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ABSTRACT OF DISSERTATION

Mixtures-of-Regressions with Measurement Error

Finite Mixture model has been studied for a long time, however, traditional methods

assume that the variables are measured without error. Mixtures-of-regression model

with measurement error imposes challenges to the statisticians, since both the mixture

structure and the existence of measurement error can lead to inconsistent estimate

for the regression coe�cients. In order to solve the inconsistency, We propose series

of methods to estimate the mixture likelihood of the mixtures-of-regressions model

when there is measurement error, both in the responses and predictors. Di�erent

estimators of the parameters are derived and compared with respect to their relative

e�ciencies. The simulation results show that the proposed estimation methods work

well and improve the estimating process.
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Chapter 1 Introduction

Finite mixture models have been used for more than 100 years, and have seen a boost

in their utility since the 1990s due to the substantial increase in computing power.

The importance of mixture models is remarked by a number of books dedicated to the

topic including Titterington et al. (1985) [110], McLachlan and Basford (1988) [76],

Lindsay (1995) [72] and McLachlan and Peel (2000) [78]. The areas of application

of mixture models range from biology and medicine to physics, economics and mar-

keting. These models can be applied to characterize the presence of sub-populations

within a broader population when knowledge about to which sub-population each ob-

servation belongs is unavailable, and also to provide approximations for multi-modal

distributions.

Finite mixture models have been extended to mixtures of linear regression mod-

els (De Veaux (1989) [34]) as well as mixtures of generalized linear models (Wedel

and DeSarbo (1995) [114]). Mixtures-of-experts models (Jacobs et al. (1991) [59])

and their generalization, hierarchical mixtures-of-expert models, (Jordan and Jacobs

(1994) [62]) have been introduced to account for nonlinearities and other complex-

ities in the data; Carvalho and Tanner (2009) [24] studied a class of hierarchical

mixtures of Poisson experts to model nonlinear count time series; Hurn, Justel and

Robert (2003) [56] showed how Bayesian inference for mixtures of regression models

and their generalizations can be achieved by the speci�cation of loss functions, which

addresses the label switching problem when estimating mixture models.

Most of the existing inference procedures for mixtures-of-regressions models are

limited to directly observed predictors. However, in actual problems, it is common

to observe variables subject to measurement errors. Measurement error models (or

errors-in-variables models) are regression models that account for measurement errors

in the independent variables. The statistical analysis of errors-in-variables data has

a long history, dating back to the days of econometrics as early as the 1930s (Frisch

(1934) [44]). Methods of measurement error primarily aimed at linear models are

1



discussed by Fuller (1987) [1] and Cheng and Ness (1998) [27]. The popular book by

Carroll et al. (2006) [94] covers nonlinear measurement error models, with a special

focus on bias reduction (also called approximate consistency).

Measurement error might either be introduced by the measuring technique involv-

ing the subjective judgment by human action, or due to a more convenient substi-

tution of the correct quantity. In the case when some variables have been measured

with errors, estimation based on the standard assumption leads to inconsistent esti-

mates, meaning that the parameter estimates do not tend to the true values even in

very large samples. For simple linear regression with measurement error in the pre-

dictors, it can cause an underestimate of the coe�cient, known as attenuation bias ;

in nonlinear models the direction of the bias is likely to be more complicated. The

bias in parameter estimation for statistical modeling and analysis can lead to a loss

of power, and mask certain features of the data.

Estimation of the mixtures-of-regressions model with measurement error has re-

ceived limited attention in the literature. This dissertation will focus on estimation of

various mixtures-of-regressions models where measurement error is assumed present.

1.1 Finite Mixture Models

Finite mixture models have long been used as a way to model a sample of obser-

vations that arise from a number of (usually) a priori known classes with unknown

proportions. They provide a statistical model for a wide variety of random phenom-

ena. Applications of mixture distributions can be found in various �elds of statistical

applications such as agriculture (Xu et al. (2010) [117]), biology (Bailey and Elkan

(1994) [8]), economics (Liesenfeld (2001) [71]), medicine (Peng and Dear (2000) [90])

and genetics (Pagel and Meade (2004) [87]). Monographs concerning mixture mod-

eling include Titterington et al. (1985) [110] and McLachlan and Peel (2000) [78].

Even if there is no realistic interpretation of the components of the mixture model,

mixture distributions o�er a very �exible modeling environment. We consider a para-

metric framework where the components are characterized by a particular paramet-

ric distribution. Within the family of mixture models, mixtures-of-linear-regressions

2



have also been studied. These arise when there appears to be multiple regression

relationships, but no information about membership of the observations is available.

1.1.1 Mixtures of Linear Regression Models

Mixtures-of-linear-regressions models were introduced by Quandt and Ramsey (1978)

[93] under the name of switching regressions. They used a technique based on a

moment-generating function to estimate the parameters. Over the next 20 years,

estimation of these models was mainly performed from a likelihood point of view.

It is well known that mixture likelihoods are multimodal. Thus, the �rst step in an

analysis is to identify as many local modes as possible. The standard approach to

this problem is to use multiple random starts for an Expectation-Maximization (EM)

algorithm. EM algorithm was �rst explained and given its name in a classic 1977

paper by Dempster, Laird and Rubin [36]. Then in 1989, De Veaux [34] developed

the EM algorithm for �tting the two regression setting. Jones and McLachlan (1992)

[61] applied mixtures of regressions in a data analysis and used the EM algorithm to

�t these models. Turner (2000) [112] �tted a two-component mixture of one variable

linear regression to a data set using the EM algorithm. Hawkins et al. (2001) [52]

studied the problem of determining the number of components in a mixture of linear

regression models using methods derived from the likelihood equation. Zhu and

Zhang (2004) [123] established asymptotic theory for maximum likelihood estimators

in mixtures-of-regression models; Young and Hunter (2010) [120] and Hunter and

Young (2012) [55] developed semi-parametric mixtures-of-regressions models.

Suppose we have n subjects with m measurements, Yi = (Yi1, · · · , Yim), on the

ith subject for all i = 1, · · · , n. Take y1, · · · ,yn as realized values of the Yis, which

are independent and identically distributed (i.i.d.) according to a distribution G. In

addition to this scenario, we also assume heterogeneity with respect to the response

tendencies of the subjects. One way to account for this is by suggesting k di�erent

classes with which the subjects could belong. For a �xed value k ∈ N, we say the

3



distribution of Yis has k-component mixture density

gk(yi | x,ψ) =
k∑
j=1

λjfj(yi | x,θj) (1.1)

λj > 0,
k∑
j=1

λj = 1,

where λj is the weight (or mixing proportion) for the jth component of the model,

yi is the dependent variable with conditional density gk, x is a vector of independent

(predictor) variables, θj is the component speci�c parameter vector for the jth com-

ponent density fj, and ψ = (λ1, · · · , λk−1,θ1, ...,θk)T is the vector of all parameters.

The mixture density gk is parameterized by ψ ∈ Ψ such that Ψ represents the

speci�ed parameter space for all unknown parameters in the mixture model. Note

that

Ψ =

(
k∏
j=1

Θj

)
× Λk−1,

where Ψ ⊂ Rr and r = (
∑k

j=1 qj) + (k − 1) and qj is the dimension of the parameter

in the jth component. We take G as the corresponding k−component mixture dis-

tribution whose components are composed of the distributions Fj. For the scenarios

presented in this dissertation, the Fj di�er only in θj, thus we take fj ≡ f and qj = q,

which yield Ψ = Θk × Λk−1 and r = kq + k − 1. Furthermore, we only consider the

case where a vector of predictors, say Xi = (Xi1, · · · , Xip)
T for p < n, is also observed

with each response Yi. The goal is to describe the conditional distribution of Yi | Xi

through a mixture of regressions. For the remainder of this dissertation, Yi will be

considered univariate, thus we will replace the boldface Yi with Yi.

1.1.2 Parameter Estimation

We will focus on estimating the parameters of the mixture model, ψ, given observed

data {(x1, y1), · · · , (xn, yn)} and the number of components k in this subsection. An

alternative method to maximum likelihood and EM, especially in the context of mix-

ture models, is the method of moments approach. The method of moments dates back

4



to the origins of mixture models with Pearson's solution for identifying the parame-

ters of a mixture of two univariate normals (Pearson (1894) [89]). In this approach,

model parameters are chosen to specify a distribution whose pth order moments, for

several values of p, are equal to the corresponding empirical moments observed in

the data. Latter works of Belkin and Sinha (2010) [10], Kalai et al. (2010) [65], and

Moitra and Valiant (2010) [81] can be thought of the modern implementations of the

method of moments for mixture models. Unfortunately, this method often runs into

trouble with large mixtures of high-dimensional distributions. This is because the

equations determining the parameters are typically based on moments of order equal

to the number of model parameters, and high-order moments are exceedingly di�cult

to estimate accurately due to their large variance.

Here we use some more e�cient algorithms for estimating in the mixture setting.

While Bayesian approaches are an active research area in their own right, we focus

on likelihood method. We will provide a brief literature review on some of the avail-

able likelihood techniques, but only provide a complete description for one algorithm

employed in this dissertation � the EM algorithm in the next subsection. We will

also discuss some issues concerning estimation of the parameters.

Likelihood Methods

Suppose the (observed) data consists of n i.i.d. observations (x1, y1), · · · , (xn, yn)

from a k-component mixture density given by (1.1). The associated complete data

is denoted by c = (c1, · · · , cn) with density hψ(c) =
∏n

i=1 hψ(ci). In the model for

complete data associated with model (1.1), each random vector Ci = (Xi,Zi) where

Zi = (Zij, j = 1, · · · , k) and Zij ∈ {0, 1} is a Bernoulli random variable indicating

that individual i comes from component j. Since each individual comes from exactly

one component, this implies
∑k

j=1Zij = 1, and

P (Zij = 1) = λj, (Xi | Zij = 1) ∼ fj, j = 1, · · · , k.

The complete data likelihood function for the parameters of a mixture model can
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be written as

Lc(ψ | y) =
n∏
i=1

hψ(ci | ψ) =
n∏
i=1

[
k∑
j=1

Izijλjfj(yi | xi,θj)

]
. (1.2)

It is easy to check that the maximum likelihood estimator (MLE) ψ̂c can be achieved

by maximizing L(ψ). In dealing with likelihood methods, it is often easier to work

with the log-likelihood

`c(ψ) = logLc(ψ | y) =
n∑
i=1

log hψ(ci | ψ). (1.3)

Then, an estimate ψ̂c (the MLE) of the complete data is provided by solving

S(y | ψ) =
∂`c(ψ)

∂ψ
= 0, (1.4)

where S(y | ψ) is called the score function.

The corresponding incomplete data (observed data) log-likelihood is

`(ψ) =
n∑
i=1

log gk(yi | xi,ψ)

=
n∑
i=1

log
k∑
j=1

λjfj(yi | xi,θj).

Note that this likelihood function has multiple modes. In fact, if X is one-dimensional,

it has k modes, but if d > 1, it can have more than k modes (Carreira-Perpiñán and

Williams (2003) [21]). Hence �nding the global maximum will be di�cult. One can

use gradient based methods to �nd the MLE estimate. Taking the derivative with

respect to the parameter of one component, say θj, and setting it equal to 0 yields:

∂`

∂θj
=

n∑
i=1

∂

∂θj
log gk(yi | xi,ψ)

=
n∑
i=1

∂

∂θj
log

k∑
j=1

λjfj(yi | xi,θj)

=
n∑
i=1

1∑k
j=1 λjfj(yi | xi,θj)

λj
∂

∂θj
fj(yi | xi,θj)

=
n∑
i=1

λjfj(yi | xi,θj)∑k
j=1 λjfj(yi | xi,θj)

1

fj(yi | xi,θj)
∂

∂θj
fj(yi | xi,θj)

=
n∑
i=1

λjfj(yi | xi,θj)∑k
j=1 λjfj(yi | xi,θj)

∂

∂θj
log fj(yi | xi,θj) = 0.
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If we just have a non-mixture parametric model, on the other hand, the derivative

of the log-likelihood would be
∑n

i=1
∂
∂θj

log fj(yi | xi,θj). So maximizing the likelihood

for a mixture model is like doing a weighted likelihood maximization, where the weight

of xi depends on the following component membership probability:

pij =
λjfj(yi | xi,θj)∑k
j=1 λjfj(yi | xi,θj)

. (1.5)

However, the likelihood equation will have multiple roots and, thus, result in local

maxima. Moreover, the likelihood function may be unbounded, which becomes a con-

siderable concern when implementing various algorithms. Focusing on local maxima

on the interior of the parameter space helps circumvent this problem because under

certain regularity conditions, there exists a strongly consistent sequence of roots to

the likelihood equation that is asymptotically e�cient (Ferguson (1996) [43]). In fact,

a
√
n-consistent estimator can be constructed using the method of moments estimator

mentioned earlier.

Newton Method

An e�cient way for solving (1.4) is to implement a Newton-type method. The

Newton-Raphson method takes a linear Taylor series expansion about the current

�t ψ(t) for ψ, which yields

S(y | ψ) ≈ S(y | ψ(t))− I(ψ | y)(ψ −ψ(t)), (1.6)

where

I(ψ | y) = −∂S(y | ψ)

∂ψT
(1.7)

is the negative of the Hessian of `(ψ). Then, �nding a zero for the right hand side of

(1.6) yields the update

ψ(t+1) = ψ(t) +
[
I(ψ(t) | y)

]−1
S
(
y | ψ(t)

)
. (1.8)

The Newton-Raphson method has the bene�t of local quadratic convergence to a

solution ψ∗ of (1.4), but this convergence is not guaranteed. Aside from some other

computational issues (McLachlan and Krishnan (1997) [79]), Newton-Raphson has
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the bene�t of providing, as an estimate of the variance-covariance matrix of the

solution, the inverse of the observed information matrix, [I(ψ∗ | y)]−1. Thus, standard

error estimates, con�dence intervals, and inference procedures are readily available.

1.1.3 EM Algorithms

Newton-Raphson methods can provide relatively speedy convergence, but this con-

vergence is not guaranteed and calculations like inverting the Hessian may be rather

di�cult to perform. As an alternative, EM algorithms are often preferred for �nding

MLEs of mixture models because of their simplicity. EM algorithms are commonly

employed in the mixture modeling literature: Bailey and Elkan (1994) [8] �tted a

mixture model by EM algorithm to discover motifs in bi-polymers; Ghahramani and

Hinton (1996) [48] presented an exact EM algorithm for �tting the parameters of

mixture of factor analyzers; Muthén and Shedden (1999) [83] discussed the estima-

tion of parameters for an extended �nite mixture model where the latent classes

corresponding to the mixture components for one set of observed variables in�uence

a second set of observed variables using EM algorithm; EM algorithms are also the

primary method of estimation in the R package mixtools (Benaglia et al. (2009) [11])

In this dissertation, we focus on developing an EM algorithm for the mixture models,

but it should be noted that this algorithm is one member in a much larger class of

algorithms (McLachlan and Krishnan (1997) [80]).

The key insight behind EM is: if we knew the values of the Zijs , then optimizing

the (complete data) likelihood with respect to ψ would be easy. We could simply

estimate λj and θj by applying the standard closed-form formula to all the data

assigned to component j. Since we don't know the values of the Zijs, we need to

estimate them �rst and use them as substitutes for the true values. More precisely, we

will optimize the expected complete data log likelihood instead of the actual complete

data log likelihood. Since the estimates of the Zijs depend on the parameters ψ, we

need to re-estimate them after each update to ψ. This algorithm can be shown

to monotonically increase a lower bound on the log likelihood, and hence it will

converge. In more details, we can now construct an EM algorithm for mixtures-of-
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linear-regressions models in Algorithm 1.1.

Algorithm 1.1 (EM Algorithm)

(a) (Expectation Step (E-Step)) Given a �xed ψ(t) at the tth iteration, t = 0, 1, · · · ,
calculate

Q(ψ | ψ(t)) := Eψ(t) [`c(ψ) | C = c,Y = y] .

(b) (Maximization Step (M-Step)) Find

ψ(t+1) = arg max
ψ

Q(ψ | ψ(t)),

which implies
Q(ψ(t+1) | ψ(t)) ≥ Q(ψ | ψ(t))

for all ψ ∈ Ψ.

(c) Iterate until a stopping criterion is attained. The �nal estimate obtained will be
denoted by ψ̂.

Because EM will only �nd a local minimum, good initialization is important. But

how to do this is problem dependent. A general strategy is to try multiple restarts

at random locations or to use a clustering algorithm.

Notice Zij ∼ Bern(λj), where Bern(λj) is the Bernoulli distribution with rate of

success λj. Since Eψ(t) is a linear functional, the expectation of Zij is the weight of

observation i belonging to the jth component,

Eψ[Zij | X = x, Y = y] = p
(t+1)
ij =

λ
(t)
j fj(yi | xi,θ

(t)
j )∑k

j=1 λ
(t)
j fj(yi | xi,θ

(t)
j )

.

The M step involves maximizing the expected complete data log likelihood Q(ψ |

ψ(t)):

Q(ψ | ψ(t)) = Eψ(t) [`c(ψ) | C = c,Y = y]

= Eψ(t)

[
n∑
i=1

log hψ(Ci | ψ(t))

]

= Eψ(t)

[
n∑
i=1

k∑
j=1

log
(
λjfj(yi | xi,θ(t)j )

)
Izij

]

=
n∑
i=1

k∑
j=1

log
(
λjfj(yi | xi,θ(t)j )

)
p
(t+1)
ij .

9



Therefore, we can update λ(t+1)
j by

λ
(t+1)
j =

1

n

n∑
i=1

p
(t+1)
ij (1.9)

and θ(t+1)
j is the solution of

n∑
i=1

p
(t+1)
ij

∂

∂θj
log fj(yi | xi,θ(t)j ) = 0. (1.10)

As we can see, the structure for an EM algorithm is rather simple and program-

ming is easy. We will stress some practical issues concerning implementation of

Algorithm 1.1.

One issue is the selection of the initial values ψ(0). Due to the multi-modality in

the mixture likelihood, there are multiple local maxima, and in some cases a poor

choice of ψ(0) can lead to the sequence of EM algorithms diverging. Due to such

features, it is recommended to start EM algorithm from di�erent initial values. For

reviews of possible options for starting values, see McLachlan and Krishman (1997)

[79] or McLachlan and Peel (2000) [78].

Another issue concerns the stopping criterion. Usually an EM algorithm is run

until

`(ψ(t+1))− `(ψ(t)) < ε, (1.11)

or, when given a norm ‖·‖ on Ψ, until

‖ψ(t+1) −ψ(t)‖ < ε

for some ε > 0 chosen arbitrarily small. Schafer (1997) [100] discussed the stopping

criterion
|ψ(t+1)

l −ψ(t)
l |

ψ
(t)
l

< ε

for l = 1, 2, · · · , r, though this method fails when ψ(t)
l ≈ 0. Regardless, EM algo-

rithms converge linearly, which can be very slow at times.

An inappropriate stopping criterion may cause one to claim convergence too soon.

Certain methods, such as an Aitken-based acceleration technique, may be imple-

mented to alleviate some of the di�culty with the slow rate of convergence (Lindsay

(1995) [72]). We use the method in (1.11) as our criterion.
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1.1.4 Selecting the Number of Components: Model Selection

Determining the number of components in �nite mixture models is a very important

problem. Chapter 6 of McLachlan and Peel (2000) [78] discusses many common

approached. There is also the visualization tool called the mixturegram, which was

recently introduced by Young et al (2018) [121]. Here, we discuss information criteria

to assess the number of components for a mixture model.

An information criterion for model selection can be based on the bias-corrected

log likelihood given by

logL(ψ)− b(F ) (1.12)

using an appropriate estimate of the bias term b(F ). The intent is to select the model

(that is, the number of components in the present context) to maximize (1.12). In

the literature, the information criteria are generally expressed in terms of twice the

value of the di�erence, so that they are of the form

− 2 logL(ψ) + 2C, (1.13)

where the �rst term on the right-hand side of (1.13) measures the lack of �t and the

second term C is the penalty term that measures the complexity of the model. The

intent therefore is to choose a model that minimizes (1.13).

The four criteria we will compare here are Akaike's Information Criterion (AIC)

of Akaike (1973) [5], the Bayesian Information Criterion (BIC) of Schwarz (1978)

[102], the Integrated Completed Likelihood (ICL) of Biernacki et al. (2000) [12], and

the consistent AIC (cAIC) of Bozdogan (1987) [14]. Given ψ̂, the MLE of ψ formed

from the observed sample, the form of these criteria are, respectively,

AIC = −2 logL(ψ̂) + 2d (1.14)

BIC = −2 logL(ψ̂) + d log(n) (1.15)

ICL = BIC + 2

(
−

n∑
i=1

k∑
j=1

p̂ij log p̂ij

)
(1.16)
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cAIC = −2 logL(ψ̂) + d(log(n) + 1), (1.17)

where n is the number of observations, d is the number of parameters in the mix-

ture setting, and the p̂ijs are �nal posterior membership probabilities from an EM

algorithm. These values are calculated for a reasonable range of components and

then the minimum of these values (for each criterion) corresponds to the number of

components selected by that criterion.

The four information criteria we employ in this dissertation are by no means

an exhaustive collection of such information criteria. Indeed, they are some of the

more common information criteria employed in the mixture literature. Beyond these,

there are contemporary methods like the BIC for singular models that was introduced

by Drton and Plummer (2017) [38]. This information criterion (which the authors

termed sBIC) preserves the consistency properties of BIC, but is also demonstrated

to show improved (frequentist) model selection properties.

1.1.5 Identi�ability

In this subsection, we de�ne identi�ability for mixture distributions. This discussion

and the de�nition of identi�ability are adopted from McLachlan and Peel (2000) [78].

Let Fk denote a parametric family of k-component mixture densities as described

in (1.1) and F the class of all such Fk. So

Fk = {gk(y | x,ψ) : ψ ∈ Ψ} and F =
⋃
k∈N

Fk.

Permuting the component labels of the mixture density results in F being noniden-

ti�able in Ψ, where identi�ability is de�ned as follows:

De�nition 1.1. (Identi�ability)

Consider

gk(y|x,ψ) =
k∑
j=1

λjfj(y|x,θj)

and

gk∗(y|x,ψ∗) =
k∗∑
j=1

λ∗jfj(y|x,θ∗j),

12



which are both members of the class F .

F is said to be identi�able for ψ ∈ Ψ if gk(y | x,ψ) = gk∗(y | x,ψ∗) a.e. if and

only if:

1. k = k∗;

2. under permutation of the component labels, λj = λ∗j and fj(y | x,θj) = fj(y |

x,θ∗j) a.e. for all j = 1, · · · , k;

3. λj > 0 and the θj are distinct for all j.

De�nition 1.1 states that no element of F can arise in two di�erent ways except

by trivial means, such as letting some λj = 0 or splitting a component by letting

θj1 = θj2.

Label Switching

During the implementation of iterative methods in mixture modeling, such as the

parametric bootstrap to obtain standard error estimates, we need to be cognizant of

the solutions being calculated from one iteration to the next. This is because a given

mixture component can't be extracted from the likelihood. This situation occurs

because the component labels can't be distinguished from one another due to the

nonidenti�ability in ψ as established in De�nition 1.1. Such a permutation of the

component labels as in this de�nition is called label switching.

There are numerous methods in the literature for dealing with label switching (see

Jasra et al. (2005) [60] for a review of some of these techniques). One of the easiest

methods by Aitkin and Rubin (1985) [4] for dealing with this problem is by imposing

arti�cial identi�ability constraints on one of the parameters (such as λ1 ≤ λ2 ≤ · · · ≤

λk). Kim and Lindsay (2015) [67] utilized the notion of local identi�ability, which

guarantees the existence of the identi�able parameter region, to develop an empirical

measure of the degree of local identi�ability on the estimated parameters. However,

it is not always possible to �nd such constraints and these choices of constraints

depends heavily on the parameters (for instance, see McLachlan and Peel (2000) [78]
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and Stephens (2000b) [108]). For example, consider �tting a mixture with k = 2

components with the mixing proportions close to 0.50. Imposing the identi�ability

constraint on λis clearly in�uences the estimates of θ1 and θ2, thus creating a bias.

Such a situation is highlighted in Celeux et al. (2000) [25] where they presented

�disturbing� results when considering the various ordering constraints on a k = 3

component mixture of normals using a Markov chain Monte Carlo (MCMC) sampler.

This identi�ability can be imposed after the simulations have been completed, as

Stephens (2000b) [108] demonstrated for a MCMC sample of size N by relabeling the

sample (Ψ(1),Ψ(2), · · · ,Ψ(N)) and applying permutations π1, π2, · · · , πN such that

the permuted sample
(
π1(Ψ

(1)), π2(Ψ
(2)), · · · , πN(Ψ(N))

)
satis�es the identi�ability

constraints.

Strategies to handle the label switching problem have also been proposed in the

Bayesian context. For example, Stephens (2000b) [108] proposed a class of relabeling

algorithms that attempt to minimize the posterior loss under a class of loss functions.

Chung et al. (2004) [28] proposed assigning as few as one observation to a component

a priori, which e�ectively amounts to using data-dependent 3 priors where one or more

observations are assigned to each component with certainty. Their strategy applies

enough information to break the symmetry of the likelihood and �atten the posterior

density over k! − 1 nuisance regions, which are the duplicate modes resulting from

the permutations of the component labels.

Since there is not always a clear choice of labeling, Richardson and Green (1997)

[96] stress post-processing the simulations under di�erent permutations of the labels

to determine an appropriate choice.

When the parameters are well-separated within the parameter space, identi�abil-

ity constraints can be a very simple post-hoc method. Since this is the scenario for

the examples we will present, identi�ability constraints will be the method of choice

for dealing with label switching in this dissertation. For the sake of completeness, we

also discuss alternative methods for handling this issue.

First, consider bootstrapping in mixtures. McLachlan and Peel (2000) [78] point

out that label switching can usually be avoided by setting the EM algorithm's starting
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values to the maximum likelihood estimates, since EM algorithms are (generally) very

dependent on the starting values.

Next, note that since the likelihood of a k-component mixture model is invariant

under permutation of the component labels, it e�ectively has k! modes. Label switch-

ing is often presented in the context of Bayesian mixture modeling since the posterior

distribution will also have this property under a symmetric prior. The Bayesian

method often involve a decision theoretic approach as implemented in Celeux et al.

(2000) [25], Stephens (2000b) [108], Hurn et al. (2003) [56], and Jasra et al. (2005)

[60].

Another procedure used within the Bayesian framework is by Chung et al. (2004)

[28], who suggest assigning as few as one observation to a component a priori. This

amounts to using data-dependent priors where one or more observations are assigned

to each component with certainty. The point is to apply enough information to

break the symmetry of the likelihood and �atten the posterior density over k! − 1

nuisance regions, which are the duplicate modes resulting from the permutations of

the components. The posterior density in the sampler will now re�ect a modi�ed

likelihood function which accommodates a density where one (or more) observations

were assigned to each component. The major limitation of this approach is to what

extent one is willing to accept preclassifying certain observations.

1.2 Measurement Error Models for Regression

Measurement error models are commonly used in making inference on the relation-

ship of a response variable Y and predictor variables when some of the variables

may be measured with error. Fuller (1987) [1] and Cheng and Ness (1999) [27] dis-

cussed methods account for measurement errors primarily aimed at linear models.

Reviews that center on the econometric literature are also available. Wansbeek &

Meijer (2007) [113] focus primarily on linear models and make direct connections

with latent variables and factor models. A broad review of nonlinear measurement

error models with an emphasis on the use of auxiliary samples containing error-free

covariates is provided by Chen et al. (2011) [26]. Schennach (2013) [101] reviewed
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recent econometrics literature on measurement error in nonlinear models, especially

regarding latent variables, factor models, and non separable error and providing more

insight into the connection among di�erent approaches.

In a simple linear bivariate regression, the presence of measurement error �attenu-

ates� the relationship between the dependent variable and the mismeasured regressors.

This means, if one neglects the presence of measurement error in the regression, the

regression coe�cients merely become less signi�cantly di�erent from zero, so that the

resulting statistical inference is conservative, but otherwise valid.

However, this optimistic result fails to hold in general for multivariate linear re-

gressions and for nonlinear speci�cations (Hausman (2001) [2], Hausman, Newey and

Powell (1995) [51], Griliches and Ringstad (1970) [49]). To make matters worse, the

standard instrumental variable approach, which is entirely adequate to correct for the

endogeneity caused by measurement error in linear models, fails in nonlinear mod-

els (Amemiya (1985) [6]). These realizations have motivated the large and growing

literature that aims to correct for the presence of measurement error in nonlinear

models.

1.2.1 Classical Measurement Errors and Berkson Errors

Modeling the error caused by the measuring process has been long studied. The inspi-

ration of measurement error model can date back to Pearson (1894) [89]. According

to the introduction of measurement error models given in Carroll et al. (2006) [94],

there are two types of models for the measurement error process:

• Error models, such as classical measurement error models. These models con-

sider the conditional distribution of the observed variables measured with error

given true variables.

• Regression calibration models, such as Berkson error models. These models

consider the conditional distribution of the true variables given the observed

variables measured with error.
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There are two main consequences if the methods of estimation for the case without

measurement error are misused when the measurement error is not negligible. One

consequence is that the estimator will become biased. The other consequence is the

loss of power in hypothesis testing. In this dissertation, we focus on the estimators for

classical measurement errors in mixtures-of-regressions models such that these e�ects

can be minimized.

Classical Measurement Error Model

De�nition 1.2. Consider the regression model of a response Y on a r-dimensional

predictor X, when the predictor variable X or part of the X cannot be observed

directly, but instead the surrogate, denoted by W, of X is observed. The classical

measurement error model can be de�ned as:

W = X + U. (1.18)

In this model, W is an unbiased measure of X, so that U must have mean zero,

that is, in symbols, E (U | X) = 0. The error structure of U could be homoscedastic

(constant variance) or heteroscedastic. Initially, we will consider the case that the

measurement error structure is approximately normal with constant variance, so we

can reasonably think that U | X ∼ Nr(0,Σu), and later we may also discuss the case

when the measurement U is not normally distributed.

Berkson Measurement Error Model

What we see in the classical measurement error model (1.18) is that the observed

predictor variable equals the true predictor variable plus (classical) measurement

error. This, of course, means that the variability of the observed predictor variable

will be greater than the variability of the true variable. In some situations, we do

not only consider the classical measurement error, but also turn the issue around;

namely, assume that the true predictor variable is equal to the estimated variable

plus measurement error. In symbols, this is

X = W + U, (1.19)
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where E (U|W) = 0, so the true predictor variable has more variability than the

estimated one; contrast with (1.18). Model (1.19) is called a Berkson measurement

error model, which was �rst proposed by Berkson (1950) [63].

The major di�erence between classical and Berkson measurement error models

is the dependence of the error and covariate. In the classical measurement error

model, the error U is independent of the true covariate X and E (U) = 0, or no

independence assumption but E (U | X) = 0; while for Berkson measurement error

model, the error U is independent of W and E (U) = 0, or no independence as-

sumption but E (U |W) = 0. Therefore, Var (W) > Var (X) for classical errors and

Var (X) > Var (W) for Berkson errors. Nevertheless, the choice between the classi-

cal and Berkson measurement error models should depend on the background and

interpretation of the data.

Testing for the presence of measurement error is mostly underdeveloped in the

literature. One possibility is a nonparametric test developed in Wilhelm (2018) [115].

While focused on additive measurement error, a similar test could likely be developed

for multiplicative measurement error structures.

1.2.2 Estimation Methods

A linear regression model with measurement error has been studied under the clas-

sical measurement error model in Fuller (1987) [1], where bias can be found on the

parameter estimation. It has also been applied to epidemiology studies to correct the

biased caused by measurement error (Wong et al. (2003) [84]). One straightforward

way of estimating parametric models with measurement error is a likelihood-based

approach. The likelihood function is constructed based on the speci�ed paramet-

ric model and the chosen measurement error model. The estimators are obtained

by maximizing the likelihood function through numerical techniques. There is some

research considering this idea, e.g., Carroll et al. (1984) [22] for probit regression,

Whittemore and Gong (1991) [99] for Poisson regression with misclassi�cation model,

Reeves et al. (1998) [64] for continuous and binary response models, and Yao and

Song (2015) [119] for mixtures-of-regressions models. The likelihood method requires
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stronger distributional assumptions and it can be computationally di�cult, but it

increases the e�ciency of the estimators. Besides, likelihood-based tests and con�-

dence intervals can be obtained with the fully-speci�ed parametric model. However,

the identi�ability of the parametric model is one of the major concerns for likelihood

function methods. If the model can not be identi�ed, we most resort to using a

semi-parametric or non-parametric model.

In nonlinear models with measurement error problems, there are extensive liter-

ature on various approaches developed by researchers; see the text by Carroll et. al

(2006) [94]. One of the most common used approaches is the corrected score esti-

mator. This method is based on the log-likelihood function (alternatively, the score

function) of the error-free model, and then �corrected� for the measurement error.

This approach has been promoted by Stefanski (1989) [106] and Nakamura (1990)

[85], since it does not need to specify the distribution of the covariates X, it is a

so-called functional method.

Another type of approach is called the structural method. It works with the as-

sumption that the distribution of X is known, possibly except for a �nite number

of unknown parameters. In this dissertation, we assume that X follows multivariate

normal distribution, that is, X ∼ N(µx,Σx). The idea is to set up unbiased estimat-

ing equations of observed data (W, Y ) with the help of the conditional mean and

possibly also the conditional variance of Y given X. We call the estimators originat-

ing from the solution to such estimating equations structural estimators, because in

the theory of measurement error models, a model with a well-speci�ed distribution

of the covariates X is often called a structural model.

In both functional and structural case, the simulation extrapolation (SIMEX)

estimator has become very popular. Those estimators are not consistent in general,

although they often reduce the bias signi�cantly, also see Carroll et al. (2006) [94].

In this subsection, we describe in details of an important example of the classical

measurement error model � the polynomial model, where for simplicity the latent

variable X is scalar, and discuss some methods of consistent estimation in this model,

particularly.
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The polynomial model is given by

Yi = XT
i β + εi = ηi + εi,

Wi = Xi + Ui,

with XT
i =

(
1, Xi, X

2
i , · · · , Xk

i

)
and βT = (β0, β1, β2, · · · , βk) ,where εi ∼ N(0, σ2

ε)

and εi is independent ofXi for i = 1, 2, · · · , n. This can be considered as measurement

error model case with classical measurement error. The model requires we have some

knowledge about the measurement error, so there are two possible situations: (a)

the measurement error variance σ2
u is known, and (b) the ratio σ2

ε/σ
2
u is known (see

Shklyar (2008) [103]).

Functional Method: Corrected Score

If the variable X were observable, we can estimate the unknown parameter β by the

method of maximum likelihood. The corresponding likelihood-score function for β is

given by

ψ(β | yi, xi) =
∂ log f(yi | xi,β)

∂β
.

We want to construct an unbiased estimating function for β in the observed variables.

For this purpose, we need to �nd functions, say ψC of wis and β such that

E [ψC(β | yi, wi) | xi] = ψ(β | yi, xi).

Then ψC(β | yi, wi) is called the corrected score function. The corrected score (CS)

estimator β̂C of β is the solution to

n∑
i=1

ψC(β | yi, wi) = 0.

The corrected score function does not always exist. Stefanski (1989) [106] gives

the conditions for their existence and shows how to �nd them if they exist. An

alternative functional method, particularly adapted to generalized linear models, is

the Conditional Score method, see Stefanski and Carroll (1987) [107].
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Structural Methods: Quasi-Likelihood and Maximum Likelihood

The conditional mean and conditional variance of yi given xi are, respectively,

E (yi | xi) = xTi β ≡ m∗(xi | β),

Var (yi | xi) = σ2
ε ≡ v∗(xi).

Then the conditional mean and conditional variance of yi given the observable vari-

ables wi are

E (yi | wi) = E [m∗(xi) | wi] ≡ m(wi | β),

Var (yi | wi) = Var [m∗(xi) | wi] + E [v∗(xi) | wi] ≡ v(wi | β).

For the quasi-likelihood (QL) estimator, we construct the quasi-score function

ψQ(β | yi, wi) = [y −m(wi | β)] v−1 (wi | β)
∂m(wi | β)

β
.

Here we drop the parameter σ2
ε considering it to be known. Indeed, in order to

compute m and v, we need the conditional distribution of x given w, which depends

on the distribution of x with its parameter. The quasi-likelihood (QL) estimator β̂Q

of β is the solution to
n∑
i=1

ψQ(β | yi, wi) = 0.

The equation has a unique solution for large n, but it may have multiple roots if n is

not large. Heyde and Morton (1998) [54] develop methods to deal with this case.

Maximum likelihood is based on the joint density of w, y, thus while QL relies only

on the error-free mean and variance functions, ML relies on the whole error-free model

distribution. Therefore, ML is more sensitive than QL with respect to a potential

model misspeci�cation because QL is always consistent as long as the density of x

has been correctly speci�ed. In addition, the likelihood function is generally much

more di�cult to compute than the quasi score function. This often justi�es the use

of the relatively less e�cient QL instead of the more e�cient ML method.
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1.2.3 Simulation Extrapolation

SIMEX is a simulation-based method of estimating and reducing bias due to measure-

ment error. SIMEX estimates are obtained by adding additional measurement error

to the data in a resampling-like stage, establishing a trend of measurement error-

induced bias versus the variance case of the added measurement error. It was �rst

proposed by Cook and Stefanski (1994) [31] and further developed by Stefanski and

Cook (1995) [105], Carroll and Stefanski (1995) [23] and Devanarayan and Stefanski

(2002) [37]. It is a self-contained simulation study resulting in graphical displays that

illustrate the e�ect of measurement error on parameter estimates and the need for

bias correction.

SIMEX in Simple Linear Regression

We now describe the basic idea of SIMEX in the context of simple linear regression

Y = β0 + βxX + ε

with classical measurement error

W = X + U,

where U is independent of (Y,X) and has mean zero and variance σ2
u. The key idea

of SIMEX is the fact that the e�ect of measurement error on an estimator can be

determined experimentally via simulation.

First we get the ordinary least squares estimate of βx from the original data,

denoted β̂x,naive, then we generate M − 1 data sets, each with successively larger

measurement error variances, say (1 + ζm)σ2
u, where 0 = ζ1 < ζ2 < · · · < ζM are

known. We can also get the least squares estimate of slope from the mth data set,

called β̂x,m.

We can now formulate this setup as a nonlinear regression model, with data{
(ζm, β̂x,m),m = 1, · · · ,M

}
, where β̂x,m is the response variable and ζm the predictor

variable. Notice the mean function of this regression has the form

E
(
β̂x,m | ζ

)
= G(ζ) =

βxσ
2
x

σ2
x + (1 + ζ)σ2

u

, ζ ≥ 0.
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Figure 1.1: A SIMEX plot, where the x-axis is ζ, and y-axis is the estimated coe�-
cient. The SIMEX estimate is an extrapolation to ζ = −1.The naïve estimate occurs
at ζ = 0.

Note that G(−1) = βx, that is the parameter of interest is obtained from G(ζ) by

extrapolation to ζ = −1.

The steps of SIMEX can be written as follows:

Algorithm 1.2 Simulation Extrapolation

• In the simulation step, additional independent measurement errors with vari-
ance ζmσ2

u are generated and added to the original W data, creating data sets
with successively larger measurement error variances. For the mth data set, the
total measurement error variance is (1 + ζm)σ2

u.

• In the estimation step, estimates are obtained from each of the generated data
sets.

• The simulation and estimation steps are repeated a large number of times, and
the average value of the estimate for each group of data sets is estimated. These
values are plotted against the ζ values and a regression technique is used to �t
an extrapolant function to the averaged, error-contaminated estimates.

• Extrapolation to the ideal case of no measurement error (ζ = −1) yields the
SIMEX estimate.

23



1.2.4 Measurement Error in the Response and a WLS Estimate

Akritas and Bershady (1996) [46] discussed the problem of �tting regression models

with data having heteroscedastic measurement errors of known standard deviation

in the response. They de�ned a statistical model for data with astronomical (het-

eroscedastic) measurement errors which allows the possibility of correlated errors

between both variables of interest, and the possibility that the size of the measure-

ment error depends on the observation, and proposed a weighted least squares (WLS)

estimator for estimating the model. This measurement error in the response model

is practically useful for addressing other problems with such data, including intrinsic

variance function estimation, goodness-of-�t, comparing k multivariate samples.

Consider the linear model with n pairs of observations, where the ith variables of

interest (Xi, Yi) follows

Yi = XT
i β + εi (1.20)

where εi ∼ N(0, σ2
i ). We denote the observed data by (Xi, Y

∗
i , η

2
i ), where η

2
i is the

measurement error (for the response) provided by the researcher. Here, we don't

assume measurement error in the predictor. The observed response is related to the

unobserved response by

Y ∗i = Yi + δi (1.21)

such that δi ∼ N(0, η2i ) is independent of εi.

The method of WLS estimator applies when only the response variable is subject

to measurement error and the size of the measurement error does not depend on the

observation. The general idea of WLS is to weight the observations so that obser-

vations with a larger weight contribute more to the least squares �t. The regression

parameter estimator with minimal variance is achieved by assigning weights inversely

proportional to the variance of each term.
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Relations (1.20) and (1.21) imply

Y ∗i = Yi + δi

= XT
i β + εi + δi

= XT
i β + ε∗i ,

where ε∗i has the set ε
∗
i = εi + δi. This is a valid setting for the application of WLS,

provided that the variance of ε∗i is independent of Y
∗
i . To do so, however, we need to

estimate the variance of ε∗i . Notice that

Var(ε∗i ) = Var(εi) + η2i . (1.22)

Since Var(εi) is unknown, Var(ε∗i ) in also unknown. Using the results from an ordinary

least square (OLS) estimator, Akritas and Bershady (1996) [46] extended it to WLS

and estimate Var(ε1), · · · ,Var(εn).

Algorithm 1.3 (WLS Algorithm)

(a) Obtain the regression coe�cient estimator β̂ by a direct application of OLS to
the observed data (X1, Y

∗
1 ), · · · , (Xn, Y

∗
n ).

(b) Calculate the residuals
Ri = Y ∗i −XT

i β̂

for i = 1, · · · , n.

(c) Obtain the estimators of V ar(εi) from

V̂ar(εi) =
n∑
i=1

(Ri − R̄)2 − n−1
n∑
i=1

η2i

where R̄ = n−1
∑n

i=1Ri.

Next, set V̂ar(ε∗i ) = σ̂∗2i = V̂ar(εi)+η2i and letA be the n×n matrix with diagonal

elements σ̂∗2i and with all o�-diagonal elements equal to zero. In terms ofA, a general

formula for the WLS estimator is:

β̂WLS = (XTA−1X)−1XTA−1Y∗ (1.23)

where Y∗ = (Y ∗1 , · · · , Y ∗n )T .
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1.2.5 Testing with Measurement Error in Predictor

As measurement error models have received increasing attention in the literature,

model testing problems have also arisen. For example, we may be interested in

testing whether a certain covariate needs to be included in the model, or may be

interested in testing whether a certain parametric model is su�cient to describe the

data. Although testing problems in measurement error models are important, it

seems to be untouched except for some special cases. We brie�y discuss hypothesis

tests concerning regression parameters when X is measured with error.

Suppose the main problem of interest involves a response Y and predictors X.

Consider the full model

E (Y | X1,X2) = β0 + XT
1 β + XT

2 γ, (1.24)

we are interested in testing the null hypothesis

H0 : γ = 0. (1.25)

However in the measurement error context, X1 and X2 can not be observed directly,

and instead, the surrogate, call W1 and W2 are observed.

Hypothesis (1.25) can be tested using the following statistics:

Likelihood Ratio: LR = −2
{
`(
∼
β)− `(β̂, γ̂)

}
,

Wald Test: WT = nγ̂V̂−1γ̂,

where
∼
β denotes the maximum likelihood estimator of β restricted to H0 in (1.25),

γ̂ and β̂ are the ML estimate of γ and β, respectively, V̂ is a consistent estimate

of its
√
n-asymptotic covariance matrix. Under some suitable regularity conditions,

we have that under H0 these statistics share the same asymptotic behavior; that is,

when the sample size n is large enough,

LR
D−→ χ2

pγ ,

WT
D−→ χ2

pγ ,
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where pγ is the dimension of γ. Then the null hypothesis is rejected if LR or WT

> z∗, where z∗ is a per-determined critical value.

In some simple cases, likelihood ratio test (LRT) or Wald-type test can be directly

applied in measurement error models. However, there are some reasons to avoid the

LRT or Wald-type test, and the reasons are primarily computational. The di�culty

lies in solving the estimating equations, as it requires solving
√
pβ + pγ equations,

where pβ and pγ are the dimensions of β and γ respectively. Even in the simple

case that γ is scalar, the increase in dimensionality can lead to di�cult issues of

computational stability.

There are some estimators proposed in the setting of functional measurement error

models that are less computational and more theoretically-driven. Carroll, Hart and

Ma (2011) [74] proposed a score-like local test and a series expansion based omnibus

test in this context, where no likelihood function is available or calculated. All the

tests are proposed in the semi-parametric model framework, based on a class of semi-

parametric estimators developed by Tsiatis and Ma (2004) [111]. Based on Tsiatis

and Ma (2004) [111], the estimating equations exist for (β,γ) and can be written as

0 =
n∑
i=1

φβ(W i, Yi,β,γ),

0 =
n∑
i=1

ψγ(W i, Yi,β,γ),

where φβ and ψγ have the same dimensions as β and γ, respectively. They have used

di�erent symbols φ(·) and ψ(·), because these estimating equations are not derivatives

of some version of a pro�le likelihood, since no pro�le likelihood exists in this semi-

parametric framework. Under H0, the estimating equation can be simpli�ed as

0 =
n∑
i=1

φβ(W i, Yi,β,0),

and we call its root β̂. Then, in analogy with the score test, They proposed a test on

the estimated score:

Û =
√
n

n∑
i=1

ψγ(W i, Yi, β̂,0).
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The test statistic with signi�cant level α proposed is to reject the hypothesis if T =

ÛT Σ̂−10 Û exceeds the 1 − α quantile of the chi-squared distribution with pγ degrees

of freedom. Of course, T does not involve estimating γ. However, this test has

asymptotic level α from standard Taylor series calculations, yielding the following

result.

Theorem 1.1. Under the null hypothesis,
√
n(β̂ − β)

D−→ N(0,Vβ) and Û
D−→

N(0,Σ0). Hence T = ÛT Σ̂−10 Û is asymptotically chi-squared with pγ degrees of free-

dom.

1.3 Mixtures of Regression with Measurement Errors

Research on mixtures of regression models primarily assumes directly observed pre-

dictors, and measurement error is often not taken into consideration. Yao and Song

(2015) [119] developed a deconvolution method to get a consistent estimator for mix-

tures of linear regression model with measurement errors, and also proposed a gen-

eralized EM algorithm to �nd the estimator.

In this dissertation, we will discuss novel mixtures of regressions models with

measurement errors. Here is an outline of the dissertation. In Chapter 2 we discuss

the mixtures of linear regressions with measurement errors in the response, develop

some estimating methods, and conduct simulations. In Chapter 3, we introduce

the mixtures of linear regressions model with measurement errors in the predictor,

develop some estimating methods, construct hypothesis test on polynomial regression

with measurement error, and conduct simulations. Chapter 4 focuses on di�erent

estimating methods for mixtures of Poisson regressions with measurement errors and

their applications. In Chapter 5, we present some concluding remarks and directions

for future research.
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Chapter 2 Mixtures-of-Regressions with Measurement Error in the

Response

Measurement error (ME) models, i.e. errors-in-variables models are an alternative

to the classical model, which accounts for the di�erence between a measured value

of a quantity and its true value. Variability is an inherent part of the results of

measurements and of the measurement process. The e�ect of measurement error has

been long investigated, details about this topic can be found in Fuller (1987) [1],

Cheng and Van Ness (1999) [27] and Carroll et al. (2006) [94]. Some issues that arise

due to the presence of measurement error include bias in parameter estimation for

statistical models, loss of power, and masking the features of the data thus making

graphical model analysis di�cult.

Linear regression is one of the most common statistical techniques used in astro-

nomical research. One of the interesting features of many astronomical data sets is

the presence of intrinsic scatter in addition to heteroscedastic variances. Some of

the most commonly used approaches in astronomy for regression in order to estimate

the model parameters include least square (LS) �ts, weighted least squares (WLS)

methods, maximum likelihood (ML), survival analysis, and Bayesian methods.

In this chapter, we concentrate on the standard mixture of linear regression model,

where the observed response includes measurement error with the variance roughly

known, which does arise with astronomical data sets. We extend the WLS estimator

discussed in Chapter 1, developed by Akritas and Bershady (1996) [46], but in the

context of a mixture of linear regressions models.

2.1 Introduction

2.1.1 Measurement Error Problem in Linear Regression

Linear regression is commonly used in astronomical data analysis. While dealing with

linear regression in astronomy, besides the regular random errors in the independent
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and dependent variables, it is common to also have so-called intrinsic scatter on

the regression line. In astronomy, intrinsic scatter is the variations in the physical

properties of astronomical sources that are not completely captured by the variables

included in the regression. It is important to also account for intrinsic scatter in the

data analysis, since it has a non-negligible e�ect on the regression results. When

the independent variable is measured with error, the ordinary least squares (OLS)

estimate of the regression slope is biased toward zero (Fuller (1987) [1], Akritas and

Bershady (1996) [46]).

Many methods have been proposed for performing linear regression when intrinsic

scatter is present. Clutton-Brock (1967) [30] proposed a e�ective variance method;

Press et al. (1992) [92] proposed a procedure of minimizing an �e�ective� χ2 statistic;

Stephens and Dellaportas (1992) [33], Richardson and Gilks (1993) [95], Dellaportas

and Stephens (1995) [35] and Gustafson (2004) [50] developed Bayesian approaches

on estimating measurement error model; Schafer (1997) [100] assumed the probability

distribution for the true independent variables and constructed the so-called struc-

tural equation models. Some of the methods applied in astronomy are the bivari-

ate correlated errors and intrinsic scatter (BCES) estimator (Akritas and Bershady

(1996) [46]) and the 'FITEXY' estimator (Press et al. (1992) [92]).

In this chapter, we consider the case where the observed response also include

measurement error whose variance is roughly known, as is often the case with astro-

nomical data sets. We extend the WLS estimator developed in Akritas and Bershady

(1996) [46] to accommodate the mixture of regressions models we have discussed thus

far.

2.1.2 Basic Model

Much of the literature on mixture models focuses on mixtures of normal distributions,

which underlies the model we assume for this chapter.

For the observation (X0, Y ), let Z be a latent class variable with P (Z = j | X0) =

λj > 0,
∑k

j=1 λj = 1 for j = 1, · · · , k are mixing proportions. Given Z = j, suppose
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that

Y = XT
0 βj + εj,

where εj ∼ N(0, σ2
j ). Then the response Y has the form

Y | X0 ∼
k∑
j=1

λjN(XT
0 βj, σ

2
j ).

Suppose we have n observations. For the ith observation of interest (Xi, Yi), con-

ditional on component membership ki, we have the following regression relationship:

Yi = XT
i βki + εi,ki , (2.1)

where ki ∈ {1, · · · , k} and εi,ki ∼ N(0, σ2
ki

). In the non-mixture setting, the OLS

solution �nds the values of βs that minimize the residual sum of squares (RSS):

RSS = (Y −Xβ)T (Y −Xβ).

where Y = (Y1, · · · , Yn)T is the vector of response variables Yis, and X is the matrix

whose rows are XT
1 , · · · ,XT

n .

In the present setting, we can use an EM algorithm to perform the estimation,

where OLS-type estimators appear in the M-step. However, the OLS slope is biased

if there is measurement error in the independent variable. We introduce a WLS

estimator for the case that only response variables Y1, · · · , Yn are observed with error.

2.2 Estimating Method

2.2.1 A WLS-based Estimate

We begin by denoting the observed data by

(XT
i , Y

∗
i , η

2
i ), (2.2)

where η2i is the variance of measurement error for the response, for which the re-

searcher has a known, good estimate. Note that, we do not also assume measurement

error in the predictor. For each component membership, the model is exactly the
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same form as the one we discussed in Chapter 1 (see Subsection 1.2.4), where the

observed response is related to the unobserved response by:

Y ∗i = Yi + δi (2.3)

such that δi ∼ N(0, η2i ) is independent of εi.

Clearly, the model has non-constant error variance (heteroscedasticity) for each

observation. WLS is a commonly used technique for heteroscedasticity; by assigning

individual weights to the observations the heteroscedasticity can be removed by de-

sign. WLS is an example of the broader class of generalized least squares estimators.

The idea was �rst presented by Alexander Aitken (1935) [3]. The general idea of

WLS is that less weight is given to those observations with a larger error variance,

which forces the variance of the residuals to be constant.

Akritas and Bershady (1996) [46] note that the optimal weight for each observation

comprises both the corresponding random error variance and the intrinsic scatter

(measurement error) variance. However, in a mixture of regressions setting, we also

need to account for the uncertainty of component membership, so we incorporate the

unobserved Zijs into our method.

Conditional on component membership ki, we have

Y ∗i = Yi + δi

= XT
i βki + εi,ki + δi

= XT
i βki + ε∗i,ki ,

where εi,ki ∼ N(0, σ2
ki

). With this setting, we may develop a WLS-type approach

while working under the assumption that ε∗i,ki is independent of Y ∗i . However, we

need estimates of the variance of ε∗i,ki . Under our assumptions, we have

Var(ε∗i,ki) = Var(ε·,ki) + η2i . (2.4)

Since Var(ε·,ki) is unknown, Var(ε∗i,ki) is also unknown. We can extend the algorithm

of Akritas and Bershady (1996) [46] and use this extension within an EM algorithm

to estimate Var(ε·,1), · · · ,Var(ε·,k); see Algorithm 2.1.
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Algorithm 2.1 WLS-based Algorithm

(a) Given the observed data
{

(xT1 , y
∗
1), · · · , (xTn , y∗n)

}
and η21, · · · , η2n, obtain the

regression coe�cient estimates (β̂
T

1 , · · · , β̂
T

k )T using an EM algorithm for a mixture
of linear regressions problem.

(b) Calculate the residuals
Rij = y∗i − xTi β̂j,

for i = 1, · · · , n and j = 1, · · · , k.

(c) Calculate the weighted mean of the residuals for each component membership

R̄.j =

∑n
i=1 p̂ijRij∑n
i=1 p̂ij

,

where p̂ij are the �nal posterior membership probabilities from the EM algorithm in
Step (a).

(d) Obtain the estimators of Var(ε·,1), · · · ,Var(ε·,k) from

V̂ar(ε·,j) =

∑n
i=1 p̂ij

[(
Rij − R̄.j

)2 − η2i ]∑n
i=1 p̂ij

(e) Set V̂ar(ε∗i,j) = σ̂∗2ij = V̂ar(ε·,j) + η2i and de�ne Aj = diag(σ̂∗−21j p̂1j, · · · , σ̂∗−2nj p̂nj).
Then, the WLS estimator based on the further weighting from the intrinsic scatter is

β̃j = (XTAjX)−1XTAjY
∗,

for j = 1, · · · , k, where Y∗ = (Y ∗1 , · · · , Y ∗n )T is the vector of observed response vari-
ables Y ∗i s.

According to Algorithm 2.1, EM algorithm is applied only at Step (a), and WLS

is only used to adjust the regression coe�cients. Thus, the di�erence between the

estimators β̃1, · · · , β̃k proposed by the WLS-based algorithm and the estimators from

the simple mixtures-of-regressions β̂1, · · · , β̂k will typically not be very big. The way

to correct the variances estimators suggest that the estimators of variances would

be smaller than the estimators from the mixtures-of-regression, since it exclude the

variances from measurement errors. Notice in Step (c), the weighted estimators of

variances are obtained by subtracting the deviation of measurement error from the

overall deviation, the value of
(
Rij − R̄.j

)2−η2i can be negative for some i or j, which
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is infrequent. We set the value to be 0 if that is the case.

2.2.2 Asymptotic Variance

Let ψ denote the vector of true unknown parameter values,

ψ =
(
λ1, · · · , λk−1,βT1 , · · · ,βTk , σ2

1, · · · , σ2
k

)T
,

the asymptotic variance of EM estimators, ψ̂, can be obtained by the inverse of the

information matrix I (ψ), which is the second derivatives of the likelihood function,

that is
√
n
(
ψ̂ −ψ

)
D−→ N

(
0, I−1(ψ)

)
.

However, likelihood functions for mixture models are often complicated, thus other

approaches are necessary. For example, Efron and Hinkley (1978) [39] suggested to use

the observed Fisher information matrix instead. Later, Louis (1982) [73] introduced

a technique for computing the observed information when an EM algorithm is used.

Suppose we have n observations with a k-component mixture model, for i =

1, · · · , n,

gk(yi | x,ψ) =
k∑
j=1

λjfj(yi | xi,θj)

where

fj(yi | xi,θj) =
1

σj
φ

(
yi − xTi βj

σj

)
is the probability density of the ith observation belonging to the jth component,

θj =
(
βTj , σj

)T
is the vector of parameters of jth component, and φ is the density of

the standard normal distribution.

The idea here is to think of the complete data as consisting of s = {(xTi , yi, zTi ), i =

1, · · · , n}, where zi = (zi1, · · · , zik)T is an indicator vector such that
∑k

j=1 zik = 1,

represents which component of the mixture generated the observation yi. In the

current setting, zi is unobserved and hence �missing�, whereby the EM algorithm

becomes applicable.

Let ψ be the complete parameter set of the model, consisting of the vectors of

regression coe�cients β1, · · · ,βk, the variances σ2
1, · · · , σ2

k and the mixing proportions
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λ1, · · · , λk. De�ne

µ (s | ψ) = `C(ψ) =
n∑
i=1

k∑
j=1

zij {log λj + log fj(yi | xi,θj)}

µ∗
(
(xTi , yi) | ψ

)
= `O(ψ) =

n∑
i=1

k∑
j=1

p̂ij {log λj + log fj(yi | xi,θj)}

be the log-likelihood using the complete data and observed data, respectively. Here,

p̂ij is the conditional probability that the ith observation belongs to the jth compo-

nent of the mixture, given that observation,

p̂ij =
λjfj(yi | xi,θj)∑k
s=1 λsfs(yi | xi,θj)

.

To compute the observed information in the EM algorithm, let S(s | ψ) and

S∗((xTi , yi) | ψ) be the gradient vectors of µ and µ∗ respectively, and B(s | ψ) and

B∗((xTi , yi) | ψ) be the negatives of the associated second derivative matrices. Then

by di�erentiation, the observed information matrix can be written as

I(ψ̂) = Eψ {B(s | ψ)}−Eψ
{
S(s | ψ)ST (s | ψ)

}
+S∗

{
(xTi , yi) | ψ

}
S∗T

{
(xTi , yi) | ψ

}
.

Thus, the asymptotic variance of the estimatorψ can be calculated based on Var(ψ̂) =

1/I(ψ̂).

2.2.3 Bootstrap Estimator for the Standard Errors

Even when estimation of ψ is trivial, estimation of standard errors (SE) can be

computationally burdensome, especially when measurement error is involved. One

alternative strategy we can use is the parametric bootstrap (Efron and Tibshirani

(1993) [40] and Davison and Hinkley (1997) [17]), which theoretically should pro-

vide similar estimates to the standard errors compared to the method involving the

information matrix.

The development of this procedure has become especially useful for mixture set-

tings. Feng and McCulloch (1994) [42] noted that the bootstrap is a preferred method

for testing the number of components of a normal mixture with unequal variances;
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Ciarlini, Regoliosi and Pavese (2004) [29] proposed a bootstrap algorithm for mixture

models in inter-comparisons.

We now introduce an algorithm for a parametric bootstrapping in the mixtures-

of-regressions model when accounting for measurement error in the response.

Algorithm 2.2 Parametric Bootstrap for Standard Errors

(a) Find the maximum likelihood estimate ψ̂j = (β̃j, σ̂
2
j , λ̂j)

T , j = 1, · · · , k by
implementing Algorithm 2.1 based on the observed data {(x1, y

∗
1), · · · , (xn, y∗n)}.

(b) Generate a bootstrap sample of size n from

Y ∗∗i ∼
k∑
j=1

λ̂jN
(
xT β̃j, σ̂

2
j

)
.

Call this sample {(x1, y
∗∗
1 ), · · · , (xn, y∗∗n )}.

(c) For each of y∗∗i , record the �observed� response by

y∗∗∗i = y∗∗i + δi.

(d) Find the estimate ψ̃ by implementing Algorithm 2.1 on (x1, y
∗∗∗
1 ), · · · , (xn, y∗∗∗n ).

(e) Repeat steps (b) - (d) B times to generate the bootstrap sampling distribution

ψ̃
(1)
, ψ̃

(2)
, · · · , ψ̃

(B)
.

After implementing Algorithm 2.2, the bootstrap variance-covariance matrix is

easily computed as the sample variance-covariance matrix of the generated values

ψ̃
(1)
, ψ̃

(2)
, · · · , ψ̃

(B)
. Thus, bootstrap standard errors are readily available. When

performing a bootstrapping procedure in the mixture setting, one must be cognizant

of the label switching problem described in Chapter 1, that is, we want to set the

identi�ability constraint for a particular data set before we conduct the data analysis,

for example, set β1 < · · · < βk, or σ1 < · · · < σk according to the data.

2.3 Numerical Studies

In this section, the sampling behavior of the proposed estimates for our mixture-

of-regression model with measurement error in the response is studied using Monte
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Carlo (MC) simulation with di�erent settings.

2.3.1 Simulated Data � Measurement Error in the Response

Example 1: (Mixtures of Simple Linear Regressions)

I. 2-Component Mixtures

We generate the i.i.d. data (xi, yi, ηi), i = 1, · · · , n from the model

Yi ∼ λN
(
β10 + β11Xi, σ

2
1

)
+ (1− λ)N

(
β20 + β21Xi, σ

2
2

)
,

Y ∗i = Yi + δi,

where δi ∼ N(0, η2i ), λ = 0.5 is the mixing proportion, Xi ∼ Unif(0, 1), σ2
1 = 4 and

σ2
2 = 1.

Let β1 = (β10, β11)
T ,β2 = (β20, β21)

T . To study the e�ect of the measurement er-

ror δis on the proposed estimator, we consider the following three cases with di�erent

settings:

Case I: Well-Separated Components

βT1 = (−10, 6), βT2 = (10, 2).

Case II: Moderately-Separated Components

βT1 = (5, 15), βT2 = (25,−15).

Case III: Heavily-Overlapping Components

βT1 = (5, 5), βT2 = (15,−5).

For each simulation condition, we randomly generated B = 1000 data sets, each of

size either n = 100 or 250. For each sample size, we generated a series of measurement

error with either η2i ∼ Uniform(0, 0.1) or η2i ∼ Uniform(2, 6), where the former one

causes a small discrepancy between original and observed data and the latter one
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doubles the variability of the data points based on the variance of random error. For

each MC sample, we add the measurement error with the same amount of standard

deviation for all i = 1, · · · , n.
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Figure 2.1: Histograms of observed response variables under di�erent settings, with
sample size n = 250. Note that the relationship conditioned on the predictors is not
re�ected in these histograms.

Figure 2.1 shows the histograms of observed responses y∗ under di�erent circum-

stances. In the well-separated setting, there are two distinct modes representing two

di�erent components, while dealing with moderately-separated and overlapping set-

tings, since the two components have increased mixing, it is harder to identify which

component a certain data point belongs to. Note that this relationship conditioned

on the predictors is not re�ected in the �gure. Besides, when increasing the variances
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of measurement errors, the large variability of two components makes them closer to

each other, which also leads to a harder time in identifying distinct components.

For each simulated data set, we estimate the mixture of regression parameters(
βT1 ,β

T
2 , σ

2
1, σ

2
2

)
by the proposed method, and compare it with the so-called naïve

method, which simply ignores the measurement error. The performance of the pro-

posed method under di�erent conditions is assessed by themean squared error (MSE);

i.e.,

MSE(θ̂) =
1

B

B∑
t=1

(θ̂
(t)
− θ)2

where θ̂
(t)

is the estimate of the parameter θ based on tth replication and θ is the

true value. The relative e�ciency of MSE for the naïve method versus the proposed

method is also recorded for all the parameters.

In Table 2.1 are the MSEs and relative e�ciencies (in parentheses) for our sim-

ulated data sets. The values in the parentheses represent the relative e�ciencies of

MSEs for naïve versus proposed estimators. For example, 1.0552 means the MSE

of β21 of naïve method for moderately-separated component with measurement error

U(2, 6), with sample size 250, is 1.0552×MSE of proposed method for the same pa-

rameter. If the relative e�ciency is greater than 1, it means the MSE of proposed

method is smaller, which leads to a better performance of estimation. Label switching

did not appear to be present since the identi�ability constraint β10 < β20 is met for

all bootstrap estimates, even though it was never enforced.

Overall, the proposed method behaves better than the naïve method, since most

of the relative e�ciencies are greater than 1. For estimating the variances Var (ε·,j)

with a larger value (σ1 = 2 rather than σ2 = 1), the average relative e�ciency for the

settings with measurement error U(2, 6) is greater than 2. When measurement error

is trivial, it is di�cult to tell the di�erence between true and observed responses as the

behaviors of the two methods are almost the same. We can conclude that our proposed

method behaves better when the measurement error is larger, and accounting for

measurement error in this setting is much more important. However, because our

proposed method only deals with measurement error in the response after applying
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Table 2.1: MSEs of estimators in 2-component mixture of simple linear regressions.

n η2i β10 β11 β20 β21 σ2
1 σ2

2

Well-Separated Components

100

U(0, 0.1)

0.3531 1.0550 0.0801 0.2461 0.6722 0.0425

(1.0002) (1.0001) (1.0019) (1.0008) (0.9843) (1.0235)

250
0.1359 0.4356 0.0338 0.1000 0.2551 0.0177

(1.0004) (1.0003) (1.0016) (1.0025) (0.9850) (1.0895)

100

U(2, 6)

0.6419 2.0757 0.3878 1.2180 8.2657 11.1670

(1.0099) (1.0121) (1.0580) (1.0551) (1.8492) (1.2782)

250
0.2442 0.7692 0.1616 0.4966 8.5673 12.1929

(1.0171) (1.0192) (1.0499) (1.0413) (1.8948) (1.2908)

Moderately-Separated Components

100

U(0, 0.1)

0.3684 1.1907 0.0943 0.3086 0.8366 0.0553

(0.9994) (0.9992) (1.0020) (1.0017) (1.0389) (1.0412)

250
0.1376 0.4311 0.0345 0.1184 0.3136 0.0234

(1.0004) (1.0022) (1.0016) (1.0032) (1.8558) (1.0260)

100

U(2, 6)

0.8202 3.1092 0.4664 1.7427 7.7301 10.2705

(1.0303) (1.023) (1.0611) (1.0492) (2.0686) (1.2932)

250
0.2920 0.9428 0.1760 0.6098 7.9266 12.2029

(1.0598) (1.0514) (1.0523) (1.0552) (2.1659) (1.3049)

Overlapping Components

100

U(0, 0.1)

0.3920 1.3037 0.0988 0.4589 1.0774 0.0820

(0.9990) (0.9997) (1.0027) (1.0004) (0.9799) (0.9861)

250
0.1587 0.5338 0.0446 0.1836 0.3580 0.0319

(0.9927) (1.0026) (0.9985) (0.9916) (0.9582) (1.0240)

100

U(2, 6)

1.3720 4.5647 0.8550 3.3583 7.0853 9.1205

(1.6076) (1.1515) (1.4303) (1.1468) (2.9174) (1.0341)

250
0.4532 1.8502 0.3732 1.6403 4.7926 11.0519

(1.3647) (0.9572) (1.0541) (0.8900) (3.5687) (1.3208)

the EM algorithm to the whole mixture model, it is unable to also correct the mixing

proportion, and also cannot improve the estimates of the regression parameters very

much.

When the sample size increases from 100 to 250 the MSEs decrease, and our pro-

posed method appears better than the naïve method. On the other side, if we expand

the values of measurement error in the response, the MSEs become larger, however,

the performance of proposed method according to the relative e�ciencies is better
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(with respect to the same sample size). It is reasonable to infer that, if we increase

the measurement error, the estimators using our proposed method will not represent

our true parameters as accurate as those with smaller measurement errors, but the

performance of it will be much better than the naïve method, which simply ignores

the measurement error term.

II. 3-Component Mixtures

We next consider a 3-component mixture. We generate the i.i.d. data (xi, yi, ηi),

i = 1, · · · , n from the model

Yi ∼ λ1N
(
β10 + β11Xi, σ

2
1

)
+ λ2N

(
β20 + β21Xi, σ

2
2

)
+ λ3N

(
β30 + β31Xi, σ

2
3

)
,

Y ∗i = Yi + δi,

where δi ∼ N(0, η2i ), λ1 = λ2 = λ3 = 1
3
are the mixing proportions, Xi ∼ Unif(0, 1),

σ1 = 2, σ2 = 1 and σ3 = 3. Let βT1 = (β10, β11), β
T
2 = (β20, β21) and β

T
3 = (β30, β31).

Again, we consider the following three cases with di�erent settings:

Case I: Well-Separated Components

βT1 = (−10, 6), βT2 = (10, 2), βT3 = (30,−5).

Case II: Moderately-Separated Components

βT1 = (5, 15), βT2 = (20, 20), βT3 = (25,−15).

Case III: Heavily-Overlapping Components

βT1 = (−10, 20), βT2 = (5, 5), βT3 = (15,−5).

For each simulation condition, we then randomly generated B = 1000 data sets,

each of size either n = 100 or 250. For each sample size, we generated a series of

measurement error with either η2i ∼ Uniform(0, 0.5) or η2i ∼ Uniform(5, 10). For
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Table 2.2: MSEs of estimators in 3-component mixture of simple linear regressions.

n η2i β10 β11 β20 β21 β30 β31 σ2
1 σ2

2 σ2
3

Well-Separated Components

100

U(0, .5)

0.5330 1.5660 0.1870 0.4602 1.1617 3.5029 1.0515 6.1266 6.2885

(1.0025) (1.0012) (1.0158) (1.0089) (0.9996) (0.9982) (0.9757) (1.0225) (0.9800)

250
0.2262 0.6790 0.0617 0.1904 0.4619 1.3618 0.5769 1.3600 3.0806

(1.0030) (1.0025) (1.0071) (1.0111) (0.9987) (0.9992) (1.0280) (1.0891) (0.9848)

100

U(5, 10)

2.2853 7.9456 2.2967 5.6084 2.8218 8.8450 41.2184 119.5947 49.2994

(1.0224) (1.0170) (1.0354) (1.0261) (1.0474) (1.0461) (1.5465) (1.2127) (1.8582)

250
0.5122 1.6757 0.4544 1.4282 0.8378 2.7573 33.7626 53.1254 25.0650

(1.0230) (1.0188) (1.0258) (1.0275) (1.0260) (1.0323) (1.5797) (1.2139) (2.2608)

Moderately-Separated Components

100

U(, 0.5)

0.6619 2.5107 1.8705 4.6683 0.7329 2.0314 1.9033 61.7355 59.8475

(0.9995) (0.9969) (1.0019) (1.0037) (0.9983) (0.9998) (0.9599) (0.9631) (1.0482)

250
0.2350 0.7756 0.5871 1.7277 0.1041 0.2834 0.8868 61.5826 64.6231

(1.0031) (1.0010) (1.0009) (0.9993) (1.0072) (1.0119) (1.0031) (0.9576) (1.0485)

100

U(5, 10)

6.1955 40.8465 7.4054 18.3020 11.4807 42.4403 51.5176 14.0030 167.5460

(1.0728) (1.0526) (1.0209) (1.0033) (1.0613) (1.0391) (1.5418) (2.2821) (1.4550)

250
0.9832 5.4059 1.9183 4.3903 2.0748 5.7883 32.2413 5.4198 151.2731

(1.0403) (1.0278) (0.9849) (0.9899) (1.0139) (1.0287) (1.6778) (1.8687) (1.4886)

Overlapping Components

100

U(, 0.5)

2.0540 6.7647 1.8261 5.7137 0.2518 1.1633 12.227 6.7275 0.9974

(0.9966) (0.9952) (0.9980) (0.9902) (1.0026) (1.0309) (0.9672) (0.9896) (1.1254)

250
0.5923 2.2360 0.3429 1.7953 0.0773 0.3423 3.8101 1.9859 0.6644

(0.9976) (0.9932) (0.9970) (0.9876) (1.0037) (0.9989) (0.9477) (0.9813) (1.2213)

100

U(5, 10)

10.0582 35.1593 24.5870 38.8456 7.3339 16.6268 49.3850 42.0632 71.0176

(1.0882) (1.0617) (1.0170) (1.0321) (1.1401) (1.1119) (2.0085) (1.6594) (1.2376)

250
4.6846 10.0172 10.7153 18.6601 3.3252 6.3234 31.3635 36.5494 60.9078

(1.0657) (1.0444) (1.0185) (1.0413) (1.1256) (1.1043) (2.2489) (1.7373) (1.2545)

each MC sample, we add measurement error with the same standard deviation for all

i = 1, · · · , n.

For each simulated data set, we estimated the mixture of regression parameters(
βT1 ,β

T
2

)
by the proposed method, and also computed the relative e�ciency of MSE

for the naïve method versus the proposed method for all the parameters listed. In

Table 2.2 are the MSEs and relative e�ciencies (in parentheses) for our simulated

data sets.
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Label switching was present in this bootstrap sample for moderately-separated

cases. This was diagnosed by �rst noting that the MSEs appeared to be fairly large

for some parameters when measurement error is large. For example, MSE of β21 for

moderately-separated setting with η2i ∼ U(5, 10) and sample size n = 100 was �rst

found to be 133.1943, much larger than expected. Since the values of β20 and β30

are close to each other, simply applying the identi�ability constraint β10 < β20 < β30

is not enough. To make the component distinct with each other, we then imposed

the identi�ability constraints of β10 < β20 and β21 > β31 in order to correct the label

switching.

When number of components increases, we see the MSEs becomes much bigger,

since the more components it has, the more complicated the model becomes. Thus,

the estimation becomes more challenging. Besides the MSEs, we can obtain simi-

lar results from the 3-component mixtures, when we increase the sample size and

decrease the variances of measurement error in the response, the MSEs of unknown

parameters becomes smaller. Similarly, the relative e�ciencies show that the case

with larger sample size and bigger measurement error works better under our pro-

posed method than the naïve method. For overlapping and moderately-separated

cases, the MSEs are pretty large for certain parameters with large measurement er-

ror (with variances η2i ∼ U(5, 10)). This is complicated by the fact that the three

components have heavier mixing and sometimes it is di�cult to distinguish di�erent

components, thus leading to greater uncertainty in the estimates.

III. Summary

Figure 2.2 shows the scatter plots of all six settings discussed in Example 1.

Di�erent colors represent di�erent components that the data point belongs to, and

black lines are the estimated lines from our proposed method. According to the

scatter plots, the proposed method �ts pretty well to all settings, and based on the

relative e�ciencies reported, it slightly improves the performance of the estimates,

compared to the naïve method. Although the improvement is not signi�cant, it is
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Figure 2.2: Scatter plots and �tted lines for six di�erent settings, with sample size
250.

worth applying our new method, especially for some data sets that need improved

estimates. The results show our proposed method is a reasonable way to incorporate

measurement error in the response.

In general, well-separated behaves better than moderately-separated components

and overlapping components, since the components in both moderately-separated and

overlapping component models are harder to identify. Some data points from di�er-

ent components are mixed at certain values, especially when number of components

become larger, there are more overlapping points. Meanwhile, for the same model

with the same setting (well-separated, moderately-separated or overlapping), when

we increase the sample size, MSEs will decrease; while when we increase the variances

of measurement error, MSEs will increase, which makes sense for all di�erent settings.
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Example 2: (Mixture of Multiple Linear Regressions)

We next move on to multiple linear regressions with predictor variable is a 2-dimensional

vector instead of scaler, and conduct the same simulations with two settings.

I. 2-Component Mixtures

Consider the data vector xi
T = (xi1, xi2), we generate the i.i.d. data (xTi , yi, ηi),

i = 1, · · · , n from the model

Yi ∼ λN
(
β10 + β11Xi1 + β12Xi2, σ

2
1

)
+ (1− λ)N

(
β20 + β21Xi1 + β22Xi2, σ

2
2

)
,

Y ∗i = Yi + δi,

where δi ∼ N(0, η2i ) with either η2i ∼ U(0, 0.1) or η2i ∼ U(2, 6); λ = 0.5 is the mixing

proportion, Xi1, Xi2 ∼ Unif(0, 1), σ1 = 2 and σ2 = 1.

Let βT1 = (β10, β11, β12),β
T
2 = (β20, β21, β22). To study the e�ect of measurement

error δis on the proposed estimator, we consider the following three cases with di�er-

ent settings:

Case I: Well-Separated Components

βT1 = (−10, 6, 4), βT2 = (10, 2, 7).

Case II: Moderately-Separated Components

βT1 = (5, 15, 10), βT2 = (25,−15,−10).

Case III: Overlapping Components

βT1 = (5, 5, 9), βT2 = (15,−5, 3).

For each setting, we randomly generated B = 1000 data sets, each of size either

n = 100 or 250. For each sample size, we generated a series of measurement error

with either η2i ∼ Uniform(0, 0.1) or η2i ∼ Uniform(2, 6). For each data set, we add

the measurement error with same amount of standard deviation for all i = 1, · · · , n.
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Figure 2.3: 3d scatter plots of 3 conditions with sample size n = 250 and measurement
error η2i ∼ U(2, 6).

Figure 2.3 shows the 3d scatter plots under all three situations, di�erent colors

represent to which component each data point belongs. In well-separated case, two

components are very well separated, makes it very easy to distinguish which com-

ponent each point belongs to; for moderately-separated and overlapping cases, there

are some areas that two components are mixing together and it is uncertain how to

classify those points.

In Table 2.3, we report the MSEs and relative e�ciencies (in parentheses) for our

simulated data sets. Label switching did not appear to be present since the iden-

ti�ability constraint β10 < β20 is satis�ed for all bootstrap estimates. The overall

behaviors of the 2-component mixture of multiple linear regressions are similar to

those of simple linear regressions, when we increase the sample size from 100 to 250,

the MSEs become smaller and the relative e�ciencies improved. Meanwhile, because

we add a predictor Xi2, the models are more complicated than simple linear regres-

sions, makes the estimation harder, especially when two components are overlapping.

For example, with a overlapping component with large measurement errors (vari-

ances η2i ∼ U(2, 6)) of sample size n = 100, the MSE of parameter for Xi2, call β12

is 19.2855, much larger than the same setting with simple linear regressions. We can

infer that if we keep increasing the dimension of predictor variables, the MSEs would

be more and more di�cult to capture the true parameters.
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Table 2.3: MSEs of estimators in 2-component mixture of multiple linear regressions.

n η2i β10 β11 β12 β20 β21 β22 σ2
1 σ2

2

Well-Separated Components

100

U(0, 0.1)

0.5943 1.0542 0.9975 0.1654 0.2692 0.2721 0.6641 0.0429

(0.9997) (0.9998) (0.9994) (1.0005) (0.9998) (1.0009) (0.9711) (0.9570)

250
0.2344 0.3588 0.4091 0.0571 0.1029 0.1001 0.2772 0.0181

(1.0000) (0.9999) (1.0000) (1.0011) (1.0025) (0.9999) (0.9924) (1.0444)

100

U(2, 6)

1.1410 1.8997 1.9631 0.7192 1.2127 1.2058 7.8854 11.2173

(1.0242) (1.0242) (1.0200) (1.0356) (1.0453) (1.0334) (1.8798) (1.2486)

250
0.4703 0.7942 0.7993 0.2633 0.4658 0.4882 8.5387 12.1649

(1.0264) (1.0361) (1.0163) (1.0345) (1.0322) (1.0419) (1.8905) (1.2733)

Moderately-Separated Components

100

U(0, 0.1)

0.6763 1.2041 1.2587 0.1686 0.3052 0.3084 0.8869 0.0652

(1.0005) (0.9991) (0.9999) (1.0002) (0.9971) (1.0026) (0.9788) (0.9522)

250
0.2414 0.4074 0.4098 0.0721 0.1136 0.1233 0.3040 0.0223

(1.0003) (1.0008) (0.9994) (0.9985) (0.9973) (1.0015) (0.9714) (0.9977)

100

U(2, 6)

1.5240 2.9314 2.8395 0.9511 2.1858 1.6698 6.8091 10.6683

(1.0258) (1.0379) (1.0185) (1.0542) (1.0472) (1.0416) (2.1127) (1.2768)

250
0.5835 0.9993 0.9861 0.3567 0.5889 0.6688 7.0279 11.6471

(1.0181) (1.0142) (1.0195) (1.0337) (1.0452) (1.0421) (2.1744) (1.2959)

Overlapping Components

100

U(0, 0.1)

1.2866 2.3647 1.8994 0.4989 1.0341 0.7241 1.2633 0.2225

(1.0030) (1.0012) (1.0024) (1.0071) (1.0004) (1.0027) (0.9695) (0.9831)

250
0.3486 0.6162 0.5630 0.0847 0.1826 0.1721 0.3895 0.0461

(1.0041) (1.00021) (1.0033) (1.0082) (1.0007) (1.0029) (0.9744) (0.9672)

100

U(2, 6)

10.2329 18.2687 19.2855 6.5878 12.7481 7.5360 6.6059 16.4143

(1.0901) (1.0874) (1.1339) (1.1815) (1.1073) (1.1758) (2.4594) (1.1897)

250
3.0658 4.1279 3.3197 1.9051 2.8471 1.9667 6.3793 12.4284

(1.0561) (1.0346) (1.0758) (1.0923) (1.0537) (1.0557) (2.2934) (1.2622)

II. 3-Component Mixtures

We next consider the 3-component mixtures. We generate the i.i.d. data (xi, yi, ηi),
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i = 1, · · · , n from the model

Yi ∼λ1N
(
β10 + β11Xi1 + β12Xi2, σ

2
1

)
+

λ2N
(
β20 + β21Xi1 + β22Xi2, σ

2
2

)
+

λ3N
(
β30 + β31Xi1 + β32Xi3, σ

2
3

)
,

Y ∗i = Yi + δi,

where δi ∼ N(0, η2i ), λ1 = λ2 = λ3 = 1
3
are the mixing proportions, Xi ∼ Unif(0, 1),

σ1 = 2, σ2 = 1 and σ3 = 3.

Let βT1 = (β10, β11, β12),β
T
2 = (β20, β21, β22) and βT3 = (β30, β31, β32). Again, we

consider the following three cases with di�erent settings:

Case I: Well-Separated Components

βT1 = (−10, 6, 4), βT2 = (10, 2, 7), βT3 = (30,−5, 10)

Case II: Moderately-Separated Components

βT1 = (5, 15, 10), βT2 = (20, 20, 5), βT3 = (25,−15,−10)

Case III: Overlapping Components

βT1 = (5, 5, 9), βT2 = (15,−5, 3), βT3 = (−10, 20, 15)

In table 2.4, we report the MSEs and relative e�ciencies (in parentheses) for

our simulated data sets. Label switching did not appear to be present since the

identi�ability constraint β30 < β10 < β20 is satis�ed for all bootstrap estimates.

Overall, the behavior of the method is similar to the 2-component mixtures, when we

increase the sample size with large measurement error, it can improve the accuracy

of variances for random errors. One thing to notice is, because the complexity of

the model structure, there are some parameters that have large MSE values, for

example, overlapping component with U(5, 10) with sample size 100, the MSE for

β11 is 38.7232, which is not trivial. We can image, if there are more components, the

estimating method can be more challenging.
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Table 2.4: MSE of estimators in 3-component mixture of bivariate normals.

n η2i β10 β11 β12 β20 β21 β22 β30 β31 β32 σ2
1 σ2

2 σ2
3

Well-Separated Components

100

U(0, .5)

1.2136 1.9885 3.9334 0.3336 0.5340 0.5208 2.2203 3.8362 3.7758 1.0387 12.3354 5.5941

(1.0076) (1.0131) (0.9976) (1.0177) (1.0233) (1.0107) (0.9989) (0.9997) (0.9989) (0.9331) (0.9881) (0.9505)

250
0.3811 0.6459 0.6263 0.1039 0.1737 0.1823 0.8305 1.4460 1.3632 0.4005 0.0372 2.1773

(1.0026) (1.0021) (1.0029) (0.9925) (0.9926) (1.0119) (1.0002) (1.0000) (0.9989) (1.0085) (1.8628) (0.9591)

100

U(5, 10)

3.2963 5.2986 5.0973 4.5584 8.1695 8.1475 5.7028 8.8767 12.3215 85.2660 158.6470 74.7738

(1.0482) (1.0178) (1.0333) (1.0294) (1.0043) (1.0053) (1.0416) (1.0286) (1.0205) (1.3193) (1.2135) (1.5328)

250
0.9410 1.7008 1.6351 0.7914 1.3628 1.3607 1.5043 2.6883 2.6383 34.6107 45.3006 24.9767

(1.0164) (1.0207) (1.0115) (1.0113) (1.0046) (1.0110) (1.0186) (1.0253) (1.0261) (1.5534) (1.1457) (2.2178)

Moderately-Separated Components

100

U(0, .5)

1.9663 4.8574 4.1719 1.2241 2.8285 2.2239 4.9887 7.7760 6.6005 7.5266 9.7945 12.0505

(1.0006) (1.0011) (0.9981) (1.0009) (1.0036) (1.0086) (1.0005) (0.9981) (0.9991) (0.9960) (1.0163) (0.9652)

250
0.4809 1.1818 0.9333 0.1374 0.2160 0.2007 1.4692 2.5039 2.1921 0.6890 0.0400 3.3639

(0.9995) (0.9986) (0.9982) (1.0164) (1.0111) (1.0111) (1.0011) (1.0003) (0.9995) (0.9518) (1.8602) (0.9606)

100

U(5, 10)

12.9275 33.8055 22.2632 5.2212 15.3337 8.8258 18.1433 37.4492 25.1159 112.7497 70.9902 50.3589

(1.0199) (1.0141) (1.0321) (1.0872) (1.0573) (1.0569) (1.0159) (1.0131) (1.0092) (1.4687) (1.2221) (1.8285)

250
2.0909 4.3709 3.5039 1.2803 1.8202 1.7139 3.6181 6.3859 4.9530 37.6301 47.8919 23.1817

(1.0224) (1.0296) (1.0131) (1.0179) (1.0284) (1.0160) (0.9911) (0.9735) (0.9864) (1.6905) (1.1922) (2.4719)

Overlapping Components

100

U(0, .5)

10.3035 20.6498 15.4182 16.7390 21.5233 33.0813 3.3270 6.4835 4.3271 20.3703 8.4015 1.2845

(1.0063) (1.0067) (0.9903) (1.0017) (0.9917) (1.0050) (0.9996) (1.0079) (1.0006) (0.9868) (1.0189) (1.1515)

250
2.0177 3.6305 2.8213 1.6731 2.9781 2.3034 0.2443 0.5121 0.4392 5.4233 2.8357 0.1046

(0.9972) (1.0178) (1.0030) (0.9998) (0.9955) (0.9979) (1.0065) (1.0029) (1.0073) (0.9485) (0.9773) (1.4291)

100

U(5, 10)

21.8372 38.7232 31.4980 40.1613 50.7183 46.2146 12.5149 26.3528 18.1346 29.0741 26.5541 47.2962

(1.1114) (1.0869) (1.0810) (1.0269) (1.0467) (1.0616) (1.1389) (1.1391) (1.1859) (2.4170) (1.6763) (0.8082)

250
11.8025 17.7110 15.0034 36.2944 43.8553 25.0780 9.3447 17.8059 10.7296 24.4411 31.1152 51.5546

(1.0978) (1.0866) (1.0974) (0.9999) (1.0217) (1.0725) (1.1619) (1.1165) (1.1073) (2.6009) (1.7296) (0.9340)
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2.3.2 Summary

Generally speaking, the MSEs of well-separated components are the smallest among

three di�erent types of components. When we assumed a smaller measurement er-

ror, the MSEs also seemed to be smaller, which makes sense because a smaller ME

indicates smaller variability. Moreover, the sample sizes also a�ect the MSE; larger

sample size leads to a larger MSE. Overall, two-component models behave much bet-

ter than three-component models, for example, for a 3-component heavily overlapping

mixture model with measurement error Unif(5, 10) and sample size of 100, the MSEs

of βT2 = (15,−5, 3) are (45.015, 65.014, 44.014), while the 2-component heavily over-

lapping mixture model with measurement error Unif(2, 6) and sample size 100 for the

same βT2 has MSEs of (9.127, 18.036, 14.975).

When dealing with more complicated models, the MSE of parameters sometimes

seem to be quite large. The structure of the mixture model leads to some special

problems, especially for overlapping models. Sometimes it is di�cult to �t the correct

model for every single estimating process. For practical purpose, we omit the extreme

EM estimators from the output. For the 3-component simulated data sets with B =

1000, we trimmed 40(≈ 4%) of the datasets that yield the largest deviations from the

true parameter value for any single estimates from β vectors. After omitting the 'more

extreme' simulated data sets, the MSE has much smaller value than before. This

strategy has been employed for other simulations involving mixtures with complex

structures; see, for example, Young (2014) [122].

2.4 Gamma-ray Burst Data � A Real Data Analysis

Measurement error problems are widely found in astronomical research, since it often

has the feature of the presence of intrinsic scatter, a special type of measurement

error for astronomical data sets. Morrison, Mateo, Olszewski, Harding et al. (2000)

[82] studied galaxy formation with a large survey of stars in the Milky Way. The in-

vestigators were interested in the velocities of stars, such that the observed velocities

involved heteroscedastic measurement errors. To verify the galaxy formation theories,
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one can estimate the density function from contaminated data that are e�ective in un-

veiling the numbers of bumps or components. Kelly (2007) [66] described a Bayesian

method to account for measurement errors in linear regression of astronomical data.

Andrae (2010) [7] presented an overview of di�erent methods for error estimation

that are applicable to both model-based and model-independent parameter estimates

in astronomy.

In this section, we discuss a special astronomy phenomena � gamma-ray burst

(RGB) and how we can use our proposed method to deal with the GRB data with

measurement error in the response.

2.4.1 Introduction

Gamma-ray bursts (GRBs) are extremely energetic explosions that occur at random

times in distant galaxies. They are the brightest electromagnetic events known to

occur in the universe. The bursts can last from ten milliseconds to several hours.

These phenomena are still not entirely understood, but some theories suggest they

arise during the birth of black holes or a massive super-giant's collapse. GRBs were

�rst detected in 1967 by the Vela satellites, which had been designed to detect covert

nuclear weapons tests. The launch of the Swift observatory (Gehrels et al. (2004)

[47]) had brought the observations of GRBs to a new era. Swift provides rapid

noti�cation of GRB triggers to the ground using its sensitive Burst Alert Telescope

(BAT; Barthelmy et al. (2006) [9]) and can make panchromatic observations of the

burst and its afterglow by bringing its narrow-�eld X-Ray Telescope (XRT; Burrows

et al. (2006) [18]) and Ultra Violet/Optical Telescope (UVOT; Roming et al. (2006a)

[98]) to bear within about 1 minute of the burst going o�.

There are copious data being collected on GRBs due to the launch of Swift obser-

vatory. In the next few Subsections, we analyze a typical GRB data set, representative

of those that are widely discussed for astronomical researches.
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2.4.2 Observations and Analysis

At 00:01:53.26 UT on May 25, 2005, the Swift Alert Telescope triggered and located

on board GRB050525a1. GRB 050525a is the second most �uent GRB to have been

observed by Swift and is the �rst bright low-red shift burst to have been observed

since all Swift instruments have been operational. The X-ray decay 'light curve' (a

time series) of GRB 050525a was obtained with the XRT on board the Swift satellite,

it including both photo-diode (PD) mode (T < 2000s) and photon-counting (PC)

mode (T > 2000s) data. The data was presented in Blustin et al. (2006) [58] 2 and

reproduced in Figure (2.4). Like most of the astronomical data sets, the observation

has su�ered from the measurement error due to the detection technique being used.

This data set consists of n = 63 brightness measurements in the 0.4 � 4.5 keV

spectral band at times ranging from 2 minutes to 5 days after the burst. During this

period, the brightness faded by a factor of 100,000. Due to the wide range in times

and brightness, most analysis is done using logarithmic variables. The observations

in the data set are: time of observation (in seconds), X-ray �ux (in units of 10−11

erg/cm2/s, 2− 10 keV ), and measurement error of the �ux based on detector signal-

to-noise values.

The data and best-�t are shown in the plot below (Figure 2.4). Since the residuals

suggest heteroscedastic variances of measurement error from the model, Blustin et al.

(2006) [58] �t the data with a so-called 'broken power-law' model, which is typically

a piece-wise linear regression with two temporal breaks. The power-law �t to the

prebrightening PD mode data (T < 280s) extrapolates well to the prebreak PC mode

data. They concluded that the brightening at about 280s in the PD mode data

represents a �are in the X-ray �ux, possibly similar to the sometimes much larger

�ares that are seen at early times in other bursts (Burrows et al. (2005) [18], Piro

et al. (2005) [91]), and the �ux returns to the pre�are decay curve prior to the start

of the PC data. So when they tried to analyze the data, they usually omitted the

1The gamma ray burst is named by �GRByymmdd�, where a subsequent letter (i.e., a, b, c, etc.)
denotes the observation on a day when multiple gamma ray bursts occurred.

2Available at http://arxiv.org/abs/astro-ph/0507515
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'�aring' points (orange dots in the plot).
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Figure 2.4: The GRB050525a data set with the best �t line from broken power-law
model.

However, this approach su�ers from losing some important information from the

original data collected, as well as ignores the measurement error. In order to also

capture the characteristic of the �aring part of this phenomena, we want to �t the

data with a mixture of regression model, which can potentially identify separate

regression models for the initial burst.

First, we want to assess the number of components for the mixture of regressions

model to be �t to the GRB data. We consider k = 1, 2, 3, 4. The four model selection

criteria discussed in Subsection 1.1.4 were used to assess these �ts. The number of

components is chosen based on the smallest penalized log likelihood value. This was

repeated with N = 100 random starts, the scores from the best start are given in

Table 2.5.

Among the model selection criteria, AIC typically overestimates while BIC, ICL,

and cAIC are good indicators for the �t of a mixture model (Wedel and DeSarbo

(1995) [114], McLachlan (1987) [77]). In this case, BIC, ICL, and cAIC all select

k = 2 while AIC appears to overestimate by selecting k = 4. Based on this result, we

proceed to �t a 2-component model with measurement error in the response.
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Table 2.5: Various criteria for the determination of the number of components for
the GRB data set. The bold values indicate the number of components chosen for
that criterion.

k AIC BIC cAIC ICL
1 −84.935 −80.649 −78.649 −80.649
2 −156.654 −143.796 −137.796 −145.016
3 −130.872 −109.440 −99.440 −111.137
4 −158.57 −128.568 −114.568 −131.251

The model incorporate the known measurement errors for the responses that we

want to �t can be written as

yi ∼

xTi β1 + εi1, with probability λ

xTi β2 + εi2, with probability 1− λ
(2.5)

y∗i = yi + δi (2.6)

where εij ∼ N(0, σ2
j ) are independent, i = 1, · · · , 63 and j = 1, 2. xi = (1, log10(ti))

where ti is the ith observation time since trigger (in seconds) and y∗i is logarithmic of

the X-ray �ux from ith measurement, log10(fi) and δi ∼ N(0, log2
10(si)), where si is

the known measurement error of the �ux for the ith observation, and δi independent

of εij.

For comparison, we also add the standard errors calculated by jackknife methods.

Table 2.6: Estimated SEs from parametric bootstrap and observed information ma-
trix.

Parameter Bootstrap (SEs) Jackknife SEs Theoretical SEs

β10 −6.782 (2.438) 0.086 0.209
β11 −1.007 (0.912) 0.032 0.049
β20 −5.286 (3.561) 0.113 0.147
β21 −1.552 (1.178) 0.040 0.022
σ1 0.792 (0.112) 0.090 0.057
σ2 1.470 (0.600) 0.296 0.413
λ 0.601 (0.197) 0.090 0.249

For the WLS estimates β̃j in the mixture of regressions setting, we obtain stan-

dard errors for the parameters using a parametric bootstrap with B = 1000, and
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compare the result with variance estimates for the WLS estimators using the inverse

of the observed information matrix; see Table 2.6. Based on the output, standard

errors from parametric bootstrap are much larger than the inverse of observed in-

formation especially for the intercepts. For estimating mixtures-of-regressions using

a resampling approach, there is usually more variability observed in the intercept

estimates, thus making their standard errors of slopes much larger than expected.

However, the standard errors for the variances (σ1 and σ2) and mixing proportion λ

are reasonable, as well as the intercepts β11 and β21. We can expect that if we keep

increase the number of bootstrap samples B, the bootstrap standard errors should be

closer and closer to the theoretical results, except for intercepts. However, in analysis

procedure, slopes are always much more important than intercepts, as they contain

more information about the data we investigated.
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Figure 2.5: The GRB050525a data set with the estimated lines from a 2-component
mixture of linear regressions model.

The estimated lines from the model is shown in Figure 2.5, di�erent colors repre-

sent which component the plot is preferred. Based on the graph, there is clearly two

distinct components: one with time T < 2000s, one with time T > 2000s. The result

agrees with astronomers' assessment about PD mode and PC mode.

It is also worth investigating data within PD mode using our mixture model, since
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it involves the ��aring� points as well as regular data points. We �t the data (time

since trigger as predictor variable xi and X-ray �ux as observed response variable y∗i )

with 2-component mixture model using our proposed method, the model we �t can

be written as

yi ∼

59.023− 0.047xi + εi1, with probability 0.742

179.195− 0.510xi + εi2, with probability 0.258

y∗i = yi + δi

where εi1 ∼ N(0, 2.932) and εi2 ∼ N(0, 4.412) for i = 1, · · · , 63.
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Figure 2.6: The GRB050525a data sets (PD mode) with the estimated lines from a
2-component mixture of linear regressions model.

Figure 2.6 shows the estimated lines from the 2-component mixture of linear

regressions. The blue dots means those data points preferred �rst component, and

red dots preferred the second, and the red dashed line is the break line of time before

and after 280s. As we discussed before, data points with T > 280s are considered as

'�aring' points, and the red dots agree with this assumption, and has a completely

di�erent component than those data sets before 280s.
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2.5 Summary

In this chapter, we discussed the mixtures-of-regressions model with measurement

error in the responses. We expand the weighted least squares method proposed by

Akritas and Bershady to the mixture setting, and we use likelihood methods to com-

pute the estimates for the parameters.

The measurement error in the response, also called intrinsic scatter in astronomy,

is a problem often studied in astronomy. In this chapter, we conducted parameter es-

timation for a series of di�erent settings of mixture models, including well-separated

components, moderately-separated components and overlapping components. The

results show our method can improve the performance of estimates, especially when

measurement errors are large. A real data analysis from astronomy research is con-

ducted and the results were evaluated. Notice for this particular model, the mea-

surement error is considered to be a known value, which is the case for these type of

gamma-fay burst data. The study of how to determine the values of the measurement

error for general data problems is a separate topic that can be investigated with the

help of subject matter experts.
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Chapter 3 Mixtures-of-Regressions with Measurement Error in the

Predictors

Research on mixtures-of-regressions models is primarily limited to directly observed

variables. However, the presence of measurement error imposes additional challenges

for estimation. Mixture modeling and measurement error problems are each major

areas of statistical research; however, there is limited work connecting them. One

paper that does discuss mixture models in the presence of measurement errors in

the predictors is Yao and Song (2015) [119]. In that paper, they consider the case

when classical measurement error is present in the classic mixtures-of-regressions

model. They then de�ne the mixture likelihood and propose a generalized EM (GEM)

algorithm for maximization, which provides a consistent estimate of parameters. In

this section, we review this new estimation procedure accounting for the measurement

error and focus on testing a speci�c type of model; i.e., testing for a higher-order

polynomial term in one of the components, which is of practical interest. A simulation

study and a real data application will be provided in Section 3.3 to illustrate the

proposed estimation procedure.

3.1 Mixtures of Linear Regressions with Measurement Error in the Pre-

dictors

3.1.1 Introduction to the Method

Let Z be a latent class variable with P (Z = j | X = x) = λj for j = 1, 2, · · ·, k, where

X = (1, X1, · · ·, Xp−1)
T is a p-dimensional vector of covariates, such that the �rst

entry is a 1 to accommodate an intercept. Given Z = j, the relationship between a

uni-variate observation Y and X is the linear regression model

Y = XTβj + σjε. (3.1)

Here, βj = (β0,j, · · ·, βp−1,j)T is the p-dimensional vector of regression coe�cients,

ε ∼ N(0, 1), and σ2
j is the error variance for component j.
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Suppose we observe the surrogate data W1, · · ·,Wn instead of X1, · · ·,Xn in the

mixtures-of-linear-regressions model (3.1), where Xi = (1, Xi1, · · · , Xi,p−1)
T and the

Wis are generated from an additive measurement error model Wi = Xi + Ui. We

further assume that the Xis are i.i.d. as X, the error Ui is distributed as Np(0,ΣUi),

i = 1, · · ·, n, and the Xis and Uis are mutually independent.

The naïve maximum likelihood method for the model simply ignores the measure-

ment error U and estimates

ψ =
(
βT1 , · · · ,βTk , σ1, · · · , σk, λ1, · · · , λk−1

)
by maximizing the log-likelihood

n∑
i=1

log

{
k∑
j=1

λj
σj
φ

(
yi −wT

i βj
σj

)}
, (3.2)

where φ(·) is the normal density for standard normal, N(0, 1). Unfortunately, the

naïve estimator, ψ̂, is not consistent, as the wrong model and likelihood function are

used.

In order to incorporate measurement error in a mixtures-of-regressions setup, we

need the correct conditional density of Y given W. Yao and Song (2015) [119] showed

that, given Z = j, the conditional density of Yi given Wi = wi can be written as

fj(yi | wi,θj) =

∫
Rp
f(yi | xi,θj)f(xi | wi)dxi

=
1

σj

∫
Rp
φ

(
yi −wT

i βj
σj

)
f(xi | wi)dxi, (3.3)

where θj =
(
βTj , σj

)T
. Therefore, Y | W = w ∼

∑k
j=1 λjfj(yi | w,θj), and the

log-likelihood function for ψ is

`(ψ) = logL(ψ) =
n∑
i=1

log

{
k∑
j=1

λjfj(yi | wi,θj)

}
. (3.4)

Hence, we can estimate ψ by �nding the maximizer of (3.4).

3.1.2 Estimation Algorithm

Maximizing (3.4) may be di�cult as the integration is often not available in a closed

form. One possibility is to evaluate it numerically, using numerical integration
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(Spiegelman et al. (2000) [104]) or simulation-based methods. The latter is espe-

cially convenient for Bayesian estimation, where standard Markov chain Monte Carlo

(MCMC) simulation methods are immediately applicable to measurement error prob-

lems. These are often formulated as algorithms where the values of X are regarded

as missing data and the simulation involves imputing values for them. This approach

has been considered for measurement error problems by, for example, Richardson and

Gilks (1993) [95], Kuha (1997) [68] and Richardson et al. (2002) [97].

Besides that, Yao and Song (2015) [119] proposed the following GEM algorithm

for maximization. De�ne the vector of component indicator Zi = (Zi1, · · · ,Zik)T ,

where Zij is the indicator random variable

Zij =

1, if observation (wi, yi) is from the jth component;

0, otherwise.

Then the complete log-likelihood function for (wT
i , yi, zi), i = 1 · · · , n can be written

as

`c(ψ) =
n∑
i=1

k∑
j=1

zij {log λj + log fj(yi | wi,θj)} .

Notice Zij ∼ Bern(λj), where Bern(λj) is the Bernoulli distribution with rate of

success λj. Since `c(ψ) is a linear function of Zijs, in the tth iteration of E-step, the

expectation of Zij is the weight of observation i belonging to the jth component:

p
(t+1)
ij = E

[
Zij | ψ(t),y

]
=

λ
(t)
j fj(yi | wi,θ

(t)
j )∑k

j=1 λ
(t)
j fj(yi | wi,θ

(t)
j )

, (3.5)

for i in 1, · · · , n, j in 1, · · · , k.

In the M-step, we need to �nd ψ that maximizes

Q(ψ) = E
{
`c(ψ) | ψ(t),y

}
=

n∑
i=1

k∑
j=1

p
(t+1)
ij {log λj + log fj(yi | wi,θj)} .

Through use of a Lagrange multiplier, it can be shown that the maximizer for λj is

λ
(t+1)
j =

1

n

n∑
i=1

p
(t+1)
ij . (3.6)
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The maximizer for θj is

θ
(t+1)
j = arg max

θ

n∑
i=1

p
(t+1)
ij log fj(yi | wi,θj). (3.7)

Here, only only the jth component of the objective function contributes to the maxi-

mization process of the parameters from component j. Therefore, the maximizer for

βj is the solution of

0 =
∂Q(ψ)

∂βj

=
n∑
i=1

p
(t+1)
ij

∂ log fj(yi | wi,θj)

∂βj

=
n∑
i=1

p
(t+1)
ij

∫
φ
{

(yi − xTβj)/σj
}

(yi − xTβj)xf(x | wi)dx

fj(yi|wi,θj)σ3
j

≈ σ−2j

{
n∑
i=1

p
(t+1)
ij yi

∫
τ
(t+1)
ij (x)xdx−

[
n∑
i=1

p
(t+1)
ij

∫
τ
(t+1)
ij (x)xxTdx

]
βj

}
,

where

τ
(t+1)
ij (x) = f(x | θ(t)j , yi,wi) =

φ{(yi − xTβ
(t)
j )/σ

(t)
j }f(x | wi)

fj(yi|wi,θ
(t)
j )σ

(t)
j

(3.8)

is the conditional density of x given the wi, yi, and the current estimate θ(t)j . The

maximizer for σ2
j is the solution of

0 =
∂Q(ψ)

∂σ2
j

=
n∑
i=1

p
(t+1)
ij

[∫
φ
{

(yi − xTβj)/σj
}

(yi − xTβj)
2f(x | wi)dx

2σ5
j fj(yi | wi,θj)

− 1

2σ2
j

]

≈ (2σ4
j )
−1

n∑
i=1

p
(t+1)
ij

[∫
τ
(t+1)
ij (x)(yi − xTβ

(t+1)
j )2dx− σ2

j

]
.

Based on the above approximations, we can update βj and σj by

β
(t+1)
j =

{
n∑
i=1

p
(t+1)
ij

∫
τ
(t+1)
ij (x)xxTdx

}−1{ n∑
i=1

p
(t+1)
ij yi

∫
τ
(t+1)
ij (x)xdx

}
(3.9)

and

σ
(t+1)
j =

{ n∑
i=1

p
(t+1)
ij

}−1 n∑
i=1

p
(t+1)
ij

∫
τ
(t+1)
ij (x)(yi − xTβ

(t+1)
j )2dx

1/2

, (3.10)
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respectively. If we assume the σjs are equal, that is, σ1 = · · · = σk = σ, then we can

update σ by

σ(t+1) =

[
n−1

n∑
i=1

k∑
j=1

p
(t+1)
ij

∫
τ
(t+1)
ij (x)(yi − xTβ

(t+1)
j )2dx

]1/2
. (3.11)

Based on the above, we next provide a compact description of the proposed GEM

algorithm of Yao and Song (2015) [119] to estimate ψ:

Algorithm 3.1 GEM Algorithm

Starting with ψ(0) at the (t+ 1)th iteration, t = 0, 1, · · · ,
(a) (E-Step) Calculate component membership probabilities p(t+1)

ij s using (3.5).
(b) (M-Step) Update λjs, βjs and σjs based on (3.6), (3.9) and (3.10), respectively.
(c) Iterate until a speci�ed stopping criterion is attained. Stopping criteria were
discussed in Chapter 1 (see Subsection 1.1.3).

3.1.3 Estimating Variance of Measurement Errors

In the estimating process, we need to know the measurement error covariance matrix

of the distribution of Ui. The most common way of estimating it is based on partially

replicated observations (Carroll et al. (2006) [94]). For this model, Ji ≥ 2 replicate

measurements are necessary for each subject in order to identify the error variances.

Following Carroll et al. (2006) [94], for each predictor value i, suppose the error

model is

Wih = Xi + Uih,

where Uih, h = 1, · · · , Ji, follows N(0,Σu), independent of Xi and Yi, with Σu

unknown. With replicate measurements, the best measurement of Xi is the mean

W̄i· = J−1i
∑Ji

h=1 Wih, where we de�ne the so-called naïve estimation procedure as

doing the usual, non-measurement-error analysis of data
{

(W̄1·, Y1), · · · , (W̄n·, Yn)
}
.

Replication enables us to estimate the measurement error covariance matrix Σu by

the usual components of variance analysis as follows:

Σ̂u =
n∑
i=1

Ji∑
h=1

(Wih − W̄i·)(Wih − W̄i·)
T/

n∑
i=1

(Ji − 1). (3.12)

64



In linear regression, if there are no replicates (Ji ≡ 1) but an external estimate Σ̂u is

available, or if there are exactly two replicates (2), in which case Σ̂U is half the sample

covariance matrix of the di�erences Wi1−Wi2, regression calibration reproduces the

classical method-of-moments estimates.

When the number of replicates is not constant, the algorithm can be shown to

produce consistent estimates in linear regression and (approximately) in logistic re-

gression. For log-linear mean models, the intercept is biased, so one should add a

dummy variable to the regression indicating whether or not an observation is repli-

cated.

3.1.4 Model Selection Criteria

We've discussed information criteria in model selection in Chapter 1. We next expand

to the setting with measurement error. Based on ψ̂ obtained using Algorithm 3.1,

the observed log-likelihood function can be written as

`(ψ̂) =
n∑
i=1

log
k∑
j=1

{
λ̂fj(yi | wi, θ̂j)

}
(3.13)

for i = 1, · · · , n, j = 1, · · · , k. Then, the four model selection criteria can be written

as follows:

AIC = −2`(ψ̂) + 2d (3.14)

BIC = −2`(ψ̂) + d log(n) (3.15)

ICL = BIC + 2

(
−

n∑
i=1

k∑
j=1

p̂ij log p̂ij

)
(3.16)

cAIC = −2`(ψ̂) + d(log(n) + 1), (3.17)

where d is the number of parameters in the mixture setting. These values can be

calculated for a reasonable range of components and mixture settings, and the min-

imum of these values (for each criterion) corresponds to the model selected by that
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criterion. Issues exist with the underlying asymptotic theory when dealing with the

model selection problem for determining the number of components, which is due to

the breakdown of the regularity conditions with a mixture setting. Regardless of the

theoretical problems, model selection criteria typically perform well for determining

the correct model.

3.2 Covariate Measurement Error in Mixtures of Quadratic Regression

Quadratic regression models are one of the simplest ways to explore the presence of

nonlinearities. Suppose we are interested in the k-component mixtures of quadratic

regression model for a response variable Yi, i = 1, · · · , n. Conditioning on jth com-

ponent

Yi = β0j + β1jXi + β2jX
2
i + σiε (3.18)

= XT
i βj + σiε (3.19)

where βj = (β0j, β1j, β2j)
T is the parameter vector of jth component, Xi = (1, Xi, X

2
i )

is the vector of predictor on the ith observation, and σiε is independent random

variables with ε ∼ N(0, 1).

Instead of observing xi directly, we observe Wi = xi + ui, with E (ui | xi) = 0

and Var (ui | xi) = Σu. The fact that E (ui | xi) = 0 means the measurement error

is additive, and equivalently, Wi is unbiased for xi. We can derive the estimate the

measurement error covariance matrix Σu using method in Subsection 3.1.3. In this

situation, the curvature of the estimated function will be less steep than in the true

model, and hence measurement error will tend to hide the presence of a nonlinearity.

Kuha and Temple (2003) [69] examine the e�ects of measurement error on quadratic

regressions and discuss ways to conduct a sensitivity analysis. These will be discussed

below.

3.2.1 Estimating Methods

There are multiple ways to estimate the parameter β for measurement error in

quadratic regression model with a non-mixture setting. For instance, Kuha and Tem-
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ple (2003) [69] considered two types of adjusted estimators of β, regression calibration

(RC) estimators and method-of-moments (or corrected score) estimators.

In structural estimation, X is regarded as a random variable. Suppose we fully

specify the distribution of X, as well as Y given X and W given X, and thus also

for X given W. The idea of simple regression calibration (SRC) is to replace the

true predictors X by their means given the measured variable W, and �t the original

model for Y given these conditional means. Expanded regression calibration (ERC)

improves this approximation further by adding terms depending on the variance of

X given W.

In a non-structural setting, when there is no measurement error, estimates for

the parameters θ of a model for Y given X are obtained by solving estimating

equations
∑

i Ψ(θ | Yi,Xi) = 0 for some function Ψ. The score function Ψ(θ |

Yi,Xi) = ∂ log f(Yi | Xi,θ)/∂θ can be used to obtain maximum likelihood esti-

mates. When Xi are measured with error, the estimating equations should depend

only on Yi and Xi. We can de�ne corrected score functions Ψ∗(θ | Yi,Xi) for which

E [Ψ∗(θ | Yi,Wi) | Xi] = Ψ(θ | Yi,Xi) for all Yi, Xi and θ. Such Ψ∗ are then con-

ditionally unbiased estimating functions for θ, and their solutions are consistent es-

timates. The method is functional, because the argument is conditional on Xi. In

the case which is relatively straightforward for additive measurement error model,

especially when ui is normally distributed, corrected score estimates are also known

as method-of moments estimates. Here we consider the approach described in the

previous section, and also incorporate the mixture setting introduced in Subsection

3.1.1. We further discuss a speci�c testing problem that can be used in a mixtures-

of-regression model with measurement error in the predictor.

3.2.2 Bootstrap Estimator for the Standard Errors

Inferences in measurement error models can be challenging for a variety of reasons.

While analytical standard errors are available for some methods, these usually involve

some underlying assumptions. For instance, Wald-type con�dence intervals based on

these standard errors rely on approximate normality and unbiasedness of the estima-
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tor. An additional concern is that the corrected estimators are always biased; rather,

most are either consistent, or approximately consistent under appropriate conditions.

A method that can deal with potential bias in either the corrected estimators or naïve

estimators, which ignore the measurement error is desirable.

One way for mitigating the impact of these issues is the bootstrap method, which

has received limited attention in the measurement error context. Similar to Chapter

2, we introduce an algorithm for a parametric bootstrap in the mixtures-of-regressions

model when accounting for measurement error in the predictor.

Algorithm 3.2 Parametric Bootstrap for Standard Errors

(a) Find the maximum likelihood estimate θ̂j = (β̂j, σ̂
2
j , λ̂j)

T , j = 1, · · · , k by
implementing Algorithm 3.1 based on the observed data {(w1, y1), · · · , (wn, yn)}.

(b) Generate a bootstrap sample of size n from

Y ∗i ∼
k∑
j=1

λ̂jN
(
xT β̂j, σ̂

2
j

)
,

with the observed surrogates. Call this bootstrap sample {(w1, y
∗
1), · · · , (wn, y

∗
n)}.

(c) Find the estimate θ̃ by implementing Algorithm 3.1 on (w1, y
∗
1), · · · , (wn, y

∗
n).

(d) Repeat steps (b) - (d) B times to generate the bootstrap sampling distribution

θ̃
(1)
, θ̃

(2)
, · · · , θ̃

(B)
.

(e) Compute the standard error of θ̂
(1)
, θ̂

(2)
, · · · , θ̂

(B)
.

One problem with this parametric bootstrap method is, in real data analysis,

we don't know the true predictor values xs, which means we can't compute boot-

strap response y∗ based on this parametric approach. One solution is to consider

a non-parametric, or semi-parametric alternative. Turner (2000) [112] introduced a

non-parametric/semi-parametric bootstrap method, which requires re-sampling the

residuals from the null model. Here, we expand Turner's model-based bootstrap

method when correcting for additive measurement error in regression with replicate

measures of the unobserved true values.

With this approach, we avoid the assumption of knowing the true predictor vari-
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Algorithm 3.3 Semi-parametric Bootstrap Standard Errors
(a) Fit the model to the observed data {(w1, y1), · · · , (wn, yn)}, record the posterior
membership probabilities p̂ij and �tted residuals rij = yi− ŷij, where ŷij is the �tted
response of ith observation for the jth component.

(b) Generate a semi-parametric bootstrap sample {(w1, y
∗
1), · · · , (wn, y

∗
n)} as follows:

1. Sample n values with replacement from {1, 2, · · · , n}, call these indices i∗;

2. For each i∗, generate zi∗ ∼ Multinomial (1, p̂i∗·) , zi∗ = {1, · · · , n} represents
which component i∗ belongs to;

3. For each wi, i = 1, · · · , n, select which component to generate from based on
zi∗ ;

4. Generate a residual r∗i,z∗i = ri∗,z∗i .

5. De�ne y∗i = ŷi,zi∗ + r∗i,z∗i .

(c) Find the estimate θ̂ by implementing Algorithm 3.1 on (w1, y
∗
1), · · · , (wn, y

∗
n).

(e) Repeat steps (b) and (c) B times to generate the bootstrap sampling distribution

θ̂
(1)
, θ̂

(2)
, · · · , θ̂

(B)
.

(f) Compute the standard error of θ̂
(1)
, θ̂

(2)
, · · · , θ̂

(B)
.

ables, however, the semi-parametric method may lead to instability when estimating

the parameters. We will see some examples of both approaches later to see highlight

the advantages and disadvantages of both methods.

3.2.3 Likelihood Ratio Test

Consider the two-component mixture model

Yi ∼ λN
(
xTi β1, σ

2
1

)
+ (1− λ)N

(
xTi β2, σ

2
2

)
,

where β1 = (β10,β11, · · · , β1p, 0)T is a (p + 1)-dimensional parameter vector, β2 =

(β20,β21, · · · , β2p, β2,p+1)
T is a (p + 2)-dimensional parameter vector, Ui ∼ N(0, σ2

u),

the distribution of uis is known, and xi = (1, xi, x
2
i , · · · , x

p
i ) such that xi is predictor

variable for ith observation. For each predictor variable, consider the measurement

error model wi = xi + ui. The observed variables are wi = (1, wi, w
2
i , · · · , w

p
i ).
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We are interested in testing for a quadratic e�ect; i.e., if it is appropriate to keep

β2,p+1 term in the model. The hypothesis test of interest is, thus,

H0 :β2,p+1 = 0

H1 :β2,p+1 6= 0. (3.20)

Here, we might consider constructing the traditional likelihood ratio test (LRT)

statistic. Given Z = j, j = 1, 2, the conditional density of Y given W =w is

fj(y | w,θj) =
1

σj

∫
φ
{

(y − xTβj)/σj
}
f(x | w)dx,

where θj = (βTj , σj)
T . Therefore Y |W ∼ λf1(y | w,θ1) + (1− λ)f2(y | w,θ2), and

the likelihood function for the parameter vector θT = (θT1 ,θ
T
2 ) is

L(θ) =
n∏
i=1

{λf1(y | w,θ1) + (1− λ)f2(y | w,θ2)} .

Note that under either hypothesis, the distribution of the data is fully speci�ed.

Let θ0 is the parameter space under null hypothesis and θA the parameter space

under alternative hypothesis. Then the likelihood ratio test based on the likelihood

ratio, can be written as

Λ(y) =
L(θ0)

L(θA)
.

The test statistic

− 2 log(Λ) = 2
{

logL(θ̂A)− logL(θ̂0)
}

(3.21)

for a nested model will be asymptotically chi-squared with degrees of freedom equal

to the di�erence in dimensionality of θ1 and θ0, when H0 is true. This means we can

compute the likelihood ratio Λ for the data and compare −2 log(Λ) to the χ2 value

corresponding to a desired statistical signi�cance as an approximate statistical test.

The LRT statistic is straightforward, however, for mixture models we have to also

consider the asymptotic condition for di�erent settings of parameters. Another way

to approach the test in (3.20) is to bootstrap (parametrically or semi-parametrically)
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the LRT statistic as proposed in McLachlan (1987) [77]. The algorithm is an attempt

to approximate the null distribution of the LRT statistic values given in (3.21), thus

avoiding the regularity conditions for asymptotic theory. The algorithm is as follows:

Algorithm 3.4 Parametric Bootstrap Likelihood Ratio Test (BLRT)
(a) Fit both the null model and alternative model to the observed data
{(w1, y1), · · · , (wn, yn)}, which leads to the estimates θ̂0 and θ̂1, respectively.

(b) Calculate the (observed) log-likelihood ratio statistic in Equation (3.21). Denote
this value by Λobs.

(c) Simulate a data set of size n from the null distribution (β2,p+1 = 0). Call this
sample {(w1, y

∗
1), · · · , (wn, y

∗
n)}.

(d) Fit both the null model and alternative model to the simulated data and calculate
the corresponding bootstrap log-likelihood ratio statistic.

(e) Repeat steps (c) and (d) B times to generate the bootstrap sampling distribution
of likelihood ratio statistic Λ(1),Λ(2), · · · ,Λ(B).

(e) Compute the bootstrap p-values as

pB =
B∑
i=1

I
{

Λ(i) ≥ Λobs

}
.

We then obtain pB for this test and if it is lower than some signi�cance level α

(say, 0.05), we claim statistical signi�cance in favor of H1.

3.3 Numerical Studies

In this section, the �nite sampling behavior of the proposed mixture-of-regression esti-

mates with measurement error is studied using Monte Carlo simulation with di�erent

settings as well as a real data example.
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3.3.1 Simulated Example

We are interested in assessing the presence of a quadratic e�ect for one of the com-

ponents in a mixture of regressions setting. Suppose our data are assumed to follow

the 2 - component mixture-of-regressions model

yi ∼ λN(xTi(1)β1, σ
2
1) + (1− λ)N(xTi(2)β2, σ

2
2),

where xi(1) = (1, xi)
T and xi(2) = (1, xi, x

2
i )
T . Instead of observing xis directly, the

surrogate, wi, is given by the classical measurement error model

wi = xi + ui,

where ui and xi are independent, and ui follows a normal distribution N(0, σ2
u).

We consider three di�erent simulation conditions: well-separated components,

moderately-separated components and overlapping components. For each simulation

condition, we randomly generated B = 1000 datasets, each of size n = 200 and

350, estimated the corresponding model (mixture of linear regression vs. mixture of

one linear and on quadratic regression) using an EM algorithm. Then the output

of the EM algorithm is used to calculate the four model selection criteria discussed

in Subsection 3.1.4. We then report the percentage of times each model selection

criterion selected the appropriate model for our 1000 simulated data sets.

In order to avoid the possible bias created by di�erent starting values among

replications or label switching issues, see, for example, Stephens (2000b) [108], we use

the true initial values for parameters in the GEM algorithm, which follows Bordes,

Chauveau and Vandekerkhove's work in 2007 [13].

In order to estimate the variance of measurement error σ2
u, for each predictor

value xi, we randomly generate r = 3 di�erent measurement errors ui1, ui2 and ui3

and compute the estimated variance based on the method discussed in Subsection

3.1.3. The observed predictor w̄i is given by the average of three observations, that

is,

w̄i =
1

3
[(xi + ui1) + (xi + ui2) + (xi + ui3)] .
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I. Well-separated

We generated the i.i.d. data (wi, yi), i = 1, · · · , n from the model

Yi ∼ 0.5N
(
10− 3xi, σ

2
1

)
+ 0.5N

(
−4 + xi + 3x2i , σ

2
2

)
wi = xi + ui,

where xi ∼ N(1, 1), ui ∼ N(0, 0.01) for i = 1, 2, · · ·n, σ1 = 1 and σ2 = 2.
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Figure 3.1: Scatterplots and �tted lines for well-separated case.

Figure 3.1 are the scatterplots and �tted lines of well-separated components case,

when sample size is 200 and 350. The red dashed lines are the estimated lines when

using a mixture of simple linear regressions, while black solid lines are the estimated

lines for the model such that one component has a quadratic term. Di�erent colors

represent the di�erent components the data points belongs to, according to mixtures-

of-regressions with quadratic term in one component. Based on the graph, we can

see a clear curve to one of the component (orange dots), and the black solid lines

can represent the behavior of data set much better than the red dashed lines � since

the two components are well-separated, they �t well for both linear and quadratic

settings. On the other hand, when sample size increases, more data points make

it easier to �t the model, and should have a better performance comparing to the

smaller sample size case.
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II. Moderately-separated

We next generated the i.i.d. data (wi, yi), i = 1, · · · , n from the model

Yi ∼ 0.2N
(
5− xi, σ2

1

)
+ 0.8N

(
−3 + 2xi + x2i , σ

2
2

)
wi = xi + ui,

where xi ∼ N(−1, 1), ui ∼ N(0, 0.01), σ1 = 1 and σ2 = 2.
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Figure 3.2: Scatterplots and �tted lines for moderately-separated case.

Similarly, Figure 3.2 are the scatterplots and �tted lines of moderately-separated

components case, when sample size is 200 and 350. The red dashed lines are the

estimated lines when using a mixture of simple linear regressions, while black solid

lines are the estimated lines for the model such that one component has a quadratic

term. Unlike the well-separated case, moderately-separated components have some

dataset mixing present, making it more di�cult to determine which component each

data point belongs. For example, when sample size n = 350, there are two data points

on the top right, which are supposed to belong ton the linear component, however,

they are labeled as quadratic component, based on our estimating method.

According to Figure 3.2, it can be seen that one of the component is linear (the

top data points), and both methods (linear or quadratic component) can capture
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the characteristic of this component pretty well; for the other component, which

is supposed to be quadratic, the linear method fail to predict the behavior, while

the quadratic method behaves much better, if not perfectly. We can also see, when

increasing the sample size of the data for some case, the quadratic characteristic can

be reduced, and makes it harder to detect the quadratic in the data. It is always a

challenge to determine whether there is a quadratic term in the model.

III. Overlapping

Finally, we generated the i.i.d. data (wi, yi), i = 1, · · · , n from the model

Yi ∼ 0.7N
(
5 + xi, σ

2
1

)
+ 0.3N

(
1 + 2xi + x2i , σ

2
2

)
wi = xi + ui,

where xi ∼ N(0, 1), ui ∼ N(0, 0.01), σ1 = 1 and σ2 = 2.
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Figure 3.3: Scatterplots and �tted lines for overlapping case.

Figure 3.3 are the scatterplots and �tted lines of overlapping components case,

when sample size is 200 and 350. Since the two components are heavily overlapping,

the estimation is much more di�cult compared to the well-separated and moderately-

separated cases. From the scatter plots, the overlapping structure hides the charac-

teristic of quadratic form, and it is harder to determine whether quadratic is the
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better choice for this setting. To see the performance of quadratic versus the linear

component, we access the model selection criteria. For each simulation situation, we

computed the values of the four model selection criteria: AIC, BIC, ICL and cAIC,

and recorded the times each situation selected the correct model structure.

Table 3.1: Percentage of times each model selection criterion selected the correct
model.

n AIC BIC ICL cAIC

Well-Separated Components

200 100% 100% 100% 100%

350 100% 100% 100% 100%

Moderately-Separated Components

200 99.8% 99.7% 99.7% 99.7%

350 100% 100% 100% 100%

Overlapping Components

200 95% 83.6% 77.3% 83.7%

350 99.9% 97% 95.5% 97%

Table 3.1 shows the percentage of times each model selection criterion chose the

correct model. Overall, the model selection criteria performed well with all three

model settings and selects the correct model a reasonable percentage of the time for

all the cases, thus suggesting the use of model selection criteria for problems like this

is a viable strategy.

Among the model selection criteria, AIC typically overestimates while BIC, ICL

and cAIC are good indicators for the �t of a mixture model (Wedel and DeSarbo

(1994) [114] and McLachlan (1987) [77]). Overall, the performance with a data set

having a larger sample size (n = 350) appears better than that for a smaller sample

size (n = 200), when well-separated components and moderately-separated compo-

nents capture the correct model 100% of the time and overlapping components more

than 95% of the time, although it seems hard to identify the components from the

scatter plots of overlapping components.

The model selection criteria also have good performance for well-separated com-

ponents and moderately-separated model with a smaller sample size (n = 200), with

a 100% and about 99.7% chance of selecting the correct model, respectively. However,
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if the sample size is not large enough, the performance of model selection criteria is

not as good for overlapping components model, as to be expected. It can only choose

the correct model for as low as 77.3% of the time, with ICL and around 83% for

both BIC and cAIC. It suggests that when doing the model selection procedure with

not so well-separated data, one needs to heavily scrutinize the results, and possibly

investigate other techniques for determining the best model to use.

3.3.2 MSE and Relative E�ciency

According to the model selection criteria, it is appropriate to use the true model

from which we simulated. To test the performance of the estimation method for

the presence of a quadratic term, we estimated the mixture of regression parameters(
βT1 ,β

T
2 , λ, σ1, σ2

)
by the proposed method for each simulated data set, and compared

the results with the so-called 'naïve' method, which simply ignore the measurement

error. The performance of the proposed method under di�erent conditions is assessed

by the mean squared error (MSE); i.e.,

MSE(θ̂) =
1

B

B∑
t=1

(θ̂
(t)
− θ)2

where θ̂
(t)

is the estimate of the parameter θ based on tth replication and θ is the true

value. The relative e�ciency of the MSE for the naïve method versus the proposed

method is also recorded for all the parameters.

In order to better see the di�erence between the naïve method and proposed

method, for each simulated data set we added a larger amount of measurement error

(u ∼ N(0, 0.52)). Table 3.2 shows the MSEs and relative e�ciencies (in parentheses)

for our simulated data sets.

The MSE measures the accuracy of the method for estimating the unknown pa-

rameter; the smaller the value, the better the performance. When the ratio of the

MSE is greater than 1, it means our proposed method behaves better than the naïve

method. From Table 3.2, we can see that the proposed method, which incorporates

the measurement error, for most parameters of di�erent cases, has a relative e�ciency

greater than 1. This implies it works relatively better than the naïve method.
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Table 3.2: Ratio of the MSEs of naïve method to proposed estimators.

n β10 β10 β20 β21 β22 λ σ1 σ2

Well-Separated Components

200
0.505 0.206 1.810 0.749 0.9169 0.003 0.447 2.221

(2.611) (3.769) (1.638) (1.844) (2.006) (1.301) (1.741) (1.706)

350
0.576 0.245 2.130 0.354 0.387 0.001 0.286 3.616

(1.510) (2.575) (1.309) (1.438) (2.651) (3.575) (2.724) (1.676)

Moderately-Separated Components

200
2.747 0.061 1.500 18.357 1.763 0.640 0.971 0.089

(1.201) (2.260) (1.314) (0.877) (1.194) (1.002) (0.628) (0.888)

350
1.013 0.029 1.650 19.786 1.533 0.669 1.598 0.043

(1.354) (1.588) (1.179) (0.878) (1.239) (0.999) (0.852) (1.583)

Overlapping Components

200
1.309 0.028 7.050 0.455 0.184 0.056 0.100 0.590

(0.971) (1.264) (0.962) (1.375) (1.493) (1.006) (1.004) (0.955)

350
1.043 0.009 3.233 0.368 0.108 0.014 0.021 1.058

(0.939) (2.320) (1.027) (1.367) (1.374) (1.037) (1.334) (0.865)

As we can see, when the two components are well-separated, the proposed method

is much better in estimating βs, and has a relative smaller MSE for all parameters;

for moderately-separated case, most parameters behave pretty well, except for β21,

which has a relatively larger MSE, and the relative e�ciencies for this parameter and

also the variance terms. For the overlapping components case, the MSEs are also

not large, but the di�erence between the naïve method and proposed is not much.

Overall, when the structure of the model becomes more complicated, it gets harder to

estimate the parameters, and for some scenarios, it may cause inaccurate estimates

for some of the parameters.

On the other hand, the naïve method and the proposed method have almost the

same ability to distinguish di�erent components, as the relative e�ciencies of λs are

alway close to 1. When the sample size increases (from 200 to 350), the structure

of the data becomes more complicated, and the estimating process becomes more

di�cult, which leads to the increasing of MSEs and decreasing of relative e�ciencies.

We can conclude that, for more complex data set (e.g., overlapping components case),

78



the task of identifying the correct components becomes harder.

Overall, our proposed method behaves better than the naïve method, for most of

the cases, because of the accuracy of correctly estimating all the parameters.

3.4 NO data � A Real Data Analysis

Brinkman (1981) [16] studied the usefulness of pure ethanol as a spark-ignition en-

gine fuel, which at the time was being considered for use in the U.S. and elsewhere.

E�ciency and exhaust emissions with ethanol were quanti�ed using a single-cylinder

engine at compression ratios from 7.5 to 18, at equivalence ratios (the richness of

the air-ethanol mix in an engine) from 1.2 (rich) to the lean limit, and at maximum

brake torque (MBT) spark timing. Results were compared to those with gasoline at

7.5 compression ratio. With ethanol, compared to gasoline at the same compression

ratio, engine thermal e�ciency increased 3 percent, peak nitrogen oxide emissions de-

creased 40 percent, unburned fuel and carbon monoxide emissions were similar, and

aldehyde emissions increased 110 to 360 percent. Increasing compression ratio from

7.5 to 18 with ethanol increased e�ciency 18 percent, peak nitrogen oxide emissions

30 percent, unburned fuel emissions 25 to 200 percent, and aldehyde emissions 50 to

140 percent. Regression analysis indicated that the increased aldehyde emissions at

high CR's may result from reduced exhaust temperatures. As exhaust temperature

decreases, oxidation of aldehydes in the exhaust system decreases.

The data set describes the equivalence ratio, that is, against the peak nitric oxide

emissions, while using pure ethanol as a spark-ignition engine fuel (Hurvich, Simono�

and Tsai (1998) [57]). Figure 3.4 shows the scatter plot of the 88 data points.

The scatter plot clearly indicates two di�erent nitric oxide concentration depen-

dencies, which means we can consider it as a mixture model problem. These data

were analyzed using a mixture of linear regression in Hurn et al. (2003) [56]. How-

ever, the appropriateness of one component appears to have a nonlinear pattern (top

data points), which could be captured using a quadratic e�ect. Thus we want to test

the appropriateness of a mixtures-of-regressions model with one of the components

to be quadratic.
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Figure 3.4: Equivalence ratio against exhaust nitric oxide concentration (Source:
Hurvich et al., 1998 ).

To address the impact of measurement error, we add a measurement error term

u ∼ N(0, 0.01) to the predictor x (NO), and denote w = x + u as the surrogate of

predictor variable. This strategy was employed for the real data analysis in Yao and

Song (2015)'s [119] work. We �t the data (w, y) using both mixture of simple linear

regressions model and a model with one quadratic component.

3.4.1 Parameter Estimation

To see the performance of the method, we proposed the semi-parametric bootstrap

algorithm described in Subsection 3.2.2 with B = 500 bootstrap samples, which

we assume the model is the one with quadratic term in one component; we output

the estimation results for the NO data with both models, as well as the bootstrap

standard errors (SE) of the estimation of 500 bootstrap samples (in parentheses) for

each estimator.

Since the original data set has only a small amount of curvature, the result (model

with quadratic term) depends heavily on starting values; that is, our estimation

method can only perform well when we have a good starting value. We report our

results of mixture-of-linear-regression and one term with quadratic term, both with
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or without these informed starting values (SV); the results can be found in Table 3.3.

Table 3.3: Estimates for the NO data for a 2-component mixture model with both
models.

Parameter Linear Quadratic (without SV) Quadratic (with SV)

λ
0.487 0.486 0.487

(0.068) (0.133) (0.096)

β1

(0.580, 0.078)T (0.600, 0.078)T (0.592, 0.076)

((0.016), (0.009)) T ((0.082), (0.050))
T

((0.063), (0.016))
T

β2

(1.239,−0.080) (1.262,−0.133, 0.021)T (1.270,−0.127, 0.011)
((0.030), (0.008))

T
((0.086), (0.116), (0.108))

T
((0.055), (0.029), (0.005))

T

σ1
0.045 0.080 0.078

(0.006) (0.093) (0.094)

σ2
0.024 0.031 0.025

(0.017) (0.042) (0.030)

The estimated values are calculated by the average of estimated values of 500

bootstrap samples, with di�erent estimating methods. As we can see, when we specify

the starting values for quadratic model �tting, the performance of estimation method

is much better. The reason behind it is that, our proposed method is very sensitive

to the starting values, and if we don't specify the starting values, sometimes the �nal

result is quite variable. Hence, it is usually very important to choose a set of di�erent

starting values for the data set, and select the one with best results. The choice of

starting values is always an ongoing topic of research, but we will not expand further

on this topic for this dissertation.

Figure 3.3 shows the estimated regression lines for both models. The black solid

lines are the estimated lines for the model that one component has a quadratic term

(with starting values) and the red dashed lines are for the mixture of simple linear

regressions. Di�erent colors of data points represent di�erent component those points

belongs to according to the proposed method, assuming one component is quadratic.

From the output and �gure, it is not absolutely clear which model is more appro-

priate. In fact, according to the bootstrap sample SEs, it seems like the model with

quadratic term has a relative bigger SEs than the mixtures of linear regression model

for all the parameters; what's more, if we see the average estimation values for those
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500 bootstrap samples without starting values, the estimators for quadratic model is

a little bit �o��. One of the reasons for this situation, is possibly because our data set

does not have a heavily quadratic trend for the component, and it leads to greater

variability when estimating the parameters for some bootstrap samples.
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Figure 3.5: Estimated regression lines for both models.

In order to justify our decision, we apply model selection criteria, as well as a

parametric bootstrap procedure here, where we compare the results from two di�erent

methods. The values of four model selection criteria discussed in Subsection 3.1.4

were calculated for both models, the appropriate model is chosen to correspond to

the smallest penalized value. We report the result in Table 3.4.

Table 3.4: Various criteria for the determination of appropriate models for the NO
data.

AIC BIC ICL cAIC

Linear −54.68 −37.33 −35.95 −30.33
Quadratic −64.45 −44.63 −43.25 −36.63

From the original data points we can see that the quadratic trend is limited,

but there is a slight distinction from the linear trend. This can also be con�rmed

by the values of model selection criteria. For example, the cAIC values for linear

and quadratic setting are −30.33 and −36.63, respectively, which is not necessarily a
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substantial di�erence. Because of the existence of measurement error, the quadratic

trend is more challenging to detect. But we believe this is only due to the structure

of the original data set, since the model selection criteria perform well when we have

some data set with a more clear trend of higher order terms.

According to the original scatter plot, the data with the larger responses seems to

have a quadratic term. All the results above suggest it is more appropriate to use the

model with a quadratic term for one of the components. The bold values in the table

indicate the model chosen for that criterion, according to the table, all four criteria

prefer quadratic model, which suggests a potential quadratic term in one component.

3.4.2 Likelihood Ratio Test simulation

To test whether we should keep the quadratic term in the model, it is also suggested

to do a likelihood ratio test. Consider the data set from the previous subsection,

assume we have the two-component mixture model

Yi ∼ λN
(
(1, xi)β1, σ

2
1

)
+ (1− λ)N

(
(1, xi, x

2
i )β2, σ

2
2

)
,

where β1 = (β10, β11)
T and β2 = (β20, β21, β22)

T for i = 1, · · · , n. We want to test

H0 : β22 = 0

H1 : β22 6= 0.

To see the behavior of likelihood ratio test, we also performed a bootstrap LRT

with B = 500 bootstrap samples. Consider the two-component mixture model

Yi ∼ λN
(
(1, xi)β1, σ

2
1

)
+ (1− λ)N

(
(1, xi, x

2
i )β2, σ

2
2

)
,

where β1 = (β10, β11)
T and β2 = (β20, β21, β22)

T for i = 1, · · · , 88. To incorporate

the measurement error, we added a measurement error, ui ∼ N(0, 1) to each pre-

dictor and indicate the observed w = x + u the surrogate as wi. Thus, we observed

{(w1, y1), · · · , (w88, y88)}. In order to improve the performance of our likelihood ratio

test, we also speci�ed the starting values for this test in order to get a more accurate

result.
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Figure 3.6 shows all the LRT statistics of 500 bootstrap samples. Because of the

variability with the estimating method, there are some statistics with very extreme

values. On the other hand, we know the LRT statistics should have positive values

for all sample statistics. However, in this data, the curvature is not very strong,

when we add the measurement error to the original predictor variables, the property

of quadratic curve may be reduced and it makes even more challenging to identify

which one (quadratic or linear) is better, sometimes it leads to the likelihood value for

alternative hypothesis is smaller than that for null hypothesis. We have conducted the

same test using a simulated data set with a more strong curvature, the result shows

that all the test statistics are positive and follows the χ2 distribution well, it shows

that the most possible reason that we have negative test statistics is the structure of

original data is not very suitable when dealing with the case with measurement error.
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Figure 3.6: Likelihood ratio test statistics of 500 bootstrap samples.

Since the distribution of test statistics have so many negative values, the χ2 dis-

tribution is clearly not appropriate. Thus, we standardized the LRT by subtracting

the mean of those statistics and dividing the standard deviation of the statistics,

T =
LRT−mean(LRT)

sd(LRT)
.
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The distribution of the test statistics T should follow approximately a standard nor-

mal distribution. The histogram of the test statistics T is given in Figure 3.7, and the

red curve is the density of standard normal distribution. From the histogram, there is

clearly more peakedness in the distribution of the standardized test statistics relative

to the standard normal density. Regardless, we proceed to compute the observed

LRT, Tobs = 11.775, and then obtain the bootstrap p-value pB for this test by

pB =
1

500

500∑
i=1

I
{
| T (i) |≥ Λobs

}
≈ 0,

which is lower than the signi�cance level α = 0.05. We can claim the result is

statistically signi�cant and reject H0, which is consistent with the assumption we

made.
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Figure 3.7: Bootstrap distribution of likelihood ratio test (LRT) statistics.

Given these results, we proceed to �t a 2 - component model with one component

having a quadratic term. In other words, the model we �t the model

yi ∼

(1, xi)β1 + εi,1 with probability λ;

(1, xi, x
2
i )β2 + εi,2 with probability 1− λ,

(3.22)

where the εi,j ∼ N(0, σ2
j ) are independent, i = 1, 2, · · · , 88 and j = 1, 2.
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3.5 Summary

In this chapter, we discussed the mixtures-of-regression model with measurement

error in the predictors. We compute the conditional density of Y | W following Yao

and Song's paper, then found the parameters of interest by maximizing the likelihood

function. Because of the existence of measurement error, the original estimates are

biased, and the conditional density can correct the bias towards the measurement

error, thus leading to better performance of the estimates.

We conducted a series of simulation studies to test the possible case when one

of the components has a quadratic term in the parameter. The presence of mea-

surement error can complicate the ability to estimate the e�ect of curvature, but the

proposed method demonstrated smaller MSEs in estimating the parameters. We also

conducted the bootstrap likelihood ratio test to test the quadratic term for a real

data set, although the data itself only demonstrated moderate curvature in one of

the components the appropriateness. We also showed that the proposed test is ap-

propriate for detecting the presence of a quadratic e�ect in a mixtures-of-regressions

model when measurement error is present.
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Chapter 4 Mixtures-of-Poisson Regressions with Measurement Error in

the Predictors

Count data are frequently encountered in diverse areas, such as ecology, economics,

and �nance. One of the classical models for analyzing count data is the Poisson

regression model. Poisson regression has a wide range of applications: Zou (2004)

[124] developed a modi�ed Poisson regression approach for epidemiologic and medical

studies with binary data; Faria and F. Gonçalves (2013) [41] analyzed the �nancial

data modeling by Poisson mixture regression.

However, most of the methods have been applied to the models under the assump-

tion that predictors are measured without measurement error, which leads to biased

estimation. In this chapter, we �rst introduce the Poisson regression model with

measurement error in the predictors, and then generalize to the mixture setting. We

then use the proposed model to analyze data regarding clandestine drug lab seizures

in the states of Kentucky, Illinois, and Louisiana.

4.1 Poisson Regression with Measurement Error in Predictors

4.1.1 Introduction

Poisson regression is one of the most widely used models when dealing with data

where the response is a count. Many statistical inferences and analyses have been

discussed, for example, Frome et al. (1973) [45] applied Poisson regression model to

analyze the rate collected by epidemiologic follow-up studies; Cameron and Trivedi

(1998) [19] introduced regression analysis of count data, including Poisson regression;

Winkelmann (2008) [116] discussed the Poisson regression in econometric analysis of

count data. Moreover, Poisson regression is part of the broader class of generalized

linear models, which has an extensive body of literature; see, for example McCullagh

and Nelder (1987) [75] and Nelder and Wedderburn (1972) [86].

One of the model assumptions for the Poisson regression model is that the variance
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of the response variable equals its mean, both conditional upon the predictor vari-

ables; a characteristic known as equi-dispersion. However, in many practical settings,

it has been found that the conditional variance is greater than its conditional mean,

a phenomenon called over-dispersion, which may lead to a possible loss of e�ciency

(Cox (1983) [32]). An alternative model that takes into account over-dispersion is

the negative binomial (NB) model. Various inference considerations for the negative

binomial model have been addressed using, for example, likelihood methods (Law-

less (1987) [70]), weighted least squares (Breslow (1984) [15]), and quasi-likelihood

(McCullagh and Nelder (1987) [75]).

There are many sources that could lead to over-dispersion, for example, the lack

of covariates, the non-independence of the data set, or an excess frequency of zeroes

(zero-in�ation). Another possible source is measurement error in the predictors, which

is the focus of our present research. In this chapter, we will �rst introduce Poisson

regression with measurement error, and then show how it can lead to over-dispersion

in the observed data, thus causing inconsistent estimates. Finally, we will propose a

method for estimating a Poisson regression model with measurement error, and apply

it to both simulated data and real data sets.

4.1.2 Poisson Regression with Additive Measurement Error

To simplify our discussion, here, we restrict our attention to the case of just one

covariate X; further research can be done by expanding this result to multiple regres-

sion analysis. Suppose Y is a Poisson random variable distributed with parameter

θx, which is a function of X and the unknown parameter β = (β0, β1)
T ; i.e.,

Y | X ∼ Poi(θX) (4.1)

where θX = exp(β0+β1X). Assume we have n independent observations (xi, yi). The

probability mass function of yi | xi can be written as

f(yi | xi, θxi) = e−θxi (θxi)
yi /yi!. (4.2)
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The log-likelihood function of β is then

`(β) =
n∑
i=1

[yi log θxi(β)− θxi(β)− log (yi!)] , (4.3)

where θxi(β) = exp(β0 +β1xi). Therefore, the MLE of the unknown parameter β can

then be obtained by solving the estimating equation

Sn(β | y,x) =
1

n

n∑
i=1

[yi − exp (β0 + β1xi)] (1, xi)
T = 0, (4.4)

where x = (x1, x2, · · · , xn)T is the vector of predictor variables, and y = (y1, y2, · · · , yn)T

is the vector of response variables

Within the framework where measurement error is present, we observe the surro-

gate w1, · · · , wn instead of the true predictors x1, · · · , xn where

wi = xi + ui

and the corresponding vector of surrogates w = (w1, w2, · · · , wn)T . Here ui is the

measurement error, which is assumed to be independent of (xi, yi) and often assumed

to be normally distributed:

ui ∼ N(0, σ2
u).

Furthermore, its variance σ2
u < ∞ is assumed to be known. In the presence of

measurement error, the estimators for the Poisson regression model could be biased.

We now introduce some existing methods that applied for Poisson regression model

with measurement error in the predictors.

4.1.3 Existing Estimators

Poisson regression models with measurement errors in the predictors, has been inves-

tigated in the past; see Carroll et al. (1995) [23]. There are some general approaches

in addressing measurement error problems in GLMs. In this section, we will consider

two types of adjusted estimators; structural estimator (Thamerus (1998) [109]) and

corrected score (CS) estimator (Stefanski (1989) [106] and Nakamura (1990) [85]).

Both of the methods can be applied to a wide variety of regression models with
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covariate measurement error, including the Poisson regression model. For example,

Patriota et al. (2009) [88] used the method of moment (corrected score) method for

a heteroscedastic structural measurement error model with epidemiological data sets

while Cao and Zhu (2011) [20] discussed the structural method for measurement error

model under heavy-tailed distributions. The following describes the two methods and

how they are applied under a Poisson regression model.

Functional Method: Corrected Score Estimator

When there is no measurement error, estimates for the parameter β are obtained by

solving the estimating equation (4.4). If we replace the unobservable variables xi by

the observable surrogates wi, we now arrive at the so-called �naïve� estimator, which

is found by maximizing

`naı̈ve(β) =
n∑
i=1

[yi log θwi(β)− θwi(β)− log (yi!)] ,

where θwi(β) = exp(β0 + β1wi).

The resulting estimator β̂naı̈ve would be the MLE if wis were measured without

errors, i.e., if wi = xi for all i. In this case, β̂naı̈ve would be consistent. But as xi has

been replaced by wi, the β̂naı̈ve is inconsistent. To construct a consistent estimator,

we have to correct for the measurement error.

The idea underlying the corrected score estimator is that the conditional distribu-

tion of the corrected estimate with respect to wi given the true independent variables

xi and the dependent variable yi is centered around the ML estimator, which is con-

sistent to the true value of the parameter of interest. That is, we utilize a 'corrected'

log-likelihood function `CS(β, wi, yi), such that

E [`CS(β, wi, yi)] = `(β, xi, yi) = yi log θxi(β)− θxi(β)− log (yi!) .

Such a function is given by

`CS(β, xi, yi) = yi log θwi(β)− exp

(
−1

2
β2
1σ

2
u

)
θwi(β)− log (yi!) ,

since

E [log θwi(β) | xi] = E [β0 + β1wi | xi] = β0 + β1xi = log θxi(β)
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and

E [θwi(β) | xi] = exp (β0 + β1xi)E [exp(β1ui)] = θxi(β) exp

(
1

2
β2
1σ

2
u

)
.

Hence, the corresponding corrected criterion function is given by

`CS(β) =
n∑
i=1

[
yi log θwi(β)− exp

(
−1

2
β2
1σ

2
u

)
θwi(β)− log (yi!)

]
. (4.5)

We can now de�ne the new corrected score function, SCS
n (β | y,w), by taking the

derivative of `CS(β), which is unbiased for Sn(β | y,x); i.e.,

E
[
SCS
n (β | y,w) | (y,x)

]
= Sn(β | y,x).

Thus, the score function of the corrected score estimator is given by

SCS
n (β|y,w) =

1

n

n∑
i=1

[
(yi − φcsθwi)(1, wi)

T + φcsθwiσ
2
uβ1 (0, 1) T

]
, (4.6)

where φCS = exp
(
−1

2
β2
1σ

2
u

)
, θwi = exp(β0 + β1wi). Setting (4.6) equal to zero and

solving for β yields the solution β̂CS, which is called the corrected score estimator.

According to the theory of quasi-score estimators (Heyde (1997) [53]), this esti-

mator is strongly consistent, and
√
n(β̂CS−β̂) converges in distribution to N(0,ΣCS),

where ΣCS is given by A−1BA−1 with

A = −E∂S
CS
n

∂βT
,

B = cov
{
SCS
n

}
.

Structural Method: Structural Estimator

The corrected score estimator is constructed without using the distribution of X.

There is, however, a completely di�erent approach to the construction of consistent

estimators. In structural estimation, X is regarded as a random variable. Suppose

now that we fully specify a distribution for Y | X and X | W , and thus for X |

W . Estimators originating as the solution to such estimating equations are called

structural estimators (Carroll et al. (1995) [23]). The idea of structural estimators
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is to substitute the unobserved θX � which is the mean of Y , with the conditional

mean of Y | W .

We base our investigation on the full understanding of the structure of the pre-

dictor variable, and assume that

xi ∼ N(µx, σ
2
x).

We also assume that the (yi, xi, ui), i = 1, · · · , n are i.i.d. Then xi given wi is also

normal with mean and variance, respectively,

E(xi | wi) = [ρ/(1 + ρ)]µx + [1/(1 + ρ)]wi ≡ m(wi), (4.7)

Var(xi | wi) = ρ(1 + ρ)−2σ2
w ≡ τ 2(wi), (4.8)

where σ2
w = Var(wi) = σ2

x + σ2
u = (1 + ρ)σ2

x and ρ = σ2
u/σ

2
x. Even when xi is not

normal, (4.7) is the best linear approximation of E(xi | wi) (Carroll et al. (1995)

[23]).

The Poisson regression model can be written as a mean-variance model in xi:

E(yi | xi) = exp(β0 + β1xi).

Recall for (xi, yi), the log-likelihood function of the Poisson regression without mea-

surement error is given by (4.3). Since the mean θxi = E(yi|xi) = exp(β0 + β1xi) is

not observable, we replaced it by the conditional mean of yi on the observed wi,

E (yi | wi) = exp

[
β0 + β1m(wi) +

1

2
β2
1τ

2(wi)

]
≡ ηi. (4.9)

Then,

`S(β | y,w) =
n∑
i=1

[yi log(ηi)− ηi − log (yi!)] , (4.10)

where β = (β0, β1)
T can be used similar to the likelihood function, and obtain a

consistent structural estimator when `S(β | y,w) is maximized.

Taking the derivative of (4.10) with respect to β, we get the score function of the

structural estimator β̂S:

SS
n(β) =

1

n

n∑
i=1

yi − ηi
ηi

∂ηi
∂β

=
1

n

n∑
i=1

(yi − ηi)(1,m(wi) + β1τ
2(wi))

T . (4.11)
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By setting the above equal to zero and numerically solving for β, we can obtain the

structural estimator β̂S.

4.1.4 Approximated Maximum Likelihood Estimator for a Small Mea-

surement Error

Both the structural method and the corrected score method focus on adjusting the

expectation of the likelihood, instead of working with the true density f (y | w).

Similar to Chapter 2 for linear regression models with measurement error in the

predictors, as discussed by Yao and Song (2015) [119], we now come up with the

idea to compute the conditional density function of Y | W by the integral, and then

estimate the parameters using the true density function.

Suppose all w,x and u are normally distributed. The density function of the ob-

servation (yi, wi) is then given by a combination of a Poisson and normal distribution

f(yi | wi) =

∫ ∞
−∞

f(y | xi)f(xi | wi)dx

=
1√

2πτ 2(wi)

1

yi!

∫ ∞
−∞

exp
[
−eβ0+β1xi + yi (β0 + β1xi)

]
exp

{
−(xi −m(wi))

2

2τ 2(wi)

}
dx

(4.12)

where xi | wi
iid∼ N(m(wi), τ

2(wi)) for i = 1, · · · , n.

We need to �nd β = (β0, β1)
T by maximizing the log-likelihood function

`(β) =
n∑
i=1

log f(yi | wi).
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Therefore, β can be obtained by the solution of its �rst derivatives:

0 =
∂`(β)

∂β

=
n∑
i=1

∂ log f(yi | wi)
∂β

=
n∑
i=1

∂
∂β
f(yi | wi)
f(yi | wi)

≈
n∑
i=1

{
yi
∫
xi exp

[
−eβ0+β1xi + yi(β0 + β1xi)

]
Sidx

f(yi | wi, θxi)
−∫

xi exp
[
−eβ0+β1xi + (yi + 1)(β0 + β1xi)

]
Sidx

f(yi | wi, θxi)

}

where Si = exp
[
− (x−m(wi))

2

2τ2(wi)

]
, and f(yi | wi) is given by (4.12). However, the nu-

merical solution for this equation is challenging, as it involves evaluating the value of

the integrals numerically for each iteration. Moreover, the initial value for the EM

algorithm can also cause a problem, as the integrals may not converge after the �rst

few iterations.

Yang (2012) [118] described a approximation method of the density function when

the conditional variance of the surrogate w is small. The density function of obser-

vations can be expressed by the form of an expectation

f(y | w) =

∫
f(y | x)f(x | w)dx

= Ex|wf0(x),

where x | w ∼ N(m(w), τ 2(w)) and f0(x) = f(y | x) = 1
y!

exp [y(β0 + β1x)− exp(β0 + β1x)].

By taking the Taylor expansion of f0(x) on x = Ex|w(x | w) = m(w), the density

function can be written as

f(y | w, θx) = Ex|wf0(x)

= Ex|w

[
f0(m(w)) +

∞∑
t=1

1

t!
f
(t)
0 (m(w))(x−m(w))t

]

= f0(m(w)) +
∞∑
t=1

1

t!
f
(t)
0 (m(w))Mt, (4.13)
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where f (t)
0 (·) is the tth derivative of f0(·), andMt = Ex|w(x−m(w))t is the tth moment

of x | w. Under the assumption that x follows a normal distribution, the tth moment

Mt is

Mt =

0 t is odd,

τ t · (t− 1) · (t− 3) · · · 3 · 1 t is even.

We then plug the expression of moments into (4.13);

f(y | w) = f0(m(w)) +
∞∑
t=1

1

t!
f
(t)
0 (m(w))Mt

= f0(m(w)) +
∞∑

t is even

τ t(w)(t− 1)!!
1

t!
f
(t)
0 (m(w))

= f0(m(w))

[
1 +

∞∑
s=1

τ 2s(w)
1

2ss!
hs(m(w))

]
, (4.14)

where

h0(x) = β1 [y − exp(β0 + β1x)]

h1(x) = h20(x) + h
(1)
0 (x)

hs(x) = h1(x)hs−1(x) + 2h0(x)hs−1(x) + h
(2)
s−1(x), for s > 1

and h(i)s (·) is the ith derivative of the function hs(·).

Consider the case where τ 2(w) is small, so the proportion of variability explained

by measurement error is relatively small. Taking the expansion in (4.14) up to the

term of s = 1, we can approximate the density function by

f(y | w) = f0(m(w))

[
1 +

1

2
τ 2(w)h1(m(w))

]
+O(τ 4(w))

≈ f0(m(w))

{
1 +

1

2
τ 2(w) · β2

1

[
(y − θm(w))

2 − θm(w)

]}
, (4.15)

with the order O(τ 4(w)) (Yang (2012) [118]), where θm(w) = exp(β0 + β1m(w)) and

m(·) is de�ned in (4.7).

Now we can estimate the parameters β = (β0, β1)
T by solving the �rst derivative
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of the log-likelihood function of the approximated density function (4.15),

`(β) =
n∑
i=1

log f0(m(wi))

{
1 +

1

2
τ 2(wi) · β2

1

[
(y − θm(wi))

2 − θm(wi)

]}
=

n∑
i=1

[
− log yi! +

(
yiθm(wi) − θm(wi)

)
+ logAi

]
,

where Ai = 1 + 1
2
τ 2(wi) ·β2

1

[
(yi − θm(wi))

2 − θm(wi)

]
. So the estimating equations can

be written as

0 =
∂

∂β0
`(β)

=
n∑
i=1

[
∂

∂β0

(
yiθm(wi) − θm(wi)

)
+

1

Ai

∂

∂β0
Ai

]
=

n∑
i=1

[(
yi − θm(wi)

)
− 1

2Ai
τ 2(wi) · β2

1θm(wi)

(
2(yi − θm(wi)) + 1

)]
,

0 =
∂

∂β1
l(β)

=
n∑
i=1

[
∂

∂β1

(
yiθm(wi) − θm(wi)

)
+

1

Ai

∂

∂β1
Ai

]
=

n∑
i=1

[
(
yi − θm(wi)

)
m(wi)−

1

2Ai
τ 2(wi) · β2

1θm(wi)

(
2(yi − θm(wi)) + 1

)
m(wi)

+
1

Ai
τ 2(wi) · β1

(
(yi − θm(wi))

2 − θm(wi)

)
].

The estimator we �nd based on approximated density functions is called the ap-

proximated maximum likelihood estimator (AMLE) by Yang (2012) [118].

4.2 Mixtures of Poisson Regression with Measurement Errors

Based on the estimating methods discussed in the previous Section, we now expand

the model to the mixture setting, and discuss how we can estimate mixtures of Poisson

regression model using the previous estimators.
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4.2.1 Mixtures of Poisson Regression

Suppose Z is the n × k random indicator matrix whose (i, j)th element zij equals 1

when yi is from the jth component, zero otherwise, with P (zij = 1) = λj, for j =

1, 2, · · ·, k, where
∑k

j=1 λj = 1. Let y = (y1, · · · , yn)T be the vector of responses, x =

(x1, x2, · · · , xn)T be the predictor vector. Suppose βj = (β0j, β1j)
T is the unknown

parameter for the jth component, and λ = (λ1, · · · , λk)T is the vector of mixing

proportions. Given zij = 1, the mixtures of Poisson regressions model can be written

as

yi | xi∼Poi(θij), (4.16)

where θij = exp(β0j + β1jxi). Thus, the probability mass function of yi belonging to

the jth component can be written as

f(yi | xi, θij) = e−θij (θij)
yi /yi!.

The complete data set, is given by {x,y, z}.

4.2.2 Poisson mixture regression model with measurement error

Let u = (u1, u2, · · · , un)T be the n-dimensional measurement error vector that satis-

�es E (u) = 0. Suppose we observe the surrogate data w1, · · ·, wn instead of x1, · · ·, xn
in the mixture of Poisson regression model (4.16), where the xis and the wis are

related by the classical measurement error model:

wi = xi + ui.

To make all the methods work properly, we further assume that the xis, are indepen-

dent and identically-distributed (i.i.d.) as X ∼ N(µx, σ
2
x), the error ui is distributed

as N(0, σ2
u), i = 1, · · ·, n, and the xis and uis are mutually independent. So the

k - component mixture of Poisson regression model with measurement error can be

written as

f(yi | wi) =
k∑
j=1

λj exp
[
−e(β0j+β1jwi)

] [
e(β0j+β1jwi)

]
yi/yi!.
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Thus, the likelihood function of parameters (β,λ) is

L(β,λ) =
n∏
i=1

{
k∑
j=1

λj · exp
[
−e(β0j+β1jwi)

] [
e(β0j+β1jwi)

]
yi/yi!

}
.

The next Subsections discuss some methods that can be used for estimating the

mixtures-of-Poisson regression model, when measurement error is also addressed.

4.2.3 Corrected Score Estimator

Like the Poisson regression without the mixture setting, the 'naïve' estimators for

mixture of Poisson regressions model are found by maximizing the log-likelihood

function

`naive(β,λ) = logL(β,λ)

=
n∑
i=1

k∑
j=1

zij log(λj) +
n∑
i=1

k∑
j=1

zij
[
yi log θwi(βj)− θwi(βj)− log (yi!)

]
,

where θwi(βj) = exp(β0j + β1jwi). Because of the existence of measurement error,

the naïve estimator is biased, so we need to 'correct' for the measurement error in

order to get the unbiased estimator.

To incorporate the corrected score method in a mixture setting, similar to the non-

mixture setting, we substitute the log-likelihood function with our corrected criterion

log-likelihood function:

`cor(β,λ) =
n∑
i=1

k∑
j=1

zij log(λj)+
n∑
i=1

k∑
j=1

zij

[
yi log θwi(βj)− exp

(
−1

2
β2
1jσ

2
u

)
θwi(βj)− log (yi!)

]
.

(4.17)

We then de�ne the new corrected score function � Scorn (β,λ | y,w), by taking the

derivative to `cor(β,λ), which is unbiased for Sn(β,λ | y,x), i.e.,

E [Scorn (β,λ | y,w) | (y,x)] = Sn(β,λ | y,x).

Thus, the score function of the corrected score estimator β is given by

Scorn (β,λ | y,w) =
n∑
i=1

k∑
j=1

zij
[
(yi − φ(j)

cs θ
(j)
wi

)(1, wi)
T + φ(j)

cs θ
(j)
wi
σ2
uβ1j(0, 1)T

]
, (4.18)
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where φ(j)
cs = exp

(
−1

2
β2
1jσ

2
u

)
, θ(j)wi = exp(β0j +β1jwi). We then set (4.18) equal to zero

for the parameter estimation, Scorn (β̂ | y,w) = 0. We call this estimator the corrected

score estimator.

4.2.4 Structural Estimator

For the structural estimation, suppose we fully know the distribution of the predictors

X and measurement error U . The joint probability density function of the data

(y,w, z) is

fjoint(y,w, z) =
n∏
i=1

k∏
j=1

λ
zij
j

[
e−ηij (ηij)

yi /yi!
]zij ,

where ηij = E (yi | wi, zij) = exp
[
β0j + β1jm(wi) + 1

2
β2
1τ

2(wi)
]
, while m(wi) and

τ 2(wi) are the conditional expectation and variance of xi given wi, respectively.

Like the non-mixture setting, the conditional structural log-likelihood function

can be written as

`s(β,λ | y,w, z) =
n∑
i=1

k∑
j=1

zij log(λj) +
n∑
i=1

k∑
j=1

zij [yi log(ηij)− ηij − log (yi!)] .

Taking the partial derivative of `s(β,λ | y,w, z) with respect to λj, we can obtain

the structural estimator λ̂j by setting the score function to 0; i.e.,

Ssn(λj) =
n∑
i=1

(
zij
λj
− zik
λk

)
= 0, (4.19)

for j = 1, · · · , k − 1. The above yields λ̂j = 1
n

∑n
i=1 zij.

Taking the partial derivative with respect to βj, we get the score function of the

structural estimator β̂j:

Ssn(βj) =
n∑
i=1

k∑
j=1

zij
yi − ηij
ηij

∂ηi
∂βj

=
n∑
i=1

k∑
j=1

zij(yi − ηij)(1,m(wi) + β1jτ
2(wi))

T . (4.20)

By setting the score function equal to zero, we can numerically solve for the structural

estimator β̂sj for j = 1, · · · , k. We call these estimators the structural estimator.
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4.2.5 Approximated Maximum Likelihood Estimator

The most straightforward way to estimate the parameters is to maximize the true log-

likelihood function based on the conditional density of Y | W . In Subsection 4.1.4,

we introduced the approximated maximum likelihood for the non-mixture setting.

We now expand it to the mixture model.

Given Z = j, the conditional density of Yi given Wi = wi can be given by

fj(yi | wi, θjxi) =

∫ ∞
−∞

f(y | xi, θjxi)f(xi | wi)dxi

=
1√

2πτ 2(wi)

∫ ∞
−∞

exp
[
−eβ0j+β1jxi + yi(β0j + β1jxi)

]
exp

{
−(xi −m(wi))

2

2τ 2(wi)

}
dxi.

From Subsection 4.1.4, we can �nd the explicit expression of the density by the

approximation method when measurement error is small. Therefore, the conditional

density of the observed data is given by Y | W = w ∼
∑k

j=1 λjfj(yi | w, θjxi), and

the log-likelihood function for β = (βT1 , · · · ,βTk ) is

`AMLE(β) =
n∑
i=1

log

{
k∑
j=1

λjfj(yi | wi, θjxi)

}
. (4.21)

Once we have the expression of the log-likelihood function, we can obtain the ap-

proximated maximum likelihood estimator β̂AMLE, by �nding the maximizer of the

log-likelihood function given above in (4.21).

One thing to notice is that this estimator can only be used when measurement

error is small. When we have large measurement error, the approximating condition

cannot be reached, so the estimation may not be appropriate.

4.2.6 EM Algorithm

De�ne the vector of component indicators Zi = (Zi1, · · · ,Zik)T , where Zij is the

indicator random variable

Zij =

1, if observation (wi,yi) is from the jth component;

0, otherwise.
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Because of the mixture setting, the complete data {w,y, z} cannot be obtained di-

rectly. Thus, it is suggested to use an EM algorithm to �nd the maximum of the

log-likelihood functions proposed above for estimating the parameters.

Let ψ = (β,λ)T be the vector of parameters, we propose the following generalized

EM algorithm in order to solve for the maximum of the log-likelihood.

Algorithm 4.1 EM Algorithm for Mixtures-of-Poisson Regression

(a) Set the starting values of parameters as ψ(0) = (β(0),λ(0))T .

(b) (E-Step) Calculate component membership probabilities p(t+1)
ij s by the expecta-

tion of Zij, the weight of observation i belonging to the jth component:

p
(t+1)
ij = E[Zij | ψ(t), y] =

λ
(t)
j fj(yi | wi, zj(t))∑k

j=1 λ
(t)
j fj(yi | wi, zj(t))

,

for i in 1, · · · , n, j in 1, · · · , k.

(c) (M-Step) The maximizer for λj can be calculated by

λ
(t+1)
j =

1

n

n∑
i=1

p
(t+1)
ij .

The maximizer for βj is

β
(t+1)
j = arg max

β

n∑
i=1

p
(t+1)
ij log fj(yi | wi, zj(t)).

Therefore, the maximizer for βj is the solution of

0 =
∂`(β,λ)

∂βj
=

n∑
i=1

p
(t+1)
ij

∂ log fj(yi | wi, zj(t))
∂βj

.

(c) Iterate until a stopping criterion is attained. The �nal estimate obtained will be

denoted by ψ̂ =
(
β̂, λ̂

)T
.

For di�erent estimating methods, the conditional density function fj(yi | wi, zj(t))

are di�erent, according to the corresponding log-likelihood function. As we know, the

likelihood function is obtained by the product of density functions. We can then get

the single conditional density from the formulas given in the previous Subsections.

102



When using di�erent log-likelihood functions in an EM algorithm, we can calculate the

corrected score estimator, structural estimator, or the AMLE discussed in Subsections

4.2.3, 4.2.4 and 4.2.5, respectively.

4.3 Numerical Studies and Real Data Analyses

To see the behavior of our proposed methods, we conduct various simulation studies

in this section.

4.3.1 Simulated Data � number of components

Like mixtures-of-linear-regressions, the �rst thing we want to identify is the correct

number of components for the model. To test whether mixtures-of-Poisson regression

model can correctly select the number of components, we �rst conduct a simulation

study to compare the performance of di�erent methods for determining the correct

number of components using di�erent model selection criteria, including AIC, BIC,

cAIC and ICL.

Consider the simulated data with the 2-component mixture of Poisson regression

model

yi ∼ λe−θi1 (θi1)
yi /yi! + (1− λ)e−θi2 (θi2)

yi /yi!.

where θij = exp(xiβj) for j = 1, 2 with xi = (1, xi)
T and the explanatory variable

X is drawn from N(µ, σ2). Instead of observing the xis directly, the surrogate, wi, is

given by the classical measurement error model

wi = xi + ui,

where ui and xi are independent, ui follows a normal distribution with mean 0, and

U ∼ N(0, σ2
u) for i = 1, · · · , n.

We consider a sample with sample size n = 200 for 1000 replications, with two

di�erent settings: well-separated and moderately-separated cases. We will gen-

erate X ∼ N(5, 1) with λ = 0.3, for well-separated component, β1 = (2, 0.6)T

and β2 = (0.7, 0.3)T and for moderately-separated components, β1 = (1, 0.5)T and
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Figure 4.1: Scatterplots of simulated data from di�erent settings.

β2 = (1.2, 0.35)T . For each setting, we also add di�erent amounts of measurement

error, both σu = 0.1 and 0.5. Figure 4.1 shows the scatterplots of the simulated data

points from di�erent settings. The well-separated component model has two distinct

components that can be easily separated; while the moderately-separated component

model has two components with some part overlapped.

To see the behavior of model selection criteria for di�erent methods under di�erent

circumstances, we �t the data with simple a Poisson regression as well as mixtures-

of-Poisson regression with 2, 3 and 4 components, using the di�erent estimators. The

percentage of 1000 replications selecting the correct model is calculated for all criteria.

Table 4.1 gives the results of the di�erent methods and their performance.

Di�erent estimating methods all do a good job in correctly identifying the correct

number of components. When measurement error is small (σu = 0.1), the methods

can always select the correct number of components; when we increase the measure-

ment error, the model has more instability, and makes the ability to discern di�erent

components not as accurate. However, for most of the cases with a reasonable amount

of measurement error, our methods can do a good job in selecting the appropriate

model. Hence, we can move forward to estimate the parameters under the appropriate

assumption for the number of components.
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Table 4.1: Percentage of times di�erent methods selected the correct model.

Method σu AIC BIC ICL cAIC

Well-Separated Components

CS
0.1

100% 100% 100% 100%

Structural 100% 100% 100% 100%

CS
0.5

99.1% 99.4% 99.4% 99.4%

Structural 93.3% 94.3% 94.3% 94.4%

Moderately-Separated Components

CS
0.1

100% 100% 100% 100%

Structural 99.8% 100% 100% 100%

CS
0.5

96.6% 97.5% 97.5% 97.6%

Structural 96.7% 98.5% 98.5% 98.9%

4.3.2 Simulated Data � estimators using di�erent methods

We next assess the performance of estimating parameters using the di�erent methods.

We compare the MSEs of the parameters from our methods with the values from the

naïve method, which is the setting where we simply ignore measurement errors.

Suppose the response variable follows a 2 - component mixture of Poisson regres-

sion. We generate the i.i.d data (xi, yi, ηi), i = 1, · · · , n from the model

Yi ∼ λ1Poi {exp (β10 + β11Xi)}+ λ2Poi {exp (β20 + β21Xi)}

Wi = Xi + Ui,

where Ui ∼ N(0, 1), λ1 = λ2 = 0.5 are the mixing proportions, Xi ∼ N(5, 1). Let

βT1 = (β10, β11),β
T
2 = (β20, β21). Assume we know the correct number of components.

We �t the simulated data set using di�erent methods and record the values of esti-

mators. To study the e�ect of the measurement error uis on the proposed estimator,

we consider the following two cases, apply them to di�erent methods and compare

the behaviors of each method.

Case I: Well-separated Components

For the well-separated components case, suppose we have the parameters with values

βT1 = (1, 0.6),βT2 = (0.7, 0.5).
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Figure 4.2: Scatterplots and �tted lines for well-separated case with di�erent methods.

The left-hand side scatter plot in Figure 4.2 shows the relationship between the

true predictors and the response variables, with sample size n = 350. Since this

is a well-separated case, we can see two distinct component, which have noticeably

di�erent curvature. Because of the existence of measurement error, it is impossible

for us to observe the true predictors x directly; instead, we observe the surrogate

w = x + u. The right-hand side scatterplot shows the relationship between the

observed surrogate and the response variable. As we can see, the measurement error

makes it more challenging to distinguish di�erent components.

To see how the measurement error could a�ect the regression process, we �t the

observed data set {w,y} using the naïve method, the structural method, and the

corrected score method, the corresponding �tted lines are shown in Figure 4.2. Green

lines are the �tted lines from the naïve method. Comparing to the other two methods,

it performs worse when trying to correctly represent the true model with predictor

variables x. The two proposed methods, on the other hand, both capture the true

model pretty well, according to the scatterplot.
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Case II: Moderately-Separated Components

Now we consider a moderately-separated components case. We modify the parameter

values to

βT1 = (1, 0.5),βT2 = (1.2, 0.35).

According to the scatterplots, the di�erence between this case and the previous one is

the structure of the data points. For this case, all the data points demonstrate heavy

mixing, thus making the original data set more challenging for estimating a model.
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Figure 4.3: Scatterplots and �tted lines for moderately-separated case with di�erent
methods.

Similarly, Figure 4.3 shows the scatterplots and �tted lines for the moderately-

separated components case. Like the well-separated case, the methods being inves-

tigated have a better performance in estimating the parameter values; however, it

seems like there are some discrepancies between the two proposed methods. To in-

vestigate the di�erences, we conduct a thorough simulation study to see the behavior

of each method and compare them using some standard.
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Simulation and Results

For each simulation condition, we randomly generated B = 1000 datasets, each of size

n = 200 and 350. For each simulated dataset, we estimated the mixture of regression

parameters β1, β2 by both the structural method and the corrected score method.

The accuracy of the proposed method under di�erent conditions is assessed by the

mean squared error (MSE).

To compare the performance of the estimation methods versus the naïve method,

we report the relative e�ciency of the MSEs between the naïve method and the

proposed methods (corrected score and structural). This calculation involves simply

taking the ratio of the MSEs of the naïve method to that of the proposed estimators

for our simulated datasets.

Table 4.2: The MSEs and relative e�ciencies of naïve method vs. proposed methods.

n Method β10 β11 β20 β21

Well-Separated Components

200

Naïve vs. CS
0.793 0.053 0.249 0.005

(2.744) (1.838) (13.786) (13.354)

Naïve vs. Structural
0.482 0.016 0.715 0.009

(4.724) (5.386) (3.894) (6.889)

350

Naïve vs. CS
0.797 0.053 0.249 0.005

(3.039) (1.829) (11.316) (12.049)

Naïve vs. Structural
0.280 0.010 0.545 0.005

(8.809) (9.343) (4.942) (12.027)

Moderately-Separated Components

200

Naïve vs. CS
0.461 0.053 0.410 0.015

(4.545) (1.340) (2.921) (1.941)

Naïve vs. Structural
0.378 0.015 0.360 0.006

(5.687) (4.718) (3.128) (4.269)

350

Naïve vs. CS
0.466 0.051 0.400 0.015

(4.445) (1.443) (3.148) (1.963)

Naïve vs. Structural
0.242 0.008 0.199 0.003

(9.220) (8.300) (5.030) (7.965)

Table 4.2 shows the MSEs of the proposed methods, as well as the relative ef-

�ciencies (in parentheses). From the output, both the corrected score method and
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the structural method perform better than simply ignoring the measurement error,

which is consistent with the scatterplots.

Overall, the corrected score method is more sensitive to the structure of the data.

When the components demonstrate heavier mixing, the corrected score has less power

than the structural method, which has the assumption of the distribution of the

variables. The structural method appears more stable, despite the structure of the

data set. When increasing the sample size, the behavior of the corrected score method

has little improvement, however, the structural method has a much smaller MSE as

the sample size increases.

The corrected score method appears more accurate when dealing with case with

smaller parameter values, and the structural method depends heavily on the distri-

bution of the variables. There appears to always be a trade-o� to determine which

method is more appropriate under di�erent circumstances. When we have a small

sample size with a relatively well-separated data set, it is better to use the corrected

score method. When we have a larger sample size with more complex structure,

the structural method with the assumption of the distribution appears to be more

appropriate.

4.3.3 Approximated Maximum Likelihood Estimator

Unlike the structural estimator and the corrected score estimator, the approximated

maximum likelihood estimator is more sensitive to the measurement error; it can

only be applied when measurement error is not too large. When the measurement

error is not too large, the behavior of the AMLE may be unstable compared to

the naïve estimator. To see how the AMLE performs when measurement error is

incorporated, we also simulate data from two di�erent settings with di�erent sample

sizes, and add a small amount of measurement error to the true predictors. Like the

previous simulation study, we simulate data from two-component mixtures-of-Poisson

regressions with two settings: well-separated and moderately-separated cases. We

generate the predictors X ∼ N(10, 3) with λ = 0.3, for well-separated component,

β1 = (1, 0.16)T and β2 = (2,−0.2)T , and for moderately-separated components,
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β1 = (1, 0.16)T and β2 = (3,−0.11)T . For each data set generated, we add a small

amount of measurement error, σu = 0.25. To see how the sample size may a�ect the

estimating process, we consider di�erent sample sizes, both n = 200 or 350.
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Figure 4.4: Scatterplots and �tted lines from both AMLE method and naïve method,
under di�erent settings.

Figure 4.4 shows the scatter plots of the simulated data points from di�erent set-

tings, with �tted lines from both the AMLE method and the naïve method. The left-

hand �gure gives the well-separated component model, which has two distinct com-

ponents can be easily separated; while the moderately-separated component model

(right-hand side) has two components with several sections where the data from the

di�erent components overlap.

Since the measurement error is relatively small (σu = 0.25) compared to the

standard deviation of the true predictors (σx = 3), the di�erence between the naïve

method and the AMLE method is relatively small. Based on the scatterplots, the

curves plotted from the two estimation methods look similar, which means they have

returned similar results for both cases.

When measurement error is small, the e�ect of the surrogate becomes trivial,

however, for some cases that requires an accurate result, we still want to take mea-

surement error into consideration. To see the performance of the AMLE over the

naïve method, we also conduct a simulation study, with replicates B = 1000. For
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each replicate, we generate the sample from the previous setting, and similarly, com-

pare the MSEs of the naïve method over the AMLE method by reporting the relative

e�ciency.

Table 4.3: MSEs and relative e�ciency, naïve vs. AMLE.

n β10 β11 β20 β21

Well-Separated Components

200
0.022 1.62× 10−4 1.042 8.53× 10−4

(1.007) (1.006) (1.019) (1.008)

350
0.014 9.96× 10−5 1.018 4.93× 10−4

(1.001) (1.001) (1.019) (1.006)

Moderately-Separated Components

200
0.035 2.32× 10−4 3.957 1.48× 10−4

(1.002) (1.003) (1.005) (1.005)

350
0.017 1.11× 10−4 3.961 8.13× 10−5

(1.005) (1.006) (1.005) (1.001)

Table 4.3 shows the MSEs and relative e�ciencies of the naïve method versus the

AMLE method. When we increase the sample size for both cases, the MSEs become

smaller, as more data points provide more information about the structure of the

data. Overall, the estimators have very small MSEs, which means the estimators

perform very well in estimating those parameter values.

The relative e�ciencies are relatively close to 1, which means the AMLE has little

di�erence in estimating the parameters. One of the main reasons is that, the stan-

dard deviation of the measurement error is relatively small, and this results in only

moderate di�erences in the estimates. For example, the MSE of the well-separated

components case with sample size n = 350 for β11 is 9.96 × 10−5, which is already

quite small. However, if measurement error is known to be present, then it should be

taken into consideration during estimation.
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4.3.4 The Relationship between Pseudoephedrine Sales and Metham-

phetamine Labs � A Real Data Analysis

Illicit production of methamphetamine from the precursor chemical pseudoephedrine

(PSE) in clandestine laboratories (labs) has produced health risks to society. Al-

though states and the federal government have taken varying regulatory approaches

to control access to PSE, the illicit production of methamphetamine in clandestine

labs continues. The total number of domestic labs seized in the United States (US)

peaked in 2010 at 15,217 labs while the number of seized labs declined to 12,409 in

2013, and 9,306 in 2014.

A previous study has shown a strong statistical relationship between the sale of

PSE (grams/100 residents) in community pharmacies and methamphetamine lab in-

cidents reported in Kentucky in 2010, with counties recording larger sales of PSE sig-

ni�cantly associated with greater numbers of clandestine labs. The response variable

is lab count. The sale of PSE is a value that possibly su�ers from measurement error,

so we can investigate Poisson regression modeling in the presence of measurement er-

ror. To do the analysis, we utilize the data sets with PSE sales and methamphetamine

lab incidents in Kentucky, Illinois, and Louisiana in 2012.

Figure 4.5 shows the scatterplot of the data. There appears to be multiple re-

lationships that could underlie these data, that is, we can �t the model with the

mixtures-of-Poisson regression model. The PSE sales can be considered as a variable

su�ers from measurement error, so we also want to incorporate measurement error in

the data analysis.

To see the impact of measurement error, we add a measurement error N(0, 5)

to the predictor X, which is PSE in this case consistent with the type of analysis

performed in Yao and Song (2015) [119]. Denote by W the surrogate of PSE, Y the

corresponding response � lab count. Firstly, we want to determine the appropriate

number of components for this model. Similar to the simulation study, we �t the

data with simple Poisson regression, as well as mixtures-of-Poisson regression with

2, 3 and 4 components, using both corrected score method and structural method.
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Figure 4.5: The scatterplot of the original PSE sales data and the �tted regression
lines by di�erent methods when the measurement error is added.

Table 4.4 shows the corresponding values for di�erent model selection criteria, the

bold values are the model selected.

Table 4.4: Values of model selection criteria calculated by di�erent estimating meth-
ods.

Method k AIC BIC ICL cAIC

Corrected Score

1 3563.600 3570.912 3570.912 3572.912

2 1889.156 1907.436 1908.443 1912.436

3 1689.965 1719.213 1721.071 1727.213

4 1746.237 1786.453 1788.833 1797.453

Structural

1 3580.441 3587.753 3587.753 3589.753

2 1915.970 1934.235 1935.210 1939.235

3 1702.499 1731.746 1733.596 1739.746

4 1709.682 1749.898 1751.760 1760.898

The bold values represent the selected number of components, based on each

model selection criteria. For all the di�erent criteria, they select the same number

of components: k = 3. While the corrected score has a relatively smaller value for

k = 3, the structural method does not have such a big di�erence between 3 and

4 components. Meanwhile, we can look at the �tted lines of all di�erent number of

components, and the graph also shows that 3 components appears reasonable. Hence,
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we will focus on the mixtures-of-Poisson regression model with 3 components in the

next step.

We �t the data (W,Y ) with 3-component mixtures-of-Poisson regression model

using both the naïve method, which ignores the measurement error, and the proposed

methods, corrected score and structural estimators. For comparison, we also add an

oracle method which uses the (X, Y ) directly. We plot the �ts in Figure 4.6, as

expected, the three components �t well with the data and can re�ect some properties

of the data set. Because the measurement error is not too large, according to the

scatterplot, all the four methods have relatively close results, while the regression

lines estimated by the new methods are closer to the oracle method, and the naïve

estimate has some bias for both of the �tted lines.

0

50

100

150

200

0 50 100 150
pse

la
bc

ou
nt

Method
Corrected Score
Naive
Oracle
Structural

Figure 4.6: Scatterplot of meth lab data and the �tted lines from di�erent methods.

Table 4.5 reports the mixtures-of-Poisson regressions parameter estimates for all

methods described above, as well as the bootstrap SEs (in parentheses). The oracle

method is the closest to the true model, and both the structural and corrected score

methods have relatively similar results compared to the oracle method. The standard

errors of all the parameters are quite small, which also shows that our methods
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perform well in the setting above. Because we choose a measurement error that is

not very large, the di�erences between the naïve method and the proposed methods

are subtle. However, we can still see some discrepancies between the estimates, for

example the slope of the third component, β31, is 0.020 in the oracle method; however,

the naïve method has a value of 0.018, which is a little smaller. The di�erences

between the intercepts are slightly larger.

Table 4.5: Regression parameter estimates for the meth lab data with measurement
error.

β10 β11 β20 β21 β30 β31

Oracle
−1.428 0.024 1.100 0.016 2.372 0.020

(0.232) (0.002) (0.104) (0.001) (0.104) (0.001)

Naïve
−1.441 0.023 1.103 0.016 2.511 0.018

(0.244) (0.002) (0.096) (0.001) (0.095) (0.001)

Structural
−1.444 0.023 1.015 0.017 2.309 0.021

(0.237) (0.002) (0.101) (0.001) (0.101) (0.001)

Corrected Score
−1.541 0.022 0.895 0.018 2.292 0.020

(0.269) (0.003) (0.108) (0.001) (0.099) (0.001)

The original data points are collected from three di�erent states. We �t the

model with 3-component mixtures-of-Poisson regressions, however, the three com-

ponents cannot be interpreted simply by three di�erent states. Based on the data,

there are some states that basically follow the component with smaller outcomes, for

example, Louisiana, and some states have more data points with larger number of

lab counts. There are some potential reasons that may cause the data set to have

di�erent components:

• 3 di�erent components could be characterizing trends in counties that have

varying degrees of public policy on how to address the problem of meth labs.

• These could also represent the availability of support by local law enforcement.

For example, the curve capturing the larger number of lab counts could be

counties that generally have lower number of law enforcement o�cials to actively

capture the presence of meth labs. Thus, manufacturers of meth would be

naturally drawn to such a region.
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Another thing that can be addressed is, although in our model we assume each

component has measurement errors with the same standard deviations. In reality,

di�erent components and even di�erent subtle of the data (e.g., representing di�erent

counties) may have di�erent amounts of measurement error. This will make the model

even more complex. To maximize the utility of such a mixture model, one would have

to think of how best to characterize such scenarios before analyzing the real data set.

4.4 Summary

In this chapter, we focused on the mixtures-of-Poisson regression models with mea-

surement error in the predictors. We expand the classical measurement error methods

� corrected score method and structural method � into the mixture setting. We

also developed a density-based algorithm to compute the likelihood function, which

is called the approximated maximum likelihood method. We conducted a series of

simulations to see the e�ect of measurement error in the model, and identi�ed that

the AMLE performs well only when the measurement error is small, while the cor-

rected score estimator and the structural estimator have better performance under a

broader range of conditions.

The real data analysis demonstrated the relationship between the sales of PSE and

the number of lab seizures. According to the model selection criteria, it is appropriate

to use a 3-component mixture model, and we identi�ed several possible reasons that

might result in this structure. The PSE sales, which is measured by electronic devices,

may su�er from measurement error, hence, we also add a �xed amount of variability

to each predictor variable. We futher compared the behaviors of di�erent methods

under this situation. The results of the data analysis shows our methods perform quite

well under the existence of measurement error. This underscores the importance of

accounting for measurement error in such a real data analysis.
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Chapter 5 Summary and Future Work

In this Chapter, we brie�y summarize the content in this dissertation, and also discuss

some additional problems that can be solved in the future.

5.1 Summary

In this dissertation, we considered the case when mixtures-of-regression models are

observed with measurement error. The measurement error, an inaccuracy introduced

to the observed data set, may leads to the inconsistency of the estimator. We discuss

several di�erent mixtures-of-regression models that may su�er from measurement

error, introduce and develop some methods in estimating the parameters, and also

use them for some real data applications.

First, we discuss the mixtures-of-linear-regression model with measurement errors

in the response. We extend a weighted least squares estimator developed by Akri-

tas and Bershady to the mixture setting to adjust for the measurement error, and

compute the asymptotic variance of the estimators by Fisher information.

In the second part, we discuss the mixtures-of-linear-regression model with mea-

surement errors in the predictors. By incorporate measurement error in the predictor,

we built the new conditional density function, under certain assumption. Using this

estimating method, we construct hypothesis test on polynomial regression with mea-

surement error, and compute the standard errors of estimators by bootstrap method.

The performance of the method is tested by series of simulation studies and a real

data analysis.

Finally, we discussed di�erent estimating methods in Poisson regression with mea-

surement errors, including structural method, corrected score method and approxi-

mated likelihood estimation method. We expand these estimating methods to the

mixture setting, and compared each method by a series of tests. To test the perfor-

mance of the estimating methods, we generated data points with di�erent setting, �t
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the data using di�erent method and compare them using di�erent metric. We also

used them in a real data analysis. The results showed we should carefully choose the

appropriate method when dealing with di�erent problems.

5.2 Future Work

There are many di�erent models, tests, and analyses that can be explored for future

research. Future work can be done by generalizing our analysis to some other models,

identifying new and relevant tests for certain types of model structures. There are

some ideas that I identi�ed, during the development of the methods in the previous

chapters. The following ideas could be some directions that can be done in later

research:

1. It could be interesting to consider di�erent regression models having measure-

ment error present, for example, mixtures of logistic regression or mixtures of

negative binomial regression. Once we have gained the knowledge of the basic

mechanism of the model, we can easily solve for these di�erent types of models.

2. We can do further research by accessing measurement error in the count re-

sponse, in addition to the measurement error in the continuous response vari-

ables.

3. In Chapter 3, we highlighted a semi-parametric e�cient score method for mea-

surement error in the predictor problem, however, due to the lack of time, we

are unable to expand the theoretical result to the mixture setting. We hope

future work can be done with this problem, as it is an interesting topic for later

researchers.

4. Additional theoretical work can be done, for example, under mixture-of-regression

setting, some regularization rules no longer hold. We can try to prove the con-

sistency of the model under the mixture setting, given that it is already proved

in the non-mixture setting.
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Regarding the real data analyses we presented, there are always di�erent ways to in-

terpret the same data set. In this dissertation, due to the complexity with addressing

measurement error in a data set, some estimating methods cannot be used appro-

priately under certain conditions. We hope researchers �nd the utility of our work

and that these methods and tools help inform applications across numerous di�erent

�elds.
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