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ABSTRACT OF DISSERTATION

NOVEL COMPUTATIONAL METHODS FOR CENSORED DATA AND

REGRESSION

This dissertation can be divided into three topics. In the first topic, we derived a
recursive algorithm for the constrained Kaplan-Meier estimator, which promotes the
computation speed up to fifty times compared to the current method that uses EM
algorithm. We also showed how this leads to the vast improvement of empirical likeli-
hood analysis with right censored data. After a brief review of regularized regressions,
we investigated the computational problems in the parametric/non-parametric hybrid
accelerated failure time models and its regularization in a high dimensional setting.
We also illustrated that, when the number of pieces increases, the discussed models
are close to a nonparametric one. In the last topic, we discussed a semi-parametric
approach of hypothesis testing problem in the binary choice model. The major tools
used are Buckley-James like algorithm and empirical likelihood. The essential idea,
which is similar to the first topic, is iteratively computing linear constrained em-
pirical likelihood using optimization algorithms including EM, and iterative convex
minorant algorithm.
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3.3 ˇ vs. Ǒ of Parametric AFT model. . . . . . . . . . . . . . . . . . . . . . 58

4.1 Difference between classification and binary choice model. Left: Fisher’s

or Anderson’s iris data. Right: hidden y? generation mechanism of binary

choice model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 An example of NPMLE estimator. The number of jumps is O
�
N

1
3

�
. . . 69

4.3 Simulation result: Quatile-Qunatile plot. . . . . . . . . . . . . . . . . . . 80

vii



Chapter 1 Introduction

This thesis contains three relatively independent topics. All three are related to the

novel computational methods for censored data and regression in survival analysis.

The second chapter develops a recursive algorithm to compute the Kaplan-Meier

estimator fast with given mean constraints. Examples of such constraints are mean

or median of the survival time, the cumulative probability at given time points,

and so on. The direct Newton-Raphson optimization or the EM algorithm (Zhou,

2012) could also solve this problem, but either occupies too many memory spaces

or converge slowly. We represented the Newton-Raphson approach and proposed

a recursive algorithm to solve such problem fast, which could later be applied to

solve different hypothesis testing problems on survival time or coefficients of survival

regressions, in applications connects to empirical likelihood.

In Chapter 3, we considered high dimensional regression problem with right cen-

sored data. In particular, we investigated parametric accelerated failure time model

with high-dimensional settings and illustrated the properties and performance of the

proposed algorithm. It unifies the penalized regression method and the classical ac-

celerated failure time model. There are some studies on non-parametric accelerated

failure time model in high-dimensional setting now, but they are hard to use and lack

rigorous proof. The parametric method and theory have a potential to contain more

nuisance parameters and become more flexible.

In Chapter 4, we concentrated on the hypothesis testing problem for the so-called

binary choice model. It uses a Buckley-James like method combined with EM algo-

rithm. We maximized the empirical likelihood and derived the log-likelihood ratio

statistics to solve the problem. Several algorithms and approaches could be replaced

in each step of the proposed algorithm, which makes it flexible, and extendable.

The following flow chart covers the topics in each chapter and the relationship among

them.
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Chapter 2 Chapter 3 Chapter 4

High
dimensional

Empirical
Likelihood

EM

Iterative
Least

Square

Recursive
Algorithm

AFT

Log Empirical
Likelihood

Ratio

Penalized
Regression

Figure 1.1: Topics in Chapter 2, Chapter 3 and Chapter 4.
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Notation

arg minˇ f .ˇ/ the ˇ that minimizes f .:/
arg maxˇ f .ˇ/ the ˇ that maximizes f .:/
R;C, I number fields and sets
kxk`p L � p norm of x if p > 0.
kxk`0 number of non-zero entries of x.

 ,
d
! convergence in distribution

p
! convergence in probability
a:s:
! almost sure convergence
N.�; �2/, tdf , �2

df
normal, t and � square distribution

Z˛ upper ˛ quantile of normal distribution

, define
Icondition identification function
rf .x/ first derivative of f .x/
�f .x/ second derivative of f .x/, might be a matrix
Q << P measure Q is absolutely continuous with respect to measure P
op.1/, Op.1/ stochastic order symbols
1p length p vector with all entries equal 1.
Pn empirical measure and process, e.g. Pnf D

1
n

Pn
iD1 f .Xi/.

AI;J AI;J is the submatrix of A with row and column index set I
and J correspondingly.
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Chapter 2 A Recursive Formula for the Kaplan-Meier Estimator with

Mean Constraints and Its Application to Empirical likelihood

2.1 Introduction

One essential problem in most survival analysis is to estimate the cumulative dis-

tribution function (CDF). Among all of the parametric, semi-parametric and non-

parametric approaches, Kaplan-Meier estimator is the most famous one. The very

first paper is (Bohmer 1912), but is not discovered and further studied by researchers

until a major event of survival analysis came: the 1958 Kaplan, Meier paper was

published.

In the June 1958 paper, Edward Kaplan and Paul Meier proposed a very important

method to estimate and visualize incomplete survival observations: the Kaplan-Meier

curve. The importance of this curve is highly appreciated not only in academia world

but also in the medical researches and other fields. When Meier died, the news praised

his achieve, said “that can affect the lives of millions”, and “revolutionized medical

trial.” The original 1958 paper is the most cited statistical paper (ranks 11th) among

all scientific fields of all time.

The plot of the Kaplan-Meier curve is now a standard approach to “depict time-

to-events data for events like death or recurrence of disease”, and it can show effects of

treatment on major events of survival over time. Hence is now a must during clinical

trial studies. Since it is a fundamental step to incomplete data study, most statistical

software, either commercial (such SAS/MATLAB) or free (such as R/Python), pro-

vides several of methods to calculate and illustrate the Kaplan-Meier curve of data.

But another side of the problem does not capture the same attention: hypothesis test-

ing of Kaplan-Meier curve, which studies the propriety of random errors and further

identifies/measures the uncertainty of the survival function estimation. Typically,

there are two approaches to measure the uncertainty: local approach and the global

approach.

4



For the first one, a so-called Greenwood formula will provide an estimator of the

variance of the Kaplan-Meier estimator OS.t/ at any single fixed time point t.

Suppose that X1; : : : ; Xn are i.i.d. non-negative random variables denoting the life-

times with a continuous distribution function F0. Independent of the lifetimes there

are censoring time C1; : : : ; Cn that are i.i.d. with a distribution G0. Only the censored

observations .Ti ; ıi/’s are available to us, where Ti D min.Ti ; Ci/ and ıi D I.Xi � Ci/

for all i . Here I.A/ is the indicator function of A. Assume 0 D Tt1 < : : : < TtN , and

for given time t , Nt be the number of observations that are still alive just before time t

(denote as t�), and Mt be the number who survive from t� to tC, i.e. Mt D Nt �dt .

Here dt denotes the number of deaths that occur at time t . Then, the Kaplan-Meier

estimator is :

OS.t/ D
Y

j WTtj�t

Mtj

Ntj
:

Besides, the Greenwood formula gives the variance at time point t :

Var. OS.t// � OS2.t/
X

j WTtj�t

1 �
Mtj

Ntj

Mtj

:

More details could be found in any standard survival textbook, for example (Zhou,

2015). The Greenwood formula an also provide the Wald-type confidence interval:

. OS.t/ �Z1�˛=2

q
Var. OS.t//; OS.t/CZ1�˛=2

q
Var. OS.t///;

where Z1�˛=2 is Normal distribution quantiles once the confidence level ˛ is specified.

Through the calculation, the drawback is clear:

1. Although Greenwood formula does a fine job in variance estimating, it has

potential problem to give confidence interval when the distribution of OS.t/ is

skewed;

2. It only works for a single point, in other words, it can not estimate the covariate

5



of Kaplan-Meier OS.t/ at any two distinguished time points.

There are papers on skewness correction (refs), which applies monotonic trans-

formation function (A.:/) such as log (default transformation used in R) and log-log

(default transformation used in SAS). It applies Delta-method again to calculate the

confidence interval:

A�1.A. OS.t// � ˛ sd.A. OS.t////; A�1.A. OS.t//C ˛ sd.A. OS.t////:

But since each choice of A.:/ derive a different confidence interval, theoretically there

are infinite many possible choices and no way to distinguish which is (are) the best.

Besides, some authors also reported convergence speed of transformations may vary.

For example, the Log-Log transformation outperforms the log transformation in this

sense. Another comment is that the skewness of the Kaplan-Meier is also location

dependent: OS.t/ may be quite skewed at t , but OS.s/ may have almost no skew at

s. Therefore, we may need different transformation function for different locations s

and t . So the asymptotical Wald-type confidence interval may have different forms

at different time points.

The second problem is that the Greenwood formula does not provide the covari-

ance of the Kaplan-Meier at two or more locations. Therefore, any quantity that

depends on the Kaplan-Meier values at more than one places, the Greenwood falls

short. A case in point is the mean value based on the Kaplan-Meier curve (trimmed

mean or restricted mean are similar); see our examples in the method section for the

restricted mean.

In the first section of this thesis will discuss the hypothesis testing problem of

the Kaplan-Meier estimation. We advocate a new way of producing the confidence

intervals that avoids the above two difficulties. This new way of producing confidence

intervals is called empirical likelihood method and the theory was discussed in Owen

and Zhou. The new method depends on the quick computation of constrained or

tilted Kaplan-Meier Curve (Pan and Zhou, 1999).

6



2.2 Empirical Likelihood

The empirical likelihood (EL) of the censored data in terms of distribution F is

defined as

EL.F / D

nY
iD1

Œ�F.Ti//�
ıi Œ1 � F.Ti/�

1�ıi

D

nY
iD1

Œ�F.Ti//�
ıi f

X
j WTj>Ti

�F.Tj /g
1�ıi

where �F.t/ D F.tC/ � F.t�/ is the jump of F at t . See for example Kaplan

and Meier (1958) and Owen (2001). The second line above assumes a discrete F.�/.

It is well known that the constrained or unconstrained maximum of the empirical

likelihood are both obtained by discrete F (Zhou, 2005). Let wi D �F.Ti/ for

i D 1; 2; : : : ; n. The likelihood at this F can be written in term of the jumps

EL D

nY
iD1

Œwi �
ıi f

nX
jD1

wj I ŒTj > Ti �g
1�ıi ;

and the log likelihood is

logEL D

nX
iD1

8<:ıi logwi C .1 � ıi/ log

nX
jD1

wj I ŒTj > Ti �

9=; : (2.1)

If we maximize the log EL above without extra constraint (the probability constraints

wi � 0, and
P
wi D 1 are always imposed), it is well known (Kaplan and Meier,

1958) that the Kaplan-Meier estimator wi D � OFKM .Ti/ will achieve the maximum

value of the log EL (Kaplan and Meier, 1958).

Definition 2.2.1. The empirical likelihood ratio statistics with uncensored data

((Thomas and Grunkemeier, 1975, Owen, 1988))

The empirical likelihood ratio statistics was proposed by Owen in a nonparametric

7



version of the well known Wilks theorem (1938). It is defined as:

ELR D
ELH0

ELH0[H1
D

EL. OF /

ELŒ QF �

Here OF is the cumulative distribution function that maximizes the empirical likelihood

under the null hypothesis H0, and QF is the cumulative distribution function that

maximizes the empirical likelihood under the hypothesis H0 [ H1. (Owen, 1988)

shows �2 log ELR converges to �2 distribution under the linear type null hypothesis:R
g.t/dF.t/ D 0 when there is no censoring.

Empirical likelihood ratio method was first proposed by Thomas and Grunkemeier

(1975) in the context of a Kaplan-Meier estimator. This method has been studied by

Owen (1988, 2001), Li (1995), Murphy and van der Vaart (1997) and Pan and Zhou

(1999) among many others. When using the empirical likelihood with right censored

data in testing a general hypothesis, Zhou (2005) gave an EM algorithm to compute

the likelihood ratio. This paper also compared the EM algorithm with the sequential

quadratic programming method (Chen and Zhou, 2007), and concluded that the

EM was better. Though quite stable, the EM can be slow in certain data settings.

See examples in the simulation section. We shall give a new recursive computation

procedure for the constrained maximum of the log empirical likelihood above, which

leads to a much faster computation algorithm of the empirical likelihood ratio for

testing later.

The remain part of this chapter is organized as following: section 2.3 contains the

derivation of the recursive algorithm, as well as its application to the empirical like-

lihood test; section 2.4 discusses the application of our novel algorithm on classical

hypothesis testing problem in accelerated failure time model; section 2.5 reports the

simulation results and a real data example. Finally we end the chapter with a dis-

cussion of further issues.

8



2.3 Method

In order to compute the empirical likelihood ratio, we need two empirical likelihoods:

one with constraints, one without. The maximum of the empirical likelihood without

constraint is achieved by F equals to the Kaplan-Meier estimator, as is well known.

It remains to find the maximum of logEL under constraints. In this section, we first

illustrate the recursive algorithm and then further discuss optimization and initial

value problems.

The mean constrained Kaplan-Meier estimator

Using an argument similar to those in Owen (1988), we can show that we may restrict

our attention in the EL analysis, i.e. search max under constrains, to those discrete

CDF F that are dominated by the Kaplan-Meier: F.t/ � OFKM .t/. Owen (1988)

restricted his attention to those distribution functions that are dominated by the

empirical distribution.

The first step in our analysis is to find a discrete CDF that maximizes the log

EL.F / under the mean constraints, which are specified as follows:Z 1
0

g1.t/ dF.t/ D �1Z 1
0

g2.t/ dF.t/ D �2 (2.2)

� � � � � � � � �Z 1
0

gp.t/ dF.t/ D �p

where gi.t/.i D 1; 2; : : : ; p/ are given functions with finite second order moment, and

�i .i D 1; 2; : : : ; p/ are given constants. Without loss of generality, we shall assume

all �i D 0. One examples of such constraints are shown in Figure 2.1, which present

survival curve under certain hypothesis, i.e. H0 W EŒX� D �0 or H0 W S.t0/ D s0 .

Examples of this “mean type” constraint are:

1 Sample mean g.t/ D t ;

9



2 Restricted mean g.t/ D tI.t � �/;

3 Median g.t/ D I Œt � m� and the constraint
R
Œt � m�dF D 0:5 defines implicitly

the median m;

4 Survival probability at � leads to g.t/ D I Œt > ��.

5 The difference or ratio of the above statistics. In this case, the two statistics

can all be treated as two such linear functions after introduce one of them as

the nuisance parameter.

6 Residual mean, and Residual median. In this scenario, we consider the CDF

of the residual term in survival regression such as the accelerated failure time

model. Then the residual mean and residual median can be considered as the

“mean” type constraints,

The constraints (2.2) can be written as (for discrete CDFs with all �0 D 0, and in

terms of wi D �F.Ti/ D F.Ti/ � F.Ti�/)

nX
iD1

g1.Ti/wi D 0

� � � � � � � � � (2.3)
nX
iD1

gp.Ti/wi D 0 :

We must find the maximum of the logEL.F / under these constraints. We shall use

the Lagrange multiplier to find this constrained maximum.

Kaplan-Meier-Constraint algorithm

Since F.t/ � OFKM .t/, wi is only positive at the uncensored observation Ti , except

may be the last observation. Without loss of generality assume the observations are

already ordered according to T and the smallest observation is an uncensored one

(ı1 D 1). To see this, suppose the first observation is right censored and second one

10
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is uncensored. In this case, ı1 D 0, and w1 D 0. Hence

w1 D 0 ;

nX
iD2

wi D 1; and ı1 logw1 � 0 : (2.4)

The i -th term in log empirical likelihood is

ıi logwi C .1 � ıi/ log

nX
jDiC1

wj :

This is true as observations are sorted according to T . Since ı1 logw1 � 0, the log

empirical likelihood only depends on w2; : : : ; wn. Additionally, the first observation

with ı D 0 has no contribution to the constraints. Therefore, we may focus on

w2; ; wn, with a positive w2.

Assume T1 < : : : < Tn. Let I D fi1; : : : ; ikg be the index set of censored observations

among the n’s such that Ti1 < � � � < Tik , k is the number of elements in I . Thus we

have only n � k positive probability wi ’s.

Introduce k new variables f QS1; : : : ; QSkg, one for each censored T observation, i.e.

assume j 2 I , i.e. ıij D 0, and let:

QSj D
X

i WTi>Tij

wi D 1 �
X

i WTi�Tij

wi : (2.5)

This adds k new constraints to the optimization problem. We write the vector of

those k constraints as QSj �
P
i WTi>Tij

wi D 0. With these k new variables QSi , the log

empirical likelihood in section 2.2 can be written simply as:

log EL .w; QS/ D

n�kX
iD1;ıiD1

logwi C

kX
jD1;ıjD0

log QSj : (2.6)

The Lagrangian function for constrained maximum is

G D logEL.w; QS/C �>

0@X
ıiD1

ıiwig.Ti/

1A � � nX
iD1

wi � 1

!
� 
>

�
QS �W

�
:

12



Here, � 2 Rp, g.Ti/ D .g1.Ti/; : : : ; gp.Ti//
> is a vector corresponding to the con-

straints (2.3); � 2 R is a scalar; 
; QS;W 2 Rk, QS is a vector for those QSj ’s defined in

(2.5), and the j -th entry of W is
P
i WTi>Tij

wi .

Next we shall take the partial derivatives and set them to zero. We shall show

that � D n.

First we compute
@G

@ QSj
D
1 � ıj
QSj
� 
j

Setting the derivative to zero, we have


j D .1 � ıj /= QSj : (2.7)

Furthermore,
@G

@wl
D
ıl

wl
C ıl�

>g.Tl/ � �C 

>U .l/;

where U .l/ 2 f0; 1gk is a vector with the j -th entry to be an indicator I ŒTij <

Tl � � .1 � ıij / D I ŒTij < Tl �. Then set the derivative to zero and write l as i :

� D
ıi

wi
C ıi�

>g.Ti/C 

>U .i/:

Multiply wi on both sides and sum,

X
i

wi� D
X
i

ıi C
X
i

ıiwi�
>g.Ti/C .

X
i

wi

>U .i// :

Make use the other constraints, this simplifies to

� D .n � k/C 0C
X
i

wi

>U .i/ : (2.8)

We now focus on the last term above. Plug in the 
j expression we obtained in (2.7)

13



above and switch order of summation. It is not hard to see that

Pn
iD1wi


>U .i/ D
Pn
iD1wi

�Pk
jD1 
jU

.i/
j

�
D

Pk
jD1

Pn
iD1

wiI ŒTij<Ti ��I ŒıijD0�

QSj
D
Pk
jD1 1I Œıij D 0�

D k :

(2.9)

Therefore equation (2.8) becomes � D .n� k/C 0C k. Therefore � D n, we have

wi D
ıi

n � �>ıig.Ti/ � 
>U .i/
; (2.10)

where we further note (plug in the 
 , and ıij D 0):


>U .i/
D

kX
jD1

.1 � ıij /

QSj
I ŒTij < Ti ; ıij D 0� D

kX
jD1

I ŒTij < Ti �

QSj
:

This finally gives rise to

wi D wi.�/ D
ıi

n � �>ıig.Ti/ �
Pk
jD1

IŒTij<Ti �

QSj

(2.11)

which, together with (2.5), provides a recursive computation method for the proba-

bilities wi , provided � is given:

1. Starting from the left most observation, and without loss of generality (as noted

above) we can assume it is an uncensored data point: ı1 D 1. Thus

w1 D
1

n � �>g.T1/
:

2. Once we have wi for all i � l , we also have all QSj where Tij < TlC1 and ıij D 0,

by using ( QSj D 1 �
P
i I ŒTi � Tij �wi), then we can compute

wlC1 D
ılC1

n � �>g.TlC1/ �
Pk
jD1

IŒTij<TlC1�

QSj

: (2.12)

14



So this recursive calculation will give us wi and QSj as a function of �.

Lemma 2.3.1. In the special case of no constraint of mean, then there is no � (or

� D 0) and we have

wlC1 D
ılC1

n �
Pk
jD1

IŒTij<TlC1�

QSj

;

which is the jump of the Kaplan-Meier estimator.

Proof. Use the identity .1� OF /.1� OG/ D 1� OH , we first get a formula for the jump

of the Kaplan-Meier estimator: wi D 1=n � 1=.1 � OG/. This works for OF as well as

for OG. We next show that

1 � 1=n

kX
jD1

I ŒTij < TkC1�

QSj
D .1 � OG.TkC1//

since the left hand side is just equal to the summation of jumps of OG before TkC1.

To compute the log empirical likelihood ratio statistics, we have to find the � value

that is determined from the constraint equation

0 D
X
i

ıiwi.�/g.Ti/ D

i
i

ıig.Ti/

n � �>ıig.Ti/ �
Pk
jD1

IŒTj<Ti �

QSj

: (2.13)

So, the iteration goes like this:

(1) Initialization: Pick a � value that is near zero but no equal to zero, as � D 0

gives the Kaplan-Meier.

(2) Updating w and QS : With this � find all the wi ’s and QSj ’s by the recursive formula

(2.12) and (2.5).

(3) Updating �: Plug those wi into the right hand side of equation (2.13) above and

call it � . The wi ’s obtained in step (2) are actually the constrained Kaplan-Meier

with the constraint being these � instead of zero.
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(4) Checking � and repeat : Check if � is zero. If not, change the � value and repeat,

until you find a � which gives rise to wi and QSj that satisfy � D 0.

Notes

Two special cases of the above formula are worth some more discussion:

i we point out again when � D 0, we get the Kaplan-Meier directly. The con-

straint on the Kaplan-Meier disappears and this recursive formula provide us

with a way to calculate the jumps of the classical Kaplan-Meier;

ii when there is no censoring, i.e. when all ıi D 1, this formula becomes

wkC1 D
1

n � �g.TkC1/

This is non-recursive and is precisely what Owen obtained in his 1988 pa-

perOwen (1988). A discrete distribution with the same support as the empirical

distribution but with probability proportional to wkC1 is a 1-parameter family

of distributions with parameter � which has been called “hardest parametric

submodel for estimating
R
gdF ” (Andersen et al., 2012); or “least favor” by

Bickel et al. (1998) and (Pan and Zhou, 1999).

One interesting property of this parametric family of distributions given by (2.13)

is that the parametric information for estimating
R
gdF is also the nonparametric

information for estimating
R
gdF . So, our recursive formula is just the “hardest

parametric submodel for estimating
R
gdF ” in the random censorship data setting.

The nonparametric information for estimating
R
gdF is discussed in the two books

mentioned above, as well as (Zhou, 2015).

For one dimensional �, solving (2.13) is going to be easily handled by any function

that computes the root of a univariate function such as, for instance, the uniroot

function in R. For multi dimensional � this calls for each Newton type iteration.

The empirical likelihood ratio is then obtained as

�2 logELR D �2flogEL.wi ; Sj / � logEL.wi D � OFKM .Ti//g I
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for the first log EL inside the curly bracket above we use the expression (2.6) with

the wi ; Sj computed from the recursive method in this section, and the second term

is obtained by (2) with wi D � OFKM .Ti/, the regular Kaplan-Meier estimator.

Observations .Ti ; ıi/ are first ordered according to their Ti values. If there are several

observations with identical Ti value, we then order according to their �ıi value.

That is, an uncensored Ti is considered as come before a censored Tj even when Ti D

Tj . This is the usual convention in the calculation of the Kaplan-Meier estimators.

When there are observations with identical Ti and ıi value, we can either merge

the tied observations and record the number of tie in another vector ui ; or we may

just leave the tied observations as is, in the order of their input. When there are

substantial(extensive) tied observations, it may save computational time to first merge

the tied data record the number of tied in ui before the recursive computation.

However, in most applications of survival analysis the Kapan-Meier estimator will be

computed along with some covariates, as in regression analysis. So the actual data

likely will look like (Ti ; ıi ; xi) where xi are the covariates, e.g. treatment, gender,

age, blood pressure, etc. of the i -th patient. In this case, even if two observations

have identical Ti and ıi should not be merged because they have different covariates.

Therefore in the current implementation of kmc package, we choose not to merge any

tied data.

Under the assumption that the variance of
R
g.t/d OFKM .t/ is finite (if p D 1), and

variance-covariance matrix is nonsingular (if p � 2), we have a chi square limiting

distribution for the above -2 log empirical likelihood ratio, under null hypothesis as

stated in the Wilks’ Theorem. Therefore we reject the null hypothesis if the computed

-2 empirical likelihood ratio exceeds the chi square 95% percentile with p degrees of

freedom. See Zhou (2010) for a proof of this theorem.

Root solving and initial values

For any optimization problem, there are always initial values/tuning parameter prob-

lems. Most of them relate to the properties of certain optimization algorithm. In our

approach, the problem is not only about the optimization method we used, but, more
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importantly, the nature of the algorithm itself.

If the Jacobian matrix of mean zero requirement (2.13) is not singular, Newton-

Raphson method could be used to find the root(s) of (2.13):

0 D
X
i

ıiwi.�/g.Ti/ D

i
i

ıig.Ti/

n � �>ıig.Ti/ �
Pk
jD1

IŒTj<Ti �

QSj

:

We shall call the recursive computation for w0is plus the Newton iteration for � as

Kaplan-Meier-constrained (KMC) method, which is also the name of the R package

kmc available on the comprehensive R archive network (CRAN).

Once QS is given, (2.13) has more that one roots of �.

To simplify the proof, we assume there is only one constraint. Hence dim.�/ D 1. if

we further define the i -th entry of �? as:

�?i D
n �

Pk
jD1

IŒTj<Ti �

QSj

g.Ti/
:

For QSj D sj , denote  .�/ as:

 i.�/ D n � �ıig.Ti/ �

kX
jD1

I ŒTj < Ti �

QSj

For those i ’s such that ıi ¤ 0:

�
lim�&�?

i
 i.�/! 0C

lim�%�?
i
 i.�/! 0�

Notice  .�/ is the denominator term, hence the i -th term in (2.13) goes to infinity

if g.Ti/ ¤ 0: �
sign.g.Ti// � lim�&�?

i
ıiwi.�/g.Ti/ !C1

sign.g.Ti// � lim�%�?
i
ıiwi.�/g.Ti/ ! �1

The combination of wi.�/g.Ti/’s that make non-zero sum gives the number of roots.

This property of roots in the KMC computation is helpful to know the bound of
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solution, or so called, feasible region. In each Newton iteration, when we try to find

the root, it is obvious that those �0s such that n � ıi�
>g.Ti/ �

Pk
jD1

IŒTij<Ti �

QSj
D 0

will lead (2.13) to 1. For one constraint problem, we could split the real line by

�?’s shown in Figure 2.3. For multi-constraints problems, we could just consider each

dimension separately.

Meanwhile, as mentioned previously, the null parameter space that has no constraint

corresponds to � D 0. Then any i -th entry of the desired � root for (2.13) must be

in the region that contains 0, i.e. satisfies

9j such that �?ij i < 0; �i < �
?
ijC1i

8i D 1; : : : ; p

where �?ij is the j -th entry of vector �?i such that �?i1i < : : : < �
?
ini

, and �?0;i
�
D �1,

�?nC1;i
�
D C1. So, one suggested strategy is to start at 0 and try to stay within the

feasible region at all times when carry out the Newton iterations, or only consider

the � in the feasible region that gives all w.�/ that are non-negative.

We could also calculate the analytical derivatives used in the Newton iteration.

Denote the right hand side of (2.13) as f .�/, i.e.

f .�/ D
X
i

ıiwi.�/g.Ti/ :

To compute @
@�
f .�/, we only need to calculate @

@�
wi and @

@�
QSj D

@
@�

�
1 �

Pj

kD1
wk

�
D

�
@
@�

Pj

kD1
wk. There are no closed forms of such derivatives, but it could again be

derived recursively. The following lemma summarizes the calculation.

Lemma 2.3.2. Recursive calculation of derivatives of w.�/

(1) Calculate w1.�/ and @
@�
w1.�/:

w1 D
1

n � �g.T1/
; and

@

@�
w1 D w

2
1g.T1/
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(2) Update @
@�
wkC1; k � 1:

@

@�
wkC1.�/ D ıkC1.wkC1/

2
� 

g.TkC1/C

nX
jD1

 
I ŒTij < TkC1�.

QSj /
�2 @

@�

ijX
sD1

@

@�
ws

!!
:

Note: checking the constraints

We need to check whether the constraints are proper. For example, if the constraint

is
R1
0
xdF.x/ D �1, then there is no solution (as the left side is always positive). It

is easy to check when there is only one constraint. For more than one constraints, we

refer to (Dines, 1926).

Theorem 2.3.3 (Dines, Lloyd L). (Positive solutions of a system of linear equations)

Consider the linear equations

nX
sD1

arsxs D 0; r D 1; : : : ; m

with real coefficient ars. There exists a solution .x1; : : : ; xn/ in which every component

is positive if we can apply the mathematical induction algorithm till m D 1:

Step 1. if m D 1, at least one sign of a’s are different than others;

Step 2. if m > 1, then construct a new linear equation system with coefficients

a
.new/
r;ij D a1iarj � a1jari8r D 2; : : : ; m :

Running Step 1 and Step 2 iteratively gives the final criterion.

For example, if m D 3, then we run step 2 to get a linear equation with m D 2, and

run step 2 again to get a linear equation with m D 1. If all the coefficients have the

same sign, then there is no positive solution for this problem.

This theorem presents a simple algorithm for determining whether there is a possible

solution to (2.4). But we should notice that in step 2, it increase the number of

the coefficients to be checked in a power trend. Considering the sample size n is
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relative large, the checking procedure is not applicable for large number of constraints,

i..e. p in (2.3) and m in Theorem 2.3.3 is large. The routine was implemented in

kmc::kmc.solve.

2.4 Application: Hypothesis Testing Problem in Acceleration Failure

Time Model

The accelerated failure time (AFT) model (Cox and Oakes, 1984, Kalbfleisch and

Prentice, 2011) is an important alternative to the widely used proportional hazard

model (Cox (1972)) in regression analyzing of censored failure time data, which not

only focuses on properties of survival function instead of hazard function, but also

provides a direct interpretation of linear relationship between logarithm of failure

time and covariates. We will discuss more details of AFT model in later chapters.

In general, AFT model assumes

log.Ti/ D X
>
i ˇ C �i ; i D 1; : : : ; n; Xi 2 Rp (2.14)

Here, Ti is the survival time of the i-th observation, Xi is the corresponding covariates

p-dimension vector and the measurement error �i ’s are i.i.d. sampled from cumulative

distribution function F� and are independent from X . For right censoring problem,

we further assume the logarithm of the censoring time Ci is i.i.d distributed. Hence,

for each i D 1; : : : ; n, we only observe a combination .Zi ; ıi ; Xi/. Here ıi D IYi�Ci

is the censoring indicator, Zi D log min.Ti ; Ci/.

We don’t specify any distribution to the residual term �. Otherwise, the likelihood

of a parametric AFT model is easy to be calculated.

The hypothesis is to test coefficient of the AFT model, i.e.

H0 W ˇ D b0

Here, ˇ could be either a single value or a vector. In this section, we use KMC to

do the hypothesis testing problem on coefficient ˇ instead of classical EM method.
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We chose the Buckley-James estimator and construct a log likelihood ratio statistics

to solve the hypothesis testing problem. As we may later discuss in Chapter 3, the

essential estimation equation for Buckley-James estimator is (3.7), i.e.

nX
iD1

n
ıiei.ˇ/C .1 � ıi/

X
j Wej>ei

ej .ˇ/� OFˇ .ej .ˇ//

1 � OFˇ .ej .ˇ//

o
Xi D 0

Here ei.ˇ/ D Zi � X
>
i ˇ, and OFˇ is the Kaplan-Meier estimator of ei.ˇ/’s once ˇ is

given.

Switch order of i and j we derive a linear constraint on � OF defined in the formula

(5) in (Zhou and Li, 2008)’s paper. Then maximizing the empirical likelihood under

such constraint leads to the NPMLE of residual under H0.

By doing this, we could transform a regression coefficient hypothesis testing prob-

lem into a maximizing empirical likelihood under “mean” type constraint problem.

Therefore, we could still use KMC to calculate the result fast once the problem could

be represented into empirical likelihood with linear constraint problem. The real data

example could be found in the next section. Besides, an R function kmc::kmc.bjtest

was implemented in KMC to help researchers to test coefficients in AFT model.

2.5 Simulation

To evaluate the performance of this algorithm, a series of simulations had been done.

We compared with standard EM algorithm (Zhou, 2005). Without further statement,

all simulation works have been repeat 5,000 times and implemented in R language (R

Core Team, 2014). R-2.15.3 is used on a Windows 7 (64-bits) computer with 2.4 GHz

Intel(R) i7-3630QM CPU. The full parameter list of the R function in kmc package

could be found in the help manual or Table 2.1.

Here is an example offered by a submitted paper of (Zhou and Yang, 2016) to illus-

trate the usage of both the KMC package and emplik package to solve the restricted

mean survival time hypothesis testing problem. In cancer study, an often used mea-

sure of overall survival is the Restricted Mean Survival Time, especially when the
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Table 2.1: Parameter List of kmc

Parameter Function

x Positive time
d Status, 0: right censored; 1 uncensored

g
list of constraint functions. It should be a list of functions
list(f1,f2,...)

em.boost
logical asking whether to use EM to get the initial value,
default=TRUE. See ’Details’ for EM control.

using.num
logical asking whether to use numeric derivative in
iterations, default=TRUE.

using.Fortran
logical asking whether to use Fortran in root solving,
default=F.

using.C

logical asking whether to use Rcpp in each iteration,
default=T. This option will promote the performance of
KMC algorithm. Development version works on one
constraint only. Otherwise it will generate an Error
information. It won’t work on using.num=F.

tmp.tag Development version needs it, keep it as TRUE.

rtol
Tolerance used in rootSolve(multiroot) package, see
’rootSolve::multiroot’.

control

nr.it controls max iterations allowed in N-R algorithm
default=20, nr.c is the scaler used in N-R algorithm
default=1,em.it is max iteration if use EM algorithm
(em.boost) to get the initial value of lambda, default=3.

... Unspecified yet.

proportional hazards assumption is in doubt and heavy censoring is present. See

Royston and ParmarRoyston and Parmar (2013), also the R package survRM2Tian

et al. (2014).

An expression of the restricted mean is

�.�/ D

Z �

0

1 � OFKM .s/ds ;

where OF is the Kaplan-Meier and � is the pre-specified restriction time. Another way

to calculate the restricted mean survival time is

�.�/ D

Z 1
0

min.t; �/d OFKM .t/ :

We can construct a confidence interval of �.�/ by inverting the empirical likelihood
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ratio test. The tests are computed via the tilted Kaplan-Meier with restricted mean

survival time set at a value.

We used the dataset ovarian from the survival package and pre-select the time

restriction � D 700.

1 l i b r a r y ( s u r v i v a l )

2 l i b r a r y (kmc)

3 data ( ovar ian )

4 kf <� f unc t i on ( x ) f pmin (x , 700 ) � 532 .6 g

5 re kmc <� kmc . s o l v e ( x= ovar ian$fut ime , d = ovar i an$ fu s ta t

, g = l i s t ( k f ) )

This tests the hypothesis that the restricted mean survival is equal to 532.6: H0 W

�.700/ D 532:6. You get same result but slower, by using the function el.cen.EM2

from the package emplik.

1 re em <� e l . cen .EM2( x = ovar ian$fut ime , d =

ovar i an$ fu s ta t , fun = func t i on ( x ) f pmin (x , 700) �

532 .6 g , mu=0)

KMC and EM solves exactly the same problem, the following code calculates the

maximum absolute difference of two �F ’s estimation based on KMC/EM and shows

the result are the same if rounding error is ignored:

1 > max( abs ( re kmc$phat [ which ( re kmc$phat>0)]� re em$prob ) )

2 [ 1 ] 2 .914335 e�14

The previous code are used as template in the following simulations. More details

could be found in kmc’s development page on GitHub.

Experiment 1 : Consider a right censored data with only one constraint:

�
X � Exp.1/

C � Exp.ˇ/

(2.15)

Censoring percentage of the data are determined by different ˇ0s. Three models are
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included in the experiments

(1) ˇ D 1:5, then 40% data are uncensored

(2) ˇ D 0:7, then 58.9% data are uncensored

(3) ˇ D 0:2, then 83.3% data are uncensored

The common hypothesis is (2.3), where g.x/ D .1�x/1.0�x�1/�e
�1. We could verify

that the true expectation is zero:
R
g.x/ dF.x/ D

R
.1 � x/1.0�x�1/e

�xdx � e�1=0.

To compare the performances of KMC and EM algorithm, we use four different sample

sizes, i.e. 200, 1,000, 2,000, and 5,000 in the experiments. To make fair comparisons,

kf .t/ � f .tC1/k`2 � 10
�9 is used as the convergence criterion for EM algorithm, and

kf .t/k`1 � 10
�9 is used for KMC. Average spending time is reported to compare the

computation efficiency in Table 2.2. The no censored case is included for reference,

this is equivalent to Newton solving � without recursion. In all cases in our study,

Table 2.2: Average running time of EM/KMC (in second). “No Censor” column refers
to time spend on solving empirical likelihood without censoring in R el.test(emplik).
We use this as a comparison reference.

Censoring Rate N EM KMC(nuDev) KMC(An.Dev) No Censor
200 0.175 0.011 0.028 0.005

60% 1000 3.503 0.106 0.211 0.007
ˇ D 1:5 2000 13.935 0.349 0.692 0.033

5000 73.562 1.801 3.663 0.036
200 0.064 0.010 0.029 0.000

41% 1000 1.058 0.115 0.268 0.010
ˇ D 0:7 2000 4.104 0.385 0.836 0.020

5000 22.878 2.367 4.693 0.037
200 0.014 0.008 0.029 0.002

17% 1000 0.117 0.071 0.240 0.009
ˇ D 0:2 2000 0.425 0.240 0.694 0.018

5000 2.702 1.220 3.282 0.026

EM and KMC reported almost the same �2 test statistics and a quantile to quantile

plot is shown in Figure 2.4. The plot shows good agreement to �2 distribution with

p � value D 0:5258 using Kolmogrov-Smirnov test.

We also compared the results from EM algorithm and KMC method. When ˇ D 0:2,
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Figure 2.3: The log-likelihood ratio statistics calculated using EM vs. KMC if ˇ D
0:2.

1000 simulations were repeated, the log-likelihood ratio statistics reported matched

exactly if rounding error are ignored, see Figure 2.3.

As shown in Table 2.2, we observed the following phenomenons:

(1) KMC always outperformed EM algorithm in speed at different simulation set-

tings.

(2) Computation complexity of EM increased sharply with the percentage of censored

data increasing. This is reasonable, since more censored data needs more E-step

computation. But censored rate did not affect KMC much.

(3) Sample size is related to the computation complexity. We could see the running

time of both EM and KMC increased along with the sample size.
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(4) Another phenomenon is that, the computation of numeric derivative and ana-

lytic derivative of KMC is similar. But numerical derivative is slightly better.

iteratively.

To summarize, when sample size is small and censored rate is low, the performance

of EM and KMC is similar. But either in the large sample case or heavily censored

case, KMC far outperformed EM algorithm with the same stopping criterion.

Experiment 2 : Consider a right censored data setting with two constraints. The

i.i.d. right censored data are generated by:

�
X � Exp.1/

C � Exp.:7/

(2.16)

with the following hypothesis:

H0 W

X
i

gj .Ti/wi D 0I j D 1; 2 where

8<: g1.x/ D .1 � x/1.0�x�1/ � e
�1

g2.x/ D 1.0�x�1/ � 1C e
�1

(2.17)

It is straightforward to verify that both g functions have expectation zero. In this

Table 2.3: Average running time of EM/KMC (in second)

Censoring Rate N EM KMC(nuDev)
41% 200 3.055 0.033
41% 500 55.601 0.083

simulation study, we observed that EM spent great amount of time (3s � 55s per

case) to meet the converge criterion, while the average running time of KMC was

considerable shorter (0.03s � 0.08s). This dramatic result shows in multi-dimensional

case, KMC runs much faster than EM algorithm. Only numerical derivatives were

used in our simulations. One could implement the analytic ones using iteration shown

previously. But in multi-dimensional case, the iterative type of derivatives do not have

advantage over numeric ones. We recommend using KMC with numeric derivative if

one has more than one hypothesis even the sample size is small.

Experiment 3 : Other than exponential setting, considering a right censored data
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with one constraints: �
X � � .3; 2/

C � U.0; �/

(2.18)

with hypothesis

H0 W

X
i

g.Ti/wi D 0; with g.x/ D x � 1:5

we carried out some experiments on censoring time Ci from uniform distribution.

There were two models:

(1) � D 5, then 70.00% data are uncensored;

(2) � D 3, then 51.34% data are uncensored.

Table 2.4: Average running time of EM/KMC (in second) of one constraint and
Uniform distributed censored time

Censoring Rate N EM KMC(nuDev) KMC(An.Dev) No Censor
30:00% 200 0.124 0.018 0.044 0.005
� D 5 2000 11.237 0.725 1.197 0.112
48:66% 200 0.075 0.019 0.045 0.004
� D 3 2000 4.141 1.068 1.528 0.139

We found that the result shown in Table 2.4 is very similar to Table 2.2, which infers

that different distribution of censored time will not affect the relative timings too

much.

2.6 A Real Data Example

The speed advantage of KMC algorithm is more apparent in time consuming analysis

such as drawing contour plot. In this real data example, we illustrate the proposed

algorithm to analyze the Stanford Heart Transplants Data described in Miller and

Halpern (1982) and considered regression with intercept and slope term of age. There

were 157 patients who received transplantation, among which 55 were still alive and

102 were deceased. We deleted cases that the survival times are less than 5 days, and

used only 152 cases in the analysis, as suggested by Miller and Halpern. To draw
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such contour plot 51 � 51 D 2601 empirical likelihood ratios were calculated. In this

example, we used KMC to calculate the empirical likelihood instead of EM described

in (Zhou and Li, 2008).

Firstly, two hypothesizes on survival function are considered:

H0 D

�
H
.1/
0 W Mean D

R
x�0

xdF.x/ D �

H
.2/
0 W F.3/ D

R
x�0

I.x � 3/dF.x/ D �

(2.19)

In Figure 2.4, 30 � 30 combinations of .�; �/ near NPMLE(0:5569,3:061), i.e. value

plugged in with Kaplan Meier estimation, were used to construct a contour plot of

the constrained log empirical likelihood. On the same computer, the program finished

in 17 seconds. EM based method could also reproduce the same plot, but the time

spend is not evaluated as some values fails to converge within 2 minutes.
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Figure 2.5: Contour plot of -2 log likelihood ratio corresponding to intercept and
slope of age for the Stanford Heart Transplants Data.

In Figure 2.5, KMC could be able to derive the contour plot of -2 log likelihood ratio

corresponding to intercept and slope of age very quickly too.

32



2.7 Discussion and Conclusion

In this chapter, we proposed a new recursive algorithm, KMC, to calculate mean

constrained Kaplan-Meier estimator and log empirical likelihood ratio statistics of

right censored data. Our algorithm used Lagrange multiplier method directly, and

recursively computes the jumps of the constrained Kaplan Meier estimator.

Numerical simulations show this new method has an advantage over traditional EM

algorithm in the sense of computational complexity. Our simulation work also shows

that the performance of KMC does not depend on the censoring rate, and outper-

formed EM algorithm at every simulation setting. We recommend to use KMC in all

cases but particular large gain are expected in the following cases:

(1) Sample size is large (e.g. > 1000 observations);

(2) Data are heavily censored (e.g. censored rate > 40%);

(3) There are more than one constraints.

On the other hand, and somewhat surprisingly, the analytic derivative did not help

speed up computation in our simulation study. Besides, since KMC with numeric

derivative method could be extended to more than one constraints case, we highly

recommend using numeric derivative in KMC rather than analytical one.

One of the issues of KMC is the initial value choosing, as is the case for most Newton

algorithms. The performance of root solving relies on the precision of numerical

derivative and Newton method. Our current strategy uses the M-step output of EM

algorithm with only two iterations. Other better initial values are certainly possible.

In addition, current KMC only works on right censored data, while EM algorithm

works for right-, left- or doubly censored data; or even interval censored data. We

were unable to find a proper way to derive such recursive computation algorithm in

other censoring cases.

Software is available to download at http://cran.r-project.org/web/packages/

kmc as a standard R package.
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Chapter 3 High dimensional Accelerated Failure Time Model

3.1 Introduction

In recent years, high dimensional problem attracts many researchers’ attention. One

particular area is the variable selection problem in a regression setting:

Y D Xˇ C �; ˇ 2 Rp:

Here X 2 Rn�p is the explanatory variable, Y 2 Rn is the response variable, and �

is i.i.d distributed error term. n is the sample size, the i -th row X represents the

observed explanatory value of the i -th observation. We assume that the vector ˇ

contains several component that is/are zero. The model selection method aims to

exclude those zero component from the model. If p is greater than n, or p >> n,

such as p D O.n2/, we call this the high dimensional problem.

Typically, there are several standard approaches to address this problem. Among

them, Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)

are very interesting. They both discuss likelihood function, which is much general

than the regression problem. To see this, let us inspect the regression problem briefly.

Assume the residual term � is f� distributed, where f� is a given probability density

function. Then we could estimate coefficient ˇ through the maximum likelihood

estimation (MLE):

arg max
ˇ

nY
iD1

f�.Yi �X
>
i ˇ/;

where X>i is the i -th row of the matrix X .

For instance, if � is Normally distributed, then the MLE equals the ordinary least

squares estimation (OLSE). We now introduce the general idea which are applied to

likelihood, such as AIC and BIC, and then move on to the linear regression problem

in the later content.

AIC (Akaike, 1974, 1974) minimize the Kullback-Leibler (KL) divergence of the pre-
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dicted model and the true model:

KL.f; g.:j�// D

Z
f .x/ log.

f .x/

g.xj�/
/dx D

Z
f .x/ log f .x/dx �

Z
f .x/ log g.xj�/dx

(3.1)

Here

f .:/ is the truth in terms of the probability distribution function;

g.:j�/ is the approximation in terms of the probability distribution function.with

� as the parameter vector.

Notice

Take the regression problem for example. Here � contains ˇ and the parameters in f�.

For example, if we assume the residual term � is normally distributed with unknown

standard deviation � , then � D .ˇ>; �/>. Although in the problem we only focus

on estimating ˇ, the standard deviation � can not be ignored. Other examples are

extreme value distribution that can be found in later content.

The Akaike Information Criterion links the KL distance and maximized likelihood

together, or equivalently, integrates the distance between two models and parametric

estimation together:

min
g2G

EyŒKL.f; g.:j O�g.y///�

Here

y is the random sample from the true density function f .x/;

G is the family of all “admissible” models;

O�.:/ is the MLE based on the model g./.

Plug in the definition of KL-distance, then we only need to solve the following opti-

mization problem:
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max
g2G

EyExŒlog g.xj O�g.y//�

AIC is indeed an approximately unbiased estimator (Akaike, 1973) of

maxg2G EyExŒlog g.xj O�g.y//� for large sample and model “closed” to f .:/ in the sense

of having small KL-distance with the following formula:

log.L. O� jy// � p

Here L is the likelihood function, O� is the MLE of � , p is the number of estimated

parameters. There are several variations of AIC, for example: Takewchi’s Information

Criterion/TIC (Takewchi, 1976) is useful in cases where the model is not “closed” to

the true model; AICc(Akaike, 1985) is useful in small-sample-size cases.

In general, AIC considers to penalize the model complexity to determine the “best”

model, which leads to researches on model complexity, and model degrees of freedom.

Examples are (Friedman, et,.al 2001), and (Efron, 2004) among many others.

On the other hand, some Bayesian methods are also proposed. For example Bayesian

Information Criterion/BIC (Schwarz, 1979) and reversible jump Monte-Carlo Markov

chain (MCMC) by (Green, 1995). Especially, BIC has a similar formula as AIC:

BIC D �2 log L. O�/C p log n

Here n is the sample size.

From the previous summary, we notice the most commonly used two criteria: AIC

and BIC share the same form if we introduce a positive regulatory parameter �:

max
�

1

n
`.�/ � �k�k`0 ; (3.2)

where ` is the log likelihood and kxk`0 D #suppfxg is the number of non-zero ele-

ments in x. With given kxk`0 D k, we could solve (3.2) by maximizing the likelihood

constraint to all the subset with size k. As the true model is unknown, we need to
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go over all possible k and all subsets (it is actually an NP-hard problem) to solve the

problem. Hence classical approaches that solve (3.2), including AIC and BIC, are

only applicable in low dimension setting (the number of parameter p is small, and

p < n) and causes an impracticable computational complexity when p is large as a

result of the curse of dimensionality(Friedman et al., 2001).

Now let us come back to the regression problem. Here we set � D ˇ, if the residual

term in normally distributed, then 3.2 is equivalent to minimize:

kY �Xˇk2`2 C �kˇk`0 (3.3)

This is an example of penalized regression, which are proposed and studied to solve the

high dimensional problem. Examples are LASSO(Tibshirani et al., 1997), Adaptive

LASSO(Zou, 2006), Elastic Network(Zou and Hastie, 2005), SCAD(Fan and Li, 2001),

MCP/Mini-Max(Zhang et al., 2010), Dantzig(Candes and Tao, 2007), Compressive

Sensing(Candes and Tao, 2007) and more. All these methods focus on the least

squares problem with particular penalty term, i.e. penalized least squares (Fan and

Lv, 2010), to derive “sparse” estimations and hence select variables automatically:8<:12kY �Xˇk2 C pX
jD1

p�. ǰ /

9=; ;
where kY �X>ˇk2 is the `2-norm of the residual, p�.:/ is the penalty function other

than k:k`0 used in (3.2). The penalty terms limit the parameter solution space of

� to a subset of one without penalty terms. Hence it has a potential to provide an

estimation when p > n or even p >> n, in which OLSE fails due to singularity of the

matrix X>X . To be strict, (Fan and Li, 2001) proposed rules that “good” properties

a penalty term should have, and name it as oracle properties (see Definition 3.2.1).

For (right) censored regression problem, there are several regression models that are

produced and used widely. One approach is the proportional hazards model/Cox

model, which studies the hazard rate and use partial likelihood(ref) as a powerful

tool. Meanwhile, because Cox model has the partial likelihood, (Tibshrirani, 1997)
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estimates the coefficients of Cox model in high dimensional settings though LASSO

and partial likelihood directly:

Ǒ D arg max PL.ˇ/C �?
X
j ǰ j;

or its dual form (Osborne et al., 2000):

Ǒ D arg max PL.ˇ/; subject to
X
j ǰ j � �:

Here, PL.:/ is partial likelihood proposed in (Cox, 1972). In this thesis, we focus on

the accelerated failure time (AFT) model and shall not further study the proportional

hazards model any more.

The AFT model is an important alternative to the widely used Cox model in re-

gression analyzing of censored failure time data. It concentrates on and provides a

direct interpretation of the linear relationship between the logarithm of failure time

and explanatory variables. In general, for a random time-to-vent T , the accelerated

failure time model is:

log Ti D X
>
i ˇ C �i ; i D 1; : : : ; n; Xi 2 Rp: (3.4)

Here, Ti is the survival time of the i-th observation, Xi is the corresponding covariates

p-dimension vector and the measurement error �i ’s are i.i.d. sampled from cumulative

distribution function F� and are independent from X . For right censoring problem,

we further assume the logarithm of the censoring time Ci is i.i.d distributed. Hence,

for each i D 1; : : : ; n, we only observe a combination .Zi ; ıi ; Xi/. Here ıi D ITi�Ci

is the censoring indicator, Zi D log min.Ti ; Ci/.

In low-dimensional setting, at least two methods have become the standard ways to

solve AFT model:

1. Rank based method;

2. Buckley-James method.
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The rank-based method is motivated by the score function. But the computational

complexity is too high in (Prentice 1978, Wei et al 1990, Ying 1993) to be applied

in low/high dimensional setting until (Zhou 1992) and (Stute 1993). The latter two

used inverse probability weighting (IPW) method and minimized a weighted least

squares loss function. Some authors have used this IPW method and extended it

into high-dimensional setting. But unfortunately, there is no mature result for the

rank-based method in high dimensional settings.

The Buckley-James method is another choice. It uses Kaplan-Meier estimator to

solve a particular estimation equation iteratively (Section 3.3). We will consider

the iterative idea used in Buckley-James as a potential to solve the model selection

problem in AFT model in the discussion section.

The structure of this chapter is as follows. In Section 3.2, we introduce existing

penalized least squares models and the properties of different penalty function p�.

The In Section 3.3, we propose our parametric accelerated failure time model in

the high-dimensional setting and discuss the selection consistency of our model. This

parametric AFT model with penalty is easy to use and has a potential to be extended

to non-parametric setting. In addition, we also introduce an approach to tune p�

and show the mechanism and performance of the tuning method. In Section 3.4, we

illustrate the model performance in high-dimensional setting by repeating simulations.

Section 3.5 summarized and concludes the parametric AFT model in high-dimensional

setting with comments for some possible future work.

3.2 Penalized Least Squares Model for Linear Model

We now focus on the classical regression problem in the beginning of this chapter:

Y D Xˇ C �
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If � is from a normal distribution N.0; �2I /, then the penalized likelihood could be

rewritten into a penalized least squares (PLS) form (Fan and Lv, 2010):

min
ˇ2R
f
1

2n
kY �Xˇk2`2 C

X
j

p�.j ǰ j/g (3.5)

Here kY � Xˇk2
`2
D k�k2

`2
D �>� is the L2-norm of estimation of the residual term

once ˇ is specified. Ordinary least squares estimation uses the same formula, but

its penalty terms are set to zero. Besides, from linear regression theories, the least

squares loss function also provide consistent estimator when the error term is not

normally distributed under the regularity conditions (Knight and Fu, 2000).

There are several important properties that a “good” penalized least squares estima-

tion should have. They are defined in (Fan and Li, 2001)’s paper, and called “oracle”

properties. We quote the definition directly:

Definition 3.2.1. Oracle properties

Sparsity: The resulting estimator automatically sets small estimated coefficients to

zero to accomplish variable selection and reduce model complexity.

Unbiasedness: The resulting estimator is nearly unbiased, especially when the true

coefficient ǰ is large, to reduce model bias.

Continuity: The resulting estimator is continuous in the data to reduce instability

in model prediction(Breiman et al., 1996).

One example of such PLS estimators is smoothly clipped absolute deviation/SCAD

proposed in the same paper (Fan and Li, 2001) and (Antoniadis and Fan, 2001).

Theorem 3.2.1. PLS properties

Assume X>X D nIp, then (3.5) reduces to the minimization of

1

2n
kY �X Ǒk2`2 C kˇ �

Ǒk
2
`2
C

X
j

p�.j ǰ j/ ;

where Ǒ is the ordinary least squares estimation Ǒ D .X>X/�1X>Y D 1
n
X>Y . This

leads to consider the univariate PLS problem described in formula (2.4) of (Antoniadis
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and Fan, 2001):

O�.z/ D arg min
�2R
f
1

2
.z � �/2 C p�.j� j/g:

Here � D Xˇ and z D 1
n
X>Y . Then the PLS estimator O�.z/ holds the oracle prop-

erties:

Sparsity: if mint�0ft C p
0
�
.t/g > 0;

Approximate unbiasedness: if p0
�
.t/ D 0 for large t ;

Continuity: if and only if arg mint�0ft C p
0
�
.t/g D 0.

In Table 3.1, we list some commonly used penalties terms. There are more that are

produced every year, the full list could be very long.

3.3 Methods

Review of existing methods: The Accelerated Failure Time Model

The accelerated failure time (AFT) model (Cox and Oakes, 1984, Kalbfleisch and

Prentice, 2011) is an important alternative to the widely used cox model (Cox, 1972)

in regression analyzing of censored failure time data. It provides a direct interpreta-

tion of linear relationship between logarithm of failure time and covariates. As shown

in the introduction section, it has a (log) linear form:

log.Ti/ D X
>
i ˇ C �i ; i D 1; : : : ; n; Xi 2 Rp

Assume the censoring time variable is Ci , then for each i D 1; : : : ; n, we only

observe a combination .Zi ; ıi ; Xi/. Here ıi D ITi�Ci is the censoring indicator,

Zi D log min.Ti ; Ci/.

As shown in (3.4), AFT model has a more direct way of interpreting coefficients com-

paring to Cox model in terms of quantification of (log transformation of) survival

time instead of the relative risk and hazard rates.

There are several approaches that solve the AFT model. In (Prentice, 1978); (A.

Tsiatis, 1990 ) among many others, one approach considers the weighted log-rank

statistics to solve the problem. The rank based estimator is the solution to estima-
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ǰ
j

E
la

st
ic

N
et

(Z
ou

an
d

H
as

ti
e,

20
05

)
�
1
j
ǰ
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tion equation of (Jin et al., 2003) shown in (3.6):

nX
iD1

ıi�.Zi �X
T
i ˇ/ŒXi �

NXi.Zi �X
T
i ˇ/� D 0 ; (3.6)

where NXi.Zi�X
T
i ˇ/ is the average of explanatory variable Xj , such that Zj �X

T
j ˇ �

Zi �X
T
i ˇ. Different choice of �.:/ leads to different interpretations of the estimation

equation.

Another approach, so called Buckley-James estimator, was discussed in (Buckley and

James, 1979). With given ˇ D b, let ei.b/ D Zi � X
>
i b be the residual with respect

to b. The Buckley-James estimator of ˇ is the solution to the estimation equation:

nX
iD1

n
ıiei.ˇ/C .1 � ıi/

X
j Wej>ei

ej .ˇ/� OFˇ .ej .ˇ//

1 � OFˇ .ej .ˇ//

o
Xi D 0 ; (3.7)

where OFb is the non-parametric maximum likelihood estimator, or Kaplan-Meier com-

puted from the residual and the censoring indicator: .ıi ; e.b//
n
iD1 once b is given.

Because it is for right censored data, OFb is the Kaplan-Meier estimator we discussed

in Chapter 2.

It is worthy to pointing out that (3.7) is equivalent to

nX
iD1

OEŒei.ˇ/jˇ;Xi ; Zi ; ıi �Xi D 0

once we use a discrete distribution to estimate EŒei.ˇ/jˇ;Xi ; Zi ; ıi �.

Besides, (3.7) is also similar to the ordinary least squares estimator, which solves:

X
i

.Yi �X
>
i ˇ/Xi D 0:

To see this, we write (3.7) into the estimated conditional expectation of:

OEŒ
nX
iD1

.Zi �X
>
i ˇ/Xi jˇ;Xi ; Zi ; ıiXi � D 0:
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Hence the Buckley-James estimator is a conditional expectation version of the ordi-

nary least squares estimator. Unfortunately, (3.7) is a implicit function about ˇ, and

there is no analytical formula to solve ˇ.

Several authors (Miller, 1976, Buckley and James, 1979, Miller and Halpern, 1982)

studied such least squares structure and they conclude that the Buckley-James esti-

mator is more reliable (Miller and Halpern, 1982). (Ritov, 1990) and (Lai et al., 1991)

modified Buckley James estimator by adding a particular smooth weight function and

had developed a rigorous asymptotic theory including consistency and normality for

their resulting estimator Ǒ. They showed with such modification, “ any consistent

root of the BuckleyJames estimating function must be asymptotically normal and that

the estimator is semi-parametrically efficient when the underlying error distribution

is normal.” Further, an empirical likelihood testing procedure for Buckley-James es-

timator was introduced by (Zhou and Li, 2008), which also extended the application

of Buckley-James estimator and avoided its illusive variance estimation.

There is an EM algorithm to solve the Buckley-James estimator by updating the resid-

ual (calculating imputation step) and ˇ (computing LSE step) sequentially. Other

algorithm based on Buckley-James method has been implemented, such as hybrid

methods of EM and the rank based method(ref).

On the other hands, other than the low dimensional setting, more and more researches

have been concerning high dimensional problems in regression models, which is key

to many research fields such as genome-wide associated study (GWAS), personal-

ized medicine, data science and so on. One of the basic problem is to estimate the

coefficients in linear model when the number of variables p is considerable large com-

paring to the number of observations n and leads to singularity in either rank based

or Buckley-James estimator.

To solve this high-dimensional problem, there are a few studies. For example, (Huang

et al., 2006), (Cai et al., 2009) and (Hu and Chai, 2013) applied LASSO and MCP

to (3.6) directly; (Johnson, 2009) also discussed such rank-based estimation with `1-

penalty term only with application to integrated analyses of clinical predictors and

gene expression data; (Schmid and Hothorn, 2008) and (Liu et al., 2010) used kernel
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based methods to ultra-high dimensional AFT model in the framework of boosting

algorithm; (Li et al., 2014) introduced Dantzig Selector, which is different from the

least squares setting. Due to the problem complexity, all the model are hard to use

and lack rigorous proof. It is not clear if they have oracle property.

If we go deep into the topic, we could find further interesting phenomenon. Essentially,

there is a contradiction between unbiasedness and sparseness in the Buckley-James

estimator. On one side, in order to calculate the conditional expectation (3.7), an

unbiased estimator OFˇ is needed. On the other side, PLS derived biased Ǒ in the

high dimensional problem. The iteration steps used in the Buckley-James method

indeed requires a proposed estimator Ǒ not only to be sparse but also unbiased. This

contradiction is fundamentally rooted in each iteration of Buckley-estimation, and

due to there is no closed form of the likelihood function. In consequence, a natural

way is to use parametric AFT model instead.

In statistical teachings, people often contrast the parametric statistical methodology

with non-parametric one, as if they are totally unrelated methods. Yet, if we study

closely the development of the efficient estimation theory for nonparametric/semi-

parametric models (Pfanzagl, 2012, Begun et al., 1983, Bickel et al., 1998). we will

find the method proposed is based on the idea of parametric approaches, with ob-

vious/necessary extension when needed. The tangent space and projection of score

function are two such examples.

Besides, parametric models with a growing number of nuisance parameters may be-

come (or getting very close to) a nonparametric model when sample size increases

(Zhou, Chen). Therefore, understand thoroughly the mechanism of how parametric

model estimation work, often lead to insight into the nonparametric methods.

We therefore shall study in this chapter the parametric AFT model with high dimen-

sional covariates and the use of penalized MLE procedure. This is a worthy research

topic of its own, since the nonparametric AFT model with high dimensional covariates

is such a hard problem that we have not seen any established theory for its estima-

tion, only a few proposed methods with various question marks and without theory

can be found so far. Our hope is to be able to add more nuisance parameters to the
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distribution of the error term � in the future, so that this parametric approach will

lead to clues for the fully nonparametric AFT models. At a minimal this parametric

AFT model will be a competitive alternative, where theory is easier to obtain.

In this chapter, we stick on the discussion on the algorithms to solve high dimensional

AFT in parametric settings and a theorem to prove the asymptotic properties of

proposed estimator Ǒ.

Parametric AFT in High-dimensional Settings

We see the closed form of likelihood plays a critical role in high-dimensional AFT

model: 1. the essential problem of AFT model in the high-dimensional setting is

that the likelihood is an implicit function about ˇ; 2. on the other hand, the success

of Cox model in high dimensional problem relies on the closed form of the partial

likelihood. In this section, we propose a parametric approach that has a closed form

of the likelihood function and can easily solve the high-dimensional AFT estimation

problem through penalized least squares method.

Accordingly, we assume residual in (3.3) is from a particular family of distribution,

i.e.

�i
i:i:d
� F 2 F : (3.8)

The optional choices could be exponential distribution family, including Normal dis-

tribution, Exponential distribution and many others, and the general extreme value

distribution (GEV) family F D GEVf�; �; �g , e�Œ1C�.
x��
� /�

� 1
�

as the cumulative

density function.

To simplify, we write the (3.4) into:

log.Ti/ D X
>
i ˇ C ��i ; � > 0; (3.9)

where � � F.:/ is some “standard” distribution, e.g. standard norm distribution

N.0; 1/ and exponential distribution Exp(� D 1). Without loss of generality, we

assume for each i , X>i 1p D 0. This avoid involving intercept term in the regression

formula. We could also set � D 0, otherwise ˇ can not be uniquely estimated as the
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estimation Ǒ D Ǒ.�; �/. Once ˇ is estimated, it helps to impute residuals �i ’s.

MLE could be easily derived through numeric method in low dimensional case. It has

been implemented in standard statistical softwares, such as lifereg in SAS and survreg

in R. Both of them use Newton-Raphson algorithm and have potential convergence

problem if the number of variables is larger or equal to the number of observations

and rely on initial values. To extend this into large p small n case, i.e. the number of

explanatory variables p is larger than the number of observations n, some constraints

on parameters must be considered. Otherwise the information matrix is singular,

and the model is undetermined. Our method focuses on the following model with a

penalty term:

Ǒ
n;�n D argminˇ Pn�ˇ;� C �

?
nP.ˇ/ ; (3.10)

or equivalently, the constrained regression form of dual problem :

Ǒ
n;�n D argminˇ Pn�ˇ;�

s:t: P.ˇ/ � �n
; (3.11)

where the loss function �n W L! R, given .x; ı/

�.:; z/ D �.1 � ı/ log
�
1 � F

�
z�xT ˇ

�

��
� ıF 0

�
z�xT ˇ

�

�
:

The penalty terms P.:/ in (3.11) can be LASSO(Tibshirani et al., 1997), SCAD (Fan

and Li, 2001), Adaptive Lasso (Zou, 2006), and Mini-Max (Zhang et al., 2010). To

perform the simulation, eha, emplik, porcar and glmnet packages in R (R Core Team,

2013) are used. The Pn�ˇ;� part is actually the log-likelihood:

Pn�ˇ;� D `n.ˇ; �/ D

nX
iD1

.1 � ıi/ log.1 � F.�i.ˇ; �///C ıi logF 0.�i.ˇ; �//;
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where �i.ˇ; �/ D
log.ti /�x

T
i
ˇ

�
. For random variable ��, it is easy to get:

˚
cdf W F��.x/ D P�.�� < x/ D F�

�
x
�

�
pdf W f��.x/ D

dF��.x/

dx
D

1
�
f�
�
x
�

�
j � th deravitive W F

.j /
�� .x/ D

1
�
F
.j /
�

�
x
�

�
j � 1

To simplify the computation, we could use multi-variate Taylors’ expansion as an

approximation. The partial deravitives are:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

@�i .ˇ;�/

@ ǰ
D �

xij
�

@�i .ˇ;�/

@�
D ��i.ˇ; �/=� D �

log.ti /�x
T
i
ˇ

�2

@`n.ˇ;�/

@ ǰ
D

1
�

Pn
iD1

n
.1 � ıi/

f .�i .ˇ;�//

1�F.�i .ˇ;�//
� ıi

f 0.�i .ˇ;�//

f .�i .ˇ;�//

o
xij

@2`n.ˇ;�/

@ ǰ @ˇk
D

1
�

Pn
iD1

@
@ˇk

n
.1 � ıi/

f .�i .ˇ;�//

1�F.�i .ˇ;�//
� ıi

f 0.�i .ˇ;�//

f .�i .ˇ;�//

o
xijxik

D
1
�2

P
iD1 xij �

n
�.1 � ıi/

f 2C.1�F /f 0

.1�F /2
� ıi

.f 0/2�f 00f

f 2

o
� xik

D
1
�2

P
i WıiD0

xij � ai � xik C
1
�2

P
i WıiD1

xij � bi � xik

: : :

Here: �
ai D �

f 2.�i .ˇ;�//C.1�F.�i .ˇ;�///f
0.�i .ˇ;�//

.1�F.�i .ˇ;�///2

bi D �ıi
.f 0.�i .ˇ;�///

2�f 00.�i .ˇ;�//f .�i .ˇ;�//

f 2.�i .ˇ;�//

To simplify the notation, we could use a matrix form to present the Hessian matrix

D corresponding to ˇ:

D D �` ,
@2`

@ˇ>@ˇ
D

1

�2
X>

˙
: : :

.1 � ıi/ai C ıibi
: : :

�

X (3.12)

Given �;by using Taylor’s expansion at initial ˇ0, `n could be approximated in the
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following way:

`n.ˇ; �/ D `n.ˇ0; �/Cr`
>
n jˇ0;�.ˇ�ˇ0/C

1

2
.ˇ�ˇ0/

>�`>n jˇ0;�.ˇ�ˇ0/CR.kˇ�ˇ0k
2
`2
/ ;

(3.13)

where R.kˇ � ˇ0k
2
`2
/ is the remainder term. In the low dimensional case, i.e. p < n,

rank.�`n/ D p, we could solve (3.13) very easily through standard Newton-Raphson

algorithm or iteratively reweighted least squares widely used in generalized linear

regression if the � is from a exponential family. But this is not true in large p small

n problem. To see this, (3.12) shows rank.�`n/ � rank.X/ � n < p. The Hessian

matrix is singular, extra penalty is needed to estimate ˇ. Similar to (3.11), the

problem we concentrate could be summarized into a constrained regression form:

Ǒ
n;�n;� D argmaxˇ `n.ˇ0; �/Cr`

>
n jˇ0;�.ˇ � ˇ0/C

1
2
.ˇ � ˇ0/

T�`>n jˇ0;�.ˇ � ˇ0/

s:t: P.ˇ/ � �n
;

(3.14)

Possible penalty functions could be found in Table (3.1). In this thesis, we use elastic

net and LASSO.

Under the following regular conditions, we could derive some useful properties of the

parametric AFT model in high dimensional settings.

C1 kˇ0k`0 D K < n;

C2 With regards to S0 D suppfˇ
0g: 1

p
n
rT `S0;ˇ0  W � N.0;˙/, and ˙ > 0 ;

C3 F 2 C 3 and 1
n

�
1
�2
XTDX

�
ij

a:s
! C

ij
< C0 < 1, the Hessian matrix D is

described in 3.12;

C4 limn �n=n
1=2 D �0 > 0

Lemma 3.3.1 proves the existence of 1
n
.�`ˇ;�/.

Lemma 3.3.1. Under Conditions 1-4, for any j-k-th entry of the Hessian matrix

satisfies: 9cjk 2 Rs:t: 1
n
.�`ˇ;�/

a:s:
! c

ˇ;�

jk
.

Lemma 3.3.2 further derives the asymptotic properties of 1
n
.�`ˇ;�/.

50



Lemma 3.3.2. Given � , kˇ0k`0 D K < n, then 1
p
n
r`ˇ0  N.0;˙/. ˙ is the

inverse of Fisher’s information matrix with regard to given index set suppfˇ0g.

These two lemmas could be summarized into the following theorem.

Theorem 3.3.3. Asymptotic Properties of the parametric model

Given � ,
p
n. Ǒ � ˇ0/

d
! argminT .�/ ; (3.15)

where T .�/ D W �T �C �TC�C �0
P
j f�j sign.ˇ0j /1fˇ0j ¤0g

C j�j j1fˇ0
j
D0gg. In T .:/, the

i � j�th entry of C is Cij and W ?
suppfˇ0g;suppfˇ0g

D W; other entries are 0.

The proof could be found in the Appendix section.

Then we could update � using Ǒ, i.e. O� is the root to @`n.ˇ;�/

@�
j
ˇD Ǒ
D 0. In most

case, Newton-Raphson algorithm and other methods could be used to estimate O�

numerically and effectively. Iteratively, we could update Ǒ and then O� repetitively

until convergence criterion is met.

Tuning Parameters

One important issue of the proposed method is tuning the regulatory parameter �.

In a standard LASSO problem:

argminˇ kYn �Xn�p p̌k`2; s:t: kˇk � � ; (3.16)

k-fold cross-validation Kohavi et al. (1995) is commonly used to determine the tuning

parameter �. It randomly splits the data into k folds with equal sample size, and

repeated using one fold as the training data set to generate model and measuring

the performances on the remain k � 1 folds. The average performance is reported to

evaluate the model/chose proper tuning parameters. In this part, we describe another

linear searching algorithm to perform the same task.

Notations

1. q: number of independent dummy variables;
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2. Zi 2 Rn; i 2 1; : : : ; q: i-th dummy variable;

3. Z D ŒZ1; : : : ; Zq� 2 Rn�q;

4. � D .�1; : : : ; �q/
> 2 Rq: dummy coefficient corresponding to Z.

5. 
 D Œˇ>; �>�>

The standard LASSO problem is then transformed to

argmin
 kYn � ŒX;Z�
k`2; s:t: k
k � �: (3.17)

Here we assume:

1. X ? Z.

2. � ? Z, which is the same as linear regression.

3. Z � FZ./, i.e. dummy variables are from FZ./.

Given �, solving (3.17) could be done by standard algorithm such as L2-boosting

(Friedman et al., 2000) and LARS (Efron et al., 2004) among many others. Denote

the corresponding estimation of 
 as O
 , or Ǒ; O� respectively. We introduce the failure

ratio to help determine �:

r� D
kO��k`0
q

; (3.18)

where the `0 counts the number of non zero elements. Given a series of �, i.e.

�1; : : : ; �m, the optimal one is:

�.optim/
D argmin� jr� � r0j:

Here r0 should be a prefixed ratio ranged .0; 1/. Different levels of r0 lead to various

performances.

There are several parts that could be tuned in this algorithm:

1. q D q.p; n/
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2. FZ.:/

3. r0

They offer a different aspect other than tune � alone. We conduct a simple simulation

to illustrate the usage of our new tuning parameter method. We focus on the LASSO

problem with sample size N = 100, number of parameter p =80, and tuning parameter

q = 80 or 40, and r0 D :05=:1=:2, FZ � N.0; 1/, 90% of ˇ’s are randomly set to 0. The

model performance on test set (N=100) is shown in Figure 3.1, PMSE is the mean

square estimation. The lower value PMSE is, the better performance the model has.

The behavior of 5-fold cross-validate was shown in the model, typically it has a “U”

shape pattern (Friedman et al., 2001) like we get in Figure 3.1. The red text is the

value of r0, hence there is a one to one mapping to r0 and �0. The full algorithm

is implemented in R on GitHub: yfyang86/optimise2. Further study are need to

provide rigorous details and proof.

3.4 Simulation Study

In this section, we conduct simulation to illustrate the performance of the proposed

parametric accelerated failure time model in both low and high dimensional settings.

The penalized term we considered is LASSO or elastic net:

�1j ǰ j C �2ˇ
2
j :

When �2 D 0 then it is LASSO, and �1 D 0 reduces to ridge regression. Here is some

notation we use to define the parameters used in the simulation.

X X 2 Rn�p is the explanatory variable, where n is the sample size, and p is the

number of parameters;

ˇ ˇ 2 Rp is the coefficient;

� � � F�.:/ is the residual term;
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C C is the censoring time, which is i.i.d. sampled from corresponding cumulative

distribution function FC .:/;

Iˇ Iˇ is the non zero parameters’ indexes of ˇ, i.e. Iˇ D #suppfˇg

Here, the model discussed is a parametric AFT model with the i -th observation

.Zi ; ıi ; Xi/:

Yi D X
>
i ˇ C �i ; Zi D log min.Yi ; Ci/ ; ıi D I.Yi � Ci/:

The simulation code is attached in the appendix. Notice, without loss of generality,

we transform each column of X as X .new/
i D Xi �

1
n

P
i Xij . In this way, the model

does not include the intercept term. i.e. in R:

1 # s e t X, be ta and eps f i r s t

2 f Xst <� function ( x ) t ( t ( x )�apply (X, 2 ,mean) )

3 X= f Xst (X)

4 Y= X%�%beta + eps

Simulation case 1

In the first simulation , we assume:

1. Sample size n D 300, number of parameter p D 300;

2. Xij � N.0;
1
16
/;

3. � � log-Normal.0; 1/ and in another case, � is from extreme value distribution;

4. ˇIˇ � Unif.�1; 1/;

5. #Iˇ D 14, and Iˇ is uniformly sampled from f1; 2; : : : ; pg;

6. C is sample from a combination of Exp.1/ and absolute value of tdfD10 distribu-

tion.

In all simulation, we assume the parametric model to be Normal, and check the

performance of this normal assumption parameter AFT with different � settings.

The stopping rule used in our simulation is kˇ.tC1/ � ˇ.t/k`2 � 10
�5 and number of

iterations is lager than or equal to 10. 4-fold cross validation is used to tune �1 and
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�2 with parallel computing. The performance of the proposed is illustrated in Figure

3.2. The figure compares the Kaplan-Meier estimation of fY � X ǑgniD1 and with

fY �XˇgniD1. Besides, it also draws the Q-Q plot to check whether the two samples

are from the same distribution. We could see for the normal assumption simulation,

the results fits in a straight line which suggest the two distribution (residual and

estimated residual) are very similar to each other. On the other side, if the real

residual is exponential-logarithm distributed, the Q-Q plot is nearly a straight line,

but the tail part has a U-shape pattern. Hence, our parametric AFT model performs

robustly in this scenario.

Simulation case 2: large sample size

In the second simulation , we examine a simulation with large sample size:

1. Sample size n D 800, number of parameter p D 800;

2. Xij � N.0;
1
16
/;

3. ˇIˇ � Unif.�1; 1/;

4. #Iˇ D 19, and Iˇ is uniformly sampled from f1; 2; : : : ; pg;

5. C is sampled from a combination of Exp.1/ and absolute value of t10 distribution.

In this simulation, we assume the parametric model to be Normal. The stopping rule

used in our simulation is kˇ.tC1/ � ˇ.t/k`2 � 10
�5 and number of iterations is lager

than or equal to 500. The Figure 3.3 shows the performance. The red cross is the

value real ˇ, while the dash line represents the estimated Ǒ. It is shown that the

large value of ˇ is captured by our algorithm. But since we use elastic net as the

penalty term, the estimator contains about 100 non-zero Ǒi .

The drawback of this method is the computation speed is slow, on a 4-cores computer

platform (2.20 GHz per thread), it converges in more that one minute. To solve the

elastic net problem, we used the glmnet in the package with the same name. Besides,

in the appendix, we also offers approaches in LARS and L2 boosting. The package

is under development and is planned to transform into C++ language.
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3.5 Conclusion, Discussion and Future Work

Conclusion and Discussion

In this chapter, we illustrate a straightforward parametric accelerated failure time

algorithm to address the coefficient estimation problem of AFT model in high dimen-

sional setting. The proposed method use the likelihood with penalty term directly:

Ǒ
n;�n D argminˇ Pn�ˇ;�

s:t: P.ˇ/ � �n
(3.19)

Besides, under certain assumptions, we provide a rigorous proof to show the asymp-

totic properties of the proposed algorithm. Further, we illustrate a new way to tune

parameters in proposed model, which is later shown to be equivalent to tune � di-

rectly. It examines the ratios that the model falsely chooses the added independent

variables. By set up proper value, it has a similar performance to widely used cross-

validation method.

All the algorithm is implemented in R and plan to be released as standard R packages.

Future work: More Flexible Semiparametric Model

In our model, a parametric AFT model is used and requires a pre-determined distri-

bution of the error term. This assumption is generally considered too strong:

1. It assumes that we know the distribution of the error term. More essentially,

we could write the closed form of the likelihood distribution;

2. Although we could put any possible distribution in practice, only a few of them

could be easily accessed in standard software;

3. It would be hard to compare the performances of the estimations based on

different distributions.

We can use distribution with several nuisance parameters instead, e.g. piecewise ex-

ponential distribution or piecewise Weibull distribution, to replace the parametric
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approach. When the number of pieces involved in the model is exactly the same as

the number of event points, this piecewise distribution is indeed the empirical dis-

tribution, i.e. a non-parametric approach. Hence, we name this a semi-parametric

model, which greatly differs from those use spline to approximate the functions of

interests. The difficulty is there is no computational efficient way to split Rp into

disjoint regions and maximize the likelihood function simultaneously. One possible

way is to mimic the coordinate descent algorithm, which update the Ǒ and OFˇ esti-

mator dimension by dimension using segmented model(Davies, 1987, Muggeo, 2008).

But since in each Buckley-James iteration, we solve an segmented model with penalty

terms. The computational complexity is high and the model performance is unknown.

Additionally, the gap between parametric model and non-parametric model is not as

huge as it appears to be. There are several references (Royston and Parmar, 2013,

Carstensen, 1996) about a parametric proportional hazards regression model, with

the baseline been either piece-wise exponential or some spline function. They all

reach the conclusion that when the number of pieces in the piece-wise exponential,

or the spline become more flexible, the parametric model will either become a Bona

Fide Cox model or getting so close to a Cox model that they are practically the same.

We end up this chapter with the interesting comment from Sir Davide Cox, he himself

stated that he actually preferred the parametric model: 1

1Quote from Sir David Cox (Reid, 1994)
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Reid “What do you think of the cottage industry thats grown up around [the

Cox model]?”

Cox “In the light of further results one knows since, I think I would normally

want to tackle the problem parametrically.: : :Im not keen on non-parametric

formulations normally.”

Reid “So if you had a set of censored survival data today, you might rather

fit a parametric model, even though there was a feeling among the medical

statisticians that that wasnt quite right.”

Cox “Thats right, but since then various people have shown that the answers

are very insensitive to the parametric formulation of the underlying distribu-

tion. And if you want to do things like predict the outcome for a particular

patient, its much more convenient to do that parametrically.“

Copyright c
 Yifan Yang, 2017.
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Chapter 4 Hypothesis Testing for Binary Choice Model

4.1 Introduction

The binary/discrete choice model (BCM) is closed related the current status model,

and case I interval censored data. It describes the behavior of a dichotomous out-

put that is closely related to the commonly used logistic regression model, or the

generalized linear model, which is usually defined as a binomial outcome (dependent

variable) and assumes a link function (logit/probit and so on). There is an equivalent

latent variable definition of the logistic regression model that matches the essential

idea of BCM, where it has a usual linear model structure with a residual term of

logistic distribution, and the observed binary outcome is whether the latent variable

is larger than a particular value or not (Rodŕıguez, 2007). So, using this definition, in

BCM, we are interested in a model that do not assume a distribution of the error in

this thesis. We use (Wang and Zhou, 1995)’s notation in this thesis, i.e. each study

subject is observed only once and the observed information is that the observation

Y takes one of the two possible values (without loss of generality 0 and 1). We may

introduce a latent, continuous variable Y ?, and define:

Yi D

8<: 1 if Y ?i D ˇ
>Xi C �i > 0

0 Otherwise
: (4.1)

Here Y ?i is the latent response variable, Xi 2 Rp is a p-dimensional real vector of

explanatory variable. In this thesis, we assume �i ’s are independent and identically

distributed with cumulative distribution function (CDF) F�. Here,we may think of

the variable Y ?i being either left censored or right censored. In order to make the

model identifiable, we further assume F� to be a distribution with zero mean and

finite variance, and the intercept term in the regression is always 1.

To be specific, the binary choice model is interested in “whether a decision has been

made or an action carried out”(Pagan and Ullah, 1999), and can be commonly seen in
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medical and biological statistics, and social science such as economics and marketing

(Amemiya and Powell, 1981). Examples of binary choice model are studying the

effects of drug dosage and control variables upon a unit, or whether the seats of a

game is over-sold, a government bonds is issued and so on.

As shown in (4.1), the binary choice model is a regression model with qualitative and

dichotomous response variable, i.e. taking value zero or one, rather than quantitative.

We should point out that although binary choice model contains only dichotomous

statuses: “a decision has been made” and “a decision has not been made”, it is

different from classification problem widely discussed in machine learning such as

support vector machine, decision tree, neuron-network and many others, which focus

on the prediction like the left side of Figure 4.1. Apparently, binary choice model

reflects positive or negative decisions and contains censored status, which suggests

there is a latent procedure of data generation like the right side of Figure 4.1. This

differs from a simple binary outcome 0/1 that only identifies the categories.

There are a large number of published works on the properties of cumulative dis-

tribution estimator (NPMLE) of the case I interval censored data and coefficient

estimation of binary choice model. Various sources are available such as (Huang and

Wellner, 1997)’s review paper, and (Sun, 2007)’s book. Traditionally, there are two

ways to estimate the coefficients:

1 Specify a proper link function and distribution that could be later used to

construct the likelihood function and estimate and test hypothesis using gen-

eralized linear model (Chambers and Cox, 1967, Han, 1987, Ichimura, 1993) or

heteroscedastic non-linear model;

2 Based on empirical likelihood that assumes no pre-given distributions and a

least squares type estimation estimation (Wang and Zhou, 1995, Horowitz,

2009).

Either approach could be derived through maximizing likelihood function, or in an-

other word, they are M-estimators. But recent studies have shown that popular para-

metric methods, such as the Probit or Logit, “can be highly misleading if the error
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distribution is misspecified” (Horowitz, 1992). One example is: the first derivatives

of coefficients may be no longer zero and thus leads the estimation non consistent. To

avoid the link function specification and distributional assumptions, extensive studies

have been done on semi-parametric estimation of binary choice models. For example,

(Manski, 1975, 1985), (Han, 1987), (Horowitz, 1992, 2009), (Ichimura, 1993), (Sher-

man, 1993),(Klein and Spady, 1993), (Wang and Zhou, 1995),(Li and Racine, 2007),

(Dominitz and Sherman, 2005), (Rothe, 2009) among others.

In this chapter, we proposed a semi-parametric approach to solve the hypothesis

testing problems on coefficients parameters, which calculates a log-likelihood ratio

statistics based on the empirical likelihood that could be fast computed through

Buckle-James (B-J) like algorithms under expectation-maximization (EM) principle.

The estimation is cited as the semiparametric least squares(SLS), and had been well

studied in (Tanaka, 2008).

We started from (Wang and Zhou, 1995)’s iterative least squares (ILS) model, whose

estimation is later proved by (Hisatoshi Tanaka, 2011) as
p
n-consistent. Under the

null hypothesis, we used conditional least squares method similar to B-J algorithm

to derive linear type constraints for survival probabilities and further applying EM

algorithm or iterative convex minorant algorithm (ICM) (Pan, 1999) to maximize the

empirical likelihood and get the maximum likelihood under the null hypothesis. Then,

a semi-parametric approach described in (Tanaka, 2008, Hisatoshi Tanaka, 2011) was

used to compute the coefficients using maximum likelihood estimations without such

constraints. These steps directly construct a log-likelihood ratio statistics for the

hypothesis testing problem.

The advantages of the proposed method are:

1 Flexibility. The proposed method is a semi-parametric method that does not

assume the error term is from any given probability distribution.

2 Extendability. Because the proposed method uses mature techniques such as

(iterative) least square estimation, empirical likelihood, EM algorithm. It has a

potential to be extended to hypothesis testing problem for: a) multiple choices
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model(MCM) b) monotone single index models (MSIM). The former extends

binary status to multiple statuses. The latter includes models such as linear re-

gression, accelerated failure time (AFT) model, transformation model, duration

model and binary choice model.

3 Modularity. The proposed algorithm contains two main steps. Each step could

be approached by various methods: there are different algorithms to be chosen

to estimate coefficient under H0 [ H1; there are at least two algorithms to

calculate NPMLE for cumulative distribution function of the case I interval

censored data.

The structure of this chapter is listed as below: section 4.2 introduces the general

description of binary choice model and its NPMLE’s and discusses the empirical

likelihood configuration used in binary choice model and the ILS approach to derive

the log-likelihood; section 4.3 illustrates simulation results; section 4.4 summarizes

and discusses the semi-parametric approach of hypothesis testing and future work.

4.2 Method

The main purpose of this chapter is to study the hypothesis testing problem in the

binary choice model:

H0 W ˇ D b $ HA W ˇ ¤ b :

The method we used in this chapter is a combination of chapter 2 and 3, i.e. hybrid

of the log empirical likelihood test and Buckley-James method. Hence, we will first

introduce the existing theories and algorithms of properties of the residuals (case I

interval censored data distribution) and coefficient estimation, then construct the log

empirical likelihood ratio statistics with an EM algorithm similar to Buckley-James

method (see Section 3.3 for details) used in AFT model.

In Buckley-James method, each iteration updates Ǒ and the NPMLE OF . Therefore,

we focus on the basic properties algorithms of case I interval censored data first.1

1However, in our treatment we are only testing the hypothesis of ˇ D b. So, under null hypothesis
we do not need to update the beta since it is assumed to take the null value.
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(Sun, 2007) and (Huang and Wellner) provided more general discussion on this topic.

Basic Property of case I interval censored data

Shown in the introduction section, we notice the hypothesis testing problem is related

to the case I interval censored data distribution once the coefficient is given, i.e.

ˇ D b. Now we only observe:

.ei.b/ D �b
>Xi ; ıi/;

where ıi D 1 � Yi D I.ei.b/ C b
>Xi � 0/ indicates the residual is either left or

right censored or larger than �ˇ>Xi or not. To distinguish the symbol, we use ei.b/

instead of �i . By this observation, let S�.t/ D 1 � F�.t/ denote the survival function

of �i at time t , then the likelihood function is:

L D

nY
iD1

F ıi� .ei.b//S
1�ıi
� .ei.b//: (4.2)

Without loss of generality, we assume ei D ei.b/, e1 < e2 < : : : < en and Yi is ordered

according to �b>Xi ’s. Similar to Kaplan-Meier constraint (KMC) chapter, we can

use empirical likelihood (EL) to represent the likelihood into:

EL.p/ D

nY
iD1

0@1 � X
j Wej6ei

pj

1A1�ıi 0@ X
j Wej6ei

pj

1Aıi : (4.3)

Here pi D F�.ei/�F�.ei�/ is the jump at time ei . (Robertson and Robertson, 1988)

provided an isotonic regression (Ayer et al., 1955) approach to maximize (4.3):

OF D arg minF
P
.ıi � Fi/

2

s:t:8̂̂̂<̂
ˆ̂:
Fi D

P
j6i pi

F1 � F2 � : : : � Fn

Fi 2 Œ0; 1�
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There are several algorithms that can solve the isotonic regression. For example

(Robertson, et al., 1988) derived a closed form of the NPMLE using a max-min

formula:

OF�.ej / D max
u6j

min
v>j

Pv
lDu ılPv
u 1

: (4.4)

Also, (Barlow et al, 1972) suggested adjacent violators algorithm that searches convex

maximal minorant hull iteratively. (Jongbloed, 1998) proved iterative convex mino-

rant algorithm (see Algorithm 1) also works to solve the isotonic regression problem.

All these methods are implemented in the Appendix.

Algorithm 1: Pool Adjacent Violators Algorithm

Data: INPUT : Yi D .ei ; ıi/
Step 1 Order the examination times: e1; : : : ; en and relabel ıi accordingly to
obtain ı1; : : : ; ın
Step 2 Loops while i D 1; : : : ; n do

plot(i ,
Pi
jD1 ıj )

end
;
Step 3 Form the greatest convex minorant (GCM ) G* of the points in 3.
Result: OUTPUT: OFn.si/=left derivative of G* at i, i D 1; : : : ; n.

Notes

1. We should point out again, Yi is an indicator of sign of �b>Xi rather than

the actual response variable in regression. Hence we define ei.b/ D �b
>Xi , not

ei.b/ D Yi � b
>Xi .

2. Similar to discussion in KMC, if there are ties, we could assume m-distinguished

points fs1; : : : ; smg such that F�.s1/ < : : : < F�.sm/. Apparently, m � n and the

likelihood is:

L D

mY
iD1

F
P
j .1�ıj /I.ejDsi /

� .ei/S
P
j .1�ıj /I.ejDsi /

� .ei/: (4.5)
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Hence the empirical likelihood is:

EL D

mY
iD1

.1 �
X

j Wsj�si

pj /
P
j .1�ıj /�I.ejDsi /.

X
j Wsj�si

pj /
P
j ıj�I.ejDsi /: (4.6)

In this scenario, the isotonic regression still exists, but needs to be corrected with

some weight. (Sun, 2007) provides more details.

The NPMLE OF is much more complicated than Kaplan-Meier estimator. (Huang

and Wellner, 1995) shows it is not
p
n-consistent, but Theorem 5.1 of the same paper

proves the expectation with regards to the NPMLE
R
g.t/d OF�.t/ for smooth function

g.t/ is
p
n-consistent under some regularity conditions.

The Binary choice model and the empirical likelihood

As described in the beginning of this section, the binary choice model used in this

thesis has the following linear form:8<: yi D I.y?i > 0/

y?i D ˇ>xi C �i

Only yi , and xi are observed. Besides, the latent variable y?i and corresponding

variable xi are assumed to be independent.

To test the hypothesis, empirical likelihood ratio statistics was derived similar to the

one used in Chapter 2:

ELLR D �2 log maxp2Ho EL.p/
maxp2Ho

S
HA

EL.p/

D �2Œlog EL. Op/ � log EL. Qp/�

D 2Œlog EL. Qp/ � log EL. Op/�

Here:

Qp D arg max
p
ELHo

S
HA.p/
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is the estimation under Ho

S
HA, and

Op D arg max
p
ELHo.p/;

is the estimation under Ho. We will discuss more details in the following two subsec-

tions on the estimation problem.

Notes

1. In order to calculate Op, we could use the conditional expectation as the linear

constraint and EM algorithm. It is similar to (Zhou and Li, 2005)’s AFT hypothesis

paper, but our problem is binary choice model with case I interval censored data.

2. ILS uses EM algorithm that involves calculating NPMLE of F�, hence we could

derive Qp by ILS directly.

Solve maxp2H0
S
HA EL.p/: the Qp estimation

One important step is to estimate the coefficient without H0, ˇ D b constriant.

(Wang and Zhou, 1995) published the iterative least square (ILS) estimation to solve

the problem. In the same paper, the Qp could be derived simultaneously.

The ILS method is a standard Expected and Maximization algorithm (EM), and

also a special case of the semiparametric Least Squares (SLS). More discuss could be

found in (Ichimura, 1993). In this section, we briefly summarize the main steps used

in ILS and relate to the current study.

In (4.1), only the dichotomous output indicator Yi is observed. Hence we could

approximate the latent response variable dichotomous by a givenˇ, and then update

ˇ by the least square estimator. Using the conditional expectation EŒY ?jX;ˇ� as

the approximation or proxy of Y ?, the proposed ILS method is indeed standard EM

algorithm described in Wang and Zhou (1995). Once the NPMLE Ǒ is derived, we

could repeat the same calculation used in the next subsection.

71



Solve maxp2H0 EL.p/: the Op estimation

When ˇ D b 2 Rp, the interval censored residual � is:

ei.b/ D �b
>xi ;

with case I interval censored indicator ıi :8<: ıi D 1 W Yi D 0

ıi D 0 W Yi D 1
:

We further assume ei.b/ is monotone increasing without tie, i.e.:

e1.b/ < e2.b/ < : : : < en.b/:

Otherwise, we could sort fei.b/g and order fxig accordingly.

Note:

1. Since fei.b/g us a function of b, we should reorder fei ; xi ; ıig every time b is

changed. Assume H0 W ˇ D b, this order will not change.

2. In order to make the model identifiable, we need to normalize the model. Use the

assumption in (Wang and Zhou, 1995), we assume EŒ�� D 0 and put an intercept “1”

in the model, i.e.:

y?i D 1C ˇxi C �i :

Let OFBCM .t/ be the NPMLE of F� based on the observation .ei.b/; ıi/, i.e.

OFBCM .ei.b/; b/ D arg max
F

nY
iD1

F ıj .ei.b/; b/S
1�ıj .ei.b/; b/ :
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Computation Details

Similar to (Wang and Zhou, 1995), the estimation equation is (4.7) using conditional

expectation:

1

n

nX
iD1

.EŒy?i jb; xi � � 1 � bxi/xi D 0 ;

which could be represented to:

0 D
Pn
iD1 ıixi

P
j Wj�i ej .b/

� OFBCM .ej /

OFBCM .ei /

C.1 � ıi/xi
P
j Wj>i ej .b/

� OFBCM .ej .b//

1� OFBCM .ei .b//
:

(4.7)

Furthermore, there is a matrix form to simplify the notation. We can form a weight

matrix m 2 Rp�p, with positive entries:

mij D

8̂̂̂<̂
ˆ̂:

OFBCM .ej .b//

1� OFBCM .ei .b//
ıi D 0I j > i

OFBCM .ej .b//

OFBCM .ei .b//
ıi D 1I j � i

0 Otherwise

In this way, the estimation equation is:

0 D

nX
iD1

0@.1 � ıi/ X
j Wj>i

ej .b/mij C ıi
X
j Wj�i

ej .b/mij

1A xi (4.8)

We can write the Binary Choice Model estimation (4.7) according to ei.b/ by doing

the following calculation:

0 D
Pn
iD1 ıixi

P
j Wj�i ej .b/

� OFBCM .ej /

OFBCM .ei /

C.1 � ıi/xi
P
j Wj>i ej .b/

� OFBCM .ej .b//

1� OFBCM .ei .b//

, 0 D
Pn
iD1 xi

ıi .1� OFBCM.ei //AiC.1�ıi / OFBCM.ei /Bi
OFBCM.ei /.1� OFBCM.ei //
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Here Ai D
P
j Wj>i ej .b/�

OFbcm.ej / and Bi D
P
j Wj�i ej .b/�

OFbcm.ej /.

Notice the mean of residual is 0, then

0 D
R1
�1

td OFbcm.t/

, 0 D
R ei .b/
�1
C
R1
ei .b/

td OFbcm.t/ 8i

, 0 D
P
j Wj>i ej .b/�

OFbcm.ej /C
P
j Wj�i ej .b/�

OFbcm.ej /

0 D Ai C Bi

Then

0 D
Pn
iD1 xi

ıi .1� OFBCM.ei //AiC.1�ıi / OFBCM.ei /Bi
OFBCM.ei /.1� OFBCM.ei //

, 0 D
Pn
iD1 xi

ıiAiC OFBCM.ei /Bi�ıi OFBCM.ei /Ai�ıi OFBCM.ei /Bi
OFBCM.ei /.1� OFBCM.ei //

, 0 D
Pn
iD1 xi

ıiAiC OFBCM.ei /Bi�ıi OFBCM.ei /.AiCBi /
OFBCM.ei /.1� OFBCM.ei //

, 0 D
Pn
iD1 xi

ıiAiC OFBCM.ei /Bi
OFBCM.ei /.1� OFBCM.ei //

For cases of ı D 1 or ı D 0, plug in Ai D
P
j Wj>i ej .b/�

OFbcm.ej / and Bi DP
j Wj�i ej .b/, and change the summation order of i and j , we derived the Binary

Choice Model estimation (4.7) according to ei.b/ by doing the following calculation:

X
j

ej

0@ X
i W1�i<j; ıiD1

mijxi C
X

i Wn�i>j; ıiD0

mijxi

1A D 0 (4.9)

Similar to (Li and Zhou, 2002), we could derive the linear constraint according to

(4.9): X
j

ej

P
i W1�i<j; ıiD1

mijxi C
P
i Wn�i>j; ıiD0

mijxi

� OFBCM .ej .b//
pj D 0 (4.10)

Note

1. In (Wang and Zhou, 1995), the authors derived another form of estimation equa-

tion, which focuses on the parameter estimation:

nX
iD1

xi
ıiAi C OFBCM.ei/.�Ai/

OFBCM.ei/.1 � OFBCM.ei//
D 0 :
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2. The estimation equation (4.9) is very similar to formula (5) in (Li and Zhou, 2002).

Hence, the Buckley-James alike algorithm described in (Li and Zhou) has a potential

to solve more hypothesis testing problems than AFT model. Besides, since ILS uses

the same estimation equation, if b D ǑILS , then Opi D � OFBCM .t; ǑILS/ satisfies the

constraint (4.10) and maximize the empirical likelihood.

The empirical likelihood for the ei.b/ is defined in (4.3) as:

EL D

nY
iD1

0@1 � X
j Wej6ei

pj

1A1�ıi 0@ X
j Wej6ei

pj

1Aıi :
Then we are to find pi ’s such that it :

i maximize the empirical likelihood;

ii satisfies the linear constraint (4.10).

To summarize, Op could be solve by the following empirical likelihood optimization

with linear constraint problem:

arg maxp EL.p/

s: t: :8̂̂̂<̂
ˆ̂:

formula (4.10)P
pi D 1

pi � 0

(4.11)

Compute the constraint EL

The right censored data empirical likelihood optimization with linear constraint prob-

lem (4.11) is discussed in our first chapter, but unfortunately, the proposed KMC

algorithm does not hold for case I interval censored data, hence could be applied to

this chapter. But there is a modified EM algorithm proposed in (Zhou, 2012) could

solve such problem:
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Algorithm 2: Empirical likelihood ratio with arbitrarily censored
data by EM algorithm

Data: Initial : Yi D .Ci ; ıi/ and assume the “uncensored” time points are
X1; : : : ; Xm;

E-Step Given F , compute the weight wj at location tj

wj D
X
i

EŒIXiDtj jXi ; ıi �

M-Step Maximize
P
i wi logPi with proper linear constraints.

Run E-step and M-step until converge.

More details could be found in (Zhou, 2016). Notice in our empirical likelihood, there

is no “uncensored” time point, otherwise it is the same as the empirical likelihood in

(Zhou, 2012).

Numeric problem

In this thesis, the R function el.test.wt2 is used to solve the follow M-step:

argmaxpi

X
i

!i logpi s:t:

8̂̂̂<̂
ˆ̂:
P
i pixi D �P
i pi D 1

8i W pi � 0

It has the same numeric problem as we discussed in chapter one. We need to check

if there is a positive solution for the following constraint condition before we do each

iteration: 8<:
P
i pixi D �P
i pi D 1

4.3 Simulation

In this section, two simulation were reported to illustrate the �2 approximation of

proposed log empirical likelihood ratio test statistics for hypothesis testing problem

in binary choice model. ILS and EM approach is used in both simulation. Due to

the fact that the NPMLE of CDF OF has only n
1
3 non-zero jumps, the sample size is

chosen as 3,000 and each simulation has been repeated in 1,000 times.

The isotonic regression, without with tie, is solved by the max-min formula in C++
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and wrapped as a R function (see Appendix), E-M algorithm is an extension of

el.cen.EM function in emplik package as the constraint used in this thesis is linear

type. A standalone R package is on working and will be released with KMC as a

future work.

Hypothesis testing for single explanatory variable

The first example is a simple binary choice model with only one explanatory variable.

with the following setting:

Yi D

8<: 1 if 1C ˇ1Xi C � > 0

0 if 1C ˇ1Xi C � � 0

Here, we use a random design:

i X1 � N.1; 1/;

ii � � 1
p
3
TdfD3

iii ˇ1 D 2

Notice that the intercept is set as 1 to avoid identification issue, and the error term

is tdfD3 distributed, which means its mean is 0 and variance is finite.

There is EŒI.1C 2�X C �/ > 0� � 91:54% of Y is 1. Here X � N.1; 1/, and � � t3.

The simulation result is shown in a quantile-to-quantile (QQ) plot comparing with

�2 distribution with degree of freedom 1. Because ILS algorithm (Wang and Zhou

1995) was used to calculate max ELH0[H1 in this approach, the same starting value

of ˇ and stopping criterion is applied, i.e.

i Use logistic regression (with logit link function) to give an initial value of ˇ;

ii Since there is only one explanatory variable, j Ǒstep t+1 �
Ǒ
step tj � 10�4 is

used as the stopping criterion.

The QQ plot is illustrated in Figure (4.3), which draws the quantiles of the simulated

test statistics (X axis)against the quantiles of the �2
df=1

distribution (Y axis). In the
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figure, a 45-degree reference line is also plotted and the dots fall approximately along

this line, which suggest they come from populations with the same distribution.

Hypothesis testing for multiple explanatory variables

The second example extend the first one into binary choice model with multiple

explanatory variable. The parameters setting are as follows:

Y D 1C ˇ1 �X1 C ˇ2X2 C ˇ3X3 C ˇ4 �X4 C �;

and

1. X1 � N.1; 1/, X2 � N.1; 1/, X3 � N.0; 1:2/, X4 � N.0; :8/, which are mutually

independent;

2. � � 1
p
3
TdfD3;

3. ˇ1 D 2, ˇ2 D 1, ˇ3 D 1, ˇ4 D 0:6.

Choices of the distribution of X and � could vary, but they show similar result. For

multiple explanatory variables, we use `2-norm instead of absolute value to set up

the stopping criterion: sX
i

. Ǒi;step t+1 �
Ǒ
i;step t/

2 � 10�4

In this setting, around 63:96% of Y ’s are 1.

Similar to the first simulation, the QQ plot is illustrated in Figure (4.3). In this

QQ plot, the Y axis is the quantiles of the �2
df=4

distribution. Again, the dots fall

approximately along the 45-degree reference line, which suggest they come from a

population with the same distribution.

Notes

In this simulation, we use both max-min formula and pool adjacent algorithm to cal-

culate the NPMLE for cumulative distribution function of the case I interval censored

data. But there is no difference among the two as far as the final result is concerned.
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The difference is in the computational time. In the thesis, the result of max-min

formula one is presented with implementation detailed in the corresponding section

in the Appendix chapter.

4.4 Conclusion, discussion and future work

Summary

In this chapter, we discussed the hypothesis testing problem in binary choice model.

Log empirical likelihood ratio statistics was used. The proposed method contains two

steps:

1 Compute NPMLE of cumulative distribution function under H0[H1 and plug

it into the empirical likelihood;

2 Maximize the empirical likelihood under H0.

(Wang and Zhou)’s iterative least square estimation for binary choice model is used

to solve the first step above. A Buckley-James alike algorithm was proposed to

compute the maximum empirical likelihood under H0. Here are some highlights of

this algorithm:

1. it uses least squares estimation and conditional expectations to derive the linear

constraints on jumps of cumulative distribution function;

2. it uses EM algorithm to maximize the empirical likelihood function, which sim-

plifies the problem into iteratively solving a weighted log sum with linear con-

straint.

Advantages of the proposed algorithm could summarized into a few key words: as-

sembly, flexibility, and extendability :

1. Modularity. The proposed algorithm contains two main steps, each step could

be approached by various methods: there are different algorithms to be chosen

to estimate coefficient under H0 [ H1, and at least two to calculate NPMLE

for cumulative distribution function of the case I interval censored data.
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2. Flexibility. The proposed method is a semi-parametric method that does not

assume the error term is from any given probability distribution.

3. Extendability. Because the proposed method used mature techniques such as

(iterative) least square estimation, empirical likelihood, EM algorithm. It has

a potential could be extend to hypothesis testing problem a) multiple choices

model b) monotone single index models.

The drawbacks of the proposed method are 1. computation speed is slow 2. it needs

large number of observations.

Future works

In the thesis, we illustrated that the proposed log empirical likelihood ratio test statis-

tics is approximately �2 distributed through the Q-Q plots. Hence one direction is to

provide a rigorous proof of the asymptotic �2 distributed property of the log empirical

likelihood ratio test statistics. Unlike AFT model or other survival analysis problem,

the cumulative distribution function is only n
1
3 -consistent, but the mean estimate, i.e.R

g.t/d OFNPMLE is
p
n-consistent, which could give us direction to finish the proof.

Meanwhile, since the proposed method uses coefficient estimation and empirical like-

lihood separately, we see possibility that we could extend it into multi choice model.

But the formula of empirical likelihood would become very complicated in this case.

Last but not least, further research are encouraged to study the properties of the

log empirical likelihood ratio and extend it to cover more scenarios. (Zhou, 2005)

and (Zhou, 2015) discussed the EM algorithm very carefully, from where we could

see that the way EM algorithm maximizing the empirical likelihood, and deriving log

empirical likelihood ratio statistics has a chance to become a standard procedure to

handle many kinds of survival regression estimation/hypothesis testing problems:

1. AFT model;

2. Right/Left/doubly censored data;
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3. Extension of Cox model such as Yang-Prentice model (Yang and Prentice, 2010)

using empirical likelihood approach;

4. Binary/multiple choice model.

Copyright c
 Yifan Yang, 2017.
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Appendix

KMC package

The KMC algorithm described in this manuscript is available on https://github.

com/yfyang86/kmc and cran.r-project.org/web/packages/kmc/. The standard

CRAN version could be installed in R directly but lacks features than the GitHub

one. All source code are following GPL-3 license.

R code: KMC Real data example

The speed advantage of KMC algorithm could be used in time consuming analysis

such as drawing contour plot. In this real data example, we illustrate the proposed

algorithm to analyze the Stanford heart transplants program described in (Miller

1982). There were 157 patients who received transplants collected in the data, among

which 55 were still alive and 102 were deceased. Besides, the survival time were scaled

by 365.25. We could draw a contour plot of intercept and slope for a AFT model.

1 LL= 50

2 beta0 <� 3.52016

3 beta1 <� �0.01973458 #�0.0185

4 beta . grid <� function ( x0 , range , n0 , type=” sq ” ,u=5) f

5 n0 = as . double ( n0 )

6 i f ( type==” sq ” ) f

7 o1 <� c (

8 �range�(u�( n0 : 1 ) ˆ2)/ (u�n0 ˆ2) ,0 ,

9 range�(u� ( 1 : n0 ) ˆ2)/ (u�n0 ˆ2)

10 )

11 g else f

12 i f ( type==’ s q r t ’ ) f

13 o1 <� c (
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14 �range�(u�sqrt ( n0 : 1 ) )/ (u�sqrt ( n0 ) ) ,0 ,

15 range�(u�sqrt ( 1 : n0 ) )/ (u�sqrt ( n0 ) ) )

16 g else f

17 o1=c (

18 �range�( n0 : 1 ) /n0 ,

19 0 ,

20 range� ( 1 : n0 )/n0

21 )

22 g

23 g

24 return (

25 x0+o1

26 ) ;

27 g

28

29 beta . 0 <� beta . grid ( beta0 , 0 . 0 5 , LL , ” l ” )

30 beta . 1 <� beta . grid ( beta1 , . 0 0 1 5 1 ,LL , ” l ” )#0.00051

31

32 set . seed (1234)

33 y=log10 ( s tan fo rd5$time )+runif (152)/1000

34

35 d <� s tan fo rd5$status

36

37 oy = order (y,�d)

38 d=d [ oy ]

39 y=y [ oy ]

40 x=cbind (1 , s tan fo rd5$age ) [ oy , ]

41

42 ZZ=matrix (0 ,2�LL+1,2�LL+1)

43
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44 l ibrary (kmc)

45 t i c =0

46 for ( j j in 1 : ( 2�LL+1) ) f

47 for ( i i in 1 : ( 2�LL+1) ) f

48 beta=c ( beta . 0 [ i i ] , beta . 1 [ j j ] )

49 ZZ [ j j , i i ]=kmc . b j t e s t (y , d , x=x , beta=beta , i n i t . s t=” naive ” )$”

�2LLR”

50 g

51 g

52 ZZ2<�ZZ

53 ZZ [ ZZ<0]=NA ## when KMC.BJTEST f a i l s to converge , i t ’ l l

r e turn a n e g a t i v e v a l u e .

54

55 range (ZZ , f i n i t e=T) �> z l im

56 f loor . d<�function (x , n=4) f f loor ( x�10ˆn)/(10ˆn) g

57

58 postscript ( ”C: /Temp/Fig2 1 . eps ” , width=7, he ight =7)

59 contour (

60 y=beta . 0 ,

61 x=beta . 1 ,

62 ZZ ,

63 z l im=c ( 0 , . 1 7 ) ,

64 levels=unique ( f loor . d (

65 beta . grid ( x0=mean( z l im ) , range=d i f f ( z l im )/2 , n0=15, type=”

s q r t ” ,u=10) ,

66 4) ) ,

67 ylab=” I n t e r c e p t ” ,

68 xlab=expression ( beta [ Age ] )

69 )
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Proof to Lemma 3.3.1

Proof. The j � k�th entry is 1
�2

P
i WıiD0

xij � ai �xikC
1
�2

P
i WıiD1

xij � bi �xik, then

Left Handside D 1
n
1
�2

P
iD1Xij � f.1 � ıi/ai C ıibig �Xik

D
1
�2
�
n1
n
�

1
n1

P
ıiD1

biXijXik

C
1
�2
�
n0
n
�

1
n0

P
ıiD0

aiXijXik
n!1
!

1
�2
� ˛ � 1

n1

P
ıiD1

biXijXik

C
1
�2
� .1 � ˛/ � 1

n0

P
ıiD0

aiXijXik

;

where n1 D
P
ıi , and n0 D n � n1.

Assume random variable �.0/
jk
D XjXk

f 2
�
y�XT ˇ

�

�
C

�
1�F

�
y�XT ˇ

�

��
f 0
�
y�XT ˇ

�

�
�
1�F

�
y�XT ˇ

�

��2 , and �.1/
jk
D

�
f 0
�
y�XT ˇ

�

��2
�f 00

�
y�XT ˇ

�

�
f

�
y�XT ˇ

�

�
f 2

�
y�XT ˇ

�

� , where Xi is the i-th element of random vector of

X . Then maxfEŒj�.0/
jk
j�; EŒj�

.1/

jk
j�g < M2M4.

limn LHS D limn ˛Pn.�
.0/

jk
/C .1 � ˛/ limn Pn.�

.1/

jk
/

D ˛EŒ�
.0/

jk
�C .1 � ˛/EŒ�

.1/

jk
�

�
D cjk

Proof to Lemma 3.3.2

Proof. Assume we use LASSO-type penalty, then the minimizing problem is

Ǒ
n;�n;�;ˇ0 D argminˇ

1

n
k.�`ˇ � r`/

ˇ̌̌̌
ˇDˇ0 ��`jˇ0ˇk

2
`2
C
�n

n
kˇj`1 :

Let

Sn.ˇ/ D `n.ˇ0; �/Cr`
T
n jˇ0;�.ˇ � ˇ0/C

1

2
.ˇ � ˇ0/

>�`>n jˇ0;�.ˇ � ˇ0/ ;
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and Tn.�/ D n
�
Sn
�
ˇ0 C �

n1=2

�
� Sn.ˇ

0/
�
, then

Tn.�/ D
�
Sn
�
ˇ0 C �

n�1=2

�
� Sn.ˇ

0/
�
C �n

�
kˇ0 C �

n1=2
k`1 � kˇ

0k`1

�
D

1
p
n
r`>0;n�C

1
2n
�>�`0;n�C �n

�
kˇ0 C �

n1=2
k`1 � kˇ

0k`1

� :

Under certain assumptions, F 2 C 3) 1
p
n
Œr`ˇ0�suppfˇ0g

 W � NK.0;˙/.

If limn �n=n
1=2 D �0 > 0)

limn �n
�
kˇ0 C �

n1=2
k`1 � kˇ

0k`1

�
D limn k�nˇ

0 C �0�k`1 � k�nˇ
0k`1

D �0
P
j �j sign.ˇ0j /1fˇ0j ¤0g

C j�j j1fˇ0
j
D0g * �n !1

Hence by the “argmax” version continuous mapping theory:

p
n. Ǒ � ˇ0/

d
! argminT .�/ :

Here T .�/ D W ?>� C �>C�C �0
P
j f�j sign.ˇ0j /1fˇ0j ¤0g

C j�j j1fˇ0
j
D0gg, and

W ?
suppfˇ0g;suppfˇ0g

D W; other entries are 0. Hence we derive the following asymptotic

properties:

1 ########################

2 #### PARAMETRIC AFT ####

3 ########################

4 l ibrary ( s u r v i v a l )

5 l ibrary ( emplik )

6 l ibrary ( parcor )

7 require ( f o r each )

8 require ( d o P a r a l l e l )

9 l ibrary ( Runuran )

10 # p a f t o g a and opt imise2 cou ld be f i n d on my GitHub page :
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11 # yfyang86

12 # The code i s very long , I won ’ t p a s t e here .

13

14 l ibrary ( paf toga )

15 l ibrary ( opt imise2 )

16

17

18 rgumbel<�function (n) f

19 d i s t r <� udgumbel ( )

20 gen <� pinvd .new( d i s t r )

21 x <� ur ( gen , n)

22 x

23 g

24

25 set . seed (1234)

26 p = 100 # number o f parameters

27 n = 200 # sample s i z e

28 p . ze ro= p�cei l ing ( log (n) ˆ1 . 5 )# 600�32 # N(0)

29 ST=1; # s i m u l a t i o n s e t t i n g s

30

31 us ing . glmnet=T

32 us ing . oga=F

33 us ing . i n t e c e p t s t r a g t e g y=F

34

35 co r e s<� 8

36 c l <� makeCluster ( cores �1, methods=FALSE)

37 r e g i s t e r D o P a r a l l e l ( c l )

38 s c a l e s s=rep (0 ,ST)

39 for ( bigsimu in 1 :ST) f

40 X=matrix (rnorm(p�n)/4 , ncol=p) ;
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41 beta=4�runif (p)�2

42 beta=(beta+0.1�sign ( beta ) )

43 zero . l o c=sample ( 1 : p , p . ze ro ) ;

44 #beta [ zero . l o c ]= r u n i f ( p . zero , � .002 , .002)

45 beta [ z e ro . l o c ]=0

46 sigma=2

47 #eps= � sigma� l o g ( rexp (n) ) # exp : s t d Gumbel � sigma

48 eps= � sigma�rnorm(n) # exp : s t d Gumbel � sigma

49 f Xst <� function ( x ) t ( t ( x )�apply (X, 2 ,mean) )

50 X= f Xst (X)

51 Y= X%�%beta + eps

52

53 cen=rexp (n , r a t e =1)�2+abs ( rt (n=n , df=10) )�2

54 YC=apply (cbind ( cen ,Y) ,1 ,min)

55 de l t a=as . double ( YC == Y) ;

56

57 sigma0 =1;

58 scale =2;

59 Y=Y/scale

60 YC=YC/scale

61 beta0=rep ( . 2 , p ) ;

62 beta . real<�beta/scale

63

64 #

65 l o c a t e . nonzero<�function ( x ) f ( 1 : length ( x ) ) [ abs ( x )>1e�10]g

66 p lo tbe ta . pa f toga <� function (beta , beta . real ) f

67 plot ( ( 1 : p ) [ abs ( beta . real ) >0] ,beta . real [ abs ( beta . real ) >0] ,

col=2, xlim=c (0 , p ) , pch=’ x ’ , yl im=2�range ( beta . real ) ,

68 xlab=” index ” ,

69 ylab=expression (hat ( beta ) )
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70 )

71 points (beta , type=’h ’ )

72 legend ( ’ bottomright ’ , col =1:2 , legend =c ( ’ Est imation ’ , ’ Real ’

) , l t y =1, cex =.4)

73 g

74 #p l o t b e t a . p a f t o g a ( be ta=be ta . rea l , be ta . r e a l=be ta . r e a l )

75

76 summarybeta . pa f toga<�function ( a , b ) f

77 a . ind=which(abs ( a )>1e�8) ;

78 b . ind=which(abs (b)>1e�8) ;

79 l i s t ( j o i n t=sum( a . ind%in%b . ind ) , betahat=length ( a . ind ) , beta0

=length (b . ind ) )

80 g

81

82 obs e rva r t i on . index = 1 : n

83 ob . index = obse rva r t i on . index [ d e l t a ==1]

84 cen . index = obse rva r t i on . index [ d e l t a ==0]

85

86 beta . cu r r ent =beta0

87 sigma . cur rent=sigma0

88 X. inner=X

89 f . eb <�function (b) fas . double (YC�X. inner%�%b) g

90 # F( x ) , F ’ ( x ) , . . . Standard form !

91 f . S <�function ( eb , sigma0 ) fx=eb/sigma ;

92 1�pnorm(q=x ) g

93 f . f <�function ( eb , sigma0 , log . t=F) fx=eb/sigma0 ;

94 i f ( ! log . t ) f

95 return (dnorm( x=x ) ) ;

96 g else f

97 return (dnorm( x=x , log=T) ) ;
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98 g

99 g

100 f . df<�function ( eb , sigma0 ) fx=eb/sigma0 ;

101 �x�dnorm( x=x )

102 g

103 f . ddf<�function ( eb , sigma0 ) fx=eb/sigma0 ;

104 dnorm( x=x )�( x�x�1)

105 g

106

107 ###ITERATION

108

109 f . e l l . devs <� function (b , sigma ) f# return dev and Hessian

110 var . eb <� f . eb (b=b) ;

111 var . f . ddf <� f . ddf (var . eb , sigma ) ;

112 var . f . df <� f . df (var . eb , sigma ) ;

113 var . f . f <� f . f (var . eb , sigma ) ;

114 var . f . S <� f . S (var . eb , sigma ) ;

115 # v e c t e r i z e d

116 #e l l . f i r s t d e v = rep (0 , p )

117 e l l = sum(

118 log (var . f . S [ cen . index ] ) ) + sum( l l o g (var . f . f [ ob . index ] , 1 e

�10) )

119 e l l . f i r s t d e v = as . double (matrix (var . f . f [ cen . index ] /var . f .

S [ cen . index ] ,nrow=1)%�%X. inner [ cen . index , ] ) /sigma

120 e l l . f i r s t d e v = e l l . f i r s t d e v � as . double (matrix (var . f . df [

ob . index ] /var . f . f [ ob . index ] ,nrow=1)%�%X. inner [ ob . index

, ] ) /sigma

121 tmp . vec = rep (0 , n )

122 tmp . vec [ cen . index ] = �as . double (

123 (var . f . df [ cen . index ]�var . f . S [ cen . index ]+
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124 var . f . f [ cen . index ] ˆ 2 ) / (var . f . S [ cen . index ] ) ˆ2

125 )/sigma ˆ2

126 tmp . vec [ ob . index ] = as . double (

127 (var . f . ddf [ ob . index ]�var . f . f [ ob . index ]�

128 var . f . df [ ob . index ] ˆ 2 ) / (var . f . f [ ob . index ] ) ˆ2

129 )/sigma ˆ2

130 e l l . Hess ian = sign (tmp . vec [ 1 ] ) � t c r o s sp rod ( t (X

. inne r )%�%diag ( sqrt (abs (tmp . vec ) ) ) )

131 # t (X)%�%diag ( tmp . vec )%�%X

132 # NOTICE: t (X�tmp . vec )%�%X= t (X)%�%diag ( tmp . vec )%�%X,

which i s s lower in the l a t t e r case ?

133 # crossprod () ???

134 return (

135 l i s t (

136 l i k=e l l ,

137 dev=e l l . f i r s t d e v ,

138 Hess ian=e l l . Hess ian

139 )

140 ) ;

141 g

142

143 f . e l l . sigma . solve <� function ( sigma0 , b) f

144 var . eb = as . double (YC�X. inner%�%b)

145 f s igma . f 0 <� Vecto r i z e ( function ( sigma ) f

146 var . f . f . l oged <� f . f ( eb=var . eb , sigma0=sigma , log . t=T) ;

147 var . f . S <� f . S ( eb=var . eb , sigma0=sigma ) ;

148 # v e c t e r i z e d

149 e l l = sum( log (var . f . S [ cen . index ] ) ) + sum(var . f . f

. l oged [ ob . index ] )�log ( sigma )�length ( ob . index )

150 e l l
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151 g )

152 optimize ( i n t e r v a l=c ( 0 . 0 1 , 8 0 ) , f=fs igma . f0 , maximum = T) [ [ 1 ] ]

153 g

154

155 comm. l a s s o<�function (X, y , k = 4 , use . Gram=TRUE, normal ize=

TRUE, of fset=NULL)

156 f

157 n<�length ( y )

158 a l l . f o l d s <� sp l i t (sample ( 1 : n ) , rep ( 1 : k , length=n) )

159

160 i f ( use . Gram==TRUE) f

161 type=” covar iance ”

162 g

163 i f ( use . Gram==FALSE) f

164 type=” naive ”

165 g

166

167 g l o b a l f i t<�glmnet (X, y , of fset=offset , family=” gauss ian ” ,

alpha =1, s tandard i z e=normal ize , type . gaussian=type )

168 lambda<�c (1 , g l o b a l f i t $lambda )

169

170 re<�cv . glmnet (X, y , of fset=offset , lambda=lambda , family=’

gauss ian ’ ,

171 #type . measure=”mae” ,

172 p a r a l l e l=T, alpha =1,

173 n f o l d s=k )

174

175 lambda . opt<� . 1� re$lambda . 1 se + . 9� re$lambda .min

176 cat ( ”n t LAMmin:n t ” , re$lambda .min)
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177 coef f ic ients=predict ( g l o b a l f i t , type=” c o e f f i c i e n t s ” , s=

lambda . opt )

178

179 i n t e r c e p t=coef f ic ients [ 1 ]

180 coef f ic ients=coef f ic ients [�1]

181 names( coef f ic ients ) =1:ncol (X)

182 ob j e c t <� l i s t ( lambda=lambda , lambda . opt=lambda . opt , cv .

l a s s o=re , i n t e r c e p t . l a s s o=in t e r c ep t , coef f ic ients . l a s s o=

coef f ic ients )

183 return ( ob j e c t ) ;

184 g

185

186 ITERATIONS=300;

187 simu . report=rep (0 ,ITERATIONS) ;

188 beta . update=rep (0 , p )

189 #beta . curren t=c (1 , be ta+r u n i f ( p )/20)

190 sigma . cur rent=1

191 t e s t i n g . l a r s=F

192 beta . cu r r ent [ 1 ] = mean(YC)

193 i f (p < 1) f

194 beta . cu r r ent = coef f ic ients ( survreg ( Surv (exp(YC) , d e l t a )˜X)

) ;

195 beta0 = beta . cu r r ent

196 g

197 #####beg in o f i t e r a t i o n#####

198 i i . f l a g =0;

199 i t e r =1

200 while ( i t e r <ITERATIONS) f

201 f l a g=T;

202 while ( f l a g ) f # GUESS A SOLUTION
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203 tmp . reg = f . e l l . devs ( beta . current , sigma . cur r ent )

204 i f ( (sum( i s . na(tmp . reg$dev) )==0) && (sum( i s . na(tmp . reg$

Hess ian ) )==0) ) break

205 i i . f l a g=i i . f l a g+1

206 i f ( i i . f l a g >20) stop ( ’ not coverge ! ’ )

207 beta . cu r r ent = beta0+runif (n=p+1,min=�1,max=1)/20 ;

208 beta . cu r r ent [ 1 ] = 0

209 cat ( ’ Tring i n i t i a l :n t ’ , i i . f l a g , ’ Reset ing nn

������������������������nn ’ )

210 i t e r =1

211 g

212

213 i f (p>(n/10) ) f

214 #update be ta

215 i f ( us ing . glmnet ) f

216 i f ( ! us ing . i n t e c e p t s t r a g t e g y ) f

217 b . update . r e = comm. l a s s o (X=tmp . reg$Hessian , y=tmp . reg$

Hess ian%�%beta . current�tmp . reg$dev , k=co r e s ) ;

218 #b . glmnet . re = glmnet : : cv . g lmnet ( x=tmp . reg$Hessian , y=tmp .

reg$Hessian%�%be ta . current�tmp . reg$dev , p a r a l l e l=T,

o f f s e t=rep (F, p+1))

219 beta . update =b . update . r e$coef f ic ients . l a s s o

220 g else f

221 XXXX=tmp . reg$Hess ian [ , �1]

222 XXXX=t ( t (XXXX)�colMeans (XXXX) )

223 XXXX. s c a l e r = sqrt ( colMeans (XXXX�XXXX) )

224 YYYY=tmp . reg$Hess ian%�%beta . current�tmp . reg$dev

225 YYYY= YYYY�beta . update [ 1 ]

226 b . update . r e = comm. l a s s o (X=XXXX, y=YYYY, k=co r e s ) ;

227 beta . update = b . update . r e$coef f ic ients . l a s s o
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228 #� (XXXX. s c a l e r ˆ2)�4

229 g

230

231 g

232

233 i f ( us ing . oga ) f

234 oga (tmp . reg$Hess ian%�%beta . current�tmp . reg$dev , tmp . reg$

Hessian , k=20) �> r e r e

235 beta . update=r e r e $beta

236 beta . update [1 ]= r e r e $alpha

237

238 g

239

240 i f ( t e s t i n g . l a r s ) fb . update . r e . l a r s = l a r s : : l a r s ( x=tmp . reg$

Hessian ,

241 y=tmp . reg$Hess ian%�%beta . current�tmp . reg$dev ,

242 type=” s tepwi s e ”

243 ) g

244 # or use PGA�OGA

245 # uniroo t upate sigma

246

247

248 g else f # p<<n

249 beta . update=as . double ( solve (tmp . reg$Hessian , tmp . reg$

Hess ian%�%beta . current�tmp . reg$dev) )

250 g

251 sigma . update=f . e l l . sigma . solve ( sigma . current , beta . update )

252 #i f ( i t e r> 10) sigma . update =1.25

253 simu . report [ i t e r ]=mean( ( beta . update�beta . cu r r ent ) ˆ2)+(

sigma . current�sigma . update ) ˆ2
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254

255 beta . cu r r ent <� beta . update

256 sigma . cur rent <� sigma . update

257 cat ( ’nnITERn t ’ , i t e r , ’ERROR:n t ’ , simu . report [ i t e r ] , ’n tSigma :

’ , sigma . update , ’n ta lpha : ’ , beta . cu r r ent [ 1 ] , ’ntK :n t ’ ,sum(

abs ( beta . cu r r ent )>0) ) ;

258 i f (sum(abs ( beta . cu r r ent )>0)<5 & i t e r ==(ITERATIONS�1) )

i t e r=i t e r �1

259 i t e r=i t e r +1

260 i f ( simu . report [ i t e r ]<1e�4 & i t e r >10) break ;

261 g

262 i f ( i t e r==ITERATIONS) cat ( ’nnMay not converge ! Hit max

i t e r a t i o n ! ’ )

263 #####end o f i t e r a t i o n#####

264 # p l o t b e t a . p a f t o g a ( be ta . current , c (1/ s c a l e , be ta . r e a l ) )

265 sigma . cur rent �> s c a l e s s [ bigsimu ]

266 par ( mfrow=c ( 1 , 2 ) )

267 plot ( s u r v f i t ( Surv (exp( as . double (YC�X. inner%�%beta . cu r r ent )

) , d e l t a )˜1) )

268 l ines ( s u r v f i t ( Surv (exp( as . double (YC�X. inner%�%beta . real ) ) ,

d e l t a )˜1) , col=2)

269 legend ( ” t op r i gh t ” , legend=c ( ’PAFT’ , ’ r e a l ’ ) , col =1:2 , l t y =1,

lwd =1.5)

270 plot ( sort ( as . double (YC�X. inner%�%beta . cu r r ent ) ) , sort ( as .

double (YC�X. inner%�%beta . real ) ) ,

271 xlab=” Estimated r e s i d u a l ” , ylab=”Real r e s i d u a l ” )

272 abline (0 , 1 , col=2, l t y =2)

273 par ( mfrow=c ( 1 , 1 ) )

274 p lo tbe ta . pa f toga ( beta . current , c ( beta . real ) )

275 print ( summarybeta . pa f toga ( beta . current , c ( beta . real ) ) )
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276 g

277 s topClus t e r ( c l )

Isotonic regression: max-min formula

This version offers a way to solve the weighted isotonic regression, i.e. case I interval

censored data CDF’s NPMLE with ties. R has a standard function isoreg to solve

the problem without tie.

1 // F i l e : i s o t . cpp

2 // Author : Yifan Yang

3 //Time : 2015�01

4 // License : GPL�2

5 // i n c l u d e R. h

6 #include <R. h>

7

8

9 extern ”C” f

10 void i s o t C (

11 int �y ,

12 int �x ,

13 int �L ,

14 double �ps ,

15 int �J ,

16 int �ms

17 ) f

18 int n=0[L ] ;

19 int j ;

20 int s t a r t i n g =0;

21

22 // i n t �ms = new i n t [ n ] ;

23 double �ys = new double [ n ] ;
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24 double �ns = new double [ n ] ;

25

26 ms[ 0 ] = 1 ;

27 ys [0 ]= y [ 0 ] ;

28 ns [0 ]= x [ 0 ] ;

29

30 j =1;

31

32 // S t a r t i t e r a t i o n

33 for ( int i =1; i<n ; i++)f

34 j++;//TODO l e n g t h o f ys in Line 1

35 ys [ j �1] = y [ i ] ;

36 ns [ j �1] = x [ i ] ;

37 ms [ j �1] = 1 ;

38 // Line 1

39 for ( int j j = 0 ; j j<j ; j j ++)f

40 ps [ j j ] = (double ) ys [ j j ] / ( double ) ns [ j j ] ;

41 g

42

43

44 while ( ( j > 0) && ( ps [ j�2]>ps [ j �1]) ) f

45 ys [ j �2] += ys [ j �1] ;

46 ns [ j �2] += ns [ j �1] ;

47 ms [ j �2] += ms [ j �1] ;

48 for ( int j j = 0 ; j j<j ; j j ++)f ps [ j j ] = (double ) ys [ j j ] / (

double ) ns [ j j ] ; g

49 j��;

50 g

51

52 g
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53 0 [ J]= j++;

54 d e l e t e [ ] ys , ns ;

55 g

56 g

1 dyn . load ( ” i s o t . so ” )

2

3 i s o r e g y i f an <� function (n , d , t i e=T) f

4 i f ( t i e ) f

5 L=length (n)

6 re=numeric (L)

7 J=integer (1 )

8 n=as . integer (n)

9 d=as . integer (d)

10 ms= integer (L)

11 re3 =.C( ” i s o t C” ,d , n , L , re , J , ms) ;

12 LL=re3 [ [ 5 ] ]

13 rep ( re3 [ [ 4 ] ] [ 1 : LL ] , re3 [ [ 6 ] ] [ 1 : LL ] ) �> Fdis t

14 Fdis t [ Fdist< 10� . Machine$double . eps ] = 0 ;

15 return ( Fdi s t ) ;

16 g else f

17 return ( i s o r e g (d)$yf ) ;

18 g

19 g
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