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Chapter 1 A Review of Nonparametric Regression

1.1 Introduction

Consider a situation in which we observe noisy data

Yi = µ(xi) + ǫi for i ∈ {1, . . . , n}, (1.1)

where xi ∈ X , X is a compact interval, the Yi are observed responses, µ(x) is the true

mean response function, and the ǫi are zero-mean random errors. If the functional

form of µ(x) were specified up to a set of unknown parameters, such knowledge could

be exploited to produce an estimate of the mean response function by estimating the

desired model parameters. Such is the case in linear regression, logistic regression,

and Poisson regression, among other models. However, in many situations we are

unwilling to specify the functional form of the mean response, µ(x), but still seek to

estimate it. In this case we enter the realm of nonparametric regression.

Many methods have been devised to estimate the mean response function in this

situation, among them kernel regression, smoothing splines, orthogonal series estima-

tors, local regression, and compound estimation. Techniques have been established

for constructing confidence bands and extensions have been made to estimate deriva-

tives of the mean function. In this section we discuss the success of some of these

methods as well as their shortcomings.

1.2 Kernel regression

Kernel regression (or kernel smoothing) is a conceptually simple method that grew

naturally out of kernel density estimation. Nadaraya (1964) and Watson (1964) ap-

plied the Rosenblatt-Parzen kernel density estimator (Rosenblatt 1956, Parzen 1962)

to regression and proposed the following estimator:

µ̂nw(x) :=
n−1

∑n
i=1 Kh(x − xi)Yi

n−1
∑n

i=1 Kh(x − xi)
(1.2)

1



with

Kh(u) = h−1K(u/h)

where K is a symmetric real function that integrates to one and h is a nonnegative

scale factor. Similar alternative kernel estimators are proposed by Priestley and Chao

(1972):

µ̂pc(x) :=
n∑

i=1

(xi − xi−1)Kh(x − xi)Yi,

and Gasser and Muller (1979):

µ̂gm(x) :=
n∑

i=1

[∫ si

si−1

Kh(x − u)du

]
Yi with si := (xi−1 + xi)/2.

In any case, we are forced to choose inputs for K and, more importantly, h.

With regard to K, the Epanechnikov kernel,

K(u) = 0.75(1 − u2)1|u|≤1, (1.3)

is optimal under reasonable assumptions in the sense that it minimizes asymptotic

mean integrated square error (Epanechnikov 1969). However, other commonly used

kernels have been shown to be nearly as efficient (Hardle 1990, Loader 1999). Thus,

preference is often given to a smoother or simpler kernel since little is sacrificed in

terms of efficiency.

The choice of h (called bandwidth) is given much more attention due to its critical

role in driving a bias-variance trade-off. That is, large values of h produce smooth

curves and eliminate much of the probable error associated with the data, but with

a price of inducing systematic error. Small values of h lead to less smoothing and

less systematic error but result in a noisy fit with large variance. The choice of

such a parameter (called a tuning parameter), is a common one in nonparametric

regression. Hardle (1990) notes that automated methods for determining bandwidth

selection in kernel regression include cross validation, penalizing functions, and the

plug-in method.

A feature of kernel regression that is common to all of the techniques discussed

in this chapter is that the estimator is linear in the observed responses. That is, the

2



estimator can be written in the form:

µ̂(x) :=

n∑

i=1

li(x)Yi, (1.4)

for functions l1, ..., ln which do not depend on Y1, ..., Yn. This property plays an

important role in both the development of generalized C(p) and the construction of

confidence bands in the following chapters.

For kernel regression, estimation of derivatives of the mean response can be ac-

complished by differentiating the li(x) from (1.4) with respect to x. For example, the

Priestley-Chao estimator of the qth derivative of the mean response is

̂dq

dxq
µpc(xi) := h−(q+1)

n∑

i=1

(xi − xi−1)K
(q)(x − xi)Yi,

Importantly, this means that estimates of the derivatives are the derivatives of the

estimates, a property referred to as “self-consistency”.

The primary advantage of kernel regression lies in its simplicity. The choice of

the bandwidth parameter h is generally the only option the user must consider. A

great deal of asymptotic theory has also developed around kernel regression. This

theory is useful and was, for instance, exploited by Eubank and Speckman (1993) to

create confidence bands around the estimate. The self-consistency of kernel smoothing

derivative estimation is another desirable quality, although derivative estimation is

only possible when the kernel is sufficiently smooth. A downside to kernel regression

is that the estimates it produces may have bias that depends on the first derivative of

the mean function. Bias that depends on low-ordered derivatives can be eliminated

by techniques such as local regression.

1.3 Local regression

Local regression is a more sophisticated technique that can be viewed as an extension

of kernel regression. The local regression approach is to estimate the mean function

at a given value of the covariate with a polynomial within the so-called smoothing

3



window. To be more specific, if (for a given j) we minimize

n∑

i=1

Kh(xi − x)

(
Yi −

[
a0 + a1(xi − x) + ... +

1

j!
aj(xi − x)j

])2

(1.5)

with respect to the ai, then the local regression estimate of µ(x) is â0. The smoothing

window is determined by K and h.

As in kernel regression, there is a bias-variance tradeoff that is primarily driven

by h. The polynomial degree is commonly chosen to be either one (local linear)

or two (local quadratic). Local constant regression is equivalent to the Nadaraya-

Watson estimator of (1.2). Loader (1999) mentions cross validation, generalized cross

validation, and the CP criterion as methods for tuning parameter selection in local

regression. The CP criterion (Mallows 1973), which we extend in the next chapter,

is defined in such a way that it equals the sum of the squared error over the design

points in expected value. Specifically,

CP (µ̂) =
1

σ2

n∑

i=1

(Yi − µ̂(xi))
2 − n + 2

n∑

i=1

||l(xi)||2. (1.6)

The local regression estimate of µ(q)(x) is âq from (1.5) for q ≤ j. Importantly,

this implies that local regression is not self-consistent, meaning derivatives of an

estimate are not estimates of the derivatives. For instance, Loader (1999) gives the

first derivative of the estimate to be

dµ̂(x)

dx
= â1 + eT

1 (XTWX)−1XTW′ǫ̂,

where eT
1 = (1, 0, ..., 0)T , X is the design matrix, W is a diagonal matrix with entries

Kh(xi − x), and ǫ̂ is the vector of residuals.

A strength of local regression is that bias cannot depend on derivatives of the

mean function up to order j from (1.5). For instance, the bias of a local quadratic

fit can only depend on derivatives of the mean response of order three and higher.

However, local regression does not have the self-consistency property and estimates

of derivatives of order higher than j are not even possible. If µ(x) is estimated using

j = 1 and an estimate of the second derivative is then needed, one must estimate

µ(x) again, this time using j ≥ 2.
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1.4 Orthogonal basis functions

Estimation using orthogonal basis functions involves the assumption that for some

known basis functions {φk}∞k=0, µ(x) =
∑∞

k=0 βkφk(x). The problem of estimation

can then be translated to simply estimation of the βk. Of course only finitely many

of the βk can be estimated, so for this method to work, it must be the case that
∑J

k=0 βkφk(x) provides a good approximation of µ(x) for modest J . Then if we

partition the covariate space X into {Ai}n
i=1 such that each xi ∈ Ai, the βk can be

estimated by

β̂k =
n∑

i=1

Yi

∫

Ai

φk(x)dx,

and the estimation of the mean response function is

µ̂os(x) =

J∑

k=0

β̂kφk(x). (1.7)

The estimator, known as an orthogonal series estimator, is linear in the observed

responses with the li(x) from (1.4) defined by Hardle (1990) as

li(x) =
J∑

k=0

φk(x)

∫

Ai

φk(u)du.

Estimation of derivatives using orthogonal basis functions is accomplished by dif-

ferentiating the estimate of the mean function, i.e. self-consistently. However, this

requires that the basis functions be sufficiently differentiable, which is not always

the case. Wavelets, which fall into the category of orthogonal series estimators, ex-

cel when estimating functions that are discontinuous (see Charnigo et al 2006 and

references therein). However, they are ill-suited to the estimation of derivatives. In

addition, Charnigo and Srinivasan (2010a) note that misspecification of the basis

functions can make estimation of derivatives difficult. They further note that obtain-

ing an estimator from (1.7) that estimates µ(x) well is not sufficient to ensure that

its derivative will also estimate µ′(x) well. The estimate of the derivative may need

a larger J than the estimate of the mean response function. Thus, how to choose the

basis functions and how large to choose J are questions without clear answers when

we are seeking to recover one or more derivatives with an orthogonal series estimator.
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1.5 Smoothing splines

Smoothing splines are yet another approach to the nonparametric regression problem

(Schoenberg 1964, Reinsch 1967). Splines, in general, are piecewise polynomials. The

polynomials of order J are pieced together at “knots” in such a way that the spline

and its first J − 1 derivatives of the spline are continuous at the knots, where J is

the order of the spline.

A useful approach to employing splines for smoothing purposes begins by con-

sidering the residual sum of squares, a commonly used “goodness of fit” measure:

n∑

i=1

(Yi − µ̂(xi))
2. (1.8)

The smaller this quantity is, the better the fit. However, simply minimizing (1.8) will

not work as an estimator of µ since such a problem has infinitely many solutions. In

fact any function which interpolates the data will reduce (1.8) to zero. And aside

from issues of nonuniqueness, such an estimator would be unacceptably volatile.

The problems of nonuniqueness and rapid variation can be solved all at once by

additionally imposing a “roughness penalty” before minimization. Spline smoothing

defines roughness in terms of derivatives. For instance, if roughness is defined in

terms of the second derivative, the following quantity must be minimized:

n∑

i=1

(Yi − µ̂(xi))
2 + λ

∫
(µ̂′′(x))2dx, (1.9)

where λ > 0 is a tuning parameter. Methods for choosing λ exist and include gener-

alized cross-validation (Wahba 1977).

The minimizer of (1.9), which we denote µ̂s(x), is unique over the class of all

twice differentiable functions and is referred to as the cubic smoothing spline. The

roughness penalty could instead be defined in terms of higher-order derivatives which

lead to higher-order splines.

In minimizing (1.9) the knots correspond to the design points. Since smoothing

splines estimate derivatives self-consistently, the order of the spline must be larger

than the order of the derivative being estimated. A rule of thumb is that if q deriva-

6



tives are to be estimated, J should be at least 2q+3. This has a couple of implications.

One is that a smoothing spline estimator is not analytic. Second, since J is chosen

based on the number of derivatives, say q, that one desires to estimate, the smoothing

spline estimate of µ(x) will depend on q. That is, smoothing splines lack invariance

with respect to the number of derivatives one is interested in estimating. This is

bothersome not only conceptually but also computationally. For example, suppose

one estimates the first 2 derivatives and, following the rule of thumb, sets J = 7.

If, subsequently, an estimate of the fifth derivative is also requested, J = 7 will be

deemed inadequate. We will need to reset J to 13 and entirely new estimates of the

first two derivatives will have to be produced.

A smoothing spline estimator is linear in the observed responses. However, writing

such an estimator in the form of (1.4) is very difficult, though Silverman (1984) was

able to derive a tractable asymptotic approximation for the li.

1.6 Compound estimation

Compound estimation is a recent development by Charnigo and Srinivasan (2010a).

The method is designed especially for the case where one is interested in estimating

the mean response and one or more derivatives simultaneously. The technique involves

first defining “pointwise estimators” of µ(j)(a)/j! for 0 ≤ j ≤ J and a ∈ In where

In ⊂ X is a set of “centering points”. With these pointwise estimators denoted by

c̃j;a, a polynomial

µ̃J ;a(x) :=
J∑

j=0

c̃j;a(x − a)j

is then defined for each centering point. Then the compound estimator is defined to

be

µ∗(x) :=
∑

a∈In

Wa,n(x)µ̃J ;a(x), (1.10)

where

Wa,n(x) :=
exp[−β(x − a)2]∑

c∈In
exp[−β(x − c)2]

and β > 0 is a tuning parameter.
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The pointwise estimators may be defined in a number of ways. The restrictions

are only that they satisfy

sup
a∈In

MSE [c̃j;a] ≤ C n−2αj and sup
a∈In

|c̃j;a| ≤ C (1.11)

for some positive constants C, α0, . . . , αJ . Options for obtaining them include many

of the methods described in previous sections. Stone (1980) shows that if µ(x) has

J + 1 continuous derivatives, the xi are equispaced, and the ǫi are independent and

identically normally distributed, then (1.11) is satisfied by local regression estimators

with rectangular weights, that is with K(u) = I[−1,1](u), and h := ξn−1/(2J+3) for a

positive constant ξ.

Charnigo and Srinivasan (2010b) offer pointwise estimators that are inductive.

That is, given c̃0;a and c̃1;a for every a ∈ In, the formula for all subsequent c̃j;a depends

on c̃0;a, ..., c̃j−1;a, but not c̃j+1;a, c̃j+2;a, etc. Such estimators are also invariant: If one

computes the compound estimator and then decides that J should be increased,

the previously calculated pointwise estimators do not need to be re-calculated. For

example if c̃0;a, ..., c̃5;a are calculated with J = 5 and it is then determined that J

should instead be 7, c̃0;a, ..., c̃5;a remain the same. One simply needs to inductively

calculate the additional pointwise estimators c̃6;a, c̃7;1.

Compound estimation recovers derivatives self-consistently. If the pointwise es-

timators used to define the compound estimator satisfy (1.11), then the compound

estimator recovers the mean response and its first ⌊J/2⌋ derivatives consistently (in a

probabilistic sense). In fact, Charnigo and Srinivasan (2010a) show that if the point-

wise estimators satisfy (1.11) with αj := (J + 1 − j)/(2J + 3) for 0 ≤ j ≤ J (such is

the case for the estimators from local regression with rectangular weights described

above) and ν is an infinitesimally small positive number, then

sup
x∈I

∣∣∣∣
dj

dxj
µ∗(x) − µ(j)(x)

∣∣∣∣ = op

(
n(2j−J−1/2)/(2J+3)+ν

)
for 0 ≤ j ≤ ⌊J/2⌋,

where I is a compact interval contained in the interior of X .

The compound estimator as defined by (1.10) has the unfortunate feature shared

by all of nonparametric methods we have mentioned that the choice of J will depend

8



on how many derivatives one is interested in estimating. Thus, the estimate of µ(j)(x)

depends on if one is also interested in estimating µ(j+k)(x), for positive integers j and

k. Thus the compound estimator of (1.10) lacks invariance with respect to the number

of derivatives being estimated.

Charnigo and Srinivasan (2010b) thus propose the following “extended” com-

pound estimator:

µ∗
∞(x) :=

∑
a∈In

exp [−βn(x − a)2]
∑∞

j=0 c̃j;a(x − a)j

∑
a∈In

exp [−βn(x − a)2]
. (1.12)

Assume we use the inductive pointwise estimators with c̃0;a and c̃1;a chosen so that

they consistently estimate µ(a) and µ′(a), respectively. Then the extended compound

estimator (1.12) is invariant with respect to how many derivatives one is interested

in estimating.

At first one may object to the ∞ used in (1.12) as impractical. However, a clever

modification is to simply replace c̃j;a with

c̃j;a1n≥Nj
,

where {Nk}∞k=0 is a strictly increasing sequence of positive integers. Charnigo and

Srinivasan (2010b) do this and show that if there exist a positive integer n0 > 1,

a nonincreasing sequence of positive numbers {αj}∞j=0, and a sequence of positive

numbers {Kj}∞j=0 such that, for each j ≥ 0 and n ≥ n0,

sup
x∈I

∣∣µ(j)(x)
∣∣ /j! ≤ K02

−j,

sup
a∈In

MSE[c̃j;a] ≤ Kjn
−2αj , and

sup
a∈In

|c̃j;a| ≤ K02
−j,

the resulting extended compound estimator consistently estimates every derivative of

µ(x).

However, compound estimation does pay a price for its self-consistency and ex-

tended compound estimation pays a further price for its invariance with respect to

the number of derivatives being estimated. That price is slower convergence. The
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optimal (pointwise) rate of convergence for a mean response that has J + 1 contin-

uous derivatives is Op(n
(j−J−1)/(2J+3)) for j ≤ J (Stone 1980). As noted above, the

self-consistent compound estimator has a convergence rate of op(n
(2j−J−1/2)/(2J+3)+ν)

for j ≤ ⌊J/2⌋. The self-consistent and invariant extended compound estimator has

an even slower convergence rate of Op

(
n−(2j+1)(log n)ξ−1

)
, where ξ ∈ (0, 1) is arbitrary

but fixed.

1.7 Confidence bands in nonparametric regression

Just as with parametric techniques, nonparametric regression is not strictly concerned

with simply estimating the mean response function. There may be interest in con-

structing a region which contains the mean response function with a desired level of

confidence. Such a region is usually defined by upper and lower bounds referred to as

confidence bands. To be precise, L(x) and U(x) form 100(1 − α)% confidence bands

for the mean response function µ(x) if

P (L(x) ≤ µ(x) ≤ U(x), ∀x) = 1 − α. (1.13)

To emphasize that the bands are valid for all values of the covariate at the same time,

bands satisfying (1.13) are sometimes referred to as simultaneous confidence bands.

If equality in (1.13) is replaced by ≥, the bands are said to be conservative.

Efforts to place confidence bands around the estimated mean response rely on,

among other considerations, a method to account for the bias, i.e. to adjust for the

discrepancy between the expected value of the nonparametric technique and the true

mean response. One such method, in the general case of nonparametric estimators

that are linear in the observed response, utilizes bounds on derivatives which in turn

are used to bound the bias (Hall and Titterington 1988). In the special case of

kernel regression, Eubank and Speckman (1993) use asymptotic results to motivate

an estimate of the bias. In particular, since under mild conditions

E [µ̂h(x)] ∼ µ(x) + h2Bµ′′(x)

10



where µ̂h(x) is a kernel density estimator with bandwidth h and

B =
1

2

∫
u2K(u)du,

it is proposed that the bias be estimated by

b̂h,λ(x) = h2Bµ̂′′
λ(x),

where

µ̂′′
λ(x) =

1

nλ

n∑

i=1

YiK
∗

(
x − xi

λ

)
,

and K∗ is a square-integrable kernel that satisfies
∫

ujK∗(u)du = 0 for j = 0, 1 and
∫

u2K∗(u)du = length(X ). The bands they propose are then defined as:

µ̂h(x) − b̂h(x) ± V√
nh

[√
−2 log h +

1√
−2 log h

(C + xα)

]
σ

where

V 2 =

∫
K(u)2du,

C = log

(
1

2π

[∫
K ′(u)2du/

∫
K(u)2du

]1/2
)

,

and

xα = −log

(−log(1 − α)

2

)
.

If the variance is unknown, they estimate it by any
√

n-consistent estimator.

They prove that bands produced by this method achieve the nominal coverage

probabilities asymptotically. They also demonstrate empirically that such bands pro-

vide coverage probabilities nearer to the nominal level than bands from a Bonferroni-

type approach that does not account for bias correction. The Bonferroni approach is

asymptotically conservative.

To our knowledge, Claeskens and Van Keilegom (2003) are the only authors to

attempt confidence bands for the first derivative of µ(x). They do so using local poly-

nomial estimation in the maximum likelihood setting. Importantly, their estimators

are not self-consistent. In Chapter 3, we extend the work of Knafl et. al (1985) to

provide confidence bands for derivative estimates in the case where the estimator is

linear in the observed responses and self-consistent.
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An issue when using confidence bands in practice is that the variance must be

estimated. When the ǫi’s are assumed to be independent normal with common vari-

ance σ2, many such estimates are available. In the following chapters, we use the

variance estimator from Loader (1999):

σ̂2 :=

∑n
i=1 [Yi − µ̂(xi)]

2

n −
∑n

m=1 lm(xm)
, (1.14)

where denominator of (1.14) can be interpreted as the degrees of freedom.

1.8 Applications of nonparametric derivative estimation

Of course, estimating derivatives nonparametrically is more than a mere intellectual

exercise. The applications are important and wide-ranging; we describe two of them

below.

Ramsay and Silverman (2002) analyze human growth data by estimating height,

velocity, and acceleration curves. This application demonstrates the importance of

self-consistency (Charnigo and Srinivasan 2009a): If one is trying to locate the peak

of a growth spurt, an estimator that is not self-consistent will give different answers

depending on whether one uses the estimated height, velocity, or acceleration curve

to locate the peak.

Another application is the characterization of nanoparticles by scattering profiles

(Francoeur et al 2007), where the scattering profile is a mean response function with

far field recovery angle as the covariate. Nanoparticles with different configurations

will produce different scattering profiles. (Configuration refers to a specific value

of a characteristic such as size or agglomeration level.) Thus, we can obtain an

estimate of the scattering profile for a given unknown configuration of nanoparticles

and compare it to scattering profiles for known configurations. We would then classify

the unknown configuration based on the proximity of its estimated scattering profile

to the scattering profiles for known configurations. This idea is illustrated in Figure

1.1, taken from Charnigo et al (2010). In actuality, we do not observe single elements

of scattering profiles at each θ, but rather a 4× 4 matrix of scattering elements, each

of which can be viewed as a scattering profile and used for characterization purposes.
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Previous research suggests that the M11, M12, M33, and M34 profiles are most useful

(Francouer et al 2007, Manickavasagam and Menguc 1997).

Figure 1.1: Characterization of nanoparticles by scattering profiles
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The scattering profile for the nanoparticles with unknown configuration (blue dot-
dash) more closely resembles the scattering profile for the nanoparticles with known
configuration “A” (red dash) than that for the nanoparticles with known configuration
“B” (green dot). Hence, one concludes that the unknown configuration is much closer
to the known configuration A than to the known configuration B.

Derivatives of scattering profiles can be even more effective for characterization

purposes (Charnigo et al 2007), and consideration of the scattering profiles and one

or more derivatives simultaneously can be more effective still (Charnigo et al 2010).

However, not all ranges of the covariate are equally valuable for characterization.

In Chapter 5 we explore methods for identifying a proper subset of X most useful for

characterization purposes.

Copyright c© Benjamin Hall, 2010.
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Chapter 2 Generalized C(p)

2.1 Previous work by Charnigo and Srinivasan

Suppose that we observe noisy data

Yi = µ(xi) + ǫi for i ∈ {1, . . . , n}, (2.1)

where the design points xi are equispaced on a compact interval X ⊂ R, µ(x) is a

real-valued function defined on X that has (q + 1) continuous derivatives for some

positive integer q, and the ǫi are independent zero-mean random errors with common

variance σ2 ∈ (0,∞).

To provide a method for tuning parameter selection when interest lies in estimat-

ing dq

dxq µ(x) with an estimator that is both linear in the observed responses and with

which derivatives are estimated self-consistently, Charnigo and Srinivasan (2008) have

proposed generalized C(p) as a data-based surrogate for
∑n

i=1

[
d̂q

dxq µ(xi) − dq

dxq µ(xi)
]2

.

Such a quantity is important because simply controlling data-based estimates of
∑n

i=1 [µ̂(xi) − µ(xi)]
2 will not guarantee that dq

dxq µ(x) is well estimated.

Generalized C(p) is a penalized residual sum of squares type quantity. The key

ingredient in the ordinary C(p) (1.6) criterion is the Yi, which are noise-corrupted

versions of the true mean response µ(x). Therefore, an attempt to extend the C(p)

criterion to estimation of derivatives will require inputs that resemble noise-corrupted

versions of the appropriate derivative. Hence the development of generalized C(p)

begins with the definition of empirical derivatives which will serve as such inputs.

For a positive integer k, empirical first derivatives are defined as

Y
(1)
i;k :=

k∑

j=1

wj

(
Yi+j − Yi−j

xi+j − xi−j

)
with wj = j2/

k∑

l=1

l2 for j ∈ {1, . . . , k}, (2.2)

and can be viewed as noise corrupted versions of µ′(xi). The motivation underlying

this definition is that the ordinary first order difference quotient (Yi−Yi−1)/(xi−xi−1)

will have a prohibitively large variance. Empirical derivatives are appealing because
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with appropriate weights (i.e. wj) they are variance-reducing. To this end, the wj in

the above definition are chosen to minimize the variance.

Higher order empirical derivatives are similarly defined as

Y
(q)
i;k :=

k∑

j=1

wj

(
Z

(q−1)
i+j;j − Z

(q−1)
i−j;j

xi+j − xi−j

)
, (2.3)

where Z
(0)
i;j := Yi and Z

(p)
i;j :=

(
Z

(p−1)
i+j;j − Z

(p−1)
i−j;j

)
/ (xi+j − xi−j) for any positive integer

p < q and (2.3) can be viewed as noise corrupted versions of µ(q)(xi).

Defining the weights for higher-order empirical derivatives is more complicated.

Charnigo and Srinivasan (2008) again propose using the variance-minimizing weights.

Unfortunately, these weights for empirical second derivatives are shown to be the

solution to

Ak




w2

w3

...

wk




=




1

1
...

1




,

where Ak is the (k − 1) × (k − 1) matrix whose (r − 1, j − 1) element is

[
2

(
1 − 1

r2

)(
1 − 1

j2

)
+ 1 + 1r=j

1

r4

]
/

[
1 + 2

(
1 − 1

r2

)]

for r, j ∈ {2, . . . , k} and w1 = 1 −
∑k

j=2 wj . The weights are unavailable in a simple

closed-form. The complications in the calculations of the variance-minimizing weights

for higher order derivatives arise from the fact that the summands of (2.3) may be

correlated, whereas the summands of (2.2) are not. In contrast to the variance-

minimizing weights of empirical first derivatives, the variance-minimizing weights of

empirical second derivatives can be both positive and negative. We further discuss the

choice of the wj for second and higher order empirical derivatives in the subsequent

section.

The ability of empirical derivatives to mimic noise-corrupted versions of the true

derivatives depends on the choice of k. A small k may not reduce the variance

sufficiently, while a large k may introduce excessive bias. In addition, definition (2.3)

does not work when i < qk + 1 or i > n − qk; some kind of modification must be
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made. A large k will exacerbate these boundary issues. Also, as the order of the

derivative increases, the size of k necessary to control the variance increases as well.

The choice of k is discussed further in the subsequent section.

Empirical derivatives are employed as inputs for the generalized C(p) criterion.

For each i, m ∈ {1, . . . , n}, let ci,m be defined so that
∑n

m=1 ci,mYm = Y
(q)
i;k and let

lm(xi) be defined as in (1.4). Then the generalized C(p) criterion is defined as

GCP (Y, µ̂) (2.4)

:=

n∑

i=1

si

(
n∑

m=1

ci,mYm − d̂q

dxq
µ(xi)

)2

+ σ2

n∑

i=1

si

n∑

m=1

(
2ci,m

dq

dxq
lm(xi) − c2

i,m

)
,

where Y is shorthand for Y1, . . . , Yn, and for each i, si ≥ 0, perhaps defined as

si := 1qk+1≤i≤n−qk to alleviate boundary issues. Since empirical derivatives are prox-

ies for noise-corrupted observations of the true derivatives, generalized C(p) can

be viewed as a penalized residual sum of squares for the fitted derivative of or-

der q. The penalty is included in order to match generalized C(p) with its target,
∑n

i=1 si

(
dq

dxq µ(xi) − d̂q

dxq µ(xi)
)2

, in expected value up to a remainder term. Thus if

{µ̂λ : λ ∈ Λ} is a family of estimators indexed by a scalar or vector tuning pa-

rameter λ belonging to a finite set Λ, λ̂ := arg minλ∈Λ GCP (Y, µ̂λ). is expected

to be a good choice for λ (i.e.
∑n

i=1 si

(
dq

dxq µ(xi) − ̂dq

dxq µλ̂(xi)
)2

will be close to

minλ∈Λ

∑n
i=1 si

(
dq

dxq µ(xi) − ̂dq

dxq µλ(xi)
)2

).

The success of generalized C(p) is investigated using simulation studies below.

2.2 Properties of empirical derivatives

As we have noted, the choice of k when defining empirical derivatives drives a bias-

variance tradeoff. In this section we investigate this relationship and demonstrate

both empirically and asymptotically that a balance between the bias and variance

is achievable, with the resultant empirical derivatives appearing as noise corrupted

versions of the true derivative. We begin with a discussion of the variance-minimizing

weights for higher order empirical derivatives.
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Similar to those for empirical second derivatives, the variance minimizing weights

for empirical third derivatives and empirical fourth derivatives are the solutions to

sets of linear equations and are unavailable in simple closed-form. These weights are

defined in the following propositions.

Proposition 2.2.1 Assume that model (2.1) holds. Then the variance of Y
(3)
i;k from

expression (2.3), where 3k + 1 ≤ i ≤ n − 3k, is minimized when w1 = 1 −∑k
j=2 wj

and

Ak




w2

w3

...

wk




=




1

1
...

1




,

where Ak is the (k − 1) × (k − 1) matrix whose (r − 1, j − 1) element is
[
20

(
1 + 1r=j

1

r6

)
+

6

33

(
1r=3 + 1j=3 − 1j=3r

1

r6
− 1r=3j

1

j6

)]
/

[
20 +

6

33
1r=3

]

for r, j ∈ {2, . . . , k}.

Proof:. Let gn := 2n−1 × length(X ). Then xi+j − xi−j = gnj and the variance of

Y
(3)
i;k is

2σ2g−6
n

k∑

j=1

[
10w2

j

j6
− 6wjw3j

33j6
13j≤k

]
, (2.5)

Substituting 1−∑k
j=2 wj for w1 in (2.5) and setting the partial derivative with respect

to wr, r ∈ {2, . . . , k}, equal to 0 yields

40σ2g−6
n

(
k∑

j=2

wj − 1 +
wr

r6

)

− 12

33
σ2g−6

n

(
−w313≤k +

{
1 −

k∑

j=2

wj

}
1r=3 +

k∑

j=2

{
w3j

j6
13j≤k,r=j +

wj

j6
1r=3j

})

= 0

from which we obtain
k∑

j=2

wj

[
20

(
1 +

1r=j

r6

)
+

6

33

(
1r=3 + 1j=3 −

1j=3r

r6
− 1r=3j

j6

)]
/

[
20 +

6

33
1r=3

]
= 1.

(2.6)
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Writing out the k − 1 equations of the form (2.6) as r ranges over {2, . . . , k}, we

acquire the matrix equation

Ak




w2

w3

...

wk




=




1

1
...

1




.

This completes the proof since the fact that (2.5) approaches ∞ as maxj∈{1,...,k} |wj| →
∞ implies that a global minimizer exists and is found by setting partial derivatives

equal to 0.

Proposition 2.2.2 Assume that model (2.1) holds. Then the variance of Y
(4)
i;k from

expression (2.3), where 4k + 1 ≤ i ≤ n − 4k, is minimized when w1 = 1 −
∑k

j=2 wj

and

Ak




w2

w3

...

wk




=




1

1
...

1




,

where Ak is the (k − 1) × (k − 1) matrix whose (r − 1, j − 1) element is

[(
140 − 72

r4 − 72
j4 + 72

(rj)4

)
+ 68

1r=j

r8 +
(
1j=2 + 1r=2 − 1j=2r

r8 − 1r=2j

j8

)]

[
140 − 72

r4 + 1r=2

]

for r, j ∈ {2, . . . , k}.

Proof:. Let gn := 2n−1 × length(X ). Then xi+j − xi−j = gnj and the variance of

Y
(4)
i;k is

σ2g−8
n


36

(
k∑

j=1

wj

j4

)2

+ 2

k∑

j=1

(
17w2

j

j8
− 8wjw2j

24j8
12j≤k

)
 , (2.7)
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Substituting 1−
∑k

j=2 wj for w1 in (2.7) and setting the partial derivative with respect

to wr, r ∈ {2, . . . , k}, equal to 0 yields

72σ2g−8
n

(
1 −

k∑

j=2

wj +
k∑

j=2

wj

j4

)(
1

r4
− 1

)

+ 68σ2g−8
n

(
k∑

j=2

wj − 1 +
wr

r8

)

− 16

24
σ2g−8

n

(
−w2 +

{
1 −

k∑

j=2

wj

}
1r=2 +

k∑

j=2

{
w2j

j8
12j≤k,r=j +

wj

j8
1r=2j

})

= 0

from which we obtain

∑k
j=2 wj

[(
140 − 72

r4 − 72
j4 + 72

(rj)4

)
+ 68

1r=j

r8 + 16
24

(
1j=2 + 1r=2 − 1j=2r

r8 − 1r=2j

j8

)]

[
140 − 72

r4 + 16
24 1r=2

] = 1.

(2.8)

Writing out the k − 1 equations of the form (2.8) as r ranges over {2, . . . , k}, we

acquire the matrix equation

Ak




w2

w3

...

wk




=




1

1
...

1




.

This completes the proof since the fact that (2.7) approaches ∞ as maxj∈{1,...,k} |wj| →
∞ implies that a global minimizer exists and is found by setting partial derivatives

equal to 0.

The calculations of the variance-minimizing weights become increasingly difficult

as the order of the empirical derivative and as k increase. Thus, rather than defining

the weights to be variance-minimizing, we propose defining empirical derivatives of

order q to have the form (2.3) with weights

wj :=





j2q/
∑k

l=1 l2q : q odd

(j2q−1
∑k

l=1
lq−j2q

∑k
l=1

lq−1)
(
∑k

l=1
l2q−1

∑k
l=1

lq−
∑k

l=1
l2q
∑k

l=1
lq−1)

: q even
(2.9)
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for j ∈ {1, . . . , k}. Formula (2.9) with q = 1 is compatible with the definition of

empirical first derivatives previously given.

The weights of definition (2.9) are much easier to compute than the variance-

minimizing weights. As we will see, their simple closed form also allows us to demon-

strate some nice asymptotic properties of empirical derivatives. Importantly, the

weights of definition (2.9) are fairly similar to the variance minimizing weights. Ta-

ble 2.1 compares, for k ∈ {2, 3, 4} and q ∈ {1, 2, 3, 4}, the weights we use to define

empirical derivatives to the weights that minimize the variance of Y
(q)
i;k .

Table 2.1: Weights for empirical derivatives

k = 2 k = 3 k = 4
q, Method j = 1 j = 2 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 4
1, Minimize .200 .800 .071 .286 .643 .033 .133 .300 .533
1, Empirical .200 .800 .071 .286 .643 .033 .133 .300 .533
2, Minimize -.143 1.143 -.071 .000 1.071 -.037 -.069 .136 .970
2, Empirical -.333 1.333 -.095 -.190 1.286 -.037 -.148 0 1.185
3, Minimize .015 .985 .011 .072 .916 .002 .013 .163 .822
3, Empirical .015 .985 .001 .081 .918 .000 .013 .149 .838
4, Minimize -.022 1.022 -.005 -.044 1.050 -.002 -.012 .015 .999
4, Empirical -.067 1.067 -.003 -.180 1.183 .000 -.032 -.192 1.224

Method Minimize refers to choosing w1, . . . , wk so that the variance of Y
(q)
i;k in expres-

sion (2.3) is minimized, which entails solving a system of linear equations. Method
Empirical refers to choosing w1, . . . , wk according to prescription (2.9) for empirical
derivatives.

Some noteworthy features are shared by both the weights of Definition 2.9 and

the variance minimizing weights. First, the weights are both positive and negative

when q is even. The weights are all positive when q is odd. As a further illustration

beyond Table 2.1, panel a of figure 2.1 shows that the first 20 weights from formula

(2.9) are negative when q = 2 and k = 30. Likewise, the first 17 variance-minimizing

weights are negative. In contrast, panel b of Figure 2.1 illustrates that the weights

for empirical derivatives are all positive when q is odd. Second, the largest weights

are the last few (i.e., those for which the index j is closest to k). However, even

these become small as k increases. This is shown for q = 2 in panel a of Figure 2.2,

which reveals that wk, wk−1, and wk−2 from formula (2.9) are eventually monotone
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decreasing in k. The variance-minimizing weights exhibit similar behavior. Panel b

of Figure 2.2 demonstrates that wk, wk−1, and wk−2 from formula (2.9) become small

with large k when q = 3.

Figure 2.1: Comparison of weights for empirical derivatives
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(a) Weights for k=30 and q=2 as a function of the index j

Variance minimizing weights
Weights for empirical derivatives
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(b) Weights for k=30 and q=3 as a function of the index j

Variance minimizing weights
Weights for empirical derivatives

Panel a shows w1, . . . , w30 that minimize the variance of Y
(2)
i;30 in expression (2.3) as

well as w1, . . . , w30 that define second order empirical derivatives based on formula
(2.9). Panel b shows w1, . . . , w30 that minimize the variance of Y

(3)
i;30 in expression (2.3)

as well as w1, . . . , w30 that define third order empirical derivatives based on formula
(2.9).
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Figure 2.2: The largest weights
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(a) Dominant weights for q=2 as a function of k
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(b) Dominant weights for q=3 as a function of k

w_k (Variance minimizing)
w_{k−1} (Variance minimizing)
w_{k−2} (Variance minimizing)
w_k (For empirical derivatives)
w_{k−1} (For empirical derivatives)
w_{k−2} (For empirical derivatives)

Panel a shows, as a function of k ∈ {1, . . . , 50}, the wk, wk−1, and wk−2 with which

the variance of Y
(2)
i;k in expression (2.3) is minimized as well as the wk, wk−1, and wk−2

that define second order empirical derivatives based on formula (2.9). Panel b shows,
as a function of k ∈ {1, . . . , 50}, the wk, wk−1, and wk−2 with which the variance of

Y
(3)
i;k in expression (2.3) is minimized as well as the wk, wk−1, and wk−2 that define

third order empirical derivatives based on formula (2.9).
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We now examine some asymptotic properties of empirical derivatives. The follow-

ing proposition and corollary examine the variance of Y
(1)
i;k .

Proposition 2.2.3 Assume that model (2.1) holds. Suppose that there exist α ∈
(0, 1) and c ∈ (0,∞) such that kn−α → c as n → ∞. Then the empirical first

derivatives with k + 1 ≤ i ≤ n − k have O (n2−3α) variances.

Proof: The variance of Y
(1)
i;k is

σ2n2

2 × length(X )2





(
1 −

k∑

j=2

wj

)2

+

k∑

j=2

w2
j

j2



 . (2.10)

Substituting j2/
∑k

l=1 l2 for wj and using the identity
∑k

j=1 j2 = k3/3 + k2/2 + k/6,

we simplify expression (2.10) to

σ2n2

2 × length(X )2

k∑

j=1

j4

j2(
∑k

l=1 l2)2
=

σ2n2

2 × length(X )2

1

k3/3 + k2/2 + k/6
= O

(
n2k−3

)
,

(2.11)

The last equality yields the desired result.

Proposition 2.2.3 would also hold if variance-minimizing weights were employed

since such weights by definition minimize expression (2.10). Equality (2.11) yields an

immediate corollary.

Corollary 2.2.1 Suppose that there exists c ∈ (0,∞) such that kn−2/3 → c as

n → ∞. Then, under the conditions of Proposition 2.2.3, the variance of Y
(1)
i;k con-

verges to 3σ2/(2c3 × length(X )2).

Charnigo and Srinivasan (2008) show that under the conditions of Proposition

2.2.3 empirical first derivatives have O (nα−1) biases. Thus, both the variances and

the biases of the empirical first derivatives tend to 0 when α ∈ (2/3, 1). The balancing

of the variance and the bias for empirical first derivatives is demonstrated visually in

the following figure.
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Figure 2.3: Empirical first derivatives
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(a) Data versus mean response
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(b) Ordinary difference quotients
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(c) Empirical first derivatives (k=2)
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(d) Empirical first derivatives (k=5)
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(e) Empirical first derivatives (k=8)
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(f) Empirical first derivatives (k=50)

Panel a shows a simulated data set of size 500 from model (2.1) with µ(x) :=

cos(2πx) + sin(2πx) + log(4/3 + x), equispaced xi ∈ [−1, 1], and ǫi
iid∼ N(0, 0.12).

Panel b displays ordinary first order difference quotients, which are barely distin-
guishable from noise; as a reference, µ′(x) is plotted against x for x ∈ [−1, 1]. Panels
c through f depict empirical first derivatives for k ∈ {2, 5, 8, 50}. A careful look at
panel f reveals that with k = 50 the negligible variance has come at the price of clear
bias, at least for some values of the covariate x.
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We now proceed with similar results for empirical second derivatives. The follow-

ing proposition and corollary examine the variance of Y
(2)
i;k .

Proposition 2.2.4 Assume that model (2.1) holds. Suppose that there exist α ∈
(0, 1) and c ∈ (0,∞) such that kn−α → c as n → ∞. Then the empirical second

derivatives with 2k + 1 ≤ i ≤ n − 2k have O (n4−5α) variances.

Proof. Let gn := 2n−1 × length(X ). The variance of Y
(2)
i;k is

σ2g−4
n




k∑

j=1

2w2
j

j4
+ 4

(
k∑

j=1

wj

j2

)2

 . (2.12)

Substituting into (2.12) the weights prescribed by (2.9) yields

O(n4)

k∑

j=1

1

j4

(
j3
∑k

l=1 l2 − j4
∑k

l=1 l
∑k

l=1 l2
∑k

l=1 l3 −∑k
l=1 l4

∑k
l=1 l

)2

+O(n4)

[
k∑

j=1

1

j2

(
j3
∑k

l=1 l2 − j4
∑k

l=1 l
∑k

l=1 l2
∑k

l=1 l3 −
∑k

l=1 l4
∑k

l=1 l

)]2

= O(n4)
k∑

j=1

1

j4

(
j3O(k−4) + j4O(k−5)

)2

+O(n4) [ 0 ]2

= O(n4)

k∑

j=1

(
j2O(k−8) + j3O(k−9) + j4O(k−10)

)

= O(n4k−5), (2.13)

which implies the desired result.

Careful bookkeeping of the coefficients involved in (2.13) yields the following corol-

lary.

Corollary 2.2.2 Suppose that there exists c ∈ (0,∞) such that kn−4/5 → c as

n → ∞. Then, under the conditions of Proposition 2.2.4, the variance of Y
(2)
i;k con-

verges to 5σ2/(3c5 × length(X )4).
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The following proposition examines the bias of Y
(2)
i;k .

Proposition 2.2.5 Under the conditions of Proposition 2.2.4, the empirical second

derivatives have O (nα−1) biases.

Proof. Let B := supx∈X

∣∣∣ d3

dx3 µ(x)
∣∣∣. The compactness of X implies that B is finite.

Noting that

µ(xi+2j) = µ(xi) + (gnj)µ′(xi) + (gnj)
2µ′′(xi)/2 + (gnj)

3 d3

dx3
µ(ξi,i+2j)/6

and

µ(xi−2j) = µ(xi) − (gnj)µ′(xi) + (gnj)
2µ′′(xi)/2 − (gnj)3 d3

dx3
µ(ξi,i−2j)/6

for some ξi,i+2j ∈ [xi, xi+2j ] and ξi,i−2j ∈ [xi−2j , xi], we find that the absolute value of

the bias of Y
(2)
i;k is

∣∣∣∣∣
k∑

j=1

wj

{
µ(xi+2j) − 2µ(xi) + µ(xi−2j)

(gnj)2
− µ′′(xi)

}∣∣∣∣∣

≤ B
k∑

j=1

|wj|
gnj

3

≤ O(n−1)
k∑

j=1

j
j3
∑k

l=1 l2 + j4
∑k

l=1 l∣∣∣
∑k

l=1 l3
∑k

l=1 l2 −
∑k

l=1 l4
∑k

l=1 l
∣∣∣

= O(n−1)
k∑

j=1

(
j4O(k−4) + j5O(k−5)

)

= O(kn−1).

The last equality completes the proof.

Thus, both the variances and the biases of the empirical second derivatives tend

to 0 when α ∈ (4/5, 1). The balancing of the variance and the bias for empirical

second derivatives is demonstrated visually in the following figure.
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Figure 2.4: Empirical second derivatives
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(a) Second order difference quotients
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(b) Empirical 2nd derivatives (k=2)
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(c) Empirical 2nd derivatives (k=7)
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(d) Empirical 2nd derivatives (k=12)

−1.0 −0.5 0.0 0.5 1.0

−
5

0
0

5
0

x

se
co

n
d

 d
e

ri
va

tiv
e

(e) Empirical 2nd derivatives (k=18)
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(f) Empirical 2nd derivatives (k=50)

Panel a shows ordinary second order difference quotients based on the simulated data
set from Figure 2.3; as a reference, µ′′(x) is plotted against x for x ∈ [−1, 1]. Panel
b shows empirical second derivatives with k = 2. Panels c through f show empirical
second derivatives with k ∈ {7, 12, 18, 50} and attention restricted to 2k + 1 ≤ i ≤
n−2k. Taking k = 12 yields empirical second derivatives of comparable visual quality
to the empirical first derivatives in Figure 2.3 with k = 5, demonstrating that a larger
q warrants a larger k. Taking k = 50 goes too far, however, yielding empirical second
derivatives that seriously understate the local extrema of µ′′(x). Another problem
with taking k as large as 50 is that the restriction 2k + 1 ≤ i ≤ n − 2k then wipes
out 40% of the values of the index i.

27



The following propositions for empirical third derivatives are similar to those for

empirical first and second derivatives.

Proposition 2.2.6 Assume that model (2.1) holds. Suppose that there exist α ∈
(0, 1) and c ∈ (0,∞) such that kn−α → c as n → ∞. Then the empirical third

derivatives with 3k + 1 ≤ i ≤ n − 3k have O (n6−7α) variances.

Proof. Let gn := 2n−1 × length(X ). The variance of Y
(3)
i;k is

27σ2g−6
n

k∑

j=1

[
10w2

j

(2j)6
− 6w3jwj

123j6
13j≤k

]
,

which is bounded above by

27σ2g−6
n

k∑

j=1

10w2
j

(2j)6
. (2.14)

Substituting into (2.14) the weights prescribed by (2.9) yields

O(n6)

k∑

j=1

1

j6

(
j6

∑k
l=1 l6

)2

= O(n6)

k∑

j=1

1

j6
j12O(k−14)

= O(n6k−7), (2.15)

which implies the desired result.

Careful bookkeeping of the coefficients involved in (2.15) yields the following corol-

lary.

Corollary 2.2.3 Suppose that there exists c ∈ (0,∞) such that kn−6/7 → c as

n → ∞. Then, under the conditions of Proposition 2.2.6, the variance of Y
(3)
i;k is

asymptotically bounded above by 35σ2/(16c7 × length(X )6).

Proposition 2.2.7 Under the conditions of Proposition 2.2.6, the empirical third

derivatives have O (nα−1) biases.
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Proof . Let B := supx∈X

∣∣∣ d4

dx4 µ(x)
∣∣∣. The compactness of X implies that B is finite.

We have

µ(xi+3j) = µ(xi) + (1.5gnj)µ
′(xi) + (1.5gnj)2µ′′(xi)/2

+(1.5gnj)
3 d3

dx3
µ(xi)/6 + (1.5gnj)

4 d4

dx4
µ(ξi,i+3j)/24,

µ(xi+j) = µ(xi) + (0.5gnj)µ
′(xi) + (0.5gnj)2µ′′(xi)/2

+(0.5gnj)
3 d3

dx3
µ(xi)/6 + (0.5gnj)

4 d4

dx4
µ(ξi,i+j)/24,

µ(xi−j) = µ(xi) − (0.5gnj)µ′(xi) + (0.5gnj)
2µ′′(xi)/2

−(0.5gnj)3 d3

dx3
µ(xi)/6 + (0.5gnj)

4 d4

dx4
µ(ξi,i−j)/24,

and

µ(xi−3j) = µ(xi) − (1.5gnj)µ
′(xi) + (1.5gnj)

2µ′′(xi)/2

−(1.5gnj)3 d3

dx3
µ(xi)/6 + (1.5gnj)4 d4

dx4
µ(ξi,i−3j)/24

for some ξi,i+3j ∈ [xi, xi+3j ], ξi,i+j ∈ [xi, xi+j ], ξi,i−j ∈ [xi−j , xi], and ξi,i−3j ∈ [xi−3j , xi].

As such, we find that the absolute value of the bias of Y
(3)
i;k is

∣∣∣∣∣
k∑

j=1

wj

{
µ(xi+3j) − 3µ(xi+j) + 3µ(xi−j) − µ(xi−3j)

(gnj)3
− d3

dx3
µ(xi)

}∣∣∣∣∣

≤ B

k∑

j=1

wj
7gnj

16

= O(n−1)

k∑

j=1

j
j6

∑k
l=1 l6

= O(n−1)

k∑

j=1

j7O(k−7)

= O(kn−1).

The last equality completes the proof.

Thus, both the variances and the biases of the empirical third derivatives tend to

0 when α ∈ (6/7, 1). The balancing of the variance and the bias for empirical third

derivatives is demonstrated visually in the following figure.
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Figure 2.5: Empirical third derivatives
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(a) Ordinary 3rd difference quotients
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(b) Empirical 3rd derivatives (k=12)
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(c) Empirical 3rd derivatives (k=15)

−1.0 −0.5 0.0 0.5 1.0

−
4

0
0

−
2

0
0

0
2

0
0

4
0

0

x

th
ir
d

 d
e

ri
va

tiv
e

(d) Empirical 3rd derivatives (k=18)

−1.0 −0.5 0.0 0.5 1.0

−
4

0
0

−
2

0
0

0
2

0
0

4
0

0

x

th
ir
d

 d
e

ri
va

tiv
e

(e) Empirical 3rd derivatives (k=21)
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(f) Empirical 3rd derivatives (k=35)

Panel a shows ordinary third order difference quotients based on the simulated data
set from Figure 2.3; as a reference, µ′′′(x) is plotted against x for x ∈ [−1, 1]. Panels b
through f show empirical third derivatives with k ∈ {12, 15, 18, 21, 35} and attention
restricted to 3k + 1 ≤ i ≤ n − 3k. Taking k = 18 yields empirical third derivatives
of comparable visual quality to the empirical second derivatives in Figure 2.4 with
k = 12, demonstrating once again that a larger q warrants a larger k. On the other
hand, even taking k = 35 goes too far and bias becomes a serious problem. This
indicates that the choice of k becomes more delicate as q increases.

The following propositions generalize the previous results for the variance of em-

pirical derivatives.

Proposition 2.2.8 Assume that model (2.1) holds. Suppose that there exist α ∈
(0, 1) and c ∈ (0,∞) such that kn−α → c as n → ∞. Then if q is odd and 3 ≤ q ≤ 7,

the empirical qth derivatives with qk +1 ≤ i ≤ n− qk have O
(
n2q−(2q+1)α

)
variances.
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Proof. Let gn := 2n−1 × length(X ). If q is odd and 3 ≤ q ≤ 7, then the variance

of Y
(q)
i;k is

2σ2g−2q
n

k∑

j=1





[∑ q

2
− 1

2

a=0

(
q
a

)2]
w2

j

j2q

+2

q

2
− 3

2∑

a=0

q

2
− 1

2∑

b=a+1

[
(−1)a+b

(
q
a

)(
q
b

)
w(q−2a)jw(q−2b)j

(q − 2a)q(q − 2b)qj2q

]
1[(q−2a)j≤k]





= 2σ2g−2q
n

k∑

j=1




[∑ q

2
− 1

2

a=0

(
q
a

)2]
w2

j

j2q




+
4σ2g−2q

n

(
∑k

l=1 l2q)2

k∑

j=1

j2q

q
2
− 3

2∑

a=0

q
2
− 1

2∑

b=a+1

(−1)a+b

(
q

a

)(
q

b

)
(q − 2a)q(q − 2b)q1[(q−2a)j≤k]

≤ 2σ2g−2q
n

k∑

i=1




[∑ q

2
− 1

2

a=0

(
q
a

)2]
w2

i

i2q


 (2.16)

=
2σ2g−2q

n

[∑ q

2
− 1

2

a=0

(
q
a

)2]

∑k
j=1 j2q

=
2σ2g−2q

n

[∑ q

2
− 1

2

a=0

(
q
a

)2]

(k2q+1)/(2q + 1)
[1 + o(1)] (2.17)

= O(n2qk−(2q+1))

which yields the desired result. Line (2.16) is established in Lemma 2.2.1. Line (2.17)

uses the fact that
∑k

j=1 jm = km+1/(m+1)+O(km) where m is a nonnegative integer.

Lemma 2.2.1 For all odd q ≥ 3,

q

2
− 3

2∑

a=0

q

2
− 1

2∑

b=a+1

[
(−1)a+b

(
q

a

)(
q

b

)
(q − 2a)q(q − 2b)q

]
1[(q−2a)j≤k] ≤ 0.

Proof. First, note that

(
q
x

)
(q − 2x)q

(
q

x+1

)
(q − 2(x + 1))q

=
x + 1

q − x

(
q − 2x

q − 2x − 2

)q

(2.18)
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is positive and increasing for all x < (q − 1)/2 where x is a nonnegative integer.

Hence, for such x, the quantity
(

q
x

)
(q − 2x)q is decreasing in x if and only if (2.18) is

greater than 1. This implies that once
(

q
x

)
(q − 2x)q becomes decreasing, it remains

decreasing for all subsequent x < (q − 1)/2. Thus the quantity
(

q
x

)
(q − 2x)q must

satisfy one of the following three cases:

Case 1:
(

q
x

)
(q − 2x)q is increasing for 0 ≤ x ≤ (q − 1)/2,

Case 2:
(

q
x

)
(q − 2x)q is decreasing for 0 ≤ x ≤ (q − 1)/2, or

Case 3:
(

q
x

)
(q − 2x)q is increasing for 0 ≤ x ≤ m where m is a nonnegative integer

and
(

q
x

)
(q − 2x)q is decreasing for m ≤ x ≤ (q − 1)/2.

Consider case 1. Consider also that

(
q

q−3
2

)[
q − 2

(
q − 3

2

)]q

−
(

q
q−1
2

)[
q − 2

(
q − 1

2

)]q

=
2[q(3q − 1) − (3q + 3)](q!)

( q+1
2

)!( q−3
2

)!(q + 3)(q − 1)

which is positive, implying that
(

q
x

)
(q−2x)q is decreasing for (q−3)/2 ≤ x ≤ (q−1)/2.

Thus we have a contradiction and are left with cases 2 and 3.

Consider case 2. The fact that
(

q
x

)
(q − 2x)q is positive and decreasing for 0 ≤ x ≤

(q − 1)/2 implies that for 0 ≤ a ≤ (q − 3)/2,

(q−1)/2∑

b=a+1

(−1)a+b

(
q

b

)
(q − 2b)q ≤ 0.

This in turn implies that

(q−3)/2∑

a=0

(
q

a

)
(q − 2a)q

(q−1)/2∑

b=a+1

[
(−1)a+b

(
q

b

)
(q − 2b)q

]
1(q−2a)j≤k ≤ 0,

which implies the desired result.

Finally, consider case 3. Similar to case 2, the fact that
(

q
x

)
(q − 2x)q is positive and

decreasing for m ≤ x ≤ (q − 1)/2 implies that

(q−3)/2∑

a=m

(
q

a

)
(q − 2a)q

(q−1)/2∑

b=a+1

(−1)a+b

(
q

b

)
(q − 2b)q1(q−2a)j≤k ≤ 0. (2.19)

For 0 ≤ a ≤ m − 1,

(
q

a

)
(q − 2a)q

(q−1)/2∑

b=a+1

(−1)a+b

(
q

b

)
(q − 2b)q = f0(a) − f1(a) + f2(a) − f3(a),
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where

f0(a) :=

(
q

a

)
(q − 2a)q1a≤m−2

m−1∑

b=a+1

(
q

b

)
(q − 2b)q1a+b∈E ,

=

(
q

a

)
(q − 2a)q1a≤m−2

m−1∑

b=a+2

(
q

b

)
(q − 2b)q1a+b∈E

f1(a) :=

(
q

a

)
(q − 2a)q1a≤m−2

m−1∑

b=a+1

(
q

b

)
(q − 2b)q1a+b∈O,

f2(a) :=

(
q

a

)
(q − 2a)q1a+m∈E

(q−1)/2∑

b=m

(−1)a+b

(
q

b

)
(q − 2b)q,

and

f3(a) := −
(

q

a

)
(q − 2a)q1a+m∈O

(q−1)/2∑

b=m

(−1)a+b

(
q

b

)
(q − 2b)q,

with O denoting the set of odd positive integers and E denoting the set of even positive

integers. Note that f0(a), f1(a), f2(a), f3(a) ≥ 0. Note also that for 0 ≤ a < m − 1,

f0(a) ≤ f1(a + 1) and f2(a) ≤ f3(a + 1). In addition, f0(m − 1) = f2(m − 1) = 0.

These facts together imply that

m−1∑

a=0

[f0(a) − f1(a) + f2(a) − f3(a)] 1(q−2a)j≤k

=
m−1∑

a=0

(
q

a

)
(q − 2a)q

(q−1)/2∑

b=a+1

[
(−1)a+b

(
q

b

)
(q − 2b)q

]
1(q−2a)j≤k

≤ 0

This, combined with (2.19), yields the desired result.

Proposition 2.2.9 Assume that model (2.1) holds. Suppose that there exist α ∈
(0, 1) and c ∈ (0,∞) such that kn−α → c as n → ∞. Then if q is even and 2 ≤ q ≤ 6,

the empirical qth derivatives with qk + 1 ≤ i ≤ n− qk have O
(
n2q−(2q+1)α

)
variances.

Proof. Let gn := 2n−1 × length(X ). Let I(a, j) := 1[( q

2
−a)j≤k]. Let h(c) :=

(
q
c

) (
q
2
− c
)q

. Assume q is even and 2 ≤ q ≤ 6. Take S1 =
∑k

l=1 lq, S2 =
∑k

l=1 lq−1,
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and S3 = (
∑k

l=1 l2q−1)(
∑k

l=1 lq) − (
∑k

l=1 l2q)(
∑k

l=1 lq−1). Then the variance of Y
(q)
i;k is

2σ2g−2q
n

k∑

j=1





w2
j

∑ q

2
−1

a=0

(
q
a

)2

j2q
+ 2

q

2
−2∑

a=0

q

2
−1∑

b=a+1

(−1)a+b
(

q
a

)(
q
b

)
w( q

2
−a)jw( q

2
−b)j

( q
2
− a)q( q

2
− b)qj2q

I(a, j)





+σ2g−2q
n

[(
q

q/2

) k∑

j=1

wj

jq

]2

= 2σ2g−2q
n

k∑

j=1





w2
j

∑ q

2
−1

a=0

(
q
a

)2

j2q
+ 2

q

2
−2∑

a=0

q

2
−1∑

b=a+1

(−1)a+b
(

q
a

)(
q
b

)
w( q

2
−a)jw( q

2
−b)j

( q
2
− a)q( q

2
− b)qj2q

I(a, j)





+σ2g−2q
n [0]2

= 2σ2g−2q
n

k∑

j=1

{
w2

j

∑ q

2
−1

a=0

(
q
a

)2

j2q

+
2j2q

S3
2

q

2
−2∑

a=0

q

2
−1∑

b=a+1

(−1)a+bh(a)h(b)

[
S1

( q
2
− a)j

− S2

] [
S1

( q
2
− b)j

− S2

]
I(a, j)





= 2σ2g−2q
n

k∑

j=1

[
w2

j

∑ q
2
−1

a=0

(
q
a

)2

j2q

]
+ O(n2qk−(2q+1)) (2.20)

=
2σ2

∑ q

2
−1

a=0

(
q
a

)2

g2q
n

·
(
∑k

j=1 j2q−2)S2
1 − 2(

∑k
j=1 j2q−1)S1S2 + (

∑k
j=1 j2q)S2

2

S2
3

+O(n2qk−(2q+1))

=
8σ2g−2q

n

{∑ q

2
−1

a=0

(
q
a

)2}
q(2q + 1)k−(2q+1)

(2q − 1)
[1 + o(1)] + O(n2qk−(2q+1))

= O(n2qk−(2q+1))

which yields the desired result. Line (2.20) is established in Lemma (2.2.2). The proof

again uses the fact that
∑k

j=1 jm = km+1/(m + 1) + O(km) where m is a nonnegative

integer.

Lemma 2.2.2 Under the conditions of Proposition (2.2.9),

k∑

j=1

2j2q

S3
2

q

2
−2∑

a=0

q

2
−1∑

b=a+1

(−1)a+bh(a)h(b)

[
S1

( q
2
− a)j

− S2

] [
S1

( q
2
− b)j

− S2

]
I(a, j)

where h(c) :=
(

q
c

) (
q
2
− c
)q

and I(a, j) := 1[( q

2
−a)j≤k] is O(k−(2q+1)).
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Proof. First, note that the indicator function, I(a, j) := 1[( q

2
−a)j≤k] is only on for

1 ≤ (q/2 − b)j ≤ (q/2 − a)j ≤ k. This means that

h(a)jq

(q/2 − a)j
=

(
q

a

)
[(q/2 − a)j]q−1 ≤

(
q

a

)
kq−1

and
h(b)jq

(q/2 − b)j
=

(
q

b

)
[(q/2 − b)j]q−1 ≤

(
q

b

)
kq−1.

Also, since
∑k

j=1 jm ≤ km+1 for any positive integer m, S1 ≤ kq+1 and S2 ≤ kq. This

implies that

|S1 − S2(q/2 − a)j| ≤ kq+1

and

|S1 − S2(q/2 − b)j| ≤ kq+1.

Together these imply that

q

2
−2∑

a=0

q

2
−1∑

b=a+1

(−1)a+b h(a)h(b)j2q−2

( q
2
− a)( q

2
− b)

[
S1 − S2

(q

2
− a
)

j
] [

S1 − S2

(q

2
− b
)

j
]
I(a, j)

≤
q
2
−2∑

a=0

q
2
−1∑

b=a+1

{
h(a)jq

( q
2
− a)j

} ∣∣∣S1 − S2

(q

2
− a
)

j
∣∣∣
{

h(b)jq

( q
2
− b)j

} ∣∣∣S1 − S2

(q

2
− b
)

j
∣∣∣ I(a, j)

≤
q

2
−2∑

a=0

q

2
−1∑

b=a+1

(
q

a

)(
q

b

)
k4q.

This implies that

k∑

j=1

q

2
−2∑

a=0

q

2
−1∑

b=a+1

(−1)a+b h(a)h(b)j2q−2

( q
2
− a)( q

2
− b)

[
S1 − S2

(q

2
− a
)

j
] [

S1 − S2

(q

2
− b
)

j
]
I(a, j)

is O(k4q+1). Division by S2
3 , which is O(k6q+2), then yields the desired result.

Proposition 2.2.10 Assume that model (2.1) holds. Suppose that there exist α ∈
(0, 1] and c ∈ (0,∞) such that kn−α → c as n → ∞. Then empirical qth derivatives

have O(nα−1) biases.
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Proof. Let B := supx∈X

∣∣∣ dq+1

dxq+1 µ(x)
∣∣∣. The compactness of X implies that B is

finite.

Let gn := 2n−1 × length(X ). Applying Taylor’s Theorem, there exist ξi+j ∈
[xi, xi+j] and ξi−j ∈ [xi−j , xi], such that for d ∈ {0, 1, ..., q}, i ∈ {qk + 1, ..., n − qk}
and j ∈ {i, ..., k},

µ(d)(xi+j) − µ(d)(xi−j)

gnj

= µ(d+1)(xi)1d<q +

q−d∑

b=2

µ(d+b)(xi)

b!

(
gnj

2

)b−1

1[b∈O]

+
( j

2
gn)

q−dµ(q+1)(ξi+j)

2(q − d + 1)!
+

(− j
2
gn)q−dµ(q+1)(ξi−j)

2(q − d + 1)!

= µ(d+1)(xi)1d<q +

q−d∑

b=2

cbµ
(d+b)(xi)(gnj)b−1

+ cq−d+1(gnj)q−dµ(q+1)(ξi+j) + cq−d+1(gnj)q−dµ(q+1)(ξi−j)(−1)q−d

where cb depends only on b for b ∈ {1, ..., q− d+ 1} and O denotes the set of positive

odd integers. Importantly, cb does not depend on j. This implies that there exist

ξi+j,p ∈ [xi, xi+j] and ξi−j,p ∈ [xi−j , xi] for p ∈ {1, ..., q} such that

{(
µ(d)(xi+j) +

q−d∑

b=1

cbµ
(d+b)(xi+j)(gnj)

b +

d∑

p=1

kp,1µ
(q+1)(ξi+j,p)(gnj)(q−d+1)

)
−

(
µ(d)(xi−j) +

q−d∑

b=1

cbµ
(d+b)(xi−j)(gnj)b +

d∑

p=1

kp,2µ
(q+1)(ξi−j,p)(gnj)(q−d+1)

)}
/gnj

= µ(d+1)(xi)1d<q +

q−d−1∑

b=1

kbµ
(d+b+1)(xi)(gnj)b

+

d+1∑

p=1

{
kp,1µ

(q+1)(ξi+j,p)(gnj)
q−d + kp,2µ

(q+1)(ξi−j,p)(gnj)
q−d
}

(2.21)

where kb depends only on b, and kp,1 and kp,2 depend only on p. Note that both terms

involved in the subtraction in the numerator of the left-hand side of (2.21) are in the

form of the right-hand side of (2.21). In fact, (2.21) shows that subtracting one term

of this form from another and dividing by gnj results in a term of the same form with

d incremented by 1, the covariate value re-centered, and different coefficients. Now
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define

Z
(1)
i,j =

Yi+j − Yi−j

gnj
=

[
µ(xi+j) − µ(xi−j)

gnj
+

ǫi+j − ǫi−j

gnj

]
(2.22)

and

Z
(d)
i,j =

Z
(d−1)
i+j,j − Z

(d−1)
i−j,j

gnj
.

Note that when we take expectations the random component (the term in (2.22)

involving the ǫ’s) is eliminated. Therefore, by (2.21),

E[Z
(1)
i,j ] = µ′(xi) +

q−1∑

b=1

kbµ
(b+1)(xi)(gnj)b

+

q∑

p=1

{
kp,1µ

(q+1)(ξi+j,p)(gnj)q + kp,2µ
(q+1)(ξi−j,p)(gnj)q

}

and

E[Z
(d)
i,j ] = µ(d)(xi) +

q−d∑

b=1

kbµ
(b+d)(xi)(gnj)

b

+

q∑

p=1

{
kp,1µ

(q+1)(ξi+j,p)(gnj)
q−d+1 + kp,2µ

(q+1)(ξi−j,p)(gnj)q−d+1
}

.

Now consider that for q > 1,

Y
(q)
i;k =

k∑

j=1

wjZ
(q)
i,j .

So

E

[
Y

(q)
i;k

]
=

k∑

j=1

wj

[
µ(q)(xi) +

q∑

p=1

kp,1µ
(q+1)(ξi+j,p)gnj +

q∑

p=1

kp,2µ
(q+1)(ξi−j,p)gnj

]

So if q is odd, the bias of Y
(q)
i;k is bounded in absolute value by

k∑

j=1

(
j2q+1gn∑k

l=1 l2q

)(
q∑

p=1

(kp,1 + kp,2)B

)
= O(kn−1)

and if q is even, the bias of Y
(q)
i;k is bounded in absolute value by

k∑

j=1

(
(j2qS1 + j2q+1S2)gn

S3

)( q∑

p=1

(kp,1 + kp,2)B

)
= O(kn−1).

This implies the desired result.

37



2.3 Simulation studies of generalized C(p)

Recall that generalized C(p) was defined so that it matched its target in expected

value up to a remainder term. To be more specific, Charnigo and Srinivasan (2008)

provide the following theorem:

Theorem 2.3.1 Assume that model (2.1) holds. Then

E [GCP (Y, µ̂)] = E




n∑

i=1

si

(
dq

dxq
µ(xi) −

d̂q

dxq
µ(xi)

)2

+

n∑

i=1

{
sir

2
i − 2siribi

}
,

where

bi := E

[
d̂q

dxq
µ(xi)

]
− dq

dxq
µ(xi) =

n∑

m=1

µ(xm)
dq

dxq
lm(xi) −

dq

dxq
µ(xi)

and

ri := E

[
n∑

m=1

ci,mYm

]
− dq

dxq
µ(xi) =

n∑

m=1

ci,mµ(xm) − dq

dxq
µ(xi).

This result is important, but it also raises a couple of important issues. The first

is the importance of the remainder term. Under certain assumptions, the remainder

term is asymptotically irrelevant.

The second issue is that for generalized C(p) to be an effective method for tuning

parameter selection it really needs to do more than match its target in expected value.

The key is, after all, whether or not generalized C(p) can find tuning parameters that

minimize (or nearly minimize) the target for a given realization of data. So what we

really need is for the dependence of generalized C(p) upon the tuning parameters to

be similar to the dependence of the target upon the tuning parameters. That is, a

contour plot of generalized C(p) over the vector of tuning parameters needs to look

like a contour plot of the target over the vector of tuning parameters. We address

this issue with simulation studies, both by examining the success of generalized C(p)

in finding the minimizing (or nearly minimizing) values of the tuning parameters and

by comparing contour plots of generalized C(p) and the target.

For our simulation study to assess the performance of generalized C(p) we set

the mean response function to be µ(x) := cos(2πx) + sin(2πx) + log(4/3 + x) on
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X := [−1, 1] and estimated three derivatives using compound estimation with J := 3

and 27 centering points (Charnigo and Srinivasan, 2010a) with the inductive point-

wise estimators (Charnigo and Srinivasan, 2010b). The tuning parameters under

consideration, h (where h = h2 = h3) and β, were put into a vector λ that ranged

through Λ := {(2−a/2, 2b/2)′ : a, b ∈ {6, 7, . . . , 14}}. We wanted to see whether

generalized C(p) could identify a λ that minimized or nearly minimized the tar-

get
∑n

i=1 si

(
dq

dxq µ(xi) − d̂q

dxq µ(xi)
)2

at q ∈ {1, 2, 3}. For simplicity and fairness, and

to mitigate boundary issues, we set si := 113 ≤ i ≤ 488 at q = 1, si := 149 ≤ i ≤ 452 at

q = 2, and si := 1109 ≤ i ≤ 392 at q = 3.

Twenty-five data sets of size n = 500 were generated from model (2.1) with the

mean response as indicated above and ǫi
iid∼ N(0, 0.12). For each data set and each

λ ∈ Λ, we calculated the generalized C(p) criterion (2.4) at q = 1 four times using

four sets of empirical derivatives, one for each k ∈ {3, 6, 9, 12}. We also computed

generalized C(p) at q = 2 four times, once for each k ∈ {6, 12, 18, 24}, and at q = 3

four times, once for each k ∈ {9, 18, 27, 36}. To avoid ambiguity in presenting our

results, we hereafter attach subscripts of “1”, “2”, or “3” to k according to whether

q = 1, 2, or 3.

We examined six quantities in our assessment. The first is

Q1 :=

n∑

i=1

si

(
d

dx
µ(xi) −

d̂

dx
µλ̂(xi)

)2

/ min
λ∈Λ

n∑

i=1

si

(
d

dx
µ(xi) −

d̂

dx
µλ(xi)

)2

.

The second is

Q2 :=

n∑

i=1

si

(
d

dx
µ(xi) −

d̂

dx
µλ̂(xi)

)2

/
∑

λ∈Λ

|Λ|−1

n∑

i=1

si

(
d

dx
µ(xi) −

d̂

dx
µλ(xi)

)2

,

where |Λ| is the number of elements in Λ.

It should be noted that Q1 cannot be less than 1 and represents the degree to

which λ̂ chosen by generalized C(p) inflates the target beyond its minimum value

over λ ∈ Λ at q = 1. On the other hand, Q2 can be less than 1 and reflects the extent

to which λ̂ deflates or inflates the target relative to a haphazard choice of the tuning

parameter from Λ at q = 1.
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The third and fourth quantities (Q3 and Q4) are analogously defined for the second

derivative, while the fifth and sixth quantities (Q5 and Q6) correspond to the third

derivative.

The results are summarized in Table 2.2. Regarding estimation of the first deriva-

tive, generalized C(p) is highly successful in that, for any k1 ∈ {3, 6, 9, 12},

n∑

i=1

si

(
d

dx
µ(xi) −

d̂

dx
µλ̂(xi)

)2

is usually very close to

min
λ∈Λ

n∑

i=1

si

(
d

dx
µ(xi) −

d̂

dx
µλ(xi)

)2

.

The median excess of the former over the latter is 4.5% or less, while the upper quartile

of the excess is 17.4% or less. Likewise, the quantity
∑n

i=1 si

(
d
dx

µ(xi) − ̂d
dx

µλ̂(xi)
)2

is

much lower than the average that such a quantity takes over Λ. The median reduction

as compared to the average over Λ is 92.7% or more.
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Table 2.2: Results from simulation studies assessing generalized C(p)

Q1 Q2

k1 25th 50th 75th 25th 50th 75th

3 1 1.00120 1.17415 .04888 .07303 .09364
6 1 1.04514 1.15421 .05172 .06625 .08074
9 1 1.04537 1.12771 .04344 .06897 .08209
12 1 1 1.06717 .05123 .05774 .07064

Q3 Q4

k2 25th 50th 75th 25th 50th 75th

6 1.27065 2.01808 2.96714 .34445 .44733 .68571
12 1.14121 1.38769 1.84555 .23505 .29373 .34414
18 1 1.13218 1.56073 .19304 .22598 .34013
24 1.07415 1.13939 1.32915 .20455 .26645 .33587

Q5 Q6

k3 25th 50th 75th 25th 50th 75th

9 9.08715 18.65524 27.22242 .42120 .76122 1.14737
18 1 1 1 .03713 .04834 .07309
27 1 1 27.50306 .04030 .07232 1.07667
36 35.74749 42.52426 51.01249 1.39332 1.71011 1.87213

The entries in columns 25th, 50th, and 75th show the respective percentiles of Q1

through Q6 based on 25 simulated data sets of size n = 500 from model (2.1) with

µ(x) := sin(2πx) + cos(2πx) + log(4/3 + x), xi equispaced on [−1, 1], and ǫi
iid∼

N(0, 0.12). The numbers k1, k2, and k3 identify how many summands are in the
empirical first, second, and third derivatives defining generalized C(p).
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With respect to the second derivative, generalized C(p) does fairly well for k2 = 18

and k2 = 24 (median excess 13.9% or less, median reduction 73.4% or more) but

somewhat less well for k2 = 12 and much less well for k2 = 6. As for the third

derivative, generalized C(p) does very well with k3 = 18 (median and upper quartile

excess 0%) but is hit-or-miss with k3 = 27 (median excess 0%, upper quartile excess

2650%) and fares quite badly with k3 = 9 and k3 = 36.

Choosing a tuning parameter to optimize estimation for a higher order derivative

is more difficult than doing so for a lower order derivative, and — especially for a

higher order derivative — the performance of generalized C(p) can be sensitive to the

number of summands in the empirical derivatives.

In the following graphs, we present contour plots for both the true value of the

target and generalized C(p) when estimating the first three derivatives of the mean

response with the compound estimator using J = 3, 27 centering points, and the

inductive pointwise estimators. These plots come from a single data set using the

mean response function given above with ǫi
iid∼ N(0, 0.12). For calculating generalized

C(p) we used k1 = 9, k2 = 18, and k3 = 27.

Figures 2.6 and 2.7 are contour plots for the target and generalized C(p), respec-

tively, at the first derivative evaluated over the grid of possible tuning parameters.

The striking similarity between the plots is an indication that generalized C(p) would

be an excellent criterion for tuning parameter selection. Tuning parameters that re-

sult in a small generalized C(p) (the purple region of Figure 2.7) also result in a small

target. Similarly, tuning parameters that generalized C(p) indicate should be avoided

(the yellow region of Figure 2.7) are indeed poor choices based on the target.

Figures 2.8 and 2.9 are contour plots for the target and generalized C(p), respec-

tively, at the second derivative evaluated over the grid of possible tuning parameters.

The similarities between the plots are again strong. It is again evident that tuning

parameters chosen to make generalized C(p) small will lead to small values of the

target.

Figures 2.10 and 2.11 are contour plots for the target and generalized C(p), respec-

tively, at the third derivative evaluated over the grid of possible tuning parameters.
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Although the similarities between the contour plots are diminished slightly, they are

still strong enough to indicate that utilizing generalized C(p) as a guide is a great

improvement over haphazardly choosing tuning parameters.
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Figure 2.6: Contour Plot of the Target (1st Derivative)
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Figure 2.7: Contour Plot of the Generalized C(p) (1st Derivative)
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Figure 2.8: Contour Plot of the Target (2nd Derivative)
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Figure 2.9: Contour Plot of the Generalized C(p) (2nd Derivative)
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Figure 2.10: Contour Plot of the Target (3rd Derivative)
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Figure 2.11: Contour Plot of the Generalized C(p) (3rd Derivative)
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Chapter 3 Simultaneous Confidence Bands for a Function and Its

Derivatives

3.1 Previous work by Knafl, Sacks, and Ylvisaker

Suppose we observe data from model (1.1) and the ǫi are independently normally

distributed with common variance σ2. Also consider estimating the mean response

function with any nonparametric estimator that is linear in the observed responses

(i.e. satisfying (1.4). Knafl et al. (1985) exploit both the normality and the linearity

in this situation to create conservative confidence bands for µ(x).

They begin by considering the situation in which µ̂(x) is unbiased. This situation

is unrealistic in nonparametric regression but is true for simple linear regression. In

such a case, µ̂(x) − µ(x) =
∑n

i=1 li(x)ǫi. Now if G = {ξ1, ..., ξG} is a grid of points

from the covariate space and we define

Z(x) :=

∑n
i=1 li(x)ǫi

σD(x)
, where D(x) =

√√√√
n∑

i=1

li(x)2,

then [
Z(ξ1) Z(ξ2) · · · Z(ξG)

]t
∼ MV N (0, Σ)

where Σ has diagonal entries of 1 and off-diagonal entries of

Σkj =

∑n
i=1 li(ξk)li(ξj)

D(ξk)D(ξj)
.

The next step is to note that

P

(
max
x∈G

|Z(x)| > zα

)

≤ P (|Z(ξ1)| > zα) +
G−1∑

j=1

P (|Z(ξj)| ≤ zα, |Z(ξj+1)| > zα) . (3.1)

If G is small and the correlations between the Z(ξj) are large, then the conservative-

ness of (3.1) will be small.
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Now if zα is chosen to make (3.1) equal to α, then

P (|µ̂(x) − µ(x)| ≤ zασD(x), x ∈ G) ≥ 1 − α. (3.2)

Inequality (3.2) is only valid for unbiased estimators of µ(x). In the case of nonpara-

metric regression, the bias will need to be considered. If B(x) is the absolute value

of the bias, then by the triangle inequality

P (|µ̂(x) − µ(x)| ≤ B(x) + zασD(x), x ∈ G)

≥ P

(∣∣∣∣∣
n∑

i=1

li(x)ǫi

∣∣∣∣∣ ≤ zασD(x), x ∈ G

)

≥ 1 − α. (3.3)

The final step is to make the bands valid over the entire covariate space rather

than just at the grid points. This can be accomplished through linear interpolation.

From (3.3),

P (|µ̂I(x) − µI(x)| ≤ BI(x) + zασDI(x), x ∈ X ) ≥ 1 − α,

where the subscript I indicates linear interpolation between the grid points. One

more application of the triangle inequality yields

P (|µ̂I(x) − µ(x)| ≤ |µ(x) − µI(x)| + BI(x) + zασDI(x), x ∈ X ) ≥ 1 − α.

Unfortunately, the quantity µ(x) − µI(x) is unknown. Knafl et al solve this problem

by restricting attention to a class of functions which will allow this difference to be

bounded. For example, if G is a uniform grid and

|µ′(x)| ≤ m, ∀x ∈ X

then

sup
x∈X

|µ(x) − µI(x)| ≤ mγ/2,

where γ is the mesh size of the grid. In the end, a 100(1−α)% confidence band would

be

µ̂I(x) ± (mγ/2 + BI(x) + zασDI(x)) .
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In what follows we extend this confidence bands approach to the situation where

the bands are not only simultaneous over the covariate, but also over the mean func-

tion and one or more derivatives. Quantities like bias, interpolation error, and noise

variance are generally unknown but are, for convenience, often treated as if they were

known or as if upper bounds for them were available. We explicitly address the es-

timation of bias, interpolation error, and noise variance. While our methodology for

simultaneous confidence bands can work with upper bounds for such quantities, it

does not rely on the availability of these upper bounds.

3.2 Confidence bands over a function and its derivatives

In this section we define confidence bands that are simultaneous over the covariate and

over the mean response and one or more derivatives. This requires multiple regions

each defined by an upper and a lower boundary. To be precise, L0(x), ..., LJ(x) and

U0(x), ..., UJ(x) form conservative 100(1−α)% confidence bands for the mean response

function and the first J derivatives if

P (L0(x) ≤ µ(x) ≤ U0(x), ..., LJ(x) ≤ µ(J)(x) ≤ UJ(x), ∀x ∈ X ) ≥ 1 − α. (3.4)

To proceed, in addition to the requirement of the previous section that the non-

parametric regression estimator be linear in the observed responses, in what follows

we require that it also be self-consistent. Thus, for q ∈ {1, 2, ..., J},

µ̂(q)(x) =
n∑

i=1

l
(q)
i (x)Yi. (3.5)

We begin by considering the situation where simultaneous confidence bands are

to be placed around the mean response and its first derivative. If we define

Z1(x) :=

∑n
i=1 l′i(x)ǫi

σD1(x)
, where D1(x) =

√√√√
n∑

i=1

l′i(x)2.

then [
Z(ξ1) · · · Z(ξG) Z1(ξ1) · · · Z1(ξG)

]t
∼ MV N (0, Σ)
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where Σ has 1’s on the diagonal with

Cov (Z(ξj), Z(ξk)) =

∑n
i=1 li(ξk)li(ξj)

D(ξk)D(ξj)
,

Cov (Z1(ξj), Z1(ξk)) =

∑n
i=1 l′i(ξk)l

′
i(ξj)

D1(ξk)D1(ξj)
,

and

Cov (Z(ξj), Z1(ξk)) =

∑n
i=1 li(ξj)l

′
i(ξk)

D(ξj)D1(ξk)
.

Now consider that

P

(
max
x∈G

|Z(x)| > zα or max
x∈G

|Z1(x)| > zα

)

≤ P (|Z(ξ1)| > zα or |Z1(ξ1)| > zα) (3.6)

+

G−1∑

j=1

P (|Z(ξj)| ≤ zα, |Z1(ξj)| ≤ zα, {|Z(ξj+1)| > zα or |Z1(ξj+1)| > zα}) .

We could then choose zα so that (3.6) is equal to α. The benefit of (3.6) is that

probabilities involving multivariate normal vectors of dimension 4 are numerically

much easier to evaluate than probabilities involving multivariate normal vectors of

dimension 2G. However, we note that this choice of zα can be refined.

To obtain a less conservative approximation for zα, we could note that

P

(
max
x∈G

|Z(x)| > zα or max
x∈G

|Z1(x)| > zα

)

≤ P (|Z(ξ1)| > zα or |Z1(ξ1)| > zα) (3.7)

+ P (|Z(ξ1)| ≤ zα, |Z1(ξ1)| ≤ zα, {|Z(ξ2)| > zα or |Z1(ξ2)| > zα})

+
G−2∑

j=1

P (|Z(ξj)| ≤ zα, |Z1(ξj)| ≤ zα,

|Z(ξj+1)| ≤ zα, |Z1(ξj+1)| ≤ zα, {|Z(ξj+2)| > zα or |Z1(ξj+2)| > zα}) .

We then choose zα so that (3.7) is equal to α. Since

G−1∑

j=1

P (|Z(ξj)| ≤ zα, |Z1(ξj)| ≤ zα, {|Z(ξj+1)| > zα or |Z1(ξj+1)| > zα})

≥ P (|Z(ξ1)| ≤ zα, |Z1(ξ1)| ≤ zα, {|Z(ξ2)| > zα or |Z1(ξ2)| > zα})

+
G−2∑

j=1

P (|Z(ξj)| ≤ zα, |Z1(ξj)| ≤ zα,

|Z(ξj+1)| ≤ zα, |Z1(ξj+1)| ≤ zα, {|Z(ξj+2)| > zα or |Z1(ξj+2)| > zα}) ,
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the zα determined by (3.7) is less than that determined by (3.6). We could continue

to refine the approximation by choosing zα so that:

P (|Z(ξ1)| > zα or |Z1(ξ1)| > zα)

+ P (|Z(ξ1)| ≤ zα, |Z1(ξ1)| ≤ zα, {|Z(ξ2)| > zα or |Z1(ξ2)| > zα})

+ P (|Z(ξ1)| ≤ zα, |Z1(ξ1)| ≤ zα, |Z(ξ2)| ≤ zα, |Z1(ξ2)| ≤ zα,

{|Z(ξ3)| > zα or |Z1(ξ3)| > zα})

+

G−3∑

j=1

P (|Z(ξj)| ≤ zα, |Z1(ξj)| ≤ zα, |Z(ξj+1)| ≤ zα, |Z1(ξj+1)| ≤ zα,

|Z(ξj+2)| ≤ zα, |Z1(ξj+2)| ≤ zα, {|Z(ξj+3)| > zα or |Z1(ξj+3)| > zα})

= α

In fact, such refinements can continue and eventually yield an exact value for zα.

However, further refinements require more coding and computational resources and

yield decreasing returns. The following Table 3.1 illustrates how successive refine-

ments of the approximation result in smaller (less conservative) zα.

Table 3.1: Cutoff approximations for the mean response and first derivative

Refinement 1 2 3 4
n=100, G=25 3.218 3.200 3.194 3.192
n=100, G=50 3.314 3.294 3.280 3.276
n=500, G=25 3.217 3.198 3.192 3.190
n=500, G=50 3.313 3.293 3.279 3.275

For sample sizes of 100 and 500 equally spaced values from X = [−1, 1] and uniform
grid sizes of 25 and 50, the table shows z.05 approximations if the compound estimator
is used with J = 3, 27 centering points, β = 100, and local regression pointwise
estimators with nearest neighbor fractions of .3. Refinement 1 corresponds to (3.6).
Refinement 2 corresponds to (3.7). Refinements 3 and 4 are the next two successive
refinements of the approximation.

Now assume that upper bounds on the absolute value of the bias for the mean

function, B(x), and on the absolute value of the bias for the first derivative, B1(x), are

available. (The bias of the estimator of the mean response is
∑n

i=1 li(x)µ(xi) − µ(x)
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and the bias of the estimator of the first derivative is
∑n

i=1 l′i(x)µ(xi) − µ′(x).) Then

P (|µ̂(x) − µ(x)| ≤ B(x) + zασD(x), |µ̂′(x) − µ′(x)| ≤ B1(x) + zασD1(x), x ∈ G)

= P

(∣∣∣∣∣
n∑

i=1

li(x)[µ(xi) + ǫi] − µ(x)

∣∣∣∣∣ ≤ B(x) + zασD(x),

∣∣∣∣∣
n∑

i=1

l′i(x)[µ(xi) + ǫi] − µ′(x)

∣∣∣∣∣ ≤ B1(x) + zασD1(x), x ∈ G

)

≥ P

(∣∣∣∣∣
n∑

i=1

li(x)ǫi

∣∣∣∣∣ ≤ zασD(x),

∣∣∣∣∣
n∑

i=1

l′i(x)ǫi

∣∣∣∣∣ ≤ zασD1(x), x ∈ G

)
(3.8)

≥ 1 − α, (3.9)

where line (3.8) follows from the triangle inequality and line (3.9) follows from the

determination of zα above.

This means that

µ̂(x) ± (B(x) + zασD(x))

and

µ̂′(x) ± (B1(x) + zασD1(x))

provide at least 100(1− α)% coverage for the mean response and the first derivative

at the grid points.

To obtain confidence bands that are valid over X we further assume that upper

bounds on supx∈X |µ(x)−µI(x)|, call it M0, and on supx∈X |µ′(x)−µ′
I(x)|, call it M1,

where µ′
I(x) is the linear interpolant of µ′(x), are available. Now

1 − α

≤ P (|µ̂(x) − µ(x)| ≤ B(x) + zασD(x), |µ̂′(x) − µ′(x)| ≤ B1(x) + zασD1(x), x ∈ G)

= P (|µ̂I(x) − µI(x)| ≤ BI(x) + zασDI(x),

|µ̂′
I(x) − µ′

I(x)| ≤ B1I(x) + zασD1I(x), x ∈ X )

≤ P (|µ̂I(x) − µ(x)| ≤ M0 + BI(x) + zασDI(x),

|µ̂′
I(x) − µ′(x)| ≤ M1 + B1I(x) + zασD1I(x), x ∈ X ), (3.10)

where line (3.10) follows from the assumptions above and the triangle inequality.

The preceding paragraphs constitute a proof of the following theorem:
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Theorem 3.2.1 Assume that model (1.1) holds where the ǫi are independent and

identically normally distributed. Let µ̂(x) be self-consistent and linear in the observed

responses. Let G, B(x), B1(x), M0, M1, D(x) and D1(x) be as defined above and let

the subscript I denote linear interpolation between grid points. Then

P (L0(x) ≤ µ(x) ≤ U0(x), L1(x) ≤ µ′(x) ≤ U1(x), ∀x ∈ X ) ≥ 1 − α,

where

U0(x), L0(x) := µ̂I(x) ± (M0 + BI(x) + zασDI(x))

and

U1(x), L1(x) := µ̂′
I(x) ± (M1 + B1I(x) + zασD1I(x)).

If one is interested in higher-order derivatives, the approach is similar. More than

that, this methodology can be used to create simultaneous confidence bands for any

combination of derivatives. For instance, simultaneous confidence bands can be cre-

ated for the first and second derivatives even if no confidence bands are created for

the mean response. Furthermore, this methodology can be applied to any subinterval

of X . In fact, the subintervals do not have to be the same for each derivative under

consideration. For instance, confidence bands could be constructed that are simulta-

neous over the entire covariate space for the mean response and over a subinterval for

the first derivative. This generalization is described explicitly below in Theorem 3.2.3.

Such flexibility is attractive since it may reflect regions over which the researcher is

comfortable making assumptions about bias and interpolation error.

If confidence bands around derivatives of order p1, p2, ..., pJ are desired, define

Zp(x) :=

∑n
i=1 l

(p)
i (x)ǫi

σDp(x)
, where Dp(x) =

√√√√
n∑

i=1

l
(p)
i (x)2

for each p ∈ {p1, ..., pJ}. Then

[
Zp1

(ξ1) · · · Zp1
(ξG) · · · ZpJ

(ξ1) · · · ZpJ
(ξG)

]t
∼ MV N (0, Σ) (3.11)

where Σ has 1’s on the diagonal with

Cov(Za(ξk), Zb(ξj)) =

∑n
i=1 l

(a)
i (ξk)l

(b)
i (ξj)

Da(ξk)Db(ξj)
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for a, b ∈ {p1, p2, · · · , pJ}.
Then

P

(
∪J

r=1 max
x∈G

|Zpr
(x)| > zα

)

≤ P
(
∪J

r=1|Zpr
(ξ1)| > zα

)
(3.12)

+

G−1∑

j=1

P
(
{∩J

r=1|Zpr
(ξj)| ≤ zα} ∩ {∪J

r=1|Zpr
(ξj+1)| > zα}

)
.

We choose zα so that (3.12) is equal to α. Again, this approximation can be refined.

To obtain a less conservative approximation for zα, note that

P

(
∪J

r=1 max
x∈G

|Zpr
(x)| > zα

)

≤ P
(
∪J

r=1|Zpr
(ξ1)| > zα

)
(3.13)

+ P
(
{∩J

r=1|Zpr
(ξ1)| ≤ zα} ∩ {∪J

r=1|Zpr
(ξ2)| > zα}

)

+
G−2∑

j=1

P
(
{∩J

r=1|Zpr
(ξj)| ≤ zα} ∩ {∩J

r=1|Zpr
(ξj+1)| ≤ zα}

∩{∪J
r=1|Zpr

(ξj+2)| > zα}
)
.

Setting (3.13) equal to α will result in a less conservative zα. In fact, such refinements

could continue until one arrived at an exact value of zα The following Table 3.2

illustrates how successive refinements of the approximation result in smaller (less

conservative) zα when bands are to be simultaneous over the mean response and the

first two derivatives.

Table 3.2: Cutoff approximations for the mean response and first two derivatives

Refinement 1 2 3
n=100, G=25 3.305 3.290 3.287
n=100, G=50 3.441 3.408 3.395
n=500, G=25 3.303 3.287 3.285
n=500, G=50 3.438 3.405 3.392

For sample sizes of 100 and 500 equally spaced values from X = [−1, 1] and uniform
grid sizes of 25 and 50, the table shows z.05 approximations if the compound estimator
is used with J = 3, 27 centering points, β = 100, and local regression pointwise
estimators with nearest neighbor fractions of .3.
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Thus for higher order derivatives we obtain the following theorem:

Theorem 3.2.2 Assume that model (1.1) holds where the ǫi are independent and

identically normally distributed. Let µ̂(x) be self-consistent and linear in the observed

responses. Let G be a grid of points from X . Let Ba(x) be an upper bound on

the absolute value of the bias of µ̂(a)(x) and Ma ≥ supx∈X |µ(a)(x) − µ
(a)
I (x)| for

a ∈ {p1, ..., pJ}. Let Dp(x) be as defined above and let the subscript I denote linear

interpolation between grid points. Then

P (Lp1
(x) ≤ µ(p1)(x) ≤ Up1

(x), ..., LpJ
(x) ≤ µ(pJ)(x) ≤ UpJ

(x), ∀x ∈ X ) ≥ 1 − α,

where

Ua(x), La(x) := µ̂
(a)
I (x) ± (Ma + BaI(x) + zασDaI(x)).

The following theorem applies when confidence bands are placed over different

subintervals of the covariate space for different derivatives under consideration:

Theorem 3.2.3 Assume that model (1.1) holds where the ǫi are independent and

identically normally distributed. Let µ̂(x) be self-consistent and linear in the observed

responses. Let Ga be grids of points from Ea ⊂ X for a ∈ {p1, ..., pJ}. Let Ba(x)

be an upper bound on the absolute value of the bias of µ̂(a)(x) on Ea and Ma ≥
supx∈Ea⊂X |µ(a)(x) − µ

(a)
Ia

(x)| for a ∈ {p1, ..., pJ}. Let Dp(x) be as defined above and

let the subscripts Ia denote linear interpolation between the grid points in Ea. Then

P
(
∩pJ

a=p1
{La(x) ≤ µ(a)(x) ≤ Ua(x), ∀x ∈ Ea}

)
≥ 1 − α,

where

Ua(x), La(x) := µ̂
(a)
Ia

(x) ± (Ma + BaIa
(x) + zασDaIa

(x)).

Note that the definition of zα will need to be modified to accommodate confidence

bands placed over different subintervals of the covariate space for different derivatives

under consideration. The easiest way to do this is to choose the grids so that they have

the same cardinality. Then Ga = {ξa1, ..., ξaG} for a ∈ {p1, ..., pJ} and the definition
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of zα can be obtained from (3.12) or (3.13) with the Za evaluated at ξaj, j ∈ {1, ..., G}
rather than at ξj, j ∈ {1, ..., G}.

If the grids not only cover different subintervals but also have different cardinality,

then obtaining zα is slightly more difficult. If we let the ordering of {p1, ..., pJ} be by

increasing cardinality of the associated grid size (i.e. G1 ≤ G2 ≤ ... ≤ GJ , then

P

(
∪J

r=1 max
x∈Gr

|Zpr
(x)| > zα

)

≤ P
(
∪J

r=1|Zpr
(ξr1)| > zα

)
(3.14)

+

J∑

s=1

Gs−1∑

j=1s=1+Gs−11s>1

P
(
{∩m

r=s|Zpr
(ξj)| ≤ zα} ∩ {∪J

r=s|Zpr
(ξj+1)| > zα}

)

and zα can be obtained by setting the right side of (3.14) equal to α, where G0 = 0.

3.3 Accounting for the bias

How to account for the bias is a major factor in nonparametric regression confidence

band construction. As mentioned in Section 1.7, several strategies have been pro-

posed for dealing with the bias when constructing confidence bands for the mean

response. The method of Eubank and Speckman (1993), which employs asymptotic-

based corrections for the bias, is useful only in the special case of kernel regression.

Knafl et. al (1985) assume that a bound on the bias is known and proceed from

there. Hall and Titterington (1990) assume only a bound on one or more derivatives

of the mean response and use such an assumption to bound the bias. One may or

may not have a good rationale for making such an assumption. However, to obtain a

useful (i.e. relatively tight) bound on the first derivative (in order to bound the bias

of the estimator of the mean response) while at the same time seeking to place a con-

fidence band around the first derivative seems to necessitate an iterative procedure.

Therefore, we pursue a different approach to bias estimation.

Since

Biasµ[µ̂(x)] =
n∑

i=1

li(x)µ(xi) − µ(x),
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a proposed estimate of the bias in estimating the mean response is (Loader 1999):

B̂ias(x) :=
n∑

i=1

li(x)µ̂(xi) − µ̂(x).

However, Loader cautions that one should not simply shift both upper and lower

bands for the mean response by subtracting the estimate of the bias. Such efforts

merely result in bands centered around undersmoothed estimates of the mean re-

sponse. This strategy does not solve the bias problem. It reduces the bias problem

but at the price of a more volatile mean response estimate.

We note that (3.3) can be extended to provide bias estimates for derivatives. Since

Biasµ[µ̂(p)(x)] =

n∑

i=1

l
(p)
i (x)µ(xi) − µ(p)(x),

a proposed estimate of the bias is:

̂Biasp(x) :=

n∑

i=1

l
(p)
i (x)µ̂(xi) − µ̂(p)(x). (3.15)

As when constructing confidence bands for mean responses, we should not simply

use (3.15) to shift both the upper and lower bands for µ(p)(x). However, we can take

the absolute value of (3.15) as an estimate of Bp(x). For convenience this estimate

is hereafter denoted B̂p(x). Then substituting B̂p(x) for Bp(x) in the Up(x), Lp(x)

formulas of the previous section’s theorems addresses the bias issue without assuming

that a bound for the bias is known. If there is concern about the disparity between

B̂p(x) and Bp(x), in that the former may underestimate the latter, then that disparity

itself can be estimated and incorporated into the confidence bands. We will elaborate

on that idea later in this section.

Supposing for now that the disparity between B̂p(x) and Bp(x) is not worrisome,

some conservatism in the confidence bands can be eliminated. This is because the

use of Bp(x) in previous theorems did not exploit any information about the sign of

the bias. If the bias were known to be positive, then reducing the lower confidence

band by Bp(x) would be reasonable, but there would be no need to raise the upper

confidence band by Bp(x). Likewise, if the bias were known to be negative, then

raising the upper confidence band by Bp(x) would be reasonable, but there would be
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no need to reduce the lower confidence band by Bp(x). Of course, if one is assuming

rather than estimating an upper bound for Bp(x), then typically one does not know

the sign of the bias. On the other hand, if one is estimating an upper bound for Bp(x)

via the absolute value of (3.15), then one does have information about the sign of the

bias.

Therefore we propose the following approach: At each grid point, determine if the

estimate of the bias is positive or negative. If positive, then the lower band is shifted

down by ̂Biasp(x) and the upper band is left unchanged. If negative, then the upper

band is shifted up by | ̂Biasp(x)| and the lower band is left unchanged. We justify

this approach by the following where we consider bands for the mean response and

note that this justification is easily extended to bands for derivatives:

P (µ̂(x) − zασD(x) − Biasµ[µ̂(x)]IBiasµ[µ̂(x)]>0 ≤ µ(x) ≤ µ̂(x) + zασD(x)

−Biasµ[µ̂(x)]IBiasµ[µ̂(x)]<0, x ∈ G)

≥ P (µ̂(x) − zασD(x) − Biasµ[µ̂(x)] ≤ µ(x) ≤ µ̂(x) + zασD(x)

−Biasµ[µ̂(x)], x ∈ G)

≥ P

(∣∣∣∣∣
n∑

i=1

li(x)ǫi

∣∣∣∣∣ ≤ zασD(x), x ∈ G

)

≥ 1 − α.

We now return to the question of handling the disparity between B̂p(x) and Bp(x).

Since the difference between B̂p(x) and Bp(x) depends in large part on the difference

58



between
∑n

i=1 l
(p)
i (x)µ̂(xi) and

∑n
i=1 l

(p)
i (x)µ(xi), we note that for ap(x) > 0,

P

(∣∣∣∣∣
n∑

i=1

l
(p)
i (x)µ̂(xi) −

n∑

i=1

l
(p)
i (x)µ(xi)

∣∣∣∣∣ ≥ ap(x)

)

≤ (4/9)ap(x)−2E



(

n∑

i=1

l
(p)
i (x)µ̂(xi) −

n∑

i=1

l
(p)
i (x)µ(xi)

)2

 (3.16)

= (4/9)ap(x)−2E



(

n∑

i=1

l
(p)
i (x)

n∑

j=1

lj(xi)Yj −
n∑

i=1

l
(p)
i (x)µ(xi)

)2



= (4/9)ap(x)−2E

[
n∑

i=1

n∑

j=1

n∑

k=1

n∑

m=1

l
(p)
i (x)lj(xi)l

(p)
k (x)lm(xk)YjYm

−2
n∑

i=1

n∑

j=1

n∑

k=1

l
(p)
i (x)lj(xi)l

(p)
k (x)Yjµ(xk) +

n∑

i=1

n∑

j=1

l
(p)
i (x)l

(p)
j (x)µ(xi)µ(xj)

]

= (4/9)ap(x)−2

[
n∑

i=1

n∑

j=1

n∑

k=1

n∑

m=1

l
(p)
i (x)lj(xi)l

(p)
k (x)lm(xk){µ(xj)µ(xm) + σ21j=m}

−2

n∑

i=1

n∑

j=1

n∑

k=1

l
(p)
i (x)lj(xi)l

(p)
k (x)µ(xj)µ(xk) +

n∑

i=1

n∑

j=1

l
(p)
i (x)l

(p)
j (x)µ(xi)µ(xj)

]
,

where line (3.16) follows from the Vysochanskii-Petunin Inequality (Vysochanskii and

Petunin 1980). By substituting µ̂(x) for µ(x), this latter quantity can be set equal to

P0 ∈ (0, 1) and the equation can then be solved for ap(x). The value of ap(x) will need

to be evaluated at each of the grid points and the upper band is then shifted up by

ap(x) while the lower band is shifted down by ap(x). In practice the conservativeness

of (3.16) is large enough that P0 ≤ α preserves the nominal confidence level.

The rate at which ap(x) goes to zero will depend on the nonparametric regression

estimator being employed and the order of the derivative p. The following proposition

demonstrates this for kernel regression with a compactly supported kernel.

Proposition 3.3.1 Assume the conditions of Theorem 3.2.3 hold. Assume that the

nonparametric regression estimator is the kernel estimator

µ̂(x) = (nh)−1
n∑

i=1

K((x − xi)/h)Yi
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with the kernel function supported on [−1, 1]. Further suppose that

sup
x

|µ̂(p)(x) − µ(p)(x)| = Op

((
n

log n

)(p−J−1)/(2J+3)
)

with bandwidth h ∝ n−1/(2J+3). Then ap(x) = Op((
n

log n
)(p−J−1)/(2J+3)).

Proof. Let Kp denote the maximum absolute value of the kernel function’s pth

derivative. Then
∣∣∣∣∣

n∑

i=1

l
(p)
i (x){µ̂(xi) − µ(xi)}

∣∣∣∣∣

≤
n∑

i=1

|l(p)
i (x)||{µ̂(xi) − µ(xi)}|

≤
n∑

i=1

|l(p)
i (x)|Op

((
n

log n

)−(J+1)/(2J+3)
)

=
∑

i:|xi−x|≤h

|l(p)
i (x)|Op

((
n

log n

)−(J+1)/(2J+3)
)

(3.17)

≤
∑

i:|xi−x|≤h

Kpn
−1h−(p+1)Op

((
n

log n

)−(J+1)/(2J+3)
)

≤ 2Kph
−pOp

((
n

log n

)−(J+1)/(2J+3)
)

≤ 2KpOp

((
n

log n

)(p−J−1)/(2J+3)
)

where (3.17) follows because the kernel is supported on [−1, 1]. Then noting that

(3.16) is set equal to a constant implies the desired result.

We can then investigate how well the estimated bias performs through simula-

tion. We generated 100 data sets of size 50 from model (1.1) using the mean response

function µ(x) := sin(2πx) + cos(2πx) + log(4/3 + x) with x1, ..., xn equispaced on

X = [−1, 1] and normally distributed error terms with variance σ2 = .01. We sought

to recover the mean response and the first derivative using compound estimation

with filtration and extrapolation using J = 4, 27 centering points, β = 15 (150 dur-

ing filtration and extrapolation), κ = 1.1, and local regression pointwise estimators
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obtained with nearest neighbor fraction .30 (.15 during filtration and extrapolation).

We then placed simultaneous 95% confidence intervals around the estimates of the

mean response and the first derivative at each of 25 grid points equispaced on [−1, 1]

using the approach described in the previous paragraphs. We use the language ‘si-

multaneous confidence intervals’ in this instance to emphasize that here the intervals

are constructed only at the grid points and not over the entire covariate space. The

simultaneous confidence intervals for the mean response and first derivative contained

the true values ar all of the grid points 100% of the time. The simultaneous confi-

dence intervals for the mean response and the first two derivatives contained the true

values at all of the grid points 97% of the time.

If one wishes to guarantee that, asymptotically, the actual coverage probability

does not fall short of the nominal coverage probability, then one may proceed as

follows. Let rp be the convergence rate of the nonparametric regression technique

being employed (i.e. nrp(µ̂(p)(x) − µ(p)(x)) = Op(1)) and define

β̂pL(x) := max
{∣∣∣B̂iasp(x)

∣∣∣ 1B̂iasp(x)>0
+ ap(x), g(n)

}

β̂pU(x) := max
{∣∣∣B̂iasp(x)

∣∣∣ 1B̂iasp(x)<0
+ ap(x), g(n)

}
,

where g(n) → 0 and nrpg(n) → ∞. For a practical implementation we could take

g(n) := Cn−rp log log n where C is a constant chosen so that |B̂iasp(x)|+ap(x) > g(n)

with high probability for small n.

We can then make the following modification of Theorem 3.2.2 (and we can anal-

ogously modify Theorem 3.2.3):

Theorem 3.3.1 Assume that model (1.1) holds where the ǫi are independent and

identically normally distributed. Let µ̂(x) be self-consistent and linear in the observed

responses. Let G be a grid of points from X . Let β̂pL(x) and β̂pU(x) be as defined

above and Mp ≥ supx∈X |µ(p)(x)−µ
(p)
I (x)| for p ∈ {p1, ..., pJ}. Let Dp(x) be as defined

above and let the subscript I denote linear interpolation between grid points. Then

lim inf
n→∞

P (Lp1
(x) ≤ µ(p1)(x) ≤ Up1

(x), ..., LpJ
(x) ≤ µ(pJ )(x) ≤ UpJ

(x), ∀x ∈ X ) ≥ 1−α,
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where

Lp(x) := µ̂
(p)
I (x) − (Mp + β̂pL(x)I + zασDpI(x))

and

Up(x) := µ̂
(p)
I (x) + (Mp + β̂pU(x)I + zασDpI(x)).

Proof. Let

A :=
{

µ̂
(a)
I (x) − zασDaI(x) − Ma −

∣∣∣Biasµ[µ̂(a)(x)]
∣∣∣
I
≤ µ(a)(x)

≤ µ̂
(a)
I (x) + zασDaI(x) + Ma +

∣∣∣Biasµ[µ̂(a)(x)]
∣∣∣
I
, ∀x ∈ X ,

∀a ∈ {p1, ..., pJ}} ,

B :=
{

µ̂
(a)
I (x) − zασDaI(x) − Ma − β̂aL(x)I ≤ µ(a)(x)

≤ µ̂
(a)
I (x) + zασDaI(x) + Ma + β̂aU(x)I , ∀x ∈ X , ∀a ∈ {p1, ..., pJ}

}
,

and

C :=
{

β̂aU(x)I ≥
∣∣∣Biasµ[µ̂(a)(x)]

∣∣∣
I
and β̂aL(x)I ≥

∣∣∣Biasµ[µ̂(a)(x)]
∣∣∣
I
, ∀x ∈ X ,

∀a ∈ {p1, ..., pJ}} .

Now note that (A ∩ C) ⊂ B and so P (B) ≥ P (A ∩ C) = P (A) − P (A ∩ Cc). By

Theorem 3.2.2, P (A) ≥ 1 − α and since µ̂(a)(x) converges to µ(a)(x) at the rate ra,

P (Cc) → 0 which implies the desired result.

3.4 Interpolating between the grid points

To obtain confidence bands that are simultaneous over the entire covariate space

rather than simply over a finite grid of points we must interpolate between the grid

points. As mentioned previously, this can be accomplished if we assume that upper

bounds on supx∈Ep
|µ(p)(x) − µ

(p)
I (x)|, call them Mp, for p ∈ {p1, ..., pJ}, where the

subscript I denotes linear interpolation between the grid points, are available.

If such bounds are unavailable, then we propose using the following estimates:

M̂p :=





maxxi∈Ep
|µ̂(p)(xi) − µ̂

(p)
I (xi)| : n < Nm0

maxγi∈Ep
|µ̂(p)(γi) − µ̂

(p)
I (γi)| : N

(
m, 1

m

)
≤ Nm ≤ n < Nm+1
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for m ≥ m0, where m0 is an arbitrary positive integer, the γi constitute a grid of m

points from Ep ⊂ X that become dense as m → ∞ and {Nm : m ∈ {1, 2, . . .}} is a

strictly increasing sequence of positive integers.

The large-sample justification for using these estimates is shown in Theorem 3.4.1

whose proof relies on the following lemmas:

Lemma 3.4.1 If µ̂(p)(x) →P µ(p)(x), ∀x ∈ Ep ⊂ X , then |µ̂(p)(x) − µ̂
(p)
I (x)| →P

|µ(p)(x) − µ
(p)
I (x)|, ∀x ∈ Ep.

Proof. Let ǫ > 0 and t ∈ Ep ⊂ X . If t ∈ Gp, then there is nothing to show.

Otherwise, let a and b be the grid points from Gp immediately below and immediately

above t, respectively. Then

P
(∣∣∣|µ̂(p)(t) − µ̂

(p)
I (t)| − |µ(p)(t) − µ

(p)
I (t)|

∣∣∣ > ǫ
)

≤ P
(
|µ̂(p)(t) − µ̂

(p)
I (t) − µ(p)(t) + µ

(p)
I (t)| > ǫ

)

≤ P
(∣∣∣|µ̂(p)(t) − µ(p)(t)| + |µ̂(p)

I (t) − µ
(p)
I (t)|

∣∣∣ > ǫ
)

≤ P
(
|µ̂(p)(t) − µ(p)(t)| > ǫ/2

)
+ P

(
|µ̂(p)

I (t) − µ
(p)
I (t)| > ǫ/2

)

= P
(
|µ̂(p)(t) − µ(p)(t)| > ǫ/2

)

+ P

(∣∣∣∣µ̂(p)(a) +
t − a

b − a

[
µ̂(p)(b) − µ̂(p)(a)

]
− µ(p)(a) − t − a

b − a

[
µ(p)(b) − µ(p)(a)

]∣∣∣∣
> ǫ/2)

≤ P
(
|µ̂(p)(t) − µ(p)(t)| > ǫ/2

)

+ P

(
|µ̂(p)(a) − µ(p)(a)| + t − a

b − a

∣∣µ̂(p)(b) − µ(p)(b)
∣∣+ t − a

b − a

∣∣µ̂(p)(a) − µ(p)(a)
∣∣ > ǫ

)

≤ P
(
|µ̂(p)(t) − µ(p)(t)| > ǫ/2

)

+ 2P
(
|µ̂(p)(a) − µ(p)(a)| > ǫ/6

)
+ P

(
|µ̂(p)(b) − µ(p)(b)| > ǫ/6

)

→ 0,

which implies the desired result.

Lemma 3.4.2 If f̂(γi) →P f(γi), ∀i ∈ {1, ..., m}, then maxi∈{1,...,m} f̂(γi) →P

maxi∈{1,...,m} f(γi).
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Proof. Let ǫ > 0 and i∗ := argmaxi∈{1,...,m}f(γi). Also define ǫj :=
f(γi∗ )−f(γj )

2
, ∀j ∈

{1, ..., m}. Then

P

(∣∣∣∣ max
i∈{1,...,m}

f̂(γi) − f(γi∗)

∣∣∣∣ > ǫ

)

≤
m∑

j=1

P

(∣∣∣f̂(γj) − f(γi∗)
∣∣∣ > ǫ, f̂(γj) = max

i∈{1,...,m}
f̂(γi)

)

=

m∑

j=1

{
P

(∣∣∣f̂(γj) − f(γi∗)
∣∣∣ > ǫ, f̂(γj) = max

i∈{1,...,m}
f̂(γi), f(γj) = f(γi∗)

)

+ P

(∣∣∣f̂(γj) − f(γi∗)
∣∣∣ > ǫ, f̂(γj) = max

i∈{1,...,m}
f̂(γi), f(γj) 6= f(γi∗)

)}

≤
m∑

j=1

{
P
(∣∣∣f̂(γj) − f(γj)

∣∣∣ > ǫ
)

+ P

(
f̂(γj) = max

i∈{1,...,m}
f̂(γi), f(γj) 6= f(γi∗)

)}

≤
m∑

j=1

{
P
(∣∣∣f̂(γj) − f(γj)

∣∣∣ > ǫ
)

+ P
(
f̂(γj) ≥ f̂(γi∗), f(γj) < f(γi∗)

)}

≤
m∑

j=1

{
P
(∣∣∣f̂(γj) − f(γj)

∣∣∣ > ǫ
)

+
∑

j:f(γj)<f(γi∗ )

P
(∣∣∣f̂(γj) − f(γj) + f(γi∗) − f̂(γi∗)

∣∣∣ > ǫj

)




≤
m∑

j=1

{
P
(∣∣∣f̂(γj) − f(γj)

∣∣∣ > ǫ
)

+
∑

j:f(γj)<f(γi∗ )

P
(∣∣∣f̂(γj) − f(γj)

∣∣∣ +
∣∣∣f(γi∗) − f̂(γi∗)

∣∣∣ > ǫj

)




≤
m∑

j=1

{
P
(∣∣∣f̂(γj) − f(γj)

∣∣∣ > ǫ
)

+
∑

j:f(γj)<f(γi∗ )

P
(∣∣∣f̂(γj) − f(γj)

∣∣∣ > ǫj/2
)

+P
(∣∣∣f(γi∗) − f̂(γi∗)

∣∣∣ > ǫj/2
)}

→ 0,

which implies the desired result.
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Lemma 3.4.3 If f(x) is continuous on Ep ⊂ X , where Ep is compact and {γi}m
i=1

constitute a grid of points from Ep that become dense as m → ∞, then

maxi∈{1,...,m} f(γi) → supx∈Ep
f(x) as m → ∞.

Proof. Let f(t0) = supx∈Ep
f(x). Now, ∀δ > 0, ∃M ∈ N such that ∀m ≥ M, ∃i∗ ∈

{1, ..., m} such that |γi∗ − t0| < δ. Then by the continuity of f , ∀ǫ > 0, ∃M such

that ∀m ≥ M, ∃i∗ ∈ {1, ..., m} such that
∣∣∣f(γi∗) − supx∈Ep

f(x)
∣∣∣ < ǫ. This implies

that ∀ǫ > 0, ∃M such that ∀m ≥ M,
∣∣∣maxi∈{1,...,m} f(γi) − supx∈Ep

f(x)
∣∣∣ < ǫ since

f(γi∗) ≤ maxi∈{1,...,m}f(γi) ≤ supx∈Ep
f(x), which implies the desired result.

Theorem 3.4.1 If µ̂(p)(x) →P µ(p)(x), ∀x ∈ Ep and µ(p)(x) is continuous on Ep,

where Ep is compact, then M̂p →P supx∈Ep
|µ(p)(x) − µ

(p)
I (x)|.

Proof. Let f̂(x) := |µ̂(p)(x) − µ̂
(p)
I (x)| and f(x) := |µ(p)(x) − µ

(p)
I (x)|. Define

M̂p(m) := maxi∈{1,...,m} f̂(γi) and Mp(m) := maxi∈{1,...,m} f(γi). By Lemmas 3.4.1 and

3.4.2, ∀m ∈ N, M̂p(m) →P Mp(m). So ∀m ∈ N, ∃N0(m) such that ∀n ≥ N0(m),

P
(∣∣∣M̂p(m) − Mp(m)

∣∣∣ ≥ 1/m
)
≤ 1/m.

Now for m > 1 define Nm := max (N0(m), Nm−1 + 1) . Define

M̃p :=





Mp(n) : n < Nm0

Mp(m) : Nm ≤ n < Nm+1

for m ≥ m0, where m0 is an arbitrary positive integer.

Let ǫ > 0. Then ∃m̃1 ∈ N such that 1/m̃1 ≤ ǫ/2. Also by Lemma 3.4.3, ∃m̃2 such

that ∀m ≥ m̃2,

P

(∣∣∣∣∣ max
i∈{1,...,m}

f(γi) − sup
x∈Ep

f(x)

∣∣∣∣∣ ≥ ǫ/2

)
≤ ǫ.

Let mǫ = max{m̃1, m̃2}. For Nmǫ+1 ≤ n,
∣∣∣M̂p − M̃p

∣∣∣ =
∣∣∣M̂p(mn) − Mp(mn)

∣∣∣ where
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Nmn
≤ n < Nmǫ+1 and so

P

(∣∣∣∣∣M̂p − sup
x∈Ep

f(x)

∣∣∣∣∣ ≥ ǫ

)

≤ P

(∣∣∣M̂p − M̃p

∣∣∣ +
∣∣∣∣∣M̃p − sup

x∈Ep

f(x)

∣∣∣∣∣ ≥ ǫ

)

≤ P
(∣∣∣M̂p(mn) − Mp(mn)

∣∣∣ ≥ ǫ/2
)

+ P

(∣∣∣∣∣Mp(mn) − sup
x∈Ep

f(x)

∣∣∣∣∣ ≥ ǫ/2

)

≤ P

(∣∣∣M̂p(mn) − Mp(mn)
∣∣∣ ≥ 1

mǫ

)
+ ǫ/2

≤ P

(∣∣∣M̂p(mn) − Mp(mn)
∣∣∣ ≥ 1

mn

)
+ ǫ/2

≤ 1

mn
+ ǫ/2

≤ 1

mǫ
+ ǫ/2

≤ ǫ,

which implies the desired result.

The effectiveness of these estimates can be investigated through simulation. If the

mean response function is µ(x) := sin(2πx) + cos(2πx) + log(4/3 + x) on X = [−1, 1]

and there are 50 equispaced grid points, then the true value of M0 is .01257. For the

500 data sets generated above with a variance of σ2 = .01, the median M̂ is .01457

and M̂ is greater than M (that is, it is conservative) 86.2% of the time. The true

value of M1 is .07358. The median M̂ is .14075 and M̂1 is greater than M1 (that is,

it is conservative) 100% of the time.

Finally, we demonstrate in the following proposition that interpolation error can

be made to vanish asymptotically.

Proposition 3.4.1 If µ(p)(x) is continuous on Ep ⊂ X , where Ep is a compact inter-

val, and if Gp becomes dense in Ep as |Gp| → ∞, then supx∈Ep

∣∣∣µ(p)(x) − µ
(p)
I (x)

∣∣∣→ 0

as |Gp| → ∞.

Proof. Let ǫ > 0 and x ∈ int(Ep). There exists δ0 > 0 depending on ǫ but

not x such that if y ∈ Ep and |x − y| < δ0, then
∣∣µ(p)(x) − µ(p)(y)

∣∣ < ǫ/2 by the
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continuity of µ(p) and the compactness of Ep. Also, since Gp becomes dense in Ep

as |Gp| → ∞, there exists G0 such that ∀|Gp| ≥ G0, there exist a, b ∈ Gp such

that a ≤ x ≤ b, |b − a| < δ0. So there exists G0 such that ∀|Gp| ≥ G0, there exist

a, b ∈ Gp such that a ≤ x ≤ b, |µ(p)(a) − µ(p)(x)| < ǫ/2 and |µ(p)(b) − µ(p)(a)| < ǫ/2.

If a = x = b, then |µ(p)(x) − µ
(p)
I (x)| = 0. Otherwise,

∣∣∣µ(p)(x) − µ
(p)
I (x)

∣∣∣

=

∣∣∣∣µ(p)(x) − x − a

b − a

[
µ(p)(b) − µ(p)(a)

]
− µ(p)(a)

∣∣∣∣
≤

∣∣µ(p)(x) − µ(p)(a)
∣∣+
∣∣µ(p)(b) − µ(p)(a)

∣∣

≤ ǫ/2 + ǫ/2

= ǫ.

Now since
∣∣∣µ(p)(x) − µ

(p)
I (x)

∣∣∣ ≤ ǫ, ∀x ∈ int(Ep), then supx∈Ep

∣∣∣µ(p)(x) − µ
(p)
I (x)

∣∣∣ ≤ ǫ,

which implies the desired result.

3.5 Modifications for unknown variance

Theorems 3.2.1, 3.2.2, and 3.2.3 assume that σ2 is known. We now consider the

situation in which σ2 is unknown. In this case we estimate σ2 by (1.14), which is a

consistent estimator of σ2.

Assume that

Z :=
[

Zp1
(ξ1) · · · Zp1

(ξG) · · · ZpJ
(ξ1) · · · ZpJ

(ξG)
]t

→L Z∗

where Z∗ ∼ MV N (0, Σ∗) for some symmetric positive definite matrix Σ∗.

Then consider that by Slutsky’s Theorem,

Ẑ :=
[

Ẑp1
(ξ1) · · · Ẑp1

(ξG) · · · ẐpJ
(ξ1) · · · ẐpJ

(ξG)
]t

→L Z∗,

where Ẑa(ξj) := (σ/σ̂) Za(ξj).

Then for any Borel set A ∈ RG∗m, P (Z ∈ A) → P (Z∗ ∈ A) and P (Ẑ ∈ A) →
P (Z∗ ∈ A). Thus P (Z ∈ A) − P (Ẑ ∈ A) → 0 justifying P (Ẑ ∈ A) as an approxima-

tion to P (Z ∈ A).
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For small samples, we propose using the Sattherthwaite degrees of freedom esti-

mate, n −
∑n

m=1 lm(xm), and employing a multivariate t-distribution in place of a

multivariate normal distribution in (3.11) with Σ as the scale matrix of the multi-

variate t-distribution.

3.6 Simulation studies

We investigated this methodology which we have described for constructing simulta-

neous confidence bands for a mean response and its derivatives through simulation.

To do this we generated 1000 data sets from (1.1) with the true underlying mean

response set to be µ(x) := sin(2πx) + cos(2πx) + log(4/3 + x) with x1, ..., xn equis-

paced on X = [−1, 1] and σ = .1. We did this for n ∈ {50, 100} and α ∈ {.05, .20}.
We estimated the mean response and its derivatives using compound estimation with

filtration and extrapolation with J = 4, 27 centering points, β = 15 (150 during filtra-

tion and extrapolation), local regression pointwise estimates using nearest neighbor

fraction .30 (.15 during filtration and extrapolation), and κ = 0.1. We then placed

simultaneous confidence bands around the estimates of the mean response and first

derivative and simultaneous confidence bands around the estimates of the mean re-

sponse and first two derivatives, in each case using G = 25.

The results of this simulation study are recorded below in Table 3.3. In each

case, the confidence bands are conservative, achieving at least the nominal coverage

level. Note the bands constructed using α = .20 for the mean response and first two

derivatives successfully capture the true mean response and first two derivatives at

all values of the covariate only 86.3 and 84.0 percent of the time for sample sizes of

50 and 100, respectively. This is reassuring because it indicates that while the bands

are indeed conservative, they are not unreasonably so.

Below we include plots of some simulated data sets and their accompanying si-

multaneous confidence bands.
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Figure 3.1: Simultaneous confidence bands for the mean response and first derivative
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The black curves indicate the true mean response and first derivative in panels (a) and
(b), respectively. The simulated data for this sample of size 100 is also displayed in
panel (a). The red curves represent the estimated mean response and first derivative
and the blue curves represent the confidence bands with α = .05. In this case, the
confidence bands successfully contain the true mean response and first derivative at
all values of the covariate.

69



Figure 3.2: Simultaneous confidence bands for the mean response and two derivatives
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The black curves indicate the true mean response, first derivative, and second deriva-
tive in panels (a), (b), and (c), respectively. The simulated data for this sample
of size 100 is also displayed in panel (a). The red curves represent the estimated
mean response and derivatives and the blue curves represent the confidence bands
with α = .05. In this case, the confidence bands successfully contain the true mean
response and first two derivatives at all values of the covariate.
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Table 3.3: Simulation results for simultaneous confidence bands

α=.05 α=.20
0,1 0,1,2 0,1 0,1,2

n=50 100% 99.3% 99.6% 86.3%
n=100 100% 96.7% 98.0% 84.0%

The columns labeled 0, 1 indicate that simultaneous confidence bands were con-
structed for the mean response and its first derivative. The columns labeled 0, 1, 2
indicate that simultaneous confidence bands were constructed for the mean response
and its first two derivatives. The entries represent the percentages of simultaneous
confidence bands that contained the true mean response and the true derivative(s)
at each value of the covariate based on the 1000 simulated data sets.
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3.7 Ethanol example

In this section we apply our methodology to a data set from Brinkman (1981) in-

volving exhaust emissions. This data set has been examined elsewhere using non-

parametric regression techniques (Cleveland 1979, Loader 1999). Loader discusses

how to estimate the mean response and first two derivatives of the concentration of

certain pollutants (NOx) with respect to the equivalence ratio (E) using local regres-

sion. Loader does not, however, discuss how to place confidence bands around the

estimates.

In the graphs below we estimate the mean response and first two derivatives using

compound estimation with filtration and extrapolation. In Figure 3.3 we obtain

simultaneous 95% confidence bands for the mean response and the first derivative.

In Figure 3.4 we obtain simultaneous 95% confidence bands for the mean response

and the first two derivatives.

An initial glance at these figures may lead to the perception that the bands seem

wide. This perception is due to a couple of factors. The first is that this data has

a relatively low signal-to-noise ratio. The estimated mean response has a range of

only 3.4 while the estimated standard deviation is .9. The wide bands reflect the

uncertainty inherent in this relatively large standard deviation. The bands may also

seem wide because intuition about confidence intervals around the estimate of the

mean response at a given point does not translate easily to confidence bands that are

simultaneous over the mean response and one or more derivatives.

Despite the low signal-to-noise ratio, the confidence bands do allow us to determine

ranges of E over which pollution is clearly increasing and decreasing. Pollution is

clearly increasing as E ranges from .755 to .812 and is clearly decreasing as E ranges

from .99 to 1.06 based on Figure 3.3.

The bands in Figure 3.4 are simultaneous over the mean response and two deriva-

tives. The price of having bands that are simultaneous over the mean response and

two derivatives as opposed to bands that are simultaneous over the mean response

and just one derivative is wider bands. However, in this case that price is small. The
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band for the mean response in Figure 3.4 is .8% wider on average than the band for

the mean response in Figure 3.3. The band for the first derivative of the mean re-

sponse in Figure 3.4 is also .8% wider on average than the band for the first derivative

of the mean response in Figure 3.3.

The assertion that the confidence bands we have described are simultaneous over

both the covariate space and one or more derivatives is obviously much stronger than

an assertion that two points form a confidence interval for an estimate of the mean

response at a given point. It seems reasonable then, that a researcher who requires

95% confidence in the latter situation may consider a lesser confidence level in the

former situation. Reducing the confidence level will make the bands narrower and

perhaps more useful to the researcher. To provide such an example, in Figure 3.5

we display 80% simultaneous confidence bands for the mean response and the first

derivative.

Copyright c© Benjamin Hall, 2010.
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Figure 3.3: Mean response and 1st derivative of ethanol data
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The solid curves in panels (a) and (b) indicate the estimated mean response and first
derivative, respectively. The circles represent the observed data. The dashed curves
indicate the 95% confidence bands. We obtained the estimates using compound
estimation with filtration and extrapolation with J = 4, 27 centering points, β = 15
(150 during filtration and extrapolation), nearest neighbor local regression pointwise
estimates using nnfrac = .30 (nnfrac0 = .15 during filtration and extrapolation), and
κ = 0.1. The confidence bands were constructed with 25 grid points.
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Figure 3.4: Mean response and first two derivatives of ethanol data
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The solid curves in panels (a), (b), and (c) indicate the estimated mean response,
first derivative, and second derivative, respectively. The circles represent the ob-
served data. The dashed curves indicate the 95% confidence bands. We obtained the
estimates using compound estimation with filtration and extrapolation with J = 4,
27 centering points, β = 15 (150 during filtration and extrapolation), local regres-
sion pointwise estimates using nearest neighbor fraction .30 (.15 during filtration and
extrapolation), and κ = 0.1. The confidence bands were constructed with 25 grid
points.
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Figure 3.5: Mean response and 1st derivative of ethanol data (80% confidence)
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The solid curves in panels (a) and (b) indicate the estimated mean response and first
derivative, respectively. The circles represent the observed data. The dashed curves
indicate the 80% confidence bands. We obtained the estimates using compound
estimation with filtration and extrapolation with J = 4, 27 centering points, β = 15
(150 during filtration and extrapolation), nearest neighbor local regression pointwise
estimates using nnfrac = .30 (nnfrac0 = .15 during filtration and extrapolation), and
κ = 0.1. The confidence bands were constructed with 25 grid points.
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Chapter 4 Confidence Bands in the Presence of Heteroscedastic Noise

4.1 Heteroscedastic noise

In the previous chapter we constructed simultaneous confidence bands for a mean

response and its derivatives around nonparametric estimators that are linear in the

observed responses. We assumed that the observed responses arose from model (1.1)

with the error terms independently and identically normally distributed. In this

chapter we relax this assumption to allow for heteroscedastic noise.

In what follows, we assume that model (1.1) holds where the ǫi are independent

and

ǫi ∼ N(0, σ2(xi)),

where σ2(x) > 0 is Lipschitz continuous of order 1 on X . (A function is Lipschitz

continuous of order a on X if there exists a positive constant m such that |f(x1) −
f(x2)| ≤ m|x1 − x2|a for all x1, x2 ∈ X .)

If we are to proceed in a manner at all like the method of the previous chapter, we

will need an estimator of σ2(x). For reasons we will later make clear, it is sufficient to

estimate σ2(x) only at the grid of points G used in the construction of the confidence

bands.

To estimate σ2(x) at a grid point ξ ∈ G we first define

Sξ,j := (Ya+m+1−2j − Ya+m−2j) /
√

2, (4.1)

for j ∈ {1, 2, ..., m} where m ∈ N is chosen such that m → ∞ and m3/2n−1 log m →
0 as n → ∞ and a := argmini∈{1,...,n} {xi − ξ : xi − ξ ≥ 0}. Then, as we show in

Corollary 4.1.1, S2
ξ,j →L σ2(ξ)χ2

1 under mild conditions. Definition (4.1) can easily

be modified for grid points on the boundaries. For ξ on the left boundary, define

Sξ,j := (Y2j − Y2j−1) /
√

2,

for j ∈ {1, 2, ..., m}. For ξ on the right boundary, define

Sξ,j := (Yn−2j+2 − Yn−2j+1) /
√

2,
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for j ∈ {1, 2, ..., m}. The results of Lemma 4.1.1 and Corollary 4.1.1 still apply.

The next step is to apply a nonparametric regression estimator to the set of S2
ξ,j.

Any nonparametric technique is acceptable for this purpose as long as it is linear in

the observed responses (where in this case the observed responses are the S2
ξ,j) such

that
∑m

j=1 lj(x) = 1 and
∑m

j=1 l2j (x) → 0 as m → ∞. All of the methods discussed

in Chapter 1 meet these criteria. Note that the estimator will need to be applied

|G| times, once to the S2
ξ,j for each ξ. The resulting estimator, σ̃2(ξ) is a consistent

estimator of σ2(ξ) as demonstrated in Proposition 4.1.1, which relies on Lemma 4.1.1.

Lemma 4.1.1 Assume that model (1.1) holds where the ǫi are independent and nor-

mally distributed. Assume that the variance of ǫi is σ2(xi), where σ2(x) > 0 and µ(x)

are Lipschitz continuous functions of order 1 on X , and the xi are design points for

which the mesh is O(n−1). Then ∀ξ ∈ G, maxj

∣∣S2
ξ,j − Xj

∣∣ = Op(mn−1 log m), where

Xj = σ2(ξ) (ǫa+m+1−2j/σ(xa+m+1−2j) − ǫa+m−2j/σ(xa+m−2j))
2 /2.

Proof. First, consider a random variable having a half normal distribution which

is the result of taking the absolute value of a standard normal random variable. The

half normal random variable has distribution function F (x) = 2Φ(x)− 1 and density

function f(x) = 2φ(x) for x ≥ 0. Then

[1 − F (x)]/f(x) = [2 − 2Φ(x)]/[2φ(x)] = [1 − Φ(x)]/φ(x) ∼ 1/x.

(Note that f(x) ∼ g(x) if and only if f(x)/g(x) → 1 as n → ∞.) So if we take bn to

be the 1 − 1/n quantile of the half normal distribution, then

1/n = 2 − 2Φ(bn) ∼ 2e−b2n/2

bn

√
2π

and, by Cramer (1946),

bn =
√

2 log n − log(π log n)/2√
2 log n

+ O(1/ logn).

Also 2nφ(bn) ∼ bn and so by David and Nagaraja (1980), bn(Xn:n−bn) or equivalently
√

2 log n(Xn:n − bn), where Xn:n denotes the largest in a random sample of size n
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from the half normal distribution, converges in law to the Gumbel distribution. This

implies that Xn:n = Op(
√

log n) which implies that

X2
n:n = Op(log n). (4.2)

Now let ξ ∈ G. Let j1 := a + m − 2j and j2 := a + m + 1 − 2j. Then

max
j

∣∣S2
ξ,j − Xj

∣∣

= max
j

∣∣∣∣ǫ2
j1

(
1 − σ2(ξ)

σ2(xj1)

)
/2 + ǫ2

j2

(
1 − σ2(ξ)

σ2(xj2)

)
/2 + [µ(xj1) − µ(xj2)]

2 /2

−ǫj1ǫj2

(
1 − σ2(ξ)

σ(xj1)σ(xj2)

)
+ ǫj1 [µ(xj1) − µ(xj2)] − ǫj2 [µ(xj1) − µ(xj2)]

∣∣∣∣
= max

j

∣∣(ǫ2
j1

+ ǫ2
j2

)O(mn−1) + O(m2n−2) − ǫj1ǫj2O(mn−1) + (ǫj1 − ǫj2)O(mn−1)
∣∣

= O(mn−1) max
j

∣∣ǫ2
j1

+ ǫ2
j2

∣∣

= O(mn−1)Op(log m), (4.3)

where line (4.3) is obtained from (4.2).

Note that Lipschitz continuity of µ(x) is ensured if µ(x) is differentiable, which is

tacit if a positive integer belongs to {p1, ..., pJ}.

Corollary 4.1.1 Assume that the conditions of Lemma 4.1.1 hold. Let ξ ∈ G. Then

S2
ξ,j →L σ2(ξ)χ2

1 as n → ∞.

Proof. Since Xj ∼ σ2(ξ)χ2
1 implies that Xj →L σ2(ξ)χ2

1 and S2
ξ,j − Xj →P 0, we

have

S2
ξ,j = S2

ξ,j − Xj + Xj

→L 0 + σ2(ξ)χ2
1.

Proposition 4.1.1 Assume that the conditions of Lemma 4.1.1 hold. Let ξ ∈ G

be a grid point. Assume that σ̃2(ξ) represents a nonparametric regression estimator
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applied to the set of S2
ξ,j. Also assume that the nonparametric regression estimator

is linear in the observed responses (where in this case the observed responses are the

S2
ξ,j) and is defined such that

∑m
j=1 lj(x) = 1 and

∑m
j=1 l2j (x) → 0 as m → ∞. Then

σ̃2(ξ) →P σ2(ξ) as m → ∞.

Proof. Since
∑m

j=1 l2j (x) → 0, then
∑m

j=1 |lj(x)| = o(m1/2) by Holder’s inequality.

So for any ǫ > 0

P
(∣∣σ̃2(ξ) − σ2(ξ)

∣∣ ≥ ǫ
)

≤ P

(∣∣∣∣∣σ̃
2(ξ) −

m∑

j=1

lj(ξ)Xj

∣∣∣∣∣ ≥ ǫ/2

)
+ P

(∣∣∣∣∣
m∑

j=1

lj(ξ)Xj − σ2(ξ)

∣∣∣∣∣ ≥ ǫ/2

)

= P

(∣∣∣∣∣
m∑

j=1

lj(ξ)S
2
ξ,j −

m∑

j=1

lj(ξ)Xj

∣∣∣∣∣ ≥ ǫ/2

)
+ P

(∣∣∣∣∣
m∑

j=1

lj(ξ)Xj − σ2(ξ)

∣∣∣∣∣ ≥ ǫ/2

)

≤ P

(
m∑

j=1

∣∣S2
ξ,j − Xj

∣∣ |lj(ξ)| ≥ ǫ/2

)
+ V ar

[
m∑

j=1

lj(ξ)Xj

]
/(ǫ/2)2

≤ P

(
max

j

∣∣S2
ξ,j − Xj

∣∣
m∑

j=1

|lj(ξ)| ≥ ǫ/2

)
+ 4

(
m∑

j=1

l2j (ξ)

)
V ar [X1] /ǫ

2

= P
(
Op(mn−1 log m)o(m1/2) ≥ ǫ/2

)
+ 8(σ2(ξ))2

(
m∑

j=1

l2j (ξ)

)
/ǫ2 (4.4)

→ 0,

which implies the desired result. Line (4.4) follows from Lemma 4.1.1.

We are now in a position to use this estimator of the heteroscedastic variance to

construct simultaneous confidence bands for the mean response and its derivatives.

Our approach is similar to that of Chapter 3.

We first define

Zp(ξ) :=

∑n
i=1 l

(p)
i (ξ)ǫi√∑n

i=1 σ2(xi)l
(p)
i (ξ)2

. (4.5)

We can then use (4.5) to determine zα from (3.12) or (3.13). By applying the ideas

of chapter 3, if Bp(x) is a bound on the absolute value of the bias of the estimator of

µ(p)(x) (or estimates such a value; see section 3.3), and if
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Mp ≥ supx∈X |µ(p)(x) − µ
(p)
I (x)| (or estimates such a value; see section 3.4), and if

Dp(x) :=

√∑n
i=1 l

(p)
i (x)2σ2(xi), then

Up(x), Lp(x) := µ̂
(p)
I (x) ± (Mp + BpI(x) + zαDpI(x)) ,

where p ∈ {p1, ..., pJ} and the subscript I denotes linear interpolation between the

grid points, form 100(1−α)% simultaneous confidence bands for derivatives p1, ..., pJ .

Of course, the problem is that in practice, σ2(x) is unknown. However since, as

we demonstrate in Lemma 4.1.2 below, at the grid points

∑n
i=1 l

(p)
i (ξ)2σ2(xi)

σ2(ξ)
∑n

i=1 l
(p)
i (ξ)2

→P 1,

we can justify using σ̃(ξ)

√∑n
i=1 l

(p)
i (ξ)2 in place of Dp(ξ) when constructing the

confidence bands.

Now define Σ̂ to be a variance-covariance matrix which estimates the covariance

of Zpa
(ξj) and Zpb

(ξk) to be 0 if ξj 6= ξk and

∑
l
(pa)
i (ξj)l

(pb)
i (ξj)√∑

l
(pa)
i (ξj)2

∑
l
(pb)
i (ξj)2

otherwise.

Now let Zs be a multivariate normal random variable with mean zero and variance-

covariance matrix I. Suppose that

Z :=
[

Zp1
(ξ1) · · · ZpJ

(ξ1) · · · Zp1
(ξG) · · · ZpJ

(ξG)
]t

→L MV N (0, Σ∗)

for some positive definite symmetric matrix Σ∗ and that Σ̂ → Σ∗. (These suppositions

can be checked for the particular nonparametric regression estimator being employed.

We show below that they are true for kernel regression.) Then for any Borel set

A ∈ RG∗J , we have both P (Z ∈ A) → P (Σ∗1/2Zs ∈ A) and P (Σ̂1/2Zs ∈ A) →
P (Σ∗1/2Zs ∈ A). Hence P (Z ∈ A) − P (Σ̂1/2Zs ∈ A) → 0 which justifies treating Z

as if its variance/covariance matrix were Σ̂. In particular, with A := {x ∈ RG∗J :

max1≤j≤G∗j |xj | > zα}, we see that zα may be estimated using Σ̂ rather than the

incalculable (since σ2(x) is unknown) variance/covariance matrix of Z.
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For small samples, we propose using the Satterthwaite approximation degrees of

freedom estimate and employing a multivariate t-distribution in place of a multivari-

ate normal distribution when estimating zα.

Lemma 4.1.2 Assume that the conditions of Lemma 4.1.1 hold. Assume the there

exists C > 0 such that

∑

i:|xi−ξ|>Cm/n

l
(p)
i (ξ)2 = o


 ∑

i:|xi−ξ|≤Cm/n

l
(p)
i (ξ)2


 . (4.6)

Then ∀ξ ∈ G, ∑n
i=1 l

(p)
i (ξ)2σ2(xi)

σ2(ξ)
∑n

i=1 l
(p)
i (ξ)2

→P 1.

Proof. Let ξ ∈ G be a grid point. Let ǫ > 0. Then

P

(∣∣∣∣∣

∑n
i=1 l

(p)
i (ξ)2σ2(xi)

σ2(ξ)
∑n

i=1 l
(p)
i (ξ)2

− 1

∣∣∣∣∣ ≥ ǫ

)

= P

(∣∣∣∣∣

∑
i:|xi−ξ|≤Cm/n l

(p)
i (ξ)2σ2(xi)

σ2(ξ)
∑

i:|xi−ξ|≤Cm/n l
(p)
i (ξ)2

[1 + o(1)] − 1

∣∣∣∣∣ ≥ ǫ

)

= P

(∣∣∣∣∣

∑
i:|xi−ξ|≤Cm/n l

(p)
i (ξ)2σ2(ξ)

σ2(ξ)
∑

i:|xi−ξ|≤Cm/n l
(p)
i (ξ)2

[1 + o(1)] − 1

∣∣∣∣∣ ≥ ǫ

)

= P (|[1 + o(1)] − 1| ≥ ǫ)

→ 0

which implies the desired result.

The validity of assumption (4.6) in Lemma 4.1.2 depends on the nonparametric

regression technique being employed, but note that this assumption is true for kernel

regression with a compactly supported kernel and bandwidth h ≤ Cm/n since in this

case the left side of (4.6) is 0.

We now demonstrate that our suppositions about Z and Σ̂ are reasonable by

illustrating their satisfaction.
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Consider kernel regression with a compactly supported kernel K(u) that has pJ +1

continuous derivatives and such that the J × J matrix R with (a, b) entry

∫

R

K(pa)(u)K(pb)(u)du/

√∫

R

K(pa)(u)2du

∫

R

K(pb)(u)2du

is positive definite. Let Σ∗ be a GJ ×GJ block diagonal matrix containing G copies

of R. Note that Σ∗ is positive definite and symmetric.

Lemma 4.1.3 Let K(u) and Σ∗ be as described above. Assume that the bandwidth

parameter h ≤ Cm/n → 0 as n → ∞, that nh → 0, and that the design points are

uniform on X . Then, under the conditions of Lemma 4.1.1, with kernel regression

we have V ar(Z) → Σ∗ and Σ̂ → Σ∗ as n → ∞.

Proof. Without loss of generality, take X := [−1, 1]. First consider the elements

of V ar(Z) corresponding to ξj 6= ξk. Consider n large enough so that |ξj − ξk| > 2h.

Note that K(pa)((ξj − xi)/h) 6= 0 only if |ξj − xi| ≤ h. But if |ξj − xi| ≤ h then

|ξk − xi| = |ξk − ξj + ξj − xi| ≥ ||ξk − ξj| − |ξj − xi|| > h,

which means that K(pb)((ξk − xi)/h) = 0. So for n large enough that |ξj − ξk| > 2h,

the elements of V ar(Z) corresponding to ξj 6= ξk are 0.
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Now consider the elements of V ar(Z) corresponding to ξj = ξk. Then

∑n
i=1 l

(pa)
i (ξj)l

(pb)
i (ξj)σ

2(xi)

σ2(ξj)

√∑n
i=1 l

(pa)
i (ξj)2

∑n
i=1 l

(pb)
i (ξj)2

=

∑
i:|xi−ξj |≤Cm/n l

(pa)
i (ξj)l

(pb)
i (ξj)σ

2(xi)

σ2(ξj)

√∑n
i=1 l

(pa)
i (ξj)2

∑n
i=1 l

(pb)
i (ξj)2

=
σ2(ξj)

∑
i:|xi−ξj |≤Cm/n l

(pa)
i (ξj)l

(pb)
i (ξj)

σ2(ξj)

√∑n
i=1 l

(pa)
i (ξj)2

∑n
i=1 l

(pb)
i (ξj)2

[1 + o(1)]

=

∑
i:|xi−ξj |≤2m/n K(pa)(

ξj−x

h
)K(pb)(

ξj−x

h
)

√∑n
i=1 K(pa)(

ξj−x

h
)2
∑n

i=1 K(pb)(
ξj−x

h
)2

[1 + o(1)]

=

∫ 1

−1
K(pa)(

ξj−x

h
)K(pb)(

ξj−x

h
)dx

√∫ 1

−1
K(pa)(

ξj−x

h
)2dx

∫ 1

−1
K(pb)(

ξj−x

h
)2dx

[1 + o(1)], (4.7)

=

∫ (ξj+1)/h

(ξj−1)/h
K(pa)(u)K(pb)(u)du

√∫ (ξj+1)/h

(ξj−1)/h
K(pa)(u)2du

∫ (ξj+1)/h

(ξj−1)/h
K(pb)(u)2du

[1 + o(1)],

=

∫
R

K(pa)(u)K(pb)(u)du√∫
R

K(pa)(u)2du
∫

R
K(pb)(u)2du

[1 + o(1)],

where line (4.7) and line (4.8) below come from the fact that for any function f(x)

which is bounded in n and has a continuous derivative such that |f ′(x)| ≤ M(n) =
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o(n) we have that

∣∣∣∣∣
2

n

n∑

i=1

f(xi) −
∫ 1

−1

f(x)dx

∣∣∣∣∣

=

∣∣∣∣∣
2f(x1)

n
+

n∑

i=2

f(xi)(xi − xi−1) −
n∑

i=2

∫ xi

xi−1

f(x)dx

∣∣∣∣∣

=

∣∣∣∣∣
2f(x1)

n
+

n∑

i=2

f(xi)(xi − xi−1) −
n∑

i=2

f(γi)(xi − xi−1)

∣∣∣∣∣

=

∣∣∣∣∣
2f(x1)

n
+

n∑

i=2

[f(xi) − f(γi)](xi − xi−1)

∣∣∣∣∣

≤
∣∣∣∣
2f(x1)

n

∣∣∣∣+
∣∣∣∣∣

n∑

i=2

M(n)(xi − xi−1)
2

∣∣∣∣∣

=

∣∣∣∣
2f(x1)

n

∣∣∣∣+
∣∣∣∣
4(n − 1)M(n)

n2

∣∣∣∣
→ 0.

Note that the elements of Σ̂ and Σ∗ corresponding to ξj 6= ξk or pa = pb are equal

by definition. For ξj = ξk and pa 6= pb we have

∑n
i=1 l

(pa)
i (ξj)l

(pb)
i (ξj)√∑n

i=1 l
(pa)
i (ξj)2

∑n
i=1 l

(pb)
i (ξj)2

=

∑n
i=1 K(pa)(

ξj−xi

h
)K(pb)(

ξj−xi

h
)√∑n

i=1 K(pa)(
ξj−xi

h
)2
∑n

i=1 K(pb)(
ξj−xi

h
)2

=

∫ 1

−1
K(pa)(

ξj−x

h
)K(pb)(

ξj−x

h
)dx

√∫ 1

−1
K(pa)(

ξj−x

h
)2dx

∫ 1

−1
K(pb)(

ξj−x

h
)2dx

[1 + o(1)] (4.8)

=

∫ (ξj+1)/h

(ξj−1)/h
K(pa)(u)K(pb)(u)du

√∫ (ξj+1)/h

(ξj−1)/h
K(pa)(u)2du

∫ (ξj+1)/h

(ξj−1)/h
K(b)(u)2du

[1 + o(1)]

→
∫

R
K(pa)(u)K(pb)(u)du√∫

R
K(pa)(u)2du

∫
R

K(pb)(u)2du
,

which implies the desired result.

85



4.2 Simulation studies

We investigated this methodology for constructing 100(1 − α)% simultaneous confi-

dence bands for a mean response and its derivatives in the presence of heteroscedastic

noise through simulation. To do this we generated 500 data sets each of size 50 from

(1.1) with the true underlying mean response set to be µ(x) := sin(2πx)+cos(2πx)+

log(4/3 + x) with x1, ..., x50 equispaced on X = [−1, 1] and four different variance

functions:

σ2
1(x) =

(x + 2)3

40
,

σ2
2(x) =

3x2

4
+ .01,

σ2
3(x) = .2,

σ2
4(x) = .3.

Note that σ2
1(x) is monotone increasing, while σ2

2(x) is monotone decreasing over

[−1, 0] and monotone increasing over [0, 1]. Figure 4.1 depicts these variance functions

graphically. We performed simulations for m ∈ {12, 16, 20, 24} (recall that m is the

number of S2
ξ,j’s used to determine σ̃2(ξ)) and α ∈ {.05, .20}. We estimated the

mean response and its derivatives using compound estimation with filtration and

extrapolation with J = 4, 27 centering points, β = 15 (150 during filtration and

extrapolation), local regression pointwise estimates using nearest neighbor fraction .30

(.15 during filtration and extrapolation), and κ = 0.1. We then placed simultaneous

confidence bands around the estimates of the mean response and first derivative and

simultaneous confidence bands around the estimates of the mean response and first

two derivatives, in each case constructing the bands by interpolating (see Section 3.4)

over a grid size of G = 25.

The results of this simulation study are recorded below in Table 4.1. In most

cases, the confidence bands are conservative, achieving at least the nominal coverage

level. In the case of σ2
2, where the coverage level is not achieved for α = .20, the

problem is likely that the variance is excessively large near the boundaries, where

estimation is already extremely difficult. In a follow-up simulation with σ2
5 = σ2

2/2
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Figure 4.1: Variance functions used in simulations
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The gray line is the variance function σ2
1. The red line is σ2

2 . The blue line is σ2
3. The

black line is σ2
4.

we obtained the results displayed in Table 4.2. The success of the bands appears to

depend on both the shape and magnitude of the variance function. Notice that the

bands are most conservative when the variance is constant (σ2
3 and σ2

4). A researcher

who is able to recognize that the variance is indeed constant will be able to obtain

narrower bands by employing the methodology of the previous chapter. A researcher

who makes the more conservative assumption allowing for heteroscedastic variance

will get more conservative simultaneous confidence bands.

Figure 4.2 illustrates how the width of the bands changes to accommodate noise

generated with different variance functions. Notice that the width of the bands cor-

responding to data with variance function σ2
1(x) increases as the variance increases,

i.e. as x increases. The bands corresponding to data with variance function σ2
2(x) are

narrowest where the variance is smallest (where x ≈ 0). These features are somewhat
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distorted by the fact that the bands naturally enlarge near the boundaries even with

constant variance. Nevertheless, the bands obviously respond to the heteroscedastic-

ity.

Table 4.1: Simulation results for simultaneous confidence bands

α=.05 α=.20
0,1 0,1,2 0,1 0,1,2

σ2
1 , m = 12 100.0% 100.0% 99.8% 99.8%

σ2
1 , m = 16 99.4% 98.4% 84.0% 79.0%

σ2
1 , m = 20 98.8% 98.2% 79.4% 74.6%

σ2
1 , m = 24 97.8% 97.0% 76.2% 72.0%

σ2
2 , m = 12 95.8% 93.8% 66.2% 60.0%

σ2
2 , m = 16 95.8% 94.2% 67.8% 61.0%

σ2
2 , m = 20 95.8% 94.2% 68.4% 61.2%

σ2
2 , m = 24 96.4% 94.4% 70.0% 64.0%

σ2
3 , m = 12 100.0% 100.0% 100.0% 100.0%

σ2
3 , m = 16 100.0% 100.0% 100.0% 99.8%

σ2
3 , m = 20 100.0% 100.0% 100.0% 99.6%

σ2
3 , m = 24 100.0% 100.0% 100.0% 99.6%

σ2
4 , m = 12 100.0% 100.0% 97.6% 96.4%

σ2
4 , m = 16 100.0% 100.0% 97.8% 97.2%

σ2
4 , m = 20 100.0% 100.0% 99.4% 98.8%

σ2
4 , m = 24 100.0% 100.0% 96.2% 95.4%

The columns labeled 0, 1 indicate that simultaneous confidence bands were con-
structed for the mean response and its first derivative. The columns labeled 0, 1, 2
indicate that simultaneous confidence bands were constructed for the mean response
and its first two derivatives. The entries represent the percentages of simultaneous
confidence bands that contained the true mean response and the true derivative(s)
at each value of the covariate based on the 500 simulated data sets.
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Table 4.2: More simulation results for simultaneous confidence bands

α=.05 α=.20
0,1 0,1,2 0,1 0,1,2

σ2
5 , m = 12 100.0% 100.0% 100.0% 100.0%

σ2
5 , m = 24 100.0% 100.0% 97.2% 95.0%

The columns labeled 0, 1 indicate that simultaneous confidence bands were con-
structed for the mean response and its first derivative. The columns labeled 0, 1, 2
indicate that simultaneous confidence bands were constructed for the mean response
and its first two derivatives. The entries represent the percentages of simultaneous
confidence bands that contained the true mean response and the true derivative(s)
at each value of the covariate based on the 500 simulated data sets.

Figure 4.2: Comparison of confidence bands across different variance functions
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The circles in panels (a), (b), and (c) represent simulated data with variance functions
σ2

1(x), σ2
2(x), and σ2

3(x), respectively. In each case the mean response is µ(x) :=
sin(2πx) + cos(2πx) + log(4/3 + x). The red lines in the top row of panels are plots
of this mean response. The red lines in the bottom row of panels are plots of the first
derivative of this mean response. The black lines are 80% simultaneous confidence
bands with m = 12.

89



4.3 Fetal growth example

In this section we apply our methodology to a data set of size 167 from Royston and

Altman (1994) involving fetal growth. The variables under consideration are the age

of the fetus (in weeks) and the length of the mandible (in mm). The data set provides

a clear example of heteroscedastic noise, with the variance increasing with age.

This data set is interesting because while we would expect mandible length to

be a monotone increasing function, nonparametric regression estimates of the mean

response and its derivative indicate a downward trend in mandible length during

weeks 28 to 34 (see Figure 4.3). But is this trend based on reality or is it due to

the increased variance and sparsity of data points at larger values of age? We can

examine this question using our methodology for confidence band construction.

The confidence bands for the mean response in panel (a) of Figure 4.3 become

wider as age increases, reflecting the heteroscedastic noise. While no convex function

fits inside the confidence bands for the mean response, the bands do indicate that

the true mean response could still be a monotone increasing function. This can also

be seen from the confidence bands for the first derivative in panel (b). These bands

identify 14 to 17 weeks and 19 to 22 weeks as regions over which growth is clearly

positive. And while the estimate of the first derivative is negative after week 28, the

confidence bands over this region are wide that we cannot rule out growth as high as

2 mm/week.

A couple of points are worth noting in this analysis. The first is that Royston

and Altman (1994) chose to exclude the nine observations for which age was greater

than 28 weeks. They did this for two reasons: these observations had ‘excessive

measurement error’ and represented a ‘highly selected group’. We note that if the

latter reason is indeed valid, these observations should be excluded from our analysis.

However, the first reason should not necessitate their exclusion for our purposes.

Increasing measurement error is simply heteroscedastic noise which is reflected in our

method by the increasingly wide bands. The second point is that just as in Chapter

3, a researcher who normally employs 95% confidence intervals may be willing to
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Figure 4.3: Mean response and first derivative of fetal growth data
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The solid curves in panels (a) and (b) indicate the estimated mean response and first
derivative, respectively. The circles represent the observed data. The dashed curves
indicate the 95% confidence bands. We obtained the estimates using compound
estimation with filtration and extrapolation with J = 4, 27 centering points, β = 15
(150 during filtration and extrapolation), local regression pointwise estimates using
nearest neighbor fraction .30 (.15 during filtration and extrapolation), and κ = 0.1.
The confidence bands were constructed with G = 25 grid points and m = 20.

consider simultaneous confidence bands with a reduced confidence level. In Figure

4.4 we display 80% confidence intervals applied to the 158 observations remaining

when we exclude measurements with a gestational age greater than 28 weeks.

Copyright c© Benjamin Hall, 2010.
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Figure 4.4: Mean response and first derivative of fetal growth up to 28 weeks
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The solid curves in panels (a) and (b) indicate the estimated mean response and first
derivative, respectively. The circles represent the observed data. The dashed curves
indicate the 80% confidence bands. We obtained the estimates using compound
estimation with filtration and extrapolation with J = 4, 27 centering points, β = 15
(150 during filtration and extrapolation), local regression pointwise estimates using
nearest neighbor fraction .30 (.15 during filtration and extrapolation), and κ = 0.1.
The confidence bands were constructed with G = 25 grid points and m = 20.
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Chapter 5 Limited Angle Recovery of Nanoparticle Characteristics

5.1 Introduction

As mentioned in Chapter 1, one of the many areas in which nonparametric derivative

estimation is useful is the characterization of nanoparticles. In this chapter we offer

an enhancement to the characterization methods of Francoeur et al (2007), Charnigo

et al (2007), and Charnigo et al (2010) by presenting methodology which identifies

subsets of the covariate space (i.e. the possible values of the far-field recovery angle

θ; in this case X = [0, 180]) which are most useful for characterization purposes.

Identification of such subsets is desirable because it reduces the time and resources

required to perform the characterization.

The nanoparticle characterization process entails two major steps which involve

nonparametric estimation: the forward problem and the inverse problem. The for-

ward problem is that of obtaining the reference curves, i.e. the scattering profiles

(and their derivatives) for known configurations. We assume that construction of the

reference curves entails negligible random error since, for example, an experimenter

may process many samples with S known and calculate an average. A nonparametric

regression estimator is still necessary, however, since observations of the scattering

profile are only available on a discrete subset of X . We refer to this subset as T . The

set T needs to be dense in order for the error involved in estimating the entire curve

from the finite grid to be small.

The inverse problem is that of characterizing unknown configurations and in-

volves obtaining estimates of the scattering profiles (and their derivatives) for these

configurations. These estimates are obtained by applying a nonparametric regression

estimator to observed data which arises from the following model:

Yi = M(θi; S) + ǫi (5.1)

where M(θi; S) represents the scattering profile for configuration S and the ǫi are dis-

tributed independently and identically with mean 0 and variance σ2. For the inverse
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problem S is unknown to the experimenter. Again the observations are obtained over

a discrete subset of X . We refer to this set as T ∗. It is not necessarily the case that

T = T ∗.

This chapter describes how to choose T for the forward problem and T ∗ for the

inverse problem. Importantly, we offer methodology for saving effort in solving both

cases.

5.2 Limited angles for the reference curves

In this section we propose a resource-saving method for identifying an optimal subset

of far-field recovery angles to be used in the construction of the reference curves.

Consider that for a given characteristic many reference curves will need to be

constructed. Exactly how many will depend on the domain (call it C0) of possible

characteristic values and the fineness of the grid (call it C2) which forms a discrete

approximation of C0. For example, if size is the characteristic, more reference curves

will be required if the domain of possible sizes (in nm) is C0 = [5, 100] as opposed

to C0 = [5, 50]. Also more reference curves will be required if C2 = {5, 10, 15, ..., 50}
as opposed to C2 = {5, 14, 23, ..., 50}. To perform characterization more precisely, we

can take C1 to be a grid which is denser than C2 and define, for any c in C1 which is

not also in C2,

M(θ; c) := M(θ, a) +
c − a

b − a
[M(θ, b) − M(θ, a)],

where a is the largest element of C2 less than c and b is the smallest element of C2

greater than c.

Since the construction of each reference curve involves obtaining data at each θ ∈
T , the cardinality of T will clearly impact the effort required to construct the reference

curves. A T with a small cardinality which nevertheless covers the regions of X most

useful for characterization would be expedient. In what follows we demonstrate how

to identify such a T .

The idea is that we will choose an initial TI which is sparse. We then evaluate

the θ ∈ TI and determine which are ‘good’ choices. Finally we choose T to be a
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grid which is dense around these ‘good’ choices and excludes the intervals around the

‘bad’ choices. Of course, to do this we must define what makes a given θ ‘good’ for

characterization purposes.

Consider the simplest case, depicted previously in Figure 1.1, in which we have

scattering profiles available for two known configurations (call them A and B) and

wish to characterize a third unknown configuration as closer to one or the other known

configuration. Then it is intuitively reasonable that a good choice of θ will be one for

which the quantity

|M(θ; A) − M(θ; B)| (5.2)

is large. In Figure 1.1, this implies that θ = {25, 75} are good choices while θ =

{50, 150} are poor choices.

The situation is much more complicated when we involve the scattering profiles

for multiple known configurations (i.e. the cardinality of C2 is greater than 2). In this

case there does not exist a single value such as (5.2) which describes the characteri-

zation ability of a given θ. This can be seen below in Figure 5.1, which depicts the

scattering profiles of 10 different nanoparticles of known sizes. Examining θ ≈ 150

we see that |M(150; 50) − M(150; 60)| is relatively large (indicating that θ ≈ 150

is a good choice for distinguishing between 50 nm and 60 nm configurations), while

|M(150; 10)−M(150; 20)| is relatively small (indicating that θ ≈ 150 is a poor choice

for distinguishing between 10 nm and 20 nm configurations).

We need a quantity that measures, for a given θ, the magnitude of the change in

M(θ; S) as S changes. This quantity is

δ(θ, S) :=

∣∣∣∣
∂

∂S
M(θ; S)

∣∣∣∣ (5.3)

and can be estimated using nonparametric regression methods by viewing S as the

covariate. When δ(θ, S) is large for given θ and S, the implication is that the θ under

consideration is a good choice for characterizing nanoparticles of approximate size S.

Figure 5.2 displays δ(θ, S) as a function of S. The graph indicates, for example, that

θ = 160 is a good choice for characterizing particles whose size is between 40 nm and
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Figure 5.1: Scattering profiles for M11

50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

θ

M
1

1

10
20
30
40
50

60
70
80
90
100

The graph above presents M11 scattering profiles as a function of θ. Each curve repre-
sents a different size (in nm). The curves were constructed with TI = {10, 20, ..., 170}
using compound estimation with filtration and extrapolation and J = 7, 27 cen-
tering points, β = 12 (120 for the initial run), and κ = 0.2. Local constant and
slope estimates were obtained using smoothing splines, while coefficients of higher-
order local fits were obtained using inductive estimators with h2 = h2 = 1/150,
h4 = h5 = h6 = h7 = 1/30. Agglomeration level is set at 50%.

80 nm, but not a good choice for characterizing particles whose size is about 15 nm.

For particles of approximate size 15 nm, θ = 120 is a better choice.

The quantity δ(θ, S) is the primary ingredient in our determination of T . How-

ever, we need to consider two additional issues before making this determination.

The first is that nanoparticles of different sizes are not all characterized with equal

levels of difficulty. From Figure 5.2 we see that there are several angles at which the

characterization of size 15 nm particles is more easily performed than is the charac-

terization of size 95 nm particles at any angle. This is potentially problematic for a

couple of reasons. We want to avoid selecting too many angles merely on the basis

96



Figure 5.2: Evaluating characterization ability of M11
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The graph above presents the quantity δ(θ, S) for the M11 scattering profile as a
function of S. Each curve represents a different θ. Estimation was performed us-
ing compound estimation with filtration and extrapolation and J = 7, 27 centering
points, β = 12 (120 during filtration and extrapolation), and κ = 0.2. Local constant
and slope estimates were obtained using smoothing splines with splines of order 7,
while coefficients of higher-order local fits were obtained using inductive estimators
with h2 = h3 = 1/150, h4 = h5 = h6 = h7 = 1/30. Agglomeration level is set at 50%.

that they characterize the same, easily characterized size particles well. That is, we

do not want to increase the cardinality of T for redundant characterization ability at

sizes which are easily characterized. At the same time, we want to avoid selecting too

few (or zero!) angles at which characterization of difficult-sized particles is performed

relatively well on the basis of small absolute characterization ability.

As an example consider the hypothetical situation presented in Figure 5.3. If

θ = 40 (represented by the red curve) and θ = 80 (represented by the green curve)

are included in T , there is clearly no need to include θ = 120 (represented by the

orange curve). Therefore, the researcher may be tempted to define T to include only
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values of θ for which δ(θ, S) exceeds .08 for some S. This accomplishes the goal

of excluding θ = 120. However, this is problematic in that such a threshold also

excludes θ = 160 (represented by the blue curve), which is the only value of θ with

substantial ability to characterize particles larger than 90 nm. Indeed, there is no

threshold which will exclude θ = 120 and include θ = 160 at the same time.

Figure 5.3: Example of potential limited angle choice pitfall
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The graph above presents hypothetical δ(θ, S) quantities as a function of S. Each
curve represents a different θ. Note that if the threshold for inclusion of angles is set
at .06 or above, the blue curve (θ = 160) is not selected and it will then be extremely
difficult nanoparticles larger than 90 nm. If the threshold is set at .06 or below, the
orange curve (θ = 120), which supplies only redundant characterization ability, will
be selected.

To avoid this dilemma we propose the following normalization:

∆(θ, S) :=
δ(θ, S)∑

t∈TI
δ(t, S)/|TI |

, (5.4)

where |TI | indicates the cardinality of TI .
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The second issue is that we need to be able to consider the characterization ability

at a given θ not only for the scattering profile, but also for its derivative(s) with re-

spect to θ. To illustrate, consider the hypothetical situation depicted in Figure 5.4. In

this case characterization by the scattering profile is ambiguous while the first deriva-

tive provides valuable information for characterization. Charnigo et al (2007) have

illustrated that such situations, where derivatives provide additional characterization

ability, exist in nanoparticle characterization.

Figure 5.4: Hypothetical scattering profiles and derivatives
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Known Configuration A
Known Configuration B
Unknown Configuration

Panel (a) depicts scattering profiles while Panel (b) depicts their derivatives. Charac-
terization by the scattering profile is ambiguous. The first derivative of the scattering
profile provides valuable information, namely that known configuration B is a better
guess for the unknown configuration than known configuration A.

To address this issue we return to our assertion that a good choice of θ is one for

which δ(θ, S) is large. More specifically, a good choice of θ is one for which δ(θ, S)

is large relative to the error involved in the computation of M∗(θ; S) for the un-

known configuration, where the ∗ superscript indicates the result of a nonparametric
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regression estimator.

In particular, if we assume that the bias of the nonparametric regression estimator

is negligible, then the size of the errors can be expressed in terms of the variance.

The difficulty is that while, analogous to (5.3),

δk(θ, S) :=

∣∣∣∣
∂k+1

∂θk∂S
M(θ; S)

∣∣∣∣ (5.5)

can be computed for both the scattering profile (k = 0) and its derivative(s) (k > 0),

the variances of M∗(θ; S) and ∂k

∂θk M∗(θ; S) are different. However, if the nonparamet-

ric regression estimator used to compute M∗(θ; S) for the unknown configuration is

linear in the observations (i.e. satisfies (1.4)) and self-consistent (i.e. satisfies (3.5))

then we can determine the variance of the estimator M∗(θ; S) relative to the variance

of the estimator ∂k

∂θk M∗(θ; S). For example, with k = 1 the variances will be

V ar[M∗(θ; S)] =

T∑

i=1

l2i (θ)σ
2, (5.6)

and

V ar

[
∂

∂θ
M∗(θ; S)

]
=

T∑

i=1

l′2i (θ)σ2, (5.7)

where σ2 is the (constant) variance of the data from (5.1), T is the cardinality of

T , and the li and l′i are defined by the nonparametric regression technique being

employed and depend on T . A useful fact about these variances is that if we divide

δ0(θ, S) by the square root of
∑T

i=1 l2i (θ) and divide δ1(θ, S) by the square root of
∑T

i=1 l′2i (θ) then the results, call them δ̃0 and δ̃1, are on the same scale and are both

measures of absolute characterization ability. Therefore we propose the following

modification of (5.4):

∆k(θ, S) :=
δ̃k(θ, S)

∑
k≤K

∑
t∈TI

δ̃k(t, S)/(|TI | × K)
, (5.8)

where |TI | indicates the cardinality of TI . The obstacle now is that (5.6) and (5.7)

depend on T which is what we are trying to determine.

To get around this obstacle we propose an iterative procedure. We first define T0

to be a grid which covers X and is as dense as we ultimately want T to be. Begin

100



by using T0 in (5.6) and (5.7). After normalization, we can then determine T1 ⊂ T0.

(The mechanism for determining T1 from T0 is spelled out below). We then use T1 in

(5.6) and (5.7) and determine T2. A few iterations usually results in convergence.

We have addressed how to account for differing levels of characterization difficulty

between sizes and how to handle both the scattering profile and its derivative(s). We

now describe how at each iteration we make the next choice for T . Our approach is

to define the following threshold:

M := min
S∈C2

max
θ∈TI

max
k≤K

∆k(θ, S), (5.9)

where K represents the largest derivative under consideration. (See Figure 5.5 for a

graphical illustration of the choice of M .) As mentioned above, ∆k, and therefore

M , depend on T which is why the iterative approach is necessary. At iteration i we

include in Ti any θ ∈ TI for which ∆k(θ, S) reaches or exceeds the threshold M for

some S ∈ C2 and k ∈ {0, 1, ..., K}. In addition, for every θ ∈ T0 which is not in TI ,

we determine the closest θI ∈ TI to θ. If θI is included in Ti then we include θ as well.

For example, if TI = {10, 20, ..., 170}, T0 = {1, 2, ..., 179}, and we include θI = 20,

then we would also include θ = {16, 17, 18, 19, 21, 22, 23, 24, 25}.
The researcher may wish to perform characterization using several derivatives.

When selecting T , however, we recommend using at most one derivative. Due to the

fact that TI is by definition ‘sparse’, we should not expect to obtain good estimates of

high order derivatives at this stage. This does not mean that high order derivatives

cannot be used to save resources. In fact we do this in the next section for the inverse

problem.

We now illustrate the selection of T with a couple of practical examples. We

apply our methodology to characterize based on size using the M11 and M33 profiles

where the agglomeration level is set at 50% and we take TI = {10, 20, ..., 170}, T0 =

{1, 2, 3, ..., 179} and K = 1. Figure 5.6 displays the first derivatives of the M11

scattering profiles depicted in Figure 5.1. Figures 5.7 and 5.8 display the scattering

profiles and first derivatives for M33.

For M11, Table 5.1 displays how we arrive at a threshold of M = 3.47 for the first
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Figure 5.5: Threshold for selecting limited angles
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The solid curves represent hypothetical ∆(θ, S) quantities as a function of S. Each
curve represents a different θ. The dashed black curve represents the threshold. In
this situation we would include 40, 80, and 160 and exclude 120 from T .

iteration. This implies that we should include

{70, 80, 90, 100, 110, 120, 130, 140, 150, 160}

from TI in T1 and hence we obtain T1 = {66, 67, ..., 165}. We achieve convergence

after the second iteration with T2 = {76, 77, ..., 165} = T . So rather than collecting

data at 179 points, we need only examine the 17 points of TI and the 90 points of

T . This is a reduction by more than 40%. For M33 we obtain T1 = {26, 27, ..., 55} ∪
{136, 137, ..., 165} = T2 = T which represents a reduction in the number of data

points by more than 55%.
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Figure 5.6: M11 first derivatives of scattering profiles
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The figure displays the first derivative of the M11 scattering profiles. Each curve repre-
sents a different size (in nm). The curves were constructed with TI = {10, 20, ..., 170}
using compound estimation with filtration and extrapolation and J = 7, 27 centering
points, β = 12 (120 during filtration and extrapolation), and κ = 0.2. Local constant
and slope estimates were obtained using smoothing splines with splines of order 7,
while coefficients of higher-order local fits were obtained using inductive estimators
with h2 = h3 = 1/150, h4 = h5 = h6 = h7 = 1/30. Agglomeration level is set at 50%.
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Figure 5.7: M33 scattering profiles
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The graph above presents M33 scattering profiles as a function of θ. Each curve repre-
sents a different size (in nm). The curves were constructed with TI = {10, 20, ..., 170}
using compound estimation with filtration and extrapolation and J = 7, 27 centering
points, β = 12 (120 during filtration and extrapolation), and κ = 0.2. Local constant
and slope estimates were obtained using smoothing splines with splines of order 7,
while coefficients of higher-order local fits were obtained using inductive estimators
with h2 = h3 = 1/150, h4 = h5 = h6 = h7 = 1/30. Agglomeration level is set at 50%.
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Figure 5.8: M33 first derivatives of scattering profiles
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The figure displays the first derivative of the M33 scattering profiles. Each curve repre-
sents a different size (in nm). The curves were constructed with TI = {10, 20, ..., 170}
using compound estimation with filtration and extrapolation and J = 7, 27 centering
points, β = 12 (120 during filtration and extrapolation), and κ = 0.2. Local constant
and slope estimates were obtained using smoothing splines with splines of order 7,
while coefficients of higher-order local fits were obtained using inductive estimators
with h2 = h3 = 1/150, h4 = h5 = h6 = h7 = 1/30. Agglomeration level is set at 50%.
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Table 5.1: Determining the threshold for M11

θ
S 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
5 .65 1.04 .82 .03 1.39 2.47 3.01 3.37 3.50 3.27 2.51 1.20 .85 2.49 3.15 2.90 1.17
10 .14 .58 .41 .23 1.37 2.35 3.13 3.88 4.40 4.56 4.24 3.53 2.05 .05 1.14 1.42 .34
15 .34 .12 .07 .33 1.00 1.54 2.06 2.72 3.46 4.18 4.70 4.98 4.42 2.39 .87 .17 .49
20 .84 .27 .12 .27 .36 .03 .36 .34 .53 2.28 4.38 6.30 6.98 4.83 2.82 1.69 1.38
25 .74 .45 .17 .07 .76 1.96 3.26 4.14 3.80 2.13 .30 2.69 4.21 3.52 2.47 1.80 1.31
30 .67 .63 .33 .14 1.20 2.54 3.81 4.71 4.62 3.43 1.53 .47 2.13 2.41 2.13 1.83 1.22
35 .83 .93 .60 .05 1.32 2.61 3.60 4.22 4.07 3.15 1.65 .06 1.80 2.51 2.58 2.39 1.47
40 1.02 1.23 .85 .08 1.29 2.51 3.24 3.57 3.32 2.52 1.31 .20 1.96 2.87 3.12 2.99 1.76
45 1.18 1.49 1.06 .22 1.21 2.39 2.96 3.09 2.75 2.04 1.02 .31 2.06 3.10 3.50 3.44 1.98
50 1.32 1.73 1.26 .35 1.11 2.26 2.73 2.73 2.34 1.70 .85 .34 2.07 3.23 3.79 3.81 2.18
55 1.46 1.94 1.41 .47 .96 2.06 2.44 2.36 1.94 1.39 .69 .39 2.13 3.42 4.13 4.24 2.38
60 1.62 2.12 1.52 .57 .78 1.76 2.03 1.84 1.41 .97 .44 .56 2.36 3.77 4.61 4.79 2.64
65 1.89 2.41 1.71 .69 .61 1.38 1.33 .86 .37 .11 .14 1.00 2.89 4.42 5.37 5.55 3.03
70 1.83 2.23 1.64 .73 .35 .65 .03 1.02 1.58 1.45 1.14 1.48 2.94 4.17 4.89 4.93 2.75
75 1.53 1.77 1.40 .68 .14 .03 1.15 2.54 3.11 2.67 1.88 1.70 2.56 3.32 3.70 3.57 2.09
80 1.38 1.45 1.16 .58 .03 .34 1.73 3.22 3.75 3.16 2.16 1.77 2.38 2.93 3.13 2.91 1.76
85 1.45 1.21 .74 .28 .06 .71 1.98 3.17 3.48 2.87 2.00 1.77 2.52 3.14 3.41 3.22 1.83
90 1.72 .98 .03 .38 .18 1.31 2.17 2.54 2.33 1.80 1.40 1.69 2.87 3.74 4.28 4.26 2.14
95 1.69 1.04 .04 .45 .20 1.59 2.71 3.18 2.87 2.19 1.67 1.80 2.61 3.12 3.47 3.46 1.73
100 1.25 1.28 .91 .35 .09 1.10 2.99 4.65 4.97 4.04 2.76 2.02 1.93 1.77 1.56 1.27 .92

The table presents values of maxk≤1 ∆k(θ, S) for θ ∈ TI = {10, 20, ..., 170} and S ∈ C2

for the M11 scattering profile. The bolded values represent maxθ∈TI
maxk≤1 ∆k(θ, S)

for S ∈ C2. The threshold is M = minS∈C2
maxθ∈TI

maxk≤1 ∆k(θ, S) = 3.47.

106



5.3 Limited angles for particles of unknown size

The previous section describes how to solve the forward problem of nanoparticle

characterization using fewer observations than previous methods by choosing the

sample strategically. In this section we shift to the inverse problem and describe how

fewer observations can be used at this stage as well.

We first note that if T ⊂ X is identified for the construction of the reference

curves, then attention can also be confined to T for the construction of scattering

profiles for unknown configurations. Since T excludes regions of X irrelevant for

characterization, there is no need to examine observations outside of T to solve the

inverse problem. Thus, it may be tempting to simply accept T as the limited subset

of X for the inverse problem in addition to the forward problem. There are, however,

several reasons why a different method is desirable for choosing a limited subset for

the inverse problem.

First, the scientist may have constructed the reference curves using a T not se-

lected by the method of the previous section. The total number of observations

required to construct the reference curves is |T | × |C2|, but even if this number is

very large, the reference curves only have to be constructed once. On the other hand,

a scattering profile has to be constructed for every unknown configuration. Since

this task will be performed repeatedly, a scientist who did not restrict T for the

forward problem may wish to impose a restriction for the inverse problem. Second,

rather than having no knowledge about the configuration of particles of unknown size,

the researcher may have limited knowledge about the configuration. For example, a

scientist may be confident that nanoparticles are smaller than 50 nm and wish to

characterize the particles more precisely. In this case, we would like to exploit the

researcher’s a priori knowledge to further restrict the angles to those relevant at sizes

below 50 nm. Third, aside from the savings in time and resources, the identification

of a limited subset of X for the construction of scattering profiles can be used to

overcome boundary issues, which we demonstrate below.

Our approach is to partition T ⊂ X into intervals and evaluate the characteri-
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zation ability of each interval for the sizes under consideration. The intervals with

high characterization ability are then combined to form T ∗, the set from which ob-

servations are collected for the unknown configuration. To do this we define ‘high

characterization ability’ in terms of δ̃k(θ, S).

There are several reasons we use δ̃k rather than ∆k from (5.8): the definition of

∆k would have to be modified to even be possible in this situation, δ̃k can be viewed

as a measure of absolute characterization ability which allows for easier interpretation

and comparison, and if we assume a priori that the unknown size of the nanoparticle

is restricted to some CS ⊂ C0 then the pitfall situations which ∆k was designed to

overcome (see Figure 5.3) become less likely. Finally, it is possible to perform a

normalization analogous to (5.8) on the results of this section even after using δ̃k.

Since δ̃k(θ, S) is a measure of the ability to perform characterization at angle θ

for particles of approximate size S using the kth derivative of the scattering profile,

Bk :=

(∫ S2

S1

∫ θ2

θ1

δ̃k(θ, S)dθdS

)
/(S2 − S1) (5.10)

measures the ability to characterize particles whose size is between S1 and S2 with

the kth derivative of the scattering profile over [θ1, θ2]. Regions of X for which Bk

is large correspond to regions over which characterization via derivative k is best

performed. In practice, (5.10) will be approximated by a Riemann sum since δ̃k(θ, S)

is only available on the discrete set T . Note that since δ̃k(θ, S) is scaled by the

standard deviation of ∂k+1

∂θk∂S
M∗(θ; S), it is possible to compare the characterization

ability between derivative(s) as well as between regions of T .

Once we have evaluated the characterization ability of each subset of T we must

decide which subsets to include in T ∗. We recommend taking T ∗ to be the union

of the p% of intervals which have the highest Bk. The choice of p will depend on

how much the researcher wants to narrow T . If T is already substantially limited,

p should be large. On the other hand, if the researcher wants T ∗ to be considerably

smaller than T , p should be small.

We now show how the choice of T ∗ can be used to overcome boundary issues.

Characterization entails minimizing an integrated squared discrepancy on T ∗. The

108



estimate of the unknown configuration’s scattering profile and its derivative(s) on T ∗

are inputs for the discrepancy. If, as with previous methods (Charnigo et al 2007,

Charnigo et al 2010), the choice of T ∗ contains values of θ near the boundaries of

X , then it is inherently difficult to estimate the scattering profile, and especially its

derivatives, near the boundaries of T ∗. Poor estimates can then contribute to poor

characterization. However, if T ∗ ⊂ T does not contain values of θ near the boundaries

of X then we could define T ∗
to be the union of T ∗ and j points extending past

each boundary of T ∗. (In our experience setting j = 7 has worked well.) We then

recommend collecting observations from T ∗
but performing characterization only over

T ∗. Hence the boundary problem of estimation is pushed outside of the range over

which characterization is performed.

Of course it is possible that a boundary of T ∗ will coincide with that of X . If

the scientist is unwilling to accept the boundary problem in this case he/she should

refine T ∗ by excluding the j points nearest to the boundary of X . These points are

then used in estimation but not characterization.

We now illustrate with a couple of examples. Recall that for the M11 scattering

profiles we determined T = {76, 77, ..., 165}. Tables 5.2 and 5.3 display values of Bk

for various subsets of T and various ranges of S. The generally high magnitude of B0

compared to B1 in Table 5.2 indicates that for the M11 scattering profile the mean

response is much better at characterization than the first derivative. Similarly, the

first derivative appears to be much more useful than the second derivative. Also note

that the generally smaller entries in the last row for each Bk indicate that particles

of size 75 to 100 nm are more difficult to characterize than smaller nanoparticles.

If we take p to be 78% and consider the mean response, then we would take T ∗ =

{76, 77, ..., 145} to characterize particles of size 5 to 25 nm, T ∗ = {76, 77, ..., 105} ∪
{126, 127, ..., 165} to characterize particles of size 25 to 75 nm, and

T ∗ = {86, 87, ..., 105} ∪ {116, 117, ..., 165} to characterize particles of size 75 to 100

nm. Interestingly, if we assume less prior knowledge (i.e. consider wider [S1, S2]

intervals), we would take T ∗ = {76, 77, ..., 105} ∪ {126, 127, ..., 165} to characterize

particles of size 5 to 50 nm and to characterize particles of size 50 to 100 nm, again
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only considering the characterization ability of the mean response.

Table 5.2: Evaluation of inverse problem limited angles for M11

B0

θ1 representing {θ1, θ1 + 1, ..., θ1 + 9}
[S1, S2] 76 86 96 106 116 126 136 146 156
[5,25] .131 .149 .199 .212 .191 .162 .146 .124 .100
[25,50] .145 .134 .116 .058 .045 .116 .158 .141 .121
[50,75] .067 .060 .054 .029 .047 .119 .183 .187 .172
[75,100] .056 .058 .062 .057 .064 .079 .098 .095 .085

B1

θ1 representing {θ1, θ1 + 1, ..., θ1 + 9}
[S1, S2] 76 86 96 106 116 126 136 146 156
[5,25] .010 .015 .022 .038 .050 .057 .048 .027 .016
[25,50] .003 .017 .033 .053 .059 .045 .021 .009 .012
[50,75] .005 .008 .013 .028 .045 .052 .036 .011 .016
[75,100] .004 .003 .006 .005 .008 .016 .014 .004 .009

B2

θ1 representing {θ1, θ1 + 1, ..., θ1 + 9}
[S1, S2] 76 86 96 106 116 126 136 146 156
[5,25] .002 .005 .007 .011 .013 .008 .009 .015 .010
[25,50] .004 .007 .007 .005 .004 .008 .011 .008 .004
[50,75] .001 .002 .003 .007 .007 .002 .008 .014 .008
[75,100] .002 .003 .001 .004 .005 .003 .003 .007 .004

The columns represent values of θ1, θ2 is set to θ1 + 9, and the rows represent values
of size over which Bk is computed. Values are tabulated for the mean response (B0),
the first derivative (B1), and the second derivative (B2).

While the characterization ability of the mean response appears to be greater

than that of the derivatives, the characterization ability of the derivatives need not

be disregarded. Charnigo et al (2010) demonstrate how characterization can be per-

formed using the mean response and its derivatives together. In this case, the char-

acterization ability of a an interval [θ1, θ2] could be measured by B0 + B1 + B2.

Table 5.4 displays this quantity for the M11 scattering profiles. If we take p to

be 78% then we would take T ∗ = {86, 87, ..., 155} to characterize particles of size

5 to 25 nm using the mean response and its first two derivatives simultaneously,

T ∗ = {76, 77, ..., 105} ∪ {126, 127, ..., 165} to characterize particles of size 25 to 50

nm, T ∗ = {76, 77, ..., 95} ∪ {116, 117, ..., 165} to characterize particles of size 50
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Table 5.3: Further evaluation of inverse problem limited angles for M11

B0

θ1

[S1, S2] 76 86 96 106 116 126 136 146 156
[5,50] .137 .138 .147 .119 .103 .137 .158 .141 .120

[50,100] .061 .061 .062 .050 .061 .092 .125 .124 .113

B1

θ1

[S1, S2] 76 86 96 106 116 126 136 146 156
[5,50] .006 .016 .028 .046 .055 .052 .034 .016 .014

[50,100] .005 .005 .009 .014 .022 .028 .021 .007 .011

B1

θ1

[S1, S2] 76 86 96 106 116 126 136 146 156
[5,50] .003 .006 .007 .008 .008 .008 .010 .012 .007

[50,100] .002 .003 .002 .005 .006 .003 .004 .009 .005

The columns represent values of θ and the rows represent values of size over which
Bk is computed. Values are tabulated for the mean response (B0), the first derivative
(B1), and the second derivative (B2).

to 75 nm, and T ∗ = {96, 97, ..., 165} to characterize particles of size 75 to 100

nm. If we assume less prior knowledge (i.e. consider wider [S1, S2] intervals), we

would take T ∗ = {86, 87, ..., 155} to characterize particles of size 5 to 50 nm and

T ∗ = {86, 87, ..., 105} ∪ {116, 117, ..., 165} to characterize particles of size 50 to 100

nm.

Table 5.4: Using the mean response and two derivatives together for M11

B0 + B1 + B2

θ1

[S1, S2] 76 86 96 106 116 126 136 146 156
[5,25] .144 .168 .228 .261 .253 .228 .204 .165 .126
[25,50] .152 .158 .155 .116 .108 .169 .190 .159 .138
[50,75] .073 .070 .070 .064 .099 .173 .226 .213 .197
[75,100] .062 .065 .069 .065 .078 .097 .115 .106 .098

The columns represent values of θ1, θ2 is set to θ1 + 9, and the rows represent values
of size over which Bk is computed. The entries are the sums B0 + B1 + B2 for the
corresponding values of size and angular intervals.

As a second example which illustrates that the methodology of this section can
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be applied even if the scientist did not employ the methodology of Section 5.2, con-

sider taking T = {1, 2, ..., 179} for the M33 scattering profiles. To prevent potential

boundary issues, exclude the 7 points closest to each boundary. This leaves the set

{8, 9, ..., 172} under consideration for T ∗. Tables 5.5 and 5.7 display values of Bk for

various subsets of T and size intervals. Derivatives appear much more important for

the M33 scattering profiles than they did for the M11 profiles. If we consider the mean

response and take p = 64% we get T ∗ = {23, 24, ..., 52}∪{98, 99, ..., 172} for nanopar-

ticles of size 5 to 25 nm, T ∗ = {23, 24, ..., 67} ∪ {98, 99, ..., 157} for nanoparticles of

size 25 to 50 nm, and T ∗ = {8, 9, ..., 67} ∪ {128, 129, ..., 172} for nanoparticles of size

50 to 100 nm. If the mean response and first two derivatives are considered together

as in Table 5.6 we obtain T ∗ = {38, 39, ..., 52} ∪ {83, 84, ..., 172} for nanoparticles of

size 5 to 25 nm, T ∗ = {38, 39, ..., 67} ∪ {98, 99, ..., 172} for nanoparticles of size 25

to 50 nm, T ∗ = {8, 9, ..., 37} ∪ {53, 54, ..., 67} ∪ {113, 114, ..., 172} for nanoparticles

of size 50 to 75 nm, and T ∗ = {7, 8, ..., 37} ∪ {68, 69, ..., 82} ∪ {113, 114, ..., 172} for

nanoparticles of size 75 to 100 nm.
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Table 5.5: Evaluation of inverse problem limited angles for M33

B0

θ1

[S1, S2] 8 23 38 53 68 83 98 113 128 143 158
[5,25] .063 .108 .119 .099 .075 .055 .398 .849 .765 .475 .153
[25,50] .144 .215 .238 .240 .128 .030 .164 .545 .628 .395 .105
[50,75] .228 .251 .227 .219 .105 .028 .017 .106 .351 .431 .238
[75,100] .168 .153 .126 .125 .067 .035 .030 .041 .133 .365 .352

B1

θ1

[S1, S2] 8 23 38 53 68 83 98 113 128 143 158
[5,25] .052 .022 .024 .039 .017 .170 .422 .233 .132 .215 .197
[25,50] .060 .023 .012 .062 .105 .086 .239 .287 .110 .208 .164
[50,75] .034 .020 .029 .056 .124 .056 .049 .174 .195 .085 .148
[75,100] .012 .026 .020 .024 .075 .058 .060 .063 .205 .124 .088

B2

θ1

[S1, S2] 8 23 38 53 68 83 98 113 128 143 158
[5,25] .015 .026 .021 .016 .034 .171 .102 .196 .143 .042 .008
[25,50] .023 .025 .019 .036 .023 .070 .136 .128 .194 .043 .019
[50,75] .031 .022 .006 .032 .029 .089 .077 .135 .105 .133 .027
[75,100] .015 .008 .009 .016 .025 .056 .055 .119 .080 .120 .081

The columns represent values of θ1, θ2 is set to θ1 +14, and the rows represent values
of size over which Bk is computed. Values are tabulated for the mean response (B0),
the first derivative (B1), and the second derivative (B2).

Table 5.6: Using the mean response and two derivatives together for M33

B0 + B1 + B2

θ1

[S1, S2] 8 23 38 53 68 83 98 113 128 143 158
[5,25] .13 .16 .16 .06 .13 .39 .92 1.28 1.04 .73 .36
[25,50] .23 .26 .27 .34 .26 .19 .54 .96 .93 .65 .29
[50,75] .29 .29 .26 .31 .26 .17 .14 .42 .65 .65 .41
[75,100] .20 .19 .16 .17 .17 .15 .15 .22 .42 .61 .52

The columns represent values of θ1, θ2 is set to θ1 + 9, and the rows represent values
of size over which Bk is computed. The entries are the sums B0 + B1 + B2 for the
corresponding values of size and angular intervals.
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Table 5.7: Further evaluation of inverse problem limited angles for M33

B0

θ1

[S1, S2] 8 23 38 53 68 83 98 113 128 143 158
[5,50] .12 .18 .19 .18 .11 .04 .24 .63 .66 .43 .13

[50,100] .18 .18 .15 .15 .08 .03 .03 .06 .21 .37 .30
B1

θ1

[S1, S2] 8 23 38 53 68 83 98 113 128 143 158
[5,50] .06 .02 .02 .05 .07 .12 .29 .26 .12 .20 .18

[50,100] .02 .02 .02 .03 .09 .06 .06 .11 .20 .11 .11
B2

θ1

[S1, S2] 8 23 38 53 68 83 98 113 128 143 158
[5,50] .02 .03 .02 .03 .03 .11 .12 .15 .17 .05 .01

[50,100] .02 .01 .01 .02 .03 .07 .07 .12 .09 .12 .06

The columns represent values of θ1, θ2 is set to θ1 +14, and the rows represent values
of size over which Bk is computed. Values are tabulated for the mean response (B0),
the first derivative (B1), and the second derivative (B2).
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5.4 Simulation studies

In the previous sections we described methods to determine TM and T ∗
M , limited sub-

sets of X for constructing the reference curves and the scattering profiles for unknown

configurations, respectively. (The subscript M indicates that the methodology of the

previous sections was employed.) In this section we evaluate the characterization

ability of these regions empirically. We conducted two simulation studies: one to

evaluate the limited angles for the reference curves and one to evaluate the limited

angles for the scattering profiles of unknown configurations. Note that the latter can

incorporate prior knowledge about the unknown configuration which the former does

not.

Simulation 1 was designed to evaluate our methodology’s choice of TM . We ex-

amined the M11 and M33 scattering profiles with agglomeration level set at 50%

with the goal of inferring nanoparticle size. Recall our method’s suggestions of

11TM = {76, 77, ..., 165} for the former and 33TM = {26, 27, ..., 55}∪{136, 137, ..., 165}
for the latter. To mitigate boundary issues we used observations from 11T M =

{69, 70, ..., 172} and 33T M = {19, 20, ..., 62} ∪ {129, 130, ..., 172}. We then com-

pared how well characterization was performed over TM as compared to over T0 =

{1, 2, ..., 179} where in each case we set T ∗ := T . For each of M11 and M33 we per-

formed 4 sets of experiments: using the mean response only, using the first derivative

only, using the second derivative only, and using the mean response and the first two

derivatives simultaneously. Each set of experiments was performed twice: once with

low-noise and once with high noise. We performed characterization by defining the

estimate of the nanoparticle’s size, c∗, to be the c ∈ C1 for which

D[M∗(θ; u), M(θ; c), K] :=

∫
T ∗ [

∂K

∂Kθ
M∗(θ; u) − ∂K

∂Kθ
M(θ; c)]2dθ∫

T ∗ [
∂K

∂Kθ
M∗(θ; u)]2dθ

, (5.11)

was minimal, where M∗(θ; u) denotes the estimate of the scattering profile for the

particle with unknown size. To perform characterization using the mean response

and first two derivatives simultaneously we sought to minimize

2∑

K=0

D[M∗(θ; u), M(θ; c), K].
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To carry out the simulations we used previously validated Fortran code (Venkata et

al) to generate M
(d)
11 (θ; s) and M

(d)
33 (θ; s) for d ∈ {1, 2, ..., 14}, s ∈ S = {10, 20, ..., 90}

and θ ∈ {1, 2, ..., 179} where d refers to systematic disturbances to the physical pa-

rameters described below and s refers to size. The systematic disturbances reflect

the nature of the laboratory setting. We then added random noise as in model

(5.1) to obtain M
(d,rd)
11 (θ; s) and M

(d,rd)
33 (θ; s) for d ∈ {1, 2, ..., 14}, rd ∈ {1, 2, ..., 15},

s ∈ {10, 20, ..., 90}, and θ ∈ {1, 2, ..., 179}. The random errors were assumed to be

independently and identically normally distributed with mean zero. For the low noise

setting and the M11 scattering profile, the standard deviation was set to 3% of the

standard deviation of M
(d)
11 (θ; s) over θ. For the high noise we instead used 6%. Noise

was added analogously for M33. For each simulated scattering profile we then classi-

fied the size of the nanoparticles once using data from T0 := {1, 2, ..., 179} and once

using data only from the recommended T M and compared the results. Recall that the

goal of TM was to save resources by having a reduced cardinality while at the same

time sacrificing little in terms of characterization ability. To provide a comparison

we also performed characterization over three naive choices with reduced cardinality

as described in Table 5.8.

Comparisons were made on the basis of Root Mean Square Error defined as
√√√√ 1

1890

∑

s∈S

14∑

d=1

15∑

rd=1

[c∗(s, d, rd) − s]2, (5.12)

where c∗(s, d, rd) is the estimate of the nanoparticle size when the true size is s with

disturbance d and noise pattern rd imposed. The results are displayed in Table 5.8.

Physical Parameters. The radiation beam is assumed to have a wavelength of

514.5 nm (argon-ion laser) with an angle of incidence of 23 degrees, the prism and

substrate are both made of sapphire with a refractive index of 1.77304, the substrate

is coated with a 20 nm gold thin film with a complex refractive index of 0.50 + 1.86i,

and the scatterers are gold spherical particles (0.50+1.86i) with 50% agglomeration.

Disturbances. The following is a list of the disturbances in our simulation study.

1. angle of incidence of 24 degrees

2. angle of incidence of 22 degrees
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3. angle of incidence of 25 degrees

4. angle of incidence of 21 degrees

5. +1 degree offset in measurement angle

6. -1 degree offset in measurement angle

7. solid angle of 3 degrees in far field measurement

8. angle of incidence of 21 degrees, +1 degree offset in measurement angle

9. angle of incidence of 25 degrees, -1 degree offset in measurement angle

10. incident beam spread over a solid angle (23 and 24 degrees)

11. incident beam spread over a solid angle (23 and 24 degrees), solid angle of 3

degrees in far field measurement

12. incident beam spread over a solid angle (22, 23, and 24 degrees), solid angle

of 2 degrees in far field measurement

13. incident beam spread over a solid angle (22 and 23 degrees), +1 degree offset

in measurement angle

14. incident beam spread over a solid angle (22 and 23 degrees) -1 degree offset

in measurement angle

The results of Simulation 1 indicate that our choice of TM accomplished the task

of selecting a limited range of angles over which characterization can be performed

effectively. Inflation of the RMSE is expected when we use fewer data points, but we

tolerate small inflation in exchange for the time and resource savings. The inflation

of the RMSE in using TM rather than T0 is indeed small. For example, the first row

indicates that our choice of 11TM enabled us to use 42% fewer data points than T0

with only a 0.7% increase in the RMSE.

Some of the rows in Table 5.8 are more important than others. For example, if

the researcher were characterizing based on the M33 scattering profile it is clear that

only the mean response should be consulted. Importantly, our choice of 33TM in this

case results in very little inflation of RMSE (3.4% and 6.0% for the low and high

noise settings, respectively), whereas the best naive choice, TC , inflates the RMSE by

154% and 160% for the high and low noise settings, respectively.

Simulation 2 was designed to evaluate our methodology’s choice of T ∗
M . This sim-
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Table 5.8: Simulation 1: results for evaluating TM

Noise Profile Derivative(s) T0 TM TL TC TR

Low M11 0 3.83 3.85 11.22 7.54 3.68
Low M11 1 4.77 5.11 9.08 6.47 4.84
Low M11 2 3.73 4.72 9.42 10.96 4.63
Low M11 0,1,2 3.89 4.34 8.95 5.78 3.90
Low M33 0 2.70 2.79 8.22 6.86 7.08
Low M33 1 5.21 8.36 9.61 7.56 9.31
Low M33 2 10.01 15.25 34.47 16.86 13.56
Low M33 0,1,2 6.99 8.69 14.22 11.47 7.32
High M11 0 3.86 3.95 11.66 7.15 3.88
High M11 1 4.92 5.76 9.97 6.43 5.86
High M11 2 4.06 6.14 11.77 13.59 7.55
High M11 0,1,2 4.13 4.98 9.73 7.46 4.93
High M33 0 2.73 2.90 8.34 7.11 7.15
High M33 1 5.35 8.88 10.63 8.13 9.39
High M33 2 10.24 16.60 35.68 22.13 14.21
High M33 0,1,2 7.13 9.35 14.31 12.55 7.41

The table compares the RMSE when characterization is performed over various sub-
sets of X . Recall that T0 = {1, 2, ..., 179}. For M11 we used 11TL = {1, 2, ..., 104},
11TC = {38, 39, ..., 141}, and 11TR = {76, 77, ..., 179}, all of which have the same car-
dinality (104) as 11T M = {69, 70, ..., 172}. For M33 we used 33TL = {1, 2, ..., 88},
33TC = {46, 47, ..., 133}, and 33TR = {92, 93, ..., 179}, all of which have the same car-
dinality (88) as 33T M = {19, 20, ..., 62}∪{129, 130, ..., 172}. Recall while observations
were collected over T M , the characterization of (5.11) was performed with T ∗ = TM

to mitigate boundary issues. Column 1 indicates whether the noise level was low
(3%) or high (6%). Column 2 indicates whether the M11 profile or the M33 profile
was used. Column 3 indicates which derivatives were consulted. Columns 4 through
8 display the values of RMSE.

ulation was similar to Simulation 1 except that this time we assumed prior knowledge

that the size was restricted to either [5, 50] (with S = {10, 15, 20, ..., 45} for the sim-

ulation) or [50, 100] (with S = {55, 60, 65, ..., 95} for the simulation). We also only

examined the ‘low’ noise setting. The results appear in Table 5.9.

The choice of T ∗
M did appear to accomplish the goal of using fewer observations

without sacrificing a great deal of characterization ability. In fact characterization

ability was improved in several cases by using T ∗
M as opposed to using the larger

T . If we exclude the irrelevant final row (since we would clearly not use the second
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derivative of the M33 scattering profile for characterization), the worst inflation of

RMSE for T ∗
M over T was 10.3%. While the naive choices do occasionally beat our

methodology’s choice of T ∗
M , each naive choice is also frequently disastrous, with

RMSE inflation up to 190%. It should also be noted that in the previous section our

methodology indicated that nanoparticles with sizes between 50 and 100 nm would

be more difficult to characterize than particles smaller than 50 nm. This prediction

is validated by the results of Simulation 2.

Table 5.9: Simulation 2: results for evaluating T ∗
M

[S1, S2] Profile Derivative T T ∗
M T ∗

L T ∗
C T ∗

R

[5, 50] M11 0 3.58 3.82 4.16 3.28 2.98
[5, 50] M11 1 5.20 5.36 5.28 5.15 6.61
[5, 50] M11 2 4.91 5.05 13.36 14.22 7.62
[5, 50] M33 0 2.82 2.96 2.90 3.05 3.66
[5, 50] M33 1 2.23 2.46 2.69 3.56 4.21
[5, 50] M33 2 4.32 3.97 4.78 4.41 5.44

[50, 100] M11 0 4.54 4.32 7.19 4.41 2.74
[50, 100] M11 1 4.90 4.55 5.45 5.75 5.22
[50, 100] M11 2 4.20 3.66 12.83 10.06 5.32
[50, 100] M33 0 2.81 2.86 2.82 3.73 5.15
[50, 100] M33 1 7.08 7.98 11.40 10.54 8.08
[50, 100] M33 2 12.24 11.84 16.73 12.52 12.42

The table compares the RMSE when characterization is performed over various
subsets of X . The range [S1, S2] indicates the prior knowledge of the researcher.
We took T = TM = {76, 77, ..., 165} for M11 and T = T0 = {1, 2, ..., 179} for
M33. See the previous section for our method’s suggestions for T ∗

M . For compar-
ison, for M11 we also used 11T ∗

L = {76, 77, ..., 145}, 11T ∗
C = {86, 87, ..., 155}, and

11T ∗
R = {96, 97, ..., 165}, all of which have the same cardinality (70) as 11T ∗

M . For M33

we used 33T ∗
L = {1, 2, ..., 142}, 33T ∗

C = {19, 20, ..., 161}, and 33T ∗
R = {37, 38, ..., 179},

all of which have similar cardinality to 33T ∗
M . Column 1 indicates the range of possible

sizes under consideration. Column 2 indicates whether the M11 profile or the M33

profile was used. Column 3 indicates which derivatives were consulted. Columns 4
through 8 display the values of RMSE.

Copyright c© Benjamin Hall, 2010.
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Chapter 6 Conclusions and future research

In this dissertation we have studied four problems which involve the nonparametric

estimation of derivatives. In Chapter 2 we described a generalized C(p) criterion for

selecting the tuning parameters of a nonparametric estimator of derivatives. This

was important because tuning parameters chosen by the ordinary C(p) criterion are

not guaranteed to lead to good estimates of derivatives. Generalized C(p) faced

challenges not encountered by ordinary C(p). For example, both ordinary C(p) and

generalized C(p) require as ingredients noise-corrupted versions of the function which

is being estimated. With ordinary C(p) this problem is trivial since the observations

themselves are noise-corrupted versions of the mean response. With generalized C(p)

this required the development of empirical derivatives to serve this purpose.

In Chapter 3 we outlined a technique for constructing simultaneous confidence

bands for a nonparametric regression estimator of a mean response and its deriva-

tives. Such techniques were previously available only for local regression. Our method

is more flexible in that it can be utilized with any self-consistent nonparametric re-

gression estimator which is linear in the observed responses. Many previous methods

for confidence bands around nonparametric estimates require assumptions that the

bias, interpolation error, and variance be either known or bounded. We proposed

data-based techniques for accommodating situations where these quantities are un-

known.

In Chapter 4 we generalized the simultaneous confidence bands to account for

heteroscedastic noise. This required that we define an appropriate estimator of the

variance function. Obtaining asymptotic justifications for the bands in the presence

of heteroscedastic noise also required stronger assumptions on the nonparametric

estimator being employed. We demonstrated that these necessary assumptions are

satisfied, for example, by kernel regression.

Finally, in Chapter 5 we proposed a method for choosing a limited subset of

angles over which to perform nanoparticle characterization. This method enables the
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scientist to save time and resources for both the forward problem and the inverse

problem while at the same time overcoming boundary issues inherent in previous

methods.

While each of these chapters represent steps forward in their respective efforts,

each also contains avenues for future research. The generalized C(p) criterion per-

formed very well in selecting tuning parameters in simulations. However, a choice

must be made for the inputs k1, ..., kq. It would be helpful to develop a data-based

method of choosing these inputs. Generalized C(p)also requires that the nonpara-

metric regression estimator be self-consistent and linear in the observed responses.

This rules out, for example, local polynomial estimation. However, the assumptions

could be relaxed so that generalized C(p) could be applied to any nonparametric re-

gression estimator for which the estimates of the mean response and its derivative(s)

are linear in the observed responses, allowing the self-consistency assumption to be

dropped. This would enable generalized C(p) to be compared to the IRSC method

(Fan and Gijbels 1995), which is a data-based method for tuning parameter selection

when estimating derivatives using local polynomial estimation. Other comparisons

could also be made to naive methods for choosing tuning parameters such as CV,

GCV, or AIC, which are used when interest lies only in µ(x). Further studies could

be conducted to examine how generalized C(p) performs in the presence of very large

noise. Also, while Charnigo and Srinivasan (2010) demonstrate that generalized C(p)

is asymptotically unbiased, it remains to be shown that the chosen parameter is

optimal in theory. If λ∗ represents the minimizer of E
∑n

i=1

[
d̂q

dxq µ(xi) − dq

dxq µ(xi)
]2

and λ̂ represents the minimizer of generalized C(p), then showing, for example, that

λ̂/λ∗ →P 1 would strengthen the theoretical justification for generalized C(p).

The simultaneous confidence bands which we proposed in Chapter 3 also required

that the nonparametric regression estimator be self-consistent and linear in the ob-

served responses. Again, this assumption could be relaxed to accommodate non-

parametric regression estimators, such as local polynomial estimation, for which the

estimates of the mean response and its derivative(s) are linear in the observed re-

sponses. It would then be possible to compare our method to that of Claeskens and
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Van Keilegom (2003) which works for local polynomial estimation. The inequality

in (3.16) enables the confidence bands to account for the bias through data-based

estimates. A tighter inequality would result in narrower, and thus less conservative

bands.

Chapter 4 provides an important generalization of Chapter 3 by allowing for het-

eroscedastic noise. However, there are other generalizations which would make the

simultaneous confidence bands even more widely applicable. The methods described

in Chapters 3 and 4 require that errors be both normal and independent. Simulta-

neous confidence bands which allow for correlated and/or non-normal errors would

be helpful. To accommodate correlated errors, a correlation structure would have to

be assumed, and this problem would be more difficult for some structures than for

others. Dealing with non-normal errors is interesting because some nonparametric re-

gression techniques do not require that errors be normally distributed. However, our

confidence bands rely heavily on properties of the multivariate normal and multivari-

ate t distributions. This makes the extension of our confidence bands to non-normal

errors difficult.

Our method for determining limited angles for nanoparticle characterization al-

lows for comparisons to be made between the characterization ability of the mean

response and its derivative(s). The characterization method of Charnigo et al (2010),

which characterizes based on the mean response and its derivative(s) simultaneously,

requires a weighting scheme for the mean response and its derivative(s). Specifically,

they define the discrepancy function

D[M∗(θ; u), M(θ; c), K,w]

:=
ew0

ew0 + ew1 + ... + ewK
×
∫
X
[M∗(θ; u) − M(θ; c)]2dθ∫

X
[M∗(θ; u)]2dθ

+
ew1

ew0 + ew1 + ... + ewK
×
∫
X
[ ∂
∂θ

M∗(θ; u) − ∂
∂θ

M(θ; c)]2dθ∫
X
[ ∂
∂θ

M∗(θ; u)]2dθ
+ ...

+
ewK

ew0 + ew1 + ... + ewK
×
∫
X
[ ∂K

∂Kθ
M∗(θ; u) − ∂K

∂Kθ
M(θ; c)]2dθ∫

X
[ ∂K

∂Kθ
M∗(θ; u)]2dθ

where u denotes the unknown configuration, c ∈ C1 refers configurations for which

reference curves have been constructed and w := (w0, w1, ..., wK)′ is the weight vector.
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Note that our method replaces X with T ∗. The unknown configuration is then

characterized by the c ∈ C1 for which D[M∗(θ; u), M(θ; c), K,w] is minimized. It

would be advantageous if the evaluations of the characterization abilities of the mean

response and its derivative(s) could be translated into recommendations for the weight

inputs. An initial idea is to measure the characterization ability of, for example, the

mean response and its first two derivatives using weights (w0, w1, w2) by the quantity:

ew0B0 + ew1B1 + ew2B2

ew0 + ew1 + ew2
. (6.1)

Note that (6.1) is a generalization of our recommendation to use B0 + B1 + B2 to

evaluate the combined characterization ability of the mean response and the first

two derivatives using equal weights. However, note that the recommendation for

weights cannot be simply based on maximizing (6.1) since such a scheme would place

all of the weight on the derivative corresponding to max{B0, B1, B2}. In reality the

situation is more complicated than (6.1) indicates. There is correlation between the

characterization abilities represented by B0, B1, and B2. One interesting alternative

may be to define the weights as functions of θ. This would allow a nanoparticle to

be classified, for example, based primarily on the mean response over some ranges of

θ and based primarily on the 1st or 2nd derivative over other ranges.

Determining limited angles for nanoparticle characterization is beneficial because

it saves resources by requiring fewer observations. However, another way to reduce

the number of observations is to sample over a grid which is less dense. Suppose the

researcher wants to conduct characterization while using only T observations. Our

method gives the researcher the ability to choose these T points so that they are

located in a range of X which is optimal for characterization with the denseness of

the grid fixed. However, the researcher could place the T points so that they are equi-

spaced over X . That is, the range could be fixed and the denseness varied according

to the choice of T . Future research could explore how to determine optimal locations

to place the T points while letting the range and the denseness vary simultaneously.

Yet another interesting avenue for future research is to place prior knowledge about

a nanoparticle’s configuration into a Bayesian framework.
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