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ABSTRACT OF DISSERTATION

EMPIRICAL LIKELIHOOD AND DIFFERENTIABLE FUNCTIONALS

Empirical likelihood (EL) is a recently developed nonparametric method of statistical
inference. It has been shown by Owen (1988,1990) and many others that empirical
likelihood ratio (ELR) method can be used to produce nice confidence intervals or
regions. Owen (1988) shows that −2 logELR converges to a chi-square distribution
with one degree of freedom subject to a linear statistical functional in terms of dis-
tribution functions. However, a generalization of Owen’s result to the right censored
data setting is difficult since no explicit maximization can be obtained under con-
straint in terms of distribution functions. Pan and Zhou (2002), instead, study the
EL with right censored data using a linear statistical functional constraint in terms of
cumulative hazard functions. In this dissertation, we extend Owen’s (1988) and Pan
and Zhou’s (2002) results subject to non-linear but Hadamard differentiable statisti-
cal functional constraints. In this purpose, a study of differentiable functional with
respect to hazard functions is done. We also generalize our results to two sample
problems. Stochastic process and martingale theories will be applied to prove the
theorems. The confidence intervals based on EL method are compared with other
available methods. Real data analysis and simulations are used to illustrate our
proposed theorem with an application to the Gini’s absolute mean difference.
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Chapter 1 Outline of the Dissertation

This dissertation is organized as follows.

In chapter 2, we review the empirical likelihood ratio tests for both uncensored and

right censored data and introduce the Kaplan-Meier (KM) estimator and Nelson-

Aalen (NA) estimator. By studying the asymptotic properties of the KM estimator

and the NA estimator, we point out that it is more convenient to analyze the right

censored data using the hazard functions than using the distribution functions. In

this chapter, we also introduce the statistical functional and three distinct deriva-

tives of statistical functionals, Frechet derivative, Hadamard derivative and Gateaux

derivative. And we shall focus on the differentiability of the statistical functional in

terms of the cumulative hazard functions in later chapters.

In chapter 3, we investigate the Hadamard differentiability of the statistical func-

tional and generalize Pan and Zhou’s (2002) results subject to a nonlinear statistical

functional in terms of cumulative hazard functions with right censored data.

In chapter 4, again using Hadamard differentiability, we extend Owen’s (1988) set-

ting subject to a nonlinear statistical functional in terms of distribution functions for

uncensored data.

In chapter 5, we generalize our results in chapter 3 to the two sample problems.

In chapter 6, we compare the confidence intervals based on EL method with other

available methods using simulation. QQ plots are used to illustrate our proposed the-
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orem. In particular, we study the Gini’s absolute mean difference estimation in detail.

In chapter 7 we discuss the future work to do.

The major contribution of this dissertation is Theorem 3.2.7 in Chapter 3, Theo-

rem 4.2.7 in Chapter 4, Theorem 5.3.6 in Chapter 5 and an application to the Gini’s

absolute mean difference in Chapter 6.

Copyright c© Zhiyuan Shen, 2016.
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Chapter 2 Introduction

In this chapter, we briefly review the empirical likelihood ratio tests both with un-

censored and right censored data, the Kaplan-Meier and Nelson-Aalen estimators

and the statistical functional and its three distinct derivatives. A review of these

well-known results sets the stage for later chapters.

2.1 Empirical Likelihood Ratio Test

Empirical Likelihood Ratio Test with Uncensored Data

To facilitate the better understanding of the empirical likelihood ratio test, let’s

start with parametric likelihood ratio test (PLRT) first. Suppose X1, . . . , Xn are n

i.i.d. random variables from a population with probability density function (pdf)

or probability mass function (pmf) f(x|θ1, . . . , θp), where θ1, . . . , θp are parameters.

xxx = {x1, . . . , xn} is a realization of X1, . . . , Xn. The likelihood function considered as

a function of parameters θθθ = {θ1, . . . , θp} is defined by

L(θθθ|xxx) = L(θ1, . . . , θp|x1, . . . , xn) =
n∏
i=1

f(xi|θ1, . . . , θp) (2.1)

Let Θ denote the full parameter space. The likelihood ratio test is defined as follows.

Definition The likelihood ratio test statistic for testing H0 : θ ∈ Θ0 versus H1 :

θ ∈ Θc
0 is

λ(xxx) =
supΘ0

L(θθθ|xxx)

supΘ L(θθθ|xxx)
(2.2)

where Θ0 is some subset of Θ and Θc
0 is its complement.

The rejection region of likelihood ratio test is of the form {xxx : λ(xxx) ≤ c}, where c is

any number satisfying 0 ≤ c ≤ 1.

3



Wilks (1938) shows that under some regularity conditions, test statistic −2 log λ(xxx)

is asymptotically χ2
(p) when the null hypothesis H0 : θ ∈ Θ0 is true, where p is the

number of restrictions imposed on the parameters. This is standard in the textbooks

e.g. Casella and Berger (1990, Chapter 10).

As we have the Wilks theorem, the PLRT can be used to test hypothesis and gen-

erate confidence intervals and regions. However, it is applicable only when we know

what distribution or density f(x|θθθ) the random variables are from. In some cases,

the parametrical distribution or density we assume is questionable. If this is the case,

empirical likelihood ratio test (ELRT) may be used, which does not require strong

distribution or density assumptions.

The ELRT is a recently developed nonparametric method of statistical inference.

It has been shown by Owen (1988,1990) and many others that empirical likelihood

ratio (ELR) method can be used to produce nice confidence intervals or regions in

ways that are analogous to those of PLRT , but without strong distribution or density

assumptions.

Suppose X1, . . . , Xn are n i.i.d. random variables with an unknown distribution

function F0 and x1, . . . , xn is a realization of X1, . . . , Xn. Owen (1988) defined the

empirical likelihood function in terms of distribution functions as follows.

EL(F ) =
n∏
i=1

∆F (xi) =
n∏
i=1

pi (2.3)

where pi = ∆F (xi) = F (xi)−F (xi−) and F (t−) is the left continuous version of F (t).

4



It can be shown that empirical distribution function F̂n(t) = 1
n

∑n
i=1 I[Xi ≤ t] maxi-

mizes EL(F ) (2.3) among all possible distribution functions, which is well-known as

nonparametric maximum likelihood estimator (NPMLE) of F0.

Owen (1988) proves the nonparametric version of Wilks’s theorem. He defines the

empirical likelihood ratio (ELR) function as follows.

ELR =
EL(F )

EL(F̂n)
(2.4)

where EL(·) is defined in (2.3) and F̂n is the empirical distribution function.

He shows that −2 logELR(θ0) converges to a χ2
(1) when the null hypothesis H0 :∫

g(t)dF (t) = θ0 is true, where ELR(θ0) is the maximum of the empirical likelihood

ratio function (2.4) subject to a linear functional constraint of F ,
∫
g(t)dF (t) = θ0

and θ0 =
∫
g(t)dF0(t).

Empirical Likelihood Ratio Test with Right Censored Data

Suppose X1, . . . , Xn are n i.i.d. random variables with distribution function F0 denot-

ing lifetimes and C1, . . . , Cn are n i.i.d. random variables with distribution function

G0 denoting censoring times. C is independent of X. Only censored observations are

available to us.

Ti = min(Xi, Ci), δi = I[Xi ≤ Ci], i = 1, . . . , n (2.5)

The empirical likelihood function in terms of distribution functions based on the

censored observations pertaining F is

EL(F ) =
n∏
i=1

[∆F (Ti)]
δi [1− F (Ti)]

1−δi (2.6)

5



where ∆F (Ti) = F (Ti) − F (Ti−), i = 1, . . . , n. See Owen (2001), Empirical Likeli-

hood, Chapter 6 for a discussion of the above empirical likelihood function.

To generalize Owen’s setting to the right censored data, we need to maximize EL(F )

(2.6) both without and without the constraint
∫
g(t)dF (t) = θ0, where θ0 =

∫
g(t)dF0(t).

As is well known, the Kaplan-Meier estimator maximizes EL(F ) without the con-

straint (Kaplan and Meier (1958)). We will introduce the Kaplan-Meier estima-

tor in the next section. To maximize the EL(F ) (2.6) under the linear constraint∫
g(t)dF (t) = θ0, we utilize the Lagrange multiplier method. Denote wi = ∆F (Ti)

and notice that
∑n

i=1wi = 1, since the summation of all jumps of a discrete distri-

bution function equals to one, we can write the constraint
∫
g(t)dF (t) = θ0 in the

discrete format as follows.
n∑
i=1

δig(Ti)wi = θ0 (2.7)

The logEL(F ) in terms of wi is as follows.

logEL(F ) =
n∑
i=1

(
δi logwi + (1− δi) log

(
1−

i∑
j=1

wj

))
(2.8)

In order to apply the Lagrange multiplier method, we form the target function G as

follows.

G =
n∑
i=1

[
δi logwi + (1− δi) log

(
1−

i∑
j=1

wj

)]

+ γ

(
1−

n∑
i=1

wi

)
+ nλ

(
θ0 −

n∑
i=1

δig(Ti)wi

) (2.9)

Taking the derivative with respect to wi, i = 1, . . . , n and equaling them to 0 yields

∂G

∂wi
=
δi
wi
−

n∑
l=i

(1− δl)
1

1−
∑l

j=1wj
− γ − nλδig(Ti) = 0 (2.10)

6



Then we have

γ =
δi
wi
−

n∑
l=i

(1− δl)
1

1−
∑l

j=1wj
− nλδig(Ti) (2.11)

Multiplying wi on both sides and taking the summation through 1 to n gives us

γ =
n∑
i=1

wiγ =
n∑
i=1

δi −
n∑
i=1

n∑
l=i

[
(1− δl)

1

1−
∑l

j=1 wj

]
wi − nλ

n∑
i=1

δig(Ti)wi

=
n∑
i=1

δi −
n∑
l=1

(1− δl)
∑l

j=1 wj

1−
∑l

j=1wl
− nλθ0

(2.12)

since
∑n

i=1 δig(Ti)wi = θ0 and
∑n

i=1wi = 1.

Plugging γ into (2.10), we have an equation for wi

δi
wi

= (n− i+ 1) +
i−1∑
l=1

δl −
i−1∑
l=1

(1− δl)
∑l

j=1wl

1−
∑l

j=1 wl
− nλθ0 + nλδig(Ti) (2.13)

From the above equation, we can see that wi is a non-linear function of all of its

previous jumps wj, j = 1, . . . , i − 1. (2.13) is a recursive formula for computing wi.

Although we can solve the problem computationally (Zhou and Yang (2015)), it is

difficult to solve it analytically, since no explicit maximization can be obtained under

the constraint in terms of distribution functions.

Pan and Zhou (2002) generalize Owen’s result to the right censored data by us-

ing a linear functional constraint in terms of the cumulative hazard function. The

relationship between the distribution function and hazard function is as follows.

1− F (t) =
∏
s≤t

(1−∆Λ(s)) ∆Λ(t) =
∆F (t)

1− F (t−)
(2.14)

7



The empirical likelihood function (2.6) can be rewritten in terms of hazard functions

as follows.

EL(Λ) =
n∏
i=1

[∆Λ(Ti)]
δi

 ∏
j:Tj<Ti

(1−∆Λ(Tj))

δi  ∏
j:Tj≤Ti

(1−∆Λ(Tj))

1−δi


(2.15)

A simpler version can be obtained if we merge the second and third terms of the above

equation and replace it with exp {−Λ(Ti)}, which is called the Poisson extension of

the likelihood introduced by Murphy (1995).

AL(Λ) =
n∏
i=1

[∆Λ(Ti)]
δi exp {−Λ(Ti)} (2.16)

For a detailed discussion of different extensions of the likelihood function for discrete

distributions, see Gill (1989). See Pan and Zhou (2002) for a discussion of the legiti-

macy of the use of AL.

Pan and Zhou (2002), study EL with right censored data using a linear functional

constraint in terms of the cumulative hazard functions. They define the empirical

likelihood ratio (ELR) function as follows.

ELR =
EL(Λ)

EL(Λ̂NA)
(2.17)

where EL(Λ) is defined in (2.15) and Λ̂NA is the so-called Nelson-Aalen estimator

which maximizes EL(Λ) (2.15) among all cumulative hazard functions (Nelson (1969,

1974), Aalen (1976)). We will introduce the Nelson-Aalen estimator in the next sec-

tion.

Pan and Zhou (2002) prove that −2 logELR(θ0) has an asymptotic χ2
(1) when the

8



null hypothesis H0 :
∫
g(t)dΛ(t) = θ0 is true, where ELR(θ0) is the maximum of the

ELR function (2.17) subject to a linear functional constraint of Λ,
∫
g(t)dΛ(t) = θ0

where θ0 =
∫
g(t)dΛ0(t) and Λ0 is cumulative hazard function associated with F0

defined in (2.5).

Copyright c© Zhiyuan Shen, 2016.
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2.2 Kaplan-Meier Estimator and Nelson-Aalen Estimator

Kaplan-Meier Estimator

The Kaplan-Meier (KM) estimator, also known as the product-limit estimator, is a

nonparametric statistic to estimate the survival probability with lifetime data. It was

first introduced by Kaplan and Meier in 1958. The survival function represents the

probability that a subject from a given population has a lifetime exceeding time t.

Let X1, . . . , Xn be n i.i.d. random variables with survival function S(t) = P (X > t)

denoting lifetimes and C1, . . . , Cn be n i.i.d. random variables with survival function

G(t) = P (C > t) denoting censoring times. X and C are independent. And only

censored observations are available to us.

Ti = min(Xi, Ci), δi = I(Xi ≤ Ci), i = 1, . . . , n (2.18)

Suppose there are k distinct uncensored lifetimes t1 < t2 < . . . < tk. Corresponding

to each ti we have ni, the number of individuals at risk prior to time ti and di, the

number of deaths at time ti. The KM estimator is defined as follows.

ŜKM(t) =
∏
ti≤t

ni − di
ni

(2.19)

Kaplan and Meier shows that ŜKM is a nonparametric maximum likelihood estima-

tor of survival function S(t) in the sense that it maximizes the following likelihood

function

L(S) =
∏

uncensored

[S(Zi−)− S(Zi)]
∏

censored

S(Zi) (2.20)

over the parameter space Θ = {all survival functions}. The variance estimator of

the KM estimator, which is the well-known Greenwood formula, is defined as follows.
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ˆV ar
(
Ŝ(t)

)
= ŜKM(t)2

∑
ti≤t

di
ni (ni − di)

(2.21)

Breslow and Crowley (1974) first derive the asymptotic properties of Kaplan-Meier

estimator under a random censorship model. They show that ŜKM(t) is asymptot-

ically normal and its asymptotic variance can be estimated by Greenwood formula

consistently.

More recent references of asymptotic results of the KM estimator utilize counting

process and martingale theories. We will discuss them with the Nelson-Aalen esti-

mator.

Nelson-Aalen Estimator

The Nelson-Aalen (NA) estimator was first proposed by Nelson (1969,1972). Its

asymptotic properties were studied by Breslow and Crowley (1974) and by Aalen

(1976).

While the Kaplan-Meier (KM) estimator is the nonparametric maximum likelihood

estimator (NPMLE) of the survival functions, the Nelson-Aalen (NA) estimator is

the NPMLE of the cumulative hazard functions. It is defined as

Λ̂NA(t) =
∑
ti≤t

di
ni

(2.22)

where di is the number of deaths at time ti and ni is the number of individuals at

risk prior to time ti.

It is much more mathematically convenient to use cumulative hazard functions in-

stead of distribution functions to analyze the right censored data, because the NA

estimator has a lot of properties that the KM estimator does not have.

11



First, the NA estimator can be represented in a form of martingale while the KM

estimator can also be represented in a form of martingale but in a complex format.

Second, with the knowledge of counting process and martingale theory, we learn that

the predictable integration with respect to a martingale is also a martingale. This

implies that the predictable integration with respect to the NA estimator is also a

martingale. To represent the NA estimator and the predictable integration with re-

spect to the NA estimator in the form of martingales is important, since Martingale

Central Limit Theorem can be applied to obtain their asymptotic properties. See

Kalbfleisch and Prentice (2002), Chapter 5 for more details about the Martingale

Central Limit Theorem.

It is helpful to define two technical terms before we introduce the definition of the

martingale (Kalbfleisch and Prentice (2002)).

1. A stochastic process U = {U(t), t ≥ 0} is said to be adapted to the filtration Ft,

if for each t, U(t) is a function of (or is specified by) Ft. In measure-theoretic

terms, U is said to be adapted if U(t) is Ft measurable for each t ∈ [0, τ ]. In

less formal terms, this simply means that the value of U(t) is fixed once Ft is

given.

2. The stochastic process U is said to be predictable with respect to the filtration

Ft, if for each t, the value of U(t) is a function of (or is specified by) Ft−.

Again, in measure-theoretic terms, U is predictable if U(t) is Ft− measurable

for all t ∈ [0, τ ].

For example, if f(t) is left continuous with respect to t, f(t) is predictable.

The definition of the martingale cited from Kalbfleisch and Prentice (2002) is as

follows.

12



Definition (Kalbfleisch and Prentice (2002)) A (real-valued) stochastic process

{M(t), 0 ≤ t ≤ τ} is a martingale with respect to the filtration {Ft} if it is cadlag,

adapted to Ft, and satisfies the martingale property

E[M(t)|Ft] = M(s) for all s ≤ t ≤ τ (2.23)

or equivalently

E[dM(t)|Ft−] = 0 for all t ∈ (0, τ ] (2.24)

For example, suppose X is a continuous random variable with hazard function h(t),

we define the one jump counting process as N(t) = I[X ≤ t]. It can be shown that

M(t) = N(t)−
∫ t

0

h(s)I[X ≥ s]ds (2.25)

is a martingale with respect to Ft.

Next, we introduce the predictable variation process. The primary role of study-

ing the predictable variation process is to compute the variance of the counting process

martingale M(t) and the variance of the integration with respect to M(t). Also the

conditions of the Martingale Central Limit Theorem are formulated in terms of

the predictable variation process.

Definition (Kalbfleisch and Prentice (2002)) The predictable variation process

of a square integrable martingale M is defined as

〈M〉(t) =

∫ t

0

var[dM(u)|Fu−] (2.26)

Equivalently, we can write

d〈M〉(t) = var[dM(t)|Ft−] (2.27)
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The martingale M(t) is said to be square integrable if E[M2(τ)] <∞.

For example, the predictable variation process of the one jump counting process

martingale M(t) = I[X ≤ t]−
∫ t

0
h(s)I[X ≥ s]ds is

〈M〉(t) = 〈I[X ≤ t]−
∫ t

0

h(s)I[X ≥ s]ds〉 =

∫ t

0

h(s)I[X ≥ s]ds (2.28)

where X is a random variable with continuous hazard function h(t).

Another important example is the predictable variation process of the integration

with respect to a martingale M(t).

〈
∫ t

0

f(s)dM(s)〉 =

∫ t

0

f 2(s)d〈M(s)〉 (2.29)

where f(t) is predictable.

Preceding the martingale representation of the Nelson-Aalen estimator, we claim

an important theorem.

Theorem 2.2.1 (Anderson, P.K. et al. (1993)) Suppose M is a finite variation

local square integrable martingale, H is a predictable process, and
∫
H2d〈M〉 is locally

finite. Then
∫
HdM is a local square integrable martingale.

Let X1, . . . , Xn be n i.i.d. random variables with distribution function F (t), cu-

mulative distribution function Λ(t) and hazard function h(t) denoting lifetimes and

C1, . . . , Cn be n i.i.d. random variables with distribution function G(t) denoting cen-

soring times. X and C are independent. And only censored observations are available

to us.

Ti = min(Xi, Ci), δi = I(Xi ≤ Ci), i = 1, . . . , n (2.30)
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Define Mn(t) as follows

Mn(t) =
n∑
i=1

Mi(t) =
n∑
i=1

(
I[Xi ≤ t, δi = 1]−

∫ t

0

h(s)I[Xi ≥ s]ds

)
(2.31)

It can be shown that Mn(t) is a local square integrable martingale with respect to

Ft (Anderson et al.(1993)).

Denote R(t) =
∑n

j=1 I[Tj ≥ t]. Since R(t) is left continuous, it is predictable. The

Nelson-Aalen estimator can be represented as a predictable integration with respect

to a local square integrable martingale Mn(t) as follows (Anderson et al. (1993)).

Λ̂NA(t)− Λ(t) =

∫ t

0

1

R(s)
dMn(s) (2.32)

Therefore, by Theorem 2.2.1, (2.32) is also a martingale. It can also been shown that

two conditions of the Martingale Central Limit Theorem are satisfied. Then we have

√
n
(

Λ̂NA(t)− Λ(t)
)

D−−−−→ BM(A(t)) (2.33)

where BM(t) is a standard Brownian motion and

A(t) =

∫ t

0

dΛ(s)

P (X ≥ s)
=

∫ t

0

dΛ(s)

(1− F (s−)) (1−G(s−))
(2.34)

For more details about the asymptotic properties of the NA estimator, see Anderson

et al. (1993).

The Kaplan-Meier estimator can also be represented as a martingale but in a com-

plex format (Gill (1983)). Suppose (T1, δ1), . . . , (Tn, δn) are n i.i.d. random vectors

defined in (2.30). Let F̂KM(t) be the product-limit estimator such that 1− F̂KM(t) =

ŜKM(t) =
∏

j:Tj≤t

(
1− dj

nj

)
and 1−H = (1− F )(1−G).
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Theorem 2.2.2 (Gill (1983)) For any τ such that H(τ−) < 1

√
n

(
F̂KM − F

1− F

)
D−−−−→ BM(C) in D[0, τ ] as n →∞ (2.35)

where BM(t) is a standard Brownian motion, D[0, τ ] is the set of all cadlag functions

and

Λ(t) =

∫ t

0

dF (s)

1− F (s−)
, C(t) =

∫ t

0

dF (s)

(1− F (s−))2 (1−G(s−))
=

∫ t

0

dΛ(s)

1−H(s−)

(2.36)

Remark Note that BM(C) is a continuous Gaussian martingale, zero at time zero,

with covariance function

Cov [BM(C(s)), BM(C(t))] = C(s) ∧ C(t) = C(s ∧ t) (2.37)

where ∧ denotes minimum.

Although we represent the Kaplan-Meier estimator as a martingale, we have 1 − F

in the denominator. Unfortunately, what we are interested in is the integration with

respect to F̂KM − F , which is not a martingale, so Theorem 2.2.1 cannot be applied

to obtain the asymptotic properties of the integration with respect to F̂KM − F .

Nevertheless, Λ̂NA − Λ is a martingale and by Theorem 2.2.1, the integration with

respect to Λ̂NA − Λ is also a martingale, the Martingale Central Limit Theorem can

be applied to obtain its asymptotic properties.

Akritas (2000) proves a central limit theorem for the integration with respect to

F̂KM − F but not on the whole real line. Suppose (T1, δ1), . . . , (Tn, δn) are n i.i.d.

random vectors defined in (2.30). Let F̂KM(t) be the product-limit estimator s.t.

1− F̂KM(t) = ŜKM(t) =
∏

j:Tj≤t

(
1− dj

nj

)
and 1−H = (1− F )(1− G), S = 1− F .
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Let τn = max(X1, . . . , Xn) and τF = sup{x : F (x) < 1}, for any distribution function

F . Let φ : R → R be any measurable function such that
∫
φ2dF < ∞, where R is

the real line.

Theorem 2.2.3 (Akritas (2000)) Let the following assumption hold,

∫ τH

−∞

φ2(s)

1−G(s−)
dF (s) <∞ (2.38)

Then if τn < τF a.s. or φ(τF ) = 0,

√
n

∫ τH

−∞
φ(s)d

(
F̂KM(s)− F (s)

)
D−−−−→ N(0, σ2) (2.39)

where σ2 =
∫ τH
−∞

S(s)
1−H(s−)

[
φ(s)− φ̄(s)

]2
dF (s) and φ̄(s) = 1

S(s)

∫
(s,τH ]

φ(t)dF (t).

Although Akritas proves a central limit theorem for the integration with respect to

the KM estimator, he approximates it by an integration with respect to NA estimator

plus a small error op(
1√
n
). This means that he takes the advantage of the convenient

martingale expression of the NA estimator to obtain the asymptotic property of the

KM estimator. Therefore, Akritas’s theorem strengthens our claim that it is more

convenient to analyze the right censored data using hazard functions than using dis-

tribution functions. For more details, see Akritas (2000).

From the discussion in this section, it is clear that the NA estimator has plenty of

nice properties for deriving the asymptotic properties while the KM estimator seldom

has. This is the major reason why hazard functions are more frequently used than

distribution functions with right censored data. In the next section, we introduce

the statistical functional and its three distinct differentiability. We would initially

introduce the statistical functional in terms of distribution functions. Since hazard

functions are going to be used to analyze the right censored data, eventually, we shall
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focus on the statistical functional in terms of cumulative hazard functions and their

differentiability.

2.3 Statistical Functional and Its Derivative

Statistical Functional

In this dissertation, we investigate the large sample properties of empirical likelihood

ratio subject to various kinds of non-linear constraints. A constraint can frequently

be formulated via a statistical functional on a normed linear space. And a statisti-

cal functional with differentiability properties will provide a handle to work out its

asymptotic behavior.

A lot of work has already been done on statistical functional in terms of distribution

functions. They were first introduced by von Mises (1936, 1937, 1947). His work

was largely ignored until late 1960s when the development of robust statistics had

a boom. Since then, von Mises’s theory has been studied and extended by several

authors in different directions: Filippova (1962), Reeds (1976), Huber (1977,1981)

and Serfling (1980). Now von Mises’s calculus has been widely used in the theory of

robust estimation and study of bootstrap methods.

To have a better understanding of von Mises’s method, let’s begin with a discus-

sion of empirical distribution function. Let X1, . . . , Xn be n i.i.d. random variables

with distribution function F (x).

Definition The empirical distribution function F̂n(x) is the cumulative distribution

function that puts mass 1
n

at each data point Xi.

F̂n(x) =
1

n

n∑
i=1

I[Xi ≤ x] (2.40)
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By Strong Law of Large Numbers, the empirical distribution function F̂n(x)

converges to F (x) almost surely, for every value of x ∈ R.

F̂n(x)
a.s.−−−−→ F (x) as n→∞ (2.41)

The Glivenko-Cantelli Theorem states a stronger result that the convergence in

fact happens uniformly over x ∈ R.

sup
x∈R

∣∣∣F̂n(x)− F (x)
∣∣∣ a.s.−−−−→ 0 as n→∞ (2.42)

By Central Limit Theorem, for any fixed x ∈ R, F̂n(x) has an asymptotic normal

distribution.

√
n
(
F̂n(x)− F (x)

)
D−−−−→ N (0, F (x) (1− F (x))) as n→∞ (2.43)

The Donsker’s Theorem extends the above result (2.43) and asserts that the em-

pirical process
√
n
(
F̂n − F

)
, which is indexed by x ∈ R, converges in distribution to

the mean-zero Gaussian process GF = B(F (x)), where B is the standard Brownian

bridge. The covariance structure of the Gaussian process is

E [GF (t1)GF (t2)] = F (t1 ∧ t2)− F (t1)F (t2) (2.44)

where ∧ denotes the minimum.

In parametric statistics, if we have worked out the asymptotic distribution of θ̂ as

√
n
(
θ̂ − θ0

)
converges to a normal distribution, the delta method can be used to

obtain the asymptotic distribution for a function of θ̂, T (θ̂). In nonparametric statis-

tics, since the asymptotic normality of F̂n − F is well known as we discussed above,
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we use the Functional Delta Method to obtain the asymptotic distribution for

T (F̂n)− T (F ), where T (F ) is a functional of F .

To facilitate a better understanding, we start with a simpler version of functional

delta method assuming that T (F ) =
∫
a(x)dF (x), which is called a linear functional.

But ultimately we shall work with the non-linear functional.

First, we introduce the Influence Curve, which will be used in establishing the

Functional Delta Method later. The influence curve was first introduced by Ham-

pel (1974) and used in robust estimation. It also provides a way to compute the

asymptotic variance when the statistic is asymptotically normal. The definition of

the influence curve (Hampel (1974)) is as follows.

Definition (Hampel (1974)) Let R be the real line and T be a real-valued func-

tional defined on some subset of the set of all probability measures on R, and let F

denote a probability measure on R for which T is defined. Denote by δx the proba-

bility measure determined by the point mass 1 in any given point x ∈ R. Mixtures

of F and some δx are written as (1 − ε)F + εδx, for 0 < ε < 1. Then the influence

curve ICT,F (x) of T at F is defined pointwisely by

ICT,F (x) = lim
ε↓0

{T [(1− ε)F + εδx]− T (F )}
ε

(2.45)

if this limit is defined for every point x ∈ R.

Theorem 2.3.1 (Wasserman (2006)) Let T (F ) =
∫
a(x)dF (x) be a linear func-

tional and LF (x) be the influence curve of T at F . Then we have

1. LF (x) = a(x)− T (F ) and L̂(x) = LF̂n(x) = a(x)− T (F̂n)
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2. For any distribution function G,

T (G) = T (F ) +

∫
LF (x)dG(x)

= T (F ) +

∫
(a(x)− T (F )) dG(x)

(2.46)

3.
∫
LF (x)dF (x) = 0, where LF (x) = a(x)− T (F ).

4. Let τ 2 =
∫
L2
F (x)dF (x). Then if τ 2 <∞,

√
n
(
T (F̂n)− T (F )

)
D−−−−→ N(0, τ 2) as n→∞ (2.47)

where LF (x) = a(x)− T (F ).

5. Let

τ̂ 2 =
1

n

n∑
i=1

L̂2(Xi) =
1

n

n∑
i=1

(
a(Xi)− T (F̂n)

)2

(2.48)

Then

τ̂ 2 P−−→ τ 2 and
ŝe

se

P−−→ 1, as n →∞ (2.49)

where ŝe = τ̂√
n

and se =
√

F (x)(1−F (x))
n

.

6. √
n
(
T (F̂n)− T (F )

)
τ̂

D−−−−→ N(0, 1), as n →∞ (2.50)

Proof See Wasserman, L. (2006), All of Nonparametric Statistics, Chapter 2.

If the functional T (F ) is non-linear, which means not of the form T (F ) =
∫
a(x)dF (x),

(2.46) will not hold exactly, but it may hold approximately. We summarize the ap-

proach to this problem in the following paragraphs. For more detailed discussion, see

Fernholz (1983),Chapter I.
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To deal with the non-linear functional T (F ), von Mises came up with a Taylor ex-

pansion of a statistic T (F̂n) as follows.

T (F̂n) = T (F ) + T
′

F (F̂n − F ) +Rem(F̂n − F ) (2.51)

where F̂n(x) = 1
n

∑n
i=1 I[Xi ≤ x] is the empirical distribution function defined in

(2.40). T
′
F is the derivative of T at F . We will introduce three distinct derivatives

of T at F later in this section. In particular, the term T
′
F (F̂n − F ) is linear and is

therefore a sum of i.i.d. random variables, so the central limit theorem implies that

for some finite σ2 > 0,

√
nT

′

F

(
F̂n − F

)
D−−−−→ N(0, σ2) (2.52)

Under some conditions, the remaining term

√
nRem(F̂n − F )

P−−−−→ 0 (2.53)

is satisfied. If (2.52) and (2.53) hold, by the Slutsky theorem, we have

√
n
(
T (F̂n)− T (F )

)
D−−−−→ N(0, σ2) (2.54)

The following is a brief discussion of the conditions that make (2.53) satisfied. For

more detailed discussions, see Reeds (1976) and Fernholz (1983).

The satisfaction of (2.53) relies on the differentiability of statistical functional T .

Different authors choose different conditions to make (2.53) satisfied. They can be

mainly classified into three types: Gateaux differentiability, Hadamard differentia-

bility and Frechet differentiability. Gateaux differentiability is a weak form of dif-
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ferentiability and various authors have to supplement Gateaux differentiability with

extra conditions e.g. the second order derivative, which is seldom satisfied. The

assumption of Frechet differentiability also implies (2.53), but is still too strong be-

cause few statistic is Frechet differentiable. The most popular condition that implies

(2.53) is the Hadamard differentiability, which is a weaker form of differentiability

than Frechet differentiability and applicable to a large class of statistics.

Next, we introduce the statistical functional and its three distinct differentiabil-

ity, Frechet differentiability, Hadamard differentiability and Gateaux differentiabil-

ity. From the above discussion, we shall focus on Hadamard differentiability in later

chapters.

Now let’s continue with the definition of statistical functional in terms of distribution

functions (Fernholz (1983)).

Definition (Fernholz (1983)) Let X1, . . . , Xn be a random sample from distri-

bution function F and let Tn = Tn(X1, . . . , Xn) be a statistic. If Tn can be writ-

ten as a functional T of the empirical distribution function F̂n, Tn = T (F̂n), where

F̂n(x) = 1
n

∑n
i=1 I[Xi ≤ x] and T does not depend on n, then T is called a statistical

functional. The domain of definition of T is assumed to contain the empirical dis-

tribution function F̂n for all n ≥ 1, as well as the population distribution function

F . Unless otherwise specified, the range of T will be the set of real numbers. The

parameter to be estimated is T (F ).

The following is a simple example of statistical functional in terms of distribution

functions.

Let φ be a real valued function and F̂n(t) = 1
n

∑n
i=1 I[Xi ≤ t] be the empirical
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distribution function and let

Tn(X1, . . . , Xn) =
1

n

n∑
i=1

φ(Xi) =

∫
φ(t)dF̂n(t) (2.55)

Then for a general distribution function G, the functional defined by

T (G) =

∫
φ(x)dG(x) (2.56)

satisfies Tn(X1, . . . , Xn) = T (F̂n). And functionals of this form are called linear sta-

tistical functionals in terms of distribution functions.

Any statistical functional in terms of distribution functions not of the form T (G) =∫
φ(x)dG(x) is called a non-linear statistical functional in terms of distribution func-

tions.

For example, of a non-linear function, let

Tn(X1, . . . , Xn) =
1

n

n∑
i=1

(
Xi − X̄

)2
(2.57)

where X̄ = 1
n

∑n
i=1Xi. For a general distribution function G, the functional is defined

by

T (G) =
1

2

∫ ∫
(x− y)2 dG(x)dG(y) (2.58)
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Then

T (F̂n) =
1

2

∫ ∫
(x− y)2 dF̂n(x)dF̂n(y)

=
1

2n2

n∑
i=1

n∑
j=1

(Xi −Xj)
2

=
1

2n2

n∑
i=1

n∑
j=1

(
X2
i − 2XiXj +X2

j

)
=

1

n

n∑
i=1

X2
i −

(
X̄
)2

= Tn(X1, . . . , Xn)

(2.59)

T is a statistical functional but not of the form
∫
φ(x)dG(x), which is called a non-

linear statistical functional in terms of distribution functions.

In the previous section, we learn that the Kaplan-Meier estimator and the Nelson-

Aalen estimator are nonparametric maximum likelihood estimator (NPMLE) for the

survival functions and the cumulative hazard functions respectively. Moreover, the

NA estimator can be expressed in a form of martingale while the KM estimator can

not. And it is more convenient to use the hazard functions instead of the distribution

functions for the right censored data. In order to use the hazard functions, we shall

write the empirical likelihood in terms of them, which we already did in (2.15). To

compute the empirical likelihood ratio, we need to calculate the maximum of the em-

pirical likelihood under a statistical functional constraint. The statistical functional

constraint shall be in terms of cumulative hazard functions as well. Similar to the

statistical functional in terms of distribution functions, we can define the statistical

functional in terms of cumulative hazard functions as follows.

Definition Suppose (T1, δ1), . . . , (Tn, δn) are n i.i.d. random vectors as defined in

(2.30). Let Un = Un((T1, δ1), . . . , (Tn, δn)) be a statistic. If Un can be written as a

functional T of the Nelson-Aalen estimator, Un = T (Λ̂NA), where T does not depend

on n, then T is called a statistical functional in terms of cumulative hazard functions.
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The domain of definition of T is assumed to contain the Nelson-Aalen estimator for

all n ≥ 1, as well as the population cumulative hazard function Λ. Unless otherwise

specified, the range of T will be the set of real numbers. The parameter to be

estimated is T (Λ).

For example, let X1, . . . , Xn be n i.i.d. random variables with survival probability

S(t) = P (X > t) denoting lifetimes and C1, . . . , Cn be n i.i.d. random variables

with survival probability G(t) = P (C > t) denoting censoring times. X and C are

independent. And only censored observations are available to us.

Ti = min(Xi, Ci), δi = I(Xi ≤ Ci), i = 1, . . . , n (2.60)

Suppose there are k distinct uncensored lifetimes t1 < t2 < . . . < tk. Corresponding to

each ti we have ni, the number of individuals at risk prior to time ti and di, the number

of deaths at time ti. Let g(t) be a real valued function of t and Un =
∑k

i=1 g(ti)
di
ni

.

For a general cumulative hazard function Λ(t), the functional defined by the following

T (Λ) =

∫
g(t)dΛ(t) (2.61)

satisfies Un = T (Λ̂NA), since Λ̂NA(t) =
∑

ti≤t
di
ni

. This is called a linear statistical

functional in terms of the cumulative hazard functions.

In particular, suppose we are interested in getting a 95% confidence interval for

the cumulative hazard at time t0, Λ0(t0), where Λ0 is the true cumulative hazard

function. Hence θ0 = Λ0(t0). In this case, the function g is an indicator function:

g(t) = I[t ≤ t0].

Any statistical functional in terms of the cumulative hazard functions but not of

the form
∫
g(t)dΛ(t) is called a non-linear statistical functional in terms of the cu-

mulative hazard functions.
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For example, let g(x, y) be a function of both x and y, and Un =
∑k

i=1 g(ti,
∑

tj≤ti
dj
nj

) di
ni

,

for any general cumulative hazard function Λ, the statistical functional T defined as

follows

T (Λ) =

∫
g (t,Λ(t)) dΛ(t) (2.62)

satisfies Un = T (Λ̂NA), which is called a non-linear statistical functional in terms of

the cumulative hazard functions.

In particular, suppose we are interested in getting a 95% confidence interval for the

mean of a continuous distribution with cumulative hazard function Λ0(t). Hence

θ0 =
∫
te−Λ0(t)dΛ0(t). This formula can be easily verified by the relationship between

distribution functions and hazard functions. The mean of a continuous distribu-

tion function F0 is
∫
tdF0(t). The relationship between a continuous distribution

function F0 and a continuous cumulative hazard function is 1 − F0(t) = e−Λ0(t) and

dΛ0(t) = dF0(t)
1−F0(t)

. Therefore
∫
tdF0(t) can be rewritten as

∫
te−Λ0(t)dΛ0(t). In this

case, the function g is g(t,Λ(t)) = te−Λ(t). It can be shown that g(t,Λ(t)) = te−Λ(t)

satisfies three assumptions of Theorem (3.2.2) in Chapter 3, which implies that g

is Hadamard differentiable at Λ0. We will introduce the Hadamard differentiability

later in this section.

For the higher dimension of domain e.g. D[0, τ ] × D[0, τ ], where D[0, τ ] is the set

of the real valued cadlag functions on [0, τ ]. The statistical functional defined on

D[0, τ ]× D[0, τ ] as

T (Λ1(t),Λ2(s)) =

∫
g1(t)dΛ1(t) +

∫
g2(s)dΛ2(s) (2.63)

is called a linear statistical functional in terms of the cumulative hazard functions.
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Any statistical functional not of the above form is called a non-linear statistical

functional in terms of the cumulative hazard functions, such as

T (Λ1(t),Λ2(s)) =

∫ ∫
H(t, s)dΛ1(t)dΛ2(s) (2.64)

or

T (Λ1(t),Λ2(s)) =

∫ ∫
H(t, s,Λ1(t),Λ2(s))dΛ1(t)dΛ2(s) (2.65)

Next, we briefly introduce three distinct differentiability of statistical functionals in

terms of cumulative hazard functions.

Frechet Derivative

The common definition of Frechet differentiability in a normed vector space is as

follows.

Definition Let T be a functional

T : D −→ R (2.66)

where D is a normed linear space equipped with norm ‖·‖ and R is the real line. T is

Frechet differentiable at F ∈ D if there exists a linear functional T
′
F : D −→ R such

that,

lim
‖G−F‖→0

∣∣T (G)− T (F )− T ′F (G− F )
∣∣

‖G− F‖
= 0, for G ∈ D (2.67)

The linear functional T
′
F is called the Frechet derivative of T at F .

Remark In particular, F and G may not be distribution functions but cumulative

hazard functions.
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Hadamard Derivative

The Frechet differentiability is often too strong and a lot of statistics are not Frechet

differentiable (See Fernholz(1983) Example2.3.2). Therefore a weaker form of deriva-

tive, Hadamard derivative, is often used, which is defined as follows.

Definition Let T be a functional

T : D −→ R (2.68)

where D is a normed linear space equipped with norm ‖·‖ and R is the real line. T

is Hadamard differentiable at θ ∈ D; if ∃ a linear functional T
′

θ : D −→ R, for any

δn → 0 as n→∞, D,D1, D2, . . . ∈ D, s.t. ‖Dn −D‖ → 0, we have

lim
n→∞

(
T (θ + δnDn)− T (θ)

δn
− T ′θ(D)

)
= 0 (2.69)

and T
′

θ is called Hadamard derivative of T at θ.

Remark In particular, θ can be a cumulative hazard function and D can be D[0, τ ],

which is the set of all real-valued cadlag functions on [0, τ ], where τ is a fixed num-

ber. We will show an example of non-linear but Hadamard differentiable statistical

functional in terms of cumulative hazard functions in Theorem 3.2.2 in Chapter 3.

Gateaux Derivative

An even weaker derivative is called Gateaux derivative which is defined as below.

Definition Let T be a functional

T : D −→ R (2.70)
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where D is normed linear space equipped with norm ‖·‖ and R is the real line. T is

Gateaux differentiable at F in the direction G if the following limit exists

T
′

F (G) = lim
ε→0

T ((1− ε)F + εG)− T (F )

ε
(2.71)

and if the limits exist for all G ∈ D, then we say that T is Gateaux differentiable at

F .

Remark In particular, F and G may not be distribution functions but cumulative

hazard functions.

A uniform definition of three distinct differentiability can be found in Fernholz (1983)

Chapter 3.

Definition (Fernholz (1983)) Let V and W be topological vector spaces and let

L(V,W) be the set of continuous linear transformations from V to W. Let S be a

class of subsets of V such that every subset consisting of a single point belongs to S,

and let A be an open subset of V.

A function

T : A −→W (2.72)

is S-differentiable at F ∈ A, if there exists T
′
F ∈ L(V,W) such that for any K ∈ S

lim
t→0

T (F + tH)− T (F )− T ′F (tH)

t
= 0 (2.73)

uniformly for H ∈ K. The linear function T
′
F is called the S − derivative of T at F .

It is convenient to define the remainder term

R(T, F,H) = T (F +H)− T (F )− T ′F (H) (2.74)
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With this notation (2.73) is equivalent to : for any neighborhood N of 0 in W. there

exists ε > 0 such that if |t| < ε then

R(T, F, tH)

t
∈ N (2.75)

for all H ∈ K.

Here are three particular types of differentiation that we interested in:

• S = {bounded subsets of V}, this corresponds to Frechet differentiation.

• S = {compact subsets of V}, this corresponds to Hadamard differentiation.

• S = {single point subsets of V}, this corresponds to Gateaux differentiation.

It is clear from the above uniform definition that Frechet differentiability implies

Hadamard differentiability and Hadamard differentiability implies Gateaux differen-

tiability.

In summary, it is much more convenient to analyze the right censored data by us-

ing hazard functions than by using distribution functions. First, an explicit form of

maximum can be obtained when we use a constraint in terms of cumulative hazard

functions while no explicit form of maximum can be obtained using a constraint in

terms of distribution functions. Second, the Nelson-Aalen estimator, which is the non-

parametric maximum likelihood estimator of the cumulative hazard functions, can be

expressed in a form of martingale and the predictable integration with respect to the

Nelson-Aalen estimator is also a martingale. With the expression of martingales, the

Martingale Central Limit Theorem can be applied to obtain their asymptotic proper-

ties. However, the Kaplan-Meier estimator, which can be considered as the NPMLE

of distribution functions, can not be expressed as a simple form of martingale as the

Nelson-Aalen estimator does. Without the convenient martingale expression, it is
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difficult to analyze the right censored data by using distribution functions.

In result, to analyze the empirical likelihood with the right censored data subject

to a non-linear statistical functional, we shall consider the statistical functional in

terms of cumulative hazard functions. In the following chapters, we shall investi-

gate the Hadamard differentiability of the non-linear statistical functional in terms

of cumulative hazard functions.
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Chapter 3 Empirical Likelihood Ratio Subject to Nonlinear Statistical

Functional in Terms of Cumulative Hazard with Right Censored Data

3.1 Introduction

Background

In this chapter, we prove that −2 logELR(θ0) converges to a χ2
(1), when the following

null hypothesis is true,

H0 :

∫
g (t,Λ(t)) dΛ(t) = θ0 (3.1)

T (Λ) =
∫
g(t,Λ(t))dΛ(t) is a non-linear but Hadamard differentiable statistical func-

tional. The sufficient conditions for Hadamard differentiability are listed in Theorem

3.2.2. ELR(θ0) is the maximum of the empirical likelihood ratio (ELR) function sub-

ject to the non-linear statistical functional constraint
∫
g(t,Λ(t))dΛ(t) = θ0, where

θ0 =
∫
g(t,Λ0(t))dΛ0(t) and Λ0 is the true cumulative hazard function. The ELR

function is defined as follows.

ELR =
EL(Λ)

EL(Λ̂NA)
(3.2)

where EL(·) is defined in (2.15) and Λ̂NA is the Nelson-Aalen estimator.

The empirical likelihood method was first proposed by Thomas and Grunkemeier

(1975). They heuristically prove that the empirical likelihood ratio statistic for a

survival probability has a χ2
1 limiting distribution under the null hypothesis that

P (X > a) = p0, where a is a fixed real number and p0 is a hypothesized probability.

Owen (1988,1990) and many others have developed the empirical likelihood into a gen-
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eral methodology but for uncensored data. Owen (1988) proves that −2 logELR(θ0)

converges to a χ2
1 subject to a linear statistical functional constraint in terms of dis-

tribution functions. A direct generalization of Owen’s setting to the right censored

data is difficult, since there is no explicit maximization form of Lagrange multiplier

method. Pan and Zhou (2002) generalize Owen’s setting to the right censored data

using a linear statistical functional constraint in terms of cumulative hazard. In this

chapter, we generalize Pan and Zhou’s results to a nonlinear statistical functional

constraint in terms of cumulative hazard functions as follows.

∫
g(t,Λ(t))dΛ(t) = θ0 (3.3)

We believe that analyzing this kind of hazard-type constraint is a valuable theoretical

contribution in its own right. A lot of constraints in terms of distribution functions

with right censored data that are difficult to analyze now can be solved by trans-

forming the constraint to the form (3.3). Furthermore, the method introduced in this

chapter can be easily applied to two sample problems. We will discuss two sample

problems in chapter 5.

Motivation

Our motivation to analyze this kind of constraint is if we can deal with the constraint

of the following form ∫
g(t,Λ(t))dΛ(t) = θ0 (3.4)

then we can deal with any constraint that can be transformed to form (3.4) which

are intricate originally, such as the hypothesis testing of the mean
∫
g(t)dF (t) = µ

and the hypothesis testing of the Gini index.
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To be more specific, suppose the hypothesis testing of the mean is

∫
g(t)dF (t) = µ0 (3.5)

Assuming the true distribution is continuous, by the relationship between distribution

functions and hazard functions dΛ(t) = dF (t)
1−F (t)

, 1−F (t) = exp(−Λ(t)), the constraint

in terms of hazard is ∫
g(t)e−Λ(t)dΛ(t) = µ0 (3.6)

which is of the form of our new generalization.

Next, we briefly introduce the Gini index and see how we can do hypothesis testing

of Gini index using a non-linear statistical functional constraint in terms of hazard

functions.

Corrado Gini presents the index, which is known as ”Gini index” today, for the

first time in 1912 in his book ”Variability and Mutability”. The Gini index can be

used to measure the dispersion of a distribution of income, or consumption, or wealth

with the most widely use on the dispersion of income. Therefore, in this dissertation,

we shall focus on the Gini index in the context of income distribution. The usual

definition of Gini index is as follows.

Definition The Gini index is a measure of statistical dispersion intended to rep-

resent the income distribution of a nation’s residents. This is the most commonly

used measure of inequality. The coefficient varies between 0, which reflects complete

equality and 1, which indicates complete inequality (one person has all the income

while all others have none).
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Generally, there are two different approaches to analyze the Gini index. One is based

on discrete distributions and the other is based on continuous distributions. The

difference between these two approaches is that the discrete approach assumes that

the population is finite while the continuous approach assumes that the population

is infinite. In this dissertation, we shall focus on the continuous approach.

The Gini index has many interesting formulations and interpretations. We briefly

introduce two different approaches: Geometric Approach and Gini’s Mean Dif-

ference Approach in the following. See Xu (2004) and Ceriani and Verme (2001) for

more detailed discussion about various formulations and interpretations of Gini index.

Geometric Approach

Figure 3.1 is the graphic representation of Gini index. The x-axis represents the

cumulative share of people from lowest to highest income and the y-axis is the cu-

mulative share of income earned. The line at 45 degree represents perfect equality

Figure 3.1: Graphic Representation of Gini Coefficient
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of income, since x% of the total income of the population is cumulatively earned by

the bottom x% of the population. But in reality, this is not the case. In reality, this

relationship is depicted by a curve called Lorenz Curve. In reality, for example,

bottom 50% of the population might just earn 20% of the total income. The Gini

index can then be considered as the ratio of the area that lies between the 45 degree

line and the Lorenz curve, which is area A, over the total area under the 45 degree

line, which is area A+B.

G =
A

A+B
(3.7)

Gini’s Mean Difference Approach

Gini index can also be represented by the so called Gini’s (absolute and relative)

mean difference. In fact, the Gini index is just the half of the Gini’s relative mean

difference, which will be explained later.

Gini’s absolute mean difference for a continuous income distribution F is defined

as follows.

D = E |X − Y | =
∫ +∞

0

∫ +∞

0

|x− y|dF (x)dF (y) (3.8)

The value of D is the average absolute difference of income of two randomly selected

individuals and reflects the income inequality in the population. It is straightforward

to see that 0 ≤ D ≤ 2µ, where µ = E(Y ) =
∫ +∞

0
ydF (y) is the population mean

income. The Gini index is defined as the normalized mean difference

G =
D

2µ
(3.9)
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so G ∈ [0, 1].

Since we have

D =

∫ +∞

0

∫ +∞

0

|x− y| dF (x)dF (y)

=

∫ +∞

0

∫ y

0

(y − x)dF (x)dF (y) +

∫ +∞

0

∫ +∞

y

(x− y)dF (x)dF (y)

=

∫ +∞

0

yF (y)dF (y)−
∫ +∞

0

∫ y

0

xdF (x)dF (y) +

∫ +∞

0

∫ +∞

y

xdF (x)dF (y)

−
∫ +∞

0

y(1− F (y))dF (y)

=

∫ +∞

0

y(2F (y)− 1)dF (y) +

∫ +∞

0

∫ +∞

y

xdF (x)dF (y)−
∫ +∞

0

∫ y

0

xdF (x)dF (y)

=

∫ +∞

0

y(2F (y)− 1)dF (y) +

∫ +∞

0

x

∫ x

0

dF (y)dF (x)−
∫ +∞

0

x

∫ +∞

x

dF (y)dF (x)

=

∫ +∞

0

y(2F (y)− 1)dF (y) +

∫ +∞

0

xF (x)dF (x)−
∫ +∞

0

x(1− F (x))dF (x)

=

∫ +∞

0

y(2F (y)− 1)dF (y) +

∫ +∞

0

x(2F (x)− 1)dF (x)

= 2

∫ +∞

0

y(2F (y)− 1)dF (y)

(3.10)

the Gini index can be represented by the statistical functional of distribution function

F as follows, where F is the income cumulative distribution function of a nation’s

population.

G =

∫ +∞
0

y(2F (y)− 1)dF (y)

µ
(3.11)

where µ =
∫∞

0
ydF (y) is the expected total income.

Suppose we would like to do the hypothesis testing of Gini index. The null hypothesis

is

H0 : G = µ0
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Similar to the hypothesis testing of the mean, we assume the true distribution is

continuous, then the null hypothesis H0 can be transformed to

∫ +∞

0

(
(1− µ0)te−Λ(t) − 2te−2Λ(t)

)
dΛ(t) = 0 (3.12)

which is a nonlinear statistical functional of the cumulative hazard function Λ.

This test of H0 : G = µ0 can also be formulated in terms of cumulative distribu-

tion functions. This also serves as a motivation example for the Chapter 4.

A simulation of Gini’s absolute mean difference (D) and a discussion of the variance

estimation of the Gini index will be presented in Simulation 6 and Simulation 7

of Chapter 6 respectively. In Simulation 7, we will compare the coverage probability

and average length of the confidence intervals based on our method and two other

empirical likelihood methods. An application of Theorem 4.56 to the Gini’s absolute

mean difference (D) using real data is presented in Real Data Analysis of Chapter

6.

3.2 Lemma and Theorem

First of all, we establish a theorem which is the foundation of all lemmas and theorems

later.

Theorem 3.2.1 Suppose we have two statistical functional constraints in terms of

cumulative hazard functions as follows

T1(Λ) = θ0, T2(Λ) = θ0 (3.13)

which satisfy θ0 = T1(Λ0) and θ0 = T2(Λ0).
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If for any statistic Λ̂n(t), s.t.
∥∥∥Λ̂n(t)− Λ0(t)

∥∥∥ = Op

(
1√
n

)
, we have

∣∣∣T1(Λ̂n)− T2(Λ̂n)
∣∣∣ = op

(
1√
n

)
(3.14)

then we have

−2 logELR1(θ0) + 2 logELR2(θ0)
P−−−−→ 0, as n→∞ (3.15)

where ELR1(θ0) and ELR2(θ0) are the maximums of the ELR function (3.2) subject

to the corresponding constraint T1(Λ) = θ0 and T2(Λ) = θ0 respectively.

Proof See Pan and Zhou (2002) for the proof of the theorem.

There is no explicit maximum of ELR function (3.2) subject to a non-linear statistical

functional constraint. However, the Hadamard derivative of the non-linear statistical

functional is linear. We will prove this later. Moreover, the difference between the

non-linear statistical functional and its Hadamard derivative is op

(
1√
n

)
in the domain

of some statistics. By Theorem (3.2.1), as long as we prove that

−2 logELR(θ0)
D−−−−→ χ2

(1) (3.16)

under the null hypothesis of the linear statistical functional, which is the Hadamard

derivative of the non-linear statistical functional, so do we have (3.16) under the

null hypothesis of the non-linear statistical functional. Therefore, we investigate the

Hadamard differentiability of the non-linear statistical functional in the following the-

orem.

In the following theorem, we prove that, under some regularity conditions, the non-

linear statistical functional T (Λ) =
∫
g(t,Λ(t))dΛ(t) is Hadamard differentiable and
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the Hadamard derivative of T at Λ0 is a linear statistical functional. And the differ-

ence between the non-linear and linear statistical functional is op(
1√
n
) in the domain

of some statistics.

Theorem 3.2.2 Let T (Λ) =
∫
g(t,Λ(t))dΛ(t) be a non-linear statistical functional

defined on D[0, τ ]. D[0, τ ] is the set of all real valued cadlag functions on [0, τ ] and

equipped with the sup norm:

‖f‖ = sup
x∈[0,τ ]

|f(x)| (3.17)

Define h = ∂g
∂Λ

and h̃(t) =
∫ +∞
t

h(s,Λ0(s))dΛ0(s), where Λ0(t) is a continuous cumu-

lative hazard function. Under some regularity conditions,

Assumption (A) g(t,Λ(t)) is left continuous with respect to t and twice differen-

tiable with respect to Λ(t).

Assumption (B) |g (t,Λ(t))| ≤ A(t), |h (t,Λ(t))| ≤ B(t) for all t ∈ [0, τ ] and Λ ∈

D[0, τ ], where A(t) is integrable with respect to any cadlag function D(t) ∈

D[0, τ ] and B(t) is integrable with respect to Λ0(t).

Assumption (C) Λ(0) = 0 and Λ(τ) ≤M for some M ∈ R.

T is Hadamard differentiable at Λ0 with derivative

T ′Λ0
(Λ(t)− Λ0(t)) =

∫ (
g(t,Λ0(t)) + h̃(t)

)
d (Λ(t)− Λ0(t)) (3.18)

And the remaining term is:

∣∣T (Λ(t))− T (Λ0(t))− T ′Λ0
(Λ(t)− Λ0(t))

∣∣ = o (‖Λ(t)− Λ0(t)‖) (3.19)
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In particular, if Λ(t) = Λ̂NA(t), the remaining term is op

(
1√
n

)
. We will show in

Lemma 3.2.3 that if Λ(t) deviates a little from Λ̂NA(t), the remaining term is still

op(
1√
n
).

Proof We begin the proof with a discussion of functions g, h and h̃.

First We shall point out that the function g must be a function of both t and Λ.

If g only depends on t, it is just Pan and Zhou (2002)’s setting. If g only

depends on Λ, the integration
∫
g(Λ)dΛ will be a fixed number thus we cannot

put a constraint on it. In this case, we cannot do hypothesis testing or generate

confidence intervals.

Second h is the partial derivative of g with respect to Λ. For example, if g(t,Λ(t)) =

te−Λ(t), then h(t,Λ(t)) = −te−Λ(t).

Third Efron and Johnstone (1990) define the advanced-time transformation g̃(t) for

a function g(t) with respect to a continuous cumulative distribution function

F0(t) as

g̃(t) =

∫∞
t
g(s)dF0(s)

1− F0(t)
= EF0 [g(X)|X > t] (3.20)

From (3.20), it is clear that the advanced-time transformation g̃(t) is the con-

ditional expectation of g(X) given X > t.

Parallelly, we can define the advanced-time transformation h̃(t) for a function

h(t) with respect to a continuous cumulative hazard function Λ0(t) as

h̃(t) =

∫ ∞
t

h(s)dΛ0(s) (3.21)

Now for every g̃, there exists a h̃, such that g̃(t) (1− F0(t)) = h̃(t). This fact is

easy to see if we choose h(t) = g(t)e−Λ0(t).
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Fourth Since g is left continuous with respect to t and twice differentiable with

respect to Λ (Assumption (A)), it is obvious that h = ∂g
∂Λ

is also left con-

tinuous with respect to t and differentiable with respect to Λ. Therefore

h̃(t) =
∫∞
t
h(s,Λ0(s))dΛ0(s) is left continuous with respect to t, which means h̃

is predictable.

For example, let g(t,Λ(t)) =
(
(1− µ0)te−Λ(t) − 2te−2Λ(t)

)
, which is from the

hypothesis testing of Gini coefficient, G = µ0 (0 ≤ µ0 ≤ 1). Obviously, g is

left continuous with respect to t and twice differentiable with respect to Λ. g

is also bounded by A(t) = 3t, which is integrable with respect to any cadlag

function in D[0, τ ]. h(t,Λ(t)) = ∂g
∂Λ

= −(1−µ0)te−Λ(t) + 4te−2Λ(t) is bounded by

B(t) = 5t, which is integrable with respect to Λ0 in [0, τ ]. Suppose the true dis-

tribution is exp(1) and we would like to test the null hypothesis, G = 0.5. The

advanced-time transformation h̃(t) for h(t,Λ0(t)) with respect to the continuous

cumulative hazard function Λ0(t) = t is as follows.

h̃(t) =

∫ ∞
t

h(s,Λ0(s))dΛ0(s) =

∫ ∞
t

(
−0.5se−s + 4se−2s

)
ds

= −1

2
(t+ 1) e−t + (2t+ 1) e−2t

(3.22)

Next, we study the Hadamard differentiability of the non-linear statistical functional

T (Λ) =
∫
g(t,Λ(t))dΛ(t).

By the definition of Hadamard differentiability, we need to prove that for anyD1, D2, . . . ,

and D ∈ D, such that ‖Dn −D‖ → 0 as n→∞ and δn → 0 as n→∞, we have

lim
n→∞

(
T (Λ0 + δnDn)− T (Λ0)

δn
− T ′Λ0

(D)

)
= 0 (3.23)

According to the definition of linear statistical functional in terms of the cumulative
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hazard functions, we notice that T
′
Λ0

is a linear statistical functional. Therefore, we

have δnT
′
Λ0

(D) = T
′
Λ0

(δnD). Then we have the following.

lim
n→∞

(
T (Λ0 + δnDn)− T (Λ0)

δn
− T ′Λ0

(D)

)
= lim

n→∞

T (Λ0 + δnDn)− T (Λ0)− T ′Λ0
(δnD)

δn

= lim
n→∞

∫
g(t,Λ0 + δnDn)d(Λ0 + δnDn)−

∫
g(t,Λ0)dΛ0 −

∫
(g(t,Λ0) + h̃(t))d(δnD)

δn

= lim
n→∞

∫
g(t,Λ0 + δnDn)− g(t,Λ0)

δn
dΛ0

+ lim
n→∞

∫
(g(t,Λ0 + δnDn)− g(t,Λ0)) d(Dn −D)

+ lim
n→∞

∫
g(t,Λ0)d(Dn −D) + lim

n→∞

∫
(g(t,Λ0 + δnDn)− g(t,Λ0)) dD −

∫
h̃(t)dD

= (1) + (2) + (3) + (4)− (5)

(3.24)

We prove that (1)=(5) and (2)=(3)=(4)=0 in the following. To prove these, Domi-

nated Convergence Theorem will be applied. See Appendix for the Dominated

Convergence Theorem. To apply the Dominated Convergence Theorem, we need

the Assumption (B). By the Dominated Convergence Theorem, we can switch the

limitation and the integration.

By the L’Hospital’s Rule, we have

lim
n→∞

g (t,Λ0 + δnDn)− g(t,Λ0)

δn
= lim

n→∞

d(g(t,Λ0+δnDn)−g(t,Λ0))
d(δn)

d(δn)
d(δn)

= lim
n→∞

h (t,Λ0 + δnDn)Dn(t) = h (t,Λ0)D(t)

(3.25)

g (t,Λ0 + δnDn) can be considered as a function of δn, the derivative of g (t,Λ0 + δnDn)

with respect to δn is h (t,Λ0 + δnDn)Dn. By Fernholz (1983) Lemma 4.4.1, we learn

that Dn(t) is uniformly bounded, which means Dn(t) is bounded by a function that
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does not depend on n. Since |h (t,Λ(t))| ≤ B(t), ∀ t ∈ [0, τ ] and ∀ Λ(t) ∈ D[0, τ ],

h (t,Λ0 + δnDn)Dn(t) is uniformly bounded as well. Because g (t,Λ) is twice differ-

entiable with respect to Λ, it is easy to show that g (t,Λ0 + xDn) is continuous with

respect to x on [0, δn] and differentiable with respect to x on (0, δn). By Mean Value

Theorem, there exists a ξn ∈ [0, δn], s.t.

g (t,Λ0 + δnDn)− g(t,Λ0)

δn
= h (t,Λ0 + ξnDn)Dn (3.26)

h (t,Λ0 + ξnDn)Dn is uniformly bounded by some measureable integrable function,

consequently, g(t,Λ0+δnDn)−g(t,Λ0)
δn

is uniformly bounded as well.

By the Dominated Convergence Theorem, we have

(1) = lim
n→∞

∫
g(t,Λ0 + δnDn)− g(t,Λ0)

δn
dΛ0 =

∫
lim
n→∞

g(t,Λ0 + δnDn)− g(t,Λ0)

δn
dΛ0

=

∫
h(t,Λ0(t))D(t)dΛ0(t)

(3.27)

Next we prove that (5) = (1).

(5) =

∫
h̃(t)dD(t) =

∫ ∫ ∞
t

h(s,Λ0(s))dΛ0(s)dD(t)

=

∫ (∫ s

0

dD(t)

)
h(s,Λ0(s))dΛ0(s) =

∫
h(s,Λ0(s))D(s)dΛ0(s) = (1)

(3.28)

Since

|Dn(t)−D(t)| ≤ sup
t∈[0,τ ]

|Dn(t)−D(t)| = ‖Dn −D‖ → 0, as n→∞,∀t ∈ [0, τ ]

(3.29)
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In particular, we have

lim
n→∞

|Dn(τ)−D(τ)| = 0

lim
n→∞

|Dn(0)−D(0)| = 0

(3.30)

By the integration by parts, we have

(3) = lim
n→∞

∫ τ

0

g(t,Λ0(t))d(Dn(t)−D(t))

= lim
n→∞

(
g(t,Λ0(t))(Dn(t)−D(t))|τ0 −

∫
(Dn(t)−D(t))dg (t,Λ0(t))

)
= lim

n→∞
g(t,Λ0(t))(Dn(t)−D(t))|τ0 − lim

n→∞

∫
(Dn(t)−D(t))dg (t,Λ0(t))

(3.31)

We have

∣∣∣∣∫ (Dn(t)−D(t)) dg(t,Λ0(t))

∣∣∣∣ ≤ ∫ |Dn(t)−D(t)| d |g(t,Λ0(t)| (3.32)

Dn and D are uniformly bounded, so is Dn −D.

By the Dominated Convergence Theorem

lim
n→∞

∫
|Dn(t)−D(t)| d |g(t,Λ0(t))| =

∫
lim
n→∞

|Dn(t)−D(t)| d |g(t,Λ0(t))| = 0

(3.33)

Therefore

lim
n→∞

∣∣∣∣∫ (Dn(t)−D(t)) dg(t,Λ0(t))

∣∣∣∣ ≤ lim
n→∞

∫
|Dn(t)−D(t)| d |g(t,Λ0(t))| = 0

(3.34)

Now we prove that (3) = 0.
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Since |g (t,Λ(t))| ≤ A(t) holds for any t and Λ(t), we have

∣∣∣∣∫ (g(t,Λ0 + δnDn)− g(t,Λ0))d (Dn −D)

∣∣∣∣
≤
∫
|g(t,Λ0 + δnDn)− g(t,Λ0)| d |Dn −D|

≤
∫

(|g(t,Λ0 + δnDn)|+ |g(t,Λ0)|) d |Dn −D| ≤ 2

∫
A(t)d |Dn(t)−D(t)|

(3.35)

By the integration by parts and Dominated Convergence Theorem, we have

lim
n→∞

∫ τ

0

A(t)d |Dn(t)−D(t)|

= lim
n→∞

(
A(t) |Dn(t)−D(t)| |τ0 −

∫
|Dn(t)−D(t)| dA(t)

)
= lim

n→∞
A(t) |Dn(t)−D(t)| |τ0 −

∫
lim
n→∞

|Dn(t)−D(t)| dA(t) = 0

(3.36)

Now we have the following

|(2)| = lim
n→∞

∣∣∣∣∫ (g(t,Λ0 + δnDn)− g(t,Λ0))d(Dn −D)

∣∣∣∣
≤ 2 lim

n→∞

∫
A(t)d |Dn(t)−D(t)| = 0

(3.37)

so we prove that (2)=0.

Again, since |g(t,Λ0 + δnDn)− g(t,Λ0)| ≤ 2A(t), by the Dominated Convergence

Theorem, we have,

|(4)| = lim
n→∞

∣∣∣∣∫ (g(t,Λ0 + δnDn)− g(t,Λ0)) dD(t)

∣∣∣∣
= lim

n→∞

∫
|g(t,Λ0 + δnDn)− g(t,Λ0)| d|D(t)|

=

∫
lim
n→∞

|g(t,Λ0 + δnDn)− g(t,Λ0)| d|D(t)| = 0

(3.38)
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In conclusion, (3.24)=0, which means we prove that

lim
n→∞

(
T (Λ0 + δnDn)− T (Λ0)

δn
− T ′Λ0

(D)

)
= 0 (3.39)

In other words, T is Hadamard differentiable at Λ0 and T
′
Λ0

(·) is the Hadamard

derivative of T at Λ0.

By Assumption (C)

Λ(0) = 0 and Λ(τ) ≤M for some M ∈ R (3.40)

and Fernholz (1983) Proposition 4.3.3, we have

∣∣T (Λ(t))− T (Λ0(t))− T ′Λ0
(Λ(t)− Λ0(t))

∣∣ = o (‖Λ(t)− Λ0(t)‖) (3.41)

In particular, if Λ(t) = Λ̂NA(t), it is well known that
∥∥∥Λ̂NA(t)− Λ0(t)

∥∥∥ = Op(
1√
n
).

Then the remaining term is op(
1√
n
). Now the proof of Theorem (3.2.2) is accom-

plished.

Before our next lemma, we shall review the empirical likelihood introduced in the

Chapter 2.

Suppose that X1, . . . , Xn are n i.i.d. nonnegative random variables denoting the

lifetimes with a continuous distribution function F0. Independent of the lifetimes

there are n censoring times C1, . . . , Cn, which are i.i.d. with a distribution function

G0. Only the censored observations are available to us:

Ti = min(Xi, Ci), δi = I[Xi ≤ Ci], i = 1, 2, . . . , n (3.42)
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Remember that the empirical likelihood based on censored observations (Ti, δi) is

EL(F ) =
n∏
i=1

[∆F (Ti)]
δi [1− F (Ti)]

1−δi (3.43)

By the relationship between distribution functions and hazard functions

1− F (t) =
∏
s≤t

(1−∆Λ(s)) and ∆Λ(t) =
∆F (t)

1− F (t−)
(3.44)

(3.43) can be rewritten in terms of cumulative hazard function as follows.

EL(Λ) =
n∏
i=1

[∆Λ(Ti)]
δi

 ∏
j:Tj<Ti

(1−∆Λ(Tj))

δi  ∏
j:Tj≤Ti

(1−∆Λ(Tj))

1−δi

(3.45)

The hazard function that maximizes the likelihood EL(Λ) without any constraint is

the Nelson-Aalen estimator (Andersen et. al. (1993)). We denote the Nelson-Aalen

estimator as Λ̂NA(t).

On the other hand, a simpler version of the likelihood can be obtained if we merge

the second and third terms in (3.45) and replace it with exp {−Λ(Ti)}, which is called

a Poisson extension of the likelihood introduced by Murphy (1995):

AL(Λ) =
n∏
i=1

[∆Λ(Ti)]
δi exp {−Λ(Ti)} (3.46)

The above formula of AL is only valid for continuous distributions. In the case of a

discrete distribution, the difference is small and negligible when n is large. We will

show this fact in Theorem 3.2.6 later in this chapter.

Preceding our next lemma, we point out that the last jump of a proper discrete

cumulative hazard function must be one. It is clear from the second equation of

(3.44). It is similar to the restriction of the distribution function that all jumps sum
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to one. And we assume no tie in the uncensored observations. Without loss of gen-

erality we assume T1 ≤ T2 ≤ . . . ≤ Tn where ties are only possible between censored

observations.

In the next lemma, we will maximize AL (3.46) subject to the linear statistical func-

tional constraint T (Λ0) + T
′
Λ0

(Λ− Λ0) = θ. T
′
Λ0

(Λ− Λ0) is the Hadamard derivative

of T (Λ) =
∫
g(t,Λ(t))dΛ(t) at Λ0.

Lemma 3.2.3 If the constraint below is feasible

T (Λ0) + T
′

Λ0
(Λ− Λ0) =

∫
(g(t,Λ0(t)) + h̃(t))dΛ(t)−

∫
h̃(t)dΛ0(t) = θ (3.47)

A discussion of feasibility and the feasible value of θ in the above constraint are given

by the interval at the end of the proof.

Then the maximum of AL (3.46) under constraint is obtained when

wi = ∆Λ(Ti) = ∆Λ̂NA(Ti)
1

1 + λZi
, i = 1, 2, . . . , n− 1 (3.48)

where λ is the solution of the following equation.

l(λ) = θ (3.49)

where

l(λ) =
n−1∑
i=1

(
g(Ti,Λ0(Ti)) + h̃(Ti)

) δi
n− i+ 1

1

1 + λ
δi(g(Ti,Λ0(Ti))+h̃(Ti))

n−i+1
n

+ g(Tn)δn

=
1

n

n−1∑
i=1

δiZi
1 + λZi

+
1

n
δnZn − θ̂

(3.50)
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Zi = δi(g(Ti,Λ0(Ti))+h̃(Ti))
n−i+1
n

, i = 1, 2, . . . , n and θ̂ =
∫
h̃(t)dΛ0(t).

In Theorem 3.2.2, if the jump of Λ at Ti is (3.48), the remaining term is op

(
1√
n

)
.

Proof Let wi = ∆Λ(Ti) for i = 1, . . . , n where we notice wn = δn. We can rewrite

the constraint (3.47) in the discrete format. The constraint (3.47) for any cumulative

hazard that is dominated by the Nelson-Aalen estimator can be written as

n−1∑
i=1

δi

(
g(Ti,Λ0(Ti)) + h̃(Ti)

)
wi + δn

(
g(Tn,Λ0(Tn)) + h̃(Tn)

)
− θ̂ = θ (3.51)

Similarly, AL of this cumulative hazard can be written as

AL =
n∏
i=1

(wi)
δi exp

{
−

i∑
j=1

wj

}
(3.52)

And the logAL is

logAL =
n∑
i=1

δi logwi −
n∑
i=1

i∑
j=1

wj

=
n∑
i=1

δi logwi −
n∑
j=1

n∑
i=j

wj

=
n∑
i=1

δi logwi −
n∑
i=1

(n− i+ 1)wi

(3.53)

In order to use the Lagrange multiplier method, we form the target function G as

follows.

G =
n∑
i=1

δi logwi −
n∑
i=1

(n− i+ 1)wi

+ nλ

[
θ + θ̂ −

n−1∑
i=1

δi

(
g(Ti,Λ0(Ti)) + h̃(Ti)

)
wi − δn

(
g(Tn,Λ0(Tn)) + h̃(Tn)

)]
(3.54)

Taking the derivative with respect to wi, i = 1, . . . , n − 1 and equaling them to 0
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yields

∂G

∂wi
=
δi
wi
− (n− i+ 1)− nλδi

(
g(Ti,Λ0(Ti)) + h̃(Ti)

)
= 0, i = 1, . . . , n− 1 (3.55)

Then the jump of Λ at Ti is

wi = ∆Λ(Ti) =
δi

(n− i+ 1) + nλδi

(
g(Ti,Λ0(Ti)) + h̃(Ti)

)
=

δi
n− i+ 1

1

1 + λ
δi(g(Ti,Λ0(Ti))+h̃(Ti))

n−i+1
n

= ∆Λ̂NA(Ti)
1

1 + λZi

(3.56)

where Zi = δi(g(Ti,Λ0(Ti))+h̃(Ti))
n−i+1
n

, i = 1, 2, . . . , n and ∆Λ̂NA(Ti) = δi
n−i+1

.

Since Zn = nδn

(
g(Tn,Λ0(Tn)) + h̃(Tn)

)
and δ2

i = δi, i = 1, . . . , n, plugging the

wi, i = 1, . . . , n − 1 and wn = δn into (3.51) gives us the equation to solve for λ as

below.
n−1∑
i=1

n− i+ 1

n
Zi ×∆Λ̂NA(Ti)

1

1 + λZi
+

1

n
δnZn − θ̂ = θ (3.57)

It can be simplified as

1

n

n−1∑
i=1

δiZi
1 + λZi

+
1

n
δnZn − θ̂ = θ (3.58)

In Theorem 3.2.2, if the jump of Λ at Ti is (3.48), then Λ(t) is as follows. We denote

Λ(t) as Λ̂n(t).

Λ̂n(t) =
∑
Ti≤t

wi (3.59)

where wi = ∆Λ̂NA(Ti)
1

1+λZi
and Zi =

δi(g(Ti,Λ0(Ti))+h̃(Ti))
n−i+1
n

.
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So the difference between Λ̂n(t) and Λ̂NA(t) is as follows.

∣∣∣Λ̂n(t)− Λ̂NA(t)
∣∣∣ =

∣∣∣∣∣∑
Ti≤t

∆Λ̂NA(Ti)
1

1 + λZi
−
∑
Ti≤t

∆Λ̂NA(Ti)

∣∣∣∣∣
=

∣∣∣∣∣∑
Ti≤t

∆Λ̂NA(Ti)
λZi

1 + λZi

∣∣∣∣∣
(3.60)

In Appendix, we know that λ = Op

(
1√
n

)
and max1≤n |Zi| = op(

√
n), then we have

max1≤n |λZi| = op(1), so we may expand 1
1+λZi

as follows.

1

1 + λZi
= 1− λZi +Op

(
λ2
)
Z2
i (3.61)

Then

∣∣∣Λ̂n(t)− Λ̂NA(t)
∣∣∣ =

∣∣∣∣∣∑
Ti≤t

∆Λ̂NA(Ti)λZi
(
1− λZi +Op(λ

2)Z2
i

)∣∣∣∣∣
≤ |λ|

∣∣∣∣∣∑
Ti≤t

∆Λ̂NA(Ti)Zi

∣∣∣∣∣+ λ2

∣∣∣∣∣∑
Ti≤t

∆Λ̂NA(Ti)Z
2
i

∣∣∣∣∣
+Op

(
λ3
) ∣∣∣∣∣∑

Ti≤t

∆Λ̂NA(Ti)Z
3
i

∣∣∣∣∣
(3.62)

Since we have

∣∣∣∣∣∑
Ti≤t

∆Λ̂NA(Ti)Zi

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
Ti≤t

∆Λ̂NA(Ti)
δi

(
g(Ti,Λ0(Ti)) + h̃(Ti)

)
n−i+1
n

∣∣∣∣∣∣
=

∣∣∣∣∣
∫ t

0

g(s,Λ0(s)) + h̃(s)
Y (s)
n

dΛ̂NA(s)

∣∣∣∣∣
(3.63)

where Y (s) =
∑n

i=1 I[Yi ≥ s].

Similar to the arguments of Pan and Zhou (2002) Lemma A3, we have

∫ t

0

g(s,Λ0(s)) + h̃(s)
Y (s)
n

dΛ̂NA(s)
P→
∫ t

0

g(s,Λ0(s)) + h̃(s)

(1− F0(s)) (1−Go(s))
dΛ0(s) (3.64)
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so we have ∣∣∣∣∣∑
Ti≤t

∆Λ̂NA(Ti)Zi

∣∣∣∣∣ = Op(1) (3.65)

Similarly, we also have

∣∣∣∣∣∑
Ti≤t

∆Λ̂NA(Ti)Z
2
i

∣∣∣∣∣ = Op(1),

∣∣∣∣∣∑
Ti≤t

∆Λ̂NA(Ti)Z
3
i

∣∣∣∣∣ = Op(1) (3.66)

Since |λ| = Op(
1√
n
), we have

∣∣∣Λ̂n(t)− Λ̂NA(t)
∣∣∣ ≤ Op

(
1√
n

)
, for any t ∈ [0, τ ] (3.67)

so ∥∥∥Λ̂n(t)− Λ̂NA(t)
∥∥∥ = sup

t∈[0,τ ]

∣∣∣Λ̂n(t)− Λ̂NA(t)
∣∣∣ = Op

(
1√
n

)
(3.68)

As is well known,

∥∥∥Λ̂NA(t)− Λ0(t)
∥∥∥ = sup

t∈[0,τ ]

∣∣∣Λ̂NA(t)− Λ0(t)
∣∣∣ = Op

(
1√
n

)
(3.69)

By the triangle inequality of the sup norm, we have

∥∥∥Λ̂n(t)− Λ0(t)
∥∥∥ ≤ ∥∥∥Λ̂n(t)− Λ̂NA(t)

∥∥∥+
∥∥∥Λ̂NA(t)− Λ0(t)

∥∥∥ = Op

(
1√
n

)
(3.70)

Therefore, the remaining term is

∣∣∣T (Λ̂n)− T (Λ0)− T ′Λ0

(
Λ̂n − Λ0

)∣∣∣ = o
(∥∥∥Λ̂n − Λ0

∥∥∥) = op

(
1√
n

)
(3.71)

Next, we would like to have a discussion of the feasibility and the feasible values

of θ.
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The function l(λ) defined in (3.50) is monotone decreasing and continuous with re-

spect to λ, which can be verified by taking the first derivative with respect to λ. Any

legitimate value λ must result in wi bounded between zero and one. This restriction

leads to the following legitimate λ range Φ.

All max and min in the following definition are taken in the domain {i : 1 ≤ i ≤

n− 1, δi = 1, and g(Ti) 6= 0}. If there are any additional restrictions, we will specify

in each individual case.

Case 1. When min
(
g(Ti,Λ0(Ti)) + h̃(Ti)

)
> 0

Φ =

max
i− n

n
(
g(Ti,Λ0(Ti)) + h̃(Ti)

) ,∞
 := (λ,∞) (3.72)

Case 2. When max
(
g(Ti,Λ0(Ti)) + h̃(Ti)

)
< 0

Φ =

−∞,min
i− n

n
(
g(Ti,Λ0(Ti)) + h̃(Ti)

)
 :=

(
−∞, λ̄

)
(3.73)

Case 3. When max
(
g(Ti,Λ0(Ti)) + h̃(Ti)

)
> 0 > min

(
g(Ti,Λ0(Ti)) + h̃(Ti)

)

Φ =

max
i− n

n
(
g(Ti,Λ0(Ti)) + h̃(Ti)

) ,min
i− n

n
(
g(Ti,Λ0(Ti)) + h̃(Ti)

)
 := (λ, λ̄)

(3.74)

Because the function l(λ) is monotone and continuous, the corresponding range of

the θ value that makes (3.47) feasible is as follows. Define G̃(t) = g(t,Λ0(t)) + h̃(t)
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Case 1.

V =

(
G̃(Tn)δn,

n−1∑
i=1

δiG̃(Ti)

n− i+ 1 + nλG̃(Ti)
+ G̃(Tn)δn

)
(3.75)

Case 2.

V =

(
n−1∑
i=1

δiG̃(Ti)

n− i+ 1 + nλ̄G̃(Ti)
+ G̃(Tn)δn, G̃(Tn)δn

)
(3.76)

Case 3.

V =

(
n−1∑
i=1

δiG̃(Ti)

n− i+ 1 + nλ̄G̃(Ti)
+ G̃(Tn)δn,

n−1∑
i=1

δiG̃(Ti)

n− i+ 1 + nλG̃(Ti)
+ G̃(Tn)δn

)
(3.77)

Next lemma shows that the limiting distribution of nλ2 is a χ2
1 distribution times a

constant.

Lemma 3.2.4 Suppose g(t,Λ(t)) is left continuous with respect to t and twice differ-

entiable with respect to Λ(t) and satisfies

0 <

∫ (
g(t,Λ0(t)) + h̃(t)

)2

(1− F0(t))(1−G0(t))
dΛ0(t) <∞ (3.78)

where h̃(t) =
∫ +∞
t

h(s,Λ0(s))dΛ0(s) and h = ∂g
∂Λ

.

Then θ0 =
∫
g(t,Λ0(t))dΛ0(t) is feasible with probability approaching 1 as n → ∞,

and the solution λ of (3.49) with θ = θ0 satisfies

nλ2 D−−−−→ χ2
(1)

∫
(
g(t,Λ0(t)) + h̃(t)

)2

(1− F0(t))(1−G0(t))
dΛ0(t)


−1

, as n→∞ (3.79)

Proof See Appendix.
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Lemma 3.2.5 Let (T1, δ1), . . . , (Tn, δn) be n pairs of random variables defined in

(3.42). Suppose g(t,Λ(t)) is left continuous with respect to t and twice differentiable

with respect to Λ and satisfies

0 <

∫ (
g(t,Λ0(t)) + h̃(t)

)2

(1− F0(t))(1−G0(t))
dΛ0(t) <∞ (3.80)

ALR is defined by

ALR(θ) =
sup

{
AL(Λ)|Λ� Λ̂NA, and Λ satisfy (3.47)

}
AL(Λ̂NA)

(3.81)

Then

−2logALR(θ0)
D−−−−→ χ2

(1) as n→∞ (3.82)

Proof Since

AL(Λ) =
n∏
i=1

[∆Λ (Ti)]
δi exp {−Λ (Ti)} (3.83)

Denote ∆Λ (Ti) = wi

logAL(Λ) =
n∑
i=1

(
δi logwi −

i∑
j=1

wj

)
=

n∑
i=1

δi logwi −
n∑
i=1

i∑
j=1

wj

=
n∑
i=1

δi logwi −
n∑
j=1

n∑
i=j

wj =
n∑
i=1

δi logwi −
n∑
j=1

(n− j + 1)wj

=
n∑
i=1

δi logwi −
n∑
i=1

(n− i+ 1)wi

(3.84)

Define Zi =
δi(g(Ti,Λ0(Ti))+h̃(Ti))

n−i+1
n

, i = 1, . . . , n.
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Consider

− 2 logALR(θ0) = 2

[
n∑
i=1

δi log ∆Λ̂NA(Ti)−
n∑
i=1

(n− i+ 1) ∆Λ̂NA(Ti)

]

− 2

[
n−1∑
i=1

δi log

(
∆Λ̂NA(Ti)

1

1 + λZi

)
−

n−1∑
i=1

(n− i+ 1) ∆Λ̂NA(Ti)
1

1 + λZi

]

− 2
[
δn log ∆Λ̂NA(Tn)−∆Λ̂NA(Tn)

]
= 2

n−1∑
i=1

δi log (1 + λZi)− 2
n−1∑
i=1

(n− i+ 1) ∆Λ̂NA(Ti)
λZi

1 + λZi

= 2
n−1∑
i=1

δi log (1 + λZi)− 2
n−1∑
i=1

δiλZi
1 + λZi

= 2
n−1∑
i=1

δi log (1 + λZi)− 2
n−1∑
i=1

δiλZi + 2
n−1∑
i=1

δiλ
2Z2

i

1 + λZi

(3.85)

In Appendix, note that

max1≤i≤n |λZi| = |λ|max1≤i≤n |Zi| = Op

(
1√
n

)
op(
√
n) = op(1), we may expand

log (1 + λZi) as follows.

log (1 + λZi) = λZi −
1

2
λ2Z2

i +Op

(
λ3
)
Z3
i (3.86)

Substituting this into the expression of −2 logALR(θ0) gives us,

−2 logALR(θ0) = −
n−1∑
i=1

δiλ
2
iZ

2
i + 2Op

(
λ3
) n−1∑
i=1

Z3
i + 2

n−1∑
i=1

δiλ
2Z2

i

1 + λZi

= −
n−1∑
i=1

δiλ
2
iZ

2
i + 2Op

(
λ3
) n−1∑
i=1

Z3
i + 2

n−1∑
i=1

δiλ
2Z2

i − 2
n−1∑
i=1

δiλ
3Z3

i

1 + λZi

=
n−1∑
i=1

δiλ
2
iZ

2
i + 2Op

(
λ3
) n−1∑
i=1

Z3
i − 2

n−1∑
i=1

δiλ
3Z3

i

1 + λZi

= nλ2 1

n

n−1∑
i=1

δiZ
2
i + 2Op

(
λ3
) n−1∑
i=1

Z3
i − 2

n−1∑
i=1

δiλ
3Z3

i

1 + λZi

(3.87)
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Since we have

lim
n→∞

1

n

n−1∑
i=1

δiZ
2
i = lim

n→∞

1

n

n−1∑
i=1

Z2
i = lim

n→∞

1

n

n∑
i=1

Z2
i

=

∫ (
g(t,Λ0(t)) + h̃(t)

)2

(1− F (t)) (1−G(t))
dΛ0(t) <∞

(3.88)

where the limitation is under the meaning of converging in probability, and the fol-

lowing terms are negligible.

∣∣∣∣∣Op

(
λ3
) n−1∑
i=1

Z3
i

∣∣∣∣∣ ≤ Op

(
n−

1
2

)
op

(
n

1
2

) 1

n

n∑
i=1

Z2
i = op(1)

n−1∑
i=1

δiλ
3Z3

i

1 + λZi
≤ Op

(
n−

1
2

)
op

(
n

1
2

) 1

n

n∑
i=1

Z2
i = op(1)

(3.89)

and we also have,

nλ2 D−−−−→ χ2
(1)

∫
(
g(t,Λ0(t)) + h̃(t)

)2

(1− F0(t))(1−G0(t))
dΛ0(t)


−1

(3.90)

By the Slutsky theorem, we have

−2 logALR(θ0)
D−−−−→ χ2

(1) as n→∞ (3.91)

In the following theorem, we prove that the difference between EL and AL is neg-

ligible when n is large in the case of discrete cumulative hazard functions. And we

prove that

−2 logELR(θ0)
D−−−−→ χ2

(1) as n→∞ (3.92)
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under the null hypothesis as follows

H0 : T (Λ0) + T
′

Λ0
(Λ− Λ0) = θ0 (3.93)

where ELR(θ) function is defined in the following theorem.

Theorem 3.2.6 Suppose all conditions of Lemma (3.2.5) hold and ELR is defined

by

ELR(θ) =
EL(Λ∗)

EL(Λ̂NA)
(3.94)

where Λ∗ is given by the jumps defined in (3.48)

Then we have,

−2logELR(θ0)
D−−−−→ χ2

(1), as n→∞ (3.95)

Proof Remember that

EL(Λ) =
n∏
i=1

[∆Λ(Ti)]
δi

 ∏
j:Tj<Ti

(1−∆Λ(Tj))

δi  ∏
j:Tj≤Ti

(1−∆Λ(Tj))

1−δi


(3.96)

Denote ∆Λ(Ti) = wi, logEL(Λ) can be written as follows.

logEL(Λ) =
n∑
i=1

δi logwi +
n∑
i=1

δi

i−1∑
j=1

log (1− wj) +
n∑
i=1

(1− δi)
i∑

j=1

log (1− wj)

=
n∑
i=1

δi logwi +
n∑
i=1

i∑
j=1

log (1− wj)−
n∑
i=1

δi log (1− wi)

=
n∑
i=1

δi logwi +
n∑
j=1

n∑
i=j

log (1− wj)−
n∑
i=1

δi log (1− wi)

=
n∑
i=1

δi logwi +
n∑
i=1

(n− i+ 1) log (1− wi)−
n∑
i=1

δi log (1− wi)

=
n∑
i=1

δi logwi +
n∑
i=1

(n− i+ 1− δi) log (1− wi)

(3.97)
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Then we have

− 2 logELR(θ0)

= 2

[
n∑
i=1

δi log ∆Λ̂NA(Ti) +
n∑
i=1

(n− i+ 1− δi) log
(

1−∆Λ̂NA(Ti)
)]

− 2
n−1∑
i=1

δi log

(
∆Λ̂NA(Ti)

1

1 + λZi

)

− 2
n−1∑
i=1

(n− i+ 1− δi) log

(
1−∆Λ̂NA(Ti)

1

1 + λZi

)
− 2

[
δn log ∆Λ̂NA(Tn) + (1− δn) log

(
1−∆Λ̂NA(Tn)

)]
= 2

n−1∑
i=1

δi log (1 + λZi) + 2
n−1∑
i=1

(n− i+ 1− δi) log
(

1−∆Λ̂NA(Ti)
)

− 2
n−1∑
i=1

(n− i+ 1− δi) log

(
1−∆Λ̂NA(Ti)

1

1 + λZi

)

(3.98)

For Taylor expansion with Lagrange remaining term, when |x− x0| = o(1), we have

log x = log x0 +
1

x0

(x− x0) +
1

2

(
− 1

x2
0

)
η2 (3.99)

where |η| ≤ |x− x0|.

Since we have(
1−∆Λ̂NA(Ti)

1

1 + λZi

)
= log

(
1−∆Λ̂NA(Ti) + ∆Λ̂NA(Ti)

λZi
1 + λZi

)

∣∣∣∣∆Λ̂NA(Ti)
λZi

1 + λZi

∣∣∣∣ = op(1)

(3.100)
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choose x = 1−∆Λ̂NA(Ti)
1

1+λZi
and x0 = 1−∆Λ̂NA(Ti), we have

log

(
1−∆Λ̂(Ti)

1

1 + λZi

)
= log

(
1−∆Λ̂NA(Ti)

)
+

1

1−∆Λ̂NA(Ti)
∆Λ̂NA(Ti)

λZi
1 + λZi

+
1

2

− 1(
1−∆Λ̂NA(Ti)

)2

(∆Λ̂NA(Ti)
)2

η2
i

= log
(

1−∆Λ̂NA(Ti)
)

+
∆Λ̂NA(Ti)

1−∆Λ̂NA(Ti)

λZi
1 + λZi

− 1

2

(
∆Λ̂NA(Ti)

1−∆Λ̂NA(Ti)

)2

η2
i

(3.101)

where |ηi| ≤
∣∣∣ λZi

1+λZi

∣∣∣. We notice that

∆Λ̂NA(Ti)

1−∆Λ̂NA(Ti)
=

δi
n−i+1

1− δi
n−i+1

=
δi

n− i+ 1− δi
(3.102)

Then 3.101 can be simplified as

log

(
1−∆Λ̂(Ti)

1

1 + λZi

)
= log

(
1−∆Λ̂NA(Ti)

)
+

1

(n− i+ 1− δi)
δiλZi

1 + λZi

− 1

2

δiη
2
i

(n− i+ 1− δi)2

(3.103)

so

−2 logELR(θ0) = 2
n−1∑
i=1

δi log (1 + λZi)− 2
n−1∑
i=1

δiλZi
1 + λZi

+ 2
n−1∑
i=1

δiη
2
i

(n− i+ 1− δi)
(3.104)

Remember that

−2 logALR(θ0) = 2
n−1∑
i=1

δi log (1 + λZi)− 2
n−1∑
i=1

δiλZi
1 + λZi

(3.105)
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so

−2 logELR(θ0) + 2 logALR(θ0) = 2
n−1∑
i=1

δiη
2
i

n− i+ 1− δi
(3.106)

In Appendix, we have

1

n

n∑
i=1

Z2
i

n− i
P−−−−→ 0, as n→∞ (3.107)

so

1

n

n∑
i=1

Z2
i

n− i
= op(1) (3.108)

By the following inequation,

0 ≤
n−1∑
i=1

δiη
2
i

n− i+ 1− δi
≤ λ2

n∑
i=1

Z2
i

n− i+ 1− δi
= nλ2 1

n

n∑
i=1

Z2
i

n− i+ 1− δi

≤ nλ2 1

n

n∑
i=1

Z2
i

n− i
= Op(1)op(1) = op(1)

(3.109)

We have

−2 logELR(θ0) + 2 logALR(θ0)
P−−−−→ 0 (3.110)

By the Slutsky theorem, we have

−2 logELR(θ0)
D−−−−→ χ2

(1) as n→∞ (3.111)

In the following theorem, we prove that

−2 logELR(θ0)
D−−−−→ χ2

(1) as n→∞ (3.112)
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under the null hypothesis

H0 :

∫
g(t,Λ(t))dΛ(t) = θ0 (3.113)

where ELR function is defined in the following theorem.

Theorem 3.2.7 Suppose the non-linear statistical functional T (Λ) =
∫
g(t,Λ(t))dΛ(t)

is Hadamard differentiable at Λ0(t). The sufficient conditions for Hadamard differ-

entiable are listed in Theorem 3.2.2. Empirical likelihood ratio (ELR) function is

defined as follows.

ELR =
EL(Λ)

EL(Λ̂NA)
(3.114)

where EL(·) is defined in 2.15 and Λ̂NA is the Nelson-Aalen estimator.

If the following null hypothesis is true

H0 :

∫
g(t,Λ(t))dΛ(t) = θ0 (3.115)

where θ0 =
∫
g(t,Λ0(t))dΛ0(t).

then we have

−2 logELR(θ0)
D−−−−→ χ2

(1) (3.116)

where ELR(θ0) is the maximum of the ELR function (3.114) subject to the non-linear

statistical functional constraint
∫
g(t,Λ(t))dΛ(t) = θ0.

Proof This theorem is a straightforward result of Theorem 3.2.1, Theorem 3.2.2 and

Theorem 3.2.6.

Copyright c© Zhiyuan Shen, 2016.
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Chapter 4 Empirical Likelihood Ratio Subject to Nonlinear Statistical

Functional in Terms of Distribution Function with Uncensored Data

4.1 Introduction

Background

This chapter deals with uncensored data. Owen(1988) proves that −2 logELR con-

verges to a χ2
1 subject to a linear statistical functional in terms of distribution func-

tions with uncensored data. He also mentions how to deal with the non-linear but

Frechet differentiable statistical functional constraint in terms of distribution func-

tions. However, he does not specify the form of the constraint. Moreover, Frechet

differentiability is too strong and a lot of statistics are not Frechet differentiable (See

Example 2.3.2 Fernholz (1983)). In this chapter, we prove that under some regularity

conditions the non-linear statistical functional T (F ) =
∫
g(t, F (t))dF (t) is Hadamard

differentiable. Hadamard differentiability is a weaker form of differentiability which

can be applied to a large class of statistics. On the other hand, it also allows the

functional delta method to carry through. Gateaux differentiability is weaker than

Hadamard differentiability. However, it needs extra conditions such as second order

derivative to make the functional delta method work. The sufficient conditions for

the Hadamard differentiability are listed in Theorem 4.2.3. And we prove that

−2 logELR(θ0)
D−−−−→ χ2

(1) as n→∞ (4.1)

under the null hypothesis

H0 :

∫
g(t, F (t))dF (t) = θ0 (4.2)
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where ELR(θ0) is the maximum of the ELR function, which is defined later in (4.3),

subject to the non-linear constraint
∫
g(t, F (t))dF (t) = θ0. The empirical likelihood

ratio (ELR) function is defined as follows.

ELR =
EL(F )

EF (F̂n)
(4.3)

where EL(·) is defined in (2.3) and F̂n is the empirical distribution function.

Motivation

Our motivation to analyze this kind of constraint is that the constraint of the Gini

index can be represented in the following form

∫
g(t, F (t))dF (t) = θ0 (4.4)

In Chapter 3, we mentioned that the Gini index (G) is just half of the Gini’s relative

mean difference as follows.

G =

∫ +∞
0

y (2F (y)− 1) dF (y)

µ
(4.5)

where µ =
∫ +∞

0
ydF (y).

Suppose we would like to do the hypothesis testing of the Gini index. The null

hypothesis is

G = µ0 (4.6)

By simple transformations, (4.6) is equivalent to

∫
(2yF (y)− (1 + µ0) y) dF (y) = 0 (4.7)
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which is the form of (4.4).

4.2 Lemma and Theorem

First of all, we propose a theorem similar to Theorem 3.2.1.

Theorem 4.2.1 Suppose we have two statistical functional constraints in terms of

distribution functions as follows.

T1(F ) = θ0, T2(F ) = θ0 (4.8)

which satisfy θ0 = T1(F0) and θ0 = T2(F0).

If for any statistic F̂n(t) (not necessarily empirical distribution function),

s.t.
∥∥∥F̂n(t)− F0(t)

∥∥∥ = Op

(
1√
n

)
, we have

∣∣∣T1(F̂n)− T2(F̂n)
∣∣∣ = op

(
1√
n

)
(4.9)

then we have

−2 logELR1(θ0) + 2 logELR2(θ0)
P−−−−→ 0, as n→∞ (4.10)

where ELR1(θ0) and ELR2(θ0) are the maximums of the ELR function (4.3) subject

to the corresponding constraint T1(F ) = θ0 and T2(F ) = θ0 respectively.

Proof Similar to the proof of Theorem 3.2.1. See Pan and Zhou (2002) for a detailed

discussion.

In the following lemma, we calculate the influence curve of T (F ) =
∫
g(t, F (t))dF (t).

Lemma 4.2.2 Suppose g(t, F (t)) is left continuous with respect to t and twice dif-

ferentiable with respect to F . Let T be a statistical functional defined on the set of all
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distribution functions and T (F ) =
∫
g(t, F (t))dF (t). Suppose |g(t, F (t))| ≤ G(t) and

|h(t, F (t))| ≤ H(t), for ∀ t and F , where G(t) and H(t) are integrable with respect

to t. The influence curve of T at F0 is

ICT,F0(x) = g(x, F0(x)) +

∫ ∞
x

h(t, F0(t))dF0(t)−
∫
h(t, F0(t))F0(t)dF0(t)

−
∫
g(t, F0(t))dF0(t)

(4.11)

where, h(t, F (t)) = ∂g
∂F

.

Proof By the definition, the influence curve of T (F ) =
∫
g(t, F (t))dF (t) is

ICT,F0(x) = lim
ε↓0

{T [(1− ε)F0 + εδx]− T (F0)}
ε

= lim
ε↓0

∫
g(t, F0 + ε(δx − F0))d(F0 + ε(δx − F0))−

∫
g(t, F0)dF0

ε

= lim
ε↓0

∫
(g(t, F0 + ε(δx − F0))− g(t, F0))

ε
dF0 + lim

ε↓0

∫
g(t, F0 + ε(δx − F0))d(δx − F0)

(4.12)

By the L’Hospital’s rule, we have

lim
ε↓0

g (t, F0 + ε (δx − F0))− g(t, F0)

ε
= lim

ε↓0

d(g(t,F0+ε(δx−F0))−g(t,F0))
dε
dε
dε

= lim
ε↓0

h (t, F0 + ε (δx − F0)) (δx − F0) = h (t, F0) (δx − F0)

(4.13)

Since g(t, F (t)) is twice differentiable with respect to F , it is easy to verify that

g (t, F0 + x (δx − F0)) is continuous with respect to x in [0, ε] and differentiable with

respect to x in (0, ε). The derivative of g (t, F0 + x (δx − F0)) with respect to x is

h (t, F0 + x (δx − F0)) (δx − F0). By Mean Value Theorem, there exists a ξ ∈ [0, ε],

such that

g (t, F0 + ε (δx − F0))− g(t, F0)

ε
= h (t, F0 + ξ (δx − F0)) (δx − F0) (4.14)
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Since |h(t, F )| ≤ H(t) and δx−F0 is uniformly bounded, h (t, F0 + ξ (δx − F0)) (δx − F0)

is uniformly bounded as well.

Therefore, by Dominated Convergence Theorem,

lim
ε↓0

∫
(g(t, F0 + ε(δx − F0))− g(t, F0))

ε
dF0

=

∫
lim
ε↓0

(g(t, F0 + ε(δx − F0))− g(t, F0))

ε
dF0

=

∫
h (t, F0) (δx − F0) dF0

(4.15)

Since |g(t, F0 + ε(δx − F0))| ≤ G(t), again, by Dominated Convergence Theorem, we

have

lim
ε↓0

∫
g(t, F0 + ε(δx − F0))d(δx − F0) =

∫
lim
ε↓0

g(t, F0 + ε(δx − F0))d(δx − F0)

=

∫
g (t, F0) d (δx − F0)

(4.16)

so (4.12) is

ICT,F0(x) =

∫
h(t, F0)(δx − F0)dF0 +

∫
g(t, F0)d(δx − F0)

= g(x, F0(x)) +

∫ ∞
x

h(t, F0(t))dF0(t)

−
∫
h(t, F0(t))F0(t)dF0(t)−

∫
g(t, F0(t))dF0(t)

= g(x, F0(x)) + h̃(x)−
∫
h̃(t)dF0(t)−

∫
g(t, F0(t))dF0(t)

(4.17)

where h̃(x) =
∫∞
x
h(t, F0(t))dF0(t).

69



The third part of the last equation is because

∫
h̃(x)dF0(x) =

∫ ∫ ∞
x

h(t, F0(t))dF0(t)dF0(x)

=

∫ (∫ t

0

dF0(x)

)
h(t, F0(t))dF0(t)

=

∫
h(t, F0(t))F0(t)dF0(t)

(4.18)

Note that the influence curve is just the Gateaux derivative in the direction of δx.

And the existence of the influence curve for a statistical functional does not imply

that the functional is Gateaux differentiable (See Example 2.2.2 of Fernholz (1983)).

However, if T is Gateaux differentiable at F0, the Gateaux derivative of T at F0 may

be written as

T
′

F0
(F − F0) =

∫
ICT,F0(x)d(F (x)− F0(x))

=

∫ (
g(x, F0(x)) + h̃(x)

)
d(F (x)− F0(x))

(4.19)

Moreover, if T is Hadamard differentiable at F0, the Hadamard derivative of T at F0

is just the Gateaux derivative above.

In the following theorem, we prove that under some regularity conditions, T is

Hadamard differentiable at F0 with derivative T
′
F0

.

Theorem 4.2.3 Let X1, . . . , Xn be n i.i.d. random variables with distribution func-

tion F0, which has finite mean. Let D be the linear space expanded by F. F is the set

of all distribution functions with finite mean. D is equipped with the sup norm.

‖f‖ = sup
x∈R
|f(x)| (4.20)

70



Let T be a statistical functional defined on the D and T (F ) =
∫
g(t, F (t))dF (t).

Define h = ∂g
∂F

and h̃(t) =
∫ +∞
t

h(s, F0(s))dF0(s).

Under some regularity conditions,

Assumption (A) g(t, F (t)) is left continuous with respect to t and twice differen-

tiable with respect to F (t).

Assumption (B) |g (t, F (t))| ≤ A(t), |h (t, F (t))| ≤ B(t) for all t ∈ R and F (t) ∈

D, where A(t) is integrable with respect to any distribution function F (t) ∈ F

and B(t) is integrable with respect to F0(t).

T is Hadamard differentiable with derivative

T
′

F0
(F − F0) =

∫ (
g(x, F0(x)) + h̃(x)

)
d (F (x)− F0(x)) (4.21)

where h̃(x) =
∫∞
x
h(t, F0(t))dF0(t) and h = ∂g

∂F
.

And the remaining term is

∣∣∣T (F )− T (F0)− T ′F0
(F − F0)

∣∣∣ = o (‖F (t)− F0(t)‖) (4.22)

In particular, if F (t) = F̂n(t), where F̂n(t) is the empirical distribution function, the

remaining term is op

(
1√
n

)
Proof In order to prove that T is Hadamard differentiable, we need to prove that for

any D1, D2, . . . , and D ∈ D, such that ‖Dn −D‖ → 0 as n→∞ and δn → 0 as n→

∞, we have

lim
n→∞

(
T (F0 + δnDn)− T (F0)

δn
− T ′F0

(D)

)
= 0 (4.23)

It is clear that T
′
F0

is a linear statistical functional and δnT
′
F0

(D) = T
′
F0

(δnD). Now
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we have the following

lim
n→∞

T (F0 + δnDn)− T (F0)

δn
− T ′F0

(D) = lim
n→∞

T (F0 + δnDn)− T (F0)− T ′F0
(δnD)

δn

= lim
n→∞

∫
g(t, F0 + δnDn)d(F0 + δnDn)−

∫
g(t, F0)dF0 −

∫
(g(t, F0) + h̃(t))d(δnD)

δn

= lim
n→∞

∫
g(t, F0 + δnDn)− g(t, F0)

δn
dF0

+ lim
n→∞

∫
(g(t, F0 + δnDn)− g(t, F0)) d(Dn −D)

+ lim
n→∞

∫
g(t, F0)d(Dn −D) + lim

n→∞

∫
(g(t, F0 + δnDn)− g(t, F0)) dD −

∫
h̃(t)dD

= (1) + (2) + (3) + (4)− (5)

(4.24)

Similar to the proof of Lemma 3.2.2, we can prove that (1)=(5) and (2)=(3)=(4)=0.

Then we prove that

lim
n→∞

(
T (F0 + δnDn)− T (F0)

δn
− T ′F0

(D)

)
= 0 (4.25)

which implies that T is Hadamard differentiable at F0.

Since F (0) = 0 and F is bounded, we do not need further assumptions. By the

Proposition 4.3.3 of Fernholz (1983), the remaining term is

∣∣∣T (F )− T (F0)− T ′F0
(F − F0)

∣∣∣ = o (‖F (t)− F0(t)‖) (4.26)

In particular, if F (t) = F̂n(t), as is well known that
∥∥∥F̂n(t)− F0(t)

∥∥∥ = Op(
1√
n
), the

remaining term is op(
1√
n
).
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Above is a short discussion of Hadamard differentiability of the non-linear statistical

functional
∫
g(t, F (t))dF (t). Next, we investigate the EL with the linear statistical

functional constraint T (F0) + T
′
F0

(F − F0) = θ.

Let X1, . . . , Xn be n i.i.d. random variables with distribution function F . The em-

pirical likelihood (EL) of these n observations is

EL(F ) =
n∏
i=1

∆F (Xi) (4.27)

Lemma 4.2.4 Let X1, . . . , Xn be n i.i.d. random variables with distribution function

F0 and the constraint below is feasible

T (F0) + T
′

F0
(F − F0) =

∫
(g(t, F0(t)) + h̃(t))dF (t)−

∫
h̃(t)dF0(t) = θ (4.28)

Then the maximum of EL (4.27) under the constraint (4.28) is obtained when

wi =
1

n

1

1 + λ(g(Xi, F0(Xi)) + h̃(Xi)− θ̃ − θ)
= ∆F̂n(Xi)

1

1 + λZi
, i = 1, . . . , n

(4.29)

where F̂n(t) is the empirical distribution function and Zi = g(Xi, F0(Xi)) + h̃(Xi) −

θ̃ − θ, h = ∂g
∂F

, h̃(x) =
∫ +∞
x

h(t, F0(t))dF0(t),θ̃ =
∫
h̃(t)dF0(t).

λ is the solution of the following equation

l(λ) = θ̃ + θ (4.30)

where

l(λ) =
n∑
i=1

∆F̂n(Xi)
g(Xi, F0(Xi)) + h̃(Xi)

1 + λ(g(Xi, F0(Xi)) + h̃(Xi)− θ̃ − θ)
(4.31)
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Proof Denote wi = ∆F (Xi), EL(F ) =
∏n

i=1 ∆F (Xi) =
∏n

i=1wi. Consider

logEL(F ) =
n∑
i=1

logwi (4.32)

subject to the following constraint

wi ≥ 0,
n∑
i=1

wi = 1,
n∑
i=1

(
g(Xi, F0(Xi)) + h̃(Xi)

)
wi = θ̃ + θ (4.33)

In order to apply the Lagrange multiplier method, we form the target function as

follows.

G =
n∑
i=1

logwi + γ

(
1−

n∑
i=1

wi

)
+ nλ

(
θ + θ̃ −

n∑
i=1

(
g(Xi, F0(Xi)) + h̃(Xi)

)
wi

)
(4.34)

Taking the derivative with respect to wi, i = 1, . . . , n, and equaling them to 0 yields

∂G

∂wi
=

1

wi
− γ − nλ

(
g(Xi, F0(Xi)) + h̃(Xi)

)
= 0 (4.35)

so we have

γ =
1

wi
− nλ

(
g(Xi, F0(Xi)) + h̃(Xi)

)
(4.36)

Multiplying wi on both sides and taking the summation through 1 to n gives us

γ =
n∑
i=1

wiγ = n− nλ
n∑
i=1

(
g(Xi, F0(Xi)) + h̃(Xi)

)
wi = n− nλ

(
θ̃ + θ

)
(4.37)
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Plug γ in (4.35), we have

wi =
1

n+ nλ
(
g(Xi, F0(Xi)) + h̃(Xi)− θ̃ − θ

)
=

1

n

1

1 + λ
(
g(Xi, F0(Xi)) + h̃(Xi)− θ̃ − θ

)
= ∆F̂n(Xi)

1

1 + λZi

(4.38)

where F̂n(t) = 1
n

∑n
i=1 I[Xi ≤ t] and Zi = g(Xi, F0(Xi)) + h̃(Xi)− θ̃ − θ.

Plug the wi in the constraint (4.33), we have an equation for λ as follows.

l(λ) =
n∑
i=1

∆F̂n(Xi)
g(Xi, F0(Xi)) + h̃(Xi)

1 + λ
(
g(Xi, F0(Xi)) + h̃(Xi)− θ̃ − θ

) = θ̃ + θ (4.39)

A discussion of the feasibility can be found in Lemma 3.2.3. It applies to this lemma

similarly.

In the next lemma, we prove that the limiting distribution of nλ2 is a χ2
(1) times a

constant.

Lemma 4.2.5 Suppose g(t, F (t)) is left continuous with respect to t and twice dif-

ferentiable with respect to F and satisfies

0 <

∫ (
g(t, F0(t)) + h̃(t)

)2

dF0(t)−
(∫ (

g(t, F0(t)) + h̃(t)
)
dF0(t)

)2

<∞ (4.40)

where h̃(t) =
∫ +∞
t

h(s, F0(s))dF0(s) and h = ∂g
∂F

.

Then the solution λ of (4.30) with θ = θ0 satisfies

λ =
Z̄

S2
Z

+ op

(
1√
n

)
(4.41)
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and

nλ2 D−−→ χ2
(1)

(∫ (
g(t, F0(t)) + h̃(t)

)2

dF0(t)−
(∫ (

g(t, F0(t)) + h̃(t)
)
dF0(t)

)2
)−1

(4.42)

where Z̄ = 1
n

∑n
i=1 Zi, S

2
Z = 1

n

∑n
i=1 Z

2
i , Zi = g(Xi, F0(Xi)) + h̃(Xi) − θ̃ − θ0, θ̃ =∫

h̃(t)dF0(t) and θ0 =
∫
g(t, F0(t))dF0(t).

Proof See Appendix.

In the following theorem, we prove that

−2 logELR(θ0)
D−−−−→ χ2

(1) as n→∞ (4.43)

under the null hypothesis

H0 : T (F0) + T
′

F0
(F − F0) = θ0 (4.44)

where ELR(θ0) is the maximum of ELR function defined later in (4.46) subject to

the linear constraint T (F0) + T
′
F0

(F − F0) = θ0.

Theorem 4.2.6 Let X1, . . . , Xn be n i.i.d. random variables with distribution func-

tion F0. Suppose g(t, F (t)) is left continuous with respect to t and twice differentiable

with respect to F and

0 <

∫ (
g(t, F0(t)) + h̃(t)

)2

dF0(t)−
(∫ (

g(t, F0(t)) + h̃(t)
)
dF0(t)

)2

<∞ (4.45)

ELR is defined by

ELR(θ) =
sup

{
EL(F )|F � F̂n and F satisfy (4.28)

}
EL(F̂n)

(4.46)
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where F̂n(x) = 1
n

∑n
i=1 I[Xi ≤ x], then we have

−2 logELR(θ0)
D−−−−→ χ2

(1) as n→∞ (4.47)

Proof Consider

−2 logELR(θ0) = 2n log
1

n
− 2

n∑
i=1

logwi = 2
n∑
i=1

(
log

1

n
− log

(
1

n

1

1 + λZi

))
= 2

n∑
i=1

log (1 + λZi)

(4.48)

In Appendix, we have λ = Op(
1√
n
) and maxi |Zi| = op(

√
n).

Then we have max1≤i≤n |λZi| = op(1), so we may expand log (1 + λZi) as follows.

log (1 + λZi) = λZi −
1

2
λ2Z2

i +Op(λ
3)Z3

i (4.49)

Therefore, we have

−2 logELR(θ0) = 2λ
n∑
i=1

Zi − λ2

n∑
i=1

Z2
i +Op(λ

3)
n∑
i=1

Z3
i (4.50)

we also have

Op

(
λ3
) n∑
i=1

Z3
i ≤ Op

(
λ3
)
× n×max

i
|Zi| ×

1

n

n∑
i=1

Z2
i

= Op

(
n−

3
2

)
× n× op(

√
n)×Op(1) = op(1)

(4.51)

Denote Z̄ = 1
n

∑n
i=1 Zi and S2

Z = 1
n

∑n
i=1 Z

2
i ; in the previous lemma, we have

λ =
Z̄

S2
Z

+ op

(
1√
n

)
(4.52)
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Plug λ in (4.50). In Appendix, we have nZ̄ = Op(
√
n), then we have

−2 logELR(θ0) = 2nλZ̄ − nλ2S2
Z + op(1)

= 2nZ̄

(
Z̄

S2
Z

+ op(
1√
n

)

)
− nS2

Z

(
Z̄

S2
Z

+ op(
1√
n

)

)2

+ op(1)

=
2nZ̄2

S2
Z

+ op(1)− nS2
Z

(
Z̄2

S4
Z

+ 2
Z̄

S2
Z

op(
1√
n

) + op(
1√
n

)

)
+ op(1)

=
nZ̄2

S2
Z

+ op(1)

(4.53)

In Appendix, we also know that

nZ̄2

S2
Z

D−−−−→ χ2
(1), as n→∞ (4.54)

By the Slutsky theorem, we have

−2 logELR(θ0)
D−−−−→ χ2

(1), as n→∞ (4.55)

Theorem 4.2.7 Suppose the non-linear statistical functional T (F ) =
∫
g(t, F (t))dF (t)

is Hadamard differentiable at F0(t). The sufficient conditions for Hadamard differ-

entiable are listed in Theorem 4.2.3. Empirical likelihood ratio (ELR) function is

defined as follows.

ELR =
EL(F )

EL(F̂n)
(4.56)

where EL(·) is defined in (2.3) and F̂n is the empirical distribution function.

If the following null hypothesis is true

H0 :

∫
g(t, F (t))dF (t) = θ0 (4.57)

78



where θ0 =
∫
g(t, F0(t))dF0(t),

then we have

−2 logELR(θ0)
D−−−−→ χ2

(1) (4.58)

where ELR(θ0) is the maximum of the ELR function (4.56) subject to the non-linear

statistical functional constraint
∫
g(t, F (t))dF (t) = θ0.

Proof This theorem is a straightforward result of Theorem 4.2.1, Theorem 4.2.3 and

Theorem 4.2.6.

Copyright c© Zhiyuan Shen, 2016.
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Chapter 5 Empirical Likelihood Ratio in Terms of Cumulative Hazard

for Two Sample Problems

5.1 Introduction

Hu and Barton (2009) prove that −2 logELR converges to a χ2
1 when the following

null hypothesis is true.

H0 :

∫ ∫
H(t, s)dΛ1(t)dΛ2(s) = θ0 (5.1)

In this chapter, we prove the theorem in a new way using the Hadamard derivative,

which would substantially simplify the proof and calculation. We also prove a new

theorem involving the hazard-type null hypothesis of the following generalized form.

H0 :

∫ ∫
H (t, s,Λ1(t),Λ2(s)) dΛ1(t)dΛ2(s) = θ0 (5.2)

We believe that the new generalized form has value in its own right. The theorem

can be applied to the two-sample hypothesis like

H0 : P (X > Y ) = p0 (5.3)

and the hypothesis testing of two Gini indexes equal.

To be more clear,

H0 : P (X > Y ) = p0 (5.4)

is equivalent to ∫ ∞
0

∫ ∞
0

I[x > y]dF1(x)dF2(y) = p0 (5.5)
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where F1 and F2 are distribution functions of X and Y respectively.

If the true distributions are continuous, (5.5) can be transformed to

∫ ∞
0

∫ ∞
0

I[x > y]e−Λ1(x)e−Λ2(y)dΛ1(x)dΛ2(y) = p0 (5.6)

where Λ1 and Λ2 are cumulative hazard functions of X and Y respectively. This is

the form of our new generalization.

For the hypothesis testing of the two Gini indexes equal,

H0 : G1 = G2 (5.7)

is equivalent to

1

µ1

∫ ∞
0

x(1− F1(x))dF1(x) =
1

µ2

∫ ∞
0

y(1− F2(y))dF2(y) (5.8)

If the true distributions are continuous, (5.8) can be transformed to

∫ ∞
0

∫ ∞
0

xye−Λ1(x)e−Λ2(y)(e−Λ1(x) − e−Λ2(y))dΛ1(x)dΛ2(y) = 0 (5.9)

which is the form of our new generalization.

5.2 A New Proof for Two Sample Problems

First of all, we propose a theorem similar to Theorem 3.2.1.

Theorem 5.2.1 Suppose we have two statistical functional constraints in terms of

cumulative hazard functions as follows

T1(Λ1,Λ2) = θ0, T2(Λ1,Λ2) = θ0 (5.10)
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which satisfy θ0 = T1(Λ10,Λ20) and θ0 = T2(Λ10,Λ20).

The ELR function is defined as follows.

ELR =
EL(Λ1,Λ2)

EL(Λ̂1, Λ̂2)
(5.11)

where EL(·, ·) is defined later in (5.33) and Λ̂1, Λ̂2 are Nelson-Aalen estimators.

If for any statistics Λ̂1n(t), Λ̂2m(s)(not necessary Nelson-Aalen estimators),

s.t.
∥∥∥Λ̂1n(t)− Λ10(t)

∥∥∥ = Op

(
1√
n

)
,
∥∥∥Λ̂2m(s)− Λ20(s)

∥∥∥ = Op

(
1√
m

)
and n

n+m
→

α, as min(n,m)→∞, we have

∣∣∣T1(Λ̂1n, Λ̂2m)− T2(Λ̂1n, Λ̂2m)
∣∣∣ = op

(√
nm

n+m

)
(5.12)

then we have

−2 logELR1(θ0) + 2 logELR2(θ0)
P−−−−→ 0, as min(n,m)→∞ (5.13)

where ELR1(θ0) and ELR2(θ0) are the maximums of the ELR function (5.33) subject

to the corresponding constraint T1(Λ1,Λ2) = θ0 and T2(Λ1,Λ2) = θ0 respectively.

Proof Similar to the proof of Theorem 3.2.1.

To begin with, we investigate the Hadamard differentiability of the statistical func-

tional T (Λ1,Λ2) =
∫
H(t, s)dΛ1(t)dΛ2(s) in the following theorem.

Theorem 5.2.2 Let T : D[0, τ ]×D[0, τ ] −→ R be a statistical functional defined as

T (Λ1(t),Λ2(s)) =

∫ ∫
H(t, s)dΛ1(t)dΛ2(s) (5.14)
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where D[0, τ ] is the set of all real valued cadlag functions equipped with sup norm.

‖(f, g)‖ = max

{
sup
t∈[0,τ ]

|f(t)| , sup
s∈[0,τ ]

|g(s)|

}
, f, g ∈ D[0, τ ] (5.15)

Under some regularity conditions,

Assumption (A) H(t, s) is left continuous with respect to t and s.

Assumption (B)

Λ1(0) = 0 and Λ1(τ) ≤M1 for some M1 ∈ R

Λ2(0) = 0 and Λ2(τ) ≤M2 for some M2 ∈ R
(5.16)

T is Hadamard differentiable at (Λ10(t),Λ20(s)) with derivative

T
′

Λ10,Λ20
(Λ1(t)− Λ10(t),Λ2(s)− Λ20(s))

=

∫
H1(t)d(Λ1(t)− Λ10(t)) +

∫
H2(s)d(Λ2(s)− Λ20(s))

(5.17)

where H1(t) =
∫
H(t, s)dΛ20(s) and H2(s) =

∫
H(t, s)dΛ10(t). If Λ1(t) = Λ̂1(t),

Λ2(s) = Λ̂2(s), where Λ̂1 and Λ̂2 are Nelson-Aalen estimators, the remaining term

∣∣∣T (Λ1(t),Λ2(s))− T (Λ10(t),Λ20(s))− T ′Λ10,Λ20
(Λ1(t)− Λ10(t),Λ2(s)− Λ20(s))

∣∣∣
(5.18)

is op

(√
n+m
nm

)
, where n and m are sample sizes of Λ̂1 and Λ̂2 respectively.

Proof First we prove that (5.15) is a norm. The definition of the norm is as follows:

Definition Given a vector space V over a field F, a norm on V is a function p : V→ R

with the following properties: For all a ∈ F and all u, v ∈ V,

• p(av) = |a|v
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• p(u+ v) ≤ p(u) + p(v)

• If p(v) = 0, the v is the zero vector.

It is easy to verify that the ‖ · ‖ defined in the Lemma 5.2.2 is a norm. It is obvious

for the first and third rule. We would prove the second rule here.

Suppose (f1, g1), (f2, g2) ∈ D[0, τ ]×D[0, τ ], we have

‖(f1, g1) + (f2, g2)‖ = ‖(f1 + f2, g1 + g2)‖ = max {sup {|f1 + f2|} , sup {|g1 + g2|}}

≤ max {sup |f1|+ sup |f2|, sup |g1|+ sup |g2|}

≤ max {sup |f1|, sup |g1|}+ max {sup |f2|, sup |g2|}

= ‖(f1, g1)‖+ ‖(f2, g2)‖

(5.19)

Next we are going to prove that T is Hadamard differentiable at (Λ10(t),Λ20(s)) with

Hadamard derivative

T
′

Λ10,Λ20
=

∫
H1(t)d (Λ1(t)− Λ10(t)) +

∫
H2(s)d (Λ2(s)− Λ20(s)) (5.20)

where H1(t) =
∫
H(t, s)dΛ20(s) and H2(s) =

∫
H(t, s)dΛ10(t).

In order to prove this, we need to prove that Λ0Λ0Λ0 = (Λ10(t),Λ20(s)),DDD = (D1(t), D2(s)),

DnDnDn = (D1n(t), D2n(s)) and DDD,DnDnDn ∈ D[0, τ ] × D[0, τ ], s.t. ‖DnDnDn −DDD‖ → 0 as n → ∞

and δn → 0 as n→∞, we have

lim
n→∞

(
T (Λ0Λ0Λ0 + δnDnDnDn)− T (Λ0Λ0Λ0)

δn
− T ′Λ10,Λ20

(DDD)

)
= 0 (5.21)

To save typing, unless otherwise specified, Λ10, Λ20, D1n, D1, D2n, D2 represent

Λ10(t), Λ20(s), D1n(t), D1(t), D2n(s), D2(s) respectively.

Note that T
′
Λ10,Λ20

is a linear statistical functional so that δnT
′
Λ10,Λ20

(DDD) = T
′
Λ10,Λ20

(δnDDD).
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Then we have

lim
n→∞

(
T (Λ0Λ0Λ0 + δnDnDnDn)− T (Λ0Λ0Λ0)

δn
− T ′Λ10,Λ20

(DDD)

)
= lim

n→∞

T (Λ0Λ0Λ0 + δnDnDnDn)− T (Λ0Λ0Λ0)− T ′Λ10,Λ20
(δnDDD)

δn

= lim
n→∞

(

∫ ∫
H(t, s)d (Λ10 + δnD1n) d (Λ20 + δnD2n)−

∫ ∫
H(t, s)dΛ10(t)dΛ20(s)

δn

−
∫ ∫

H(t, s)dΛ20d (δnD1)−
∫ ∫

H(t, s)dΛ10d (δnD2)

δn
)

= lim
n→∞

∫ ∫
H(t, s)dΛ20d (D1n −D1) + lim

n→∞

∫ ∫
H(t, s)dΛ10d (D2n −D2)

+ lim
n→∞

δn

∫ ∫
H(t, s)dD1ndD2n

= lim
n→∞

∫
H1(t)d (D1n(t)−D1(t)) + lim

n→∞

∫
H2(s)d (D2n(s)−D2(s))

+ lim
n→∞

δn

∫ ∫
H(t, s)dD1ndD2n

= lim
n→∞

(
H1(t) (D1n(t)−D1(t)) |τ0 −

∫
(D1n(t)−D1(t)) dH1(t)

)
+ lim

n→∞

(
H2(s) (D2n(s)−D2(s)) |τ0 −

∫
(D2n(s)−D2(s)) dH2(s)

)
+ lim

n→∞
δn

∫ ∫
H(t, s)dD1ndD2n

(5.22)

We also have that D1n(t), D2n(s) converge pointwisely to D1(t), D2(s) as n → ∞

since the following.

|D1n(t)−D1(t)| ≤ sup
t∈[0,τ ]

|D1n(t)−D1(t)|

≤ max

{
sup
t∈[0,τ ]

|D1n(t)−D1(t)| , sup
sin[0,τ ]

|D2n(s)−D2(s)|

}

= ‖DnDnDn −DDD‖ → 0 as n→∞

(5.23)

Similarly, |D2n(s)−D2(s)| → 0 as n→∞

85



In particular, we have

|D1n(0)−D1(0)| → 0 as n→∞, |D2n(0)−D2(0)| → 0, as n→∞

|D1n(τ)−D1(τ)| → 0 as n→∞, |D2n(τ)−D2(τ)| → 0, as n→∞
(5.24)

Then we have

lim
n→∞

H1(t) (D1n(t)−D1(t)) |τ0 = 0

lim
n→∞

H2(s) (D2n(s)−D2(s)) |τ0 = 0

(5.25)

We have already learned that D1n and D2n are uniformly bounded,

so
∫ ∫

H(t, s)dD1ndD2n is uniformly bounded as well. Therefore we have

lim
n→∞

δn

∫ ∫
H(t, s)dD1ndD2n = 0 (5.26)

By the integration by parts, we have

∫
H1(t)d (D1n(t)−D1(t)) = H1(t) (D1n(t)−D1(t)) |τ0 −

∫
(D1n(t)−D1(t)) dH1(t)∫

H2(s)d (D2n(s)−D2(s)) = H2(s) (D2n(s)−D2(s)) |τ0 −
∫

(D2n(s)−D2(s)) dH2(s)

(5.27)

Since D1n and D1 are uniformly bounded, |D1n −D1| is uniformly bounded as well.

By the Dominated Convergence Theorem, we have

lim
n→∞

∣∣∣∣∫ (D1n(t)−D1(t)) dH1(t)

∣∣∣∣ ≤ lim
n→∞

∫
|(D1n(t)−D1(t))| d |H1(t)|

=

∫
lim
n→∞

|(D1n(t)−D1(t))| d |H1(t)| = 0

(5.28)
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Similarly, we have

lim
n→∞

∣∣∣∣∫ (D2n(s)−D2(s)) dH2(s)

∣∣∣∣ ≤ lim
n→∞

∫
|(D2n(s)−D2(s))| d |H2(s)|

=

∫
lim
n→∞

|(D2n(s)−D2(s))| d |H2(s)| = 0

(5.29)

Now we prove that (5.22)=0.

With further assumptions that

Λ1(0) = 0 and Λ1(τ) ≤M1 for some M1 ∈ R

Λ2(0) = 0 and Λ2(τ) ≤M2 for some M2 ∈ R
(5.30)

and Λ1(t) = Λ̂1(t), Λ2(s) = Λ̂2(s), where Λ̂1(t) and Λ̂2(s) are Nelson-Aalen estimators.

By Fernholz (1983) Proposition 4.3.4, the remaining term

∣∣∣T (Λ1(t),Λ2(s))− T (Λ10(t),Λ20(s))− T ′Λ10,Λ20
(Λ1(t)− Λ10(t),Λ2(s)− Λ20(s))

∣∣∣
(5.31)

is op

(√
n+m
nm

)
.

In Theorem 5.2.2, we learned that the statistical functional

T (Λ1,Λ2) =
∫
H(t, s)dΛ1(t)dΛ2(s) is Hadamard differentiable with a linear Hadamard

derivative. This is of central importance, because now we can obtain an explicit max-

imum of cumulative hazard function using Lagrange multiplier method. We state this

in the following lemma.

To start with, we introduce the empirical likelihood of two samples.

Suppose (X1, . . . , Xn), (Y1, . . . , Ym) are n andm i.i.d. random variables with distribu-

tion functions F1 and F2 denoting lifetimes, respectively. (C1, . . . , Cn), (D1, . . . , Dm)

are n and m i.i.d. random variables with distribution functions G1 and G2, in-

dependent of X and Y and denoting censoring times, respectively. X and Y are
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independent. C and D are independent. And only the censored observations are

available to us.

Ti = min(Xi, Ci), δXi = I[Xi ≤ Ci], i = 1, . . . , n

Uj = min(Yj, Dj), δYj = I[Yj ≤ Dj], j = 1, . . . ,m

(5.32)

The empirical likelihood (EL) of Λ1(t) and Λ2(s) which is dominated by the Nelson-

Aalen estimator is

EL =
n∏
i=1

wδXii

[ ∏
k:Tk<Ti

(1− wk)

]δXi [ ∏
k:Tk≤Ti

(1− wk)

]1−δXi


×
m∏
j=1

vδYjj

 ∏
k:Uk<Uj

(1− vk)

δYj  ∏
k:Uk≤Uj

(1− vk)

1−δYj


(5.33)

where wi = ∆Λ1(Ti) and vj = ∆Λ2(Uj).

The Poisson extension of the empirical likelihood is

AL =
n∏
i=1

w
δXi
i exp

{
−

i∑
k=1

wk

}
m∏
j=1

v
δYj
j exp

{
−

j∑
k=1

vk

}
(5.34)

Lemma 5.2.3 If the constraint below is feasible

∫
H1(t)dΛ1(t) +

∫
H2(s)dΛ2(s) = 2θ (5.35)

then the maximum of AL (5.34) under the above constraint is obtained when

wi = ∆Λ̂1(Ti)
1

1 + λZ1i

, vj = ∆Λ̂2(Uj)
1

1 + λZ2j

, i = 1, . . . , n− 1, j = 1, . . . ,m− 1

(5.36)

where Z1i =
δXiH1(Ti)

n−i+1
and Z2j =

δYjH2(Uj)

m−j+1
, i=1,. . . , n, j=1,. . . ,m
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H1(t) =

∫
H(t, s)dΛ20(s), H2(s) =

∫
H(t, s)dΛ10(t) (5.37)

λ is the solution of the following equation

l(λ) = 2θ (5.38)

where

l(λ) =
n−1∑
i=1

Z1i

1 + λZ1i

+ Z1n +
m−1∑
j=1

Z2j

1 + λZ2j

+ Z2m (5.39)

Proof Notice that wn = δXn and vm = δYm , we can rewrite the constraint in the

discrete form as below.

n−1∑
i=1

δXiH1(Ti)wi + δXnH1(Tn) +
m−1∑
j=1

δYjH2(Uj)vj + δYmH2(Um) = 2θ (5.40)

The logAL is

logAL =
n∑
i=1

(
δXi logwi −

i∑
l=1

wl

)
+

m∑
j=1

(
δYj log vj −

j∑
k=1

vk

)

=
n∑
i=1

δXi logwi −
n∑
i=1

(n− i+ 1)wi +
m∑
j=1

δYj log vj −
m∑
j=1

(m− j + 1) vj

(5.41)

To use the Lagrange multiplier method, we form the following target function.

G =
n∑
i=1

δXi logwi −
n∑
i=1

(n− i+ 1)wi +
m∑
j=1

δYj log vj −
m∑
j=1

(m− j + 1) vj

− λ

(
δXiH1(Ti)wi + δXnH1(Tn) +

m−1∑
j=1

δYjH2(Uj)vj + δYmH2(Um)− 2θ

) (5.42)

Taking the derivative with respect to wi, i = 1, . . . , n− 1 and vj, j = 1, . . . ,m− 1 and
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equaling them to 0 yields

∂G

∂wi
=
δXi
wi
− (n− i+ 1)− λδXiH1(Ti) = 0, i = 1, . . . , n− 1

∂G

∂vj
=
δYj
vj
− (m− j + 1)− λδYjH2(Uj) = 0, j = 1, . . . ,m− 1

(5.43)

so the jumps of Λ1 and Λ2 at times Ti and Uj are

wi = ∆Λ1(Ti) =
δXi

n− i+ 1

1

1 + λ
δXiH1(Ti)

n−i+1

, i = 1, . . . , n− 1

vj = ∆Λ2(Uj) =
δYj

m− j + 1

1

1 + λ
δYjH2(Uj)

m−j+1

, j = 1, . . . ,m− 1

(5.44)

Let

Z1i =
δXiH1(Ti)

n− i+ 1
, i = 1, . . . , n

Z2j =
δYjH2(Uj)

m− j + 1
, j = 1, . . . ,m

(5.45)

We have

wi = ∆Λ̂1(Ti)
1

1 + λZ1i

, i = 1, . . . , n− 1, wn = δXn

vj = ∆Λ̂2(Uj)
1

1 + λZ2j

, j = 1, . . . ,m− 1, vm = δYm

(5.46)

where ∆Λ̂1 and ∆Λ̂2 are Nelson-Aalen estimators.

Plug the wi, i = 1, . . . , n − 1, vj, j = 1, . . . ,m − 1, wn, vm into the discrete

form of the constraint (5.40), we have the following equation

n−1∑
i=1

δXiH1(Ti)
δXi

n− i+ 1

1

1 + λZ1i

+ δXnH1(Ti)

+
m−1∑
j=1

δYjH2(Uj)
δYj

m− j + 1

1

1 + λZ2j

+ δYmH2(Um) = 2θ

(5.47)
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which can be simplified as below

n−1∑
i=1

Z1i

1 + λZ1i

+ Z1n +
m−1∑
j=1

Z2j

1 + λZ2j

+ Z2m = 2θ (5.48)

In the following lemma, we prove that the limiting distribution of n+m
nm

λ2 is a χ2
(1)

times a constant.

Lemma 5.2.4 Suppose H(t, s) is left continuous with respect to t and s and we have

∫
H2

1 (t)dΛ10(t)

(1− F1(t))(1−G1(t))
<∞∫

H2
2 (s)dΛ20(s)

(1− F2(s))(1−G2(s))
<∞

(5.49)

We assume that

n

n+m
→ α, as min(n,m)→∞ (5.50)

The solution λ of (5.39) with θ = θ0 satisfies

n+m

nm
λ2 D−−−−→ χ2

1 · σ−2 as min(n,m)→∞ (5.51)

where

σ2 = (1− α)

∫
H2

1 (t)dΛ10(t)

(1− F1(t)) (1−G1(t))
+ α

∫
H2

2 (s)dΛ20(s)

(1− F2(s)) (1−G2(s))
(5.52)

Proof See Appendix.

Lemma 5.2.5 Let (T1, δX1), . . . , (Tn, δXn) and (U1, δY1), . . . , (Um, δYm) be n and m

pairs of random variables as defined before. Suppose H(t, s) is left continuous with
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respect to t and s and we have

∫
H2

1 (t)dΛ10(t)

(1− F1(t))(1−G1(t))
<∞ ,

∫
H2

2 (s)dΛ20(s)

(1− F2(s))(1−G2(s))
<∞ (5.53)

ALR defined by

ALR(θ) =
sup

{
AL(Λ1,Λ2)|Λ1 � Λ̂1,Λ2 � Λ̂2 and Λ1 ,Λ2 satisfy (5.2)

}
AL(Λ̂1, Λ̂2)

(5.54)

Then

−2logALR(θ0)
D−−−−→ χ2

(1) as n→∞ (5.55)

Proof Since the Poisson extension of the empirical likelihood is

AL =
n∏
i=1

w
δXi
i exp

{
−

i∑
k=1

wk

}
m∏
j=1

v
δYj
j exp

{
−

j∑
k=1

vk

}
(5.56)

where wi = ∆Λ1(Ti), vj = ∆Λ2(Uj).

Take log on both sides, we have

logAL =
n∑
i=1

δXi logwi −
n∑
i=1

i∑
k=1

wk +
m∑
j=1

δYj log vj −
m∑
j=1

j∑
k=1

vk

=
n∑
i=1

δXi logwi −
n∑
i=1

(n− i+ 1)wi +
m∑
j=1

δYj log vj −
m∑
j=1

(m− j + 1) vj

(5.57)

Define

Z1i =
δXiH1(Ti)

n− i+ 1
, i = 1, . . . , n

Z2j =
δYjH2(Uj)

m− j + 1
, j = 1, . . . ,m

(5.58)
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Consider

− 2 logALR(θ0) = 2

[
n∑
i=1

δXi log
(

∆Λ̂1(Ti)
)
−

n∑
i=1

(n− i+ 1) ∆Λ̂1(Ti)

]

− 2

[
n−1∑
i=1

δXi log

(
∆Λ̂1(Ti)

1

1 + λZ1i

)
−

n−1∑
i=1

(n− i+ 1) ∆Λ̂1(Ti)
1

1 + λZ1i

]

− 2
[
δXn log

(
∆Λ̂1(Tn)

)
−∆Λ̂1(Tn)

]
+ 2

[
m∑
j=1

δYj log
(

∆Λ̂2(Uj)
)
−

m∑
j=1

(m− j + 1) ∆Λ̂2(Uj)

]

− 2

[
m−1∑
j=1

δYj log

(
∆Λ̂2(Uj)

1

1 + λZ2j

)
−

m−1∑
j=1

(m− j + 1) ∆Λ̂2(Uj)
1

1 + λZ2j

]

− 2
[
δUm log

(
∆Λ̂2(Um)

)
−∆Λ̂2(Um)

]
= 2

n−1∑
i=1

δXi log (1 + λZ1i)− 2
n−1∑
i=1

(n− i+ 1) ∆Λ̂1(Ti)
λZ1i

1 + λZ1i

+ 2
m−1∑
j=1

δYj log (1 + λZ2j)− 2
m−1∑
j=1

(m− j + 1) ∆Λ̂2(Uj)
λZ2j

1 + λZ2j

= 2
n−1∑
i=1

δXi log (1 + λZ1i)− 2
n−1∑
i=1

δXiλZ1i

1 + λZ1i

+ 2
m−1∑
j=1

δYj log (1 + λZ2j)− 2
m−1∑
j=1

δYjλZ2j

1 + λZ2j

= 2
n−1∑
i=1

δXi log (1 + λZ1i)− 2
n−1∑
i=1

δXiλZ1i + 2
n−1∑
i=1

δXiλ
2Z2

1i

1 + λZ1i

+ 2
m−1∑
j=1

δYj log (1 + λZ2j)− 2
m−1∑
j=1

δYjλZ2j + 2
m−1∑
j=1

δUjλ
2Z2

2j

1 + λZ2j

(5.59)

In Appendix, notice that

max
1≤i≤n

|λZ1i| = |λ| max
1≤i≤n

|Z1i| = Op

(
1√
n

)
op
(√

n
)

= op(1)

max
1≤j≤m

|λZ2j| = |λ| max
1≤j≤m

|Z2j| = Op

(
1√
n

)
op
(√

n
)

= op(1)

(5.60)

93



We may expand log (1 + λZ1i) and log (1 + λZ2j) as

log (1 + λZ1i) = λZ1i −
1

2
λ2Z2

1i +Op

(
λ3
)
Z3

1i

log (1 + λZ2j) = λZ2j −
1

2
λ2Z2

2j +Op

(
λ3
)
Z3

2j

(5.61)

Substituting this into (5.59) gives us

−2 logALR(θ0) =
n−1∑
i=1

δXiλ
2Z2

1i + 2Op

(
λ3
) n−1∑
i=1

Z3
1i − 2

n−1∑
i=1

δXiλ
3Z3

1i

1 + λZ1i

+
m−1∑
j=1

δYjλ
2Z2

2j + 2Op

(
λ3
)m−1∑
j=1

Z3
2j − 2

m−1∑
j=1

δYjλ
3Z3

2j

1 + λZ2j

=
n+m

nm
λ2

(
m

n+m
n
n−1∑
i=1

Z2
1i +

n

n+m
m

m−1∑
j=1

Z2
2j

)

+ 2Op

(
λ3
) n−1∑
i=1

Z3
1i − 2

n−1∑
i=1

δXiλ
3Z3

1i

1 + λZ1i

+ 2Op

(
λ3
)m−1∑
j=1

Z3
2j − 2

m−1∑
j=1

δYjλ
3Z3

2j

1 + λZ2j

(5.62)

Similar to the proof in Lemma 3.2.5, we have

∣∣∣∣∣Op

(
λ3
) n−1∑
i=1

Z3
1i

∣∣∣∣∣ = op (1) ,

∣∣∣∣∣Op

(
λ3
)m−1∑
j=1

Z3
2j

∣∣∣∣∣ = op (1)

n−1∑
i=1

δXiλ
3Z3

1i

1 + λZ1i

= op (1) ,
m−1∑
j=1

δYjλ
3Z3

2j

1 + λZ2j

= op (1)

(5.63)

We assume that n
n+m
→ α, as min(n,m)→∞. In Appendix, we have

n+m

nm
λ2 D−−−−→ χ2

(1)σ
−2

m

n+m
n

n−1∑
i=1

Z2
1i +

n

n+m
m

m−1∑
j=1

Z2
2j

P−−−−→ σ2
(5.64)
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where

σ2 = (1− α)

∫
H2

1 (t)dΛ10(t)

(1− F1(t)) (1−G1(t))
+ α

∫
H2

2 (s)dΛ20(s)

(1− F2(s)) (1−G2(s))
(5.65)

By the Slutsky theorem, we have

−2 logALR(θ0)
D−−−−→ χ2

(1), as n→∞ (5.66)

Theorem 5.2.6 Suppose all conditions of Lemma 5.2.5 hold and ELR is defined by

ELR(θ) =
EL(Λ∗1,Λ

∗
2)

EL(Λ̂1, Λ̂2)
(5.67)

where Λ̂1 and Λ̂2 are Nelson-Aalen estimators and Λ∗1 and Λ∗1 are given by the jumps

defined in Lemma 5.2.3

Then we have,

−2logELR(θ0)
D−−−−→ χ2

(1) as n→∞ (5.68)

Proof Remember that the empirical likelihood for two samples is

EL =
n∏
i=1

wδXii

[ ∏
k:Tk<Ti

(1− wk)

]δXi [ ∏
k:Tk≤Ti

(1− wk)

]1−δXi


×
m∏
j=1

vδYjj

 ∏
k:Uk<Uj

(1− vk)

δYj  ∏
k:Uk≤Uj

(1− vk)

1−δYj


(5.69)

where wi = ∆Λ1(Ti) and vj = ∆Λ2(Uj).
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logEL =
n∑
i=1

δXi logwi +
n∑
i=1

(n− i+ 1− δXi) log (1− wi)

+
m∑
j=1

δYj log vj +
m∑
j=1

(
m− j + 1− δYj

)
log (1− vj)

(5.70)

Similar to the proof of Theorem 3.2.6, we have

− 2 logELR(θ0) = 2
n−1∑
i=1

δXi log (1 + λZ1i)− 2
n−1∑
i=1

δXiλZ1i

1 + λZ1i

+ 2
n−1∑
i=1

δXiη
2
1i

(n− i+ 1− δXi)

+ 2
m−1∑
j=1

δYj log (1 + λZ2j)− 2
m−1∑
j=1

δYjλZ2j

1 + λZ2j

+ 2
m−1∑
j=1

δYjη
2
2j(

m− j + 1− δYj
)

(5.71)

where |η1i| ≤ | λZ1i

1+λZ1i
| and |η2j| ≤ | λZ2j

1+λZ2j
|. Remember that

−2 logALR(θ0) = 2
n−1∑
i=1

δXi log (1 + λZ1i)− 2
n−1∑
i=1

δXiλZ1i

1 + λZ1i

+ 2
m−1∑
j=1

δYj log (1 + λZ2j)− 2
m−1∑
j=1

δYjλZ2j

1 + λZ2j

(5.72)

We have

−2 logELR(θ0) + 2 logALR(θ0) = 2
n−1∑
i=1

δXiη
2
1i

(n− i+ 1− δXi)
+ 2

m−1∑
j=1

δYjη
2
2j(

m− j + 1− δYj
)

(5.73)

Similar to the proof of Theorem 3.2.6, we have

2
n−1∑
i=1

δXiη
2
1i

(n− i+ 1− δXi)
= op(1), 2

m−1∑
j=1

δYjη
2
2j(

m− j + 1− δYj
) = op(1) (5.74)

Therefore

−2 logELR(θ0) + 2 logALR(θ0)
P−−−−→ 0 (5.75)
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By Slutsky theorem,

−2 logELR(θ0)
D−−−−→ χ2

(1) as n →∞ (5.76)

Theorem 5.2.7 Suppose the non-linear statistical functional

T (Λ1,Λ2) =
∫
H(t, s)dΛ1(t)dΛ2(s) is Hadamard differentiable at (Λ10(t),Λ20(s)). The

sufficient conditions for Hadamard differentiability are listed in Theorem 5.2.2. The

empirical likelihood ratio (ELR) function is defined as follows.

ELR =
EL(Λ1,Λ2)

EL(Λ̂1, Λ̂2)
(5.77)

where EL(·, ·) is defined in (5.33) and Λ̂1, Λ̂2 are the Nelson-Aalen estimators.

If the following null hypothesis is true

H0 :

∫
H(t, s)dΛ1(t)dΛ2(s) = θ0 (5.78)

where θ0 =
∫
H(t, s)dΛ10(t)dΛ20(s),

then we have

−2 logELR(θ0)
D−−−−→ χ2

(1) (5.79)

where ELR(θ0) is the maximum of the ELR function (5.77) subject to the non-linear

statistical functional constraint
∫
H(t, s)dΛ1(t)dΛ2(s) = θ0.

Proof This theorem is a straightforward result of Theorem 5.2.1, Theorem 5.2.2 and

Theorem 5.2.6.
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5.3 A New Generalization of Two Sample Problems

In this section, we prove the theorem under a new generalized hazard-type form of

null hypothesis as follows.

H0 :

∫ ∫
H (t, s,Λ1(t),Λ2(s)) dΛ1(t)dΛ2(s) = θ0 (5.80)

Still we begin with the Hadamard differentiability of the statistical functional con-

straint in the following theorem.

Theorem 5.3.1 Let T : D[0, τ ]× D[0, τ ]→ R be a statistical functional defined as

T (Λ1(t),Λ2(s)) =

∫ ∫
H(t, s,Λ1(t),Λ2(s))dΛ1(t)dΛ2(s) (5.81)

where D[0, τ ] is the set of real valued cadlag functions equipped with the sup norm.

‖(f, g)‖ = max

{
sup
t∈[0,τ ]

|f(t)| , sup
s∈[0,τ ]

|g(s)|

}
, f, g ∈ D[0, τ ] (5.82)

Under some regularity conditions,

Assumption (A) H (t, s,Λ1(t),Λ2(s)) is left continuous with respect to t and s and

twice differentiable with respect to Λ1 and Λ2.

Assumption (B) H (t, s,Λ1(t),Λ2(s)), H1 and H2 are bounded by integrable func-

tions A(t, s), B(t, s) and C(t, s) respectively, for any t, s ∈ [0, τ ] and Λ1(t),Λ2(s) ∈

D[0, τ ]

Assumption (C)

Λ1(0) = 0 and Λ1(τ) ≤M1 for some M1 ∈ R

Λ2(0) = 0 and Λ2(τ) ≤M2 for some M2 ∈ R
(5.83)
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T is Hadamard differentiable at (Λ10(t),Λ20(s)) with derivative

T
′

Λ10,Λ20
(Λ1(t)− Λ10(t),Λ2(s)− Λ20(s))

=

∫
H∗1 (t)d (Λ1(t)− Λ10(t)) +

∫
H∗2 (s)d (Λ2(s)− Λ20(s))

(5.84)

where

H∗1 (t) =

∫ (
H (t, s,Λ10(t),Λ20(s)) + H̃1 (t, s,Λ20(s))

)
dΛ20(s)

H∗2 (s) =

∫ (
H(t, s,Λ10(t),Λ20(s)) + H̃2(t, s,Λ10(t)

)
dΛ10(t)

H̃1(t, s,Λ20(s)) =

∫ +∞

t

H1(x, s,Λ10(x),Λ20(s))dΛ10(x)

H̃2(t, s,Λ10(t)) =

∫ +∞

s

H2(t, y,Λ10(t),Λ20(y))dΛ20(y)

H1 =
∂H

∂Λ1

, H2 =
∂H

∂Λ2

(5.85)

If Λ1(t) = Λ̂1(t) and Λ2(s) = Λ̂2(s), where Λ̂1(t) and Λ̂2(s) are Nelson-Aalen estima-

tors, the remaining term is

∣∣∣T (Λ1,Λ2)− T (Λ10,Λ20)− T ′(Λ10,Λ20) (Λ1 − Λ10,Λ2 − Λ20)
∣∣∣ = op

(√
n+m

nm

)
(5.86)

where n and m are sample sizes of Λ̂1(t) and Λ̂2(s) respectively.

Proof In order to prove that T is Hadamard differentiable, let Λ0Λ0Λ0 = (Λ10(t),Λ20(s)),

DDD = (D1(t), D2(s)), DnDnDn = (D1n(t), D2n(s)) and DDD,DnDnDn ∈ D[0, τ ]× D[0, τ ],

s.t. ‖DnDnDn −DDD‖ → 0 as n→∞ and δn → 0 as n→∞, we have

lim
n→∞

T (Λ0Λ0Λ0 + δnDnDnDn)− T (Λ0Λ0Λ0)

δn
− T ′Λ10,Λ20

(DDD) = 0 (5.87)

To save typing, unless otherwise specified, Λ10, Λ20, D1n, D2n, D1, D2, H, H̃1, H̃2 rep-

resent Λ10(t), Λ20(s), D1n(t), D2n(s), D1(t), D2(s), H(t, s,Λ10(t),Λ20(s)),H̃1(t, s,Λ20(s)),
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H̃2(t, s,Λ10(t)) respectively.

Note that T
′
Λ10,Λ20

is a linear statistical functional. Then we have

lim
n→∞

(
T (Λ0Λ0Λ0 + δnDnDnDn)− T (Λ0Λ0Λ0)

δn
− T ′Λ10,Λ20

(DDD)

)
= lim

n→∞
(

∫ ∫
H (t, s,Λ10 + δnD1n,Λ20 + δnD2n) d (Λ10 + δnD1n) d (Λ20 + δnD2n)

δn

−
∫ ∫

HdΛ10dΛ20

δn
)

−
∫ ∫ (

H + H̃1

)
dD1dΛ20 −

∫ ∫ (
H + H̃2

)
dΛ10dD2

= lim
n→∞

∫ ∫
H (t, s,Λ10 + δnD1n,Λ20 + δnD2n)−H (t, s,Λ10,Λ20 + δnD2n)

δn
dΛ10dΛ20

+ lim
n→∞

∫ ∫
H (t, s,Λ10,Λ20 + δnD2n)−H (t, s,Λ10,Λ20)

δn
dΛ10dΛ20

+ lim
n→∞

∫ ∫
(H (t, s,Λ10 + δnD1n,Λ20 + δnD2n)−H (t, s,Λ10,Λ20)) d (D1n −D1) dΛ20

+ lim
n→∞

∫ ∫
(H (t, s,Λ10 + δnD1n,Λ20 + δnD2n)−H (t, s,Λ10,Λ20)) d (D2n −D2) dΛ10

+ lim
n→∞

∫ ∫
(H (t, s,Λ10 + δnD1n,Λ20 + δnD2n)−H (t, s,Λ10,Λ20)) d (D1) dΛ20

+ lim
n→∞

∫ ∫
(H (t, s,Λ10 + δnD1n,Λ20 + δnD2n)−H (t, s,Λ10,Λ20)) d (D2) dΛ10

+ lim
n→∞

∫ ∫
H (t, s,Λ10,Λ20) d (D1n −D1) dΛ20

+ lim
n→∞

∫ ∫
H (t, s,Λ10,Λ20) d (D2n −D2) dΛ10

−
∫ ∫

H1 (t, s,Λ10,Λ20)D1dΛ10dΛ20 −
∫ ∫

H2 (t, s,Λ10,Λ20)D2dΛ10dΛ20

= 0

(5.88)

Similar arguments of proof of Lemma 3.2.2 can prove the above calculation.

With further assumptions as follows

Λ1(0) = 0 and Λ1(τ) ≤M1 for some M1 ∈ R

Λ2(0) = 0 and Λ2(τ) ≤M2 for some M2 ∈ R
(5.89)
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and Λ1(t) = Λ̂1(t), Λ2(s) = Λ̂2(s), where Λ̂1(t) and Λ̂2(s) are Nelson-Aalen estimators,

by Fernholz (1983) Proposition 4.3.4, the remaining term

∣∣∣T (Λ1(t),Λ2(s))− T (Λ10(t),Λ20(s))− T ′Λ10,Λ20
(Λ1(t)− Λ10(t),Λ2(s)− Λ20(s))

∣∣∣
(5.90)

is op

(√
n+m
nm

)
, where n and m are sample sizes of Λ̂1(t) and Λ̂2(s) respectively.

Suppose (T1, δX1), . . . , (Tn, δXn) and (U1, δY1), . . . , (Um, δYm) are n and m i.i.d. random

vectors defined in (5.32).

Lemma 5.3.2 If the constraint below is feasible

∫
H∗1 (t)dΛ1(t) +

∫
H∗2 (s)dΛ2(s)− θ̃1 − θ̃2 = 2θ (5.91)

where θ̃1 =
∫ ∫

H̃1dΛ10dΛ20 and θ̃2 =
∫ ∫

H̃2dΛ10dΛ20; H̃1, H̃2, H∗1 and H∗2 are

defined in (5.85).

Then the maximum of AL (5.34) under the above constraint is obtained when

wi = ∆Λ̂1(Ti)
1

1 + λZ1i

, vj = ∆Λ̂2(Uj)
1

1 + λZ2j

, i = 1, . . . , n− 1, j = 1, . . . ,m− 1

(5.92)

where Z1i =
δXiH

∗
1 (Ti)

n−i+1
and Z2j =

δYjH
∗
2 (Uj)

m−j+1
, i=1,. . . , n j=1,. . . ,m

λ is the solution of the following equation

l(λ) = 2θ (5.93)

where

l(λ) =
n−1∑
i=1

Z1i

1 + λZ1i

+ Z1n +
m−1∑
j=1

Z2j

1 + λZ2j

+ Z2m − θ̃1 − θ̃2 (5.94)

Proof Notice that wn = δXn and vm = δYm . Suppose wi = ∆Λ1(Ti), i = 1, . . . , n− 1

and vj = ∆Λ2(Uj), j = 1, . . . ,m − 1, the constraint can be written in the discrete
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form as follows.

n−1∑
i=1

δXiH
∗
1 (Ti)wi + δXnH

∗
1 (Tn) +

m−1∑
j=1

δYjH
∗
2 (Uj)vj + δYmH

∗
2 (Um)− θ̃1− θ̃2 = 2θ (5.95)

In order to use the Lagrange multiplier method, we form the target function as below.

G =
n∑
i=1

(
δXilogwi −

i∑
l=1

wl

)
+

m∑
j=1

(
δYj logvj −

j∑
k=1

wk

)

− λ

[
n−1∑
i=1

δXiH
∗
1 (Ti)wi + δXnH

∗
1 (Tn) +

m−1∑
j=1

δYjH
∗
2 (Uj)vj + δYmH

∗
2 (Um)− θ̃1 − θ̃2 − 2θ

]
(5.96)

Taking the derivative with respect to wi, i = 1, . . . , n− 1 and vj, j = 1, . . . ,m− 1 and

equaling them to 0, we have

∂G

∂wi
=
δXi
wi
− (n− i+ 1)− λδXiH∗1 (Ti) = 0, i = 1, . . . , n− 1

∂G

∂vj
=
δYj
vj
− (m− j + 1)− λδYjH∗2 (Uj) = 0, j = 1, . . . ,m− 1

(5.97)

so we have

wi =
δXi

n− i+ 1

1

1 + λZ1i

= ∆Λ̂1(Ti)
1

1 + λZ1i

, i = 1, . . . , n− 1

vj =
δYj

m− j + 1

1

1 + λZ2j

= ∆Λ̂2(Uj)
1

1 + λZ2j

, j = 1, . . . ,m− 1

(5.98)

where Z1i =
δXiH

∗
1 (Ti)

n−i+1
, Z2j =

δYjH
∗
2 (Uj)

m−j+1
and Λ̂1, Λ̂2 are Nelson-Aalen estimators.

Plugging the wi, i = 1, . . . , n − 1, wn, vj, j = 1, . . . ,m − 1, vm into the discrete
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format of the constraint we have the following equation for λ,

n−1∑
i=1

δXiH
∗
1 (Ti)

δXi
n− i+ 1

1

1 + λZ1i

+ δXnH
∗
1 (Tn) +

m−1∑
j=1

δYjH
∗
2 (Uj)

δYj
m− j + 1

1

1 + λZ2j

+ δYmH
∗
2 (Um)− θ̃1 − θ̃2 − 2θ = 0

(5.99)

which can be simplified as

n−1∑
i=1

Z1i

1 + λZ1i

+ Z1n +
m−1∑
j=1

Z2j

1 + λZ2j

+ Z2m − θ̃1 − θ̃2 − 2θ = 0 (5.100)

The following lemma is similar to Lemma 5.2.4.

Lemma 5.3.3 Suppose H(t, s,Λ1(t),Λ2(s)) is continuous with respect to t and s and

twice differentiable with respect to Λ1 and Λ2 and

∫
(H∗1 (t))2dΛ10(t)

(1− F1(t)) (1−G1(t))
<∞∫

(H∗2 (s))2dΛ20(s)

(1− F2(s)) (1−G2(s))
<∞

(5.101)

We assume that

n

n+m
→ α, as n→∞ (5.102)

The solution λ of (5.94) with θ = θ0 satisfies

n+m

nm
λ2 D−−−−→ χ2

1 · σ−2 as min(n,m)→∞ (5.103)

σ2 = (1− α)

∫
H2

1 (t)dΛ10(t)

(1− F1(t)) (1−G1(t))
+ α

∫
H2

2 (s)dΛ20(s)

(1− F2(s)) (1−G2(s))
(5.104)
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Proof Similar to the proof of Lemma 5.2.4

Lemma 5.3.4 Let (T1, δX1), . . . , (Tn, δXn) and (U1, δY1), . . . , (Um, δYm) be n and m

pairs of random variables as defined in (5.32). Suppose H(t, s,Λ1(t),Λ2(s)) is con-

tinuous with respect to t and s and twice differentiable with respect to Λ1 and Λ2 and

we have

∫
(H∗1 (t))2dΛ10(t)

(1− F1(t)) (1−G1(t))
<∞,

∫
(H∗2 (s))2dΛ20(s)

(1− F2(s)) (1−G2(s))
<∞ (5.105)

ALR defined by

ALR(θ) =
sup

{
AL(Λ1,Λ2)|Λ1 � Λ̂1,Λ2 � Λ̂2 and Λ1,Λ2 satisfy (5.91)

}
AL(Λ̂1, Λ̂2)

(5.106)

Then

−2 logALR(θ0)
D−−−−→ χ2

(1) as n→∞ (5.107)

Proof Similar to the proof of Lemma 5.2.5

Theorem 5.3.5 Suppose all conditions of Lemma 5.3.4 hold and ELR is defined by

ELR(θ) =
EL(Λ∗1,Λ

∗
2)

EL(Λ̂1, Λ̂2)
(5.108)

where Λ̂1 and Λ̂2 are Nelson-Aalen estimators and Λ∗1 and Λ∗1 are given by the jumps

defined in Lemma 5.3.2

Then we have,

−2 logELR(θ0)
D−−−−→ χ2

(1) as n→∞ (5.109)

Proof Similar to the proof of Theorem 5.2.6

Theorem 5.3.6 Suppose the non-linear statistical functional

T (Λ1,Λ2) =
∫
H(t, s,Λ1(t),Λ2(s))dΛ1(t)dΛ2(s) is Hadamard differentiable
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at (Λ10(t),Λ20(s)). The sufficient conditions for Hadamard differentiability are listed

in Theorem 5.3.1. The empirical likelihood ratio (ELR) function is defined as follows.

ELR =
EL(Λ1,Λ2)

EL(Λ̂1, Λ̂2)
(5.110)

where EL(·, ·) is defined in (5.33) and Λ̂1, Λ̂2 are the Nelson-Aalen estimators.

If the following null hypothesis is true

H0 :

∫
H(t, s,Λ1(t),Λ2(s))dΛ1(t)dΛ2(s) = θ0 (5.111)

where θ0 =
∫
H(t, s,Λ1(t),Λ2(s))dΛ10(t)dΛ20(s),

then we have

−2 logELR(θ0)
D−−−−→ χ2

(1) (5.112)

where ELR(θ0) is the maximum of the ELR function (5.110) subject to the non-linear

statistical functional constraint
∫
H(t, s,Λ1(t),Λ2(s))dΛ1(t)dΛ2(s) = θ0.

Proof This theorem is a straightforward result of Theorem 5.2.1, Theorem 5.3.1 and

Theorem 5.3.5.

Copyright c© Zhiyuan Shen, 2016.
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Chapter 6 Algorithm and Simulations

6.1 Algorithm

In order to calculate the Λ(t) � Λ̂NA that maximizes AL subject to the following

constraint ∫
g(t,Λ(t))dΛ(t) = θ0 (6.1)

we use the plug-in method and calculate the maximum iteratively. If we plug Λ̂NA

into g (t,Λ(t)), g becomes a function that only depends on t but not on Λ(t) any

more. For this kind of g, the computation of maximum cumulative hazard functions

is solved by Pan and Zhou (2002).

The algorithm we used can be summarized as follows.

Step 1 Use the Nelson-Aalen estimator(Λ0(t)) as the initial plug-in value for Λ(t) in

g(t,Λ(t)), and solve the maximization with constraint
∫
g(t,Λ0(t))dΛ(t) = θ0

to obtain Λ1(t).

Step 2 In nth iteration, n = 2, . . ., plug Λn−1(t) into g(t,Λ(t)) of the constraint.

∫
g(t,Λn−1(t))dΛ(t) = θ0 (6.2)

Let Λn(t) denote the cumulative hazard that maximizes AL subject to the above

constraint.

Step 3 Repeat Step 2 until ‖ Λn − Λn+1 ‖< 10−12. For here, the ‖ · ‖ represents L2

norm.

This algorithm converges in some examples, but there are cases that it does not

converge, depending on the function g(·, ·).
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The software used in our simulations is R version 3.1.3. The R codes of the simulations

are listed in the Appendix. At the end of each simulation section, we give one R code

example and track the time of the simulation. I run the R codes on my personal

computer: Macbook Pro, 2.7GHz Intel Core i7, 4GB 1333 MHz DDR3.

6.2 Simulation 1

In this simulation, we compare the coverage probabilities of the confidence intervals

based on EL method with other available methods: Normal Approximation, Log

Transformation y = log(x), Log-log Transformation y = log(− log x) and Arcsin

Transformation y = arcsin(
√
x). We list the formulas of the 100 (1− α) % confidence

intervals for survival probability S(t) for a fixed t as below.

Normal approximation:

Ŝ(t)± zα/2Ŝ(t)σ̂(t) (6.3)

Log-transformation

Ŝ(t) exp{±zα/2
σ̂(t)

Ŝ(t)
} (6.4)

Log(-log)-transformation:

Ŝ(t)
exp{±zα/2

σ̂(t)

log Ŝ(t)
}

(6.5)

Arcsin-transformation

sin2

max

0, arcsin((Ŝ(t))
1
2 − 1

2
zα/2σ̂(t)

[
Ŝ(t)

1− Ŝ(t)

] 1
2


≤ S(t) ≤

sin2

min

π
2
, arcsin((Ŝ(t))

1
2 − 1

2
zα/2σ̂(t)

[
Ŝ(t)

1− Ŝ(t)

] 1
2


(6.6)
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where Ŝ(t) is the Kaplan-Meier estimator and σ̂2(t) is from the well-known Greenwood

formula.

ˆV ar(Ŝ(t)) = Ŝ2(t)σ̂2(t) = Ŝ2(t)
∑
ti≤t

di
ni(ni − di)

(6.7)

Next, we illustrate how to generate confidence intervals based on EL method. If the

null hypothesis H0 :
∫
g(t,Λ(t))dΛ(t) = θ0 is true, we have,

−2 logELR(θ0)
D−−−−→ χ2

1, as n→∞ (6.8)

The definition of ELR(θ0) can be found in Theorem 3.2.7.

So a 100 (1− α) % empirical likelihood ratio confidence interval is

{
θ | θ s.t. − 2 logELR(θ) ≤ χ2

(1),1−α
}

(6.9)

where χ2
(1),1−α is the (1− α) th percentile of χ2

(1).

Suppose we simulate one sample with sample size n = 50 from F0(t) = 1− exp (−t)

and G0(t) = 1− exp (−0.35t), where F0 and G0 denote lifetimes and censoring times,

respectively. By calculating −2 logELR(θ) for various θ, we get a U-shape plot of

−2 logELR(θ) versus θ if we place θ in ascending order with small enough steps. The

95% confidence interval for θ0 is the set of θ with value of −2 logELR(θ) under 3.84,

which is the 95th percentile of χ2
(1). See Figure 6.1 for an illustration.

Now we can compare the coverage probabilities of the confidence intervals of F (t)

based on EL method with other four methods on various sample size. We simulate

the data with various sample size n = 50, 100, 200, 500, 1000 from F0(t) = 1−exp (−t)

and G0(t) = 1− exp (−0.35t), where F0 and G0 denote lifetimes and censoring times,

respectively. For each sample size, we generated 5000 confidence intervals.
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Figure 6.1: 95% Confidence Interval based on EL

n ELR Normal Log Log(-log) Arcsin
50 0.9408 0.9392 0.9806 0.9526 0.9480
100 0.9470 0.9472 0.9894 0.9570 0.9520
200 0.9486 0.9514 0.994 0.9526 0.9516
500 0.9498 0.9516 0.9958 0.9506 0.9520
1000 0.9492 0.9512 0.9978 0.9534 0.9518

Table 6.1: Coverage Probabilities of Nominal 95% Confidence Intervals of F (0.5)

From Table 6.1, we see that Log transformation is not good here; EL method

and arcsin transformation are similar, both of which are better than the normal

approximation. However, for the real problem, we do not know which transformation

is the best transformation and it seems that EL method implicitly chooses the best

transformation for us.

### R codes of one example of Simulation 1 ###

### The comparison of the coverage probability of confidence interval

### for F(0.5) with sample size 1000 and 5000 samples ###

time1<-proc.time()

CP(1000,5000,0.5,g1,1-exp(-0.5),0.05,0.3,0.5,0.001,0.1)
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n ELR Normal Log Log(-log) Arcsin
50 Coverage Probability 0.95 0.95 0.97 0.97 0.95

Average Length 0.2588 0.2813 0.4854 0.2788 0.2773
100 Coverage Probability 0.93 0.93 0.98 0.94 0.93

Average Length 0.1892 0.1987 0.3319 0.1979 0.1973
200 Coverage Probability 0.96 0.96 1.00 0.98 0.97

Average Length 0.1370 0.1419 0.2362 0.1416 0.1414
500 Coverage Probability 0.97 0.97 1 0.98 0.97

Average Length 0.0872 0.0897 0.1484 0.0896 0.0896
1000 Coverage Probability 0.94 0.94 1.00 0.94 0.94

Average Length 0.0616 0.0635 0.1052 0.0635 0.0635

Table 6.2: Coverage Probability and Average Length of Nominal 95% Confidence
Intervals of F (0.5)

proc.time()-time1

### The time of simulation (in seconds). ###

5433.204

6.3 Simulation 2

In order to compare our method with the arcsin transformation method, we cal-

culate the average length of the confidence intervals. Again, we simulate the data

with various sample size n = 50, 100, 200, 500, 1000 from F0(t) = 1 − exp (−t) and

G0(t) = 1 − exp (−0.35t), where F0 and G0 denote lifetimes and censoring times re-

spectively. For each sample size, we generate 100 confidence intervals and calculate

the average length of them. The results are in the Table 6.2. The first line of each cell

in Table 6.2 is the coverage probability while the second line displays average length

of 100 confidence intervals.

From Table 6.2, we can see that the confidence intervals based on EL method have the

smallest average length among all five methods for all sample sizes. In addition, when

the sample size is small (n = 50), the average length of confidence intervals based
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on EL method is significantly shorter than those of arcsin transformation confidence

intervals.

### R codes of one example of Simulation 2 ###

### The comparison of the average length of 100 confidence intervals

### for F(0.5) with sample size 1000 ###

time1<-proc.time()

CPandAVL(1000,100,0.5,g1,1-exp(-0.5),0.05,0.3,0.5,0.001,0.1)

proc.time()-time1

### The time of simulation (in seconds). ###

66587.999

6.4 Simulation 3

In order to verify that the limiting distribution of −2 logELR(θ0) is truly χ2
(1),

we generate QQ plots for different sample sizes. We plot the sample quantiles of

−2 logELR(θ0) versus the theoretical quantiles of χ2
(1). If the points align along the

45 degree line, it means that the sample of −2 logELR(θ0) is truly χ2
(1) distributed.

We generate the QQ plots both when null hypothesis is true and when alternative

hypothesis is true. Since there are infinite alternative hypothesis, we just choose one

to illustrate the point that the limiting distribution of −2 logELR(θ0) is not χ2
(1)

when the alternative hypothesis is true.

The following list is the information of our simulation set-up.

• F0(t) = 1− e−t, G0(t) = 1− e−0.35t denote lifetimes and censoring times respec-

tively.

• g1 = g(t,Λ(t)) = I[t <= 0.5]e−Λ(t).

• Approximately 26% of the data are censored.
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• Sample sizes n=50, 200, 1000.

• For each sample size, we simulate 1000 samples, which means there are 1000

points in each QQ plot.

• For n=1000, we generate QQ plots when null hypothesis is true and when

alternative hypothesis is true.

From the four QQ plots, we can conclude that when the null hypothesis is true and

the sample size is large enough (n = 1000), the limiting distribution of −2 logELR(θ)

is truly a χ2
(1). However, when the alternative hypothesis is true, the limiting distri-

bution of −2 logELR(θ) is far from χ2
(1).

### R codes of one example of Simulation 3 ###

### QQ plot when null hypothesis is true and g=g1 ###

### 1000 samples with sample size 1000 ###

time1<-proc.time()

myqqplot1(1000,1000,g1,1-exp(-0.5),

"Null Hypothesis is true with n=1000")

proc.time()-time1

### The time of simulation (in seconds). ###

972.596

6.5 Simulation 4

We repeat our QQ plots using another g(t,Λ(t)). The information of the simulated

data is as follows.

• F0(t) = 1− e−t, G0(t) = 1− e−0.35t denote lifetimes and censoring times respec-

tively.

• g2 = g(t,Λ(t)) = e−te−Λ(t) = e−(t+Λ(t)).
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• Approximately 26% of the data are censored.

• Sample sizes n=50, 200, 1000.

• For each sample size, we simulate 1000 samples, which means there are 1000

points in each QQ plot.

• For n=1000, we generate QQ plots when null hypothesis is true and when

alternative hypothesis is true.

From these QQ plots, we confirm our theorem again.

### R codes of one example of Simulation 4 ###

### QQ plot when null hypothesis is true and g=g2 ###

### 1000 samples with sample size 1000 ###

time1<-proc.time()

myqqplot1(1000,1000,g2,0.5,"Null Hypothesis is true with n=1000")

proc.time()-time1

### The time of simulation (in seconds). ###

2276.954

6.6 Simulation 5

The Gini’s absolute mean difference (D) was discussed in Chapter 3. Although we

assume the true distribution of income is continuous, we would use the discrete dis-

tribution to estimate Gini’s abosulte mean difference (D). There is no ambiguity

about the jumps of the discrete distribution. However, there are several choices for

the integrand. We call F̂n(t), F̂n(t−) and (F̂n(t) + F̂n(t−))/2 the right continuous

version, the left continuous version and the middle point version respectively, where

F̂n(t) is the empirical distribution function defined in (2.40). Suppose X1, . . . , Xn are

n i.i.d. random variables with continuous distribution function F and x1, . . . , xn is

113



a realization of X1, . . . , Xn. Three versions of the estimates of Gini’s absolute mean

difference (D) are as follows corresponding to three different versions of integrands:

the right continuous version, the left continuous version and the middle point version.

D̂1 =
n∑
i=1

xi

(
2F̂n(xi)− 1

)
∆F̂n(xi)

D̂2 =
n∑
i=1

xi

(
2F̂n(xi−)− 1

)
∆F̂n(xi)

D̂3 =
n∑
i=1

xi

(
2
F̂n(xi) + F̂n(xi−)

2
− 1

)
∆F̂n(xi)

(6.10)

In this simulation, we would like to compare the bias of three versions of Gini’s ab-

solute mean difference estimates. We conduct the comparison for different distribu-

tions with different sample sizes. We simulate our data from three distributions: χ2
(1),

Exp(1) and Log-normal(0,1) with various sample size n = 20, 30, 50, 70, 100, 200, 500.

We simulate 100,000 samples for each comparison. The true Gini’s absolute mean

difference for Exp(1) is 1 and the true Gini’s absolute mean difference for χ2
(1) and

Log-normal(0,1) are approximately 1.2732 and 1.7163 respectively, obtained through

Monte Carlo simulation. From Table 6.3, we can see that the right continuous version

has the smallest bias among three different versions of estimates of D. Therefore, we

will use the right continuous version in the following simulations.

### R codes of one example of Simulation 5 ###

### The comparison of the bias of three versions of Gini’s absolute

### mean difference when data is simulated from Exp(1) distribution

time1<-proc.time()

Bias(500,100000,0.5,"exp")

proc.time()-time1

### The time of simulation (in seconds). ###
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n Version χ2
(1) Exp(1) Log-normal(0,1)

20 Right 0.01834396 0.02492097 0.03901017
Left -0.08167532 -0.07508201 -0.1257899

Middle -0.03166568 -0.02508052 -0.04338988
30 Right 0.01194683 0.009980541 0.02666222

Left -0.05470443 -0.03001954 -0.08326787
Middle -0.0213788 -0.0100195 -0.02830282

50 Right 0.007283817 0.009980541 0.01600711
Left -0.03271849 -0.03001954 -0.04995313

Middle -0.01271734 -0.0100195 -0.01697301
100 Right 0.003643136 0.004949118 0.008060075

Left -0.01635888 -0.01504903 -0.02491807
Middle -0.006357872 -0.005049953 -0.008428996

200 Right 0.00189952 0.00246537 0.003849105
Left -0.008101595 -0.00753364 -0.01263663

Middle -0.003101037 -0.002534135 -0.004393764
500 Right 0.000663111 0.000994784 0.00162947

Left -0.003336578 -0.003005141 -0.004965637
Middle -0.001336733 -0.001005178 -0.001668083

Table 6.3: Bias of Three Versions of Estimates of Gini’s Absolute Mean Difference

15.226

6.7 Simulation 6

In this simulation we would draw the QQ plots for the uncensored data when the null

hypothesis is true. The information of the simulated data is as follows.

• The uncensored data is simulated from χ2
(1).

• g3 = g(t, F (t)) = 2t(2F (t)− 1)

• Sample sizes n=200, 500, 1000

• For each sample size, we simulate 1000 samples, which means there are 1000

points in each QQ plot.
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• For n=1000, we generate QQ plots when null hypothesis is true and when

alternative hypothesis is true.

From these QQ plots, we confirm our Theorem 4.2.7 in Chapter 4.

### R codes of one example of Simulation 6 ###

### QQ plot when null hypothesis is true and g=ginimdf ###

### 1000 samples with sample size 1000 ###

time1<-proc.time()

myqqplot2(1000,1000,ginimdf,0.6366,1e-8,

"Null Hypothesis is true with n=1000")

proc.time()-time1

### The time of simulation (in seconds). ###

22.515

6.8 Simulation 7

In this section, a simulation study of the Gini’s absolute mean difference (D) will be

presented. Before that, we will have a brief discussion of the history of the variance

estimation of Gini index, which is also called the Gini’s relative mean difference. See

Langel and Tille (2011) for a detailed discussion of this topic.

Before 1980s, a very limited number of papers have focused on the variance esti-

mation of the Gini index. Nair (1936) computes the exact variance of Gini’s absolute

mean difference for the first time. Nevertheless, the expression of variance he have ob-

tained is particularly cumbersome. Lomnicki(1952) and Glasser(1962) approximate

Nair’s expression and propose simpler variance estimators.

One of the very first results of the variance of the Gini index is obtained by Hoeffd-
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ing (1948), who expresses the Gini index as a function of two U-statistics. Seminal

works on the variance estimation of the Gini index are attributed to Sandstrom et al.

(1985,1988), who discuss four variance estimators for the Gini index. For more refer-

ences on the variance estimations of the Gini index, see Yitzhaki (1991), Karagiannis

and Kovacevic (2000) and many others. However, the previous authors have never

studied the confidence intervals of the Gini index, except Sandstrom et al. (1989)

who briefly mention 95% normal approximation confidence intervals based on three

variance estimators. The problem of the confidence intervals based on normal ap-

proximation is that it is not guaranteed that the confidence interval will be within

the valid domain of parameters. Some kinds of transformations are needed. However,

we do not always know which transformation to use or which transformation is the

best. If this is the case, empirical likelihood method may be used, which does not

need the transformation and the variance estimation. See Qin et al. (2010) and Peng

(2011) for discussions of the confidence intervals of the Gini index using empirical

likelihood method.

Next, we would introduce two empirical likelihood ratio methods for Gini index and

Gini’s absolute mean difference. To begin with, we point out that the statistical

functional of the Gini’s absolute mean difference T (F ) =
∫

2t(2F (t) − 1)dF (t) is

Hadamard differentiable. First, it is obvious that g(t, F (t)) = 2t(2F (t) − 1) is left

continuous with respect to t and twice differentiable with respect to F (t). Second,

g(t, F (t)) is bounded by A(t) = 2t and A(t) is integrable with respect to any distri-

bution function since we assume that the all income distribution functions have the

finite mean. Third, h(t, F (t)) = 2t is bounded by A(t) = 2t and A(t) is integrable

with respect to F0(t) since F0(t) has the finite mean.

Qin et al. (2010) prove the following theorem. Let (y1, . . . , yn) be an i.i.d. sam-
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ple from distribution function F and F̂n be the empirical distribution function. The

simple plug-in moment estimator of the Gini index (G) is given by

Ĝ =
1

µ̂

1

n

n∑
i=1

(
yi

(
2F̂n(yi)− 1

))
(6.11)

where µ̂ = ȳ = 1
n

∑n
i=1 yi.

The log-EL ratio statistic for θ = G is given by

R(θ) =
n∑
i=1

log{np̃i(θ)} (6.12)

where p̃1(θ), . . . , p̃n(θ) maximize the log-EL function l(p) =
∑n

i=1 log(pi) subject to

the following set of constraints:

pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

pi

((
2F̂n(yi)− 1

)
yi − θyi

)
= 0 (6.13)

Theorem 6.8.1 (Qin et al.(2011)) Suppose that 0 < E(Y 3) < ∞. Then, as

n→∞,

−2R(θ)
D−−−−→ σ2

3

σ2
2

χ2
(1) (6.14)

where Y is a random variable denoting the income of a population with distribution

function F (y), σ2
2 = V ar(2Y F (Y ) − (θ + 1)Y ), σ2

3 = V ar(2h1(Y ) − (θ + 1)Y ) and

h1(y) = yF (y) +
∫ +∞
y

xdF (x).

By Theorem 6.8.1, the 100(1− α)% confidence interval based on EL method can be

constructed as

{θ| − 2R(θ) ≤ k̂−1χ2
α,1} (6.15)
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where χ2
α,1 is the (1− α)th quantile of χ2

(1) and k̂ is given by k̂ =
σ̂2
2

σ̂2
3

where

σ̂2
2 =

1

n− 1

n∑
i=1

(u2i − ū2)2
(6.16)

with

u2i = 2yiF̂n(yi)−
(
Ĝ+ 1

)
yi, ū2 =

1

n

n∑
j=1

u2j, (6.17)

and

σ̂2
3 =

1

n− 1

n∑
i=1

(u1i − ū1)2 (6.18)

with

u1i = 2ĥ1(yi)−
(
Ĝ+ 1

)
yi, ū1 =

1

n

n∑
i=1

u1i, (6.19)

and

ĥ1(y) = yF̂n(y) +
1

n

n∑
j=1

yjI (yj ≥ y) (6.20)

They also provide a bootstrap-calibration method to avoid the estimation of the scale

parameter k.

Peng (2011) proves the following theorem. Let (X1, . . . , Xn) be n i.i.d. random

variables with distribution function F . Let m be the integer part of n
2
, and define

Yi = Xi+Xm+i

2
and Zi = min(Xi, Xm+i) for i = 1, . . . ,m. It is easy to check that

E [Yi − Zi − YiG] = 0 (6.21)

where G is the Gini index.

Peng (2011) defines an empirical likelihood ratio function for θ = G as follows.

L1(θ) =
m∏
i=1

(mpi) (6.22)
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where pi = ∆F (Xi) = F (Xi)− F (Xi−), i = 1, . . . ,m.

He maximizes the above empirical likelihood ratio function subject to the following

constraints:

pi ≥ 0, i = 1, . . . ,m,
m∑
i=1

pi = 1,
m∑
i=1

pi (Yi − Zi − Yiθ) = 0 (6.23)

By the Lagrange multiplier method, the maximum of the log-empirical likelihood

ratio function is as follows.

l1(θ) = −2 log (supL1(θ)) = 2
m∑
i=1

log (1 + λ (Yi − Zi − Yiθ)) (6.24)

where λ satisfies

1

m

m∑
i=1

Yi − Zi − Yiθ
1 + λ (Yi − Zi − Yiθ)

= 0 (6.25)

The following theorem directly follows Theorem 2 of Qin and Lawless (1994).

Theorem 6.8.2 (Peng (2011)) Assume E(X3
1 ) <∞. Then

l1(θ)
D−−−−→ χ2

(1), as n→∞ (6.26)

Based on Theorem 6.8.2, a 100(1 − α)% confidence interval can be constructed as

follows.

{θ|l1(θ) ≤ χ2
α,1} (6.27)

where χ2
α,1 is the (1− α)th quantile of χ2

(1).

The problem of Peng (2011)’s approach is explicit. Since he only uses half of the

data, his estimator might be unbiased, which means the coverage probability of his

confidence intervals might be good, but the variance of his estimator shall be large.

We expect that the average length of Peng’s confidence intervals shall be larger than
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ours.

Both Qin et al.’s plug-in method and our Hadamard derivative method try to linearize

the complex, non-linear constraint of the Gini index. However, the plug-in method

only captures part of the linear component while our derivative method captures all

the linear part of the non-linear constraint. To see this, we use the non-linear sta-

tistical functional of the Gini’s absolute mean difference T (F ) =
∫
g(t, F (t))dF (t) =∫

2t(2F (t)−1)dF (t) as an example. Qin et al. plug the empirical distribution function

F̂n(t) in g(t, F (t)) and linearize the non-linear statistical functional of the Gini’s ab-

solute mean difference as
∫
g(t, F̂n(t))dF (t) =

∫
2t(2F̂n(t)− 1)dF (t). From Theorem

4.2.3, it can been shown that the Hadamard derivative of T (F ) =
∫
g(t, F (t))dF (t) =∫

2t(2F (t)− 1)dF (t) at F̂n(t) is T
′

F̂n
(F (t)) =

∫
(g(t, F̂n(t)) + h̃(t))dF (t), where h̃(t) =∫ +∞

t
h(s, F̂n(s))dF̂n(s) and h = ∂g

∂F
. Qin et al.’s plug-in linearization is only the first

part of our Hadamard derivative linearization and miss the second part. The partial

linearization of Qin et al.’s plug-in method is the reason that their empirical likeli-

hood ratio converges to a weighted chi-square distribution under the null hypothesis,

rather than a chi-square distribution. Our empirical likelihood ratio has a limiting

distribution of a chi-square distribution under the null hypothesis also confirms that

we capture all the linear component.

Since the limiting distribution of Qin et al.’s empirical likelihood ratio is a weighted

chi-square distribution, they have to come up with a consistent estimate of the weight.

This task becomes so complicated when data are censored. Further more if we are

dealing with a limiting distribution of a chi-square distribution with degrees of free-

dom above one, then Qin et al.’s method not only is too complicated, but also loses

power compared to ours, while our method remains a clean chi-square distribution.

See Zhou (2015) chapter 7 for details.
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In the following, we compare the coverage probability and average length of the

confidence intervals of the Gini’s absolute mean difference (D) based on our method,

Qin et al. (2010)’s method and Peng (2011)’s method. Qin et al.’s method and

Peng’s method are just discussed above. Our method is mentioned in Simulation 1 of

Chapter 6 (6.9), where ELR function is in terms of distribution functions and defined

in (4.56) in Chapter 4. Our method uses the iterative algorithm in section 6.1 of

this chapter to compute the maximum of the ELR function, but uses the empirical

distribution function as the initial plug-in value for F (t) in g(t, F (t)).

The empirical likelihood confidence intervals have the under coverage problem. Owen

has already discussed this issue in his book Empirical Likelihood. One possible way

to correct this problem is to use the F quantile instead of the chi-square quantile.

F1−α,1,n−2, which is the (1−α)th percentile of F (1, n− 2) distribution, is larger than

χ2
1,1−α, which is the (1− α)th percentile of a chi-square distribution with one degree

of freedom. And the difference between these two quantiles decreases with respect to

sample size n. Therefore, using F quantile instead of chi-square quantile will improve

the coverage probability of empirical likelihood confidence intervals, especially for the

small sample size. The F quantile calibrated confidence interval based on our method

is

{θ | θ s.t. − 2 logELR(θ) ≤ F1−α,1,n−2} (6.28)

We simulate our data from three different distributions: χ2
(1), EXP(1) and Log-

normal(0,1) with various sample size n = 50, 70, 100, 300, 500. The nominal level

of the confidence intervals is 0.95. For coverage probability, we simulate 5000 sam-

ples for each comparison and for average length, we simulate 100 confidence intervals

for each comparison.
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n Method χ2
(1) Exp(1) Log-normal(0,1)

50 Our 0.9154 0.9138 0.8844
Qin et al. 0.9072 0.913 0.8732

Peng 0.9058 0.9228 0.8804
70 Our 0.9236 0.9244 0.8916

Qin et al. 0.9198 0.931 0.8892
Peng 0.9256 0.9276 0.9004

100 Our 0.933 0.9248 0.8982
Qin et al. 0.9294 0.9328 0.897

Peng 0.9322 0.9356 0.9054
300 Our 0.939 0.927 0.9214

Qin et al. 0.9398 0.9372 0.9256
Peng 0.9422 0.943 0.9266

500 Our 0.943 0.9344 0.9238
Qin et al. 0.943 0.9454 0.9304

Peng 0.9454 0.9466 0.9366

Table 6.4: Coverage Probability Comparison

Table 6.4 shows that the coverage probability of Peng’s confidence intervals is su-

perior to our confidence intervals after F quantile calibration and Qin et al.’s in all

three distributions with all sample sizes. The coverage probability of our confidence

intervals after F quantile calibration is better than Qin et al.’s when sample size is

small while the coverage probability of Qin et al.’s confidence intervals is better than

our confidence intervals after F quantile calibration when sample size is large. All

three methods have the under cover problem with Log-normal(0,1) distribution.

Table 6.5, as our expectation, shows that Peng’s confidence intervals are longer than

our confidence intervals after F quantile calibration and Qin et al.’s in all three dis-

tributions with all sample sizes. Our confidence intervals after F quantile calibration

are longer than Qin et al.’s when sample size is small and shorter than Qin et al.’s

when sample size is large.
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n Method χ2
(1) Exp(1) Log-normal(0,1)

50 Our 0.539 0.318585 0.81725
Qin et al. 0.515865 0.310755 0.787195

Peng 0.57047 0.37932 0.86949
70 Our 0.444575 0.27941 0.71313

Qin et al. 0.429755 0.27634 0.69494
Peng 0.493795 0.33708 0.76553

100 Our 0.37721 0.23178 0.596515
Qin et al. 0.369265 0.232405 0.5882

Peng 0.424295 0.28252 0.655475
300 Our 0.21334 0.12682 0.35427

Qin et al. 0.212645 0.1312 0.35436
Peng 0.246775 0.161085 0.39439

500 Our 0.166895 0.09488 0.28761
Qin et al. 0.16747 0.09922 0.28908

Peng 0.19265 0.12235 0.31904

Table 6.5: Average Length of Confidence Intervals Comparison

### R codes of one example of Simulation 7: Coverage Probability

### The comparison of the coverage probabilities of

### three empirical likelihood confidence intervals.

### 5000 samples with sample size 500

### when data is simulated from chisq(1)

time1<-proc.time()

CP_Comp(500,5000,0.6366,ginimdf,h1,1e-8,0.001,"chisq",cali=T)

proc.time()-time1

### The time of simulation (in seconds). ###

56.994

### R codes of one example of Simulation 7: Average length comparison

### The comparison of the average length of

### three empirical likelihood confidence intervals.

### 100 samples with sample size 500

### and data is simulated from chisq(1)
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Year Ĝ D̂1($) Our($) Qin($) Our(P-value) Qin(P-value)
2000 0.5357 9920 (8640,11370) (8610,11356) 0.9062 0.9533
2001 0.5322 10138 (8852,11586) (8822,11578) 0.8389 0.9209
2002 0.5294 10443 (9146,11892) (9118,11888) 0.5119 0.7531
2003 0.5280 10884 (9548,12376) (9520,12372) 0.1977 0.5402

Table 6.6: The Nominal 95% Empirical Likelihood Confidence Intervals of the Gini’s
Absolute Mean Difference Based on the Real GDP Per Capita in Constant Dollars
Expressed in International Prices (Base Year 2000)

time1<-proc.time()

AVL_Comp(500,100,ginimdf,h1,0.6366,1e-8,0.05,0.4,0.8,0.0005,0.1,0.0005,

"chisq",cali=T)

proc.time()-time1

### The time of simulation (in seconds). ###

1328.50

6.9 Real Data Analysis

In this section, we apply our method and Qin et al.’s method to the real GDP per

capita in constant dollars expressed in international prices from 2000 to 2003 (2000

as the base year). Therefore, the Gini index is a measure of the dispersion of con-

sumption across 182 countries of which data are available. These data sets are from

the Penn World Tables(Summers & Heston (1995)).

In Table 6.6, we report the nonparametric estimator Ĝ and D̂1 given in (6.11) and

(6.10) respectively and the nominal 95% confidence intervals of the Gini’s absolute

mean difference (D) and P-values based on our method and Qin et al.’s method.

The P-values are corresponding to the null hypothesis H0 : D = $10000. This table

indicates that the interval lengths of the confidence intervals based on our method

are shorter than those based on Qin et al.’s method.
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Figure 6.2: Simulation 3, g(t,Λ(t)) = I[t ≤ 0.5]e−Λ(t) and n = 50
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Figure 6.3: Simulation 3, g(t,Λ(t)) = I[t ≤ 0.5]e−Λ(t) and n = 200
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Figure 6.4: Simulation 3, g(t,Λ(t)) = I[t ≤ 0.5]e−Λ(t) and n = 1000
when Null Hypothesis is True
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Figure 6.5: Simulation 3, g(t,Λ(t)) = I[t ≤ 0.5]e−Λ(t) and n = 1000
when Alternative Hypothesis is True
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Figure 6.6: Simulation 4, g(t,Λ(t)) = e−(t+Λ(t)) and n = 50
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Figure 6.7: Simulation 4, g(t,Λ(t)) = e−(t+Λ(t)) and n = 200
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Figure 6.8: Simulation 4, g(t,Λ(t)) = e−(t+Λ(t)) and n = 1000 when
Null Hypothesis is True
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Figure 6.9: Simulation 4, g(t,Λ(t)) = e−(t+Λ(t)) and n = 1000 when
Alternative Hypothesis is True
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Figure 6.10: Simulation 6, g(t, F (t)) = 2t(2F (t)− 1) and n = 200
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Figure 6.11: Simulation 6, g(t, F (t)) = 2t(2F (t)− 1) and n = 500
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Figure 6.12: Simulation 6, g(t, F (t)) = 2t(2F (t) − 1) and n = 1000
when Null Hypothesis is True
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Figure 6.13: Simulation 6, g(t, F (t)) = 2t(2F (t) − 1) and n = 1000
when Alternative Hypothesis is True
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Chapter 7 Discussion and Future Questions

We have already mentioned in Chapter 3 that it is difficult to generalize Owen’s result

to the right censored data setting since there is no explicit maximum of distribution

function of Lagrange multiplier method. However, it is possible to solve the problem

computationally. There are several methods available to compute the empirical like-

lihood ratio with distribution-type constraint for right censored data.

Chen and Zhou (2007) propose to use a sequential quadratic programming (SQP)

method to compute the empirical likelihood ratio with mean-type constraint for right

censored data. The SQP is a nonlinear programming method. See Nocedal and

Wright (1999) for more details. Instead of applying the SQP method directly, Chen

and Zhou introduce several auxiliary variables, which makes the matrix GGG diagonal.

This technique simplifies the computation of SQP tremendously.

Zhou (2005) proposes an EM algorithm to compute the empirical likelihood ratio.

He also compares the EM algorithm to the SQP method and concludes that EM

algorithm is superior to the SQP method.

For the same distribution-type constraint,

∫
g(t)dF (t) = θ0 (7.1)

Zhou and Yang (2015) find a recursive formula to compute the empirical likelihood,

which outperforms the SQP method and EM algorithm. The recursive formula of the
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jump of the distribution function is as follows.

wi = ∆F (Ti) =
δi

n− λg(Ti)−
∑

j:δj=0
I[Tj<Ti]

Sj

(7.2)

where Sj =
∑

Ti<Tj
wi = 1−

∑
Ti≤Tj wi.

It is difficult to apply the SQP method or EM algorithm to the computation of

empirical likelihood subject to the constraint of the following form.

∫
g(t,Λ(t))dΛ(t) = θ0 (7.3)

The recursive method may be applied under some specific conditions i.e. g(t,Λ(t)) =

te−Λ(t).

To be more clear, the AL of a sample (T1, δ1), . . . , (Tn, δn) as defined before is

AL =
n∏
i=1

wδii exp

{
−

i∑
j=1

wj

}
(7.4)

where wi = ∆Λ(Ti).

The constraint (7.3) can be rewritten in the discrete form as follows.

n−1∑
i=1

δig(Ti,
i∑

j=1

wj)wi + δng(Tn,
n∑
j=1

wj) = θ0 (7.5)

In order to apply the Lagrange multiplier method, we form the target function

G =
n∑
i=1

δi logwi −
n∑
i=1

i∑
j=1

wj

+ nλ

(
θ0 −

n−1∑
i=1

δig(Ti,
i∑

j=1

wj)wi − δng(Tn,
n∑
j=1

wj)

) (7.6)
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Note that wn = δn; taking the derivative with respect to wi, i = 1, . . . , n − 1 and

equaling them to 0, we have

∂G

∂wi
=
δi
wi
− (n− i+ 1)− nλ

(
n−1∑
l=i

δlh(Tl,
l∑

j=1

wj)wl + g(Ti,
i∑

j=1

wj) + δnh(Tn,
n∑
j=1

wj)

)

=
δi
wi
− (n− i+ 1)− nλ

n∑
l=i

δlh(Tl,
l∑

j=1

wj)wl − nλg(Ti,
i∑

j=1

wj)

(7.7)

where h = ∂g
∂Λ

.

The jump of cumulative hazard function Λ at time Ti is

wi =
δi

(n− i+ 1) + nλ
∑n

l=i δlh(Tl,
∑l

j=1wj)wl + nλg(Ti,
∑i

j=1wj)
(7.8)

In some specific situations like g(t,Λ(t)) = te−Λ(t), h(t,Λ(t)) = −te−Λ(t) = −g(t,Λ(t)).

Then we have
n−1∑
i=1

δih(Ti,
i∑

j=1

wj)wi + δnh(Tn,
n∑
j=1

wj) = −θ0 (7.9)

so
n∑
l=i

δlh(Tl,
l∑

j=1

wj)wl = −θ0 −
i−1∑
l=1

δlh(Tl,
l∑

j=1

wj)wl (7.10)

Plugging this into (7.8), we obtain a recursive equation for wi,

wi =
δi

(n− i+ 1) + nλ
(
−θ0 −

∑i−1
l=1 δlh(Tl,

∑l
j=1wj)wl + g(Ti,

∑i−1
j=1wj + wi)

)
(7.11)

Suppose we have the λ fixed first, when i = 1, w1 is the solution of the following

nonlinear equation.

w1 =
δ1

n+ nλg(T1, w1)
(7.12)
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As long as we have wi, i = 1, . . . , k, wk+1 is the solution of the following nonlinear

equation.

wk+1

=
δk+1

(n− (k + 1) + 1) + nλ
(
−θ0 −

∑k
l=1 δlh(Tl,

∑l
j=1 wj)wl + g(Ti,

∑k
j=1 wj + wk+1)

)
(7.13)

Once we have all wi, we plug them into (7.5). The constraint may or may not be

θ0. If the constraint does not equal to θ0, we actually get the maximum under that

constraint. We can change the value of λ to get another set of wi and plug them into

(7.5) until the constraint equals to θ0.

Copyright c© Zhiyuan Shen, 2016.
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Chapter 8 Appendix

8.1 Additional Lemmas of Chapter 3

Theorem 8.1.1 Let fn be a sequence of real-valued measurable functions on a mea-

sure space (S,Σ, µ). Suppose that the sequence converges pointwisely to a function f

and is dominated by some integrable function g in the sense that

|fn(x)| ≤ g(x) (8.1)

for all numbers n in the index set of the sequence and all points x ∈ S.Then f is

integrable and

lim
n→∞

∫
S

|fn − f |dµ = 0 (8.2)

which also implies

lim
n→∞

∫
S

fndµ =

∫
S

fdµ (8.3)

Lemma 8.1.2 (Chow and Teicher (1980)) For any random variable Y, if E|Y |k <

∞, then for an i.i.d. sample Y1, Y2, . . . , Yn that has the same distribution as Y, we

have

max
1≤i≤n

|Yi| = o
(
n

1
k

)
a.s. (8.4)

Proof See Chow and Teicher (1980, p. 131, problem No. 8).

Let

Mn = max
1≤i≤n

|Zi| (8.5)

where Zi =
δi(g(Ti,Λ0(Ti))+h̃(Ti))

n−i+1
n

.

To prove that Mn = op(n
1
2 ), we need the following lemma.
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Lemma 8.1.3 (Pan and Zhou (2002)) Let (T1, δ1), . . . , (Tn, δn) be n i.i.d. pairs of

random variables, where each (Ti, δi) is defined by (3.42). Let also T ∗n = max1≤i≤n Ti.

If
∫
h2(x)dΛ0(x) <∞, then

max
1≤i≤n

δi|h(Ti)|√
(1− F0(Ti)) (1−G0(Ti))

= o(n
1
2 ) a.s. and δ∗nh(T ∗n) = op(1), (8.6)

where δ∗n is the indicator function corresponding to T ∗n .

Proof See Pan and Zhou (2002) Lemma A2.

Now we have

max
1≤i≤n

|Zi| = max
1≤i≤n

∣∣∣∣∣∣
δi

(
g(Ti,Λ0(Ti)) + h̃(Ti)

)
n−i+1
n

∣∣∣∣∣∣
≤ max

1≤i≤n

∣∣∣∣∣∣
δi

(
g(Ti,Λ0(Ti)) + h̃(Ti)

)
(1− F0(Ti)) (1−G0(Ti))

∣∣∣∣∣∣× max
1≤i≤n

∣∣∣∣(1− F0(Ti)) (1−G0(Ti))
n−i+1
n

∣∣∣∣
(8.7)

Use Lemma (8.1.3) and choose

h(x) =

∣∣∣∣∣ g(x,Λ0(x)) + h̃(x)√
(1− F0(x)) (1−G0(x))

∣∣∣∣∣ (8.8)

If we assume that

∫ (
g(x,Λ0(x)) + h̃(x)

)2

(1− F0(x)) (1−G0(x))
dΛ0(x) <∞ (8.9)

we have

max
1≤i≤n

|δi||g(Ti,Λ0(Ti)) + h̃(Ti)|
(1− F0(Ti)) (1−G0(Ti))

= o(n
1
2 ) (8.10)
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It is obvious that

max
1≤i≤n

∣∣∣∣(1− F0(Ti)) (1−G0(Ti))
n−i+1
n

∣∣∣∣ = Op(1) (8.11)

then we have

(8.7) ≤ o(n
1
2 )×Op(1) = op(n

1
2 ) (8.12)

so we have

Mn = max
1≤i≤n

|Zi| = op(n
1
2 ) (8.13)

Lemma 8.1.4 Under the assumption of Lemma 3.2.5, we have, for Zi defined in

Lemma 3.2.3,
√
n

(
1

n

n∑
i=1

Zi − θ̂ − θ0

)
D−−−−→ N(0, σ2

Λ0
) (8.14)

where σ2
Λ0

=
∫ (g(x,Λ0(x))+h̃(x))

2

(1−F0(x))(1−G0(x))
dΛ0(x), θ̂ =

∫
h̃(t)dΛ0(t) and θ0 =

∫
g(x,Λ0(x))dΛ0(x)

Proof The summation can be written as

1

n

n∑
i=1

Zi − θ̂ − θ0

=
1

n

n∑
i=1

δi

(
g(Ti,Λ0(Ti)) + h̃(Ti)

)
n−i+1
n

− θ̂ − θ0

=
n∑
i=1

(
g(Ti,Λ0(Ti)) + h̃(Ti)

)
∆Λ̂NA(Ti)− θ̂ − θ0

=

∫ (
g(t,Λ0(t)) + h̃(t)

)
dΛ̂NA(t)−

∫ (
g(t,Λ0(t)) + h̃(t)

)
dΛ0(t)

=

∫ (
g(t,Λ0(t)) + h̃(t)

)
d
(

Λ̂NA(t)− Λ0(t)
)

(8.15)

Similar arguments to Andersen et al. (1993, Chap. 4) can be used to analyze the

integral. Since
(
g (t,Λ0(t)) + h̃(t)

)
is left continuous, it is predictable. An application
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of the martingale central limit theorem will finish the proof.

Lemma 8.1.5 Under the assumption of Lemma 3.2.5, and we have, for Zi defined

in Lemma 3.2.3,

1

n

n∑
i=1

Z2
i

P−−−−→
∫ (

g(t,Λ0(t)) + h̃(t)
)2

(1− F0(t)) (1−G0(t))
dΛ0(t), as n →∞

1

n

n∑
i=1

Z2
i

n− i
P−−−−→ 0, as n →∞

(8.16)

Proof

1

n

n∑
i=1

Z2
i

=
1

n

n∑
i=1

δi
(
g(Ti,Λ0(Ti)) + h̃(Ti)

)
n−i+1
n

2

=
n∑
i=1

δi
n− i+ 1

1
n−i+1
n

(
g(Ti,Λ0(Ti)) + h̃(Ti)

)2

=
n∑
i=1

(
g(Ti,Λ0(Ti)) + h̃(Ti)

)2

Y (Ti)
n

∆Λ̂NA(Ti)

=

∫ (
g(t,Λ0(t)) + h̃(t)

)2

Y (t)
n

dΛ̂NA(t)
P−−−−→ σ2

Λ0

(8.17)

where σ2
Λ0

=
∫ (g(x,Λ0(x))+h̃(x))

2

(1−F0(x))(1−G0(x))
dΛ0(x) and Y (t) =

∑n
i=1 I[Ti ≥ t]. The last step of

(8.17) is similar to Pan and Zhou (2002) Lemma A3.
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1

n

n∑
i=1

Z2
i

n− i
=

1

n

n∑
i=1

1

n− i

δi
(
g(Ti,Λ0(Ti)) + h̃(Ti)

)
n−i+1
n

2

=
n∑
i=1

(
g(Ti,Λ0(Ti)) + h̃(Ti)

)2

(n− i)
(
n−i+1
n

) δi
n− i+ 1

=
n∑
i=1

(
g(Ti,Λ0(Ti)) + h̃(Ti)

)2

(Y (Ti)−1)Y (Ti)
n

∆Λ̂NA(Ti)

=

∫ (
g(t,Λ0(t)) + h̃(t)

)
(Y (t)−1)Y (t)

n

dΛ̂NA(t)
P−−−−→ 0

(8.18)

The last step of (8.18) is similar to Pan and Zhou (2002) Lemma A3.

Proof of Lemma 3.2.4

Note that

Mn = max
1≤i≤n

|Zi| = op(n
1
2 ) (8.19)

By Lemma 3.2.3, λ is the solution of the following equation

l(λ) =
1

n

n−1∑
i=1

δiZi
1 + λZi

+
1

n
δnZn − θ̂ = θ0 (8.20)

where Zi = δi(g(Ti,Λ0(Ti))+h̃(Ti))
n−i+1
n

, i = 1, 2, . . . , n and θ̂ =
∫
h̃(t)dΛ0(t).

Since δiZi = Zi, we have

0 = |l(λ)− θ0|

=

∣∣∣∣∣ 1n
n∑
i=1

Zi − θ̂ − θ0 −
1

n

n−1∑
i=1

λZ2
i

1 + λZi

∣∣∣∣∣
≥ |λ|

1 + |λ|max1≤i≤n |Zi|
1

n

n∑
i=1

Z2
i −

∣∣∣∣∣ 1n
n∑
i=1

Zi − θ0 − θ̂

∣∣∣∣∣
(8.21)
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The second term of (8.21) is Op(n
− 1

2 ) by Lemma 8.1. Since

1

n

n−1∑
i=1

Z2
i =

1

n

n∑
i=1

Z2
i −

1

n
Z2
n (8.22)

by (8.19) we have 1
n
Z2
n = op(1). Hence by Lemma 8.1.5,

1

n

n−1∑
i=1

Z2
i

P−−−−→
∫ (

g(x,Λ0(x)) + h̃(x)
)2

(1− F0(x)) (1−G0(x))
dΛ0(x) (8.23)

this follows that

|λ|
1 + |λ|max1≤i≤n |Zi|

= Op(n
− 1

2 ) (8.24)

since we have max1≤i≤n |λZi| = op(1), then we have

λ = Op(n
− 1

2 ) (8.25)

We can rewrite (3.50) as follows.

0 = l(λ)− θ0

=
1

n

n∑
i=1

Zi − θ0 − θ̂ −
1

n

n∑
i=1

λZ2
i

1 + λZ2
i

=
1

n

n∑
i=1

Zi − θ0 − θ̂ −
λ

n

n−1∑
i=1

Z2
i +

1

n

n−1∑
i=1

λ2Z3
i

1 + λZi

(8.26)

The last term is bounded by

1

n

n−1∑
i=1

λ2Z3
i

1 + λZi
≤ λ2

1− |λ|max1≤i≤n |Zi|
max
1≤i≤n

|Zi|
1

n

n−1∑
i=1

Z2
i

= Op(n
−1)op(n

1
2 )Op(1) = op(n

− 1
2 )

(8.27)
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Then we can get an expression of λ as

λ =
1
n

∑n
i=1 Zi − θ̂ − θ0

1
n

∑n−1
i=1 Z

2
i

+ op(n
− 1

2 ) (8.28)

By Lemma 8.1.5, Lemma 8.1, Slutsky theorem and (8.22), as n→∞

nλ2 D−−−−→ χ2
(1)

∫
(
g(x,Λ0(x)) + h̃(x)

)2

(1− F0(x)) (1−G0(x))
dΛ0(x)


−1

(8.29)

8.2 Additional Lemmas of Chapter 4

First of all, we prove that

max
1≤i≤n

|Zi| = op
(√

n
)

(8.30)

where Zi = g(Xi, F0(Xi)) + h̃(Xi)− θ̃− θ0, θ̃ =
∫
h̃(t)dF0(t), θ0 =

∫
g(t, F0(t))dF0(t),

h = ∂g(t,Λ)
∂Λ

and h̃(t) =
∫ +∞
t

h(s, F0(s))dF0(s).

Under the assumption that

σ2 =

∫ (
g(t, F0(t)) + h̃(t)

)2

dF0(t)−
(∫ (

g(t, F0(t)) + h̃(t)
)
dF0(t)

)2

<∞ (8.31)

Since

E[Z]2 = σ2 <∞ (8.32)

by Lemma 8.1.2, we have

max
1≤i≤n

|Zi| = op
(√

n
)

(8.33)

Lemma 8.2.1 Under the assumption of Lemma 4.2.3, we have, for Zi defined in

Lemma 4.2.4
√
n

(
1

n

n∑
i=1

Zi

)
D−−−−→ N(0, σ2) (8.34)
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and

1

n

n∑
i=1

Z2
i

P−−−−→ σ2 (8.35)

where Zi = g(Xi, F0(Xi)) + h̃(Xi)− θ̃ − θ and

σ2 =

∫ (
g(t, F0(t)) + h̃(t)

)2

dF0(t)−
(∫ (

g(t, F0(t)) + h̃(t)
)
dF0(t)

)2

(8.36)

Proof The Central Limit Theorem and Law of Large Numbers would complete the

proof of the above lemma.

Proof of Lemma 4.2.5

By Lemma 4.2.4, λ is the solution of the following equation

l(λ) =
n∑
i=1

∆F̂n(Xi)
Zi + θ̃ + θ0

1 + λZi
= θ̃ + θ0 (8.37)

where F̂n is the empirical distribution function.

Therefore we have

0 =
∣∣∣l(λ)− θ̃ − θ0

∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

Zi
1 + λZi

+
(
θ̃ + θ0

) 1

n

n∑
i=1

1

1 + λZi
−
(
θ̃ + θ0

)∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

Zi −
1

n

n∑
i=1

λZ2
i

1 + λZi
−
(
θ̃ + θ0

) 1

n

n∑
i=1

λZi
1 + λZi

∣∣∣∣∣
≥ 1

n

n∑
i=1

Zi −

(
1

n

n∑
i=1

λZ2
i

1 + λZi
+
(
θ̃ + θ0

) 1

n

n∑
i=1

λZi
1 + λZi

) (8.38)

By Lemma 8.2.1, we have 1
n

∑n
i=1 Zi = Op(

1√
n
), then we have

λ
1

n

n∑
i=1

Z2
i

1 + λZi
+ λ

(
θ̃ + θ0

) 1

n

n∑
i=1

Zi
1 + λZi

= Op(
1√
n

) (8.39)
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It is easy to verify that

1

n

n∑
i=1

Z2
i

1 + λZi
= Op(1),

(
θ̃ + θ0

) 1

n

n∑
i=1

Zi
1 + λZi

= Op(1) (8.40)

Therefore we have

λ = Op

(
1√
n

)
(8.41)

On the other side, we have

0 = l(λ)− θ̃ − θ0

=
1

n

n∑
i=1

Zi − λ
1

n

n∑
i=1

Z2
i + λ2 1

n

n∑
i=1

Z3
i

1 + λZi
−
(
θ̃ + θ0

) 1

n

n∑
i=1

λZi
1 + λZi

(8.42)

It is easy to verify that

1

n

n∑
i=1

λ2Z3
i

1 + λZi
≤ λ2 × max

1≤i≤n
|Zi| ×

1

n

n∑
i=1

Z2
i ×

1

1 + |λ|max |Zi|

≤ OP (
1

n
)op(
√
n)Op(1)Op(1) = op(

1√
n

)

(8.43)

and (
θ̃ + θ0

) 1

n

n∑
i=1

λZi
1 + λZi

= Op(
1

n
) (8.44)

Therefore

λ =
1
n

∑n
i=1 Zi

1
n

∑n
i=1 Z

2
i

+ op

(
1√
n

)
(8.45)

Multiply
√
n on both sides

√
nλ =

√
n
(

1
n

∑n
i=1 Zi

)
1
n

∑n
i=1 Z

2
i

+ op(1) (8.46)

By Lemma 8.2.1, we have
√
nλ

D−−−−→ N(0, σ−2) (8.47)
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which implies that

nλ2 D−−−−→ χ2
(1) · σ−2 (8.48)

where

σ2 =

∫ (
g(t, F0(t)) + h̃(t)

)2

dF0(t)−
(∫ (

g(t, F0(t)) + h̃(t)
)
dF0(t)

)2

(8.49)

The proof of Lemma 4.2.5 is finished.

8.3 Additional Lemmas of Chapter 5

Lemma 8.3.1 Under the assumption of Lemma 5.2.5, we have, for Z1i and Z2j

defined in Lemma 5.2.3,

√
n

(
n∑
i=1

Z1i − θ0

)
=
√
n

∫
H1(t)d

(
Λ̂1(t)− Λ10(t)

)
D−−−−→ N(0, σ2

1), as n →∞

√
m

(
m∑
j=1

Z2j − θ0

)
=
√
m

∫
H2(s)d

(
Λ̂2(s)− Λ20(s)

)
D−−−−→ N(0, σ2

2), as m →∞

(8.50)

where σ2
1 =

∫ H2
1 (t)

(1−F1(t))(1−G1(t))
dΛ10(t), σ2

2 =
∫ H2

2 (s)

(1−F2(s))(1−G2(s))
dΛ20(s) and Λ̂1(t), Λ̂2(s)

are Nelson-Aalen estimators.

Proof First we calculate

n∑
i=1

Z1i − θ0 =
n∑
i=1

δXiH1(Ti)

n− i+ 1
− θ0 =

n∑
i=1

H1(Ti)∆Λ̂1(Ti)− θ0

=

∫
H1(t)dΛ̂1(t)−

∫
H1(t)dΛ10(t) =

∫
H1(t)d

(
Λ̂1(t)− Λ10(t)

)
(8.51)
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Similarly, we have

m∑
j=1

Z2j − θ0 =

∫
H2(s)d

(
Λ̂2(s)− Λ20(s)

)
(8.52)

Similar arguments to Andersen et al. (1993, Chap. 4) can be used to analyze the

integral. An application of the martingale central limit theorem will finish the proof.

Lemma 8.3.2 Under the assumption of Lemma 5.2.5, we have for Z1i and Z2j de-

fined in Lemma 5.2.3,

n
n∑
i=1

Z2
1i

P−−−−→
∫

H2
1 (t)

(1− F1(t)) (1−G1(t))
dΛ10(t), as n →∞

m
m∑
j=1

Z2
2j

P−−−−→
∫

H2
2 (s)

(1− F2(s)) (1−G2(s))
dΛ20(s), as m →∞

(8.53)

Proof

n
n∑
i=1

Z2
1i = n

n∑
i=1

δXiH
2
1 (Ti)

(n− i+ 1)2
=

n∑
i=1

H2
1 (Ti)∆Λ̂1(Ti)

n−i+1
n

=

∫
H2

1 (t)
Y1(t)
n

dΛ̂1(t)
P−−−−→

∫
H2

1 (t)

(1− F1(t)) (1−G1(t))
dΛ10(t)

(8.54)

where Y1(t) =
∑n

i=1 I[Ti ≥ t] and Λ̂1 is Nelson-Aalen estimator.

Similarly, we have

m

m∑
j=1

Z2
2j =

∫
H2

2 (s)
Y2(s)
m

dΛ̂2(s)
P−−−−→

∫
H2

2 (s)

(1− F2(s)) (1−G2(s))
dΛ20(s) (8.55)

where Y2(s) =
∑m

j=1 I[Tj ≥ s] and Λ̂2 is Nelson-Aalen estimator.
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Proof of Lemma 5.2.4

0 = l(λ) =

∣∣∣∣∣
n−1∑
i=1

Z1i

1 + λZ1i

+ Z1n +
m−1∑
j=1

Z2j

1 + λZ2j

+ Z2m − 2θ0

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

Z1i −
n−1∑
i=1

λZ2
1i

1 + λZ1i

+
m∑
j=1

Z2j −
m−1∑
j=1

λZ2
2j

1 + λZ2j

− 2θ0

∣∣∣∣∣
≥

(
|λ|

1 + |λ|max1≤i≤n |Z1i|

n−1∑
i=1

Z2
1i +

|λ|
1 + |λ|max1≤j≤m |Z2j|

m−1∑
j=1

Z2
2j

)

−

∣∣∣∣∣
(

n∑
i=1

Z1i − θ0

)
+

(
m∑
j=1

Z2j − θ0

)∣∣∣∣∣

(8.56)

Since
∑n

i=1 Z1i and
∑m

j=1 Z2j are independent and we also have the following,

√
n

(
n∑
i=1

Z1i − θ0

)
D−−−−→ N(0, σ2

1) as n→∞

√
m

(
m∑
j=1

Z2j − θ0

)
D−−−−→ N(0, σ2

2) as m→∞
(8.57)

where σ2
1 =

∫ H2
1 (t)dΛ10(t)

(1−F1(t))(1−G1(t))
and σ2

2 =
∫ H2

2 (s)dΛ20(s)

(1−F2(s))(1−G2(s))
.

Assume n
n+m
→ α, as min(n,m)→∞, we have

√
nm

n+m

((
n∑
i=1

Z1i − θ0

)
+

(
m∑
j=1

Z2j − θ0

))
D−−−−→ N(0, σ2), as min(n,m)→∞

(8.58)

where

σ2 = (1− α)

∫
H2

1 (t)dΛ10(t)

(1− F1(t)) (1−G1(t))
+ α

∫
H2

2 (s)dΛ20(s)

(1− F2(s)) (1−G2(s))
(8.59)

Therefore √
nm

n+m

∣∣∣∣∣
(

n∑
i=1

Z1i − θ0

)
+

(
m∑
j=1

Z2j − θ0

)∣∣∣∣∣ = Op(1) (8.60)
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which means(
|λ|

1 + |λ|max1≤i≤n |Z1i|

n−1∑
i=1

Z2
1i +

|λ|
1 + |λ|max1≤j≤m |Z2j|

m−1∑
j=1

Z2
2j

)

=

(
1
n
|λ|

1 + 1
n
|λ|max1≤i≤n (n|Z1i|)

n

n−1∑
i=1

Z2
1i +

1
m
|λ|

1 + 1
m
|λ|max1≤j≤m (m|Z2j|)

m

m−1∑
j=1

Z2
2j

)

= Op

(√
n+m

nm

)
(8.61)

It can be shown that max1≤i≤n (n|Z1i|) = op (
√
n) and max1≤j≤m (m|Z2j|) = op (

√
m)

and by the Lemma 8.3.2, we have n
∑n−1

i=1 Z
2
1i = Op(1) and m

∑m−1
j=1 Z2

2j = Op(1).

Then we can conclude that

1

n
|λ|+ 1

m
|λ| = Op

(√
n+m

nm

)
(8.62)

which means

|λ| = Op

((
n+m

nm

)− 1
2

)
(8.63)

Now we have

0 = l(λ) =

(
n∑
i=1

Z1i − θ0

)
− λ

n−1∑
i=1

Z2
1i +

n−1∑
i=1

λ2Z3
1i

1 + λZ1i

+

(
m∑
j=1

Z2j − θ0

)
− λ

m−1∑
j=1

Z2
2j +

m−1∑
j=1

λ2Z3
1j

1 + λZ2j

(8.64)

We also have

n−1∑
i=1

λ2Z3
1i

1 + λZ1i

≤
n−1∑
i=1

λ2Z3
1i

1− |λ|max |Z1i|
≤

(
1

n2
λ2 ×max |nZ1i| × n

n−1∑
i=1

Z2
1i

)
Op(1)

= op(
1√
n

) = op

(√
n+m

nm

)
(8.65)
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Similarly,
m−1∑
j=1

λ2Z3
2j

1 + λZ2j

≤ op

(
1√
m

)
= op

(√
n+m

nm

)
(8.66)

So we have an expression of λ,

λ =
(
∑n

i=1 Z1i − θ0) +
(∑m

j=1 Z2j − θ0

)
∑n−1

i=1 Z
2
1i +

∑m−1
j=1 Z2

2j

+ op

(√
nm

n+m

)
(8.67)

Multiplying
√

n+m
nm

on each side gives us

√
n+m

nm
λ =

√
nm
n+m

(∑n
i=1 Z1i − θ0 +

∑m
j=1 Z2j − θ0

)
nm
n+m

(∑n−1
i=1 Z

2
1i +

∑m−1
j=1 Z2

2j

) + op (1) (8.68)

Since √
nm

n+m

(
n∑
i=1

Z1i − θ0 +
m∑
j=1

Z2j − θ0

)
D−−−−→ N(0, σ2) (8.69)

where σ2 = (1− α)
∫ H2

1 (t)dΛ10(t)

(1−F1(t))(1−G1(t))
+ α

∫ H2
2 (s)dΛ20(s)

(1−F2(s))(1−G2(s))
and

nm

n+m

(
n−1∑
i=1

Z2
1i +

m−1∑
j=1

Z2
2j

)
D−−−−→ (1− α)

∫
H2

1 (t)dΛ10(t)

(1− F1(t)) (1−G1(t))

+ α

∫
H2

2 (s)dΛ20(s)

(1− F2(s)) (1−G2(s))
= σ2

(8.70)

By the Slutsky theorem,

n+m

nm
λ2 D−−−−→ χ2

1σ
−2, as min(n,m)→∞ (8.71)

where σ2 = (1− α)
∫ H2

1 (t)dΛ10(t)

(1−F1(t))(1−G1(t))
+ α

∫ H2
2 (s)dΛ20(s)

(1−F2(s))(1−G2(s))

Lemma 8.3.3 Under the assumption of Lemma 5.3.4, we have, for Z1i and Z2j
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defined in Lemma 5.3.2,

√
n

(
n∑
i=1

Z1i − θ̃1 − θ0

)
D−−−−→ N(0, σ2

1) as n→∞

√
m

(
m∑
j=1

Z2j − θ̃2 − θ0

)
D−−−−→ N(0, σ2

2) as m→∞
(8.72)

where σ2
1 =

∫ H∗21 (t)dΛ10(t)

(1−F1(t))(1−G1(t))
and σ2

2 =
∫ H∗22 (s)dΛ20(s)

(1−F2(s))(1−G2(s))
.

Proof

√
n

(
n∑
i=1

Z1i − θ̃1 − θ0

)

=
√
n

(
n∑
i=1

δXiH
∗
1 (Ti)

n− i+ 1
− θ̃1 − θ0

)
=
√
n

(∫
H∗1 (t)dΛ̂1(t)− θ̃1 − θ0

)
=
√
n

(∫ ∫ (
H + H̃1

)
dΛ20dΛ̂1 −

∫ ∫
H̃1dΛ10dΛ20 −

∫ ∫
HdΛ10dΛ20

)
=
√
n

(∫ ∫ (
H + H̃1

)
dΛ20d

(
Λ̂1 − Λ10

))
=
√
n

(∫
H̃∗1 (t)d

(
Λ̂1(t)− Λ10(t)

))
D−−−−→ N(0, σ2

1)

(8.73)

where σ2
1 =

∫ H∗21 (t)dΛ10(t)

(1−F1(t))(1−G1(t))
.

Similarly,

√
m

(
m∑
j=1

Z2j − θ̃2 − θ0

)
=
√
m

∫
H∗2 (s)d

(
Λ̂2(s)− Λ20(s)

)
D−−−−→ N(0, σ2

2) (8.74)

where σ2
2 =

∫ H∗22 (s)dΛ20(s)

(1−F2(s))(1−G2(s))
.

Lemma 8.3.4 Under the assumption of Lemma 5.3.4, we have, for Z1i and Z2j
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defined in Lemma 5.3.2,

n

n∑
i=1

Z2
1i

P−−−−→
∫

H∗21 (t)

(1− F1(t)) (1−G1(t))
dΛ10(t)

m

m∑
j=1

Z2
2j

P−−−−→
∫

H∗22 (s)

(1− F2(s)) (1−G2(s))
dΛ20(s)

(8.75)

Proof Assume n
n+m
→ α, as min(n,m)→∞

n
n∑
i=1

Z2
1i = n

n∑
i=1

δXiH
∗2
1 (Ti)

(n− i+ 1)2

=

∫
H∗21 (t)
Y1(t)
n

dΛ̂1(t)
P−−−−→

∫
H∗21 (t)

(1− F1(t)) (1−G1(t))
dΛ10(t)

(8.76)

where Y1(t) =
∑n

i=1 I[Ti ≥ t].

Similarly,

m
m∑
j=1

Z2
2j =

∫
H∗22 (s)
Y2(s)
n

dΛ̂2(s)
P−−−−→

∫
H∗22 (s)

(1− F2(s)) (1−G2(s))
dΛ20(s) (8.77)

where Y2(s) =
∑m

j=1 I[Uj ≥ s].

Proof of Lemma 5.3.3

0 = l(λ) =
n−1∑
i=1

Z1i

1 + λZ1i

+ Z1n +
m−1∑
j=1

Z2j

1 + λZ2j

+ Z2m − θ̃1 − θ̃2 − 2θ0

=

(
n∑
i=1

Z1i − θ̃1 − θ0

)
+

(
m∑
j=1

Z2j − θ̃2 − θ0

)
− λ

n−1∑
i=1

Z2
1i − λ

m−1∑
j=1

Z2
2j

+
n−1∑
i=1

λ2Z3
1i

1 + λZ1i

+
m−1∑
j=1

λ2Z3
2j

1 + λZ2j

(8.78)
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It can be shown that

n−1∑
i=1

λ2Z3
1i

1 + λZ1i

= op

(√
n+m

nm

)
m−1∑
j=1

λ2Z3
2j

1 + λZ2j

= op

(√
n+m

nm

) (8.79)

Since

nm

n+m

(
n−1∑
i=1

Z2
1i +

m−1∑
j=1

Z2
2j

)
P−−−−→ (1− α)

∫
H∗21 (t)

(1− F1(t)) (1−G1(t))
dΛ10

+ α

∫
H∗22 (s)

(1− F2(s)) (1−G2(s))
dΛ20

(8.80)

we have ∣∣∣∣∣
n−1∑
i=1

Z2
1i +

m−1∑
j=1

Z2
2j

∣∣∣∣∣ = Op

(
n+m

nm

)
(8.81)

Now we have an expression of λ as follows,

λ =

(∑n
i=1 Z1i − θ̃1 − θ0

)
+
(∑m

j=1 Z2j − θ̃2 − θ0

)
∑n−1

i=1 Z
2
1i +

∑m−1
j=1 Z2

2j

+ op

(√
nm

n+m

)
(8.82)

Since
∑n

i=1 Z1i and
∑m

j=1 Z2j are independent, by the Lemma 8.3.3, we have

√
nm

n+m

(
n∑
i=1

Z1i − θ̃1 − θ0 +
m∑
j=1

Z2j − θ̃2 − θ0

)
D−−−−→ N(0, σ2),

as min(n,m) →∞

(8.83)
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where σ2 = (1− α)
∫ H∗21 (t)

(1−F1(t))(1−G1(t))
dΛ10 + α

∫ H∗22 (s)

(1−F2(s))(1−G2(s))
dΛ20.

And we also have

nm

n+m

(
n−1∑
i=1

Z2
1i +

m−1∑
j=1

Z2
2j

)
P−−−−→ (1− α)

∫
H∗21 (t)

(1− F1(t)) (1−G1(t))
dΛ10

+ α

∫
H∗22 (s)

(1− F2(s)) (1−G2(s))
dΛ20

(8.84)

By the Slutsky theorem, we have

n+m

nm
λ2 D−−−−→ χ2

1σ
−2, as min(n,m) →∞ (8.85)

8.4 R code

### Libraries needed ###

library(emplik)

library(survival)

library(KMsurv)

library(actuar)

### function with g(t) independent of \Lambda(t);

### modified from emplikH1.test

emplikh1.test<-function (x, d, y = -Inf, theta, fun,

tola = .Machine$double.eps^0.5)

{

n <- length(x)

if (n <= 2)

stop("Need more observations")

154



if (length(d) != n)

stop("length of x and d must agree")

if (any((d != 0) & (d != 1)))

stop("d must be 0/1’s for censor/not-censor")

if (!is.numeric(x))

stop("x must be numeric values --- observed times")

newdata <- Wdataclean2(x, d)

temp <- DnR(newdata$value, newdata$dd, newdata$weight, y = y)

time <- temp$times

risk <- temp$n.risk

jump <- (temp$n.event)/risk

funtime <- fun(time)

funh <- sqrt(n) * funtime/risk

funtimeTjump <- funtime * jump

if (jump[length(jump)] >= 1)

funh[length(jump)] <- 0

inthaz <- function(x, ftj, fh, thet) {

sum(ftj/(1 + x * fh)) - thet

}

diff <- inthaz(0, funtimeTjump, funh, theta)

if (diff == 0) {

lam <- 0

}

else {

step <- 0.01/sqrt(n)

mini <- 0

maxi <- 0
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if (diff > 0) {

maxi <- step

while (inthaz(maxi, funtimeTjump, funh, theta) >

0 && maxi < 1000) maxi <- maxi +

step

}

else {

mini <- -step

while (inthaz(mini, funtimeTjump, funh, theta) <

0 && mini > -1000) mini <- mini -

step

}

if (inthaz(mini, funtimeTjump, funh, theta) * inthaz(maxi,

funtimeTjump, funh, theta) > 0)

stop("given theta is too far away from theta0")

temp2 <- uniroot(inthaz, c(mini, maxi), tol = tola,

ftj = funtimeTjump, fh = funh, thet = theta)

lam <- temp2$root

}

onepluslamh <- 1 + lam * funh

weights <- jump/onepluslamh

loglik <- 2 * (sum(log(onepluslamh)) - sum((onepluslamh -

1)/onepluslamh))

list(‘-2LLR‘ = loglik, lambda = lam/sqrt(n), times = time,

wts = weights, nits = temp2$nf, message = temp2$message)

}
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### Function when \Lambda(t) is fixed in g(t,\Lambda(t)) ###

emplikGH1.test<-function(t,d,fun1,theta1) {

newdata <- Wdataclean2(t, d)

time <- newdata$value

cen<-newdata$dd

old_lambda<-0

old_llr<-0

old_jump <- cen/(length(time):1)

old_jump<-old_jump[old_jump!=0]

gg<-function(x,jp=old_jump){

return(fun1(x,jp))

}

run0<-emplikh1.test(t,d,fun=gg,theta=theta1)

new_lambda<-run0$lambda

new_jump<-run0$wts

new_llr<-run0$"-2LLR"

while(sqrt(sum((abs(old_jump-new_jump))^2)) >=1e-12

|| abs(old_lambda-new_lambda)>=1e-12

|| abs(old_llr-new_llr)>1e-12) {

old_llr<-new_llr

old_lambda<-new_lambda

old_jump<-new_jump

gg<-function(x,jp=old_jump){

return(fun1(x,jp))

}

run<-emplikh1.test(t,d,theta=theta1,fun=gg)
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new_lambda<-run$lambda

new_jump<-run$wts

new_llr<-run$"-2LLR"

print(new_llr)

}

list(‘-2LLR‘ = run$’-2LLR’, lambda = new_lambda,

times = time,jump=new_jump)

}

### Function to generate QQ plot and track time ###

myqqplot1<-function(n,m,fun,theta,title) {

time1<-proc.time()

elr<-rep(NA,m)

for (j in 1:m) {

x<-rexp(n,rate=1)

c<-rexp(n,rate=0.35)

t<-rep(NA,n)

d<-rep(NA,n)

for (i in 1:n) {

t[i]<-min(x[i],c[i])

if (x[i]<c[i]) d[i]<-1

else d[i]<-0

}

run<-emplikGH1.test(t,d,fun,theta)

elr[j]<-run$’-2LLR’

}

y<-qchisq(seq(1/m,1,1/m)-1/(2*m),df=1)
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plot(sort(elr),y,xlab="Sample quantile",

ylab="Chi-square theoretical quantile"

,main=title)

abline(a=0,b=1)

proc.time()-time1

}

### Function to calculate coverage probability

### of empirical likelihood method

coverage<-function(n,m,fun,theta) {

count<-rep(0,m)

for (j in 1:m) {

x<-rexp(n,rate=1)

c<-rexp(n,rate=0.35)

t<-rep(NA,n)

d<-rep(NA,n)

for (i in 1:n) {

t[i]<-min(x[i],c[i])

if (x[i]<c[i]) d[i]<-1

else d[i]<-0

}

run<-emplikGH1.test(t,d,fun,theta)

if (run$’-2LLR’<=qchisq(0.95,df=1))

count[j]<-1

}

return (mean(count))

}
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### The function to generate Wald confidence

### interval with different transformations

waldci<-function(x,d,a,alpha,type) {

my.fit<-survfit(Surv(x,d)~1)

km<-stepfun(my.fit$time,c(1,my.fit$surv))

ni<-my.fit$n.risk

di<-my.fit$n.event

jump<-di/(ni*(ni-di))

greenwood<-stepfun(my.fit$time,c(0,cumsum(jump)))

kmest<-km(a)

sigma<-sqrt(greenwood(a))

z<-qnorm(c(alpha/2,1-alpha/2))

asest<-asin(sqrt(km(a)))

temp<-asest+0.5*z*sigma*(km(a)/(1-km(a)))^(0.5)

aslow<-(sin(max(0,temp[1])))^2

asup<-(sin(min(pi/2,temp[2])))^2

if (type==’plain’)

return (kmest+z*kmest*sigma)

if (type==’log’)

return (kmest*exp(z*sigma/kmest))

if (type==’log(-log)’)

return (kmest^(exp(z*sigma/(log(kmest)))))

if (type==’arcsin’)

return (c(aslow,asup))

}
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### The function to generate empirical

### likelihood confidence interval

elrci<-function(t,d,fun,alpha,lower,upper,by,step) {

theta<-seq(lower,upper,by)

ELR<-rep(NA,length(theta))

for (i in 1:length(theta)) {

ELR[i]<-emplikGH1.test(t,d,fun,theta[i])$’-2LLR’

}

Lower<-min(theta[ELR<=qchisq(1-alpha,1)])

Upper<-max(theta[ELR<=qchisq(1-alpha,1)])

l<-lower

u<-upper

while (Lower==theta[1] || Upper==theta[length(theta)]) {

if (Lower==theta[1] && Upper!=theta[length(theta)]) {

l<-l-step

theta2<-seq(l+by,l+step-by,by)

ELR2<-rep(NA,length(theta2))

for (i in 1:length(theta2)) {

ELR2[i]<-emplikGH1.test(t,d,fun,theta2[i])$’-2LLR’

}

theta<-c(theta2,theta)

ELR<-c(ELR2,ELR)

}

else if (Lower!=theta[1] && Upper==theta[length(theta)]) {

u<-u+step

theta2<-seq(u-step+by,u-by,by)

ELR2<-rep(NA,length(theta2))
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for (i in 1:length(theta2)) {

ELR2[i]<-emplikGH1.test(t,d,fun,theta2[i])$’-2LLR’

}

theta<-c(theta,theta2)

ELR<-c(ELR,ELR2)

}

else if (Lower==theta[1] && Upper==theta[length(theta)]) {

l<-l-step

theta2<-seq(l+by,l+step-by,by)

ELR2<-rep(NA,length(theta2))

for (i in 1:length(theta2)) {

ELR2[i]<-emplikGH1.test(t,d,fun,theta2[i])$’-2LLR’

}

theta<-c(theta2,theta)

ELR<-c(ELR2,ELR)

u<-u+step

theta2<-seq(u-step+by,u-by,by)

ELR2<-rep(NA,length(theta2))

for (i in 1:length(theta2)) {

ELR2[i]<-emplikGH1.test(t,d,fun,theta2[i])$’-2LLR’

}

theta<-c(theta,theta2)

ELR<-c(ELR,ELR2)

}

Lower<-min(theta[ELR<=qchisq(1-alpha,1)])

Upper<-max(theta[ELR<=qchisq(1-alpha,1)])

}
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plot(theta,ELR,cex=0.5,xlab="Theta",ylab="-2logELR",

main="Empirical Likelihood Ratio Confidence Interval")

abline(h=3.84)

abline(v=Lower)

abline(v=Upper)

return (c(Lower,Upper))

}

### The function to compare the coverage

### probability using different methods

CP<-function(n,m,a,fun,theta,alpha,lower,upper,by,step) {

mu<-exp(-a)

count1<-0

count2<-0

count3<-0

count4<-0

count5<-0

for (j in 1:m) {

x<-rexp(n,rate=1)

c<-rexp(n,rate=0.35)

t<-rep(NA,n)

d<-rep(NA,n)

for (i in 1:n) {

t[i]<-min(x[i],c[i])

if (x[i]<c[i]) d[i]<-1

else d[i]<-0

}
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elr<-emplikGH1.test(t,d,fun,1-exp(-a))$’-2LLR’

ci2<-waldci(t,d,a,alpha,’plain’)

ci3<-waldci(t,d,a,alpha,’log’)

ci4<-waldci(t,d,a,alpha,’log(-log)’)

ci5<-waldci(t,d,a,alpha,’arcsin’)

if (elr <= qchisq(1-alpha,df=1))

count1<-count1+1

if (mu <= ci2[2] && mu >= ci2[1])

count2<-count2+1

if (mu <= ci3[2] && mu >= ci3[1])

count3<-count3+1

if (mu <= ci4[2] && mu >= ci4[1])

count4<-count4+1

if (mu <= ci5[2] && mu >= ci5[1])

count5<-count5+1

}

return (list(cp_ELR=count1/m,cp_Normal=count2/m,cp_Log=count3/m,

cp_Loglog=count4/m,cp_Arcsin=count5/m))

}

### The function to compare the coverage probability ###

### and average length using different methods ###

CPandAVL<-function(n,m,a,fun,theta,alpha,lower,upper,by,step) {

mu<-exp(-a)

count1<-0

count2<-0

count3<-0
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count4<-0

count5<-0

AVL1<-rep(NA,m)

AVL2<-rep(NA,m)

AVL3<-rep(NA,m)

AVL4<-rep(NA,m)

AVL5<-rep(NA,m)

time1<-proc.time()

for (j in 1:m) {

tm1<-proc.time()

x<-rexp(n,rate=1)

c<-rexp(n,rate=0.35)

t<-rep(NA,n)

d<-rep(NA,n)

for (i in 1:n) {

t[i]<-min(x[i],c[i])

if (x[i]<c[i]) d[i]<-1

else d[i]<-0

}

elr<-emplikGH1.test(t,d,fun,1-exp(-a))$’-2LLR’

ci1<-elrci(t,d,fun,alpha,lower,upper,by,step)

ci2<-waldci(t,d,a,alpha,’plain’)

ci3<-waldci(t,d,a,alpha,’log’)

ci4<-waldci(t,d,a,alpha,’log(-log)’)

ci5<-waldci(t,d,a,alpha,’arcsin’)

if (elr <= qchisq(1-alpha,df=1))

count1<-count1+1
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if (mu <= ci2[2] && mu >= ci2[1])

count2<-count2+1

if (mu <= ci3[2] && mu >= ci3[1])

count3<-count3+1

if (mu <= ci4[2] && mu >= ci4[1])

count4<-count4+1

if (mu <= ci5[2] && mu >= ci5[1])

count5<-count5+1

AVL1[j]<-ci1[2]-ci1[1]

AVL2[j]<-ci2[2]-ci2[1]

AVL3[j]<-ci3[2]-ci3[1]

AVL4[j]<-ci4[2]-ci4[1]

AVL5[j]<-ci5[2]-ci5[1]

tm2<-proc.time()

print(c(j,tm2-tm1))

}

time2<-proc.time()

return (list(Time=time2-time1,cp_ELR=count1/m,

cp_Normal=count2/m,cp_Log=count3/m,

cp_Loglog=count4/m,cp_Arcsin=count5/m,AVL_ELR=mean(AVL1),

AVL_Normal=mean(AVL2),AVL_Log=mean(AVL3),AVL_Loglog=mean(AVL4),

AVL_Arcsin=mean(AVL5),sd_ELR=sd(AVL1),sd_Normal=sd(AVL2),

sd_Log=sd(AVL3),sd_Loglog=sd(AVL4),sd_arcsin=sd(AVL5)) )

}

### The functions of g(t,\Lambda(t)) ###

g1<-function(x,jp,a=0.5) {
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return (as.numeric((x <= a))*exp(-cumsum(jp)))

}

g2<-function(x,jp){

return (exp(-(x+cumsum(jp))))

}

### Gini’s absolute mean difference-right continuous version ###

ginimdf<-function(x,jp){

return ((2*cumsum(jp)-1)*x)

}

### Gini’s absolute mean difference-left continuous version ###

ginimdf2<-function(x,jp) {

return ((2*c(0,cumsum(jp)[1:(length(jp)-1)])-1)*x)

}

### Gini’s absolute mean difference-middle point version ###

ginimdf3<-function(x,jp) {

temp1<-cumsum(jp)

temp2<-c(0,temp1[1:(length(jp)-1)])

temp3<-(temp1+temp2)/2

return ((2*temp3-1)*x)

}

### The function to compare the bias of three versions of ###

### Gini’s absolute mean difference ###

Bias<-function(n,m,mu,dist) {

jump0<-rep(1/n,n)
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bias1<-rep(NA,m)

bias2<-rep(NA,m)

bias3<-rep(NA,m)

for (j in 1:m) {

if (dist=="exp")

x<-rexp(n,rate=1)

if (dist=="chisq")

x<-rchisq(n,df=1)

if (dist=="lnorm")

x<-rlnorm(n)

y<-sort(x)

bias1[j]<-sum(ginimdf(y,jump0)*jump0)-mu

bias2[j]<-sum(ginimdf2(y,jump0)*jump0)-mu

bias3[j]<-sum(ginimdf3(y,jump0)*jump0)-mu

}

list(BiasR=mean(bias1),BiasL=mean(bias2),BiasM=mean(bias3))

}

#### The function of our iterative algorithm:

### modified from el.cen.EM

el.cen.EM.G<-function(x,d,fun,mu,err) {

n<-length(x)

old_jump<-rep(1/n,n)

old_loglik<-0

fit<-el.cen.EM(x,d,fun,mu,jp=old_jump)

new_loglik<-fit$loglik
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new_jump<-fit$prob

while (abs(old_loglik-new_loglik)>=err

|| mean(abs(old_jump-new_jump)) >=err) {

old_loglik<-new_loglik

old_jump<-new_jump

fit<-el.cen.EM(x,d,fun,mu,jp=old_jump)

new_jump<-fit$prob

new_loglik<-fit$loglik

}

bias<-sum(fun(fit$times,fit$prob)*fit$prob)-mu

list(bias=bias,loglik=fit$loglik,times=fit$times,

prob=fit$prob,lam=fit$lam,

’-2LLR’=fit$’-2LLR’,Pval=fit$Pval)

}

#### The function of Qin et al.’s mehtod (2011) ###

el.cen.EM.G2<-function(x,d,fun1,fun2,mu) {

n<-length(x)

jump0<-rep(1/n,n)

fit<-el.cen.EM(x,d,fun1,mu,jp=jump0)

tm<-fit$times

jp<-fit$prob

u1<-2*fun2(tm,jump0)-tm

var3<-var(u1)

u2<-fun1(tm,jump0)

var2<-var(u2)

khat<-var2/var3
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adjllr<-khat*fit$’-2LLR’

list(adjllr=adjllr,loglik=fit$loglik,times=fit$times,

prob=fit$prob,lam=fit$lam,

’-2LLR’=fit$’-2LLR’,Pval=fit$Pval)

}

### The functions of Peng’s mehtod (2011) ###

sollam<-function(lam,x) {

return (mean(x/(1+lam*x)))

}

llr<-function(theta,y,z,step) {

temp<-y-z-theta

num0<-sollam(0,temp)

min<-0

max<-0

if (abs(sollam(step,temp)) < abs(sollam(-step,temp))) {

max<-step

while(num0*sollam(max,temp)>=0) {

max<-max+step

}

}

else {

min<-(-step)

while(num0*sollam(min,temp)>=0) {

min<-min-step
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}

}

lambda<-uniroot(sollam,c(min,max),check.conv=T,x=temp)$root

return (2*sum(log(1+lambda*temp)))

}

### The function to generate the QQ plot using our method ###

myqqplot2<-function(n,m,fun,mu,err,title) {

elr<-rep(NA,m)

d<-rep(1,n)

for (j in 1:m) {

x<-rchisq(n,df=1)

fit<-el.cen.EM.G(x,d,fun,mu,err)

elr[j]<-fit$’-2LLR’

print(j)

}

yy<-qchisq(seq(1/m,1,1/m)-1/(2*m),df=1)

plot(sort(elr),yy,xlab="Sample quantile",

ylab="Chi-square theoretical quantile"

,main=title)

abline(a=0,b=1)

}

### The function to compare the coverage

### probabilities of three methods

CP_Comp<-function(n,m,mu,fun1,fun2,err,sp,dist,cali=FALSE) {

mid<-n/2
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d<-rep(1,n)

elr1<-rep(NA,m)

elr2<-rep(NA,m)

elr3<-rep(NA,m)

for (j in 1:m) {

if (dist=="exp")

x<-rexp(n,rate=1)

if (dist=="chisq")

x<-rchisq(n,df=1)

if (dist=="lnorm")

x<-rlnorm(n)

y<-(x[1:mid]+x[(mid+1):n])/2

z<-rep(NA,mid)

for (i in 1:mid) {

z[i]<-min(x[i],x[mid+i])

}

fit1<-el.cen.EM.G(x,d,fun1,mu,err)

elr1[j]<-fit1$’-2LLR’

fit2<-el.cen.EM.G2(x,d,fun1,fun2,mu)

elr2[j]<-fit2$adjllr

elr3[j]<-llr(mu,y,z,sp)

if (cali)

quan<-qf(0.95,1,n-2)

else

quan<-qchisq(0.95,1)

}

list(CP1=mean(elr1<=quan),CP2=mean(elr2<=qchisq(0.95,1)),
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CP3=mean(elr3<=qchisq(0.95,1)))

}

### The functions to estimete Gini index

### and Gini’s absolute mean difference

Giniest<-function(x){

n<-length(x)

tm<-sort(x)

jump0<-rep(1/n,n)

mu<-mean(x)

return ((2*mean((2*cumsum(jump0)-1)*tm))/(2*mu))

}

GMDest<-function(x){

n<-length(x)

tm<-sort(x)

jump0<-rep(1/n,n)

return (2*mean((2*cumsum(jump0)-1)*tm))

}

### The function used in Qin et al’s (2011) method ###

h1<-function(x,jp) {

n<-length(jp)

temp1<-x*cumsum(jp)

temp2<-rev(cumsum(rev(x[1:n])))/n

return (temp1+temp2)

}
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### The function used in Peng’s method ###

f<-function(x,Mu) {

n<-length(x)

mid<-n/2

y<-(x[1:mid]+x[(mid+1):n])/2

z<-rep(NA,mid)

for (i in 1:mid) {

z[i]<-min(x[i],x[mid+i])

}

return (y-z-y*Mu)

}

### The function to generate EM

### confidence interval using our method

findELci<-function(x,fun,err,alpha,lower,upper,by,step,cali=FALSE) {

n<-length(x)

d<-rep(1,n)

theta<-seq(lower,upper,by)

ELR<-rep(NA,length(theta))

if (cali)

quan<-qf(1-alpha,1,n-2)

else

quan<-qchisq(1-alpha,1)

for (i in 1:length(theta)) {

ELR[i]<-el.cen.EM.G(x,d,fun,theta[i],err)$’-2LLR’

}
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Lower<-min(theta[ELR<=quan])

Upper<-max(theta[ELR<=quan])

l<-lower

u<-upper

while (Lower==theta[1] || Upper==theta[length(theta)]) {

if (Lower==theta[1] && Upper!=theta[length(theta)]) {

l<-l-step

theta2<-seq(l+by,l+step-by,by)

ELR2<-rep(NA,length(theta2))

for (i in 1:length(theta2)) {

ELR2[i]<-el.cen.EM.G(x,d,fun,theta2[i],err)$’-2LLR’

}

theta<-c(theta2,theta)

ELR<-c(ELR2,ELR)

}

else if (Lower!=theta[1] && Upper==theta[length(theta)]) {

u<-u+step

theta2<-seq(u-step+by,u-by,by)

ELR2<-rep(NA,length(theta2))

for (i in 1:length(theta2)) {

ELR2[i]<-el.cen.EM.G(x,d,fun,theta2[i],err)$’-2LLR’

}

theta<-c(theta,theta2)

ELR<-c(ELR,ELR2)

}

else if (Lower==theta[1] && Upper==theta[length(theta)]) {

l<-l-step
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theta2<-seq(l+by,l+step-by,by)

ELR2<-rep(NA,length(theta2))

for (i in 1:length(theta2)) {

ELR2[i]<-el.cen.EM.G(x,d,fun,theta2[i],err)$’-2LLR’

}

theta<-c(theta2,theta)

ELR<-c(ELR2,ELR)

u<-u+step

theta2<-seq(u-step+by,u-by,by)

ELR2<-rep(NA,length(theta2))

for (i in 1:length(theta2)) {

ELR2[i]<-el.cen.EM.G(x,d,fun,theta2[i],err)$’-2LLR’

}

theta<-c(theta,theta2)

ELR<-c(ELR,ELR2)

}

Lower<-min(theta[ELR<=quan])

Upper<-max(theta[ELR<=quan])

}

plot(theta,ELR,cex=0.5,xlab="Theta",ylab="-2logELR",

main="Empirical Likelihood Ratio Confidence Interval")

abline(h=3.84)

abline(v=Lower)

abline(v=Upper)

return (c(Lower,Upper))

}
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### The function to generate EM confidence interval using ###

### Qin et al.’s method (2011) ###

findELci2<-function(x,fun1,fun2,alpha,lower,upper,by,step) {

n<-length(x)

d<-rep(1,n)

theta<-seq(lower,upper,by)

ELR<-rep(NA,length(theta))

for (i in 1:length(theta)) {

ELR[i]<-el.cen.EM.G2(x,d,fun1,fun2,theta[i])$adjllr

}

Lower<-min(theta[ELR<=qchisq(1-alpha,1)])

Upper<-max(theta[ELR<=qchisq(1-alpha,1)])

l<-lower

u<-upper

while (Lower==theta[1] || Upper==theta[length(theta)]) {

if (Lower==theta[1] && Upper!=theta[length(theta)]) {

l<-l-step

theta2<-seq(l+by,l+step-by,by)

ELR2<-rep(NA,length(theta2))

for (i in 1:length(theta2)) {

ELR2[i]<-el.cen.EM.G2(x,d,fun1,fun2,theta2[i])$adjllr

}

theta<-c(theta2,theta)

ELR<-c(ELR2,ELR)

}

else if (Lower!=theta[1] && Upper==theta[length(theta)]) {
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u<-u+step

theta2<-seq(u-step+by,u-by,by)

ELR2<-rep(NA,length(theta2))

for (i in 1:length(theta2)) {

ELR2[i]<-el.cen.EM.G2(x,d,fun1,fun2,theta2[i])$adjllr

}

theta<-c(theta,theta2)

ELR<-c(ELR,ELR2)

}

else if (Lower==theta[1] && Upper==theta[length(theta)]) {

l<-l-step

theta2<-seq(l+by,l+step-by,by)

ELR2<-rep(NA,length(theta2))

for (i in 1:length(theta2)) {

ELR2[i]<-el.cen.EM.G2(x,d,fun1,fun2,theta2[i])$adjllr

}

theta<-c(theta2,theta)

ELR<-c(ELR2,ELR)

u<-u+step

theta2<-seq(u-step+by,u-by,by)

ELR2<-rep(NA,length(theta2))

for (i in 1:length(theta2)) {

ELR2[i]<-el.cen.EM.G2(x,d,fun1,fun2,theta2[i])$adjllr

}

theta<-c(theta,theta2)

ELR<-c(ELR,ELR2)

}
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Lower<-min(theta[ELR<=qchisq(1-alpha,1)])

Upper<-max(theta[ELR<=qchisq(1-alpha,1)])

}

plot(theta,ELR,cex=0.5,xlab="Theta",ylab="-2logELR",

main="Empirical Likelihood Ratio Confidence Interval")

abline(h=3.84)

abline(v=Lower)

abline(v=Upper)

return (c(Lower,Upper))

}

### The function to generate confidence

### interval using Peng’s method (2011) ###

findci<-function(x,sp,alpha,lower,upper,by,step) {

n<-length(x)

mid<-n/2

y<-(x[1:mid]+x[(mid+1):n])/2

z<-rep(NA,mid)

for (i in 1:mid) {

z[i]<-min(x[i],x[mid+i])

}

theta<-seq(lower,upper,by)

ELR<-rep(NA,length(theta))

for (i in 1:length(theta)) {

ELR[i]<-llr(theta[i],y,z,sp)

}

Lower<-min(theta[ELR<=qchisq(1-alpha,1)])
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Upper<-max(theta[ELR<=qchisq(1-alpha,1)])

l<-lower

u<-upper

while (Lower==theta[1] || Upper==theta[length(theta)]) {

if (Lower==theta[1] && Upper!=theta[length(theta)]) {

l<-l-step

theta2<-seq(l+by,l+step-by,by)

ELR2<-rep(NA,length(theta2))

for (i in 1:length(theta2)) {

ELR2[i]<-llr(theta2[i],y,z,sp)

}

theta<-c(theta2,theta)

ELR<-c(ELR2,ELR)

}

else if (Lower!=theta[1] && Upper==theta[length(theta)]) {

u<-u+step

theta2<-seq(u-step+by,u-by,by)

ELR2<-rep(NA,length(theta2))

for (i in 1:length(theta2)) {

ELR2[i]<-llr(theta2[i],y,z,sp)

}

theta<-c(theta,theta2)

ELR<-c(ELR,ELR2)

}

else if (Lower==theta[1] && Upper==theta[length(theta)]) {

l<-l-step

theta2<-seq(l+by,l+step-by,by)
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ELR2<-rep(NA,length(theta2))

for (i in 1:length(theta2)) {

ELR2[i]<-llr(theta2[i],y,z,sp)

}

theta<-c(theta2,theta)

ELR<-c(ELR2,ELR)

u<-u+step

theta2<-seq(u-step+by,u-by,by)

ELR2<-rep(NA,length(theta2))

for (i in 1:length(theta2)) {

ELR2[i]<-llr(theta2[i],y,z,sp)

}

theta<-c(theta,theta2)

ELR<-c(ELR,ELR2)

}

Lower<-min(theta[ELR<=qchisq(1-alpha,1)])

Upper<-max(theta[ELR<=qchisq(1-alpha,1)])

}

plot(theta,ELR,cex=0.5,xlab="Theta",ylab="-2logELR",

main="Empirical Likelihood Ratio Confidence Interval")

abline(h=3.84)

abline(v=Lower)

abline(v=Upper)

return (c(Lower,Upper))

}

181



### The function to compare the average

### length of the confidence intervals

### using three methods ###

AVL_Comp<-function(n,m,fun1,fun2,mu,err,alpha,

lower,upper,by,step,sp,dist,cali=FALSE) {

d<-rep(1,n)

mid<-n/2

avl1<-rep(NA,m)

avl2<-rep(NA,m)

avl3<-rep(NA,m)

cp1<-0

cp2<-0

cp3<-0

for (j in 1:m) {

if (dist=="exp")

x<-rexp(n,rate=1)

if (dist=="chisq")

x<-rchisq(n,df=1)

if (dist=="lnorm")

x<-rlnorm(n)

y<-(x[1:mid]+x[(mid+1):n])/2

z<-rep(NA,mid)

for (i in 1:mid) {

z[i]<-min(x[i],x[mid+i])

}
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if (cali)

quan<-qf(1-alpha,1,n-2)

else

quan<-qchisq(1-alpha,1)

ci1<-findELci(x,fun1,err,alpha,lower,upper,by,step,cali)

ci2<-findELci2(x,fun1,fun2,alpha,lower,upper,by,step)

ci3<-findci(x,sp,alpha,lower,upper,by,step)

if (el.cen.EM.G(x,d,fun1,mu,err)$’-2LLR’<=quan)

cp1<-cp1+1

if (el.cen.EM.G2(x,d,fun1,fun2,mu)$adjllr<=qchisq(1-alpha,1))

cp2<-cp2+1

if (llr(mu,y,z,sp)<=qchisq(1-alpha,1))

cp3<-cp3+1

avl1[j]<-ci1[2]-ci1[1]

avl2[j]<-ci2[2]-ci2[1]

avl3[j]<-ci3[2]-ci3[1]

}

list(CP1=cp1/m,CP2=cp2/m,CP3=cp3/m,AVL1=mean(avl1),AVL2=mean(avl2)

,AVL3=mean(avl3))

}

Copyright c© Zhiyuan Shen, 2016.
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