
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Statistics Statistics

2015

New Results in ell_1 Penalized Regression New Results in ell_1 Penalized Regression

Edward A. Roualdes
University of Kentucky, edward.roualdes@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Roualdes, Edward A., "New Results in ell_1 Penalized Regression" (2015). Theses and Dissertations--
Statistics. 13.
https://uknowledge.uky.edu/statistics_etds/13

This Doctoral Dissertation is brought to you for free and open access by the Statistics at UKnowledge. It has been
accepted for inclusion in Theses and Dissertations--Statistics by an authorized administrator of UKnowledge. For
more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/statistics_etds
https://uknowledge.uky.edu/statistics
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Edward A. Roualdes, Student

Dr. David M. Allen, Major Professor

Dr. Constane L. Wood, Director of Graduate Studies

NEW RESULTS IN `1 PENALIZED REGRESSION

DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the

College of Arts and Sciences
at the University of Kentucky

By

Edward A. Roualdes

Lexington, Kentucky

Directors:
Dr. David M. Allen, Emeritus Professor of Statistics

Dr. Constance L. Wood, Associate Professor of Statistics

Lexington, Kentucky

Copyright c© Edward A. Roualdes 2015

ABSTRACT OF DISSERTATION

NEW RESULTS IN `1 PENALIZED REGRESSION

Here we consider penalized regression methods, and extend on the results surrounding the `1 norm
penalty. We address a more recent development that generalizes previous methods by penaliz-
ing a linear transformation of the coefficients of interest instead of penalizing just the coefficients
themselves. We introduce an approximate algorithm to fit this generalization and a fully Bayesian
hierarchical model that is a direct analogue of the frequentist version. A number of benefits are
derived from the Bayesian persepective; most notably choice of the tuning parameter and natural
means to estimate the variation of estimates – a notoriously difficult task for the frequentist formu-
lation. We then introduce Bayesian trend filtering which exemplifies the benefits of our Bayesian
version. Bayesian trend filtering is shown to be an empirically strong technique for fitting univariate,
nonparametric regression. Through a simulation study, we show that Bayesian trend filtering re-
duces prediction error and attains more accurate coverage probabilities over the frequentist method.
We then apply Bayesian trend filtering to real data sets, where our method is quite competitive
against a number of other popular nonparametric methods.

KEYWORDS: linear model, penalized regression, Bayesian analysis, Hierarchical Models

EDWARD A. ROUALDES
Student’s Signature

JULY 31, 2015

Date

NEW RESULTS IN `1 PENALIZED REGRESSION

By

Edward A. Roualdes

DAVID M. ALLEN
Director of Dissertation

CONSTANCE L. WOOD
Director of Graduate Studies

JULY 31, 2015

Date

To my mother, Slice.

ACKNOWLEDGEMENTS

Big ups to my committee for their support and for caring about me and my education. Much
appreciation goes out to Dr. David M. Allen for his guidance and encouragement to read and be
interested in a wide variety of topics. Special thanks goes to Dr. Constance L. Wood for her passion
for teaching, support, and honesty.

iii

Contents

Acknowledgements iii

List of Tables v

List of Figures vi

1 Introduction 1
1.1 Linear Regression . 1
1.2 Generalized Linear Models . 2
1.3 Cross Validation . 2
1.4 Bootstrap . 3
1.5 Gibbs Sampler . 3

2 Penalizing Coefficients 4
2.1 Ridge Regression . 4
2.2 Lasso . 5
2.3 Algorithms to compute the lasso solution . 7
2.4 Extensions . 8
2.5 Lassoed GLMs . 10
2.6 Solution paths . 10
2.7 Choosing the Penalty Parameter . 11
2.8 Bootstrapped Standard Errors . 12
2.9 Bayesian Variations . 12

3 Penalizing Structure 16
3.1 Smoothing Splines . 16
3.2 Generalized Lasso . 17
3.3 Approximate Generalized Lasso . 21
3.4 Trend Filtering . 21
3.5 Bayesian Generalized Lasso . 25
3.6 Bayesian Trend Filtering . 28

4 Empirical Study of Bayesian Trend Filtering 32
4.1 Simulation Study . 32
4.2 Real Data . 48
4.3 Discussion . 64

5 Future Work 66

A Appendix 67
A.1 Full Conditionals . 67
A.2 Code . 68

B References 76

C Vita 80

iv

List of Tables

4.1 Mean and standard deviations, rounded and multiplied by 100 for readability, of the
1000 mean square errors for each of the three noise levels tested with the piecewise
cubic function. The smallest value(s) within each column is(are) bold. BTF with the
hyperparameters α = 1 and ρ = 10−2 is displayed. 36

4.2 Mean and standard deviations, rounded and multiplied by 100 for readability, of the
1000 mean square errors for each of the three noise levels tested with the dampened
harmonic motion function. The smallest value(s) within each column is(are) bold.
BTF with the hyperparameters α = 1 and ρ = 10−2 is displayed. 43

4.3 Computation times in seconds for each method against each real data set. 64

v

List of Figures

2.1 Ridge regression mean squared error as a function of λ. 5
2.2 The sharp corners of the `1 penalty, compared to the `2, allows for some of the

coefficients of β to be set identically to zero. 6
2.3 Solution paths of a lasso fit to the diabetes data. 11
2.4 Comparison of three priors: Gaussian (solid), double exponential (dash), generalized

double Pareto (dot). 15

3.1 Simulated data with cross-validated fused lasso estimates. 18
3.2 2010 age-adjusted lung cancer rates by U.S. state. 19
3.3 Predicted age-adjusted lung cancer rates based on a generalized lasso fit with tuning

parameter λ = 1. 19
3.4 Bootstrapped 95% confidence intervals (dash green) surrounding the true function

(solid red), efficiently calculated with the approximation algorithm from Section 3.3. 24

3.5 Histogram of bootstrapped values of f̂(x25) with the true value f(x25) drawn in red. 25
3.6 Bayesian trend filtering (dot-dash red) and trend filtering (dash blue) fits, with BTF

highest posterior density intervals (dash green), plot against the true function (solid
black). 30

4.1 Piecewise cubic function. 33
4.2 Box plots of mses by method for the piecewise cubic function with σ = 1. BTF with

the hyperparameters α = 1 and ρ = 10−2, and TF used 10-fold cross validation are
displayed. 34

4.3 The two worst fits of BTF (solid red) and CSM (dash green) as judged by largest mse
from Figure 4.2. 35

4.4 Box plots of mses by method for the piecewise cubic function with σ = 1. BTF with
the hyperparameters α = 1 and ρ = 10−2, and TF used 10-fold cross validation are
displayed. 36

4.5 Overall function coverage, for the piecewise cubic function, of all the methods at each
level of noise, where the BTF methods use the hyperparameters α = 1 and ρ = 10−2,
and TF used 10-fold cross validation. 37

4.6 Overall function coverage, for the piecewise cubic function, of all the methods at each
level of noise, where the BTF methods use the hyperparameters α = 1 and ρ = 1, and
TF used 10-fold cross validation. 38

4.7 Overall variance coverage, for the piecewise cubic function, of all the methods at
each level of noise, where the BTF methods set the hyperparameters to be α = 1 and
ρ = 10−2 and TF used 10-fold cross validation. 39

4.8 Overall variance coverage, for the piecewise cubic function, of all the methods at each
level of noise, where the BTF methods set the hyperparameters to be α = 1 and ρ = 1
and TF used 10-fold cross validation. 40

4.9 Dampened harmonic motion function. 41
4.10 Box plots of mses by method for the dampened harmonic motion function with σ =

0.05. BTF with the hyperparameters α = 1 and ρ = 10−2, and TF used 10-fold cross
validation are displayed. 42

4.11 The two worst fits of BTF (solid red) and CSM (dash green) as judged by largest mse
from Figure 4.10. 43

4.12 Overall function coverage, for the dampened harmonic motion function, of all the
methods at each level of noise, where the BTF methods set the hyperparameters to be
α = 1 and ρ = 10−2 and TF used 5-fold cross validation. 44

4.13 Overall function coverage, for the dampened harmonic motion function, of all the
methods at each level of noise, where the BTF methods set the hyperparameters to be
α = 1 and ρ = 1 and TF used 5-fold cross validation. 45

vi

4.14 Overall variance coverage, for the dampened harmonic motion function, of all the
methods at each level of noise, where the BTF methods set the hyperparameters to be
α = 1 and ρ = 10−2 and TF used 10-fold cross validation. 46

4.15 Overall variance coverage, for the dampened harmonic motion function, of all the
methods at each level of noise, where the BTF methods set the hyperparameters to be
α = 1 and ρ = 1 and TF used 10-fold cross validation. 47

4.16 Methods CSM (dash), BTF-gdp (solid green) with α = 1 and ρ = 10−2, and cubic
smoothing spline (solid red) with AR(1) error structure fit to the global mean surface
temperature deviations data. 48

4.17 Methods BTree and TF fit to the global mean surface temperature deviations data,
with TF using 10-fold cross validation. 49

4.18 Trace plots of three randomly selected function evaluations for the global mean surface
temperature deviations data. 50

4.19 Density plots of three randomly selected function evaluations for the global mean
surface temperature deviations data. 51

4.20 Trace plot of the penalty parameter λ for the global mean surface temperature devi-
ations data. 52

4.21 Density plot of the penalty parameter λ for the global mean surface temperature
deviations data. 53

4.22 Trace plot of the estimate of the variance parameter σ2 for the global mean surface
temperature deviations data. 54

4.23 Density plot of the estimate of the variance parameter σ2 for the global mean surface
temperature deviations data. 55

4.24 Methods CSM (dash), BTF-gdp (solid green) with α = 1 and ρ = 10−2, and cubic
smoothing spline with an AR(1) error structure fit to the sunspot data. 56

4.25 Methods BTree (solid) and TF (dash) fit to the sunspot data, with TF using 10-fold
cross validation. 57

4.26 Trace plots of three randomly selected function evaluations for the global mean surface
temperature deviations data. 58

4.27 Density plots of three randomly selected function evaluations for the sunspot data. . 59
4.28 Trace plot of the penalty parameter λ for the sunspot data. 60
4.29 Density plot of the penalty parameter λ for the sunspot data. 61
4.30 Trace plot of the estimate of the variance parameter σ2 for the sunspot data. 62
4.31 Density plot of the estimate of the variance parameter σ2 for the sunspot data. . . . 63

vii

Chapter 1

Introduction

Linear regression remains amongst the most commonly used techniques of statisticians today. Its
popularity is largely due to its modularity. Linear regression is the underlying framework for models
that expect the response vector y to be linear in a set of predictors X = [x1, . . . ,xp], but this
framework extends much further than linear models. For sufficiently smooth models, linear regression
can be used to iteratively minimize an objective function of interest and thus estimate parameters
of models not linear in the response y. Modern penalized regression exemplifies these dependencies
on linear regression perfectly. As such, we first introduce some key aspects of linear regression. The
remainder of the Introduction then quickly discusses a popular generalization of linear regression,
cross validation, and the bootstrap. Cross validation and the bootstrap, are commonly used tools
when modifications to the simple linear model make further analysis intractable. These techniques
will come up again in later chapters.

The remaining chapters are organized chronologically, relative to the development of ideas within
the penalized regression literature. Chapter 2 discusses the first of the penalized regression methods
where only the coefficient vector β is constrained. Of note is the more recent change from the `2 norm
penalty to the `1 penalty. We discuss the more important algorithms that solve the minimization
problems associated with `1 penalized regression. The Bayesian interpretation of these methods
concludes Chapter 2. Chapter 3 introduces a generalization of the methods in Chapter 2, where
a linear transformation of the coefficient vector is now penalized. This generalization requires new
minimization techniques. We introduce a faster method that computes an approximate solution to
this generalization. To conclude Chapter 3, we develop a fully Bayesian hierarchical model that is
a Bayesian analogue to the frequentist generalization of `1 penalized regression. In certain cases,
we find the Bayesian hierarchical model to outperform the frequentist formulation. For example,
we discuss a specific case of this method called trend filtering. Trend filtering is a nonparametric,
univariate smoothing technique, that when fit under this new Bayesian hierarchical model is found to
increase prediction accuracy. Further, the Bayesian model produces empirical coverage probabilities
that are much closer to their nominal values. Chapter 5 provides directions for future research.

1.1 Linear Regression

Suppose y is an n-vector of responses thought to be generated from a stochastic process that consists
of two parts, a linear combination Xβ and an additive error term ε such that Eε = 0 and Eεεt = σ2In,
where In denotes the n× n identity matrix. This linear model is written

y ∼ N (Xβ, σ2In) (1.1)

when the error term ε is hypothesized to be Gaussian with mean Xβ and covariance matrix σ2In.
The matrix X ∈ Rn×p consists of p covariates xj = (x1j , . . . , xnj)

t thought to generate via a linear
transformation of coefficients β ∈ Rp the expected value of the response vector y, namely Ey = Xβ.
We use xi = (xi1, . . . , xip)

t to denote the ith measurement of the p covariates. The minimization
problem, which produces the least squares estimate of β,

β̂LS = arg min
β

1

2

n∑
i=1

(yi − xtiβ)2 (1.2)

is mathematically equivalent to the maximum likelihood estimate β̂. We will often prefer to write
the minimization problem (1.3) using the `p norm. Define the `p norm as the map || · ||p : V 7→ R
from an arbitrary vector space V to the real numbers. Equation (1.3) can now be written using the
squared `2 norm,

β̂LS = arg min
β

1

2
||y−Xβ||22. (1.3)

1

Scheffe [1960] provides some well known facts about linear regression. The expected value and
variance are

Eβ̂LS = β, Vβ̂LS = σ2(XtX)−1.

Further, the columns of X can be any function θj of the covariates xj , such that xtiβ =
∑p
j=1 βjθj(xij).

Thus, linear refers to the linearity of the coefficient vector β. The Gauss-Markov theorem follows
from the above facts. When σ2 <∞, the linear, unbiased estimator β̂LS = (XtX)−1Xty has mini-

mum variance amongst all estimators of its class. Often β̂LS is referred to as the best linear unbiased
estimator of β.

Later work produced generalizations of this simple model, replacing the identity function between
the expected value of y and the linear combination Xβ with new functions [Nelder and Baker,
1972]. Known as generalized linear models (GLM), the linear regression model (1.1) is widely used
in much of the sciences. New disciplines are increasingly using the simple minimization problem
in Equation (1.3) by finding new models with clever interpretations to their discipline and because
researchers continue to push this model up against recent work in convex analysis.

1.2 Generalized Linear Models

Generalized linear models modify the linear regression framework in Equation (1.3) to estimate the
expected value of the response vector y from a monotonic transformation, often called the link
function, of the linear combination Xβ. Write µ = Ey, so that the link function g models

g(µ) = Xβ, (1.4)

where y follows an exponential family distribution, not necessarily the Gaussian distribution. The
generalized linear model is fit via a procedure called iteratively reweighted least squares [Nelder
and Baker, 1972; Wood, 2006]. This minimization strategy, as it sounds, weights the standard least
squares norm and repeatedly solves for β until some convergence criteria is established. Indexing
updates of the estimate of β by k, solve

β(k+1) = arg min
β

n∑
i=1

wi(β
(k))(yi − fi(β))2, (1.5)

where w is a diagonal matrix dependent on the kth estimate of β and f is a function of the parameters
of interest, β. For generalized linear models the function f is the inverse of the link function, but in
a broader sense it does not have to be.

1.3 Cross Validation

Cross validation is a widely used method to estimate expected prediction error, Ey,X||y − Xβ||22,
with the expectation over the joint distribution of (y,X). Since this is not a simple task given a fixed
sample size, the idea is to cleverly reuse the data by creating K subsets of the data and estimating
the prediction error for each subset. The average of the K prediction errors provides an estimate of
the expected prediction error.

A particularly elegant explanation is given by Hastie et al. [2005]. Let κ : {1, . . . , n} 7→ {1, . . . ,K}
map each observation in the sample to one of the K subsets. Let β̂−κ(i) be the estimate of β when
the subset corresponding to κ(i) is not present in the data set. Then we can express the cross
validation estimate of the prediction error as

CV(β̂) =
1

n

n∑
i=1

(yi − xtiβ̂−κ(i))2.

This estimate of prediction error varies by choice of K; there exists a trade off between bias
and variance. On the one hand, leave one out cross validation, where K = n and κ(i) = i, is

2

approximately unbiased, but incurs high variance [Allen, 1971; Hastie et al., 2005]. Conversely,
K = 5 or K = 10, two popular choices, produce smaller variance, but higher bias [Breiman and
Spector, 1992; Kohavi and others, 1995; Hastie et al., 2005]. Later, we will index the cross validation
estimate of prediction error by another parameter, and use this method to form an educated guess
about the indexing parameter.

1.4 Bootstrap

The bootstrap is a popular method to estimate properties of the distribution of a statistic. Specif-
ically, by sampling the data zi = (yi, xi) with replacement, the bootstrap estimates the mean and
variance of a statistic T . For example, B resamples of the data z creates “new” data sets zb for
b = 1, . . . , B, each of which yields a statistic T (zb). The B test statistics then produce an estimate
of the expected value and variance of the estimator

V̂T (z) =
1

B − 1

B∑
b=1

(T (zb)− T̄ (z))2, with T̄ (z) =

B∑
b=1

T (zb).

The bootstrap is particularly helpful when the asymptotic distribution of a statistic of interest
is analytically intractable. While this is not the case for standard linear regression, the methods
presented later are mathematically difficult to work with. In the cases below, the bootstrap replaces
intractability with heavy computation. Despite the computational burden, the actual code to pro-
duce bootstrap estimates involves little extra work. This method has become popular because often
minimal extra effort is required. We will revisit the bootstrap in Chapters 2 and 3.

1.5 Gibbs Sampler

The Gibbs samplers is a popular Markov chain algorithm for drawing samples from arbitrary poste-
rior distributions of interest. It was popularized by Geman and Geman [1984], who attributed their
work to the physicist Josiah Willard Gibbs. The idea of the Gibbs sampler is to iteratively sample
from alternating conditional distributions given the other parameters contained in the model. Using
the notation of Gelman et al. [2014], consider a parameter vector θ = (θ1, . . . , θd), where each θj
describes individual parameters or subvectors of parameters. At each iteration of the algorithm, the
tth sample θtj is drawn from the conditional distribution

[θtj |θt−1−j , y],

where θt−1−j denotes all elements of θ except for θj . The tth iteration of elements of θ are updated
dependent on the previous iterations’ values of the parameter vector.

We will use this algorithm for each of the Bayesian hierarchical models discussed below. There
we will see that the conditional distributions of interest take on recognizable, analytic forms. Thus,
the conditional distributions will be recognizable probability density functions.

Copyright @ Edward A. Roualdes 2015

3

Chapter 2

Penalizing Coefficients

Linear regression has been and continues to be a corner stone of applied statistics. Amongst the
earliest of developments beyond the standard linear model is the use of, though it was not originally
phrased this way, a penalty function. The penalty function proposed by Hoerl and Kennard [1970]
was a simple additive `2 norm onto the minimization problem in Equation (1.3). This additive `2
norm was first theorized to control for correlations amongst the predictors of interest and, when
applied correctly, large reductions in mean squared error are traded for small amounts of bias.

Chapter 2 introduces the first penalized regression model, called ridge regression. Then we
discuss the slight change from penalties utilizing the `2 norm to the `1 norm in Section 2.2. Though
this idea seems simple now, it took nearly two decades for this change in penalty function to find
its place in the statistics literature. The `1 norm penalty function created a whirlwind of literature
and debate. Sections 2.4 to 2.8 cover the ways in which statisticians have attempted to match the
theory of linear regression to `1 penalized regression: everything from generalized linear models with
`1 norm penalties to efficient computation and how cross validation and the bootstrap aid analysis
beyond estimation of parameters. A Bayesian analogue to penalizing coefficients of a linear model
is discussed in Section 2.9.

2.1 Ridge Regression

Often applied statisticians implicitly assume that the covariates are not correlated and hence that
XtX is a unit matrix, after standardizing the covariates such that ||xj || = 1. This, though, is
not always the case in the real world. Often in practice, XtX can be arbitrarily far away from a
unit matrix, causing (XtX)−1 to be ill-conditioned. Highly correlated columns of X create small

eigenvalues of XtX. As the eigenvalues of XtX shrink, the variance Vβ̂LS increases. To remedy
this Hoerl and Kennard [1970] proposed the ridge regression estimator, where the least squares

estimator β̂LS is replaced with β̂R = (XtX + λIn)−1Xty = Rλy for λ ≥ 0. The matrix Rλ is the
projection matrix associated with the ridge regression estimator. Obviously, when λ = 0 the least
squares estimator is recovered, and large values of λ will dominate the influence of XtX. Written
as a minimization problem, ridge regression solves

β̂R = arg min
β

1

2
||y −Xβ||22 + λ||β||22. (2.1)

Since 1970, justification for the ridge regression estimator has expanded. Not only does β̂R improve
the conditioning of β̂LS , it also has interpretation as a simple addition to equation (1.3) to get
equation (2.1). Geometrically, this addition shrinks the elements of β towards the unit hyper-
sphere, see Figure (2.2). Because the ridge regression estimator is a linear transformation of the
observations, we can easily find the expected value and variance,

Eβ̂R = (XtX + λIp)
−1XtXβ, Vβ̂R = σ2Z(XtX)−1Zt,

where Z = Z(λ) = [Ip + λ(XtX)−1]−1 is dependent on some choice of the penalty parameter λ.
The benefits of the ridge estimator are best seen when comparing its properties to those of the

least squares estimator. First, we can define the ridge regression estimator in terms of the least
squares estimator, β̂R = Zβ̂LS , remember that Z is indexed by λ. Using this, break up the distance
between the ridge estimator β̂R and the true coefficient vector β into two terms,

E(β̂R − β)t(β̂R − β) = E[(β̂LS − β)tZtZ(β̂LS − β)] + (Zβ − β)t(Zβ − β)

= γ1(λ) + γ2(λ).

4

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

Mean square error functions, γ1 and γ2

λ

σ−2

variance

least squares

ridge

bias2

Figure 2.1: Ridge regression mean squared error as a function of λ.

The two terms γ1 and γ2, as functions of the penalty parameter λ, can be interpreted as the sum
of the variances of the estimators and the squared distance from Zβ to β, respectively. Thus, the
terms γ1(λ) and γ2(λ) are akin to the standard variance and square bias decomposition induced by

using β̂R instead of β̂LS . Hoerl and Kennard [1970] go on to show that indeed, as hoped, the shape
of γ1 and γ2 as functions of λ trade small amounts of squared bias for drastically reduced variance.
Figure (2.1) plots the different mean squared error functions discussed in Hoerl and Kennard [1970].
Ridge regression, represented by the dashed line, for some values of λ dips below the least squares’s
mean squared error, but then as the bias increases with larger values of λ the ridge regression mean
squared error overtakes it.

2.2 Lasso

Tibshirani [1996] introduced a slight modification to the penalty term. This model simply replaces
the l2 norm penalty function in ridge regression with the l1 norm. Dubbed the lasso, the least
absolute shrinkage and selection operator has become incredibly popular. The lasso solution β̂`1 is
the minimum vector to the objective function

β̂`1 = arg min
β

1

2
||y−Xβ||22 + λ||β||1. (2.2)

The l1 norm carries desirable geometric properties with it. Instead of simply shrinking the elements

5

β1

β2

● β̂

β1

β2

● β̂

Figure 2.2: The sharp corners of the `1 penalty, compared to the `2, allows for some of the coefficients
of β to be set identically to zero.

of the covariate vector β towards zero, the sharp contours of the l1 norm cause some of the elements
to be set identically to zero [Tibshirani, 1996]. This is easily seen in Figure (2.2) where the space of

β ∈ R2 subject to each norm is plot. A potential solution, β̂, and contours of its ellipsoids are plot
for each norm. While it is theoretically possible for ridge regression to produce a sparse solution, in
the sense that some elements of β are identically zero, it is quite unlikely, and is much more likely
in the case of the lasso.

The reduction of β depends on the size of the penalty parameter λ and on the number of
observations n relative to the number of parameters p. When p < n, lasso estimates of β ranges
from β̂`1(λ) = β̂LS to β̂`1(λ) = 0, as λ approaches positive infinity starting from zero. In Section 2.6
we discuss solution paths of lasso estimates indexed by λ in greater detail. On the other hand, the `1
penalty function provides estimates of β even when n < p. In this case, there is no direct comparison
to β̂LS .

Tibshirani [1996] attempted to address the properties of β̂`1 as an estimator. Accurate estimates
of the standard errors are hard to find, because the lasso estimator is a nonlinear and nondifferen-
tiable function of the response vector y. Similar to the ridge regression estimator, it is well known
that the lasso is a biased estimator of β [Tibshirani, 1996; Fan and Li, 2001; Breheny and Huang,
2011]. Lasso’s bias is most notable for heavily shrinking truly large coefficients towards zero. Calcu-

lating the variance of β̂`1 proves to be even more difficult. Tibshirani [1996] suggested approximating

the variance of β̂`1 with something similar to the variance of ridge regression,

Vβ̂`1 = (XtX + λΩ−1)−1XtX(XtX + λΩ−1)−1σ̂2,

where Ω = diag(|β̂`1j |). Many authors have since attempted to calculate reasonable standard errors
for the lasso. Standard errors will be discussed in greater detail in Section 2.8.

The original lasso paper proposed an algorithm to minimize the objective function in Equa-
tion (2.2) using quadratic programming techniques. That solution is guaranteed to find the min-
imizing value of β in 2p + 1 iterations. As suggested by Tibshirani [1996], rarely are this many
iterations required in application. Still, quite a bit of work has gone into finding more efficient
solutions to this problem. We turn to such algorithms next.

6

2.3 Algorithms to compute the lasso solution

Lars Arguably the most important of the solutions to Equation (2.2) is called least angle regression
(lars) [Efron et al., 2004]. Lars, method in its own right, is a generalization of the Forward/Back-
ward stage-wise regression methods, where step sizes are determined algebraically instead of by a
predetermined amount so that covariates are added to the model sequentially. Intuitively, the algo-
rithm moves through µ̂ = Xβ̂ space, sequentially adding variables most correlated with the response
vector to the “active set” A. Each step moves in an equiangular direction relative to the predictors
in A. Each step size in this equiangular direction is stopped when another predictor is added to the
set, i.e. when another predictor has greater than or equal correlation, relative to the members of
the active set, with the response. Upon each stop a new equiangular direction is calculated, as the
direction depends on the elements of the active set.

We summarize the lars algorithm mathematically, by describing movements of the vector µ̂ =
Xβ̂ ∈ Rn. Lars, described in Algorithm (2.1), requires two values: i) the equiangular direction uA,
and ii) the distance γ̂ moved in direction uA. We refer the reader to the original paper Efron et
al. [2004] or a good summary by Khan et al. [2007] for calculations of uA, γ̂, and ωA and suffice
ourselves with the intuitive conditions necessary to calculate uA:

1. uA is a linear combination of the active predictors: uA = XAωA, where ωA is a vector of
weights.

2. uA has unit variance, n−1utAuA = 1.

3. uA has equal correlation a with each of the active predictors, n−1Xt
AuA = a1A such that 1A

has length |A|.

The lars algorithm adapts to the lasso problem, by enforcing β̂j to agree in sign with ĉj =
xtj(y − µ̂). When p < n, lars translates what is otherwise a large (2p) dimensional quadratic
programming problem into an algorithm that has the same computational cost of a least squares
fit, O(p3 + np2) [Efron et al., 2004]. When p > n, as is often the case in lasso problems, lars has a
computational cost of O(n3) and terminates with n− 1 variables included in the model.

Algorithm 2.1: Least Angle Regression

Input: (X,y)

A ← ∅, µ̂A = Xβ̂ ← 0, µ̂S ← ∅
for j = 1 to p do
A ← A∪ arg maxi |(xtiy− µ̂)|
µ̂A ← µ̂A + γ̂uA
µ̂S ∪ µ̂A

end for
Output: µ̂S

Coordinate descent Another strategy to fit the lasso objective function in Equation (2.2) is to
use the coordinate descent methods of Luo and Tseng [1992]. Consider a closed, convex function
f : Rp 7→ R, with variables x1, . . . , xp. Denoting by f (r) successive minimizations of f over its
domain, the global minimizers is found by repeatedly solving

x
(r+1)
i = arg min

xi

f(x
(r)
1 , . . . , x

(r)
i−1, xi, x

(r)
i+1, . . . , x

(r)
p). (2.3)

Applying this method to the lasso problem is established by noting that

f(β) =
1

2
||y−Xβ||22 + λ||β||1

= g(β) +

p∑
j=1

hj(βj)

7

where g is both differentiable and convex, and the hj are convex [Friedman et al., 2007; Wu and
Lange, 2008; Friedman et al., 2010]. So long as the hj are separable the coordinate descent algorithm
is guaranteed to converge to the optimal solution [Luo and Tseng, 1992]. In fact, this formulation can
be applied to many other penalty functions for which the hj are appropriately separable [Friedman
et al., 2007, 2010; Breheny and Huang, 2011].

Because Equation (2.3) is often both analytically tractable and costs very little, coordinate
descent methods can be very fast. This is true even if there is no analytic solution to the original
minimization problem. One full update step, over all parameters costs O(np) operations. Thus, if
the solution is found in less than p iterations, which it often is, the solution to a penalized regression
problem costs less than that of the solution to standard linear regression, O(np2) [Breheny and
Huang, 2011]. Since many penalized regression problems can be formulated as such, especially
when combined with the approximation methods of Hunter and Li [2005], it seems likely that the
coordinate descent methods will gain popularity with time.

We briefly list some other penalty functions, for which coordinate descent directly solves the
associated penalized regression minimization problem. Some penalty functions retain the convexity
of the loss function. Since the objective function of interest is then convex, minimization strategies
that use coordinate descent are guaranteed to find the global minimum.

2.4 Extensions

In an effort to improve upon the lasso, authors experimented with a number of other penalty func-
tions. Some of these methods are simply a weighted mixture of the lasso and ridge regression, while
other methods seek stronger asymptotic properties. Below we provide a few of the more notable
penalty functions and describe how they contributed to the literature. In many cases, solutions de-
rived from differing penalty functions involve the soft-threshold operator of Donoho and Johnstone
[1995],

S(β̂, γ) = sign(β̂)(|β̂| − γ)+, (2.4)

which is often written

S(β̂, γ) =

β̂ − γ, β̂ > 0 and γ < |β̂|
β̂ + γ, β̂ < 0 and γ < |β̂|
0, |β̂| ≤ γ

.

All of the penalty functions h : R 7→ R listed below can be fit using the coordinate descent
algorithm described above, with variations on the soft-threshold operator.

1. Lasso: h(x) = |x|. Friedman et al. [2007] find the solution to Equation (2.2) by using coordinate
descent with S in the updating function

β
(r+1)
j (λ)← S

(
n∑
i=1

xij(yi − ỹ(j)i), λ

)

where ỹ
(j)
i =

∑
l 6=j xilβ

(r)
l , to be the partial residual for fitting βj with the rth estimate

β
(r)
j . Because the objective function of the lasso is globally convex, this updating function is

guaranteed to converge to the global minimum for some value of λ.

2. Elastic net: h(x) = λ1|x| + λ2x
2/2. The elastic net penalty function combines the `1 and `2

norms of the lasso and ridge regression [Zou and Hastie, 2005; Kooij, 2007].

β
(r+1)
j (λ1, λ2)←

S(
∑n
i=1 xij(yi − ỹ

(j)
i), λ1)+

1 + λ2

8

3. Grouped lasso: hj(xj) = λj ||xj ||2, where xj is a grouping of pj variables, say for dummy
variables, and λj = λ

√
pj [Yuan and Lin, 2006]. In this case, one uses block updates since only

the blocks of pj parameters xj are separable

β
(r+1)
j (λj)← (||Sj ||2 − λj)+

Sj
||Sj ||2

,

where Sj = xtj(y− ỹ(j)) and ỹ(j) =
∑
k 6=j xkβ̃k.

4. Smoothly clipped absolute deviation: h(x) = (λx)1(x ≤ λ) + γλx−0.5(x2+λ2)
γ−1 1(λ < x ≤ γλ) +

λ2(γ2−1)
2(γ−1) 1(x > γλ). The smoothly clipped absolute deviation (SCAD) penalty was designed

to eliminate bias encouraged by the standard `1 norm, which heavily shrinks all, even truly
large, coefficients towards zero. The SCAD achieves the oracle property, where asymptotically
using this penalty function is as good as knowing which coefficients are truly zero and which
are not [Fan and Li, 2001; Breheny and Huang, 2011]. Indexed by two tuning parameters γ
and λ, one updates updates the coefficients with

β
(r+1)
j (λ, γ)←

S(β

(r)
j , λ), |β(r)

j | ≤ 2λ
S(β

(r)
j ,γλ/(γ−1))
1−1/(γ−1) , 2λ < |β(r)

j | ≤ γλ
β
(r)
j , |β(r)

j | > γλ

.

5. Minimax concave penalty: h(x) = (λx − x2

2γ)1(x ≤ γλ) + (1
2γλ

2)1(x > γλ). The minimax

concave penalty (MCP) is the next generation of penalty functions that obtains similar prop-
erties to the SCAD, but produces more favorable numerical results [Zhang, 2010; Breheny and
Huang, 2011]. MCP is also indexed by two parameters γ and λ. Given values for these tuning
parameters, update β with

β
(r+1)
j (λ, γ)←

S(β
(r)
j |, λ)1(|β(r)

j | ≤ γλ)

1− 1/γ
+ β

(r)
j 1(|β(r)

j > γλ).

In specific cases some mathematical considerations can drastically decrease the computational

costs of these algorithms. Consider the partial residual yi − ỹ(j)i . Note that, as in Friedman et al.
[2010],

yi − ỹ(j)i = yi − ŷi + xijβj = ri + xijβj

where ri is the current residual for observation i. Hence,

n−1
n∑
i=1

xij(yi − ỹ(j)i) = n−1
n∑
i=1

xijri + βj

because we have standardized the xj , so that xtjxj = 1. Next, write

n∑
i=1

xijri = 〈xj ,y〉 −
∑

k:|β̃k|>0

〈xj ,xk〉β̃k

so that a good number of the calculations can be performed before the algorithm even begins.

9

2.5 Lassoed GLMs

Friedman et al. [2010], and Breheny and Huang [2011] showed how weighted updates, for iterated
reweighted least squares algorithms, can be combined with penalized regression methods. For in-
stance, to use weights wi with the lasso penalty, updates are as follows

β
(r+1)
j ←

S
(∑n

i=1 wixij(yi − ỹ
(j)
i), λ

)
∑n
i=1 wix

2
ij + λ

.

Though the weighting scheme adds some complication to the convexity analysis, the development
of penalized generalized linear models greatly expands the diversity of the lasso.

2.6 Solution paths

Consider a generalization of penalized regression written as

β̂(λ) = arg min
β

L(y,Xβ) + λP (β). (2.5)

Under certain conditions on the loss function L and penalty function P , penalized regression produces
piecewise linear solution paths. That is, the coefficients of the estimator β̂ indexed by the penalty
parameter λ, are piecewise linear.
Rosset and Zhu [2007] prove two sufficient conditions for piecewise linear solution paths to exist:

1. L is quadratic, or piecewise quadratic in β,

2. P is piecewise linear in β.

Interestingly, this implies that the lasso will produce piecewise linear solution paths while ridge
regression will not. Figure 2.3 displays the solution paths of a lasso fit to the diabetes data set
of Efron et al. [2004]. Since we are not interested in the data per se, but just the solution paths,
a description of the data is conspicuously missing. As the `1 norm penalty increases, caused by
decreases in the value of λ, the coefficients grow from 0 to their greatest value – recall that their
greatest value depends on the relation between the number of observations n and the number of
parameters p.

10

** * * * * * * ** * *

0.0 0.2 0.4 0.6 0.8 1.0

−
50

0
0

50
0

|beta|/max|beta|

S
ta

nd
ar

di
ze

d
C

oe
ffi

ci
en

ts

** * * *
* *

* ** * *

*
*

*
*

* * * * ** * *

** *
*

* * * * ** * *

** * * * * *
*

**

*

*

** * * * * * * **

*

*

** * *
*

* * *
**

*
*

** * * * * * *
** * *

**

*
*

* * *
* **

*
*

** * * * * * * ** * *

LAR

5
2

1
8

4
6

9

0 2 4 6 7 9 9 10

Figure 2.3: Solution paths of a lasso fit to the diabetes data.

The lars algorithm finds an exact piecewise linear solution path for the lasso. However, with
other more complex penalty functions, even if they meet the conditions stated by Rosset and Zhu
[2007] no such algorithm yet exists to find an exact solution path. In these cases a different strategy
is recommended by Friedman et al. [2010]. To find a pathwise solution across a range of values of
λs, start at nλmax = maxl |〈xl, y〉|. Then with λmin = ελmax, move from λmax → λmin on the log
scale, in K steps. Default values are commonly chosen to be ε = 0.001 and K = 100. Increasingly,
to make the penalized methods more comparable, ridge regression is being fit via a similar solution
path idea when a solution path is indeed desired. In some cases though, no such path is necessary
and instead a simple choice of the penalty parameter is preferred. We next turn to estimating a
“best” value of the penalty parameter.

2.7 Choosing the Penalty Parameter

As discussed above, the penalized regression estimate of β varies with changing values of the penalty
parameter λ, and as such λ indexes the solution path of β. Naturally, interest lies in a “best” choice
of the penalty parameter. The apparent consensus across the penalized regression literature is to
use some form of cross validation to estimate the penalty parameter [Wahba, 1990; Tibshirani, 1996;
Wood, 2006; Friedman et al., 2007; Breheny and Huang, 2011; Friedman et al., 2010]. Though an
information criterion could be used, the literature surrounding penalized regression tends to avoid
these methods.

Since the ridge regression estimator β̂R is linear in the response vector y, generalized cross

11

validation (GCV) is often used to estimate λ. Generalized cross validation is an approximation to
the specific case of cross validation where the number of groups K is set equal to the sample size n.
By setting K = n, one creates n subsets of the data, leaving one observation out at a time. This
idea, named the prediction sums of squares (PRESS) criterion, was originally developed by Allen

[1971, 1974]. In some situations, as is the case with β̂R, it is possible to avoid the computational
cost otherwise associated with repeatedly subsampling the original data [Allen, 1971; Hastie et al.,
2005]. Making use of ridge regression’s projection matrix Rλ, the GCV criterion is

GCV(β̂, λ) =
1

n

n∑
i=1

(
yi − xtiβ̂

1− tr(Rλ)/n

)2

.

Unlike ridge regression, any estimator using the `1 norm is nonlinear in the response vector y.
This includes all of the variations on the lasso mentioned above. Because of this nonlinearity, there
is no obvious approximation of the PRESS criterion and thus no known form for generalized cross
validation. Thus, for estimators nonlinear in y we use the standard cross validation estimate

CV(β̂, λ) =
1

n

n∑
i=1

(yi − xtiβ̂−κ(i)(λ)).

There are two main drawbacks to this. The first is extra computational effort. Under non-general
cross validation one must take K random subsets of the data, calculate the method of interest on
each subset, and then use the K-fold cross validation criterion to choose λ. The second issue is that,
specifically in smoothing problems, as is demonstrated in Section 3.6, cross validation is well known
to under smooth or to produce “wiggly” estimates [Davison, 1997; Hastie et al., 2005].

2.8 Bootstrapped Standard Errors

As in the previous section, penalized regression estimators that are linear in the response vector y
can be dealt with simply and elegantly. An estimator’s variance, say, can be computed with matrix
calculus. Recall, in Section 2.1 we were able to provide simple calculations of the variance of the
estimator β̂R. However, this is not the case for estimators nonlinear in the response vector. Lasso-
type estimators are not linear in the response y and thus no simple calculation of the standard errors
of their coefficients is available. Estimating standard errors of the lasso is a well known problem in
the literature and this issues has seen a significant amount of attention [Tibshirani, 1996; Knight
and Fu, 2000; Osborne et al., 2000; Fan and Li, 2001; Pötscher and Leeb, 2009; Kyung et al., 2010].
At the heart of the issue is the fact that some coefficients will have probability concentrated around
zero. Concentration amassed around zero produces sample distributions of the lasso estimator that
are a mixture of singular and truncated normal distributions [Pötscher and Leeb, 2009]. Kyung et
al. [2010] provide a formal proof that bootstrapped estimates of the lasso are not consistent for any
coefficients that are truly 0.

It seems that deriving estimates of variance for the lasso has no easy solution. At the time of
this writing no one technique stands out as the best way to produce standard errors of the lasso
estimator. However, we discuss below a potential remedy to this problem. This remedy comes from
a change of perspective. Bayesian penalized regression methods provide estimates of variance for
parameters of interest, largely due to the prior assumed for the coefficients. The priors assumed on
the coefficients provides an analogue to the penalty term in the frequentist case. The estimates of
error though come at the cost of never setting any coefficient identically to zero, as the frequentist
lasso does. We explore variations on penalized regression under the Bayesian perspective next.

2.9 Bayesian Variations

The Bayesian equivalent of model (2.1) is derived by putting independent Gaussian priors on the
βj ,

12

f(βj) = (2πc2)−1/2 exp
(
β2
j /c

2
)
.

Assuming that all the coefficients β have zero mean provides an analogue to the shrinkage effect
caused by the norm in the penalty term. The mode of the posterior distribution on βj is equivalent
to the penalized least squares solutions found from equation (2.1). The fully Bayesian hierarchical
model is then written as

y|X, β, σ2 ∼ Np(Xβ, σ2In)

βj |c ∼
p∏
j=1

N (βj , c)

σ2 ∼ p(σ2),

(2.6)

where the the scale of the prior on βj , namely c, plays a similar, though not directly analogous,
role to the tuning parameter λ. The connection between ridge regression and the hierarchical model
above is easily seen through the log of the joint distribution of y and β, treated as a function of β

log[y, β|X, σ2, c] = logNp(Xβ, σ2In)Np(β, c)

∝ ||y−Xβ||22 +
1

c
||β||22.

By a similar argument, the Bayesian analogue to the lasso simply replaces the normal prior on βj
with a double exponential distribution prior [Tibshirani, 1996]. The double exponential distribution
has the form

[x|λ] =
λ

2
exp (−λ|x|).

This distribution can be recovered as the gamma distribution scale mixture of normals, as first shown
by Andrews and Mallows [1974],

[x|λ] =

∫ ∞
0

1√
2πs

exp
(
−x2/(2s)

)λ2
2

exp
(
−λ2s/2

)
ds

=

∫
N (x|0, ψ)Γ(1, dψ)

where N (·|0, ψ) is the Gaussian density function and Γ(1, ·) is a gamma density function with shape
equal to 1. In fact, any gamma distribution is acceptable. The double exponential simply produces
full conditionals that are easier to work with; see Griffin and Brown [2011] for more complex priors
on β. We therefore focus solely on an exponential mixing of normals.

The Bayesian lasso was first published by Park and Casella [2008]. There, they make a convincing
argument in favor of a double exponential prior on β conditional on σ2. The conditional double
exponential prior ensures a unimodal posterior distribution for [β, σ2]. This conditioning eases
interpretation of point estimates and would otherwise slow convergence of the Monte Carlo Markov
Chain used to fit the Bayesian lasso. Building off of the model in Equation (2.6), the Bayesian lasso
comes from the following hierarchical model.

y|X, β, σ2 ∼ Nn(Xβ, σ2In)

β|σ2, ω1, . . . , ωm ∼ Np(0, σ2Σ−1β)

Σ−1β = Σ−1β (ω) = diag(ω−11 , . . . , ω−1m)

ω1, . . . , ωm|λ ∼
m∏
j=1

λ2

2
exp(−λ2ωj/2)dωj , ωj > 0, (j = 1, . . . ,m)

λ2|α, ρ ∼ Γ(λ2|α, ρ), λ2 > 0

σ2 ∼ σ−2, σ2 > 0

(2.7)

13

As is common in the literature, we use the limiting improper prior from an inverse gamma distribu-
tion on σ2, but any inverse gamma distribution would maintain conjugacy. The hyperparameters α
and ρ in the prior on λ2 must be chosen by the user. Keeping in mind that the Bayesian lasso is
inherently a shrinkage method, small values of α and ρ should be chosen. Often values greater than
zero and less than two are chosen. Any improper prior on λ2 will produce improper posteriors.

The Bayesian lasso, like the Bayesian ridge regression, shrinks coefficients by assuming they are a
priori centered about zero. However, because the double exponential distribution spikes around zero,
the Bayesian lasso weights the information from the coefficients differently than does Bayesian ridge
regression. In either case though, none of the coefficients are set identically to zero as they are in the
frequentist lasso. This is due to the continuity of the prior put on the coefficients βj . On the other
hand, because of the prior, the posterior distribution of each coefficient is readily available and thus
many features of the posterior are easily obtained. For instance, credible intervals are simple and
informative. Credible intervals allow the practitioner to draw simple conclusions otherwise provided
by the frequentist lasso. If a credible interval for a coefficient includes zero, then one could make
the claim that it is not very important for predicting the response.

Figure 2.4 compares three different prior distributions for β. The Gaussian distribution (solid),
which produces an analogue to ridge regression, and the double exponential (dash) have small,
exponential tails. The heavy tails shrink coefficients towards zero even when the data otherwise
would encourage large coefficients. As mentioned above, the heavy shrinkage of the lasso is well
known to produce biased estimates [Fan and Li, 2001; Lee et al., 2010; Breheny and Huang, 2011].
Frequentist solutions to reduce such bias involved developing piecewise penalty functions, e.g. SCAD
and MCP. Similar piecewise priors on β in the Bayesian setting were developed [see Carvalho et al.,
2009, 2010], but a simpler idea is to drop the exponential tails of the prior on β. Armagan et al.
[2013] recommend a prior that they call the generalized double Pareto (gdp) distribution, which
takes the form

[x|α, ρ] =
1

2σρ/α

(
1 +

1

α

|x|
σρ/α

)−(1+α)
. (2.8)

By putting less mass in the tails, the data can encourage larger values of the coefficients.
Tractable Gibbs samplers are readily found for the above priors and for some of the variations

discussed in Section 2.4 [Gelfand and Smith, 1990]. Since these Gibbs samplers are specific cases of
the samplers discussed in Chapter 3, we defer the details to later sections.

Copyright @ Edward A. Roualdes 2015

14

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

β

de
ns

ity

Figure 2.4: Comparison of three priors: Gaussian (solid), double exponential (dash), generalized
double Pareto (dot).

15

Chapter 3

Penalizing Structure

Beyond penalizing the coefficients of a linear model, much literature focuses on penalizing linear
transformations of the coefficient vector. This idea has been around for quite some time, generally
going back to the literature on inverse problems. The `2 normed, linearly transformed penalty func-
tions are referred to as Tikhonov regularization, named for the early work of Tikhonov [1943]. Some
decades later, the statistics community developed smoothing splines using a framework very similar
to the Tikhonov regularization methods. More recently, new techniques have arisen alongside the `1
norm literature. Just as before, the `1 norm acts as a data dependent choice of the important predic-
tors. But now, the sparse solutions coupled with linear transformations of the coefficients encourage
penalized geometric constraints. Such work has also generated new convex analysis problems.

Below we sketch some key points about one of the most popular smoothing methods ever devel-
oped. Smoothing splines continue to be an accurate estimator that requires minimal computational
complexity. We then discuss the generalized lasso and only briefly mention the first, of what is sure
to be any number of, general minimization strategies for linearly transformed penalty functions.
This discussion is kept short for two reasons: 1) this first method to solve the generalized lasso’s
objective function is, though a recent development, already being replaced by faster methods, and
2) we provide a Bayesian solution to the generalized lasso that in particular cases seems preferable,
for instance Bayesian trend filtering discussed in Section 3.6. Thus, we suffice our discussion of
minimization methods for the generalized lasso to an approximate method, detailed in Section 3.3,
and our Bayesian solution provided in Section 3.5. We also discuss some details that come along
with the Bayesian solution to the generalized lasso and a maximum a posteriori solution to the
generalized lasso in Section 3.5. We conclude this chapter with the introduction of Bayesian trend
filtering in Section 3.6.

3.1 Smoothing Splines

de Boor [2001] and Wahba [1990] are credited for their large role in the development of smooth-
ing splines, a method that penalizes a linear transformation of the coefficient vector instead of the
coefficient vector itself. The popularity of smoothing splines stems from two main points: 1) the
difficult mathematical theory makes, somewhat surprisingly, for a simple solution, and 2) smoothing
splines are both empirically and theoretically strong, albeit not optimal, estimators. The minimiza-
tion problem is incredibly simple, despite the mathematical rigor it takes to justify it. The discrete
minimization problem associated with smoothing splines is

θ̂ = arg min
θ
||y−Nθ||22 + λθtΩθ. (3.1)

The matrix N is composed of elements Nij = ηj(xi), where ηj(x) are the evaluations of B-spline basis
functions. The penalty term in Equation (3.1) involves the coefficients θ left and right multiplying
the integral of the inner product of the second derivatives of η [Wahba, 1990; Green and Silverman,
1993; de Boor, 2001; Hastie et al., 2005; Tibshirani, 2014]. That is, Ωjk =

∫
η′′j (t)η′′k (t)dt. The

solution is then found with matrix calculus to be

θ̂ = Sλy = (N tN + λΩ)−1N ty (3.2)

This simple solution, bearing resemblance to the solution for ridge regression, enables easy computa-
tion of the estimated function of interest, f̂ = Nθ̂. Further, the projection matrix Sλ has a number
of favorable properties; [see Hastie et al., 2005]. One in particular is that the degrees of freedom of a
smoothing spline fit are easily found as dfλ = tr(Sλ). Hence, smoothing spline estimators are often
coupled with the generalized cross validation methods, allowing for quick estimation of the penalty
parameter λ.

16

3.2 Generalized Lasso

We now turn our attention to a generalization of the `1 regularization methods mentioned in Sec-
tion 2.4. We assume that a known matrix D ∈ Rm×p first transforms the coefficients β before
penalizing the resulting vector. The lasso is represented by the case where D = Ip and the `1 norm
is used. Though the penalty function could be any arbitrary function hj , most work has revolved
around the `1 norm penalty function. The generalized lasso takes the the following form

β̂ = arg min
β

||y−Xβ||22 + λ||Dβ||1. (3.3)

The parameters β are no longer separable within the penalty function. The separability of the
coefficients was a key assumption made in the minimization techniques of Chapter 2. Coordinate
descent is no longer a valid algorithm to fit the generalized lasso. Thus, we have seen strict attention
paid to the `1 norm, because Tibshirani [2011] rigorously detailed a solution path algorithm to the
generalized lasso using the Lagrangian dual of (3.3). Slight modifications to his algorithm are
required for the two scenarios, rank(D) = m and rank(D) < m. The math underlying the dual path
is not in and of itself extremely difficult, however dealing with the Karush-Kuhn-Tucker optimality
conditions does get quite tricky. We will skip the frequentist solutions to this problem.

Below we highlight some of the applications the generalized lasso adapts to, dependent on choice
of the penalty transformation D. Specifically, we list a number of penalty matrices D that fit into
the generalized lasso framework of Equation (3.3). Many of the general forms listed below have
been discussed in great detail elsewhere; see for example Tibshirani et al. [2005]; Liu et al. [2010];
Tibshirani [2011]; Wytock et al. [2014].

• Fused lasso: The fused lasso puts X = In and uses the penalty matrix in Equation 3.4 to
enforce adjacent observations to be small.

D = D1d =

−1 1 0 . . . 0 0
0 −1 1 . . . 0 0

. . .
0 0 0 . . . −1 1

 (3.4)

Under the `1 norm D1d encourages adjacent observations of the response vector to have a
difference of zero, and in some cases sets their difference to be identically equal to zero. Fig-
ure 3.1 displays an example of a piecewise constant function with normal error. The fused
lasso, as a special case of the generalized lasso, allows for change point detection of a piecewise
constant function. This proves useful in comparative genomic hybridization studies, where
genes along the genome are thought to have a similar number of copies; [see Tibshirani, 2011,
for an example].

17

0 20 40 60 80 100

2
4

6
8

1
0

Figure 3.1: Simulated data with cross-validated fused lasso estimates.

• 2d Fused lasso: We can apply the fused lasso to arbitrary 2-dimensional graphs. The penalty
matrix D must be cleverly designed to pick out elements of the response vector y that share an
edge. In this context, the penalty term insists that adjacent vertices are of similar magnitude.
A colorful illustration of this is the contiguous 48 states of the United States.

Consider the Center for Disease Control’s 2010 data set describing lung cancer rates by state.
Each state has its own rate, and it is reasonable to assume that contiguous states have similar
if not identical rates. The 2-d fussed lasso makes this assumption exactly; adjacent vertices
(contiguous states) have similar responses. Figure 3.2 plots 2010 age-adjusted lung cancer
rates by state.

18

30

40

50

60

70

80

90

Figure 3.2: 2010 age-adjusted lung cancer rates by U.S. state.

While the generalized lasso fits this problem with ease, choosing the tuning parameter λ is still
quite a difficult task. In fact, neither the frequentist nor Bayesian methods have a sufficient
answer for this problem. Nonetheless, choosing by hand a value of λ demonstrates the ability
of the generalized lasso to fit data that represents an arbitrary 2-dimensional graph. Figure 3.3
plots the estimates obtained from these data using the parameter value λ = 1.

40

45

50

55

60

65

70

75

80

85

Figure 3.3: Predicted age-adjusted lung cancer rates based on a generalized lasso fit with tuning
parameter λ = 1.

As hypothesized, contiguous states are pulled to the extremes. For instance, due to Utah’s
relatively low cancer rates we see that Colorado, New Mexico, and Arizona are each predicted

19

to have less than or equal rates to their true observed values. However, Nevada, which begins
with a higher observed rate than its neighbors maintains a relatively high rate despite the
trend of the majority of its South-West neighbors.

Different than fitting this model with an `2-norm is that some neighbors are, with the `1-norm
penalty, encouraged to have identical rates across contiguous states. Whether or not this is
realistic in the scenario described above is rather immaterial, as there are certainly cases in
which one could imagine this feature is necessary.

• Trend filtering: Trend filtering is a generalization of the 1d fused lasso and continues to use
X = In. The fused lasso estimates piecewise constant functions by penalizing first order
discrete differences. By penalizing estimates of discrete derivatives of higher orders one can
estimate functions of higher order. Consider derivatives of order k = 2, 3, . . . , and the resulting
penalty matrix defined by the following recursive definition

D = D(x,k+1) = D1d ·D(x,k).

We’ll discuss trend filtering in greater detail in Section 3.4 as it is one of the most interesting
cases of the generalized lasso.

• Varying coefficients: Varying coefficient models were originally introduced by Hastie and Tib-
shirani [1993]. Another take on them can be handled with the generalized lasso. Consider
letting the elements in the coefficient vector each depend on another continuous variable t, for
instance

E(yi|ti, xi) = β0(ti) + β1(ti)xi.

We could design a model matrix X to be

Xij =

 1 if ti lies in the jth bin
xi if ti lies in the (j + b)th bin
0 otherwise

.

With the choice

D =

[
D(t,3) 0

0 D(t,3)

]
β0(ti) and β1(ti) are both constrained to be piecewise quadratic polynomials.

• Outlier detection: Relative to the model, E(y|X) = Xβ, suppose some of the observations yi
are not generated from the hypothesized linear model. We could fit

min
z∈Rn,β∈Rp

1

2
||z−Xβ||22 subject to ||z− y||1 ≤ k

for some predetermined k. Here, k counts the number of observations labeled outliers. Consider
letting α = y− z and writing

min
α∈Rn,β∈Rp

1

2
||y− α−Xβ||22 + λ||α||1.

This then fits into the generalized lasso framework with the transformed variables, D = D̃ =
(I, 0)t design matrix X̃ = (I,X)t, and coefficients β̃ = (α, β)t.

20

3.3 Approximate Generalized Lasso

Sometimes an exact solution to Equation (3.3) is not necessary, and instead an approximate solution,
computed faster is desired. A quick approximation to the objective function (3.3) can be found using
the majorization-minimization techniques developed by Hunter and Li [2005]. Convergence, up to
numerical precision, is nearly guaranteed since the objective function is convex in the parameters β.
We begin with the definition of a majorizing function. Let θ[m] be the mth iteration in a search for
the minimum value of some function.

Definition 3.3.1 (Majorization). A function g(θ|θ[m]) is said to majorize a real-valued function
f(θ) at the point θ[m] if

g(θ|θ[m]) ≥ f(θ), ∀θ, and

g(θ[m]|θ[m]) = f(θ[m]).

Minimization of the function of interest comes after repeated minimization of the majorization and
some stopping criterion is satisfied, or until some maximum number of iterations is reached. Com-
bined with coordinate descent, minimization-maximization becomes a very powerful tool [Hunter
and Li, 2005].

Hunter and Li [2005] provide us with the tools necessary to create a majorization of some popular
penalty functions. Using these tools, we can find a majorizationthe of the objective function (3.3).
It is reasonable to find a majorization for the `1 norm specifically, since we assume quadratic loss
in the case of the generalized Bayesian lasso. For some ε > 0, the following is a majorization of the
generalized lasso model

g(f |f [0]) = ||y − f ||22 + λ

{
n−k−1∑
i=1

(||D(x,k+1)f [0]||1)i − ε log

(
1 +

(||D(x,k+1)f [0]||1)i
ε

)
+
{(||D(x,k+1)f ||1)i − (||D(x,k+1)f [0]||1)i}2

2(||D(x,k+1)f [0]||1)i + ε

}
.

Unfortunately, the ε is not easily avoided as division by zero is otherwise encouraged. Numerical
precision becomes more and more of an issue as smaller values of ε, τ are chosen. Despite said issues
with this approximation strategy, in our experience when used to fit trend filtering estimates within
Section 4.1, the mean absolute difference between this approximate solution and the exact solution
was generally around 10−3.

3.4 Trend Filtering

Consider the nonparametric model of the function f0 : [0, 1] 7→ R, with zero mean, independent,
sub-Gaussian errors εi

yi = f0(xi) + εi, i = 1, . . . , n. (3.5)

Assume the observations yi are generated via f0 from the unique inputs x1 < · · · < xn. Mammen
and van de Geer [1997] propose an estimator of f0, convergent at the minimax rate, by penalizing
the total variation of the kth derivative of the function f0, defined as

TV(f
(k)
0) =

p∑
i=1

|f (k)0 (ti+1)− f (k)0 (ti)|,

with the set of knots {t1, . . . , tp+1} taken to be the inputs. Since the penalty TV(f (k)) is not easily
computed, an alternative idea is to penalize an estimate of the total variation penalty. Consider the
estimator f̂ = (f̂(x1), . . . , f̂(xn))t of f0 = (f0(x1), . . . , f0(xn))t that solves

arg min
f

||y − f ||22 + λT̂V(f (k)) (3.6)

21

where y is taken to be the vector of responses. R.J. Tibshirani [2014] proposed such an idea that
maintains the optimal (minimax) rate of convergence. His estimate of TV(f (k)) relies on the divided
difference of order k of f . We provide some facts about the divided difference in Section 3.4, alongside
some mathematical intuition behind this choice of penalty term [for a more complete survey, see de
Boor, 2005].

The estimator of the function in (3.5), entitled trend filtering, by Tibshirani [2014] uses the
generalized lasso framework discussed in Section 3.2. Trend filtering puts X = In, β = f , and uses
a scaled estimate of TV(f (k)). The solution f̂ is a piecewise polynomial of order k with knots taken
to be the set of inputs {xi}ni . Because of the close relation to locally adaptive regression splines,
trend filtering adapts locally to the fluctuations of the underlying curve, and thus achieves the same
optimal convergence rate [Tibshirani, 2014]. The ability to adapt locally comes from the estimate of
the total variation penalty. We begin by briefly defining trend filtering’s estimate of TV(f (k)), and
then discuss standard errors of a trend filtering fit.

Estimating Total Variation Let the linear space of polynomials in the field R be denoted by Π.
Πn is defined to be the subspace of all polynomials in Π of degree < n. For a set {xi}pi=0 of unique
points in R, put xν:ν+k = (xν , xν+1, . . . , xν+k). We define, using the notation of de Boor [2005], the
divided difference of order k as the continuous, linear functional 4⊥: Π 7→ R.

Definition 3.4.1 (Divided Difference). The divided difference of order 0 is defined to be 4⊥(xν)f =
f(xν), for ν ∈ {0, . . . , p}. All higher order differences follow the recurrence relation

4⊥(xν:ν+k)f =
4⊥(xν+1:ν+k)f −4⊥(xν:ν+k−1)f

xν+k − xν
, ν ∈ {0, . . . , p− k}, k ∈ {1, . . . , j}.

DeVore and Lorentz [1993] offer a mean value theorem (MVT) for divided differences.

Proposition 3.4.2 (MVT for Divided Differences). If f ∈ Cn[a, b] and a ≤ xi ≤ b,∀i, then there
exists a ξ ∈ [minxν:ν+k,maxxν:ν+k] such that

4⊥(xν:ν+k)f =
f (k)(ξ)

k!
.

We now define the estimate of TV(f (k)) with the linear operator ∆(k+1) ∈ Rn−k−1×n. Each row
of ∆(k+1) is defined to be

∆
(k+1)
i = (xi − xi+k+1)4⊥(xi:i+k+1).

This operator is no more than a proportional rewriting of Tibshirani’s operator D(x,k+1), which
itself generalizes his transformation D(k+1) to unevenly spaced inputs. To see the intuition behind
the use of ∆(k+1), we focus on the ith row of ∆(k+1)f ,

(∆(k+1)f)i = (xi − xi+k+1)4⊥(xi:i+k+1)f

= (xi − xi+k+1)
4⊥(xi+1:i+k+1)f −4⊥(xi:i+k)f

xi − xi+k+1

≈ (f (k)(xi+1)− f (k)(xi))/k!.

Hence, trend filtering uses the penalty k!||∆(k+1)f ||1 ≈
∑n−k−1
i=1 |f (k)(xi+1) − f (k)(xi)| in a gen-

eralized lasso framework. While the intuition is nice, ∆(k+1) is quite a bit less computationally
friendly as it contains numbers on the order of nk. Therefore, there is a direct advantage to using
D(x,k+1) = k!∆(k+1)/nk in computations, absorbing the extra constant nk/k! into the prior on λ.

22

Minimax Convergence Rate Trend filtering converges at the minimax rate to the true underly-
ing function of interest, as is shown by Tibshirani [2014]. Tibshirani, uses purely algebraic methods
to show that trend filtering is sufficiently close to the locally adaptive regression spline estimator
for the minimax convergence rate to carry over to trend filtering. Another strategy to prove the
minimax convergence rate for trend filtering would make use of the metric entropy of the underlying
function space for which trend filtering finds its solution, analogous to the strategy taken by Mam-
men and van de Geer [1997]. The metric entropy route requires the estimator of interest to live in a
function space such that the total variation of the estimator is less than or equal to up to a constant
the total variation of the true underlying function. Below we provide just enough detail to outline
how such a proof could go.

Consider the strategy taken by Mammen and van de Geer [1997]. Let G = {g : [0, 1] 7→ R} be a
linear space endowed with the empirical inner-product and induced norm therefrom

〈g1, g2〉n = n−1
n∑
i=1

g1(xi) · g2(xi)

||g||2n = 〈g, g〉n g, g1, g2 ∈ G.

For Gn a linear subspace of G, suppose the penalty function F : Gn 7→ [0,∞) has the following
properties

F(g1 + g2) ≤ F(g1) + F(g2), g1, g2 ∈ Gn
F(ag) ≤ |a|F(g), g ∈ Gn, a ∈ R.

For a sequence {An} that is bounded in probability by another sequence {Bn} we write An =
OP (Bn). Further, if A−1n = OP (B−1n) is also true we write An = Θ(Bn). Put Gn(1) = {g ∈ G :
F(g) ≤ 1}. For a subset A of G denote the δ-entropy of A by logN2(δ, || · ||n,A).

Theorem 3.4.3. Let cn be a positive sequence such that for a function g1 ∈ Gn we have ||g0−g1||n =

O(n−1/(2+w)c
w/(2+w)
n) and F(g1) ≤ cn. Suppose λn = Θ(nw/(2+w)c

−(2−w)/(2+w)
n). Assume ∃C > 0

and 0 < w < 2 such that

logN2(δ, || · ||n,Gn(1)) ≤ Cδ−w, δ > 0. (3.7)

Some of the requirements for Theorem 3.4.3 are straight forward enough and some require much
effort. For instance, Equation (3.7) is true when the function space of interest, namely G, consists
of splines [Van de Geer, 1990; Mammen, 1991; Mammen and van de Geer, 1997]. However, trend
filtering uses piecewise polynomials with potentially discontinuous lower order derivatives. Thus, a
more elegant solution using metric entropy methods for trend filtering would require a Herculean
effort.

Standard Errors It was noted in Section 2.8 that standard errors are a particularly troubling
point for lasso estimators. However, with trend filtering the previously cited theory does not find
easy evidence. A quick simulation provides seemingly reasonable bootstrapped standard errors.
Figure 3.4 shows the true, piecewise linear function in red and bootstrapped 95% confidence intervals
completely containing it. Though this is not the case in every simulation, we find that biased
estimates reduce the coverage of bootstrapped confidence intervals more than anything else. On the
one hand it seems that the difference between the lasso literature and trend filtering is that in trend
filtering a linear transformation of f is being penalized, instead of just the coefficients themselves. On
the other hand, it seems that a linear transformation would not drastically change, let alone improve,
an otherwise barely tractable distribution – recall, from Section 2.8, the asymptotic distribution of a
lasso estimate for which the true coefficient is zero. It is unclear exactly why bootstrapped standard
errors appear to work for trend filtering. Figure 3.5 displays the 500 bootstrapped estimates of f(x25)
and the true value is shown by the red vertical line. By sight, the worst part of the bootstrapped
estimates appears to be the bias seen in Figure 3.5.

23

2.5

5.0

7.5

10.0

0 10 20 30 40 50

x

f(
x
)

Figure 3.4: Bootstrapped 95% confidence intervals (dash green) surrounding the true function (solid
red), efficiently calculated with the approximation algorithm from Section 3.3.

There are though two other problems with bootstrap estimates of the confidence intervals of a
trend filtering fit. First is the amount of time it takes to estimate f for each bootstrap sample.
Frequentist trend filtering methods take a good amount of time to calculate an estimate of f , as the
complete solution path across all possible values of λ is computed. Using an approximation to the
objective function in Equation (3.6), details of which were discussed in Section 3.3, was significantly

faster. For a precalculated value of λ̂CV (5), it took a standard MacBook Pro 3.1 GHz Intel Core i7
around half the time to calculate the bootstrap estimates, using 500 resamples, as it did to fit trend
filtering and calculate the value of λ̂CV (5).

24

0

25

50

75

8.0 8.5 9.0 9.5 10.0 10.5

f25

c
o
u
n
t

Figure 3.5: Histogram of bootstrapped values of f̂(x25) with the true value f(x25) drawn in red.

A bigger problem stems from the estimate of λ̂ found via k-fold cross validation. Cross validation
in well known to encourage over-fitting [Davison, 1997; Hastie et al., 2005]. The examples presented

in Sections 4.1 and 4.2 highlight this point exactly. Bootstrap methods that rely on λ̂CV can also
appear too wiggly. From the experience gained in performing the simulations of Section 4.1 with
trend filtering, when λ̂CV provides a reasonable fit to the data, the bootstrap also provides reasonable
estimates of f̂ . Unfortunately, it is often the case that the original trend filtering method, with λ̂
chosen via cross validation, provides a poor fit to the data. Alternatively, one could choose λ̂ via
the one standard error rule, but this seems more of an ad hoc fix than a solution to the problems of
cross validation.

The problem with choosing λ disappears under the Bayesian approach. In Bayesian trend filter-
ing, λ is estimated by incorporating it into the hierarchical model (3.10) so that the estimates of f
are marginalized over all values of λ. This in a sense encourages robust, stable estimates of f , as
can be seen in the examples of Section 4.1.

3.5 Bayesian Generalized Lasso

The Bayesian analogue to the generalized lasso is found by expanding model (2.7) discussed in
Section 2.9. There the conditional prior on β took the following form

[β|σ2] =

m∏
j=1

λ

2σ
exp (−λ|βj |/σ).

25

Recall that the conditional prior is preferred as this ensures a unimodal joint posterior distribution
on β, σ2. In the case of the generalized lasso, the coefficients β are now replaced with the linear
combination Dβ. Thus, the new conditional prior to be recovered from a gamma distribution scale
mixture of normals is the following conditional prior

[β|σ2] ∝ exp (−λ||Dβ||1/σ).

The generalized lasso form encompasses the work of Park and Casella [2008] and Kyung et al. [2010]
and some of the variations on the lasso penalty discussed in Section 2.4. The full hierarchical model
for the Bayesian generalized lasso is

y|X, β, σ2 ∼ Np(Xβ, σ2In)

β|σ2, ω1, . . . , ωm ∼ Np(0, σ2Σ−1β)

Σ−1β = Σ−1β (ω−11 , . . . , ω−1m) = Dtdiag(ω−11 , . . . , ω−1m)D

ω1, . . . , ωm|λ ∼
m∏
j=1

λ2

2
exp(−λ2ωj/2)dωj , ωj > 0, (j = 1, . . . ,m)

λ|α, ρ ∼ Ga(λ|α, ρ), or λ2|α, ρ ∼ Ga(λ2|α, ρ), λ > 0

σ2 ∼ σ−2, σ2 > 0

(3.8)

where ω1, . . . , ωm are mutually independent. A tractable Gibbs sampler follows from the hierarchical
model in equation (3.8). Equation (3.9) contains the full conditionals used to fit the Bayesian
generalized lasso. The details behind the full conditionals are provided in Appendix A.1. We
will use the inverse Gaussian distribution, and denote it IG. The density function for the inverse
Gaussian distribution is

f(x|µ, ξ) =

(
ξ

2πx3

)1/2

exp

{
−ξ(x− µ)2

2µ2x

}
1(x > 0).

Further, let Γ and Γ−1 denote the gamma and inverse gamma distributions, respectively.

β|· ∼ N ((XtX + Σ−1β)−1Xty, σ2(XtX + Σ−1β))

1/ωj |· ∼ IG

(√
λ2σ2

|(Dβ)j |2
, λ2

)

σ2|· ∼ Γ−1(
n− 1 + p

2
,

1

2
(y −Xβ)t(y −Xβ) +

1

2
βtΣtββ)

λ2|· ∼ Γ(m+ α, ρ+

m∑
j=1

ωj/2)

(3.9)

Sampling from the posterior for β is the most computationally intensive part of the Gibbs sampler
for the Bayesian generalized lasso. To sample from the multivariate Gaussian distribution, a full
matrix inversion must take place. Unfortunately, no quick solution to a linear system is feasible
within this Gibbs sampler. The least computationally expensive strategy to avoid this direct matrix
inversion is to take advantage of the positive definiteness of the matrix (XtX + Σ−1β). By using a

Cholesky decomposition defined by L, a lower triangular matrix such that LLt = (XtX + Σ−1β),
only one matrix inversion is necessary [Golub et al., 1979]. This is the exact strategy used in the
Gaussian process regression literature; [see Rasmussen, 2006]. Algorithm 3.1 provides the details
behind the Cholesky decomposition employed within the full conditional for β found in equation 3.9.

26

Algorithm 3.1: β full conditional

Input: (X,Σ−1β ,y, σ)

L← Cholesky(XtX + Σ−1β); L−1 ← Lt\I
µ← L−t(L−1y); Λ−1 ← L−tL−1/σ
Output: β ← Nm(µ,Λ−1)

The last line of Algorithm 3.1 writes the multivariate normal with the precision matrix instead of the
covariance matrix. Sampling from the multivariate normal distribution using Algorithm 3.1 requires
inverting only L, a lower triangular matrix, instead of inverting the entire covariance matrix. This
strategy offers reduced computationally complexity, albeit only by reducing the coefficient of the
O(p3) cost of a matrix inversion.

As in Section 2.9 the generalized double Pareto conditional prior is a simple modification to
hierarchical model (3.8). The generalized double Pareto conditional prior is found by putting a
gamma prior on λ instead of λ2. For other hierarchical models, this slight variation is shown to
produce significant advantages over the double exponential conditional prior [Armagan et al., 2013].
The full conditional for the generalized double Pareto conditional prior is [λ|·] ∼ Γ(n − k − 1 +
α, ||D(x,k+1)f ||1/σ + ρ). Similar to the double exponential conditional prior, small values of the
parameters α and ρ should be used to encourage shrinkage [Lee et al., 2012; Armagan et al., 2013].
Some benefits of this flatter conditional prior in the case of Bayesian trend filtering are explored in
Section 4.1.

Alternatively, it is possible to put hyperpriors on α and ρ, which don’t involve any hyperparam-
eters. Such hyperpriors remove all user choice of parameters when fitting the Bayesian generalized
lasso. Following the work of Armagan et al. [2013], consider the generalized double Pareto condi-
tional distribution and a prior with median of one on α. This is a reasonable choice since many
Bayesian lasso author’s seem to arbitrarily choose α to be small and relatively close to zero [Park and
Casella, 2008; Kyung et al., 2010; Armagan et al., 2013]. Since the same framework can be used for
ρ, we provide details only for α. Assume the prior on α to be [α] = 1/(1 +α)2. The full conditional
on α can be sampled via the griddy Gibbs sampler [Ritter and Tanner, 1992; Armagan et al., 2013].
First, transform α into the domain [0, 1] via a = 1/(1 + α). Draw M values a(m) from U(0, 1) and
randomly select one of the {a(m)}Mm=1 with probabilities {w(m)}Mm=1 where w(m) = [a(m)|·], and then
transform back to the desired scale for α;

[a|·] ∝
(

1− a
a

)(
1 +
||Dβ||1
σρ

)−(m+1/a−1)

.

Model (3.8) can be viewed as an extension of the work in Kyung et al. [2010]. Therefore, we appeal
to their Propositions 4.1 and 4.2 which show that the underlying Gibbs sampler is geometrically
ergodic. The two Gibbs samplers, for the double exponential and the generalized double Pareto
conditional priors, converge both in theory and in practice very quickly.

Proposition 3.5.1. The Gibbs sampler for the hierarchical model (3.8) is geometrically ergodic.

Since the proof is exactly the same, we refer the reader to the proof in Kyung et al. [2010]. We will
make use of this proposition in Section 3.6 in an effort to speed up the fit of Bayesian trend filtering.

Maximum a Posteriori Solution As maximum a posteriori estimators are getting much at-
tention of late, we briefly note how the generalized lasso, and hence trend filtering, can be adapted
within the generalized double Pareto conditional prior framework [Lee et al., 2010; Griffin and Brown,
2011; Lee et al., 2012; Armagan et al., 2013]. We essentially build an expectation-maximization al-
gorithm out of the Bayesian hierarchical model in Equation (3.9). The E−step consists of taking
the expected value of the log-posterior with respect to the distribution of the latent variables, 1/ωj
and λ. Hence,

E1/ωj ,λl ∝ −
(
n+ p

2
+ 1

)
log σ2 − (y−Xβ)t(y−Xβ)− (Dβ)tB(l)(Dβ)

2σ2
,

27

where superscript (l) denotes the lth iteration, B(l) = diag(b
(l)
1 , . . . , b

(l)
m), and

b
(l)
j =

(m+ α)σ2(l)

(||Dβ(l)||1)
(l)
j {(||Dβ(l)||1)

(l)
j + σ(l)ρ}

.

The M−step is easily found to be

β(l+1) ← (XtX + (Dβ(l))tB(l)(Dβ(l)))−1Xty

σ2(l+1) ← (y−Xβ(l+1))t(y−Xβ(l+1)) + (Dβ(l+1))tB(l)(Dβ(l+1))

2(n+ p+ 2)
.

Although the formulation of maximum a posteriori generalized lasso is not difficult, we do not
consider it any further.

3.6 Bayesian Trend Filtering

Bayesian trend filtering is the adaption of trend filtering, itself a special case of the generalized
lasso, into a fully Bayesian hierarchical model. Two main benefits come from using the Bayesian
specification of trend filtering. A fully tractable Gibbs sampler allows for easy estimation of the
parameters of interest, including the tuning parameter λ. As shown in Section 3.4, choice of the
penalty parameter in the frequentist case is not easy to come by, especially since no GCV criterion is
available. With an accurate estimate of λ in hand, Bayesian trend filtering achieves strong predictive
and frequentist properties. Coverage probabilities for Bayesian trend filtering, as compared to a
number of other smoothers, are closer to nominal levels. Further, as with any Bayesian model,
summary statistics of the posterior distributions are readily available.

Similar to the Bayesian lasso [Park and Casella, 2008; Kyung et al., 2010] and the fully Bayesian
hierarchical model in Equation (3.8), trend filtering can be adapted into a fully Bayesian hierarchical
model using a scale mixture of normals to achieve the desired conditional prior on β [Andrews and
Mallows, 1974; Park and Casella, 2008; Kyung et al., 2010; Griffin and Brown, 2011; Armagan et
al., 2013]. We explore the double exponential conditional prior, dexp,

[f |σ] ∝ exp

(
−λ
σ
||D(x,k+1)f ||1

)
and the generalized double Pareto, gdp,

[f |σ] =
1

2σρ/α

(
1 +

1

α

||D(x,k+1)f ||1
σρ/α

)−(n−k−1+α)
.

Both of these conditional priors stem from the same hierarchical model (3.10), while the difference
comes from the prior put on the penalty parameter λ. The Bayesian trend filtering hierarchical
model takes the form

y|f, σ2 ∼ Nn(f, σ2In)

f |σ2, ω1, . . . , ωn−k−1 ∼ Nn(0, σ2Σ−1f),

Σ−1f = Σ−1f (ω−11 , . . . , ω−1n−k−1) = (D(x,k+1))tdiag(ω−11 , . . . , ω−1n−k−1)D(x,k+1)

ω1, . . . , ωn−k−1|λ ∼
n−k−1∏
j=1

λ2

2
exp(−λ2ωj/2)dωj , ωj > 0,∀j

λ|α, ρ ∼ ψ(λ|α, ρ)dλ, λ > 0

σ2 ∼ π(σ2)dσ2, σ2 > 0

(3.10)

where ω1, . . . , ωn−k−1 are mutually independent and π : x 7→ x−1. The two conditional priors dexp

and gdp are found by putting priors on λ2 or λ, respectively. Following Park and Casella [2008];

28

Kyung et al. [2010], a Γ(α, ρ) prior on λ2 leads to the dexp conditional prior on [f |σ]. The gdp

conditional prior is found by putting a Γ(α, ρ) prior on λ. A simple and tractable Gibbs sampler for
either of the conditional priors relies on the following set of full conditionals

f |· ∼ Nn
(

(In + Σ−1f)−1y, σ2(In + Σ−1f)−1
)
,

1/ωj |· ∼ invGaussian

(√
λ2σ2

|(D(x,k+1)f)j |2
, λ2

)
, ∀j,

σ2|· ∼ Γ−1
(
n,

1

2
(y − f)t(y − f) +

1

2
f tΣ−1f f

)
.

(3.11)

The full conditionals for the penalty parameter λ2, for dexp, is Γ(n− k − 1 + α,
∑n−k−1
j=1 ωj/2 + ρ),

and relative to gdP, [λ|·] ∼ Γ(n− k − 1 + α, ||D(x,k+1)f ||1/σ + ρ).
The term ρ can negatively effect the overall fit of both gdp and dexp. To ensure a true thresh-

olding rule, and thus encourage shrinkage, a small value of ρ should be chosen [Fan and Li, 2001;
Lee et al., 2012; Armagan et al., 2013]. One can further consider putting a hyperprior on α or ρ;
for instance consider the hyperprior setup discussed in Section 3.5 for Bayesian trend filtering. The
weight function used in the griddy Gibbs sampler, relative to Bayesian trend filtering is as follows

[a|·] ∝
(

1− a
a

)(
1 +
||D(x,k+1)f ||1

σρ

)−(n−k−1+1/a−1)

.

Despite the appeal of removing all user choice of hyperparameters in Bayesian trend filtering, this
hyperprior had very little effect. This is possibly due to the fact that the Bayesian trend filtering
hierarchical model is already over parameterized, and thus little information was available to inform
the hyperpriors on α or ρ.

With or without hyperpriors on α, ρ, the Gibbs samplers for Bayesian trend filtering converge
quickly. The theoretical justification for this was developed by Kyung et al. [2010] and mentioned
in Section 3.5. Thus, by Proposition 3.5.1, the Gibbs samplers in Equation (3.11) are geometrical
ergodic. Empirical evidence of the convergence rate is given in Section 4.2.

An added benefit of the hierarchical model for Bayesian trend filtering comes from the penalty
matrix D(x,k+1). This matrix is a sparse, k + 2 banded matrix with all other elements, outside of
the bands, zero. Special algorithms designed for sparse matrices can be used everywhere within
Algorithm 3.1. Section A.2 contains C++ code, which uses the matrix library Eigen [Guennebaud
et al., 2010; Bates and Eddelbuettel, 2013], used to fit Bayesian trend filtering.

Not Identically Zero A few points contrasting trend filtering with Bayesian trend filtering should
be noted. Trend filtering, by restricting the parameter space of the objective function (3.6) sets some
terms in the penalty to exactly zero. Such a data dependent selection of important predictors is
philosophically appealing. Within trend filtering, this data dependent selection corresponds to set-
ting estimates of the terms in the total variation of f (k) to zero. Bayesian trend filtering, however,
never sets any terms identically to zero. Figure 3.6 compares Bayesian trend filtering to the frequen-
tist trend filtering, where it can be seen that the Bayesian fit doesn’t quite predict a piecewise linear
function when in fact the true underlying function is piecewise linear, with three knots at 20, 45,
and 80. Though, it should be noted that the trend filtering fit lies completely within the highest
posterior density (and credible) intervals of the Bayesian trend filtering fit. What Bayesian trend
filtering sacrifices in knot detection, it makes up for when fitting smooth curves. The information
gained by incorporating λ into the Gibbs sampler, and the propagation of that information back
to the estimates of f , provides stable estimation as is shown in Section 4.1. Thus, the primary
advantage of Bayesian trend filtering is as a smoother and not as a knot-detection method.

29

0

5

10

0 25 50 75 100

x

f(
x
)

Figure 3.6: Bayesian trend filtering (dot-dash red) and trend filtering (dash blue) fits, with BTF

highest posterior density intervals (dash green), plot against the true function (solid black).

Numerical Stability The very idea of the (generalized) lasso, to shrink some of the elements of
the penalty term towards zero possibly setting some to exactly zero, can cause computational issues
in the Bayesian setting. Consider the full conditional [1/ωj |·], for either dexp or gdP. The mean in
the inverse Gaussian distribution inverts exactly that which we are seeking to shrink towards zero.
Any sample from the posterior distribution such that an element of the penalty term is very close
to zero, threatens numerical stability when drawing samples from the already rather numerically
sensitive inverse Gaussian distribution; see Wheeler [2013] and the references there within. From
the experience gained with the simulations of Bayesian trend filtering in Chapter 4, when an element
of |D(x,k+1)f | is too small, simulating a draw from the full conditional for [1/ωj |·] can return a value
less than or equal to zero; obviously a problem for a distribution with non-negative support. To
ameliorate such events, we introduce the admittedly inelegant solution of resampling the entire
vector f if any element of |D(x,k+1)f | is less than 10−10. We find that resampling happens less than
roughly five percent of the time. Further, when resampling does occur, it is extremely rare that
more than one resample is ever needed. Despite such numerical issues, restricting the support of
certain posterior distributions does not appear to hinder Bayesian trend filtering from performing
quite well.

Speed Up BTF Bayesian trend filtering, and for that matter any of the hierarchical models that
fit penalized regression methods discussed above, requires heavy computations. The vast majority
of the computational time is spent inverting the matrix specified in the full conditional for the

30

function evaluations f (or β in any of the other models discussed). While Bayesian trend filtering
has the advantage of using the sparse, k + 2 banded penalty matrix D(x,k+1), the cubic cost of the
matrix inversion still exists. Worse, this cost exists in every sample of the full conditional. Much
research exists and yet the Cholesky decomposition strategy presented here is often the best option
[Rasmussen, 2006; Vehtari and Vanhatalo, 2007].

Bayesian trend filtering has the same hierarchical framework as Gaussian processes priors; both
methods use a Gaussian distribution to model the observations and then a Gaussian process prior on
the underlying function. Framed as work on Gaussian processes, there are many new methods that
try to reduce the computational burden associated with these related hierarchical models. Some
methods reformulate the Monte Carlo algorithm into the total energy of the system as is done in
the hybrid Monte Carlo approach (also known as Hamiltonian Monte Carlo) [Duane et al., 1987;
Gelman et al., 2014], and other methods, namely variational Bayes, attempts to approximate the
posterior distribution of interest [Neal and Hinton, 1998; Jordan et al., 1999; Winn, 2004; Winn
and Bishop, 2005]. These methods generally won’t work for Bayesian trend filtering. Hybrid Monte
Carlo methods are designed specifically to perform well when there are a small number of highly
correlated parameters. Variational Bayes methods work best when there are many parameters that
exhibit little correlation. Bayesian trend filtering, however, has many, highly correlated parameters.

Here, we attempt a simpler idea than those mentioned in the previous paragraph. As borne out
by the robust simulations of Section 4.1, the function evaluations of Bayesian trend filtering seems to
converge quite quickly. This is not to say that all of the parameters of interest mix well, in fact the
penalty parameter λ specifically does not mix well. We suggest to draw from the full conditional for
f every mth iteration, while sampling from the other parameters of interest every iteration. Since
all other parameters of Bayesian trend filtering’s hierarchical model can be sampled quite quickly,
it is of little concern to sample all other parameters every iteration. Sampling all other parameters
encourages large effective sample sizes amongst the parameters that mix more slowly. This technique
is empirically tested in Section 4.2.

Copyright @ Edward A. Roualdes 2015

31

Chapter 4

Empirical Study of Bayesian Trend Filtering

In this chapter, we study Bayesian trend filtering on a number of examples. Section 4.1 compares
trend filtering methods with other popular smoothers and another Bayesian regression method. We
explore real data sets in Section 4.2. Section 4.3 concludes this chapter with a summary of the
empirical performance of Bayesian trend filtering.

4.1 Simulation Study

We compare Bayesian trend filtering (BTF), with the priors dexp and gdp, against four different
methods: trend filtering (TF) from Tibshirani [2014], Bayesian additive regression trees (BTree) from
Chipman et al. [2010]; Kapelner and Bleich [2013], and two versions of cubic smoothing splines, SM
and CSM [Wahba, 1990; Green and Silverman, 1993; de Boor, 2001; Wood, 2006; Core Team, 2014].
We include smoothing splines as they are arguably the most used method of smoothing, and also
to highlight a different point than was made of the same comparison by Tibshirani [2014]. There, a
strong argument was made for the efficiency of TF, implicitly defined as mean squared error (mse)
per degree of freedom. In that world, TF clearly stands above as its asymptotic results are shown
to hold in finite samples. Here, a more applied world is hypothesized; i.e. where estimation of the
penalty parameter λ further affects each of the above methods’ performance. BTree is included as
it is a popular Bayesian regression method.

The functions, all from various R packages, used in the simulations are as follows. The two
cubic smoothers were fit using mgcv::gam for CSM [Wood, 2006] and stats::smooth.spline for SM
[Core Team, 2014]. These two methods were fit with all inputs used as knots (to make more fair the
comparison between the cubic smoothing spline and the trend filtering methods) and their associated
generalized cross validation function. BTree was fit with bartMachine::bartMachine using the
default values of 50 trees and 9000 (after burn-in) iterations [Kapelner and Bleich, 2013]. TF was fit
with genlasso::trendfilter also using a cubic piecewise polynomial, with both 5- and 10-fold cross
validation [Tibshirani, 2014]. The BTF methods were fit using btf::btf with a piecewise polynomial
of degree 3 and 9000 (after burn-in) posterior draws [Roualdes, 2014]. To explore the sensitivity of
BTF with respect to the choice of the hyperparameters α and ρ, we tested all combinations of the
following hyperparameters: α ∈ {0.1, 0.5, 1.0, 1.5, 2.0} and ρ ∈ {10−4, 10−3, 10−2, 10−1, 1}.

For simulated data, we consider two univariate functions f : [0, 1] 7→ R with regularly spaced
inputs. The first, a piecewise cubic function is borrowed from Tibshirani [2014]. The second is a
difficult to fit, spatially inhomogeneous function, colloquially known as dampened harmonic mo-
tion. The same framework is used throughout the simulations: R = 1000 replications of the above
functions with three different levels of normal noise, evaluated upon the following criteria. For each
replication r we calculate mean and standard deviations, across the 1000 replications, of the mean
squared errors (mse)

mser =
1

n

n∑
i=1

(fi − f̂i)2

and 95% confidence intervals for both the underlying function evaluated at all inputs and the
variance, using the bootstrap with 1000 resamples for SM and TF. Since, CSM has its own built-in
method to calculate standard errors, it was used instead of the bootstrap. Posterior samples are
used to create credible intervals for all the Bayesian methods. Thus, the 1000 replications are used
to estimate an average and standard deviations of the mses, and overall mean and standard errors
of the two different coverage probabilities.

For real world data, we consider two datasets common to the smoothing literature. The first
is a dataset of global mean surface temperature deviations for the years 1881 to 2005 from Hodges
[2013]. The second is the SILSO dataset which consists of monthly average sunspot counts for the
years 1980 to 2014, inclusive [Center, 2014].

32

0.0

2.5

5.0

7.5

10.0

0 25 50 75 100

x

f(
x
)

Piecewise cubic function

Figure 4.1: Piecewise cubic function.

Piecewise Cubic Boxplots of the mses of the 1000 replications of 100 observations from the true
piecewise cubic function shown in Figure 4.1 look quite similar across the three levels of error,
σ ∈ {0.75, 1.0, 1.25}. The BTF fits change most drastically as the hyperparameter ρ varies, as is
seen by comparing Figure 4.2 with Figure 4.4, both of which show only the case σ = 1 and α = 1.
Figure 4.2 best represents all scenarios (inclusive of σ, α varied across their chosen values) where
ρ < 1, while Figure 4.4 presents the case ρ = 1. This is exactly what Armagan et al. [2013] mean
when they say suggest small values of the hyperparameters to encourage shrinkage. The mses for
BTF don’t vary greatly with respect to changes of the hyperparameter α within the range of values
chosen. The fits for TF were quite similar for both 5- and 10-fold cross validation.

33

0.00

0.25

0.50

0.75

1.00

1.25

BTF−dexp BTF−gdp SM TF CSM

m
s
e

Figure 4.2: Box plots of mses by method for the piecewise cubic function with σ = 1. BTF with the
hyperparameters α = 1 and ρ = 10−2, and TF used 10-fold cross validation are displayed.

Of interest are the worst (largest mse) fits of Bayesian trend filtering and the other methods.
Plots of the worst fits from Figure 4.2 are contained in Figure 4.3. The cubic smoothing spline CSM is
displayed, alongside Bayesian trend filtering, since CSM is the next best method as judged by largest
mses contained in Figure 4.2. It is clear from Figure 4.3 that CSM performs poorly across the entire
domain of the piecewise cubic function and not just in a specific subset of the domain (e.g. the tails).
Because the two fits displayed in Figure 4.3 are for different simulations, it doesn’t make sense to
display the data points the generate these two fits. We investigated the data points for this poor fit
of CSM, and there are no clear indications as to why this fit is relatively so poor.

34

0

4

8

0 25 50 75 100

x

f(
x
)

Figure 4.3: The two worst fits of BTF (solid red) and CSM (dash green) as judged by largest mse from
Figure 4.2.

It is clear from Figures 4.2 and 4.4 that BTF with the gdp prior, compared to the dexp prior, is the
preferred method for the piecewise cubic function. Simple, reasonable choices of the hyperparameter
ρ, namely any ρ < 1, allow BTF to accurately fit this piecewise cubic function. For the cases where
ρ < 1, BTF-gdp on average has smaller average mse and smaller standard deviation of the mses than
the cubic smoothing splines and frequentist trend filtering. Further, BTF-gdp excels in minimizing
the number of extreme fits to the data. For instance, in Figure 4.2 there are 13, 45, and 25 fits from
SM, TF, and CSM, respectively, where their mse is greater than the largest mse for BTF-gdp. And
conversely, there are no fits that provide an mse smaller than the smallest mse from BTF-gdp.

As shown in Table 4.1 Bayesian trend filtering with the gdp prior, where α = 1 and ρ = 10−2,
improves both the overall mean and standard deviation of the 1000 mses as compared to the other
methods. For the piecewise cubic function, Bayesian trend filtering with the gdp prior attains the
minimum mean and standard deviation of the mses for all noise levels, though, this status is shared
when σ = 1, where SM shares a mean mse of 11. In this case, however, SM has greater standard
deviation.

35

σ = 0.75 σ = 1 σ = 1.25
method mean sd mean sd mean sd
BTF-dexp 8.9 3.0 16 5.2 25 7.9
BTF-gdp 6.6 2.4 11 4.2 15 6.4
SM 6.9 4.0 11 8.2 17 15
TF 7.6 5.9 14 11 20 17
CSM 7.2 5.3 12 8.6 18 14

Table 4.1: Mean and standard deviations, rounded and multiplied by 100 for readability, of the
1000 mean square errors for each of the three noise levels tested with the piecewise cubic function.
The smallest value(s) within each column is(are) bold. BTF with the hyperparameters α = 1 and
ρ = 10−2 is displayed.

0.00

0.25

0.50

0.75

1.00

1.25

BTF−dexp BTF−gdp SM TF CSM

m
s
e

Figure 4.4: Box plots of mses by method for the piecewise cubic function with σ = 1. BTF with the
hyperparameters α = 1 and ρ = 10−2, and TF used 10-fold cross validation are displayed.

BTree was left out of the plots because the method simply didn’t perform as well in these
simulations and detracted from the comparisons of interest. While BTree provides reasonably small
mses, its real trouble stems from the fact that it is not inherently a smoothing technique. Still, BTree
estimated the variance quite well (not shown). In other contexts, where a smooth fit is not necessary,
BTree has much to offer beyond what any of these smoothing techniques are able to handle.

36

0.00

0.25

0.50

0.75

1.00

BTF−dexp BTF−gdp SM TF CSM

c
o
ve

ra
g
e
 p

ro
b
a
b
ili

ty

Function coverage

Figure 4.5: Overall function coverage, for the piecewise cubic function, of all the methods at each
level of noise, where the BTF methods use the hyperparameters α = 1 and ρ = 10−2, and TF used
10-fold cross validation.

Consistent function estimation by all trend filtering methods is seen when we compare coverage
probabilities. Figures 4.5 and 4.6 plot mean plus/minus two standard errors, at all noise levels,
of function coverage probabilities. The function coverage for the Bayesian trend filtering with gdp

is quite good, in fact just a bit better for all levels of noise than the frequentist version of trend
filtering. We hypothesize that SM’s poor function coverage is part of the bootstrapping procedure.
In each bootstrap, the penalty parameter is re-estimated. Thus, the coverage probabilities also take
into account the variation due to estimating the penalty parameter.

37

0.00

0.25

0.50

0.75

1.00

BTF−dexp BTF−gdp SM TF CSM

c
o
ve

ra
g
e
 p

ro
b
a
b
ili

ty

Function coverage

Figure 4.6: Overall function coverage, for the piecewise cubic function, of all the methods at each
level of noise, where the BTF methods use the hyperparameters α = 1 and ρ = 1, and TF used 10-fold
cross validation.

Figure 4.5 is representative of the performance of BTF even when the hyperparameter α changes.
The differences between Figure 4.5 and Figure 4.6 show that BTF with either prior gdp or dexp is
fairly stable with respect to changes in the hyperparameter ρ for the piecewise cubic function. This
is not the cases for variance coverage. The variance coverage probability is drastically reduced when
the hyperparameter ρ becomes too large. With appropriate choices of ρ, BTF-gdp produces accurate
coverage probabilities, but it is clear that BTF-dexp less accurately covers the true variance as ρ
changes.

38

0.00

0.25

0.50

0.75

1.00

BTF−dexp BTF−gdp SM TF CSM

c
o
ve

ra
g
e
 p

ro
b
a
b
ili

ty

Variance coverage

Figure 4.7: Overall variance coverage, for the piecewise cubic function, of all the methods at each
level of noise, where the BTF methods set the hyperparameters to be α = 1 and ρ = 10−2 and TF

used 10-fold cross validation.

For the piecewise cubic function, BTF-gdp with reasonably and easily chosen hyperparameters
provides arguably the best overall performance, with small average mean squared error and the
smallest standard deviation of the 1000 mses. BTF-gdp gives roughly equal average mse, but does
so with much smaller variance, than the rest of the methods, all while maintaining the closest to
nominal function coverage probabilities.

39

0.00

0.25

0.50

0.75

1.00

BTF−dexp BTF−gdp SM TF CSM

c
o
ve

ra
g
e
 p

ro
b
a
b
ili

ty

Variance coverage

Figure 4.8: Overall variance coverage, for the piecewise cubic function, of all the methods at each
level of noise, where the BTF methods set the hyperparameters to be α = 1 and ρ = 1 and TF used
10-fold cross validation.

40

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

x

f(
x
)

Dampened harmonic motion

Figure 4.9: Dampened harmonic motion function.

Dampened harmonic motion The second example uses the spatially inhomogeneous function

f(x) = exp{−7.5x} cos(10πx),

seen in Figure 4.9. Various levels of N (0, σ2) noise used σ ∈ {0.025, 0.05, 0.075}. All trend filtering
methods’ median mses are comparable. In Figure 4.10, where σ = 0.05, over-fitting is still a problem
for SM, TF, and CSM, and becomes worse as the noise increases. BTree (not shown) performs notably
the worst on the dampened harmonic motion function, but again this is largely due to the fact that
it is inherently not a smoothing method and dampened harmonic motion requires heavy smoothing
to ensure a small mean squared error.

41

0.000

0.001

0.002

0.003

BTF−dexp BTF−gdp SM TF CSM

m
s
e

Figure 4.10: Box plots of mses by method for the dampened harmonic motion function with σ = 0.05.
BTF with the hyperparameters α = 1 and ρ = 10−2, and TF used 10-fold cross validation are displayed.

To understand better why such (relatively) large mses arise for the methods other than BTF, we
examine the largest mses of Figure 4.10. Consider CSM, since it is the next best method as judged by
most largest mses as compared to BTF. Figure 4.11 displays the plots of BTF and CSM over the true
dampened harmonic motion function. From Figure 4.11, we see that both methods perform poorly
in the right tail, where the true function is relatively flat. Both methods have difficulty smoothing
out the right tail after accounting for the curves of the true function closer to zero. Though both
BTF and CSM have difficulty flattening out the right tail, it is clear that BTF adapts to the local
fluctuations (or lack thereof) than does CSM.

42

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00

x

f(
x
)

Figure 4.11: The two worst fits of BTF (solid red) and CSM (dash green) as judged by largest mse
from Figure 4.10.

Generally with the dampened harmonic motion function, the BTF methods with either prior
perform well, both providing nearly the same, and also the smallest, average mse. Further, the
Bayesian trend filtering methods provide the smallest standard deviations of the 1000 mses of all
the methods tested. These general results hold across all the levels of noise considered, as shown in
Table 4.2.

σ = 0.025 σ = 0.05 σ = 0.075
method mean sd mean sd mean sd
BTF-dexp 1.3 0.39 4.7 1.5 9.9 3.1
BTF-gdp 1.3 0.39 4.8 1.6 11 3.9
SM 2.0 0.55 6.3 2.3 12 4.9
TF 1.5 0.92 5.4 3.9 11 7.2
CSM 1.9 0.53 6.2 2.0 12 4.2

Table 4.2: Mean and standard deviations, rounded and multiplied by 100 for readability, of the 1000
mean square errors for each of the three noise levels tested with the dampened harmonic motion
function. The smallest value(s) within each column is(are) bold. BTF with the hyperparameters
α = 1 and ρ = 10−2 is displayed.

43

0.00

0.25

0.50

0.75

1.00

BTF−dexp BTF−gdp SM TF CSM

c
o
ve

ra
g
e
 p

ro
b
a
b
ili

ty

Function coverage

Figure 4.12: Overall function coverage, for the dampened harmonic motion function, of all the
methods at each level of noise, where the BTF methods set the hyperparameters to be α = 1 and
ρ = 10−2 and TF used 5-fold cross validation.

Figures 4.12 and 4.13 show mean function coverage probabilities plus/minus two standard errors
for the dampened harmonic motion function. Here, function estimation proved to be more difficult
for all the methods than it was for the piecewise cubic function above. This is likely do to the
fact that we are measuring overall function coverage on a quite spatially inhomogeneous function.
BTF-gdp’s function coverage appears to slightly decline as the variance of the noise increases and
as the hyperparameter ρ decreases. In all cases, function coverage for the BTF methods with either
prior is comparable to all the other methods. There is a sharp decline in the function coverage for
the smoothing spline methods when the noise levels are low.

44

0.00

0.25

0.50

0.75

1.00

BTF−dexp BTF−gdp SM TF CSM

c
o
ve

ra
g
e
 p

ro
b
a
b
ili

ty

Function coverage

Figure 4.13: Overall function coverage, for the dampened harmonic motion function, of all the
methods at each level of noise, where the BTF methods set the hyperparameters to be α = 1 and
ρ = 1 and TF used 5-fold cross validation.

For the dampened harmonic motion function the Bayesian trend filtering methods were clearly
better than the frequentist trend filtering method. This is a starker picture from the piecewise cubic
function where the Bayesian method and the frequentist version were more comparable. However,
different from the previous function, the dexp prior appears better at covering the true function when
applied to dampened harmonic motion, especially as the hyperparameter ρ decreases. This may be
due to the sharper tails of the double exponential prior distribution compared to the generalized
double Pareto tails. The sharper tails more heavily penalize wiggliness, which favors the flat right
tail. Though, dexp is significantly worse at covering the true variance, in fact much worse at covering
the variance than gdp.

45

0.00

0.25

0.50

0.75

1.00

BTF−dexp BTF−gdp SM TF CSM

c
o
ve

ra
g
e
 p

ro
b
a
b
ili

ty

Variance coverage

Figure 4.14: Overall variance coverage, for the dampened harmonic motion function, of all the
methods at each level of noise, where the BTF methods set the hyperparameters to be α = 1 and
ρ = 10−2 and TF used 10-fold cross validation.

The picture of how well the Bayesian trend filtering methods perform on the dampened har-
monic motion function is less clear than for the piecewise cubic function. At certain values of the
hyperparameter ρ, the variance coverage is significantly worse than the other methods. Still though,
when judged by small mse and function coverage, BTF-gdp proves to be a strong competitor even
with semi-arbitrary choices of the hyperparameters.

46

0.00

0.25

0.50

0.75

1.00

BTF−dexp BTF−gdp SM TF CSM

c
o
ve

ra
g
e
 p

ro
b
a
b
ili

ty

Variance coverage

Figure 4.15: Overall variance coverage, for the dampened harmonic motion function, of all the
methods at each level of noise, where the BTF methods set the hyperparameters to be α = 1 and
ρ = 1 and TF used 10-fold cross validation.

47

4.2 Real Data

−40

0

40

80

1880 1920 1960 2000

Years

T
e
m

p
e
ra

tu
re

 d
e
v
ia

ti
o
n
s
 (

0
.0

1
 °

C
)

Figure 4.16: Methods CSM (dash), BTF-gdp (solid green) with α = 1 and ρ = 10−2, and cubic
smoothing spline (solid red) with AR(1) error structure fit to the global mean surface temperature
deviations data.

Surface Temperatures The global mean surface temperature deviations data consist of yearly
measurements, [1881, 2005], in units of 0.01 ◦C. The global mean surface temperature data proves
to be a problem for both 5- and 10-fold cross validation used by TF. Figure 4.17 shows that trend
filtering (dash black) nearly fits every data point, and that BTree (solid red) arguable provides
a reasonable, albeit not smoothed, fit. Figure 4.16 shows that BTF smooths these data quite a
lot compared to the cubic smoothing spline method CSM. It is difficult to say whether or not the
smoothing done by BTF is too much. SM (not shown) provides a very similar fit to that of BTF-gdp.
The credible intervals (not shown) from BTF-gdp completely contain the fit from SM.

Interestingly, a cubic smoothing spline with an autoregressive one, denoted AR(1), error structure
provides a fit very close to that of BTF-gdp. The CSM-AR(1) fit is completely contained within the
credible intervals (not shown) of BTF-gdp. It should be emphasized though, that these two methods
hypothesize different underlying structures. The cubic smoothing spline is correlating the error
structure of the observations y, while BTF is correlating adjacent values of the underlying function
itself and stipulating no correlation across the observations. From the estimates of these methods,
it is unclear which model is a more appropriate fit to these data.

48

−40

0

40

80

1880 1920 1960 2000

Years

T
e
m

p
e
ra

tu
re

 d
e
v
ia

ti
o
n
s
,0

.0
1

 °
C

Figure 4.17: Methods BTree and TF fit to the global mean surface temperature deviations data, with
TF using 10-fold cross validation.

The trace plots in Figure 4.18 show that convergence is quite fast. All convergence diagnostics
are shown for BTF-gdp with α = 1 and ρ = 10−2, but similar plots are produced for all levels of the
hyperparameters tested. After discarding a burn-in of 1000 iterations, Figure 4.19 overlays density
plots of the first 4000 and remaining 5000 of the 10000 samples from the posterior. Since the density
plots have similar location and shape, this shows evidence of rapid convergence. The density plots
show that, at least for the posterior of the function evaluations, 5000 total iterations is generally
sufficient.

49

−40

−35

−30

−25

−20

−15

−45

−40

−35

−30

−25

−20

−15

−30

−20

−10

f2
3

f1
4

f5

0 2500 5000 7500 10000

iterations

f

Iterations

samples

burn−in

Figure 4.18: Trace plots of three randomly selected function evaluations for the global mean surface
temperature deviations data.

50

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.00

0.03

0.06

0.09

f2
3

f1
4

f5

−40 −30 −20 −10

d
e
n
s
it
y Iterations

<=5000

>5000

Figure 4.19: Density plots of three randomly selected function evaluations for the global mean surface
temperature deviations data.

Trace and density plots of σ2 and λ provide some evidence of the convergence rates for these
other important parameters; see Figures 4.20 through 4.23. Since the two density plots, for σ2 in

51

Figure 4.23, are quite similar, we have some indication that this full conditional mixes well. The
effective sample size for σ2 is neff = 3209. The penalty parameter λ appears to mix the slowest,
and has the smallest effective sample size, neff = 188, for the global temperature data.

0

3000

6000

9000

12000

0 2500 5000 7500 10000

iterations

λ

Iterations

samples

burn−in

Figure 4.20: Trace plot of the penalty parameter λ for the global mean surface temperature deviations
data.

52

0e+00

1e−04

2e−04

3e−04

0 3000 6000 9000 12000

λ

d
e
n
s
it
y Iterations

<=5000

>5000

Figure 4.21: Density plot of the penalty parameter λ for the global mean surface temperature
deviations data.

It is to the practitioner’s benefit that the function evaluations, generally the parameters of most
interest when fitting BTF, mix more quickly than the other parameters. As mentioned in Section 3.6 a
possible strategy to speed up Bayesian trend filtering is to sample from the posterior for f every mth
iteration. Because the matrix inversion involved with sampling from the posterior of f comprises the
vast majority of the computational complexity involved in sampling, such a strategy could greatly
benefit the speed of fitting BTF.

53

50

100

150

200

0 2500 5000 7500 10000

iterations

σ
2

Iterations

samples

burn−in

Figure 4.22: Trace plot of the estimate of the variance parameter σ2 for the global mean surface
temperature deviations data.

54

0.000

0.005

0.010

0.015

0.020

80 120 160 200

σ
2

d
e
n
s
it
y Iterations

<=5000

>5000

Figure 4.23: Density plot of the estimate of the variance parameter σ2 for the global mean surface
temperature deviations data.

Sunspots The second applied data set we investigate is the sunspot data. Since both TF and BTF

are quite a bit slower than SM and CSM, we dropped data prior to 1980, leaving 402 observations.
Figure 4.24 shows the fits of BTF-gdp (solid greed), CSM (solid red), and CSM-AR(1) (dash black).
The Bayesian trend filtering and cubic smoothing spline with AR(1) errors, smooth estimates quite
a bit more than any other method. BTF-gdp and CSM-AR(1) provide very similar fits. In Figure 4.25
we see the fit from TF (dash black) using 10-fold cross validation and the fit from BTree (solid red),
both of which provide a much more noisy fit to the data than do the other methods; 5- and 10-fold
cross validation under TF yield visually identical results.

55

0

50

100

150

200

1980 1990 2000 2010

Months

S
u
n
s
p
o
ts

Figure 4.24: Methods CSM (dash), BTF-gdp (solid green) with α = 1 and ρ = 10−2, and cubic
smoothing spline with an AR(1) error structure fit to the sunspot data.

As before, the cubic smoothing spline with an AR(1) error structure and BTF-gdp methods
offer very similar results. The predicted values between these two methods leave little to discern
which method is more appropriate for these data. It would be interesting to discuss this issue with
somebody more familiar with the underlying physical process of sunspots.

56

0

50

100

150

200

1980 1990 2000 2010

Months

S
u
n
s
p
o
ts

Figure 4.25: Methods BTree (solid) and TF (dash) fit to the sunspot data, with TF using 10-fold
cross validation.

The trace plots with respect to the sunspot data tell much of the same story as before. Mixing
speeds for the function evaluations f and the variance σ2 are quite quick. The range of the effective
sample sizes for the function evaluations is 314 to 9409 with a median of 3688. The variance σ2 also
mixes quite well with an effective sample size neff = 1761. On the other hand, mixing was a bit
slower for the penalty parameter λ; effective sample size for λ was neff = 92. An effective sample
size of 92 is unfortunately small, especially as we are performing 104 iterations.

57

40

50

60

70

80

10

20

30

0

10

20

30

f3
9

f5
2

f6
1

0 2500 5000 7500 10000

iterations

f

Iterations

samples

burn−in

Figure 4.26: Trace plots of three randomly selected function evaluations for the global mean surface
temperature deviations data.

58

0.00

0.03

0.06

0.09

0.00

0.03

0.06

0.09

0.00

0.03

0.06

0.09

f3
9

f5
2

f6
1

0 20 40 60

d
e
n
s
it
y Iterations

<=5000

>5000

Figure 4.27: Density plots of three randomly selected function evaluations for the sunspot data.

Effect of Speeding Up BTF There is significant variation amongst the computation times for
the methods fit here. By far the fastest methods are the cubic smoothing splines, SM and CSM, as they

59

0

2500

5000

7500

10000

0 2500 5000 7500 10000

iterations

λ

Iterations

samples

burn−in

Figure 4.28: Trace plot of the penalty parameter λ for the sunspot data.

60

0e+00

1e−04

2e−04

3e−04

4e−04

2500 5000 7500 10000

λ

d
e
n
s
it
y Iterations

<=5000

>5000

Figure 4.29: Density plot of the penalty parameter λ for the sunspot data.

61

100

200

300

0 2500 5000 7500 10000

iterations

σ
2

Iterations

samples

burn−in

Figure 4.30: Trace plot of the estimate of the variance parameter σ2 for the sunspot data.

62

0.000

0.005

0.010

0.015

0.020

200 250 300 350

σ
2

d
e
n
s
it
y Iterations

<=5000

>5000

Figure 4.31: Density plot of the estimate of the variance parameter σ2 for the sunspot data.

63

do not require iterative solutions and instead rely on matrix calculus to estimate the parameters of
interest. The slowest methods are the trend filtering methods. Table 4.3 contains run times for each
method for each real data set. Two times for frequentist trend filtering are given, one for each of 5-
and 10-fold cross validation. Bayesian trend filtering is known to scale very poorly. This is due to
the matrix inversion that is required for each sample from the full conditional for f . Sampling from
BTF methods every 2nd iteration drops the computation almost in half, as expected. With respect
to the global mean temperature data, the run time dropped almost in half from 7 seconds down to
4 seconds with thinned sampling from [f |·]. We see similar results relative to the sunspots data.
Sampling from [f |·] only every 2nd iteration decreased the run time from 98 to 51 seconds.

method temperature (n=125) sunspots (n=402)
BTF 7 98
BTF (m=2) 4 51
SM 0.001 0.003
TF (k=5) 10 46
TF (k=10) 20 94
CSM 0.2 7
CSM (AR(1)) 0.5 13
BTree 9 19

Table 4.3: Computation times in seconds for each method against each real data set.

Re-fitting Bayesian trend filtering to the above data sets when sampling from the full conditional
of f every 2nd iteration had little effect on the location of the posterior distribution. We find that
estimates of location don’t change very much. By evaluating the mean absolute difference of the
means and medians of the posterior’s function evaluations at each input xi, we can compare an
overall location change of thinned sampling. Relative to the temperature data, the mean absolute
difference of the mean of the posterior for function evaluations is 0.0028, and for the posterior
medians, 0.0036. Further, the effective sample sizes for σ2 changed little, from 3180 to 3058. On
the other hand, the effective sample sizes for the penalty parameter λ dropped a bit more than one
would hope, 244 down to 156. We calculated the same summary statistics for the sunspot data. The
mean absolute difference of the means and medians of the posterior for function evaluations was
0.0009 and 0.0012, respectively. The effective sample size for σ2 changes from 2862 to 2312, while
it drops from 108 to 74 for λ.

Drawing samples of the full conditional for f only from the mth iteration of the Gibbs sampler
proves to be an easy way to speed up Bayesian trend filtering. This idea relies on the fact that the
full conditional for f quickly converges to the posterior distribution. In cases for which convergence
is not as fast as in the examples provided here, or for which the other parameters are more highly
correlated with the parameters f , such a strategy may not be as successful. Still, with few alternative
methods available from the literature, this remains a fairly simple method to speed up the fit of
Bayesian trend filtering.

4.3 Discussion

Sections 4.1 and 4.2 both offer encouraging results for Bayesian trend filtering. Bayesian trend
filtering achieved the smallest mean and standard deviations of the mean squared errors of all the
methods from the simulated data. This confirms the theoretical results proved by Tibshirani [2014],
that with an appropriate choice of the penalty parameter trend filtering methods converge to the true
underlying function at the minimax rate – a rate unmatched by methods linear in the observations
y. Bayesian trend filtering also appears to fit time series data well. We considered two real data
sets, and Bayesian trend filtering performs as well as methods intentionally designed to handle the
correlation across time. Compared to other methods which suppose uncorrelated errors, Bayesian
trend filtering appears more robust to deviations from its underlying model assumptions.

64

Copyright @ Edward A. Roualdes 2015

65

Chapter 5

Future Work

We introduced a Bayesian version of the generalized lasso. The hierarchical model allows for a
tractable Gibbs sampler to simulate draws from the posterior. Unfortunately, a matrix inversion is
unavoidable. The matrix inversion, with O(n3) computational complexity, is a limitation for this
method. Some work is already ongoing to speed up the frequentist generalized lasso, but no easy
solution eagerly awaits us under the Bayesian perspective. To solve this issue, some new sampling
techniques come to mind; e.g. hybrid Monte Carlo or variational Bayes. But for much of the same
reasons discussed in Section 3.6, these techniques are not intuitively good fits for this problem.
An easy first step that is guaranteed to speed up the Bayesian generalized lasso, is to push off all
computation to graphics processing units. Though this strategy will surely decrease run times, it
does not overcome the inherent O(n3) complexity of a matrix inversion.

Beyond speeding up the fit of the Bayesian generalized lasso, Bayesian trend filtering offers ample
room for both computational and theoretical work. For instance, the hierarchical model underlying
Bayesian trend filtering is composed of a Gaussian distribution on the observations and a Gaussian
process prior on the underlying function of interest. This is the exact structure of Gaussian process
regression methods. A connection between these methods already exists for the `2 norm, but previous
work has already shown that estimators linear in the response vector y are not optimal. Mimicking
this literature with the `1 norm, though the nondifferentiability of the `1 norm likely causes some
serious issues, could open a world minimax convergent estimators. We already know Bayesian trend
filtering, with its simple hierarchical model, is a minimax convergent estimator. Thus, the theoretical
work to find optimal estimators would be nicely coupled with the tractable form of the Bayesian
hierarhcical models.

Of course, Bayesian trend filtering is young and much testing and experimentation is necessary
to better understand when and where this method best applies. For instance, we already know
that Bayesian trend filtering is mostly restricted to smoothing. In the case of piecewise constant
or linear function, Bayesian trend filtering may guide frequentist trend filtering’s choice of penalty
parameter. For instance, one could insist that the frequentist fit is completely contained within
credible intervals, thereby guiding the choice of the penalty parameter. However, frequentist trend
filtering’s knot detection is a prized asset.

Beyond testing the performance of Bayesian trend filtering, there is also room to expand the
model. For instance, it is easy enough to code up the elastic net penalty, or combinations of other
penalty functions. A desirable example is the additive model, such that Ey =

∑L
l=1 fl(x). In this

case, each function fl could be penalized with a different, user specified derivative kl. Further,
the Bayesian perspective of trend filtering is better suited to modify its assumptions than is the
frequentist version. One could easily allow for t-distributed or correlated errors, to increase Bayesian
trend filtering’s applicability.

Copyright @ Edward A. Roualdes 2015

66

Appendix A

Appendix

A.1 Full Conditionals

We provide justifications of the full conditionals presented in Section 3.6. The full conditional for
f involves little more than completing the square with matrices. Start with the likelihood and the
priors that involve only terms relating to f directly.

[β|·] ∝ Nn(y|Xβ, σ2In) · Np(β|0, σ2Σβ)

∝ exp

{
−1

2σ2
[βt(XtX + Σ−1β)β − 2ytXβ]

}
Completing the square gives

[β|·] ∝ exp

{
−1

2σ2
[(β − (XtX + Σ−1β)−1y)t(XtX + Σ−1β)−1(β − (XtX + Σ−1β)−1y)]

}
.

The full conditional for σ2 is amongst the easiest to find

[σ2|·] ∝ Nn(y|Xβ, σ2In) · Np(β|0, σ2Σβ)) · σ−2

∝ (σ2)n−1+p exp

{
−1

2σ2
[(y−Xβ)t(y −Xβ) + βtΣ−1β β]

}
.

The full conditional for ω−2j takes quite a bit of manipulation. Because of this, we work our the
full conditional for Bayesian trend filtering, where we have a specific case of the penalty matrix D
to work with. Insight from previous papers allows us to see the connection to the inverse Gaussian
distribution Park and Casella [2008]; Kyung et al. [2010]. For cleaner notation, define ηj := ω−2j
and γ(·, f). Then we can write the penalty term as a double sum,

||D(x,k+1)f ||1 =

n−k−1∑
i=1

∣∣∣∣∣∣
i+k+1∑
j=i

(−1)j−i
(
k + 1

j − i

)
f(xj)

∣∣∣∣∣∣ =

n−k−1∑
i=1

|γ(i, f)|,

where dependence on k is implicit. After making the appropriate transformation of ω−2j , we find

[ηj |·] ∝ Nn(f |0, σ2Σf (η−1j)) · [ηj]|η−2j |

∝ |Σf (η−1j)|−1/2 exp

{
−1

2σ2

n−k−1∑
l=1

ηlγ
2(l, f)

}
exp

{
−λ2

2ηj

}
η−2j .

We are only concerned with ηl = ηj and can thus reduce notation further; put γ := γ(j, f).
Collect ηjs and take out of the proportionality constant exp{λγ/σ} to get

[ηj |·] ∝ η−3/2j exp

{
−ηjγ2

2σ2
− λ2

2ηj

}
∝ η−3/2j exp

{
−ηjγ2

2σ2
+
λγ

σ
− λ2

2ηj

}
.

After multiplying the first two terms in the exponential by λ2/λ2, and λ/λ, respectively, and
rearranging, put µ := λσ/γ and ζ := λ to highlight the kernel of the inverse Gaussian distribution.

67

[ηj |·] ∝ η−3/2j exp

{
−λ2γ2

2σ2ηjλ2

(
η2j −

2λσηj
γ

+

(
λσ

γ

)2
)}

= η
−3/2
j exp

{
−ζ2

2µ2ηj
(ηj − µ)

2

}
.

The full conditional for λ2 is quite easy to find

[λ2|·] ∝ Γ(α, ρ) · [ω2
1 , . . . , ω

2
m|λ2]

∝ (λ2)m+α−1 exp

−λ2(ρ+

m∑
j=1

ω2
j /2)

 .

A.2 Code

Below is the C++ class developed as the base of all the R functions to fit Bayesian trend filtering.
This code uses the linear algebra template library Eigen [Guennebaud et al., 2010].

#include <RcppEigen . h>
#include <vector>
#include <random>

// [[Rcpp : : depends (RcppEigen)]]

typedef Eigen : : VectorXd Vec ;
typedef Eigen : : Map<Vec> MVec ;
typedef Eigen : : MappedSparseMatrix<double> MspMat ;
typedef Eigen : : SparseMatrix<double> spMat ;

class individual {
private :

/∗ f i e l d s ∗/
MVec y ;
int max_draws ;
MspMat D ;
spMat sigma ;
spMat I ;
Eigen : : SimplicialLLT<spMat > LLt ;

/∗ random ∗/
Vec rndNorm (const int& n_) {

Rcpp : : RNGScope scope ;
Rcpp : : NumericVector x = Rcpp : : rnorm (n_) ;
Vec out (Rcpp : : as<Vec>(x)) ;
return out ;

}
double rInvGauss (const double& nu_ , const double& lambda_) {

Vec z = rndNorm (1) ; // one N(0 , 1)
double z2 = z (0) ∗z (0) ;
double nu2 = nu_∗nu_ ;
double c = 0.5∗ nu_/lambda_ ;
double x = nu_ + c∗z2∗nu_ − c∗std : : sqrt (4 . 0∗ nu_∗lambda_∗z2 + nu2∗z2∗z2) ;
Vec u = rndUniform (1) ;
double out = (u (0) < nu_ /(nu_+x)) ? x : nu2/x ;
return out ;

68

}
template <typename T>
Vec rndInvGauss (const Eigen : : DenseBase<T>& nu_ , const double& lambda_) {

Vec out (nk) ; int draws ;
for (int i=0; i<nk ; i++) {

draws = 0 ;
do {

out (i) = rInvGauss (nu_ (i) , lambda_) ;
++draws ;

} while (out (i) < 1e−11 && draws < max_draws) ;
if (draws > 1) Rcpp : : Rcout << "Note: InvGauss resampled." << std : :←↩

endl ;
}
return out ;

}
// rndMVNorm templated ?
Vec rndMVNorm (const Vec& mu_ , const spMat& sqrtCov_ , const double& scale) ←↩

{
return (scale ∗(sqrtCov_∗rndNorm (sqrtCov_ . cols ()))+mu_) . eval () ;

}
Vec rndGamma (const int& n_ , const double& shape_ , const double& scale_) {

Rcpp : : RNGScope scope ; Rcpp : : NumericVector x ;
int draws = 0 ; bool toosmall ;
do { // cut o f f t a i l

x = Rcpp : : rgamma (n_ , shape_ , scale_) ;
toosmall = Rcpp : : is_true (Rcpp : : any (x < 1e−11)) ;
++draws ;

} while (toosmall && draws < max_draws) ;
if (draws > 1) Rcpp : : Rcout << "Note: Gamma resampled." << std : : endl ;
Vec out (Rcpp : : as<Vec>(x)) ; // convert to Eigen : : VectorXd
return out ;

}
Vec rndUniform (const int& n_) {

Rcpp : : RNGScope scope ;
Rcpp : : NumericVector x = Rcpp : : runif (n_) ;
Vec out (Rcpp : : as<Vec>(x)) ;
return out ;

}

/∗ i n i t i a l i z e r s ∗/
void init_l2 () {

Vec L = rndGamma (1 , nk+alpha , 2 .0/(1 .0+ rho)) ;
l2 = L (0) ;

}
void init_l () {

Vec L = rndGamma (1 , nk+alpha , 2 .0/(1 .0+ rho)) ;
l = L (0) ;

}
void init_o2 () {

Vec O = rndGamma (nk , 1 . 0 , 2 . 0) ;
sigma = D . transpose () ∗mkDiag (O . cwiseInverse ()) ∗D ;
o2 = O ;

}
void init_s2 () {

Vec S = rndGamma (1 , 1 . 0 , 0 . 5) ;
s2 = 1.0/ S (0) ;

}
void init_beta () {

beta = y ;

69

}

/∗ u t i l i t y ∗/
// spMat mkDiag (const i n t& sz) {
// spMat W(sz , sz) ; W. r e s e r v e (sz) ;
// f o r (i n t i =0; i<sz ; i++) {
// W. i n s e r t (i , i) = 1 . 0 ;
// }
// return W;
// }
template <typename T>
spMat mkDiag (const Eigen : : DenseBase<T>& val) {

int I = val . size () ;
spMat W (I , I) ; W . reserve (I) ;
for (int i=0; i<I ; i++) {

W . insert (i , i) = val (i) ; // i n s e r t a long d iagona l
}
return W ;

}

public :

/∗ f i e l d s ∗/
int n , nk ;
Vec beta , o2 ;
double l , l2 , s2 , alpha , rho , Dbl1 ;
Vec Db ;

/∗ con s t ruc to r ∗/
individual (const MVec y_ , const MspMat D_ , const double alpha_ , const ←↩

double rho_) : y (y_) , D (D_) , alpha (alpha_) , rho (rho_) {

// gene ra l i n f o
max_draws = 10 ;
n = y . size () ;
nk = D . rows () ;

// i n i t i a l i z e
init_o2 () ;
init_s2 () ;
init_beta () ;
init_l2 () ;
init_l () ;

Db = D∗beta ; // i n i t i a l i z e D∗beta ;
LLt . analyzePattern (sigma) ; // symbol ic decomposit ion on the s p a r s i t y
LLt . setShift (1 . 0 , 1 . 0) ; // add I to Sigma f

}

/∗ update parameters ∗/
void upBeta () {

LLt . factorize (sigma) ;
spMat L (n , n) ; spMat Ltinv (n , n) ;
LLt . matrixL () . twistedBy (LLt . permutationPinv ()) . evalTo (L) ;
Ltinv = LLt . solve (L) ;
int draws = 0 ;
do {

beta = rndMVNorm (Ltinv ∗(Ltinv . transpose () ∗y) , Ltinv , std : : sqrt (s2)) ;
Db = D∗beta ;

70

Dbl1 = (Db) . lpNorm<1>() ;
++draws ;

} while ((Db . cwiseAbs () . array () < 1e−10) . any () && draws < max_draws) ;
if (draws > 1) Rcpp : : Rcout << "Note: Normal resampled." << std : : endl ;

}
void upS2 () {

double rate = (y−beta) . squaredNorm () + beta . transpose () ∗sigma∗beta ;
Vec S = rndGamma (1 , n , 2 .0/ rate) ;
s2 = 1.0/ S (0) ;

}

// dexp
void upOmega2 () {

Vec eta = rndInvGauss (Db . cwiseAbs () . cwiseInverse () ∗std : : sqrt (l2∗s2) , l2)←↩
;

if ((o2 . array () <= 0 .) . any ()) {
Rcpp : : Rcout << "Warning: At least one omega <= zero..." << std : : endl ;
eta = eta . cwiseAbs () ;

}
o2 = eta . cwiseInverse () ;

// update s i gma f
sigma = D . transpose () ∗mkDiag (eta) ∗D ;
sigma . makeCompressed () ;

}
void upLambda2 () {

double tmp = o2 . sum () ;
// Rcpp : : Rcout << ”sum of omegas = ” << tmp << std : : endl ;
Vec lambda2 = rndGamma (1 , nk+alpha , 2 . 0 / (tmp+2∗rho)) ;
l2 = lambda2 (0) ;

}

// gdP
void upOmega () {

Vec eta = rndInvGauss (Db . cwiseAbs () . cwiseInverse () ∗(l∗std : : sqrt (s2)) , l∗←↩
l) ;

o2 = eta . cwiseInverse () ;
if ((o2 . array () < 0 .) . any ()) {

Rcpp : : Rcout << "Warning: At least one omega <= zero..." << std : : endl ;
eta = eta . cwiseAbs () ;

}

// update s i gma f
sigma = D . transpose () ∗mkDiag (eta) ∗D ;
sigma . makeCompressed () ;

}
void upLambda () {

double sig = std : : sqrt (s2) ;
Vec lambda = rndGamma (1 , nk+alpha , sig /((D∗beta) . lpNorm<1>() + rho∗sig))←↩

;
l = lambda (0) ;

}
} ;

The above class is then called by the following functions. The first one uses the generalized
double Pareto conditional prior distribution.

#include "individual.cpp"

71

// [[Rcpp : : export]]
Rcpp : : List gdp (const int& iter ,

const Eigen : : Map<Eigen : : VectorXd>& y ,
const Eigen : : MappedSparseMatrix<double>& D ,
const double& alpha , const double& rho ,
const int& m , const bool& debug) {

// i n i t i a l i z e b t f ob j e c t
individual ∗btf ;
btf = new individual (y , D , alpha , rho) ;
bool broken = false ;

// i n i t i a l i z e matr i ce s o f p o s t e r i o r draws
Eigen : : MatrixXd beta_draws = Eigen : : MatrixXd : : Zero (iter , btf−>n) ;
Eigen : : MatrixXd omega_draws = Eigen : : MatrixXd : : Zero (iter , btf−>nk) ;
Eigen : : VectorXd s2_draws = Eigen : : VectorXd : : Zero (iter) ;
Eigen : : VectorXd lambda_draws = Eigen : : VectorXd : : Zero (iter) ;

// run sampler
for (int i=0; i<iter ; ++i) {

if (i % m == 0) {
btf−>upBeta () ;
beta_draws . row (i) = btf−>beta . transpose () ;

}
btf−>upS2 () ;
s2_draws (i) = btf−>s2 ;
btf−>upLambda () ;
lambda_draws (i) = btf−>l ;
btf−>upOmega () ;
omega_draws . row (i) = btf−>o2 . transpose () ;

if (debug) {
for (int j=0; j<btf−>n ; ++j) {

if (std : : isnan (beta_draws (i , j))) {
Rcpp : : Rcout << "Warning: watch out gdp!, nan @ beta("

<< i << "," << j << ")" << std : : endl ;
broken = true ;

}
}
for (int j=0; j<btf−>nk ; ++j) {

if (std : : isnan (omega_draws (i , j))) {
Rcpp : : Rcout << "Warning: watch out gdp!, nan @ omega("

<< i << "," << j << ")" << std : : endl ;
broken = true ;

}
}
if (std : : isnan (s2_draws (i)) | | std : : isnan (lambda_draws (i))) {

Rcpp : : Rcout << "Warning: watch out gdp!, nan @ s2|lambda("

<< i << ")" << std : : endl ;
broken = true ;

}
}
if (broken) break ;

}
return Rcpp : : List : : create (Rcpp : : Named ("beta") = Rcpp : : wrap (beta_draws) ,

Rcpp : : Named ("s2") = s2_draws ,
Rcpp : : Named ("lambda") = lambda_draws ,
Rcpp : : Named ("omega") = omega_draws) ;

}

72

The second function fits the double exponential conditional prior.

#include "individual.cpp"

// [[Rcpp : : export]]
Rcpp : : List dexp (const int& iter ,

const Eigen : : Map<Eigen : : VectorXd>& y ,
const Eigen : : MappedSparseMatrix<double>& D ,
const double& alpha , const double& rho ,
const int& m , const bool& debug) {

// i n i t i a l i z e b t f ob j e c t
individual ∗btf ;
btf = new individual (y , D , alpha , rho) ;
bool broken = false ;

// i n i t i a l i z e matrix o f p o s t e r i o r draws
Eigen : : MatrixXd beta_draws = Eigen : : MatrixXd : : Zero (iter , btf−>n) ;
Eigen : : MatrixXd omega_draws = Eigen : : MatrixXd : : Zero (iter , btf−>nk) ;
Eigen : : VectorXd s2_draws = Eigen : : VectorXd : : Zero (iter) ;
Eigen : : VectorXd lambda_draws = Eigen : : VectorXd : : Zero (iter) ;

// runs sampler
for (int i=0; i<iter ; ++i) {

if (i % m == 0) {
btf−>upBeta () ;
beta_draws . row (i) = btf−>beta . transpose () ;

}
btf−>upS2 () ;
s2_draws (i) = btf−>s2 ;
btf−>upLambda2 () ;
lambda_draws (i) = btf−>l ;
btf−>upOmega2 () ;
omega_draws . row (i) = btf−>o2 . transpose () ;

if (debug) {
for (int j=0; j<btf−>n ; ++j) {

if (std : : isnan (beta_draws (i , j))) {
Rcpp : : Rcout << "Warning: watch out dexp!, nan @ beta("

<< i << "," << j << ")" << std : : endl ;
broken = true ;

}
}
for (int j=0; j<btf−>nk ; ++j) {

if (std : : isnan (omega_draws (i , j))) {
Rcpp : : Rcout << "Warning: watch out dexp!, nan @ omega("

<< i << "," << j << ")" << std : : endl ;
broken = true ;

}
}
if (std : : isnan (s2_draws (i)) | | std : : isnan (lambda_draws (i))) {

Rcpp : : Rcout << "Warning: watch out dexp!, nan @ s2|lambda("

<< i << ")" << std : : endl ;
broken = true ;

}
}
if (broken) break ;

}

73

return Rcpp : : List : : create (Rcpp : : Named ("beta") = Rcpp : : wrap (beta_draws) ,
Rcpp : : Named ("s2") = s2_draws ,
Rcpp : : Named ("lambda") = lambda_draws ,
Rcpp : : Named ("omega") = omega_draws) ;

}

The last significant piece of code that is the approximation to a Bayesian trend filtering fit given a
user supplied value for the penalty parameter λ. In fact, a user supplied vector of penalty parameters
is allowed, in case solution paths are of interest. Sparse matrices are used wherever possible.

#include <RcppEigen . h>

using namespace Rcpp ;

template <typename T>
Eigen : : SparseMatrix<double> mkDiag (const Eigen : : DenseBase<T>& val) {

int I = val . size () ;
Eigen : : SparseMatrix<double> W (I , I) ; W . reserve (I) ;
for (int i=0; i<I ; i++) {

W . insert (i , i) = val (i) ; // i n s e r t a long d iagona l
}
return W ;

}

// [[Rcpp : : export]]
List tf_approx (const Eigen : : Map<Eigen : : VectorXd>& y ,

const Eigen : : Map<Eigen : : VectorXd>& l ,
const Eigen : : MappedSparseMatrix<double>& D ,
const int& k , const double& eps ,
const double& tau , const int& max_iter) {

// author Edward A. Roualdes
// i n i t i a l i z e some va lue s
const int n = y . size () ; // sample s i z e
const int nk = n−k−1;
const int J = l . size () ; // number o f lambdas
Eigen : : VectorXd beta = y ; // i n i t i a l va lue s
Eigen : : VectorXd beta_old (n) ;

// c r e a t e output con ta i n e r s
Eigen : : MatrixXd beta_out (n , J) ; // beta out matrix
Eigen : : SparseMatrix<double> W (nk , nk) ;
W = mkDiag (1 . 0 / ((D∗beta) . cwiseAbs () . array () + eps)) ;
Eigen : : SimplicialLLT<Eigen : : SparseMatrix<double> > LLt ; // l i n e a r system
LLt . analyzePattern (D . transpose () ∗W∗D) ; // symbol ic decomposit ion on the ←↩

s pa r c i t y
LLt . setShift (1 . 0 , 1 . 0) ; // add Id en t i t y
Eigen : : VectorXd iter_out (J) ; // s t o r e number i t e r a t i o n s per ←↩

lambda

// f o r each lambda
for (int j=0; j<J ; j++) {

int iter = 0 ; // count i t e r a t i o n s un t i l convergence

// whi l e s o l u t i o n not c l o s e enough && under max i t e r a t i o n s
while (iter < max_iter) {

beta_old = beta ; // s t o r e o ld e s t imate s
W = mkDiag (1 . 0 / ((D∗beta) . cwiseAbs () . array () + eps)) ;

74

// c r e a t e l i n e a r system and so l v e
LLt . factorize (l (j) ∗D . transpose () ∗W∗D) ; // computat ional decomp on ←↩

symbol ic
beta = LLt . solve (y) ;

// check convergence
if (beta . isApprox (beta_old , tau)) break ;
++iter ;

}
// s t o r e e s t imate s f o r each lambda
beta_out . col (j) = beta ;
iter_out (j) = iter ;

}

return List : : create (Named ("coefficients") = beta_out ,
Named ("iters") = iter_out) ;

}

Copyright @ Edward A. Roualdes 2015

75

Appendix B

References

David M Allen. The prediction sum of squares as a criterion for selecting predictor variables.
University of Kentucky, 1971.

David M Allen. The relationship between variable selection and data agumentation and a method
for prediction. Technometrics, 16(1):125–127, 1974.

David F Andrews and Colin L Mallows. Scale mixtures of normal distributions. Journal of the Royal
Statistical Society. Series B (Methodological), pages 99–102, 1974.

Artin Armagan, David B Dunson, and Jaeyong Lee. Generalized double Pareto shrinkage. Statistica
Sinica, 23(1):119, 2013.

Taylor B. Arnold and Ryan Joseph Tibshirani. genlasso: Path algorithm for generalized lasso prob-
lems, 2014. R package version 1.3.

Douglas Bates and Dirk Eddelbuettel. Fast and elegant numerical linear algebra using the RcppEigen
package. Journal of Statistical Software, 52(5):1–24, 2013.

Bernd Bischl, Michel Lang, and Olaf Mersmann. BatchExperiments: Statistical experiments on batch
computing clusters., 2014. R package version 1.3.

Patrick Breheny and Jian Huang. Coordinate descent algorithms for nonconvex penalized regression,
with applications to biological feature selection. The annals of applied statistics, 5(1):232, 2011.

Leo Breiman and Philip Spector. Submodel selection and evaluation in regression – the x-random
case. International statistical review/revue internationale de Statistique, pages 291–319, 1992.

Carlos M Carvalho, Nicholas G Polson, and James G Scott. Handling sparsity via the horseshoe. In
International Conference on Artificial Intelligence and Statistics, pages 73–80, 2009.

Carlos M Carvalho, Nicholas G Polson, and James G Scott. The horseshoe estimator for sparse
signals. Biometrika, 97(2):465–480, 2010.

SILSO World Data Center. The international sunspot number. International Sunspot Number
Monthly Bulletin and online catalogue, 2014.

Hugh A Chipman, Edward I George, Robert E McCulloch, et al. Bart: Bayesian additive regression
trees. The Annals of Applied Statistics, 4(1):266–298, 2010.

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria, 2014.

Anthony Christopher Davison. Bootstrap methods and their application, volume 1. Cambridge
university press, 1997.

Carl de Boor. A practical guide to splines. Number v. 27 in Applied Mathematical Sciences. Springer,
2001.

Carl de Boor. Divided differences. Survey Approximation Theory, 1:46–69, 2005.

Ronald A DeVore and George G Lorentz. Constructive approximation, volume 303. Springer, 1993.

David L Donoho and Iain M Johnstone. Adapting to unknown smoothness via wavelet shrinkage.
Journal of the american statistical association, 90(432):1200–1224, 1995.

Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid Monte Carlo.
Physics letters B, 195(2):216–222, 1987.

76

Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. Least angle regression. The
Annals of statistics, 32(2):407–499, 2004.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 96(456):1348–1360, 2001.

Centers for Disease Control and Prevention. United States cancer statistics. 2015.

Jerome Friedman, Trevor Hastie, Holger Höfling, and Robert Tibshirani. Pathwise coordinate opti-
mization. The Annals of Applied Statistics, 1(2):302–332, 2007.

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of statistical software, 33(1):1, 2010.

Alan E Gelfand and Adrian FM Smith. Sampling-based approaches to calculating marginal densities.
Journal of the American statistical association, 85(410):398–409, 1990.

Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian Data Analysis,
volume 2. Taylor & Francis, 2014.

Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (6):721–
741, 1984.

Gene H Golub, Michael Heath, and Grace Wahba. Generalized cross-validation as a method for
choosing a good ridge parameter. Technometrics, 21(2):215–223, 1979.

P.J. Green and B.W. Silverman. Nonparametric Regression and Generalized Linear Models: A rough-
ness penalty approach. Chapman & Hall/CRC Monographs on Statistics & Applied Probability.
Taylor & Francis, 1993.

Jim E Griffin and Philip J Brown. Bayesian hyper-lassos with non-convex penalization. Australian
& New Zealand Journal of Statistics, 53(4):423–442, 2011.

Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

Trevor Hastie and Robert Tibshirani. Varying-coefficient models. Journal of the Royal Statistical
Society. Series B (Methodological), 55(4):pp. 757–796, 1993.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The elements of statistical
learning: data mining, inference and prediction. The Mathematical Intelligencer, 27(2):83–85,
2005.

James S Hodges. Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models
Using Random Effects. CRC Press, 2013.

Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

David R Hunter and Runze Li. Variable selection using MM algorithms. Annals of statistics,
33(4):1617, 2005.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction
to variational methods for graphical models. Machine learning, 37(2):183–233, 1999.

Adam Kapelner and Justin Bleich. Bartmachine: A powerful tool for machine learning. arXiv
preprint arXiv:1312.2171, 2013.

Adam Kapelner and Justin Bleich. bartMachine: Machine learning with Bayesian additive regression
trees. ArXiv e-prints, 2014.

77

Jafar A Khan, Stefan Van Aelst, and Ruben H Zamar. Robust linear model selection based on least
angle regression. Journal of the American Statistical Association, 102(480):1289–1299, 2007.

Keith Knight and Wenjiang Fu. Asymptotics for lasso-type estimators. Annals of Statistics, pages
1356–1378, 2000.

Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In Ijcai, volume 14, pages 1137–1145, 1995.

Anita J. van der Kooij. Prediction accuracy and stability of regression with optimal scaling trans-
formations. PhD thesis, Leiden University, 2007.

Minjung Kyung, Jeff Gill, Malay Ghosh, and George Casella. Penalized regression, standard errors,
and Bayesian lassos. Bayesian Analysis, 5(2):369–411, 2010.

A. Lee, F. Caron, A. Doucet, and C. Holmes. A hierarchical Bayesian framework for constructing
sparsity-inducing priors. ArXiv e-prints, September 2010.

Anthony Lee, Francois Caron, Arnaud Doucet, Chris Holmes, et al. Bayesian sparsity-path-analysis
of genetic association signal using generalized t priors. Statistical applications in genetics and
molecular biology, 11(2):1–29, 2012.

Jun Liu, Lei Yuan, and Jieping Ye. An efficient algorithm for a class of fused lasso problems. In
Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 323–332. ACM, 2010.

Zhi-Quan Luo and Paul Tseng. On the convergence of the coordinate descent method for convex
differentiable minimization. Journal of Optimization Theory and Applications, 72(1):7–35, 1992.

Enno Mammen and Sara van de Geer. Locally adaptive regression splines. The Annals of Statistics,
25(1):387–413, 1997.

Enno Mammen. Nonparametric regression under qualitative smoothness assumptions. The Annals
of Statistics, pages 741–759, 1991.

Radford M Neal and Geoffrey E Hinton. A view of the EM algorithm that justifies incremental,
sparse, and other variants. In Learning in graphical models, pages 355–368. Springer, 1998.

John A Nelder and RJ Baker. Generalized linear models. Encyclopedia of Statistical Sciences, 1972.

Michael R Osborne, Brett Presnell, and Berwin A Turlach. On the lasso and its dual. Journal of
Computational and Graphical statistics, 9(2):319–337, 2000.

Trevor Park and George Casella. The Bayesian lasso. Journal of the American Statistical Association,
103(482):681–686, 2008.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. Coda: Convergence diagnosis and
output analysis for MCMC. R News, 6(1):7–11, 2006.

Benedikt M Pötscher and Hannes Leeb. On the distribution of penalized maximum likelihood
estimators: The lasso, scad, and thresholding. Journal of Multivariate Analysis, 100(9):2065–
2082, 2009.

Carl Edward Rasmussen. Gaussian processes for machine learning. 2006.

Christian Ritter and Martin A Tanner. Facilitating the Gibbs sampler: the Gibbs stopper and the
griddy-Gibbs sampler. Journal of the American Statistical Association, 87(419):861–868, 1992.

Saharon Rosset and Ji Zhu. Piecewise linear regularized solution paths. The Annals of Statistics,
pages 1012–1030, 2007.

78

Edward A. Roualdes. btf: Estimates univariate function via Bayesian trend filtering, 2014. R package
version 1.1.

Henry Scheffe. The Analysis of Variance, volume 72. John Wiley & Sons, 1960.

Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Knight. Sparsity and
smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 67(1):91–108, 2005.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), pages 267–288, 1996.

Ryan Joseph Tibshirani. The solution path of the generalized lasso. Stanford University, 2011.

Ryan Joseph Tibshirani. Adaptive piecewise polynomial estimation via trend filtering. The Annals
of Statistics, 42(1):285–323, 2014.

Andrey Nikolayevich Tikhonov. On the stability of inverse problems. In Dokl. Akad. Nauk SSSR,
volume 39, pages 195–198, 1943.

Sara Van de Geer. Estimating a regression function. The Annals of Statistics, pages 907–924, 1990.

Aki Vehtari and Jarno Vanhatalo. Sparse log Gaussian processes via MCMC for spatial epidemiology.
Wshop on GP in Practice, 2007.

Grace Wahba. Spline Models for observational Data, volume 59. Siam, 1990.

Bob Wheeler. SuppDists: Supplementary distributions, 2013. R package version 1.1-9.1.

Hadley Wickham and Romain Francois. dplyr: A Grammar of Data Manipulation, 2015. R package
version 0.4.1.

Hadley Wickham. ggplot2: elegant graphics for data analysis. Springer New York, 2009.

John M Winn and Christopher M Bishop. Variational message passing. In Journal of Machine
Learning Research, pages 661–694, 2005.

John Michael Winn. Variational message passing and its applications. PhD thesis, University of
Cambridge, 2004.

S.N Wood. Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC, 2006.

Tong Tong Wu and Kenneth Lange. Coordinate descent algorithms for lasso penalized regression.
The Annals of Applied Statistics, pages 224–244, 2008.

Matt Wytock, Suvrit Sra, and J Zico Kolter. Fast Newton methods for the group fused lasso. In
Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence, 2014.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006.

Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals of
Statistics, 38(2):894–942, 2010.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320, 2005.

79

Appendix C

Vita

• Edward A. Roualdes, San Rafael, California

• Education

– MS Economics, Tufts University 2009-2010

– BS Mathematics, California State University (CSU), Chico 2003-2008
BA Economics with honors
Minor Business Administration

• Professional Positions

– Statistical Consultant for the College of Agriculture 2013-2015
University of Kentucky

– Research Assistant for The Weisrock Lab 2012-2014
Department of Biology, University of Kentucky

– Primary Instructor 2011-2012
Department of Statistics, University of Kentucky

– Teacher’s Assistant 2010-2011
Department of Statistics, University of Kentucky

– Teacher’s Assistant 2009-2010
Economics Department, Tufts University

• Scholastic Honors

– R.L. Anderson Research Award, University of Kentucky, Department of Statistics 2014

– Lt. Robert Merton Rawlins Merit Award, CSU, Chico 2007

• Publications

– Fenger, C. K., Tobin, T., Casey, P. J., Roualdes, E. A., Langemeier, J., Haines, D.
M. Bovine colostrum supplementation optimises earnings, performance and recovery in
racing Thoroughbreds. Comparative Exercise Physiology 11/2014; 10(4):233-238. DOI:
10.3920/CEP140023

– Roualdes, E. A. btf: Estimates univariate function via Bayesian trend filtering. R package
version 1.0. http://cran.r-project.org/web/packages/btf/index.html

– Roualdes, E. A., Bonner, S. spiders: fits our predator preferences model. R package
version 1.0. https://github.com/roualdes/spiders

– Roualdes, E. A. NextAllele: a bioinformatic program written in Python to phase hap-
lotypes of diploid animals. https://code.google.com/p/nextallele/

Copyright @ Edward A. Roualdes 2015

80

http://www.tufts.edu/
http://www.csuchico.edu/
http://www.ca.uky.edu/
http://sweb.uky.edu/~dweis2/The_Weisrock_Lab/Front_Page.html
http://cran.r-project.org/web/packages/btf/index.html
https://github.com/roualdes/spiders
https://www.python.org/
https://code.google.com/p/nextallele/

	New Results in ell_1 Penalized Regression
	Recommended Citation

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Linear Regression
	1.2 Generalized Linear Models
	1.3 Cross Validation
	1.4 Bootstrap
	1.5 Gibbs Sampler

	2 Penalizing Coefficients
	2.1 Ridge Regression
	2.2 Lasso
	2.3 Algorithms to compute the lasso solution
	2.4 Extensions
	2.5 Lassoed GLMs
	2.6 Solution paths
	2.7 Choosing the Penalty Parameter
	2.8 Bootstrapped Standard Errors
	2.9 Bayesian Variations

	3 Penalizing Structure
	3.1 Smoothing Splines
	3.2 Generalized Lasso
	3.3 Approximate Generalized Lasso
	3.4 Trend Filtering
	3.5 Bayesian Generalized Lasso
	3.6 Bayesian Trend Filtering

	4 Empirical Study of Bayesian Trend Filtering
	4.1 Simulation Study
	4.2 Real Data
	4.3 Discussion

	5 Future Work
	A Appendix
	A.1 Full Conditionals
	A.2 Code

	B References
	C Vita

