and Liang’s paper (2011) [21], under the null hypothesis, Rn =

Op(1), so Ln = Op(1). Since Rn is the maximum likelihood ratio,

0 ≤ Ln − C log (1− |1− 2γ̂|) ≤ Rn.
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Thus Ln − C log (1− |1− 2γ̂|) = Op(1), so log (1− |1− 2γ̂|) = Op(1).

Theorem 3. Under the null hypothesis, µ̂→ 0 in probability as n→∞.

Proof. Let

Q(γ, µ) = E[log{(1− γ)fν(X; 0) + γfν(X;µ)} − log fν(X; 0)].

According to the uniform strong law of large numbers in C4, under the null hypoth-

esis,

1

n
{ln(γ, µ)− ln(0.5, 0)} → Q(γ, µ), (3.4)

almost surely and uniformly over δ ≤ γ ≤ 1 − δ and µ ∈ Θ. Let ω be a point in

the sample space such that (3.3) is true. Then we get a set of all these points with

probability 1. Then we prove the therem by contradiction. Follow Chen, Chen and

Kalbfeisch, 2001’s paper, we suppose there exists a ω such that the claim of the

theorem is not true, i.e., µ̂ doesn’t converge to 0. Then we can find a corresponding

subsequence n′ such that µ̂ → µ′ and µ′ 6= 0. Consider Ω′ = {µ : δ ≤ γ ≤

1− δ, |µ− 0| ≥ ε}, where ε = (µ′ − 0)/2. Then for all large n′, (γ̂, µ̂) at the sample

point ω belongs to Ω′. In addition, Q(γ, µ) < 0 for all (γ, µ) ∈ Ω′. So we have

ln′(γ̂, µ̂) − ln′(0.5, 0) < 0 for all large n′. Thus (γ̂, µ̂) can’t be the MMLE and so

µ̂→ 0 on ω. Therefore µ̂→ 0 a.s.

The other nice property of MLRT statistic is its simple limiting distribution

1
2
χ2

0 + 1
2
χ2

1 under the null hypothesis, which makes the critical value easily accessed

using a χ2 table. This distribution can be established with the aid of the following

result on the maximum modified likelihood point estimators.
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Theorem 4. Under the null hypothesis of homogeneity, we have

γ̂ − 1

2
= op(1), µ̂ = Op(n

−1/2).

γ̂ and µ̂ are the MMLE under the omnibus null hypothesis.

Theorem 5. Under the null hypothesis of homogeneity, MLRT statistic converges

in law to 1
2
χ2

0 + 1
2
χ2

1.

While the MLRT statistic enjoys a simple limiting null distribution 1
2
χ2

0 + 1
2
χ2

1,

the MLRT statistic is not time efficient since it is computed using the EM algorithm

which is characterized by slow (numerical) convergence. To solve this practical prob-

lem, we may employ the EM-test statistic, which uses only a few iterations of the

EM algorithm, and therefore is not impeded by slow convergence. The idea of the

EM-test is that we choose J number of initial values instead of only one initial value

for γ. And for each initial value, we repeat the pseudo code for the MLRT statistic

in section 3.3 except that K is equal to a very small number like 1 or 2. Hence, we

get J MLRT-like statistics which we may denote L
(K)
n (γj, µj), j = 1, 2, . . . , J . Define

the EM-test statistic to be

EM (k)
n = max{L(K)

n (γj, µj), j = 1, 2, . . . , J} (3.5)

Theorem 6. Under the null hypothesis of homogeneity, we have

γ
(k)
j − γj = op(1), µ

(k)
j = Op(n

−1/2),

where γj is the jth initial value for γ, γ
(k)
j and µ

(k)
j are the estimators from the kth

iteration of EM algorithm.

38



Theorem 7. For fixed finite K,

EM (K)
n → 1

2
χ2

0 +
1

2
χ2

1 (3.6)

in law under the null hypothesis of homogeneity.

Theorem 7 shows that the EM-test statistic shares the same simple limiting null

distribution with the MLRT statistic. In the simulation study in section 3.5, we will

see that the EM-test has desirable Type I and Type II error properties with K as

small as 1. Thus, the EM-test is more computationally efficient than the MLRT.

However, the MLRT may be more appealing when there is interest not only in hy-

pothesis testing but also in estimation, since with multiple initial values, there is

ambiguity in defining point estimators.

3.4 Proofs of Asymptotic Null Distribution of Ln and EM
(K)
n

Proof. Proof of Theorem 4. The basic idea of the proof follows Chen, H., Chen, J.,

Kalbfleisch, J.D. (2001) [14]. It can be proved that

0 ≤ −2C log(1− |1− 2γ̂|)

≤ −2(ln(γ̂, µ̂)− ln(0.5, µ̂(0.5)))

= −2{
n∑
i=1

log f(Xi; 0)−
n∑
i=1

log{(1− γ̂)f(Xi; 0) + γ̂f(Xi; µ̂)}}

+ 2{
n∑
i=1

log f(Xi; 0)−
n∑
i=1

log{(1− 0.5)f(Xi; 0) + 0.5f(Xi; µ̂(0.5))}}

= {(
∑
Y +
i )2∑
Y 2
i

+ op(1)} − {(
∑
Y +
i )2∑
Y 2
i

+ op(1)}

= op(1)
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We have proved that

2c ≤ 2{pln(γ̂, µ̂)− pln(0.5, 0)}

≤ 2{ln(γ̂, µ̂)− ln(0.5, 0)}

≤ 2
n∑
i=1

{m̂Yi} −
n∑
i=1

{m̂Yi}2{1 + op(1)}+ op(1)

≤ ((
∑n

i=1 Yi)
+)2∑n

i=1 Y
2
i

+ op(1)

(3.7)

where m̂ = γ̂µ̂. From the above two inequality, it can be concluded that

2m̂
n∑
i=1

Yi − m̂2{
n∑
i=1

Y 2
i }{1 + op(1)} = Op(1)

Because
∑n

i=1 Yi = Op(n
1
2 ) and

∑n
i=1 Y

2
i = Op(n), we get m̂ = Op(n

− 1
2 ). Because γ̂

is bounded away from 0 and 1 in probability, µ̂− 0 = Op(n
− 1

2 ).

Next we show that the asymptotic null distribution of MLRT based on the esti-

mators γ̂, µ̂, which maximize the modified likelihood function pln is a mixture of χ2

distributions. Let

Rn(γ, µ) = 2[ln(γ, µ)− ln(0.5, 0)] + C log(1− |1− 2γ|).

Write Rn(γ, µ) in the form of

Rn(γ, µ) = 2
n∑
i=1

log(1 + δi) + C log(1− |1− 2γ|),

where δi = γ{fν(Xi;µ)
fν(Xi;0)

− 1}. Put Yi = Yi(0), then

δi = mYi + ein,
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with m = γµ, and ein = γ(fν(Xi;µ)−µf ′ν(Xi;0)
fν(Xi;0)

−1). Yi(µ) is defined to be fν(Xi,µ)−fν(Xi,0)
µfν(Xi,0)

Using the Taylor Expansion, we have

Rn(γ, µ) ≤ 2
n∑
i=1

{mYi + ein} −
n∑
i=1

{mYi + ein}2 +
2

3

n∑
i=1

{mYi + ein}3.

Now several lemmas are stated to support the proof. The proof of lemmas follow the

idea of Chen, Chen and Kalbfleisch (2001) [14].

Lemma 3. Under the null hypothesis, uniformly in m,∑n
i=1{mYi}3∑n
i=1{mYi}2

= Op(1)|m|.

Proof. From the uniform strong law condition of large numbers, which is satisfied for

the family of Chi-Square distributions indexed by their non-centrality parameters,

n−1

n∑
i=1

{mYi}k → E[mY1]k,

almost surely and uniformly for k = 2, 3. From the strong identifiability condition,

the limit of n−1
∑n

i=1{mYi}k when k = 2 is a positive-definite quadratic form in m.

So its smallest eigenvalue is positive. Then,
∑n

i=1{mYi}2 ≥ m2Op(1) uniformly in

m. It follows that ∣∣∣∣∑n
i=1{mYi}3∑n
i=1{mYi}2

∣∣∣∣ =

∣∣∣∣E{mYi}3

E{mYi}2
Op(1)

∣∣∣∣
≤ |m|

3

m2
Op(1)

= |m|Op(1)

Lemma 4. Under the null hypothesis, uniformly in γ and µ,∣∣∣∣∣
n∑
i=1

ein

∣∣∣∣∣ = n1/2γµOp(1).

41



Proof. ∣∣∣∣∣
n∑
i=1

ein

∣∣∣∣∣ = |
n∑
i=1

δi −mYi|

= γµ|
n∑
i=1

Yi(µ)− Yi(0)|

We know from the tightness condition that n−1/2
∑n

i=1{Yi(µ) − Yi(0)} = Op(1), it

follows that |
∑n

i=1 ein| = n1/2γµOp(1).

Then Rn(γ, µ) can be expressed as

Rn(γ, µ) ≤ 2
n∑
i=1

{mYi} −
n∑
i=1

{mYi}2 +
2

3

n∑
i=1

{mYi}3 +Op(
n∑
i=1

ein). (3.8)

Applying the previous two lemmas to (3.6) yields

Rn(γ, µ) ≤ 2
n∑
i=1

{mYi} −
n∑
i=1

{mYi}2[1 + |m|Op(1)]. (3.9)

Let m̂ be the MMLE of m. By Theorem 3, m̂ = op(1) under the null hypothesis.

Thus,

Rn(γ, µ) ≤ 2
n∑
i=1

{m̂Yi} −
n∑
i=1

{m̂Yi}2{1 + op(1)}+ op(1). (3.10)

We can further prove that the right side of the above inequality is asymptotically no

larger than the maximum of the following quadratic function

q(m) = 2
n∑
i=1

{mYi} −
n∑
i=1

{mYi}2

= n−
n∑
i=1

(1−mYi)2.

Since m ≥ 0, the maximum is obtained at m̃ = (
∑
Yi)

+∑
Y 2
i
. Thus an upper bound for

Rn(γ̂, µ̂) is established as follows:

Rn(γ̂, µ̂) ≤ q(m̃) + op(1) =
((
∑
Yi)

+)2∑
Y 2
i

+ op(1). (3.11)
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Next we need to prove the upper bound is achievable. Let δ̃i be the value of δi when

γ = 1
2
, µ = µ̃, µ̃ is determined by m̃. By Taylor Expansion,

Rn(
1

2
, µ̃) = 2

n∑
i=1

log(1 + δ̃i)

= 2
n∑
i=1

δ̃i −
n∑
i=1

δ̃2
i (1− ξi)−2,

where |ξi| < |δ̃i|. Because δ̃i = m̃Yi, |δ̃i| ≤ |m̃Yi|. Then we have the following

inequality,

max |ξ̃| ≤ max |δ̃i|

= |m̃|max |Yi|

= Op(n
1
2 )op(

√
log n)

= op(1).

Thus

Rn(
1

2
, µ̃) = 2

n∑
i=1

δ̃i −
n∑
i=1

δ̃2
i (1 + op(1)),

which means the upper bound (3.10) is achievable, i.e.

Rn(γ̂, µ̂) = q(m̃) + op(1) =
((
∑
Yi)

+)2∑
Y 2
i

+ op(1). (3.12)

Therefore we have established the asymptotic null distribution of MLRT statistic.

Based on the proof above, now we continue to prove the asymptotic null distribution

of the EM-test statistic. Before proving Theorem 7, three lemmas are stated and

proved as follows. The proof of the lemmas follow the idea of Li, Chen and Marriott

(2009) [29]. The difference is that in their model, they have two unknown parameters

except the proportion parameter. And none of their parameters are on the boundary
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of the parameter space when the null hypothesis is true. While our model only has

one unknown parameter, which can be on the boundary of the parameter space.

Lemma 5. Let (γ̂, µ̂) be some estimators of (γ, µ) such that δ1 ≤ γ̂ ≤ δ2 for some

δ1 < δ2 ∈ (0, 1), and

ln(γ̂, µ̂)− ln(0.5, 0) ≥ c > −∞

for some fixed c. Then under H0, µ̂− 0 = op(1).

Proof. The parameter space under the full model is [0, 1] × [0,M ]. The parameter

space with the indicated restriction on γ̂ is Λ := {(γ, µ) : δ1 ≤ γ ≤ δ2, µ ∈ [0,M ]}.

The parameter space of a null model with this restriction is {(γ, 0) : δ1 ≤ γ ≤ δ2}.

For some positive constants ε and r, define

A(γ, ε, r) = {(γ′, µ) ∈ Λ; |γ′ − γ| ≤ ε, |µ| > r},

and

Ψ(X; γ, ε, r) = sup{γ′fν(X;µ′) + (1− γ′)fν(X; 0) : (γ′, µ′) ∈ A(γ; ε, r)}.

By Wald’s integrability condition and Smoothness condition, for small enough ε and

large enough r, under the null hypothesis,

E[log Ψ(X; γ, ε, r)] < E[log fν(X; 0)].

Therefore, by the law of large numbers,

Pr[sup{ln(γ′, µ′) : (γ′, µ′) ∈ A(γ; ε, r)} − ln(γ, 0) > c]→ 0 for ∀c > −∞.

The above conclusion can be extended to

Pr[sup{ln(γ′, µ′) : (γ′;µ′) ∈ A} − ln(γ, 0) > c]→ 0,
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where A = ∪δ1≤γ≤δ2A(γ; ε, r). Therefore the log-likelihood at any parameter point

with large µ trails the log-likelihood at the true parameter point by an infinite amount

accoding to Li, Chen and Marriott (2009) [29].

Lemma 6. Let (γ̂, µ̂) be some estimators of (γ, µ) such that under the null hypothesis,

µ̂− 0 = op(1) and δ1 ≤ γ̂ ≤ δ2 for some δ1 < δ2 ∈ (0, 1). If

pln(γ̂, µ̂)− pln(0.5, 0) ≥ c > −∞,

then under the null hypothesis, µ̂− 0 = Op(n
− 1

2 ).

Proof. In theorem 4, we proved that for each initial value γ̂,

2m̂
n∑
i=1

Yi − m̂2{
n∑
i=1

Y 2
i }{1 + op(1)} = Op(1)

Because
∑n

i=1 Yi = Op(n
1
2 ) and

∑n
i=1 Y

2
i = Op(n), we get m̂ = Op(n

− 1
2 ). Due to

the condition that δ1 ≤ γ̂ ≤ δ2 for some δ1 < δ2 ∈ (0, 1), we further conclude that

µ̂− 0 = Op(n
− 1

2 ).

Now we show that under the null hypothesis, the EM-iteration changes the fitted

value of γ by op(1). Let (γ̂, µ̂) be some estimators of (γ, µ) with the asymptotic

properties as before, and let

wi =
γ̂fν(Xi; µ̂)

(1− γ̂)fν(Xi; 0) + γ̂fν(Xi; µ̂)
.

We further define Rn(γ) = (n−
∑n

i=1 ŵi) log(1− γ) +
∑n

i=1 ŵi log(γ). And Qn(γ) =

Rn(γ) + p(γ). The EM algorithm updates γ by searching for γ̂∗ = argmaxQn(γ).

Lemma 7. Suppose that γ̂ − γ0 = op(1) for some γ0 ∈ (0, 1). Under the null

hypothesis, we have |γ̂∗ − γ0| = op(1).
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Proof. For i = 1, 2, . . . , n, let

δ̂i = γ̂µ̂
fν(Xi; µ̂)− fν(Xi; 0)

µ̂fν(Xi; 0)
= m̂Yi(µ̂).

Thus max1≤i≤n |δ̂i| = |m̂|max |Yi(µ̂)| ≤ |m̂|max1≤i≤n{sup1≤i≤n,0≤µ≤M Yi(µ)}.

By the uniform boundedness condition and a result on order statistic, we have

max1≤i≤n | supµ∈N(0),0≤µ≤M Yi(µ)| = op(n
1
2 ). It follows that max1≤i≤n|δi| = op(1).

By Taylor’s expansion of fν(Xi; µ̂) at µ̂ = 0, we get

ŵi − γ̂ = γ̂(1− γ̂)
fν(Xi; µ̂)− fν(Xi; 0)

(1− γ̂)fν(Xi; 0) + γ̂fν(Xi; µ̂)

=
γ̂(1− γ̂)

1 + δ̂i
{µ̂Yi(µ̂)}.

Put γ̃ = 1
n

∑n
i=1 ŵi, we have

|γ̃ − γ̂| =

∣∣∣∣∣(µ̂− 0)
n∑
i=1

Yi(µ̂)

∣∣∣∣∣Op(n
−1) = op(1).

Based on the above result and the assumption that γ̂− γ0 = op(1), we have γ̃− γ0 =

op(1). Thus we can get the conclusion that γ̂∗ − γ̃ = op(1).

For ∀ε > 0, and γ ≥ γ̃ + 2ε, it follows that

Rn(γ)−Rn(γ̃) ≤ Rn(γ̃ + 2ε)−Rn(γ̃ + ε) = εR′n(ξ)

for some ξ ∈ [γ̃+ ε, γ̃+ 2ε] by mean value theorem. It is easy to prove that R′n(ξ)→

−∞ as n→∞ uniformly for ξ in this range. On the other hand, we have

p(γ)− p(γ̃) = p(γ)− p(γ0) + op(1) = Op(1).

Thus,

Qn(γ)−Qn(γ̃) = Rn(γ)−Rn(γ̃) + {p(γ)− p(γ̃)} → −∞
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uniformly for any γ > γ̃ + 2ε with the probability goes to 1. Hence, we must have

γ̂∗ < γ̃ + 2ε in probability. Similarly, γ̂∗ > γ̃ − 2ε in probability. This completes the

proof of Lemma 7.

Proof. Proof of Theorem 6. By the property of EM algorithm, we have

pln(γ
(k)
j , µ

(k)
j ) ≥ pln(γj, µ

(0)
j ) ≥ pln(γj, 0).

It follows that ln(γ
(k)
j , µ

(k)
j )− ln(γj, 0) ≥ p(γj)− p(γ(k)

j ) ≥ p(γj)− p(0.5) > −∞. By

Lemma 5 and γ
(0)
j = γj, it has been shown that µ

(0)
j is consistent for 0. Therefore the

conclusion of Lemma 6 and Lemma 7 apply. Hence, we find γ
(1)
j −γj = op(1), µ

(1)
j −0 =

Op(n
− 1

2 ).

This completes the proof for k = 1. Then by mathematical induction, the conclusion

of the theorem is true for all finite k.

Proof. Proof of Theorem 7. According to the results proved in Theorem 4, the

inequality (3.7) is applicable. Hence for any k, we have

2{pln(γ
(k)
j , µ

(k)
j )− pln(0.5, 0)} ≤ ((

∑n
i=1 Yi)

+)2∑n
i=1 Y

2
i

+ op(1).

At the same time, we can prove that the upper bound is achievable when γj = 0.5

by the same method in proof of lemma 4. Thus

EM (K)
n =

((
∑n

i=1 Yi)
+)2∑n

i=1 Y
2
i

+ op(1).

Therefore, the limiting null distribution is given by 1
2
χ2

0 + 1
2
χ2

1.

3.5 Simulation Studies

In this section, we investigate the performance of the MLRT and the EM-test by eval-

uating their Type I error rates and the power for sample sizes n ∈ {10, 50, 100, 200, 500, 1000}.
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First 1,000 random samples X1, X2, . . . , Xn were generated from CCS model (2.1)

under the null hypothesis of homogeneity. In the simulation studies, we chose C = 1

in the penalty term. The choice has been used in a variety of mixture models with

satisfactory results (Chen and Li, 2009 [16]). The nominal Type I error is selected

to be α = 0.05. Based on 1,000 replications, the rejection rates of both MLRT and

EM-tests for sample sizes greater than 50, are close to 0.05. For EM-tests, three

initial values 0.1, 0.3, 0.5 were used for γ. Table 3.1 presents the actual Type I error

rates for MLRT, EM
(1)
n and EM

(2)
n , where EM

(1)
n is the EM-test with one iteration,

and EM
(2)
n is the EM-test with two iterations.

Panels in Figure 3.1 show both exact power curves and asymptotic power curves

Table 3.1: Actual Type I Error Rates for MLRT, EM
(1)
n and EM

(2)
n

Model n 10 50 100 200 500 1000
MLRT 0.036 0.046 0.047 0.050 0.058 0.050

EM
(1)
n 0.051 0.044 0.045 0.050 0.058 0.050

EM
(2)
n 0.047 0.051 0.050 0.062 0.046 0.049

for MLRT, EM
(1)
n and EM

(2)
n . The asymptotic power is based on the frequency with

which the test statistic exceeds the .95 quantile of 1
2
χ2

0 + 1
2
χ2

1, which is 2.70, whereas

the exact power is based on the frequency with which the test statistic exceeds the

.95 quantile of test statistics simulated under the null hypothesis of homogeneity.

For power comparison, We chose several different models with µ = 1, 2, 3, γ =

0.2, 0.4 and ν = 2. The first two panels and the second two panels are the asymp-

totic and the exact powers for MLRT and EM
(1)
n correspondingly. The power curves

for EM
(2)
n are displayed in the last two panels. In all six models with µ = 1, 2, 3,
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Figure 3.1: Exact Power Curves and Asymptotic Power Curves
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γ = 0.2, 0.4 and ν = 2, the power of all three test statistics becomes stronger as n

increases. The model with γ = 0.4, µ = 0.3 always enjoys the best power, whereas

the model with γ = 0.2, µ = 0.1 always has the least power. Two things worth

noticing are, first the larger the values of γ and µ the better the power. The other

is that if the product of γ and µ is the same for two models, it is very possible the

two models share similar power. We conclude this by comparing results from model

γ = 0.4, µ = 1 and model γ = 0.2, µ = 2. The red line and the blue line correspond-

ing to these models cross each other from n = 10 to n = 1000. Especially in the

panel of exact power curves for EM
(2)
n , they nearly overlap.

Even though EM
(1)
n entails only one iteration of the EM algorithm, it achieves

power as good as the MLRT. But EM
(1)
n runs much faster than the MLRT as the

sample size n gets large. With one more iteration, there is no notable improvement

in power from EM
(1)
n to EM

(2)
n in any case considered here.

In reality, if the null hypothesis of homogeneity is violated, then the distribution

of F statistics from one-way ANOVA is contaminated F (CF) rather than Contami-

nated Chi-Square. To check whether our tests still work well for data from CF model,

we did another simulation when data were from CF distribution. Since EM-test has

about the same power as the MLRT, and it runs more efficiently, and we see there is

little difference in power between EM
(1)
n and EM

(2)
n , we only do simulation for exact

power of EM
(1)
n . We transformed F statistics from ANOVA for each gene to the

Chi-Square statistics by probability integral transform: Xi := cdf−1
χ2
ν1

(cdfFν1,ν2 (Fi)),

where ν1 and ν2 are the numerator and denominator df for the F statistic Fi.

51



Figure 3.2: Exact Power Curves for EM (1) When Data is from Contaminated F
Model
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Compare with the exact power curve for EM
(1)
n with data from CCS distribution,

one may find the powers are similar for models with the same µ value when data are

transformed from CF model to CCS model, which differs from the powers when data

are originally from CCS model. But as the sample size gets larger, the powers will

become close. These results are also noteworthy in that power at fixed n appeared

to be mainly a function of µ when the EM-test for the CCS model is applied as

an approximation to transformed data actually generated from the CF model, while

power appeared to be mainly a function of the product γµ when the EM-test for the

CCS model was applied to data actually generated from the CCS model.
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3.6 Case Study

In section 2.5, CCS model with the moment-based estimates was applied to analyze

the microarray experiments on 8,799 genes from three groups of rats by Blalock and

colleagues (2003) [5]. In this section, we study this data set again, still applying the

filtration procedure, but with likelihood-based estimates. From the simulations in

previous section, there is not much difference in power among EM
(1)
n , EM

(2)
n and

MLRT. And we know EM-test is not suitable when estimation is also of interest

(i.e., not just testing). We chose MLRT here for real data analysis, which is ac-

complished by maximum modified likelihood estimators, since the hippocampal data

are presented from CF distribution , we first converted the F statistics to their cor-

responding P -values, then converted P -values to Chi-Square statistics, and finally

used MLRT and MMLE to do the estimation and hypothesis testing.

Table 3.2 shows the parameter estimates and the P -values of MLRT procedure for

all 8,799 genes, the genes eliminated in each step, and for the genes remaining after

each step. From Table 3.2, we see the P -values are all less than 0.0001, which means

the omnibus null hypothesis needs to be rejected in each step. Correspondingly,

Figure 3.3 displays histograms of Chi-Square statistics for all 8,799 genes, and the

genes eliminated and remaining in each step. The fitted CCS model is superimposed

on each histogram. From Figure 3.3, each fitted CCS model fits the corresponding

histogram quite well.

Compared with the estimation from moment-based method, in general the esti-

mates of γ from MMLE run larger and the estimates of µ run smaller. However,
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the product of γ̂ and µ̂ is similar to that from moment-based method. Another no-

ticeable result is, the MLRT rejects the omnibus null hypothesis of no differential

expression for the eliminated genes after the third step, unlike the moment-based

test. One of the possible reasons is that since the MLRT uses more information than

the moment-based method, the MLRT is more sensitive to departures from the null

distribution, even departures that are not reflected in the first two sample moments

or that may not be suggestive of differential expression.

Table 3.2: P -values and Parameter Estimation by MLRT Method

Genes Estimated γ Estimated µ Estimated γµ P -value
All genes 0.41 1.75 0.72 < .0001
Remaining after 1A 0.46 1.97 0.91 < .0001
Eliminated in 1A 0.50 0.99 0.50 < .0001
Remaining after 2A 0.47 2.01 0.94 < .0001
Eliminated in 2A 0.50 1.73 0.87 < .0001
Remaining after 3A 0.54 2.60 1.66 < .0001
Eliminated after 3A 0.50 0.45 0.23 < .0001

3.7 Discussion

In Chapter 3, we developed two likelihood-based methods for hypothesis testing in

Contaminated Chi-Square model, with accompanying estimation methodology avail-

able in one case. Likelihood methods in general compete with moment-based meth-

ods in that they can deal with large mixtures of high-dimensional distributions. For

the CCS model which is neither a large nor a high-dimensional mixture, likelihood

methods still may hold appeal due to greater power than moment-based methods,

although this greater power can also manifest as sensitivity to departures from the

null distribution that may not be indicative of differential expression. One method
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Figure 3.3: Fitted Model by MLRT Method
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we developed is modified likelihood ratio test. It enjoys a nice limiting distribution

1
2
χ1

0+ 1
2
χ2

0 under the null and is asymptotically most powerful under local alternatives

in other models where it has been employed previously (Chen, Chen and Kalbfleisch,

2001 [14]). However, the MLRT has its weak point. When the sample size is large,

because computing the MLRT statistic requires the EM algorithm, which in turn re-

quires many iterations to achieve convergence, the MLRT statistic may be computed

quite slowly. To conquer this problem, an EM-test was developed. It is also based on

EM algorithm and shares the same simple asymptotic null distribution with MLRT

statistic. The difference is that we choose several initial values rather than one to

start with. In our simulation studies, the EM-test has acceptable Type I and Type II

error rates in only one iteration, which is much more time efficient than the MLRT.

Even though the EM-test only iterates once or twice, it achieves power as good as

MLRT. But due to the fact that it has more than one set of initial values, there is

ambiguity in addressing the estimation problem when the EM test.

We developed the MLRT and EM-test procedure for data coming from Contam-

inated Chi-Square model. But a collection of ANOVA F statistics may follow the

Contaminated F distribution when the omnibus null hypothesis is false. Therefore

we also simulated the power of EM-test when the data is from contaminated F dis-

tribution instead of Contaminated Chi-Square distribution. In this case, we used a

probability integral transformation to transform F statistics to Chi-Square statistics.

Simulations showed that as the sample size gets large, the power of EM-test on data

from Contaminated F distribution will get close to the power of EM-test on data

from Contaminated Chi-Square distribution.
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Chapter 4 Moment-Based Inference and EM Test for CCS+EC Model

4.1 CCS+EC Model

The CCS model presented in chapter 2 and 3 tests the homogeneity of expres-

sion, with an alternative hypothesis that all differentially expressed genes yield Chi-

Square-scores (or transformed F-scores) from a single non-central Chi-Square distri-

bution. In real data, it is very possible there are more than two latent groups of genes.

For instance, some individuals may be overexpressed on a particular gene relative

to normal individuals but underexpressed on another gene. Charnigo et al (2013)

[11] proposed a Bilaterally Contaminated Normal (BCN) model for testing whether

the three-component mixture may be reduced to a two-component mixture with one

nonzero component mean. The BCN model can be used to describe z-scores derived

from genewise hypothesis tests. It can also accommodate t-scores, since t-scores may

be converted to z-scores via the map T 7→sign(T )Φ−1[1− p(T )/2] =: Z, where p(T )

is the two-sided P -value associated with the t-score T and Φ is the standard normal

cdf. However, genewise hypothesis tests are sometimes based on Chi-Square-scores

or F-scores, especially when there are more than two groups of subjects or experi-

mental conditions.

There are difficulties by simply transforming Chi-Square-scores or F-scores to z-

scores for the purpose of employing the BCN model. One problem is that z-scores

have both positive and negative values. For instance, a z-score of 5 obtained from

transforming a Chi-Square-score or F-score is a strong signal of differential expres-
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sion, corresponding to a P -value of 0.0000003. On the other hand, a z-score of −5

provides no signal of differential expression, corresponding to a P -value of 0.9999997.

Indeed Chi-Square scores and F-scores are unsigned and thus cannot carry informa-

tion about overexpression versus underexpression. Therefore, Chi-Square-scores and

F-scores cannot be accommodated by the BCN model.

Thus we propose an alternative way to handle Chi-Square-scores and F-scores by

adding extra components to the CCS model. One most parsimonious such model is

(1− γ2 − γ3)χ2
ν(0) + γ2χ

2
ν(µ2) + γ3χ

2
ν(µ3), in which Chi-Square-scores corresponding

to differentially expressed genes arise from one of two non-central Chi-Squares distri-

butions depending on the degree of differential expression. We label this extension as

the ”CCS+EC” (”EC” for extra component) model. For CCS model, we developed

moment-based tests and two likelihood-based tests for homogeneity of differential

expression. For CCS+EC model, likewise, we will also consider both moment-based

tests and EM tests in the following sections. The CCS model of Chapters 2 and 3

allows us to test for differential expression; testing for homogeneity of differential

expression is permitted by the CCS+EC model.

4.2 Moment-Based Inference for CCS+EC Model

Suppose that X1, X2, . . . , Xn are independent and identically distributed (iid) ac-

cording to the mixture probability density function (pdf)

(1− γ2 − γ3)χ2
ν(0) + γ2χ

2
ν(µ2) + γ3χ

2
ν(µ3), (4.1)

where γ2, γ3, 1−γ2−γ3, µ2, µ3 are nonnegative unknown parameters with γ2, γ3 ∈ [0, 1]

and µ2, µ3 ∈ [0,+∞), while ν ∈ (0,+∞) is known. χ2
ν(0) denotes the central Chi-
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Square model on ν degrees of freedom. χ2
ν(µ2) and χ2

ν(µ3) denote the noncentrality

Chi-Square models with noncentral parameters µ2 and µ3 respectively on ν degrees

of freedom. We refer (4.1) as the CCS+EC model.

An interesting problem here is to develop a moment-based test of the secondary

null hypothesis that γ2γ3µ2µ3(µ2−µ3)2 = 0. If the secondary null hypothesis is true,

then the CCS+EC model reduces to the CCS model with pdf

(1− γ)χ2
ν(0) + γχ2

ν(µ),

with γ ∈ [0, 1], µ ∈ [0,+∞) and known parameter ν ∈ (0,+∞).

If the secondary null hypothesis is not rejected, we proceed to use one of the

three methods introduced in chapters 2 and 3 to test the omnibus null hypothesis.

Otherwise, we stop. An alternative way is to first test the omnibus null hypothesis.

If the omnibus null hypothesis is rejected, then we continue testing the secondary

null hypothesis.

Before stating the theorems, we establish some notations for convenience. Let

m := (m1,m2,m3,m4,m5,m6)T , m̂ := (m̂1, m̂2, m̂3, m̂4, m̂5, m̂6)T , and 0 := (0, 0, 0, 0, 0, 0)T ,

where mt := E[X t
1] and m̂t := n−1

∑n
i=1 X

t
i . Define the 3×3 matrix V(m) to contain

mi+j−mimj in row i and column j for i, j ∈ {1, 2, 3}. Put g(m) := 2ν3+4ν2+ν2m2−

8ν2m1 +8νm2−16νm1−νm3 +m1m3−m2
2−4m1m2 +νm1m2−ν2m2

1 +2νm2
1 +8m2

1

and h(m) := (−8ν2−16ν+m3−4m2 +νm2−2ν2m1 +4νm1 +16m1; ν2 +8ν−2m2−

4m1 + νm1;−ν +m1)T , which is the derivative of g(m) with respect to m1,m2,m3.

Based on the assumption that the omnibus null hypothesis is false, h(m) 6= 0.

By Delta method, we know

√
n(g(m̂)− g(m))→ N(0,h(m)TV(m)h(m)). (4.2)
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Then by Slutsky’s Theorem,

√
n(

g(m̂)√
h(m̂)TV(m̂)h(m̂)

− g(m)√
h(m)TV(m)h(m)

)→ N(0, 1). (4.3)

Let Zn :=
√

n
h(m̂)TV(m̂)h(m̂)

g(m̂),zu denote the u quantile of the standard normal dis-

tribution, and ma be the vector of moments implied by (γ2, γ3, µ2, µ3) = (γ2,a, γ3,a, µ2,a, 0)

for fixed positive constants γ1,a, γ2,a and µ2,a.

Theorem 8. Suppose that X1, X2, . . . , Xn are iid according to model (4.1) and

that the omnibus null hypothesis is false. Under the secondary null hypothesis, i.e.

γ2γ3µ2µ3(µ2 − µ3)2 = 0, and γ2µ2 + γ3µ3 > 0,

lim
n→∞

P (Zn > z1−α) = α (4.4)

Under the local alternative sequence (γ2, γ3, µ2, µ3) = (γ2,a, γ3,a, µ2,a, τn
−0.5) for a

fixed positive constant τ ,

lim
n→∞

P (Zn > z1−α) = Φ(−z1−α +
γ2,aγ3,aµ

3
2,aτ√

h(ma)TV(ma)h(ma)
). (4.5)

Under the fixed alternative (γ2, γ3, µ2, µ3) = (γ2,a, γ3,a, µ2,a, µ3,a) for a fixed positive

constant µ3,a,

lim
n→∞

P (Zn > z1−α) = 1 (4.6)

Proof. Under the secondary null hypothesis, since Zn follows the standard normal dis-

tribution asymptotically, it is obvious that limn→+∞ P (Zn > z1−α) = 1− Φ(z1−α) =

α. Under the local alternative sequence, combining (4.2) and (4.3),

P (Zn > z1−α) = P (Zn − g(m∗a)

√
n

h(m∗a)TV(m∗a)h(m∗a)
> z1−α − g(m∗a)

√
n

h(m∗a)TV(m∗a)h(m∗a)
)

→ 1− Φ[z1−α −
γ2,aγ3,aµ

3
2,aτ√

h(ma)TV(ma)h(ma)
],

61



where m∗a is the vector implied by (γ2,a, γ3,a, µ2,a, τn
−0.5) and ma is the vector implied

by (γ2,a, γ3,a, µ2,a, 0).

Under the fixed alternative, 1−P (Zn ≤ z1−α) = 1−P (Zn−g(m)
√

n
h(m)TV(m)h(m)

≤

z1−α − g(m)
√

n
h(m)TV(m)h(m)

) → 1, because g(m) > 0 under the Ha and z1−α −

g(m)
√

n
h(m)TV(m)h(m)

→ −∞.

4.3 Simulation Studies for Moment-Based Test

In this section, we evaluate the performance of moment-based test for CCS+EC

model by assessing the Type I error probability and the power of our testing proce-

dure in finite samples. The Type I error probability and the power were simulated

under both nominal critical values and actual critical values for the following nine

models:

m1: (γ2, γ3, µ2, µ3) = (1, 2, 0.2, 0.3)

m2: (γ2, γ3, µ2, µ3) = (1, 4, 0.2, 0.3)

m3: (γ2, γ3, µ2, µ3) = (2, 4, 0.2, 0.3)

m4: (γ2, γ3, µ2, µ3) = (1, 2, 0.3, 0.2)

m5: (γ2, γ3, µ2, µ3) = (1, 4, 0.3, 0.2)

m6: (γ2, γ3, µ2, µ3) = (2, 4, 0.3, 0.2)

m7: (γ2, γ3, µ2, µ3) = (1, 2, 0.25, 0.25)

m8: (γ2, γ3, µ2, µ3) = (1, 4, 0.25, 0.25)
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m9: (γ2, γ3, µ2, µ3) = (2, 4, 0.25, 0.25)

All these nine models are with degrees of freedom 2. The corresponding null model

is defined as a model with the same γ2, γ3 and ν, but a weighted µ = µ2∗γ2+µ3∗γ3
γ2+γ3

. For

instance, the null model of (γ2, γ3, µ2, µ3, ν) = (1, 2, 0.2, 0.3, 2) is (1.6, 1.6, 0.2, 0.3, 2).

For each model, 100 random samples X1, X2, . . . , Xn were drawn from the cor-

responding null model to estimate the actual critical value with sample size n ∈

{500, 1000, 5000, 10000, 50000}. The critical value is defined as the 95th percentile

of the test statistics based on the null model. In table 4.1, we can tell that all of the

simulated critical values are smaller than 1.645. When the sample size gets larger,

the actual critical value gets close to 1.645, but still does not achieve 1.645. This

indicates us that the test based on simulated critical values will be a less conservative

test compared with the test based on the nominal critical values.

The actual Type I error rates are defined to be the rejection rates under H0

Table 4.1: Actual Critical Values for Different Sample Sizes

Alternative Model/Sample Size 500 1000 5000 10000 50000
(1,2,0.2,0.3,2) 1.0819 1.1013 1.2448 1.3076 1.4073
(1,4,0.2,0.3,2) 1.0705 1.1221 1.2453 1.3054 1.4259
(2,4,0.2,0.3,2) 1.0820 1.1310 1.2496 1.3092 1.4438
(1,2,0.3,0.2,2) 1.0497 1.1073 1.2573 1.2753 1.4087
(1,4,0.3,0.2,2) 1.0605 1.1343 1.2602 1.3151 1.3978
(2,4,0.3,0.2,2) 1.0698 1.1488 1.2550 1.3285 1.4285
(1,2,0.25,0.25,2) 1.0561 1.1065 1.2305 1.2792 1.4296
(1,4,0.25,0.25,2) 1.0789 1.1162 1.2601 1.3188 1.4349
(2,4,0.25,0.25,2) 1.0815 1.1497 1.2772 1.3194 1.4070

when the critical values are through simulation while the nominal Type I error rates

are defined to be the rejection rates under H0 when the critical value is 1.645 as

derived from the standard normal distribution. For each sample size n, we generated
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1, 000 samples X1, X2, . . . , Xn from the nine corresponding null models. Then we

determine how many times out of 1, 000 we reject H0. Both nominal and actual

Type I error rates are displayed in Figure 4.1. The models with γ2 = 0.2, γ3 = 0.3

are in the first panel. The models with γ2 = 0.3, γ3 = 0.2 are in the second panel

and the models with γ2 = 0.25, γ3 = 0.25 are in the third panel. In all cases, the

solid lines which represent the actual Type I error rates lay above the dashed lines

which represent the nominal Type I error rates. This simulation result is consistent

with the conclusion we get from the previous paragraph.

The power comparisons for nine models are presented in Figure 4.2. Power is

calculated as the number of unilateral null hypothesis rejections divided by 1, 000

under the alternative hypothesis. Solid lines are for the actual power calculated from

simulated critical values while dashed lines are for the nominal power calculated from

the nominal critical value 1.645. All solid lines are above dashed lines showing that

the test based on simulated critical values is more powerful. As the sample size gets

to 50, 000, the gaps between actual power curves and nominal power curves become

smaller. However, both types of powers hardly achieve 0.8, which reveals the weak-

ness of our moment-based procedure.

It is mentioned in the second chapter that resampling is not required and there

is no compactness restriction on the parameter space in the moment-based procedure

for CCS model. Likewise, it is also true for CCS+EC model. But the power problem

motivated us to investigate likelihood-based test for CCS+EC model.
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Figure 4.1: Type I Error Rates Based on Actual and Nominal Critical Values
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Figure 4.2: Powers Based on Actual and Nominal Critical Values
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4.4 A Case Study for Moment-Based Test

In section 2.5, the moment-based test was applied to the microarray experiments

on 8,799 genes from three groups of rats by Blalock and colleagues (2003) [5] to

test if there existed a differential expression. The result showed that the genes were

differentially expressed in the situations that all genes are considered, genes remain-

ing after each step and the genes eliminated in step 1 and step 2. For the genes

eliminated in step 3, the P -value is greater than 0.05, which means we fail to reject

the omnibus null hypothesis. So we refrain from testing CCS model versus testing

CCS+EC model for the genes eliminated in the third step. For other steps, we test

whether the heterogeneity of differential expression is from one central Chi-Square

distribution and one non-central Chi-Square distribution or from one central Chi-

Square distribution and two different types of non-central Chi-Square distributions

by using the moment-based test for CCS+EC model.

We conduct the case study under both actual critical value and nominal critical

value. The two kinds of P -values are presented in Table 4.2. The P -values under

nominal critical values in the second column are defined by 1 − Φ(Zn), when Zn is

the observed test statistic while the P -value under the actual critical value in the

fourth column is calculated by the proportion of simulated test statistics under the

unilateral null model greater than the observed test statistic. For all 8,799 genes,

genes remaining after each step, both types of P -values reject the unilateral null

hypothesis, indicating that there is an extra component of differential expression.

For genes eliminated in the second step, both types of P -values fail to reject the

unilateral null hypothesis which means the CCS model fits to the data adequately.
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For genes eliminated in the first step, we fail to reject H0 under the nominal critical

value while we reject H0 under the actual critical value but with a P -value very close

to 0.05.

The moment-based method provides us a convenient procedure for testing

Table 4.2: Hypothesis Testing Results Based on Actual and Nominal Critical Values

Genes Nominal P -values Nominal Results Actual P -values Actual results
All genes 0.00015 Reject H0 0 Reject H0

Remaining after 1A 0.00013 Reject H0 0 Reject H0

Eliminated in 1A 0.1185 Fail to reject H0 0.049 Reject H0

Remaining after 2A 0.0002 Reject H0 0 Reject H0

Eliminated in 2A 0.1836 Fail to reject H0 0.11 Fail to reject H0

Remaining after 3A 0.0005 Reject H0 0 Reject H0

whether a central Chi-Square distribution is contamined by one or by two other

non-central Chi-Square distributions. As exemplified in the hippocampal tissue ex-

ample, the test can be applied to further assess whether the differetiatial expression

levels are the same. Basically, the idea of the test is to see whether a quadratic func-

tion of the first three sample moments is sufficiently large. Therefore, resampling

is not necessary if one is willing to use conservative nominal critical values. More-

over, through out our test, no compactness of parameter space is assumed, which is

another advantage of the moment-based test. However, from the simulation study,

the power is weak, which is a common limitation of moment-based tests. Besides,

one may notice that we did not estimate the parameters when the unilateral null

hypothesis was rejected in our case study. It has been stated that the method of

moments may not work well when there are high dimensional parameter equations.

For example, the first three moments are needed to get the test statistic for CCS+EC

model. But we require the first six moments to get the variance covariance matrix.
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For even higher dimensional statistical model, too many estimators for the moments

would introduce more variance. A better way to estimate the parameters is to use

an EM algorithm to approximate maximum likelihood for parameter estimation. We

will next focus on the EM test for CCS+EC model.

4.5 EM Test for CCS+EC Model

In Chapter 3 we proposed an EM test for inference in the Contaminated Chi-Square

model, motivated partly because the moment-based approach is problematic for com-

plicated statistical models such as large mixtures of high-dimensional distributions.

This problem becomes even apparent when an extra component is added to the

Contaminated Chi-Square model. In section 4.4, we did not estimate the parameters

when the unilateral null hypothesis was rejected because the parameter estimation

of the moment-based method is apt to fail for complicated mixture models. In this

section, we will look for an EM test for the CCS+EC model such that: (i) the

asymptotic null distribution of the EM test statistic is analytically tractable; (ii)

actual Type I error rates in finite samples are close to the corresponding nominal

significance levels; and, (iii) Type II error rates in finite samples are low. Further-

more, the development of the EM test will yield as by-products parameter estimators

for the CCS+EC model.

The rest of the chapter is organized as follows. Section 4.5 states the null hypoth-

esis, the alternative hypothesis and the test statistic from the EM test for CCS+EC

model. Section 4.6 investigates the asymptotic behavior of the proposed EM test

under the unilateral null hypothesis. Section 4.7 presents simulation study results
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and section 4.8 further analyzes whether the hipppocampal data by Blalock and col-

leagues (2003) [5] come from three different chi-square distributions. Section 4.8 also

addresses the issue of parameter estimation.

Let

f(x; Ψ) = γf(x;µ1) + (1− γ)f(x;µ2) =

∫
Θ

f(x;µ)dΨ(µ), (4.7)

where f(x;µ) is a Chi-Square density function with noncentrality parameter µ on ν

degrees of freedom, Ψ(.) is defined as a mixing distribution in the form of

Ψ(µ) = (1− γ)I(µ1 ≤ µ) + γI(µ2 ≤ µ). (4.8)

I(.) is the indicator function, (µ1, µ2) are the nonnegative mixing parameters from

the parameter space Θ := [0,∞), and γ ∈ [0, 1] is the mixing proportion.

An interesting problem remains from the third chapter is that, if the omnibus

null hypothesis is rejected, (i.e., assume µ1 = 0 and reject γµ2 = 0 in favor of

γµ2 6= 0) are the differentially expressed genes truly arising from one noncentral Chi-

Square distribution? It is also possible that the differential expression may come

from two or more non-central Chi-Square distributions. The interpretation is that

some genes may be highly over or under expressed while others may be only modestly

over or under expressed. Here, we consider the situation whether there is one extra

component to the CCS model.

Given a random sample X1, X2, . . . , Xn from f(x; Ψ) with Ψ defined by Ψ(µ) =∑m
j=1 γjI(µj ≤ µ), the unilateral null hypothesis is that

H0 : m = 2 vs. HA : m > 2, (4.9)

where m is the number of components in the most parsimonious representation of

the Contaminated Chi-Square model. m = 2 denotes CCS model we have already
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studied while m = 3 denotes what we will hereafter call the CCS+EC model. When

the unilateral null hypothesis is true,

f(x; Ψ0) = (1− γ)f(x; 0) + γf(x;µ),

with Ψ0(µ∗) = (1−γ)I(0 ≤ µ∗)+γI(µ ≤ µ∗). µ∗ may be regarded as a latent random

variable.When the unilateral null hypothesis is false, since 0 is a known boundary

point, we assume the parameter µ will split into µ2 and µ3, so we are in essence

assuming m = 3 under the alternative. In Li and Chen (2010) [16], because they

have two unknown parameters, they assume the alternative is m = 2m0, where m0

is an arbitrarily given positive integer specified for the null hypothesis. They state

that any finite mixture model with m0 < m < 2m0 can be expressed as a mixture

model of order m = 2m0. The EM test would be less efficient if the data are from a

model with m > 2m0.

The log likelihood function is

ln(Ψ) =
n∑
1

log f(Xi; Ψ). (4.10)

Let Ψ̂0 be the maximum likelihood estimator (MLE) of Ψ under the unilateral

null hypothesis such that

Ψ̂0 = (1− γ̂)I(0 ≤ µ∗) + γ̂I(µ̂ ≤ µ∗). (4.11)

The EM test statistic uses the EM algorithm to iteratively obtain the estimates and

the test statistic. The following is the procedure to get the EM test statistic.

Step 1 Assuming that under the null hypothesis the MLE Ψ̂0 has been obtained using

EM algorithm, then the parameter space Θ was divided into 2 intervals with

I1 = (0, η] and I2 = [η,+∞).
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Step 2 For each β ∈ (0, 1), create a class of mixture distributions of order 3:

Ω3(β) = {(1− γ)I(0 ≤ µ∗) + γβI(µ2 ≤ µ∗) + γ(1−β)I(µ3 ≤ µ∗) : µ2, µ3 ∈ I2},

where β ∈ (0, 1). Define the modified log-likelihood function to be

pln(Ψ) = ln(Ψ) + p(β), (4.12)

where p(β) is a continuous penalty function maximized at 0.5 and goes to

negative infinity as β goes to 0 or 1.

Step 3 J numbers of values for β are selected from (0, 1) to be β, then β2 contains J

numbers of β. Compute Ψ(k)(β(k)) = argmaxγ,µ2,µ3{pln(Ψ) : Ψ ∈ Ω3(β(k))} .

Define β(1) = β0.

Step 4 Get the conditional expectation w
(k)
i1h and w

(k)
i2h in E-step for each i = 1, 2, . . . , n

and h = 1, 2. Let

w
(k)
i11 =

(1− γ(k))f(Xi; 0)

f(Xi; Ψ(k)(β0))

w
(k)
i12 =

γ(k)β(k)f(Xi;µ
(k)
2 )

f(Xi; Ψ(k)(β0))

w
(k)
i21 = 0

w
(k)
i22 =

γ(k)(1− β(k))f(Xi;µ
(k)
3 )

f(Xi; Ψ(k)(β0))

Maximize the approximation to the complete data penalized log likelihood in

M-step. Let

γ(k+1) = n−1

n∑
i=1

{w(k)
i12 + w

(k)
i22},
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µ
(k+1)
j2 = argmaxµ{

n∑
i=1

w
(k)
ij2 log f(Xi;µ)}, j = 1, 2

and

β(k+1) = argmaxβ{
n∑
i=1

w
(k)
i12 log(β) +

n∑
i=1

w
(k)
i22 log(1− β) + p(β)}.

Compute

M (k)
n (β0) = 2{pln(Ψ(k)(β0))− ln(Ψ̂0)}.

Let k = k+ 1 and repeat Step 4 until k = K,which is a prespecified number of

times.

Then the EM test statistic is defined as

EM (K)
n = max{M (K)

n (β0) : β0 ∈ β2}. (4.13)

The unilateral null hypothesis is rejected when EM
(K)
n is greater than some critical

value, which is determined by its limiting null distribution.

4.6 Asymptotic Behavior of EM Test Statistic

Before stating the lemmas and theorems, six regularity conditions are listed. These

conditions are adapted from Li and Chen (2010) [30]. All lemmas and theorems in

this Chapter are built based on the following regularity conditions. The proofs that

these six regularity conditions are statisfied for the CCS model appear in Appendix II.

Condition 0. The penalty term p(β) is a continuous function such that it is maximized at

β = 0.5 and goes to negative infinity as β goes to 0 or 1.
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Condition 1. The kernel function f(X;µ) is such that the mixture distribution f(X;µ) sat-

isfies Wald’s integrability conditions for consistency of the maximum likelihood

estimator. For this, it suffices to require that

– E| log f(X; Ψ0)| <∞.

– for sufficiently small ρ and for sufficiently large r, E log{1 + f(X;µ, ρ)} <

∞ for µ ∈ Θ and E log{1+φ(X; r)} <∞, where f(X;µ, ρ) = sup|µ′−µ|≤ρ f(X;µ′),

φ(X; r) = supµ≥r f(X;µ) and Ψ0 := (1− γ0)I(0 ≤ µ) + γ0I(µ0 ≤ µ).

Condition 2. The kernel function f(X;µ) has common support and is four times continuously

differentiable with respect to µ.

Condition 3. For any two mixing distribution functios Ψ1 and Ψ2 such that
∫
f(x;µ)dΨ1(µ) =∫

f(x;µ)dΨ2(µ) for all x, we must have Ψ1 = Ψ2.

Condition 4. Let N(µ.ε) = {µ′ ∈ Θ : |µ′−µ| ≤ ε} for some positive ε. There exists an inter-

grable g(.) and a small positive ε0 such that |∆ih|3 ≤ g(Xi), |Yi(µ)|3 ≤ g(Xi),

|Z(k)
i (µ)| ≤ g(Xi), for µ ∈ N(µ0h, ε0), h = 1, 2, and k = 0, 1, 2 with Z

(k)
1 (µ)

being the kth derivative, where ∆i1 = f(xi;0)−f(xi;µ)
f(x1;Ψ0)

, Yi(µ) = f ′(xi;µ)
f(xi;Ψ0)

, Zi(µ) =

f ′′(xi;µ)
2f(xi;Ψ0)

.

Condition 5. The variance-covariance matrix B of bi = (δi1, Yi(0), Zi(0), Zi(µ))T is positive

definite.

Theorem 9. Let f(x;µ) be the Chi-Square distribution with noncentrality parameter

µ on ν degrees of freedom. Let p(β) be the penalty term satisfies the regularity con-

ditions given in the Appendix II, and that Ψ(k)(β(k)) is as specified in Step 3. Under
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the null distribution f(x; Ψ0), and for each given β0 ∈ β2, we have

γ(k)−γ0 = Op(n
−1/2), β(k)−β0 = Op(n

−1/6), µ
(k)
2 −µ = Op(n

−1/4), µ
(k)
3 −µ = Op(n

−1/4),

and m1
(k) :=

 m
(k)
11

m
(k)
12

 =

 0

β(1)(µ
(1)
2 − µ) + (1− β(1))(µ

(1)
3 − µ)

 = Op(n
−1/2).

Notice that γ(1), β(1), µ
(1)
2 , µ

(1)
3 are the results from the first iteration of EM algorithm.

The proof of Theorem 9 consists of Lemma 8 to Lemma 12. Lemma 8 shows that

the estimators γ(k), β(k), µ
(k)
2 , µ

(k)
3 converge in probability to the true parameter under

the null hypothesis when k = 1. Lemma 9 then strengthens Lemma 8 by provid-

ing the asymptotic orders. Lemma 10 shows that the convergence in probability

of β(k) is also true for β(k+1). Lemma 11 proves that the large-sample properties

of γ(1), β(1), µ
(1)
2 , µ

(1)
3 hold for γ(k+1), β(k+1), µ

(k+1)
2 , µ

(k+1)
3 . Lemma 12 completes the

proof of Theorem 9 by providing the asymptotic orders. The proofs follow a similar

structure to Li and Chen (2010) [30] but exhibit important differences that lead to

a different limiting null distribution.

Lemma 8. Let f(x;µ) be the Chi-Square distribution with noncentrality parameter

µ on ν degrees of freedom. Let p(β) be the penalty term that satisfies the regularity

conditions C0-C3. Under the null distribution f(x; Ψ0), and for each β0 ∈ β2, we

have

γ(k) − γ0 = op(1), β(k) − β0 = op(1), µ
(k)
2 − µ = op(1), µ

(k)
3 − µ = op(1).

Proof. For any given β0 ∈ β2, we define

Ψ̂0 := (1− γ(k))I(0 ≤ µ∗) + γ(k)β0I(µ
(k)
2 ≤ µ∗) + γ(k)(1− β0)I(µ

(k)
3 ≤ µ∗). (4.14)
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Hence Ψ̂0 ∈ Ω3(β0).

It is obvious that

pln(Ψ(1)) = ln(Ψ(1)) + p(β0). ≥ pln(Ψ̂0) ≥ ln(Ψ0) + p(β0).

The first inequality is by the definition of Ψ(1), the second inequality is by the defi-

nition of MMLE. Therefore,

ln(Ψ(1)) ≥ ln(Ψ0). (4.15)

By Wald’s result of the consistency of the maximum likelihood estimator (1949) [42],

based on a set of iid observations from a distribution family parameterized by Ψ, if

Ψ̂n is an estimator of Ψ such that

ln(Ψ̂n) ≥ ln(Ψ0)− o(n)

as n→∞, then Ψ̂n → Ψ0. (Li and Chen 2010 [30]). Combine this result and (4.15),

we can conclude that

‖Ψ(1)(β0)−Ψ0‖ =

∫
|Ψ̂n −Ψ0| exp−µ dµ→ 0 a.s. (4.16)

Therefore, the consistency result of (4.16) is possible only if the conclusions of the

lemma are true.

Lemma 9. Let f(x;µ) be the Chi-Square distribution with noncentrality parameter

µ on ν degrees of freedom. Let p(β) be the penalty term that satisfies the regularity

conditions C0-C5. Under the null distribution f(x; Ψ0), and for each β0 ∈ β2, we

have

γ(1)−γ0 = Op(n
−1/2), β(1)−β0 = Op(n

−1/6), µ
(1)
2 −µ = Op(n

−1/4), µ
(1)
3 −µ = Op(n

−1/4).
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m1
(1) :=

 m
(1)
11

m
(1)
12

 =

 0

β(1)(µ
(1)
2 − µ) + (1− β(1))(µ

(1)
3 − µ)

 = Op(n
−1/2).

Proof. Let R1n(Ψ(1)(β0)) = 2{pln(Ψ(1))− ln(Ψ0)} = 2{ln(Ψ(1))− ln(Ψ0)}+ 2p(β0). It

is obvious that a lower bound of R1n is 2p(β0). Now we need to find an upper bound

of R1n.

Since the penalty is negative, we have

R1n(Ψ(1)(β0)) ≤ 2{ln(Ψ(1)(β0))− ln(Ψ0)}

= 2
n∑
i=1

log

(
1 +

f(xi; Ψ(1)(β0))− f(xi; Ψ0)

f(xi; Ψ0)

)
Let

δi =
f(xi; Ψ(1)(β0))− f(xi; Ψ0)

f(xi; Ψ0)

= (γ(1) − γ0)
f(xi;µ)− f(xi; 0)

f(xi; Ψ0)
+ γ(1){β(1)f(xi;µ

(1)
2 )− f(xi;µ)

f(xi; Ψ0)
+ (1− β(1))

f(xi;µ
(1)
3 )− f(xi;µ)

f(xi; Ψ0)
}

By Taylor’s expansion,

f(Xi;µ
(1)
j2 )− f(Xi;µ) = (µ

(1)
j2 − µ)f ′(Xi;µ) +

1

2
(µ

(1)
j2 − µ)f ′′(Xi;µ) + εi2,

where j = 1, 2, εi2 is the remainder term, and differentiation is with respect to the

parameters. With Taylor’s expansion, we have

δi = (γ(1) − γ(0))∆i1 + γ(1)m
(1)
12 Yi(µ) + γ(1)m

(1)
22 Zi(µ) + εi2,

where ∆i1 = f(Xi;0)−f(Xi;µ)
f(X1;Ψ0)

, Yi(µ) = f ′(Xi;µ)
f(Xi;Ψ0)

, Zi(µ) = f ′′(Xi;µ)
2f(Xi;Ψ0)

m
(1)
12 has been defined in Theorem 9,

m
(1)
22 = β(1)(µ

(1)
2 − µ)2 + (1− β(1))(µ

(1)
3 − µ)2,

77



and εi2 = γ(1)[β(1)(µ
(1)
2 − µ)3Ui2(µ

(1)
2 ) + (1− β(1))(µ

(1)
3 − µ)3Ui2(µ

(1)
3 )],

with Ui2(µ∗) =
f(Xi;µ

∗)−f(Xi;µ)−f ′(Xi;µ)(µ∗−µ)− f
′′(Xi;µ)(µ

∗−µ)2
2

f(Xi;Ψ0)(µ∗−µ)3
.

Hence,

n∑
i=1

δi =
n∑
i=1

[(γ − γ(1))∆i1 + γ(1)(m
(1)
12 Yi(µ)) + γ(1)(m

(1)
22 Zi(µ))] + εn,

where

|εn| = |
n∑
i=1

εi2|

≤ n1/2γ(1)[β(1)(|µ(1)
2 − µ|)3{n−1/2

n∑
i=1

Ui2(µ
(1)
2 )}+ (1− β(1))(|µ(1)

3 − µ|)3{n−1/2

n∑
i=1

Ui2(µ
(1)
3 )}]

= Op(n
1/2)[β(1)(µ

(1)
2 − µ)3 + (1− β(1))(µ

(1)
3 − µ)3]

= op(n
1/2)m

(1)
22

≤ op(1) + op(n)(m
(1)
22 )2

Let

t̄ = (γ − γ(1); 0, γ(1)m
(1)
12 ; 0, γ(1)m

(1)
22 )T .

With the notations above,
∑n

i=1 δi can be simplified as

n∑
i=1

δi =
n∑
i=1

t̄Tbi + εn.

Using Taylor’s expansion, log(1 + x) ≤ x− x2

2
+ x3

3
, then

R1n(Ψ(1)(β0)) ≤ 2
n∑
i=1

(1 + δi)

≤ 2
n∑
i=1

δi −
n∑
i=1

δ2
i +

2

3

n∑
i=1

δ3
i

= 2
n∑
i=1

(̄tTbi)−
n∑
i=1

(̄tTbi)
2 +

2

3

n∑
i=1

(̄tTbi)
3 +Op(εn).
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Since B is positive definite, and by the law of large number, we have

n∑
i=1

(̄tTbi)
2 = nt̄TBt̄{1 + op(1)},

n∑
i=1

(̄tTbi)
3 = op(n)t̄T t̄,

and

εn = op(1) + op(n)t̄T t̄.

Hence, the upper bound of R1n(Ψ(1)(β0)) becomes

R1n(Ψ(1)(β0)) ≤ 2
n∑
i=1

(̄tTbi)− nt̄TBt̄{1 + op(1)}+ op(1). (4.17)

We knowR1n(Ψ(1)(β0)) is bounded below by 2p(β0) and bounded above by 2
∑n

i=1(̄tTbi)−

nt̄TBt̄{1+op(1)}+op(1). The inequality is possible only if t̄ = Op(n
−1/2). Since β(1)

is defined to be equal to β0, it is obvious that β(1) − β0 = Op(n
−1/6). Consequently,

Ψ(1)(β0) must have the order claimed in this Lemma.

Lemma 10. Let f(x;µ) be the Chi-Square distribution with noncentrality parameter

µ on ν degrees of freedom. Let p(β) be the penalty term satisfies the regularity con-

ditions C0-C5. If for some k ≥ 1, under the null distribution f(x; Ψ0), and for each

β0 ∈ β2,

γ(k)−γ0 = Op(n
−1/2), β(k)−β0 = Op(n

−1/6), µ
(k)
2 −µ = Op(n

−1/4), µ
(k)
3 −µ = Op(n

−1/4),

and m
(k)
1 = Op(n

−1/2), then we have β(k+1) − β0 = Op(n
−1/6).

Proof. Before proving this lemma, we first prove the equation below that will be

applied to the lemma.

n∑
i=1

f(Xi;µ
(k)
1h )

f(Xi; Ψ(k)(β0))
= n{1 +Op(n

−1/6)}, (4.18)
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for h = 1, µ
(k)
11 = 0, for h = 2, µ

(k)
12 = µ

(k)
2 . For j = 1, 2,

f(Xi;µj2)− f(Xi;µ)

f(Xi; Ψ0)
= Yi(µ)(µj2 − µ) + Zi(µ̃j2)(µj2 − µ)2, (4.19)

where µ12 = µ2, µ22 = µ3, µ̃j2 is a number in a small neighborbood of µ. Hence, we

have,

δi =
f(X; Ψ(k)(β0))− f(Xi; Ψ0)

f(Xi; Ψ0)

= (γ(k) − γ0)∆i1 + γ(k)m
(k)
12 Yi(µ) + γ(k)β(k)(µ

(k)
2 − µ)2Zi(µ̃2) + γ(k)(1− β(k))(µ

(k)
3 − µ)2Zi(µ̃3).

Because ∆i1 has a constant upper bound, we can conclude that

max
1≤i≤n

|(γ(k) − γ0)∆i1| = Op(n
−1/6).

By the uniform condition in C4, we have

max
1≤i≤n

|Yi(µ)| = Op(n
1/3),

and for j = 1, 2,

max
1≤i≤n

|Zi(µ̃(k)
jh )| = Op(n

1/3).

In addition, because m
(k)
12 = Op(n

−1/2), the second term with m
(k)
12 must be Op(n

−1/6)

uniformly. According to the assumption of the lemma, we have the third term and

the fourth term also Op(n
−1/6). Thus, we can infer that max1≤i≤n |δi| = Op(n

−1/6).

Equivalently, uniformly in i,

f(Xi; Ψ0)

f(Xi; Ψ(k)(β0))
= 1 +Op(n

−1/6).
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Consequently, for h = 2,

1

n

n∑
i=1

f(Xi;µ
(k)
1h )

f(Xi; Ψ(k)(β0))
=

1

n

n∑
i=1

f(Xi;µ
(k)
1h )

f(Xi; Ψ0)
× f(Xi; Ψ0)

f(Xi; Ψ(k)(β0))

=
1

n

n∑
i=1

f(Xi;µ
(k)
1h )

f(Xi; Ψ0)
{1 +Op(n

−1/6)}

=
1

n

n∑
i=1

{
f(Xi;µ)

f(Xi; Ψ0)
+ Yi(µ)(µ

(k)
2 − µ) + Zi(µ̃2)(µ

(k)
2 − µ)2

}
{1 +Op(n

−1/6)}

= 1 +Op(n
−1/6).

This completes the proof of (4.18).

Next we need to show β(k+1) − β0 = Op(n
−1/6). By definition, β(k+1) maximizes

Qnh(β) =
n∑
i=1

w
(k)
i1h log(β) +

n∑
i=1

w
(k)
i2h log(1− β) + p(β)

with the weights
∑n

i=1w
(k)
i1h,
∑n

i=1w
(k)
i2h for h = 1, 2 defined in Step 4.

Therefore, if letting

Hnh(β) =
n∑
i=1

w
(k)
i1h log(β) +

n∑
i=1

w
(k)
i2h log(1− β),

then Qnh(β) is maximized at

β̂ =

∑n
i=1w

(k)
i1h

nγ(k)
= β(k){1 +Op(n

−1/6)} = β0{1 +Op(n
−1/6)},

By using Taylor’s expansion, if we constrain β∗ within a very small neighborhood of

β̂, then

Hnh(β̂)−Hnh(β
∗) ≥ εγ(k)n(β∗ − β̂)2

for some ε > 0. In particular, if we set |β∗ − β̂| ≥ n−1/6, then

|β∗ − β̂| ≥ εγ(k)n2/3

81



and therefore

Qn2(β∗)−Qn2(β̂) ≤ p(β∗)− p(β̂)− εγ(k)n2/3 < 0

when n is large enough. That is, the maximum point of Qn2 must be within an

Op(n
−1/6) neighborhood of β̂. This completes the proof of the lemma.

Lemma 11. Assume the conditions of Lemma 10. Under the null distribution of

f(x; Ψ0), we have

γ(k+1) − γ = op(1), µ
(k+1)
2 − µ = op(1), µ

(k+1)
3 − µ = op(1).

Proof. Define the mixing distribution obtained after a partial EM-iteration as

Ψ
(k+1)
2 (µ∗) = (1−γ(k))I(0 ≤ µ∗)+γ(k){β(k)I(µ

(k+1)
2 ≤ µ∗)+(1−β(k))I(µ

(k+1)
3 ≤ µ∗)}.

Due to the property of EM-iteration that it always increases the likelihood, we get

the following inequality

pln(Ψ
(k+1)
2 ) ≥ pln(Ψ(k)) ≥ pln(Ψ̂0) = ln(Ψ̂0) + p(β0) ≥ ln(Ψ0) + p(β0).

Because the penalty term is less than or equal to zero,

ln(Ψ
(k+1)
2 ) ≥ ln(Ψ0) + p(β0).

By classical result of Wald (1949) [42], this indicates the consistency of Ψ
(k+1)
2 for Ψ0.

Combined with the assumption that γ(k), β(k), µ
(k)
2 , µ

(k)
3 are consistent, the consistency

of Ψ
(k+1)
2 is possible only if we have µ

(k+1)
2 = µ+ op(1) and µ

(k+1)
3 = µ+ op(1). Plus

the fact that β(k+1) = β0 + op(1) in Lemma 10, the overall consistency of Ψ(k+1)

implies that γ(k+1) = γ0 + op(1). This completes the proof of Lemma 11.

82



Lemma 12. Assume the conditions of Lemma 10. Under the null distribution of

f(x; Ψ0), we have

γ(k+1)−γ0 = Op(n
−1/2), β(k+1)−β0 = Op(n

−1/6), µ
(k+1)
2 −µ = Op(n

−1/4), µ
(k+1)
3 −µ = Op(n

−1/4).

and m
(k+1)
1 = Op(n

−1/2).

The proof of Lemma 12 can be achieved by following the proof of Lemma 9,

replacing the first iteration with the (k + 1)th iteration. And apply the result of

Lemma 11.

Theorem 10. Assume the same conditions as in Theorem 9. Under the null distri-

bution f(x; Ψ0),and for any fixed finite K, as n→∞,

EM (K)
n = sup

γm22

{2γm22(
n∑
i=1

b̃2i)2 − nγm22(B̃22)22γm22}+ op(1), (4.20)

with the new definitions

b1i = (∆i1, Yi(0), Yi(µ))T ,

and

b2i = (Zi(0), Zi(µ))T ,

for i = 1, 2, . . . , n.

For j, k = 1, 2, let the variance-covariance matrix Bjk = E[{bji − E(bji)}{bki −

E(bki)}T ]. Then we introduce b̃2i = b2i − B21B11
−1b1i by orhogonalizing b1i and

b2i. The variance-covariance matrix of b̃2i is defined as B̃22 = B22 −B21B11
−1B21.

Proof. Let

M (k)
n (β0) = 2{pln(Ψ(k)(β0))− ln(Ψ̂0)}

= R1n(Ψ(k)(β0))−R0n,
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where

R1n(Ψ(k)(β0)) = 2{pln(Ψ(k)(β0))− ln(Ψ0)},

and

R0n(Ψ(k)(β0)) = 2{ln(Ψ̂0)− ln(Ψ0)}.

Since R0n is an ordinary LRT statistic under a regular model, an asymptotic approx-

imation is

R0n = (
n∑
i=1

b1i)
T (nB11)−1(

n∑
i=1

b1i) + op(1).

Apply (4.17) here to get the upper bound of R1n(Ψ(k)(β0)),

R1n(Ψ(k)(β0)) ≤ 2
n∑
i=1

t̄Tbi − nt̄TBt̄{1 + op(1)}+ op(1),

with bi defined in Condition 5.

Let

t1 = (γ − γ0, 0, γm12)T ,

and

t2 = (0, γm22)T .

Set t = (t1
T , t2

T )T . Then for any finite k, we find the upper bound of M
(k)
n (β0) is

R1n(Ψ(k)(β0))−R0n ≤ sup
t

{
2tT

n∑
i=1

bi − ntTBt− (
n∑
i=1

b1i)
T (nB11)−1(

n∑
i=1

b1i) + op(1)

}
.

By the definition of EM
(k)
n , the upper bound above is also the one for EM

(k)
n . We

then define t̃1 by orthogonalizing t1. Let t̃1 = t1 + B11
−11B12t2. We find the

following equation

2tT
n∑
i=1

bi − ntTBt = 2t̃T1 (
n∑
i=1

b1i)− nt̃T1 B11t̃1 + 2t2
T (

n∑
i=1

b2i)− ntT2 B̃22t2.
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Following Li and Chen (2010) [30],

EM (1)
n ≥ R1n(Ψ(1)(β0))−R0n = sup

t2≥0
{2t2

T (
n∑
i=1

b2i)− ntT2 B̃22t2}+ op(1),

so that

EM (1)
n = sup

t2≥0
{2t2

T (
n∑
i=1

b2i)− ntT2 B̃22t2}+ op(1)

= sup
γm22≥0

{2γm22(
n∑
i=1

b2i)2 − nγm22(B̃22)22γm22}+ op(1)

= sup{−n(B̃22)22(γm22 −
(
∑n

i=1 b̃2i)2

n(B̃22)22

)2 + (
(
∑n

i=1 b̃2i)
2
2

n(B̃22)22

)}.

By optimizing the quadratic equation, we can further conclude that

EM (1)
n =


(
∑n
i=1 b̃2i)

2
2

n(B̃22)22
+ op(1), for

∑n
i=1 b̃2i ≥ 0

0 + op(1), for
∑n

i=1 b̃2i < 0

By the property of EM algorithm, EM
(K)
n ≥ EM

(1)
n . Therefore,

EM (K)
n =


(
∑n
i=1 b̃2i)

2
2

n(B̃22)22
+ op(1), for

∑n
i=1 b̃2i ≥ 0

0 + op(1), for
∑n

i=1 b̃2i < 0
(4.21)

Theorem 11. Assume the same conditions as in Theorem 9. Under the null distri-

bution f(x; Ψ0) and for any fixed K, as n→∞,

EM (K)
n

L−→ 0.5χ2
0 + 0.5χ2

1. (4.22)

Proof. The asymptotic distribution of EM
(K)
n can be concluded immediately from

Theorem 10.
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4.7 Simulation Studies for EM Test

To assess the performance of EM test for CCS+EC model, a number of simulation

studies were conducted. We evaluated the Type I error probability and the power

of the EM testing procedure with sample sizes n ∈ {100, 500, 1000, 1500}. The EM

test for CCS+EC model refers to the EM test with one iteration. Throughout our

simulation studies in this section, the degree of freedom ν is set to be 3.

First, 1, 000 random samples X1, X2, . . . , Xn were generated from the null model

(1− γ)χ2
ν(0) + γχ2

ν(µ) (4.23)

with parameters defined in section 4.5. Unber the null hypothesis, Type I error

rates are defined as how many times out of 1,000 we reject H0. We calculated

the Type I error rates for 6 models with µ ∈ {2, 4, 8} and γ ∈ {0.35, 0.7}. These

Type I error rates are displayed in the first panel of Figure 4.3. The Type I error

rates started with numbers close to 0 for small sample sizes, while getting close to

0.05 when n is increased. However, the simulated Type I error rates for 6 models

with n ∈ {100, 500, 1000, 1500} are all below 0.05, indicating that the EM test for

CCS+EC model is quite conservative.

Next, we generated 1, 000 random samples X1, X2, . . . , Xn from the alternative

model

(1− γ)χ2
ν(0) + γβχ2

ν(µ2) + γ(1− β)χ2
ν(µ3) (4.24)

with parameters defined also in section 4.5. Powers are calcuated as the rejection

rates of null hypothesis under HA. Powers for various models are displayed in the

remaining three panels of Figure 4.3.
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Figure 4.3: Type I Error Rates and Powers for Different Models
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In general, power increases with n for all models. For µ2 = 2 and µ3 = 4, the

powers are between 0 and 0.24. This is anticipated, because we have conservative

Type I error rates. But there is an apparent trend that power increases as n in-

creases. The powers for models with µ2 = 4 and µ3 = 8 are better than the models

with µ2 = 2 and µ3 = 4. And the powers for models with µ2 = 2 and µ3 = 8 are

better than the models with µ2 = 4 and µ3 = 8. This is reasonable as the difference

between the two contaminating components gets larger, it’s easier to detect the extra

contamination. In the meanwhile, if the proportion parameters γ2 and γ3 are large,

it’s also easier for us to observe the contamination.

4.8 A Case Study for EM Test

In section 4.4, CCS+EC model with moment-based method was applied to Blalock

and colleagues’ microarray experiments on 8,799 genes from three groups. The

moment-based method has its own merits lying in that it is always easy to con-

duct a moment-based test. Besides, resampling and compactness are not necessary.

However, a major weak point of the moment-based method is that when there are

high dimensional parameter equations, the moment-based method cannot provide

accurate estimation. In section 4.4, we did not estimate the parameters by the

moment-based method. Now, we will apply the EM method to do the hypothesis

testing and parameter estimation simultaneously.

As in section 3.6, we need to first convert the F statistics provided in the hip-

pocampal data to corresponding P -values, then P -values to Chi-Square statistics.

With Chi-Square statistics, we can apply EM method to do the hypothesis testing
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and parameter estimation and we can also take filtration into account .

Although only 1 iteration is regulated for both null and alternative hypothesis

testing, parameter estimation is based on 20 iterations of EM algorithm for both null

hypothesis and alternative hypothesis, to provide more accurate estimation. The pa-

rameter estimates and the P -values for all genes, genes eliminated in each step and

genes remaining after each step are shown in Table 4.3. From Table 4.3, we see the

P -values for all genes, and genes remaining after each step are less than 0.05, which

means CCS+EC model is more appropriate. For genes eliminated in each step, the

P -values are greater than 0.05, indicating that CCS model fits the data better. This

gives us some suggestion for how Blalock and his colleagues split the hippocampal

data into remaining genes groups and eliminated genes groups, in that the latter

groups had less heterogeneity. Figure 4.4 presents histograms for all genes and the

genes remaining and eliminated in each step with fitted model under both null hy-

pothesis and alternative hypothesis superimposed. It’s quite hard to tell from the

histogram which model fits better, since the figure cannot detect small differences

between two models. But the P -values from EM testing procedure informed us which

models fit better.

The fitted models for all genes and genes in each step suggested by EM testing

and parameter estimation are displayed in Table 4.4. For genes eliminated in step

3A,in fact, it’s not necessary to do further hypothesis testing with one extra com-

ponent versus two extra components, because in chapters 2 and 3, the omnibus null

hypothesis for genes eliminated in step 3A was not rejected. Therefore, since one

extra component was not detected earlier there was no reason to anticipate detection
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Figure 4.4: Fitted CCS Model vs. Fitted CCS+EC Model
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Table 4.3: Parameter Estimation by EM Method

Genes µ̂ µ̂2 µ̂3 γ̂0 γ̂A β̂ γ̂2 γ̂3 P -value
All genes 2.4127 0.7037 2.9997 0.3054 0.2811 0.4980 0.1400 0.1411 0.0021
Remaining after 1A 3.1812 1.1294 4.2053 0.3048 0.2939 0.4967 0.1460 0.1479 0.0007
Eliminated in 1A 0.7063 0.1993 0.8991 0.6853 0.3686 0.4973 0.1833 0.1853 0.3372
Remaining after 2A 3.3651 1.1715 4.5678 0.2894 0.2805 0.4967 0.1393 0.1411 0.0006
Eliminated in 2A 2.700 0.7605 3.0914 0.3332 0.3348 0.4967 0.1663 0.1685 0.2308
Remaining after 3A 3.7485 1.1409 4.7513 0.4519 0.4490 0.4968 0.2230 0.2259 0.0004
Eliminated in 3A 0.2570 0.2376 0.2751 0.9012 0.3340 0.4973 0.1661 0.1679 0.5

of two extra components now.

Table 4.4: Fitted Model for All Genes, Remaining Genes and Eliminated Genes

Genes Fitted Model P -value
All genes 0.7189χ2

2(0) + 0.1400χ2
2(0.7037) + 0.1411χ2

2(2.999) 0.0021
Remaining after 1A 0.7061χ2

2(0) + 0.1460χ2
2(1.1294) + 0.1479χ2

2(4.2053) 0.0007
Eliminated in 1A 0.6853χ2

2(0) + 0.3147χ2
2(0.7063) 0.3372

Remaining after 2A 0.2805χ2
2(0) + 0.1393χ2

2(1.1715) + 0.1411χ2
2(4.5678) 0.0006

Eliminated in 2A 0.3332χ2
2(0) + 0.6668χ2

2(2.7006) 0.2308
Remaining after 3A 0.4490χ2

2(0) + 0.2230χ2
2(1.1409) + 0.2259χ2

2(4.7513) 0.0004
Eliminated in 3A 0.9012χ2

2(0) + 0.0988χ2
2(0.2570) 0.5

Copyright c©Feng Zhou 2014
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Chapter 5 Case Study: Gene Profile Analysis of sorted Sca1+/cKit- BM

cells (BMCs)

5.1 Introduction

In this chapter, we consider the microarray data of Gifford AM et al. (2010) [25]

for a practical application of the moment-based methods and the likelihood methods

developed for CCS and CCS+EC models. The data are available at

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25620. Gifford AM et al.

analyzed the gene profile of sorted Sca1+/cKit- BMCs to identify their effects on the

growth of responding tumors. Three groups of mice were studied: five mice bearing

instigating tumors, five mice bearing non-instigating tumors, and four mice with ma-

trigel. Systemic instigation is a process by which endocrine signals sent from certain

tumors (instigators) simulate BMCs. (Meshe Elkabets et al. 2011 [22]). Matrigel is

a control group with neither instigator nor non-instigator. In total, 22690 probe sets

were scanned on each microarray chip.

In our case study, we performed both ANOVA F-tests on log transformed mi-

croarray data and Kruskal Wallis χ2-tests on original microarray data to compare

gene expression levels across three groups. Before data analysis, we reduced the total

number of gene probe sets to be tested by excluding the genes for which the abso-

lute difference between the instigating tumors group and the matrigel group did not

differ by at least 91% of the maximal difference among groups for log transformed

microarray data and at least 94% of the maximal difference among groups for original
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microarray data. Then both the moment-based test and MLRT for CCS model were

applied to test the omnibus null hypothesis of no contamination versus the alter-

native hypothesis of a central chi-square distribution contaminated by a non-central

Chi-square distribution for the entire collection of genes and the genes remaining and

excluded. For the groups of genes whose omnibus null hypotheses were rejected, we

further tested whether there was an extra non-central Chi-Square component using

moment-based test and EM test for CCS+EC model.

5.2 Moment-Based Tests and Likelihood-Based Tests for ANOVA F-

Statistics

ANOVA test can be applied to test the means of the gene expression levels across

the three groups of mice only if the assumptions for ANOVA test is satisfied. The

Shapiro-Wilk test within each group of mice under each gene suggests that the genes

are not normally distributed. Therefore, we made a log transformation on BMC

microarray data. Then we applied the filtration criteria mentioned in the previous

section to devide the entire collection of probe sets into two groups, a remaining

group which included 11,366 genes whose log transformed absolute difference be-

tween the instigating tumors group and the matrigel group was greater than 91%

of the log transformed maximal difference among groups, and an excluded group

including 11,324 genes that were not in the remaining group. After filtration, one-

way ANOVA F-tests were performed to compare expression levels across the three

groups. Histograms of the χ2-statistics with the fitted model from moment-based

method for all genes, remaining genes and excluded genes are depicted in Figure 5.1,
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with χ2 statistics obtained from F statistics as first obtained in Chapter 2.

Now we apply the moment-based approach to test the homogeneity of all genes,

Figure 5.1: Histograms with the Fitted Model from Moment-Based Method for All
Genes, Remaining Genes and Eliminated Genes
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as well as the retained and the excluded genes. We set δ = ε =
√

0.05 (Chapter

2, CCS2 model). The results from moment-based test suggest that we should not

reject the null hypothesis of homogeneity for all genes, retained genes and excluded

genes, which means we may not conclude the genes were differentially expressed.

By further investigating the moment-based approach in this case, we find that the

reason for not rejecting the null hypotheses is that our W test statistic, which is

used to ensure the positiveness of the estimators of µ and γ was negative. Thus any
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departure from a central χ2 distribution suggested by the S statistic was driven by a

factor other than differential expression (e.g., correlations between genes). Thus, we

refrained from testing the second null hypothesis of one contamination of a central

Chi-Square distribution versus the second alternative hypothesis of two contamina-

tions of a central Chi-Square distribution.

Next MLRT with the penalty coefficient selected to be 10 is performed on the

same microarray data. This time the P -values in Table 5.1 show that the omnibus

null hypotheses of no contamination were rejected for all genes, eliminated genes

but fail to be rejected for remaining genes. And we further estimate that 31.39%

of 22690 genes were differentially expressed. For remaining genes, the percentage of

differentially expressed genes is 71.19%. Therefore, the Contaminated Chi-Square

models are more suitable for modeling the overall genes and the remaining genes,

and the central Chi-Square model is used for the eliminated genes as judged by

likelihood-based inference. The histograms of χ2-statistics with the fitted Contami-

nated Chi-Square distributions superimposed for all genes and remaining genes and

the histogram with the fitted central Chi-Square distribution superimposed for elimi-

nated genes are presented in Figure 5.2. From the figure, the genes are well described

by the corresponding distributions.

Table 5.1: Hypothesis Testing and Parameter Estimation from MLRT Method for
central Chi-Square Model vs. CCS Model

All Genes Remaining Genes Eliminated Genes
P -value < 0.0001 < 0.0001 1
µ̂ 0.6762 0.9056 6.6 ∗ 10−5

γ̂ 0.3139 0.7119 0.1752
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Figure 5.2: Histograms with Fitted Model from MLRT Method for All Genes, Re-
maining Genes and Eliminated Genes on ANOVA F-statistics
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Since the omnibus null hypotheses are easily rejected under significance level 0.05

for all genes and remaining genes, we are interested to know whether there will be

an extra contamination involved. The EM tests with one iteration were conducted

for testing problem while the EM tests with twenty iterations were performed for

parameter estimation. The results in Table 5.2 indicate that we fail to reject the

secondary null hypothesis for all genes and the eliminated genes with P -values equal

to 0.2564 and 0.5 respectively. However, the secondary null hypothesis is rejected for

the remaining genes. It can be noticed that the estimated value of µ2, µ3 are very

close to each other, which seems to be a conflict with our hypothesis testing result.
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This is mainly because of the difference of γnull from γ2 and γ3. Hence, we can con-

clude there doesn’t exist an extra contaminated component for all genes, remaining

genes and eliminated genes.

Table 5.2: Hypothesis Testing and Parameter Estimation from EM Method for CCS
Model vs. CCS+EC Model on ANOVA F-statistics

All Genes Remaining Genes Eliminated Genes
P -value 0.2564 0.0050 0.5000
µ̂ 0.3067 0.7423 0.0031
µ̂2 0.3000 0.7196 0.0031
µ̂3 0.3072 0.7210 0.0031
γ̂null 0.9092 0.9491 0.0969
γ̂2 0.2007 0.3573 0.0479
γ̂3 0.2024 0.3602 0.0490

By comparing the estimated values of parameters under the secondary null hy-

pothesis with the estimated values under the omnibus alternative hypothesis, one

may notice they are not consistent. This is because, for the omnibus hypothesis

testing, we use MLRT which has only one set of initial values with many iterations.

However, for the unilateral hypothesis testing problem, we apply the EM test which

has several sets of initial values with only one iteration. Therefore, there is a differ-

ence between the estimaters.
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5.3 Moment-Based Tests and Likelihood-Based Tests for Kruskal-Wallis

χ2-Statistics

The assumptions for ANOVA test are normality, independence and equal variance.

But in real life, we rarely find a dataset that satisfies all the assumptions. Here the

gene profile of Sca1+/cKit- BMCs does not fulfill the requirement of ANOVA test as

well even after the log transformation. This might be the reason that the moment-

based approach for testing the omnibus null hypothesis of homogeniety failed to reject

the null. To avoid the strict assumptions for ANOVA, we turned to the Kruskal Wal-

lis nonparametric method. Then the same filtration approach was also applied, but

with a criterion that the absolute median difference between the instigating tumors

group and the matrigel group did not difffer by at least 94% for the original microar-

ray data of the maximal difference among groups. This split the overall 22690 genes

into the remaining group with 11406 genes and the eliminated group with 11284

genes. Next, Kruskal Wallis χ2-tests were conducted to compare the three group

median expression levels.

This time we apply the moment-based method and the MLRT method to test

the omnibus null hypothesis of no contamination versus the contaminated model

on the Kruskal Wallis χ2 statistics. The results of the moment-based method and

MLRT method are in Table 5.3 and Table 5.4 respectively. From these two tables,

the results based on Kruskal Wallis χ2 statistics are very similar to those based on

the ANOVA F statistics. For the moment-based method, the null hypotheses of ho-

mogeneity were all not rejected because of the negative values of W statistic. For the

MLRT method, The null hypotheses were only rejected for all genes and remaining
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genes, while the null hypothsis was not rejected for the eliminated genes. This is

consistent with our expectation because the genes are less differentially expressed in

the eliminated group.

Table 5.3: Hypothesis Testing and Parameter Estimation from Moment-Based
Method for central Chi-Square Model vs. CCS Model on Kruskal Wallis χ2-tests

All Genes Remaining Genes Eliminated Genes
P -value 1 1 1
µ̂ -5.1147 -2.9800 -2.1601
γ̂ -0.0459 -0.5644 0.5685

Table 5.4: Hypothesis Testing and Parameter Estimation from MLRT Method for
central Chi-Square Model vs. CCS Model on Kruskal Wallis χ2-tests

All Genes Remaining Genes Eliminated Genes
P -value < 0.0001 < 0.0001 0.9299
µ̂ 0.6698 0.8722 6.6 ∗ 10−5

γ̂ 0.3007 0.5838 0.1750

Based on the testing results from the omnibus null hypotheses, we proceed to

test the secondary null hypothesis of a CCS model versus a CCS+EC model only

using the EM method. For all of the three batches, we failed to reject the secondary

null hypotheses on account of large P -values. The only difference between the EM

tests on Kruskal Wallis χ2 statistics and ANOVA F statistics is that this time the

null hypothesis was not rejected for the remaining genes with P -value equal to 0.5.

Furthermore, we obtained close estimated values for µ and γ with the ones from the

tests based on ANOVA F statistics. The detailed results are in Table 5.5.
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Table 5.5: Hypothesis Testing and Parameter Estimation from EM Method for CCS
Model vs. CCS+EC Model on Kruskal Wallis χ2-tests

All Genes Remaining Genes Eliminated Genes
P -value 0.3089 0.5 0.3784
µ̂ 0.2881 2.1973 0.0031
µ̂2 0.2879 1.8703 0.0031
µ̂3 0.2852 2.2152 0.0031
γ̂null 0.9070 1 0.0933
γ̂2 0.1943 0.1983 0.0464
γ̂3 0.1959 0.8016 0.0469

5.4 Summary

In Chapter 5, we applied the moment-based methods and likelihood-based methods

developed in previous chapters to the microarray data of Gifford AM et al. We ana-

lyzed the Chi-Square test statistics from both ANOVA P -values and Kruskal Wallis

P -values. Both the moment-based method for the test of homogeneity on Chi-Square

statistics from ANOVA P -values and Kruskal Wallis P -values produced negative es-

timates, which prevented us from further investigation. This means that we may

still have departure from the central Chi-Square distribution, but it possibly comes

from the dependence among genes within the same mice.

The results of MLRT tests for Chi-Square statistics from ANOVA P -values and

Kruskal Wallis P -values both suggest that the genes are differentially expressed in

all genes, remaining genes. But there is no sign of differentiation in the eliminated

genes group. The estimates for all genes and remaining genes under the alternative

hypotheses and the estimates for eliminated genes under the null hypotheses from

both MLRT tests are very close to each other. This increases the credibility of our

findings.
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The secondary null hypotheses of one extra component failed to be rejected for all

genes and eliminated genes with Chi-Square statistics from both ANOVA P -values

and Kruskal Wallis P -values. However, it was rejected for the remaining genes when

the statistics were transformed from ANOVA P -values, while failed to be rejected

when the Chi-Square statistics were from nonparametric P -values. The result based

on the nonparametric Kruskal-Wallis test is more reliable because the values of µ̂2

and µ̂3 from ANOVA are very close to µ̂, which suggests there is not really an extra

component involved.

Based on all the analysis above, we can conclude that there exists a differentiation

in the microarray. But we can only detect one extra differential component. There-

fore, the CCS model is proposed to describe the distribution of the Sca1+/cKit-

BMC genes, and we need likelihood based inference to do so

Gifford and colleagues (2010) [25] identified granulin (GRN) as the most upreg-

ulated gene in instigating Sca1+ cKit- BMCs. According to our results, the most

differentially expressed genes are 1417033at and 1448309at based on Kruskal Wallis

test and 1439075at based on ANOVA test. Our most differentially expressed gene is

defined to be the one with the largest χ2 statistics. We did post-hoc tests for multi-

ple comparison of three groups of mice on 1439075at, 1417033at and 1448309at after

ANOVA test and Kruskal Wallis test. The Bonferroni adjusted test after ANOVA

shows that the tumor growth with BMCs of mice bearing instigating tumors is signif-

icantly different from the tumor growth with BMCs of mice bearing non-instigating

tumors or matrigel. In contrast, Bonferroni-adjusted tests after Kruskal Wallis sug-

gests that the tumor growth for mice with instigating tumors is significantly different

only from mice in matrigel group. We may conclude that the instigating tumors have

102



greater impact than non-instigating tumors on expression of these genes.

Copyright c©Feng Zhou 2014
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Chapter 6 Future Work

My research is focused on the theory and methods for Chi-Square mixture mod-

eling and its application to the microarray. Basically, three methods including a

moment-based method and two likelihood based methods, the MLRT and the EM

test are developed. The first two parts of my thesis consist of the application of these

three methods for testing the omnibus null hypothesis of no contamination versus

the alternative hypothesis of a central Chi-Square distribution contaminated by a

non-central Chi-Square distribution. The second two parts of my work show that if

the omnibus null hypothesis is rejected, how two of these methods can be developed

and employed to test whether there are two non-central contaminated Chi-Square.

The contaminated Chi-Square model has been explored extensively in this dis-

sertation. There are still some aspects remaining for future research.

First, in our work, we focused on testing the central Chi-Square model versus

CCS model and CCS model versus CCS+EC model. For the real data which is

more complicated, tests for even higher dimensional Chi-Square mixture models,

i.e., the central Chi-Square distribution contaminted by more than two non-central

Chi-Square distributions can be considered.

Second, the Chi-Square mixture models are based on the the Chi-Square statistics

transformed from the ANOVA F statistics. We made the assumption of independence

of each gene to perform the ANOVA test. In reality, the gene expression levels are

correlated. While this assumption is violated, what action can be taken?

Third, given recent advances in univariate Chi-Square mixture models, we be-
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lieve that this is an opportune time to develop new inferential tools for a ”general”

multivariate mixture model X1, . . . , Xn ∼
∑k

j=1 γjf(x; θj) in which θ1, . . . , θk are not

scalars. By general we mean that attention will not be confined to a single spe-

cific parametric family of multivariate pdfs. Rather, as various authors (including

ourselves) have done for univariate mixture and/or contamination models, one may

consider any parametric family satisfying appropriate assumptions. Moreover, the

assumptions will be only those necessary to establish useful theorems on the be-

havior of test statistics and parameter estimators. As such, we anticipate that the

new inferential tools will expedite the deployment of multivariate mixture modeling

in a variety of practical applications, both inside the field of genetics (for example,

consider both red and green intensities at n positions on a DNA microarray) and

outside (for example, joint modeling of birthweight and gestational age data).

Copyright c©Feng Zhou 2014
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Chapter A Appendix

A.1 Appendix I: Proof of Regularity Conditions in Chapter 3

Condition 1. Wald’s integrability conditions. The kernel function χ2
ν(µ) satisfies Wald’s

integrability conditions for consistency of the maximum likelihood estimator,

i.e. for each µ ∈ Θ, (i) E‖ log fν(X;µ)‖ < ∞, and (ii) for sufficiently small

ρ > 0 the expected values E log f(X;µ, ρ) <∞, where

f(X;µ, ρ) = 1 + sup‖µ′−µ‖≤ρ{f(X;µ′)}.

Proof.

E[log f(X;µ)] =

∫ ∞
0

log f(x;µ)f(x;µ)dx

=

∫ ∞
0

(
−x+ µ

2
+ (

ν

4
− 1

2
) log

x

µ
+ log I ν

2
−1(
√
µx)

)
e−

x+µ
2 (

x

µ
)
nu
4
− 1

2 I ν
2
−1(
√
µx)dx.

For (i), it suffices to show that,

1. −∞ < E[X] <∞.

2. −∞ < E[logX] <∞.

3. −∞ < E[log I ν
2
−1(
√
µX)] <∞.
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Since E[X] = µ+ ν, it is easy to get 1.

E[logX] =

∫ ∞
0

log xe−
x+µ
2 (

x

µ
)
ν
4
− 1

2 I ν
2
−1(
√
µx)dx

<

∫ ∞
0

xe−
x+µ
2 (

x

µ
)
ν
4
− 1

2 I ν
2
−1(
√
µx)dx

<∞

There exists ε > 0 such that I ν
2
−1(
√
µX) ≤ 2 for all x ∈ (0, ε). Assume ν ≥ 2, then,∫ ε

0

log xe−
x+µ
2 (

x

µ
)
ν
4
− 1

2 I ν
2
−1(
√
µx)dx

≥
∫ ε

0

log xe−
x+µ
2 (

x

µ
)
ν
4
− 1

2 2dx

≥
∫ ε

0

log xe−
µ
2 (
x

µ
)
ν
4
− 1

2 2dx

=

∫ ε

0

log xdxe−
µ
2 (
x

µ
)
ν
4
− 1

2 2

= (ε log ε− ε)(e−
µ
2 (
x

µ
)
ν
4
− 1

2 2)

> −∞.

Then we need to prove that −∞ < E[log I 1
2
−1(
√
µX)] <∞. As X → 0+,

I ν
2
−1(
√
µX) ≈ 1

0!Γ(0 + ν
2
− 1 + 1)

(
µX

2
)
ν
2
−1.

Since

E[log I ν
2
−1(
√
µX)] =

∫ ∞
0

log I ν
2
−1(
√
µx)f(x;µ)dx

=

∫ ε

0

log I ν
2
−1(
√
µx)f(x;µ)dx+

∫ M

ε

log I ν
2
−1(
√
µx)f(x;µ)dx+

∫ ∞
M

log I ν
2
−1(
√
µx)f(x;µ)dx

For ν ≥ 2, first consider∫ ε

0

log I ν
2
−1(
√
µx)f(x;µ)dx ≈

∫ ε

0

log[
1

Γ(ν
2
)
(
µx

2
)
ν
2
−1]f(x;µ)dx.
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We have proved in 2. that logX is integrable, hence, the above equation is also

integrable.

As X →∞, I ν
2
−1(X) ≈ eX√

2πX
, we have

log I ν
2
−1(
√
µX) ≈

√
µX − 1

2
log(2π

√
µX).

Therefore,∫ ∞
M

log I ν
2
−1(
√
µx)f(x;µ)dx ≈

∫ ∞
M

(x− 1

2
log(2π

√
µx))f(x;µ)dx,

which is integrable.

The proof of (ii) remains to be completed.

Condition 2. Smoothness. The kernel function χ2
ν(µ) has common support for all µ ∈ Θ and

is twice continuously differentiable with respect to µ.

Proof. We know that for µ ∈ (0,∞) and for fixed x,

f(x;µ) ∝ e−
x+µ
2 (

x

µ
)
ν
4
− 1

2 I ν
2
−1(
√
µx),

each part is twice continuously differentiable over µ ∈ (0,∞). So the product is also

twice continuously differentiable over µ ∈ (0,∞).

When µ→ 0,

f(X;µ)− f(X; 0) ≈ 1

Γ(k
2
− 1)2

k
2

[e−
X+µ

2 (
X

µ
)
k
4
− 1

2 (
√
µX)

k
2
−1 − e−

X
2 X

k
2
−1]

≈ f(X; 0)[1− µ

2
− 1]

From the equation above, we have

f(X;µ)− f(X; 0)

µ
≈ f(X; 0) ∗ −1

2
:= f ′(X; 0).
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The existence of a continuous second derivative and the continuity of the derivative

at 0 remains to be proved.

Condition 3. Strong identifiability. For any two mixing distribution functions Ψ1 and Ψ2

such that ∫
fν(x;µ)dΨ1(µ) =

∫
fν(x;µ)dΨ2(µ), for all x,

we must have Ψ1 = Ψ2. The mixing distribution Ψ is defined as

Ψ(µ) = (1− γ)I(µ1 ≤ µ) + γI(µ2 ≤ µ).

Proof. Let∫
g(x)[(1− α)χ2

ν(0) + αχ2
ν(µ1)]dx =

∫
g(x)[(1− β)χ2

ν(0) + βχ2
ν(µ2)]dx

If either quantity is zero, then the proof is complete. Otherwise, choose g(X) = X,

then ∫
x[(1− α)χ2

ν(0) + αχ2
ν(µ1)]dx = ν + αµ1,

and ∫
x[(1− β)χ2

ν(0) + βχ2
ν(µ2)]dx = ν + βµ2.

⇒ αµ1 = βµ2. Choose g(X) = X2, then∫
x2[(1− α)χ2

ν(0) + αχ2
ν(µ1)]dx = 2ν + ν2 + 4αµ1 + 2ανµ1 + αµ2

1

and ∫
x2[(1− β)χ2

ν(0) + βχ2
ν(µ2)]dx = 2ν + ν2 + 4βµ2 + 2βνµ2 + βµ2

2.

⇒ 2ν + ν2 + 4αµ1 + 2ανµ1 + αµ2
1 = 2ν + ν2 + 4βµ2 + 2βνµ2 + βµ2

2.

We can conclude that µ1 = µ2 and α = β, where Φ1 = Ψ2.
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Condition 4. Uniform strong law condition of large numbers. There exists integrable g

with some δ > 0 such that ‖Yi(µ)‖3 ≤ g(Xi) for all µ ∈ Θ, where Yi(µ) =

fν(Xi;µ)−fν(Xi;0)
µfν(Xi;0)

; Y (0) = f ′ν(Xi;0)
fν(Xi;0)

.

Proof. By first order Taylor Expansion,

fν(Xi;µ)− fν(Xi; 0)

µfν(Xi; 0)
=

∂
∂µ
f(X; µ̃)

f(X; 0)
=
f ′(X; µ̃)

f(X; 0)
,

thus

f ′(Xi;µ) =
∂

∂µ
f(Xi;µ) =

∂

∂µ
{1

2
e−

Xi+µ

2 (
Xi

µ
)
ν
4
− 1

2 I ν
2
−1(
√
µXi)}

=
∂

∂µ
{1

2
e−

Xi+µ

2 }(Xi

µ
)
ν
4
− 1

2 I ν
2
−1(
√
µXi)

+
1

2
e−

Xi+µ

2
∂

∂µ
{(Xi

µ
)
ν
4
− 1

2}I ν
2
−1(
√
µXi)

+
1

2
e−

Xi+µ

2 (
Xi

µ
)
ν
4
− 1

2
∂

∂µ
{I ν

2
−1(
√
µXi)}.

Let

h1(Xi;µ) :=
∂

∂µ
{1

2
e−

Xi+µ

2 }(Xi

µ
)
ν
4
− 1

2 I ν
2
−1(
√
µXi),

h2(Xi;µ) :=
1

2
e−

Xi+µ

2
∂

∂µ
{(Xi

µ
)
ν
4
− 1

2}I ν
2
−1(
√
µXi),

h3(Xi;µ) :=
1

2
e−

Xi+µ

2 (
Xi

µ
)
ν
4
− 1

2
∂

∂µ
{I ν

2
−1(
√
µXi)}.

We want to find g1(Xi), g2(Xi), g3(Xi) such that

|h1(Xi;µ)| ≤ g1(Xi); |h2(Xi;µ)| ≤ g2(Xi); |h3(Xi;µ)| ≤ g3(Xi),

with

Eg1(Xi) <∞;Eg2(Xi) <∞;Eg3(Xi) <∞.
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Recall for non-negative ν,

Iν(z) = (
1

2
z)ν

(1
4
z2)k

k!Γ(ν + k + 1)
.

For small z, the first term in the summation is dominat. That is,

Iν(z) = (
1

2
z)ν

∞∑
k=0

(1
4
z2)0

0!Γ(ν + 1)
{1 + o(1)}

=
(1

2
z)ν

Γ(ν + 1)
{1 + o(1)}.

So, given ε > 0, there exists δ > 0 such that ∀z < δ, |o(1)| < ε. Choose ε := 1. Then

for all z < δ,

Iν(z) ≤
(1

2
z)ν

Γ(ν + 1)
2.

Therefore, for
√
µXi < δ, we have

I ν
2
−1(
√
µXi) ≤

(1
2

√
µXi)

ν
2
−1

Γ(ν + 1)
2,

and thus

|h1(Xi; µ̃)| ≤ K(ν),

for
√
µXi < δ, where K(ν) is some constant.

For
√
µXi > δ, we have |h1(Xi;µ)| ≤ L(ν)δ1− ν

2 I ν
2
−1(
√
µmaxXi), where L(ν) is another

constant.

Now put

g1(X) := K(ν)δ1+nu
2 + L(ν)δ1− ν

2 I ν
2
−1(
√
µmaxX).

Then |h1(X;µ)| ≤ g1(X). Next we need to prove that EH0g1(X) <∞. This boils

down to EH0I ν2−1(
√
µmaxXi) <∞. It is equivalent to

∫∞
0
I ν

2
−1(
√
µmaxX)f(X; 0)dX <
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∞.

As X →∞,

I ν
2
−1(
√
µmaxX) ≈ e

√
µmaxX√

2π
√
µmaxX

and

fν(X; 0) = X
ν
2
−1e−

X
2 C,

where C is a constant. Then

I ν
2
−1(
√
µmaxX)f(X; 0) ≈ CX

ν
2
− 5

4 e−
X
2

+(µmaxX)
1
2 .

Therefore,

EH0h1(Xi;µ) =

∫
−1

2

fν(xi;µ)

fν(xi; 0)
fν(xi; 0)dxi = −1

2
.

Using similar method, we can find g2(X) and g3(X). So

|Yi(µ)| = |f(Xi;µ)− f(Xi; 0)

µf(Xi; 0)
|

≤ |h1(Xi;µ)|+ |h2(Xi;µ)|+ |h3(Xi;µ)|

≤ g1(Xi) + g2(Xi) + g3(Xi)

= g(Xi) for all Xi and µ.

with E[g(Xi)] = E[g1(Xi) + g2(Xi) + g3(Xi)]. We have shown |Yi(µ)| ≤ g(Xi)| with

E[g(Xi)] < ∞. Now we need to show |Yi(µ)|3 ≤ g(Xi)| with E[g(Xi)] < ∞. Since

e3
√
µX−X2

e−X
4

→ 0, as X →∞. So for X > x0,

e3
√
µX−X

2 < 2e−
X
4∫ ∞

x0

e3
√
µx

(µx)
3
4

e−
x
2x

ν
2
−1dx <

∫ ∞
x0

2
e−

x
4

(µx)
3
4

e−
x
2x

ν
2
−1dx
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Therefore, ∫ ∞
x0

e3
√
µx

(µx)
3
4

e−
x
2x

ν
2
−1dx <∞∫ ∞

x0

(I ν
2
−1
√
µmaxx)

3f(x; 0)dx <∞∫ ∞
0

(I ν
2
−1
√
µmaxx)

3f(x; 0)dx <∞

E[g1(X)3] <∞.

So

|Yi(µ)|3 ≤ |h1(Xi;µ)|3 + |h2(Xi;µ)|3 + |h3(Xi;µ)|3

≤ g1(Xi)
3 + g2(Xi)

3 + g3(Xi)
3 for all Xi and µ.

with E[g1(X)3] <∞, E[g2(X)3] <∞, E[g3(X)3] <∞.

Condition 5. Tightness. The process n−1/2
∑
Yi(µ) is tight.

Proof. We know E[Yi(θ)] = 0 for any θ, so E[n−
1
2

∑
Yi(θ2)−n− 1

2

∑
Yi(θ1)] = 0 Thus

E[n−
1
2

∑
Yi(θ2)− n−

1
2

∑
Yi(θ1)]2 = V [n−

1
2

∑
Yi(θ2)− n−

1
2

∑
Yi(θ1)]

= E[Yi(θ2)− Yi(θ1)]2

= E[Y ′i (θ̃)(θ2 − θ1)2].

The last equation is from the Mean Value Theorem. θ̃ is between θ2 and θ1. The

rest of proof remains to be completed.
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A.2 Appendix II: Proof of Regularity Conditions in Chapter 4

Condition 0. The penalty term p(β) is a continuous function such that it is maximized at

β = 0.5 and goes to negative infinity as β goes to 0 or 1.

Proof. Condition 0 is obvious to see.

Condition 1. The kernel function f(X;µ) is such that the mixture distribution satisfies

Wald’s integrability conditions for consistency of the maximum likelihood es-

timator. For this, it suffices to require that

a. E| log f(X; Ψ0)| <∞.

b. for sufficiently small ρ and for sufficiently large r, E log{1 + f(X;µ, ρ)} <

∞ for µ ∈ Θ and E log{1+φ(X; r)} <∞, where f(X;µ, ρ) = sup|µ′−µ|≤ρ f(X;µ′)

and φ(X; r) = supµ≥r f(X;µ).

c. lim|µ|→∞ f(x;µ) = 0 for all x except on a set with probability 0.

Proof. We first prove a.part.

E[log f(X; Φ0)] =

∫ ∞
0

log fν(x; Φ0)fν(x;µ)dx

=

∫ ∞
0

log[(1− γ)χ2
ν(0) + γχ2

ν(µ)]f(x;µ)dx

=

∫ ∞
0

log[(1− γ)
x
ν
2
−1e−

x
2

2
ν
2 Γ(ν

2
)

+ γ
1

2
e−

x+µ
2 (

x

µ
)
ν
4
− 1

2 I ν
2
−1(
√
µx)]

× 1

2
e−

x+µ
2 (

x

µ
)
ν
4
− 1

2 I ν
2
−1(
√
µx)dx

(A.1)

It is obvious that (A.1) is bounded below by∫ ∞
0

log[0 + γ
1

2
e−

x+µ
2 (

x

µ
)
ν
4
− 1

2 I ν
2
−1(
√
µx)]

1

2
e−

x+µ
2 (

x

µ
)
ν
4
− 1

2 I ν
2
−1(
√
µx)dx
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and bounded above by∫ ∞
0

log[1 + γ
1

2
e−

x+µ
2 (

x

µ
)
ν
4
− 1

2 I ν
2
−1(
√
µx)]

1

2
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−1(
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µx)dx.

It has been proved in Appendix I that∫ ∞
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√
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is bounded.

Now we need to prove that∫ ∞
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is also bounded. We have∫ ∞
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1

2
e−

x+µ
2 (

x

µ
)
ν
4
− 1

2 I ν
2
−1(
√
µx)]

1

2
e−
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≤
∫ ∞

0
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µ
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1
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∫ ∞
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1 + γ
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2
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x+µ
2 (

x

µ
)
ν
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2 I ν
2
−1(
√
µx)dx

<∞

where ν ≥ 2.

Therefore, E| log f(X; Φ0)| <∞.

Part b.

E log[1 + f(X;µ, ρ)] < ∞ has been proved in Appendix I. Now we prove E log[1 +

φ(X; r)] <∞. We have

0 ≤ E log[1 + Φ(X; r)]

= E log[1 + sup
µ≥r

f(X;µ)]

≤ E log[1 +
1

2
e−

X+r
2 (

X

r
)
ν
4
− 1

2 I ν
2
−1(
√
µmaxX)]

=

∫ ∞
0

log[1 +
1

2
e−

x+r
2 (

x

r
)
ν
4
− 1

2 I ν
2
−1(
√
µmaxx)]f(x;µ)dx
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Let

A := {X :
1

2
e−

X+µ
2 (

X

µ
)
ν
4
− 1

2 I ν
2
−1(
√
µmaxX) ≤ 1}

Hence, ∫ ∞
0

log[1 +
1

2
e−

x+µ
2 (

x

µ
)
ν
4
− 1

2 I ν
2
−1(
√
µmaxx)]f(x;µ)dx

=

∫
A

log[1 +
1

2
e−

x+µ
2 (

x

µ
)
ν
4
− 1

2 I ν
2
−1(
√
µmaxx)]f(x;µ)dx

+

∫
Ac

log[1 +
1

2
e−

x+µ
2 (

x

µ
)
ν
4
− 1

2 I ν
2
−1(
√
µmaxx)]f(x;µ)dx

It can be proved that both A and Ac are integrable, this completes the proof of part

b.

Part c.

There exists ε > 0 such that

P (f(X;µ) ≥ ε) = P (
1

2
e−

X+µ
2 (

X

µ
)
ν
4
− 1

2 I ν
2
−1(
√
µX) ≥ ε)

≤ P (I ν
2
−1(
√
µX ≥ 2ε)

≤ P (
e
√
µX√

2π
√
µX
≥ 2ε)→ 0 as µ→∞.

Condition 2. The kernel function f(X;µ) has common support and is four times continuously

differentiable with respect to µ.

Proof. The proof of Condition 2 is possible using computations such as those in

Appendix I.

Condition 3. For any two mixing distribution functions Ψ1 and Ψ2 such that
∫
f(x;µ)dΨ1(µ) =∫

f(x;µ)dΨ2(µ) for all x, we must have Ψ1 = Ψ2.
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Proof. The proof of Condition 3 can follow the proof of Condition 3 in Appendix I

but with a three components model.

Condition 4. Let N(µ, ε) = {µ′ ∈ Θ : |µ′ − µ| ≤ ε} for some positive ε. There exists an

intergrable g(.) and a small positive ε0 such that |δih|3 ≤ g(Xi), |Yi(µ)|3 ≤

g(Xi), |Z(k)
i (µ)| ≤ g(Xi), for µ ∈ N(µ0h, ε0), h = 1, 2, and k = 0, 1, 2 with

Z
(k)
1 (µ) being the kth derivative.

Proof. The proof of Condition 4 here can be achieved by following the proof of

Condition 4. in Appendix I.

Condition 5. The variance-covariance matrix B of bi = (δi1, Yi(0), Zi(0), Zi(µ))T is positive

definite.

Proof. The proof remains to be completed.

Copyright c©Feng Zhou 2014
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