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ABSTRACT OF DISSERTATION

Recurrent Neural Networks and Their Applications to RNA Secondary Structure
Inference

Recurrent neural networks (RNNs) are state of the art sequential machine learn-
ing tools, but have difficulty learning sequences with long-range dependencies due
to the exponential growth or decay of gradients backpropagated through the RNN.
Some methods overcome this problem by modifying the standard RNN architecure to
force the recurrent weight matrix W to remain orthogonal throughout training. The
first half of this thesis presents a novel orthogonal RNN architecture that enforces
orthogonality of W by parametrizing with a skew-symmetric matrix via the Cayley
transform. We present rules for backpropagation through the Cayley transform, show
how to deal with the Cayley transform’s singularity, and compare its performance on
benchmark tasks to other orthogonal RNN architectures. The second half explores
two deep learning approaches to problems in RNA secondary structure inference and
compares them to a standard structure inference tool, the nearest neighbor thermody-
namic model (NNTM). The first uses RNNs to detect paired or unpaired nucleotides
in the RNA structure, which are then converted into synthetic auxiliary data that
direct NNTM structure predictions. The second method uses recurrent and convo-
lutional networks to directly infer RNA base pairs. In many cases, these approaches
improve over NNTM structure predictions by 20-30 percentage points.
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Chapter 1 Introduction

1.1 Machine Learning

Machine learning is a collection of mathematical and statistical tools for gaining
insight about a known dataset, or using this dataset to make predictions about data
points outside of the set. Crucially, in machine learning this is done largely without
domain-specific knowledge; rather than being programmed by hand, machine learning
algorithms are trained through an optimization procedure.

Let {xi}Ni=1 be our known dataset, often called the training set. Each data point
xi has a number of known qualities, referred to as features. We represent each
feature with a value in R, and thus xi ∈ Rn, where n is the number of features of
each data point. We refer to Rn as feature space, and can represent the dataset as a
matrix X ∈ RN×n. In mathematical terms, we are interested in using X to determine
a function g : Rn → Rm. This function is the machine or model in question. What
this function represents varies greatly depending on the information available, and
on the problem we wish to solve. There are two main classes of machine learning
problems: unsupervised learning and supervised learning.

In unsupervised learning problems, we have no information beyond the dataset
X, and g is used to give us some understanding of the data. For example, we may be
interested in grouping data points in feature space into k clusters according to some
notion of similarity, in which case g will map any x ∈ Rn to one of k clusters. We
could also be interested in a function that reduces the dimensionality of the data but
approximately preserves relative distances between points. One common motivation
for this is data visualization, in which case g will often map to R2 or R3.

In supervised learning problems, which are the focus of this work, we are given
both the data set X and a label yi ∈ Rm associated with each data point xi. The
label represents the target output of the machine, and the process of training is to
use the example input-output pairs to infer the rest of the function. Thus, we will
try to find a machine that recognizes that ŷi ≈ yi, where ŷi := g(xi) is the machine’s
prediction of the label yi.

A supervised learning problem can be further categorized as a regression prob-
lem, where the output is a continuous value, or a classification problem, where the
output is one of k classes where k ∈ N. The simplest type of classification problem
is the case where k = 2, called a binary classification problem. In binary classi-
fication the the output dimension m of g is 1; different machine learning algorithms
use different labels for binary classification, but in this work we represent the labels
as 0 or 1. If k > 2, we have a multiclass classification problem. To represent the
output of a multiclass classification problem, we often use one-hot encoding. This
represents the i-th class using the vector in Rk with a 1 in cell i and 0 elsewhere.

There exist an enormous variety of machine learning algorithms, each with advan-
tages and disadvantages in speed, efficiency, and underlying assumptions about the
data. Though nonparametric machine learning models exist, we will only consider
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parametric machine learning algorithms, and we can thus define a machine learning
algorithm as a parametric family of functions F = {f(x, θ) | θ ∈ Θ}. The process of
finding an appropriate machine f ∈ F is called training. This process varies greatly
among algorithms; some algorithms require essentially no training time, while oth-
ers, like neural networks, have long and complicated training processes. Frequently,
training involves optimizing some or all of the parameters θ with respect to some
loss function L (this can also be called the cost function or objective function). In
supervised problems, L is a comparison of the predicted output ŷ and the real output
y, so L = L(ŷ, y) = L(f(x, θ), y). Usually L(ŷ, y) = 0 if and only if ŷ = y, though it
is not necessarily a distance metric. Once we have settled on some f ∈ F , we fix the
parameters and let g(x) := f(x, θ).

Machine Learning Examples

Several classical machine learning algorithms will be familiar to mathematical audi-
ences under different guises. One of the simplest is that of linear regression, where
f(x, θ) is a linear combination of features of x. We represent coefficients of this linear
combination with weights w ∈ Rn, so that f(x) = wTx. The weights are the only
parameters in this machine, so θ = w.

A commonly used loss function for regression problems is the square of the 2-
norm of the difference between machine prediction and label, referred to as mean
squared error (MSE). Summing the loss over each point in our data set, this can
be represented as

L(ŷ, y) =
N∑
i=1

‖wTxi − yi‖22 = ‖Xw − y‖22

where y is the columns of labels [ŷ1 . . . ŷN ]T . We would like to find the parameters
θ∗ ∈ Θ, or equivalently the weights w∗ ∈ Rn, that minimize this loss, i.e.,

w∗ = argmin
w∈Rn

L(ŷ, y) = argmin
w∈Rn

‖Xw − y‖22

Presented in this manner, our loss function is recognizable as the linear least squares
problem. This optimization problem has a closed form solution; we can, for example,
use the normal equations to find that

w∗ = (XTX)−1XTy

where we may substitute the inverse for the Moore-Penrose pseudoinverse if XTX is
not invertible.

Having found the optimal weights w∗, we can now use g(x) := f(x, θ∗) = (w∗)Tx
to make predictions. The output of g(x) is the machine’s prediction of its label y.

As defined, a linear regression model f will always produce the prediction ŷ = 0
when the input x is the zero vector, which is not a particularly desirable property. To
avoid this, we can instead consider affine combinations of x by introducing a trainable
bias term b ∈ R to the prediction. Now, θ = {w, b}, and f(x, θ) = wTx+ b. This
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does not present an obstacle from an optimization perspective, as this is equivalent to
appending a feature valued at 1 to each data point inX and appendng a corresponding
element to w.

Another illuminating example is that of logistic regression, which uses a similar
linear combination of features of x. Despite its name, logistic regression is used to
solve a binary classification problem. Our function f is given by f(x, θ) = σ(wTx+b),
where σ(z) = (1 + e−z)−1 is the logistic function. The range of this function is (0, 1),
and we can thus interpret the output of the machine as a probability, specifically the
probability P (y = 1 | x) that x belongs to class 1.

For binary classification, the most popular loss function is binary cross entropy,
given by

L(ŷ, y) = −
N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi).

Note that since yi ∈ {0, 1}, only one of the terms in each summand will be nonzero.
Unlike linear regression, there is no known closed form expression for the weight

w∗ that minimizes binary cross entropy [21]. Instead, we must use iterative methods
to solve this problem.

In most machine learning problems with a differentiable loss function L, the large
dimensionality of the data means that direct computation of the full Hessian of param-
eters HL(θ) is generally computationally infeasible. Thus, optimization is frequently
relegated to first-order methods. The most popular training algorithms for machine
learning are based upon gradient descent. In gradient descent, we begin with some
initial set of parameters θ, which for this purpose is presented as a vector of parame-
ters. Then, for each pair xi ∈ X and yi ∈ y, we fix xi and yi and we find the gradient
of θ with respect to L:

∆θ =
1

N

N∑
i=1

∇θL(f(xi, θ), yi).

This ∆θ is multiplied by a small constant η called the learning rate and sub-
tracted from the current parameter vector:

θ ← θ − η∆θ.

A Taylor’s theorem argument can show that there exists some learning rate η such
that the updated w will result in a decrease in L. The learning rate is an example of
a hyperparameter, a variable that affects training but is not a part of the trainable
parameter set θ. The learning rate must be chosen carefully; if η is too small, training
time can increase dramatically, while a too large learning rate is liable to overshoot
local minima in the loss surface and cause instability.

For logistic regression, we repeat this process until ‖∆θ‖ falls below a specified
threshold, as this indicates that we are near a local minimum on the loss surface. At
this point we let our machine g(x) be f(x, θ).

3



Once trained, g(x) outputs a predicted probability that x is in class 1. To obtain
a class prediction, we threshold this value, so that g(x) > 0.5 is a prediction that x
belongs to class 1, and g(x) < 0.5 a prediction that x is in class 0.

1.2 Neural Networks

The algorithms presented in the previous section make predictions based on an affine
combination of features of the data. For example, from a geometric perspective, the
logistic regression algorithm learns a hyperplane given by wTx+ b = 0, and classifies
points based on which side of this hyperplane a data point falls on, as σ(0) = 0.5.
These linearity assumptions make for convenient training of the parameters, but are
often far too simplistic to achieve desirable accuracy on a great many machine learning
tasks.

A (feedforward) neural network is a machine learning algorithm with signifi-
cantly more expressive power than linear models. Neural networks have been studied
for decades under various guises, and their popularity has fluctuated relative to other
machine learning algorithms; see the introduction of [21] for a brief history. Despite
their name, today’s neural networks have little in common with the biological neural
networks that originally inspired them.

Neural networks are most easily understood as an extension of logistic regression.
A simple neural network f(x, θ) with output ŷ and θ = {W0, b0,W1, b1} is shown
below.

h = σ(W0x+ b0)

ŷ = W1x+ b1

Here x ∈ Rn, h ∈ Rn1 , and ŷ ∈ Rm. As with all neural networks, the information
flows through this machine in a hierarchical fashion, with x generating h, which in
turn generates ŷ. Each level of this hierarchy is referred to as a layer; the final layer
is the output layer, while the intermediate layer is the hidden layer.

Each element of the hidden layer is the output of a logistic regression performed
on the input x. Intuitively, we can think of each element of h as representing a
high-level feature of the data, built from a combination of lower-level input features.
We do not know what exactly these high-level features represent, nor do we need
to; with successful optimization, training will find the parameters that generate the
most useful high-level features (represented by W0 and b0), as well as parameters
that use these high-level features to predict the label (W1 and b1). Note that nothing
about the input or output dimensions of the problem specify the hidden dimension
n1. In fact n1 is a hyperparameter that we can increase or decrease to control the
expressive capability of the network, at the cost of additional computational and
memory requirements.

The elementwise logistic function σ, here called the activation function, plays
an important role in the neural network, as it allows us to represent nonlinear rela-
tionships among the inputs. However, it is no longer necessary for the output of this
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function to be interpretable as a probability, and thus we are free to change this from
the logistic function to any elementwise nonlinearity.

Our choice of activation function will have a significant effect on network opti-
mization. Historically, the logistic function has been a popular choice, as has the
hyperbolic tangent function tanh, which is equivalent to the logistic function rescaled
to (−1, 1), that is, tanh = 2σ − 1. However, the current favorite activation function
is the rectified linear unit (ReLU) [40], shown below.

σR(z) =

{
z if z > 0

0 if z ≤ 0

This may seem like an odd choice for an activation function, as it is both piecewise
linear and nondifferentiable. In practice, it is able to represent nonlinear relationships
well; we can think of it as a piecewise linearized version of ln(1 + ex). The nondiffer-
entiability at 0 is not an issue for the purposes of gradient descent (σ′R(0) is simply
chosen to be either 0 or 1), and the derivative’s value of either 0 or 1 has been shown
to introduce favorable training dynamics into the network [40].

The final layer is left linear for flexibility; for regression problems, we can directly
use ŷ as our output and MSE as our loss function L, and for binary classification
problems we apply a sigmoid to represent the network’s prediction, and let L be
binary cross entropy. For multiclass classification, we first apply a softmax function
s : Rm → Rm to the output. This is described below, where zj describes the j-th
element of z ∈ Rm, and the exponential is applied to z elementwise.

s(z) =
ez∑m
j=1 e

zj
=

ez

‖ez‖1
The entries of s(z) are bounded between (0, 1) and together sum to 1, so we can
interpret this vector as a probability distribution. In particular, if x is the network
input and ŷ is the softmax output, then the j-th element of ŷ is the probability that
x belongs to class j. We then use the softmax cross entropy loss function

L(ŷ, y) =
N∑
i=1

m∑
j=1

− log((ŷi)j)(yi)j

where (yi)j refers to the j-th element of the i-th label in {yi}Ni=1. Since the label y is
a one-hot encoding, each label will be 1 at one particular index pi and 0 everywhere
else, so in fact this loss function amounts to L(ŷ, y) =

∑N
i=1− log((ŷi)pi).

We can further extend the idea of finding and using high-level features for super-
vised learning by inserting additional hidden layers into the network.
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h1 = σ(W0x+ b0)

h2 = σ(W1h1 + b1)

...

hd = σ(Wd−1hd−1 + bd−1)

ŷ = Wdhd + bd

Each hidden layer size hi ∈ Rni for 1 ≤ i ≤ d may be chosen independently. As
before, this machine is a composition of layers, each of which is itself a composition
of a parametrized affine transformation and an activation function. The multiple
layers of features combine the input from the previous layer to represent progressively
higher level features.

A network with many hidden layers such as this is called a deep neural net-
work; the network above has depth d. More generally, deep learning is the study
of machine learning tools that use a hierarchy of constituent machine learning algo-
rithms. Deep learning, and deep neural networks in particular, are responsible for the
explosion in popularity of machine learning in recent years. This was initiated with
Hinton’s landmark 2006 paper [24], which introduced a practical training scheme for
deep neural networks and revitalized their study.

1.3 Neural Network Training

As in logistic regression, we rely on gradient descent to train a neural network. How-
ever, the increased expressive power and representational capacity of deep neural
networks are accompanied by additional complications in training. In particular, the
loss surface becomes nonconvex in a single layer neural network, and this nonconvex-
ity intensifies as the depth of the network increases.

Of most immediate concern is the obtaining of the gradient ∇θL. Unlike logistic
regression, we cannot consider each parameter individually, as neural network param-
eters are not independent of one another. However, we can exploit the hierarchical
structure of neural networks to efficiently obtain parameter gradients with compara-
ble time complexity to the forward pass of the machine. This repeated use of the
chain rule is known as the backpropagation algorithm [46].

It is often unnecessary to compute the gradient over the entire training set at
every iteration; instead, we partition the dataset into random subsets of size b called
batches, and perform gradient descent on a single batch at each iteration. This
increases computational efficiency, and the stochasticity is a benefit when training on
the nonconvex loss surface of the neural network. This is called (batch) stochastic
gradient descent, or batch SGD.

Even after obtaining the gradient of the parameters, neural network training is
not straightforward. A consequence of the increased representational capacity of deep
neural networks is their ability to capture patterns that exist in the training set, but
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do not generalize to other points in feature space. This will result in high accuracy
on the training set and low accuracy outside of it, a phenomenon called overfitting.

Improving performance without overfitting is one of the central struggles of ma-
chine learning. There exist numerous network modifications and training heuristics
designed to counteract neural networks’ tendency to overfit; these methods are called
regularization methods. At their core, regularization techniques attempt to restrict
the ability of the network to detect spurious patterns in the data, while still recogniz-
ing patterns that generalize outside the training set; the difficulty lies in the fact that,
by definition, the machine cannot distinguish which of these patterns are spurious.

A common regularization technique is the inclusion of a term in the loss function,
usually an L2-regularization term:

L̃(ŷ, y) = L(ŷ, y) +
λ

2
‖θ‖22.

The constant λ is the L2-regularization coefficient, a hyperparameter that controls the
strength of regularization. After taking the gradient, we can see that regularization
will decrease parameters by an amount proportional to that parameter’s current value.

θ ← θ − η∆θ − λθ

This has the effect of keeping parameters small, which is a form of restricting
the representational capacity of the network; it is known to prevent overfitting in
practice [21].

There exists an enormous variety of techniques, tricks, methods, and modifica-
tions to improve neural network training and performance. Among these, we briefly
mention alternate learning algorithms like RMSprop [54] and Adam [30], which speed
up training by incorporating momentum terms and adaptive learning rates into the
computation of ∆θ, as well as the dropout training method [47], which reduces overfit-
ting, and batch normalization [27], which allows the machine to accommodate higher
learning rates and has some regularization effects. We refer to [21] for a comprehensive
reference on all of these techniques and many more.

The Training Process

We have already seen several example of hyperparameters: the number of layers d, the
sizes n1, . . . , nd of each layer, the learning rate η, as well as various hyperparameters
introduced by regularization techniques and alternate training algorithms. By and
large, there is not sufficient theoretical understanding of neural networks to prescribe
the best set of hyperparameters for a particular learning task [21]; instead, we are
usually forced to try several different values and pick the one that gives the highest
performance. This is complicated by the spectre of overfitting, which means that a
decrease in training set error does not necessarily imply a more accurate machine.

With this is mind, in a typical training process, we partition our known dataset
into three sets: a training set, validation set, and test set. We use the training
and validation sets to find the best set of hyperparameters: for each hyperparame-
ter configuration, we train on the training set and monitor the loss function on the
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validation set. However, by modifying the hyperparameters to elicit the best perfor-
mance on the validation set, we may be artificially increasing the accuracy on the
validation set – we can think of tuning hyperparameters as another form of (manual)
training, one in which it is also possible to overfit. Thus, to eliminate possible bias,
we examine the accuracy on the test set only after fixing the hyperparameters. The
loss and accuracy on this test set is then considered to be the true representation of
the performance of the machine.

1.4 Neural Network Variants: CNNs and RNNs

The multilayer feedforward neural network presented in the previous section has had
enormous success in a variety of contexts. However, there are situations where this
architecture proves to be inefficient or inflexible. This is particularly true in domains
where the features of the data have some spatial structure, that is, when the features
of x can be organized in a meaningful way. Fully connected feedforward networks
ignore any spatial relationship among inputs: each hidden unit is comprised of a
parametrized combination of all features in the previous layer. This approach can be
wasteful or redundant, depending on the context: it may be that a feature xi is only
related to a small subset of the other features in x, or that there are many relationships
among inputs that are repeated. Ignoring these patterns can be inefficient, and can
be harmful to the network’s ability to generalize. Alternative architectures have been
presented to exploit the spatial coherence among these data types, which allow us to
drastically reduce the number of parameters and speed up training.

When the input x has some spatial structure, it is often sensible to change our
representation from the vector in Rn used in the previous section. It may be most
natural to represent x as a single high rank tensor or as a sequence of tensors, de-
pending on the context. Regardless of the representation, in this work we will use
superscripts in parentheses to denote spatial or temporal relations among data, and
subscripts to denote the features at a particular time or space.

Below we present the two most commonly used and studied neural network vari-
ants: convolutional neural networks, which can take in data with spatial structure
of arbitrary dimension, and recurrent neural networks, which are of use in sequential
learning tasks. These variants are essentially modified layers that replace the fully-
connected layer in the feedforward network presented in the previous section, and
these variants are compatible with one another: we are free to vary the layers of the
network as the problem requires. For example, architectures in both Chapter 4 and
Chapter 5 comprise both convolutional and recurrent layers.

Convolutional Neural Networks

Perhaps the most successful breed of neural networks in the advent of deep learning
are convolutional neural networks (CNNs). While small CNNs have been used suc-
cessfully for many years [33], large scale use of CNNs have dramatically reshaped the
field of computer vision over the past decade [2, 21].
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Let f and g be functions defined on N. Recall that the one-dimensional (1D)
discrete convolution with input f and kernel g, denoted f ∗ g, is itself a function
on N, given by

(f ∗ g)(t) =
∞∑

j=−∞

f(t− j)g(j).

If f and g are defined on N2, then we can define the two-dimensional (2D) discrete
convolution

(f ∗ g)(s, t) =
∞∑

i=−∞

∞∑
j=−∞

f(s− i, t− j)g(i, j).

For the purposes of using convolutions with neural networks, we will instead think
of discrete convolution as an operation between tensors, with the input to f and g
now representing indices of these tensors. The convolved output may be represented
as a tensor of the same size of the input tensor, since the support of f ∗ g is at most
the support of f . We also restrict the support of g to an interval [−s, s]. The length
2s+ 1 of this interval is the size of the kernel.

As an example, if we have an input x ∈ RL×n and kernel w ∈ R(2s+1)×n, then the
1D convolution x ∗ w is given by

(x ∗ w)(`) =
n∑

n′=1

j0∑
j=−j0

x
(`−j)
n′ w

(j)
i =

j0∑
j=−j0

(x(`−j))Tw(j).

For notational consistency and simplicity, we will index the kernel w with −s, . . . , s.
Note that when x has multiple channels, we simply sum over them. However, this

gives an output of only one channel. For an output with q channels, we must increase
the rank of the kernel to R(2s+1)×n×Q:

(x ∗ w)(`)q =
n∑

n′=1

s∑
j=−s

x
(`−j)
n′ w

(j)
i,q =

s∑
j=−s

(x(`−j))Tw(j)
:,q .

Finally, for completeness, we also show a 2D convolution with a rank-3 input
tensor x ∈ RK×L×n and a rank-4 kernel w ∈ R(2s+1)×(2s+1)×n×Q. Though we now have
two spatial dimensions, we use the same kernel size 2s+ 1 in each dimension.

(x ∗ w)(k,`)q =
n∑

n′=1

s∑
i=−s

s∑
j=−s

x
(k−i,`−j)
n′ w(i,j)

n,q

The two cases above (1D convolution with a rank-2 tensor input and rank-3 ker-
nel, and 2D convolution with a rank-3 tensor input and rank-4 kernel) are the only
two kinds of convolution we will employ in this work. Thus, the dimension of the
convolution and the rank of the kernel will be apparent based on the rank of the
input tensor.
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2D convolutions are frequently used in image processing contexts. Given an input
image x, 2D convolution of x with particular kernels can denoise, sharpen, or blur an
image. Other kernels can elicit information from a picture, such as the edge detection
kernel defined below:

w =

−1 −1 −1
−1 8 −1
−1 −1 −1


The convolved image x∗w will be large at pixels that differ significantly in value with
neighboring pixels (that is, near edges in the image), and will be small if the pixel is
similar in value to its neighbors. We draw analogy between the output of this kernel
and the elements of a neural network’s hidden layer, both of which have combined
low-level information from the input to present high-level features that may be useful
for learning tasks.

To connect convolutions with the framework of neural networks, we simply replace
the linear transformation in a feedforward neural network layer with a convolution:

hi = σ(hi−1 ∗ w + b).

Now the kernel elements w and the bias b are the trainable variables of the layer.
Here the bias is repeated across spatial dimensions, so b will have nQ independent
elements, where n and Q are the number of input and output channels of the kernel
w, respectively.

We can think of a convolutional layer as a learnable version of the image process-
ing kernel described above. This setup hinges on an additional assumption about the
data, namely that it is sensible to apply the same function to each (2s+ 1)× (2s+ 1)
square in the data, regardless of the particular spatial location of this square. This
is called the assumption of translation invariance. In return for satisfying the as-
sumption, the benefit is a layer with many fewer parameters than the fully connected
layer of a feedforward neural network. Additionally, whereas a fully connected layer
can only take in data of a particular dimension, the convolutional layer can process
any input with n channels, regardless of the size of the input’s spatial dimensions K
and L.

The same gradient descent-like algorithms that train feedforward neural networks
can be used on convolutional networks. Though our exposition above considered con-
volution as an operation between tensors of arbitrary rank, it can also be represented
as a linear transformation with certain kinds of matrices (Toeplitz matrices for 1D
convolution, and doubly block circulant matrices for 2D convolution [21]), and thus
the backpropagation algorithm can be implemented without significant changes from
the feedforward case.

CNNs are the current state of the art for image processing tasks, and like feed-
forward neural networks, high performing networks are subject to numerous modifi-
cations. We do not make use of many of these modifications, as the learning tasks
we consider are relatively tame for a CNN. Our inputs and outputs are always of
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Figure 1.1: A visual representation of an RNN. Here, the hidden state is represented
as s(t) and the output is represented as o(t). Retrieved from [21].

the same spatial dimensions, and thus we do not need to make use of any strided
convolutions, transposed convolutions, or pooling layers. We refer to [2] and [21] as
references for popular CNN modifications.

Recurrent Neural Networks

Another domain where variations on feedforward neural networks can lead to in-
creased flexibility and efficiency is that of sequence learning, where input and/or out-
put has a sequential structure. We represent the input as a sequence x = (x(1), . . . , x(L))
where x(`) ∈ Rn for each `. Elements of this sequence are often related either spatially
or temporally. This representation is appropriate for learning many kinds of data,
including natural language processing, audio processing, and bioinformatics [21].

The recurrent neural network (RNN) was introduced as a neural network for
sequential learning. The standard formulation of an RNN is given below.

a(`) = Ux(`) +Wh(`−1) + b

h(`) = σ(a(`))

ŷ(`) = V h(`) + c

At a particular time `, the input x, activation a(`) ∈ Rnh , hidden state h(`) ∈ Rnh ,
and output ŷ ∈ Rm are elements of sequences x, a, h, and ŷ of length L, respectively.
As before, σ is an activation function; tanh is a common choice for RNNs [21]. The
trainable variables are the input matrix U ∈ Rnh×n and input bias b ∈ Rnh , the
recurrent matrix W ∈ Rnh×nh , and the output matrix V ∈ Rm×nh and output bias
c ∈ Rm. The initial hidden state h0 is usually fixed, often the zero vector; however,
some RNN architectures have found it beneficial to regard h0 as a set of trainable
parameters [4]. A visual representation of an RNN is gives in Figure 1.1.

Note that trainable parameters are reused at each step, and the number of param-
eters is entirely independent of the input sequence length; we may run the machine
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to produce output sequence elements y(`) as long as we have more input sequence
elements x(`) to feed into the machine.

We can draw analogies between convolutional and recurrent neural networks: just
as CNNs are learned versions of image processing kernels, we can think of RNNs as
discrete-time dynamical systems with the internal machinery of a neural network.
Similarly, CNNs rely the assumption of translation invariance to reduce their total
number of parameters, while RNNs do the same through the Markovian assumption
that the hidden state at time ` is dependent only on the current timestep’s input x(`)

and the previous timestep’s hidden state h(`−1).
The target output of an RNN may be the entire output sequence y, such as cases

where we are interested in classifying each element of the sequence. The loss function
in this case simply sums over elements of y and ŷ, that is,

L(ŷ, y) =
L∑
`=1

Li(ŷ
(`), y(`)).

In other cases we may only be concerned with the final output ŷ(L), such as when
we wish to classify the sequence itself, rather than each element. In this case, earlier
elements of the output sequence ŷ are ignored, and L is simply a function of ŷ(L) and
y(L).

The same gradient descent style of learning is used in the training of RNNs.
However, the reuse of parameters means that we must modify the backpropagation
algorithm to obtain the correct gradients for the recurrent matrix W and input pa-
rameters U and b. Instead, the similar Backpropagation Through Time (BPTT)
algorithm [45, 58] supplies these gradients.

This RNN is able to capture dependencies between an input at step ` and any
timesteps that have come before it. However, we may have sequences with time de-
pendencies in both forward and backward directions. One straightforward solution to
this is to use a pair of RNNs, one running forward in time, and another moving back-
ward. We then concatenate their hidden layers. This pair is called a bidirectional
RNN; we will make use of these modified RNNs in Chapters 4 and 5.

1.5 Thesis Outline

This thesis is broken into two main parts.
In Chapter 2, we investigate a common difficulty in training RNNs called the van-

ishing/exploding gradient problem, a phenomenon wherein gradients backpropagated
through the RNN grow or decay exponentially in norm due to repeated multiplication
of the recurrent weight matrix W in the BPTT algorithm. Some of the most successful
methods for overcoming exploding and vanishing gradients modify the standard RNN
architecture to force W to remain orthogonal throughout training, at the expense of
complicated implementation. presents a novel orthogonal RNN architecture that en-
forces orthogonality of W by parametrizing with a skew-symmetric matrix A via the
Cayley transform. We present rules for computing backpropagation through the Cay-
ley transform, and show how to avoid issues with the Cayley transform’s singularity
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at orthogonal matrices with −1 eigenvalues via multiplication by a diagonal scaling
matrix. The resulting scaled Cayley orthogonal recurrent neural network (scoRNN)
is a simple RNN architecture that maintains orthogonality throughout training. We
compare its performance to competing orthogonal RNN architectures, and find that
the scoRNN exhibits highly competitive performance on several benchmark tasks.

The second part of this work is devoted to a problem in bioinformatics known as
RNA secondary structure inference, which asks, given an RNA sequence, which nu-
cleotides in this sequence form base pairs. Chapter 3 provides background regarding
RNA sequences and structures that is necessary for understanding this problem. We
also look at the state of the art bioinformatics tools for RNA secondary structure
inference, the nearest neighbor thermodynamic model (NNTM), to understand its
capabilities and limitations.

Chapters 4 and 5 each present a neural network architecture to solve problems
related to RNA secondary structure inference. In Chapter 4, we attack the related
problem of state inference using CNNs and bidirectional RNNs, and exhibit significant
improvements on this task over a benchmark hidden Markov model (HMM). We then
show how to convert state predictions from this network into auxiliary information
that we can supply to NNTM to augment its predictions, improving accuracy by 25
percentage points on a test set of 16S rRNA.

Finally, Chapter 5 introduces a novel neural network architecture based primarily
around a multilayer CNN that takes an RNA sequence as input and directly produces
base pair predictions. We then show how to convert this set of base pair predictions
into a coherent secondary structure. In addition to outperforming NNTM structure
predictions on 16S rRNA by nearly 50 percentage points, we show that this method
is able to generalize to many types of RNA, and that its flexibility allows it to make
predictions that NNTM is fundamentally unable to capture.
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Chapter 2 The Scaled Cayley Orthogonal RNN

This chapter describes the vanishing and exploding gradient problem, a known chal-
lenge in training recurrent neural networks, and presents a novel RNN training scheme
that successfully avoids this difficulty. The tendency of gradients in an RNN to grow
or decay exponentially over time, called the vanishing and exploding gradient prob-
lem, is a consequence of the BPTT algorithm that causes difficulty in training RNNs
on long sequences with dependencies over many timesteps. One class of algorithms
that effectively deals with vanishing and exploding gradients is orthogonal RNNs,
RNNs that use alternate representations and update steps to constrain an RNN’s
recurrent weight matrix W to remain orthogonal throughout training. We present
a novel orthogonal RNN architecture using a parametrization with a modified form
of the Cayley transform. The resulting scaley Cayley orthogonal RNN (scoRNN)
architecture is shown to outperform competing orthogonal RNN architectures on a
benchmark training task, and to beat the popular long short-term memory (LSTM)
architecture on a real-world training task.

2.1 Exploding and Vanishing Gradients

The RNN architecture described in Section 1.4 gives us a foundation from which
to attack sequential learning tasks. However, in many cases the optimization of
these networks remains difficult. This is particularly true when we have long-range
dependencies, where input at a particular time may have a strong effect on the
desired output many steps away.

In [5], Bengio et. al. provide an investigation into the gradients in an RNN that
reveals a major obstacle to successful and efficient learning of long-range dependen-
cies. This obstacle is most easily seen through computation of the gradient ∂L

∂h(t0)

of the hidden state at some timestep t0. Since the hidden state is how information
propagates from one timestep to the next, very large or very small values in this
gradient will lead to trouble in training.

For simplification, suppose we are training an RNN on a sequence classification
problem, so that the loss L depends only on the final output y(τ). Thus,

∂L

∂h(t0)
=

∂L

∂h(τ)

T ∂h(τ)

∂h(t0)
=

∂L

∂h(τ)

T τ∏
t=t0+1

∂h(t)

∂h(t−1)
.

From the RNN architecture described in Section 1.4, the gradient over any single
timestep t− 1 to t is

∂h(t)

∂h(t−1)
=
∂h(t)

∂a(t)
∂a(t)

∂h(t−1)
= diag

(
σ′(a(t))

)
W

and substituting this into the previous equation shows that the gradient is
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∂L

∂h(t0)
=

∂L

∂h(τ)

T τ∏
t=t0+1

(
diag

(
σ′(a(t))

)
W
)
.

Taking norms, we have

∥∥∥∥ ∂L

∂h(t0)

∥∥∥∥
2

=

∥∥∥∥∥ ∂L

∂h(τ)

T τ∏
t=t0+1

(
diag

(
σ′(a(t))

)
W
)∥∥∥∥∥

≤
∥∥∥∥ ∂L

∂h(τ)

∥∥∥∥
2

τ∏
t=t0+1

∥∥diag
(
σ′(a(t))

)∥∥
2
‖W‖2

≤
∥∥∥∥ ∂L

∂h(τ)

∥∥∥∥
2

‖W‖τ−t02

τ∏
t=t0+1

∥∥diag
(
σ′(a(t))

)∥∥
2

Since diag
(
σ′(a(t))

)
is diagonal, its 2-norm is equal to the largest entry on its

diagonal. With an activation function like ReLU, ‖diag
(
σ′(a(t))

)
‖2 will be 1 as long

as at least one activation in a(t) is positive, a reasonable assumption with batch
training. Thus, the inequality simplifies to∥∥∥∥ ∂L

∂h(t0)

∥∥∥∥
2

≤
∥∥∥∥ ∂L

∂h(τ)

∥∥∥∥
2

‖W‖τ−t02 .

Clearly, if ‖W‖2 < 1, the norm of the hidden state will decay exponentially over
timesteps. If ‖W‖2 is much smaller than 1, we cannot expect meaningful gradient
information to extend further than a few steps backward in time. This phenomenon
is referred to as the vanishing gradient problem.

Though it is not as easily shown through bounding norms, the opposite problem
can easily occur when ‖W‖2 > 1. In this case, gradients quickly become troublingly
large, causing instability and eventually overflow errors. This is called the exploding
gradient problem.

2.2 Solutions to Exploding and Vanishing Gradients

Broadly speaking, architectures that have exhibited significant success against the
vanishing and exploding gradient problem fall into two categories: gating mechanisms,
which incorporate additional parameters into the machine that control the flow of
information from input to hidden state, and orthogonal RNNs, which preserve the
norm of h(t) over time by restricting W to be orthogonal throughout training. The
two techniques and their relative advantages are described below.

Long Short-Term Memory & Gated RNNs

RNN architectures in this section are distinguished by the inclusion of additional in-
termediate vectors called gates. Unlike the vanilla RNN, in which we multiply the
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Figure 2.1: Diagram of a Long Short-Term Memory (LSTM) recurrent step. Re-
trieved from [8].

hidden state h by the recurrent matrix W at each step, these architectures introduce
additional intermediate vectors that control the flow of information from input to hid-
den state. This comes with the computational and memory storage cost of additional
parameters.

Gating mechanisms were introduced with the Long Short-Term Memory (LSTM)
framework [25] over 20 years ago. LSTMs remain by far the most popular RNN
variant, and are responsible for state of the art results on sequence learning tasks in
many domains, including NLP and bioinformatics [34].

Compared to the standard RNN, the LSTM uses four times as many input and
recurrent parameters, and keeps track of an additional memory cell c(t) of the same size
as the hidden state h(t). A diagram of the LSTM architecture is shown in Figure 2.1.
The equations used to generate the output of an LSTM are given below.

g(t) = σ(Ugx
(t) +Wgh

(t−1) + bg)

i(t) = σ(Uix
(t) +Wih

(t−1) + bi)

f (t) = σ(Ufx
(t) +Wfh

(t−1) + bf )

c(t) = c(t−1) ◦ f (t) + g(t) ◦ i(t)

o(t) = σ(Uox
(t) +Woh

(t−1) + bo)

h(t) = tanh(c(t)) ◦ o(t)

y(t) = V ht + c

We can think of the update to the hidden state h(t) as occurring in three stages:
First, from the input x(t) and previous hidden state h(t−1), we generate four in-

termediate vectors: the candidate cell state g(t), as well as the input gate i(t), forget
gate f (t), and output gate o(t). However, we note that unlike the arbitrary activation
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function in the regular RNNs, here σ always represents the sigmoid function, since
for theoretical purposes we would like elements of these vectors to be in (0, 1).

We combine g(t), i(t), and f (t) with the previous cell state c(t−1) to generate the
new state c(t). We can think of g(t) as information from x(t) that we are potentially
interested in adding to the current cell state. The multiplication of g(t) by the input
gate i(t) controls which of that information is added to the cell state. Analogously,
multiplication of c(t−1) by f (t) decides how much of the previous cell state we would
like to preserve.

Finally, the hidden state is generated with the new cell state c(t) and the output
gate o(t). The output gate controls how much of the new cell state we send to the
hidden state h(t).

Computation of the gradient of all of these parameters is rather complicated; see
[25] for gradient derivations and theoretical justification for this architecture.

Several heuristics specific to learning long-term dependencies with LSTMs have
been introduced. One is gradient clipping [42], in which we scale gradients so that
the largest values do not exceed a given threshold. This technique has been shown
to successfully combat exploding gradients, but does not fix the problem of vanishing
gradients. Another common practice is to initialize the forget gate bias bf with
large positive values. Intuitively, we can see that this will encourage the machine to
preserve information in the hidden state by making elements of f (t) close to 1, and
thus information from c(t−1) is approximately preserved when multiplied by f (t). A
more rigorous theoretical explanation for the success of this technique is explored
in [10].

Though the LSTM is by far the most well-known gated RNN architecture, several
others have shown promising results. Most notable among its contenders is the gated
recurrent unit (GRU), introduced in [11]. The GRU dispenses with the memory
cell and has three times the input and recurrent parameters of a vanilla RNN, as
compared to four times as many for an LSTM. Despite this, GRUs have exhibited
comparable performance to LSTMs.

Though primarily presented for the purposes of exploring the theoretical foun-
dations of gated RNNs, we also note the minimal RNN [10]. This architecture is
a further simplification of the GRU, and uses only double the recurrent parameters
of the vanilla RNN to achieve similar results as the LSTM and GRU on benchmark
NLP tasks.

Orthogonal RNNs

The computation in Section 2.1 shows that exploding and vanishing gradients are
a consequence of repeated multiplication by the recurrent matrix W . Exponential
growth or decay of this gradient’s norm over timesteps would not occur if ‖W‖2 = 1,
a necessary and sufficient condition for W to be orthogonal. This gives rise to the idea
of initializing W with an orthogonal matrix. However, in the absence of additional
constraints, even a single step of an additive update scheme like stochastic gradient
descent will destroy the orthogonality of W .
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This motivates the idea of using alternate training methods to preserve the or-
thogonality of W throughout training. This area was pioneered with the introduction
of the unitary evolution RNN [4] in 2015. In the intervening three years, a host of
update schemes that maintain orthogonality have been presented. We briefly consider
each below.

Unitary Evolution RNN (uRNN)

The unitary evolution RNN (uRNN, or restricted capacity uRNN) [4] replaces W
with a product of unitary matrices:

W = D3R2F−1D2ΠR1FD1

Here, Di is a diagonal matrix, Ri is a reflection matrix, Pi is a fixed permutation
matrix, and F is a discrete Fast Fourier transform. Each of the three diagonal
matrices is kept unitary by representing diagonal entries with eiωj , where each ωj ∈ R
is trainable. Similarly, both reflection matrices are defined by I−2 vv∗

‖v‖22
, where v ∈ Cnh

is trainable.
The nh trainable parameters in each D and the 2nh trainable parameters in each

R make for a total of 7nh trainable parameters.

Full-Capacity uRNN

In [61], Wisdom et. al. begin by noting that the 7nh trainable parameters in the
uRNN is insufficient for representing an arbitrary unitary matrix in Cnh×nh for real-
istically sized nh. To remedy this, they present the full capacity uRNN, an alternate
uRNN architecture based around work in [52] regarding matrix optimization on the
Stiefel manifold. In this architecture, W ∈ Cnh×nh , and the 2n2 parameters of W are
directly trained using the following multiplicative update, where ∂L

∂W
= [ ∂L

∂Wi,j
] and ∗

denotes the conjugate transpose operation.

B ← ∂L
∂W

∗
W −W ∗ ∂L

∂W

W ←
(
I + λ

2
B
)−1 (

I − λ
2
B
)
W

This update keepsW on the Stiefel manifold throughout training, and experiments
presented show that it is able to outperform [4] on several benchmark training tasks.

Other Work

Since the full capacity uRNN, there has been a host of other parametrization schemes
and optimization methods to force recurrent matrix orthogonality. Most notably,
these include the efficient unitary RNN (EURNN) [29], which parametrizes using
a product of Givens rotation matrices [15], and the orthogonal RNN (oRNN) [39],
which parametrizes with a product of Householder reflection matrices [15]. We note
that both of these architectures are presented with hyperparameters that control the
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capacity of the machine; best results from these machines are usually found in a
restricted capacity setting.

Other work in this area uses orthogonality to improve training without neces-
sarily constraining the recurrent matrix to strict orthogonality throughout training.
One such architecture is explored in [56]; here, the eigenvalues of W are allowed to
deviate from norm 1 by a small amount. Other architectures combine an orthogo-
nal/unitary weight matrix with a gating mechanism. A version with real parameters
was introduced as the gated orthogonal recurrent unit (GORU) [28], while a complex
arithmetic version was presented in [62].

2.3 Parametrization with the Cayley Transform

The Cayley Transform

The Cayley transform refers to a number of related transformations in several do-
mains, including complex numbers, quaternions, and others. In this chapter, the
Cayley transform will refer to the map with the domain of real matrices. We note
that nearly all of the results we present below have analogues for complex matrices.

Let C : Rnh×nh → Rnh×nh be the Cayley transform. This map is given by

C(W ) = (I +W )−1(I −W ).

The Cayley transform is undefined for matrices with −1 eigenvalues, as this would
result in 0 as an eigenvalue for I + W , rendering it singular and thus not invertible.
The map is defined for all other matrices in Rnh×nh .

Theorem 1. Let W ∈ Rnh×nh. All of the following hold:

(a) If λ is an eigenvalue of W , then λ−1
λ+1

is an eigenvalue of C(W ).

(b) C is an involution on its domain.

(c) C is a bijection between orthogonal matrices without −1 eigenvalues and skew-
symmetric matrices.

Proof. Part (a): Let x be an eigenvalue of W , and let λ be its associated eigenvalue.
Since every x is an eigenvector of I, x is an eigenvector of I − A and (I + A)−1, so

(I +W )−1(I −W )x = (λ− 1)(I +W )−1x =
λ− 1

λ+ 1
x.

Part (b): Note that by factoring (I +W )−1 on the left,

I + C(W ) = I + (I +W )−1(I −W ) = (I +W )−1(I +W + I −W ) = 2(I +W )−1.

and similarly, I − C(W ) = 2(I +W )−1W . Using this, we get
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C(C(W )) = (I + C(W))−1(I − C(W ))

= (2(I +W )−1)−1(2(I +W )−1W )

= (I +W )(1
2
)(2)(I +W )−1W

= W.

Part (c): Let W be an orthogonal matrix without −1 eigenvalues, and let eiθ be an
eigenvalue of W . By part (a), the following is an eigenvalue of A := C(W ):

eiθ − 1

eiθ + 1
=
eiθ − 1

eiθ + 1

(
e−iθ + 1

e−iθ + 1

)
=

eiθ − e−iθ

2 + eiθ + e−iθ

The numerator is imaginary, and the denominator is real, so this eigenvalue of A
is imaginary. Thus, the spectrum of C(W ) is contained in the imaginary axis. This
is a necessary and sufficient condition for C(W ) to be skew-symmetric, that is,
AT = −A. Conversely, let vi be an arbitrary eigenvalue of A. Both vi− 1 and vi+ 1
have modulus

√
1 + v2, so the modulus of their quotient will be 1, and the eigenvalue

vi−1
vi+1

of C(A) will lie on the unit circle. Thus, C(A) is orthogonal.
Thus, the Cayley transform is a bijection between the set of orthogonal matrices in

Rnh×nh without −1 eigenvalues and the set of skew symmetric matrices in Rnh×nh .

Part (c) of this theorem presents a potential method for parametrizing the recur-
rent matrix W of an RNN: we can regard W as a function of its Cayley transform
A, and entries of A as trainable parameters of the machine. This parametrization
is particularly attractive from a machine learning standpoint, as the set of skew
symmetric matrices is closed under addition. Thus, we can use standard gradient
descent algorithms, or variants like RMSprop or Adam, to train A while keeping W
orthogonal.

The limitations of this parametrization method are evident in the bijection: it is
impossible to represent orthogonal matrices with−1 eigenvalues in this manner. From
a theoretical standpoint, this is not a particularly dire concern; the set of matrices
with −1 eigenvalues is a set of measure 0 in Rnh×nh , and we can reach matrices with
eigenvalues arbitrarily close to −1 with skew-symmetric matrices.

However, in practice, representing a matrix W with eigenvalues near −1 requires
extraordinarily large values of A. As a concrete example, we consider an orthogonal
W and skew-symmetric A, both in R2×2, that form a bijective pair under the Cayley
transform. If A has off diagonal entries a and −a, it is simple to check that the
eigenvalues of A are ±ai. Thus, by Theorem 1a, eigenvalues of W are

±1 + ai

1− ai
= ±(1− ai)2

1 + a2
=

1− a2

1 + a2
± −2a

1 + a2
i.

Let λ be either of the eigenvalues of W ; then Re(λ) = 1−a2
1+a2

. From this relationship,
we can see that if we wish for W to have eigenvalues with real part −0.99, we will
need a ≈ ±14.1. Gradient descent algorithms will be extraordinarily slow to learn
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this A matrix. In a more extreme example, a λ with Re(λ) = −0.9999 will require
a ≈ ±447.21, far outside the realm of possibility for a neural network to learn.

More generally, since trainable neural network parameters have small entries, the
relationship between eigenvalues of A and W means that parametrization with the
Cayley transform is biased toward W matrices with eigenvalues near 1. Later, we
will see empirical results that suggest this is not desirable for learning tasks.

The Scaled Cayley Transform

The drawbacks associated with parametrization through the Cayley transform can
be remedied with a small adjustment, which comes from [41].

Theorem 2. Every orthogonal matrix W can be expressed as

W = (I + A)−1(I − A)D

where A = [aij] is real-valued, skew-symmetric with |aij| ≤ 1, and D is diagonal with
all nonzero entries equal to ±1.

In practice, −1 entries of D negate columns of the Cayley transform C(A). Thus,
this theorem shows that any orthogonal matrix W can be represented by negating
columns of C(A) for some A, and further guarantees that this can be done for an A
matrix with relatively small entries, assuming we have chosen D correctly.

We will use the transformation in Theorem 2 to parametrize W with A, leaving
D fixed. If we are to train the parameters in A, then we will need to know how to
backpropagate through the scaled Cayley transform to find the matrix derivative ∂L

∂A
.

The following theorem gives this matrix derivative.

Theorem 3. Let L be a differentiable loss function for an RNN with recurrent weight
matrix W . Let W = W (A) := (I +A)−1(I −A)D where A is skew-symmetric and D

is diagonal and fixed. Then the gradient ∂L
∂A

=
[

∂L
∂Ai,j

]
is

∂L

∂A
= V T − V V = (I + A)−T

∂L

∂W
(D +W T ).

where ∂L
∂W

=
[

∂L
∂Wi,j

]
∈ Rnh×nh.

Proof. Consider the derivative of the (i, j) entry of ∂L
∂A

:

∂L

∂Ai,j
=

nh∑
k,l=1

∂L

∂Wk,l

∂Wk,l

∂Ai,j
= tr

(
∂L

∂W

T ∂W

∂Ai,j

)
We left-multiply by (I + A)−1 to get (I + A)W = (I − A)D. Taking the derivative
with respect to Ai,j and rearranging gives
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∂W

∂Ai,j
+

∂A

∂Ai,j
W + A

∂W

∂Ai,j
= − ∂A

∂Ai,j
D

(I + A)
∂W

∂Ai,j
= − ∂A

∂Ai,j
D − ∂A

∂Ai,j
W

∂W

∂Ai,j
= −(I + A)−1

∂A

∂Ai,j
(D +W )

Let Ei,j denote the matrix whose (i, j) entry is 1 with all others being 0. Since A
is skew-symmetric, we have ∂A

∂Ai,j
= Ei,j − Ej,i, giving

∂W

∂Ai,j
= (I + A)−1(Ej,i − Ei,j)(D +W ).

With the above, we can now directly calculate the derivative ∂L
∂Ai,j

Below, we use

the cyclic invariance of traces, as well as the fact that tr(ZEi,j) = zj,i.

∂L

∂Ai,j
= tr

(
∂L

∂W

T ∂W

∂Ai,j

)
= tr

(
∂L

∂W

T

(I + A)−1(Ej,i − Ei,j)(D +W )

)
= tr

(
(D +W )

∂L

∂W

T

(I + A)−1(Ej,i − Ei,j)
)

= tr

(
(D +W )

∂L

∂W

T

(I + A)−1Ej,i

)
− tr

(
(D +W )

∂L

∂W

T

(I + A)−1Ei,j

)
=

[
(D +W )

∂L

∂W

T

(I + A)−1
]
i,j

−
[
(D +W )

∂L

∂W

T

(I + A)−1
]
j,i

=

[
(D +W )

∂L

∂W

T

(I + A)−1
]
i,j

−
[
(I + A)−T

∂L

∂W
(D +W T )

]
i,j

Using the above formulation, ∂L
∂Aj,j

= 0 and ∂L
∂Ai,j

= − ∂L
∂Aj,i

so that ∂L
∂A

is a skew-

symmetric matrix. Finally, by the definition of V we get the desired result.

2.4 The scoRNN Architecture

We use results from the previous section to introduce our novel orthogonal RNN
architecture, called the scaled Cayley orthogonal RNN, or scoRNN. The forward pass
of this RNN is identical to the vanilla RNN given in Section 1.4, as is training for the
input and output parameters. Instead of directly training the recurrent matrix W , we
parametrize it through the scaled Cayley transform W = (I + A)−1(I − A)D. Here,
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W is a function only of A, as D a fixed diagonal matrix, chosen before training. Since
the placement of +1 and −1 entries on the diagonal of D does not affect training,
this choice of D is reduced to a single hyperparameter ρ that refers to the number of
−1 entries in D.

The training of A is shown below. At each iteration of training, we use the
standard BPTT algorithm to find ∂L

∂W
. With this matrix derivative in hand, we use

Theorem 3 to find the matrix derivative ∂L
∂A

. We then update A using our optimization
algorithm of choice, and finally use this new A to generate W .

∂L
∂A
← (D +W ) ∂L

∂W

T
(I + A)−1 − (I + A)−T ∂L

∂W
(D +W T )

A← A− η ∂L
∂A

W ← (I + A)−1(I − A)D

This training process has several benefits relative to other unitary and orthogonal
RNNs. As previously noted, this is an additive update step, and thus is compatible
optimizers like RMSprop [54] that have been successfully employed in deep learning
contexts. Another benefit is the regeneration of W through the Cayley transform,
which ensures that orthogonality is maintained to machine precision at each iteration
of training. This is contrast to the full-capacity uRNN, whose multiplicative update
step is susceptible to gradual loss of orthogonality over time.

Complexity

The time complexity of the BPTT algorithm is O(bLn2
h), where b is minibatch size

and ` is the length of the sequence. To update A, out method requires several matrix
multiplications and the requires matrix inverse (I +A)−1, which is order O(n3

h) [15].
However, these steps are performed after the BPTT algorithm is complete, giving
this method O(bLn2

h +n3
h) complexity. Unless the hidden size nh is much larger than

bL, this does not represent a significant increase in time complexity. In particular,
on problems with long-range dependencies where orthogonal RNNs will be useful, L
will often be in the hundreds or thousands, making bL much larger than nh for even
a small batch size.

Activation Function

In addition to pioneering the use of unitary RNNs, [4] introduced a novel activation
function, called the modReLU, designed to be compatible with unitary RNNs. Unlike
activation functions like tanh and ReLU, modReLU separates the bias b from the
activation z:

σmodReLU(z) =
z

|z|
σReLU(z + b) =

{
z
|z|(z + b) if z + b > 0

0 if z + b < 0

The modReLU was originally introduced for use with the restricted-capacity
uRNN, which has complex parameters. Regardless, we found increased performance
in the real case with the scoRNN. In the real case this simplifies to
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σmodReLU(z) =

{
sign(z)(z + b) if z + b > 0

0 if z + b < 0

Initialization
We tested several initialization methods, and found the most effective to be one

inspired by [23]. We initialize A as a block diagonal matrix with 2× 2 blocks Bj:

A =

B1

. . .

Bbnh/2c

 where Bj =

[
0 sj
−sj 0

]
.

Here sj =
√

1−cos (tj)
1+cos (tj)

and tj sampled uniformly from
[
0, π

2

]
. The Cayley transform

of this A will have eigenvalues equal to e±itj for each j, which will be distributed
uniformly along the right half of the unit circle. Multiplication by the scaling matrix
D will reflect ρ of these eigenvalues across the imaginary axis to the left half of the
unit circle.

Experiments

There exist several benchmark tasks for orthogonal RNNs that test their ability to
learn long-range dependencies. Many of these are synthetic tasks that gated archi-
tectures like the LSTM fail to excel at. The remainder of this chapter is devoted to
presenting the results from several such experiments.

2.5 Copying Problem Experiments

This section presents the results of performing several experiments on the copying
problem, a benchmark task testing RNNs’ ability to learn long-range dependen-
cies. This experiment follows descriptions found in other work exploring orthogonal
RNNs [4, 29, 61], and tests an RNN’s ability to reproduce a sequence seen many
timesteps earlier. In the problem setup, there are 10 input classes, which we denote
using the digits 0-9, with 0 being used as a ‘blank’ class and 9 being used as a ‘marker’
class. In practice, these digits are represented with a one-hot encoding. The RNN
receives an input sequence of length T + 20. This sequence consists of entirely zeros,
except for the first ten elements, which are uniformly sampled from classes 1-8, and
a 9 placed ten timesteps from the end. The goal for the machine is to output zeros
until it sees a 9, at which point it should output the ten elements from the beginning
of the input sequence. An example pair of input-output sequences with T = 5 is
given below.

Input: 8 3 4 1 2 5 5 6 3 2 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0
Target Output: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 3 4 1 2 5 5 6 3 2

Learning long-range dependencies are central to this learning task, as the machine
must see an input and then output it T+10 timesteps later. As T increases, exploding
or vanishing gradients become a major obstacle to successful learning.
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Table 2.1: Table of hidden sizes and total number of trainable parameters of each
machine used in the copying problem experiment

Machine Hidden Size (nh) Trainable Parameters

LSTM 60 ≈ 22k

scoRNN 190 ≈ 22k

Rest. uRNN 470 ≈ 22k

Full uRNN 128 ≈ 22k

EURNN 512 ≈ 10.8k

If information from the beginning of the sequence is not available, one strategy
for minimizing the loss is to output 0 until the machine sees a 9, and then outputting
10 elements randomly sampled from classes 1-8. The expected cross-entropy for such
a strategy is 10 log (8)

T+20
. We regard this strategy as the baseline for this task; in practice,

it is common to see gated RNNs such as LSTMs converge to this local minimum.
We tested the scoRNN against an LSTM, both restricted capacity and full ca-

pacity uRNNs, the EURNN, and the oRNN. These experiments use a single hidden
layer and do not include any regularization methods like a loss function regularization
term, dropout, or batch normalization. Consistent with reports from [39], we found
that oRNN did not give satisfactory results on this problem, and we omit its per-
formance from the figures presented later in this section. For the competing unitary
and orthogonal RNNs, we used hyperparameter configurations and hidden state sizes
as reported in their experiments on this problem [4, 29, 61]. Most of these machine
sizes are standardized to match the number of trainable parameters in the machine
to be ≈ 22000; we chose hidden sizes nh for the LSTM and scoRNN in accordance
with this, and performed a grid search to find best hyperparameters. In particular,
we found the best performance with the scoRNN came from ρ = nh/2. The hidden
state size and number of trainable parameters in each model are given in Table 2.1.

Figure 2.2 compares each model’s performance for T = 1000 and T = 2000,
with the cross entropy of the baseline strategy shown as a dashed line. In both
cases, cross entropy for the LSTM, restricted-capacity uRNN, and EURNN remains
at the baseline or does not entirely converge over the entire experiment. For the
T = 1000 test, the full-capacity uRNN and scoRNN converge quickly to zero entropy
solutions, with the full-capacity uRNN converging slightly faster. For T = 2000,
the full-capacity uRNN remains at the baseline for several thousand iterations, but is
eventually able to find a solution that bypasses the baseline. In contrast, the scoRNN
error has a smooth convergence that passes the baseline within the first few hundred
iterations of training.

scoRNN Hyperparameter Comparison

We also exhibit a small experiment on the copying problem designed to display the
effects of modulating the scoRNN hyperparameter ρ, the number of −1 entries in the
scaling matrix D. We tested several hyperparameter configurations of scoRNN on the
copying problem with T = 100. These configurations were identical to the machine
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Figure 2.2: Cross entropy of each machine on the copying problem with T = 1000
(left) and T = 2000 (right).

used in the previous experiment except for the hidden size, which we slightly increase
to 200, and ρ, which we vary among 0 and 200 in intervals of 50.

The results of this experiment are displayed in Figure 2.3. As noted in the previous
section, a scoRNN with ρ = nh/2 gives the best performance on this task. Immedi-

Figure 2.3: Several scoRNN models on the copying problem with T = 100 for varying
values of ρ
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ately we see that the best performance is given when ρ = nh/2, followed closely by
ρ = nh/4 and ρ = 3nh/4. More interesting is performance at the extremes ρ = 0 and
ρ = nh. When ρ = 0, training is initially comparable to the more successful models,
but stalls after a few hundred iterations. On the other hand, initial training with
ρ = nh is by far the slowest to start, taking 100 more iterations than all other models
to cross the baseline, but it continues to improve and eventually surpasses ρ = 0.

These results provide empirical evidence that the scaling matrix D is beneficial
to training: the low performing ρ = 0 corresponds to the case where D = I, meaning
that the Cayley transform is unscaled. Recall that we initialize A in such a way that
C(A) has eigenvalues distributed uniformly on the right half of the unit circle, and
that D reflects ρ of these eigenvalues across the imaginary axis. This experiment
suggests that successful training on a problem with long-range dependencies like this
requires a recurrent matrix with eigenvalues with negative real part, and that the
scoRNN struggles to reach these eigenvalues in the absence of any scaling. In the
case of the copying problem, our best performance of ρ = n/2 initializes W with
eigenvalues uniformly distributed around the entire unit circle.

2.6 RNA State Inference Experiments

Figure 2.4: Performance of scoRNN vs. an LSTM on the simplified state inference
problem

We present a simplified version of the state inference task addressed in depth
in Chapter 4 to test the scoRNN architecture against an LSTM on a learning task
involving real world data. We use the same training and test sets as in state inference
experiments in Chapter 4, but we cut off sequences after the first 300 elements of
the input and output sequences. The machines we use are RNNs with one hidden
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layer, and not bidirectional. We emphasize that the results in this section cannot be
directly compared to those in Chapter 4, as we have simplified both the training task
and the machines here.

As in the copying problem, we match the number of trainable parameters in
each machine through our choice of the hidden size; here, we have nh = 360 for the
scoRNN, and nh = 128 for the LSTM. Both machines were trained with RMSprop.
We again use ρ = nh/2 for the scoRNN to initialize with eigenvalues of W distributed
uniformly around the unit circle.

Test set accuracy from each of these models throughout the training process is
displayed in Figure 2.4. The scoRNN is clearly much faster at training, as it jumps
up to 70% accuracy within 500 training iterations. Though the gap between scoRNN
and LSTM performance shrinks during training, it still maintains an advantage over
the LSTM after 5000 iterations.

Copyright c© Devin Willmott, 2018.
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Chapter 3 RNA Sequences and Structures

The final two chapters of this work explore deep learning methods for solving the prob-
lem of RNA secondary structure inference. This chapter gives necessary background
for understanding RNA secondary structure inference, gives a formal definition to
the problem, and presents the existing state of the art methods for secondary struc-
ture inference in the bioinformatics community. In particular, we detail the inner
workings of the nearest neighbor thermodynamic model (NNTM), which uses hand-
tuned parameters based on the physical and chemical properties of RNA to assign
each RNA sequence an energy term. NNTM then efficiently produces a predicted
structure based on this energy using a dynamic programming algorithm that exploits
the loop structure of RNA, which we present in some detail.

We will use the concepts introduced in this chapter to inform our model choices
and analyze results when we present our own secondary structure inference methods
in Chapter 4, where we combine deep learning with NNTM predictions, and Chapter
5, where we use a neural network that directly produces base pair and structure
predictions.

3.1 RNA

Ribonucleic acid (RNA) is one of the three essential macromolecules involved in the
propagation of genetic information. See [13] for an introduction to cellular biology.
In this work, it will be sufficient for us to represent an RNA sequence of length L as
a sequence r = (r1, . . . , rL). Each sequence element ri is a nucleotide or base. In
an RNA sequence, the vast majority of nucleotides are one of four types: adenine,
cytosine, guanine, and uracil, denoted A, C, G, and U, respectively. We denote the
rare cases where other nucleotides appear in RNA, or cases where the nucleotide is
not known, with X. Thus, ri ∈ {A,C,G, U,X}.

Nucleotides in an RNA sequence form hydrogen bonds with one another to create
a base pair. Unlike double-stranded DNA, whose nucleotides pair with those from
another nucleic acid sequence, RNA found in nature is usually single-stranded: base
pairs form among nucleotides in the same RNA sequence. As in all nucleic acids,
the most common base pairs are between cytosine and guanine (C-G pairs), and
between adenine and uracil (A-U pairs). These are called Watson-Crick base pairs,
or canonical base pairs. In RNA, we also frequently see bonds between guanine
and uracil (G-U pairs), called wobble pairs, so named for their instability relative to
Watson-Crick base pairs. Within an RNA sequence, we refer to a base pair using
the indices of its bases in r; that is, a base pair between ri and rj is denoted (i, j),
with i < j. We refer to the property of being paired or unpaired as the state of the
nucleotide.

Numerous base pairs form in a single strand of RNA, leading to a folded RNA
structure. Unlike more flexible macromolecules like proteins, RNA is largely stable
at room temperature, and its structure is dependent only on the sequence itself, rather
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than external conditions. The structure an RNA sequence forms in nature is referred
to as its native structure.

Structure can refer to any of a number of abstractions of the folded RNA sequence:

• Tertiary structure is the relative position of nucleotides in three-dimensional
space.

• Secondary structure is the projection of the tertiary structure onto two-
dimensional space. A sufficient description of secondary structure is the set of
base pairs among a sequence’s bases.

• Primary structure is the projection of tertiary structure onto one-dimensional
space. This is described by the sequence of nucleotides.

An RNA sequence’s native secondary structure gives important information about its
function[20, 38], but is often difficult to observe directly [9, 19]. This motivates the
problem of secondary structure prediction or secondary structure inference:
given an RNA sequence r (that is, given its primary structure), we would like to find
its native secondary structure S. In the following, we occasionally refer to this simply
as structure prediction. This is the central problem that the remainer of this work
will address.

More formally, a secondary structure S is a set of base pairs between nucleotides
in r where:

1. Each nucleotide in r is in at most one base pair;

2. Each base pair is a Watson-Crick base pair or a wobble pair, that is, if (i, j) ∈ S
then {ri, rj} ∈ {{A,U}, {C,G}, {G,U}};

3. There are at least 3 bases between each base in a base pair, that is, |j − i| > 3
for all (i, j) ∈ S;

4. Base pairs follow the nesting property: for any two base pairs (i, j) and (i′, j′)
in S where i < i′, either

i < i′ < j′ < j or i < j < i′ < j′.

The nesting property is most easily understood graphically, as in the arc diagram
in Figure 3.1, which shows an RNA sequence with secondary structure

{(1, 22), (2, 21), (3, 20), (5, 13), (6, 12), (7, 10), (14, 18)}
as seen by the edges connecting these nucleotides. A collection of base pairs has the
nesting property if and only if we can draw an arc diagram without any intersecting
arcs; for example, adding the base pair (16, 19) to the set above would disrupt the
nesting property.

We note that the nesting property is a slight simplification of the true nature of
RNA structure. In rare cases, base pairs that do not respect the nesting property may
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Figure 3.1: An RNA sequence of length L = 23. Nucleotides are shown above their
index, and arcs are drawn between nucleotides in a base pair.

form in nature. These pairs, referred to as pseudoknots, are relatively rare among
base pairs, and are frequently omitted entirely from the secondary structure [26].
Unless otherwise noted, we assume that all secondary structures have the nesting
property. We will briefly return to the topic of pseudoknots and how to predict them
in Chapter 5.

The nested nature of base pairs in a secondary structure allows us to partition an
RNA sequence into subsets referred to as loops. Let (i, j) ∈ S. The loop closed
by (i, j), denoted Li,j, is the set of nucleotides v such that i < v < j and there exists
no other base pair (i′, j′) ∈ S such that i < i′ < v < j′ < j. More intuitively, a
nucleotide is in loop Li,j if it can ‘look up’ in the arc diagram and ‘see’ base pair
(i, j). The null loop L0 contains all those nucleotides not in any loop enclosed by a
base pair. Thus, loops form a partition of r: every nucleotide in r is in exactly one
loop, and each base pair in S encloses at least one nucleotide of r.

Base pairs between nucleotides inside Li,j are said to be enclosed by (i, j), but
note that the loop definition above excludes the base pair (i, j) from the loop Li,j
that it closes. Partitioning a structure into loops allows us to classify the various
substructures it creates, based on the number and arrangement of base pairs each
loop encloses. For a loop Li,j and secondary structure S, some classes of loops are
listed below.

• A hairpin loop is a loop with no paired nucleotides: Li,j = {i+ 1, . . . , j − 1}.

• A stacked (base) pair is a loop that only encloses two base paired nucleotides:
Li,j = {i+ 1, j − 1}, and (i+ 1, j − 1) ∈ S.

• An internal loop contains a pair of bonded nucleotides i′ and j′, and there
exist unpaired nucleotides between i and i′, and between j and j′.

• A bulge loop contains a pair of bonded nucleotides i′ and j′, and either i′ = i+1
or j′ = j−1, that is, all unpaired nucleotides are on one side of (i, j) and (i′, j′).

• A multiloop contains two or more bonded pairs of nucleotides.
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Due to their stabilizing nature, we will often see stacked pairs occurring in tightly
nested clusters, such as

{(i, j), (i+ 1, j − 1), . . . , (i+ k, j − k)} ⊂ S.

This collection of base pairs is a helix. The example above is a helix of length k.
If there are no other adjacent base pairs in S (that is, if (i − 1, j + 1) /∈ S and
(i+ k + 1, j − k − 1) /∈ S, in the above example) then it is a maximal helix.

RNA Types

There exists a large number of families of RNA that vary enormously in function and
length. We will largely disregard the particular role each family plays in the transfer
of cellular information, but it is natural to group together sequences of the same
family. In ascending order of length, we will consider 5S ribosomal RNA, Group I
Introns, Ribonuclease P, 16S ribosomal RNA, and 23S ribosomal RNA. The smallest
of these are between 100 and 200 nucleotides, while 23S rRNA sequences can exceed
3000 nucleotides.

We are interested in developing secondary structure inference methods that are
compatible with a broad range of RNA types. However, we will also pay special
consideration to 16S ribosomal RNA. Relative to other RNA families, 16S rRNA
structures are particularly well understood [22]. This translates to larger datasets
of 16S sequences with known secondary structures, a clear advantage in a machine
learning context.

3.2 Secondary Structure Inference Methods

When homologous sequences (sequences with a shared ancestry) with known sec-
ondary structure are available, comparative sequence analysis methods are the gold
standard for secondary structure inference [7, 22]. Without these, the preferred
method is a thermodynamic energy minimization method referred to as the Nearest
Neighbor Thermodynamic Model (NNTM) [55, 48]. This model has been used and
studied for decades, and the currently used set of parameters, the Turner parameters,
has existed mostly unchanged since 1999 [55].

Given any secondary structure S of an RNA sequence r, NNTM assigns a numer-
ical value to S called its free energy, denoted E(r, S), by looking for the presence
of various substructures in S. Though the specific values of free energy used in the
model have well-founded physical and chemical interpretations, for our purposes it
is sufficient to think of negative energy as corresponding to stabilizing substructures
(more specifically, stacked pairs), while positive energy corresponds to destabilizing
substructures (most other substructures). An RNA sequence r will naturally fold to
maximize its stability; thus, under this model, we hope to find the secondary structure
with smallest free energy, that is,

S∗ := argmin
S

E(r, S)
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where the argmin is over all possible secondary structures. This secondary structure
S∗ is referred to as the minimal free energy structure (MFE structure), and
constitutes the model’s prediction as to the native secondary structure of r.

Each nucleotide in an RNA sequence can potentially pair with hundreds of other
nucleotides, leading to a combinatorial explosion of possible secondary structures as
the length of r increases. Computation of the MFE structure is made tractable with
dynamic programming methods that exploit the loop structure of RNA secondary
structures. NNTM assigns an energy to each loop in S, denoted e(r, Li,j). This
energy is determined by its type and size, the nucleotides and base pairs enclosed by
the loop, and the enclosing loop. Energy is additive, and each loop’s free energy is
independent of the other loops in the secondary structure:

E(r, S) = e(r, L0) +
∑

(i,j)∈S

e(r, Li,j).

Below, we sketch the recursion that NNTM uses to make the prediction of the
MFE structure S∗ tractable. For a full exposition of this process, see [55].

Let ri:j = ri, . . . , rj, and let Ẽ(ri:j) = minS E(ri:j, S), the minimum energy over
all possible secondary structures of ri:j. To allow us to use dynamic programming
methods here, we note a recursive relationship between Ẽ(ri:j) and subsequences of
ri:j. Consider the states of i and j. Any secondary structure S of ri:j will meet exactly
one of the following 5 criteria:

1. i and j are both unpaired

2. i is unpaired, and (k, j) ∈ S for some i < k < j

3. j is unpaired, and (i, k) ∈ S for some i < k < j

4. (i, j) ∈ S

5. (i, ki) ∈ S and (kj, k) ∈ S for some i < ki < kj < k

The minimum energy of ri:j can be expressed in terms of the minimum energy of
a subsequence of ri:j according to which of the five categories the MFE structure of
ri:j falls into.

Ẽ(ri:j) = min



Ẽ(ri+1:j−1)

Ẽ(ri+1:j)

Ẽ(ri:j−1)

Ẽ(ri+1:j−1) + e(ri:j, Li,j)

mini<k<j Ẽ(ri:k) + Ẽ(rk:j)

where, in the first three lines, we add the appropriate elements to the null loop L0,
and in the fourth line Li,j is understood to contain all of the nucleotides in the null
loop of the MFE structure of ri+1:j−1.
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We can begin by calculating Ẽ(ri:i+3) for 1 ≤ i ≤ L − 3, as by the secondary
structure definition these are the smallest subsequences in which base pairs may
occur. We then use the recursive relationship above to efficiency calculate Ẽ(ri:j) for
any i, j with 1 ≤ i < j ≤ L. If we keep track of all of these minimum energies, we
can backtrack from Ẽ(r1:L) to find the MFE structure S∗.

A common hard constraint on this optimization is a maximum distance d between
nucleotides. Motivation for this is twofold. Most directly, it eases computational
costs; with this constraint, current implementations are able to produce an MFE
structure in O(Ld2) time with O(L + d2) memory costs [18]. Further, this assump-
tion leads to more realistic predictions in practice. Fewer than 1% of base pairs in
known native secondary structures exceed a commonly used maximum distance of
d = 600 [14], and it has been observed that structure predictions composed of several
smaller, locally optimal structures are more realistic predictions than one densely
interconnected globally optimal structure [18].

Various implementations of NNTM exist; in Chapter 4, our experiments will all
use GTfold [49]. Other popular variants include RNAStructure [43], UNAfold [37],
and ViennaRNA package [35].

The advantages and disadvantages of NNTM are well known. NNTM is highly
accurate on small sequences, but has a roughly inverse relationship with sequence
length [44]. More troublingly, there has been recent investigation into the funda-
mental ill-conditioning of NNTM [31, 32, 44]. It is known to be highly sensitive
to parameter perturbations, and there are many diverse secondary structures with
similar energies.

Measuring Secondary Structure Prediction Accuracy

Let Spred be our prediction of a native secondary structure Snative. When evaluating
predicted secondary structures, we compare its set of base pairs with those of the
native structure. A base pair (i, j) is counted as true positive (TP) if it appears in
both the predicted and native structure (if (i, j) ∈ Spred∩Snative), a false positive (FP)
if it is in the predicted structure but not the native structure (if (i, j) ∈ Spred\Snative),
and a false negative (FN) if it appears in the native structure and not in the predicted
structure (if (i, j) ∈ Snative \ Spred). We report on several useful [20] measures of
performance for our secondary structure inference methods: positive predictive value,
or PPV, the proportion of true positives in the predicted structure ( TP

TP+FP
); as well as

sensitivity, the fraction of true positives in the native structure ( TP
TP+FN

). Finally, we

define accuracy to be the arithmetic mean of PPV and sensitivity: 1
2
( TP
TP+FP

+ TP
TP+FN

).

3.3 SHAPE and Data-Directed NNTM

NNTM is capable of receive auxiliary information in addition to the RNA sequence
to improve the accuracy of its predicted structure. We call this augmented model
data-directed NNTM.

The most successful incorporation of auxiliary information into NNTM comes
from SHAPE, which stands for selective 2’-hydroxyl acylation analyzed by primer
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extension [59]. SHAPE is a value associated to each nucleotide of a sequence; this
value is a representation of the local flexibility of an RNA sequence, measured by
high-throughput chemical probing. SHAPE can take on any nonnegative value, and
experiments have shown that a nucleotide’s SHAPE is highly correlated with its state,
a relationship that we can use with NNTM to improve MFE accuracy [14].

Several methods of incorporating SHAPE data into NNTM have been explored [36].
We focus on the method presented in [57], which associates a pseudo-free energy to
each nucleotide based on its SHAPE. For a nucleotide r`, this energy ∆GSHAPE(`) is
given by

∆GSHAPE(`) = 2.6 · ln(SHAPE(`) + 1)− 0.8.

This pseudo-free energy is added to any stacked pair involving nucleotide `. The
result is a soft constraint that discourages NNTM from forming base pairs among
nucleotides with high SHAPE. Using SHAPE data to direct NNTM in this manner
has been shown to have a large positive effect on MFE accuracy, as in [14], where
SHAPE direction increased MFE accuracy on Escherichia coli 16S rRNA by more
than 30 percentage points.

Exploration into the nature of SHAPE-directed NNTM has shown that improve-
ments over regular NNTM are correlated with undirected MFE accuracy [48]; that
is, low-accuracy NNTM predictions are not significantly improved through SHAPE
direction. Beyond this, the efficacy of SHAPE-directed NNTM is limited by the avail-
ability of SHAPE data. SHAPE is based on real-world chemical experiments that
are time-consuming to carry out; as noted in [60], SHAPE data collection for a 100-
200 nucleotide sequence takes up to two days. Thus, SHAPE-directed NNTM is a
promising but currently mostly inaccessible improvement in RNA secondary structure
inference.
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Chapter 4 Improving NNTM via State Inference with Neural Networks

This chapter presents our first venture into using deep learning to attack the problem
of RNA structure inference. Instead of using neural networks to directly generate
a predicted RNA structure, we present a method for structure inference based on
a novel deep learning method that supplies auxiliary information to direct NNTM.
To do so, we present a neural network architecture for the problem of predicting
the state of each nucleotide in an RNA sequence; this is a binary classification on
each element of a sequence, and is thus compatible with convolutional and recurrent
network layers. We train both our method and a benchmark hidden Markov model
(HMM) on sets of 16S rRNA sequences. We see that our machine outperforms the
benchmark by an average of 15 percentage points on a test set, and explore how well
each method is able to capture global RNA state patterns, like length and number of
paired regions.

We then examine correlations between nucleotide state and real SHAPE data to
derive a novel method for converting state predictions into synthetic SHAPE data.
With this synthetic SHAPE in hand, we then use it to direct NNTM and provide a
predicted structure to the original RNA sequence. The entire pipeline, which we call
predicted state directed NNTM, is a secondary structure method that is applicable to
any RNA sequence and requires no information beyond the sequence itself. On a test
set of 16S rRNA, predicted state directed NNTM improves average MFE accuracy
from 40.8% to 66.4%, an increase of over 25 percentage points.

4.1 SHAPE-Directed NNTM Without SHAPE

As noted in Chapter 3, SHAPE direction is capable of dramatically increasingly the
accuracy of NNTM predictions. A severe limitation to SHAPE-directed NNTM is
the availability of SHAPE data, which is costly to determine.

The correlation between nucleotide state and SHAPE was investigated in [48].
There, the authors present distributions for the value of a nucleotide’s SHAPE data
based on its state, and use these distributions to stochastically generate synthetic
SHAPE data. Directing NNTM with this synthetic SHAPE is shown to dramati-
cally improve its accuracy, as exhibited by its application to a test set of 16S rRNA
sequences.

The investigation in [48] includes many interesting findings about interactions
among SHAPE data, nucleotide state, and secondary structure, but the methods
presented are not a viable method for secondary structure inference: the method
uses information from the known secondary structure to generate the SHAPE that
influences NNTM predictions. However, their work shows how knowledge about
the state of each nucleotide in the sequence can be translated into improvements in
secondary structure inference accuracy.

This chapter presents a method for improving the RNA secondary structure pre-
diction partially inspired by this work. We first present a deep learning method for

36



determining the state of each nucleotide of an RNA sequence, which we refer to as
state inference. State inference is a binary classification task on each nucleotide, so
we can easily set up an RNN for the problem of state inference, where the input is
the sequence of nucleotides and the output is a binary sequence of the same length.
We develop, train, and test a deep recurrent neural network that performs this task.
Given an RNA sequence, the machine outputs a probability that each nucleotide is
paired. We can threshold this probability to obtain binary predictions for the state
of each nucleotide.

To connect this to structure inference, we present our own method for converting
our neural network’s probabilistic state predictions into synthetic SHAPE, and we use
this SHAPE data to direct secondary structure predictions via NNTM. This direction
leads to significant improvements over secondary structure accuracy on sequences
where our state inference method performs well. The full pipeline is a novel method
applicable to any 16S rRNA sequence, and combines machine learning with existing
thermodynamic structure inference methods to improve accuracy.

Although we are primarily interested in using state inference to direct secondary
structure predictions, we note that there exist other motivations for state inference.
For example, such a method could be used to identify binding sites in RNA-RNA
interactions [16, 51].

4.2 Methods

Directing NNTM With State Information

Our proposed method for secondary structure inference uses a viable method for state
inference with the ability to influence the NNTM energy function on a per-nucleotide
basis via SHAPE direction. Our method is a three-step process:

1. A machine learning method for predicting the state of each nucleotide in a
sequence;

2. A function converting these state predictions into artificial SHAPE data;

3. The SHAPE-directed NNTM function that takes both the original RNA se-
quence and the generated SHAPE data and outputs a predicted secondary
structure.

For the task of state inference, we trained a deep neural network using a set of
known RNA sequences and structures that generates a sequence of state predictions,
detailed later in this section. Given an RNA sequence x of length L, the output
of this neural network is a sequence p of length L, where p(`) ∈ R is the predicted
probability that the nucleotide in position ` is paired.

With these predictions in hand, we convert each predicted probability p(`) to
a SHAPE value to be associated with nucleotide `. To construct a function for
this purpose, we note that a SHAPE value of ≈ 0.3603 will not contribute any
positive or negative energy to the NNTM energy function; this can be seen by setting

37



∆GSHAPE(`) to 0 in the pseudo-free energy equation from Section 3.3 and solving for
SHAPE(`). We would therefore like to assign predictions of 0.5 to a SHAPE value
of 0.3603, as these predictions give no information as to the state of the nucleotide.
With this is mind, we use the following piecewise linear function to generate SHAPE,
where a and b are constants to be specified.

f(`) =

{
2(0.3603− b)p(`) + b, if 0 < p(`) ≤ 0.5

2(a− 0.3603)(p(`)− 1) + a, if 0.5 < p(`) ≤ 1

This function has range [a, b], with f(`) = a if p(`) = 1, f(`) = b if p(`) = 0, and
f(`) = 0.3603 if p(`) = 0.5. To determine sensible values of a and b, we considered
experimentally collected SHAPE data from two E. coli sequences, one 16S sequence
and one 23S sequence [48]. Together, these two sequences contain a a total of 4187
nucleotides, and represent a wide variety of structural motifs. We took the mean
SHAPE value among both paired nucleotides and unpaired nucleotides; these values
are 0.214 and 0.6624, respectively.

Our main experimental results will use a = 0.214 and b = 0.6624 in our SHAPE
generation function. These choices are motivated by real SHAPE values, and thus
are sensible estimations of the best values. However, they may not be the optimal
values for our purposes. Later, we will explore how varying these values may affect
the accuracy of our predicted secondary structures. These experiments indicate that
the a and b values used in our experimental results are nearly optimal.

With state predictions and set values of a and b, we can generate a sequence of
artificial SHAPE data. We then use SHAPE-directed NNTM as described in the
previous section to obtain our secondary structure prediction.

Neural Network for State Inference

For the task of state inference, we use a four layer neural network with both convo-
lutional and recurrent layers. The input is a sequence x of length L, with x(`) ∈ R5

a one-hot encoding of the 5 possible nucleotides A, C, G, U, or X. The first layer is
a 1D convolution with stride 1, kernel size 30, ReLU activation, and hidden size 100.
This is meant to act as a learnable preprocessing filter; the kernel size is large enough
to include, for example, all of the nucleotides in an average-sized hairpin loop, and
this layer could learn something akin to the free energy terms used in NNTM.

This first layer takes in and processes local information, while longer-term de-
pendencies are handled by the next two layers, both of which are LSTM layers and
form the foundation of the network. Because a nucleotide’s state is liable to have
dependencies on nucleotides before and after it in the sequence, we make these layers
bidirectional; the second layer has hidden size 400 (200 each for the forward and
backward direction LSTMs), and the third layer has hidden size 100 (50 each for for-
ward and backward LSTMs). A diagram of a two-layer bidirectional RNN is shown
in Figure 4.1. The final layer is another 1D convolution, fulfilling a similar role as
the first layer; its stride is 1 and kernel size is also 30.
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Figure 4.1: Diagram of a two-layer deep bidirectional RNN at three different timesteps
t − 1, t, and t + 1. Solid arrows represent the propagation of information through
layers at a particular timestep, while dashed arrows represent information propagating
across timesteps.

In all, the machine has a total of 595,552 trainable parameters, which we trained
using the RMSprop [54] algorithm with a learning rate of η = 10−4. Our network
was implemented in Keras [12], a Python deep learning API, with Theano [53] as a
backend. We also use a regularization term and dropout with drop probability 0.5;
see code available at https://github.com/dwillmott/rna-state-inf for other hyperpa-
rameters and training details.

Dataset, Implementation, and Metrics

Our experiments will focus on a test set of sixteen 16S ribosomal RNA sequences used
in SHAPE direction experiments in [48]. Sequences in this set have a wide range of
NNTM accuracies, and using this test set allows us to directly compare our method
of SHAPE generation with that presented in [48].

As a training set for this task, we used secondary structure data from the Com-
parative RNA Web site, run by the Gutell Lab at the University of Texas [6]. This
site hosts a collection of known RNA sequences and secondary structures obtained
using comparative sequence analysis. Compiling all of the available 16S rRNA results
in a set of 17032 sequences and a total of over 21 million nucleotides. We refer to this
as the CRW dataset.

To ensure that our model does not simply memorize large portions of sequences
in the test set, we compared the each CRW dataset sequence with each test set
sequence and removed CRW sequences with significant similarities prior to training.
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In this filtering process, if the two sequences have a common block of nucleotides of
more than 10% of the length of the test sequence, or if the two sequences can be
aligned such that they have common nucleotides accounting for more than 80% of
nucleotides of the shorter sequence, we remove it from the training set. See available
code for additional details. This process leaves us with 13118 sequences and a total of
approximately 16.5 million nucleotides, with a mean and median sequence length of
1264 and 1431, respectively. We then split this set into two random halves to produce
a training and validation set.

Metrics for the state inference task are shown in Section 4.3. After state inference
is performed, and we have the sequence of state prediction probabilities p, we gen-
erated artificial SHAPE data using the method described in Section 4.2. Finally, we
used both the original sequence and the generated SHAPE data as input for SHAPE-
directed NNTM. Section 4.4 lists our experiments and results involving NNTM, which
all use GTfold [49], an efficient NNTM implementation.

In this chapter, we are considering methods for both state inference, which binary
classifies individual nucleotides, and secondary structure inference, which classifies
base pairs. This leads to two differing definitions of accuracy. The usual definition
classification accuracy (the proportion of true predictions among all predictions in
the sequence) will be used when considering our neural network for state inference
in Section 4.3. The secondary structure prediction accuracy definition presented in
Chapter 3 as the mean of PPV and sensitivity will be used when considering the
directed NNTM predictions in Section 4.4.

4.3 State Inference

State Inference Accuracy

The foundation of our method is our deep neural network for state inference: this
network provides probabilities that are converted into a pseudo-free energy term in
the NNTM energy function. To understand the sources of high and low performance
of our structure inference method, we can directly evaluate the output of our deep
neural network for state inference.

Table 4.1: State inference PPV, sensitivity, and accuracy of our neural network vs.
HMM on validation and test sets

Validation Set Test Set

Machine Acc PPV Sen Acc PPV Sen

Order 1 HMM 0.623 0.632 0.852 0.612 0.646 0.767

Order 2 HMM 0.662 0.671 0.826 0.651 0.686 0.759

Order 3 HMM 0.674 0.693 0.794 0.672 0.713 0.750

Order 4 HMM 0.685 0.714 0.771 0.684 0.729 0.742

Order 5 HMM 0.684 0.711 0.776 0.683 0.730 0.742

Neural Network 0.954 0.950 0.972 0.839 0.858 0.873
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Table 4.2: State inference results on the test set from our neural network vs. an
order 4 HMM. Sequences are arranged in ascending order of MFE accuracy as an
indication of the difficulty of secondary structure inference for each sequence. Average
indicates the average metric for each sequence, while Total gives the total metrics for
all nucleotides in the test set.

Acc PPV Sen
Sequence Name LSTM HMM LSTM HMM LSTM HMM
E. cuniculi 0.680 0.661 0.713 0.693 0.774 0.773
Vairimorpha necatrix 0.661 0.600 0.721 0.689 0.683 0.576
C. elegans 0.558 0.584 0.570 0.613 0.624 0.552
Emericella nidulans 0.657 0.584 0.692 0.681 0.741 0.539
Nicotiana tabacum 0.913 0.705 0.917 0.734 0.938 0.787
Cryptomonas.sp 0.926 0.676 0.935 0.730 0.941 0.728
Synechococcus.sp 0.938 0.700 0.943 0.740 0.953 0.769
M. musculus 0.608 0.603 0.626 0.655 0.637 0.520
Mycoplasma gallisepticum 0.919 0.639 0.933 0.713 0.932 0.668
E. coli 0.924 0.699 0.937 0.742 0.938 0.774
Bacillus subtilis 0.973 0.698 0.979 0.731 0.976 0.788
Desulfovibrio desulfuricans 0.926 0.712 0.940 0.741 0.938 0.803
Chlamydomonas reinhardtii 0.906 0.687 0.915 0.725 0.928 0.761
Thermotoga maritima 0.931 0.752 0.944 0.760 0.943 0.864
Thermoproteus tenax 0.818 0.782 0.845 0.785 0.866 0.894
H. volcanii 0.782 0.739 0.809 0.769 0.841 0.820
Average 0.820 0.676 0.839 0.719 0.853 0.726
Total 0.839 0.684 0.858 0.729 0.873 0.742

For the sake of comparison, we trained and tested a number of higher-order hidden
Markov models (HMM) using the same training, validation, and test sets used by the
neural network. Training was done using maximum likelihood estimation, and state
inference was performed with the Viterbi algorithm [17], a backtracking algorithm
that produces the likeliest state sequence under the model probabilities. HMMs are
fundamentally incapable of recognizing dependencies across many timesteps, and we
therefore expect the deep neural network to outperform the HMM. However, they
provide a baseline against which to measure neural network output.

To calculate the accuracy of the neural network’s output, we thresholded each
prediction p(i) above and below 0.5, taking p(i) > 0.5 to be a positive prediction and
p(i) < 0.5 to be a negative prediction. The accuracy, PPV, and sensitivity of both
neural network and HMM predictions are shown in Table 4.1. Though the table
exhibits an upward trend in accuracy as the order of the HMM increases, we found
that accuracy plateaued and eventually decreased beyond order 5. As expected, the
neural network clearly outperforms HMMs of all orders on the validation set. More
importantly, this is the case for our test set as well, where it outperforms the best
HMM in accuracy by 15%.

The order 4 HMM exhibits the highest accuracy on the validation set. We further
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compared state inference accuracy on each test set sequence using both the order 4
HMM and the neural network. The accuracy, PPV, and sensitivity of these predic-
tions are shown in Table 4.2. The accuracy of neural network state predictions were,
on average, 15 percentage points higher than that of the HMM, and was higher for
every sequence but one (C. elegans). Table 4.2 orders sequences in ascending order of
undirected MFE accuracy; however, this ordering reveals no straightforward relation-
ships among neural network state inference accuracy, HMM state inference accuracy,
and MFE structure accuracy. Neural network accuracy varies much more among se-
quences: the difference between the sequences with lowest and highest accuracy (C.
elegans and B. subtilis, respectively) is more than 40 percentage points. Sequences
can be grouped according to accuracy: poor (below 70%) for five sequences, medium
(near 80%) for two more, and high (above 90%) for the remaining nine.

Paired Regions & Global Structure

Our metrics in Table 4.2 give us an idea of the proportion of correct machine predic-
tions on individual nucleotides’ states, but they do not indicate whether predictions
produce state sequences that preserve global properties, such as patterns of paired
and unpaired states. In particular, we want the number and sizes of paired and
unpaired regions of the state sequence prediction to match those in the original. A
paired region in the state roughly corresponds to one half of a helix in the secondary
structure, so we theorize that recognizing this information is vital for producing state
predictions that successfully aid structure inference.

We considered the distribution of sizes of paired regions in each test set state
sequence, and compared them to the distributions of neural network and HMM state
predictions; Figure 4.2 shows boxplot of these distributions for native states and
compares them to HMM and neural network state predictions on each of our 16 test
sequences. Despite larger variance in state inference accuracy, we found evidence
that the neural network was, on average, much more capable than the HMM of
capturing this global structure. The median size of paired region in neural network
predicted state differed from the median in the native state by at most one for every
test set sequence, while the HMM’s median paired region size was routinely several
nucleotides larger. We can also consider the total number of paired regions in the
state as another global feature of RNA state. The neural network performs better
in this regard as well, producing predictions that, on average, had 6 more paired
regions than the native state. On the other hand, HMM predictions had an average
of 57 fewer regions than the native state, vastly underestimating the correct number
of paired regions.

We note that this discrepancy is to be expected in the context of nonlocal inter-
actions. Paired region size is exactly the sort of nonlocal feature that HMMs cannot
predict: at a given time, the HMM does not know how long it has been outputting
positive predictions, and is thus limited in its capacity to detect large paired regions.

Considering the non-locality of paired regions can help to explain the poor per-
formance of the neural network on certain test set sequences. High neural network
accuracy is nearly always accompanied by a particular type of distribution of large
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Figure 4.2: Boxplots of the distribution of sizes of paired regions in the native state
sequence, HMM predicted state sequence, and LSTM predicted state sequence (de-
noted N, H, and L, respectively) for each test set sequence. The red line indicates the
median region size, the box contains 25th-75th percentiles, and the whiskers contain
5th-95th percentiles. Sequences are ordered from lowest to highest LSTM prediction
accuracy. Several large paired regions in HMM predictions beyond the y-axis limit of
35 are not shown.

paired regions: one of length 17, one of length 13, and several more of length 12
and 11. In contrast, this pattern does not hold for those with low or medium state
inference accuracy: of the remaining seven, all have either paired regions of length
larger than 20 (E. cuniculi, V. necatrix, M. nidulans, T. tenax, and H. volcanii) or
very few paired regions of length larger than 10 (C. elegans and M. musculus).

We can compare the distribution of the lengths of paired regions in each of our
test sequences to the distribution in the training set. We find that the training set
overwhelmingly contains sequences with paired region distributions similar to the test
set sequences on which the neural network performs well. In particular, we note that
the training set has relatively few large paired regions: in the entire training set, there
are 5 regions of length 18, 2 regions of size 19, 4 regions of size 20, and none larger
than 20. Thus, during training the machine is penalized for outputting more than
20 contiguous positive predictions. Consequently, neural network predictions do not
create sufficiently large regions for many test set sequences.

To quantify this difference, we considered the Kullback-Leibler (KL) divergence of
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Figure 4.3: Plot comparing each test set sequence’s LSTM (neural network) and
HMM state inference accuracy vs its Kullback-Leibler divergence from training set
paired region distribution. KL divergence was calculated as KL(P‖Q), where P is
the test sequence distribution and Q is the training set distribution.

the distribution of the paired region lengths between the entire training set and the
distribution for each test set sequence. The KL divergence measures the similarity of
each test set sequence’s paired region distribution as compared with the distribution
of the entire training set. Figure 4.3 plots state inference accuracy for each machine
and test set sequence against its KL divergence.

Two clusters of sequences emerge in this plot: one with KL divergence near 0.01,
and another with KL divergence near 0.5. All nine sequences with high state infer-
ence accuracy are in the former cluster, while the seven low and medium accuracy
sequences are in the latter. The disparity in neural network accuracy and HMM accu-
racy on sequences with more similarity to the training set suggests that the increase
in neural network performance comes from its ability to recognize global structure in
these sequences. On the other hand, neural network accuracy is only a modest im-
provement from HMM accuracy in the low to medium accuracy cluster, where global
structure diverges significantly from that of the training set.
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Table 4.3: Table of accuracy of MFE structures using NNTM with a variety of
SHAPE directions. First column: undirected MFE. Second column: predicted state
directed MFE. Third column: mean performance of sampled SHAPE directed NNTM
in [48]. Fourth column: native state directed NNTM.

Undirected Directed MFE
Sequence Name MFE Predicted Sükösd Native
E. cuniculi 0.171 0.183 0.273 0.336
V. necatrix 0.181 0.314 0.503 0.705
C. elegans 0.203 0.248 0.308 0.519
E. nidulans 0.272 0.325 0.601 0.832
N. tabacum 0.323 0.692 0.593 0.859
Cryptomonas.sp 0.339 0.838 0.739 0.898
Synechococcus.sp 0.361 0.848 0.697 0.885
M. musculus 0.375 0.397 0.509 0.782
M. gallisepticum 0.385 0.849 0.721 0.889
E. coli 0.411 0.852 0.744 0.880
Bacillus subtilis 0.512 0.848 0.753 0.881
D. desulfuricans 0.533 0.875 0.724 0.898
C. reinhardtii 0.537 0.845 0.702 0.868
T. maritima 0.562 0.881 0.733 0.896
T. tenax 0.619 0.766 0.754 0.861
H. volcanii 0.752 0.864 0.809 0.907
Mean 0.408 0.664 0.635 0.806
Median 0.380 0.841 0.712 0.874

4.4 Directing NNTM with Synthetic SHAPE

Native State Directed NNTM

Before analyzing the results of the entire pipeline of our method, we first examined
our SHAPE generation function in detail. To do so, we used the native state of each
sequence in our test set to generate SHAPE. This was done by setting p(i) to 1 if
the nucleotide in position i is paired, and p(i) to 0 if it is unpaired. We then use the
equation in Section 4.1 to generate artificial SHAPE. This will result in a generated
SHAPE value of 0.6624 for all paired nucleotides and 0.214 for unpaired nucleotides,
which we then use to direct NNTM. We refer to the resulting predicted structures as
native state directed MFE.

This experiment is similar to those run in [48], and uses the same set of data
to choose appropriate SHAPE values. The difference is in the method of SHAPE
generation: whereas that paper constructs SHAPE distributions from the data and
stochastically samples from these distributions, we use the mean of paired and un-
paired nucleotides’ SHAPE values.

The results of this experiment reinforce many of the findings in [48]. A compari-
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son of accuracy of all three methods (undirected MFE, stochastically directed MFE
from [48], and native state directed MFE) is available in Table 4.3. Overall, native
state directed MFE structures are highly accurate, with twelve of the sixteen test se-
quences enjoying accuracy above 80%. Both direction methods are an improvement
on the accuracy of the undirected MFE structure for every test set sequence, and
native state directed accuracy represents a further improvement from the stochas-
tic model in [48]. In the case of native state direction, accuracy improvements over
undirected MFE range between 15 percentage points (H. volcanii) and 57 percentage
points (Cryptonomas.sp). Consistent with observations in [48], greatest increases are
concentrated in sequences with middling undirected MFE accuracy; for sequences
with undirected accuracy between 25% and 45%, native state directed MFE accuracy
is an improvement by more than 40 percentage points.

This experiment is equivalent to assuming that our deep learning state inference
method has perfect performance, and as such we can interpret the accuracy of na-
tive state directed MFE structures to be an upper bound on the performance of our
method. On average, the high accuracy exhibited in this experiment gives strong
evidence that there are large potential gains in MFE accuracy to be made with our
method. However, several sequences with low undirected MFE accuracy sequences
like E. cuniculi and C. elegans are known to be particularly resistant to SHAPE direc-
tion [48], and this is reflected in relatively poor native state directed MFE accuracy.
We thus cannot expect our method to exhibit large improvements over undirected
MFE structures in these cases.

Predicted State Directed NNTM

We now use the predictions from our deep neural network to generate SHAPE that
will in turn direct NNTM; we refer to these predictions as predicted state directed
MFE structures. We emphasize that, unlike the native state direction explored in
the previous section, this method does not assume prior knowledge of the state of the
sequence, and thus represents a practical method of secondary structure inference.

The results of applying our method to the sequences in the test set are available
in Table 4.3, which indicates that the extraordinary gains from native state directed
NNTM are not always preserved in practice. Predicted state directed structures fall
into two clear categories: five are quite inaccurate, with accuracy below 40%, while
among remaining eleven structures are all near or above 70%, and nine of these are
above 80%. Even with the high variance of accuracies among these structures, pre-
dicted state directed MFE structures are 25 percentage points more accurate than
undirected MFE structures on average, and every sequence in the test set experiences
some increase in accuracy. However, these improvements vary greatly, with several se-
quence staying within 5% of undirected MFE accuracy, while for four other sequences
we improve by more than 40%, with the highest improvement (Cryptonomas.sp) at
50%.

To some extent, poor accuracy is explained by our experiment with native state
directed NNTM. Indeed, the five sequences with poor accuracy from our method are
the five worst-performing with native state direction, and only one of these exceeds
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80% with native states. At worst, native state directed NNTM gives only 34% ac-
curacy for E. cuniculi and 52.6% for C. elegans, and this ceiling is much lower than
accuracy achieved in many of our other predicted structures. However, in these cases
and some others (E. nidulans, M. musculus), predicted state directed MFE accuracy
does not come close to native state directed MFE accuracy. This is in contrast to
our highest performing sequences (D. desulfuricans, T. maritima), where predicted
state directed MFE is within several percentage points of native state directed MFE
accuracy.

State inference accuracy unsurprisingly exhibits a strong effect on predicted state
directed MFE accuracy. State inference accuracy above 90% means that our predicted
states are quite close to native states; consequently, predicted state direction and
native state direction produce similar predicted structures in these cases, as evidenced
by their difference of only a few percentage points in Table 4.3. Meanwhile, the five
sequences with poor state inference accuracy are exactly those where predicted state
directed MFE accuracy is below 40%.

The effect of state inference accuracy is particularly evident when considering the
improvement over undirected MFE accuracy: for four of the five sequences with poor
state inference accuracy (all but V. necatrix), predicted state directed MFE accuracy
is within 6 percentage points of undirected MFE accuracy. For V. necatrix and both
sequences with medium state inference accuracy, predicted state direction improves
structure accuracy by 10-15 percentage points. The remaining nine sequences all have
high state inference accuracy, and their directed structures are 30 percentage points
more accurate than undirected MFE.

We note an interesting relationship between native state directed MFE accuracy
and our neural network’s state inference accuracy. The five sequences with state
inference accuracy below 70% are the five worst performing sequence when predict-
ing structure with native state directed NNTM. This suggests that there may be
fundamental difficulties in understanding pairing structures of these sequences.

Modifying Synthetic SHAPE Values

Our method uses SHAPE-directed NNTM as a means of assigning pseudo-free en-
ergies to individual nucleotides. All of our results in Section 3 assign nucleotides a
SHAPE value in the range [0.214, 0.6624]. These endpoints are based on the mean
SHAPE value of paired and unpaired nucleotides from 16S and 23S E. coli sequences.
However, our method converts to SHAPE primarily as a means of assigning pseudo-
free energies to individual nucleotides with NNTM, and not as a genuine attempt to
generate plausible SHAPE data. Thus, the endpoints used may not be optimal for
our purposes of converting from state inference predictions.

To evaluate potential output ranges for our SHAPE generation function, we re-
produced experiments with native state directed NNTM (Section 3.1) and predicted
state directed NNTM (Section 3.2) while varying the endpoints a and b of our SHAPE
generation function. As noted previously, a SHAPE value of 0.3603 contributes no
energy to the model; thus, it is only sensible to choose paired SHAPE values below
0.3603, and unpaired SHAPE values above 0.3603. NNTM software such as GTFold
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Figure 4.4: Accuracy of native state directed MFE (top plot) and predicted state
directed MFE (bottom plot) for various ranges [a, b] of output from our SHAPE
generation function. In each, the lower right corner corresponds to a = b = 0.3603,
which is equivalent to no SHAPE direction.

ignores negative SHAPE values, so paired nucleotides’ generated SHAPE must lie
between 0 and 0.3603. The results of this experiment are shown in Figure 4.4.

In native state directed NNTM, increasing negative state SHAPE above 0.3603
and decreasing positive state SHAPE below 0.3603 consistently increased perfor-
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mance. This is consistent with our expectations, as in this case we are increasing
the energy of all base pairs involving nucleotides that remain unpaired in the native
structure. Experiments with very large unpaired SHAPE values, such as b = 20, were
similar to the largest values shown in Figure 4.4, indicating that there is a ceiling
of approximately 90% test set accuracy for any method centered around SHAPE-
directed NNTM such as ours.

The plot for predicted state directed NNTM shows a different picture, with in-
creasing unpaired SHAPE values eventually leading to decreasing structure inference
accuracy. That this pattern appears in the predicted state experiments but not native
state experiments suggests that incorrectly assigning large SHAPE values to even a
small number of natively paired nucleotides can be significantly harmful to NNTM
performance. There is a large region of highest accuracy, with a between 0 and 0.22
and b between 0.7 and 1.5 giving accuracies near 68%. The values of a = 0.214 and
b = 0.6624 used in our results are near the boundary of this region. But we note that
even optimal values of a and b give an accuracy of 69%, only 2.5 percentage points
above the experimentally motivated choices of a and b used in our results.

Copyright c© Devin Willmott, 2018.
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Chapter 5 Direct Secondary Structure Inference with Neural Networks

In Chapter 4, we presented a neural network that performed state inference on a
sequence, and put forward a way to convert these state predictions into auxiliary
data to improve NNTM secondary structure predictions. In contrast, in this chap-
ter we present a novel architecture of neural networks that uses a two-dimensional
representation to output a prediction for each possible pair to appear in the sec-
ondary structure. To use these predictions to form a secondary structure prediction,
we present an algorithm to iteratively construct a likeliest secondary structure given
these probabilities. This algorithm has several foundational benefits over NNTM:
we may construct a secondary structure that includes or excludes pseudoknots as we
wish, and we are given a notion of confidence in each base pair prediction.

Our main experimental result is based on training and test sets of 16S rRNA; using
our method, we achieve an extraordinarily high average structure inference accuracy
of 84.9% on our test set, an increase of nearly fifty percentage points over undirected
NNTM on the same set. We also find satisfactory performance when expanding our
training and test sets to include other RNA types beyond 16S rRNA; in a test set
of 49 sequences that spans 5S and 16S rRNA, Ribonuclease P, and Group I introns,
our method produced a more accurate structure than NNTM for all but 6 of these
sequences.

5.1 Representing Secondary Structures

The first challenge in developing a deep learning method for secondary structure in-
ference is determining how to represent secondary structures in a manner compatible
with neural networks. For this purpose, we will require a representation that can
be translated into an array of real numbers, or a sequence of such arrays, to use as
the labels to accompany input to the network. Because we will be receiving predic-
tions from the neural network via this representation, we will also be interested in
investigating its stability, that is, how small errors in the array affect the secondary
structure it represents.

In addition to the arc diagram in Figure 3.1, there exist numerous ways to repre-
sent secondary structures, many of which can be used to elicit combinatorial informa-
tion about possible secondary structures [26]. We discuss several possibilities below.
In the following, let r be a sequence of length L and let S be a secondary structure
of r.

We can use partial parenthesizations to represent S. This manifests as a sequence
of length L on three symbols: · , ( , and ) . Here · is an unpaired nucleotide, ( is a
nucleotide paired with another nucleotide later in the sequence, and ) is a nucleotide
paired with another nucleotide earlier in the sequence. The nesting property ensures
that a base pair is represented by a pair of parentheses. A one-hot encoding of this
sequence can act as a length L sequence of labels, with each element in R3.
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However, we note that this representation is relatively unstable, in the sense that
very few incorrect predictions can radically change the secondary structure prediction
as a whole. This is exhibited in the three possible outputs and their associated sec-
ondary structures shown below, with deviations from the first sequence and structure
shown in red. A small number of errors can create a significantly different secondary
structure, or even worse, can fail to be a partial parenthesization at all, making it
unclear how to interpret the output.

( · ( · ) · ( ( · · ) ) ) S = {(1, 13), (3, 5), (7, 12), (8, 11)}
( · ( · ) · ) ( · · ) ( ) S = {(1, 7), (3, 5), (8, 11), (12, 13)}
( · ( · ) · ( ( ) · ) ) ) S = {(1, 12), (3, 5), (6, 11), (7, 8), (?, 13)}

Another possible representation is the two-dimension representation using an ar-
ray A ∈ RL×L. We let A(i,j) = 1 if (i, j) ∈ S and i < j, and 0 otherwise. We disregard
the diagonal and lower triangle of A.

Like the partial parenthesizations representation above, a drawback of this 2D ar-
ray representation is that we cannot necessarily interpret an arbitrary upper-triangular
binary array as a secondary structure, as our prediction may include a number of pairs
that cannot both exist in the secondary structure (e.g., a matrix may contain two 1s
in the same row; this represents a single nucleotide being paired with two different
nucleotides, which is not permissible in a secondary structure). However, unlike the
the partial parenthesizations representation, individual entries of the array do not
interact to form base pair predictions, and thus a small error in one entry will not
invalidate a correct prediction in another.

We will use this representation as an output to the neural network; rather than
a binary matrix, entries of the network output Ŷ will be bounded between 0 and
1, with Ŷ (i,j) ∈ [0, 1] representing the predicted probability that (i, j) is paired in
the secondary structure. We present an algorithm in Section 5.2 that uses these
probabilities to convert the set of probabilistic base pair predictions into a coherent
secondary structure prediction.

5.2 Neural Network Architecture

Using the 2D array from the previous section to represent the output, we now have
a problem with a 1D sequential input and a 2D sequential output. To move from a
1D to 2D representation, we perform a Cartesian product of the sequence with itself,
as described below. If x = (x(1), . . . , x(L)) with x(`) ∈ Rn, then the output of the
Cartesian product with itself is an array y ∈ RL×L×2n, where

y
(k,`)
i =

{
x
(k)
i if i ≤ n

x
(`)
i−n if i > n

Thus, y(k,`) consists of sequences elements x(k) and x(`) stacked together.
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Figure 5.1: Diagram of neural network architecture used for secondary structure in-
ference in Chapter 5. SelfCartesian refers to the operation described at the beginning
of Section 5.2.

52



The output of this Cartesian product is a 2D representation of the input where a
square around the pixel y(k,`) contains local information about the nucleotides near
x(k) and x(`). This makes convolutional neural networks an attractive option: we can
use several convolutional layers to eventually output the probability that k and ` are
paired together. However, translation invariance is not necessarily a safe assumption
here: the probability that k and ` are paired together in the secondary structure de-
pends on not only local information, but also potentially on all nucleotides between
k and `, and on the distance between k and `, neither of which can be detected by
a CNN. To remedy this, we prepend a bidirectional LSTM to the Cartesian prod-
uct. With this addition, global information can propagate through this network, and
information from arbitrarily far away in the sequence can influence the prediction
about pair (k, `).

The architecture used for this problem is shown in Figure 5.1. We begin with the
RNA sequence itself, one-hot encoded to be of size L×5, with each class representing
A, C, G, U, and X, respectively. We first pass the sequence through a bidirectional
LSTM to generate a hidden layer of size L× 20. We then perform the self-Cartesian
product on both the input sequence and the LSTM output, making arrays of size
L× L× 10 and L× L× 40, respectively. These are stacked to make a single hidden
layer of size L× L× 50.

We then run this image through several convolutional layers. Taking inspiration
from high-performing image processing architectures [50], we use several different
kernel sizes at each layer to capture features of varying size without a large increase
in the number of parameters.

Because pairs are highly dependent on their constituent nucleotides (that is, only
Watson-Crick pairs and wobble pairs may form), we concatenate the original sequence
square with the penultimate hidden layer to allow the parameters in the output layer
to directly access information about each nucleotide’s type. We found empirically
that this increased accuracy and reduced the number of non-canonical base pair
predictions.

Each of the hidden convolutional layers are given a ReLU activation function.
The final layer’s activation function is an elementwise sigmoid, making the output an
array Ŷ ∈ RL×L with Ŷ (i,j) representing the machine’s prediction that base pair (i, j)
is in the secondary structure S of x when i < j. For the purposes of both training
and testing, the diagonal and lower triangle of Ŷ are ignored.

Training and Hyperparameters

To train the parameters in this network, we used the Adam optimizer [30] with a
batch size of 10 and an initial learning rate of η = 10−3 that was reduced by half
every 2500 iterations. As in Chapter 4, we also use a number of modifications to
improve training speed and accuracy; we again use a regularization term, and found
that applying batch normalization [27] after each convolutional layer had a profound
effect on the speed and overall accuracy of training.

The loss function used is binary cross entropy applied to each of the 1
2
L(L − 1)

upper triangular entries of the output Ŷ ∈ RL×L. The restriction that each nucleotide
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may pair with at most one other nucleotide means that at most L of these entries will
have positive labels. Thus, the machine sees many more negative training examples
than positive examples, and this imbalance worsens as sequence length increases.
In practice, this results in the machine being too conservative in its predictions. To
combat this, we found that weighting the positive prediction term by a small constant,
either 3 or 5 depending on the task, improved our final accuracy.

Depending on the dataset, we may have many sequences of varying sizes in the
batch. To standardize the sequence length in a particular batch, we find the smallest
sequence length L0, and choose a random length L0 subsequence of each batch se-
quence. We further specify that the batch sequence length must be smaller than 500.
This is primarily to avoid the exorbitant memory storage costs of long sequences; the
hidden layer size L×L×50 becomes unfeasibly large for even small batch sizes when
training the network on a GPU. This restriction is consistent with hard constraint
on the distance between nucleotides in base pairs predicted by NNTM as discussed
in Chapter 3. We also note that this limitation exists only during training; at test
time, we can run each sequence individually to conserve memory.

An implementation of this architecture using Keras [12] with the TensorFlow
backend [1] is available at http://github.com/dwillmott/ss-inf.

Interpreting Network Output

The set of base pair predictions represented by Ŷ does not necessarily respect the
rules of secondary structures - that is, there are no restrictions that prevent the ma-
chine from predicting that a nucleotide is paired with multiple other nucleotides, or
that force the set of predicted base pairs to respect the nesting property of secondary
structures. To convert Ŷ into a coherent prediction S of the native secondary struc-
ture, we follow an iterative process of selecting the base pair (k, `) with the highest
predicted probability in Ŷ , placing it in S, and setting the probably of all potential
base pairs involving nucleotides k and ` to 0, to prevent the secondary structure from
including overlapping base pairs. At each step, we can interpret each Ŷ (i,j) as the
predicted conditional probability that (i, j) is paired given the partially constructed
secondary structure S.

This iterative process is continued until there are no more positive predictions in
the upper triangle of Ŷ , that is, all entries of Ŷ are below 0.5. This process is formally
presented below as Algorithm 1.

As presented, Algorithm 1 does not enforce the nesting property – it will admit
pseudoknots into the secondary structure. In contrast to all secondary structures in
Chapters 3 and 4, we include pseudoknots in both the predicted and target secondary
structure in experiments in this chapter. Pseudoknots break the loop structure that
NNTM’s dynamic programming algorithm relies on; we thus regard the ability to
predict these pairs as an advantage of our method. If desired, we could also use a
variant of this algorithm to construct a secondary structure with the nesting property
by additionally removing base pairs with one nucleotide between k and ` and another
outside of them at each step.
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Algorithm 1 Algorithm to take a set Ŷ of base pair predictions are return a sec-
ondary structure prediction S

P = {(i, j) | 1 ≤ i < j ≤ L and Ŷ (i,j) > 0.5}
S = ∅
while P 6= ∅ do

(k, `)← argmax(i,j)∈P Ŷ
(i,j)

S ← S ∪ {(k, `)}
P ← P \ {(i, j) | i = k or j = `}

end while

In addition to creating a valid secondary structure, our method gives a predicted
probability for every possible pair. Thus, we can make this method’s prediction more
or less conservative by adjusting the threshold 0.5 above which to include predictions.
This flexibility is explored in depth in Section 5.3.

Datasets

We perform two main experiments using this architecture. In the first, we restrict
attention to training and testing on 16S rRNA sequences. In the second, we widen
our scope to consider sequences from a variety of RNA families, including other
resolutions of ribosomal RNA as well as two families of ribozymes, Ribonuclease P
and Group I Introns.

We display results from two test sets. The first is the sixteen 16S rRNA sequences
in the Sukosd set [48] used in Chapter 4. We also use a subset of the sequences consid-
ered in [44], which we call the Rogers set. This is a group of 35 sequences, assembled
to show diversity in sequence length and MFE accuracy. The set is partitioned into
subsets of size 5, based on RNA type: 5S rRNA, Group I introns, Ribonuclease P,
and four subsets of 16S rRNA divided by sequence length (small, medium, large, and
extra large). On the 16S rRNA training task, we test the Sukosd set and the twenty
16S rRNA sequences in the Rogers set; since the Rogers and Sukosd sets contain both
contain the E. coli and E. cuniculi sequences, this is 34 unique test sequences. (We
note that these two sets contain slightly different versions of these sequences, which
is why their accuracy varies slightly between test sets in the results reported below.)
For the full training task, we consider all sequences in both test sets, for a total of 49
unique test sequences.

For both tasks, we trained on data freely available from RNA STRAND [3], a
database that compiles RNA sequences with known secondary structures from a vari-
ety of sources. STRAND includes 723 sequences of 16S rRNA. For our larger training
task, we incorporate the available 5S rRNA, 23S rRNA, Group I introns, and Ribonu-
clease P sequences, for a total of 1711 sequences.

We filter this training set against both test sets in a manner identical to the
process used in Chapter 4. Finally, we reserve 5% of each family of RNA to use as a
validation set. The final sizes of training, validation, and test sets are broken down
by RNA family in Table 5.1.
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Table 5.1: Enumeration of sequences in training, validation, and test sets by RNA
family.

RNA Type Training Set Validation Set Sukosd Set Rogers set

16S rRNA 550 28 16 20

5S rRNA 58 3 5

Group I Intron 124 6 5

Ribonuclease P 380 20 5

23S rRNA 177 9

Total 1289 66 16 35

For the 16S rRNA training task, we restrict attention to the sequences in the first
row. In the full RNA training task, we include all types of RNA; total sizes of each

set used in this task are shown in the final row.

Experimental Results

We present results from both the 16S rRNA training task as well as the full RNA
training task in their respective subsections below. Throughout, we will refer to the
accuracy of the raw predictions, which is the set of base pairs predicted by the neural
network, as well as the accuracy of the structure prediction, the structure output
from the algorithm presented in the previous section. These are presented primarily
to display how the PPV and sensitivity of these two predictions vary.

5.3 16S rRNA Structure Inference

Table 5.2: Results on the 16S rRNA secondary structure inference task

Raw Predictions Structure Prediction

Set PPV Sen PPV Sen Acc

Training Set 0.796 0.949 0.933 0.941 0.937

Validation Set 0.766 0.856 0.899 0.845 0.872

16S Rogers Set 0.748 0.876 0.891 0.866 0.879

Sukosd Set 0.705 0.808 0.845 0.794 0.820

Test Set Total 0.730 0.843 0.867 0.831 0.849

Results from the 16S rRNA training task are available in Table 5.2. This table
compares average PPV and sensitivity of both the raw neural network predictions
and the coherent secondary structure prediction returned from Algorithm 1. This
exhibits a trend that is reproduced throughout experiments in this chapter wherein
the secondary structure prediction has markedly higher PPV than the raw base pair
predictions. This is consistent with our expectations: if Ŷ gives a positive predictions
for several conflicting base pairs, the algorithm will choose the highest probability
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Table 5.3: Secondary structure inference accuracy on the Rogers set with a neural
network trained on 16S rRNA sequences

Raw Predictions Structure Prediction MFE

Group Sequence Name PPV Sen PPV Sen Acc Acc

16S Small

V. ursinus 0.905 0.981 0.959 0.981 0.97 0.135

S. aestuans 0.928 0.981 0.97 0.97 0.97 0.34

L. catta 0.889 0.977 0.941 0.977 0.959 0.251

N. robinsoni 0.956 0.981 0.989 0.981 0.985 0.447

A. cahirinus 0.864 0.804 0.95 0.804 0.877 0.2

Average 0.908 0.945 0.962 0.943 0.952 0.275

16S Medium

V. acridophagus 0.786 0.947 0.935 0.931 0.933 0.371

V. corneae 0.631 0.571 0.764 0.557 0.661 0.33

E. schubergi 0.64 0.638 0.835 0.622 0.728 0.23

V. imperfecta 0.84 0.951 0.944 0.951 0.947 0.288

E. cuniculi 0.644 0.672 0.807 0.669 0.738 0.17

Average 0.708 0.756 0.857 0.746 0.801 0.278

16S Long

S. griseus 0.896 0.972 0.978 0.97 0.974 0.322

M. leprae 0.824 0.977 0.967 0.977 0.972 0.179

E. coli 0.834 0.933 0.969 0.929 0.949 0.41

C. testosteroni 0.769 0.944 0.936 0.944 0.94 0.524

M. hyopneumoniae 0.772 0.966 0.945 0.958 0.952 0.639

Average 0.819 0.958 0.959 0.957 0.957 0.415

16S Extra

P. vivax 0.453 0.835 0.743 0.801 0.772 0.385

R. carriebowensis 0.833 0.961 0.954 0.957 0.955 0.338

O. cuniculus 0.671 0.957 0.893 0.941 0.917 0.177

P. falciparum 0.347 0.807 0.656 0.764 0.71 0.423

Z. mays 0.47 0.664 0.681 0.64 0.661 0.258

Average 0.555 0.845 0.785 0.821 0.803 0.316

Total Average 0.748 0.876 0.891 0.866 0.879 0.321
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Table 5.4: Sequence results on the Sukosd set on the 16S rRNA secondary structure
inference task

Raw Predictions Structure Prediction MFE

Sequence Name PPV Sen PPV Sen Acc Acc

E. cuniculi 0.630 0.673 0.789 0.670 0.730 0.171

V. necatrix 0.677 0.636 0.800 0.617 0.709 0.181

C. elegans 0.211 0.132 0.188 0.088 0.138 0.203

E. nidulans 0.486 0.530 0.657 0.504 0.580 0.272

N. tabacum 0.778 0.912 0.931 0.912 0.921 0.323

Cryptonomas.sp 0.820 0.969 0.934 0.957 0.946 0.339

Synechococcus.sp 0.807 0.960 0.942 0.951 0.946 0.361

M. musculus 0.878 0.889 0.945 0.881 0.913 0.375

M. gallisepticum 0.690 0.875 0.887 0.862 0.874 0.385

E. coli 0.820 0.934 0.956 0.929 0.943 0.411

B. subtilis 0.802 0.972 0.952 0.970 0.961 0.512

D. desulfuricans 0.731 0.897 0.924 0.884 0.904 0.533

C. reinhardtii 0.804 0.902 0.918 0.897 0.908 0.537

T. maritima 0.737 0.901 0.924 0.901 0.913 0.562

T. tenax 0.691 0.899 0.888 0.871 0.880 0.618

H. volcanii 0.720 0.836 0.875 0.809 0.842 0.752

Average 0.705 0.807 0.844 0.794 0.819 0.408

prediction from among these; if the correct pair had the highest predicted probability,
this will eliminate some false positives, and increase PPV.

Detailed results on each test set sequence, and a comparison between the accuracy
of our method and MFE accuracy, is available in Table 5.3 for the Rogers set and
Table 5.4 for the Sukosd set. From these we can see that accuracy is far higher using
our method than MFE structures on all sequences on the Rogers set, and beats MFE
accuracy on all but one sequence (C. elegans) in the Sukosd set. There is also a
strong relationship between sequence length and accuracy, as illustrated by the 15
percentage point difference in average accuracy on small and long sequences versus
medium and extra long sequences.

Comparison of Table 5.4 and Table 4.2 confirm that this method performs ap-
proximately as well or better than predicted state directed NNTM on the Sukosd
set. Despite large differences between the two methods with respect to training set
and network architecture, there are some striking similarities between their respec-
tive performance. In Section 4.4, we saw that the Sukosd set could be partitioned
into three clusters based on the accuracy of predicted state directed NNTM. These
clusters are almost exactly reproduced in accuracy from this method: the four se-
quences with accuracy under 80% in Table 5.4 are all in the low performance cluster;
those with accuracy between 80% and 90% are the remaining low performance se-
quence (M. musculus) and the two sequences with medium performance (T. tenax
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Figure 5.2: ROC curve examining the effect of varying the threshold v on accuracy
on the E. cuniculi test sequence. Labels indicate the value of v at that point.

and H. volcanii); and the sequences on which this method gives accuracy over 90%
are exactly the nine sequences in the high performance cluster.

Even further, extraordinarily poor performance on C. elegans is reproduced through-
out this method and predicted state directed NNTM. It is notable that unlike any
other test set sequence, PPV and sensitivity both decreased after applying Algorithm
1 to the C. elegans raw base pair predictions, meaning the network’s true positive
predictions were not as confident as its false positive predictions. All of this suggests
that the structural properties of C. elegans are perhaps poorly represented among
sequences in the training set. This possibility is reinforced by its unusually small
length: at 697 nucleotides, C. elegans is the fourth smallest 16S rRNA sequence, and
only nine 16S rRNA sequences in the RNA STRAND database are smaller than 900
nucleotides.

Varying Prediction Threshold

Our method works by producing a predicted probability of each base pair, and using
Algorithm 1 to iteratively add permissible base pairs to a predicted secondary struc-
ture until there are no remaining permissible base pairs with predicted probability
above 0.5. If we choose, we may replace the value 0.5 with any threshold v ∈ [0, 1].
Larger or smaller values of v will result in a more or less selective predicted structure.
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To examine our predictions in more detail, we tested the E. cuniculi sequence using
a variety of thresholds v between 0 and 1. The resulting ROC curve is displayed in
Figure 5.2, with several distinguished values of v labeled in the plot. This ROC curve
looks slightly unusual, as we would normally expect a threshold of v = 0 to give a
sensitivity of 0. However, Algorithm 1 chooses the most confidently predicted base
pair and disregards all other possible base pairs involving the nucleotides in that base
pair. Thus, employing Algorithm 1 with v = 0 on a sequence of length L will predict
L pairs, whereas we would need to predict all possible 1

2
L(L− 1) pairs to guarantee

a perfect true positive rate.
Accuracy as we have defined it for secondary structures is constant along line

with slope 1 in an ROC curve plot. Figure 5.2 shows that the PPV and sensitivity
and relatively stable around v = 0.5; we receive roughly constant accuracy when
v is between 0.3 and 0.9, with equal tradeoffs in sensitivity and PPV. Varying the
threshold above and below these values results in quick decay of PPV and sensitivity,
respectively.

We have also labeled two points generated by very high thresholds, v = 0.99 and
v = 0.999. It is notable that even on a sequence with relatively low accuracy such
as E. cuniculi, these high thresholds are able to provide strong predictions about
base pairs in the secondary structure. Among the 159 base pairs with predicted
probability above .99, 155 are in the native structure. If we further raise v to 0.999,
we get perfect PPV: all 108 of these pairs are in the native structure, and these pairs
constitute 28% of all native structure pairs. Thus, modifying this threshold to be
very high can give us a partial predicted structure on which we are highly confident.
This could be used to, for example, supply a hard constraint to NNTM, forcing it to
find a MFE structure that respects these base pairings; constraints such as these are
easily incorporated into NNTM in many implementations [49].

5.4 General RNA Structure Inference

Table 5.5: Results on the full RNA secondary structure inference task. Rogers Set
(Other) refers to the 15 non-16S rRNA sequences in the Rogers set.

Raw Predictions Structure Prediction

Set PPV Sen PPV Sen Acc

Rogers Set (16S) 0.396 0.691 0.617 0.647 0.632

Rogers Set (Other) 0.530 0.462 0.587 0.436 0.512

Sukosd Set 0.370 0.681 0.605 0.637 0.621

Test Set Total 0.430 0.616 0.602 0.577 0.590

This section displays results from training the same architecture on the full STRAND
training set. We expect that RNA families share some but not all patterns in the
behavior of their nucleotides; thus, the additional RNA families in the training and
test sets make this more difficult training task, as we are essentially increasing the
expectations of the machine without expanding its capacity. From this, we do not
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necessarily expect that the high accuracy of predictions in the previous experiment
will be preserved in this new training context. In fact it is seen that they are not
in Table 5.5, which shows a 20-25 percentage point drop in accuracy on 16S test
sequences as compared to the previous experiment. However, from Table 5.6 we see
that we still perform better on average on 16S sequences than on other RNA families,
which in descending order have respective mean test accuracies of 59% (5S rRNA),
52% (Ribonuclease P), and 43% (Group I Introns).

Despite the drop in accuracy relative to the previous experiment, Tables 5.6
and 5.7 show that on both test sets this architecture outperforms NNTM on av-
erage by more than 20 percentage points, and among individual sequences, NNTM
beats this architecture in predicted structure accuracy on only 6 out of the 49 test
sequences: two 5S rRNA (S. pombe, P. waltl), one RnaseP (Z. bailii), one Intron
(B. yamatoana), and two 16S rRNA (C. elegans, H. volcanii). We also note that for
two of these sequences (S. pombe and H. volcanii), NNTM accuracy is already above
75%.

The lowered accuracy, as well as the high variance in accuracy among RNA types,
is likely due to the disproportionate representation of sequences in the training set.
For example, we find highest accuracy on 16S rRNA, which comprise just under half
of the total number of sequences, and lowest accuracy on Group I introns, which
account for less than 10% of training set sequences. As with any machine learning
method, we are limited by the availability of data, and suspect that with enough
training examples, this architecture could recover the extraordinary success of the
16S rRNA task.

Copyright c© Devin Willmott, 2018.
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Table 5.6: Structure inference accuracy on the Rogers set with the full training set

Raw Predictions Structure Prediction MFE

Set Sequence Name PPV Sen PPV Sen Acc Acc

5S rRNA

S. pombe 0.828 0.667 0.960 0.667 0.813 0.850
P. waltl 0.657 0.657 0.679 0.543 0.611 0.760
O. sativa 0.812 0.371 0.812 0.371 0.592 0.550
M. glyptostroboides 0.565 0.371 0.706 0.343 0.524 0.290
M. fossilis 0.522 0.343 0.529 0.257 0.393 0.150
Average 0.677 0.482 0.737 0.436 0.587 0.520

Group I Introns

H. rubra 0.425 0.362 0.505 0.355 0.430 0.300
S. anglica 0.235 0.275 0.262 0.246 0.254 0.060
B. yamatoana 0.527 0.336 0.593 0.336 0.464 0.510
T. thermophila 0.664 0.723 0.767 0.723 0.745 0.740
P. thunbergii 0.198 0.381 0.186 0.302 0.244 0.130
Average 0.410 0.415 0.463 0.392 0.427 0.348

Ribonuclease P

H. chlorum 0.485 0.360 0.525 0.348 0.437 0.320
T. syrichta 0.257 0.220 0.276 0.195 0.235 0.130
P. fluorescens 0.748 0.822 0.806 0.822 0.814 0.490
Z. bailii 0.286 0.205 0.348 0.205 0.276 0.680
A. ferrooxidans 0.734 0.833 0.851 0.833 0.842 0.590
Average 0.502 0.488 0.561 0.481 0.521 0.442

16S rRNA Small

V. ursinus 0.557 0.801 0.777 0.762 0.770 0.135
S. aestuans 0.548 0.773 0.738 0.735 0.736 0.340
L. catta 0.583 0.817 0.784 0.802 0.793 0.251
N. robinsoni 0.637 0.823 0.837 0.815 0.826 0.447
A. cahirinus 0.576 0.700 0.770 0.681 0.725 0.200
Average 0.580 0.783 0.781 0.759 0.770 0.275

16S rRNA Medium

V. acridophagus 0.358 0.641 0.574 0.583 0.578 0.371
V. corneae 0.287 0.443 0.426 0.385 0.406 0.330
E. schubergi 0.325 0.501 0.517 0.458 0.488 0.230
V. imperfecta 0.419 0.675 0.616 0.610 0.613 0.288
E. cuniculi 0.287 0.478 0.474 0.443 0.458 0.170
Average 0.335 0.548 0.521 0.496 0.509 0.278

16S rRNA Long

S. griseus 0.456 0.874 0.792 0.846 0.819 0.322
M. leprae 0.435 0.847 0.781 0.826 0.803 0.179
E. coli 0.433 0.849 0.728 0.812 0.770 0.410
C. testosteroni 0.394 0.789 0.669 0.751 0.710 0.524
M. hyopneumoniae 0.384 0.728 0.625 0.669 0.647 0.639
Average 0.420 0.817 0.719 0.781 0.750 0.415

16S rRNA Extra

P. vivax 0.196 0.588 0.381 0.522 0.452 0.385
R. carriebowensis 0.336 0.724 0.569 0.670 0.620 0.338
O. cuniculus 0.295 0.624 0.498 0.561 0.530 0.177
P. falciparum 0.223 0.585 0.425 0.525 0.475 0.423
Z. mays 0.196 0.558 0.365 0.484 0.424 0.258
Average 0.249 0.616 0.448 0.552 0.500 0.316

Total Average 0.453 0.593 0.604 0.557 0.580 0.370
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Table 5.7: Sequence results on the Sukosd set on the full RNA secondary structure
inference task

Raw Predictions Structure Prediction MFE

Sequence Name PPV Sen PPV Sen Acc Acc

E. cuniculi 0.282 0.483 0.466 0.447 0.456 0.171

V. necatrix 0.320 0.496 0.478 0.452 0.465 0.181

C. elegans 0.111 0.088 0.124 0.077 0.100 0.203

E. nidulans 0.222 0.387 0.335 0.291 0.313 0.272

N. tabacum 0.406 0.769 0.690 0.723 0.707 0.323

Cryptonomas.sp 0.454 0.850 0.738 0.803 0.770 0.339

Synechococcus.sp 0.454 0.827 0.741 0.802 0.771 0.361

M. gallisepticum 0.581 0.722 0.734 0.667 0.700 0.375

M. musculus 0.388 0.697 0.643 0.645 0.644 0.385

E. coli 0.431 0.857 0.726 0.825 0.775 0.411

B. subtilis 0.433 0.870 0.779 0.844 0.812 0.512

D. desulfuricans 0.418 0.796 0.671 0.749 0.710 0.533

C. reinhardtii 0.395 0.763 0.681 0.747 0.714 0.537

T. maritima 0.355 0.808 0.681 0.757 0.719 0.562

T. tenax 0.341 0.742 0.606 0.692 0.649 0.618

H. volcanii 0.328 0.738 0.591 0.673 0.632 0.752

Average 0.370 0.681 0.605 0.637 0.621 0.408
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