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ABSTRACT OF DISSERTATION

INFERENCE USING BHATTACHARYYA DISTANCE TO MODEL INTERACTION EFFECTS
WHEN THE NUMBER OF PREDICTORS FAR EXCEEDS THE SAMPLE SIZE

In recent years, statistical analyses, algorithms, and modeling of big data have been constrained
due to computational complexity. Further, the added complexity of relationships among response
and explanatory variables, such as higher-order interaction effects, make identifying predictors using
standard statistical techniques difficult. These difficulties are only exacerbated in the case of small
sample sizes in some studies. Recent analyses have targeted the identification of interaction effects
in big data, but the development of methods to identify higher-order interaction effects has been
limited by computational concerns. One recently studied method is the Feasible Solutions Algorithm
(FSA), a fast, flexible method that aims to find a set of statistically optimal models via a stochastic
search algorithm. Although FSA has shown promise, its current limits include that the user must
choose the number of times to run the algorithm. Here, statistical guidance is provided for this
number iterations by deriving a lower bound on the probability of obtaining the statistically optimal
model in a number of iterations of FSA. Moreover, logistic regression is severely limited when two
predictors can perfectly separate the two outcomes. In the case of small sample sizes, this occurs
quite often by chance, especially in the case of a large number of predictors. Bhattacharyya distance
is proposed as an alternative method to address this limitation. However, little is known about the
theoretical properties or distribution of B-distance. Thus, properties and the distribution of this
distance measure are derived here. A hypothesis test and confidence interval are developed and
tested on both simulated and real data.
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separation, interaction effects, logistic regression
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Chapter 1

Introduction

In the current world of ever-growing data, there is a great need for statistical methods and al-
gorithms that can handle the analysis of large data sets. As the number of predictors in a data
set increases, so does the difficulty in effectively modeling the interactions between these variables.
Many approaches exist to identify interaction effects in data sets of small to moderate size. Classical
statistical methods suggest considering all pairwise combinations of possible explanatory variables
in the proposed logistic regression or linear regression model, and selecting a set of variables based
on either hypothesis tests or a model selection criterion. Although the theory supporting these tech-
niques is developed, often the data sets of interest have an inordinate number of possible explanatory
variables to consider in higher-order interactions using the conventional implementations of classical

methods.

For example, genomic data (that often contains as many as thousands of individuals and millions of
locations on the genome, or loci) is also unique in its complexity due to intricate dependencies among
genes and traits, often in the form of information from external influences or genetic makeup that
are unaccounted for during analysis. For instance, a recent study showed that although genome-
wide association study (GWAS) data identified 71 loci associated with Crohn’s disease risk, these
contributed to only 21.5% of the estimated heritability in the disease. Heritability is the degree
of variation in a trait in a population that is due to genetic variation between individuals in that
population [Wray and Visscher, 2008]. However, use of a biologically-informed model for data
analysis showed that interactions could account for as much as 80% of the missing heritability in
Crohn’s disease [Zuk et al.,[2012]. Thus, a person’s susceptibility to disease may depend more on the

combined effect of all the genes in the background than on the specific disease genes in the forefront.

Epistasis is a specific relationship between genes where the effect of one gene is dependent on
the presence of one or more other genes. In particular, statistical interaction effects among genes
contribute to epistasis, which is especially difficult to identify in genomic data [Moore and Williams),
2009)]. These interactions have been targets of recent analyses of genomic data, although development
of methods to identify higher-order interaction effects has been more limited due to computational
concerns |Gemperlinel [1999]. The difficulties from the complex nature of interaction effects coupled

with the size of genomic data sets cause computational issues when classical methods are applied



using standard implementations. For example, even using the second largest supercomputer at IBM
(a 262,144 core machine), Goudey et al. performed analyses examining two-way interactions on a
large data set of 1.1 million single nucleotide polymorphisms (SNPs), or locations along the genome,
from 2000 samples in less than 10 minutes, and project that analyzing three-way interactions on the
same computer would take approximately 5.8 years and on other computers could take more than a
thousand years |[Goudey et al., [2015]. Thus, exhaustive searches using anything less than a massive
supercomputer are highly impractical for this type of data, especially in the case of higher-order

interactions.

In contrast, stochastic search algorithms address the computational concern of the exhaustive search
methods by employing some aspect of randomness in order to perform a non-exhaustive search over
the possible explanatory variables. However, these methods may not produce the same result every
time, and thus may fail to identify the truly statistically optimal model according to the criterion
used. In addition, most exhaustive and stochastic searches produce a single “best” model or set of
explanatory variables with respect to some hypothesis testing or model selection criterion. In any
given data set, there may be another, nearly best model that is more biologically meaningful than the
statistically best model. Only considering the single statistically optimal solution leaves little room

to consider more practically meaningful combinations of variables without further experimentation.

Thus, room for improvement exists in implementing methods that are fast and flexible in their
ability to detect both main and interaction effects in a model, and reliable in detecting effects that
are not only statistically, but also practically, significant. One recently studied method is the Feasible
Solutions Algorithm (FSA), a fast, flexible method that aims to find a set of statistically optimal
models via a stochastic search algorithm [Lambert), 2015]. FSA may produce several nearly optimal
solutions from different iterations of the algorithm, rather than a single optimal solution. This
variability produces multiple results for consideration to glean practically reasonable conclusions
from the data, rather than ending with a single (statistically) optimal solution. In the latter case,
one solution may be optimal and practically nonsensical, while another nearly optimal solution
exists that is biologically relevant. FSA will show the analyst both solutions for consideration

during analysis.

Although FSA has shown promise, in its current implementation, the user must choose the number
of times to run the algorithm. Each iteration of FSA is referred to as a random start and begins with
an arbitrary model of a specific order. The number of random starts must be chosen by the user

and to date there has not been any statistical guidance in implementing FSA. Thus, here I derive a



bound on the probability of obtaining the statistically optimal solution in a set number of random
starts of FSA that can be used to select this number of iterations of FSA to run. This allows users
to choose a bound such that they obtain the statistically optimal solution with a desired probability,

prior to beginning data analysis.

The difficulties due to number of predictors described here are only exacerbated in the case of
small sample sizes in some studies. For example, a recent analysis of gene expression data in
nonhuman primates was conducted in order to examine the association of these biosignatures with
periodontal disease. Traditionally, gene expression data have been analyzed using two-sample t-tests
on the expression for each gene across groups to find genes whose mean expressions differ across
disease/healthy groups. However, small sample sizes, combined with the number of tests adjusted
for, make this analysis underpowered. Further, t-tests are designed to detect differences in mean
expression between disease and healthy samples rather than treating the disease as the response
variable. For example, the hypoxia pathway is expected to be informative due to previously-identified
alterations in hypoxia gene expression (i.e., tissue responses to low oxygen). When looking at two
genes in the hypoxia pathway, HIF1A and HIF3A, the two-sample t-tests for each gene showed
no significant differences in expression across the healthy and diseased individuals. However, this
analysis is limited by consideration of single genes, leading to a failure to identify differences in

HIF1A and HIF3A expression linked to periodontitis.

The accuracy of this prediction can be improved by using multiple genes simultaneously in disease
risk prediction. The standard statistical technique to do so is logistic regression, which predicts
presence or absence of the disease using two genes. However, logistic regression is severely limited
in the case of small sample sizes, and often even in the case of large sample sizes, if the two genes
can perfectly separate the data. In this case, HIF1A and HIF3A can perfectly separate healthy and
diseased individuals and logistic regression fails. In the analysis of the genes from three biological
pathways including hypoxia, approximately 15% of gene pairs showed perfect discrimination. Any
set of predictors in the data that shows linear separation of disease and healthy individuals will
be a case when logistic regression is inapplicable. However, these are the cases that are arguably
more helpful since the separation, if large, could be an accurate way to demarcate disease/healthy

individuals. This occurs especially often by chance when sample sizes are small.

Thus, Bhattacharyya’s distance (B-distance) is proposed as an alternative to logistic regression.
B-distance addresses the severe limitation of logistic regression in that it can measure the distance

between healthy and disease individuals when there is linear separation. In fact, the distance also



increases as the separation becomes larger and decreases as the separation is smaller, while logistic re-
gression fails in either case. Thus, B-distance has been proposed to identify interaction effects among
genes in gene expression data. This allows the quantification of differences between healthy/disease
groups using multiple genes simultaneously, rather than using single genes. However, little is known
about the theoretical properties or distribution of B-distance. These properties will be examined

here and used to derive inference methods for B-distance.

This work focused on developing theoretical properties of two different methods for identifying
interactions in big data. Chapter 2 includes a review of current methods related to the techniques
relevant to this work, as well as their advantages and limitations. In Chapter 3, I will discuss the
selection of number of iterations of FSA necessary to achieve the statistically optimal solution with
a given probability. This selection is based on a lower bound to this probability, which I prove exists
and test through simulations and real data analysis. Chapter 4 is dedicated to the development
of properties of the sample B-distance, including the derivation of its distribution under various
assumptions. The usefulness of these results is then presented through simulation studies and real
data analysis. Chapter 5 focuses on the novelty of these results and the future direction of work

associated with these findings.



Chapter 2

Literature Review

Here I discuss current methods that relate to identifying interaction effects in big data. I will start
with an overview of general model selection techniques and highlight both advantages and limitations
of the current methods. Next, I move on to discuss model selection methods specific to the analysis
of genetic data since there are many applications of big data modeling methods in this area. Then
I focus on discussing the version of FSA that is currently used to identify interaction effects in big
data and describe the limitations that I address later in this work. Other issues of modeling big data
occur when logistic regression is used to model the probability of being in one of two groups and
one or more predictors can perfectly separate the data. Thus, I will discuss this problem and the
limitations of other classical approaches when modeling a binary response. In order to address these
concerns, I propose using Bhattacharyya distance and thus discuss this distance measure, as well as
other distance measures as background information. Specifically, I am interested in B-distance in
the multivariate normal case, which is defined here, but I also present some of the previous uses of

this distance measure in other contexts.

2.1 General Model Selection

Common algorithms and methods exist to find the best subset of predictors that adequately explain
the response variable. The simplest data driven modeling approaches are stepwise selection methods.
Forward selection starts with the model containing the most significant predictor and continues
adding the most significant predictors one at a time until no other variables pass some preset
threshold of significance [Neter et al. [1996]. Backward selection is a another common method
related to forward selection. This method starts with the model including all of the predictors of
interest and then removes the least significant variables one at a time as long as they aren’t below
the preset threshold [Neter et all [1996]. The method continues in this way refitting reduced models
until no other variables can be removed. The advantage of these approaches is that they are simple
to implement and most statistical software already have options to use these methods, i.e. the leaps
package in R |[Lumley and Miller, [2004]. However, with forward selection each addition of a new
variable may render one or more of the already included variables non-significant and with backward

selection, sometimes variables are dropped that would be significant when added to the final reduced



models. These stepwise selection methods also suffer from high variability in the resulting model and
low prediction accuracy, especially when there are many predictors or correlated predictor variables

(or both).

Penalized regression techniques are common approaches that have been proposed to address these is-
sues of variability. Penalized regression addresses this instability by decreasing the variance involved
in coefficient estimation. Similar to ordinary least squares estimation, penalized regression methods
estimate the regression coefficients by minimizing the residual sum of squares. However, penalized
regression methods place a constraint on the size of the regression coefficients, also known as a
penalty, that causes coefficient estimates to be biased, but that improves the overall prediction error
of the model by decreasing the variance of the coefficient estimates. Common penalized regression
techniques include LASSO regression, adaptive LASSO regression, elastic net, and ridge regression
[Tibshirani, 1996} |Zou, 2006}, |[Zou and Hastie, [2005], [Hoerl and Kennard, [1970]. Advantages of these
methods include stability of estimates, higher prediction accuracy, and computational efficiency, as
well as the ability to easily implement these in R [Friedman et al., 2009]. Disadvantages of these
methods include that the user must choose the tuning parameter used for penalization and that

interpretability of these results can be difficult.

Some other existing analyses only consider effects of single predictors or genes or are computationally
infeasible. For example, exhaustive search is a brute-force search method that consists of systemat-
ically enumerating all possible combinations of candidate explanatory variables and choosing those
predictors that optimize a specified objective function. Advantages of exhaustive search are that
it can identify the statistically optimal solution and it is easy to implement. However, one of the
largest disadvantages of exhaustive search is the computational complexity required, especially when
the number of predictors is large. Another disadvantage is the method’s inability to identify other
important predictors outside of the statistically optimal solution. There may be one set of predictors
that is the best statistical combination, but other pairs of predictors with strong interactions may
exist that provide important information about the response. Exhaustive search does not typically

provide these answers.

2.2 Model Selection in Genetic Data

As the ability to collect large amounts of genetic data has increased, so has the need for statistical

models that can handle the complexities of this type of data. These complexities arise from not



only the size of the data, but also from the intricate dependencies between predictors. In particular,
gene-gene and gene-environment interactions contribute to epistasis and these interaction effects are
especially difficult to identify in genomic data [Ma et all 2013]. Thus, several tools and methods

have been proposed to analyze these specific types of genomic data sets.

PLINK is an open-source C/C++ whole genome association study (WGAS) tool set with five main
domains of function: data management, summary statistics, population stratification, association
analysis, and identity-by-descent estimation |[Purcell et al. 2007]. The software can implement
several types of association tests for genetic data and general linear and logistic regression models
that allow for multiple binary or continuous covariates having both main effects and interactions.
One can test for joint effects or perform a scan conditional on a given SNP or set of SNPs, for example.
Also, gene-gene and gene-environment interaction tests for quantitative and binary disease traits can
be performed. These are done through an exhaustive search strategy. Limitations of PLINK are
that as mentioned earlier, exhaustive search is computationally intensive and it is not able to handle

three-way interactions.

BOOST (BOolean Operation-based Screening and Testing) is a method for the discovery of unknown
potential gene-gene interactions that underlie complex diseases [Wan et al., 2010]. BOOST allows
examination of all pairwise interactions in genome-wide case-control studies and maintains computa-
tional efficiency. It is a computationally and statistically useful tool in the coming era of large-scale
interaction mapping in genome-wide case-control studies. It consists of both a screening stage and
a testing stage. In the screening stage, a non-iterative method is used to approximate the likelihood
ratio statistic in evaluating all pairs of SNPs and those that pass a specified threshold are kept for
testing. In the testing stage, the classical likelihood ratio test is employed to measure the interaction
effects of selected SNP pairs. It handles covariates in two ways; if the covariate is discrete or can be
discretized, the method can be directly extended to handle it. If not, logistic regression can be used
in the post-processing step to adjust for the covariate. However, in the current stage this method
cannot be applied to GWAS data involving continuous phenotypes unless those continuous pheno-
types can be discretized. Other limitations exist with respect to statistical power and its flexibility,

i.e., covariate by gene interactions may be missed by adjusting for covariates post-analysis.

GBOOST is a method that extends BOOST through the use of graphic processing units (GPUs),
which are highly parallel hardware that provide massive computing resources [Yung et al.||2011]. This
method further speeds up the analysis of gene-gene interactions by implementing the BOOST method

based on a GPU framework. The computational burden of BOOST lies in the screening stage.



Thus, GBOOST modifies input data structures and parallelizes computations in the screening stage.
GBOOST achieves a 40-fold speedup compared with BOOST. However, the statistical limitations

of BOOST remain applicable here.

Random Jungle is a random forest method used to deal with the complex dependencies of genetic data
[Schwarz et al.,[2010]. This freely available software package detects important SNPs by permutation
importance measures, a method of scoring based on how shuffling random features in the data affects
the the performance of a model. It offers different permutation importance measures and includes
options such as the backward elimination method. However, it is aimed at testing for associations
between a single SNP and the outcome while allowing for interactions, instead of specifically testing
for interactions between SNPs. This method of testing is easier than testing for interactions and has
difficulty in finding interacting SNP pairs displaying weak main effects. This is because trees built
in Random Jungle rely on the main effects of SNPs. Thus, gene-gene interaction with no marginal

effects might be left unrealized when the random forest algorithm is applied.

The methods listed here are a subset of those that have been developed to specifically handle model
selection for genetic data. Many of these methods are easy to implement, but have large drawbacks,
such as computational complexity, not being able to handle continuous responses, or the inability
to test for higher-order interaction effects. Next, I review a general model selection method, FSA,

along with its advantages and limitations.

2.3 Feasible Solutions Algorithm (FSA)

Issues from the complex nature of interaction effects, coupled with the size of data, cause theoretical
and computational problems when classical methods are applied using standard implementations.
To address these limitations, some recent work has been focused on revisiting versions of the Feasible
Solutions Algorithm (FSA) first popularized by Doug Hawkins at the University of Minnesota in
the early 1990’s [Miller] [1984] Hawkins and Olivel [1999]. Several versions of FSA exist |[Hawkins,
1993bllal [1994blfa], but this work focuses on feasible solutions algorithms for specific criteria. These
criteria include the least median of squares (LMS) and least trimmed squares (LTS) that are stan-
dard high breakdown criteria for linear regression and the minimum volume ellipsoid (MVE) and
minimum covariance determinant (MCD) for the estimation of the location vector and scatter ma-
trix of multivariate data. However, I am focused on the following version of FSA, which is used for

subset selection.



Here, the version of FSA under consideration is specifically the version designed to find interac-
tions when the number of predictors is large [Lambert| |2015]. FSA searches the set of all possible
interaction effects to identify those that improve the predictive model for a given response. Issues
from the complex nature of interaction effects, coupled with the size of big data, cause theoretical
and computational problems when classical methods are applied using standard implementations.
An advantage of FSA is that by foregoing exhaustive search and not checking every single possible
model, computational time is improved. Another advantage of applying FSA in these cases is that it
provides more than one feasible solution, or candidate set of explanatory variables, for a particular
data analysis. Providing a set of solutions increases the likelihood of finding practically significant

associations rather than solely statistically significant associations.
Specifically, FSA is carried out as follows:

1. Randomly choose m variables from the possible p predictors and compute a specified objective

function, e.g. R2.

2. Consider exchanging one of the m selected explanatory variables from the current model with

another explanatory variable in the data set.
3. If an improvement exists, make the exchange that improves the objective function the most.

4. Keep making exchanges until the objective function does not improve. The explanatory vari-

ables included in the resulting model are called a feasible solution.

5. Repeat steps (1)-(4) for the number of random starts specified to find additional feasible

solutions.

These steps are shown in an example in the flowchart in Figure In this example, predictors X7,
X, ..., X5 are considered to model some response Y. FSA randomly selects two of these predictors
(when considering a two-way interaction model) and calculates R? for the associated model. Then,
all possible exchanges a of a single variable are considered and R? is computed for each model
associated with a pair of predictors. The combination of predictors associated with the highest R?
will be chosen. FSA continues in this manner, considering all possible exchanges that have not
been considered previously, until no exchange can improve the objective function. The algorithm
stops when this occurs and the resulting combination of predictors is called a feasible solution. Each

iteration of FSA follows these steps and provides a single feasible solution.



Consider an example with 5 predictors of interest, X7, Xo, ..., X5. For a single random start,
when considering m = 2 way interactions, FSA will randomly choose 2 of these predictors.

Random Start

X9, X4 — R?2=0.26 Compute R?
U

Consider all possible exchanges for each variable, computing R? for each of these.
XQ,Xl — R2 =0.22
XQ,X?, — R?=0.14
X2,Xs — R?2=0.82
Xl,X4 — R2 =0.35
X3,X4 — R?2=0.09
X5,X4 — R?2=0.17

4

Make the exchange that most improves the objective function.

XZ,XES
\

Consider the possible exchanges that have not been considered previously,
computing R? for each of these.

X1,X5 — R2 =0.64
X3,X5 — R?=0.13
i3

Stop when the objective function can no longer be improved.
XQ,X5 is a
Feasible Solution

Figure 2.1: This chart contains a short example to illustrate the steps of FSA for a single iteration.
Each iteration starts at a random pair of variables (when m = 2) and calculates the specified
objective function, i.e., R%. Then all possible exchanges of a single variable are considered and the
respective R? calculated. FSA will make the exchange that optimizes the criterion. It will proceed
in this way until no swap can improve the objective function. The pair of variables that cannot be
improved upon in a single step is called a feasible solution. Each iteration of FSA provides a single
feasible solution.

A feasible solution is optimal in that no one exchange of a variable in the model for another outside
of the model can improve the selected criterion function. Not only does FSA provide a set of feasible
solutions, but it is often more computationally efficient than standard exhaustive approaches due to
its stochastic nature. Other advantages of the algorithm include the ability to analyze both linear
and logistic regression models, as well as being able to implement several different optimization

criteria. However, FSA is limited in that the number of iterations to be performed is user-chosen
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and currently there is no statistical guidance to an appropriate way to choose this number. In
Chapter 3, I focus on the required number of iterations, or replications, required by FSA to produce

the statistically optimal model.

2.4 Logistic Regression

Logistic regression is a regression model that is a special case of the generalized linear model used
in the presence of a categorical response variable. Although it can accommodate more than two
categories, I will specifically be discussing the case of modeling a binary outcome. This response is
usually modeled as having values of ”0” or ”1” that represent outcomes such as pass/fail, alive/dead,
or healthy/sick. Logistic regression was developed by statistician David Cox in 1958 [Cox, |1958] and
is used to estimate the probability of a binary response based on one or more predictors. It allows
one to say that the presence of a risk factor increases the probability of a given outcome by a certain

percentage.

Consider the logistic regression model. The outcome of the regression is not a prediction of a Y
value, as in linear regression, but a probability of belonging to one of two conditions of Y, which
can take on any value between 0 and 1 rather than just 0 and 1. Because probability is bounded,

what will actually be modeled is the logit of the probability given by

™
1 —]7'('-) = ﬂO + lelj + 52$2j + "’Bpxpj
J

log(

where 7; indicates the probability of an event for observation j, 8; are the regression coefficients
associated with the reference group and the explanatory variables. That is, for observation j,
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where XjT = (X1, X2j, ..., Xp;) are the p explanatory variables for individual j.

Advantages of logistic regression include that it is well documented and understood. Interpretation
of the logistic regression model is convenient in that it allows for coefficients of predictors to be
interpreted as the relationship to the odds of being in one response group over the other. One
drawback of logistic regression is that the logistic regression model can only be fit numerically,

meaning each logistic regression requires multiple computations. Moreover, logistic regression has
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an issue when perfect separation occurs. This is a severe limitation of using logistic regression
to consider possible gene sets whose expressions will improve clinicians ability to identify patients
with a given disease. Any set of predictors in the data that shows linear separation of disease
and healthy individuals will be a scenario when logistic regression is inapplicable. However, these
are the combinations of predictors that are arguably more helpful in personalizing treatment since
the separation, if large, could be an accurate way to demarcate disease/healthy individuals. This
occurs especially often by chance when sample sizes are small. Next, perfect separation and its

complications are discussed in detail.

2.5 Perfect Separation

Separation occurs in models of binary outcome data when one or more explanatory variables can
perfectly predict the outcome variable. For explanatory variables, complete separation occurs when
the variables can perfectly predict both zeros and ones. Quasicomplete separation occurs when
predictors perfectly predict either zeros or ones, but not both. Overlap, the ideal case for getting
accurate parameter estimates in logistic regression, occurs when there are no such predictors. With
overlap, the usual maximum likelihood estimates exist and provide reasonable estimates of param-
eters. However, under complete or quasicomplete separation, finite maximum likelihood estimates

do not exist and the usual method of calculating standard errors fails.

For example, consider Figure Notice that the dashed line perfectly separates the individuals in
groups 1 and 2. In this case, logistic regression fails. Although perfect separation causes logistic

regression to fail, it is not a problem with the data, but instead a problem with the model.
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Example of Perfect Separation
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Figure 2.2: This plots shows the relationship between two predictors and the response groups. Black
dots denote observations from Group 1 and red dots denote observations from Group 2. In this case,
the predictors can perfectly separate observations in group 1 from group 2 (by the dashed line) and
logistic regression fails. It is clear, though, that this combination of variables could be useful in
determining group membership.

Finding predictors that perfectly separate the data is not necessarily a poor result, since these
predictors are arguably the most important in helping to model the outcome. However, perfect
separation occurs quite often just by chance in the case of small sample sizes. Thus, an alternative
method is needed to model data in the case of small sample sizes where perfect separation causes

logistic regression to fail.

One alternative model proposed to allow for perfect separation is called the hidden logistic regression
model. This method is a slightly more general model proposed under which the observed response
is strongly related but not equal to the unobservable true response. It is given its name because
the unobservable true responses are comparable to a hidden layer in a feedforward neural network
|[Rousseeuw and Christmann| [2003]. However, a limitation of this method is its requirement of user-
chosen tuning parameters and accurate estimation of these parameters from the data itself is very

difficult, if not impossible, unless the sample size is extremely large.

Another method for addressing the separation problem is proposed by Zorn|Zorn, 2005], but first
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suggested by Firth [Firthl [1993] and is based on a penalized likelihood correction to the standard
binomial GLM score function |Zorn| 2005|. He applied this method to data from a study on the
postwar fate of leaders. However, inference is difficult here and the method entails the use of Jeffreys’
prior so caution is urged, particularly in instances where the model in question has a large numbers
of nuisance parameters. For instance, others have noted that Jeffreys prior should not be used for
conditional logit models, due to the inclusion of a large numbers of nuisance parameters [Poirier,
1994]. Another approach incorporates a form of prior information into the model to stabilize the
estimates by introducing the concept of a partial prior distribution to deal with the issues that arise

from use of the Jeffreys invariant prior [Raineyl [2016].

2.6 Other Classical Approaches

Often when working with binary outcome data, the classical approach to take is to perform multiple
t-tests, testing for differences in mean expression between the two response groups. However, these
are done one at a time and are unable to consider interactions. Also, small sample sizes, combined
with the number of tests adjusted for, make this analysis very underpowered. Further, t-tests are
designed to detect differences in mean expression between response groups rather than treating the
group outcome as the response variable, which is usually the goal when working with gene expression

data, for example, the data examined in Chapter 4.

Another classical approach for handling a large amount of predictors when trying to model a dichoto-
mous outcome is known as principal components analysis (PCA). PCA combines information from
all predictors or genes, but does not use disease status information |Reyes-Aldasoro and Bhalerao,
2006). The method maps the dimensions of the full data set to a lower dimensional space, with
new features that contain the useful information and ignores redundant and irrelevant information.
Here, the new features are uncorrelated and are the projections onto axes that maximize the vari-
ances of the data. PCA creates new features that are linearly independent, as well as allows the
ranking of features according to the size of the global covariance in each principal axis from which
a ’subspace’ of features can be presented to a classifier. However, while this eigenspace method is
effective in many cases, it requires the computation of all the features for a give data set, which is
computationally inefficient. Moreover, interpretability is a large issue here as often it is extremely

difficult to interpret the new features created, as they are combinations of many features.
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2.7 Distance Measures and Divergences

One particular distance, Bhattacharyya’s distance, is being proposed here as a method to address
perfect separation and to identify interaction effects in big data with the presences of a binary

outcome. Thus, it is useful to discuss other distance measures and divergences.

2.7.1 Mahalanobis Distance

Mahalanobis Distance is a measure of the distance between a point and a distribution that was
introduced by P. C. Mahalanobis in 1936 [Mahalanobis, [1936]. The Mahalanobis distance of an
observation ¥ = (71,22, 23,...,7x)" from a set of observations with mean i = (1, j2, 13, - - ., un)*

and covariance matrix S is defined as

[De Maesschalck et al., 2000].

Mahalanobis distance can also be defined as a dissimilarity measure between two random vectors &

and ¥ of the same distribution with the covariance matrix S

d(#,§) = /(@ — §TS1(E ~ D).

It is typically used to compare a single point to a distribution rather than to compare two distri-
butions by computing the distance between that point and the mean of the distribution. Another
limitation here is that the distance formula only incorporates differences in means, but does not
consider differences due to covariance. Thus, it would pick up differences in distributions that are
centered in different locations, but would most likely miss interaction terms of interest that share
the same mean but have different covariances resulting in a ”criss-cross” shape of a traditional

interaction.

2.7.2 Kullback-Leibler Divergence

The Kullback-Liebler Divergence is another measure of how one probability distribution diverges

from a second expected probability distribution [Kullback and Leibler|[1951]. For discrete probability
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distributions P and Q, the Kullback-Leibler divergence from Q to P is defined as

P(i)
Qi)

DkL(P||Q) = ZP“) log

[MacKayl, 2003]. For continuous probability distributions P and @, the Kullback-Leibler divergence
is defined as
- p(x)

Diw(PQ) = / pla) log 5 da,

where p and ¢ denote the densities of P and @ |Bishop) [2006].

Notice that the Kullback-Leibler divergence requires a reference distribution and thus, lacks symme-
try in its basic form. This is not a desirable property when considering differences in distributions

where one is not obviously the reference.

2.7.3 Hellinger Distance

Hellinger distance, sometimes also referred to as Matusita distance, is another distance measure
used to quantify the similarity between two probability distributions [Nikulin) 2001]. The Hellinger

distance is defined as

#(P.Q) =5 [ (Vi - Vo) do=1- [ Vit dz,

where f and g are probability density functions of the two probability distributions, P and @,
being compared |[Nikulin) |2001]. Previously, Hellinger distance has been used in minimum distance
estimation, which is a statistical method for fitting a mathematical model to data, usually the
empirical distribution [Beran) [1977]. Hellinger distance is related to B-distance and this relationship

is discussed in a later section.

2.8 Bhattacharyya distance

Here, I propose B-distance as an alternative to logistic regression to address the problems that
arise when perfect separation causes logistic regression to fail. In doing so, this measure can be
used to identify important combinations of predictors in large data sets. Bhattacharyya Distance
(B-distance) is a distance measure that measures the similarity of two discrete or two continuous

distributions. Bhattacharyya derived a measure of distance between two populations defined in any
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way and having the same number of variates in which a one-to-one correspondence can be established

[Bhattacharyyal, [1943].

For two discrete probability distributions p and ¢ over the same domain X, B-distance is defined as

where

BC(p,q) = Y v/p(w)g(x)

zeX

is the Bhattacharyya coefficient.

For continuous probability distributions, the Bhattacharyya coefficient is defined as

BC(p,q) :/\/p(x)q(x)dx,

where p and ¢ are continuous probability distributions.

The Bhattacharyya coefficient is an approximate measurement of the amount of overlap between

two statistical distributions. In either case, 0 < BC <1 and 0 < Dp < .

B-distance has previously been used to measure the separability of classes in classification and it is
considered to be better than the Mahalanobis distance, as the Mahalanobis distance is a particular
case of the Bhattacharyya distance when the standard deviations of the two classes are the same.
Consequently, when two classes have similar means but different variances, the Mahalanobis distance
would tend to zero, whereas B-distance increases depending on the difference between the variances.
B-distance is also preferred to the Kullback-Leibler divergence since it does not require a reference

distribution and is therefore symmetric.

There are several properties known about B-distance, including that it is in the class of f-divergences.
An f-divergence is a function D;(P||Q) that measures the difference between two probability distri-
butions P and Q. These divergences were introduced and studied independently by |Csiszar| [1964],
Morimoto| [1963] and |Ali and Silvey| [L966] and are sometimes known as Csiszr f-divergences, Csiszr-
Morimoto divergences or Ali-Silvey distances. Some statistical properties of f-divergences include

non-negativity, monotonicity, and joint convexity.
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2.8.1 Bhattacharyya distance in the Multivariate Normal Case

For the purposes of this work, I will be looking at the distance between two populations that are
assumed to follow multivariate normal distributions. For multivariate normal distributions p; =

N (pi,0;), B-distance is defined as

1 1 det
Dg = ~(p1 — pa) TSy — " T
B 8([‘/1 ll'2) (IJ'I H2) + 2 TL( det21det22>

where p; and 3; are the means and covariances of the distributions and

T+ %,
o 2

b

The first term here relates to the location of the two distributions, where the second term helps to

account for differences in shape or direction of the two populations.

2.8.2 Uses of Bhattacharyya Distance

Previous uses of B-distance include signal selection [Kailathl [1967], feature extraction and selection
[Rayl, |1989][Guorong et all 1996] [Choi and Lee, [2003], phone clustering [Mak and Barnard, [1996|,
pattern recognition [Fukunaga, 2013|] |Bishop, 2006], image processing |[Goudail et al. [2004], and
speaker recognition [You et al) [2009]. A ”Bhattacharyya space” has been proposed as a feature
selection technique that can be applied to texture segmentation, a process of identifying important

features that can help to distinguish between different textures [Reyes-Aldasoro and Bhaleraol, [2006].

B-distance has often been used as a class separability measure for feature selection and extraction.
Feature extraction is generally known as the process of transforming high dimensional data into a
low dimensional feature space based on an optimization criterion. The key to feature extraction
is reducing dimensionality without serious loss of class separability. In feature selection, a set of
the original measurements is discarded and the most useful ones are kept. Those variables selected

constitute the feature space.

Kailath discusses using B-distance in signal selection and compares it to an often used divergence.
This divergence is now known as the Kullback-Leibler divergence. The Bayesian probability error is
an optimum measure of effectiveness of a set of features selected for the purpose of classification. In

communication and radar problems, the optimum signals are those that minimize the probability of
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error. The computation or estimation of this error is very difficult and thus various indirect measures
of feature effectiveness have been suggested. This minimization of probability error is difficult to
carry out and is often impossible. He proposes using B-distance, which is often much easier to
evaluate than the divergence and gives results that are at least as good as, and that are often better,

than those given by the divergence [Kailathl [1967].

Thus, the Bhattacharrya coefficient and B-distance have become popular feature evaluation criteria.
This is because the lower and upper bounds to the Bayesian probability error can be expressed in
terms of the coefficient and also because closed-form expressions are available for the coefficient in

the case of the exponential family of distributions.

As mentioned previously, B-distance has been used in signal and radar selection. The ability to make
decisions about these classifications relies on the distances between stochastic Gaussian processes.
Schweppe developed a new expression for the Bhattacharyya distance that expresses the distance in
terms of the effects of physically-realizable linear systems (filters) acting on the Gaussian processes
[Schweppe, [1967]. The distance is given by time integrals of the mean values and variances of the

outputs of filters designed to generate the conditional expectations of certain processes.

In the context of feature evaluation in a two-class pattern recognition problem, Ray shows that
irrespective of the values of the a priori probabilities of the two classes, the maximum difference
between the existing lower and upper bounds to Bayesian probability error in terms of the B-
distance coefficient is approximately equal to 0.2071 |Ray, [1989]. Others have studied using the
classification-based B-distance measure to guide biphone clustering [Mak and Barnard, 1996]. In
this case, B-distance is used in a data driven approach together with a 2-Level Agglomerative
Hierarchical Biphone Clustering algorithm to derive generalized left/right biphones (BGBs), which

are subword phonetic units used in speech recognition for classification.

A recursive algorithm called Bhattacharyya distance feature selection has been proposed for selecting
a real-optimum feature under the specific case of multivariate normal distribution [Guorong et al.,
1996|. This optimization is done by minimizing the upper bound of error probability that was
mentioned previously. Another feature extraction method based on B-distance is proposed by Choi
and Lee. They also provide an error estimation equation based on this classification error to predict
the minimum number of features required for classification without serious information loss [Choi
and Leel [2003]. They also consider multiclass problems by introducing the Bhattacharyya distance

feature matrix. Users can then choose the desired M number of features based off eigenvectors
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corresponding to the largest eigenvalues of this matrix.

Reyes-Aldasoro and Bhalerao propose a feature selection method based on a Bhattacharyya space.
This space is constructed from the B-distances of different variables extracted with sub-band filters
from training samples. Then the marginal distributions of the Bhattacharyya space present a se-
quence of the most discriminant sub-bands that can be used as a path for a wrapper algorithm, such
as forward or backward selection [Reyes-Aldasoro and Bhalerao) [2006]. This method was used along
with a multiresolution classification algorithm to address a texture segmentation problem. When
used on a standard set of texture mosaics, it produced the lowest misclassification errors reported.
The authors propose another application of the Bhattacharyya space for detecting which pairs of
classes would be particularly difficult to discriminate over all the measurement space. They suggest
that in some cases, the individual use of one point of the space can be of interest. The use of this
space also implies that the number of classes is previously known and is thus not presented as a
method to determine the presence or absence of a number of clusters in a certain space. If this
is required, they suggest other methods such as the two-point correlation function or the distance

histogram proposed by Fatemi-Ghomi could be used.

Speaker recognition is the process of validating a claimed identity by evaluating the extent to which
a test sample matches the claimant’s model. In text-independent speaker recognition, both Gaus-
sian mixture models (GMM) and support vector machines (SVM) have been proven to be effective
classifiers and most popularly used for many years. A GMM-supervector characterizes a speaker’s
voice with the parameters of a GMM, which include mean vectors, covariance matrices, and mix-
ture weights. GMM-supervector SVM benefits from both GMM and SVM frameworks to achieve
high performance. The conventional Kullback-Leibler kernel in GMM-supervector SVM classifier
limits the adaptation of GMM to mean value and leaves covariance unchanged, as has been noted
previously. You et. al introduced the GMM-UBM mean interval (GUMI) concept based on using
B-distance instead of KL distance, which leads to a novel kernel for SVM classifier [You et al.|
2009]. The new kernel allows for exploitation of information not only from the mean, but also from
the covariance term. They demonstrated the effectiveness of the new kernel on the 2006 National

Institute of Standards and Technology (NIST) speaker recognition evaluation dataset.

Other authors note that Bhattacharyya’s concepts have found wide applications in diverse fields,
including genetics. Evolutionary geneticists commonly use various distance measures, like Nei’s
standard genetic distance, Cavalli-Sforza’s arc or chord distance and Balakrishnan and Sanghvi’s

distance, all of which are explicitly or implicitly contained within Bhattacharyya’s work
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[Chattopadhyay et all [2004]. Tt is noted, though, that Bhattacharyya’s work, which precede the
others by two to five decades, is rarely cited in any of the most prominent and visible works in
phylogenetic analysis. Thus, B-distance is a precursor to many genetic distance measures, but has

not been given credit as so previously.

In a recent study, a number of measures, including Bhattacharyya, Euclidean, Kullback-Leibler,
and Fisher, were studied for image discrimination and it was concluded that B-distance is the most
effective texture discrimination for sub-band filtering schemes [Fukunagal [2013],which are methods

for breaking a signal or image into a number of different frequency bands for analysis.

Lastly, B-distance has also been used to identify genes that are differentially expressed between
healthy and diseased individuals in a colon cancer experiment. B-distance is used as the gene
selection method to identify the small number of differentially expressed genes for a colon cancer
analysis. Univariate B-distance was calculated for all genes and the 100 largest distances were chosen
as the feature set. These genes were used as input to a fuzzy neural network to classify subjects as
having colon cancer or not. Then genes were sequentially eliminated until 7 differentially expressed
genes were identified that classified normal and colon cancer with 95.15% accuracy [Tian and Lim)|
2013]. My work also considers using B-distance to analyze gene expression data. However, this
study differs from the work here, though, in that it uses B-distance to first identify a feature set and

then uses these features as input to a classification method.

It is clear from these current uses of B-distance that it can be used as an effective way of performing
feature selection and extraction, signal selection, phone clustering, speaker recognition, and pattern
recognition. This is mainly due to the fact that it can be used to provide bounds on the probability of
error and is easier to compute than other methods. Comparisons of B-distance with other measures
show that B-distance is the preferred measure and thus I will consider using it as a way to handle
perfect separation and to identify interaction effects in big data. In Chapter 4, I return to B-distance
and derive some interesting properties that can be used in hypothesis testing for identifying both

main effects and interaction effects.
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Chapter 3

FSA

Many approaches exist to identify interaction effects in data sets with small to moderate size. Classi-
cal statistical methods suggest considering all pairwise combinations of possible explanatory variables
in the proposed logistic regression or linear regression model, and selecting a set of variables based
on either hypothesis tests or a model selection criterion. Although the theory supporting these tech-
niques is developed, often the data sets of interest have an inordinate number of possible explanatory
variables to consider in higher-order interactions using the conventional implementations of classical

methods.

For example, genomic data is also unique in its complexity due to intricate dependencies among
genes and traits, often in the form of information from external influences or genetic makeup that
are unaccounted for during analysis. In particular, interaction effects among genes contribute to
epistasis, which is especially difficult to identify in genomic data [Moore and Williams, 2009]. These
interactions have been targets of recent analyses of genomic data although development of methods
to identify higher-order interaction effects has been more limited due to computational concerns
|Gemperline, [1999]. For example, even using the second largest supercomputer at IBM (a 262,144
core machine), Goudey et al. performed analyses examining two-way interactions on a large data set
of 1.1 million single nucleotide polymorphisms (SNPs) from 2000 samples in less than 10 minutes,
and project that analyzing three-way interactions on the same computer would take approximately
5.8 years |Goudey et al. [2015]. Thus, exhaustive searches using anything less than a massive
supercomputer are highly impractical for this type of data, especially in the case of higher-order

interactions.

In contrast, stochastic search algorithms address the computational concern of the exhaustive search
methods by employing some aspect of randomness in order to perform a non-exhaustive search over
the possible explanatory variables. However, these methods may not produce the same result every
time, and thus may fail to identify the truly optimal model according to the criterion used. In
addition, most exhaustive and stochastic searches produce a single “best” model or set of explanatory
variables with respect to some hypothesis testing or model selection criterion. In any given data
set, there may be another, nearly best model that is more practical than the statistically best

model. Only considering the single statistically optimal solution leaves little room to consider more
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practically meaningful combinations of variables without further experimentation.

Thus, room for improvement exists in implementing methods that are fast and flexible in their ability
to detect both main and interaction effects in a model, and reliable in detecting effects that are not
only statistically, but also practically, significant. FSA may produce several nearly optimal solutions
from different iterations of the algorithm, rather than a single optimal solution. This variability
in FSA produces multiple results for consideration to glean practically reasonable conclusions from
the data, rather than ending with a single (statistically) optimal solution. In the latter case, one
solution may be optimal and practically nonsensical, while another nearly optimal solution exists
that is biologically relevant. FSA will show the analyst both solutions for consideration during

analysis.

Due to the stochastic nature of FSA, one issue that arises when implementing the algorithm is the
choice of number of iterations. Here, each replication is referred to as a random start and begins
with an arbitrary model based on the desired m!"-order interaction. The number of random starts
must be chosen by the user. Thus, I derive a bound on the probability of obtaining the statistically
optimal solution in a set number of random starts of FSA that can be used to select this number.
This allows users to choose a bound such that they obtain the statistically optimal solution with a

desired probability, prior to beginning data analysis.

3.1 Methods

In FSA, each random start begins with an arbitrary model with a fixed number of predictors and
proceeds by taking steps to better models based on some optimization criteria, e.g. R?. The
algorithm proceeds until it reaches a statistically optimal model for a given random start. Thus,
each random start, or iteration of FSA, will have at least one step, but often times will have several
more. Although FSA provides users with a set of potentially interesting feasible solutions, the user
may be interested in obtaining the statistically optimal solution. FSA is not guaranteed to identify
the statistically optimal solution, but as the analyst increases the number of random starts, FSA
is more likely to do so. Thus, some number of random starts is needed to obtain the statistically
optimal solution with some probability. However, the more random starts, the longer FSA will
take to run. Therefore, it would be highly useful to have information regarding how many random
starts to choose in order to obtain the statistically optimal solution with some probability, while

still maintaining computational efficiency.
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As the number of explanatory variables, p, in a data set increases, it is more difficult to identify the
statistically optimal solution and will require more random starts. I propose choosing the number of
random starts as a function of p. As p goes to infinity, the probability that the statistically optimal
solution is identified by FSA is bounded below. The limit described in Theorem 1 holds for FSA in

the case of considering m-way interactions.

Theorem 1: In the case of using FSA to find a statistically significant m-way interaction in a
predictive model, as the number of potential explanatory variables, p, goes to infinity, a lower bound

on the probability of identifying the statistically optimal model in ¢p random starts, where 0 < ¢ < 1,

. _ 2
isl—e ™

Lemma:

k tx
lim [1 + ] = etk
T

Tr—r00

Proof of Theorem 1: Let p be the number of possible explanatory variables that are chosen from,
¢ be a constant such that 0 < ¢ < 1, and ¢p be the number of random starts. Then there are (p;nm)
pairs of variables out of the total ( 7’% ) possible pairs that do not contain any of the variables in the
optimal solution, consisting of m variables. Note that, if you randomly start with m — 1 out of the
m variables in the statistically optimal solution, you are guaranteed to obtain the optimal solution.
Then, the probability of not identifying the optimal solution in the first step of a given random start
is

=) (3.1)

1— ) . (3.2)

For a given random start, FSA completes at least one step, and often more than one step, before
reaching a feasible solution. Since I am only considering finding the statistically optimal solution
after the first step and not considering the cases where the optimal solution could be found in later
steps, equation will be a lower bound on the probability of identifying the statistically optimal

solution in a single random start. So, the probability of obtaining the statistically optimal solution in

p—m cp p—m cp
at least one of the ¢p random starts is greater than 1 — [( o )} , where [( Ut )} is the probability

(m) (m)

that none of the random starts identify the optimal solution in the first step of FSA. So consider
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Notice that both the numerator and denominator in the limit statement contain m quantities. The

last line can be written as

. p—m|Fp—m—117 p—2m+1]%
=1-— lim
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by the lemma with ¢ = ¢ and k = —m. Next,
cp
lim 1—m]
pP—00 p—l
c(p—1) c
- lim |1 "™ 1M
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Since limy_; oo [1;111} = e~ “" by the lemma with t = ¢ and k¥ = —m and lim, o |1 —
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Next,
m P
lim [1 _ }
p—r00 p—m+1
c(p—m4+1) c(m—1)
= lim [1—- — . L— .
p—00 p—m+1 p—m+1
c(p—m+1)
Since limy, o0 [1— p—%ﬂ] = e~ “™ by the lemma with ¢t = c and k = —m and lim,,_, |1—
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m —
pmﬂ} =1
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p—00 p—m-+1
So,
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1— lim m =1—e " xe ™x e (m times
o 5 e times)
=1— e cm),
Thus,

P(Obtaining the statistically optimal model in ¢p random starts using FSA) > 1 — [

and note that:

Figures 3.1 and [3:2|show how the calculated probability of obtaining the optimal solution approaches
the lower bound derived above for 5 values of ¢ with m = 2 and m = 3, respectively. It can be seen

that the lower bound is attained very quickly and thus is appropriate when considering data sets



with a large number of explanatory variables, p. It is also clear that the probability of obtaining the

statistically optimal solution increases as the number of starts increases, as is expected.
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Figure 3.1: In this plot, the dots show the exact value of the lower bound for varied values of ¢, and
the lines show the asymptotic lower bound on the probability of getting the statistically optimal
solution with m = 2. The lower bound is attained very quickly and the probability of identifying
the statistically optimal solution increases as the number of random starts increases, as expected.
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Figure 3.2: In this plot, the dots show the exact value of the lower bound for varied values of ¢, and
the lines show the asymptotic lower bound on the probability of getting the statistically optimal
solution with m = 3. The lower bound is attained very quickly and the probability of identifying
the statistically optimal solution increases as the number of random starts increases, as expected.

Next, simulation studies are performed for both quantitative and binary response variables to ex-
amine the outcomes of utilizing the lower bound derived above. These simulations are followed by

a real data analysis to demonstrate the use of the lower bound in practice.
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3.2 FSA Simulations

Quantitative trait data are simulated as the sum of two covariates and their interaction under the
typical regression model for values of p of 50, 100, 1000, and 2500. One hundred data sets are
simulated for each value of p. Binary trait data are simulated in an analogous manner. Simulation

parameters are as follows:
e Quantitative response variable
- X;;~U(0,1)fori=1,...,nand j=1,.,p
- Y, =5+ X;1 + X0+ 2X;1 X2 + €; where ¢, ~ N(0,1)
e Binary response variable

- X;;~U(@,1)fori=1,..,nand j=1,...,p

_ eXiltXi2+2X1 X2
T = (1+eXir+Xi2+2X31 X42)

1 with probability ;
— Y, =

0 with probability 1 — m;
FSA is used to provide a set of feasible solutions for every simulated data set via the implementation
in [Lambert} [2015]. Exhaustive search is then performed to find the statistically optimal solution
using R? and AIC as the criteria functions for the quantitative and binary response variables,
respectively. The numbers of random starts chosen for FSA are values of ¢ including 0.01, 0.02, 0.1,
0.2, and 0.4 with each value of p. Then, for each simulation setting, the percentage of simulated
data sets producing the statistically optimal solution using FSA is calculated. These percentages,

along with the lower bound from Section 3, are plotted in Figures [3.3] and

3.3 FSA Simulation Results

Figures and show results from 100 simulated data sets for both linear and logistic regression
methods in FSA for four values of p and five values of ¢. Note that the asymptotic lower bound
proposed here depends only on m and c¢. The red dots represent these lower bounds for each value
of ¢. The yellow diamonds, green squares, blue dots, and black triangles represent the percentage
of 100 simulations with p = 50, 100, 1000, and 2500 respectively, when m = 2 (where FSA was able

to identify the statistically optimal solution). It is clear from these figures that the lower bound
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is often much lower than the observed probability and is thus very conservative, but does provide
good guidance as to the number of random starts needed to produce at least one feasible solution

containing the statistically optimal solution.

Linear Regression Results
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Figure 3.3: Simulation results for the probability of getting the optimal solution in 100 simulations
with a quantitative response variable: For each value of ¢, the lower bounds are represented by the
red dots and the probability of identifying the statistically optimal solution for the four values of p
are represented by yellow diamonds (p = 50), green squares (p = 100), blue dots (p = 1000), and
black triangles (p = 2500). This plot shows that the lower bound is valid for all values of p in the
simulation study.
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Logisitic Regression Results
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Figure 3.4: Simulation results for the probability of getting the optimal solution in 100 simulations
with a binary response variable: For each value of ¢, the lower bounds are represented by the red
dots and the probability of identifying the statistically optimal solution for the four values of p are
represented by yellow diamonds (p = 50), green squares (p = 100), blue dots (p = 1000), and black
triangles (p = 2500). This plot also shows that the lower bound is valid for all values of p in the
simulation study.

3.4 FSA Real Data Example

Data for this analysis were collected in a genome-wide association study using 288 outbred mice
in a study that aimed to identify, or map, locations along the genome called SNPs that influence
HDL cholesterol, systolic blood pressure, triglyceride levels, glucose, or urinary albumin-to-creatinine
ratios |[Zhang et al., 2012]. The goal is to determine if SNPs or interactions of SNPs are associated
with HDL levels. Information from 3045 SNPs on chromosome 11 are analyzed in this real data

analysis.

Using the lower bound in Theorem 1, if the desired probability of obtaining the statistically optimal
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solution including a two-way interaction is to be at least 95%, then the following equation needs to

be solved for c:

1—e2 =0.95

<= ¢ =0.7489331

Since the number of possible predictors is p = 3045, the number of random starts needed is

0.75(3045) = 2283.75, or 2284 random starts.

Table 3.1: The exhaustive search produced the single single statistically optimal solution with R? =
0.1256308 (Column 3). Columns 1 and 2 show the SNPs that are identified in this model.

Variable 1 ‘ Variable 2 ‘ R?
mb2863979 | mb87344525 | 0.1256308

Table 3.2: FSA produced 33 feasible solutions and a subset of those are shown here, including the
statistically optimal solution denoted in bold with R? = 0.1256308 (Column 3). Columns 1 and 2
show the SNPs that are identified in each of the models.

Variable 1 \ Variable 2 \ Times Chosen by FSA \ R?
mb104327194 | mb91638370 42 0.0957401
mb13136127 mb31255782 898 0.1245719
mb28636979 | mb87344525 107 0.1256308
mb111935889 | mb43233761 25 0.1065257
mb62443411 mb99541026 23 0.1088855
mb112250554 | mb96331482 56 0.1123864

The exhaustive search of the 3045 SNPs on chromosome 11 took approximately 11 hours in total on
a large cluster without parallelization. Exhaustive search identified the statistically optimal solution
that includes an interaction between mb2863979 and mb87344525 and corresponds to a value of
R? = 0.1256. This result can be found in FSA took approximately half an hour to perform 2284
random starts when parallelized on a larger cluster, using 16 cores. There are a total of 33 feasible
solutions identified through FSA, including the statistically optimal solution, which is presented in
bold in the subset of FSA results in 3.2l One of the SNPs identified here located at mb87344525 is
located very close to a location identified in a previous study [Su et al.l 2009]. A full table of the
FSA results can be found in the Appendix. Out of the 2284 replications of FSA, the statistically
optimal solution was identified in 107 of the replications. This illustrates that the number of random

starts used here was sufficient to identify the statistically optimal solution. Thus, this work provides
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a way for analysts to determine the number of iterations of FSA required to obtain the statistically

optimal solution with a specified probability.
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Chapter 4

Bhattacharyya Distance

4.1 Methods

I propose using B-distance as an alternative to logistic regression to measure the distance between
the two response groups. It addresses the severe limitation of logistic regression in that it still
measures the overall distance between individuals in the two response groups when there is linear
separation. In fact, the distance also increases as the separation becomes larger and decreases as

the separation is smaller, while logistic regression fails in either case.

Advantages of B-distance include that it is much faster than traditional logistic regression methods
and it is better at classification than other distance measures, such as Mahalanobis distance or
Kullback-Leibler distance. This is due to the fact that it incorporates covariances, as well as means,
and that it does not require a reference distribution. Although some properties of B-distance have
been studied previously, understanding of its estimator is limited. The distribution of the sample
B-distance has yet to be studied. In this section, I will consider this distribution under strict
assumptions about the covariances of the two groups and then will also attempt to relax some of
those conditions in order to examine the distribution. I will also look at using this information to

perform hypothesis testing and to create confidence intervals for the sample B-distance, B.

4.1.1 The Sample Bhattacharyya Distance

Recall that for multivariate normal distributions p; = N(u;, 0;), B-distance is defined as

1 1 detX
Dp = = (1 — o) TS (g — pao) + ~In [
=gl —p) (1 = p2) 45 n(\/det21d6t22>

where p; and X; are the means and covariances of the distributions of the two groups and

43,
2=

b))

It is clear that B-distance can be viewed as having two terms. The first term mostly incorporates

differences in groups due to means, while the second term incorporates differences in the groups due
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to covariances. Now, define the sample B-distance as

B=>(X1 - X2)TS Xy — Xo) + 1ln( det> )

1
8 2 V detﬁlldetﬁlg
where p1 and po are replaced with their maximum likelihood estimates of X, and X, respectively

and 3, 37 and 35 with the sample covariances f), 21, and 22, respectively.

4.1.2 Distribution of the Sample Bhattacharyya Distance Assuming Known Equal

Covariances

B-distance can be viewed as having two terms. The first gives information about the differences in
means or locations of the two groups and the second term provides information about the differences
in variance-covariance or directions of the two groups. First the distribution of B is considered under
some strict assumptions. Assume ¥; = X5 = 3 and that this quantity is known. Recall that for

multivariate normal distributions p; = N (u;, 0;), B-distance is defined as

! 1 det>
B = D = - - Tz_l - + 71 ()
B 8(u1 H2) (11 — p2) o detXdetXs

where p; and X; are the means and covariances of the distributions.

Assuming that 37 = X5 = X, then the second term of the distance is equal to zero, leaving

1 -
B = g(ﬂl — p2) T E (e — o).

So, under these assumptions,

N 1 - _ _ _
B = g(X1 - X,)Ty71X; - X).

Since the maximum likelihood estimates are being used and it is assumed that 3y = 3p = 3,

— 1
X~ Np(uia 72)

(2

for i = 1,2. Letting X* = X; — Xa,

X* ~ N, (0, 5%).
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where p* = g1 — po and ¥ = 22y,

ning

Note the following theorem in Ravishanker and Dey| [2001].

Theorem: If X ~ N,(u,X) and X is positive definite, then

XTEIX ~ 2 (A = pTS )

Using this theorem,

Thus,

where

Notice that the noncentrality parameter increases as the differences in means of the two groups
increases. It would be useful to understand how quickly the distribution of this quantity converges

to the x? distribution. Thus, simulations are conducted to examine the asymptotic convergence

of (SE%)B to this distribution as the sample sizes of the two groups, n; and ng, increase. This

provides an idea about what sample sizes are needed to use this distribution to perform hypothesis

testing.

Stmulations.— Simulations are conducted to examine the asymptotic convergence of (S?jj@) Btoa
x22()\) distribution with A = ;L*TE*_I;L*) as the sample sizes of the two groups, n; and ns, increase.
Two different mean settings and two different covariances are considered to provide a combination
of four different simulation parameter settings. Thus, the distribution can be examined when means
are far apart, as well as close together, for covariances that include a nonzero term between the
two predictors, as well as zero covariance between the two predictors. This is important so that
the distribution can be considered under various conditions. For each combination of mean and

covariance choices, sample sizes from n = 5 per group up to n = 100 per group are considered.

These simulation settings can be seen in Table 1]
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Table 4.1: Simulation parameters for comparing the distribution of B and the x22()\) distribution
are shown here. Column 1 denotes the number of the simulation setting. Columns 2 and 3 contain
the means for the two distributions, while Column 4 displays the covariance of the two distributions.
The different sample sizes that are used in the simulations are found in Column 5.

Simulation 1 Joes Y1 =3=X n
5

(0) [1 0.8] ;g
0 0.8 1 50

100
5
(0> [1 0.8] ;‘;
0 0.8 1 50
100
5

10
[1 o] 95

50
100
5

10
[1 o] 95

50
100

Ten thousand data sets are simulated according to each of these parameter settings. For each data

set, (S?_ﬁi) f (B) is calcualted and then plotted in a histogram. Then the distribution of (S?ﬂi) f (B)

from these simulations can be compared to the target distribution of y22(\ = u*TE*_lu*).

8nino B

Simulation Results.— Simulations are conducted to examine the asymptotic convergence of e,

to a x22()\) distribution, where A = p*7* 7! * | as the sample sizes of the two groups, n; and n,
increase. Figures [£1] - £:4] show results from 10000 simulated data sets at each of 5 sample sizes
ranging from 5 per group up to 100 per group. In each figure, the red line represents the distribution
of the target distribution and the black line represents the kernel density estimate of the empirical

distribution of the simulated quantity (Sﬁiﬁ) 3.
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Figure 4.1: Results from 10,000 simulated data sets at each of 5 sample sizes ranging from 5 per
group up to 100 per group are plotted here. Data are simulated from distributions with means
far apart and the same covariance matrix with a non-zero term for covariance between the two
predictors (simulation setting 1). In each figure, the red line represents the distribution of the target
distribution of y22(A = p*T3%*“'p*) and the black line represents the kernel density estimate of

the empirical distribution of the simulated quantity (STTK)B .
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Figure 4.2: Results from 10,000 simulated data sets at each of 5 sample sizes ranging from 5 per group
up to 100 per group are plotted here. Data are simulated from distributions with similar means
and the same covariance matrix with a non-zero term for covariance between the two predictors
(simulation setting 2). In each figure, the red line represents the distribution of the target distribution
of x22(A = p*TZ* ! u*) and the black line represents the kernel density estimate of the empirical

distribution of the simulated quantity (5377;22)3
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Figure 4.3: Results from 10,000 simulated data sets at each of 5 sample sizes ranging from 5 per
group up to 100 per group are plotted here. Data are simulated from distributions with means far
apart and the same covariance matrix with a zero term for covariance between the two predictors
(simulation setting 3). In each figure, the red line represents the distribution of the target distribution
of x22(A = p*TZ* ! u*) and the black line represents the kernel density estimate of the empirical

distribution of the simulated quantity (5377;22)3
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Figure 4.4: Results from 10,000 simulated data sets at each of 5 sample sizes ranging from 5 per
group up to 100 per group are plotted here. Data are simulated from distributions with similar
means and the same covariance matrix with a zero term for covariance between the two predictors
(simulation setting 4). In each figure, the red line represents the distribution of the target distribution
of x22(A = p*TZ* ! u*) and the black line represents the kernel density estimate of the empirical

distribution of the simulated quantity (5377;22)3
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It is clear from these figures that as the sample sizes increase, the simulated distribution approaches
the target distribution very quickly for all parameter settings. Quantile-quantile (q-q) plots are used
for determining if data come from populations with a common distribution. A g-q plot is a plot of the
quantiles of the first data set against the quantiles of the second data set. Here, the first data set is
the simulated data and the second data set is 10,000 random sample from the y22(A = u*TE*_lu*)
distribution. A 45-degree reference line is also plotted. If the two sets come from a population with
the same distribution, the points should fall approximately along this reference line. The greater
the departure from this reference line, the greater the evidence for the conclusion that the two
data sets have come from populations with different distributions. Figures - show the q-q
plots for each sample size under each of the four parameter settings. In simulations 2 and 4 that
consider differences in distributions with close means, it seems that there is more departure from the
reference line. However, overall the q-q plots show a linear relationship and do not provide evidence

for differences in the distribution of 222 B and the target of xo2(\).

ni+ng
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Figure 4.5: Results from 10,000 simulated data sets at each of 5 sample sizes ranging from 5 per
group up to 100 per group are plotted here. Data are simulated from distributions with means far
apart and the same covariance matrix with a non-zero term for covariance between the two predictors

(simulation setting 1). In each figure, the quantiles of the simulated (S?jr%)é are plotted against

the quantiles of the target distribution of xo2(A = p*T Z* 71 p*).
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Figure 4.6: Results from 10,000 simulated data sets at each of 5 sample sizes ranging from 5 per group
up to 100 per group are plotted here. Data are simulated from distributions with similar means
and the same covariance matrix with a non-zero term for covariance between the two predictors

(simulation setting 2). In each figure, the quantiles of the simulated (S?jr%)é are plotted against

the quantiles of the target distribution of xo2(A = p*T Z* 71 p*).
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Figure 4.7: Results from 10,000 simulated data sets at each of 5 sample sizes ranging from 5 per
group up to 100 per group are plotted here. Data are simulated from distributions with means far
apart and the same covariance matrix with a zero term for covariance between the two predictors
(simulation setting 3). In each figure, the quantiles of the simulated

(8)

the quantiles of the target distribution of xo2(A = p*T Z* 71 p*).
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Figure 4.8: Results from 10,000 simulated data sets at each of 5 sample sizes ranging from 5 per
group up to 100 per group are plotted here. Data are simulated from distributions with similar
means and the same covariance matrix with a zero term for covariance between the two predictors

(simulation setting 4). In each figure, the quantiles of the simulated (S?jjé) B are plotted against

the quantiles of the target distribution of xo2(A = p*T Z* 71 p*).
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It is clear from both the histograms and g-q plots that the simulated data follows the target distri-
bution and that under these assumptions about 31 and 34 f(B) ~ x22(\), where \ = 75D Skl el
Although this result is interesting, it is not particularly useful in the case where B-distance is used
to identify interactions among predictors. In this situation, the covariances are not expected to be

known nor equal, just independent. In the following sections, these assumptions will be relaxed.

4.1.3 Distribution of the Sample Bhattacharyya Distance Assuming Unknown Equal

Covariances

Now consider relaxing the condition of known covariances, but assume that 3; = X5 and assume

that the groups have equal sample sizes, i.e., n; = no = n. Now consider the first term of B,
1 2 S Te_l, o _
g(Xl —X2)' ¥ (X1 — X2).
Since the maximum likelihood estimates are being used and it is assumed that 37 = 3o = 3
= 1
for i = 1,2. Letting X* = X; — X3,

X* ~ N, (0, 5%).

where p* = p1 — po and X% = %2.

It is also known that 231 and 232 follow Wishart distributions,

. 1
ziwwp(n—Ln_lz).

From this,

From Theorem 18.19 of [Arnold} [1981],

(2n—1-p)n

2p(2n — 2) (X1~ X2)T271(X1 — X3) ~ Fpon_1-p(6),
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where

n —_
0= 5(#«1 - Nz)Tz 1(Nl - N2)T
is the non-centrality parameter.
Here p = 2 and so
n@n=8) g Xy TH (KL — Xa) ~ Faana()
8(n—1) 1 2 1 2 2,2n—-3(0),
where
n _
6= 5(#1 - Hz)TE 1(Hl - Hz)T
Let
n(2n—3), = Tl o _
Y=—"(X1— X)X (X1 — X
S(n—1) (X1 — X2) (X1 —X2)
and

1 - _ N _ _
7 = g(X1 - X)Te (X, - Xs),

noticing that Z is the first term of B. Then

v — n(2n — 3) 7
(n—1)

That is,

n(2n — 3)

(n—1) Z ~ Fs5,-3(6),

where

n _

6= 5(#1 - Nz)Tz 1(Nl - Hz)T

and thus the distribution of the first term of B is now known in the case that Y1 =22 and n; = no.

Note that the expected value of the first term here is

(n—1)(2+9)

ElZ] = 2n(2n —5) ’

where
n _
0= 5(#1 - ,uz)T2 1(Nl - Nz)T-
Hence, the first term of B is clearly a biased estimator of the first term of B.

Now consider the second term of the sample B-distance. Finding the distribution of this term
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proves to be very difficult due to analytically intractable covariance parameters. I will show this

here. Remember that it is assumed that X7 = X5 = 3. So the second term of B is

1 ( det3 >
=In T >
2 V detEldet22

which can be rewritten using properties of logarithms as

%ln(det(ﬁl)) - iln(det(ﬁl)) - iln(det(ﬁg)). (4.1)

Note the following corollary from Cai et al. [Cai et al., 2015] where n is the sample size, S is a

sample covariance matrix, and p is the dimension of S.

Corollary: If p is fixed, then the log determinant of S satisfies

log det S —p(p+1)/(2(n — 1)) —log det X £>N(0 1)
2p/(n — 1) o

as n — oo. In the case of 3 there are p = 2 dimensions and it is known that X is a sample covariance

matrix |Arnold} |1981]. Thus,

vn—1

- 3
(log det 5 — —"— —log det %) L N0, 1),
as n — oo and so

1 ~
\/11—1(2 logdetE—2

m - % log det E) £>./\/’(0,1)a

as n — o0.

In the case of 37 and Xa, there are p = 2 dimensions and from the Corollary above,

1 o
\/n1(4 log det ¥ — 1

1 I 1
m*zlogdet Zl) HN(O,),

as n — oo and in the analogous case,

1 . 3 1 L 1
vn—1|-log det X9 — —— — — log det 35 | = 0, -
n (4 0g de 2 4(71*1) 4Oge 2> N(a )7

as n — oQ.
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It is known that the sum of three normally distributed random variables is also normally distributed
and that the mean is equal to the sum of the three means. Thus, follows a normal distribution

and its expected value is approximately

3
2(n—1)

3
4(n—1)

3

- ilog(det(ﬁl)) T im-1)

+ %log(det(Z)) - - ilog(det(Zg))

= %log(det(E)) - ilog(det(El)) - %log(det(Eg))

The mean of the sum of these three terms is known, but the variance is also needed to derive the
full distribution. Next, I would like to calculate the variance of the sum of these three pieces. Note
that if the terms are independent, then the variance terms from the three parts can be summed.
However, in the event that the variables are not independent, the variances are not additive due to
the correlations between variables. It has been assumed that 3, and 35 are independent. However,
since

2:

it is obvious that 3 and ¥; are not independent and that 3 and 3, are also not independent.

Thus, since the term 1log|%| — 1log|2;| — 1log|E,] is being considered,

1 - 1 - 1 - 1 - 1 - 1 -
Var(§10g|2| - Zlog|21| - Zlog|22|) Var(510g|2|) + Var(ilog|21|) + Var(ilogmg\)

1 ~, 1 - 1 a1 A
2 Cov(§log|2|, Zlog\El\) -2 Cov(ilog\ﬁ\7 Zlog|22|)

1 ~ 1 ~
2 Cov(110g|21 l, Zlog\EZD.

The variance terms are known, but the covariance terms need to be calculated. First consider

1 a1 - 1 o 1 - 1 - 1 A
Cov (210g|2|, 410g|21|) =E {2log|2|4log|21|} —-E [210g|2|] E [4log|21|]
1 a1 - 3 1 3 1
=E | -log|X|-log|3X1|| — | =/——= + zlog|Z= — + —log|X®
o jlosiEal] - (5 + glou®) (g gy + e )
9 3

1 - ~
= —E |log|X|log|31 || — — log|®
5 E [loglShoglShl] - 5= — i Ty loe =l
3 1
— ——log|X| — -log|X| log | ¥
St 1y 01! — glos/ log [

Since log|3| and log|3 | are not independent, E [log|f)|log|f]1|} cannot be written as
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E [log\f]q E [log\f]l@. Also, since the joint distribution of log|3| and log|%; | is unknown, this term
cannot be analytically calculated. Notice that when considering Cov(log|5)|, log|5)2), the same issues
will arise. Thus, this covariance term is analytically intractable and the distribution of the second
term of the B cannot be derived under in the case where 31 = ¥ and n; = ny. However, the
asymptotic mean is known for both terms of B and thus, E[B] can be calculated. It it is clear,
though, that B is biased. Thus, inference about the bias of B can be made and is considered in the

following section.

4.1.4 Confidence Intervals for Bhattacharyya Distance

Even under assumptions of 3; = 33, the distribution of B cannot be derived. In order to make
inference about B, I will first consider interval estimates to help estimate B-distance. Since the
distribution of B is not known, percentile intervals can be used. Percentile intervals are a common
method when working with estimators with unknown sampling distributions [Wilcox, 2011]. The
distribution of B is unknown and clearly not normal since B-distance can never be less than zero.
In fact, the sample B-distance will equal zero with probability zero. Thus, the non-normal nature
of B needs to be accounted for when creating these intervals. Further, B is a biased estimator of B

and so this will be accounted for when creating percentile intervals.

Since the distribution of B is unknown, percentile intervals for the expected value of B are created

via bootstrapping. In simulation studies, the expected value E[B] are calculated through Monte

Carlo integration in order to estimate coverage probabilities.

Simulations. — Simulations are conducted to examine the accuracy of percentile intervals created via
bootstrapping. The accuracy of these intervals is measured by coverage probability, i.e., how often
the calculated intervals contain E[B] as calculated by Monte Carlo integration. E[B] is calculated
as the mean of B from 10,000 simulations for each of 6 sample sizes ranging from 5 to 200. Then
percentile intervals are created from 1,000 data sets. In each data set, 1,000 bootstrap samples are
taken within groups with replacement from the original data and B is calculated for each bootstrap
sample. The lower and upper limits of the interval are taken to be the 2.5'"" and 97.5'" percentiles
of the bootstrap samples of B, respectively. This produces a 95% confidence interval for B. The

coverage probability is then calculated as the percentage of the 1,000 intervals that cover E[B], and

then compared to the desired probability of 95%.
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Table 4.2: Simulation parameters for evaluating the coverage probabilities of percentile intervals
for B are shown here. Column 1 denotes the number of the simulation setting. Columns 2 and 3
contain the means for the two distributions, while Columns 4 and 5 display the covariances of the
two distributions. The different sample sizes that are used in the simulations are found in Column
6.

Simulation M1 H2 21 22 n

10

0 1 08] | [1 08]] 25
(o) [0.8 1] {0.8 1} 50
100
200

10

100
200

10
3 1 08] | [1 08]] 25
(3) {0.8 1] {0.8 1} 50
100
200

5
10

1 0 25
0 1 50

100
200

Data are generated under four parameter settings incorporating different values for means and
covariances. For each combination of mean and covariance choices, sample sizes from n = 5 per
group up to n = 200 per group are used. The first setting generates data from the same distributions
for the response groups. The remaining three combinations of parameter choices are chosen to
evaluate the accuracy of this method under various conditions of differences in distributions. These
conditions include when groups have the same means but different covariances, when groups have
the same covariances but different means, and lastly when the groups have both different means and
different covariances. All of these combinations need to be considered in order to determine what
circumstances the percentile intervals have good coverage probability. The parameter settings for

the simulations can be found in Table [4.2

Stmulation Results.— Simulations are conducted to evaluate the coverage probability of percentile

intervals under various conditions. Table displays these coverage probabilities.
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Table 4.3: Simulation results for evaluating the coverage probabilities of percentile intervals for B
are shown here. The coverage probabilities (Column 7) clearly increase as the sample size (Column
6) increases. Columns 1 and 2 contain the means for the two distributions, while Columns 4 and 5
display the covariances of the two distributions.

1 2 b hIPY n | Coverage Probability
5 0.776
10 0.88
0 0 1 038 1 038 25 0.926
(0> (O) {0.8 1} {0.8 1} 50 0.94
100 0.958
200 0.95
5 0.767
10 0.895
0 0 10 1 038 25 0.926
(O) (O> {O 1} {0.8 1} 50 0.941
100 0.953
200 0.953
5 0.799
10 0.843
0 3 1 038 1 038 25 0.915
<0> <3> {0.8 1} {0.8 1} 50 0.929
100 0.922
200 0.934
5 0.771
10 0.869
0 3 1 038 10 25 0.913
(0) (3) {0.8 1} {O 1} 50 0.930
100 0.936
200 0.933
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It is clear that as the sample size increases, so does the coverage probability of the interval. In the
first two simulation settings, 95% coverage is reached with sample sizes of n = 100 and n = 200. For
the last two simulation settings, the intervals reach a little over 93% coverage, which is very close to
95%. Thus, 50 seems to be an acceptable sample size to achieve appropriate coverage probability.
Therefore, it seems that this method is an appropriate way to create confidence intervals for B. Now
that there exists a method for creating confidence intervals, it would be useful to have a method to

perform hypothesis testing as well.

4.1.5 Hypothesis Testing

When performing hypothesis testing, the goal is to determine if the response groups come from
the same distribution or from different distributions. If it can be determined that the response
groups come from two different distributions, this may be evidence of an interaction between the
two variables of interest or of main effects of at least one of the variables. Thus, here the null and
alternative hypotheses being tested are

Hy: The response groups come from the same distribution

Hy: The response groups come from different distributions.

In Section 4.1.2, the distribution of B was not able to be derived without making strict and unrealistic
assumptions about X7 and Xs5. However, it may be possible to derive the null distribution of a
function of B that can be used for hypothesis testing. Since I am interested in using B-distance to
identify interaction effects, it would be useful to have this distribution in order to perform hypothesis

testing.

It is known that Hellinger’s Distance is a transformation of B-distance that is often used for variable
selection. Some information is known about the asymptotic distribution of the Hellinger distance
and therefore the relationship between Hellinger distance and B-distance can be used to derive the
distribution of a function of B. Recall that if m and 7, are two populations and f (z,0,) is the fixed

density of the random vector X in m;. then the Hellinger distance between the two populations is

A= / (2 (2.0) — 15 (2, 0))2dN (@), (4.2)

Let

61 = (w11, H12,01,11, 01,12, 01,22)
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and

01 = (p21, 22,0211, 02,12, 02,22)-
Under the null hypothesis Hy : 8; = 05, the following is true about the sample Hellinger Distance

dning 9
A — 4.3
ny -+ U») Xt ( )

in distribution as ny — 400, ng — 400 and —2— — u €]0, 1] |Alba-Fernandez et all, 2005]. That

ni+nz
is, letting
dning 4
_ 1n2 A
ni + no
then asymptotically,
d
X X7

where % denotes convergence in distribution.
Next, consider Slutsky’s Theorem.

Theorem: Let X,, and Y,, be sequences of scalar/vector/matrix random elements. If X,, converges

in distribution to a random element X and Y;, converges in probability to a constant ¢, then

Xo+Ye S X +o (4.4)
XoYn S eX; (4.5)
X,/Yn % X/c, provided that c is invertible, (4.6)

d e
where — denotes convergence in distribution.

Now let

1By = 2 (1ot (47)

ny + no

where B is the sample B-distance. Then, from the definition of the two distances, the following
relationship is true:
- X,
B)=—.
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Using Slutsky’s Theorem, let Y,, = 2 for all n and consider (4.6). Then,

|

2
44
2

under the conditions associated with (4.3)).

Note that a Gamma (k,6) random variable with & = & and 6 = 2, is a chi-squared random variable

with v degrees of freedom. And by properties of the gamma distribution, if
X ~ Gamma(k, ),

then for any ¢ > 0,

c¢X ~ Gammal(k, c6),

(proof using moment generating functions).

Since ¢ = % here,

And since f(B) = Lo

4 t
f(B)=»T <2, 1)
where ¢ is the number of parameters being estimated and n; and ny are the sample sizes for groups 1
and 2, respectively. In the case where all parameters are assumed unknown and the null hypothesis

is agssumed, only 5 parameters need to be estimated. That is, w11, 22, 011, 022, and 012 = 021 need

to be estimated, where

M1
l‘l’l = l'l’2 =
K22
and
o o
S, =%, -5 11 012
012 022
With ¢ = 5, the result is that
F(B)L T(25,1). (4.8)
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Table 4.4: Simulation parameters for comparing the distribution of B to the I'(2.5,1) distribution
are shown here. Column 1 denotes the number of the simulation setting. Column 2 contains the
mean for the two distributions, while Column 3 displays the covariance of the two distributions. The
different sample sizes that are used in the simulations are found in Column 4.

Simulation u b n
5

, (3) { 1 0.8} %g
3) | los 1]] 2
100

5
{ 1 0.8} 10

25
50

100
5

10

{1 0} o
50

100
5

10

[1 0} o5
50

100

Stmulations.— Simulations are conducted to examine the asymptotic convergence of f (B) under
the null distribution to a I'(2.5,1) distribution as the sample sizes of the two groups, n; and no,
increase. The two groups are simulated from the same distribution for four combinations of means
and covariances. The parameter settings include zero and nonzero means, as well as covariances
that include both a zero and a nonzero covariance term between the two predictors. Thus, the null
distribution of B can be examined under various combinations of parameters to display what effect
these differences have on the convergence of the distribution, if any. The simulation settings can be

seen in Table (4]

Ten thousand data sets are simulated under these conditions. For each data set, f (B ) is calculated
and then plotted in a histogram. The sample distribution of f (B) that arises from these simulations

can then be compared to the target distribution of I'(2.5,1).

Simulation Results.— Simulations are conducted to examine the asymptotic convergence of f (3) to
a I'(2.5,1) distribution as the sample sizes of the two groups, ny and ns, increase. Figures —
show results from 10,000 simulated data sets at each of 5 sample sizes ranging from 5 per group up

to 100 per group. In each figure, the blue line represents the density of the target distribution and
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the red line represents the kernel density estimate of the empirical distribution of the simulated f (E)
values. It is clear from these figures that as the sample sizes increase, the simulated distribution
approaches the target distribution fairly quickly. However, it does not match well for small sample

sizes less than 25 per group. This is true across all parameter settings.
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Figure 4.9: Results from 10,000 simulated data sets at each of 5 sample sizes ranging from 5 per group
up to 100 per group are plotted here. Data are simulated from a distribution with non-zero mean
and a covariance matrix with a non-zero term for covariance between the two predictors (simulation
setting 1). In each figure, the blue line represents the distribution of the target distribution of
I'(2.5,1) and the red line represents the kernel density estimate of the empirical distribution of the
simulated quantity f(B).

59



n =5 per group n = 10 per group

o o

(‘0_ A m N

© — Density of f(B) © — Density of f(B)
> —— Density of [(2.5,1) > —— Density of ['(2.5,1)
7} 0 ‘@ 0
c - f -
& © & ©

o o

o - S -

IS I T T T 1 IS} I T T T 1

0 5 10 15 20 0 5 10 15 20
AN AY
f(B) f(B)
n = 25 per group n = 50 per group

o o

(V’. A m N

© — Density of f(B) o — Density of f(B)
> —— Density of ['(2.5,1) > —— Density of ['(2.5,1)
7} 0 ‘@ 0
c - c —
8 ° & °

o o

=3 S

IS I T T T 1 IS} I T T T 1

0 5 10 15 20 0 5 10 15 20

f(B) (8)

n = 100 per group

o
(‘? N
© — Density of f(B)
> —— Density of ['(2.5,1)
‘0 0
o —
8 o
o
S
[S) I T T T 1

0 5 10 15 20

f(8)

Figure 4.10: Results from 10,000 simulated data sets at each of 5 sample sizes ranging from 5 per
group up to 100 per group are plotted here. Data are simulated from a distribution with zero mean
and a covariance matrix with a non-zero term for covariance between the two predictors (simulation
setting 2). In each figure, the blue line represents the distribution of the target distribution of
I'(2.5,1) and the red line represents the kernel density estimate of the empirical distribution of the
simulated quantity f(B).
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Figure 4.11: Results from 10,000 simulated data sets at each of 5 sample sizes ranging from 5 per
group up to 100 per group are plotted here. Data are simulated from a distribution with non-zero
mean and a covariance matrix with a zero term for covariance between the two predictors (simulation
setting 3). In each figure, the blue line represents the distribution of the target distribution of
I'(2.5,1) and the red line represents the kernel density estimate of the empirical distribution of the
simulated quantity f(B).
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Figure 4.12: Results from 10,000 simulated data sets at each of 5 sample sizes ranging from 5 per
group up to 100 per group are plotted here. Data are simulated from a distribution with zero mean
and a covariance matrix with a zero term for covariance between the two predictors (simulation
setting 4). In each figure, the blue line represents the distribution of the target distribution of
I'(2.5,1) and the red line represents the kernel density estimate of the empirical distribution of the
simulated quantity f(B).
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Now that the asymptotic null distribution is known, it can be used to test the null hypothesis
Hy : 6; = 05, that is, that the two groups have the same distribution. Thus, the type I error rate
needs to be checked at each sample size in these four parameter settings. This comparison can been
seen in Figure 4.13] The plots here show the simulated type I error rates against the true type I
error rates for each of the four simulation settings. The black crosses, red triangles, yellow squares,
green circles, and blue diamonds represent the type I error rates of 10,000 simulations with n = 5,
10, 25, 50, and 100 respectively. Simulated type I error rates are calculated as the percentage of
simulated data that are greater than or equal to the value from quantile function of the specific
gamma distribution that is being compared to for each of the desired probabilities. For example, if
the desired probability is chosen to be a = 0.05, then first the value at which the probability of the
random variable is less than or equal to the given 1 — «v is found for the specific gamma distribution
of interest I'(2.5,1). In R, this can be done by typing in qgamma(0.95,shape=2.5scale=1) and it
is seen that this value is about 5.54. Thus, in order to test that the distribution of the sample
B-distance under the null hypothesis matches the one defined, the percent of the sample B-distances

that are at least as big as 5.54 need to be calculated to see if it is close to the desired a.
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Figure 4.13: Simulated type I error rates calculated from 10,000 data sets are plotted against the
true type I error rates of the asymptotic null distribution of I'(2.5,1) for each of four parameter
settings. The black crosses, red triangles, yellow squares, green circles, and blue diamonds represent
the type I error rates of 10,000 simulations with n = 5, 10, 25, 50, and 100 respectively.
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A table of these results can be found in the Appendix, It is clear from both the plot and table
that the type I error rate is higher than desired at the small sample sizes of 5 and 10 per group.
However, the type I error rate is controlled well at the 0.025 and 0.05 levels for the larger sample
sizes of 25, 50, and 100 per group. Thus, in the case of small sample sizes, this asymptotic result
cannot be used, because the type I error rates are too high. If the asymptotic results are used for the
small sample sizes of interest, there is a risk of concluding that a sample B-distance is statistically
significant when it is not more often than is comfortable. However, now there exists a general idea
about how large the group sample sizes need to be in order to use this asymptotic test. In the case
of small sample sizes, other statistical tools, such as permutation testing, can be used to conduct

hypothesis tests and p-values.

Comparison of Asymptotic Test with Testing done via LRT Statistic.— Now that a method exists
to perform hypothesis testing for adequate sample sizes based on an asymptotic distribution, it
would be useful to compare this method to a more traditional hypothesis test. This can be done
by performing a likelihood ratio test (LRT). The LRT statistic is calculated by comparing the full
model including an interaction term to the reduced model with just an intercept term. These models
are evaluated with logistic regression and then compared using an LRT statistic. Simulation studies
are conducted to compare both the type I error rates and power of hypothesis testing based on the

asymptotic distribution of f(B) and testing by means of the LRT.

Simulations.— Simulations are conducted to examine the effectiveness of both hypothesis testing
based on the asymptotic distribution of f (B) and testing via the LRT statistic as the sample sizes
of the two groups, n; and no, increase. Effectiveness is evaluated by measuring both the type I error
rates and power of the two methods. Data are generated under the six parameter settings in Table
The first parameter setting will be used to evaluate the type I error rates of the testing methods
since data from each group are simulated from the same distribution. The next five settings are
designed to test for power since the groups are generated from different distributions. The second
setting will test for differences in distributions with the same means, but with different covariances
that contain a non-zero covariance term between predictors with opposite signs. The third setting
tests for differences distributions with different means, but the same covariances that contain a
non-zero term for correlated predictors. The fourth setting is designed to test for differences in
distributions with both different means and different covariances, where the covariances contain non-

zero covariance terms with different signs. The fifth setting tests for differences in distributions with

65



the same means, but different covariances, where one distribution has a non-zero covariance term and
one has a zero covariance term between predictors. The last parameter setting is aimed to test for
differences in distributions with different means and different covariances where one distribution has
a non-zero covariance term and one has a zero covariance term between predictors. By calculating
power via simulations under each of these combinations of parameters, the effectiveness of these two
methods can be evaluated. This will provide an understanding about when one method may be
preferred over another and how well the methods do when testing for various types differences in
distributions. For each combination of mean and covariance choices, sample sizes from n = 5 per

group up to n = 200 per group are used.
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Table 4.5: Simulation parameters to compare the performance of hypothesis testing based on the
asymptotic null distribution of f (B) and the LRT method are shown here. Column 1 denotes the
number of the simulation setting. Columns 2 and 3 contain the means of the two distributions, while
Columns 4 and 5 display the covariances of the two distributions. The different sample sizes that
are used in the simulations are found in Column 6.
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For each of six sample sizes under each parameter setting, 10,000 data sets are simulated. For each
data set, f (B) is calculated and the type I error rate or power is calculated as the percentage of
these values that is as least as big as the cutoff value from the I'(2.5, 1) distribution. Type I error
and power of testing via the LRT statistics is calculated as the percentage of p-values less than 0.05

across 10,000 simulated data sets for each parameter setting.

Stmulation Results.— Simulations are conducted to evaluate the effectiveness of both hypothesis
testing based on the asymptotic distribution of f (B) and testing via the LRT statistic. However,
the LRT statistic and therefore resulting p-value are not able to be calculated in the case of perfect
separation. Table displays type I error rate calculations for both permutation testing and testing
via the LRT statistic. Notice that * denotes p-values calculated from less than the total 10,000 data
sets since perfect separation occurred. Both methods control the type I error rate well at the 0.05
level for sample sizes of 25 or more per group. However, the type I error rates are a little high for
sample sizes of 5 and 10 per group. Also, the asymptotic test works for all data sets, while testing
via the LRT statistic fails due to perfect separation in 21.6% of the data sets where n is 5 per group

and in a little less than 1% of data sets where n is 10 per group.

Table 4.6: This table contains simulated type I error rates calculated from 10,000 data sets for testing
based on the asymptotic null distribution of f (B) and the LRT method for each of six parameter
settings. Columns 1 and 2 display the mean and covariance of the distribution that both groups
were simulated from. The sample sizes of the simulations are in Column 3 and Columns 4 and 5
contain the simulated type I error rates for testing based on the asymptotic null distribution of f (B’)
and the LRT method, respectively.

7 > n | f(B) | LRT
5 | 0.0964 | 0.0504%
10 | 0.0692 | 0.0995*
0 1 08] | 25 | 0.0562 | 0.0712
() [08 } 50 | 0.0516 | 0.0560
100 | 0.0542 | 0.0562
200 | 0.0537 | 0.0532

The simulated power for both of these methods can be found in Table [£77] Under every parameter
setting, hypothesis testing based on the asymptotic distribution of f (B) does as well as, or better
than, the LRT method. The method based on f(B) achieves at least 91% power under all settings
with a sample size of 25 or greater and does so for even smaller sample sizes in a few of the
cases. It is clear that the method based on f (B) does extremely well in the cases where means are
different, regardless of whether covariances are the same or different, but is not as good when the

means of the two distributions are the same. Notice that * denotes power that was calculated from
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less than the total 10,000 samples when perfect separation occurs and p-values are not able to be
calculated. Perfect separation occurs under every parameter setting and at every sample size and
actually occurred in 100% of simulations of size 200 per group under the setting of different means
and different covariances. The percent of simulations that failed due to perfect separation can be
seen in Figure The black crosses, red X’s, green squares, blue triangles, yellow diamonds, and
orange dots represent the percent of 10,000 simulations with perfect separation for the LRT method
for parameter settings 1, 2, 3, 4, 5, and 6 respectively. The solid line at 0 represents the percent
of perfect separation for permutation testing based on f (B) These values can also be found in
the accompanying Table This, compared with the higher power of the method based on f (B),
provides evidence that testing based on f (B) is the preferred method and is adequate for sample

sizes of 25 or more per group.
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Table 4.7: This table contains simulated power calculated from 10,000 data sets for testing based on
the asymptotic null distribution of f (E) and the LRT method for each of five parameter settings.
Columns 1 and 2 display the means of the two distributions, while Columns 3 and 4 display the
covariances of the distributions. The sample sizes of the simulations are in Column 5 and Columns
6 and 7 contain the simulated power for testing based on the asymptotic null distribution of f (B)
and the LRT method, respectively. Cases where power was not calculated from all 10,000 data sets

due to perfect separation are denoted by *.

1 Ha > I n | Power of f(é) Power of LRT
5 0.5509 0.1820*
10 0.9573 0.9216*
0 0 1 038 1 —0.8 25 1 1*
(O) <O> {0.8 1} [0.8 1} 50 1 1*
100 1 1*
200 1 1*
5 0.9327 0.6601*
10 1 1*
0 3 1 08 1 08 25 1 1*
(0> (3> {0.8 1} {0.8 1] 50 1 1*
100 1 1*
200 1 1*
5 1 1*
10 1 1*
0 3 1 038 1 —0.8 25 1 1*
(0) <3> {0.8 1} {0.8 1} 50 1 1*
100 1 1*
200 1 NA*
5 0.1983 0.0667*
10 0.4261 0.3189*
0 0 1 08 10 25 0.9123 0.6335*
(0> <o> {08 1} [0 1} 50 0.9983 0.9098*
100 1 0.9972*
200 1 1
5 0.988 0.7521*
10 1 1*
0 3 1 0.8 1 0 25 1 1*
O 1C) [los &1 1) 2] 1
100 1 1*
200 1 1*
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Perfect Separation with f(é) vs. LRT

o
- A A A A
- A Parameter Setting
B o +1
X 2
E o | X M3
'% o u A
G X 5
& 6
n
8 o] x
g 8
= X
2
-
g o7
O
©
§ |
g o | +
a o
|
|
= -+ .
o T I ' ' '
T 1 T T 1
5 25 50 100 200

Sample Size per Group

Figure 4.14: Perfect separation rates calculated from 10,000 data sets are plotted for each of the 6
sample sizes under each of six parameter settings. The black crosses, red X’s, green squares, blue
triangles, yellow diamonds, and orange dots represent the percent of 10,000 simulations with perfect
separation for the LRT method for parameter settings 1, 2, 3, 4, 5, and 6 respectively. The solid line
at 0 represents the percent of perfect separation for testing based on the asymptotic null distribution
of f(B).
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Table 4.8: This table contains the percent of perfect separation from 10,000 simualted data sets
for testing based on the asymptotic null distribution of f (E) and the LRT method for each of six
parameter settings. Columns 1 and 2 display the means of the two distributions, while Columns 3
and 4 display the covariances of the distributions. The sample sizes of the simulations are in Column
5 and Columns 6 and 7 contain the percent of 10,000 data sets that did not produce p-values due
to perfect separation.

> » n Percent PerfectA Percent Perfect
H 2 ! 2 Separation of f(B) | Separation of LRT
5} 0 0.2163
10 0 0.0067
0 0 1 08 1 038 25 0 0
(0) (0) {08 1] [08 1} 50 0 0
100 0 0
200 0 0
5 0 0.8187
10 0 0.6149
0 0 1 0.8 1 —0.8 25 0 0.5287
(O) (O) [0.8 1] {—0.8 1} 50 0 0.5824
100 0 0.7300
200 0 0.8862
5} 0 0.9344
10 0 0.7733
0 3 1 08 1 038 25 0 0.4559
(0) (3) {0.8 1] [0.8 1} 50 0 0.2662
100 0 0.1316
200 0 0.0588
5 0 0.9877
10 0 0.9992
0 3 1 08 1 —0.8 25 0 0.9994
(0) (3) [0.8 1] {—0.8 1} 50 0 0.9992
100 0 0.9998
200 0 1
5} 0 0.3687
10 0 0.0550
0 0 1 08 1 0 25 0 0.0022
(0) (O) {0.8 1] {O 1] 50 0 0.0001
100 0 0.0001
200 0 0
5 0 0.9758
10 0 0.9179
0 3 1 08 1 0 25 0 0.8094
(0) <3> [0.8 1] {0 1] 50 0 0.7696
100 0 0.8070
200 0 0.9043
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It is clear that hypothesis testing based on the asymptotic distribution of f (B) is appropriate for
large sample sizes. However, in the case of small sample sizes, i.e., n less than 25 samples per groups,
although the type I error rates seem to be fine, the power is not high enough under all parameter

settings. Thus, hypothesis testing can be done based on permutation testing methods.

Permutation Testing.— Permutation testing is a method that can be used to construct sampling null
distributions, and thus empirically compute p-values. Like bootstrapping, a permutation test con-
structs, rather than assumes, a sampling distribution by resampling the observed data. Specifically,
the observed data is shuffled or permuted by assigning different outcome values to each observation
from the outcomes that are actually observed. Unlike bootstrapping, these permutations are done
without replacement. Since the previous asymptotic result does not apply in the case of small sample

sizes, permutation testing can be done instead to compute p-values.

Simulation studies are done to examine both the type I error rate and power for permutation testing
with the sample B-distance. These results are also compared to hypothesis testing by means of
a likelihood ratio test (LRT). The LRT test statistic is calculated by comparing the full model
including an interaction term to the reduced model with just an intercept term. These models are

evaluated with logistic regression and then compared using a LRT statistic.

Stmulations.— Simulations are conducted to examine the effectiveness of both permutation testing
with B-distance and testing via the LRT statistics as the sample sizes of the two groups, n; and
ng, increase. Effectiveness is evaluated by measuring both the type I error rate and the power of
the two methods. Data are generated under six parameter settings incorporating different values
for means and covariances. For each combination of mean and covariance choices, sample sizes from
n = 5 per group up to n = 200 per group are used. The first setting is used to calculate type I
error rates and thus data for the two response groups are generated from the same distribution. The
remaining five combinations of parameter choices are chosen to evaluate the power of the two testing
methods under various conditions of differences in distributions. These are the same settings used to
compare testing with the asymptotic distribution of f (B) and the LRT method. These settings are
chosen to evaluate power under various conditions and will provide an understanding about when
one method may be preferred over another and how well the methods do when testing for various

types differences in distributions. These parameter settings can be found in Table
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Table 4.9: Simulation parameters to compare the performance of permutation testing based on B
and the LRT method are shown here. Column 1 denotes the number of the simulation setting.
Columns 2 and 3 contain the means of the two distributions, while Columns 4 and 5 display the
covariances of the two distributions. The different sample sizes that are used in the simulations are
found in Column 6.

Parameter Setting | pq 2 31 pIPN n

10

0 108 1 08 25
(0) [0.8 1] [0.8 1] 50
100
200

10
1 —08] | 25
s
100
200

)] s ]

10
1 08 25
os 5 | %
100
200

1 08
08 1

10
1 —08] | 25
s S
100
200

10

0 1 08
() | los
100
200

10

1 08
{0.8 1 ]
100
200

74



For each of six sample sizes, 1,000 data sets are simulated in this manner. For each data set, B is
calculated for each of 1000 permutations of the simulated data and a p-value is calculated from the
percentage of permuted data sets that result in a B at least as big as the one from the original data
set. Type I error is calculated as the percentage of p-values less than 0.05 across 1,000 simulation

data sets for each parameter setting.

Stmulation Results.— Simulations are conducted to evaluate the effectiveness of both permutation
testing with B-distance and hypothesis testing via the LRT statistics. However, the LRT statistic
and therefore resulting p-value are not able to be calculated in the case of perfect separation. Table
displays type I error rate calculations for both permutation testing and testing via the LRT
statistic. Notice that * denotes p-values calculated without all 1,000 data sets since perfect separation
occurred. Both methods control the type I error rate well at the 0.05 level. However, permutation
testing works for all data sets, while testing via the LRT statistic fails due to perfect separation in
20% of the data sets where n is 5 per group and in less than 1% of data sets where n is 10 per group.
These percentages of perfect separation can be found in Table [I.12] Therefore, permutation testing

using B-distance is preferred over LRT testing.

Table 4.10: This table contains simulated type I error rates calculated from 10,000 data sets for
permutation testing and the LRT method for each of four parameter settings. Columns 1 and 2
display the mean and covariance of the distribution that both groups were simulated from. The
sample sizes of the simulations are in Column 3 and Columns 4 and 5 contain the simulated type I
error rates for permutation testing and the LRT method, respectively.

n 3 n | Permutation Testing | LRT
5 0.052 0.040%*
10 0.054 0.096*
0 1 038 25 0.053 0.078
(O) {0.8 1} 50 0.044 0.067
100 0.038 0.06
200 0.057 0.059

Table [I.11] displays power calculations for both permutation testing and testing via the LRT statis-
tic. Notice that * denotes p-values calculated without all 1,000 data sets since perfect separation

occurred.
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Table 4.11: This table contains simulated power calculated from 10,000 data sets for permutation
testing based B and the LRT method for each of five parameter settings. Columns 1 and 2 display the
means of the two distributions, while Columns 3 and 4 display the covariances of the distributions.
The sample sizes of the simulations are in Column 5 and Columns 6 and 7 contain the simulated power
for testing based on the asymptotic null distribution of f (B) and the LRT method, respectively.
Cases where power was not calculated from all 1,000 data sets due to perfect separation are denoted
by *.

M1 K2 3 pIP n Power ca?efs’;rnngmtatlon Power of LRT
5 0.292 0.146%*
10 0.896 0.926*
0 0 1 038 1 -0.8 25 1 1*
<0> <O> {0.8 1} {—0.8 1] 50 1 1*
100 1 1*
200 1 1*
5 0.880 0.703*
10 1 1*
0 3 1 038 1 038 25 1 1*
©) [ G) s 51| los 5 | % 1 i
100 1 1*
200 1 1*
5 0.997 1*
10 1 NA*
0 3 1 038 1 -0.8 25 1 NA*
(0) (3) {0.8 1} {—0.8 1] 50 1 1*
100 1 NA*
200 1 NA*
5 0.096 0.078*
10 0.328 0.318*
0 0 1 038 10 25 0.879 0.640*
<0> (O) {0.8 1} [O 1} 50 1 0.904*
100 1 0.999
200 1 1
5 0.958 0.684*
10 1 1*
0 3 1 038 1 0 25 1 1*
O 6 los 51 b3 |5 1 -
100 1 1*
200 1 1*
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Just as before when the power of the test based on the asyptotic null distribution of f (B) is compared
with the LRT method, the permutation testing based on B does as well as or better than the LRT
method in every single case but one. The only time LRT performs better in these simulations is
under the setting of distributions with the same means, but different covariances of opposite signs
for the covariance term at the sample size of 10. Otherwise, permutation testing outperforms LRT,
especially since, once again, p-values cannot be computed for many of the LRT simulations due to
perfect separation. Power seems to be high across all parameter settings for sample sizes of 10 or
more per group. However, both methods lack adequate power at sample sizes of 5 per group under
both of the settings where means are the same, but covariances are different. This is more evidence
that not only is B-distance useful for identifying combinations of predictors that are important, but

it is useful for identifying main effects that logistic regression often cannot due to perfect separation.

The percentage of simulations where perfect separation occurs in plotted in [.15] The black crosses,
red X’s, green squares, blue triangles, yellow diamonds, and orange dots represent the percent of
10,000 simulations with perfect separation for the LRT method for parameter settings 1, 2, 3, 4, 5,
and 6 respectively. The solid line at 0 represents the percent of perfect separation for permutation
testing based on B. Table also displays this information on the percentage of p-values that
are not calculated due to perfect separation. Clearly this is a problem when attempting to use the
LRT method for hypothesis testing and occurs in as many as 100% of cases for these simulations.
Therefore, permutation testing with B-distance is very obviously the preferred method due to its
ability to analyze all data sets, as well as its high power to detect true differences. This is evidence
that permutation testing is an appropriate method for performing hypothesis testing for samples of
size 10 or greater. Note that although power is not very high for permutation in sample sizes of 5
per group, the type I error rate is still controlled. Therefore, it would not be inappropriate to use
permutation testing in the case of these small sizes, but the testing method is has lower power for
detecting differences due to covariances when means are the same compared to differences in means.

However, even in this case, permutation testing outperforms LRT.
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Figure 4.15: Perfect separation rates calculated from 10,000 data sets are plotted for each of the 6
sample sizes under each of six parameter settings. The black crosses, red X’s, green squares, blue
triangles, yellow diamonds, and orange dots represent the percent of 10,000 simulations with perfect
separation for the LRT method for parameter settings 1, 2, 3, 4, 5, and 6 respectively. The solid
line at 0 represents the percent of perfect separation for permutation testing based on B.
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Table 4.12: This table contains the percent of perfect separation from 10,000 simulated data sets for
permutation testing based B and the LRT method for each of six parameter settings. Columns 1
and 2 display the means of the two distributions, while Columns 3 and 4 display the covariances of
the distributions. The sample sizes of the simulations are in Column 5 and Columns 6 and 7 contain
the percent of 10,000 data sets that did not produce p-values due to perfect separation.

Percent Perfect Percent Perfect
1 Jves 31 hIPN n Separation of Separation of LRT
Permutation Testing
5 0 0.200
10 0 0.006
0 0 1 038 1 038 25 0 0
<0> (0> {0.8 1} [08 1} 50 0 0
100 0 0
200 0 0
5 0 0.842
10 0 0.624
0 0 1 0 1 038 25 0 0.534
(0) (0) {0 1} [0.8 1} 50 0 0.573
100 0 0.689
200 0 0.895
5 0 0.926
10 0 0.791
0 3 1 038 1 038 25 0 0.466
<0) (3> {0.8 1} [0.8 1} 50 0 0.278
100 0 0.159
200 0 0.06
5 0 0.980
10 0 1
0 3 1 038 1 0 25 0 1
(0) (3) {0.8 1} {O 1] 50 0 0.999
100 0 1
200 0 1
5 0 0.375
10 0 0.048
0 3 1 038 1 0 25 0 0.002
<0> (3> {0.8 1} {0 1] 50 0 0.001
100 0 0
200 0 0
5 0 0.981
10 0 0.933
0 3 1 038 1 0 25 0 0.819
(O) (3) {0.8 1} {O 1] 50 0 0.767
100 0 0.805
200 0 0.914
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Now that some methods have been developed to perform hypothesis testing and create confidence
intervals, inference can be made based on B. Thus, a real data analysis is performed to demonstrate

the validity and usefulness of these methods.

4.2 Bhattacharyya Distance Real Data Analysis

Data come from 8 salamanders, each with 20,035 normalized gene expression measurements. A
total of 4 salamanders are in the control group and the other 4 salamanders are allocated to the
treatment group. Here, the treatment is the application of a chemical that inhibits tail regeneration.
The goal is to identify differentially expressed genes that are related to regeneration. Gene IDs were

previously annotated based on BLAST searches.

One approach to identify potentially interesting genes between groups is to perform 20,035 t-tests,
one for each gene individually. Taking this approach, there are 1,966 genes that are significant at
the 0.01 alpha level. However, solely performing t-tests has several limitations. Ideally, I would
like to use gene expressions to predict the outcome of regeneration and not vice versa. However, by
using t-tests, the presence or absence of regeneration is not treated as the response, which is the
main goal of the experiment. Secondly, t-tests can only provide results about how a single gene
expression is related to the outcome of regeneration. More information can be gained by considering
combinations of genes that predict regeneration. To do this, logistic regression can be performed.
However, it is now the case of small sample sizes, and perfect separation occurs quite often just by
chance with this limitation on sample sizes. In fact, perfect separation occurs in more than 70% out
of the total 200,690,595 possible combinations of genes. When perfect separation occurs, an error
message is produced like the one in [4.16

call: glm(formula = group ~ axo00002.f_at * axo00012.r_at, family = binomial,
data = dat_orig)

coefficients:

(Intercept) axo00002. f_at
6. 314e+032 -4, 368e-01
axo00012.r_at axo00002.f_at:axo00012.r_at
-4.437e-01 3.057e-05
Degrees of Freedom: 7 Total (i.e. Null); 4 Residual
Null Dewviance: 11.09
residual Deviance: 4.80le-10 AIC: B

warning message:
glm.fit: fitted probabilities numerically 0 or 1 occurred

Figure 4.16: When perfect separation occurs, logistic regression fails and statistical software pro-
grams, such as R, will produce error messages. This is the error message produced by R when trying
to fit a logistic regression model to data with perfect separation.
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Plotting the data that produced this error in Figure displays that perfect separation exists
between the subjects with regeneration from those without regeneration, represented here by a

dashed line.
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Figure 4.17: This plots shows the relationship between two predictors and the response groups.
Black dots denote observations from the regeneration group and red dots denote observations from
the non-regeneration group. In this case, the predictors can perfectly separate observations in the
regeneration group from the non-regeneration group (by the dashed line) and logistic regression
fails. It is clear, though, that this combination of variables could be useful in determining group
membership.

In order to address this issue of perfect separation, B-distance is used to analyze this data. FSA
is run with B-distance as the optimization criterion in search for two-way interactions. Based on
the lower bound identified in my previous work, number of iterations of the algorithm is chosen to
obtain the statistically optimal solution with at least 90% probability. That is, in order to obtain ¢,
where ¢ is the percentage of predictors that is used as the number of random starts, the following

equation is solved:

1—e 2 =0.90

<= ¢ =0.5756463

Since there are p = 20,035 predictors, the number of random starts needed is 0.58(20035) =
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11,533.07, or 11,534 random starts. Due to the large number of iterations of the algorithm, the
analysis is paralellized to run on a computer cluster. Based on the method chosen to parallelize this
analysis, there are actually 11,840 random starts conducted, which is greater than the necessary

11,534 iterations found from the lower bound formula.

In total, there are 950 feasible solutions identified by FSA. A subset of these feasible solutions can
be seen in Table A table of the full results can be found in the appendix in Tables -

significance level. These feasible solutions provide an additional genes identified as some solutions

There are 791 solutions containing genes that are not identified by t-tests at the a = 0.01

contained one additional gene, while others contained two genes not previously identified through
t-test analysis. FSA also identified the highest non-infinity B-distance value and in fact, it is the

solution chosen most often. A plot of this feasible solution can be seen in Figure [4.1§

Table 4.13: FSA produced 950 feasible solutions and a subset of those are shown here, including the
statistically optimal solution denoted in bold with B = 6627.62 (Column 3). Columns 1 and 2 show
the probes that are identified in each of the models. Columns 3 and 4 display the sample B-distance
associated with each model and the number of times each solution was chose by FSA, respectively.

Variable 1 ‘ Variable 2 ‘ B-distance ‘ Time Chosen by FSA
axo000315.f-at | axol15507.f-at | 6627.619917 2400
ax009358.f-at ax024943.f-at 4261.718149 3
axo004944.f-at ax026845.f-at 3125.810796 215
axol5772.f-at ax020526.f-at 2828.213655 4
axol7411.r-at ax019789.f-at 2463.550339 5
ax002376.f-at ax011058.f-at 2096.440067 66
ax002994.f-at ax004573.f-at 2077.560286 3
ax018985.f-at ax027182.f-at 1928.560211 26
axo015122 f-at ax022646.r-at 1920.598369 4
axo16951.r-at ax018028.f-at 1789.161704 4
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Figure 4.18: A plot of the combination of predictors that resulted in the largest B-distance is seen
here. Black dots denote observations from the regeneration group and red dots denote observations
from the non-regeneration group. Notice that the two response groups can be perfectly separated
by these two predictors. This is a case where logistic regression would fail, but B-distance can be
calculated.

After running FSA, exhaustive search is also conducted in order to learn more about B-distance and
its ability to detect interactions. B-distance is calculated for all 200,690,595 possible combinations of
predictors. Upon plotting a histogram of these distances, those that have a B-distance greater than
380 are examined further. This resulted in 340 out of the total 200,690,595 possible pairs of gene
expressions being chosen. P-values are calculated via permutation testing for the 340 combinations
of genes that do not have a B-distance of infinity. Permutation testing was performed by calculating
B-distance for each of 35 combinations of ways to choose four subjects per group. There are actually
70 ways to choose four subjects per group from the total of eight subjects. However, because these
are symmetric, i.e. having subjects 1, 2, 3, and 4 in the regeneration group will give the same
B-distance as having these subjects in the non-regeneration group with the others being in the
regeneration group, I only looked at the 35 ways in which these groups can differ. By shuffling the
individuals in this way, I can look at what percentage of the time a B-distance as large as that in
the original data is seen. This provides an idea of whether the distance seen is actually large or
not. Since there are 35 distances calculated, one being the original distance, the smallest p-value
that can be achieved is = or 0.0286. Thus, a combination of genes is considered significant if the

35

permuted p-value for that combination is 0.0286.
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Out of the 340 gene combinations that permutation p-values are calculate for, all are considered
significant, resulting in 340 combinations of genes. To consider whether a gene should be added to
the list of potentially interesting genes, it is useful to compare the genes identified here to those genes
identified by the univariate t-tests. Consider the histogram in Figure[£.19] This is a histogram of the
t-test p-values for the genes that are significant as identified by permutation testing with B-distance
values. It is clear that many of these genes have a t-test p-value less than 0.01. However, there are

still many genes identified by permutation testing that are not identified by the t-test method.

Histogram of T—test P—values for Significant
Genes ldentified by B—distance
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Figure 4.19: The p-values for univariate t-tests are plotted here for the values of B-distance greater
than 380 that are significant based on permutation testing. Although a large amount of these p-
values are less than 0.01, there are many p-values that are not significant based on t-tests, but that
B-distance is able to identify as significant.
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In fact, out of the 340 combinations that are significant by permutation testing, 4.12% or 14 of
these have both t-test p-values greater than 0.01. These 14 combinations are considered the most
interesting and should be on the differentially expressed gene list. Also note, that of these 14
interesting combinations of predictors, 13 are also identified by FSA with B-distance as the criterion
function. Two of these interesting combinations of predictors can be seen in Figures and

The remaining interesting combinations of predictors can be found in the Appendix in Figures
-A4

Interesting Result with B = 2077.56028577467
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Figure 4.20: A plot of a combination of predictors that resulted in a significant permutation p-value
from B-distance is seen here. Black dots denote observations from the regeneration group and red
dots denote observations from the non-regeneration group. Notice that the two response groups
can be perfectly separated by these two predictors. This is a case where logistic regression would
fail, but B-distance can be calculated. Univariate t-tests would also fail to identify either of these
predictors as significant at the 0.01 level, but clearly when combined, the two predictors provide
valuable information about which observations correspond to regeneration or non-regeneration.
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Interesting Result with B = 1920.59836930942
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Figure 4.21: A plot of another combination of predictors that resulted in a significant permutation p-
value from B-distance is seen here. Black dots denote observations from the regeneration group and
red dots denote observations from the non-regeneration group. Notice that the two response groups
can be perfectly separated by these two predictors. This is a case where logistic regression would
fail, but B-distance can be calculated. Univariate t-tests would also fail to identify either of these
predictors as significant at the 0.01 level, but clearly when combined, the two predictors provide
valuable information about which observations correspond to regeneration or non-regeneration.

These results are very interesting and provide insight to the fact that B-distance can be used as a
simple tool for exploratory data analysis. Logistic regression fails in every single one of the most
interesting cases documented in these results. B-distance is able to be calculated in all of these cases
and is also much faster than logistic regression. B-distance also seems to be better at identifying
main effects than interaction effects. However, this is still useful in the case of perfect separation,

since logistic regression fails and those main effects would not be discovered.

As a brief note, I will discuss the removal of combinations with a B-distance of infinity. This occurs
for two reasons. The first is if there is no variability between the points in one or both groups, which
is uninteresting. The second case is when the two predictors are perfectly correlated for one or both

groups. This causes || or [33| to be equal to zero, and thus produces a B-distance of infinity.
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Examples of both of these cases can be seen in Figures and
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Figure 4.22: A combination of predictors that resulted in a sample B-distance of infinity is seen
here. Black dots denote observations from the regeneration group and red dots denote observations
from the non-regeneration group. The non-regeneration group has perfect linearity, which produces
a B-distance of infinity. Thus, inference cannot be made in this case.
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Figure 4.23: A combination of predictors that resulted in a sample B-distance of infinity is seen
here. Black dots denote observations from the regeneration group and red dots denote observations
from the non-regeneration group. The regeneration group has no variability in axo7215.3_at, which
produces a B-distance of infinity. This case is not interesting and is removed from consideration.

This real data analysis of gene expression data from salamanders displays the validity and usefulness
of using B-distance to make inference about combinations of predictors that are related to the
response of regeneration. B-distance is used here to find interesting results that cannot be found

through univariate t-tests or with logistic regression.
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Chapter 5

Discussion and Future Directions

Many methods exist for modeling data with large p. However, these methods are often limited
due to computational complexity, inability to model interactions effectively, and inflexibility of both
input and output. FSA is a stochastic algorithm introduced to address some of these concerns.
However, without statistical guidance for the number of iterations to run, users are required to
arbitrarily choose this value. Thus, I have provided a lower bound on the probability of identifying
the statistically optimal solution that can guide users to make an appropriate choice aimed at
balancing the computational efficiency with the probability of attaining the statistically optimal
solution. Thus, users are likely more likely to identify this statistically optimal solution, along
with other potentially biologically meaningful solutions. Theoretical properties about B-distance
have also been developed here in order to address the severe limitation of logistic regression when
dealing with predictors that can perfectly separate the response groups. B-distance is proposed as an
alternative to logistic regression due to its existence even when perfect separation occurs. However,
little theory exists about B-distance and thus no information about making inference from B exists.
These limitations are addressed and properties are derived in order to provide insight into making

inferences about the difference in distribution of the sample groups with B.

5.1 FSA

Although FSA addresses limitations of existing modeling techniques, little is known about its theo-
retical properties. To address one aspect of this limitation, I have provided a way to determine the
number of iterations of FSA needed to obtain the statistically optimal solution of an m-way interac-
tion model with a certain probability. For example, when considering a two-way interaction model,
if one would like the probability of obtaining the statistically optimal solution to be at least 80%,
then the number of random starts of FSA needs to be chosen to be 40% of the number of possible
explanatory variables in the data set of interest. This lower bound on the probability of obtaining
the statistically optimal solution can be easily implemented by data analysts running FSA and will
be incorporated into the currently available Shiny application for FSA in the near future. Further,

simulation study and real data analysis demonstrate the validity and usefulness of this lower bound.

89



The work here provides a foundation for further study of theoretical properties of FSA. For instance,
the simulation study results show that the derived lower bound is conservative. Thus, in future work,
tightening the lower bound would increase the computational efficiency of FSA. However, in this
case, the conservative lower bound does provide statistical guidance to FSA users. In addition, little
is known about how conservative this bound is in the presence of smaller effect sizes. Studying
this will increase the impact of this work by providing more specific guidance to the data analyst.
Knowing how to choose the number of times to run FSA will improve the computational usability of
FSA by allowing the user to choose fewer random starts based on the desired likelihood of obtaining
the statistically optimal solution while still being computationally feasible, and continue providing

a valid alternative to exhaustive search and other model selection methods.

5.2 Bhattacharyya Distance

Data analysis for the cases of big p and small n are hindered due not only to computational concerns,
but also issues that arise when predictors can perfectly separate the groups in binary response data,
which happens often just by chance when dealing with small sample sizes. B-distance is proposed
here to address these limitations. Although B-distance is used often in various feature selection and
extraction methods, little is known about its theoretical properties outside of its relationship to the
Bayes probability error of classification. This work provides information about the distribution of

the sample B-distance under various assumptions.

Currently, there is limited knowledge about properties of B. There exists no theory about the maxi-
mum likelihood estimate of the true B-distance between two distributions, By. Maximum likelihood
estimation is a method of estimating the parameters of a statistical model given observations, by
finding the parameter values that maximize the likelihood of making the observations given the pa-
rameters. Estimators derived by the method of maximum likelihood have some desirable properties.
This estimator is referred to as the maximum likelihood estimator (MLE). Thus, if B is the MLE

of the true B-distance, then these known properties about MLEs can be used.

For example, under some regularity conditions, it is known that for an MLE, én,

where 0, is the consistent root of the likelihood equation and I(6p) is the Fisher information. Thus,
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if B is the MLE of By, then B is expected to converge in distribution to a normal distribution. That

is, it is expected that
1

\/’E(Bn - BO) £> N(Oa I(Bo))

However, currently the likelihood function has not been calculated. Thus, simulations are conducted

to examine the distribution of /n(B, — Bo).

Table 5.1: Simulation parameters to evaluate the convergence of ﬁ(gn — By) to a normal distribu-
tion are shown here. Columns 1 and 2 contain the mean and covariance the two distributions. The
different sample sizes that are used in the simulations are found in Column 3.

pr=p2=p | X1 =3=3% n

0 :

500
1000
2000

100
0.8 1 ]

[1 0.8

Simulations are conducted under the parameter settings in Table to examine the asymptotic
convergence of \/H(BAn — Bg) to a normal distribution as the sample sizes of the two groups, ni
and ny, increase. For each data set, B is calculated and histograms are plotted. Preliminary plots
in [5.1] show results from 10,000 simulated data sets at each of 5 sample sizes ranging from 50 per
group up to 2,000 per group and indicate that B may not be the MLE. In Figure where data
for the two response groups are simulated from the same distribution, it does not look as though
the simulated quantities of ﬁ(gn — By) converge to a normal distribution, even as the sample size

increases. More work needs to be done in order to determine if this relationship holds or not.
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Figure 5.1: The quantity ﬁ(Bn — By) is calculated and plotted for each of 10,000 data sets at
each of 5 sample sizes ranging from 5 per group up to 100 per group. Data are simulated from a
distribution with zero mean and a covariance matrix with a non-zero term for covariance between
the two predictors. This is done to look for evidence of convergence of \/n(B, — By) to a normal
distribution.

Prior to this work, no statistical methods exists on how to make inference from B. Thus, I have
derived the asymptotic null distribution that can be used for hypothesis testing with adequate sample
sizes, i.e. with group sizes larger than approximately 25, and have also provided a way to conduct
hypothesis testing via permutation testing when the group sample sizes are not large, i.e. less than
25 samples per group. Both of these hypothesis testing methods are compared to testing via an LRT
statistic and show similar type I error rates and power. However, the LRT method fails in the case

of perfect separation, while B-distance is not limited in this case. Percentile intervals are also used
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in order to create confidence intervals for estimates of B. Simulation study and real data analysis
demonstrate the validity and usefulness of B-distance for identifying combinations of variables that

are important, especially in the case of small sample sizes.

In order to utilize B-distance in the case of small sample sizes, researchers need an idea about what
values of B-distance constitute a large value. Since much small sample theory has yet to be developed
for the use of B-distance, it would be beneficial to determine a cutoff value that enables users to
determine what values of sample B-distance are considered to be large. In order to do this, one could
start by examining the percent of data sets containing perfect separation just due to chance, i.e.
data sets simulated from the same distributions where perfect separation is not expected to occur.
Then, a cutoff value could potentially be determined by examining all possible permutations of the
outcomes of the data sets and the associated sample B-distance values. This would provide insight
into what values of sample B-distance are likely to be seen when no true relationship exists between
a combination of predictors and the group outcome in the case of small sample sizes. Thus, a cutoff

value may be determined for identifying large B-distance values in this setting.

The work done in Chapter 4 provides insight into developing further theoretical properties about
B-distance, as well as understanding its usefulness in real data analysis. In the future, it would be
beneficial to develop a better understanding of how to interpret the relationship between predictors
identified by B-distance with the response variables. For example, even though I chose B-distance in
order to incorporate differences in shape and direction through the covariance terms, it still seems
that B-distance is influenced much more by the term that incorporates the locations or means of the
two response groups than the term that incorporates the covariances of the two sample groups. For
example, consider Figures and Both represent combinations of variables that I would like
to identify through the use of B-distance. Each group contains simulated data from 100 samples.
However, B-distance will typically identify the differences displayed in Figure[5.3|over those displayed

in Figure |5.2
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Interaction Example
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Figure 5.2: This plot represents a relationship B-distance aims to identify. Black dots denote
observations from one response group and red dots denote observations from the other response
group. Data are simulated from distributions with different means and covariances. Although B-
distance is proposed to identify interaction effects like the one seen here, it does a better job of
identifying the effects displayed in Figure
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Figure 5.3: This plot represents a relationship B-distance aims to identify. Black dots denote
observations from one response group and red dots denote observations from the other response
group. Data are simulated from distributions with different means, but the same covariances. B-
distance is proposed to identify effects like the one seen here and simulations show that B-distance
is able to identify the effects displayed here.
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Also, B-distance has only been considered thus far for identifying two-way interactions. It would be
very interesting and potentially useful to examine the effectiveness of B-distance in identifying three-
way interactions. In order to test for three-way interactions, the multivariate normal distributions
of the response groups would increase in dimension to include a third predictor. By increasing the
dimension of the distributions under consideration, the bias of B may also increase, especially in
small samples. Further study is needed to explore additional theoretical properties of B-distance,

but it is clear that it is helpful in exploratory data analysis.

5.3 Summary

The work done here provides insight into methods for modeling interaction effects in big data.
FSA can be a useful tool for identifying these interactions, but without guidance on the number
of iterations to run, users are uninformed about how this choice relates not only to the probability
of identifying the statistically optimal solution, but also about how it relates to the computational
efficiency of the algorithm. I have addressed this limitation by providing users with statistical
guidance on how to appropriately choose the number of iterations of the algorithm to use in order
to balance computational time with the probability of identifying the statistically optimal solution.
Other issues that arise in big data come from the presence of perfect separation in data with a binary
outcome. Thus, properties of B-distance and guidance on how to make inference about the sample
B-distance have been developed. These methods for hypothesis testing and interval estimates are
not only faster than traditional logistic regression methods, but also address the severe limitation
of logistic regression in the case of perfect separation by providing an alternate method to analyze

data.
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Appendix

A.1 Tables

Table A.1: This table shows all 33 feasible solutions identified by FSA. Columns 1 and 2 show the
SNPs that are identified, column 3 shows how many times each feasible solution was chosen by FSA,
and column 4 shows the R? value associated with each model.

Variable 1 \ Variable 2 \ Times Chosen by FSA \ R?
mb104327194 | mb91638370 42 0.0957401
mb13136127 mb31255782 898 0.1245719
mb28636979 | mb87344525 107 0.1256308
mb111935889 | mb43233761 25 0.1065257
mb62443411 mb99541026 23 0.1088855
mb112250554 | mb96331482 56 0.1123864
mb14715054 mb19242337 66 0.1118795
mb112608319 | mb96222909 144 0.113829
mb30780223 mb34260455 155 0.1142272
mb29078498 mb69000296 198 0.1229996
mb36825925 mb85205875 62 0.1146195
mb34871920 mb42993313 101 0.116866
mb14701689 mb37035520 95 0.1125078
mb110752558 | mb15269553 25 0.09883659
mb107124592 | mb57686005 26 0.1091593
mb107672282 | mb56850293 22 0.1048774
mb14796254 mb19293075 21 0.1123462
mb69375025 mb93036659 15 0.1155624
mb104477633 | mb91521906 18 0.09528844
mb61386637 mb99542699 20 0.1060636
mb29652874 mb74632475 11 0.09989297
mb72262602 mb92721283 13 0.111981
mb114381537 | mb18255346 32 0.09999336
mb114239715 | mhb35229230 11 0.09914173
mb67397357 mb75739738 3 0.08240846
mb72256709 mb92533218 60 0.1166223
mb12221288 mb31300335 12 0.1047527
mb64403722 mb75460557 4 0.09193129
mb31343516 mb4585952 3 0.1055288
mb114382061 mb18266042 5 0.09632044
mb104707625 | mb96032784 8 0.08665745
mb61425863 mb99527427 1 0.1050678
mb58406490 mb75674799 2 0.08783811
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Table A.2: Type I error rates from 10,000 simulations for the comparison of the asymptotic null
distribution of f(B) to aT'(2.5,1) are found here. Columns 1 and 2 display the means and covariances
for the simulated data. Column 3 shows the sample sizes used for each simulation. Columns 4, 5,
and 6 contain the simulated type I error rates at each of 0.025, 0.05, and 0.10 significance levels.
This table corresponds the values plotted in Figure

W 3 n

0.025 0.05 0.10
5 10.0432 | 0.097 | 0.191

0 1 08 10 | 0.0334 | 0.0653 | 0.1354
0.8

25 | 0.0278 | 0.0536 | 0.1066
50 | 0.0262 | 0.0531 | 0.1075
100 | 0.0256 | 0.051 | 0.1022
5 | 0.0455 | 0.0958 | 0.1953
{1 O] 10 | 0.0358 | 0.0724 | 0.134

25 | 0.0292 | 0.0574 | 0.1107
50 | 0.0270 | 0.0520 | 0.1037
100 | 0.0257 | 0.0516 | 0.1053
5 | 0.0436 | 0.0969 | 0.1898
{1 O] 10 | 0.0313 | 0.0631 | 0.1305

25 | 0.0266 | 0.0544 | 0.1106
50 | 0.0265 | 0.0529 | 0.1055
100 | 0.0238 | 0.0489 | 0.103

5 ] 0.0416 | 0.0955 | 0.1920

3 1 08 10 | 0.0343 | 0.0677 | 0.1354
0.8

25 | 0.0285 | 0.0577 | 0.1107
50 | 0.0289 | 0.0551 | 0.1069
100 | 0.0275 | 0.0546 | 0.1025
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Table A.3: This table shows all 905 feasible solutions identified by FSA. Columns 1 and 2 show the
probes that are identified, column 3 shows shows the B associated with each model, and column 4
how many times each feasible solution was chosen by FSA.

Variable 1 Variable 2 B Times Chosen by FSA
axo00315.f-at | axol5507.f-at | 6627.619917 2400
axo009358.f-at | axo024943.f-at | 4261.718149 3
ax004944.f-at | axo26845.f-at | 3125.810796 215
axol5772.f-at | ax020526.f-at | 2828.213655 4
axol7411.r-at | axo19789.f-at | 2463.550339 5
ax002376.f-at | axol11058.f-at | 2096.440067 66
ax002994.f-at | axo04573.f-at | 2077.560286 3
axo018985.f-at | axo27182.f-at | 1928.560211 26
axol15122.f-at | ax022646.r-at | 1920.598369 4
axo016951.r-at | axol18028.f-at | 1789.161704 4
axo07342.r-at | axol12827.r-at | 1696.683819 2
axo05747 f-at | ax012450.f-at | 1589.491331 384
ax013479.f-at | ax016605.f-at | 1582.921084 6
ax011927.f-at | axol6754.f-at | 1492.07273 5
axo05548.f-at | ax019830.f-at | 1430.534091 27
axo000347.f-at | axol15658.f-at | 1397.856629 9
axol4778.f-at | axo31327.f-at | 1218.22224 133
axo0l17616.f-at | axo022207.f-at | 1154.60174 16
ax018225.f-at | axo28493.f-at | 1149.687926 47
axo14055.r-at | axol4221.f-at | 1127.776432 8
axo00845.f-at | axo01103.f-at | 1081.040615 45
axo21651.r-at | axo25814.f-at | 1065.595366 19
axo07174.f-at | axo026078.f-at | 1045.552458 73
axo07245.r-at | axo024684.f-at | 1004.032474 17
ax010317.f-at | axol5981.f-at | 977.8579731 109
ax024285.f-at | axo27801.f-at | 961.1020155 1671
ax012622.f-at | axo25858.f-at | 919.618774 7
ax025315.f-at | axo25631.f-at | 910.1378696 33
ax003076.f-at | axo011978.f-at | 899.1791324 3
ax014168.f-at | axo25142.f-at | 893.1647235 21
axol12874.r-at | axo025932.f-at | 875.2573376 20
ax010070.f-at | axo28711.f-at | 872.0978626 5
ax003422.f-at | axo015699.f-at | 868.0965862 49
axol8130.r-at | axo019404.r-at | 867.8999484 3
axo14458.r-at | axo27097.f-at | 858.7742498 9
axo015017.f-at | axo28795.f-at | 852.4527609 68
axo11386.r-at | ax022868.f-at | 849.5245811 1
axo05327.f-at | axol7725.r-at | 849.209176 21
axo08563.r-at | ax016297.f-at | 839.3283611 10
axo05724.r-at | axo012970.f-at | 837.1427941 8
ax003867.f-at | axo07474.f-at | 817.1866988 40
ax019424.f-at | axo29151.f-at | 816.8778713 83
axo003189.r-at | axol11632.r-at | 810.8485353 462
ax000209.f-at | axo20011.f-at | 792.540108 7
ax016406.f-at | axo031389.f-at | 777.1519727 1

98




Table A.4: This table continues to show all 905 feasible solutions identified by FSA. Columns 1 and
2 show the probes that are identified, column 3 shows shows the B associated with each model, and
column 4 how many times each feasible solution was chosen by FSA.

Variable 1 Variable 2 B Times Chosen by FSA
axo019787.f-at ax028043.f-at | 774.6741779 5
ax006550.f-at axol2175.f-at | 754.7713887 97
ax001084.r-at | axol15783.r-at 739.591376 14
ax019400.f-at ax019703.f-at 722.5138158 37
axo08502.f-at | axol14301.f-at | 721.1504504 2
axo0l14921.f-at | axo022382.f-at | 721.0379747 18
ax009543.f-at axol8167.f-at | 709.8335618 1
axo0l11779.f-at | axoll1796.r-at | 707.7818454 112
axo06571.r-at | axol10212.f-at | 703.9872711 7
ax012039.r-at | axo24165.f-at | 701.0243758 2
ax004526.f-at | axo06372.r-at | 689.7026802 15
axo04414.f-at | axo31366.f-at | 686.1520629 1
axol13118.f-at | ax020326.f-at | 681.3451949 9
ax010478.r-at | axo25223.f-at | 676.4539191 48
axo00512.f-at axo012095.r-at | 642.9880953 17
axo009146.f-at | axol7762.f-at | 631.0044436 331
axo003126.r-at axol17986.f-at | 630.7540894 54
ax024102.f-at ax029428.f-at | 617.1936015 1
axo009854.r-at | axol8520.f-at | 614.8880811 35
ax018947.f-at axo30833.f-at | 613.4522388 3
axo01587.f~at | axol11192.r-at | 609.8603677 4
axo08287.f-at | ax029623.f-at | 607.6997445 15
ax016477.f-at axo019170.r-at | 601.4528869 22
ax003201.f-at axo07901.f-at | 597.6817113 2
ax019921.f-at axo031548.f-at 595.714608 33
axo03591.f-at axol13078.r-at | 588.9752571 105
axo01561.r-at | axol16028.f-at | 588.3373148 23
ax010647.f-at | ax023040.f-at | 577.9345951 34
ax010179.f-at axo30114.f-at | 577.5116671 2
axo000378.r-at | axol5609.f-at | 572.5783764 89
axo027655.f~at | axo28611.f-at | 562.6642693 44
axo07768.f-at | axo024058.f-at | 562.4299791 47
axo013934.f-at | axo31345.f-at | 561.3297671 42
axo15834.r-at | axo28126.f-at | 552.5326879 6
axo009621.r-at ax029936.f-at 541.6465805 8
axol7270.f~at | ax030238.f-at | 541.4483206 31
axo005140.r-at | axo05337.f-at 533.160244 13
ax011834.f-at axo014306.f-at | 526.7190708 6
ax012322.f-at axo30175.f-at | 524.5750415 4
axo007030.f-at ax016275.f-at | 519.2985346 4
ax008880.r-at | axol15086.r-at | 516.9668911 5
ax011966.f-at | axo025007.f-at | 514.5143244 5
ax018536.f-at | ax020620.f-s-at | 506.7419369 5
ax025795.f~at | ax029519.f-at | 506.4705942 6
ax002806.f-at | axo024512.f-at | 505.6600658 5
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Table A.5: This table continues to show all 905 feasible solutions identified by FSA. Columns 1 and
2 show the probes that are identified, column 3 shows shows the B associated with each model, and
column 4 how many times each feasible solution was chosen by FSA.

Variable 1 Variable 2 B Times Chosen by FSA
ax009597.f-at ax029189.f-at | 504.2215151 24
ax022183.r-at ax028428.f-at | 503.7648535 9
ax003620.f-at axo05776.f-at | 502.6577369 3

ax020347.f-s-at axo27714.f-at 501.5748537 1
axo003441.f-at axo008206.f-at | 501.3647212 3
ax010119.r-at axol17622.f-at | 500.7568582 16
axo04434.r-at axo24112.r-at | 499.3625905 23
axo08033.f-at ax013300.r-at | 495.7356767 9
axol13121.f-at axol17687.f-at 493.213359 3
ax002002.f-at ax026828.f-at | 486.1288021 7
axo01448.r-at ax002697.f-at | 484.3558945 40
ax000362.f-at axol1322.r-at | 477.9861172 3
ax011258.f-at axol2454.f-at | 476.6697841 1
ax005810.f-at ax014907.f-at | 474.8137094 20
ax001726.f-at ax026952.f-at | 474.2220949 15
ax013234.f-at ax016221.f-at | 471.8504952 22
ax006234.f-at axo06827.f-at | 470.1781628 53
axol17887.f-at axo026858.f-at | 465.3478614 3
ax016574.f-at ax029993.f-at | 464.1742089 48
axo07872.f-at axo016845.f-at | 462.9983425 5

ax020981.f-s-at | axo031623.f-at | 461.6073559 42
ax005691.f-at ax006225.f-at | 459.8635308 53
ax009564.f-at ax024830.f-at | 458.9158889 5
ax000992.f-at axo09743.f-at | 453.2636046 4
ax016022.f-at ax023636.f-at | 449.5592269 17
ax028124.f-at ax031395.f-at 449.524055 13
ax019200.f-at ax028984.f-at | 448.4945544

axo008965.f-at
axo04765.f-at
axo017745.f-at

ax010459.f-at
ax020251.f-at
axo018541.f-at

444.7706528
444.5382484
443.2511347

axo06377.f-at axol3778.f~at | 441.8103762
ax016018.f-at axo25819.f-at | 441.2268357
ax001556.f-at axo018943.f-at | 440.9863323
axo00766.r-at axo008099.f-at 440.52933

axo07750.f-at axo028182.f-at | 434.3966919

axo06131.f-at
axo09037.r-at

axo07014.r-at
ax029485.f-at

433.9045415
431.6477558

ax003630.f-at ax011285.f-at | 430.6659946
ax004508.f-at ax009646.f-at | 430.0839482
axo07571.f-at axo024299.r-at | 430.0749308

axo011276.r-at
ax016490.f-at
axo014292.r-at
axo04752.r-at
ax016595.r-at

ax022846.f-s-at
ax024217.f-at
ax029961.f-at
ax012750.f-at
ax027849.f-at

429.5770768
426.8002017
426.5821176
426.2452247
423.3556705
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Table A.6: This table continues to show all 905 feasible solutions identified by FSA. Columns 1 and
2 show the probes that are identified, column 3 shows shows the B associated with each model, and
column 4 how many times each feasible solution was chosen by FSA.

Variable 1 Variable 2 B Times Chosen by FSA
axo17596.r-at axo27778.f-at 422.7398305 22
axo13873.r-at ax026906.f-at 421.9478269 3
axo00009.r-at | axol1578.r-s-at | 419.1596672 5
ax002902.r-at axo0l12974.f-at | 416.4060132 11
axo05797 f-at axo15340.f~at | 412.2339918 14
ax027946.f-at ax028206.f-at | 407.6139076 5
axo002748.f-at ax019656.f-at | 407.4595637 23
axo08873.r-at axo016726.r-at | 402.8523888 3
ax009445.f-at ax023688.f-at | 402.7279465 4
ax012500.r-at axo030197.f-at | 401.4139441 3
ax013780.f-at ax028741.f-at | 400.4379891 20

ax025124 f-at
axo003341.f-at
ax005649.f-at
axo07054.f-at
axo008346.f-at
ax016466.f-at
axo005440.r-at
axo05906.r-at
ax006348.f-at
ax001009.f-at
ax010732.f-at
ax013050.f-at
axo009014.f-at
ax025641.f-at
ax028085.f-at
ax025832.f-at
axo013307.r-at
axo013418.f-at

ax030936.f-at
axo08967.f-at
ax027404.f-at
axo11881.f-at
ax010569.r-at
ax019270.r-at
ax025500.f-at
axo011516.f-at
ax024555.f-at
ax009519.f-at
ax028866.f-at
ax016196.f-at
ax013516.f-at
ax027962.f-at
ax030929.f-at
ax028299.f-at
ax014664.f-at
ax027525.f-at

396.1117207
396.0279127
395.0452699
393.9437218
393.3031586
390.2353112
387.1801896
384.3517546
383.6899588
379.6655041
378.1340225
377.8915004
376.9469225
376.0639904
374.5823724
372.8997231
372.0888355
371.8841788

axo18387.r-at ax025727.f~at | 369.5271065
axo07979.r-at axo13644.r-at 369.020611
ax004905.f-s-at | ax013686.f-at | 367.8132292
ax005366.f-at axo07528.r-at | 367.3058721
ax024908.f-at ax027250.f-at 365.063271

axo023123.f-at

ax029395.f-at

363.6140212

ax014085.r-at axo024588.f-at 362.9672165
axo007952.f-at ax020282.r-at | 362.3465979
axo004647 f-at ax016834.f-at 361.7309985

axo05737.r-at
ax028657.f-at
ax009580.f-at
ax005904.f-at
axo006357.f-at
ax009094.f-at
axo01423.r-at

ax024521.f-at
ax031553.f-s-at
axo016795.r-at
ax024000.f-at
axo008528.f-at
ax019896.f-at
axo015562.r-at

361.1794664
361.0065218
360.1454354
359.0626744
358.2696086
354.6797541
352.9477382
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Table A.7: This table continues to show all 905 feasible solutions identified by FSA. Columns 1 and
2 show the probes that are identified, column 3 shows shows the B associated with each model, and
column 4 how many times each feasible solution was chosen by FSA.

Variable 1

Variable 2

B

Times Chosen by FSA

ax013347.f-at | ax016299.f-at | 351.6846098 37
ax002294.f-at | axo03248.r-at | 350.9918254 3
axo011006.f-at | axo012076.f-at | 348.7161261 5
axo011593.f-at | axol8715.r-at | 347.6022874 3
axo00427.f-at | axol8489.f-at | 346.9491847 3
ax029666.f-at | axo30482.f-at | 346.4992045 17
axo08059.r-at | axol13225.f-at | 345.7715264 17
ax020972.f-at | axo026423.f-at | 345.4975446 4
ax013080.f-at | axo24645.f-at | 344.1151721 3
axo08395.r-at | axo012402.f-at | 342.7840668 5
ax002625.f-at | axo03738.r-at | 342.4766493 13
ax000202.r-at | axo025107.f-at | 342.4500907 1
axo014784.f-at | axo21563.f-at | 342.005855 9
ax005934.f-at | axo28788.f-at | 340.942694 11
axo004320.r-at | axo026001.f-at | 340.8343812 2
ax006330.r-at | ax022974.f-at | 338.4261543 23
axo05596.r-at | axo09441.r-at | 337.7083682 125
ax002936.r-at | axol0853.f-at | 336.0311581 5
ax012098.f-at | ax016630.f-at | 334.3792072 7
ax010708.f-at | axo31449.f-at | 333.0581836 6
axo05742.r-at | axo06397.r-at | 331.9598533 3
ax023866.f-at | axo27878.f-at | 330.5738074 34
axol12118.r-at | ax020097.f-at | 329.8410095 4
ax025635.f-at | axo30797.f-at | 328.4345093 17
axo019011.f-at | axo019416.f-at | 326.5017718 9
ax021610.r-at | axo024634.f-at | 325.9171927 8
ax002731.f-at | ax026905.f-at | 325.2983766 1
axoll431l.r-at | axol12504.f-at | 324.5712958 3
axo009417 f-at | ax022670.f-at | 324.4906481 11
axo01565.f-at | axol18364.f-at | 322.8319361 22
axo014440.f-at | axol19145.r-at | 318.9199076 3
ax006635.f-at | axo07844.r-at | 315.2144902 2
ax002211.f-at | axo25769.f-at | 314.7098491 2
ax002997 f-at | axol10988.r-at | 314.1473589 3
axol18604.r-at | axo19556.f-at | 313.5518101 4
axo05624.r-at | axol1791.f-at | 313.2862096 1
axo003310.r-at | axol6719.r-at | 312.3737043 3
axol5361.r-at | axo28243.f-at | 311.8847452 8
axol17861.f-at | axo19895.f-at | 311.5431378 12
axol7507.f-at | axo30376.f-at | 309.8522913 25
axo00832.f-at | axo16553.r-at | 308.3756048 11
axol1157.f-at | axo28022.f-at 306.80073 2
axo05123.f-at | axo09374.f-at | 306.751086 9
axo003643.r-at | axol17205.f-at | 306.0764203 14
axo07854.r-at | axo020003.r-at | 305.7728156 2
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Table A.8: This table continues to show all 905 feasible solutions identified by FSA. Columns 1 and
2 show the probes that are identified, column 3 shows shows the B associated with each model, and
column 4 how many times each feasible solution was chosen by FSA.

Variable 1

Variable 2

B

Times Chosen by FSA

axo00481.f-at
ax013106.f-at
axo06014.r-at
ax012438.f-at
ax015268.f-at
ax012594.f-at
axo00438.r-at
axo003321.f-at
ax024595.f-at
axo15519.r-at
axo17451.f-at
axol7581.f-at
axo01545.f-at
axo015467.r-at
axo00344.f-at
ax010968.f-at
axo004631.f-at
axo005058.f-at
axo00708.f-at
axo01840.f-at
ax001796.r-at
axo008280.r-at
axo08125.f-at
ax001986.f-at
ax015733.f-at
axo01247.f-at
axo010155.f-at
ax010677.f-at
axo005739.r-s-at
ax006236.r-at
ax013810.f-at
ax011000.f-at
axo07877.r-at
axo04533.f-at
ax010590.f-at
ax009986.f-at
ax014629.f-at
ax001432.f-at
ax005333.r-at
ax017915.f-at
axo08664.r-at
ax013471.f-at
axol13524.r-at
ax010535.f-at
axo002933.r-at

ax009368.f-at
ax028824.f-at
axo031644.f-at
axo024772.f-at
axo28777 f-at
axo21241.f-at
ax009010.f-at
ax029336.f-at
axo27732.f-at
axo018528.f-at
ax026099.f-at
ax020319.r-at
axo01575.r-at
ax016829.f-at
axol15121.f-at
ax013890.r-at
ax016307.f-s-at
axol8717.r-at
ax002690.f-s-at
axo025573.f-at
axo18197.f-at
axo10787.f-at
axo011361.f-at
axo31231.f-at
ax017956.f-at
ax012324.f-at
ax023402.f-at
ax015793.f-at
ax024605.f-at
axo011852.r-at
ax013846.f-at
ax023816.f-at
ax027548.f-at
ax010684.f-at
ax012458.f-at
ax024647.f-at
axo18438.r-at
axo014329.r-at
ax024876.f-at
axo025776.f-at
ax014338.f-at
ax030170.f-at
ax029692.f-at
ax029975.f-at
axo004993.r-at

305.6494569
304.1040374
303.9995948
302.6918564
301.8826118
301.4799254
301.4365375
301.3157277
301.1896949
300.8692454
300.7580657
299.855087
299.0435448
298.7091552
298.428108
298.4045718
298.3638985
294.746986
294.4292531
293.6247125
293.2611479
293.2467848
293.01246
293.0027303
287.7408356
287.2244229
287.1105944
286.8111292
286.2387036
285.5610528
284.2859851
284.0734577
283.1828071
282.8408111
281.9537236
281.745512
280.686766
280.6241902
278.7564669
278.7563703
278.4296277
277.9686421
277.8063288
277.5849539
277.4426072
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Table A.9: This table continues to show all 905 feasible solutions identified by FSA. Columns 1 and
2 show the probes that are identified, column 3 shows shows the B associated with each model, and
column 4 how many times each feasible solution was chosen by FSA.

Variable 1 Variable 2 B Times Chosen by FSA
ax025389.f-at axo30307.f-at | 277.1853503 11
ax002362.f-at | axo07038.r-at 276.173961

ax005399.f-at
ax000492.f-at
ax000231.f-at
ax025856.f-at
axo003419.r-at
axo004644.f-at
ax002039.f-at
axolb773.r-at
ax004830.f-at
ax020252.f-at
ax014279.f-at
ax003743.f-at
axo01319.f-at
axol2214.r-at
ax002397.f-at
axo05734.f-at
axo07785.r-at
axo05053.f-at
axo003718.f-at
ax019008.f-at
ax013035.f-at
axo001896.f-at
axo005854.f-at
axo08187.f-at
ax013730.f-at
ax002080.f-at
ax000790.r-at
axol3123.r-at
ax018298.f-at
axo004457 f-at
ax002575.f-at
ax006993.f-at
axo006174.f-at
axo(08843.r-at
axo008569.f-at
ax009365.f-at
axo010758.r-at
axo007039.f-at
ax012205.f-at
ax012809.f-at
axo05452.f-at
ax002293.f-at
axo017287.f-at

axol5155.f-at
ax029042.f-at
ax023230.f-at
ax031309.f-at
ax011560.f-at
axo13874.f-at
axo06663.f-at
axo017084.f-at
axo15683.f-at
ax022665.f-at
axo015022.r-at
ax004985.f-at
axo013267.f-at
ax020594.f-at
axo05252.f-at
ax019903.f-at
ax015508.f-at
axo(07917.r-at
ax030373.f-at
ax019077.f-at
ax018266.f-at
axo019341.r-at
ax016806.f-at
axo014370.r-at
axol14167.r-at
ax011765.f-at
ax012369.f-at
ax031194.f-s-at
ax026230.f-at
axo004798.f-at
ax017239.f-at
axo07319.f-at
ax025173.f-at
ax012960.f-at
ax019594.f-at
ax018602.f-at
ax031466.f-s-at
ax017080.f-at
ax030518.f-at
axo18055.f-at
axo018194.f-at
ax028826.f-at
ax022159.r-at

275.9165402
275.8376552
275.7530591
275.2298472
274.5232809
273.9958675
273.3064385
273.0355539
272.7646626
270.6852353
268.9198099
268.8949079
268.5402168
267.5295591
267.1877033
266.6961598
266.6843882
264.5596733
263.4241713
262.849957
261.5764524
261.3003371
260.9924271
260.320172
260.1845937
260.0462481
259.2527783
258.6886416
258.4819759
258.4628803
257.7451881
256.9027292
256.6510729
256.4270569
256.4245865
256.1070298
255.9102435
255.2919769
255.2208806
255.0993919
252.9664445
252.7856621
252.4605227
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Table A.10: This table continues to show all 905 feasible solutions identified by FSA. Columns 1
and 2 show the probes that are identified, column 3 shows shows the B associated with each model,
and column 4 how many times each feasible solution was chosen by FSA.

Variable 1 Variable 2 B Times Chosen by FSA
axo01688.f-at axo018609.r-at | 252.1030933 3
axo08827.f-at ax02b398.f-at | 251.5251559 7
ax004262.r-at ax011319.f-at | 251.3718938 4
axo01197.r-at axoll411.f-at | 250.7907864 19
axo(08811.r-at ax010249.f-at | 249.3880224 19

axo14772.r-at
ax005919.f-at
axo019762.f-at

ax030672.f-at
axo19751 .f-at
axo24331.r-at

249.2390175
249.1823956
248.2330458

ax002602.f-at axo012802.r-at 247.085893
axo022243.f-at axo25552.f-at | 246.1943571
ax006447 .f-at axo28117.f-at | 244.6719772

axo002987.r-at
axo07201.f-at
ax013628.f-at
axo006623.r-at
axo006652.r-at
axo08411.f-s-at

ax024959.f-at
ax024748.f-at
ax027927.f-at
ax010373.r-at
axo15855.f-at
ax026889.f-at

243.7679192
243.5025671
243.1775047
240.2317418
239.8025596
239.1366303

ax002356.f-at axo004209.r-at 238.880843

axo004642.f-at ax024147.f-at | 238.0184101
axo01736.f-at axo06128.f-at 237.8919889
ax011885.f-at axo024427.f~at | 237.7659017
ax001996.f-at axol5538.f-at | 237.6321373
axo00746.r-at axo07499.f-at | 237.3749744
axo08449.r-at ax019900.f-at 237.0173769
axo004823.f-at axo08546.f-at | 236.5410462
ax019273.f-at ax030637.f-at 236.5237364
ax010868.f-at ax030009.f-at | 236.4434355

ax023332.f-s-at
axo08442.f-at

ax028255.f-at
ax020463.f-s-at

236.3381017
235.6763857

ax013976.f-at ax019959.f-at | 235.1436766
ax009105.f-at ax029128.f-at | 234.8188972
ax006486.f-at axo011024.f-at | 234.7554918
ax000698.f-at ax027279.f-at | 234.0329164

axo025872.f-at

ax030725.f-at

233.9535256

ax005662.f-at axo011020.r-at | 233.2273438
axo08948.f-at ax009359.f-at | 232.7675679
axo07349.f-at axo08861.f-at | 231.5401602
axo07508.f-at axo019537.f-at | 230.8769904
ax002163.f-at ax016996.f-at | 230.0297975
ax010404.f-at ax030268.f-at 229.79692

ax005330.r-at
axo03021.f-at
axol18233.r-at
ax001673.r-at
ax013916.r-at

ax025879.f-at
ax005220.r-at
ax024548.f-at
axo12631.r-at
axo21614.r-at

229.4920169
225.9045679
224.2855683
223.7480156
223.5949408
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Table A.11: This table continues to show all 905 feasible solutions identified by FSA. Columns 1
and 2 show the probes that are identified, column 3 shows shows the B associated with each model,
and column 4 how many times each feasible solution was chosen by FSA.

Variable 1

Variable 2

B

Times Chosen by FSA

axo00012.r-at
axo002631.r-at
axo000033.f-at
ax008526.f-at
axo(07228.r-at
ax005976.f-at
axo00797.r-at
axol8767.r-at
ax011759.f-at
axo009043.r-at
axo011691.r-s-at
axo006423.f-at
axo007396.f-at
ax014609.f-at
axo013519.r-at
axol12178.r-at
ax002765.f-at
ax028246.f-at
ax010228.f-at
ax010630.f-at
ax006256.f-at
axo012797 f-at
axo07467.f-at
axo00752.f-at
ax012951.f-at
ax003989.f-at
ax003618.f-at
ax010800.r-at
ax012649.f-at
axo02874.r-at
ax028425.f-at
axo18458.r-at
ax002581.f-at
ax012126.r-at
axo003212.f-at
axo003110.f-at
ax010646.f-at
ax010437 .f-at
axo06188.f-at
axo07093.f-at
axo05777 f-at
axo006967.r-at
ax026985.f-at
ax011901.f-at
ax005430.f-at

axo019124.r-at
ax027914.f-at
ax015090.f-at
axo027604.f-at
ax023217.f-at
axo012897.f-at
ax005285.f-at
ax025349.f-at
axol2513.r-at
ax013850.f-at
ax025615.f-at
ax013219.f-at
axol11378.r-at
ax022563.r-at
axol7115.f-at
ax021492.f-at
axo09727.f-at
axo30841.f-at
axo030144.f-at
ax025035.f-at
axo007090.f-at
ax031431.f-s-at
axo08156.r-at
ax031494.f-s-at
axol18705.r-at
axo005353.r-at
ax025753.f-at
ax029425.f-at
ax026418.f-at
axo019515.r-at
ax029302.f-at
ax030048.f-at
axo003135.r-at
ax031525.f-at
ax010335.f-at
ax012980.f-at
axol17323.r-s-at
ax022604.f-at
axo014067.r-at
ax009206.r-at
ax014707.f-at
ax010034.f-s-at
ax027386.f-at
ax024570.f-at
ax005950.r-at

223.5914182
221.9165867
221.7342192
221.4212515
221.2262475
220.7294833
220.2307394
219.5498515
218.4865683
217.918214
217.3084934
216.8397968
216.4139687
215.7796207
215.7328108
215.6324168
215.4275653
215.4192423
215.2326643
215.1059215
215.062505
214.7702395
214.5120483
214.4729244
213.6568036
213.309962
211.9136523
211.7091427
211.5780169
211.3048865
211.264296
210.1092533
209.3935129
208.2971606
207.7078995
206.4597171
205.7351607
204.9159748
204.5129433
204.4231649
203.3971814
202.3761561
202.1482432
202.1262761
202.1061414
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Table A.12: This table continues to show all 905 feasible solutions identified by FSA. Columns 1
and 2 show the probes that are identified, column 3 shows shows the B associated with each model,
and column 4 how many times each feasible solution was chosen by FSA.

Variable 1 Variable 2 B Times Chosen by FSA
ax025815.f-at ax028642.f-at 202.051211 5
axo04621.f-at | axol8685.r-at | 201.9430451 1
axo006859.f-at | axol12412.r-at 201.093332 10
ax003103.f-at ax030938.f-at 200.8221581
axo08576.f~at | ax022394.f-at | 200.7873796
ax013604.f-at ax028822.f-at 199.6037566

axo005433.f-at
ax016235.f-at
axo001820.f-at
ax004880.f-at
axo01572.r-at
ax001392.f-at
ax002176.f-at
ax015276.f-at
axo05713.f-at
ax000104.r-at

ax009952.r-at
ax025907.f-at
ax012416.f-at
ax019252.f-at
ax009065.f-at
axo02574.f-at
axo08748.f-at
ax019417.f-at
ax010018.f-at
axo01868.f-at

198.7936868
198.6261762
198.6241987
198.3492228
198.2167032
197.9647384
197.9008969
196.5992519
196.1047729
196.0992724

ax023568.f-at | ax031619.f-at 195.913077
ax006350.r-at | axo016649.r-at | 195.6632371
ax002789.f-at | axo010604.f-at | 194.5400702
axo03509.f-at | axol9414.r-at | 194.4919537
ax010609.f-at | ax028626.f-at | 194.4869466
axo08368.f-at | axo011600.f-at | 193.6347474

axo01743.f-at
axo014856.r-at
ax010855.r-at
axo01858.f-at
axo011387.f-at
axo012351.f-at
ax004169.f-at
axo11931.f-at
axo01878.f-at
axo010875.f-at
ax020198.f-at
ax005997.f-at
axo00504.f-at
axo005505.r-at
ax016468.r-at
ax024604.f-at
axo015647.f-at
ax002116.f-at

axo012337.r-at
ax018042.f-at
axol611l.r-at
ax028029.f-at
ax017929.f-at
axo18051.f-at
axol16678.f-at
axo15257.f-at
axo06680.f-at
axol1374.r-at
ax027006.f-at
ax017599.f-at
ax000986.f-at
ax014087.f-at
ax025240.f-at
ax031492.f-at
ax018346.f-at
ax014881.f-at

193.2543707
193.2158682
193.1141477
193.043073
192.7458467
192.5804101
192.3047649
192.2913175
192.2286086
192.130475
192.101078
192.0332115
191.5595031
191.3922564
191.3281888
190.7525879
190.7372723
190.5791382
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ax017626.f-at | ax028460.f-at | 189.9464406
ax022073.f-at axo28475.f-at 189.9382663
ax009607.f-at | ax031195.f-s-at | 189.7476692
ax009935.f-at | axol7344.r-at | 189.5437809 15
ax012380.f-at axol15315.f-at | 189.4817298 4
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Table A.13: This table continues to show all 905 feasible solutions identified by FSA. Columns 1
and 2 show the probes that are identified, column 3 shows shows the B associated with each model,
and column 4 how many times each feasible solution was chosen by FSA.

Variable 1 Variable 2 B Times Chosen by FSA
ax010195.f-at | axo27495.f-at | 189.426621 3
axo01867.f-at | axo07083.r-at | 188.8776395 2
ax006392.f-at | axo28276.f-at | 187.3818734 2
axo08934.f-at | axol7506.f-at | 187.1284934 3
axo09117.r-at | axo16436.r-at | 187.0761329 7
ax004868.f-at | axo28274.f-at | 186.7223254 13

axo013681.f-at
axo009794 f-at
axo07536.f-at
ax000626.f-at
axo015224.f-at
axo05823.f-at
ax003538.f-at
axo03842.r-at
axo006425.f-at
ax016330.f-at
axo08869.f-at
ax011323.f-at
axo06178.f-at
axo07876.f-at
axol11671.f-at
ax014806.f-at
ax014390.f-at
ax019140.f-at
axo08701.f-at
ax012002.f-at
ax003492.f-at
ax009390.f-at

ax024136.f-at
axol18328.r-at
axo015292.r-at
axo015559.f-at
axo25415.f-at
ax005940.f-at
ax028864.f-at
axo08609.f-at
ax016008.f-at
ax019509.f-at
axo17145.r-at
ax028008.f-at
ax021124.f-at
ax012350.f-at
ax029096.1-at
ax030370.f-at
axo015034.r-at
ax026236.f-at
ax019048.f-at
ax023953.f-at
axo016322.r-at
axo18838.f-at

186.0544926
185.9676132
185.6500664
185.3698725
185.1149363
185.0178811
184.3808561
183.9108874
183.0443242
182.7359445
182.5239301
182.5018005
182.4322562
181.0609099
180.898061
180.6609856
180.2755162
180.2390556
180.0264265
180.0060889
179.9489968
179.8377014

= WO ONCTWHF WWUlLHFEDNO 0O W W

axo00213.f-at | axol6358.r-at | 179.5295146 15
axo04719.r-at | axo31579.f-at | 179.3378483 1
axol3731.f-at | axo18096.r-at | 179.1133211 5
ax012249.r-at | axo030910.f-at | 179.0552159 9
axo06771.r-at | axol7955.f-at | 178.9118122 4
ax022480.f-at | axo30583.f-at | 178.718927 2
axo008969.f-at | axo09053.f-at | 176.532083 7
ax014383.r-at | axol5917.f-at | 175.9370051 8
axo00768.f-at | axol15305.r-at | 175.8501613 16
axol3724.r-at | axo24389.f-at | 175.8239398 5
ax001600.r-at | axol5503.f-at | 175.6872541 4
axo03445.r-at | axo08253.f-at | 175.2512864 4
ax009859.f-at | axo30169.f-at | 175.1469982 1
axo07897.f-at | axol6125.f-at | 174.7704785 2
axol8157.f-at | axo27517.f-at | 174.4418363 1
axo010419.r-at | axol4238.f-at | 174.3993865 1
ax022605.f-at | axo030739.f-at | 173.9513634 2
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Table A.14: This table continues to show all 905 feasible solutions identified by FSA. Columns 1
and 2 show the probes that are identified, column 3 shows shows the B associated with each model,
and column 4 how many times each feasible solution was chosen by FSA.

Variable 1

Variable 2

B

Times Chosen by FSA

axo00715.r-at
ax011226.r-at
ax015635.f-at
ax002796.f-at
ax027254 f-at
axo07522.f-at
axo00381.f-at
ax013436.f-at
axo002391 .f-at
axo018442.f-at
ax002480.r-at
ax024483.f-at
ax025296.f-at
ax019657.f-at
axo007690.r-at
axo00158.f-at
axo01946.r-at
axo004194.r-at
axo09514.r-x-at
ax006239.f-at
axo003007 .f-at
axo011479.r-at
axo012832.f-at
ax017302.f-at
ax003656.f-at
axo08421.f-at
ax011052.f-at
ax017050.f-at
ax011096.f-at
axo04824.r-at
axo05531.f-at
axo03703.f-at
axo017598.f-at
ax002632.f-at
axo04107 f-at
ax012979.f-at
axo05983.f-at
axo04780.f-at
ax008369.r-at
ax009497.r-at
ax019212.f-at
axo04523.r-at
ax017249.f-at
ax012701 .f-at
ax019428.r-at

axo07312.f-at
ax015539.f-at
ax022086.f-at
ax013460.r-at
ax028665.f-at
ax023819.r-at
ax009466.r-at
ax025150.f-at
ax015449.f-at
ax030028.f-at
ax024234 f-at
ax029086.f-at
ax028210.f-at
ax028680.f-at
axol16374.r-at
axo002576.f-at
ax029367.f-at
axol15179.r-at
axol1777.f-at
axo016335.r-at
ax030483.f-at
ax021623.f-at
ax019391.r-at
ax023778.f-at
axo(07863.r-at
axol7412.r-at
axo18908.r-at
axo022242.r-at
axo15537.f-at
axo07000.f-at
ax024978.f-at
axo09783.f-at
axo18928.r-at
ax012252.f-at
axo27114.f-at
axol17124.f-at
ax029772.f-at
ax025970.f-at
ax012299.r-at
axo011797 f-at
ax019694.r-at
ax022427.f-at
axo18566.f-at
ax031368.f-at
ax021568.f-at

173.6505918
173.5524725
173.2733061
173.088495
172.5364789
171.7530039
170.5435047
170.5063067
170.432592
170.2806938
170.2469708
169.9648973
169.8500166
169.4636599
169.4042932
168.9016722
168.8728698
168.850299
168.5635563
167.9636927
167.865506
167.2871035
167.2523526
167.234679
166.9683359
166.8342996
166.6184085
166.601185
165.9718612
165.875221
165.450214
165.419717
165.4095169
164.7372479
164.2501454
164.2180523
164.1793222
164.1639075
164.1118875
164.0929587
164.078166
164.0008352
163.9597375
163.7913532
163.7873712
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Table A.15: This table continues to show all 905 feasible solutions identified by FSA. Columns 1
and 2 show the probes that are identified, column 3 shows shows the B associated with each model,
and column 4 how many times each feasible solution was chosen by FSA.

Variable 1

Variable 2

B

Times Chosen by FSA

ax009570.f-at | ax025015.f-at | 163.3768506 1
ax015166.f-at axol18818.f-at | 163.1563297 3
ax004267.r-at | axol4861.f-at | 163.0352354 2
axo04195.r-at | axo019325.f-at 162.779267 2
axo006795.f-at | axo024815.f-at | 162.3936452 2
axo01343.f-at | axol6424.f-at | 162.1145937 1
ax000103.f-at ax024039.f-at 161.8869841 2
ax019769.r-at | axo28466.f-at | 161.8102113 5
axo09121.f-at axo18547.f-at 161.6597184 3
axo04462.r-at | axol12190.f-at | 161.2240285 4
axo07417.f-at | ax020436.f-s-at | 160.8641751 1
axo002121.r-at | axo30581.f-at | 160.7751871 1
ax003306.f-at axol7567.f-at | 160.7484624 4
ax004691.r-at | axol6012.f-at | 160.7050485 14
ax010237.r-at ax025940.f-at 160.575747 3
axo00783.r-at | axo01147.r-at | 160.0618704 2
ax002130.f-at axo022784.r-at | 159.8498481 3
ax005294.f-at ax023992.f-at | 159.8256757 4
axo07948.f-at | axo019962.r-at | 159.2227388 3
axo005954.r-at axo023711.f-at 158.8026379 3
ax001025.f-at axo27407.f~at | 158.2850323 9
ax023137.f-at axo27912.f-at | 157.7755797 2
ax001763.f-at axo08505.f-at 157.4929546 1
axol6141l.r-at | axol7092.r-at | 157.4894739 11
ax002413.f-at ax013502.f-at | 157.1803753 3
axo08978.f-at | axol8888.f-at | 156.8807707 4
ax003510.r-at | axo25803.f-at | 156.4892693 3
ax000036.f-at | axo06323.r-at | 156.3500893 2
axo08351.f-at ax027896.f-at | 156.0130886 2
axo07606.f-at | axol12378.f-at | 155.6842004 11
axo0l11663.f-at | ax029912.f-at 155.359731 1
axo07776.f-at | ax020082.f-at | 155.3424213 2
axo00415.f-at | axol6147.f-at | 155.3049241 2
ax017002.f-at ax029588.f-at | 155.1112863 2
axo04825.r-at | axol6168.r-at | 155.0965903 3
ax010843.f-at | axolb51l.r-at | 154.9740931 2
ax002169.f-at | axo027459.f-at 154.321304 5
axol13832.f-at | ax016696.f-at | 154.0266414 2
axol1722.f-at | axo027654.f-at | 153.9811638 1
axo04943.r-at | axo06391.r-at | 153.7510022 9
axo05569.f-at | ax021948.f-at | 153.7393321 1
ax006921.f-at | axo27101.f-at | 153.4921792 2
axol3701.f-at | axol6525.r-at | 153.4912718 1
axo000302.f-at | ax010520.f-at | 152.6967842 3
axo014783.r-at ax030381.f-at 152.4066913 2
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Table A.16: This table continues to show all 905 feasible solutions identified by FSA. Columns 1
and 2 show the probes that are identified, column 3 shows shows the B associated with each model,
and column 4 how many times each feasible solution was chosen by FSA.

Variable 1

Variable 2

B

Times Chosen by FSA

axo001328.r-at
ax000056.r-at
axo012943.r-at
ax015766.f-at
axo000703.r-at
ax011463.f-at
ax012702.f-at
ax000159.f-at
ax013919.f-at
axo07148.f-at
ax006149.f-at
ax002566.f-at
axo011972.r-at
axo01891.f-at
axo04445.f-at
axo006893.f-at
ax000270.f-at
ax013446.f-at
ax002283.r-at
axo003242.r-at
ax000968.f-at
axo08361.f-at
ax015200.r-at
ax003006.f-at
ax012271.f-at
ax003262.f-at
ax010735.f-at
ax016740.f-at
ax009099.f-at
ax024666.f-at
axo04978.f-at
ax016936.r-at
ax006269.f-at
ax006394.f-at
ax004208.f-at
axo03031.f-at
ax009128.f-at
ax000636.f-at
axo08542.r-at
axo06371.f-at
axo004973.r-at
ax012200.f-at
axo08506.f-at
axo08821.f-at
ax010999.f-at

axo11057.r-at
ax013739.f-at
axo17266.f-at
ax015929.f-at
ax024844.f-at
ax030224.f-at
ax027091.f-at
ax029106.f-at
axo15673.f-at
axo08508.f-at
axo25817.f-at
ax021688.f-at
ax027104.f-at
axo11315.f-at
axo028988.f-at
ax022545.f-s-at
axo013319.f-at
axo018923.r-at
axo009742.r-at
axo07413.f-at
ax018589.f-at
ax025527.f-at
ax028017.f-at
ax024582.f-at
ax012855.f-at
axo025479.f-at
axo016644.f-at
ax025496.f-at
ax012570.f-at
ax029765.f-at
axol1338.r-at
axo17042.f-at
axo008225.f-at
axo07368.f-at
axo07404.f-at
axo010857.f-at
ax027543.f-at
ax028303.f-at
axol13148.r-at
ax010652.f-at
axo07418.r-at
ax019258.f-at
axo18505.r-at
ax020233.f-at
axo17688.f-at

152.3412458
152.1830956
151.8639279
151.8527115
151.712809
151.5757099
150.7517702
150.591265
150.447842
150.1408172
149.8596243
149.8389697
149.7297497
149.555541
149.3998886
149.3629798
149.2435061
149.0200498
148.9084618
148.7762545
148.7542804
148.4353047
147.9991163
147.6917145
147.3738348
146.5417417
146.0833791
145.9792804
145.2387712
145.0632888
145.0281926
144.9239643
144.8381156
144.7447883
144.6410786
144.376147
143.9982993
143.849328
143.5668282
143.1626681
142.9395751
142.6840494
142.4621259
142.3445308
142.3385484
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Table A.17: This table continues to show all 905 feasible solutions identified by FSA. Columns 1
and 2 show the probes that are identified, column 3 shows shows the B associated with each model,
and column 4 how many times each feasible solution was chosen by FSA.

Variable 1

Variable 2

B

Times Chosen by FSA

axo01586.r-at
axo06772.f-at
ax000346.r-at
axo05485.f-at
axo002885.r-at
axo08011.f-at
axo05746.f-at
ax019672.f-at
axo02577.r-at
ax016536.f-at
ax009162.f-at
axo001503.f-at
axo009018.f-at
ax010825.f-at
ax009923.r-at
axo05352.f-at
ax020167.r-at
axo00031.f-at
axo011787 f-at
ax010795.f-at
axo003569.f-at
axo04246.r-at
axo02975.r-at
ax016233.f-at
axo17852.f-at
ax006694.r-at
axo05407.r-at
ax013369.f-at
axo00097 .f-at
ax002420.f-at
ax016928.f-at
axo06183.f-at
axol17057.r-at
ax009008.f-at
axo007100.f-at
ax012856.f-at
axo05895.f-at
ax017950.f-at
axo04151.r-at
axo08882.f-at
axo012398.r-at
axo013192.f-at
ax030596.f-at
axo004680.r-at
ax016256.f-at
ax001436.f-at

axo07646.f-at
axol18014.r-at
ax012194.f-at
ax020024.r-at
axo09864.f-at
ax008240.f-at
axo15015.r-at
ax031667.f-at
ax025584.f-at
ax018696.f-at
ax016486.1-at
ax009363.r-at
ax030648.f-at
axol16707.f-at
ax027196.f-at
ax012401.f-at
ax021847.f-at
axo07003.f-at
axol19877.r-at
ax029487.f-at
axol1414.f-at
axol15913.r-at
ax009510.r-at
axo18789.f-at
ax022896.f-at
ax020191.f-at
ax030549.f-at
ax027507.f-at
axo08045.f-at
ax021880.r-at
ax030467.f-at
ax030485.f-at
ax019863.r-at
ax026894.f-at
ax017895.f-at
axo014174.f-at
axo016417.f-at
ax029842.f-at
ax024094.r-at
ax018695.r-at
ax016199.r-at
axo027233.f-at
ax030823.f-at
ax030591.f-at
ax024858.f-at
ax011332.f-at

142.3318786
142.2484629
141.2248634
141.077256
140.9353917
140.8972824
140.6992449
140.27008
139.9460125
139.7167558
139.6182501
139.5971658
139.5196249
139.4798446
139.2118172
139.0851239
138.8758851
138.6838041
138.4744837
137.6660589
137.5130102
137.432455
137.2217266
137.1641198
135.909303
135.8166276
135.711958
135.5815989
135.1068763
134.4394781
134.4165772
134.1744613
133.8979031
133.7443636
133.6915207
133.3602901
133.0703533
132.943194
132.8247613
132.7525347
132.4771104
132.4531812
132.2975933
132.2717869
132.0249485
131.6967874
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Table A.18: This table continues to show all 905 feasible solutions identified by FSA. Columns 1
and 2 show the probes that are identified, column 3 shows shows the B associated with each model,
and column 4 how many times each feasible solution was chosen by FSA.

Variable 1

Variable 2

B

Times Chosen by FSA

axo001613.f-at
axo005419.f-at
axo011122.f-at
axo06857.f-at
axo012981.f-at
ax012218.f-at
axo06032.f-at
ax015003.f-at
ax000028.f-at
axo03091.f-at
ax016472.f-at
ax011630.f-at
ax005665.f-at
axo09177 f-at
ax022648.f-at
axol11168.r-at
ax002107 f-at
axo01892.f-at
axo018535.r-at
axo02344.r-at
axo07062.f-at
ax021729.r-at
axol15617.r-at
axo(07886.f-at
axo(07816.f-at
axo013642.f-at
ax002893.f-at
axo011821.f-at
axo09387.f-at
axo05425.r-at
axo007925.f-at
axo004376.f-at
axo07377.r-at
axo04253.f-at
axo07268.r-at
ax019570.f-at
axo15581.f-at
axol6701.r-at
axo07945.r-at
axo07108.f-at
ax002696.f-at
ax010199.f-at
ax002166.f-at
ax000330.f-at
axo001724.r-at
axo(07898.f-at

axo07225.f-at
ax024656.f-at
axolb717.r-at
axo013398.r-at
ax022139.f-at
axo019601.r-at
ax024002.f-at
ax024870.f-at
ax010431.f-at
axo16521.f-at
ax018994.f-at
ax016065.f-at
axo08464.f-at
ax014675.f-at
ax024561.f-at
ax021646.1-at
axo006565.r-at
ax015632.f-at
ax019913.r-at
axo012672.f-at
ax012625.f-at
ax030886.f-at
axo17146.r-at
ax024613.f-at
ax026827.f-at
axo024251.f-at
ax030071.f-at
axo31454.f-at
ax019506.f-at
ax029942.f-at
ax016105.f-at
ax029705.f-at
ax014583.f-at
axol8217.r-at
ax019840.f-at
ax025072.f-at
ax019218.f-at
ax026426.f-at
ax025993.f-at
ax022026.r-at
axo07572.f-at
ax025146.f-at
axo07445.f-at
ax031258.f-at
ax009002.f-at
ax019544.f-at

131.6384868
131.2706249
130.5535774
130.1619222
130.0765283
130.0012722
129.9739723
129.8120408
129.7981029
129.6634833
129.2740583
129.0739348
128.831189
128.8281081
128.2116112
127.9017387
127.4007425
127.3955043
126.5712914
126.5051095
126.4217759
126.4197517
126.2770104
126.0225488
125.6934742
125.6921965
124.9754202
124.612245
124.1422009
124.0420193
124.0323485
123.9961775
122.852885
122.784225
122.5344011
122.3480085
122.1363942
122.1155536
121.9837457
121.5358856
121.4999107
121.348254
121.118848
121.1004549
120.5108493
120.394673
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Table A.19: This table continues to show all 905 feasible solutions identified by FSA. Columns 1
and 2 show the probes that are identified, column 3 shows shows the B associated with each model,
and column 4 how many times each feasible solution was chosen by FSA.

Variable 1

Variable 2

B

Times Chosen by FSA

ax025263.f-at
axo04431.f-at
axol16881.r-at
axo(01552.r-at
ax003500.r-at
axo01433.r-at
ax010222.r-at
ax002335.f-at
ax021612.f-at
ax014983.f-at
axo(09114.r-at
axo006840.f-at
axo04158.f-at
ax006262.f-at
axo(07107.r-at
axo04164.f-at
ax019997.r-at
ax003290.f-at
ax020884.f-s-at
ax002390.r-at
axo07858.f-at
axo015504.f-at
ax025497 .f-at
axo04132.r-at
ax013327.f-at
axo08510.f-at
axo07799.f-at
ax003456.f-at
ax005030.r-s-at
axo001437.f-at
ax015988.f-at
ax013535.f-at
axo(08584.r-at
axo02811.f-at
axo012136.r-at
ax004498.f-at
ax019963.f-at
axo013825.r-at
ax005096.f-at
axo015904.r-at
axo014755.r-at
axo001149.r-at
axo005469.r-at
ax010274.f-at
axo004361.f-at
ax019010.f-at

ax030847.f-at
ax031399.f-at
ax029304.f-at
ax011563.f-at
axol5525.r-at
axo12787.f-at
ax010945.f-at
axo004917.f-at
ax024218.f-at
axol17667.f-at
axo015905.f-at
axo17047.f-at
axo006864.r-at
ax029905.f-at
axo018072.f-at
ax015040.f-at
ax030722.f-at
axol3177.r-at
ax027692.f-at
axo13515.f-at
axo18412.f-at
ax025178.f-at
ax028519.f-at
ax030799.f-at
ax029672.f-at
ax025601.f-at
axol14215.f-at
ax012107.f-at
axo15348.r-at
axo010976.r-at
ax017094.f-at
ax025570.f-at
ax024639.f-at
axo004343.f-at
ax022171.f-at
axol17973.f-at
axo030513.f-at
ax016280.f-at
axo08177.f-at
axo27678.f-at
ax029172.f-at
axo012281.f-at
axo(08541.r-at
ax031394.f-s-at
ax018036.f-at
ax030229.f-at

120.1104708
119.6423184
119.5497182
119.3390904
118.7459604
117.5837699
117.2421801
117.1938591
116.8425777
116.5359775
116.4911174
115.8538478
114.7771695
114.554718
114.4622913
114.3691233
114.2381434
114.2039631
114.1569832
113.9501763
113.7325973
113.4748415
113.237962
112.9415521
112.314436
111.7818895
111.7032158
111.6494916
111.4931631
111.4255978
111.3490973
110.9740651
110.7127634
110.2616375
110.0814873
110.0453504
109.8078347
109.5566315
109.4689317
109.452145
109.4515053
109.406662
109.386928
109.3218702
109.1838179
109.0954607
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Table A.20: This table continues to show all 905 feasible solutions identified by FSA. Columns 1
and 2 show the probes that are identified, column 3 shows shows the B associated with each model,
and column 4 how many times each feasible solution was chosen by FSA.

Variable 1

Variable 2

B

Times Chosen by FSA

axo06185.f-at
axo06373.f-at
axo08849.f-at
ax011565.f-at
axo08883.f-at
axo015653.f-at
ax013378.f-at
axo004989.r-at
axol18314.f-at
axo03827.r-at
ax009709.f-at
axo08592.r-at
ax005931.f-at
ax010143.f-at
ax014001.f-at
ax010504.f-at
ax025307.f-at
ax010202.f-at
axo013212.f-at
ax014948.f-at
axo013145.f-at
axol7776.f-at
axol5731.f-at
ax010142.f-at
axo002444 .f-at
ax014909.f-at
ax010014.f-at
ax020626.f-at
axo003444 f-at
axo04281.r-at
ax002129.f-at
axo04448.f-at
ax020132.r-s-at
ax004593.f-at
ax014000.f-at
ax016023.f-at
axol12142.r-at
axo003045.r-at
ax011622.f-at
axo000972.f-at
axo000399.r-at
axo007400.f-at
ax001966.f-at
axo07032.f-at
ax027108.f-at
ax015468.f-at

ax029769.f-at
axol7518.f-at
axo024472.r-s-at
axo021895.r-at
axo27665.f-at
axo017025.r-at
ax019597.f-at
ax016623.r-at
ax027119.f-at
ax021958.r-at
ax029927.f-at
ax013945.f-at
axol8117.r-at
ax025924.f-at
axo15377.f-at
ax022489.f-at
ax031646.f-at
ax024995.f-at
axo027679.f-at
ax030094.f-at
ax019527.f-at
ax026966.f-at
ax028980.f-at
ax028816.f-at
ax010539.f-at
ax025020.f-at
ax027401.f-at
ax023288.r-at
axo08984.f-at
ax020834.f-at
axo03054.f-at
axo19887.f-at
ax020953.f-s-at
axo24311.r-at
ax023668.r-at
ax025759.f-at
ax013902.r-at
ax024849.f-at
ax021686.r-at
ax004216.f-at
ax013925.f-at
axo08034.f-at
axol15818.r-at
ax028465.1-at
axo27798.f-at
axo027983.f-at

109.0361469
109.0122699
108.6968361
108.6526531
108.3689807
108.2411447
108.1835439
107.8154924
107.5325783
107.2953228
107.0376979
106.9758139
106.691469
106.379234
106.2194842
105.8077798
105.4943572
105.0379762
104.8525948
104.4128979
104.2262509
103.8976029
103.8022292
103.7024387
103.6605922
103.4981433
103.3023646
103.1125237
102.8650076
102.7837274
102.5230608
102.4455907
102.3131313
102.2703743
102.1319253
101.6650936
101.2817618
101.236119
101.2080522
100.4603306
99.62461168
98.82551802
98.51652777
98.48149182
98.0131651
97.50714763
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Table A.21: This table continues to show all 905 feasible solutions identified by FSA. Columns 1
and 2 show the probes that are identified, column 3 shows shows the B associated with each model,
and column 4 how many times each feasible solution was chosen by FSA.

Variable 1 Variable 2 B Times Chosen by FSA
ax007069.r-at ax019805.f-at 97.41828753 3
axo08017.f-at axo025277.f-at 97.17923174
ax012690.r-at ax030475.f-at 96.8666934

ax013034.f-at
ax009995.f-at
axo005076.f-at
ax018263.f-at
axo002114.f-at
axo008030.f-at
axo08549.f-at
axo08871.f-at
axo08423.f-at
ax010452.f-at
ax015163.f-at
ax019284.f-at
axol17347.r-at
ax006027.f-x-at
ax009003.f-at
axo07796.f-at
ax001534.f-at
axo01441.f-at
ax024220.r-at
axo003117.f-at
axol7337.r-at
ax016596.f-at
ax007620.f-at
axo005543.f-at
axo07851.f-at
axo012455.r-at
ax011598.f-at
ax000090.r-at
axo013343.f-at
ax011041.f-at
ax005905.f-at
ax002996.r-at
axo08459.f-at
ax012885.f-at
ax007923.f-at
axo07324.f-at
ax012918.f-at
axo07326.r-at
axo028851.f-at
ax019369.r-at
axo014587.f-at
axo03314.f-at
axo003123.f-at

ax025503.f-at
ax019620.f-at
ax019479.r-at
ax020173.f-at
ax016103.r-at
axo17981.f-at
ax031209.f-at
ax028223.f-at
ax010904.r-at
ax029748.f-at
ax025476.f-at
ax029361.f-at
axo27632.f-at
axo09574.r-at
ax018389.f-at
axo08536.f-at
axo08961.f-at
ax002569.f-at
ax028002.f-at
ax025147.f-at
axol7562.r-at
ax027355.f-at
axo28774.f-at
ax018680.f-at
axol8771.f-at
axo013430.r-at
axo031734.f-at
ax023663.f-at
axo0l16372.r-s-at
ax013362.f-at
ax029759.f-at
axo028476.f-at
ax020503.f-at
ax012949.f-at
ax030556.f-at
axo13081.f-at
ax014462.f-at
ax014488.f-at
axo030951.f-at
ax027337.f-at
axo019911.f-at
axo04143.r-at
ax016970.f-at

96.74368195
96.74096386
96.12591586
96.11777995
96.07745844
96.02669394
95.66616582
95.59907654
95.59214178
95.45855498
95.09678564
94.83665064
94.36378141
94.00099222
93.98061127
93.66484946
93.62968896
93.3066652
93.2635988
92.82980668
92.7046391
92.69061186
92.09946675
92.09177078
91.90281898
91.61577594
91.26869839
91.06737519
90.81686952
90.61648342
89.74426157
89.66720727
89.51436936
88.98089763
88.88653921
88.25730485
87.47141514
87.12812029
86.77923919
86.24890652
86.22672964
85.90263994
85.90135488
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Table A.22: This table continues to show all 905 feasible solutions identified by FSA. Columns 1
and 2 show the probes that are identified, column 3 shows shows the B associated with each model,
and column 4 how many times each feasible solution was chosen by FSA.

Variable 1

Variable 2

B

Times Chosen by FSA

ax026036.f-at
axo003745.f-at
axo011754.f-at
axo008295.f-at
axol2772.f-at
ax009075.f-at
ax009502.f-at
ax027289.f-at
ax025606.f-at
ax009692.f-at
ax005355.f-at
ax012847.f-at
axo08891.f-at
axol7431.r-at
ax014848.f-at
ax015826.f-at
axo05434.r-at
ax016399.f-at
axo012794.r-at
axol18714.f-at
axo005185.f-at
ax002837.f-at
axo04774 .f-at
ax015056.r-at
ax010577.f-at
ax009056.f-at
axo07087.f-at
axo01331.f-at
ax012463.f-at
axo04155.r-at
ax001998.f-s-at
ax005109.r-at
axo018600.r-at
ax010886.f-at
axo004273.f-at
ax015099.f-at
axo015621.f-at
axo01367.r-at
ax010215.r-at
axo13437.r-at
ax027220.f-at
axo003780.f-x-at
ax016952.f-at
ax009446.r-at
axo06677.f-at

ax029867.f-at
ax015105.f-at
ax023944.r-at
ax029747.f-at
ax023742.f-at
ax019683.f-at
ax029817.f-at
ax028392.f-at
ax030494.f-at
ax024068.r-at
ax016558.f-at
ax014302.f-at
ax018297.f-at
ax029391.f-at
axo016735.f-at
ax026035.f-at
axo08514.f-at
axo31415.f-s-at
ax025295.f-at
axo018829.r-at
ax028558.1-at
ax020761.f-at
axo05457.r-at
ax024329.f-at
axol13812.r-at
axo009125.f-at
ax019449.f-at
ax030404.f-at
axo031559.f-at
ax022042.f-at
axo014872.f-at
axol12157.f-at
ax030421.f-at
ax020333.r-at
ax024644.f-at
ax030612.f-at
ax016264.f-at
ax026838.f-at
ax013719.f-at
ax014009.r-at
ax031652.f-at
axo015221.f-at
axo24714.f-at
ax020694.f-at
axo019827.r-at

85.44844019
85.25672777
85.02504338
84.77364146
84.54500867
83.60864799
82.84489861
82.8332089
82.82974948
82.72023341
82.69510279
82.06501169
81.79876807
81.33041481
81.18223756
80.9893372
80.91770973
80.89970901
80.88948992
80.75414651
80.6664705
80.4671663
80.29728568
80.28899549
80.09843212
79.95596502
79.16115355
78.36089286
77.89786953
76.54125612
75.86602209
74.61523726
74.15059386
73.50469254
72.86632492
71.66238706
71.05323531
70.31903075
70.16317652
66.05492158
65.29004494
64.56296277
63.72813804
59.72850411
57.92164383
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A.2 Figures
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Figure A.1: These plots are of some of the most interesting combinations of predictors that resulted
in a significant permutation p-value from B-distance is seen here. Black dots denote observations
from the regeneration group and red dots denote observations from the non-regeneration group.
Notice that the two response groups can be perfectly separated by these two predictors. This is
a case where logistic regression would fail, but B-distance can be calculated. Univariate t-tests
would also fail to identify either of these predictors as significant at the 0.01 level, but clearly when
combined, the two predictors provide valuable information about which observations correspond to
regeneration or non-regeneration

118



B =721.150450417862

6.6

6.5
|

axo014301.f_at

6.3

6.2

T T T T
6.6 6.7 6.8 6.9

axo08502.f_at

B =501.3647211653

7.0

4.6

4.4
[ ]
[ ]

axo08206.f_at

4.2

4.0
|

8.3 8.4 8.5

ax003441.f at

Figure A.2: These plots are of some of the most interesting combinations of predictors that resulted
in a significant permutation p-value from B-distance is seen here. Black dots denote observations
from the regeneration group and red dots denote observations from the non-regeneration group.
Notice that the two response groups can be perfectly separated by these two predictors. This is
a case where logistic regression would fail, but B-distance can be calculated. Univariate t-tests
would also fail to identify either of these predictors as significant at the 0.01 level, but clearly when
combined, the two predictors provide valuable information about which observations correspond to

regeneration or non-regeneration
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Figure A.3: These plots are of some of the most interesting combinations of predictors that resulted
in a significant permutation p-value from B-distance is seen here. Black dots denote observations
from the regeneration group and red dots denote observations from the non-regeneration group.
Notice that the two response groups can be perfectly separated by these two predictors. This is
a case where logistic regression would fail, but B-distance can be calculated. Univariate t-tests
would also fail to identify either of these predictors as significant at the 0.01 level, but clearly when
combined, the two predictors provide valuable information about which observations correspond to
regeneration or non-regeneration
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Figure A.4: These plots are of some of the most interesting combinations of predictors that resulted
in a significant permutation p-value from B-distance is seen here. Black dots denote observations
from the regeneration group and red dots denote observations from the non-regeneration group.
Notice that the two response groups can be perfectly separated by these two predictors. This is
a case where logistic regression would fail, but B-distance can be calculated. Univariate t-tests
would also fail to identify either of these predictors as significant at the 0.01 level, but clearly when
combined, the two predictors provide valuable information about which observations correspond to
regeneration or non-regeneration
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