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ABSTRACT OF DISSERTATION

STATISTICAL METHODS FOR HANDLING INTENTIONAL INACCURATE RESPONDERS

In self-report data, participants who provide incorrect responses are known as intentional inaccu-
rate responders. This dissertation provides statistical analyses for address intentional inaccurate
responses in the data.
Previous work with adolescent self-report, labeled survey participants who intentionally provide in-
accurate answers as mischievous responders. This phenomenon also occurs in clinical research. For
example, pregnant women who smoke may report that they are nonsmokers. Our advantage is that
we do not solely have self-report answers and can verify responses with lab values. Currently, there
is no clear method for handling these intentional inaccurate respondents when it comes to making
statistical inferences.
We propose a using an EM algorithm to account for the intentional behavior while maintaining all
responses in the data. The performance of this model is evaluated using simulated data and real
data. The strengths and weaknesses of the EM algorithm approach will be demonstrated.
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Chapter 1

Introduction

Self-report data are often collected in epidemiology, psychology, pediatrics, and social and behav-
ioral science settings. Siggeirsdottir et al. (2007) Bernard et al. (1984) Sherry et al. (2007) Fan
et al. (2006) Self-report data are define as data collected from surveys containing questions that
ask respondents to report something about themselves. Chan (2009) Unfortunately, these data have
the potential to contain inaccurate responses due to ”carelessness, confusion, lack of efforts, or
intentional mischief” Fan et al. (2006) Sherry et al. (2007) Siggeirsdottir et al. (2007) Fan et al.
(2006) Robinson-Cimpian (2014). Sometimes Quality of Life and Patient Reported Outcomes can
only be collected through self-report; therefore, members of the health and medical fields frequently
use self-report data collection methods in order to analyze their research. In particular, surveys have
become widely accepted among professional and policy-making organizations Fan et al. (2006) Cor-
nell et al. (2012).
Although data quality has been a long time topic of surveys, response validity has been given greater
attention in survey literature. Bernard et al. (1984) Fan et al. (2006) Cornell et al. (2012) Robinson-
Cimpian (2014) Bernard et al Bernard et al. (1984) looked at respondent accuracy in the areas of
child care behavior, health seeking behavior, and communication and social interactions. They con-
cluded that in all the studies they examined, on average, about half of what a participant answers is
incorrect in some form. Respondents who answer inaccurately have been labeled as ”jokesters” Fan
et al. (2006) or ”mischievous responders” Robinson-Cimpian (2014). Here the inaccurate responders
are purposely giving answers that are opposite of the social norm. While it is possible to use data
responses to identify intentional inaccurate responders Robinson-Cimpian (2014), there is no clear
method for how to handle these respondents and the impact on statistical inferences.
The motivating clinical example of this problem of intentional inaccurate responses occurs in data
from a sample of pregnant women collected to determine if smoking status effected progesterone
levels. Pregnant women self-reported their smoking status as nonsmoker or smoker. Due to the
sensitive nature of asking about smoking status during pregnancy and that smoking while pregnant
is highly discourage by health care providers, participants may consciously minimize their actual
cigarette use. Klesges et al. (1995) As the adverse affects of smoking while pregnant are widely
known Lumley et al. (2009), higher levels of nonsmoking is expected. Here the inaccurate respon-
ders are purposely giving answers that are aligned with the social norm to not smoke while pregnant.
In this case, the intentional inaccurate responses are not given at random. There is a pattern to
the inaccuracy because these women are reporting answers that they think they should be giving,
instead of the truth. This, in turn, will bias the data towards nonsmoking and could lead to inac-
curate conclusions.
Previous strategies for accounting for intentional inaccurate responses include ignoring the inaccu-
racy and analyzing all self-report data or removing all inaccuracies from the dataset. Cornell et al.
(2012) Other methods involve using a weighted Probability-Based Index Robinson-Cimpian (2014)
as a covariate in regression. However, ignoring data imposes biased caused from incomplete data.
We propose extending incomplete data methodology to appropriately account for intentional inac-
curacies. These methods includes Heckman’s model and the EM algorithm for finite mixtures.
To compare strategies for handling intentional inaccurate responders, a simulation study was con-
ducted based on the motivating pregnant women example, which contains a continuous outcome
and a dichotomous exposure group. Simulations varied samples sizes, probabilities of an intentional
inaccurate responder, and coefficients of variation.
This dissertation focuses on a particular problem that involves self-report survey values and sug-
gests recommendations for accounting for the bias that occurs when these self-report values do not
represent the truth.
Chapter 2 provides a literature review of previous work. First the focus is on the current topic of
inaccurate responders and how they are handled when making statistical inferences. Then the focus
turns to common incomplete data statistical methods.

1



Chapter 3 provides a novel application of incomplete data methods to account for intentional in-
accurate responses. Assumptions of incomplete data will be revised and assumptions of inaccurate
data will be created. Recommendations are made for analyzing data with non-ignorable intentional
inaccurate responses using Heckman’s model and the EM algorithm.
Chapter 4 is a simulation study that compares current methods to the recommended methods from
Chapter 3.
Chapter 5 applies the current strategies and methods based on incomplete data applications to real
data that has identified intentional inaccurate responses. Data were collected from pregnant women,
in which, there are self-report and lab values indicating smoking status. This information is used
to show how the effect of smoking status on progesterone levels change when different methods are
considered.
Chapter 6 concludes the dissertation and discusses future work in this area.

2



Chapter 2

Literature Review

This chapter presents an overview of previous work analyzing self-report data, and methods of
handling non-ignorable incomplete data.

2.0.1 Mischievous Responders & Probability-Based Index

An issue that emerges from self-report data collection is the presence of respondents that do not an-
swer truthfully. These respondents have been previously named ”mischeivous responders.” Robinson-
Cimpian Robinson-Cimpian (2014) shows examples of the dangers these participants play in causing
incorrect conclusions from the data. Robinson-Cimpian’s paper focuses on adolescent self-report.
His mischievous responders are identified by selecting questions that are unrelated, but maybe corre-
lated for mischievous answers. For instance, researchers would not expect to find multiple adolescents
who are blind and deaf and in a gang and identify as LGBQ and parenting multiple children. In his
example, it would not be expected that adolescents identifying as LGBQ would report they are blind
more often than their heterosexual peers. This was the case in the self-report data that Robinson-
Cimpian was analyzing. For LGBQ-identified youths, 13.9% said they were blind; whereas, 2.9% of
heterosexual-identified answered this way.
The answer of yes to being blind and the answer of identifying as lesbian/gay are considered low-
frequency responses. These are responses that one would not expect the majority of adolescents to
select. In Robinson-Cimpian’s paper, a weighted Probability-Based Index, Pi, is calculated based on
the number of low-frequency responses. For instance, let M = 2. One individual gave a response that
10% of individuals provided for Item 1, and a response for Item 2 that 5% of individuals provided,
their value of Pi = 0.005. On the other hand, another individual gave responses for Item 1 and Item
2 that 90% and 95% of adolescents provided would have Pi = 0.855. Mischievous responders are
identified by having low Pi values. These Pi values were included in statistical models and used as
a covariate in the regression equations in order to adjusted for the mischievous responses.

2.0.2 Weighting

Sometimes, samples from self-report data do not represent that of the population. Calculating
weights to account for these biases in self-report data has been used by researchers in the past Skinner
et al. (1989).
When statisticians encounter survey data, they must figure out if sampling weights for the point
estimates should be used and how to estimate the variance of the weighted estimates. If weighting
is related to the estimate of interest and calculated correctly, it can reduce bias.
The sampling weight wi is the reciprocal of the probability of selection. The sum of the sample
weights equals the size of the population. Many statisticians disagree with the use of sampling
weights in regression analysis. Brewer and Mellor Brewer and Mellor (1973) looked into the issue
and divided statisticians into two groups, model-based and designed-based.

Model-Based Approach.— Let z1, ..., zN be a vector of auxiliary variables. Also, denote p(S) as a
simple random sampling design. In the model-based approach, inference is based with respect to the
sampling distribution of statistics over y1, ...,yN generated by the model, ξ Skinner et al. (1989).
Thus, for a single explanatory variable, the linear regression model is

Yi|xi = β0 + β1xi + εi

Here Yi is a random variable for the response and xi is an explanatory variable. β0 and β1 are
unknown parameters. The εi’s are ∼ iid N(0, σ2). The ordinary least squares (OLS) estimates of

3



the parameter β0 and β1 are obtained by solving normal equations

β̂1 =

∑n
i=1 xiyi −

(
∑n

i=1 xi)(
∑n

i=1 yi)

n∑n
i=1 x

2
i −

(
∑n

i=1 xi)2

n

β̂0 =

∑n
i=1 yi − β̂1

∑n
i=1 xi

n

For the model-based approach, bias, known as ξ−bias, is defined as the expectation of the difference
of β̂ and β. The ξ − bias of β̂ is

biasξ(β̂) = Eξ(β̂ − β)

In this instance, the finite population parameters β are random variables with respect to ξ, which is
why biasξ(β̂) in the above equation contains β within the parentheses. The estimator β is ξ−unbiased
if biasξ(β̂) = 0 Skinner et al. (1989). Consistent is defined as an estimator which converges in prob-
ability, as the sample size increases, to the parameter of which it is an estimator Brewer and Mellor
(1973).

Designed-Based Approach.— The Design-based approach estimates quantities from a finite pop-
ulation. Here the inference is based with respect to the sampling distribution of statistics over
repeated samples, S, generated by the sampling design p(S). The values y1, ...,yN , z1, ..., zN are
held fixed. Skinner et al. (1989). The finite population quantities of interest for regression are the

least squares coefficients for the population, B0 amd B1, that minimize
∑N
i=1(yi−B0−B1xi)

2 over
the entire finite population. We can estimate B0 and B1 using weights, w1, ..., wn,

B̂1 =

∑n
i=1 wixiyi −

(
∑n

i=1 wixi)(
∑n

i=1 wiyi)∑n
i=1 wi∑n

i=1 wix
2
i −

(
∑n

i=1 wixi)2∑n
i=1 wi

B̂0 =

∑n
i=1 wiyi − β̂1

∑n
i=1 wixi∑n

i=1 wi

For the designed-based approach, bias, known as p−bias, is defined in terms of the expectation over
all possible samples. The p− bias of a point estimator β̂ of β is

biasp(β̂) = Ep(β̂)− β

The estimator β is p − unbiased if biasp(β̂) = 0 Skinner et al. (1989). Consistent is defined as an
estimate that becomes exactly equal to the population value when n=N; in other words, when the
sample consists of the whole population Brewer and Mellor (1973).

Model-Based or Design-Based.— The Model-Based and Design-Based approaches align when the
probability of selection is part of the estimate. For example, using sampling weights from a stratified
sampling frame to estimate a mean. However, if the sampling weight is the inverse of the probability
of selection, but the estimate of interest is unrelated to the sampling weight, weighting will give a
biased estimate.

2.0.3 Self-Report data: Bias

Incomplete Data.— In this dissertation, self-report data that includes intentional inaccurate respon-
ders is considered to be incomplete. Part of the data does not represent the truth. Incomplete data
is usually used synonymously with missing data. With missing data, part of the data does not exist.
The section looks at current incomplete data methodology used for missing data purposes.
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Nonresponse is defined as the failure to measure some of the units in the selected sample Cochran
(2007). Nonresponse leads to sample selection bias. Sample selection bias arises because samples
measured are not randomly selected. The largest obstacle in accounting for selection bias is the
lack of sufficient information for statistical inference. Selection bias is controllable when the factors
that affect selection are measured on all study subjects. These factors can be controlled similar
to confounding variables or if one knows the joint distribution of these factors in the population.
In most studies, one can usually only control as appropriate and hope that no other factors have
influenced selection Greenland et al. (1998).
Other techniques, can account for the incomplete data. Methods to handle the selection bias caused
by an incomplete data factor in how the incompleteness depends on the response Y .

Intentional Inaccurate Response.— Intentional inaccurate responses are reponses where the par-
ticipant consciously answers incorrectly. Responses exist; however, the answers are not truthful.
Especially for smaller samples, these incorrect responses bias the data and could lead to incor-
rect conclusions. Once identified, intentional inaccurate responders are usually removed from the
data. Cornell et al. (2012) Unfortunately removing participants can lead to bias from nonresponse
since the data from these participants will not exist. Ideally one would identify the intentional inac-
curate responders and then account for the false responses within the statistical analysis to give an
unbiased estimate. This would allow one to control for the bias from untruthful responses without
acquiring nonresponse bias. To achieve this scenario, modified incomplete data tactics will be used.

2.0.4 Intentional Inaccurate Response: Incomplete Data

Incomplete Data Overview.— Let y = (yobs, yinc) be a data matrix partitioned into observed yobs
values and incomplete yinc values. We can denote the incomplete-data indicator as:
If y = (yij) an n×K matrix of n observations measured for K variables, then

Mij =

{
1, if yij incomplete
0, if yij observed

The incomplete-data mechanism is characterized by the conditional distribution of M given y,
f(M |y, θ), where θ denotes unknown parameters Little and Rubin (2014). Table 2.1 gives an expla-
nation of each data mechanism.

Table 2.1: Incomplete-Data Mechanisms

Incomplete-Data Mecha-
nism

Explanation

Incomplete Completely At Ran-
dom (MCAR)

If incompleteness does not depend on the values of the data y,
incomplete or observed: f(M |y, θ) = f(M |θ) for all y, θ

Incomplete At Random (MAR) If incompleteness depends only on the components yobs of y that
are observed, and not on the components that are incomplete:
f(M |y, θ) = f(M |yobs, θ) for all yinc, θ

Not Incomplete At Random
(NMAR)

If the distribution of M depends on the incomplete values in the
data matrix y.

Non-Ignorable Incomplete Data.— When the non-response of a participant has no relationship to
the incomplete values of the variables, this type of incomplete value is ignorable. However, some
data have incomplete values with a relationship to the non-response. In this case, the incomplete
data are non-ignorable. There is a pattern to the incomplete data that must be modeled. With
non-ignorable incomplete data models, the maximum likelihood estimation requires a model for the
incomplete-data mechanism and maximization of the full likelihood. Little and Rubin (2014) Below
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are examples of handling non-ignorable incomplete data.

Pattern-Mixture and Selection Models for Univariate Nonresponse.— Suppose that incomplete values
are confined to a single variable.
Let yi = (yi1, yi2), where yi1 is fully observed and random variable yi2 is observed for i = 1, ..., r and
incomplete for i = r + 1, ..., n.
Let Mi = Mi2 = 1 if yi2 is incomplete and Mi2 = 0 if yi2 is observed. Then the density of yobs and
M is:

F (yobs,M |θ) =

r∏
i=1

f(yi1, yi2|Mi2 = 0, θ)P (Mi2 = 0|θ)

n∏
i=r+1

f(yi1|Mi2 = 1, θ)P (Mi2 = 1|θ)

The basic difficulty is that there is no data to estimate the distribution
f(yi2|yi1,Mi2 = 1, θ) since all observations with Mi2 = 1 have yi2 incomplete. To make any headway,
the distribution of f(yi2|yi1,Mi2 = 1, θ) for nonrespondents must be related to the corresponding
distribution f(yi2|yi1,Mi2 = 0, θ) for respondents. Little and Rubin (2014)

Grouped Normal Data with Covariates.— Suppose hypothetical complete data are an independent
random sample (y1, ..., yn) from the normal distribution with a linear regression on fully observed
covariates x1, x2, ..., xp. That is, yi is normal with mean β0 +

∑p
k=1 βkxik and constant variance σ2.

Here yi is observed for i = 1, ..., r < n. The remaining n−r cases are grouped into J categories such
that the jth category contains values of yi known to lie between aj and bj . Observed data for these

n− r cases are counts mj of observations in the jth category for j = 1, ..., J ,
∑J
j=1mj = n− r. This

formation includes censored data, where aj > 0 and bj =∞, as well as situations where r = 0.
Let the incomplete-data indicator be

Mi =

{
1, if yi falls in the jth nonresponse category (aj < yi < bj) j = 1, ..., J
0, if yi is observed

The complete-data sufficient statistics are
∑
yi,
∑
yixik(k = 1, ..., p), and

∑
y2
i . Using the EM

algorithm, the E step computes

E(

r∑
i=1

yi|Yobs,M, θ = θ(t)) =

r∑
i=1

yi +

n∑
i=r+1

ŷ
(t)
i ,

E(

r∑
i=1

yixik|Yobs,M, θ = θ(t)) =

r∑
i=1

yixik +

n∑
i=r+1

ŷ
(t)
i xik, k = 1, ..., p,

E(

r∑
i=1

y2
i |Yobs,M, θ = θ(t)) =

r∑
i=1

y2
i +

n∑
i=r+1

(ŷ
(t)2
i + ŝ

(t)2
i ),

where θ = (β0, β1, ..., βp, σ
2), θ(t) = (β

(t)
0 , β

(t)
1 , ..., β

(t)
p , σ(t)2) is the current estimate of θ, ŷ

(t)
i =

µ
(t)
i + σ(t)δ

(t)
i , ŝ

(t)2
i = σ(t)2(1− γ(t)

i ), µ
(t)
i = β

(t)
0 +

∑p
k=1 β

(t)
k xik, and δ

(t)
i and γ

(t)
i are corrections for

the nonignorable nonresponse, which take the form

δ
(t)
i = − φ(d

(t)
i )− φ(c

(t)
i )

Φ(d
(t)
i )− Φ(c

(t)
i )

,
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γ
(t)
i =

δ
(t)2
i + d

(t)
i φ(d

(t)
i )− c(t)i φ(c

(t)
i )

Φ(d
(t)
i )− Φ(c

(t)
i )

,

where φ and Φ are the standard normal density and cumulative distribution function, and for units

i in the jth category (Mi = j or equivalently, aj < yi < bj), c
(t)
i =

aj−µ(t)
i

σ(t) and d
(t)
i =

bj−µ(t)
i

σ(t) . The
M step calculates the regression of yi on xi1, ..., xip using the expected values of the complete-data
sufficient statistics found in the E step. Little and Rubin (2014)

Censored Normal Data with Covariates - Tobit Model.— A special case of the grouped normal
data with covariates occurs when positive values of yi are fully recorded but negative values are
censored. These censored values can lie anywhere in the interval (−∞, 0). In the notation in the
above example, all observed yi are positive, J = 1, a1 = −∞, and b1 = 0. We have for censored

cases c
(t)
i = −∞, d(t)

i = −µ
(t)
i

σ(t) , δ
(t)
i = − φ(d

(t)
i )

Φ(d
(t)
i )

, γ
(t)
i = δ

(t)
i (δ

(t)
i +

µ
(t)
i

σ(t) ). Thus

ŷ
(t)
i = E(yi|θ(t), xi, yi ≤ 0) = µ

(t)
i − σ

(t)λ(−µ
(t)
i

σ(t)
),

where λ(z) = φ(z)
Φ(z) (the inverse of the Mills Ratio), and −σ(t)λ(−µ

(t)
i

σ(t) ) is the correction for censoring.

Substituting ML estimates of the parameters yields the predicted values

ŷ
(t)
i = E(yi|θ̂, xi, yi ≤ 0) = µ̂i − σ̂λ(− µ̂i

σ̂
),

for censored cases, where µ̂i = β̂0 +
∑p
k=1 β̂kxik. This model is sometimes called the Tobit model.

An interesting extension of this model contains an incompletely observed variable (y1) that has a
linear regression on covariates and is observed if and only if the value of another completely unob-
served variable (y2) exceeds a threshold, such as zero. Little and Rubin (2014)

Heckman’s Model.— Heckman’s Sample Selection Model was created to handle censored or truncated
dependent variables. Often, Heckman’s model is used to handle non-ignorable incomplete data to
control for sample selection biases that could arise from the existence of unobservable variables.
These unobservable variables determine the association of sample selection bias to a particular
response variable.
Consider the following equations:

yi2 = xi2β2 + εi2,

yi1 = xi1β1 + εi1 if yi2 > 0, and

yi1 = not observed if yi2 ≤ 0,

where yi1 is the random variable of interest. However, it is not observed under all conditions and these
conditions are specified by the dependent variable yi2. yi1 is observed only when the corresponding
value of yi2 is greater than 0. Without loss of generality, we can assume that out of a total of N
observations, the first i = 1, ..., r < N are complete. Here the yi1 values are known for them. The
first equation is referred to as the selection equation since it determines whether a certain response
is present in the survey or not.
The expectation for yi1 given the independent variables xi1 and that yi2 > 0.
E[yi1|xi1, yi2 > 0] = xi1β1 + E[εi1|εi2 > −xi2β2]
The dependent variable yi1 is incompletely observed, and yi2 is never observed. The independent
variable xi is completely observed. Heckman (1976) The conditional density f(yi|xi, θ) is given by(

yi1
yi2

)
∼ N2

[(
xi1β1

xi2β2

)
,

(
σ2

1 ρσ1

ρσ1 1

)]
.
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x10 ≡ 1 and x20 ≡ 1 are the constant terms. Also, εi1 and εi2 are distributed as(
εi1
εi2

)
∼ N2

[(
0
0

)
,

(
σ2

1 ρσ1

ρσ1 1

)]
.

Further f(Mi|xi, yi, θ) is given by

Mi1 =

{
1, if yi2 ≤ 0,
0, if yi2 > 0,

and Mi2 ≡ 1.

The second stage of Heckman’s model consists of calculating:

E[yi1|Mi1 = 0, xi1] = xi1β1 + E[εi1|Mi1 = 0] = xi1β1 + E[εi1|εi2 > −xi2β2]

We can express the expected value of εi1 conditioned on εi2 as

E[εi1|εi2 > −xi2β2] = ρσεi1σεi2

[
φ(xi2β2)

Φ(xi2β2)

]
where σεi1 and σεi2 are the variances from the OLS and probit models. Since σεi2 is unidentified,

it is set to 1. φ(xi2β2)
Φ(xi2β2) is the inverse Mills ratio, defined by the ratio of the density function of the

normal distribution, φ, to its cumulative distribution function, Φ. When incorporated in the second
step estimation of the response variable, this ratio serves as a control for potential biases arising
from intentional inaccurate responders. Let the inverse Mills ratio be λ, then we have

E[yi1|Mi1 = 0, xi1] = xi1β1 + ρσεi1λi

where ρ gives the covariance estimate of the unobserved effects on the indicator variable and the
response variable. If significant, this estimate indicates that sample selection is present.

Bivariate Normal Stochastic Censoring Model.— Suppose yi1 is incompletely observed, yi2 is never
observed, p covariates xi are fully observed, and for case i, f(yi|xi, θ) is specified by(

yi1
yi2

)
∼ N2

[(
xi1β1

xi2β2

)
,

(
σ2

1 ρσ1

ρσ1 1

)]
where the constant term (xi0 ≡ 1) and predictors (xi1, xi2) for case i, β1 and β2 are (p + 1) × 1
vectors of regression coefficient. Further, let Mi = (Mi1,Mi2), where Mij is the incomplete-data
indicator for yij ; f(Mi|xi, yi, θ) is specified by

Mi1 =

{
1, if yi2 ≤ 0,
0, if yi2 > 0,

and Mi2 ≡ 1.

Since yi2 is always incomplete, we can integrate it out of the model and omit Mi2. From the above
equations, the distribution of Mi1 given yi1 and xi is Bernoulli with probability of nonresponse

P (Mi1 = 1|yi1, xi) = P (yi2 ≤ 0|yi1, xi)

= 1− Φ

[
µi2 + ρσ−1

1 (yi1 − µi1)√
1− ρ2

]
,

where µi1 = xi1β1, µi2 = xi2β2. When ρ 6= 0 (that is y1 and y2 are correlated), this probability
is a monotonic function of the values yi1, which are sometimes incomplete, so the incomplete-data
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mechanism is non-igonorable. Little and Rubin (2014) This model was introduced by Heckman Heck-
man (1976) to describe selection of women into the labor force. The Tobit model of section 2.0.4 is
obtained when y1 = σ2y2. Two estimation procedures have been proposed for this model, ML and
the two-step method of Heckman. Heckman (1976) ML estimation by the EM algorithm for the case
where no constraints are placed on the coefficients β1, β2, with hypothetical complete data defined
as cases with both y1 and y2 completely observed. The complete-data sufficient statistics are then
{
∑
i yi1xij ,

∑
i yi2xij ,

∑
i yi1yi2,

∑
i y

2
i1,
∑
i y

2
i2} for j = 0, 1, ..., p. Since {xij} are fully observed, the

E step consists of replacing incomplete values of yi1, yi2, yi1yi2, y
2
i1, and y2

i2 by their expectations
given the parameters and the observed data. Properties of the bivariate normal distribution yield,
for cases with yi1 incomplete:

E[yi2|yi2 ≤ 0] = µi2 − λ(−µi2),

E[yi1|yi2 ≤ 0] = µi1 − ρσ1λ(−µi2),

E[y2
i2|yi2 ≤ 0] = 1 + µ2

i2 − µi2λ(−µi2),

E[y2
i1|yi2 ≤ 0] = µ2

i1 + σ2
1 − ρσ1λ(−µi2)(2µi1 − ρσ1µi2),

E[yi1yi2|yi2 ≤ 0] = µi1[µi2 − λ(−µi2)] + ρσ1,

and for cases with yi1 observed:

E[yi2|yi1, yi2 > 0] = µi2·1 +
√

1− ρ2λ(
µi2·1√
1− ρ2

),

E[y2
i2|yi1, yi2 > 0] = 1− ρ2 + µ2

i2·1 + µi2·1
√

1− ρ2λ(
µi2·1√
1− ρ2

),

where conditioning on xi and the parameters is implicit in these expressions, λ(·) is the inverse Mills
ratio, as defined earlier, and µi2·1 = µi + ρσ−1

1 (yi1 − µi1). Current values of the parameters are
substituted to yield estimates for the E step.
The M step consists of the following computations, performed with complete-data sufficient statistics
replaced by estimates for the E step:

1. Regress y2 on x, yielding coefficients β̂2 of the response equation.

2. Regress y1 on y2 and x, yielding coefficients δ̂ for y2 and β̂∗
1 for x, and residual variance σ̂2

1·2.

3. Set β̂1 = β̂∗
1 + δ̂β̂2, σ̂

2
1 = σ̂2

1·2 + δ̂2, and ρ̂ = δ̂
σ̂1
.

Maximum Likelihood from Incomplete Data via the EM Algorithm for Finite Mixtures.— Likelihood
theory based on the full likelihood for θ with non-ignorable data parallels that of ignorable nonre-
sponse. Little and Rubin (2014) However, if a large portion of the data is incomplete, convergence
to a maximum may be slow.
Suppose that an observable y is represented as n observations y = (y1, y2, ..., yn). Suppose further
that there exists a finite set of R states, and that each yi is associated with an unobserved state.
Thus, there exists an unobserved vector z = (z1, z2, ..., zn), where zi is the indicator vector of length
R whose components are all zero except for one equal to 1 indicating the unobserved state associated
with yi. Defining the complete data to be x = (y, z), Dempster et al Dempster et al. (1977) show
the theory for EM applies for f(x|θ).
One way to understand mixture components is to think first of the marginal distribution of the
indicators z, and then to specify the distribution of y given z. Assume that (z1, z2, ..., zn) are
independently and identically drawn from a density v(...|θ). Further assume there is a set of R den-
sities u(...|r, θ) for r = (1, 0, ..., 0), (0, 1, 0, ..., 0), (0, ..., 0, 1) such that the yi given zi are conditionally
independent with densities u(...|zi, θ). Finally denoting

U(y|θ) = (log u(yi|(1, 0, ..., 0), θ), log u(yi|(0, 1, ..., 0), θ), log u(yi, (0, 0, ..., 1)|θ))
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and

V(θ) = (log v((1, 0, ..., 0)|θ), log v((0, 1, ..., 0)|θ), log v((0, 0, ..., 1)|θ)),

we can express the complete-data log-likelihood as

log f(x|θ) =

n∑
i=1

zTi U(yi|θ) + zTi V(θ).

Since The complete-data likelihood is linear in the components of each zi, the E-step of the EM
algorithm requires us to estimate the components of zi given the observed y and the current fit-
ted parameters. These estimated components of zi are the current conditional probabilities that
yi belongs to each of the R states. In many examples, the θ parameters of u(...|θ) and v(...|θ) are
unrelated, so the first and second terms may be maximized separately. The M-step is then equivalent
to the complete-data maximization except that each observation yi contributes to the log-likelihood
associated with each of the R states, with weights given by the R estimated components of zi, and
the counts in the R states sum of the estimated components of the zi. Dempster et al. (1977)

SEM Algorithm - Obtaining Asymptotic Variance-Covariance Matrices Meng & Ru-
bin Meng and Rubin (1991) supplemented the EM algorithm with asymptotic variance-covariance
matrix for estimates. The variance-covariance matrix obtained by SEM is based on the second deriva-
tives of the observed-data log-likelihood and is asymptotically valid for inference. Let y = (yobs, yinc)
be a data matrix partitioned into observed (yobs) values and incomplete (yinc) values. Suppose a
model for the complete data y, with associated density f(y|θ), where θ = (θ1, ..., θd). The EM
algorithm defines a mapping θ →M(θ) from parameter space of θ, Θ, to itself such that

θ(t+1) = M(θ(t)), for t = 0, 1, ...

By Taylor series expansion in the neighborhood of θ∗,

θ(t+1) − θ∗ ≈ (θ(t) − θ∗)DM,

where

DM =

(
∂Mj(θ)

∂θi

) ∣∣∣
θ=θ∗

is the d×d Jacobian matrix for M(θ) = (M1(θ), ...,Md(θ)) evaluated at θ = θ∗. Once the complete-
data observed information matrix,

IO(θ|y) = −∂
2 log f(y|θ)
∂θ · ∂θ

is obtained the complete-data variance-covariance matrix can be found by taking the inverse of
IO(θ|y). Compute the expectation over the conditional distribution f(yinc|yobs, θ) evaluated at
θ = θ∗:

IOC = E[IO(θ|y)|yobs, θ]
∣∣∣
θ=θ∗

The matrix I−1
OC is important because the observed variance-covariance matrix, V, can be written

as a function of I−1
OC and DM , the matrix rate of convergence of EM. Thus,

V = I−1
OC + ∆V,

where

∆V = I−1
OCDM(I −DM)−1

is the increase in variance due to incomplete information, and I is the d× d identity matrix. Meng
and Rubin (1991)
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2.0.5 Summary

Currently for statistical inferences with intentional inaccurate responses, inaccurate responses are
ignored, removed, or a probability-based index is calculated and added to the model to adjust for
the bias. In order to provide unbiased estimates, inaccurate responses cannot be removed, but the
inaccuracy must be considered. In order to consider this inaccuracy, the incorrect responses could
be handled similarly to incomplete data. This dissertation will take incomplete data techniques, in
order to account for the non-ignorable inaccurate responses.
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Chapter 3

Analytical Approaches

The Probability-Based Index and each of the incomplete data techniques from Chapter 2 will be
discussed and applied to an intentional inaccurate response situation.
Consider a scenario of self-report data that includes a sensitive question that identifies a participant
as a smoker or nonsmoker. Let those participants who answered ”smoker” answered truthfully and
those participants who answered ”nonsmoker” were either truthful or intentionally inaccurate. As-
sume each participant had their blood analyzed to determine their progesterone level. The inaccurate
responders in the data have been identified.

3.0.6 Probability-Based Index

Applying this method to the intentional inaccurate responders example, a probability-based index
would be calculated for each participant based on a set of covariates. This probability-based index
would be included in the regression model along with the self-reported smoking status variable to
determine the effect of smoking on progesterone.

3.0.7 Non-ignorable Intentional Inaccurate Response Overview

Consider different levels of intentional inaccuracy. Let y = (yhon, yina) be a data matrix partitioned
into honest (yhon) values and inaccurate (yina) values. We can denote the inaccurate response data
indicator as:
If y = yij an n×K matrix of n observations measured for K variables, then

Iij =

{
1, if yij inaccurate
0, if yij honest

Looking at the complete data y and the inaccurate response data indicator matrix I = Iij , the
inaccurate response data mechanism is defined by the conditional distribution of I given y, f(I|y, θ),
where θ denotes the unknown parameters. Table 3.1 gives an explanation of each data mechanism.

Table 3.1: Inaccurate-Response Mechanisms

Inaccurate-Response Mech-
anism

Explanation

Inaccurate Completely At Ran-
dom (ICAR)

If inaccuracy does not depend on the values of the data y, inac-
curate or honest: f(I|y, θ) = f(I|θ) for all y, θ

Inaccurate At Random (IAR) If inaccuracy depends only on the components yhon of y that
are honest, and not on the components that are inaccurate:
f(I|y, θ) = f(I|yhon, θ) for all yina, θ

Not Inaccurate At Random
(NIAR)

If the distribution of I depends on the inaccurate values in the
data matrix y.

3.0.8 Non-Ignorable Inaccurate Data

With some datasets, the incorrect responses have a relationship to intentional behavior, similar to
incomplete values having a relationship to the non-response. In this case, the inaccurate responses
are non-ignorable. There is a pattern to the inaccurate responses that must be modeled. Since the
inaccurate responders are not inaccurate at random, the likelihood estimation needs a model for the
inaccurate-response mechanism and maximize the full likelihood. Below are examples of handling
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non-ignorable inaccurate responses.

3.0.9 Pattern-Mixture and Selection Models for Univariate Inaccurate Response

For an inaccurate response example, let J = 3 and yi be a smoking score assigned to each participant.
For i = 1, ..., r < n, yi are values from participants who were truthful about their smoking status
(those who claimed to be non-smokers were actually non-smokers and those who claimed to be
smokers were actually smokers). Let the inaccurate-response indicator

Ii =

{
0, if yi is from a truthful respondent
1, if yi falls in the jth inaccurate category (aj < yi < bj) j = 1, ..., J

In this illustration, Ii = 1 if yi falls into any of the three intervals: (−18,−16), (−16,−14), (−14,−12).
Presently, when J = 1, a1 = −18 and b1 = −16.

3.0.10 Censored Normal Data with Covariates - Tobit Model

Consider a partially honest variable y1 that has a linear regression on covariates and is honest if and
only if the value of another completely inaccurate variable y2 exceeds a threshold, such as -12. With
inaccurate responses, the above example can be used when values of y are fully honest but values
below −12 are censored. For instance, censored values will lie anywhere in the interval (−∞,−12).
All truthful yi are greater than −12, J = 1, a1 = − =∞, and b1 = −12.

3.0.11 Heckman’s Model

To compare Heckman’s model with inaccurate response, let yi1 be progesterone levels and yi2 be
smoking scores. The inaccurate-response indicator is

Ii1 =

{
1, if yi2 ≤ 0
0, if yi2 > 0

Ii2 ≡ 1.

Heckman’s model is widely used by social scientists and the convenience of Heckman’s model is that
a procedure in SAS already exists, proc qlim, and can be calculated easily. However, the selection
score must be continuous in order to use Heckman’s model. Also, if the selection equation does not
capture the inaccurate responses, parameter estimates for the OLS equation will be biased.

3.0.12 Bivariate Normal Stochastic Censoring Model

For the intentional inaccurate response example, use the example from Heckman’s model and solve
using the EM algorithm.

3.0.13 Maximum Likelihood from Partial Inaccurate Data via the EM Algorithm

Assume intentional inaccurate responders have a different distribution than the participants who
told the truth. The expectation of the smokers and nonsmokers are maximized iteratively until the
estimate becomes stable at 1e − 7. To accomplish this, the intentional inaccurate responses are
substituted by estimated values. Then mean and variance of the response variable are estimated
for the smokers and the nonsmokers, followed by an re-estimation of the intentional inaccurate
responses assuming the new mean and variance estimates are correct. The re-estimating continues
until convergence is met. The EM algorithm is not filling in values for the intentional inaccurate
responses, but using the functions of the intentional inaccurate responses in the complete-data log-
likelihood. Little and Rubin (2014)
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3.0.14 Summary

A variety of methods for handling inaccurate responders have been proposed. Below, Table 3.2
summarizes when to use each method.

Table 3.2: Handling Inaccurate-Response Summary

Inaccurate-Response
Method

Proposed When to Use

Pattern-Mixture and Selection
Models for Univariate Nonre-
sponse

Use when inaccurate responders have a different distribution than
truthful responders for a single dependent variable.

Grouped Normal Data with Co-
variates

Use when inaccurate responses fall into specific interval values for
a dependent variable.

Censored Normal Data with Co-
variates

Use when inaccurate responses fall above or below a certain value,
so that, the inaccurate responses can be censored for a dependent
variable.

Heckman’s Model Use when inaccurate responses for a dependent variable fall above
or below a certain value, and use this selection criteria to choose
responses used to analyze another dependent variable. Parameters
are estimated using maximum likelihood.

Bivariate Normal Stochastic
Censoring Model

Use when inaccurate responses for a dependent variable fall above
or below a certain value, and use this selection criteria to choose
responses used to analyze another dependent variable. Parameter
are estimated using EM algorithm.
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Chapter 4

Simulation Study

Self-report data are often collected in epidemiology, psychology, pediatrics, and social and behav-
ioral science settings. Siggeirsdottir et al. (2007) Bernard et al. (1984) Sherry et al. (2007) Fan et al.
(2006) Self-report data are define as data collected from surveys containing questions that ask re-
spondents to report something about themselves. Chan (2009) Unfortunately, these data have the
potential to contain inaccurate responses due to ’carelessness, confusion, lack of efforts, or inten-
tional mischief’ Fan et al. (2006). This issue has been seen in multiple discipliness Sherry et al.
(2007) Siggeirsdottir et al. (2007) Fan et al. (2006) Robinson-Cimpian (2014). Sometimes Quality of
Life and Patient Reported Outcomes can only be collected through surveys; therefore, members of
the health and medical fields frequently use self-report data collection methods in order to analyze
their research. In particular, surveys have become widely accepted among professional and policy-
making organizations Fan et al. (2006) Cornell et al. (2012).
Although data quality has been a long time topic of surveys, response validity has been giver greater
attention in survey literature. Bernard et al. (1984) Fan et al. (2006) Cornell et al. (2012) Robinson-
Cimpian (2014) Bernard et al Bernard et al. (1984) looked at respondent accuracy in the areas of
child care behavior, health seeking behavior, and communication and social interactions. They con-
cluded that in all the studies they examined, on average, about half of what a participant answers
is incorrect in some form.
Respondents who answer inaccurately have been labeled as ’joksters’ Fan et al. (2006) or ’mischievous
responders’ Robinson-Cimpian (2014). While it is possible to use data responses to identify inten-
tional inaccurate responders Robinson-Cimpian (2014), there is no clear method for how to handle
these respondents and the impact on statistical inferences.
The motivating clinical example of intentional inaccurate responses occurs in data using a sample
of pregnant women to determine if smoking status effects progesterone levels. Pregnant women self-
report their smoking status as nonsmoker or smoker. Due to the sensitive nature of asking about
smoking status during pregnancy and that smoking while pregnant is highly discourage by health
care providers, participants may consciously minimize their actual cigarette use. Klesges et al. (1995)
As the adverse affects of smoking while pregnant are widely known Lumley et al. (2009), higher lev-
els of nonsmoking is expected. In this case, the intentional inaccurate responses are not given at
random. There is a pattern to the inaccuracy. This, in turn, will bias the data towards nonsmoking
and could lead to inaccurate conclusions.
Previous startegies for accounting for intentional inaccurate responses included ignoring the inaccu-
racy and analyzing all self-report data or removing all inaccuracies from the dataset. Cornell et al.
(2012) Other methods involve using a Probability-Based Index Robinson-Cimpian (2014) as a co-
variate in regression. We propose extending incomplete data methodology to appropriately account
for intentional inaccuracies. These methods includes Heckman’s model and the EM algorithm for
finite mixtures.
To compare strategies for handling intentional inaccurate responders, a simulation study was con-
ducted based the motivating pregnant women example. The simulations were ran with varying
samples sizes, probabilities of an intentional inaccurate responder, and coefficients of variation.
This chapter is structured as follows. Section 2 describes current and proposed methods for han-
dling intentional inaccurate responders in statistical analyses. Section 3 reports the results from the
simulation study. Section 4 provides a conclusion and general discussion of appropriate usage of the
EM algorithm.

4.0.15 Motivating Example

Determining Smoking Status.— Data were collected to better understand prenatal passive smoke
exposure and birth outcomes. Participants self-reported their smoking status by answering the ques-
tion ’Do you currently smoke cigarettes or use smokeless tobacco (loose leaf, dip, chew, snuff) even
just once in a while?’. Based on their self-report response to this questions, participants were labeled
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as smokers or nonsmokers. Besides their self-reported answers from the survey, participants agreed
to supply a urine sample. Smoking was confirmed by urine cotinine using NicAlertTM strips. Ac-
cording to NicAlertTM , lab values ranged from 0 to 6. Level 3 or higher (level 4, 5, or 6) indicated
use of tobacco products, level 0 indicated no detectable level of cotinine or tobacco product use, and
levels 1 and 2 indicated no use of tobacco products. Based on these classifications, a participant
whose NicAlertTM value was 0-2 was considered a non-smoker and a participant whose NicAlertTM

value was 3-6 was considered a smoker. From these lab values, participants were labels as smokers
or nonsmokers.
Comparing the self-report values to the lab classification suggested there were intentional inaccu-
rate responders in the data, Table 4.1. Of the women who claimed to be nonsmokers, 89(89.9%)
were nonsmokers, but 10(10.1%) of the women were actually smokers. Because the self-report and
lab values did not result in classification agreement, these 10 women were considered as intentional
inaccurate responders.

Table 4.1: Accuracy of Smoking Status

Self-Report Lab Value
Frequency Non-Smoker Smoker Total
Non-Smoker 89 10 99
Smoker 0 9 9
Total 89 19 108

Question of Interest.— Leaving the intentional inaccurate responses in the data, removing them, or
adjusting for them in some way may affect how the self-report smoking status predicts progesterone
level. This chapter examines the impact of intentional inaccurate responders on the relationship be-
tween smoking status and progesterone level. To answer this question, a variety of methods will be
engaged. First, traditional linear regressions are run, followed by proposed methods to account for
intentional inaccurate responders, such as, probability-based index, Heckman’s model, and the EM
algorithm. All analyses were complete using R 3.2.2 (R Core Team, Vienna, Austria). Significance
is defined as p < 0.05.

4.0.16 Design of Simulation Study

Data were simulated to represent the true smokers, the true nonsmokers, and the intentional in-
accurate nonsmokers. In the smoking exposure and birth outcomes data, there were close to 110
participants and of the 99 self-reported nonsmokers, about 10% were inaccurate. Using sampling
with replacement, 1000 simulations of sample sizes of 55, 110, 550, and 1100 each with the probabil-
ity of an inaccurate responder of .10, .20, and .40, and coefficients of variation of 0.3 and 23.3. 1000
simulations was found to be sufficient in determining the effect of intentional inaccurate respon-
ders. Burton et al. (2006) Sample size of 110 was based on the motivating example. Sample sizes
were decrease and increase to compare sample size effect on the varying models. Probabilities were
increased from 0.10 to 0.40 to see the methods performance under increased probability of inaccurate
response. In order to determine if models were sensitive to variability, small and large coefficients
of variation were simulated. Independent datasets were created in each simulation. Results from
methods using only self-report values were compared with the lab values to examine the bias and
variability of each statistical method.
Progesterone levels were assumed to come from a normal distribution. Since the inaccurate non-
smokers and true nonsmokers appeared to come from 2 different normal distributions, the self-report
nonsmoker values were generated using a pattern mixture of normal distributions. The smokers
were simulated so that their progesterone values came from a N (40, 4) and N (40, 325). The inaccu-
rate nonsmokers had their progesterone levels simulated from N (50, 5) and N (50, 350), and honest
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Table 4.2: Simulation Design - *Small CV is 0.3 and large CV is 23.3

Sample Size Probability of Intentional Inaccurate Response CV*
55 0.10 Small

Large
0.20 Small

Large
0.40 Small

Large
110 0.10 Small

Large
0.20 Small

Large
0.40 Small

Large
550 0.10 Small

Large
0.20 Small

Large
0.40 Small

Large
1100 0.10 Small

Large
0.20 Small

Large
0.40 Small

Large

nonsmokers from N (60, 6) and N (60, 375). The first set of normal distributions in each grouping
represent a small CV and the second set represents a large CV. Table 4.2 shows the simulation design.

4.0.17 Intentional Inaccurate Response - Current Methods

A linear regression was run using the lab values to determine if smoking status predicted proges-
terone level. This model represents the truth and is used as the basis of comparison for all other
models, current and proposed.
First current method, inaccurate responses are ignored and all the self-report values are analyzed.
Here, a linear regression using all the self-report smoking status values to predict progesterone level
was employed. The second current method consists of identifying and removing inaccurate responses
from the data before analysis Cornell et al. (2012). Self-report values with the inaccurate responses
removed were used as an independent variable to predict progesterone level.

4.0.18 Intentional Inaccurate Response - Proposed Methods

Intentional inaccurat responses can be accounted for similarly as incomplete data. These inaccu-
rate responses are not due to a data mistake or carelessness, which might be considered random
inaccuracy. Here participants are purposefully selecting the incorrect response. Since intentional
inaccurate responses have a relationship to the self-report smoking status, this is comparable to
incomplete values having a relationship to the non-response. Non-ignorable incomplete-data mod-
els are models where data are not incomplete at random and the incomplete data are modeled.
Likewise, the intentional inaccurate data must be modeled since the data are not inaccurate at ran-
dom. Three alternative methods are proposed for accounting for intentional inaccurate responses:
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Probability-Based Index, Heckman’s model, and the EM algorithm.

Probability-Based Index.— The probability-based index was introduced by Robinson-Cimpian in
2014 Robinson-Cimpian (2014). In his paper, he used the screener index as a way to measure the
amount of low-frequency responses on screener items. This measurement was similar to a weight
that was included as a covariate in his model to account for intentional inaccurate responders.
With the simulated data, the probability-based index was used to measure the amount of inconsis-
tency with the self-report smoking status. This method was run two different ways. The first uses
a probability-based index that does not capture the inaccurate responses well. The second index
was created so that those participants who told the truth were given more weight than those who
were inaccurate. Probability-Based Index values were calculated for each participant and were used
as a covariate in the regression equation predicting progesterone level in order to adjusted for the
inaccurate responses.

Heckman’s Model.— Heckman’s Sample Selection Model was created to handle censored or truncated
dependent variables and is often used to handle non-ignorable incomplete data. With the simulated
data, Heckman’s model is used to control for biases that could appear from the existence of inaccurate
responses. Heckman’s Model is a two-step method. Consider the following equations.

yi1 = xi1β1 + εi1,

yi2 = xi2β2 + εi2.

In the first step, which involves the selection equation, a dichotomous variable is defined to indicate
which group the participant is categorized:

yi2 = xi2β2 + εi2

yi2∗ =

{
1, if yi2 ≥ 0
0, if yi2 < 0,

where yi2 is a smoking score, yi2∗ is an indicator for truth status, the xi2 are the explanatory vari-
ables of the smoking score, β2 is a vector of parameter estimates, and εi2 is an error term having
a standard normal distribution. The first stage estimates β2 using the probit maximum likelihood
method. The second stage involves estimating an OLS regression of the response variable, yi1, con-
ditional on yi2∗ and xi1. Vance and Buchheim (2005) Therefore,

E[yi1|yi2∗ = 1, xi1] = xi1β1 + E[εi1|yi2∗ = 1] = xi1β1 + E[εi1|εi2 ≥ −xi2β2]

where yi1 is the progesterone levels and xi1 is the self-report smoking status variable of yi1, β1 is a
vector of parameter estimates, and εi1 is an error term having a standard normal distribution. Let
εi1 and εi2 be correlated by ρ. Now,

E[yi1|yi2∗ = 1, xi1] = xi1β1 + ρσ1λi

where σ1 are the error variances of the OLS model, λi is the inverse Mills ratio such that

λi =
φ(xi2β2)

Φ(xi2β2)

where φ(xi2β2)
Φ(xi2β2) is defined by the ratio of the density function of the normal distribution, φ, to its

cumulative distribution function, Φ.
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Participants were identified as truthful or inaccurate and a smoking score was created. This smok-
ing score, yi2, was a continuous variable and was the sum of each participants cotinine level and
intentional inaccurate responder status. Heckman’s model was run predicting the smoking score
two ways. The first yi2 model did not predict smoking status well, but the second did. The cutoff
value for yi2∗ was chosen so that the majority of predicted yi2 values were appropriately identifying
participants as truthful or intentionally inaccurate. Once xi2 were found, these variables were used
in the second step of Heckman’s model to estimate λi.

The EM Algorithm.— Dempster et al Dempster et al. (1977) introduced the EM algorithm for
finite mixtures. Little & Rubin Little and Rubin (2014) used the EM algorithm to account for
non-ignorable incomplete data. Non-ignorable incomplete data models are models where data are
not incomplete at random. This means that the maximum likelihood estimation requires a model
for the incomplete data.
The smoking status example, the inaccurate responses are non-ignorable. There is a pattern to
the inaccurate responses that must be modeled. Since the intentional inaccurate responders are not
inaccurate at random, the likelihood estimation needs to model the intentional inaccurate responses.
The simulated data are instances when intentional inaccurate responders’ progesterone levels seem
to have a different distribution than truthful responders; therefore, the EM algorithm for finite
mixtures was used. Consider two states for the self-reported smoking status. For example,

z1 = (1, 0)→ intentionally inaccurate

z2 = (0, 1)→ honest

Assume that (z1, z2) are independently and identically drawn from a density Bern(r|π) for r =
(1, 0), (0, 1) where there is a set of R densities u(yi|(r, θ)). Let y be continuous measurements and n
be the number of participants to self-report as nonsmokers. Using the EM methods from Dempster
et al Dempster et al. (1977),

zi ∼ Bern(r|π)

yi|zi ∼ u(yi|r, θ)
U(y|θ) = (log u(yi|(1, 0), θ), log u(yi|(0, 1), θ))

V (π) = (logBern((1, 0)|π), logBern((0, 1)|π))

Now, the log-likelihood for self-reported nonsmokers is

log fNS(x|θ, π) =

n∑
i=1

zTi U(yi|θ) + zTi V (π)

Therefore, let m be the number of self-reported smokers and y be progesterone levels. Assume
the yi are independently and identically drawn from a density w(...|θ). Let

W (y|θ) = logw(y|θ).

Now, the log-likelihood for the self-reported smokers is

log fS(x|θ) =

m∑
j=1

W (yi|θ).

Thus, the complete data log-likelihood is
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log f(x|θ, π) =

m∑
j=1

W (yi|θ) +

n∑
i=1

zTi U(yi|θ) + zTi V (π).

Using this complete data log-likelihood, the EM algorithm was used to calculate an estimate of
the true mean for smokers (µ0), the true mean for nonsmokers (µ1), and the probability of being a
intentional inaccurate responder (π).
Meng & Rubin Meng and Rubin (1991) supplemented the EM algorithm with asymptotic variance-
covariance matrix for estimates. All standard errors from the EM algorithm were calculated using
the SEM.
In this approach, zi ∼ Bern(r|π); however, it can be extended to a logistic distribution that esti-
mates more parameters.
The expectation of the smokers and nonsmokers were maximized iteratively until the estimate be-
came stable at 1e− 7.

4.0.19 Results

Results from the simulations can be seen in Table 4.3, Table 4.4, Table 4.5, and Table 4.6. The
average estimated difference in progesterone level difference between smokers and nonsmokers for
lab values, and the 95% confidence intervals represent the truth.

4.0.20 Current Methods

Ignoring the intentional inaccurate responses and using all the self-report values consistently showed
a larger progesterone difference among smokers and nonsmokers. This is probably due to the fact
the average progesterone levels for smokers seemed to be very low, and average progesterone for
non-smokers was a little lower than it should be, resulting in a larger difference. Of the 24 sim-
ulations, only 9 contained the lab value estimate in the confidence interval. However, 6 of those
confidence intervals, when sample size were 55 and 110 with large CV, were quite wide so there was
no surprise that the lab value estimates were contained in them. Only when the CV was large did
the confidence intervals for lab values and self-report values have any overlap.
When removing the inaccurate self-report values, the estimated progesterone difference was also
always larger than the lab values estimate. This is not surprising, since the smokers average pro-
gesterone was very low and the non-smokers average progesterone was very high. As a result, the
average differnce was bigger. In 9 simulations did the lab value estimate appear in the inaccurate
response removed confidence intervals, and only 10 times did the confidence intervals show any over-
lap. Once again, when sample sizes were 55 and 110 with large CV, there were 6 large confidence
intervals, see Table 4.3.
As far as determining statistical significance, self-report values were consistent in finding statistical
significance, except for when the sample size was 55 or 110 with large CV. For removing inaccurate
response, this analysis underreported significance similarly to self-report values; however, removing
inaccurate responses did over-report with the sample size was 110, probability of intentional inac-
curate response was 0.10, and large CV. This can be seen in Table 4.7.

4.0.21 Probability-Based Index

For the first version of the probability-based index method, the estimated progesterone difference
between smokers and nonsmokers was positive with large confidence intervals when the probability
of an inaccurate response was high. In fact, for version 1, the confidence intervals contained positive
estimates whenever the CV was large and the sample size was small, 55 and 110. Since version
1 was specifically created to poorly identify inaccurate responders, the result gave higher average
progesterone levels to smokers.
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For version 2, typically greater differences were found compared to lab values. Here, inaccurate
responders had very low Probability-Based Indices, giving more weight to the truthful responders
and resulting in larger differences. There were 7 simulations where the lab values estimate were
contained in the probability-based index confidence intervals, all were large CVs and primarily with
smaller sample sizes. Of these 7, 6 of the confidence intervals were very wide. Confidence intervals
overlapped with lab value confidence intervals in 10 of the simulations.
Also, the probability based index verion 1 consistently underreported significance compare to the
lab values; however, version 2 only underreported 4 times when the CV was large and over-reported
when the sample size was 110, probability of intentional inaccurate response was 0.10, and large CV.
See Table 4.4 and Table 4.7, respectively.

4.0.22 Heckman’s Model

The results from Heckman’s model can be seen in Table 4.5. Using both versions of Heckman’s
model to analyze the self-report data, the estimated progesterone differences among self-reported
smokers and nonsmokers were consistently larger than the lab value estimates. Once again, version
1 was specifically created to poorly identify inaccurate responses. As a result, version 1 estimated a
difference too large. Version 2 did have larger differences; however, the estimates were not as biased
as the previous methods. In both versions, when the CV was large and the sample size was 55, the
confidence intervals contained positive estimates and were wide. Of the 24 simulations, version 1
contained the lab value estimate in the confidence interval 9 times; whereas, version 2 contained the
lab estimate 16 times.
In Table 4.8, compared to the lab values, both versions of Heckman’s model underreported statistical
significance when the CV is large and the sample size is either 55 or 110.

4.0.23 The EM Algorithm

The estimate for average difference in progesterone levels using lab values appeared in every EM
algorithm confidence interval when sample sizes were 55 and 110. Lab value estimates also appeared
with confidence intervals when the sample size was 550 and the probability of an intentional in-
accurate response was 0.40. All lab value confidence intervals overlapped with the EM algorithm
confidence intervals, Table 4.6. The EM algorithm consistently underreported statistical significance
when compared to the lab values, especially when the CVs were large and sample sizes were small,
see Table 4.8.
The EM algorithm is know to have convergence issues, see Table 4.9. Clearly, when the CV is large
and the probability of inaccurate response is high, the EM algorithm struggles.
The EM algorithm also estimates the probability of an intentional inaccurate response. When the
CV is small, the EM algorithm consistently gives estimates close to that of the true probability.
However, when the CV is large, the EM algorithm is not as strong, especially with the probability
of an intentional inaccurate response is low, see Table 4.10.

4.0.24 Simulation Graphs

Figures 4.1 - 4.24 show the distribution of the µS − µNS estimates for all of the methods in each
simulation. The bold red line represents the lab value estimate. The EM algorithm distribution is
consistently within the lab value confidence interval.
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Figures 4.1 - 4.24 show the distribution of the µS − µNS estimates for all of the methods in
each simulation. The bold red line represents the lab value estimate and the surrounding red lines
represent the confidence interval about the lab value estimate. The EM algorithm distribution is
consistently within the lab value confidence interval.

4.0.25 Conclusion

Often, lab values are not collected and researchers must rely on information from self-report values.
This simulation study shows the dangers of not treating intentional inaccurate responders carefully
in self-report data analysis.
When intentional inaccurate responses are ignored and all the self-report data is analyzed, the esti-
mated progesterone difference is not close to the truth when CVs are small, no matter the sample
size or probability of inaccurate response. Using this method would cause a conclusion of a larger
difference in progesterone than that of the truth.
If investigators chose to ignore the noningorable inaccurate data by removing the intentional inac-
curate responses, once again, the difference of progesterone levels were overestimated. The precision
of the this method became worse as the sample size increased.
The concern for the probability-based index method is the discrepancy in estimates depending upon
the calculation of the index. Version 1 represents a model using a covariate that does not capture the
inaccurate responses well. Table 4.4 shows reverse conclusions when the probability of inaccurate
response is high. This could lead to wildly incorrect conclusions. Version 2 represents a model using
a covariate the does explain the intentional inaccuracies. Version 2 of the probability-based index
ability to estimate progesterone differences is comparable to the current methods.
Heckman’s model has a similar situation to the probability-index method. In version 1, the inverse
mills ratio calculated from xi2β2 in the selection equation did not account very well for the inten-
tional inaccurate responders. Every simulation in which the CV was small, version 1 confidence
intervals did not contain the lab value estimate. Version 2 confidence intervals contained the lab
value estimate more often. Both versions; however, had very large confidence intervals when the
sample size was 55 and a large CV.
Of all the methods, the EM algorithm provided the closest estimation to the lab value. The success
of the EM algorithm depends on the CV for larger sample sizes, 550 and 1100. It is documented that
EM algorithm estimates are not as precise when component densities in the mixture are not well
separated. Redner and Walker (1984) It is of no surprise that the EM algorithm performs better with
small CVs. Even with large CVs; however, the EM algorithm and lab value confidence intervals still
overlapped. This did not change with sample size or probability of intentional inaccurate response.
In conclusion, as long as the probability of intentional inaccurate response is low, the EM algorithm
is an overall better method for estimating the difference in progesterone levels between smokers and
nonsmokers no matter the sample size or CV.
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Chapter 5

Application

Smoking prevalence among pregnant women is usually recorded by self-report. Cnattingius (2004)
Due to the sensitive nature of asking about smoking status during pregnancy, participants may
consciously minimize their actual cigarette use Klesges et al. (1995). Since smoking status can now be
validated using biochemical markers, such as cotinine, research shows that pregnant women diminish
their amount of smoking. More nonsmokers are consistently seen than exist in the population. This,
in turn, causes the data to be biased towards nonsmoking. Respondents who willingly do not answer
truthfully have been named intentional inaccurate responders.
Robinson-Cimpian Robinson-Cimpian (2014) shows examples of the dangers these participants play
in causing incorrect conclusions from the data. Robinson-Cimpian’s work centered about adolescent
self-report where these mischievous responders typically answered questions incorrectly because they
thought it was funny. This idea can be extended to the clinical setting where participants do not
feel comfortable answering the truth. Here, participants are not randomly answering inaccurately,
but purposefully. Previously when intentional inaccurate responses were identified, they were either
ignored or removed from the dataset. Since the intentional inaccurate responses are not making
a random mistake, the inaccuracies needs to be accounted for in statistical modeling. Robinson-
Cimpian’s paper calculates a Probability-Based Index and uses it as a covariate in the regression
equations in order to adjusted for the mischievous responses. Incomplete data techniques will also
be used to consider the non-ignorable intentional inaccurate responses. The techniques consist of
Heckman’s model and the EM algorithm for finite mixtures.
The focus of this paper is on three groups of pregnant women. The first group are smokers who self-
report that they are smokers. The second group are smokers who self-report they are non-smokers,
and the last group are non-smokers who self-report they are non-smokers. The group of smokers
who self-reported as non-smokers are considered intentionally inaccurate. A variety of methods
will be looked at in order to determine the best approach for handling these intentional inaccurate
responses.

5.0.26 Methods

In 2009, data were created to better understand prenatal passive smoke exposure and birth outcomes.
The study recruited pregnant women from each of the following institutions and academic site:
University of Kentucky (Lexington, KY), University of Virginia (Charlottsville, VA) and Norton
Healthcare (Louisville, KY). Data were collected through a survey administered at each trimester
and postpartum. This study received funding from the National Center for Research Resources. 307
women were recruited to the study and clinical lab values for serum cytokines were included in the
data collection. At each trimester, smoking status was validated by urine cotinine levels. Intentional
inaccurate responders were identified if the self-report smoking status data did not match the lab
values from the cotinine. The focus of this analysis is on the 108 participants with which there exist
data for the self-report smoking question, the urine cotinine, and progesterone levels.
The main question of interest is if smoking status has an effect on progesterone level. The lab
values are used as a basis for comparison to methods that could be used if lab values did not
exist. To answer this question, a variety of methods were engaged. First, current methods of linear
regressions were run, followed by methods to account for intentional inaccurate responders, such as,
a Probability-Based Index, Heckman’s model, and the EM algorithm. All analyses were complete
using R 3.2.2 (R Core Team, Vienna, Austria). Significance is defined as p < 0.05.

5.0.27 Measures of Tobacco Use

Pregnant women participating in the survey were asked: ’Do you currently smoke cigarettes or use
smokeless tobacco (loose leaf, dip, chew, snuff) even just once in a while?’. Besides their self-reported
answers from the survey, participants agreed to supply a urine sample. Smoking was confirmed
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by urine cotinine using NicAlertTM strips. Comparing the self-report values to the NicAlertTM

value, it was evident that there were participants who self-reported as non-smokers; although, their
NicAlertTM level indicated otherwise. As smoking during pregnancy is highly discouraged by health
care providers, smokers are likely to answer that they were not currently smoking. Ford et al. (1997)
According to NicAlertTM , lab values ranged from 0 to 6. Level 3 or higher (level 4, 5, or 6) indicated
use of tobacco products, level 0 indicated no detectable level of cotinine or tobacco product use, and
levels 1 and 2 indicated no use of tobacco products. Based on these classifications, a participant
whose NicAlertTM value was 0-2 was considered a non-smoker and a participant whose NicAlertTM

value was 3-6 was considered a smoker. Table 5.1 shows the comparison of answers between self-
report and the true NicAlertTM values. Of the women who claimed to be non-smokers, 89 were
non-smokers, but 10 of the women were actually smokers. We are considering these 10 women as
intentional inaccurate responders.

Table 5.1: Accuracy of Smoking Status

Self-Report NicAlertTM Value
Frequency Non-Smoker Smoker Total
Non-Smoker 89 10 99
Smoker 0 9 9
Total 89 19 108

Unfortunately, knowing the truth is not always accessible. Failure to account for these intentional
inaccurate responses in statistical analysis can result in incorrect conclusions. For instance, in this
dataset, one of the cytokines of interest was progesterone. Progesterone helps nurture the fetus.
After 8 to 10 weeks of pregnancy, the placenta takes over progesterone production from the ovaries
and substantially increases progesterone production. This helps maintain a supportive environment
for the developing fetus. Siiteri et al. (1977) Investigators wanted to know if smoking status has an
effect on levels of progesterone. In Table 5.2, the self-reported smoking values show no significant
effect on the levels of progesterone. However, the NicAlertTM values tell a different story. Here,
smokers have a statistically significant lower levels of progesterone.

Table 5.2: Comparison of Self-Report Smoking to NicAlertTM values

Effect Smoker Mean Progestrone (Standard Error) p-value
Self-Report 1 47.44 (6.3) 0.1009

0 58.33 (1.9)
NicAlertTM 1 48.77 (4.3) 0.0285

0 59.27 (2.0)

The kernel densities of the smoking status data can be seen in Figure 5.1. Since this data did
not appear normally distributed, log-transformed progesterone levels were analyzed. The kernel
densities of the log-transformed progesterone levels can be seen in Figure 5.2.

5.0.28 Intentional Inaccurate Response - Current Methods

Often, intentional inaccurate responses are ignored and all the self-report values are analyzed or the
intentional inaccurate responses are identified and removed from the data before analysis. Cornell
et al. (2012) Both of these current methods cause bias towards an incorrect answer since the inten-
tional inaccurate responses do not occur randomly.
Linear regressions were run replicating these scenarios. First, all self-report values were used in a
regression to predict progesterone. To finish the comparison with current methods, a regression was
employed with self-report values, but the intentional inaccurate responses removed.
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5.0.29 Intentional Inaccurate Resonse - Proposed Methods

Three alternative methods are proposed: Probability-Based Index, Heckman’s model, and the EM
algorithm.

Probability-Based Index.— The Probability-Based Index was introduced by Robinson-Cimpian. Robinson-
Cimpian (2014) In his paper, he used it as a measure of the prevalence of low-frequency responses
on screener items. This measure is similar to a weight given to each participant. These indices were
included in statistical models and used as a covariate in the regression equations in order to adjusted
for the intentional inaccurate responses.
With the smoking status data, two versions of the Probability-Based Index were considered. The
purpose of the two versions was to see how much an affect the index had on the estimate depending
on the quality of it’s creation. The first version randomly assigned weight to each participant. This
version represents an index that does not capture the intentional inaccurate responses well. The
second version calculated a weight that was used as a measure of the prevalence of inconsistency with
the self-report smoking variable. This version represents an index that accounts for the intentional
inaccurate responses correctly. For both versions, a Probability-Based Index value was calculated
for each participant and was used as a covariate in the regression equations in order to adjusted for
the intentional inaccurate responses.

Heckman’s Model.— Heckman’s Sample Selection Model was created to handle censored or truncated
dependent variables and is often used to handle non-ignorable incomplete data. With the smoking
status data, Heckman’s model is used to control for biases that could arise from the intentional
inaccurate responses. Heckman’s model is a two-step method. Consider the following equations.

yi1 = xi1β1 + εi1

yi2 = xi2β2 + εi2.

When comparing the self-report values to the NicAlertTM values, some participants’ classification
did not agree. Participants were label as truthful or inaccurate. Using their NicAlertTM levels
and truth status, a smoking score was created by summing each participants cotinine level and
intentional inaccurate responder status. This smoking score was a continuous variable. It was then
determined which variables predicted a participants smoking score. These explanatory variables
were used in the selection model portion of Heckman’s model.
The first step of Heckman’s model, which is the selection equation, defines a dichotomous variable
that indicates which group the participant is categorized:

yi2 = xi2β2 + εi2

yi2∗ =

{
1, if yi2 ≥ 0
0, if yi2 < 0

where yi2 is a smoking score, yi2∗ is an indicator for truth status, the xi2 are the explanatory vari-
ables of the smoking score, β2 is a vector of parameter estimates, and εi2 is an error term having
a standard normal distribution. The first stage estimates β2 using the probit maximum likelihood
method. The second stage involves estimating an OLS regression of the response variable conditional
on yi2∗ and xi1. Vance and Buchheim (2005) Therefore,

E[yi1|yi2∗ = 1, xi1] = xi1β1 + E[εi1|yi2∗ = 1] = xi1β1 + E[εi1|εi2 ≥ −xi2β2]
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where yi1 is the progesterone levels and xi1 is the self-report smoking status variable of yi1, β1 is a
vector of parameter estimates, and εi1 is an error term having a standard normal distribution. Let
εi1 and εi2 be correlated by ρ. Now,

E[yi1|yi2∗ = 1, xi1] = xi1β1 + ρσ1λi

where σ1 are the error variances of the OLS model, λi is the inverse Mills ratio such that

λi =
φ(xi2β2)

Φ(xi2β2)

where φ(xi2β2)
Φ(xi2β2) is defined by the ratio of the density function of the normal distribution, φ, to its

cumulative distribution function, Φ.
Two versions of Heckman’s model were also considered. The first smoking score was created so that
the scores were randomly assigned to each participant. The second smoking score was created so
that honest participants were given a higher score than intentional inaccurate responders. It was
then determined which variables predicted each of the smoking scores. The cutoff value for yi2∗
was chosen so that the majority of predicted yi2 values were appropriately identifying participants
as truthful or inaccurate. Once xi2 were found, these variables were used in the second step of
Heckman’s model to estimate λi.

The EM Algorithm.— Dempster et al Dempster et al. (1977) use the EM algorithm to account for
non-ignorable incomplete data. Little & Rubin Little and Rubin (2014) used the EM algorithm to
account for non-ignorable incomplete data. In a similar manner, intentional inaccurate responses can
be accounted for synonymous to incomplete data. In non-ignorable incomplete data, the data are
not incomplete at random. In the smoking status data, the intentional inaccurate responses are not
inaccurate at random. Participants consciously answered the smoking status question incorrectly.
There is a pattern to the inaccurate responses that must be modeled. Since the incorrect responses
are not inaccurate at random, the likelihood estimation needs to model the intentional inaccurate
responses.
The smoking status data shows the self-report nonsmokers who are inaccurate seem have a differ-
ent distribution than the self-report nonsmokers who reported the truth. For honest nonsmokers
the mean progesterone is 59.27 with a variance of 377.8; on the other hand, intentional inaccurate
nonsmokers have a mean measurement of 49.97 and a variance of 358.7, see Table 5.3.
With the transformed data honest nonsmokers the mean progesterone is 4.03 with a variance of
0.10; on the other hand, intentional inaccurate nonsmokers have a mean measurement of 3.85 and a
variance of 0.14, see Table 5.4.

Table 5.3: Comparison of Self-Report Smoking to NicAlertTM values for Progesterone

Smokers Inaccurate Nonsmokers Honest Nonsmokers
47.44 (72.2) 49.97 (358.7) 59.27 (377.8)

True Smokers True Nonsmokers
48.77 (213.1) 59.27 (377.8)

Besides the self-report nonsmokers, those participants who self-reported as smokers were also
included in estimating progesterone differences in smoking status. Since this is an instance when
inaccurate responders possibly have a different distribution than honest responders for progesterone
level, the EM algorithm was be used to estimate the true mean for smokers (µS), the true mean for
nonsmokers (µNS), and the probability of being an intentional inaccurate responder (π).
Consider two states for the self-reported non-smokers. For example,
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Table 5.4: Comparison of Self-Report Smoking to NicAlertTM values for Log-transformed Proges-
terone

Smokers Inaccurate Nonsmokers Honest Nonsmokers
3.85 (0.03) 3.85 (0.14) 4.03 (0.10)

True Smokers True Nonsmokers
3.85 (0.08) 4.03 (0.10)

z1 = (1, 0)→ intentionally inaccurate

z2 = (0, 1)→ honest

Let y be progesterone level and n be the number of participants to self-report as nonsmokers.
Using the EM methods from Dempster et al Dempster et al. (1977),

zi ∼ Bern(r|π)

yi|zi ∼ u(yi|r, θ)
U(y|θ) = (log u(yi|(1, 0), θ), log u(yi|(0, 1), θ))

V (π) = (logBern((1, 0)|π), logBern((0, 1)|π))

Now, the log-likelihood for self-reported nonsmoker is

log fNS(x|θ, π) =

n∑
i=1

zTi U(yi|θ) + zTi V (π)

Therefore, let m be the number of self-reported smokers and y be progesterone level. Assume
the yi are independently and identically drawn from a density w(...|θ). Let

W (y|θ) = logw(y|θ).

Now, the log-likelihood for the self-reported smokers is

log fS(x|θ) =

m∑
j=1

W (yi|θ).

Thus, the complete data log-likelihood is

log f(x|θ, π) =

m∑
j=1

W (yi|θ) +

n∑
i=1

zTi U(yi|θ) + zTi V (π).

Using this complete data log-likelihood, the EM algorithm was used to estimate the true mean for
smokers (µS), the true mean for nonsmokers (µNS), and the probability of being an intentional
inaccurate responder (π).
Meng & Rubin Meng and Rubin (1991) supplemented the EM algorithm with asymptotic variance-
covariance matrix for estimates. All standard errors from the EM algorithm were calculated using
the SEM.
Using the distributions from Table 5.5, the expectation of the smokers and nonsmokers were maxi-
mized iteratively until the estimate became stable at 1e− 7.
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Table 5.5: Distribution of Progesterone Levels for 3 groups

Status Mean (Variance) n
Self-Report Non-smoker, but Smoker 3.85 (0.14) 10
Self-Report Non-smoker, True Non-smoker 4.03 (0.10) 89
Self-Report Smoker, True Smoker 3.85 (0.03) 9

5.0.30 Results

A linear regression was run that used smoking status as determined by NicAlertTM values and
represents the truth. Using the truth, on average the transformed progesterone difference between
smokers and non-smokers was −0.18. Smokers had a statistically significant, p = 0.0244, lower
progesterone level compared to non-smokers. Next, a regression using smoking status determined
by self-report values was considered. The average the progesterone difference between smokers and
non-smokers was −0.17. However, due to the variability of the progesterone levels within non-
smokers, the difference was not significant, p = 0.1419. Typically, only self-reported values are
collected, but sometimes intentional inaccurate responses can be identified and removed. Removing
the inaccurate self-report values, the difference in progesterone levels was about the same at −0.18,
but was not found to be statistically significant, p = 0.0959. The comparisons of these regressions
can be seen in Table 5.6.

Table 5.6: Comparison of Methods

Method µ̂S − ˆµNS (95% Confidence Interval) p-value
Lab Values -0.18 (-0.30,0.00) 0.0244
Self-Report -0.17 (-0.40,0.10) 0.1419
Inaccurate Resp Removed -0.18 (-0.40,0.00) 0.0959
Prob Based Index v1 -0.16 (-0.40,0.10) 0.1469
Prob Based Index v2 -0.18 (-0.40,0.00) 0.1017
Heckman’s v1 -0.23 (-0.50,0.10) 0.1406
Heckman’s v2 -0.13 (-0.40,0.10) 0.2722
EM -0.16 (-0.40,0.00) 0.3471

As for the Probability-Based Index method, the average difference in progesterone levels for the
first version is −0.16 and not significant, p = 0.1469. Similar results were seen in the second version
with an estimated difference of −0.18 and p = 0.1017, see Table 5.6.
Using Heckman’s model to analyze the self-report data, we find that the progesterone levels among
self-reported smokers and non-smokers are not statistically different, p = 0.1406 and p = 0.2722;
however, the difference is more than the true difference at −0.23 for the first version, but less than
the true difference at −0.13 for the second version, see Table 5.6.
The EM algorithm estimates for the means and variances compared to the smoking status data means
and variances can be seen in Table 5.7. The EM algorithm estimate for the mean progesterone for
true smokers, 3.89, was close to the actual mean progesterone for smokers, 3.85. However, the EM
algorithm estimated mean progesterone for nonsmokers is slightly higher than the actual mean, 4.05
and 4.03, respectively. When using the EM algorithm, the average difference in progesterone levels
among smokers and non-smokers is −0.16 and not significant with p = 0.3471, see Table 5.6. With
this method, the probability of an intentional inaccurate responder was also estimated, see Table 5.8.

Table 5.7: Comparison of EM estimates to Smoking Status Data

True Smokers True Nonsmokers
Pregnant Women Data 3.85 (0.08) 4.03 (0.10)

EM Algorithm Estimation 3.89 (0.08) 4.05 (0.11)

62



Table 5.8: EM algorithm estimate for probability of intentional inaccurate responder

π π̂
Prob Intentional Inaccurate Responders 0.10 0.05 (0.04, 0.06)
Prob Not Intentional Inaccurate Responders 0.90 0.95 (0.94, 0.96)

5.0.31 Discussion

When intentional inaccurate responses are ignored and all the self-report data is analyzed, the esti-
mated progesterone difference is larger and more variable than the truth. Using this method would
cause a conclusion of a larger difference in progesterone level with no significance.
If investigators chose to ignore the noningorable inaccurate data by removing intentional inaccurate
responses, once again, the difference of progesterone levels is not significance.
The concern for the Probability-Based Index method is the discrepancy in estimates depending upon
the calculation of the index. Here the estimated difference was overestimated with no significance.
Heckman’s model needed a continuous response variable in the selection equation. We were able
to calculate a smoking score; however, this may not be available in all situations. Further, if the
smoking score is not correctly capturing the intentional inaccuracies, this can create estimates far
from the truth. The OLS estimates in the second step are very sensitive to the selection criteria.
Figure 5.1 shows the large variability in progesterone levels for honest nonsmokers and intentional
inaccurate nonsmokers. This dispersion caused the respective distributions to overlap. Had the
distributions of the self-report intentional inaccurate nonsmokers and the self-report honest non-
smokers been more distinct, the EM algorithm would have calculated estimates closer to the truth.
However, the variances within these two groups of pregnant women were quite large, making it too
difficult for the EM algorithm to specify between the inaccurate responses and the truthful responses.
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Chapter 6

Conclusion and Future Research

As long as self-report data collection exists, intentional inaccurate responses will be an issue. This
dissertation attempted to tackle this problem by providing methods for statistical inference by
accounting for intentional inaccurate responses without removing data.

6.0.32 Conclusion

Using simulations and real data, the EM algorithm method focused on three groups of pregnant
women. The first group were honest smokers, the second group were intentionally inaccurate non-
smokers, and the last group were honest nonsmokers.

Chapter 4 presented a simulation study that showed the dangers of not treating intentional inac-
curate responders carefully in self-report data analysis. When intentional inaccurate responses are
ignored and all the self-report data is analyzed, the estimated progesterone difference is not close to
the truth when the CVs are small, no matter the sample size or probability of inaccurate response.
Using this method would cause a conclusion of a larger difference in progesterone than that of the
truth.
If investigators chose to ignore the non-ignorable inaccurate data by removing the intentional inac-
curate responses, once again, the difference of progesterone levels were overestimated. The precision
of the this method became worse as the sample size increased.
The concern for the Probability-Based index method is the discrepancy in estimates depending upon
the calculation of the index. Version 1 represents a model using a covariate that does not capture the
inaccurate responses well. Table 4.4 shows reverse conclusions when the probability of inaccurate
response is high. This could lead to wildly incorrect conclusions. Version 2 represents a model using
a covariate the does explain the intentional inaccuracies. Version 2 of the Probability-Based Index
ability to estimate progesterone differences is comparable to the current methods.
Heckman’s model has a similar situation to the Probability-Based Index method. In version 1, the
inverse mills ratio calculated from xi2β2 in the selection equation did not account for the intentional
inaccurate responders very well. Every simulation in which the CV was small, version 1 confidence
intervals did not contain the lab value estimate. Version 2 confidence intervals contained the lab
value estimate more often. Both versions; however, had very large confidence intervals hen the sam-
ple size was 55 and a large CV.
Of all the methods, the EM algorithm provided the closest estimation to the lab value. The success
of the EM algorithm depends on the CV for larger sample sizes, 550 and 1100. It is documented
that the EM algorithm estimates are not as precise when component densities in the mixture are
not well separated. Redner and Walker (1984) It is of no surprise that the EM algorithm performs
better with a small CV. Even with large CVs; however, the EM algorithm and lab value confidence
intervals still overlapped. This did not change with sample size or probability of intentional inac-
curate response. It is important to note that the EM algorithm struggled to converge when the
probability of intentional inaccurate response was high and a large CV.
In conclusion, the EM algorithm is an overall better method for estimating the difference in proges-
terone levels between smokers and nonsmokers even with different sample sizes, CVs, or probabilities
of intentional inaccurate response.
Chapter 5 displayed analyses with real data. When intentional inaccurate responses are ignored
and all the self-report data are analyzed, the estimated progesterone difference is larger and more
variable than the truth. Using this method would cause a conclusion of a larger difference in pro-
gesterone level with no significance.
If investigators chose to ignore the noningorable inaccurate data by removing intentional inaccurate
responses, the difference of progesterone levels is close, but with no significance.
The concern for the probability-based index method is the discrepancy in estimates depending upon
the calculation of the index. Here the estimated difference was overestimated with no significance.
Heckman’s model needed a continuous response variable in the selection equation. We were able
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to calculate a smoking score; however, this may not be available in all situations. Further, if the
smoking score is not correctly capturing the intentional inaccuracies, this can create estimates far
from the truth. The OLS estimates in the second step are very sensitive to the selection criteria.
Figure 5.1 shows the large variability in progesterone levels for honest nonsmokers and intentional
inaccurate nonsmokers. This dispersion caused the respective distributions to overlap. Had the
distributions of the self-report intentional inaccurate nonsmokers and the self-report honest non-
smokers been more distinct, the EM algorithm would have calculated estimates closer to the truth.
However, the variances within these two groups of pregnant women were quite large, making it too
difficult for the EM algorithm to specify between the inaccurate responses and the truthful responses.

6.0.33 Future Research

In both Chapters 4 and 5, the probability of an intentional inaccurate response followed a Bernoulli
distribution. Most likely, in practice, a set of covariates will be needed in order to determine this
probability. It would be interesting to use a set of demographics or particular questions in the survey
to predict the probability of an intentional inaccurate responder.
This dissertation focused on a continuous dependent variable. Since survey data can often be
categorical, a natural extension to this research is to the look at using the EM algorithm for questions
where the response variable is categorical. The examples used here assumed the response variable
followed a normal distribution. A more compelling situation might be to see how the EM algorithm
fairs assuming the dependent variable followed a multinomial distribution.
Also, this dissertation looked at intentional inaccurate responders that only existed in the self-report
nonsmoker category. The next step would be to see how the EM algorithm predicts intentional
inaccurate responses with multiple states. For example, instead of intentional inaccuracies in the
nonsmokers, there could be inaccurate responses in the self-report smokers, too. Here, the self-report
question was dichotomous, but this can be extended to questions with multiple answer options,
resulting in many states.
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Appendix A

Appendix

A.1 R code

R language:

l ibrary ( samp leSe l e c t i on )
l ibrary ( ggp lot2 )
l ibrary ( gr idExtra )
l ibrary ( x tab l e )
l ibrary ( l s r )
l ibrary ( f u n c t i o n a l )
l ibrary ( p ly r )

#number o f s imu la t i on s − 310
( (qnorm( . 9 7 5 )∗ 4 . 7 ) / (10 . 49∗ . 0 5 ) ) ˆ 2

#simu la t e data
getmixdata=function (n ,m, k , probs , muvec , sigmasqvec , trmuvec , t r s igmasqvec )
{
popnumbers=sample ( c ( 1 : k ) , s i z e=n , replace=T, prob=c ( probs ,1−probs ) )
yvec=rnorm(n , muvec [ popnumbers ] , sqrt ( s igmasqvec [ popnumbers ] ) )
yvec0=rnorm(m, trmuvec , sqrt ( t r s igmasqvec ) )
smokers=c ( yvec [ popnumbers==1] , yvec0 )
nonsmokers=c ( yvec [ popnumbers==2])

#p r o b a b i l i t y based screen ing index
pbs i1=rep (0 , n )
race1=rep (0 , n )
mar1=rep (0 , n )
edu1=rep (0 , n )
inc1=rep (0 , n )
w1depress1=rep (0 , n )
age1=rep (0 , n )
bmi1=rep (0 , n )
edin1=rep (0 , n )
s l e e p 1=rep (0 , n )
smoke1=rep (0 , n )
n i c1=rep (0 , n )
for ( i in 1 : n )
{
i f ( popnumbers [ i ]==1)
{
pbs i1 [ i ]= length ( popnumbers [ popnumbers==1])/ (n+m)
race1 [ i ]=1
mar1 [ i ]=sample ( c ( 0 : 1 ) , s i z e =1,prob=c (0 .16 ,1 −0 .16) )
edu1 [ i ]=sample ( c ( 0 : 1 ) , s i z e =1,prob=c (0 .11 ,1 −0 .11) )
inc1 [ i ]=sample ( c ( 0 : 2 ) , s i z e =1,prob=c ( 0 . 4 4 , 0 . 5 5 , 0 ) )
w1depress1 [ i ]=sample ( c ( 0 : 1 ) , s i z e =1,prob=c (0 .67 ,1 −0 .67) )
age1 [ i ]=sample ( c ( 1 7 : 4 2 ) , s i z e =1,
prob=c ( . 1 1 1 1 , 0 , 0 , 0 , . 1 1 1 1 , . 1 1 1 1 , . 1 1 1 1 , . 2 2 2 2 , 0 , . 1 1 1 1 , 0 , . 1 1 1 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , . 1 1 1 1 , 0 , 0 , 0 , 0 , 0 , 0 ) )
edin1 [ i ]=sample ( c ( 0 : 2 2 ) , s i z e =1,prob=c ( . 4 4 4 4 , . 1 1 1 1 , 0 , 0 , 0 , 0 , . 1 1 1 1 , 0 , 0 , 0 , . 2 2 2 2 , 0 , 0 , . 1 1 1 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) )
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s l e e p 1 [ i ]=sample ( c ( 0 : 1 7 ) , s i z e =1,prob=c ( 0 , 0 , 0 , . 1 2 5 0 , 0 , . 2 5 , 0 , 0 , . 2 5 , . 1 2 5 0 , 0 , 0 , . 2 5 , 0 , 0 , 0 , 0 , 0 ) )
bmi1 [ i ]=sample ( c ( 1 7 : 5 0 ) , s i z e =1,prob=c ( . 1 2 5 0 , 0 , 0 , . 2 5 , 0 , 0 , 0 , 0 , . 1 2 5 0 , 0 , 0 , 0 , 0 , . 3 7 5 0 , 0 , 0 , 0 , 0 , . 1 2 5 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) )
smoke1 [ i ]=1
n ic1 [ i ]=6
}
else
{
pbs i1 [ i ]= length ( popnumbers [ popnumbers==2])/ (n+m)
race1 [ i ]=sample ( c ( 0 : 1 ) , s i z e =1,prob=c (0 .16 ,1 −0 .16) )
mar1 [ i ]=sample ( c ( 0 : 1 ) , s i z e =1,prob=c (0 .27 ,1 −0 .27) )
edu1 [ i ]=sample ( c ( 0 : 1 ) , s i z e =1,prob=c (0 .11 ,1 −0 .11) )
inc1 [ i ]=sample ( c ( 0 : 2 ) , s i z e =1,prob=c ( 0 . 1 4 , 0 . 1 5 , 0 . 7 1 ) )
w1depress1 [ i ]=sample ( c ( 0 : 1 ) , s i z e =1,prob=c (0 .94 ,1 −0 .94) )
age1 [ i ]=sample ( c ( 1 7 : 4 2 ) , s i z e =1,
prob=c ( 0 , 0 , . 0 3 3 7 , . 0 4 4 9 , . 0 6 7 4 , . 0 4 4 9 , . 0 3 3 7 , . 0 7 8 7 , . 0 7 8 7 , . 0 8 9 9 , . 0 7 8 7 , . 0 6 7 4 , . 0 4 4 9 , . 0 3 3 7 , . 0 7 8 7 , . 0 6 7 4 , 0 , . 0 2 2 5 , . 0 3 3 7 , . 0 2 2 5 , . 0 1 1 2 , . 0 1 1 2 , . 0 3 3 7 , . 0 1 1 2 , 0 , . 0 1 1 2 ) )
edin1 [ i ]=sample ( c ( 0 : 2 2 ) , s i z e =1,prob=c ( . 1 3 9 5 , . 1 6 2 8 , . 1 8 6 0 , . 1 6 2 8 , . 0 9 3 0 , . 0 8 1 4 , . 0 2 3 3 , . 0 4 6 5 , . 0 1 1 6 , . 0 3 4 9 , . 0 1 1 6 , . 0 1 1 6 , 0 , 0 , . 0 1 1 6 , 0 , 0 , . 0 1 1 6 , 0 , 0 , 0 , 0 , . 0 1 1 6 ) )
s l e e p 1 [ i ]=sample ( c ( 0 : 1 7 ) , s i z e =1,prob=c ( . 0 1 2 5 , . 0 1 2 5 , . 0 2 5 0 , . 0 2 5 0 , . 0 6 2 5 , . 0 6 2 5 , . 1 1 2 5 , . 0 7 5 0 , . 1 2 5 0 , . 1 0 , . 1 1 2 5 , . 0 8 7 5 , . 0 1 2 5 , . 0 2 5 0 , . 0 6 2 5 , . 0 5 , . 0 1 2 5 , . 0 2 5 0 ) )
bmi1 [ i ]=sample ( c ( 1 7 : 5 0 ) , s i z e =1,prob=c ( . 0 9 4 1 , 0 , 0 , . 3 8 8 2 , 0 , 0 , 0 , 0 , . 2 9 4 1 , 0 , 0 , 0 , 0 , . 1 0 5 9 , 0 , 0 , 0 , 0 , . 0 5 8 8 , 0 , 0 , 0 , 0 , . 0 3 5 3 , 0 , 0 , 0 , 0 , . 0 1 1 8 , 0 , 0 , 0 , 0 , . 0 1 1 8 ) )
smoke1 [ i ]=0
n ic1 [ i ]=sample ( c ( 0 : 1 ) , s i z e =1,prob=c ( . 6 0 6 7 , . 3 9 3 3 ) )
}
}
pbs i2=rep (m/ (n+m) ,m)
race2=sample ( c ( 0 : 1 ) , s i z e=m, replace=T, prob=c (0 .16 ,1 −0 .16) )
mar2=sample ( c ( 0 : 1 ) , s i z e=m, replace=T, prob=c (0 .27 ,1 −0 .27) )
edu2=sample ( c ( 0 : 1 ) , s i z e=m, replace=T, prob=c (0 .11 ,1 −0 .11) )
inc2=sample ( c ( 0 : 2 ) , s i z e=m, replace=T, prob=c ( 0 . 1 4 , 0 . 1 5 , 0 . 7 1 ) )
w1depress2=sample ( c ( 0 : 1 ) , s i z e=m, replace=T, prob=c (0 .94 ,1 −0 .94) )
age2=sample ( c ( 1 7 : 4 2 ) , s i z e=m, replace=T, prob=c ( 0 , . 1 0 , 0 , . 1 0 , 0 , . 3 0 , 0 , . 1 0 , . 1 0 , 0 , . 1 0 , . 1 0 , 0 , 0 , . 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) )
edin2=sample ( c ( 0 : 2 2 ) , s i z e=m, replace=T, prob=c ( . 1 1 1 1 , 0 , 0 , . 1 1 1 1 , 0 , 0 , . 2 2 2 2 , 0 , 0 , . 1 1 1 1 , . 1 1 1 1 , 0 , 0 , 0 , . 1 1 1 1 , 0 , . 1 1 1 1 , 0 , . 1 1 1 1 , 0 , 0 , 0 , 0 ) )
s l e e p 2=sample ( c ( 0 : 1 7 ) , s i z e=m, replace=T, prob=c ( 0 , 0 , 0 , 0 , 0 , 0 , . 1 1 1 1 , 0 , . 1 1 1 1 , 0 , . 1 1 1 1 , . 1 1 1 1 , . 1 1 1 1 , . 1 1 1 1 , 0 , . 2 2 2 2 , . 1 1 1 1 , 0 ) )
bmi2=sample ( c ( 1 7 : 5 0 ) , s i z e=m, replace=T, prob=c ( . 1 2 5 0 , 0 , 0 , . 2 5 , 0 , 0 , 0 , 0 , . 1 2 5 0 , 0 , 0 , 0 , 0 , . 3 7 5 0 , 0 , 0 , 0 , 0 , . 1 2 5 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) )
n i c2=sample ( c ( 3 : 6 ) , s i z e=m, replace=T, prob=c ( . 6 , . 1 , . 1 , . 2 ) )
smoke2=rep (1 ,m)
srnsmk=rep (0 , n )
srsmk=rep (1 ,m)

prog2=c ( yvec , yvec0 )
pbs i=c ( pbsi1 , pbs i2 )
race=c ( race1 , race2 )
mar=c (mar1 , mar2 )
edu=c ( edu1 , edu2 )
inc=c ( inc1 , inc2 )
depre s s=c ( w1depress1 , w1depress2 )
age=c ( age1 , age2 )
edin=c ( edin1 , edin2 )
s l e e p=c ( s l eep1 , s l e e p 2 )
bmi=c ( bmi1 , bmi2 )
smoke=c ( smoke1 , smoke2 )
srsmoke=c ( srnsmk , srsmk )
n i c=c ( nic1 , n i c2 )
t r u e d i f f=mean( smokers)−mean( nonsmokers )

s co r e=rep (NA, length ( smoke ) )
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pbi=rep (NA, length ( smoke ) )
for ( k in 1 : length ( smoke ) )
{
i f ( srsmoke [ k]==1 & smoke [ k]==1)
{
s co r e [ k]=20
pbi [ k]=1−pi
}
else i f ( srsmoke [ k]==0 & smoke [ k]==0)
{
s co r e [ k]=20
pbi [ k]=1−pi
}
else i f ( srsmoke [ k]==0 & smoke [ k]==1)
{
s co r e [ k]=−20
pbi [ k]= pi
}
}

bigmama=cbind ( prog2 , pbsi , race , mar , edu , inc , depress , age , edin , s l e ep , bmi , smoke , srsmoke , nic , score , pbi )
return ( l i s t ( yvec , yvec0 , pbsi1 , pbsi2 , srnsmk , srsmk , t r u e d i f f , bigmama ) )
}

morecol<−function (data )
{
smokescore<−rep (NA, length (data$ s co r e ) )
smokescore2<−rep (NA, length (data$ s co r e ) )
for (h in 1 : length (data$ s co r e ) )
{
smokescore [ h]=data$n i c [ h]+data$ s co r e [ h]+rnorm(1 )
smokescore2 [ h]=data$n i c [ h]+data$pbi [ h]+rnorm(1 )
}
s e l<−predict (lm( smokescore˜data$ i n c+data$depre s s+data$mar+data$age ) )
s e l 2<−predict (lm( smokescore2˜data$n i c ) )
choose<−rep (NA, length ( s e l ) )
choose2<−rep (NA, length ( s e l 2 ) )
for ( j in 1 : length ( s e l ) )
{
i f ( s e l [ j ]>quantile ( s e l , . 2 5 ) )
{
choose [ j ]=1
}
else
{
choose [ j ]=0
}
i f ( s e l 2 [ j ]>quantile ( s e l 2 , . 2 5 ) )
{
choose2 [ j ]=1
}
else
{
choose2 [ j ]=0
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}
}
f i n a l=cbind (data , smokescore , s e l , choose , s e l 2 , choose2 )
return ( f i n a l )
}

emmix=function ( yvec , yvec2 , k , s tar tprob , s ta r t1 , s ta r t2 , s ta r t3 , s ta r t4 , t o l=1e−04, pause=F)
{
n=length ( yvec )
m=length ( yvec2 )
#s t a r t i n g va l u e s
muvec=s t a r t 1
sigmasqvec=s t a r t 2
probs=sta r tp rob
muvec2=s t a r t 3
sigmasqvec2=s t a r t 4

#expec ted va lue o f unobserved data
ezmatnorm=matrix (0 ,nrow=n , ncol=k )
ezmatnorm2=matrix (0 ,nrow=m, ncol=1)
#f i l l in ezmatnorm with p j N(mu j , s igmasqvec j )
ezmatnorm [ ,1 ]= probs∗dnorm( yvec , muvec [ 1 ] , sqrt ( s igmasqvec [ 1 ] ) )
ezmatnorm [ ,2]=(1− probs )∗dnorm( yvec , muvec [ 2 ] , sqrt ( s igmasqvec [ 2 ] ) )
rowsums=apply ( ezmatnorm , 1 ,sum)
ezmat=ezmatnorm/rowsums
l l i k=sum( log ( rowsums ) )

ezmatnorm2 [ ,1 ]=dnorm( yvec2 , muvec2 , sqrt ( s igmasqvec2 ) )
rowsums2=apply ( ezmatnorm2 , 1 ,sum)
ezmat2=ezmatnorm2/rowsums2
l l i k 2=sum( log ( rowsums2 ) )

rowsumssmk=sum( c ( ezmatnorm [ , 1 ] , ezmatnorm2 [ , 1 ] ) )
rowsumsnsmk=sum( ezmatnorm [ , 2 ] )
ezmatsmk=c ( ezmatnorm [ , 1 ] , ezmatnorm2 [ , 1 ] ) /rowsumssmk
ezmatnsmk=ezmatnorm [ , 2 ] /rowsumsnsmk

repeat
{
#ezmat conta ins the ez i j v a l u e s
#l l i k conta ins the l o g l i k e l i h o o d
bothprobs=apply ( ezmat , 2 ,mean)
probs=bothprobs [ which .min( bothprobs ) ]
i f ( probs <0.01){ probs<−0 .05}
#i f e l s e ( probs >0.01 , probs , 0 . 0 5 )
muvec [1 ]=sum( ezmat [ , 1 ] ∗yvec )/sum( ezmat [ , 1 ] )
i f (muvec[1]<=0){muvec [ 1 ]<−0 .001}
muvec [2 ]=sum( ezmat [ , 2 ] ∗yvec )/sum( ezmat [ , 2 ] )
s igmasqvec [1 ]=sum( ( ezmat [ , 1 ] ∗ ( yvec−muvec [ 1 ] ) ˆ 2 ) ) /sum( ezmat [ , 1 ] )
s igmasqvec [2 ]=sum( ( ezmat [ , 2 ] ∗ ( yvec−muvec [ 2 ] ) ˆ 2 ) ) /sum( ezmat [ , 2 ] )

muvec2=sum( ezmat2 [ , 1 ] ∗yvec2 )/sum( ezmat2 [ , 1 ] )

69



s igmasqvec2=sum( ( ezmat2 [ , 1 ] ∗ ( yvec2−muvec2 ) ˆ 2 ) ) /sum( ezmat2 [ , 1 ] )

muvecsmk=sum( c ( ezmat [ , 1 ] ∗yvec , ezmat2 [ , 1 ] ∗yvec2 ) ) /sum( c ( ezmat [ , 1 ] ) , ezmat2 [ , 1 ] )
muvecnsmk=sum( ezmat [ , 2 ] ∗yvec )/sum( ezmat [ , 2 ] )
sigmasqvecsmk=sum( c ( ezmat [ , 1 ] ∗ ( ( yvec−muvec [ 1 ] ) ˆ 2 ) , ezmat2 [ , 1 ] ∗ ( ( yvec2−muvec2 ) ˆ 2 ) ) /sum( c ( ezmat [ , 1 ] ) , ezmat2 [ , 1 ] ) )
sigmasqvecnsmk=sum( ezmat [ , 2 ] ∗ ( ( yvec−muvec [ 2 ] ) ˆ 2 ) ) /sum( ezmat [ , 2 ] )

#compute l o g l i k e l i h o o d f o r new i t e r a t i o n
newezmatnorm=matrix (0 ,nrow=n , ncol=k )
newezmatnorm2=matrix (0 ,nrow=m, ncol=1)
#f i l l in ezmatnorm with p j N(mu j , s igmasqvec j )
newezmatnorm [ ,1 ]= probs∗dnorm( yvec , muvec [ 1 ] , sqrt ( s igmasqvec [ 1 ] ) )
for ( k in 1 : length ( newezmatnorm [ , 1 ] ) )
{
i f ( newezmatnorm [ k ,1]<=0.001){newezmatnorm [ k , 1 ]<−0 .001}
}
newezmatnorm [ ,2]=(1− probs )∗dnorm( yvec , muvec [ 2 ] , sqrt ( s igmasqvec [ 2 ] ) )
check=newezmatnorm [ apply ( newezmatnorm , 1 , Compose ( i s . f i n i t e , a l l ) ) , ]
newrowsums=apply (check , 1 ,sum)
newezmat=newezmatnorm/newrowsums
n e w l l i k=sum( log ( newrowsums ) )

newezmatnorm2 [ ,1 ]=dnorm( yvec2 , muvec2 , sqrt ( s igmasqvec2 ) )
newrowsums2=apply ( newezmatnorm2 , 1 ,sum)
newezmat2=newezmatnorm2/newrowsums2
new l l i k2=sum( log ( newrowsums2 ) )

newrowsumssmk=sum( c ( newezmatnorm [ , 1 ] , newezmatnorm2 [ , 1 ] ) )
newrowsumsnsmk=sum( newezmatnorm [ , 2 ] )
newezmatsmk=c ( newezmatnorm [ , 1 ] , newezmatnorm2 [ , 1 ] ) /newrowsumssmk
newezmatnsmk=newezmatnorm [ , 2 ] /newrowsumsnsmk

smkdi f f=muvecsmk−muvecnsmk
w1=sigmasqvecsmk/length ( c ( ezmat [ , 1 ] , ezmat2 [ , 1 ] ) )
w2=sigmasqvecnsmk/length ( ezmat [ , 2 ] )
smkdi f fvar=w1+w2
denom=((w1ˆ2)/ ( length ( c ( ezmat [ , 1 ] , ezmat2 [ , 1 ] ) ) −1) )+((w2ˆ2)/ ( length ( ezmat [ , 2 ] ) −1 ) )

i f ( ( newl l ik− l l i k )< t o l ) {break}
ezmat=newezmat
l l i k=n e w l l i k
ezmat2=newezmat2
l l i k 2=new l l i k2
ezmatsmk=newezmatsmk
ezmatnsmk=ezmatnsmk
}
return ( l i s t ( probs=c ( probs ,1−probs ) , muvec=muvec , s igmasqvec=sigmasqvec , muvec2=muvec2 , s igmasqvec2=sigmasqvec2 ,
muvecsmk=muvecsmk , muvecnsmk=muvecnsmk , sigmasqvecsmk=sigmasqvecsmk , sigmasqvecnsmk=sigmasqvecnsmk ,
smkdi f f=smkdi f f , smkd i f fvar=smkdi f fvar , w1=w1 , w2=w2 , denom=denom ) )
}

#p l o t s
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p l o t i t e r=function (y , y2 , probs , muvec , sigmasqvec , muvectr , s igmasqvectr , pause=F)
{
xtemp=seq (min( y ) ,max( y ) , (max( y)−min( y ) ) /1000)
compvec1=probs∗dnorm( xtemp , muvec [ 1 ] , sqrt ( s igmasqvec [ 1 ] ) )
compvec2=(1−probs )∗dnorm( xtemp , muvec [ 2 ] , sqrt ( s igmasqvec [ 2 ] ) )
xtemp2=seq (min( y2 ) ,max( y2 ) , (max( y2)−min( y2 ) ) /1000)
compvec3=dnorm( xtemp2 , muvectr , sqrt ( s igmasqvectr ) )
return ( l i s t ( xtemp=xtemp , compvec1=compvec1 , compvec2=compvec2 , xtemp2=xtemp2 , compvec3=compvec3 ) )
}

semmix=function ( yvec , yvec2 , k , s tar tprob , s ta r t1 , s ta r t2 , s ta r t3 , s ta r t4 , emmuvecsmk , emmuvecnsmk , emsigmasqvecsmk , emsigmasqvecnsmk , t o l=1e−04, pause=F)
{
n=length ( yvec )
m=length ( yvec2 )
#s t a r t i n g va l u e s
muvec=s t a r t 1
sigmasqvec=s t a r t 2
probs=sta r tp rob
muvec2=s t a r t 3
sigmasqvec2=s t a r t 4

#expec ted va lue o f unobserved data
ezmatnorm=matrix (0 ,nrow=n , ncol=k )
ezmatnorm2=matrix (0 ,nrow=m, ncol=1)
#f i l l in ezmatnorm with p j N(mu j , s igmasqvec j )
ezmatnorm [ ,1 ]= probs∗dnorm( yvec , muvec [ 1 ] , sqrt ( s igmasqvec [ 1 ] ) )
ezmatnorm [ ,2]=(1− probs )∗dnorm( yvec , muvec [ 2 ] , sqrt ( s igmasqvec [ 2 ] ) )
rowsums=apply ( ezmatnorm , 1 ,sum)
ezmat=ezmatnorm/rowsums
l l i k=sum( log ( rowsums ) )

ezmatnorm2 [ ,1 ]=dnorm( yvec2 , muvec2 , sqrt ( s igmasqvec2 ) )
rowsums2=apply ( ezmatnorm2 , 1 ,sum)
ezmat2=ezmatnorm2/rowsums2
l l i k 2=sum( log ( rowsums2 ) )

rowsumssmk=sum( c ( ezmatnorm [ , 1 ] , ezmatnorm2 [ , 1 ] ) )
rowsumsnsmk=sum( ezmatnorm [ , 2 ] )
ezmatsmk=c ( ezmatnorm [ , 1 ] , ezmatnorm2 [ , 1 ] ) /rowsumssmk
ezmatnsmk=ezmatnorm [ , 2 ] /rowsumsnsmk

repeat
{
#ezmat conta ins the ez i j v a l u e s
#l l i k conta ins the l o g l i k e l i h o o d
bothprobs=apply ( ezmat , 2 ,mean)
probs=bothprobs [ which .min( bothprobs ) ]
i f ( probs <0.01){ probs<−0 .05}
muvec [1 ]=sum( ezmat [ , 1 ] ∗yvec )/sum( ezmat [ , 1 ] )
i f (muvec[1]<=0){muvec [ 1 ]<−0 .001}
muvec [2 ]=sum( ezmat [ , 2 ] ∗yvec )/sum( ezmat [ , 2 ] )
s igmasqvec [1 ]=sum( ( ezmat [ , 1 ] ∗ ( yvec−muvec [ 1 ] ) ˆ 2 ) ) /sum( ezmat [ , 1 ] )
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s igmasqvec [2 ]=sum( ( ezmat [ , 2 ] ∗ ( yvec−muvec [ 2 ] ) ˆ 2 ) ) /sum( ezmat [ , 2 ] )

muvec2=sum( ezmat2 [ , 1 ] ∗yvec2 )/sum( ezmat2 [ , 1 ] )
s igmasqvec2=sum( ( ezmat2 [ , 1 ] ∗ ( yvec2−muvec2 ) ˆ 2 ) ) /sum( ezmat2 [ , 1 ] )

muvecsmk=sum( c ( ezmat [ , 1 ] ∗yvec , ezmat2 [ , 1 ] ∗yvec2 ) ) /sum( c ( ezmat [ , 1 ] ) , ezmat2 [ , 1 ] )
muvecnsmk=sum( ezmat [ , 2 ] ∗yvec )/sum( ezmat [ , 2 ] )
sigmasqvecsmk=sum( c ( ezmat [ , 1 ] ∗ ( ( yvec−muvec [ 1 ] ) ˆ 2 ) , ezmat2 [ , 1 ] ∗ ( ( yvec2−muvec2 ) ˆ 2 ) ) /sum( c ( ezmat [ , 1 ] ) , ezmat2 [ , 1 ] ) )
sigmasqvecnsmk=sum( ezmat [ , 2 ] ∗ ( ( yvec−muvec [ 2 ] ) ˆ 2 ) ) /sum( ezmat [ , 2 ] )

#compute l o g l i k e l i h o o d f o r new i t e r a t i o n
newezmatnorm=matrix (0 ,nrow=n , ncol=k )
newezmatnorm2=matrix (0 ,nrow=m, ncol=1)
#f i l l in ezmatnorm with p j N(mu j , s igmasqvec j )
newezmatnorm [ ,1 ]= probs∗dnorm( yvec , muvec [ 1 ] , sqrt ( s igmasqvec [ 1 ] ) )
for ( k in 1 : length ( newezmatnorm [ , 1 ] ) )
{
i f ( newezmatnorm [ k ,1]<=0.001){newezmatnorm [ k , 1 ]<−0 .001}
}
newezmatnorm [ ,2]=(1− probs )∗dnorm( yvec , muvec [ 2 ] , sqrt ( s igmasqvec [ 2 ] ) )
check=newezmatnorm [ apply ( newezmatnorm , 1 , Compose ( i s . f i n i t e , a l l ) ) , ]
newrowsums=apply (check , 1 ,sum)
newezmat=newezmatnorm/newrowsums
n e w l l i k=sum( log ( newrowsums ) )

newezmatnorm2 [ ,1 ]=dnorm( yvec2 , muvec2 , sqrt ( s igmasqvec2 ) )
newrowsums2=apply ( newezmatnorm2 , 1 ,sum)
newezmat2=newezmatnorm2/newrowsums2
new l l i k2=sum( log ( newrowsums2 ) )

newrowsumssmk=sum( c ( newezmatnorm [ , 1 ] , newezmatnorm2 [ , 1 ] ) )
newrowsumsnsmk=sum( newezmatnorm [ , 2 ] )
newezmatsmk=c ( newezmatnorm [ , 1 ] , newezmatnorm2 [ , 1 ] ) /newrowsumssmk
newezmatnsmk=newezmatnorm [ , 2 ] /newrowsumsnsmk

newmuvecsmk=sum( c ( newezmat [ , 1 ] ∗yvec , newezmat2 [ , 1 ] ∗yvec2 ) ) /sum( c ( newezmat [ , 1 ] ) , newezmat2 [ , 1 ] )
newmuvecnsmk=sum( newezmat [ , 2 ] ∗yvec )/sum( newezmat [ , 2 ] )
newsigmasqvecsmk=sum( c ( newezmat [ , 1 ] ∗ ( ( yvec−muvec [ 1 ] ) ˆ 2 ) , newezmat2 [ , 1 ] ∗ ( ( yvec2−muvec2 ) ˆ 2 ) ) /sum( c ( newezmat [ , 1 ] ) , newezmat2 [ , 1 ] ) )
newsigmasqvecnsmk=sum( newezmat [ , 2 ] ∗ ( ( yvec−muvec [ 2 ] ) ˆ 2 ) ) /sum( newezmat [ , 2 ] )

newbothprobs=apply ( newezmat , 2 ,mean)
newprobs=newbothprobs [ which .min( newbothprobs ) ]

r11=(newmuvecsmk−emmuvecsmk)/ (muvecsmk−emmuvecsmk)
r12=(newsigmasqvecsmk−emsigmasqvecsmk )/ (muvecsmk−emmuvecsmk)
r13=(newmuvecnsmk−emmuvecnsmk)/ (muvecsmk−emmuvecsmk)
r14=(newsigmasqvecnsmk−emsigmasqvecnsmk )/ (muvecsmk−emmuvecsmk)
r15=(newprobs [1]− s t a r tp rob )/ (muvecsmk−emmuvecsmk)
r21=(newmuvecsmk−emmuvecsmk)/ ( sigmasqvecsmk−emsigmasqvecsmk )
r22=(newsigmasqvecsmk−emsigmasqvecsmk )/ ( sigmasqvecsmk−emsigmasqvecsmk )
r23=(newmuvecnsmk−emmuvecnsmk)/ ( sigmasqvecsmk−emsigmasqvecsmk )
r24=(newsigmasqvecnsmk−emsigmasqvecnsmk )/ ( sigmasqvecsmk−emsigmasqvecsmk )
r25=(newprobs [1]− s t a r tp rob )/ ( sigmasqvecsmk−emsigmasqvecsmk )
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r31=(newmuvecsmk−emmuvecsmk)/ (muvecnsmk−emmuvecnsmk)
r32=(newsigmasqvecsmk−emsigmasqvecsmk )/ (muvecnsmk−emmuvecnsmk)
r33=(newmuvecnsmk−emmuvecnsmk)/ (muvecnsmk−emmuvecnsmk)
r34=(newsigmasqvecnsmk−emsigmasqvecnsmk )/ (muvecnsmk−emmuvecnsmk)
r35=(newprobs [1]− s t a r tp rob )/ (muvecnsmk−emmuvecnsmk)
r41=(newmuvecsmk−emmuvecsmk)/ ( sigmasqvecnsmk−emsigmasqvecnsmk )
r42=(newsigmasqvecsmk−emsigmasqvecsmk )/ ( sigmasqvecnsmk−emsigmasqvecnsmk )
r43=(newmuvecnsmk−emmuvecnsmk)/ ( sigmasqvecnsmk−emsigmasqvecnsmk )
r44=(newsigmasqvecnsmk−emsigmasqvecnsmk )/ ( sigmasqvecnsmk−emsigmasqvecnsmk )
r45=(newprobs [1]− s t a r tp rob )/ ( sigmasqvecnsmk−emsigmasqvecnsmk )
r51=(newmuvecsmk−emmuvecsmk)/ ( probs [1]− s t a r tp rob )
r52=(newsigmasqvecsmk−emsigmasqvecsmk )/ ( probs [1]− s t a r tp rob )
r53=(newmuvecnsmk−emmuvecnsmk)/ ( probs [1]− s t a r tp rob )
r54=(newsigmasqvecnsmk−emsigmasqvecnsmk )/ ( probs [1]− s t a r tp rob )
r55=(newprobs [1]− s t a r tp rob )/ ( probs [1]− s t a r tp rob )

i f ( ( newl l ik− l l i k )< t o l ) {break}
ezmat=newezmat
l l i k=n e w l l i k
ezmat2=newezmat2
l l i k 2=new l l i k2
ezmatsmk=newezmatsmk
ezmatnsmk=ezmatnsmk
rmat=matrix ( c ( r11 , r12 , r13 , r14 , r15 , r21 , r22 , r23 , r24 , r25 , r31 , r32 , r33 , r34 , r35 , r41 , r42 , r43 , r44 , r45 , r51 , r52 , r53 , r54 , r55 ) , 5 , 5 , byrow=TRUE)
}
return ( rmat )
}

se <− function ( x )
{
B=length ( x )
aveB=mean( x )
subtr=rep (NA,B)
for ( i in 1 :B)
{
subtr [ i ]=(x [ i ]−aveB )ˆ2
}
return ( sqrt (sum( subtr )/ (B−1)))
}
#########################################################################################################
s imu la t i on<−function (n ,m, numsim , pi , var1 , var2 , es )
{
yvecsim=l i s t ( )
emsim=l i s t ( )
semsim=l i s t ( )
data=l i s t ( )
newdata=l i s t ( )
mrremdata=l i s t ( )
cdvcsim=l i s t ( )
Vsim=l i s t ( )
l abva l=rep (NA, numsim)
p labva l=rep (NA, numsim)
s e l f r e p=rep (NA, numsim)
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p s e l f r e p=rep (NA, numsim)
mrrem=rep (NA, numsim)
pmrrem=rep (NA, numsim)
pbsc=rep (NA, numsim)
ppbsc=rep (NA, numsim)
pbic=rep (NA, numsim)
ppbic=rep (NA, numsim)
eqn1=l i s t ( )
eqn2=l i s t ( )
eqn3=l i s t ( )
eqn4=l i s t ( )
heck=rep (NA, numsim)
pheck=rep (NA, numsim)
heck2=rep (NA, numsim)
pheck2=rep (NA, numsim)
emdi f f=rep (NA, numsim)
pemdi f f=rep (NA, numsim)
empi=matrix ( rep (NA, 2∗numsim ) ,nrow=numsim , ncol=2)
eta=rep (NA, numsim)
for ( i in 1 : numsim)
{
yvecsim [ [ i ] ]= getmixdata (n ,m, 2 , pi , c ( 5 0 . 0 , 6 0 . 0 ) , var1 , 4 0 . 0 , var2 )
data [ [ i ] ]= as . data . frame ( yvecsim [ [ i ] ] [ [ 8 ] ] )
l abva l [ i ]<−coef (summary(glm( prog2˜smoke , data=data [ [ i ] ] ) ) ) [ 2 , 1 ]
p labva l [ i ]<−coef (summary(glm( prog2˜smoke , data=data [ [ i ] ] ) ) ) [ 2 , 4 ]
s e l f r e p [ i ]<−coef (summary(glm( prog2˜srsmoke , data=data [ [ i ] ] ) ) ) [ 2 , 1 ]
p s e l f r e p [ i ]<−coef (summary(glm( prog2˜srsmoke , data=data [ [ i ] ] ) ) ) [ 2 , 4 ]
mrremdata [ [ i ] ]<−data [ [ i ] ] [ data [ [ i ] ] $ s co r e ==20,]
mrrem [ i ]<−coef (summary(glm( prog2˜srsmoke , data=mrremdata [ [ i ] ] ) ) ) [ 2 , 1 ]
pmrrem [ i ]<−coef (summary(glm( prog2˜srsmoke , data=mrremdata [ [ i ] ] ) ) ) [ 2 , 4 ]
pbsc [ i ]<−coef (summary(glm( prog2˜srsmoke+pbsi , data=data [ [ i ] ] ) ) ) [ 2 , 1 ]
ppbsc [ i ]<−coef (summary(glm( prog2˜srsmoke+pbsi , data=data [ [ i ] ] ) ) ) [ 2 , 4 ]
pbic [ i ]<−coef (summary(glm( prog2˜srsmoke+pbi , data=data [ [ i ] ] ) ) ) [ 2 , 1 ]
ppbic [ i ]<−coef (summary(glm( prog2˜srsmoke+pbi , data=data [ [ i ] ] ) ) ) [ 2 , 4 ]
newdata [ [ i ] ]= morecol (data [ [ i ] ] )
eqn1 [ [ i ] ]<−glm( choose˜bmi , family=binomial ( l ink=’ prob i t ’ ) , data=newdata [ [ i ] ] )
eqn3 [ [ i ] ]<−glm( choose2˜bmi , family=binomial ( l ink=’ prob i t ’ ) , data=newdata [ [ i ] ] )
newdata [ [ i ] ] $IMR<−dnorm( eqn1 [ [ i ] ] $ l i n e a r . p r e d i c t o r s )/pnorm( eqn1 [ [ i ] ] $ l i n e a r . p r e d i c t o r s )
newdata [ [ i ] ] $IMR2<−dnorm( eqn3 [ [ i ] ] $ l i n e a r . p r e d i c t o r s )/pnorm( eqn3 [ [ i ] ] $ l i n e a r . p r e d i c t o r s )
#pr in t ( cb ind ( newdata [ [ i ] ] $IMR, newdata [ [ i ] ] $ s e l , newdata [ [ i ] ] $choose ) )
eqn2 [ [ i ] ]<−summary(lm( prog2˜srsmoke+IMR, data=newdata [ [ i ] ] , subset=(choose==1)))
eqn4 [ [ i ] ]<−summary(lm( prog2˜srsmoke+IMR2, data=newdata [ [ i ] ] , subset=(choose2 ==1)))
heck [ i ]<−coef ( eqn2 [ [ i ] ] ) [ 2 , 1 ]
pheck [ i ]<−coef ( eqn2 [ [ i ] ] ) [ 2 , 4 ]
heck2 [ i ]<−coef ( eqn4 [ [ i ] ] ) [ 2 , 1 ]
pheck2 [ i ]<−coef ( eqn4 [ [ i ] ] ) [ 2 , 4 ]
emsim [ [ i ] ]=emmix( yvecsim [ [ i ] ] [ [ 1 ] ] , yvecsim [ [ i ] ] [ [ 2 ] ] , 2 , pi , c ( 5 0 . 0 , 6 0 . 0 ) , var1 , 4 0 . 0 , var2 , 1 e−07, pause=F)
emdi f f [ i ]=emsim [ [ i ] ] $ smkdi f f
empi [ i , ]= emsim [ [ i ] ] $probs
semsim [ [ i ] ]= semmix ( yvecsim [ [ i ] ] [ [ 1 ] ] , yvecsim [ [ i ] ] [ [ 2 ] ] , 2 , pi , c ( 5 5 . 0 , 6 5 . 0 ) , var1 , 4 5 . 0 , var2 , emsim [ [ i ] ] $muvecsmk , emsim [ [ i ] ] $muvecnsmk , emsim [ [ i ] ] $sigmasqvecsmk , emsim [ [ i ] ] $sigmasqvecnsmk , t o l=1e−04, pause=F)
cdvcsim [ [ i ] ]= matrix ( c ( (1/emsim [ [ i ] ] $sigmasqvecsmk ) , 0 , 0 , 0 , 0 , 0 , ( 1 /(2∗emsim [ [ i ] ] $sigmasqvecsmk ˆ 2 ) ) , 0 , 0 , 0 , 0 , 0 , ( 1 /emsim [ [ i ] ] $sigmasqvecnsmk ) ,
0 , 0 , 0 , 0 , 0 , ( 1/(2∗emsim [ [ i ] ] $sigmasqvecnsmk ˆ 2 ) ) , 0 , 0 , 0 , 0 , 0 ,
( (1/emsim [ [ i ] ] $probs [ 1 ] )+(1/(1−emsim [ [ i ] ] $probs [ 1 ] ) ) ) ) , 5 , 5 )
#pr in t ( semsim [ [ i ] ] )
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i f ( diag (5 ) [1 ,1 ] − semsim [ [ i ] ] [ 1 , 1 ]==1)
{Vsim [ [ i ] ]= matrix ( rep (NA, 2 5 ) , ncol=5)}
else {Vsim [ [ i ] ]= solve ( cdvcsim [ [ i ] ] ) + solve ( cdvcsim [ [ i ] ] )%∗%semsim [ [ i ] ]%∗%solve ( diag (5)−semsim [ [ i ] ] ) }
#pr in t (emsim [ [ i ] ] $ smkd i f f )
i f ( i s . na( diag (Vsim [ [ i ] ] ) [ 1 ] ) = = ’TRUE’ | i s . na( diag (Vsim [ [ i ] ] ) [ 3 ] ) = = ’TRUE’ | diag (Vsim [ [ i ] ] ) [ 1 ] < 0 )
{pemdi f f [ i ]==NA}
else {pemdi f f [ i ]=2∗pt(−abs ( emsim [ [ i ] ] $ smkdi f f/ ( sqrt ( ( diag (Vsim [ [ i ] ] ) [ 1 ] /m)+(diag (Vsim [ [ i ] ] ) [ 3 ] /n ) ) ) ) , df=(n+m−2))}
#pr in t ( c ( d iag (Vsim [ [ i ] ] ) , d iag ( cdvcsim [ [ i ] ] ) , s q r t ( ( d iag (Vsim [ [ i ] ] ) [ 1 ] /m)+( diag (Vsim [ [ i ] ] ) [ 3 ] /n ) ) , pemdi f f [ i ] ) )
eta [ i ]<−etaSquared (aov (data [ [ i ] ] [ , 1 ] ˜data [ [ i ] ] [ , 1 2 ] ) , type =3,anova=FALSE ) [ , 1 ]
}

e s t imate s<−c (mean( l abva l ) ,mean( s e l f r e p ) ,mean(mrrem ) ,mean( pbsc ) ,mean( pbic ) ,mean( heck ) ,mean( heck2 ) ,mean( emdi f f ) , colMeans ( empi ) )
s e e s t i m a t e s<−c ( se ( l abva l ) , se ( s e l f r e p ) , se (mrrem ) , se ( pbsc ) , se ( pbic ) , se ( heck ) , se ( heck2 ) , se ( emdi f f ) , se ( empi [ , 1 ] ) , se ( empi [ , 2 ] ) )
c i l ow<−c (mean( l abva l )−qt ( . 9 7 5 , ( n+m−2))∗se ( l abva l ) ,mean( s e l f r e p )−qt ( . 9 7 5 , ( n+m−2))∗se ( s e l f r e p ) ,
mean(mrrem)−qt ( . 9 7 5 , ( n+m−2))∗se (mrrem ) ,mean( pbsc)−qt ( . 9 7 5 , ( n+m−2))∗se ( pbsc ) ,
mean( pbic )−qt ( . 9 7 5 , ( n+m−2))∗se ( pbic ) ,mean( heck)−qt ( . 9 7 5 , ( n+m−2))∗se ( heck ) ,
mean( heck2)−qt ( . 9 7 5 , ( n+m−2))∗se ( heck2 ) ,mean( emdi f f )−qt ( . 9 7 5 , ( n+m−2))∗se ( emdi f f ) ,
mean( empi [ ,1 ] ) −qt ( . 9 7 5 , ( n+m−2))∗se ( empi [ , 1 ] ) ,mean( empi [ ,2 ] ) −qt ( . 9 7 5 , ( n+m−2))∗se ( empi [ , 2 ] ) )
c i h i g h<−c (mean( l abva l )+qt ( . 9 7 5 , ( n+m−2))∗se ( l abva l ) ,mean( s e l f r e p )+qt ( . 9 7 5 , ( n+m−2))∗se ( s e l f r e p ) ,
mean(mrrem)+qt ( . 9 7 5 , ( n+m−2))∗se (mrrem ) ,mean( pbsc)+qt ( . 9 7 5 , ( n+m−2))∗se ( pbsc ) ,
mean( pbic )+qt ( . 9 7 5 , ( n+m−2))∗se ( pbic ) ,mean( heck)+qt ( . 9 7 5 , ( n+m−2))∗se ( heck ) ,
mean( heck2)+qt ( . 9 7 5 , ( n+m−2))∗se ( heck2 ) ,mean( emdi f f )+qt ( . 9 7 5 , ( n+m−2))∗se ( emdi f f ) ,
mean( empi [ , 1 ] )+ qt ( . 9 7 5 , ( n+m−2))∗se ( empi [ , 1 ] ) ,mean( empi [ , 2 ] )+ qt ( . 9 7 5 , ( n+m−2))∗se ( empi [ , 2 ] ) )
numsig<−c ( length ( p labva l [ p labval <0 .05 ] ) , length ( p s e l f r e p [ p s e l f r e p <0 .05 ] ) , length (pmrrem [ pmrrem<0 .05 ] ) ,
length ( ppbsc [ ppbsc <0 .05 ] ) , length ( ppbic [ ppbic <0 .05 ] ) , length ( pheck [ pheck <0 .05 ] ) ,
length ( pheck2 [ pheck2 <0 .05 ] ) , length ( pemdi f f [ pemdif f <0.05 & ! i s . na( pemdi f f ) ] ) ,sum( i s . na( pemdi f f ) ) , 0 )
p e r s i g<−c ( length ( p labva l [ p labval <0 .05 ] )/length ( p labva l ) ,
length ( p s e l f r e p [ p s e l f r e p <0 .05 ] )/length ( p s e l f r e p ) ,
length (pmrrem [ pmrrem<0 .05 ] )/length (pmrrem ) , length ( ppbsc [ ppbsc <0 .05 ] )/length ( ppbsc ) ,
length ( ppbic [ ppbic <0 .05 ] )/length ( ppbic ) , length ( pheck [ pheck <0 .05 ] )/length ( pheck ) ,
length ( pheck2 [ pheck2 <0 .05 ] )/length ( pheck2 ) ,
length ( pemdi f f [ pemdif f <0.05 & ! i s . na( pemdi f f ) ] ) / ( length ( pemdi f f )−sum( i s . na( pemdi f f ) ) ) ,sum( i s . na( pemdi f f ) ) /length ( pemdi f f ) , 0 )
sample s i z e<−rep ( ( n+m) , length ( e s t imate s ) )
p i s<−rep ( pi , length ( e s t imate s ) )
e f f e c t s i z e<−rep ( es , length ( e s t imate s ) )
method<−c ( ’Lab Values ’ , ’ S e l f−Report ’ , ’ Misch Resp Removed ’ , ’ Prob Based Index v1 ’ , ’ Prob Based Index v2 ’ , ’Heckman v1 ’ , ’Heckman v2 ’ , ’EM’ , ’ Prob Misch ’ , ’ Prob Not Misch ’ )
simtab<−cbind ( samples i ze , p i s , e f f e c t s i z e , method , es t imates , s e e s t imate s , c i low , c ih igh , numsig , p e r s i g )
return ( l i s t ( yvecsim , labva l , s e l f r e p , mrrem , pbsc , pbic , heck , heck2 , emdif f , empi , simtab ,mean( eta ) ) )
}

sim . 1<−s imu la t i on (50 , 5 , 1000 , 0 . 1 , c ( 5 , 6 ) , 4 , 1 )
sim . 2<−s imu la t i on (50 , 5 , 1000 , 0 . 1 , c (350 ,375) , 325 ,0 )
sim . 3<−s imu la t i on (50 , 5 , 1000 , 0 . 2 , c ( 5 , 6 ) , 4 , 1 )
sim . 4<−s imu la t i on (50 , 5 , 1000 , 0 . 2 , c (350 ,375) , 325 ,0 )
sim . 5<−s imu la t i on (50 , 5 , 1000 , 0 . 4 , c ( 5 , 6 ) , 4 , 1 )
sim . 6<−s imu la t i on (50 , 5 , 1000 , 0 . 4 , c (350 ,375) , 325 ,0 )
sim . 7<−s imu la t i on (100 , 10 , 1000 , 0 . 1 , c ( 5 , 6 ) , 4 , 1 )
sim . 8<−s imu la t i on (100 , 10 , 1000 , 0 . 1 , c (350 ,375) , 325 ,0 )
sim . 9<−s imu la t i on (100 , 10 , 1000 , 0 . 2 , c ( 5 , 6 ) , 4 , 1 )
sim .10<−s imu la t i on (100 , 10 , 1000 , 0 . 2 , c (350 ,375) , 325 ,0 )
sim .11<−s imu la t i on (100 , 10 , 1000 , 0 . 4 , c ( 5 , 6 ) , 4 , 1 )
sim .12<−s imu la t i on (100 , 10 , 1000 , 0 . 4 , c (350 ,375) , 325 ,0 )
sim .13<−s imu la t i on (500 , 50 , 1000 , 0 . 1 , c ( 5 , 6 ) , 4 , 1 )
sim .14<−s imu la t i on (500 , 50 , 1000 , 0 . 1 , c (350 ,375) , 325 ,0 )
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sim .15<−s imu la t i on (500 , 50 , 1000 , 0 . 2 , c ( 5 , 6 ) , 4 , 1 )
sim .16<−s imu la t i on (500 , 50 , 1000 , 0 . 2 , c (350 ,375) , 325 ,0 )
sim .17<−s imu la t i on (500 , 50 , 1000 , 0 . 4 , c ( 5 , 6 ) , 4 , 1 )
sim .18<−s imu la t i on (500 , 50 , 1000 , 0 . 4 , c (350 ,375) , 325 ,0 )
sim .19<−s imu la t i on (1000 ,100 ,1000 ,0 . 1 , c ( 5 , 6 ) , 4 , 1 )
sim .20<−s imu la t i on (1000 ,100 ,1000 ,0 . 1 , c (350 ,375) , 325 ,0 )
sim .21<−s imu la t i on (1000 ,100 ,1000 ,0 . 2 , c ( 5 , 6 ) , 4 , 1 )
sim .22<−s imu la t i on (1000 ,100 ,1000 ,0 . 2 , c (350 ,375) , 325 ,0 )
sim .23<−s imu la t i on (1000 ,100 ,1000 ,0 . 4 , c ( 5 , 6 ) , 4 , 1 )
sim .24<−s imu la t i on (1000 ,100 ,1000 ,0 . 4 , c (350 ,375) , 325 ,0 )
sim<−rbind ( sim . 1 [ [ 1 1 ] ] , sim . 2 [ [ 1 1 ] ] , sim . 3 [ [ 1 1 ] ] , sim . 4 [ [ 1 1 ] ] , sim . 5 [ [ 1 1 ] ] , sim . 6 [ [ 1 1 ] ] , sim . 7 [ [ 1 1 ] ] , sim . 8 [ [ 1 1 ] ] , sim . 9 [ [ 1 1 ] ] , sim . 1 0 [ [ 1 1 ] ] , sim . 1 1 [ [ 1 1 ] ] , sim . 1 2 [ [ 1 1 ] ] ,
sim . 1 3 [ [ 1 1 ] ] , sim . 1 4 [ [ 1 1 ] ] , sim . 1 5 [ [ 1 1 ] ] , sim . 1 6 [ [ 1 1 ] ] , sim . 1 7 [ [ 1 1 ] ] , sim . 1 8 [ [ 1 1 ] ] , sim . 1 9 [ [ 1 1 ] ] , sim . 2 0 [ [ 1 1 ] ] , sim . 2 1 [ [ 1 1 ] ] , sim . 2 2 [ [ 1 1 ] ] , sim . 2 3 [ [ 1 1 ] ] , sim . 2 4 [ [ 1 1 ] ] )

sim
write . csv ( sim , ”/Users/Kris ten/Desktop/ d i s s e r t a t i o n / s imulat ionTable . csv ” )

sims<−cbind ( sim [ , 1 ] , sim [ , 2 ] , sim [ , 3 ] , sim [ , 4 ] , format (round( as . numeric ( sim [ , 5 ] ) , d i g i t s =2) , nsmal l =2) ,
paste ( ” ( ” , format (round( as . numeric ( sim [ , 7 ] ) , d i g i t s =2) , nsmal l =2) ,” , ” , format (round( as . numeric ( sim [ , 8 ] ) , d i g i t s =2) , nsmal l =2) ,” ) ” , sep=’ ’ ) ,
sim [ , 9 ] , format (round( as . numeric ( sim [ , 1 0 ] ) , d i g i t s =2) , nsmal l =2))
colnames ( sims )<−c ( ”Sample S i z e ” , ”Pi” , ” E f f e c t S i z e ” , ”Method” , ” Estimate ” , ”95% CI” , ”Num Sig ” , ”Perc S ig ” )
write . csv ( sim , ”/Users/Kris ten/Desktop/ d i s s e r t a t i o n / s imulat ionTable2 . csv ” )
print ( x tab l e ( sims ) , i n c lude .rownames=FALSE)

e s t<−read . csv ( ”/Users/Kris ten/Desktop/ d i s s e r t a t i o n / s imulat ionTable e s t . csv ” , header=TRUE)
print ( x tab l e ( e s t ) , i n c lude .rownames=FALSE)

numsig<−read . csv ( ”/Users/Kris ten/Desktop/ d i s s e r t a t i o n / s imulat ionTable numsig . csv ” , header=TRUE)
print ( x tab l e ( numsig ) , i n c lude .rownames=FALSE)

p i p i<−read . csv ( ”/Users/Kris ten/Desktop/ d i s s e r t a t i o n / s imulat ionTable p i . csv ” , header=TRUE)
print ( x tab l e ( p i p i ) , i n c lude .rownames=FALSE)

notcon<−read . csv ( ”/Users/Kris ten/Desktop/ d i s s e r t a t i o n / s imulat ionTable notconverge . csv ” , header=TRUE)
print ( x tab l e ( notcon ) , i n c lude .rownames=FALSE)

sim .25<−s imu la t i on (50 , 5 , 1000 , 0 . 1 , c (100 ,110) , 90 , 1 )
sim .26<−s imu la t i on (50 , 5 , 1000 , 0 . 1 , c (4500 ,5000) ,4000 ,0 )
sim .27<−s imu la t i on (50 , 5 , 1000 , 0 . 2 , c (100 ,110) , 90 , 1 )
sim .28<−s imu la t i on (50 , 5 , 1000 , 0 . 2 , c (4500 ,5000) ,4000 ,0 )
sim .29<−s imu la t i on (50 , 5 , 1000 , 0 . 4 , c (100 ,110) , 90 , 1 )
sim .30<−s imu la t i on (50 , 5 , 1000 , 0 . 4 , c (4500 ,5000) ,4000 ,0 )
sim .31<−s imu la t i on (100 , 10 , 1000 , 0 . 1 , c (100 ,110) , 90 , 1 )
sim .32<−s imu la t i on (100 , 10 , 1000 , 0 . 1 , c (4500 ,5000) ,4000 ,0 )
sim .33<−s imu la t i on (100 , 10 , 1000 , 0 . 2 , c (100 ,110) , 90 , 1 )
sim .34<−s imu la t i on (100 , 10 , 1000 , 0 . 2 , c (4500 ,5000) ,4000 ,0 )
sim .35<−s imu la t i on (100 , 10 , 1000 , 0 . 4 , c (100 ,110) , 90 , 1 )
sim .36<−s imu la t i on (100 , 10 , 1000 , 0 . 4 , c (4500 ,5000) ,4000 ,0 )
sim .37<−s imu la t i on (500 , 50 , 1000 , 0 . 1 , c (100 ,110) , 90 , 1 )
sim .38<−s imu la t i on (500 , 50 , 1000 , 0 . 1 , c (4500 ,5000) ,4000 ,0 )
sim .39<−s imu la t i on (500 , 50 , 1000 , 0 . 2 , c (100 ,110) , 90 , 1 )
sim .40<−s imu la t i on (500 , 50 , 1000 , 0 . 2 , c (4500 ,5000) ,4000 ,0 )
sim .41<−s imu la t i on (500 , 50 , 1000 , 0 . 4 , c (100 ,110) , 90 , 1 )
sim .42<−s imu la t i on (500 , 50 , 1000 , 0 . 4 , c (4500 ,5000) ,4000 ,0 )
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sim .43<−s imu la t i on (1000 ,100 ,1000 ,0 . 1 , c (100 ,110) , 90 , 1 )
sim .44<−s imu la t i on (1000 ,100 ,1000 ,0 . 1 , c (4500 ,5000) ,4000 ,0 )
sim .45<−s imu la t i on (1000 ,100 ,1000 ,0 . 2 , c (100 ,110) , 90 , 1 )
sim .46<−s imu la t i on (1000 ,100 ,1000 ,0 . 2 , c (4500 ,5000) ,4000 ,0 )
sim .47<−s imu la t i on (1000 ,100 ,1000 ,0 . 4 , c (100 ,110) , 90 , 1 )
sim .48<−s imu la t i on (1000 ,100 ,1000 ,0 . 4 , c (4500 ,5000) ,4000 ,0 )
sim2<−rbind ( sim . 2 5 [ [ 1 1 ] ] , sim . 2 6 [ [ 1 1 ] ] , sim . 2 7 [ [ 1 1 ] ] , sim . 2 8 [ [ 1 1 ] ] , sim . 2 9 [ [ 1 1 ] ] , sim . 3 0 [ [ 1 1 ] ] , sim . 3 1 [ [ 1 1 ] ] , sim . 3 2 [ [ 1 1 ] ] , sim . 3 3 [ [ 1 1 ] ] , sim . 3 4 [ [ 1 1 ] ] , sim . 3 5 [ [ 1 1 ] ] , sim . 3 6 [ [ 1 1 ] ] ,
sim . 3 7 [ [ 1 1 ] ] , sim . 3 8 [ [ 1 1 ] ] , sim . 3 9 [ [ 1 1 ] ] , sim . 4 0 [ [ 1 1 ] ] , sim . 4 1 [ [ 1 1 ] ] , sim . 4 2 [ [ 1 1 ] ] , sim . 4 3 [ [ 1 1 ] ] , sim . 4 4 [ [ 1 1 ] ] , sim . 4 5 [ [ 1 1 ] ] , sim . 4 6 [ [ 1 1 ] ] , sim . 4 7 [ [ 1 1 ] ] , sim . 4 8 [ [ 1 1 ] ] )
write . csv ( sim2 , ”/Users/Kris ten/Desktop/ d i s s e r t a t i o n / s imulat ionTable2ndrun . csv ” )
sim2s<−cbind ( sim2 [ , 1 ] , sim2 [ , 2 ] , sim2 [ , 3 ] , sim2 [ , 4 ] , format (round( as . numeric ( sim2 [ , 5 ] ) , d i g i t s =2) , nsmal l =2) ,
paste ( ” ( ” , format (round( as . numeric ( sim2 [ , 7 ] ) , d i g i t s =2) , nsmal l =2) ,” , ” , format (round( as . numeric ( sim2 [ , 8 ] ) , d i g i t s =2) , nsmal l =2) ,” ) ” , sep=’ ’ ) ,
sim2 [ , 9 ] , format (round( as . numeric ( sim2 [ , 1 0 ] ) , d i g i t s =2) , nsmal l =2))
colnames ( sim2s )<−c ( ”Sample S i z e ” , ”Pi” , ” E f f e c t S i z e ” , ”Method” , ” Estimate ” , ”95% CI” , ”Num Sig ” , ”Perc S ig ” )
write . csv ( sim2 , ”/Users/Kris ten/Desktop/ d i s s e r t a t i o n / s imulat ionTable22ndrun . csv ” )
print ( x tab l e ( sim2s ) , i n c lude .rownames=FALSE)

e s t2<−read . csv ( ”/Users/Kris ten/Desktop/ d i s s e r t a t i o n / s imulat ionTable est2ndrun . csv ” , header=TRUE)
print ( x tab l e ( e s t2 ) , i n c lude .rownames=FALSE)

numsig2<−read . csv ( ”/Users/Kris ten/Desktop/ d i s s e r t a t i o n / s imulat ionTable numsig2ndrun . csv ” , header=TRUE)
print ( x tab l e ( numsig2 ) , i n c lude .rownames=FALSE)

p i p i 2<−read . csv ( ”/Users/Kris ten/Desktop/ d i s s e r t a t i o n / s imulat ionTable pi2ndrun . csv ” , header=TRUE)
print ( x tab l e ( p i p i 2 ) , i n c lude .rownames=FALSE)

notcon2<−read . csv ( ”/Users/Kris ten/Desktop/ d i s s e r t a t i o n / s imulat ionTable notconverge2ndrun . csv ” , header=TRUE)
print ( x tab l e ( notcon2 ) , i n c lude .rownames=FALSE)

mygraphs<−function ( type1 , type2 , type3 , type4 , type5 , type6 , type7 , x l im i t s , y l im i t s , x int , xlow , xhigh ,bw)
{
p lo t1<−qp lot ( type1 , geom=” histogram ” , binwidth = bw, main = ” Al l Se l f−Report Data” ,
xlab = ” Progesterone D i f f ” ,
f i l l =I ( ” blue ” ) , col=I ( ” blue ” ) , xl im=x l im i t s , yl im=y l i m i t s ) + geom v l i n e ( x i n t e r c e p t = xint , col = ” red ” , lwd =1.5) + geom v l i n e ( x i n t e r c e p t = xlow , col = ” red ” , lwd =0.5) + geom v l i n e ( x i n t e r c e p t = xhigh , col = ” red ” , lwd =0.5)

p lo t2<−qp lot ( type2 , geom=” histogram ” , binwidth = bw, main = ”IIR Removed” ,
xlab = ” Progesterone D i f f ” ,
f i l l =I ( ” blue ” ) , col=I ( ” blue ” ) , xl im=x l im i t s , yl im=y l i m i t s ) + geom v l i n e ( x i n t e r c e p t = xint , col = ” red ” , lwd =1.5) + geom v l i n e ( x i n t e r c e p t = xlow , col = ” red ” , lwd =0.5) + geom v l i n e ( x i n t e r c e p t = xhigh , col = ” red ” , lwd =0.5)

p lo t3<−qp lot ( type3 , geom=” histogram ” , binwidth = bw, main = ”Prob Based Index v1” ,
xlab = ” Progesterone D i f f ” ,
f i l l =I ( ” blue ” ) , col=I ( ” blue ” ) , xl im=x l im i t s , yl im=y l i m i t s ) + geom v l i n e ( x i n t e r c e p t = xint , col = ” red ” , lwd =1.5) + geom v l i n e ( x i n t e r c e p t = xlow , col = ” red ” , lwd =0.5) + geom v l i n e ( x i n t e r c e p t = xhigh , col = ” red ” , lwd =0.5)

p lo t4<−qp lot ( type4 , geom=” histogram ” , binwidth = bw, main = ”Prob Based Index v2” ,
xlab = ” Progesterone D i f f ” ,
f i l l =I ( ” blue ” ) , col=I ( ” blue ” ) , xl im=x l im i t s , yl im=y l i m i t s ) + geom v l i n e ( x i n t e r c e p t = xint , col = ” red ” , lwd =1.5) + geom v l i n e ( x i n t e r c e p t = xlow , col = ” red ” , lwd =0.5) + geom v l i n e ( x i n t e r c e p t = xhigh , col = ” red ” , lwd =0.5)

p lo t5<−qp lot ( type5 , geom=” histogram ” , binwidth = bw, main = ”Heckman ’ s v1” ,
xlab = ” Progesterone D i f f ” ,
f i l l =I ( ” blue ” ) , col=I ( ” blue ” ) , xl im=x l im i t s , yl im=y l i m i t s ) + geom v l i n e ( x i n t e r c e p t = xint , col = ” red ” , lwd =1.5) + geom v l i n e ( x i n t e r c e p t = xlow , col = ” red ” , lwd =0.5) + geom v l i n e ( x i n t e r c e p t = xhigh , col = ” red ” , lwd =0.5)

p lo t6<−qp lot ( type6 , geom=” histogram ” , binwidth = bw, main = ”Heckman ’ s v2” ,
xlab = ” Progesterone D i f f ” ,
f i l l =I ( ” blue ” ) , col=I ( ” blue ” ) , xl im=x l im i t s , yl im=y l i m i t s ) + geom v l i n e ( x i n t e r c e p t = xint , col = ” red ” , lwd =1.5) + geom v l i n e ( x i n t e r c e p t = xlow , col = ” red ” , lwd =0.5) + geom v l i n e ( x i n t e r c e p t = xhigh , col = ” red ” , lwd =0.5)
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p lo t7<−qp lot ( type7 , geom=” histogram ” , binwidth = bw, main = ”EM Algorithm ” ,
xlab = ” Progesterone D i f f ” ,
f i l l =I ( ” blue ” ) , col=I ( ” blue ” ) , xl im=x l im i t s , yl im=y l i m i t s ) + geom v l i n e ( x i n t e r c e p t = xint , col = ” red ” , lwd =1.5) + geom v l i n e ( x i n t e r c e p t = xlow , col = ” red ” , lwd =0.5) + geom v l i n e ( x i n t e r c e p t = xhigh , col = ” red ” , lwd =0.5)

grid . arrange ( plot1 , p lot2 , p lot3 , p lot4 , p lot5 , p lot6 , p lot7 , ncol=4)
}

graphsim1<−mygraphs ( sim . 1 [ [ 3 ] ] , sim . 1 [ [ 4 ] ] , sim . 1 [ [ 5 ] ] , sim . 1 [ [ 6 ] ] , sim . 1 [ [ 7 ] ] , sim . 1 [ [ 8 ] ] , sim . 1 [ [ 9 ] ] , c (−27 ,−5) ,
yl im=c (0 , 105 ) , as . numeric ( sim . 1 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 1 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 1 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim2<−mygraphs ( sim . 2 [ [ 3 ] ] , sim . 2 [ [ 4 ] ] , sim . 2 [ [ 5 ] ] , sim . 2 [ [ 6 ] ] , sim . 2 [ [ 7 ] ] , sim . 2 [ [ 8 ] ] , sim . 2 [ [ 9 ] ] , c (−50 ,50) ,
yl im=c ( 0 , 25 ) , as . numeric ( sim . 2 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 2 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 2 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim3<−mygraphs ( sim . 3 [ [ 3 ] ] , sim . 3 [ [ 4 ] ] , sim . 3 [ [ 5 ] ] , sim . 3 [ [ 6 ] ] , sim . 3 [ [ 7 ] ] , sim . 3 [ [ 8 ] ] , sim . 3 [ [ 9 ] ] , c (−27 ,5) ,
yl im=c (0 , 105 ) , as . numeric ( sim . 3 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 3 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 3 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim4<−mygraphs ( sim . 4 [ [ 3 ] ] , sim . 4 [ [ 4 ] ] , sim . 4 [ [ 5 ] ] , sim . 4 [ [ 6 ] ] , sim . 4 [ [ 7 ] ] , sim . 4 [ [ 8 ] ] , sim . 4 [ [ 9 ] ] , c (−50 ,50) ,
yl im=c ( 0 , 25 ) , as . numeric ( sim . 4 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 4 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 4 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim5<−mygraphs ( sim . 5 [ [ 3 ] ] , sim . 5 [ [ 4 ] ] , sim . 5 [ [ 5 ] ] , sim . 5 [ [ 6 ] ] , sim . 5 [ [ 7 ] ] , sim . 5 [ [ 8 ] ] , sim . 5 [ [ 9 ] ] , c (−27 ,5) ,
yl im=c (0 , 105 ) , as . numeric ( sim . 5 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 5 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 5 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim6<−mygraphs ( sim . 6 [ [ 3 ] ] , sim . 6 [ [ 4 ] ] , sim . 6 [ [ 5 ] ] , sim . 6 [ [ 6 ] ] , sim . 6 [ [ 7 ] ] , sim . 6 [ [ 8 ] ] , sim . 6 [ [ 9 ] ] , c (−50 ,50) ,
yl im=c ( 0 , 25 ) , as . numeric ( sim . 6 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 6 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 6 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim7<−mygraphs ( sim . 7 [ [ 3 ] ] , sim . 7 [ [ 4 ] ] , sim . 7 [ [ 5 ] ] , sim . 7 [ [ 6 ] ] , sim . 7 [ [ 7 ] ] , sim . 7 [ [ 8 ] ] , sim . 7 [ [ 9 ] ] , c (−27 ,5) ,
yl im=c (0 , 105 ) , as . numeric ( sim . 7 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 7 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 7 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim8<−mygraphs ( sim . 8 [ [ 3 ] ] , sim . 8 [ [ 4 ] ] , sim . 8 [ [ 5 ] ] , sim . 8 [ [ 6 ] ] , sim . 8 [ [ 7 ] ] , sim . 8 [ [ 8 ] ] , sim . 8 [ [ 9 ] ] , c (−50 ,50) ,
yl im=c ( 0 , 25 ) , as . numeric ( sim . 8 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 8 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 8 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim9<−mygraphs ( sim . 9 [ [ 3 ] ] , sim . 9 [ [ 4 ] ] , sim . 9 [ [ 5 ] ] , sim . 9 [ [ 6 ] ] , sim . 9 [ [ 7 ] ] , sim . 9 [ [ 8 ] ] , sim . 9 [ [ 9 ] ] , c (−27 ,5) ,
yl im=c (0 , 105 ) , as . numeric ( sim . 9 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 9 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 9 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim10<−mygraphs ( sim . 1 0 [ [ 3 ] ] , sim . 1 0 [ [ 4 ] ] , sim . 1 0 [ [ 5 ] ] , sim . 1 0 [ [ 6 ] ] , sim . 1 0 [ [ 7 ] ] , sim . 1 0 [ [ 8 ] ] , sim . 1 0 [ [ 9 ] ] , c (−50 ,50) ,
yl im=c ( 0 , 25 ) , as . numeric ( sim . 1 0 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 1 0 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 1 0 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim11<−mygraphs ( sim . 1 1 [ [ 3 ] ] , sim . 1 1 [ [ 4 ] ] , sim . 1 1 [ [ 5 ] ] , sim . 1 1 [ [ 6 ] ] , sim . 1 1 [ [ 7 ] ] , sim . 1 1 [ [ 8 ] ] , sim . 1 1 [ [ 9 ] ] , c (−27 ,5) ,
yl im=c (0 , 105 ) , as . numeric ( sim . 1 1 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 1 1 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 1 1 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim12<−mygraphs ( sim . 1 2 [ [ 3 ] ] , sim . 1 2 [ [ 4 ] ] , sim . 1 2 [ [ 5 ] ] , sim . 1 2 [ [ 6 ] ] , sim . 1 2 [ [ 7 ] ] , sim . 1 2 [ [ 8 ] ] , sim . 1 2 [ [ 9 ] ] , c (−50 ,50) ,
yl im=c ( 0 , 25 ) , as . numeric ( sim . 1 2 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 1 2 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 1 2 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )
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graphsim13<−mygraphs ( sim . 1 3 [ [ 3 ] ] , sim . 1 3 [ [ 4 ] ] , sim . 1 3 [ [ 5 ] ] , sim . 1 3 [ [ 6 ] ] , sim . 1 3 [ [ 7 ] ] , sim . 1 3 [ [ 8 ] ] , sim . 1 3 [ [ 9 ] ] , c(−25 ,−5) ,
yl im=c (0 , 105 ) , as . numeric ( sim . 1 3 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 1 3 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 1 3 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim14<−mygraphs ( sim . 1 4 [ [ 3 ] ] , sim . 1 4 [ [ 4 ] ] , sim . 1 4 [ [ 5 ] ] , sim . 1 4 [ [ 6 ] ] , sim . 1 4 [ [ 7 ] ] , sim . 1 4 [ [ 8 ] ] , sim . 1 4 [ [ 9 ] ] , c (−30 ,12) ,
yl im=c ( 0 , 25 ) , as . numeric ( sim . 1 4 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 1 4 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 1 4 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim15<−mygraphs ( sim . 1 5 [ [ 3 ] ] , sim . 1 5 [ [ 4 ] ] , sim . 1 5 [ [ 5 ] ] , sim . 1 5 [ [ 6 ] ] , sim . 1 5 [ [ 7 ] ] , sim . 1 5 [ [ 8 ] ] , sim . 1 5 [ [ 9 ] ] , c(−25 ,−5) ,
yl im=c (0 , 105 ) , as . numeric ( sim . 1 5 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 1 5 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 1 5 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim16<−mygraphs ( sim . 1 6 [ [ 3 ] ] , sim . 1 6 [ [ 4 ] ] , sim . 1 6 [ [ 5 ] ] , sim . 1 6 [ [ 6 ] ] , sim . 1 6 [ [ 7 ] ] , sim . 1 6 [ [ 8 ] ] , sim . 1 6 [ [ 9 ] ] , c (−30 ,12) ,
yl im=c ( 0 , 25 ) , as . numeric ( sim . 1 6 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 1 6 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 1 6 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim17<−mygraphs ( sim . 1 7 [ [ 3 ] ] , sim . 1 7 [ [ 4 ] ] , sim . 1 7 [ [ 5 ] ] , sim . 1 7 [ [ 6 ] ] , sim . 1 7 [ [ 7 ] ] , sim . 1 7 [ [ 8 ] ] , sim . 1 7 [ [ 9 ] ] , c(−25 ,−5) ,
yl im=c (0 , 105 ) , as . numeric ( sim . 1 7 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 1 7 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 1 7 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim18<−mygraphs ( sim . 1 8 [ [ 3 ] ] , sim . 1 8 [ [ 4 ] ] , sim . 1 8 [ [ 5 ] ] , sim . 1 8 [ [ 6 ] ] , sim . 1 8 [ [ 7 ] ] , sim . 1 8 [ [ 8 ] ] , sim . 1 8 [ [ 9 ] ] , c (−30 ,12) ,
yl im=c ( 0 , 25 ) , as . numeric ( sim . 1 8 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 1 8 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 1 8 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim19<−mygraphs ( sim . 1 9 [ [ 3 ] ] , sim . 1 9 [ [ 4 ] ] , sim . 1 9 [ [ 5 ] ] , sim . 1 9 [ [ 6 ] ] , sim . 1 9 [ [ 7 ] ] , sim . 1 9 [ [ 8 ] ] , sim . 1 9 [ [ 9 ] ] , c(−25 ,−5) ,
yl im=c (0 , 105 ) , as . numeric ( sim . 1 9 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 1 9 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 1 9 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim20<−mygraphs ( sim . 2 0 [ [ 3 ] ] , sim . 2 0 [ [ 4 ] ] , sim . 2 0 [ [ 5 ] ] , sim . 2 0 [ [ 6 ] ] , sim . 2 0 [ [ 7 ] ] , sim . 2 0 [ [ 8 ] ] , sim . 2 0 [ [ 9 ] ] , c (−30 ,12) ,
yl im=c ( 0 , 25 ) , as . numeric ( sim . 2 0 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 2 0 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 2 0 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim21<−mygraphs ( sim . 2 1 [ [ 3 ] ] , sim . 2 1 [ [ 4 ] ] , sim . 2 1 [ [ 5 ] ] , sim . 2 1 [ [ 6 ] ] , sim . 2 1 [ [ 7 ] ] , sim . 2 1 [ [ 8 ] ] , sim . 2 1 [ [ 9 ] ] , c(−25 ,−5) ,
yl im=c (0 , 105 ) , as . numeric ( sim . 2 1 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 2 1 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 2 1 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim22<−mygraphs ( sim . 2 2 [ [ 3 ] ] , sim . 2 2 [ [ 4 ] ] , sim . 2 2 [ [ 5 ] ] , sim . 2 2 [ [ 6 ] ] , sim . 2 2 [ [ 7 ] ] , sim . 2 2 [ [ 8 ] ] , sim . 2 2 [ [ 9 ] ] , c (−30 ,12) ,
yl im=c ( 0 , 25 ) , as . numeric ( sim . 2 2 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 2 2 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 2 2 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim23<−mygraphs ( sim . 2 3 [ [ 3 ] ] , sim . 2 3 [ [ 4 ] ] , sim . 2 3 [ [ 5 ] ] , sim . 2 3 [ [ 6 ] ] , sim . 2 3 [ [ 7 ] ] , sim . 2 3 [ [ 8 ] ] , sim . 2 3 [ [ 9 ] ] , c(−25 ,−5) ,
yl im=c (0 , 105 ) , as . numeric ( sim . 2 3 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 2 3 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 2 3 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

graphsim24<−mygraphs ( sim . 2 4 [ [ 3 ] ] , sim . 2 4 [ [ 4 ] ] , sim . 2 4 [ [ 5 ] ] , sim . 2 4 [ [ 6 ] ] , sim . 2 4 [ [ 7 ] ] , sim . 2 4 [ [ 8 ] ] , sim . 2 4 [ [ 9 ] ] , c (−30 ,12) ,
yl im=c ( 0 , 25 ) , as . numeric ( sim . 2 4 [ [ 1 1 ] ] [ 1 , 5 ] ) ,
as . numeric ( sim . 2 4 [ [ 1 1 ] ] [ 1 , 7 ] ) , as . numeric ( sim . 2 4 [ [ 1 1 ] ] [ 1 , 8 ] ) , 0 . 2 5 )

l ibrary ( samp leSe l e c t i on )
l ibrary ( ggp lot2 )
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l ibrary ( gr idExtra )
l ibrary ( x tab l e )
l ibrary ( l s r )
l ibrary ( f u n c t i o n a l )
l ibrary ( p ly r )
bmdata <− read . csv ( f i l e=”/Users/Kris ten/Desktop/ d i s s e r t a t i o n /bigmamaEM . csv ” ,na . s t r i n g s = ” ” )

#d i s t r i b u t i o n o f Big Mama data
f a l s e=bmdata$prog2 [ bmdata$smoke1==1 & bmdata$srsmoke==0]
mean( f a l s e , na .rm=TRUE)
var ( f a l s e , na .rm=TRUE)
length (na . omit ( f a l s e ) )

t rue=bmdata$prog2 [ bmdata$smoke1==0 & bmdata$srsmoke==0]
mean( true , na .rm=TRUE)
var ( true , na .rm=TRUE)
length (na . omit ( t rue ) )

smokes=bmdata$prog2 [ bmdata$smoke1==1 & bmdata$srsmoke==1]
mean( smokes , na .rm=TRUE)
var ( smokes , na .rm=TRUE)
length (na . omit ( smokes ) )

smokers=bmdata$prog2 [ bmdata$smoke1==1]
nonsmokers=bmdata$prog2 [ bmdata$smoke1==0]
mean( smokers , na .rm=TRUE)
var ( smokers , na .rm=TRUE)
mean( nonsmokers , na .rm=TRUE)
var ( nonsmokers , na .rm=TRUE)
mean( smokers , na .rm=TRUE)−mean( nonsmokers , na .rm=TRUE)

#pro b a b i l i t y−based screener index v1
n=sum( length (na . omit ( f a l s e ) ) , length (na . omit ( t rue ) ) , length (na . omit ( smokes ) ) )
p b s i f=length (na . omit ( f a l s e ) ) /n
pbs i t=length ( c (na . omit ( t rue ) ,na . omit ( smokes ) ) ) /n
pbs i1=c ( rep ( pbs i f , length (na . omit ( f a l s e ) ) ) , rep ( pbs i t , length (na . omit ( t rue ) ) ) )
pbs i2=rep ( pbs i t , length (na . omit ( smokes ) ) )

#pro b a b i l i t y−based screener index v2
randnum=sample ( 1 : n , n , replace=FALSE)
newpbsi=cbind ( randnum , c ( pbsi1 , pbs i2 ) )
newpbsi . sort=newpbsi [ order ( newpbsi [ , 1 ] ) , ]

mr=na . omit ( f a l s e )
t r=na . omit ( t rue )
sm=na . omit ( smokes )
prog=c (mr , tr , sm)
pbs i=c ( pbsi1 , pbs i2 )
s r=c ( rep (0 ,sum( length (na . omit ( f a l s e ) ) , length (na . omit ( t rue ) ) ) ) , rep (1 , length (na . omit ( smokes ) ) ) )
smokescore2=bm$NIC+newpbsi . sort [ , 2 ]+rnorm(1 , 15 ,10 )
s e l<−predict (lm(bm$smokescore˜bm$ race+bm$w1edin , na . action=na . exc lude ) )
s e l 2<−predict (lm( smokescore2˜bm$ race+bm$w1edin , na . action=na . exc lude ) )
plot ( s e l 2 , smokescore2 )
choose<−rep (NA, length ( s e l ) )
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choose2<−rep (NA, length ( s e l 2 ) )
for ( j in 1 : length ( s e l ) )
{
choose [ j ]= i f e l s e ( i s . na( s e l [ j ] ) | s e l [ j ]<=12 ,0 ,1)
choose2 [ j ]= i f e l s e ( i s . na( s e l 2 [ j ] ) | s e l 2 [ j ]<=7 ,0 ,1)
}
l ogprog=log ( bmdata$prog2 )

#data f i x
bmdata=cbind ( bmdata , newpbsi . sort [ , 2 ] , smokescore2 , s e l , choose , s e l 2 , choose2 , logprog )
bm=as . data . frame ( bmdata )

#ana l y s i s l a b va lue
l abva l .bm<−round( coef (summary(glm( prog2˜smoke1 , data=bm) ) ) [ 2 , 1 ] , 2 )
s e l a b v a l .bm<−round( coef (summary(glm( prog2˜smoke1 , data=bm) ) ) [ 2 , 2 ] , 1 )
p labva l .bm<−round( coef (summary(glm( prog2˜smoke1 , data=bm) ) ) [ 2 , 4 ] , 4 )
c i l a b v a l .bm<−round( c o n f i n t (glm( prog2˜smoke1 , data=bm) , ’ smoke1 ’ ) , 1 )

#ana l y s i s s e l f −r epor t
s e l f r e p .bm<−round( coef (summary(glm( prog2˜srsmoke , data=bm) ) ) [ 2 , 1 ] , 2 )
s e s e l f r e p .bm<−round( coef (summary(glm( prog2˜srsmoke , data=bm) ) ) [ 2 , 2 ] , 1 )
p s e l f r e p .bm<−round( coef (summary(glm( prog2˜srsmoke , data=bm) ) ) [ 2 , 4 ] , 4 )
c i s e l f r e p .bm<−round( c o n f i n t (glm( prog2˜srsmoke , data=bm) , ’ srsmoke ’ ) , 1 )

#ana l y s i s misch ievous responders removed
mrremdata .bm<−bm[bm$ s co r e ==20,]
mrrem .bm<−round( coef (summary(glm( prog2˜srsmoke , data=mrremdata .bm) ) ) [ 2 , 1 ] , 2 )
semrrem .bm<−round( coef (summary(glm( prog2˜srsmoke , data=mrremdata .bm) ) ) [ 2 , 2 ] , 1 )
pmrrem .bm<−round( coef (summary(glm( prog2˜srsmoke , data=mrremdata .bm) ) ) [ 2 , 4 ] , 4 )
cimrrem .bm<−round( c o n f i n t (glm( prog2˜srsmoke , data=mrremdata .bm) , ’ srsmoke ’ ) , 1 )

#ana l y s i s p r o b a b i l i t y based index v2
pbsc .bm<−round( coef (summary(glm( prog2˜srsmoke+pbsi , data=bm) ) ) [ 2 , 1 ] , 2 )
sepbsc .bm<−round( coef (summary(glm( prog2˜srsmoke+pbsi , data=bm) ) ) [ 2 , 2 ] , 1 )
ppbsc .bm<−round( coef (summary(glm( prog2˜srsmoke+pbsi , data=bm) ) ) [ 2 , 4 ] , 4 )
c ipbsc .bm<−round( c o n f i n t (glm( prog2˜srsmoke+pbsi , data=bm) , ’ srsmoke ’ ) , 1 )

#ana l y s i s p r o b a b i l i t y based index v1
pbic .bm<−round( coef (summary(glm( prog2˜srsmoke+newpbsi . sort [ , 2 ] , data=bm) ) ) [ 2 , 1 ] , 2 )
s epb i c .bm<−round( coef (summary(glm( prog2˜srsmoke+newpbsi . sort [ , 2 ] , data=bm) ) ) [ 2 , 2 ] , 1 )
ppbic .bm<−round( coef (summary(glm( prog2˜srsmoke+newpbsi . sort [ , 2 ] , data=bm) ) ) [ 2 , 4 ] , 4 )
c i p b i c .bm<−round( c o n f i n t (glm( prog2˜srsmoke+newpbsi . sort [ , 2 ] , data=bm) , ’ srsmoke ’ ) , 1 )

#ana l y s i s heckman v2
eqn1 .bm<−f i tted (glm( choose˜bmi , family=binomial ( l ink=’ prob i t ’ ) , data=bm, na . action=na . exc lude ) )
bm$IMR<−dnorm( eqn1 .bm)/pnorm( eqn1 .bm)
eqn2 .bm<−summary(lm( prog2˜srsmoke+IMR, data=bm, subset=(choose==1)))
heck .bm<−round( coef ( eqn2 .bm) [ 2 , 1 ] , 2 )
seheck .bm<−round( coef ( eqn2 .bm) [ 2 , 2 ] , 1 )
pheck .bm<−round( coef ( eqn2 .bm) [ 2 , 4 ] , 4 )
c iheck .bm<−round( c o n f i n t (lm( prog2˜srsmoke+IMR, data=bm, subset=(choose==1)) , ’ srsmoke ’ ) , 1 )

#ana l y s i s heckman v1
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eqn3 .bm<−f i tted (glm( choose2˜bmi , family=binomial ( l ink=’ prob i t ’ ) , data=bm, na . action=na . exc lude ) )
bm$IMR2<−dnorm( eqn3 .bm)/pnorm( eqn3 .bm)
eqn4 .bm<−summary(lm( prog2˜srsmoke+IMR2, data=bm, subset=(choose2 ==1)))
heck2 .bm<−round( coef ( eqn4 .bm) [ 2 , 1 ] , 2 )
seheck2 .bm<−round( coef ( eqn4 .bm) [ 2 , 2 ] , 1 )
pheck2 .bm<−round( coef ( eqn4 .bm) [ 2 , 4 ] , 4 )
c iheck2 .bm<−round( c o n f i n t (lm( prog2˜srsmoke+IMR2, data=bm, subset=(choose2 ==1)) , ’ srsmoke ’ ) , 1 )

#EM Algo r i t h
yvecbm=l i s t ( c (mr , t r ) , sm)

p l o t i t e r 2=function (y , probs , muvec , sigmasqvec , ezmat , pause=F)
{
xtemp=seq (min( y ) ,max( y ) , (max( y)−min( y ) ) /1000)
compvec1=probs∗dnorm( xtemp , muvec [ 1 ] , sqrt ( s igmasqvec [ 1 ] ) )
compvec2=(1−probs )∗dnorm( xtemp , muvec [ 2 ] , sqrt ( s igmasqvec [ 2 ] ) )
ytemp=compvec1+compvec2
#p l o t ( xtemp , ytemp , type=” l ” , c o l=”b l ue ”)
plot ( xtemp , compvec1 , col=” red ” , type=” l ” , xlab=” proge s t e rone l e v e l ” , ylab=”Non−Smoker Density ” )
l ines ( xtemp , compvec2 , col=” green ” )
legend ( ” t op r i gh t ” , legend=c ( ” Mischievous Responders ” , ”True Non−Smokers” ) , l t y=c ( 1 , 1 ) , col=c ( ” red ” , ” green ” ) )
#l i n e s ( xtemp , compvec2 , c o l=”green ”)

c o l o r v e c=rgb ( ezmat [ , 1 ] , ezmat [ , 2 ] , 0 )
points (y , abs (rnorm( length ( y ) , 0 ,max( ytemp )/30 ) ) , col=c o l o r v e c )
i f ( pause ) {scan ( )}
}

emmix=function ( yvec , yvec2 , k , s tar tprob , s ta r t1 , s ta r t2 , s ta r t3 , s ta r t4 , t o l=1e−04, pause=F)
{
n=length ( yvec )
m=length ( yvec2 )
#s t a r t i n g va l u e s
muvec=s t a r t 1
sigmasqvec=s t a r t 2
probs=sta r tp rob
muvec2=s t a r t 3
sigmasqvec2=s t a r t 4

#expec ted va lue o f unobserved data
ezmatnorm=matrix (0 ,nrow=n , ncol=k )
ezmatnorm2=matrix (0 ,nrow=m, ncol=1)
#f i l l in ezmatnorm with p j N(mu j , s igmasqvec j )
ezmatnorm [ ,1 ]= probs∗dnorm( yvec , muvec [ 1 ] , sqrt ( s igmasqvec [ 1 ] ) )
ezmatnorm [ ,2]=(1− probs )∗dnorm( yvec , muvec [ 2 ] , sqrt ( s igmasqvec [ 2 ] ) )
rowsums=apply ( ezmatnorm , 1 ,sum)
ezmat=ezmatnorm/rowsums
l l i k=sum( log ( rowsums ) )

ezmatnorm2 [ ,1 ]=dnorm( yvec2 , muvec2 , sqrt ( s igmasqvec2 ) )
rowsums2=apply ( ezmatnorm2 , 1 ,sum)
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ezmat2=ezmatnorm2/rowsums2
l l i k 2=sum( log ( rowsums2 ) )

rowsumssmk=sum( c ( ezmatnorm [ , 1 ] , ezmatnorm2 [ , 1 ] ) )
rowsumsnsmk=sum( ezmatnorm [ , 2 ] )
ezmatsmk=c ( ezmatnorm [ , 1 ] , ezmatnorm2 [ , 1 ] ) /rowsumssmk
ezmatnsmk=ezmatnorm [ , 2 ] /rowsumsnsmk

repeat
{
#ezmat conta ins the ez i j v a l u e s
#l l i k conta ins the l o g l i k e l i h o o d
bothprobs=apply ( ezmat , 2 ,mean)
probs=bothprobs [ which .min( bothprobs ) ]
i f ( probs <0.01){ probs<−0 .05}
#i f e l s e ( probs >0.01 , probs , 0 . 0 5 )
muvec [1 ]=sum( ezmat [ , 1 ] ∗yvec )/sum( ezmat [ , 1 ] )
i f (muvec[1]<=0){muvec [ 1 ]<−0 .001}
muvec [2 ]=sum( ezmat [ , 2 ] ∗yvec )/sum( ezmat [ , 2 ] )
s igmasqvec [1 ]=sum( ( ezmat [ , 1 ] ∗ ( yvec−muvec [ 1 ] ) ˆ 2 ) ) /sum( ezmat [ , 1 ] )
s igmasqvec [2 ]=sum( ( ezmat [ , 2 ] ∗ ( yvec−muvec [ 2 ] ) ˆ 2 ) ) /sum( ezmat [ , 2 ] )

muvec2=sum( ezmat2 [ , 1 ] ∗yvec2 )/sum( ezmat2 [ , 1 ] )
s igmasqvec2=sum( ( ezmat2 [ , 1 ] ∗ ( yvec2−muvec2 ) ˆ 2 ) ) /sum( ezmat2 [ , 1 ] )

muvecsmk=sum( c ( ezmat [ , 1 ] ∗yvec , ezmat2 [ , 1 ] ∗yvec2 ) ) /sum( c ( ezmat [ , 1 ] ) , ezmat2 [ , 1 ] )
muvecnsmk=sum( ezmat [ , 2 ] ∗yvec )/sum( ezmat [ , 2 ] )
sigmasqvecsmk=sum( c ( ezmat [ , 1 ] ∗ ( ( yvec−muvec [ 1 ] ) ˆ 2 ) , ezmat2 [ , 1 ] ∗ ( ( yvec2−muvec2 ) ˆ 2 ) ) /sum( c ( ezmat [ , 1 ] ) , ezmat2 [ , 1 ] ) )
sigmasqvecnsmk=sum( ezmat [ , 2 ] ∗ ( ( yvec−muvec [ 2 ] ) ˆ 2 ) ) /sum( ezmat [ , 2 ] )

#compute l o g l i k e l i h o o d f o r new i t e r a t i o n
newezmatnorm=matrix (0 ,nrow=n , ncol=k )
newezmatnorm2=matrix (0 ,nrow=m, ncol=1)
#f i l l in ezmatnorm with p j N(mu j , s igmasqvec j )
newezmatnorm [ ,1 ]= probs∗dnorm( yvec , muvec [ 1 ] , sqrt ( s igmasqvec [ 1 ] ) )
for ( k in 1 : length ( newezmatnorm [ , 1 ] ) )
{
i f ( newezmatnorm [ k ,1]<=0.001){newezmatnorm [ k , 1 ]<−0 .001}
}
newezmatnorm [ ,2]=(1− probs )∗dnorm( yvec , muvec [ 2 ] , sqrt ( s igmasqvec [ 2 ] ) )
check=newezmatnorm [ apply ( newezmatnorm , 1 , Compose ( i s . f i n i t e , a l l ) ) , ]
newrowsums=apply (check , 1 ,sum)
newezmat=newezmatnorm/newrowsums
n e w l l i k=sum( log ( newrowsums ) )

newezmatnorm2 [ ,1 ]=dnorm( yvec2 , muvec2 , sqrt ( s igmasqvec2 ) )
newrowsums2=apply ( newezmatnorm2 , 1 ,sum)
newezmat2=newezmatnorm2/newrowsums2
new l l i k2=sum( log ( newrowsums2 ) )

newrowsumssmk=sum( c ( newezmatnorm [ , 1 ] , newezmatnorm2 [ , 1 ] ) )
newrowsumsnsmk=sum( newezmatnorm [ , 2 ] )
newezmatsmk=c ( newezmatnorm [ , 1 ] , newezmatnorm2 [ , 1 ] ) /newrowsumssmk
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newezmatnsmk=newezmatnorm [ , 2 ] /newrowsumsnsmk

smkdi f f=muvecsmk−muvecnsmk
w1=sigmasqvecsmk/length ( c ( ezmat [ , 1 ] , ezmat2 [ , 1 ] ) )
w2=sigmasqvecnsmk/length ( ezmat [ , 2 ] )
smkdi f fvar=w1+w2
denom=((w1ˆ2)/ ( length ( c ( ezmat [ , 1 ] , ezmat2 [ , 1 ] ) ) −1) )+((w2ˆ2)/ ( length ( ezmat [ , 2 ] ) −1 ) )

i f ( ( newl l ik− l l i k )< t o l ) {break}
ezmat=newezmat
l l i k=n e w l l i k
ezmat2=newezmat2
l l i k 2=new l l i k2
ezmatsmk=newezmatsmk
ezmatnsmk=ezmatnsmk
}
return ( l i s t ( probs=c ( probs ,1−probs ) , muvec=muvec , s igmasqvec=sigmasqvec , muvec2=muvec2 , s igmasqvec2=sigmasqvec2 ,
muvecsmk=muvecsmk , muvecnsmk=muvecnsmk , sigmasqvecsmk=sigmasqvecsmk , sigmasqvecnsmk=sigmasqvecnsmk ,
smkdi f f=smkdi f f , smkd i f fvar=smkdi f fvar , w1=w1 , w2=w2 , denom=denom ) )
}

embm=emmix( yvecbm [ [ 1 ] ] , yvecbm [ [ 2 ] ] , 2 , 0 . 0 0 0 1 , c (50 , 60 ) , c (350 ,370) ,50 ,70 ,1 e−08, pause=F)
#embm=emmix( yvecbm [ [ 1 ] ] , yvecbm [ [ 2 ] ] , 2 , 0 . 1 5 , c (50 ,60) , c (350 ,360) ,50 ,70 , p l o t i t e r 2 ,1 e−08, pause=F)
embm

p l o t i t e r=function (y , y2 , probs , muvec , sigmasqvec , muvectr , s igmasqvectr , pause=F)
{
xtemp=seq (min( y ) ,max( y ) , (max( y)−min( y ) ) /1000)
compvec1=probs∗dnorm( xtemp , muvec [ 1 ] , sqrt ( s igmasqvec [ 1 ] ) )
compvec2=(1−probs )∗dnorm( xtemp , muvec [ 2 ] , sqrt ( s igmasqvec [ 2 ] ) )
xtemp2=seq (min( y2 ) ,max( y2 ) , (max( y2)−min( y2 ) ) /1000)
compvec3=dnorm( xtemp2 , muvectr , sqrt ( s igmasqvectr ) )
return ( l i s t ( xtemp=xtemp , compvec1=compvec1 , compvec2=compvec2 , xtemp2=xtemp2 , compvec3=compvec3 ) )
}

bmdata=p l o t i t e r ( yvecbm [ [ 1 ] ] , yvecbm [ [ 2 ] ] , 0 . 1 , c ( 4 9 . 9 7 , 5 9 . 2 7 ) , c ( 3 5 8 . 6 6 , 3 7 7 . 7 7 ) , 4 7 . 4 4 , 7 2 . 1 6 , pause=F)
#bmdata=p l o t i t e r ( yvecbm [ [ 1 ] ] , yvecbm [ [ 2 ] ] , 0 . 1 5 , c (49 .97 ,60 .28) , c (358 .66 ,361 .60) ,47 .44 ,72 .16 , pause=F)
plot ( bmdata$xtemp , bmdata$compvec1 , col=” red ” , type=” l ” , lwd=2, xlab=” proge s t e rone l e v e l ” , ylab=” Density ” , ylim=c ( 0 , 0 . 0 5 ) , xl im=c (25 ,110) , main=” Estimated Smoking Status D i s t r i b u t i o n ” )
l ines ( bmdata$xtemp , bmdata$compvec2 , col=” green ” , l t y =2, lwd=2)
l ines ( bmdata$xtemp2 , bmdata$compvec3 , col=” blue ” , l t y =4, lwd=2)
legend ( ” t op r i gh t ” , legend=c ( ” Inaccurate Nonsmokers” , ”True Nonsmokers” , ”True Smokers” ) ,
l t y=c ( 1 , 2 , 4 ) , , lwd=c ( 2 , 2 , 2 ) , col=c ( ” red ” , ” green ” , ” blue ” ) )

emest=p l o t i t e r ( yvecbm [ [ 1 ] ] , yvecbm [ [ 2 ] ] , embm$probs [ 1 ] , embm$muvec ,embm$sigmasqvec ,embm$muvec2 ,embm$sigmasqvec2 , pause=F)
plot ( emest$xtemp , emest$compvec1 , col=” red ” , type=” l ” , lwd=2, xlab=” proge s t e rone l e v e l ” , y lab=” Density ” , ylim=c ( 0 , 0 . 0 5 ) , xl im=c (25 ,110 ) , main=”EM Estimated D i s t r i b t u i o n ” )
l ines ( emest$xtemp , emest$compvec2 , col=” green ” , l t y =2, lwd=2)
l ines ( emest$xtemp2 , emest$compvec3 , col=” blue ” , l t y =4, lwd=2)
legend ( ” t op r i gh t ” , legend=c ( ” Inaccurate Nonsmokers” , ”True Nonsmokers” , ”True Smokers” ) ,
l t y=c ( 1 , 2 , 4 ) , , lwd=c ( 2 , 2 , 2 ) , col=c ( ” red ” , ” green ” , ” blue ” ) )

semmix=function ( yvec , yvec2 , k , s tar tprob , s ta r t1 , s ta r t2 , s ta r t3 , s ta r t4 , emmuvecsmk , emmuvecnsmk , emsigmasqvecsmk , emsigmasqvecnsmk , t o l=1e−04, pause=F)
{
n=length ( yvec )
m=length ( yvec2 )
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#s t a r t i n g va l u e s
muvec=s t a r t 1
sigmasqvec=s t a r t 2
probs=sta r tp rob
muvec2=s t a r t 3
sigmasqvec2=s t a r t 4

#expec ted va lue o f unobserved data
ezmatnorm=matrix (0 ,nrow=n , ncol=k )
ezmatnorm2=matrix (0 ,nrow=m, ncol=1)
#f i l l in ezmatnorm with p j N(mu j , s igmasqvec j )
ezmatnorm [ ,1 ]= probs∗dnorm( yvec , muvec [ 1 ] , sqrt ( s igmasqvec [ 1 ] ) )
ezmatnorm [ ,2]=(1− probs )∗dnorm( yvec , muvec [ 2 ] , sqrt ( s igmasqvec [ 2 ] ) )
rowsums=apply ( ezmatnorm , 1 ,sum)
ezmat=ezmatnorm/rowsums
l l i k=sum( log ( rowsums ) )

ezmatnorm2 [ ,1 ]=dnorm( yvec2 , muvec2 , sqrt ( s igmasqvec2 ) )
rowsums2=apply ( ezmatnorm2 , 1 ,sum)
ezmat2=ezmatnorm2/rowsums2
l l i k 2=sum( log ( rowsums2 ) )

rowsumssmk=sum( c ( ezmatnorm [ , 1 ] , ezmatnorm2 [ , 1 ] ) )
rowsumsnsmk=sum( ezmatnorm [ , 2 ] )
ezmatsmk=c ( ezmatnorm [ , 1 ] , ezmatnorm2 [ , 1 ] ) /rowsumssmk
ezmatnsmk=ezmatnorm [ , 2 ] /rowsumsnsmk

repeat
{
#ezmat conta ins the ez i j v a l u e s
#l l i k conta ins the l o g l i k e l i h o o d
bothprobs=apply ( ezmat , 2 ,mean)
probs=bothprobs [ which .min( bothprobs ) ]
i f ( probs <0.01){ probs<−0 .05}
muvec [1 ]=sum( ezmat [ , 1 ] ∗yvec )/sum( ezmat [ , 1 ] )
i f (muvec[1]<=0){muvec [ 1 ]<−0 .001}
muvec [2 ]=sum( ezmat [ , 2 ] ∗yvec )/sum( ezmat [ , 2 ] )
s igmasqvec [1 ]=sum( ( ezmat [ , 1 ] ∗ ( yvec−muvec [ 1 ] ) ˆ 2 ) ) /sum( ezmat [ , 1 ] )
s igmasqvec [2 ]=sum( ( ezmat [ , 2 ] ∗ ( yvec−muvec [ 2 ] ) ˆ 2 ) ) /sum( ezmat [ , 2 ] )

muvec2=sum( ezmat2 [ , 1 ] ∗yvec2 )/sum( ezmat2 [ , 1 ] )
s igmasqvec2=sum( ( ezmat2 [ , 1 ] ∗ ( yvec2−muvec2 ) ˆ 2 ) ) /sum( ezmat2 [ , 1 ] )

muvecsmk=sum( c ( ezmat [ , 1 ] ∗yvec , ezmat2 [ , 1 ] ∗yvec2 ) ) /sum( c ( ezmat [ , 1 ] ) , ezmat2 [ , 1 ] )
muvecnsmk=sum( ezmat [ , 2 ] ∗yvec )/sum( ezmat [ , 2 ] )
sigmasqvecsmk=sum( c ( ezmat [ , 1 ] ∗ ( ( yvec−muvec [ 1 ] ) ˆ 2 ) , ezmat2 [ , 1 ] ∗ ( ( yvec2−muvec2 ) ˆ 2 ) ) /sum( c ( ezmat [ , 1 ] ) , ezmat2 [ , 1 ] ) )
sigmasqvecnsmk=sum( ezmat [ , 2 ] ∗ ( ( yvec−muvec [ 2 ] ) ˆ 2 ) ) /sum( ezmat [ , 2 ] )

#compute l o g l i k e l i h o o d f o r new i t e r a t i o n
newezmatnorm=matrix (0 ,nrow=n , ncol=k )
newezmatnorm2=matrix (0 ,nrow=m, ncol=1)
#f i l l in ezmatnorm with p j N(mu j , s igmasqvec j )
newezmatnorm [ ,1 ]= probs∗dnorm( yvec , muvec [ 1 ] , sqrt ( s igmasqvec [ 1 ] ) )
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for ( k in 1 : length ( newezmatnorm [ , 1 ] ) )
{
i f ( newezmatnorm [ k ,1]<=0.001){newezmatnorm [ k , 1 ]<−0 .001}
}
newezmatnorm [ ,2]=(1− probs )∗dnorm( yvec , muvec [ 2 ] , sqrt ( s igmasqvec [ 2 ] ) )
check=newezmatnorm [ apply ( newezmatnorm , 1 , Compose ( i s . f i n i t e , a l l ) ) , ]
newrowsums=apply (check , 1 ,sum)
newezmat=newezmatnorm/newrowsums
n e w l l i k=sum( log ( newrowsums ) )

newezmatnorm2 [ ,1 ]=dnorm( yvec2 , muvec2 , sqrt ( s igmasqvec2 ) )
newrowsums2=apply ( newezmatnorm2 , 1 ,sum)
newezmat2=newezmatnorm2/newrowsums2
new l l i k2=sum( log ( newrowsums2 ) )

newrowsumssmk=sum( c ( newezmatnorm [ , 1 ] , newezmatnorm2 [ , 1 ] ) )
newrowsumsnsmk=sum( newezmatnorm [ , 2 ] )
newezmatsmk=c ( newezmatnorm [ , 1 ] , newezmatnorm2 [ , 1 ] ) /newrowsumssmk
newezmatnsmk=newezmatnorm [ , 2 ] /newrowsumsnsmk

newmuvecsmk=sum( c ( newezmat [ , 1 ] ∗yvec , newezmat2 [ , 1 ] ∗yvec2 ) ) /sum( c ( newezmat [ , 1 ] ) , newezmat2 [ , 1 ] )
newmuvecnsmk=sum( newezmat [ , 2 ] ∗yvec )/sum( newezmat [ , 2 ] )
newsigmasqvecsmk=sum( c ( newezmat [ , 1 ] ∗ ( ( yvec−muvec [ 1 ] ) ˆ 2 ) , newezmat2 [ , 1 ] ∗ ( ( yvec2−muvec2 ) ˆ 2 ) ) /sum( c ( newezmat [ , 1 ] ) , newezmat2 [ , 1 ] ) )
newsigmasqvecnsmk=sum( newezmat [ , 2 ] ∗ ( ( yvec−muvec [ 2 ] ) ˆ 2 ) ) /sum( newezmat [ , 2 ] )

newbothprobs=apply ( newezmat , 2 ,mean)
newprobs=newbothprobs [ which .min( newbothprobs ) ]

r11=(newmuvecsmk−emmuvecsmk)/ (muvecsmk−emmuvecsmk)
r12=(newsigmasqvecsmk−emsigmasqvecsmk )/ (muvecsmk−emmuvecsmk)
r13=(newmuvecnsmk−emmuvecnsmk)/ (muvecsmk−emmuvecsmk)
r14=(newsigmasqvecnsmk−emsigmasqvecnsmk )/ (muvecsmk−emmuvecsmk)
r15=(newprobs [1]− s t a r tp rob )/ (muvecsmk−emmuvecsmk)
r21=(newmuvecsmk−emmuvecsmk)/ ( sigmasqvecsmk−emsigmasqvecsmk )
r22=(newsigmasqvecsmk−emsigmasqvecsmk )/ ( sigmasqvecsmk−emsigmasqvecsmk )
r23=(newmuvecnsmk−emmuvecnsmk)/ ( sigmasqvecsmk−emsigmasqvecsmk )
r24=(newsigmasqvecnsmk−emsigmasqvecnsmk )/ ( sigmasqvecsmk−emsigmasqvecsmk )
r25=(newprobs [1]− s t a r tp rob )/ ( sigmasqvecsmk−emsigmasqvecsmk )
r31=(newmuvecsmk−emmuvecsmk)/ (muvecnsmk−emmuvecnsmk)
r32=(newsigmasqvecsmk−emsigmasqvecsmk )/ (muvecnsmk−emmuvecnsmk)
r33=(newmuvecnsmk−emmuvecnsmk)/ (muvecnsmk−emmuvecnsmk)
r34=(newsigmasqvecnsmk−emsigmasqvecnsmk )/ (muvecnsmk−emmuvecnsmk)
r35=(newprobs [1]− s t a r tp rob )/ (muvecnsmk−emmuvecnsmk)
r41=(newmuvecsmk−emmuvecsmk)/ ( sigmasqvecnsmk−emsigmasqvecnsmk )
r42=(newsigmasqvecsmk−emsigmasqvecsmk )/ ( sigmasqvecnsmk−emsigmasqvecnsmk )
r43=(newmuvecnsmk−emmuvecnsmk)/ ( sigmasqvecnsmk−emsigmasqvecnsmk )
r44=(newsigmasqvecnsmk−emsigmasqvecnsmk )/ ( sigmasqvecnsmk−emsigmasqvecnsmk )
r45=(newprobs [1]− s t a r tp rob )/ ( sigmasqvecnsmk−emsigmasqvecnsmk )
r51=(newmuvecsmk−emmuvecsmk)/ ( probs [1]− s t a r tp rob )
r52=(newsigmasqvecsmk−emsigmasqvecsmk )/ ( probs [1]− s t a r tp rob )
r53=(newmuvecnsmk−emmuvecnsmk)/ ( probs [1]− s t a r tp rob )
r54=(newsigmasqvecnsmk−emsigmasqvecnsmk )/ ( probs [1]− s t a r tp rob )
r55=(newprobs [1]− s t a r tp rob )/ ( probs [1]− s t a r tp rob )
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i f ( ( newl l ik− l l i k )< t o l ) {break}
ezmat=newezmat
l l i k=n e w l l i k
ezmat2=newezmat2
l l i k 2=new l l i k2
ezmatsmk=newezmatsmk
ezmatnsmk=ezmatnsmk
rmat=matrix ( c ( r11 , r12 , r13 , r14 , r15 , r21 , r22 , r23 , r24 , r25 , r31 , r32 , r33 , r34 , r35 , r41 , r42 , r43 , r44 , r45 , r51 , r52 , r53 , r54 , r55 ) , 5 , 5 , byrow=TRUE)
}
return ( rmat )
}

sembm=semmix ( yvecbm [ [ 1 ] ] , yvecbm [ [ 2 ] ] , 2 , embm$probs [ 1 ] , c (50 , 60 ) , c (350 ,370) , 50 ,70 ,embm$muvecsmk ,embm$muvecnsmk ,embm$sigmasqvecsmk ,embm$sigmasqvecnsmk , t o l=1e−04, pause=F)
sembm

cdvcbm=matrix ( c ( (1/embm$sigmasqvecsmk ) , 0 , 0 , 0 , 0 , 0 , ( 1 /(2∗embm$sigmasqvecsmk ˆ 2 ) ) , 0 , 0 , 0 , 0 , 0 , ( 1 /embm$sigmasqvecnsmk ) , 0 , 0 , 0 , 0 , 0 , ( 1 /(2∗embm$sigmasqvecnsmk ˆ 2 ) ) , 0 , 0 , 0 , 0 , 0 ,
( (1/embm$probs [ 1 ] )+(1/(1−embm$probs [ 1 ] ) ) ) ) , 5 , 5 )

Vbm=solve ( cdvcbm ) + solve ( cdvcbm )%∗%sembm%∗%solve ( diag (5)−sembm)
Vbm
diag (Vbm)
sqrt ( diag (Vbm) )

tbm=embm$ smkdi f f/ ( sqrt ( ( diag (Vbm) [ 1 ] /9)+(diag (Vbm) [ 3 ] / 9 9 ) ) )
w1bm=Vbm[ 1 ] /9
w2bm=Vbm[ 2 ] /99
nubm=((w1bm+w2bm)ˆ2)/ ( ( (w1bmˆ2)/9)+((w2bmˆ2)/99))

sebm=round( sqrt ( ( diag (Vbm) [ 1 ] /9)+(diag (Vbm) [ 3 ] / 9 9 ) ) , 1 )
sepibm=round( sqrt ( ( diag (Vbm) [ 5 ] ) /108) ,2 )

c i l ow .embm=embm$ smkdi f f−qt ( . 9 7 5 , 1 0 7 )∗sqrt ( ( diag (Vbm) [ 1 ] /9)+(diag (Vbm) [ 3 ] /99))
c i h i g h .embm=embm$ smkdi f f+qt ( . 9 7 5 , 1 0 7 )∗sqrt ( ( diag (Vbm) [ 1 ] /9)+(diag (Vbm) [ 3 ] /99))
c i .embm=round( c ( c i l ow .embm, c i h i g h .embm) , 1 )

pembm=round(2∗pt(−abs (tbm ) , df =1) ,4)

c i l ow . pi1embm=embm$probs [1]−qnorm( . 9 7 5 )∗sqrt ( ( diag (Vbm) [ 5 ] ) /108)
c i h i g h . pi1embm=embm$probs [1 ]+qnorm( . 9 7 5 )∗sqrt ( ( diag (Vbm) [ 5 ] ) /108)
c i . pi1embm=round( c ( c i l ow . pi1embm , c i h i g h . pi1embm ) , 2 )

c i l ow . pi2embm=embm$probs [2]−qnorm( . 9 7 5 )∗sqrt ( ( diag (Vbm) [ 5 ] ) /108)
c i h i g h . pi2embm=embm$probs [2 ]+qnorm( . 9 7 5 )∗sqrt ( ( diag (Vbm) [ 5 ] ) /108)
c i . pi2embm=round( c ( c i l ow . pi2embm , c i h i g h . pi2embm ) , 2 )

#########################################################################################
#crea t i n g t a b l e s
e s t imate s .bm<−c ( l abva l .bm, s e l f r e p .bm, mrrem .bm, pbic .bm, pbsc .bm, heck2 .bm, heck .bm, round(embm$ smkdi f f , 2 ) , round(embm$probs [ 1 ] , 3 ) , round(embm$probs [ 2 ] , 3 ) )
s e e s t i m a t e s .bm<−c ( s e l a b v a l .bm, s e s e l f r e p .bm, semrrem .bm, s epb i c .bm, sepbsc .bm, seheck2 .bm, seheck .bm, sebm , sepibm , sepibm )
c i .bm<−rbind ( c i l a b v a l .bm, c i s e l f r e p .bm, cimrrem .bm, c i p b i c .bm, c ipbsc .bm, c iheck2 .bm, c iheck .bm, c i . embm, c i . pi1embm , c i . pi2embm)
s i g .bm<−c ( p labva l .bm, p s e l f r e p .bm, pmrrem .bm, ppbic .bm, ppbsc .bm, pheck2 .bm, pheck .bm,pembm, 0 , 0 )
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method .bm<−c ( ’Lab Values ’ , ’ S e l f−Report ’ , ’ Misch Resp Removed ’ , ’ Prob Based Index v1 ’ , ’ Prob Based Index v2 ’ , ’Heckman v1 ’ , ’Heckman v2 ’ , ’EM’ , ’ Prob Misch ’ , ’ Prob Not Misch ’ )
simtab<−cbind ( method .bm, e s t imate s .bm, s e e s t i m a t e s .bm, c i .bm, s i g .bm)

simtab
write . csv ( simtab , ”/Users/Kris ten/Desktop/ d i s s e r t a t i o n / s imulat ionTableAppl ied . csv ” )

sims .bm<−cbind ( simtab [ , 1 ] , format (round( as . numeric ( simtab [ , 2 ] ) , d i g i t s =2) , nsmal l =2) ,
paste ( ” ( ” , format (round( as . numeric ( simtab [ , 4 ] ) , d i g i t s =2) , nsmal l =2) ,” , ” , format (round( as . numeric ( simtab [ , 5 ] ) , d i g i t s =2) , nsmal l =2) ,” ) ” , sep=’ ’ ) ,
simtab [ , 6 ] )
colnames ( sims .bm)<−c ( ”Method” , ” Estimate ” , ”Standard Error ” , ”95% CI” , ”p−value ” )
write . csv ( sims .bm, ”/Users/Kris ten/Desktop/ d i s s e r t a t i o n / s imulat ionTableAppl ied2 . csv ” )
print ( x tab l e ( sims .bm) , i n c lude .rownames=FALSE)

########################log prog##########################################################
#ana l y s i s l a b va lue
l abva l . bmlog<−round( coef (summary(glm( logprog˜smoke1 , data=bm) ) ) [ 2 , 1 ] , 2 )
s e l a b v a l . bmlog<−round( coef (summary(glm( logprog˜smoke1 , data=bm) ) ) [ 2 , 2 ] , 1 )
p labva l . bmlog<−round( coef (summary(glm( logprog˜smoke1 , data=bm) ) ) [ 2 , 4 ] , 4 )
c i l a b v a l . bmlog<−round( c o n f i n t (glm( logprog˜smoke1 , data=bm) , ’ smoke1 ’ ) , 1 )

#ana l y s i s s e l f −r epor t
s e l f r e p . bmlog<−round( coef (summary(glm( logprog˜srsmoke , data=bm) ) ) [ 2 , 1 ] , 2 )
s e s e l f r e p . bmlog<−round( coef (summary(glm( logprog˜srsmoke , data=bm) ) ) [ 2 , 2 ] , 1 )
p s e l f r e p . bmlog<−round( coef (summary(glm( logprog˜srsmoke , data=bm) ) ) [ 2 , 4 ] , 4 )
c i s e l f r e p . bmlog<−round( c o n f i n t (glm( logprog˜srsmoke , data=bm) , ’ srsmoke ’ ) , 1 )

#ana l y s i s mischievous responders removed
mrremdata . bmlog<−bm[bm$ s co r e ==20,]
mrrem . bmlog<−round( coef (summary(glm( logprog˜srsmoke , data=mrremdata . bmlog ) ) ) [ 2 , 1 ] , 2 )
semrrem . bmlog<−round( coef (summary(glm( logprog˜srsmoke , data=mrremdata . bmlog ) ) ) [ 2 , 2 ] , 1 )
pmrrem . bmlog<−round( coef (summary(glm( logprog˜srsmoke , data=mrremdata . bmlog ) ) ) [ 2 , 4 ] , 4 )
cimrrem . bmlog<−round( c o n f i n t (glm( logprog˜srsmoke , data=mrremdata . bmlog ) , ’ srsmoke ’ ) , 1 )

#ana l y s i s p r o b a b i l i t y based index v2
pbsc . bmlog<−round( coef (summary(glm( logprog˜srsmoke+pbsi , data=bm) ) ) [ 2 , 1 ] , 2 )
sepbsc . bmlog<−round( coef (summary(glm( logprog˜srsmoke+pbsi , data=bm) ) ) [ 2 , 2 ] , 1 )
ppbsc . bmlog<−round( coef (summary(glm( logprog˜srsmoke+pbsi , data=bm) ) ) [ 2 , 4 ] , 4 )
c ipbsc . bmlog<−round( c o n f i n t (glm( logprog˜srsmoke+pbsi , data=bm) , ’ srsmoke ’ ) , 1 )

#ana l y s i s p r o b a b i l i t y based index v1
pbic . bmlog<−round( coef (summary(glm( logprog˜srsmoke+newpbsi . sort [ , 2 ] , data=bm) ) ) [ 2 , 1 ] , 2 )
s epb i c . bmlog<−round( coef (summary(glm( logprog˜srsmoke+newpbsi . sort [ , 2 ] , data=bm) ) ) [ 2 , 2 ] , 1 )
ppbic . bmlog<−round( coef (summary(glm( logprog˜srsmoke+newpbsi . sort [ , 2 ] , data=bm) ) ) [ 2 , 4 ] , 4 )
c i p b i c . bmlog<−round( c o n f i n t (glm( logprog˜srsmoke+newpbsi . sort [ , 2 ] , data=bm) , ’ srsmoke ’ ) , 1 )

#ana l y s i s heckman v2
eqn1 . bmlog<−f i tted (glm( choose˜bmi , family=binomial ( l ink=’ prob i t ’ ) , data=bm, na . action=na . exc lude ) )
bm$IMR<−dnorm( eqn1 . bmlog )/pnorm( eqn1 . bmlog )
eqn2 . bmlog<−summary(lm( logprog˜srsmoke+IMR, data=bm, subset=(choose==1)))
heck . bmlog<−round( coef ( eqn2 . bmlog ) [ 2 , 1 ] , 2 )
seheck . bmlog<−round( coef ( eqn2 . bmlog ) [ 2 , 2 ] , 1 )
pheck . bmlog<−round( coef ( eqn2 . bmlog ) [ 2 , 4 ] , 4 )
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c iheck . bmlog<−round( c o n f i n t (lm( logprog˜srsmoke+IMR, data=bm, subset=(choose==1)) , ’ srsmoke ’ ) , 1 )

#ana l y s i s heckman v1
eqn3 . bmlog<−f i tted (glm( choose2˜bmi , family=binomial ( l ink=’ prob i t ’ ) , data=bm, na . action=na . exc lude ) )
bm$IMR2<−dnorm( eqn3 . bmlog )/pnorm( eqn3 . bmlog )
eqn4 . bmlog<−summary(lm( logprog˜srsmoke+IMR2, data=bm, subset=(choose2 ==1)))
heck2 . bmlog<−round( coef ( eqn4 . bmlog ) [ 2 , 1 ] , 2 )
seheck2 . bmlog<−round( coef ( eqn4 . bmlog ) [ 2 , 2 ] , 1 )
pheck2 . bmlog<−round( coef ( eqn4 . bmlog ) [ 2 , 4 ] , 4 )
c iheck2 . bmlog<−round( c o n f i n t (lm( logprog˜srsmoke+IMR2, data=bm, subset=(choose2 ==1)) , ’ srsmoke ’ ) , 1 )

#d i s t r i b u t i o n o f Big Mama data
f a l s e . log=bm$ l ogprog [bm$smoke1==1 & bm$srsmoke==0]
mean( f a l s e . log , na .rm=TRUE)
var ( f a l s e . log , na .rm=TRUE)
length (na . omit ( f a l s e . log ) )

t rue . log=bm$ l ogprog [bm$smoke1==0 & bm$srsmoke==0]
mean( t rue . log , na .rm=TRUE)
var ( t rue . log , na .rm=TRUE)
length (na . omit ( t rue . log ) )

smokes . log=bm$ l ogprog [bm$smoke1==1 & bm$srsmoke==1]
mean( smokes . log , na .rm=TRUE)
var ( smokes . log , na .rm=TRUE)
length (na . omit ( smokes . log ) )

smokers . log=bm$ l ogprog [bm$smoke1==1]
nonsmokers . log=bm$ l ogprog [bm$smoke1==0]
mean( smokers . log , na .rm=TRUE)
var ( smokers . log , na .rm=TRUE)
mean( nonsmokers . log , na .rm=TRUE)
var ( nonsmokers . log , na .rm=TRUE)
mean( smokers . log , na .rm=TRUE)−mean( nonsmokers . log , na .rm=TRUE)

#em
mr . log=na . omit ( f a l s e . log )
t r . log=na . omit ( t rue . log )
sm . log=na . omit ( smokes . log )
logprog=c (mr . log , t r . log , sm . log )
yvecbm . log=l i s t ( c (mr . log , t r . log ) , sm . log )
embm. log=emmix( yvecbm . log [ [ 1 ] ] , yvecbm . log [ [ 2 ] ] , 2 , 0 . 3 , c ( 3 . 8 , 4 . 0 ) , c ( 0 . 1 4 , 0 . 1 0 ) , 3 . 8 , 0 . 0 3 , 1 e−08, pause=F)
sembm . log=semmix ( yvecbm [ [ 1 ] ] , yvecbm [ [ 2 ] ] , 2 , embm. log$probs [ 1 ] , c (50 , 60 ) , c (350 ,370) , 50 ,70 ,embm. log$muvecsmk ,embm. log$muvecnsmk ,embm. log$sigmasqvecsmk ,embm. log$sigmasqvecnsmk , t o l=1e−04, pause=F)
sembm . log

cdvcbm . log=matrix ( c ( (1/embm. log$sigmasqvecsmk ) , 0 , 0 , 0 , 0 , 0 , ( 1 /(2∗embm. log$sigmasqvecsmk ˆ 2 ) ) , 0 , 0 , 0 , 0 , 0 , ( 1 /embm. log$sigmasqvecnsmk ) , 0 , 0 , 0 , 0 , 0 , ( 1 /(2∗embm. log$sigmasqvecnsmk ˆ 2 ) ) , 0 , 0 , 0 , 0 , 0 ,
( (1/embm. log$probs [ 1 ] )+(1/embm. log$probs [ 1 ] ) ) ) , 5 , 5 )

Vbm. log=solve ( cdvcbm . log ) + solve ( cdvcbm . log )%∗%sembm . log%∗%solve ( diag (5)−sembm . log )
Vbm. log
diag (Vbm. log )
sqrt ( diag (Vbm. log ) )

tbm . log=embm. log$ smkdi f f/ ( sqrt ( ( diag (Vbm. log ) [ 1 ] /9)+(diag (Vbm. log ) [ 3 ] / 9 9 ) ) )
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w1bm. log=Vbm. log [ 1 ] /9
w2bm. log=Vbm. log [ 2 ] /99
nubm=((w1bm. log+w2bm. log )ˆ2)/ ( ( (w1bm. log ˆ2)/9)+((w2bm. log ˆ2)/99))

c i l ow .embm. log=embm. log$ smkdi f f−qt ( . 9 7 5 , 1 0 7 )∗sqrt ( ( diag (Vbm. log ) [ 1 ] /9)+(diag (Vbm. log ) [ 3 ] /99))
c i h i g h .embm. log=embm. log$ smkdi f f+qt ( . 9 7 5 , 1 0 7 )∗sqrt ( ( diag (Vbm. log ) [ 1 ] /9)+(diag (Vbm. log ) [ 3 ] /99))
c i .embm. log=round( c ( c i l ow .embm. log , c i h i g h .embm. log ) , 1 )

pembm. log=round(2∗pt(−abs (tbm . log ) , df =1) ,4)

c i l ow . pi1embm . log=embm. log$probs [1]−qnorm( . 9 7 5 )∗sqrt ( ( diag (Vbm. log ) [ 5 ] ) /108)
c i h i g h . pi1embm . log=embm. log$probs [1 ]+qnorm( . 9 7 5 )∗sqrt ( ( diag (Vbm. log ) [ 5 ] ) /108)
c i . pi1embm . log=round( c ( c i l ow . pi1embm . log , c i h i g h . pi1embm . log ) , 2 )

c i l ow . pi2embm . log=embm. log$probs [2]−qnorm( . 9 7 5 )∗sqrt ( ( diag (Vbm. log ) [ 5 ] ) /108)
c i h i g h . pi2embm . log=embm. log$probs [2 ]+qnorm( . 9 7 5 )∗sqrt ( ( diag (Vbm. log ) [ 5 ] ) /108)
c i . pi2embm . log=round( c ( c i l ow . pi2embm . log , c i h i g h . pi2embm . log ) , 2 )

#crea t i n g t a b l e s
e s t imate s . bmlog<−c ( l abva l . bmlog , s e l f r e p . bmlog , mrrem . bmlog , pbic . bmlog , pbsc . bmlog , heck2 . bmlog , heck . bmlog , round(embm. log$ smkdi f f , 2 ) , round(embm. log$probs [ 1 ] , 3 ) , round(embm. log$probs [ 2 ] , 3 ) )
s e e s t i m a t e s . bmlog<−c ( s e l a b v a l . bmlog , s e s e l f r e p . bmlog , semrrem . bmlog , s epb i c . bmlog , sepbsc . bmlog , seheck2 . bmlog , seheck . bmlog , sebm , sepibm , sepibm )
c i . bmlog<−rbind ( c i l a b v a l . bmlog , c i s e l f r e p . bmlog , cimrrem . bmlog , c i p b i c . bmlog , c ipbsc . bmlog , c iheck2 . bmlog , c iheck . bmlog , c i .embm. log , c i . pi1embm . log , c i . pi2embm . log )
s i g . bmlog<−c ( p labva l . bmlog , p s e l f r e p . bmlog , pmrrem . bmlog , ppbic . bmlog , ppbsc . bmlog , pheck2 . bmlog , pheck . bmlog ,pembm. log , 0 , 0 )
method . bmlog<−c ( ’Lab Values ’ , ’ S e l f−Report ’ , ’ Misch Resp Removed ’ , ’ Prob Based Index v1 ’ , ’ Prob Based Index v2 ’ , ’Heckman v1 ’ , ’Heckman v2 ’ , ’EM’ , ’ Prob Misch ’ , ’ Prob Not Misch ’ )
simtab . log<−cbind ( method . bmlog , e s t imate s . bmlog , s e e s t i m a t e s . bmlog , c i . bmlog , s i g . bmlog )

simtab . log
write . csv ( simtab . log , ”/Users/Kris ten/Desktop/ d i s s e r t a t i o n / s imulat ionTableAppl iedLog . csv ” )

sims . bmlog<−cbind ( simtab . log [ , 1 ] , format (round( as . numeric ( simtab . log [ , 2 ] ) , d i g i t s =2) , nsmal l =2) ,
paste ( ” ( ” , format (round( as . numeric ( simtab . log [ , 4 ] ) , d i g i t s =2) , nsmal l =2) ,” , ” , format (round( as . numeric ( simtab . log [ , 5 ] ) , d i g i t s =2) , nsmal l =2) ,” ) ” , sep=’ ’ ) ,
simtab . log [ , 6 ] )
colnames ( sims . bmlog )<−c ( ”Method” , ” Estimate ” , ”95% CI” , ”p−value ” )
write . csv ( sims . bmlog , ”/Users/Kris ten/Desktop/ d i s s e r t a t i o n / s imulat ionTableAppl ied2Log . csv ” )
print ( x tab l e ( sims . bmlog ) , i n c lude .rownames=FALSE)

#boxp l o t
ggp lot (bm, aes ( x=group , y=prog2 , f i l l =group ) ) + geom boxplot ( ) +
stat summary( fun . y=mean, geom=” point ” , shape =5, s i z e =4)
ggp lot (bm, aes ( x=group , y=logprog , f i l l =group ) ) + geom boxplot ( ) +
stat summary( fun . y=mean, geom=” point ” , shape =5, s i z e =4)

#dens i t y p l o t w/ mean
mdat <− ddply (bm, ”group” , summarise , prog2 .mean=mean( prog2 ) )
mdat
logmdat <− ddply (bm, ”group” , summarise , l ogprog .mean=mean( logprog ) )
logmdat
ggp lot (bm, aes ( x=prog2 , co l ou r=group ) ) +
geom density ( )
ggp lot (bm, aes ( x=prog2 , co l ou r=group ) ) +
geom density ( ) +
geom v l i n e (data=mdat , aes ( x i n t e r c e p t=prog2 .mean, c o l ou r=group ) ,
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l i n e t y p e=”dashed” , s i z e =1) +
g g t i t l e ( ’ Kernel D e n s i t i e s o f Smoking Status Data ’ ) +
labs ( x=’ Progesterone Leve l ’ , y=’ Density ’ )

ggp lot (bm, aes ( x=logprog , co l ou r=group ) ) +
geom density ( )
ggp lot (bm, aes ( x=logprog , co l ou r=group ) ) +
geom density ( ) +
geom v l i n e (data=logmdat , aes ( x i n t e r c e p t=logprog .mean, c o l ou r=group ) ,
l i n e t y p e=”dashed” , s i z e =1) +
g g t i t l e ( ’ Kernel D e n s i t i e s o f Transformed Smoking Status Data ’ ) +
labs ( x=’ Log Progesterone Leve l ’ , y=’ Density ’ )

emest . log=p l o t i t e r ( yvecbm . log [ [ 1 ] ] , yvecbm . log [ [ 2 ] ] , embm. log$probs [ 1 ] , embm. log$muvec ,embm. log$sigmasqvec ,embm. log$muvec2 ,embm. log$sigmasqvec2 , pause=F)
mean( emest . log$compvec1 )
mean( emest . log$compvec2 )
mean( emest . log$compvec3 )
i i r<−rep ( ’ I n t e n t i o n a l Inaccurate Responder ’ , length ( emest . log$compvec1 ) )
tns<−rep ( ’ True Nonsmoker ’ , length ( emest . log$compvec2 ) )
ts<−rep ( ’ True Smoker ’ , length ( emest . log$compvec3 ) )
grp<−c ( i i r , tns , ts )
dens<−c ( emest . log$compvec1 , emest . log$compvec2 , emest . log$compvec3 )
lnprog<−c ( emest . log$xtemp , emest . log$xtemp , emest . log$xtemp )
dat<−data . frame ( lnprog , dens , grp )

ggp lot ( dat , aes ( x=lnprog , y=dens , co l ou r=grp ) ) +
geom l i n e ( ) +
geom v l i n e ( x i n t e r c e p t=embm. log$muvec [ 1 ] , c o l our=” red ” ,
l i n e t y p e=”dashed” , s i z e =1) +
geom v l i n e ( x i n t e r c e p t=embm. log$muvec [ 2 ] , c o l our=” green ” ,
l i n e t y p e=”dashed” , s i z e =1) +
geom v l i n e ( x i n t e r c e p t=embm. log$muvec2 , co l ou r=” blue ” ,
l i n e t y p e=”dashed” , s i z e =1) +
g g t i t l e ( ’EM Estimated D i s t r i b u t i o n o f Smoking Status Data ’ ) +
labs ( x=’ Log Progesterone Leve l ’ , y=’ Density ’ ) +
scale co l our d i s c r e t e (name =”group” )
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