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ABSTRACT OF DISSERTATION

Polytopes Arising from Binary Multi-way Contingency Tables and Characteristic
Imsets for Bayesian Networks

The main theme of this dissertation is the study of polytopes arising from binary
multi-way contingency tables and characteristic imsets for Bayesian networks.

Firstly, we study on three-way tables whose entries are independent Bernoulli ran-
dom variables with canonical parameters under no three-way interaction generalized
linear models. Here, we use the sequential importance sampling (SIS) method with
the conditional Poisson (CP) distribution to sample binary three-way tables with the
sufficient statistics, i.e., all two-way marginal sums, fixed. Compared with Monte
Carlo Markov Chain (MCMC) approach with a Markov basis (MB), SIS procedure
has the advantage that it does not require expensive or prohibitive pre-computations.
Note that this problem can also be considered as estimating the number of lattice
points inside the polytope defined by the zero-one and two-way marginal constraints.
The theorems in Chapter 2 give the parameters for the CP distribution on each
column when it is sampled. In this chapter, we also present the algorithms, the
simulation results, and the results for Samson’s monks data.

Bayesian networks, a part of the family of probabilistic graphical models, are
widely applied in many areas and much work has been done in model selections for
Bayesian networks. The second part of this dissertation investigates the problem of
finding the optimal graph by using characteristic imsets, where characteristic imsets
are defined as 0-1 vector representations of Bayesian networks which are unique up to
Markov equivalence. Characteristic imset polytopes are defined as the convex hull of
all characteristic imsets we consider. It was proven that the problem of finding optimal
Bayesian network for a specific dataset can be converted to a linear programming
problem over the characteristic imset polytope [51]. In Chapter 3, we first consider
characteristic imset polytopes for all diagnosis models and show that these polytopes
are direct product of simplices. Then we give the combinatorial description of all
edges and all facets of these polytopes. At the end of this chapter, we generalize
these results to the characteristic imset polytopes for all Bayesian networks with a
fixed underlying ordering of nodes.

Chapter 4 includes discussion and future work on these two topics.

KEYWORDS: Sequential importance sampling, Conditional Poisson, Counting prob-
lem, Learning Bayesian networks, Characteristic imset polytope
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Chapter 1 Introduction

1.1 Sequential importance sampling with conditional Poisson distribu-

tion

Zero-one tables are widely used in many areas. For example, they are used to repre-

sent relational data in social networks [35], data in educational / psychological tests

(say, Rasch model in [43]), occurrence matrices in ecological studies [9], etc. Zero-one

tables are part of sparse contingency tables. It commonly occurs that the number of

variables grows faster than the sample size, and those goodness-of-fit tests which are

usually performed based on large sample approximation to the null distribution of

test statistics (such as Pearson’s χ2 statistic and likelihood ratio G2 statistic) may be

poor because many expected cell counts are small or even zero [29]. To deal with this

issue, we propose to estimate the p-values of goodness-of-fit tests by sampling tables.

One can find applications of sampling zero-one constrained contingency tables in com-

binatorics [31], statistics of social networks [8, 50], and regulatory networks [20]. We

are going use an example to illustrate how to estimate the p-values of goodness-of-fit

tests via sampling tables.

Table 1.1 gives an example of occurrence matrix for Darwin’s Finch Data [9] where

the rows correspond to species and the columns correspond to geological locations.

If one species presents at one location, then the corresponding cell has entry “1”,

otherwise the entry is “0”. Some other occurrence matrices can be found in [12].

A question that ecologists may ask is “Is the pattern of occurrence of finches on

the islands a result of chance, or is there an affection of competitive pressures?”.

Translated into statistical language, the question becomes ”Is there an interaction

between the adaptability of species and environment of islands?”, i.e. ”Are these

1
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two variables independent?”. Considering a null hypothesis to be the independence

between the two variables, the sufficient statistics will be the row sums and column

sums [2]. Hence, under this null hypothesis, the observed table can be considered as

an observation sampled from a uniform distribution over the set of all possible zero-

one tables with the same row and column sums. Many test statistics were suggested

for this hypothesis over the past few decades [44, 47]. We will take the one suggested

by Roberts and Stone in [44] to illustrate how to carry out these tests via sampling

contingency tables, and other tests can be carried out similarly based on different

test statistics. The procedure is as following: first, we sample X1, . . . ,XN i.i.d. and

uniformly from Σ, where Σ is the set of all zero-one tables which share the same row

sums and column sums with x0, the observed table; second, since the test statistic

proposed in [44] is defined as

S̄2(X) =
1

m(m− 1)

∑
i �=j

s2ij

where m is the number of species, sij is the ith row and jth column element in ma-

trix XXT where X is the occurence matrix, the conditional inference p-value (see

more details in Section 1.1.1) will be defined as the expected value of an indicator func-

tion based on this test statistic, i.e. Ep[1S̄2(X)≥S̄2(x0)(X)|fixed row sums and column

sums] where p(·) is the hypergeometric distribution, which degenerate to the uniform

distribution in this case, on Σ; last, we approximate the conditional inference p-

value using 1
N

N∑
i=1

1S̄2(Xi)≥S̄2(x0)(Xi) which is an unbiased estimator of the conditional

inference p-value [9].

In Section 1.1, we will first review the general idea of how to use sequential impor-

tance sampling (SIS) procedure to sample contingency tables with linear constraints.

Then we recall the concept of conditional Poisson (CP) distribution and explain how

to apply it in SIS procedures. Next we will introduce the main results in [9] and [8]

on how to use SIS procedures with CP distribution to sample zero-one two-way tables

3



with fixed row sums and column sums. We will end this section with an algebraic

geometric view of SIS procedure.

1.1.1 Sequential importance sampling (SIS)

In this section, we are going to illustrate how SIS procedures are used to sample

contingency tables with linear constraints which come from the sufficient statistics of

a specific model, and what kind of advantages these SIS procedures have.

Consider a contingency table X which can be vectorized as X = (x1, · · · , xt),

where t is the number of cells inX. Suppose the cell counts x1, . . . , xt are independent

Poisson random variables, and the expected frequencies are μ1, . . . , μt for the t cells,

respectively. Then a log-linear model for contingency tables is that ∃ a sequence

of constants h = (h1, . . . , ht) ∈ Rt, a matrix of integers A = (aij)nλ×t ∈ Znλ×t such

that 1T
t is in the row span of A, and a vector of parameters λ = (λ1, . . . , λnλ

) ∈ Rnλ

satisfying

logμj = hj +

nλ∑
i=1

aijλi , j = 1, . . . , t. (1.1.1)

Note that Equation (1.1.1) gives a generalization of the well known form of the

saturated loglinear model for two-way m× n contingency tables [2, Section 8.1.3]:

logμij = λ+ λM
i + λN

j + λMN
ij , (1.1.2)

for i = 1, . . . ,m and j = 1, . . . , n, where M and N denote the two nominal-scale

factors. If we let h be a vector with all zeros, let λ = (λ, λM
1 , . . . λM

m , λN
1 , . . . , λ

MN
mn ),

and let A be the design matrix for this model, then Equation (1.1.1) and Equation

(1.1.2) coincide.

Recall that a fundamental statistical result [2] says that given the sum of all cells

in the table nx =
t∑

j=1

xj, the conditional distribution of (x1, · · · , xt) is the multinomial

4



distribution Mult(nx,p) where p = (μ1

nx
, . . . , μt

nx
). Thus the likelihood function is:

LA,h(λ | X) =
nx!

x1! · · · xt!

t∏
j=1

(
μj

nx

)xj

=
n−nx
x nx!

x1! · · · xt!

t∏
j=1

(exp{hj +

nλ∑
i=1

aijλi})xj

=
n−nx
x nx!

x1! · · · xt!

t∏
j=1

(ehj)xj · exp{
t∑

j=1

nλ∑
i=1

aijλixj}

=
n−nx
x nx!

x1! · · · xt!

t∏
j=1

(ehj)xj · exp{
nλ∑
i=1

λi

t∑
j=1

aijxj}

=
n−nx
x nx!

x1! · · · xt!

t∏
j=1

(ehj)xj · exp{λT (AX)}. (1.1.3)

Equation (1.1.3) implies that AX are sufficient statistics of the log-linear model de-

fined in Equation (1.1.1). In fact, we have the conditional likelihood function:

LA,h(λ | X,AX = b) =

n−nx
x nx!
x1!···xt!

t∏
j=1

(ehj)xj · exp{λT (AX)}

∑
Y=(y1,...,yt)∈Zt, AY=b

n
−ny
y ny !

y1!···yt!
t∏

j=1

(ehj)yj · exp{λT (AY)}

=

nx!
x1!···xt!

t∏
j=1

(ehj)xj

∑
Y=(y1,...,yt)∈Zt, AY=b

ny !

y1!···yt!
t∏

j=1

(ehj)yj

∝ nx!

x1! · · · xt!

t∏
j=1

(ehj)xj , (1.1.4)

which implies that conditional likelihood inference for a log-linear model given AX =

b does not rely on the value of λ, and hence in some articles they are called nuisance

parameters [1].

The distribution showed in Equation (1.1.4) is called the hypergeometric distri-

bution. Similarly with the Darwin’s Finch Data example in the beginning of Section

1.1, the resulting statistical tests can be carried out by computing the expected val-

ues of certain test statistics over the set Σ = {X ∈ Zt
+ : AX = b} with respect

to this distribution. More specifically, a conditional inference p-value [10] is an

5



expected value of the form Ep[f(X)|AX = b], where p is the underlying distribution

over Σ, i.e. the hypergeometric distribution, and f(X) is a function of X defined

based on a certain test statistic. This p-value can be estimated by 1
N

N∑
i=1

f(Xi), where

X1, . . . ,XN are sampled from the hypergeometric distribution over Σ. For example,

given the observed table x0, the corresponding function f(·) for the conditional infer-

ence p-value of the Exact Test can be defined as f(X) = 1p(X)≤p(x0)(X), where p(·)

is the hypergeometric distribution over Σ.

In this dissertation, we will focus on sampling with uniform distribution instead of

hypergeometric distribution for two reasons: first, assuming identical hi’s, i = 1, . . . , t,

the hypergeometric distribution for zero-one tables will degenerate to the uniform

distribution; second, sampling with hypergeometric distribution is hard for sparse

tables, in contrast, we can use the uniform distribution as the underlying distribution

p in Ep[f(X)|AX = b] for contingency tables without zero-one constraints, and carry

out volume tests [18] for a variety of test statistics via sampling over Σ uniformly.

In [18], Diaconis and Efron illustrated this topic with an example of the volume test

based on the Pearsons χ2 statistic χ2(X) =
t∑

j=1

ej−xj

ej
, where e = (e1, . . . , et) is the

maximum likelihood estimate of the cell counts under the log-linear model: given the

observed table x0, the p-value of this volume test is Ep[1χ2(X)≥χ2(x0)(X)|AX = b],

where p is the uniform distribution over Σ, and this p-value can be interpreted as

the ratio of number of tables in {X ∈ Σ : χ2(X) ≥ χ2(x0)} to the total number of

tables in Σ. They claimed that this volume test is adjusted for the disadvantage in

Pearsons χ2 test that: for large t, Pearsons χ2 test tends to almost always reject the

null hypothesis, and in general, little information can be obtained from the value of

χ2(X) once the null hypothesis of independence is rejected. Volume tests based on

other test statistics can be defined similarly with this example.

In practice when the rows of A are not linearly independent, we can choose a

matrix A which collects a subset of rows of A but still remains the same row space,
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where it is obvious that AX are still sufficient statistics of log-linear model (1.1.1) and

the set Σ is the same with the set {X ∈ Zt
+ : AX = b}. Note here the rows of A may

not necessarily be linearly independent, which implies that AX may not be minimal

sufficient statistics, and we can choose a proper A based on models (see the case of

no three-way interaction model in Section 2.1 for example). In the following context

of Chapter 1 and Chapter 2, we will focus on sampling over the set of all contingency

tables which satisfies the linear constraints AX = b, i.e. the set Σ, uniformly, where

in practice a specific b is decided by the observed table.

Let Σ be the set of contingency tables defined above and we assume Σ �= ∅ in this

dissertation. Our goal is sampling a table X uniformly from Σ. Notice that Σ can be

written as

Σ = {X ∈ Zt | AX = b,X ≥ 0}, (1.1.5)

where the design matrix A ∈ Zr×t and vector b ∈ Zr define the r linear constrains. A

simple example is sampling a 2×3 contingency table which has row sums r = (r1, r2)

and column sums c = (c1, c2, c3), then:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

X = (x11, x12, x13, x21, x22, x23)
T

& b = (r1, r2, c1, c2, c3)
T ,

where xij is the entry in ith row and jth column. These constraints come from the

sufficient statistics of the independence model. Under other models, say, diagonal

models, quasi-independence models [30], uniform association models [28], we will

have some linear constraints in addition to the row sums and column sums.

Let p(X) = 1/|Σ|, ∀X ∈ Σ, be the uniform distribution over Σ, where |Σ| is the

number of elements in Σ. Let q(·) be a trial distribution such that q(X) > 0 for all
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X ∈ Σ, and it is designed to be a distribution close to p(X). Then we have

Eq

[
1

q(X)

]
=
∑
X∈Σ

1

q(X)
q(X) = |Σ|.

Thus we can estimate |Σ|, i.e. the total number of tables in Σ, by

|̂Σ| = 1

N

N∑
i=1

1

q(Xi)
,

where X1, . . . ,XN are tables drawn iid from q(X). Here, this proposed distribution

q(X) is the distribution to sample tables via the SIS procedure.

Now by the multiplication rule we have

q(X = (x1, · · · , xt)) = q(x1)q(x2|x1)q(x3|x2, x1) · · · q(xt|xt−1, . . . , x1).

After computing the lower bound and upper bound for every cell count xi of X given

previous cells x1, . . . , xi−1 (see more details in Section 1.3.1), we are able to sample

each cell from an interval of integers (a sequence of consecutive integers) and compute

q(xi|xi−1, . . . , x1), i = 2, 3, . . . , t.

Note that we may have rejections because tables may be sampled from a big-

ger set Σ∗ such that Σ ⊂ Σ∗. In this case, as long as conditional probabilities

q(xi|xi−1, . . . , x1), i = 2, 3, . . ., and q(x1) are normalized, q(X) is normalized over Σ∗

since ∑
X∈Σ∗ q(X) =

∑
x1,...,xt

q(x1)q(x2|x1)q(x3|x2, x1) · · · q(xt|xt−1, . . . , x1)

=
∑

x1
q(x1)

[∑
x2
q(x1|x2)

[
· · ·
[∑

xt
q(xt|xt−1, . . . , x1)

]]]
= 1.

Thus we have

E

[
IX∈Σ
q(X)

]
=
∑
X∈Σ∗

IX∈Σ
q(X)

q(X) = |Σ|, (1.1.6)

where IX∈Σ is an indicator function for the set Σ. This implies that the estimator is

unbiased.
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Therefore, SIS procedure proceeds by simply sampling cell entries of the contin-

gency table sequentially and terminates at the last cell such that the final distribution

approximates the target distribution. It also uses the principle of importance sam-

pling in estimating the total number of tables:

|Σ| =
∑
X∈Σ

1

p(X)
p(X) =

∑
X∈Σ∗

1

p(X)

p(X)

q(X)
q(X),

where p(X)
q(X)

is called the importance sampling weight, and this means that sampling

1
p(X)

from p(X) is equivalent to sampling 1
p(X)

p(X)
q(X)

= 1
q(X)

from q(X). In addition,

because the tables are sampled separately, they are sampled independently and iden-

tically distributed (iid) from the proposal distribution.

Comparing with Monte Carlo Markov Chain (MCMC) approach with a Markov

basis (MB) [19], there are two advantages of SIS procedure. First, SIS procedure

does not require expensive or prohibitive pre-computations. In contrast, the compu-

tational problem of a MB can be hard. Recall the definition for a MB:

Definition 1.1.1. [10] Define the kernel (null space) for matrix A as kerZ(A) =

{X ∈ Zt|AX = 0} and m is called a Markov move if m ∈ kerZ(A). A Markov

basis MA for A is a subset of the kerZ(A) such that for each pair of vectors u, v ∈ Zt
+

with Au = Av, there is a sequence of Markov moves mi ∈ MA, i = 1, . . . , k, such

that

u = v +
k∑

i=1

mi, 0 ≤ v +

j∑
i=1

mi, j = 1, . . . , k.

A method to compute Markov moves that connect all tables with given constrains

was given in [19], but it cannot compute the moves in some large logistic regression

examples. In fact, it was proved that the number of MB elements can be arbitrary

large for three-way contingency tables with fixed two-way marginals [15]. Second,

the SIS procedure is guaranteed to sample a table from the proposal distribution if

there is no rejection, while in an MCMC approach the chain may take a long time to
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converge to a stationary distribution in order to satisfy the independent condition,

and what makes it worse is that the time complexity may be unknown.

1.1.2 SIS procedure with conditional Poisson (CP) distribution

In this section, we first explain why we need to develop a special SIS method only

for zero-one contingency tables. Secondly, we review what is conditional Poisson

(CP) distribution, and how to use it to generate a vector. Lastly, we introduce

how to sample zero-one tables with linear constrains using SIS procedures with CP

distribution.

The SIS procedure in Section 1.1.1 can also be used to sample zero-one tables.

In order to do this, we need to define “slack” variables Y as Y = 1t − X so that

we can write the set Σ in the form of Σ = {X ∈ Zt | A′X′ = b′,X′ ≥ 0}, where

X′ = (XT ,YT )T , and A′ and b′ define the constrains which include both marginal

sums and zero-one conditions (see more details in Section 1.3.1). Let’s continue to

use the simple example in the Section 1.1.1. To use the SIS procedure in Section 1.1.1

to sample a zero-one 2 × 3 table which has row sums r = (r1, r2) and column sums

10



c = (c1, c2, c3), we define:

A′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

X = (x11, x12, x13, x21, x22, x23)

Y = (y11, y12, y13, y21, y22, y23)

X′ = (XT ,YT )T

b′ = (r1, r2, c1, c2, c3, 1, 1, 1, 1, 1, 1)
T ,

where xij is the entry of the zero-one 2 × 3 table in ith row and jth column. Thus

the number of variables is doubled by adding the slack variables, and this can make

the problem exponentially harder when the table is large.

In [9], Chen et al introduced a sequential importance sampling (SIS) procedure

to sample zero-one two-way tables with given fixed marginal sums, i.e. row and

column sums, via the conditional Poisson (CP) distribution. Compared with the SIS

procedures in Section 1.1.1, it proceeds by sampling columns, but not cell entries, of

the zero-one contingency table sequentially and terminates at the last column.

Before we go any further, the definition of the conditional Poisson distribution

must be clarified.

Definition 1.1.2. [9] Let

Z = (Z1, . . . , Zl)

be independent Bernoulli trials with probability of successes p = (p1, . . . , pl), where l
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is the length of Z. Then the random variable

SZ = Z1 + · · ·+ Zl

has a Poisson–binomial distribution. The conditional Poisson (CP) distribu-

tion is defined as the conditional distribution of Z given SZ, i.e. Z | SZ. Now let

wk = pk/(1− pk), where pk ∈ (0, 1), be the “weight” of the kth cell. Then

P (Z1 = z1, . . . , Zl = zl|SZ = l0) ∝
l∏

k=1

wzk
k , (1.1.7)

i.e. the conditional probability is proportional to the product of weights of those cells

who have “1” as their entries.

Sampling a zero-one vector of length l means choosing l0 among the l cells to have

entry ones. There are
(
l
l0

)
many choices where the probability of picking each choice

is calculated via the CP distribution. The details of this algorithm was introduced in

[7]. Denote [l] = {1, 2, . . . , l} as the set of all cells in the vector, and l0 of them need

to be drawn one by one to have entry ones. Let Ak ⊂ [l], be the set of selected cells

after k cells are selected, k = 0, . . . , l0. Thus A0 = ∅, and Al0 is the set we want to

obtain. By induction, all we need to show is how to get Ak from Ak−1. Define the

complement sets Ac
k = [l]\Ak, k = 0, . . . , l0. Assuming we have selected k − 1 cells

and stored them in Ak−1, then according to [7], the probability of choosing j ∈ Ac
k−1

to be the new selected cell is:

P (j, Ac
k−1) =

wjR(l0 − k,Ac
k−1 − j)

(l0 − k + 1)R(l0 − k + 1, Ac
k−1)

,

where

R(s, A) =
∑

B⊂A,|B|=s

(∏
i∈B

wi

)
and the function R(s, A) can be calculated using the recursive formula

R(s, A) = R(s, A\{s}) + wsR(s− 1, A\{s}).

12



Notice that the value R(l0, [l]) =
∑

B⊂[l],|B|=l0

(∏
i∈B wi

)
is exactly the normalizing

constant for Equation (1.1.7).

For example, suppose we want to sample Z = (Z1, Z2, Z3, Z4) given SZ = 2 where

the weights are w1, w2, w3, w4, respectively. We start with A0 = ∅ and draw the first

cell from a multinomial distribution with probabilities P (j, [4]), where j = 1, .., 4 and

[4] = {1, 2, 3, 4}. Suppose the first cell is 2, then A1 = {2}. Then we draw the second

cell from a multinomial distribution with probabilities P (j, {1, 3, 4}), j = 1, 3, 4.

Suppose the second cell is 3, then A2 = {2, 3}, i.e. we obtain a sample (0, 1, 1, 0) from

the CP distribution. A useful trick is that when l0 > l/2, sampling Z is equivalent

to sampling Z ′ = 1T
l − Z given S ′

Z = l − l0 where weights w′
k = 1/wk, k = 1, . . . , l.

To apply the CP distribution to sampling zero-one two-way tables with fixed row

sums and column sums, we can simply consider each column to be a random vector

which follows a CP distribution where vector sums are the column sums and the

weights can be determined by row sums [9, 8].

Theorem 1.1.3. [9, Theorem 1] For the uniform distribution over all m × n zero-

one tables with given row sums r1, . . . , rm and first column sum c1, the marginal

distribution of the first column is the same as the conditional distribution of Z given

SZ = c1 with pi = ri/n.

The idea of the proof has two steps. First, imaging that we randomly select ri

cells in the ith row to put entry ones, i = 1, . . . ,m. Because every choice for a single

row is equally possible and rows are determined independently, the table we generate

is sampled uniformly from the set of all zero-one m× n tables which have row sums

r1, . . . , rm, and the chance that the (i, 1)th cell has entry one in the specific table

is
(
n−1
ri−1

)
/
(
n
ri

)
= ri

n
., i.e. pi. Hence the first column can be considered as a vector

of independent Bernoulli random variables with success probabilities (p1, . . . , pm).

Second, we reject the table in the first step if its first column sum is not c1, then the

distribution of the first column becomes a CP distribution specified in the theorem.
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Therefore, CP distribution is the desired marginal distribution of the first column in

the zero-one two-way tables given the marginal sums.

Based on Theorem 1.1.3, an SIS procedure with CP distribution goes as following:

first, sample the first column with CP distribution where weights are determined ac-

cording to Theorem 1.1.3; second, remove the first column so that we have a subtable

which contains the rest n− 1 columns; third, consider the subtable to be a new table

with updated row sums and column sums, and repeat the first two steps until only

one column left, in which case the value of this column will be fixed. For table X,

denote the columns of the table as x1, . . . ,xn. Again by multiplication rule:

q(X = (x1, · · · ,xn)) = q(x1)q(x2|x1)q(x3|x2,x1) · · · q(xn|xn−1, . . . ,x1).

Note that (1) every time before generating a column, we should check if there is any

trivial cases, i.e. ∃ ri
n
(or ci

m
) = 0 (or 1). If there is, then we should fill the whole row

(or column) with 0 (or 1), remove it and update the marginal sums; (2) every time

after generating a column xj, we use Equation (1.1.7) to compute the probability

that xj takes the specific vector, i.e. the probability q(xj|xj−1, . . . ,x1), so that the

probability of the whole table X can be obtained by the product of this series of

probabilities of columns. Figure 1.1 gives an example of sampling a 3 × 4 zero-one

table using SIS procedure via CP distribution given row sums (2, 1, 3) and column

sums (2, 1, 1, 2).

The issue of rejection raises because the feasibility of the subtable is not considered

when the previous column is sampled, so when there is no feasible solution for the

subtable we will reject the sample X in process and record IX∈Σ = 0 (see Equation

(1.1.6)). An example of this type of rejection in sampling a 4× 4 zero-one table with

14



2
1
3

2
(a)

2
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0

(b)

1
1
2

2 1

1

1
0

q(x1)

(c)

1
1
2

2 1

1

1
0

0

0
1

q(x1)q(x2|x1)1
(d)

Figure 1.1: An example of sampling a 3 × 4 zero-one table using SIS via CP distri-
bution

(a), start with the first column; (b), sample the first column with CP distribution, get (1, 0, 1); (c),

compute the probability of x1 = (1, 0, 1), remove x1, update the row sums for the 3× 3 subtable

and look at the first column of the subtable; (d), repeat (b) and (c) until a whole table is sampled.

row sums (2, 1, 2, 3) and column sums 2, 2, 1, 3 is given as below:

0 2

0 1

1 2

1 3

2

−→

0 2

1 1

1 1

0 2

2

−→

2

0 0 0

0 0 0

2

1

−→
2

2

1 3

−→ Reject.

To deal with this issue, in [9], Chen et al figured out an improved SIS procedure

with CP distribution for zero-one two-way tables, which is based on the sufficient

and necessary condition provided by the Gale-Ryser Theorem [25, 45] and never has

rejection. The Gale-Ryser Theorem will be stated after some definitions.

Definition 1.1.4. [9, Definition 1] For any x = (x1, . . . , xn) ∈ Rn, let x[1] ≥ · · · ≥

x[n] denote the components of x in decreasing order. For x,y ∈ Rn, we define x ≺ y

if
k∑

i=1

x[i] ≤
k∑

i=1

y[i], k = 1, . . . , n− 1, and

n∑
i=1

x[i] =
n∑

i=1

y[i].
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When x ≺ y, x is said to be majorized by y (y majorizes x).

Definition 1.1.5. [9, Definition 2] Let x1, x2 . . . , xn be nonnegative integers, and

define

x∗
j = #{xi : xi ≥ j}, j = 1, 2, . . .

The sequence x∗
1, x

∗
2, x

∗
3, . . . is said to be conjugate to x1, x2 . . . , xn. Note that the

conjugate sequence {x∗
i } is always non-increasing and is independent of the order of

the xi’s.

Theorem 1.1.6 (Gale-Rayser Theorm). [25, 45] Let r1, . . . , rm be nonnegative in-

tegers not exceeding n, and c1, . . . , cn be nonnegative integers not exceeding m. A

necessary and sufficient condition for the existence of an m × n zero-one table with

row sums r1, . . . , rm and column sums c1, . . . , cn is that

(c1, . . . , cn) ≺ (r∗1, . . . , r
∗
m), or, equivalently, (r1, . . . , rm) ≺ (c∗1, . . . , c

∗
n).

In [8], Chen extended their SIS procedure to sampling zero-one two-way tables

with given fixed marginal sums with structures, i.e., some cells are fixed to be zero

or one. Since the structural ones can be converted to structural zeros simply by

converting the marginal sums, we only discuss structural zeros for brevity. The cells

which are structural zeros are usually denoted by “[0]”, and we define:

Ω = {(i, j) : (i, j) is a structural zero}.

These structures are not limited in zero-one tables, but can appear in any contingency

tables. And example is given in Table 1.2 to illustrate in what kind of cases we need

to set up structures. The extended theorem is as following:

Theorem 1.1.7. [8, Theorem 1] For the uniform distribution over all m×n zero-one

tables with given row sums r1, . . . , rm, first column sum c1, and the set of structural

zeros Ω, the marginal distribution of the first column is the same as the conditional
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Table 1.2: Different types of cancer separated by gender for Alaska in year 1989

Type of cancer Female Male Total

Lung 38 90 128
Melanoma 15 15 30
Ovarian 18 [0] 18
Prostate [0] 111 111
Stomach 0 5 5

Total 71 221 292

The structural zeros’s are denoted by ”[0]”. For example, females cannot have prostate cancer
so the corresponding cell is fixed to be 0, i.e. a structural zero.

distribution of Z given SZ = c1 with pi = I[(i,1)/∈Ω]ri/(n − gi) where gi is the number

of structural zeros in the ith row.

The strategy is straightforward. Take Figure 1.2 for example. When we sample

[0]

[0] [0]

n=6

r2=2

p2=2/(6-2)
p3=0

Figure 1.2: An example of sampling a 4× 6 zero-one table with structural zeros

the first column of this 4×6 zero-one table, since there are two cells fixed to be 0 in the

second row, we have to assign two ones into the four free cells equally randomly, and

this means that the chance that the (2, 1)th cell get entry one is p2 = 2/(6−2) = 2/4.

In the mean time, the chance that the (3, 1)th cell get entry one p3 = 0 because it is

a structural zero.

In [8], Chen also tried to extend the Gale-Ryser Theorem to find a necessary and

sufficient condition for the existence of zero-one two-way tables with given marginal

sums and a fixed set of structural zeros so that they could design a corresponding
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algorithm which never had rejections. But the corresponding theorem, [8, Theorem

2], was restricted to the special case that there is at most one structural zero in each

row and each column, which usually is not true in practice.

1.1.3 SIS procedure in a algebraic geometric view

In this section, we will review the SIS procedure in Section 1.1.1 in an algebraic

geometric view and point out the main implementation issue in this procedure –

approximating the support of the marginal distribution of each cell. The notation

defined in Section 1.1.1 will be adopted here.

In SIS procedure, we compute the lower bound li and upper bound ui for xi (see

details in Section 1.3.1), and sample xi from the interval of integers [li, ui], i.e. the

sequence of integers li, li+1, . . . , ui− 1, ui, i = 1, . . . , t− 1. In this process, rejections

can happen because for some cells, the supports of their marginal distributions are

not intervals of integers (see Section 1.3.1 for the details about the existence of holes

in the semigroups). In [10], Chen et al defined a property of the design matrix A

with which these rejections can be avoided:

Definition 1.1.8. [10, Definition 3.2] Define the projection operator π1 : Zk → Z by

π1(z1, . . . , zk) = z1. For b ∈ Zr
+ define A−1[b] := {X ∈ Zt

+ : AX = b}. Let a1, . . . , at

be the columns of A, and Ai = (ai, . . . , at), i = 1, . . . , t, be the submatrices of A

that the first i− 1 columns are removed. Then A−1[b] is said to have the sequential

interval property if:

• π1(A
−1[b]) is an interval of integers [l1, u1], and

• for i = 1, . . . , t− 1: if xi ∈ π1(A
−1
i [b− a1x1 − . . .− ai−1xi−1]), then π1(A

−1
i+1[b−

a1x1 − . . .− ai−1xi−1 − aixi]) is also an interval of integers [li+1, ui+1].

Notice that with some orders of the cells A may have the sequential interval

property and others may not, and it is clear that we can avoid the rejection because
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of holes (see Section 1.3.1) as long as we can find one cell ordering (x1, . . . , xt) with

which A−1[b] has the property. Hence finding good ordering of cells is important in

SIS procedure. In the following content of this section, we are going to introduce the

conditions given in [10] which can guarantee that A−1[b] has the sequential interval

property.

We need to recall some definitions [10]. For a Markov move m ∈ kerZ(A), we

define m+ = max{0,m} and m− = max{0,−m}, which implies m = m+ − m−.

Define the polynomial ring Q[y1, . . . , yt] in indeterminates, i.e. polynomial variables,

y1, . . . , yt, one for each cell. Define the toric ideal

IA := 〈yu − yv : Au = Av〉,

where yu := yu1
1 yu2

2 · · · yut
t is the usual monomial notation for a nonnegative integer

vector of exponents u = (u1, . . . , ut). The way to connect a Markov move m to

a polynomial is ym+ − ym−
, for example, the Markov move (1,−1,−1, 1)′ can be

denoted as y1y4 − y2y3. An algebraic result given by [19, Theorem 3.1] says that a

Markov basis always exists independently of the actual values of b, where AX = b

defines the linear constraints. The following propositions give the conditions for the

sequential interval property where lexicographic term order (lex order) is primarily

used to order monomials.

Proposition 1.1.9. [10, Proposition 3.1] Suppose a Markov basis MA = {±m1, . . . ,±mg}

has the property that

• G := {ym+
i − ym−

i , i = 1, . . . , g} is a lex Gröbner basis with ordering y1 > y2 >

· · · > yt on indeterminates and

• suppose the elements of G ∩Q[yi, . . . , yt] are square-free in xi for each i.

Then A−1[b] has the sequential interval property for all b.

The converse proposition is also true.
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Proposition 1.1.10. [10, Proposition 3.2] Let A be a nonnegative integer matrix

such that A−1[b] has the sequential interval property for all b. Then the reduced lex

Gröbner basis G for IA with ordering y1 > y2 > · · · > yt on indeterminates has

G ∩Q[yi, . . . , yt] square-free in xi for all i.

In some cases, the full Markov basis does not satisfy the required conditions that

guarantee the sequential interval property ([10, Example 7.3] gives a 6-way table that

is in this situation). Thus they also studied using the particular values of the margin

constraints b so that a smaller and simpler connecting set, a Markov subbasis MA,b

[10], may be allowed for this specific b. They worked out certain conditions for the

Markov subbasis MA,b such that A−1[b] has the sequential interval property for the

specific b. More details of this topic can be found in [10].

1.2 Model selection in Bayesian networks (BNs)

Bayesian networks (BNs), also known as belief networks, Bayes networks, Bayes(ian)

models or probabilistic directed acyclic graphical models, find their applications in

many areas, such as computational biology, bioinformatics (for example, gene regula-

tory networks, protein structure, gene expression analysis [23] learning epistasis from

GWAS data sets [32]) and medicine [57]. BNs are a part of the family of probabilis-

tic graphical models (GMs). These graphical structures represent information about

probabilistic structures for a statistical model.

In order to define BNs precisely and explicitly, we will recall the basic notation and

definitions in this section. Firstly, we give the definitions of conditional independence

(CI) statements and CI models. Secondly, several types of graphs, including directed

acyclic graphs (DAGs), and related concepts will be defined. Then we introduce the

CI models induced by undirected graphs (UG), i.e. Markov networks, and by DAGs,

i.e. BNs. Lastly, we parameterize the discrete BNs and talk about several properties

of quality criterions that are used as score functions in model selection in BNs.
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1.2.1 Conditional independence (CI) models

The notation and definitions about CI statements and CI models in this section can

be found in [51, § 2.2.1 – § 2.2.3].

Let N be a set of random variables. A disjoint triplet over N is a triplet

〈A, B | C〉 of pairwise disjoint subsets of N . The class of all disjoint triplets over N

is denoted by T (N).

Definition 1.2.1. [51, § 2.2.1] A conditional independence (CI) statement

over N is a statement of the form “A is conditionally independent of B given C” where

A, B, C ⊆ N are pairwise disjoint subsets of N . We can denote such a statement

by 〈A, B | C〉 ∈ T (N). Notice that a CI statement should always be understood with

respect to a certain mathematical object o over N (for example, a probability measure

over N , or a graph over N), in which sense we denote it by A ⊥⊥ B | C [o] where

[o] is sometimes omitted if the omission does not result in confusion or hesitancy in

reading.

Definition 1.2.2. [51, § 2.2.1] For any class M ⊆ T (N) of disjoint triplets over

N , if we define 〈A, B | C〉 ∈ M as a CI statement with respect to M, i.e.

A ⊥⊥ B | C [M], then M, which can be considered as a formalization of proba-

bilistic relationships between variables in N , can be interpreted as a conditional

independence (CI) model. We also use the same noun for the set of probability

measures over N : M = {P : A ⊥⊥ B | C [P ], for ∀ 〈A, B | C〉 ∈ M}, which is also

called the statistical model of CI structure.

The conventional definition of conditional independence can be considered as a

special case of Definition 1.2.1: for a probability measure P over N and pairwise

disjoint subsets A, B, C ⊆ N , A is conditionally independent of B given C with

respect to P , i.e. A ⊥⊥ B | C [P ], if and only if

P (A|BC) = P (A|C) for A,B,C with P (BC) > 0.
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In addition, the CI model induced by P is MP = {〈A, B | C〉 ∈ M : A ⊥⊥ B |

C [P ]}.

Definition 1.2.3. [51, § 2.2.2] A subset M ⊆ T (N) is called a disjoint semi-

graphoid if for pairwise disjoint sets A, B, C, D ⊆ N the following holds:

1. triviality A ⊥⊥ ∅ | C [M];

2. symmetry A ⊥⊥ B | C [M] =⇒ B ⊥⊥ A | C [M];

3. decomposition A ⊥⊥ (B ∪D) | C [M] =⇒ A ⊥⊥ D | C [M];

4. weak union A ⊥⊥ (B ∪D) | C [M] =⇒ A ⊥⊥ B | (D ∪ C) [M];

5. contraction A ⊥⊥ B | (D ∪ C) [M] ∧ A ⊥⊥ D | C [M] =⇒ A ⊥⊥ (B ∪ D) |

C [M].

Notice here A ⊥⊥ B | C [M] means that 〈A, B | C〉 ∈ M.

The semi-graphoid properties above define the implication between valid CI state-

ments that leads to the question whether certain CI statements are already implied

by other CI statements. This question is known as the CI implication problem

or the CI inference problem. By using these properties we are able to define a

set of certain special CI statements, which are called elementary, such that they are

sufficient and necessary for the existence of other statements.

Definition 1.2.4. [51, § 2.2.3] An elementary CI statement A ⊥⊥ B | C [o] is

an (elementary) triplet 〈A, B | C〉, where A = {a} and B = {b} are single elements

in N .

Lemma 1.2.5. [51, Lemma 2.2] Suppose M is a disjoint semi-graphoid over N .

∀ 〈A, B | C〉 ∈ T (N), the CI statement A ⊥⊥ B | C [M] is valid if and only if:

∀a ∈ A, ∀b ∈ B, ∀D : C ⊆ D ⊆ (A ∪B ∪ C)\{a, b}, we have a ⊥⊥ b | D [M].
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Lemma 1.2.6. [51, Lemma 2.1] Every CI model MP induced by a probability measure

P over N is a disjoint semi-graphoid over N .

1.2.2 Graphs

Intuitively speaking, CI models defined by graphs are called graphical models, and

if the graph is a directed acyclic graph (DAG), then it is called a DAG model or

Bayesian network (BN). In this section, we will show some well-defined classic graphs

and some related concepts. One can find more details in [51, § A.3].

Definition 1.2.7. [51, § A.3] A graph is specified by a non-empty finite set of nodes

N and a set of edges consisting of pairs of distinct elements taken from N . Classic

graphs admit only two basic types of edges. An undirected edge (or a line) over N

is an unordered pair {a, b} where a, b ∈ N , a �= b. A directed edge (or an arrow)

over N is an ordered pair (a, b) where a, b ∈ N , a �= b.

Definition 1.2.8. [51, § A.3] A graph with mixed edges over N is given by a set

of undirected edges Eud and a set of directed edges Ed over N . Suppose G = (N, Eud, Ed)

is a graph of this kind, then a pictorial representation of G can be naturally given by

drawing “a − b”, ∀ {a, b} ∈ Eud, and drawing “a → b”, ∀ (a, b) ∈ Ed. ∀ disjoint

a, b ∈ N , if either a− b in G, a → b in G or b → a in G, then we briefly say [a, b] is

an edge in G. Now we can define the following graphs:

• a hybrid graph over N is a graph G which has no multiple edges, i.e. for an

ordered pair of distinct nodes (a, b), a, b ∈ N , at most one of these three cases

can occur: a− b, a → b or b → a;

• an undirected graph (UG) is a graph containing only undirected edges, i.e.

Ed = ∅;

• a directed graph is a graph containing only directed edges, i.e. Eud = ∅;
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• The underlying graph (skeleton) H of a graph G = (N, Eud, Ed) is an undi-

rected graph over N such that a − b in H if and only if [a, b] is an edge in

G;

• A chain for a hybrid graph G over N is a partition of N into an ordered

sequence of non-empty disjoint subsets B1, . . . , Bn, n ≥ 1 called blocks such

that,

– if [a, b] is an edge in G with a, b ∈ Bi then a− b, and

– if [a, b] is an edge in G with a ∈ Bi, b ∈ Bj, i < j then a → b.

A chain graph is a hybrid graph which admits a chain;

• if ∅ �= T ⊆ N , then the induced subgraph of G for T is the graph GT =

(T, ET
ud, ET

d ) where ET
ud (ET

d ) is the set of those undirected (directed) edges over

T which are also in Eud (ET
d );

• a complex is an induced subgraph of a hybrid graph G for T = {a1, . . . , ak},

k ≥ 3 such that d1 → d2, di − di+1 for i = 2, . . . , k − 2, dk−1 ← dk in G and no

additional edge between any two distinct nodes of {d1, . . . , dk} exists in G.

• an immorality is an induced subgraph of a hybrid graph G for T = {a, b, c}

such that a → c in G and b → c in G while [a, b] is not an edge in G.

Remark 1.2.9. Definition 1.2.8 implies:

1. undirected graphs are a subset of chain graphs: whenever there is only one block

and all nodes belong to this block;

2. immoralities are complexes with k = 3, and the only type of complexes that can

appear in directed graphs are immoralities.
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Definition 1.2.10. [51, § A.3] A route from a node a to a node b (or between nodes

a and b) in a graph G with mixed edges is a sequence of nodes c1, . . . , cn ∈ N , n ≥ 1

together with a sequence of edges ε1, . . . , εn−1 ∈ Eud ∪ Ed such that a = c1, b = cn and

εi is either ci − ci+1, ci → ci+1 or ci ← ci+1 for i = 1, . . . , n− 1. A route is called to

be descending if εi is either ci − ci+1, ci → ci+1 for i = 1, . . . , n − 1. A path is a

route in which c1, . . . , cn are distinct. A cycle is a route where n ≥ 3, c1 = cn and

c1, . . . , cn−1 are distinct such that, in the case n = 3, ε2 is not a reverse copy of ε1

(this implies that a− b− a, a → b ← a and a ← b → a are not cycles while a− b → a

and a → b → a are supposed to be cycles). A directed cycle is a cycle which is a

descending route and at least one edge εi is directed.

An acyclic directed graph, which is also called acyclic digraph or directed

acyclic graph (DAG), over N is a directed graph over N without directed cycles.

Remark 1.2.11. A DAG can be equivalently introduced as a directed graph G whose

nodes can be ordered in a sequence a1, . . . , ak, k ≥ 1 such that if [ai, aj], i < j, is an

edge in G then ai → aj in G. This also means that DAGs are chain graphs: every

block has only one node and arrows are only allowed from block Bi to block Bj where

i < j.

Definition 1.2.12. [51, § A.3] A node a is a parent of a node b in G, and dually

b is a child of a, if a → b in G; a is an ancestor of b in G, and dually b is a

descendant of a, if there exists a descending route (or equivalently a descending

path) from a to b in G. For b ∈ N , the set of parents of b in G is denoted by paG(b).

For A ⊆ N , we define anG(A) = {b ∈ N : ∃ a ∈ A, such that b is an ancestor of a}.

1.2.3 CI models induced by undirected graphs and acyclic directed graphs

For a graph G, suppose each node represents a random variable and each edge rep-

resents the probabilistic dependency among the random variables corresponding to

the nodes adjacent to the edge [37], then G can be considered as a description of
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CI structures, and a CI model induced by G can be defined as MG = {〈A, B |

C〉 ∈ T (N) : A ⊥⊥ B | C [G]}. We name the CI models which are induced by a

graphs as graphical models. More names have been assigned to special graphi-

cal models: graphical models based on undirected graphs (UGs) are also known as

Markov networks, and those based on acyclic directed graphs (DAGs) are called

DAG models or Bayesian Networks (BNs). The definitions of these models

rely on the graphical criterions which answer the question that whether a certain CI

statement is contained in the complete list of valid CI statements of a graph G, where

different criterions should be defined for different types of graphs. In this section we

will first introduce the graphical criterions for UGs and DAGs [51, § 3], and then an

equivalent relation on chain graphs: Markov equivalence.

Definition 1.2.13. [51, § 3.1] Let G = (N, Eud) be an undirected graph and 〈A, B |

C〉 ∈ T (N). We say that C is a separator of A and B (or C separates A and B)

in G if every route (equivalently every path) in G between a ∈ A and b ∈ B contains

a node c ∈ C. The separation criterion says that 〈A, B | C〉 is represented in

G, i.e. A ⊥⊥ B | C [G], if and only if C is a separator of A and B. (See Figure 1.3

for an example.)

Figure 1.3: An example of separation criterion for undirected graph

Let A = {a, b}, B = {g, h} and C = {d, f}. Since every path from A to B contains at least one

node in C, we can say that C is a separator of A and B. By definition, 〈A, B | C〉 is represented

in this UG according to separation criterion.
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Definition 1.2.14. [51, § 3.2] Let G = (N, Ed) be a DAG. The moral graph of G is

an undirected graph which is obtained by two steps: first, add edges a− b whenever a

and b have a common child c; second, the moral graph is the skeleton of the resulting

graph in the first step. Let w : c1, . . . , cn, n ≥ 1 be a route in G with edges ε1, . . . , εn−1.

A node ci is called a collider with respect to w if the edge εi−1 is ci−1 → ci and the

edge εi is ci ← ci+1. We say w is active with respect to C ⊆ N if: first, ∀ci which

is a collider with respect to w, ci ∈ anG(C); second, ∀ci which is not a collider with

respect to w, ci /∈ C. If w is not active with respect to C, then we say w is blocked

by C. Let 〈A, B | C〉 ∈ T (N).

• Let H be the induced subgraph of G for anG(A∪B∪C)∪ (A∪B∪C). If C is a

separator of A and B in the moral graph of H, then 〈A, B | C〉 is represented

in G according to the moralization criterion.

• If every route from a ∈ A to b ∈ B is blocked by C, then 〈A, B | C〉 is

represented in G according to the d-separation criterion.

Remark 1.2.15. Lauritzen et al showed in [38] that the moralization and the d-

separation criterions for DAGs are equivalent. Another criterion appeared in [41] is

a compromise between these two criterions, and we omit the details here. An example

taken from [51, § 3.2] will be used to illustrate the two criterions.

Example 1.2.16. [51, § 3.2] Suppose a DAG G is given in Figure 1.4. Let A = {a},

B = {f} and C = {c, d}. We want to see if 〈A, B | C〉 is represented in G.

- moralization criterion. Since A ∪ B ∪ C = {a, c, d, f} and it has ancestor

set anG(A∪B∪C) = {a, b, d, e}, the induced subgraph is given in Figure 1.5(a)

in which node g and all edges involved are removed. To build the moral graph

for Figure 1.5(a), we first add an edge [a, e] because they have a common child

b, then we replace all directed edges with undirected edges. The resulting graph
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Figure 1.4: An example of acyclic directed graph to demonstrate graphical criterions

This DAG G has 7 nodes with N = {a, b, c, d, e, f, g}. Let A = {a}, B = {f} and C = {c, d}.
Consider 〈A, B | C〉 using moralization criterion and d-separation criterion.

is given in Figure 1.5(b). Now notice that C = {c, d} is not a separator of

A = {a} and B = {f} because we can find a path from a to f , a− e− f , that

does not contain any node in C. Therefore, 〈A, B | C〉 is not represented in G

according to moralization criterion.

(a) Induced subgraph of Figure
1.4

(b) The moral graph of Figure
1.5(a)

Figure 1.5: Graphs to illustrate moralization criterion for DAGs

- d-separation criterion. Consider the route from a to f : a → b ← e → f .

This route has one collider b which is in the ancestor set of C since anG(C) =

{a, b, d, e}. In addition, the other nodes in the route, a, e and f , do not belong
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to C. Hence, this route is active with respect to C, and this suggests that

〈A, B | C〉 is not represented in G according to d-separation criterion.

Graphical criterions for chain graphs are also available. The moralization cri-

terion for chain graphs established by [36] and [24] is based on a definition of the

moral graphs for chain graphs, and is a generalization of the moralization criterion for

DAGs. An equivalent c-separation criterion, which generalizes the d-separation

criterion for DAGs, was introduced in [5]. Some other criterions are also produced

for other types of graphs. The details can be found in [51, § 3.3 – § 3.5].

Definition 1.2.17. [51, § 3.1] Let P be a probability measure over N and G be a

chain graph over N . Then P is called a Markovian measure with respect to G if

A ⊥⊥ B | C [G] =⇒ A ⊥⊥ B | C [P ], ∀〈A, B | C〉 ∈ T (N).

If, in addition, A ⊥⊥ B | C [P ] implies A ⊥⊥ B | C [G], then we call P a perfectly

Markovian measure.

Notice that if a Markovian measure P is not a perfectly Markovian measure, then

it contains further valid CI statements that are not valid for the graph. In fact, there

exist Markovian measures that are not representable by graphs, and this implies that

the set of all graphical models is a strict (or proper) subset of all CI models. The

following results have been done for the existence of perfectly Markovian measures:

- It was showed in [27, Theorem 11] that a perfectly Markovian discrete proba-

bility measure exists for every UG over N ;

- Geiger and Pearl showed in [26] that a perfectly Markovian discrete probability

measure exists for every DAG over N ;

- the main result in [53] says that a perfectly Markovian positive discrete proba-

bility measure exists for every chain graph over N .
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Definition 1.2.18. [51, § 3.1] We say that two chain graphs G and H over N

are Markov equivalent if the classes of Markovian measures with respect to G

and H coincide, i.e. they induce the same conditional independence models. With

this equivalence relation we can define equivalence classes to be the sets of the chain

graphs where graphs in each class are Markov equivalent. We call them Markov

equivalence classes of chain graphs.

Remark 1.2.19. The existence of perfectly Markovian measures for chain graphs

implies that two chain graphs G and H are Markov equivalent if and only if MG =

MH [51, § 3.1]. There are a few results, which make it more intuitive to see if two

graphs are Markov equivalent:

- two undirected graphs G and H are Markov equivalent if and only if G = H;

- two acyclic directed graphs G and H are Markov equivalent if and only if they

have the same skeleton and the same immoralities [24];

- two chain graphs G and H are Markov equivalent if and only if they have the

same skeleton and the same complexes [24].

One should realize that a UG G is Markov equivalent with a DAG H if they have the

same skeleton and H does not contain any immoralities.

In the rest of this section, we are going to study how to characterize and represent

a Markov equivalence class of DAGs with a single graph [51, § 8.1].

Definition 1.2.20. [39, Definition 1.2.3] The pattern of a Markov equivalence class

of DAGs is a hybrid graph having the same skeleton and the same immoralities as

all DAGs in that class have. Given G in the class, we define pat(G) as a pattern

constructed from G.
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Definition 1.2.21. [39, Definition 1.2.4] Consider a Markov equivalence class of

DAGs. If a directed edge (i, j), i �= j, is in every DAG in that class, then (i, j) is

called a protected edge.

Definition 1.2.22. [39, Definition 1.2.5] The essential graph (or completed pat-

tern) of a Markov equivalence class of DAGs is the pattern graph of that class in

which all protected edges are directed.

For a Markov equivalence class of DAGs, usually patterns are not unique, but

the essential graph will be unique. Thus, essential graphs can serve as unique repre-

sentatives of the equivalence classes of DAGs [3]. We have straightforward routines

to construct pat(G) and the essential graph from a DAG G, and also backwards

(Example 1.2.23).

Example 1.2.23. Consider the DAG G in Figure 1.6(a). Both G1 in Figure 1.6(b)

and G2 in 1.6(c) are Markov equivalent with G because they have the exactly the same

skeleton and immorality b → a ← e.

(a) Graph G (b) Graph G1 (c) Graph G2

Figure 1.6: A Markov equivalence class containing three graphs

- To construct a pattern with respect to G, we keep all edges which are involved in

the immorality, i.e. b → a and a ← e, directed, and convert all other edges to

undirected edges. The resulting graph, given in Figure 1.7(a), is a pattern which
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contains the most undirected edges over all patterns. To reconstruct a DAG from

a pattern, we simply add directions to all undirected edges while making sure

no directed cycle or new immorality will be created. G1 and G2 can be obtained

from Figure 1.7(a) by this strategy. In fact, G, G1 and G2 are all DAGs we

can find, so the corresponding Markov equivalence class is {G,G1, G2}. Notice

Figure 1.7(b) is also a pattern, but we cannot reconstruct G with this pattern.

- Besides edges b → a and a ← e involved in the immorality in G, we also

find that edges a → c and a ← d are contained in all DAGs in this Markov

equivalence class. Thus these four edges are protected. Figure 1.7(c) gives the

essential graph in which only the protected edges are directed. Similarly with

patterns, to reconstruct a DAG from an essential graph, we add directions to

all undirected edges while making sure no directed cycle or new immorality will

be created.

(a) A pattern (b) Another pattern (c) Essential graph

Figure 1.7: Patterns and the essential graph for the Markov equivalence class in
Figure 1.6

Lemma 1.2.24. [39, Corollary 1.2.6] Two DAGs G and H are Markov equivalent if

and only if they have the same essential graph.
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1.2.4 Parameterization for discrete BNs and learning BNs using quality

criterions

In this section, we focus on learning BNs in a discrete distribution framework with

prescribed sample spaces, i.e. all probability measures on an arbitrary discrete sample

space over N . We will introduce the parameterization for all discrete BNs, and some

properties for quality criterions in learning BNs will be defined [51, § 8].

Given a set of random variables N , an element i ∈ N can either be interpreted as

a random variable or the corresponding node. We define DAGs(N) as the collection

of all DAGs over N . XN =
∏

i∈N Xi is a discrete joint sample space defined by

a Cartesian product over Xi’s, where Xi is a finite non-empty set which can be

considered as the sample space of variable i, i ∈ N . ∀A ⊂ N , we can define XA =∏
i∈A Xi. Recall that the statistical model described by G ∈ DAGs(N), MG, consists

of the class of probability measures on XN which are Markovian with respect to

G ∈ DAGs(N). Data over N , DATA(N, d) with d ∈ N, is a collection of all ordered

sequences x1, . . . ,xd where xl ∈ ∏
i∈N Xi for l = 1, . . . , d, i.e. the collection of all

possible databases of length d. xl is a vector which represents the lth observation.

Definition 1.2.25. [51, § 8.2.1] Recall that ∀P ∈ MG on XN , P is uniquely deter-

mined by its density f . We can define the marginal densities of P :

fA(y) =
∑

z∈XN\A

f(y, z), for ∅ �= A ⊂ N, y ∈ XA,

where fN ≡ f , f∅ ≡ 1 by convention. We can also define the conditional density

fA|C for disjoint A, C ⊆ N :

fA|C(x|z) =

⎧⎪⎨⎪⎩
fAC(x,z)
fC(z)

, if fC(z) > 0

0, if fC(z) = 0
for x ∈ XA, z ∈ XC .
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Lemma 1.2.26 (Recursive Factorization). [38, Theorem 1] P ∈ MG if and only if

its density recursively factorizes with respect to G:

f(x) =
∏
i∈N

fi|paG(i)(xi|xpaG(i)) for every x ∈ XN .

Definition 1.2.27. [51, § 8.2.1] Consider G ∈ DAGs(N). ∀i ∈ N and x = (xi)i∈N ∈

XN , we define xA as the observed value for A ⊆ N in x,

• define r(i) := |Xi| ≥ 1 as the number of possible values of random variable i,

and y1i , . . . , y
r(i)
i is an ordering of elements of Xi, where yki is the kth node

configuration in the ordering, k = 1, . . . , r(i). k(i,x) is the symbol for the

unique k, k ∈ {1, . . . , r(i)}, such that yki = xi;

• define q(i, G) ≡ |XpaG(i)| =
∏

l∈paG(i) r(l) ≥ 1 as the number of parent con-

figurations for random variable i where q(i, G) = 1 when paG(i) = ∅, and

z1i , . . . , z
q(i,G)
i is an ordering of elements of XpaG(i), where zji is the jth parent

configuration in the ordering, j = 1, . . . , q(i, G). j(i,x) is the symbol for the

unique j, j ∈ {1, . . . , q(i, G)}, such that zji = xpaG(i), where j = 1 if paG(i) = ∅.

Based on the recursive factorization (Lemma 1.2.26), a “standard” parameterization

of MG can be given by a set of parameters ΘG which consists of vectors:

θθθ ≡ (θijk) where θijk ∈ [0, 1]

for i ∈ N, j ∈ {i, . . . , q(i, G)}, k ∈ {1, . . . , r(i)},

such that

r(i)∑
k=1

θijk = 1for every i ∈ N, 1 ≤ j ≤ q(i, G),

where every single θijk can be interpreted as the value of the conditional density

fi|paG(i)(y
k
i |zji ). Therefore for a specific θθθ ∈ ΘG, we have:

fθθθ(x) =
∏
i∈N

θi j(i,x) k(i,x) for x ∈ XN .
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Based on this parameterization, it is straightforward to define the numbers of con-

figuration occurrences in the database D ∈ DATA(N, d) where D consists of d

observations x1, . . . ,xd ∈ XN :

dij = |{1 ≤ l ≤ d}; xl
paG(i) = zji |,

dijk = |{1 ≤ l ≤ d}; xl
{i}∪paG(i) = (yki , z

j
i )|,

for i ∈ N, j ∈ {1, . . . , q(i, G)}, k ∈ {1, . . . , r(i)},

d[x] = |{1 ≤ l ≤ d}; xl
A = x| for ∅ �= A ⊆ N, x ∈ XA,

where di1 = d if paG(i) = ∅.

Remark 1.2.28. Given G ∈ DAGs(N) and D ∈ DATA(N, d), the numbers of

configuration occurrences can be considered as statistics used to estimate parameters:

• dij
d

is an estimator of fpaG(i)(z
j
i );

• dijk
dij

Idij>0 +
1

r(i)
Idij=0, is an estimator of θijk = fi|paG(i)(y

k
i |zji ) [51, Lemma 8.1];

• d[x]
d

is an estimator of fA(x),

∀ i ∈ N, j ∈ {1, . . . , q(i, G)}, k ∈ {1, . . . , r(i)}.

Example 1.2.29. Figure 1.8 gives a DAG G over N = {a, b, c}. Suppose all

three random variables are binary. Since paG(a) = ∅, paG(b) = {a} and paG(c) =

{a, b}, we have f(x) = fa(xa)fb|a(xb|xa)fc|ab(xc|xab), ∀x ∈ XN . Now take node

Figure 1.8: An example of parameterization and computing the numbers of config-
uration occurrences
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c for example. We have r(c) = |Xc| = |{0, 1}| = 2 and q(c, G) = |XpaG(c)| =

|{(1, 1), (1, 0), (0, 1), (0, 0)}| = 4. Fix an ordering of elements in Xc, (y
1
c , y

2
c ) = (1, 0),

and an ordering of elements in Xab, (z
1
c , z

2
c , z

3
c , z

4
c ) = (11, 10, 01, 00). Suppose D ∈

DATA(N, 3) has observations: (1, 0, 1), (0, 1, 1), and (1, 1, 0). Then dc21 is the

number of observations in which xab = z2c = (10) and xc = y1c = 1, i.e. dc21 = 1.

Thus the list of all dcjk, j = 1, 2, 3, 4, k = 1, 2, are:

dc11 = 0 (1|11) dc21 = 1 (1|10) dc31 = 1 (1|01) dc41 = 0 (1|00)

dc12 = 1 (0|11) dc22 = 0 (0|10) dc32 = 0 (0|01) dc42 = 0 (0|00).

Similarly, we can figure out the list of all dajk, j = 1, k = 1, 2, and dbjk, j = 1, 2,

k = 1, 2:

da11 = 2 (1|∅) db11 = 1 (1|1) db21 = 1 (1|0)

da12 = 1 (0|∅) db12 = 1 (0|1) db22 = 0 (0|0).

On the other hand, the vector of parameters is θθθ = (θa11, θa12, θb11, θb21, θb12, θb22, θc11,

θc21, θc31, θc41, θc12, θc22, θc32, θc42).

To conduct a model selection in BNs, we choose a score function which is a

function measuring how good a certain BN structure given by a G ∈ DAGs(N) fits

to the given database D ∈ DATA(N, d). We define a quality criterion as a score

function Q : DAGs(N) × DATA(N, d) → R assigning a real number Q(G,D) to a

DAG G and a database D. For a given D and a BN structure determined by a G, the

higher (or lower, depending on how criterion Q is defined) the value Q(G,D) is, the

better the structure fits the data. Hence using a proper quality criterion is important

in model selection in BN.

Definition 1.2.30. [51, § 8.2.2] A quality criterion Q for learning DAG models is

score equivalent if for every pair G, H ∈ DAGs(N) and every D ∈ DATA(N, d):

Q(G,D) = Q(H,D) whenever G and H are Markov equivalent.
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This property is natural and necessary because if G and H ∈ DAGs(N) are

Markov equivalent, then the CI models induced by these two graphs coincide, i.e.

MG = MH . Thus their scores for the same data should be equal.

Consider D ∈ DATA(N, d), D : x1, . . . , xd. For A, ∅ �= A ⊆ N , we call DA ∈

DATA(A, d) : x1
A, . . . , x

d
A a projection of D onto A [51, § 8.2.3].

Definition 1.2.31. [51, § 8.2.3] A quality criterion Q for learning DAG models is

decomposable if there exists a class of functions qi|B : DATA({i}∪B, d) → R where

i ∈ N , B ⊆ N\{i}, such that:

Q(G,D) =
∑
i∈N

qi|paG(i)(Di∪paG(i)),

for every G ∈ DAGs(N) and every D ∈ DATA(N, d). Notice here the functions qi|B

do not depend on G.

This property means that the overall score can be decomposed into (i.e. can be

written as the sum of) local scores where each local score only depends on one single

node and its parents.

Definition 1.2.32. [51, § 8.2.4] A quality criterion Q for learning DAG models is

regular if there exists a class of functions tA : DATA(A, d) → R, ∅ �= A ⊆ N and a

constant t∅(D∅) depending on XN and d, such that:

Q(G,D) =
∑
i∈N

(ti∪paG(i)(Di∪paG(i))− tpaG(i)(DpaG(i))),

for every G ∈ DAGs(N) and every D ∈ DATA(N, d).

If a quality criterion is regular, then it means that in addition to decomposable

property, each local score of the corresponding node and its parents can be further

decomposed into a difference between a score of the node and its parents and a score

of the parents only.
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Example 1.2.33. Continue to use the graph G and database D in Example 1.2.29.

D can be written in form of matrix:

⎛⎜⎜⎜⎜⎝
x1

x2

x3

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝

a b c

1 0 1

0 1 1

1 1 0

⎞⎟⎟⎟⎟⎠. Take node b for

example. Db∪paG(b) = Dab is a submatrix of D which contains the first two columns

of D, while function qb|paG(b) and t{a,b} map Db∪paG(b) to real numbers.

Lemma 1.2.34. [51, Lemma 8.3] Assume r(i) ≥ 2, ∀i ∈ N . A quality criterion

Q for learning DAG models is regular if and only if it is decomposable and score

equivalent.

It was proven in [51, Proposition 8.1 and Proposition 8.2] that the Akaike’s in-

formation criterion (AIC) and the Bayesian information criterion (BIC), two quality

criterions that are most frequently used, are regular criterions. In Section 1.3.2 we

will discuss more about how these properties help us in learning BNs.

1.3 Polytopes arising from contingency tables and Bayesian networks

First of all, we need to recall some basic notation and definitions ([59] is used as a

main reference). Let {x1, . . . ,xk} ⊂ Rd be a finite set of points. A point x ∈ Rd is

called a convex combination of {x1, . . . ,xk} if it can be written as

x =
k∑

i=1

αixi, where
k∑

i=1

αi = 1 and αi ≥ 0 for i = 1, . . . , k.

The following definitions of “convex” and “convex hull” can be found in [59, P3]. A

point set S ⊆ Rd is convex if with any two points x, y ∈ S it also contains the

straight line segment [x,y] = {λx + (1 − λ)y : 0 ≤ λ ≤ 1} between them. Clearly,

every intersection of convex sets is convex. Thus for any S ⊆ Rd, the convex hull of

S can be defined as the “smallest” convex set containing S, which can be constructed
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as the intersection of all convex sets that contain S:

conv(S) :=
⋂

{S ′ ⊆ Rd : S ⊆ S ′, S ′convex}.

Note that this definition is equivalent to conv(S) :=
⋃{[x,y] : x, y ∈ S}.

Definition 1.3.1. [59, Definition 0.1] A convex polytope (polytope) is the convex

hull of a finite set of points in some Rd.

Remark 1.3.2. [59, P4 and Theorem 1.1] A polyhedron is a set P ⊆ Rd presented

in the form:

P = {x ∈ Rd : Ax ≤ b} for some A ∈ Rr×d, b ∈ Rr,

where Ax ≤ b is the system of inequalities that defines the polyhedron. A polytope

can also be defined as a bounded polyhedron in the sense that it does not contain

a ray {x + ty : t ≥ 0} for any y �= 0. This definition is equivalent with Definition

1.3.1 [59, Theorem 1.1]. Thus a polytope has two representations: the convex hull of

a finite set of points, or bounded polyhedron that is defined by a system of inequalities.

Definition 1.3.3. [59, P3] Let S be a set in Rd. The affine hull aff(S) of S is the

set of all affine combinations of elements of S, that is,

aff(S) =
{ k∑

i=1

αixi : k ∈ Z+,xi ∈ S, αi ∈ R,
k∑

i=1

αi = 1
}
.

Now the dimension of a polytope can be well defined as the dimension of its

affine hull, and a d-polytope is a polytope of dimension d in some Rd′ (d′ ≥ d).

Definition 1.3.4. [59, § 2.1, Definition 2.1 and Proposition 2.2] Let P ⊆ Rd be a

convex polytope. A linear inequality wx ≤ w0 is valid for P if it is satisfied for all

points x ∈ P. A face of P is any set of the form

F = P ∩ {x ∈ Rd : wx = w0}
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where wx ≤ w0 is a valid inequality for P. In this case w is called a cost vector for

face F .

The dimension of a face is the dimension of its affine hull: dim(F ) := dim(aff(F )).

A face of P is called a proper face if the corresponding cost vector is not an all-zero

vector.

The faces of dimensions 0, 1, dim(P)−2, and dim(P)−1 are called vertices, edges,

ridges and facets, respectively. The set of all vertices of P is called the vertex set,

and is defined as vert(P). An important fact is that every polytope is the convex hull

of its vertices: P = conv(vert(P)). v1, v2 ∈ vert(P) are called neighbors if they

form an edge on P.

Remark 1.3.5. Based on Definition 1.3.4, the following statements are trivial:

• v is a vertex of P if and only if ∃ a vector wv such that ∀v′ ∈ vert(P), wvv′ ≤

wvv where “=” holds if and only if v′ = v. In fact, wv is a cost vector for v;

• v1 and v2 form an edge on P if and only if ∃ a vector we such that ∀v3 ∈ vert(P),

wev3 ≤ wev1 = wev2 where “=” holds if and only if v3 = v1 or v3 = v2. In fact,

we is a cost vector for the edge formed by v1 and v2.

Here are several special types of polytopes. A d-simplex, which is denoted by Δd,

is a polytope of dimension d with d+1 vertices. A d-dimensional simple polytope

is a d-polytope each of whose vertices are adjacent to exactly d edges (or facets), i.e.

each vertex has exactly d neighbors. It is worth pointing out that all simplices are

simple polytopes, and every pair of vertices of every simplex are neighbors. The

d-dimensional hypercube (d-cube) is defined as Cd := conv{{+1,−1}d}, and is

also a simple polytope.
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1.3.1 Connection between polytopes and SIS procedure

For a convex polyhedron, we also call the integer points inside the polyhedron the

lattice points. Recall that in Section 1.1.1 we vectorize an arbitrary contingency

table X as X = (x1, · · · , xt), where t is the number of cells in X. In another point of

view X can also be considered as a lattice point in the Euclidean space Rt, in which

sense the set Σ = {X ∈ Zt | AX = b,X ≥ 0} in Equation (1.1.5) is exactly the set of

lattice points inside the polytope P = {X ∈ Rt | AX = b,X ≥ 0}. Thus a procedure

of sampling a contingency table with given linear constraints also gives a method to

sample over the set of of lattice points inside the corresponding polytope, and the

problem of estimating the number of contingency tables is equivalent to estimating

the number of lattice points inside the polytope.

In Section 1.1.1 we showed that in order to sample the table X sequentially by

cells, we need to achieve the lower bound and upper bound of the support of marginal

distributions q(x1) and q(xi|xi−1, . . . , x2, x1), i = 2, . . . , t, and this problem can be

converted to an optimization problem of a linear objective function over a feasible

region that is defined by the linear constraints. Three techniques are available: linear

programming / LP (lpSolve package in R), integer programming / IP (lpSolve package

in R) and shuttle algorithm [22]. Take q(x1) for example. After assigning a proper

objective function cTX, where cT = (1, 0, . . . , 0), the problem of computing lower

bound l1 and upper bound u1 for x1 can be either converted to LP problems:

l1 = �−max
X∈P

(−c)TX� = �min
X∈P

x1�, and u1 = �max
X∈P

cTX� = �max
X∈P

x1�, (1.3.1)

where the floor function �·� maps a real number to the largest integer not greater

than it and the ceiling function �·� maps a real number to the smallest integer not

less than it, or converted to IP problems:

l1 = −max
X∈Σ

(−c)TX = min
X∈Σ

x1, and u1 = max
X∈Σ

cTX = max
X∈Σ

x1. (1.3.2)
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It is clear that IP gives the exact values of the bounds and LP gives an approximation

of them. Although using LP to obtain bounds is much faster than using IP, we should

be very careful about this because in some situations, like the case of transportation

polytopes [14, 16], the bounds computed by LP can be very different with the ones

computed by IP.

Notice that the form in Equation (1.3.1) is called the augmented form of LP

problems and is important because LP problems must be converted into this form

before being solved by the simplex algorithm. The form in Equation (1.3.2) is the

standard form of IP problems. The reason that in Section 1.1.2 slack variables must

be introduced in the system of linear equations is that the set Σ and polytope P must

be written in the forms showed before so that the LP and IP problems which we need

to solve will have the forms in Equations (1.3.1) and (1.3.2).

Algebraic geometry also has connection to the rejections in SIS procedures that

is caused by holes in semigroups and to the sequential interval property introduced

in Section 1.1.3. Let the column vectors of A be a1, . . . , at. Define the semigroup

generated by ai, . . . , at:

Qi = {aixi + . . .+ atxt | x1, . . . , xt ∈ Z+},

the cone generated by ai, . . . , at:

Ki = {aixi + . . .+ atxt | x1, . . . , xt ∈ R+},

and the lattice generated by ai, . . . , at:

Li = {aixi + . . .+ atxt | x1, . . . , xt ∈ Z},

where i = 1, . . . , t. The semigroup Qsat
i = Ki ∩ Li is called the saturation of the

semigroup Qi. Obviously Qi ⊂ Qsat
i . If they are equal, then we say Qi is saturated

(or normal), if not, then we define Hi = Qsat
i \Qi �= ∅ as the set of holes of the

semigroup Qi. Some examples of holes can be found in [55].
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In SIS procedure, Σ �= ∅ implies b ∈ Q1. After xi, i = 1, . . . , t − 1 is sampled,

if there exist holes in the semigroup Qi+1 and (b − a1x1 − . . . − aixi) ∈ Hi+1 �= ∅,

then the remaining linear constraints no longer have feasible solution, which means

we must reject the sample in process. If A has the sequential interval property intro-

duced in Section 1.1.3 with respect to the ordering x1, x2, . . . , xt, then the sequence

of semigroups defined above, Q1, Q2, . . . , Qt are all saturated, i.e. we won’t have any

rejection because of the holes in semigroups.

1.3.2 Characteristic imset polytopes (cim-polytopes) for Bayesian net-

works

For a given set of random variables N , in general there are super exponentially many

Markov equivalence classes over DAGs(N). Hence the model selection in BNs, which

proceeds with maximizing a quality criterion Q(G,D) over all possible Markov equiv-

alence classes, is known to be an NP-hard problem [11, 42]. A basic idea of an al-

gebraic and geometric approach in learning BNs is given in [51]: represent every BN

structure by a vector which is uniquely determined. This yields a geometric under-

standing of learning BNs that new results and insights can be obtained from this

point of view. In this section, we will first introduce the standard imsets [51, § 7.2],

which are algebraic representations of classes of Markov equivalent DAGs. Then we

will introduce another type of representations, the characteristic imsets [52], which

we use in Chapter 3. Lastly, we will show how these representations can help us to

formulate a model selection problem in BNs as an LP problem over a polytope.

Define an imset as a function u : P(N) �→ Z, where P(N) := {T | T ⊆ N} is the

power set of N . A special imset δ : P(N) → {0, 1} with δT (S) =

⎧⎪⎨⎪⎩ 1 if S = T,

0 if S �= T,
for

S ⊆ N , is called the identifier of a subset T of N .

Definition 1.3.6. [51, § 7.2.1] Given G ∈ DAGs(N), the standard imset for G
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is an imset uG : P(N) → R with

uG = δN − δ∅ +
∑
i∈N

{
δpaG(i) − δ{i}∪paG(i)

}
.

Corollary 1.3.7. [51, Corollary 7.1] Let G, H ∈ DAGs(N). Then MG = MH if

and only if uG = uH .

Corollary 1.3.7 means that two graphs are Markov equivalent if and only if they

have the same standard imsets. In this sense, we say standard imset is a unique

vector representative for BN structures. On the other hand, the product formulas

induced by standard imsets also characterize Markovian measures (Example 1.3.8).

Example 1.3.8. A graph G ∈ DAGs(N) is given in Figure 1.9, where N = {a, b, c}.

The standard imset uG is a vector of length |P(N)| = 8 and its coordinates are uG(T ),

T ⊆ N . By Definition 1.3.6, G has standard imset uG = δabc − δ∅ + (δb − δab) + (δ∅ −

Figure 1.9: An example of constructing a standard imset

δb) + (δa − δac), i.e.

∅ a b c ab ac bc abc( )
uG = 0, 1, 0, 0, -1, -1, 0, 1

Now consider a product formulas induced by uG:

∏
T⊆N, uG(T )>0

(fT (xT ))
uG(T ) =

∏
T⊆N, uG(T )<0

(fT (xT ))
uG(T ).
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In this example we get:

fa(xa)fabc(xabc) = fab(xab)fac(xac), (1.3.3)

which implies the recursive factorization formula

fabc(xabc) = fb(xb)fa|b(xa|xb)fc|a(xc|xa).

Hence the Equation (1.3.3) characterize the Markovian measures with respect to G:

MG = {P : P is a probability measure over N which satisfies Equation (1.3.3) }.

In [52], Studený et al proposed another imset, the characteristic imset, which is

an alternative vector representative of BN structures and can be obtained from the

standard imset by an affine linear transformation.

Definition 1.3.9. [52, Definition 1] For G ∈ DAGs(N), the characteristic imset

cG for G is given by:

cG(T ) = 1−
∑

S,T⊆S⊆N

uG(S), (1.3.4)

for T ⊆ N , |T | ≥ 2.

The mapping in Equation (1.3.4) is invertible: we can obtain standard imsets

from characteristic imsets by a Möbius inversion [4], which is also an affine linear

transformation [52, Equation 4]:

uG(S) =
∑

T,S⊆T⊆N

(−1)|T\S| · (1− cG(T ))

for S ⊆ N , |S| ≥ 2.

Theorem 1.3.10. [52, Theorem 1] For G ∈ DAGs(N), we have cG(T ) ∈ {0, 1} for

any T ⊆ N , |T | ≥ 2. Moreover, cG(T ) = 1 if and only if there exists i ∈ T with

A\{i} ⊆ paG(i).
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Because of the linear transformations between characteristic imsets and standard

imsets, it is clear that characteristic imsets are still unique vector representatives for

BN structures. In addition, Theorem 1.3.10 showed that characteristic imsets are 0-1

vectors, and they are very intuitive in terms of graphs. Sometimes this theorem is

referenced as the definition of characteristic imset.

Recall the regular criterions introduced in Section 1.2.4, Studený showed that

regular criterions can be written as functions of standard imsets [51].

Theorem 1.3.11. [51, Lemma 8.7] Q is regular, then there exists unique s : DATA(N, d) →

R and mapping t : D ∈ DATA(N, d) �→ tD ∈ RP(N) s.t.:

• ∀T ⊆ N |T | ≤ 1, tD(T ) = 0, ∀D ∈ DATA(N, d),

• ∀T ⊆ N |T | ≥ 2, mapping D �→ tD(T ) depends on DT , and ∀G ∈ DAGS(N)

and ∀D ∈ DATA(N, d), the following holds:

Q(G,D) = s(D)− 〈tD, uG〉.

In [51, Proposition 8.4 and Corollary 8.6], Studený gave the formulas of s(D)

and tD for criterions the maximized log-likelihood criterion (MML), AIC and BIC

with the standard parameterization introduced in Section 1.2.4. More details about

Theorem 1.3.11 can be found in [51, § 8.4.2].

Consider a class of graphs G ⊆ DAGs(N) that contains all graphs which we

are interested in. We call the polytope PG,s = conv{uG : G ∈ G} the standard

imset polytope (or sim-polytope) for G, and the polytope PG,c = conv{cG : G ∈

G} the characteristic imset polytope (or cim-polytope) for G. Then the only

integer points in PG,s and in PG,c, respectively, are their vertices [39, Lemma 2.1.4].

Moreover, we have vert(PG,s) = {uG : G ∈ G} [54] and vert(PG,c) = {cG : G ∈ G}

(PG,c is a truncation of a hypercube). Theorem 1.3.11 is remarkable in the sense

that it formulates the problem of maximizing a regular criterion with a given data
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D ∈ DATA(N, d), i.e. max
G∈G

Q(G,D), as an LP problem over PG,s: min
x∈PG,s

tTDx, where

tD is determined by D. This gives us a systematic way to find the best model with the

optimality certificate rather than finding it by the brute-force search. Notice that this

LP problem can be further converted to another LP problem over PG,c: min
x∈PG,c

rTDx,

where rD is a data vector revised from tD with an affine linear transformation [39,

Definition 2.1.5 and Lemma 2.1.6].

1.4 Main results and outline of the dissertation

This dissertation consists of two parts, and main results are summarized as following

with respect to different parts.

– Estimating the number of zero-one multi-way tables via SIS procedures.

◦ An SIS procedure with CP distribution is constructed for sampling zero-

one three-way tables with fixed two-way marginals.

The underlying model is the no three-way interaction model introduced

in Section 2.1. Theorem 2.2.2 in Section 2.2 generalizes Theorem 1.1.3

and gives the marginal distribution of each column in a zero-one three-

way table under the no three-way interaction model. The computational

results for simulations (see Section 2.4) and Sampson’s dataset (see Section

2.5) are based on the R code in Appendix.

◦ An SIS procedure with CP distribution is constructed for sampling zero-

one d-way tables (d ≥ 2) with fixed (d− 1)-way marginals.

Theorem 2.3.2 in Section 2.3 further generalizes Theorem 2.2.2 and gives

the marginal distribution of each column in a zero-one d-way table under

the no d-way interaction model.

– The Characteristic Imset Polytopes for Bayesian Networks.
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◦ A combinatorial description of all edges and the system of inequalities

which defines all facets for Pm,n, the characteristic imset polytopes for

diagnosis models, are given in Section 3.2.

Diagnosis models are defined in Section 3.1. Based on the properties of

diagnosis models (see Section 3.1), we give a graphical description of all

edges in Pm,n, and show that Pm,n is a direct product of a sequence of

simplices (see Section 3.2.1). Then we figure out the inequalities for all

facets in Pm,n (see Section 3.2.2).

◦ A combinatorial description of all edges and the system of inequalities

which defines all facets for P[n], the characteristic imset polytopes for

Bayesian networks with a fixed underlying ordering, are given in Section

3.3.

Results are similar with Section 3.2. We show that P[n] is also a direct

product of a sequence of simplices, and all edges and facets can be com-

puted based on this structure and the results in Section 3.2.

A further generalization of these results for PG[n],Ω,c, the characteristic im-

set polytopes for Bayesian networks with a fixed underlying ordering where

some edges are forbidden, is discussed in Section 4.2.1.

In Chapter 4, we discuss the results in Chapter 2 and Chapter 3. We also talk

about some open problems and future work on these two topics.

Copyright c© Jing Xi, 2013.
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Chapter 2 Estimating the Number of Zero-One Multi-way Tables via

Sequential Importance Sampling

Much work has been done on sampling multi-way contingency tables without zero-one

constraints using SIS procedures. In [9], Chen et al introduced also an SIS procedure

for sampling multi-way contingency tables without zero-one constraints, and in [10],

Chen et al gave an excellent algebraic interpretation of precisely when an interval

will equal the support of the marginal distribution using Markov basis (see Section

1.1.3). In [21], Dinwoodie and Chen used linear programming and sequential normal

sampling to develop a new SIS procedure to sample a multi-way contingency table.

However, one cannot just simply apply these methods to sampling multi-way

contingency tables with zero-one constraints. The reason is that we have to introduce

“slack” variables to the system of the linear equations, which doubles the number

of variables and makes the problem exponentially harder (see Sections 1.1.2 and

1.3.1). This is also why in [9] Chen et al developed an SIS procedure specifically

for sampling zero-one two-way contingency tables (see Section 1.1.2). Therefore,

we have to consider the problem of sampling zero-one multi-way contingency tables

separate from the existing methods for sampling contingency tables without zero-one

constraints.

In this chapter, we first introduce the model we consider, the no three-way in-

teraction model, and explain why this model is important. Secondly, we generalize

the SIS procedure on zero-one two-way tables (reviewed in Section 1.1.2) to an SIS

procedure on zero-one three-way tables under the no three-way interaction model. In

the third section we extend our method to zero-one d-way (d ≥ 2) contingency tables

under the no d-way interaction model, i.e., with fixed d− 1 marginal sums. Then, we

show some simulation results with our software (available in Appendix). Lastly, we
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give some results based on a real dataset - Samson’s monks data.

2.1 No three-way interaction model

Let X = (Xijk) of size (m, n, l), where m,n, l ∈ N and N = {1, 2, . . . , }, be a table

of counts whose entries are independent Poisson random variables with expected

frequencies {μijk}. Consider the generalized linear model,

logμijk = λ+ λM
i + λN

j + λL
k + λMN

ij + λML
ik + λNL

jk (2.1.1)

for i = 1, . . . ,m, j = 1, . . . , n, and k = 1, . . . , l where M , N , and L denote the

nominal-scale factors. This model is called the no three-way interaction model.

Recall the definition of log-linear models for contingency tables (see Section 1.1.1),

we should realize that the no three-way interaction model is a log-linear model:

◦ the sequence of constants h is a zero vector;

◦ the vector of parameters λ = (λ, λM
1 , . . . , λM

m , λN
1 , . . . , λ

NL
11 , . . . , λNL

nl );

◦ the elements in matrix A can be figured out using Equation (2.1.1).

Define the two-way marginals as:

X+jk :=
∑m

i=1 Xijk, (j = 1, 2, . . . , n, k = 1, 2, . . . , l),

Xi+k :=
∑n

j=1 Xijk, (i = 1, 2, . . . ,m, k = 1, 2, . . . , l),

Xij+ :=
∑l

k=1 Xijk, (i = 1, 2, . . . ,m, j = 1, 2, . . . , n),

(2.1.2)

then it is obvious that the one-way marginals and the total count can be written as

linear combination of these two-way marginals:

Xi++ :=
n∑

j=1

l∑
k=1

Xijk =
n∑

j=1

Xij+ =
l∑

k=1

Xi+k, (i = 1, 2, . . . ,m),

X+j+ :=
m∑
i=1

l∑
k=1

Xijk =
m∑
i=1

Xij+ =
l∑

k=1

X+jk, (j = 1, 2, . . . , n),
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X++k :=
m∑
i=1

n∑
j=1

Xijk =
m∑
i=1

Xi+k =
n∑

j=1

X+jk, (k = 1, 2, . . . , l),

X+++ :=
m∑
i=1

n∑
j=1

l∑
k=1

Xijk =
m∑
i=1

n∑
j=1

Xij+ =
m∑
i=1

l∑
k=1

Xi+k =
n∑

j=1

l∑
k=1

X+jk.

It is known that a choice of sufficient statistics of the no three-way interaction model

are AX (see Section 1.1.1), where it is straightforward to figure out that

AX = (X+++, X1++, . . . , Xm++, X+1+, . . . , X+11, . . . , X+nl).

As explained in Section 1.1.1, another choice of sufficient statistics for this model is:

AX = (X11+, . . . , Xmn+, X1+1, . . . , Xm+l, X+11, . . . , X+nl), i.e. all two-way marginals.

In this dissertation we are going to focus on zero-one contingency tables. Thus

we add additional constraints Xijk ∈ {0, 1}, which give us P (Xijk = 1) =
μijk

1+μijk
and

P (Xijk = 0) = 1
1+μijk

, for i = 1, . . . ,m, j = 1, . . . , n, and k = 1, . . . , l, and therefore

the probability of the whole table is:

P (X | Xijk ∈ {0, 1}, μijk, ∀ i, j, k) =
m∏
i=1

n∏
j=1

l∏
k=1

(
μijk

1 + μijk

)Xijk
(

1

1 + μijk

)1−Xijk

.

We have showed in Section 1.1.1 that the conditional distribution of the table given

the two-way marginals does not depend on the parameters, i.e. P (X | AX = b,Xijk ∈

{0, 1}, μijk, ∀ i, j, k) = P (X | AX = b,Xijk ∈ {0, 1}, ∀ i, j, k), and we should also no-

tice that with the zero-one constraints, the conditional likelihood function in Equation

1.1.4 becomes:

LA,h(λ | X ∈ {0, 1}t,AX = b) =
nx!

t∏
j=1

(e0)xj

∑
Y=(y1,...,yt)∈{0,1}t, AY=b

ny !

y1!···yt!
t∏

j=1

(e0)yj

=
nx!∑

Y=(y1,...,yt)∈{0,1}t, AY=b
ny!

∝ nx!,
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which implies that it degenerates from the hypergeometric distribution to the uniform

distribution.

The no three-way interaction model is particularly important because if we are

able to count or estimate the number of tables under this model then this is equivalent

to estimating the number of lattice points in any polytope [16, Theorem 1.1]. This

means that if we can estimate the number of three-way zero-one tables under this

model, then we can estimate the number of any zero-one tables with linear constraints

by using De Loera and Onn’s bijection mapping.

2.2 Sampling three-way zero-one tables with two-way marginal sums

We need to define notation for the three-way contingency tables. We call the two-

way table X··k with dimension m × n the kth layer of X. We say the column of

entries for the marginal Xi0j0+ of X is the (i0, j0)th column of X (equivalently we

say (i0, k0)th column for the marginal Xi0+k0 and (j0, k0)th column for the marginal

X+j0k0). Consider the (i0, j0)th column of the table X for some i0 ∈ {1, . . . ,m},

j0 ∈ {1, . . . , n} with the marginal l0 = Xi0j0+. Also we let the other two marginal

sums to be rk = Xi0+k and ck = X+j0k. We intent to generate the (i0, j0)th column via

CP distribution using formula (1.1.7) (see Section 1.1.2). In this formula, the weights

wk = pk/(1−pk), k = 1, 2, . . . , l, for each cell in this column should be decided by both

rk and ck. To sample a zero-one three-way table X with given two-way marginals

Xij+, Xi+k, and X+jk for i = 1, 2, . . . ,m, j = 1, 2, . . . , n, and k = 1, 2, . . . , l, we

sample the (i0, j0)th column of X for each i0 ∈ {1, . . . ,m}, j0 ∈ {1, . . . , n}. Next, we

are going to show that we should take:

pk :=
rk · ck

rk · ck + (n− rk)(m− ck)
(2.2.1)

and thus

wk =
rk · ck

(n− rk)(m− ck)
. (2.2.2)
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Remark 2.2.1. In the theorem below, we assume that we do not have the trivial

cases, namely, 1 ≤ rk ≤ n − 1 and 1 ≤ ck ≤ m − 1. We will discuss the alternative

cases later.

Theorem 2.2.2. For the uniform distribution over all m×n× l zero-one tables with

given marginals rk = Xi0+k, ck = X+j0k for k = 1, 2, . . . , l, and a fixed marginal for

the factor L, l0, the marginal distribution of the fixed marginal l0 is the same as the

conditional distribution of Z defined by (1.1.7) given SZ = l0 with

pk :=
rk · ck

rk · ck + (n− rk)(m− ck)
.

Proof. We start by giving an algorithm for generating tables uniformly from all m×

n × l zero-one tables with given marginals rk, ck for k = 1, 2, . . . , l, and a fixed

marginal for the factor L, l0.

1. For k = 1, . . . , l consider the kth layer of X, they are m × n tables. We

randomly choose rk positions in the (i0, k)th column and ck positions in the

(j0, k)th column, and put 1s in those positions. The choices of positions are

independent across different layers.

2. Accept those tables with given column sum l0.

It is easy to see that tables generated by this algorithm are uniformly distributed over

all m×n× l zero-one tables with given marginals rk, ck for k = 1, 2, . . . , l, and a fixed

marginal for the factor L, l0 for the (i0, j0)th column of the table X. We can derive

the marginal distribution of the (i0, j0)th column of X based on this algorithm. At

Step 1, we choose the cell at position (i0, j0, 1) to put 1 in with the probability:(
n−1
r1−1

)(
m−1
c1−1

)(
n−1
r1−1

)(
m−1
c1−1

)
+
(
n−1
r1

)(
m−1
c1

) =
r1 · c1

r1 · c1 + (n− r1)(m− c1)
.

Because the choices of positions are independent across different layers, after Step 1

the marginal distribution of the (i0, j0)th column is the same as the distribution of Z
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defined by (1.1.7) with

pk =

(
n−1
rk−1

)(
m−1
ck−1

)(
n−1
rk−1

)(
m−1
ck−1

)
+
(
n−1
rk

)(
m−1
ck

) =
rk · ck

rk · ck + (n− rk)(m− ck)
.

Step 2 rejects the tables whose (i0, j0)th column sum is not l0. This implies that

after Step 2, the marginal distribution of the (i0, j0)th column is the same as the

conditional distribution of Z defined by (1.1.7) with

pk =
rk · ck

rk · ck + (n− rk)(m− ck)
.

Remark 2.2.3. The sequential importance sampling via CP for sampling a two-way

zero-one table defined in [9] is a special case of our SIS procedure. We can induce

pk defined in (2.2.1) and the weights defined in (2.2.2) to the weights for two-way

zero-one contingency tables defined in [9]. Note that when we consider two-way zero-

one contingency tables we have ck = 1 for all k = 1, . . . , l and for all j0 = 1, . . . , n

(or rk = 1 for all k = 1, . . . , l and for all i0 = 1, . . . ,m), and m = 2 (or n = 2,

respectively). Therefore when we consider the two-way zero-one tables we get

pk =
rk
n
, wk =

rk
n− rk

,

or respectively

pk =
ck
m
, wk =

ck
m− ck

.

We still need to extend Theorem 2.2.2 to deal with structural zeros. The reason is

that even though no structural zero is assigned by users in the original table, during

the intermediary steps of our SIS procedure via CP distribution on a three-way zero-

one table, there will be some columns for the L factor with trivial cases. In that case

we have to treat them as structural zeros in the kth layer for some k ∈ {1, . . . , l}.

We can use a strategy similar with the one in [8]. In the next theorem we are going

to show that the probabilities for the distribution in (1.1.7) become as following:

pk :=
rk · ck

rk · ck + (n− rk − gr0k )(m− ck − gc0k )
, (2.2.3)
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where gr0k is the number of structural zeros in the (r0, k)th column and gc0k is the

number of structural zeros in the (c0, k)th column. Thus we have weights:

wk =
rk · ck

(n− rk − gr0k )(m− ck − gc0k )
. (2.2.4)

Theorem 2.2.4. For the uniform distribution over all m×n× l zero-one tables with

structural zeros with given marginals rk = Xi0+k, ck = X+j0k for k = 1, 2, . . . , l, and

a fixed marginal for the factor L, l0, the marginal distribution of the fixed marginal l0

is the same as the conditional distribution of Z defined by (1.1.7) given SZ = l0 with

pk :=
rk · ck

rk · ck + (n− rk − gr0k )(m− ck − gc0k )
,

where gr0k is the number of structural zeros in the (r0, k)th column and gc0k is the

number of structural zeros in the (c0, k)th column.

Proof. The proof is similar to the proof for Theorem 2.2.2, just replace the probability

pk with

pk =

(
n−1−g

r0
k

rk−1

)(
m−1−g

c0
k

ck−1

)(
n−1−g

r0
k

rk−1

)(
m−1−g

c0
k

ck−1

)
+
(
n−1−g

r0
k

rk

)(
m−1−g

c0
k

ck

) =
rk · ck

rk · ck + (n− rk − gr0k )(m− ck − gc0k )
.

Remark 2.2.5. The sequential importance sampling via CP for sampling a two-way

zero-one table with structural zeros defined in Theorem 1 in [8] is a special case of

our SIS. We can induce pk defined in (2.2.3) and the weights defined in (2.2.4) to

the weights for two-way zero-one contingency tables defined in [8]. Note that when

we consider two-way zero-one contingency tables we have ck = 1 for all k = 1, . . . , l

and for all j0 = 1, . . . , n (or rk = 1 for all k = 1, . . . , l and for all i0 = 1, . . . ,m),

m = 2 (or n = 2, respectively), and gc0k = 0 (or gr0k , respectively). Therefore when we

consider the two-way zero-one tables we get

pk =
rk

n− gr0k
, wk =

rk
n− rk − gr0k

,
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or respectively

pk =
ck

m− gc0k
, wk =

ck
m− ck − gc0k

.

To end this section, we are going to give some algorithms of how to implement

this method to sample a zero-one three-way table with fixed two-way marginals. The

code is attached in Appendix. Notice that to modify our software in order to make

it available for users to set up structures in the original table, one only needs to

change the initial value of the table that stores all structures appearing during the

intermediary steps and renewed during sampling. For the convenience of stating

these algorithms, we say that the direction of (j0, k0)th column is the direction I, the

direction of (i0, k0)th column is the direction J, and the direction of (i0, j0)th column

is the direction K. Please look at Figure 2.1 to get a more intuitive view.

I J

K

Figure 2.1: An example of a 3× 3× 3 table.
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Algorithm 2.2.6 (Store structures in the zero-one table). This algorithm stores the

structures, including structural 0’s and structural 1’s, in the observed table x0. The

output will be used to avoid trivial cases in sampling. The output A and B matrices

both have the same dimension with x0. A cell in A will takes value 1 if the position

is either structural zero or structural one, and 0 if neither. The matrix B is defined

similarly with A but a cell takes value one only if the position is structural one.

By converting structural 1’s to structural 0’s, we only need to consider sampling a

table without structural 1’s, that is, a table with new marginal sums: X∗
ij+ = Xij+ −∑l

k=1 Bijk = Xij+−Bij+, X
∗
i+k = Xi+k−

∑n
j=1 Bijk = Xi+k−Bi+k, and X∗

+jk = X+jk−∑m
i=1 Bijk = X+jk − B+jk for i = 1, 2, . . . ,m, j = 1, 2, . . . , n, and k = 1, 2, . . . , l.

Input The observed marginals Xij+, Xi+k, and X+jk for i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

and k = 1, 2, . . . , l.

Output Matrix A and B, new marginal sums X∗
ij+, X

∗
i+k, and X∗

+jk for i = 1, 2, . . . ,m, j =

1, 2, . . . , n, and k = 1, 2, . . . , l.

Algorithm 1. Check all marginals in direction I. For i = 1, 2, . . . ,m:

If X+jk = 0, Ai′jk = 1, for all i′ = 1, 2, . . . ,m and Ai′jk = 0;

If X+jk = 1, Ai′jk = 1 and Bi′jk = 1, for all i′ = 1, 2, . . . ,m and Ai′jk = 0.

2. Check all marginals in direction J. For j = 1, 2, . . . , n:

If Xi+k = 0, Aij′k = 1, for all j′ = 1, 2, . . . , n and Aij′k = 0;

If Xi+k = 1, Aij′k = 1 and Bij′k = 1, for all j′ = 1, 2, . . . , n and Aij′k = 0.

3. Check all marginals in direction K. For k = 1, 2, . . . , l:

If Xij+ = 0, Aijk′ = 1, for all k′ = 1, 2, . . . , l and Aijk′ = 0;

If Xij+ = 1, Aijk′ = 1 and Bijk′ = 1, for all k′ = 1, 2, . . . , l and Aijk′ = 0.

4. If any changes made in step (1), (2) or (3), come back to (1), else stop.
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5. Compute new marginals:

X∗
ij+ = Xij+ − Bij+, X

∗
i+k = Xi+k − Bi+k, and X∗

+jk = X+jk − B+jk for

i = 1, 2, . . . ,m, j = 1, 2, . . . , n, and k = 1, 2, . . . , l.

Algorithm 2.2.7 (Generate a two-way table with given marginals). This algorithm

is used to generate a slice (fixed i, the two-way table Xi·· with dimension n× l is called

a slice) of the three-way table. The probability of the sampled slice will be computed,

too.

Input Row sums r∗j and column sums c∗k, j = 1, 2, . . . , n, and k = 1, 2, . . . , l; structures

A; marginal sums on direction I: X+jk for i = 1, 2, . . . ,m.

Output A sampled table and its probability. Return 0 if the process fails.

Algorithm 1. Order all columns so that the column sums decreases.

2. Generate the column (along the direction K) with the largest sum, the

weights used in CP distribution are computed by Equation (2.2.4). No-

tice that each k relates to a specific cell in the column, rk and ck are the

corresponding row sums in the direction J and I, respectively. gr0k and

gc0k are the number of structures in the rows of the direction J and I, re-

spectively. The probability of the generated column will be returned if the

process succeeds, while 0 will be returned in this step if such a column does

not exist.

3. Delete the generated column in step 2, and for the remaining subtable, do

the following:

a) If only one column is left, fill it with the corresponding marginals and

go to step 4.
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b) If a) is not true, check all marginals to see if step 2 causes any new

structures. We will be able to avoid trivial cases by doing this. Go

back to step 1 with updated marginals and structures.

4. Return generated matrix and its CP probability. This matrix will be the

corresponding slice in the three-way table. If the process fails, return 0.

Algorithm 2.2.8 (SIS with CP distribution for sampling a three-way zero-one table).

We describe an algorithm to sample a three-way zero-one table X with given marginals

Xij+, Xi+k, and X+jk for i = 1, 2, . . . ,m, j = 1, 2, . . . , n, and k = 1, 2, . . . , l via SIS

with CP distribution.

Input The observed table x0.

Output The sampled table X.

Algorithm 1. Compute the two-way marginals for X: Xij+, Xi+k, and X+jk for i =

1, 2, . . . ,m, j = 1, 2, . . . , n, and k = 1, 2, . . . , l.

2. Run Algorithm 2.2.6 with the marginal sums computed in step 1. We will

get the tables A, which stores the positions of all structures, and B, which

only stores the positions of all structural 1’s. It will also output the revised

two-way marginals that we will use in the following steps.

3. To sample a zero-one three-way table with the marginal sums obtained in

step 2, do SIS:

a) Delete the slices in direction I (Xi··, i = 1, . . . ,m), the slices in di-

rection J (X·j·, j = 1, . . . , n), and the layers in direction K (X··k,

k = 1, . . . , l, k = 1, . . . , l) if they are completely filled by structures

(i.e. they are completely fixed); consider the left-over subtable.

b) Summing up the cells within all slices in direction I. Rearrange the

slices by ordering their sums from the largest to the smallest.
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c) Consider the slice in direction I with the largest sum and the positions

for structural zeros in this slice, where these positions are stored in

table A from Algorithm 2.2.7. Generate a sample for this slice and

compute its probability. The algorithm will return 0 if the sampling

fails.

d) Delete the generated slice in c), and for the remaining subtable, do the

following:

i. if only one layer left, then fill it with the corresponding marginals

and go to e);

ii. else, go back to step 2 with updated marginal sums.

e) Add the sampled three-way table with table B to retrieve the structural

1’s.

4. Return the table in e) and its probability, i.e. the same probability with the

sampled table in d). Return 0 if failed.

2.3 Sampling d-way (d ≥ 2) zero-one tables with (d− 1)-way marginals

In this section we extend our results further to zero-one contingency tables under the

no d-way (d ∈ N and d > 3) interaction model, i.e., with fixed (d− 1)-way marginals.

Let X = (Xi1...id) be a zero-one contingency table of size (n1×· · ·×nd), where ni ∈ N

for i = 1, . . . , d. The sufficient statistics under the no d-way interaction model are

X+i2...id , Xi1+i3...id , . . . , Xi1...id−1+,

for i1 = 1, . . . , n1, i2 = 1, . . . , n2, . . . , id = 1, . . . , nd,
(2.3.1)

which are called the (d− 1)-way marginals.

For each i01 ∈ {1, . . . , n1}, . . . , i0d−1 ∈ {1, . . . , nd}, we say the column of the entries

for a marginal sum Xi1...ij−1+ij+1...id the (i0, . . . , ij−1, ij+1, . . . , id)th column of X. For
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each i01 ∈ {1, . . . , n1}, . . . , i0d−1 ∈ {1, . . . , nd−1}, we consider the (i01, . . . , i0d−1)th column

for the dth factor. Let l0 = Xi01,...,i
0
d−1+

. Let rjk = Xi01...i
0
j−1+i0j+1...i

0
d−1k

for fixed k ∈

{1, . . . , nd}. We are going to show the theorem that for sampling a zero-one d-way

contingency table X, the probabilities we should use in formula (1.1.7) are:

pk :=

∏d−1
j=1 r

j
k∏d−1

j=1 r
j
k +

∏d−1
j=1(nj − rjk)

. (2.3.2)

Remark 2.3.1. We assume that we do not have trivial cases, namely, 1 ≤ rjk ≤ nj−1

for k = 1, . . . , nj and j = 1, . . . , d.

Theorem 2.3.2. For the uniform distribution over all d-way zero-one contingency

tables X = (Xi1...id) of size (n1×· · ·×nd), where ni ∈ N for i = 1, . . . , d with marginals

l0 = Xi01,...,i
0
d−1+

, and rjk = Xi01...i
0
j−1+i0j+1...i

0
d−1k

for k ∈ {1, . . . , nd}, the marginal distri-

bution of the fixed marginal l0 is the same as the conditional distribution of Z defined

by (1.1.7) given SZ = l0 with

pk :=

∏d−1
j=1 r

j
k∏d−1

j=1 r
j
k +

∏d−1
j=1(nj − rjk)

.

Proof. The proof is similar to the proof for Theorem 2.2.2, we just extend the same

argument to a d-way zero-one table under the no d-way interaction model with the

probability

pk =

∏d−1
j=1

(nj−1

rjk−1

)
∏d−1

j=1

(nj−1

rjk−1

)
+
∏d−1

j=1

(nj−1

rjk

) =

∏d−1
j=1 r

j
k∏d−1

j=1 r
j
k +

∏d−1
j=1(nj − rjk)

.

Similarly with the three-way case we have discussed before, even if no structural

zero is assigned by user in the original table, during the intermediary steps of our SIS

procedure via CP on a three-way zero-one table there will be some columns for the

dth factor with trivial cases. In that case we have to treat them as structural zeros

in the kth layer for some k ∈ {1, . . . , l}. In the next theorem we are going to show
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that the probabilities for the distribution in (1.1.7) become as follows:

pk :=

∏d−1
j=1 r

j
k∏d−1

j=1 r
j
k +

∏d−1
j=1(nj − rjk − gjk)

. (2.3.3)

where gjk is the number of structural zeros in the (i01, . . . , i
0
j−1, i

0
j+1, . . . , i

0
d−1, k)th col-

umn of X. Thus we have weights:

wk =

∏d−1
j=1 r

j
k∏d−1

j=1(nj − rjk − gjk)
. (2.3.4)

Theorem 2.3.3. For the uniform distribution over all d-way zero-one contingency

tables X = (Xi1...id) of size (n1×· · ·×nd), where ni ∈ N for i = 1, . . . , d with marginals

l0 = Xi01,...,i
0
d−1+

, and rjk = Xi01...i
0
j−1+i0j+1...i

0
d−1k

for k ∈ {1, . . . , nd}, the marginal distri-

bution of the fixed marginal l0 is the same as the conditional distribution of Z defined

by (1.1.7) given SZ = l0 with

pk :=

∏d−1
j=1 r

j
k∏d−1

j=1 r
j
k +

∏d−1
j=1(nj − rjk − gjk)

where gjk is the number of structural zeros in the (i01, . . . , i
0
j−1, i

0
j+1, . . . , i

0
d−1k)th column

of X.

Proof. The proof is similar to the proof for Theorem 2.2.4, we just extend the same

argument to a d-way zero-one table under the no d-way interaction model with the

probability

pk =

∏d−1
j=1

(nj−1−gjk
rjk−1

)
∏d−1

j=1

(nj−1−gjk
rjk−1

)
+
∏d−1

j=1

(nj−1−gjk
rjk

) =

∏d−1
j=1 r

j
k∏d−1

j=1 r
j
k +

∏d−1
j=1(nj − rjk − gjk)

.

2.4 Computational examples of counting the total number of three-way

tables with fixed two-way marginals

For our simulation study we use the software package R [56] in programming and

use SIS procedure to estimate the total number of zero-one three-way tables with
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fixed two-way marginals via sampling tables uniformly over Σ. The code can be

found in Appendix. To compare with our estimators of numbers of tables, we count

the exact numbers of tables via the software LattE [17] for small examples in this

section (Examples (2.4.2) to (2.4.13)). When the contingency tables are large and/or

the models are complicated, it is very difficult to obtain the exact number of tables.

Thus we need a good measurement of accuracy for the estimated number of tables.

In [9], they used the coefficient of variation (cv2):

cv2 =
varq{p(X)/q(X)}
E2

q{p(X)/q(X)}

which is equal to varq{1/q(X)}/E2
q{1/q(X)} for the problem of estimating the number

of tables because the true distribution p(X) is assumed to be the uniform distribution

over Σ. The value of cv2 is simply the chi-square distance between the two distribu-

tions p and q, which means the smaller it is, the closer the two distributions are. In

[9] they estimated cv2 by:

cv2 ≈
∑N

i=1{1/q(Xi)−
[∑N

j=1 1/q(Xj)
]
/N}2/(N− 1){[∑N

j=1 1/q(Xj)
]
/N
}2 ,

where X1, . . . ,XN are tables drawn iid from q(X). When we have rejections, we

compute the variance using only accepted tables. In this section and Section 4.1.1 we

will also investigate relations of estimated number of tables with the exact numbers

of tables and cv2 when we have rejections.

In this section, we name the two-way marginals as following to avoid confusing:

suppose we have an observed table X = (Xijk)m×n×l, i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

and k = 1, 2, . . . , l, then the two-way marginals can be computed using equations

(2.1.2), i.e. by suming along the direction I, J and K, we are able to get the following

three matrices: si = (X+jk)n×l, sj = (Xi+k)m×l, and sk = (Xij+)m×n.

An interesting problem in mathematics is counting the number of semimagic

cubes. In our examples we are going to estimate the number of 3-dimensional
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semimagic cubes, which are defined as m × n × l contingency tables such that

m = n = l and all two-way marginals are equal, i.e. there exists a constant such that

s, 1 ≤ s ≤ m − 1 and X+jk = Xi+k = Xij+ = s, for i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

and k = 1, 2, . . . , l.

Example 2.4.1 (The 3-dimensional Semimagic Cube). Suppose si, sj, and sk are

all 3× 3 matrices such that all cells of them take value 1, i.e.

si = sj = sk =

1 1 1

1 1 1

1 1 1

.

The exact number of tables is 12. We took 114.7 seconds to run 10, 000 samples in

the SIS procedure. The estimator was 12, and the acceptance rate was 100%. In fact,

we realized that if the acceptance rate is 100%, then we can obtain a good estimation

even when with a smaller sample size.

We used R to produce more examples. Examples (2.4.2) to (2.4.13) are con-

structed by the same code but with different seeds, this means that the entries in

the input matrix were generated by a pseudorandom number generator initialized

by different numbers. The purpose of the usage of seeds is that we can regenerate

the same pseudorandom zero-one tables repeatedly using the same seed so that our

results can be tested and verified. R package “Rlab” is needed in the following code

to use function “rbern”.

seed = 6;

m = 3; n = 3; l = 4; prob = 0.8;

N = 1000; k = 200 # N: the sample size for SIS, i.e. \mathfrak{N}

set.seed(seed)

A = array( rbern(m*n*l, prob), c(m, n, l) )

outinfo = tabinfo(A) # compute the two-way marginals
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numtable(N, outinfo, k) # estimate the total number of tables

The above code gives an example of how to produce an input table and estimate

the total number of tables which have the same two-way marginals with the input

table. In this specific example, table A is the input table with dimension 3 × 3 × 4

and its entries are i.i.d. Bernoulli trials with success probability prob = 0.8. The

number N is the sample size, i.e. the total number of tables we sample, including

those that are rejected in the process. The number k is a parameter to control the

printing of output. The functions outinfo and numtable can be found in Appendix.

Notice that we can generate different examples simply by changing the setting of

these parameters. For those examples in which the real number of tables cannot be

computed by LattE, cv2 will be used to measure how accurate our estimator is, it is

defined as V ar
Mean2 and is introduced earlier in this section.

Example 2.4.2 (seed=6; m=3; n=3; l=4; prob=0.8). Suppose si, sj, and sk are as

following, respectively:

2 2 2 2

1 3 2 2

2 3 3 2

,

2 3 2 2

1 3 3 3

2 2 2 1

,

3 3 3

3 3 4

2 2 3

.

The real number of tables is 3. The sample size was 1000 and the estimator was

3.00762 with cv2 = 0.0708. The whole process took 13.216 seconds (in R) with a

100% acceptance rate.

Example 2.4.3 (seed=60; m=3; n=4; l=4; prob=0.5). Suppose si, sj, and sk are

as following, respectively:

2 2 2 1

1 1 1 0

1 1 1 2

1 1 2 3

,

3 3 2 1

1 0 2 2

1 2 2 3

,

3 2 2 2

1 0 2 2

3 1 1 3

.
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The real number of tables is 5. The sample size was 1000 and the estimator was

4.991026 with cv2 = 0.1335. The whole process took 17.016 seconds (in R) with a

100% acceptance rate.

Example 2.4.4 (seed=61; m=3; n=4; l=4; prob=0.5). Suppose si, sj, and sk are

as following, respectively:

1 2 2 1

0 1 1 2

1 0 2 1

0 1 3 2

,

1 2 3 2

1 1 2 3

0 1 3 1

,

3 1 1 3

1 2 2 2

2 1 1 1

.

The real number of tables is 8. The sample size was 1000 and the estimator was

8.04964 with cv2 = 0.2389. The whole process took 16.446 seconds (in R) with a

100% acceptance rate.

Example 2.4.5 (seed=240; m=4; n=4; l=4; prob=0.5). Suppose si, sj, and sk are

as following, respectively:

2 3 3 2

1 3 2 1

1 2 3 0

4 2 2 2

,

2 2 4 1

3 2 2 2

2 3 3 1

1 3 1 1

,

2 2 3 2

3 2 1 3

3 2 2 2

2 1 0 3

.

The real number of tables is 8. The sample size was 1000 and the estimator was

8.039938 with cv2 = 0.2857. The whole process took 23.612 seconds (in R) with a

100% acceptance rate.

Example 2.4.6 (seed=1240; m=4; n=4; l=4; prob=0.5). Suppose si, sj, and sk are
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as following, respectively:

2 3 2 3

1 2 3 2

2 2 3 2

3 2 3 2

,

1 4 1 3

4 2 4 2

1 2 4 3

2 1 2 1

,

2 2 2 3

3 3 3 3

3 2 2 3

2 1 2 1

.

The real number of tables is 28. The sample size was 1000 and the estimator is

26.89940 with cv2 = 1.0306. The whole process took 29.067 seconds (in R) with a

100% acceptance rate. For sample size 5000 the estimator becomes 28.0917, with

cv2 = 1.2070.

Example 2.4.7 (seed=2240; m=4; n=4; l=4; prob=0.5). Suppose si, sj, and sk are

as following, respectively:

1 2 3 1

2 3 2 3

2 4 2 1

2 1 4 1

,

2 3 2 0

3 2 3 2

1 3 3 1

1 2 3 3

,

2 1 2 2

3 2 3 2

1 4 2 1

1 3 2 3

.

The real number of tables is 4. The sample size was 1000 and the estimator was

3.98125 with cv2 = 0.0960. The whole process took 26.96 seconds (in R) with a 100%

acceptance rate.

Example 2.4.8 (seed=3340; m=4; n=4; l=4; prob=0.5). Suppose si, sj, and sk are

as following, respectively:

2 4 1 3

1 2 1 2

1 1 0 3

4 1 0 2

,

2 1 1 2

3 1 1 3

1 2 0 2

2 4 0 3

,

3 1 1 1

3 1 2 2

1 2 1 1

3 2 1 3

.
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The real number of tables is 2. The sample size was 1000 and the estimator was 2

with cv2 = 0. The whole process took 15.214 seconds (in R) with a 100% acceptance

rate.

Example 2.4.9 (seed=3440; m=4; n=4; l=4; prob=0.5). Suppose si, sj, and sk are

as following, respectively:

1 3 1 3

1 1 2 2

2 3 1 0

3 2 2 3

,

2 2 2 2

2 1 2 1

1 3 1 2

2 3 1 3

,

3 1 1 3

1 2 1 2

2 0 3 2

2 3 1 3

.

The real number of tables is 12. The sample size was 1000 and the estimator was

12.04838 with cv2 = 0.7819733. The whole process took 27.074 seconds (in R) with a

85.9% acceptance rate.

Example 2.4.10 (seed=5440; m=4; n=4; l=4; prob=0.5). Suppose si, sj, and sk

are as following, respectively:

2 1 0 1

2 3 1 2

3 1 2 1

1 3 2 2

,

2 3 2 1

2 1 2 3

2 1 0 1

2 3 1 1

,

1 2 2 3

1 1 3 3

1 3 0 0

1 2 2 2

.

The real number of tables is 9. The sample size was 1000 and the estimator was

8.882672 with cv2 = 0.7701368. The whole process took 30.171 seconds (in R) with

a 100% acceptance rate. Another result for the same sample size is: an estimator is

8.521734, cv2 = 0.6695902. we can see that the latter has a slightly better cv2 but a

slightly worse estimator. We’ll discuss more in Section 4.1.1.
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Example 2.4.11 (seed=122; m=4; n=4; l=5; prob=0.2). Suppose si, sj, and sk are

as following, respectively:

2 0 3 3 2

0 0 1 0 0

1 0 1 1 1

0 1 0 1 0

,

1 0 0 2 1

1 0 2 1 1

1 1 1 1 1

0 0 2 1 0

,

3 0 0 1

4 1 0 0

1 0 3 1

2 0 1 0

.

The real number of tables is 5. The sample size was 1000 and the estimator was

4.93625 with cv2 = 0.2035. The whole process took 21.325 seconds (in R) with a

100% acceptance rate.

Example 2.4.12 (seed=222; m=4; n=4; l=5; prob=0.2). Suppose si, sj, and sk are

as following, respectively:

1 0 1 1 1

2 1 0 1 2

0 1 1 1 0

1 1 1 1 1

,

2 1 0 0 2

1 2 1 2 1

1 0 1 1 1

0 0 1 1 0

,

2 3 0 0

1 3 2 1

0 0 1 3

1 0 0 1

.

The real number of tables is 2. The sample size was 1000 and the estimator was 2

with cv2 = 0. The whole process took 19.064 seconds (in R) with a 100% acceptance

rate.

Example 2.4.13 (seed=322; m=4; n=4; l=5; prob=0.2). Suppose si, sj, and sk are

as following, respectively:

1 1 1 1 1

1 1 1 1 1

1 2 0 0 1

2 0 1 1 2

,

0 0 1 1 0

1 0 1 0 1

2 2 0 1 2

2 2 1 1 2

,

0 2 0 0

1 0 0 2

1 3 1 2

3 0 3 2

.
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The real number of tables is 5. The sample size was 1000 and the estimator was

4.992 with cv2 = 0.2179682. The whole process took 23.25 seconds (in R) with a

85.2% acceptance rate.

Summary 2.4.14 (Summary of the results from Example (2.4.2) to Example (2.4.13)).

This is only a summary of main results of those examples in Table 2.1. For all results

appear here we set the sample size 1, 000. We will discuss these results in Section

4.1.1.

Table 2.1: Summary of Examples (2.4.2) - (2.4.13)

Dimension Example # tables Estimation cv2 Acceptance rate

3× 3× 4 2.4.2 3 3.00762 0.0708 100%

3× 4× 4 2.4.3 5 4.991026 0.1335 100%
2.4.4 8 8.04964 0.2389 100%

4× 4× 4 2.4.5 8 8.039938 0.2857 100%
2.4.6 28 26.89940 1.0306 100%
2.4.7 4 3.98125 0.0960 100%
2.4.8 2 2 0 100%
2.4.9 12 12.04838 0.7820 85.9%
2.4.10 9 8.882672 0.7701 100%

4× 4× 5 2.4.11 5 4.93625 0.2035 100%
2.4.12 2 2 0 100%
2.4.13 5 4.992 0.2180 85.2%

Example 2.4.15 (Larger 3-dimensional Semimagic Cubes). In this example, we con-

sider m × n × l tables for m = n = l = 4, . . . , 10 such that every two-way marginal

equals to 1. The results are summarized in Table 2.2.

Example 2.4.16 (Larger 3-dimensional Semimagic Cubes continues). In this exam-

ple, we consider m× n× l tables for m = n = l = 4, . . . , 10 such that every two-way
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Table 2.3: An additional summary of computational results on m×m×m semimagic
cubes for m = 4, . . . , 10.

Dimension m s CPU time (sec) Estimation cv2 Acceptance rate
4 2 27.1 51810.36 0.66 97.7%
5 2 58.1 25196288574 1.69 97.5%
6 2 97.1 6.339628e+18 2.56 94.8%

3 99.3 1.269398e+22 2.83 96.5%
7 2 150.85 1.437412e+30 4.76 93.1%

3 166.68 2.365389e+38 25.33 96.7%
8 2 229.85 5.369437e+44 6.68 89.8%

3 256.70 3.236556e+59 7.05 94.5%
4 328.52 2.448923e+64 11.98 94.3%

9 2 319.32 4.416787e+62 8.93 85.7%
3 376.67 7.871387e+85 15.23 91.6%
4 549.73 2.422237e+97 14.00 93.4%

10 2 429.19 2.166449e+84 10.46 83.3%
3 527.14 6.861123e+117 26.62 90%
4 883.34 3.652694e+137 33.33 93.8%
5 1439.50 1.315069e+144 46.2 91.3%

All two-way marginals are equal to s in each simulation. The sample size is N = 1000 in this
example.

marginal equals to s, 1 ≤ s ≤ m
2
. The results are summarized in Table 2.3. In this

example, we set the sample size N = 1000.

Example 2.4.17 (Bootstrap-t confidence intervals of Semimagic Cubes). As we can

see in Table 2.3, generally speaking for fixed sample size, cv2 becomes larger when the

number of tables is larger, and in this case, the estimator we get via the SIS procedure

varies greatly in different iterations. Therefore, we propose to compute a (1−α)100%

confidence interval for each estimator via a non-parametric bootstrap method. In

Appendix, we will give a pseudo code of a non-parametric bootstrap method to get the

(1−α)100% confidence interval for |Σ|). See Table 2.4 for some results of Bootstrap-t

95% confidence intervals (α = 0.05).
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2.5 Experiment with Sampson’s data set

Sampson recorded the social interactions among a group of monks while he visited as

an experimenter on vision. He collected numerous sociometric rankings [6, 46]. The

data is organized as a 18× 18× 10 table and one can find the full data sets at http:

//vlado.fmf.uni-lj.si/pub/networks/data/ucinet/UciData.htm#sampson.

In this dataset, each layer of 18× 18 table represents a social relation between 18

monks at some time point. Most of the present data are retrospective, collected after

the breakup occurred. They concern a period during which a new cohort entered

the monastery near the end of the study but before the major conflict began. The

exceptions are “liking” data gathered at three times: SAMPLK1 to SAMPLK3 - that

reflect changes in group sentiment over time (SAMPLK3 was collected in the same

wave as the data described below). In the data set four relations are coded, with sepa-

rate matrices for positive and negative ties on the 10 relation: esteem (SAMPES) and

disesteem (SAMPDES); liking (SAMPLK which are SAMPLK1 to SAMPLK3) and

disliking (SAMPDLK); positive influence (SAMPIN) and negative influence (SAMP-

NIN); praise (SAMPPR) and blame (SAMPNPR). In the original data set they listed

top three choices and recorded as ranks. However, we set these ranks as an indicator

(i.e., if they are in the top three choices, then we set one and else, zero).

We ran the SIS procedure with N = 100000 and a bootstrap sample size B =

50000. The estimator was 1.705e+117 and its 95% confidence interval was [1.119e+117,

2.681e+119]. We also had cv2 = 621.4 with its 95% confidence interval be [324.29,

2959.65]. The CPU time was 70442 seconds (around 20 hours). The acceptance rate

was 3%. We will discuss these results in Section 4.1.1.

Copyright c© Jing Xi, 2013.
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Chapter 3 The Characteristic Imset Polytopes for Bayesian Networks

In Section 1.3.2, we showed that the problem of learning Bayesian networks in a class

of graphs G can be formulated as a LP problem over the corresponding characteristic

imset polytope PG,c, which gives us a systematic way to find the best model with

the optimality certificate rather than finding it by the brute-force search. In general,

however, the dimension of PG,c, with the fixed set of nodes N , can be exponentially

large (e.g. dim(PDAGs(N),c) = 2|N | − |N | − 1) and there are double exponentially

many vertices as well as facets of PG,c. Thus it is infeasible to optimize by software

if |N | > 6 [39, Section 6.4.2]. In order to solve the LP problem for a larger |N |, we

need to understand the structure of PG,c, such as combinatorial description of edges

and facets of the polytope so that we might be able to apply a simplex method [48,

Chapter 11] to find an optimal solution. However, in general, studying the structure

of PG,c is challenging because there are too many facets and too many edges of

the polytope. Therefore, in this dissertation, we start with a particular family of

BNs, namely diagnosis models, because the dimension of PG,c for diagnosis models

is dramatically reduced by prohibiting certain types of edges in the DAGs. These

models are of particular interest because we can generalize our results in diagnosis

models to a larger family of BNs (see Section 3.3 and Section 4.2.1): all BNs with

the same underlying ordering of nodes.

In medical studies, researchers are often interested in probabilistic models in order

to correctly diagnose a disease from a patient symptoms. The diagnoses models, also

known as the Quick Medical Reference (QMR) diagnostic model, is introduced in

[49] to diagnose a disease from a given set of symptoms of a patient (e.g. [40]). The

DAGs that represent the diagnosis models are directed bipartite graph with two sets

of nodes, one representing m diseases and one representing n symptoms, and set of
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directed edges from nodes representing diseases to nodes representing symptoms (see

Definition 3.1.1).

This chapter is organized as follows. In Section 3.1 we introduce notation and

definitions for diagnosis models, and give some properties of characteristic imsets of

these models. In Section 3.2, we show that the cim-polytopes of diagnosis models

are directed product of simplices, and give a combinatorial description of edges and

a expression of facets of the cim-polytopes. Then we generalize the results in Section

3.2 to a larger family of BN in Section 3.3.

3.1 Diagnosis models and propositions of the corresponding characteris-

tic imsets

In this section, we will first review the definition of diagnosis models. Then we will

show that these models can lead to some properties of their characteristic imsets.

Lastly, we will give two examples of the characteristic imsets and characteristic imset

polytopes (cim-polytopes) of diagnosis models.

Definition 3.1.1. A diagnosis model is a CI model induced by a directed bipar-

tite graph G ∈ DAGs(N) that can be described as following:

• its nodes N = {a1, . . . , am} ∪ {b1, . . . , bn} can be divided into disjoint sets A =

{a1, . . . , am} and B = {b1, . . . , bn}; and

• if a directed edge a → b in G, then a ∈ A and b ∈ B.

An example of such directed bipartite graph is given in Figure 3.1.

The naming of the diagnosis models comes from an interpretation of the two sets of

nodes: nodes in A can be interpreted as diseases, while nodes in B can be interpreted

as symptoms, and every single edge can only be drawn from a disease to a symptom.
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Figure 3.1: An example of a directed bipartite graph, m = 3, n = 6.

For fixed A and B, where |A| = m and |B| = n, we define notation: Gm,n = {All

possible directed bipartite graphs defined in Definition 3.1.1 based on A and B}. We

are going to study the properties of cG, where G ∈ Gm,n.

Proposition 3.1.2. Fix A = {a1, . . . , am} and B = {b1, . . . , bn}. Assume G ∈ Gm,n

and |N | = m+ n > 2. Then cG(T ) is possible to take value 1 if and only if T has the

form of ai1 . . . aikbj, where 1 ≤ k ≤ m, {i1, . . . , ik} ⊆ {1, . . . ,m} and j ∈ {1, . . . , n}.

Proof. Notice that ∀T ⊆ N , |T | ≥ 2, we can write T in the form of:

T = ai1 . . . aikbj1 . . . bjl , where 0 ≤ k ≤ m, {i1, . . . , ik} ⊆ {1, . . . ,m},

0 ≤ l ≤ n, {j1, . . . , jl} ⊆ {1, . . . , n},

k + l ≥ 2.

(3.1.1)

We need to prove that l can neither be 0 nor greater than 1, i.e. l = 1.

(a) If l = 0. ∀ s, t ∈ {i1, . . . , ik}, by Definition 3.1.1, as → at is not in G. This

means as /∈ paG(at). Hence ∀ t ∈ {i1, . . . , ik}, T \ {at} � paG(at). cG(T ) = 0.

(b) If l > 1. Similarly with above, by Definition 3.1.1, ∀ s′, t′ ∈ {j1, . . . , jl}, bs′ /∈

paG(bt′). Moreover, ∀ t ∈ {i1, . . . , ik} and t′ ∈ {j1, . . . , jl}, bt′ /∈ paG(at).

cG(T ) = 0.
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Proposition 3.1.3. Notation is adopted from Proposition 3.1.2. Suppose T has the

form of ai1 . . . aikbj, where 1 ≤ k ≤ m, {i1, . . . , ik} ⊆ {1, . . . ,m} and j ∈ {1, . . . , n},

then cG(T ) =
∏

s=i1,...,ik
cG(asbj).

Proof. Again by Definition 3.1.1, ∀ s, t ∈ {i1, . . . , ik}, as /∈ paG(at). Therefore:

cG(T ) = 1 ⇐⇒ {ai1 . . . aik} ⊆ paG(bj)

⇐⇒ as ∈ paG(bj), ∀s = i1, . . . , ik

⇐⇒ cG(asbj) = 1, ∀s = i1, . . . , ik.

(3.1.2)

Recall that cG(T ) is binary. Thus cG(T ) =
∏

s=i1,...,ik
cG(asbj).

Remark 3.1.4. Proposition 3.1.3 implies that ∀G ∈ Gm,n, cG is determined by only

m ·n coordinates, {cG(aibj) : i = 1, . . . ,m, j = 1, . . . , n}, i.e. the existence of directed

edges ai → bj, i = 1, . . . ,m and j = 1, . . . , n. Another way to see this property is

that ∀ G ∈ Gm,n, G can be determined by paG(bj), bj ∈ B. Thus if we consider a

permutation of coordinates in cG that corresponds to a permutation of T where T has

the form in Proposition 3.1.2, then these coordinates can be broken into n parts:

a1b1, . . . , amb1, . . . , a1 . . . amb1, a1b2, . . . , a1 . . . amb2
�������������������

, . . . , a1bn, . . . , a1 . . . ambn,

where the s-th part of coordinations cG(T ), T ∈ {a1bs, . . . , ambs, a1a2bs, . . . , a1 . . . ambs}

only depend on paG(bs), and different parts are completely irrelevant in the sense that

paG(bs), bs ∈ B, can be decided separately.

Proposition 3.1.5. Fix m and n. The number of elements in Gm,n is 2mn.

Proof. This is trivial because of Remark 3.1.4 since there are mn possible edges

that can be assigned: ai → bj, where i = 1, . . . ,m and j = 1, . . . , n, and there are∑mn
k=0

(
mn
k

)
= 2mn many possible ways to assign the existence of these edges.

Proposition 3.1.6. Suppose G ∈ Gm,n. The number of non-zero coordinates in cG

is at most n · (2m − 1).
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Proof. This result is straightforward from Proposition 3.1.2 by counting the number

of coordinates cG(T ), where T has the form shown in Proposition 3.1.2. Note that

when |T | > m+1, ∃ bj1 , bj2 ∈ {1, . . . , n} s.t. bj1 , bj2 ∈ T , i.e. cG(T ) = 0 by Proposition

3.1.2. When 2 ≤ |T | ≤ m+ 1, the number of coordinates of form cG(ai1 . . . ai|T |−1
bj),

where {i1, . . . , i|T |−1} ⊆ {1, . . . ,m} and j ∈ {1, . . . , n}, is
(

m
|T |−1

)
·n. Hence the number

of possible non-zero coordinates is:

m+1∑
|T |=2

(
m

|T | − 1

)
· n = n ·

m∑
k=1

(
m

k

)
= n · (2m − 1).

For fixed m and n, consider the characteristic imset polytope for Gm,n (see the def-

inition of cim-polytopes in Section 1.3.2) and let Pm,n be the cim-polytope: Pm,n :=

PGm,n,c. Proposition 3.1.6 implies that the dimension of Pm,n is at most n · (2m − 1).

We are going to show in Section 3.2 that the dimension of Pm,n is actually exactly

n · (2m − 1).

Before we end this section, we are going to show two examples of Gm,n and the

characteristic imsets cG, G ∈ Gm,n. The coordinates of the characteristic imsets with

the form in Proposition 3.1.2 will be ordered as the permutation showed in Remark

3.1.4, and we can observe in the examples that the other coordinates will be all zeroes.

Example 3.1.7 (Only One Disease). Let A = {a1} and B = {b1, . . . , bn}. By Propo-

sition 3.1.2, cG(T ) will be zero if it doesn’t have the form of a1bj, bj ∈ {1, . . . , n}.
Consider all combination of the existence of edges a1 → bj, bj ∈ {1, . . . , n}, we can

see that the cim-polytope P1,n is the n-cube. A simple example of n = 3 is given here.

The list of cG, ∀G ∈ G1,3, is showed as a matrix. We can see that the last 8 columns
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Figure 3.2: Graph G13 in G1,3 Figure 3.3: The characteristic imset polytope P1,3

in the matrix are all zeros.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cG0

cG1

cG2

cG3

cG12

cG23

cG13

cG123

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T a1b1 a1b2 a1b3 b1b2 b2b3 b1b3 a1b1b2 a1b2b3 a1b1b3 b1b2b3 a1b1b2b3

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Example 3.1.8 (m = 2, n = 2). We can encode the four possible edges as following:

encode a1 → b1 as 1, a2 → b1 as 2, a1 → b2 as 3, and a2 → b2 as 4. An example of

encoding the subscript is given by Figure 3.4. The list of cG, ∀G ∈ G2,2, is showed as
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Figure 3.4: Graph G134 in G2,2

The subscript “134” means the existence of edges a1 → b1, a1 → b2, and a2 → b2.

a matrix. We can see that the last 5 columns in the matrix are all zeros.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cG0

cG1

cG2

cG3

cG4

cG12

cG13

cG14

cG23

cG24

cG34

cG123

cG134

cG124

cG234

cG1234

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T a1b1 a2b1 a1a2b1 a1b2 a2b2 a1a2b2 a1a2 b1b2 a1b1b2 a2b1b2 a1a2b1b2

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

1 0 0 1 1 1 0 0 0 0 0

1 1 1 0 1 0 0 0 0 0 0

0 1 0 1 1 1 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3.2 The characteristic imset polytopes (cim-polytopes) for diagnosis mod-

els

3.2.1 Combinatorial description of edges on Pm,n

Definition 3.2.1. Consider a class of graphs G. ∀G, H ∈ G, G and H are called

neighbors if cG and cH form an edge in PG,c, the characteristic imset polytope for

G.
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Lemma 3.2.2. Fix m. Suppose G1, G2 ∈ Gm,1 are arbitrary two distinct graphs in

Gm,1. Then G1 and G2 are neighbors, i.e. cG1 and cG2 form an edge in Pm,1.

Proof. Let N = A∪B, where A = {a1, . . . , am} and B = {b1}. By Remark 1.3.5, we

need to prove: ∃ a cost vector w, such that w · cG1 = w · cG2 > w · cG3 , ∀ G3 ∈ Gm,1

distinct with G1 and G2.

By Remark 3.1.4, G1 and G2 are determined by paG1(b1) and paG2(b1), respectively.

We will discuss by two scenarios of paG1(b1) and paG2(b1): one is a subset of the other,

and neither one is a subset of the other.

(1) One is a subset of the other. WLOG, suppose paG1(b1) � paG2(b1).

Define: A1 = paG1(b1), A2 = paG2(b1), A2\1 = paG2(b1)\paG1(b1), and Acomp =

(paG2(b1))
c (i.e. the complement set of paG2(b1)). Note that: A2\1 �= ∅, A1 and

Acomp can be ∅; A1, A2\1 and Acomp is a partition of N .

Consider a function w : P(N) �→ R where w(T ) = 0 if |T | < 2. Then similar

with imsets, w can also be considered as a vector, and we assume that the

permutations of coordinates in w and in characteristic imsets coincide.

– If |A2\1| > 1, we define w as:

w(T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c for T = aibj, ai ∈ A1

−c for T = aibj, ai /∈ A1

|A2\1| · c for T = A2\1 ∪ {b1}

0 for T ⊂ N, |T | > 2, and T �= A2\1 ∪ {b1}

where c is a positive number.

Then ∀ G3 ∈ Gm,1, we have:

w · cG3 = |A1 ∩ paG3(b1)| · c− |paG3(b1)\A1| · c+ |A2\1| · c · cG3(A2\1 ∪ {b1})

= |A1 ∩ paG3(b1)| · c− |paG3(b1) ∩A2\1| · c− |paG3(b1) ∩Acomp| · c

+|A2\1| · c · cG3(A2\1 ∪ {b1}).

In this equation:
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∗ |A1∩paG3(b1)|·c ≤ |A1|·c, where “=” holds if and only ifA1 ⊂ paG3(b1);

∗ −|paG3(b1)∩A2\1| · c+ |A2\1| · c · cG3(A2\1∪{b1}) ≤ 0, where “=” holds

if and only if paG3(b1) ∩ A2\1 = ∅ or A2\1;

∗ −|paG3(b1) ∩ Acomp| · c ≤ 0, where “=” holds if and only if paG3(b1) ∩

Acomp = ∅.

Therefore, w · cG3 ≤ |A1| · c, where “=” holds if and only if G3 = G1 or G2.

– If |A2\1| = 1, we let A2\1 = {aq}, and define w as:

w(T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c for T = aibj, ai ∈ A1

−c for T = aibj, ai /∈ A2

0 for T = aqb1

0 for T ⊂ N, |T | > 2, and T �= A2\1 ∪ {b1}

where c is a positive number.

Then ∀ G3 ∈ Gm,1, we have:

w · cG3 = |A1 ∩ paG3(b1)| · c− |paG3(b1) ∩ Acomp| · c.

Again, in this equation:

∗ |A1∩paG3(b1)|·c ≤ |A1|·c, where “=” holds if and only ifA1 ⊂ paG3(b1);

∗ −|paG3(b1) ∩ Acomp| · c ≤ 0, where “=” holds if and only if paG3(b1) ∩

Acomp = ∅.

To satisfy the above two conditions, we must have paG3(b1) = A1 or (A1 ∪

aq). Therefore, again, we have: w · cG3 ≤ |A1| · c, where “=” holds if and

only if G3 = G1 or G2.

(2) Neither one is a subset of the other.

Define: A1 = paG1(b1), A2 = paG2(b1), A1∩2 = paG1(b1) ∩ paG2(b1), A1\2 =

paG1(b1)\paG2(b1), A2\1 = paG2(b1)\paG1(b1), A1∪2 = paG1(b1) ∪ paG2(b1) and
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Acomp = (A1∪2)c. Note that: A1\2, A2\1 �= ∅, A1∩2 and Acomp can be ∅; A1∩2,

A1\2, A2\1, and Acomp is a partition of N .

Consider a function w similar with part (1) that can also be considered as a

vector such that the permutations of coordinates in w and in characteristic

imsets coincide.

– If |A1\2| > 1 and |A2\1| > 1, we define w as:

w(T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c for T = aibj , ai ∈ A1∩2

−c for T = aibj , ai /∈ A1∩2

−2c for T = A1\2 ∪A2\1 ∪ {b1}

(|A1\2|+ 1) · c for T = A1\2 ∪ {b1}

(|A2\1|+ 1) · c for T = A2\1 ∪ {b1}

0 for other T ⊂ N, |T | > 2

where c is a positive number.

Then ∀ G3 ∈ Gm,1, we have:

w · cG3 = |paG3(b1) ∩A1∩2| · c− |paG3(b1) ∩A1\2| · c

−|paG3(b1) ∩A2\1| · c− |paG3(b1) ∩Acomp| · c

+(|A1\2|+ 1) · c · cG3(A1\2 ∪ {b1}) + (|A2\1|+ 1) · c · cG3(A2\1 ∪ {b1})

−2c · cG3(A1\2 ∪A2\1 ∪ {b1})

= |paG3(b1) ∩A1∩2| · c

−|paG3(b1) ∩A1\2| · c+ (|A1\2|+ 1) · c · cG3(A1\2 ∪ {b1})

−|paG3(b1) ∩A2\1| · c+ (|A2\1|+ 1) · c · cG3(A2\1 ∪ {b1})

−2c · cG3(A1\2 ∪A2\1 ∪ {b1})

−|paG3(b1) ∩Acomp| · c

In this equation:

∗ |paG3(b1)∩A1∩2| · c ≤ |A1∩2| · c, where “=” holds if and only if A1∩2 ⊂

paG3(b1);
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∗ −|paG3(b1)∩A1\2| · c+(|A1\2|+1) · c · cG3(A1\2∪{b1}) ≤ c, where “=”

holds if and only if A1\2 ⊂ paG3(b1);

∗ −|paG3(b1)∩A2\1| · c+(|A2\1|+1) · c · cG3(A2\1∪{b1}) ≤ c, where “=”

holds if and only if A2\1 ⊂ paG3(b1);

∗ −2c · cG3(A1\2 ∪ A2\1 ∪ {b1}) ≤ 0, where “=” holds if and only if

(A1\2 ∪ A2\1) � paG3(b1);

∗ −|paG3(b1) ∩ Acomp| · c ≤ 0, where “=” holds if and only if paG3(b1) ∩

Acomp = ∅.

The above conditions cannot be satisfied simultaneously, but notice that:

∗ when paG3(b1) = A1∩2, w · cG3 = |A1∩2| · c+ 0 + 0 + 0 + 0 = |A1∩2| · c;

∗ when paG3(b1) = A1, i.e. G3 = G1, w · cG3 = |A1∩2| · c+ c+0+0+0 =

(|A1∩2|+ 1) · c;

∗ when paG3(b1) = A2, i.e. G3 = G2, w · cG3 = |A1∩2| · c+0+ c+0+0 =

(|A1∩2|+ 1) · c;

∗ when paG3(b1) = A1∪2, w · cG3 = |A1∩2| · c+ c+ c− 2c+ 0 = |A1∩2| · c.

Now it is obvious that w · cG3 ≤ (|A1∩2| + 1) · c, where “=” holds if and

only if G3 = G1 or G2.

– If only one of |A1\2| and |A2\1| is 1. Suppose |A1\2| = 1 and |A2\1| > 1.

We define w as:

w(T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c for T = aibj , ai ∈ A1

−c for T = aibj , ai /∈ A1

−2c for T = A1\2 ∪A2\1 ∪ {b1}

(|A2\1|+ 1) · c for T = A2\1 ∪ {b1}

0 for other T ⊂ N, |T | > 2

where c is a positive number.
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Then ∀ G3 ∈ Gm,1, we have:

w · cG3 = |paG3(b1) ∩A1∩2| · c+ |paG3(b1) ∩A1\2| · c

−|paG3(b1) ∩A2\1| · c− |paG3(b1) ∩Acomp| · c

+(|A2\1|+ 1) · c · cG3(A2\1 ∪ {b1})− 2c · cG3(A1\2 ∪A2\1 ∪ {b1})

= |paG3(b1) ∩A1∩2| · c

+|paG3(b1) ∩A1\2| · c

−|paG3(b1) ∩A2\1| · c+ (|A2\1|+ 1) · c · cG3(A2\1 ∪ {b1})

−2c · cG3(A1\2 ∪A2\1 ∪ {b1})

−|paG3(b1) ∩Acomp| · c.

In this equation:

∗ |paG3(b1)∩A1∩2| · c ≤ |A1∩2| · c, where “=” holds if and only if A1∩2 ⊂

paG3(b1);

∗ |paG3(b1)∩A1\2|·c ≤ c, where “=” holds if and only if A1\2 ⊂ paG3(b1);

∗ −|paG3(b1)∩A2\1| · c+(|A2\1|+1) · c · cG3(A2\1∪{b1}) ≤ c, where “=”

holds if and only if A2\1 ⊂ paG3(b1);

∗ −2c · cG3(A1\2 ∪ A2\1 ∪ {b1}) ≤ 0, where “=” holds if and only if

(A1\2 ∪ A2\1) � paG3(b1);

∗ −|paG3(b1) ∩ Acomp| · c ≤ 0, where “=” holds if and only if paG3(b1) ∩

Acomp = ∅.

The above conditions cannot be satisfied simultaneously, but it is similar

with the case of “|A1\2| > 1 and |A2\1| > 1” to show that w · cG3 ≤

(|A1∩2|+ 1) · c, where “=” holds if and only if G3 = G1 or G2.

– If |A1\2| = |A2\1| = 1, we define w as:

w(T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c for T = aibj , ai ∈ A1∪2

−c for T = aibj , ai /∈ A1∪2

−2c for T = A1\2 ∪A2\1 ∪ {b1}

0 for other T ⊂ N, |T | > 2
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where c is a positive number.

Then ∀ G3 ∈ Gm,1, we have:

w · cG3 = |paG3(b1) ∩ A1∩2| · c

+|paG3(b1) ∩ A1\2| · c+ |paG3(b1) ∩ A2\1| · c

−2c · cG3(A1\2 ∪ A2\1 ∪ {b1})

−|paG3(b1) ∩ Acomp| · c.

In this equation:

∗ |paG3(b1)∩A1∩2| · c ≤ |A1∩2| · c, where “=” holds if and only if A1∩2 ⊂

paG3(b1);

∗ |paG3(b1)∩A1\2|·c ≤ c, where “=” holds if and only if A1\2 ⊂ paG3(b1);

∗ |paG3(b1)∩A2\1|·c ≤ c, where “=” holds if and only if A2\1 ⊂ paG3(b1);

∗ −2c · cG3(A1\2 ∪ A2\1 ∪ {b1}) ≤ 0, where “=” holds if and only if

(A1\2 ∪ A2\1) � paG3(b1);

∗ −|paG3(b1) ∩ Acomp| · c ≤ 0, where “=” holds if and only if paG3(b1) ∩

Acomp = ∅.

The above conditions cannot be satisfied simultaneously, but it is similar

with the case of “|A1\2| > 1 and |A2\1| > 1” to show that: w · cG3 ≤

(|A1∩2|+ 1) · c, where “=” holds if and only if G3 = G1 or G2.

Theorem 3.2.3. Fix m and n. Two graphs, G1, G2 ∈ Gm,n are neighbors if and only

if ∃ bi ∈ B such that paG1(bi) �= paG2(bi) and paG1(bj) = paG2(bj), ∀ bj ∈ B and

bj �= bi, i.e. all nodes but one have exactly the same parent sets in G1 and G2.

Proof. We will prove “if” and “only if” separately.

(1) Prove “if” part.
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Suppose G1, G2 ∈ Gm,n, and there exists bi ∈ B such that paG1(bi) �= paG2(bi)

and paG1(bj) = paG2(bj), ∀ bj ∈ B, bj �= bi. We need to prove G1 and G2 are

neighbors.

Consider an arbitrary graph G3 ∈ Gm,n. By Remark 1.3.5, we need to prove: ∃

a cost vector w such that w · cG1 = w · cG2 ≥ w · cG3 , where “=” holds if and

only if G3 = G1 or G2.

Define the following graphs (a graphical example will be given in Remark 3.2.4):

– G′
1, G′

2, G′
3 ∈ Gm,1 with symptom Bm,1 = {bi} such that paG′

1
(bi) =

paG1(bi), paG′
2
(bi) = paG2(bi) and paG′

3
(bi) = paG3(bi);

– G0, G
′′
3 ∈ Gm,(n−1) with symptoms Bm,(n−1) = B\{bi} such that paG0(bj) =

paG1(bj) = paG2(bj) and paG′′
3
(bj) = paG3(bj), ∀ bj ∈ Bm,(n−1).

By Remark 3.1.4, with a proper permutation of coordinates, we can write the

characteristic imsets of G1, G2 and G3 in the form of:

cG1 = (cG′
1
, cG0)

cG2 = (cG′
2
, cG0)

cG3 = (cG′
3
, cG′′

3
)

– By Lemma 3.2.2, G′
1 and G′

2 are neighbors, i.e. ∃ a cost vector w1 such

that w1 · cG′
1
= w1 · cG′

2
≥ w1 · cG′

3
, ∀ G′

3 ∈ Gm,1, where “=” holds if and

only if G′
3 = G′

1 or G′
2.

– Since cG0 ∈ vert(PGm,(n−1),c), ∃ a cost vector w2 such that w2 ·cG0 ≥ w2 ·cG′′
3
,

∀ G′′
3 ∈ Gm,(n−1), where “=” holds if and only if G′′

3 = G0.

Let w = (w1 w2). We have:

w · cG1 = w1 · cG′
1
+ w2 · cG0

= w1 · cG′
2
+ w2 · cG0 = w · cG2

≥ w1 · cG′
3
+ w2 · cG′′

3
= w · cG3 ,
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where “=” holds if and only if i) G′
3 = G′

1 or G
′
2, and ii) G′′

3 = G0, i.e. G3 = G1

or G2.

(2) Prove “only if” part.

Suppose G1, G2 ∈ Gm,n are neighbors. i.e. ∃ a cost vector w such that w · cG1 =

w · cG2 > w · cG, ∀ G ∈ Gm,n, G �= G1, G2. We are going to prove this part by

contradiction.

Suppose ∃ bi, bj ∈ B distinct, paG1(bi) �= paG2(bi) and paG1(bj) �= paG2(bj).

Define the following graphs (a graphical example will be given in Remark 3.2.4):

– G′
1, G

′
2 ∈ Gm,1 with symptom Bm,1 = {bi} such that paG′

1
(bi) = paG1(bi)

and paG′
2
(bi) = paG2(bi);

– G′′
1, G

′′
2 ∈ Gm,1 with symptom Bm,1 = {bj} such that paG′′

1
(bj) = paG1(bj)

and paG′′
2
(bj) = paG2(bj);

– G′′′
1 , G

′′′
2 ∈ Gm,(n−2) with symptomsBm,(n−2) = B\{bi, bj} such that paG′′′

1
(bk) =

paG1(bk) and paG′′′
2
(bk) = paG2(bk), ∀ bk ∈ Bm,(n−2);

– G3 ∈ Gm,n is all the same with G1 but paG3(bi) = paG2(bi);

– G4 ∈ Gm,n is all the same with G1 but paG4(bj) = paG2(bj);

– G5 ∈ Gm,n is all the same with G2 but paG5(bi) = paG1(bi) and paG5(bj) =

paG1(bj), notice that G5 might be same with G1.

Similarly with part (1), with a proper permutation of coordinates, we can write

the characteristic imsets of G1, G2, G3, G4 and G5 in the following form:

cG1 = (cG′
1
, cG′′

1
, cG′′′

1
)

cG2 = (cG′
2
, cG′′

2
, cG′′′

2
)

cG3 = (cG′
2
, cG′′

1
, cG′′′

1
)

cG4 = (cG′
1
, cG′′

2
, cG′′′

1
)

cG5 = (cG′
1
, cG′′

1
, cG′′′

2
)
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With the same permutation of coordinates, w can be written as w = (w1 w2 w3).

Thus we have:

– G3 �= G1 or G2, which implies:

w · cG1 = w1 · cG′
1
+ w2 · cG′′

1
+ w3 · cG′′′

1

> w · cG3 = w1 · cG′
2
+ w2 · cG′′

1
+ w3 · cG′′′

1

=⇒ w1 · cG′
1

> w1 · cG′
2
;

– G4 �= G1 or G2, which implies:

w · cG1 = w1 · cG′
1
+ w2 · cG′′

1
+ w3 · cG′′′

1

> w · cG4 = w1 · cG′
1
+ w2 · cG′′

2
+ w3 · cG′′′

1

=⇒ w2 · cG′′
1

> w2 · cG′′
2
.

There is a contradiction:

w · cG2 = w1 · cG′
2
+ w2 · cG′′

2
+ w3 · cG′′′

2

< w1 · cG′
1
+ w2 · cG′′

1
+ w3 · cG′′′

2
= w · cG5

=⇒ w · cG2 < w · cG5 .

Therefore G1 and G2 cannot be neighbors.

Remark 3.2.4. Two graphical examples will be given for a more intuitive view of the

proof of Theorem 3.2.3.

• Part (1), the proof of “if” statement. In Figure 3.5, m = 4, n = 3 and bi = b1.

• Part (2), the proof of “only if” statement. In Figure 3.6, m = 4, n = 3, bi = b1

and bj = b2.
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Figure 3.5: An example for the proof of Theorem 3.2.3, part (1)

3.2.2 Pm,n is a direct product of simplices

Theorem 3.2.5. Fix m and n. For an arbitrary G ∈ Gm,n, G has n · (2m − 1) many

neighbors.

Proof. By Theorem 3.2.3, ∀H ∈ Gm,n, G and H are neighbors if and only if: ∃ bk ∈ B

such that paG(bk) �= paH(bk) and paG(bj) = paH(bj), ∀ bj ∈ B and bj �= bk.

Now fix bi ∈ B. Define graphs:

• G′, H ′ ∈ Gm,1 with symptom Bm,1 = {bi} such that paG′(bi) = paG(bi) and

paH′(bi) = paH(bi);

• G′′, H ′′ ∈ Gm,(n−1) with symptoms Bm,(n−1) = B\{bi} such that paG′′(bj) =

paG(bj) and paH′′(bj) = paH(bj), ∀ bj ∈ Bm,(n−1).

Since G and H are neighbors and G′ �= H ′ will lead to G′′ = H ′′, and by Proposition
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Figure 3.6: An example for the proof of Theorem 3.2.3, part (2)

3.1.5 there are 2m graphs in Gm,1, there are 2m − 1 different choices of H ′s, and each

corresponds to a different neighbor of G.

We can use the same strategy for every bi ∈ B, i.e. we can find 2m − 1 neighbors

from each fixed bi ∈ B. It is easy to see that these neighbors are all distinct: if H1,

H2 are all the same with G but paG(bi) �= paH1(bi) and paG(bj) �= paH2(bj), where bi,

bj ∈ B are distinct, then this implies paH2(bi) = paG(bi) �= paH1(bi), i.e. H1 and H2

are different. Therefore the total number of neighbors for G is: n · (2m − 1).

Remark 3.2.6. Theorem 3.2.5 implies that every vertex of Pm,1 has (2m − 1) neigh-

bors. Since |vert(Pm,1)| = 2m (by Proposition 3.1.5), Pm,1 is a simplex with dimen-
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sion (2m − 1), i.e. Pm,1 = Δ2m−1.

Theorem 3.2.7. Pm,n is the direct product of n many Δ2m−1, i.e.

Pm,n = Δ2m−1 ×Δ2m−1 × · · · ×Δ2m−1︸ ︷︷ ︸
n many

.

And the ith simplex is Pm,1 with the same diseases A and only one symptom {bi}.

Proof. Fix m, we are going to prove the equality by induction on n.

• n = 1. See Remark 3.2.6;

• Fix q ∈ Z+. Suppose the equality holds for Pm,n, ∀ n < q, then we need

to prove that it also holds for Pm,q. Recall that for Gm,q, the symptoms are:

B = {b1, b2, . . . , bq}.

First, we need to prove: Pm,q ⊆ Pm,q−1 ×Pm,1.

Similarly with the proof of Theorem 3.2.3, ∀ G ∈ Gm,q, we define graphs:

– G′ ∈ Gm,(q−1) with symptoms Bm,(q−1) = B\{bq} such that paG′(bi) =

paG(bi), ∀ bi ∈ Bm,(q−1). This implies cG′ ∈ Pm,q−1;

– G′′ ∈ Gm,1 with symptom Bm,1 = {bq} such that paG′′(bq) = paG(bq). This

implies cG′′ ∈ Pm,1.

With a proper permutation of coordinates, we can write cG in the form of:

cG = (cG′ , cG′′).

Recall that vert(Pm,q) = {cG : G ∈ Gm,q}, so ∀x ∈ Pm,q, with the same

permutation of coordinates, we have:

x =
∑

G∈Gm,q

αGcG = (
∑

G∈Gm,q

αGcG′ ,
∑

G∈Gm,q

αGcG′′) (3.2.1)

where 0 ≤ αG ≤ 1, ∀G ∈ Gm,q and
∑

G∈Gm,q

αG = 1.
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Note that
∑

G∈Gm,q

αGcG′ ∈ Pm,q−1 and
∑

G∈Gm,q

αGcG′′ ∈ Pm,1, Equation (3.2.1)

implies x ∈ Pm,q−1 ×Pm,1. Hence:

Pm,q ⊆ Pm,q−1 ×Pm,1.

Second, we need to prove: Pm,q−1 ×Pm,1 ⊆ Pm,q.

Let Gm,q−1 has symptoms Bm,(q−1) = B\{bq} and Gm,1 has symptom Bm,1 =

{bq}. ∀ G′ ∈ Gm,(q−1) and G′′ ∈ Gm,1, we can define G ∈ Gm,q such that

paG(bi) = paG′(bi), ∀ bi ∈ Bm,(q−1), and paG(bq) = paG′′(bq). cG has the form of

cG = (cG′ , cG′′).

∀ x ∈ Pm,q−1 ×Pm,1, x can be written as:

x = (
∑

G′∈Gm,q−1

βG′cG′ ,
∑

G′′∈Gm,1

γG′′cG′′) =
∑

G′∈Gm,q−1

∑
G′′∈Gm,1

βG′γG′′(cG′ , cG′′)

=
∑

G′∈Gm,q−1

∑
G′′∈Gm,1

(βG′γG′′) cG ,

where 0 ≤ βG′ , γG′′ ≤ 1, ∀G′ ∈ Gm,q−1, ∀G′′ ∈ Gm,1, and
∑

G′∈Gm,q−1
βG′ = 1,∑

G′′∈Gm,1
γG′′ = 1. Note that∑

G′∈Gm,q−1

∑
G′′∈Gm,1

(βG′γG′′) =
∑

G′∈Gm,q−1

βG′(
∑

G′′∈Gm,1

γG′′) =
∑

G′∈Gm,q−1

βG′ = 1,

which leads to x ∈ Pm,q. Hence:

Pm,q−1 ×Pm,1 ⊆ Pm,q.

Therefore,

Pm,q = Pm,q−1×Pm,1 = Δ2m−1 × · · · ×Δ2m−1︸ ︷︷ ︸
q-1 many

×Δ2m−1 = Δ2m−1 × · · · ×Δ2m−1︸ ︷︷ ︸
q many

.

Theorem 3.2.7 implies that Pm,n is a simple polytope with dimension n · (2m− 1).

In Appendix, we will give another proof which use linear algebra to show that Pm,n

is simple and obtain its dimension.
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3.2.3 Expression of facets of Pm,n

Based on Theorem 3.2.7, we are going to show the expression of facets of Pm,n using

the following lemma:

Lemma 3.2.8. [59] Suppose P is the direct product of simplices Δα1 , . . . ,Δαk
. Then

every facet of P has the form of Δα1 × . . .×Δαi−1
× Fαi

×Δαi+1
× . . .×Δαk

, where

Fαi
is a facet of Δαi

.

Remark 3.2.9. Lemma 3.2.8 implies that in order to study the facets of a direct

product of simplices, we can simply study the facets of each simplex. As by Theorem

3.2.7, Pm,n is a direct product of n many Pm,1, our problem is simplified as studying

the facets of Pm,1. Thus we assume B = {b1} in the following content of this section.

Assume A = {a1, . . . , am} and B = {b1}. By Proposition 3.1.6, the vertices of

Pm,1 has at most 2m−1 many non-zero coordinates. We define the indeterminates, i.e.

variables, {xs, s ⊆ A, s �= ∅}, where one indeterminate xs for each coordinate cG(s∪

{b1}) in the characteristic imset cG, G ∈ Gm,1. Define the vector of indeterminates

x = {xs, s ⊆ A, s �= ∅}. Suppose Amx ≤ bm is the system of inequalities that

defines Pm,1. We can define a 2m × 2m matrix: Dm = [bm| − Am]. Denote the

elements in Dm by (dst)s⊆A,t⊆A so that we can rewrite the system of inequalities as:

ds∅ +
∑

t⊆A,t �=∅ dstxt ≥ 0, s ⊆ A. Then we have the expression of 2m facets of Pm,1

as following:

Fs = Pm,1 ∩ {x : ds∅ +
∑

t⊆A,t �=∅
dstxt = 0}, s ⊆ A,

where the elements dst, s, t ⊆ A can be obtained using Theorem 3.2.10.

Theorem 3.2.10. The elements in matrix Dm satisfies:

• dst �= 0 if and only if s ⊆ t;

• if s ⊆ t, then dst = (−1)|t|−|s|.
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This implies that Pm,1 has 2m facets:

Fs = Pm,1 ∩ {x : ds∅ +
∑

t⊆A,t �=∅
dstxt = 0}, s ⊆ A.

What’s more, ∀ s ⊆ A, vert(Pm,1)\{cGs} ⊂ Fs, where paGs(b1) = s.

Proof. For convenience, let x∅ ≡ 1. ∀s ⊆ A, let ds· = (dst)t⊆A be the corresponding

row of Dm, and Gs be the graph in Gm,1 such that paGs(b1) = s. Now we can rewrite

the system of inequalities as:

∑
t⊆A

dstxt = ds·(1 x)T ≥ 0, for ∀ s ⊆ A.

We are going to prove that ∀s ⊆ A, we can find 2m−1 vertices on Fs that are linearly

independent, and this implies that Fs is a facet of Pm,1. In fact, we will prove that:

{cGs′ , s′ ⊆ A, s′ �= s} ⊂ Fs and cGs /∈ Fs, i.e. ds·(1 cGs′ )
T = 0, ∀ s′ ⊆ A, s′ �= s and

ds·(1 cGs)
T > 0.

Notice that ∀t ⊆ A, cGs′ (t ∪ {b1}) �= 0 if and only if t ⊆ pacGs′
(b1) = s′, and dst �= 0

if and only if s ⊆ t. So:

ds·(1 cGs′ )
T = ds∅ +

∑
t⊆A, t �=∅

dstcGs′ (t ∪ {b1}) = ds∅ +
∑

s⊆t⊆s′, t �=∅
dst =

∑
s⊆t⊆s′

dst.

• If s = s′, then ds·(1 cGs′ )
T = dss = 1 > 0;

• If s � s′, then ds·(1 cGs′ )
T =

∑
s⊆t⊆s′

(−1)|t|−|s| =
∑

t′⊆s′\s
(−1)|t

′| = 0;

• If s � s′, then ds·(1 cGs′ )
T = 0.

Example 3.2.11 (Facets of P2,1). Notation adopted from Theorem 3.2.10. Fix m = 2
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and n = 1. All characteristic imsets are given as a matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎝

cG0

cG1

cG2

cG12

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

T a1b1 a2b1 a1a2b1

0 0 0

1 0 0

0 1 0

1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
The matrix D2 = [b2| − A2]:

D2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

s\t ∅ a1 a2 a1a2

∅ 1 −1 −1 1

a1 0 1 0 −1

a2 0 0 1 −1

a1a2 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

The system of inequalities that defines

P2,1:

⎛⎜⎜⎜⎜⎜⎜⎜⎝

s\t ∅ a1 a2 a1a2

∅ 1 −xa1 −xa2 +xa1a2 ≥ 0

a1 xa1 −xa1a2 ≥ 0

a2 xa2 −xa1a2 ≥ 0

a1a2 xa1a2 ≥ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Vertices cG0, cG1 and cG12 are in the facet Fa2 while cG2 is not (see Figure 3.7 ).

Figure 3.7: The facets and vertices of P2,1
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3.3 The characteristic imset polytopes (cim-polytopes) for Bayesian net-

works

The results in Section 3.2 are limited to diagnosis models. In this section, we will gen-

eralize the results to all Bayesian networks with the same underlying order. Similarly

with Section 3.2, we will also give the combinatorial description of edges on the cim-

polytopes, and prove that these cim-polytopes are also direct produce of simplices.

The expression of facets of these cim-polytopes can be obtained, too.

For a set of random variables N = {a1, . . . , an}, where now n is the total number

of nodes in N . According to Remark 1.2.11, ∀G ∈ DAGs(N), there exists an under-

lying ordering over N , [n]G = (a[1], . . . , a[n]), such that if [a[i], a[j]], i < j, is an edge

in G, then a[i] → a[j] in G. In this section, we will focus on the class of graphs which

share a specific underlying ordering [n], i.e. G[n] = {G ∈ DAGs(N) : [n]G = [n]}, and

its characteristic imset polytope P[n] = PG[n],c.

Example 3.3.1 (Underlying ordering of graphs). Let N = {a1, a2, a3}. Consider

an ordering over N , [n] = (a2, a1, a3), i.e. a[1] = a2, a[2] = a1 and a[3] = a3. Then

∀G ∈ G[n], the only type of directed edges allowed in G are a[i] → a[j], where i < j.

For instance, a2 → a1 is allowed while a1 → a2 is not. Thus graph G1 in Figure

3.8(a) and graph G2 in Figure 3.8(b) are both in G[n]. Graph G3 in Figure 3.8(c) is

not in G[n] since it has arrow a1 → a2, and the underlying ordering for G3, i.e. [n]G3,

can either be (a1, a2, a3) or (a1, a3, a2).

Remark 3.3.2. For a specific ordering [n] and an arbitrary G ∈ G[n], we have the

following proposition that is similar with Proposition 3.1.3.

• ∀T ⊆ N , |T | = k ≥ 2, we can order the elements in T according to [n] and

write T in the form of a[i1]a[i2] . . . a[ik] where i1 < i2 < · · · < ik. Then cG(T ) =∏
s=i1,...,ik−1

cG(a[s]a[ik]). This property means that the whole cG is determined
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(a) G1 (b) G2 (c) G3

Figure 3.8: Three graphs to illustrate the underlying ordering of graphs

by
(
n
2

)
coordinates, {cG(a[i]a[j]), i < j}, which can also be interpreted as the

existence of the directed edges a[i] → a[j], i < j.

Another way to see this property is that ∀ G ∈ G[n], G can be determined by paG(a[i]),

i = 2, . . . , n since paG(a[1]) = ∅. Similarly with Remark 3.1.4, we can consider a

permutation of coordinates in cG that corresponds to a permutation of T , then these

coordinates can be broken into n− 1 parts:

(12), (13), (23), (123)
���������������

, (14), (24), . . . , (1234), . . . , (1n), (2n), . . . , ((n− 1)n), . . . , (12 . . . n)

where (i1 . . . ik) stands for T = a[i1]a[i2] . . . a[ik], {i1, . . . , ik} ⊆ {1, . . . , n}. The k-th

part of the coordinations, {cG(T ): a[j] /∈ T , ∀j > k} only depend on paG(a[k]), and

different parts are completely irrelevant in the sense that paG(a[k]), a[k] ∈ N , can be

decided separately.

Theorem 3.3.3. Suppose n ≥ 2. P[n] is a direct product of a sequence of simplices:

P[n] = Δ21−1 ×Δ22−1 × · · · ×Δ2n−1−1︸ ︷︷ ︸
n-1 simplices

,

where the ith simplex Δ2i−1 is the same with the cim-polytope for diagnosis models,

Pi,1, with diseases A = {a[1], . . . , a[i]} and one symptom {a[i+1]}.

Proof. We are going to prove the equality by induction on n. Since n ≥ 2, we start

the induction from n = 2.
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• n = 2. It is obvious since there are only two vertices in P[n]: (1) and (0). So

P[n] is a line segment which is a simplex of dimension 1, i.e. P[n] = Δ1.

• Fix q ∈ Z+. Suppose the equality holds for P[n], ∀ n < q, and we need to prove

that it also holds for P[q]. Define notation N[k] = {a[1], . . . , a[k]} for k = 1, . . . , q.

First, we want to prove: P[q] ⊆ P[q−1] ×Δ2q−1−1.

∀ G ∈ G[q], we can define graphs:

– G′ is the induced subgraph of G for N[q−1], which implies cG′ ∈ P[q−1];

– G′′ is a graph over N such that the only edges in G′′ are a[i] → a[q], where

a[i] ∈ paG(a[q]). Consider a diagnosis model where N[q−1] is the set of

diseases and a[q] is the symptom, then we can see that cG′′ ∈ Pq−1,1 =

Δ2q−1−1.

Now, with a proper permutation of coordinates (see Remark 3.3.2), we can

write cG in the form of:

cG = (cG′ cG′′).

Since vert(P[q]) = {cG : G ∈ G[q]}, ∀ x ∈ P[q], with the same permutation of

coordinates, we have:

x =
∑

G∈G[q]

αGcG = (
∑

G∈G[q]

αGcG′ ,
∑

G∈G[q]

αGcG′′), (3.3.1)

where 0 ≤ αG ≤ 1, ∀ G ∈ G[q] and
∑

G∈G[q]

αG = 1.

Notice that
∑

G∈G[q]

αGcG′ ∈ P[q−1] and
∑

G∈G[q]

αGcG′′ ∈ Δ2q−1−1, Equation (3.3.1)

implies x ∈ P[q−1] ×Δ2q−1−1. Hence:

P[q] ⊆ P[q−1] ×Δ2q−1−1.

Second, we want to prove: P[q−1] ×Δ2q−1−1 ⊆ P[q].
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Let G[q−1] has nodes N[q−1], and Gq−1,1 has diseases N[q−1] and symptom a[q].

∀ G′ ∈ G[q−1] and G′′ ∈ Gq−1,1, we can define G ∈ G[q] by extending G′ as

following: add a node a[q] and edges (a[i], a[q]), ∀a[i] ∈ paG′′(a[q]), to G′. We can

write cG in the form of cG = (cG′ cG′′).

∀x ∈ P[q−1] ×Δ2q−1−1, x can be written as:

x = (
∑

G′∈G[q−1]

βG′cG′ ,
∑

G′′∈Gq−1,1

γG′′cG′′) =
∑

G′∈G[q−1]

∑
G′′∈Gq−1,1

βG′γG′′(cG′ , cG′′)

=
∑

G′∈G[q−1]

∑
G′′∈Gq−1,1

(βG′γG′′) cG ,

where 0 ≤ βG′ , γG′′ ≤ 1, ∀G′ ∈ G[q−1], ∀G′′ ∈ Gq−1,1, and
∑

G′∈G[q−1]
βG′ = 1,∑

G′′∈Gq−1,1
γG′′ = 1.

Notice that

∑
G′∈G[q−1]

∑
G′′∈Gq−1,1

(βG′γG′′) =
∑

G′∈G[q−1]

βG′(
∑

G′′∈Gq−1,1

γG′′) =
∑

G′∈G[q−1]

βG′ = 1.

This leads to x ∈ P[q]. Hence:

P[q−1] ×Δ2q−1−1 = P[q−1] ×Pq,1 ⊆ P[q].

By induction on n, we finish the proof by:

P[q] = P[q−1]×Pq−1,1 = (Δ21−1×· · ·×Δ2q−2−1)×Δ2q−1−1 = Δ21−1×· · ·×Δ2q−1−1.

Remark 3.3.4. Two immediate results from Theorem 3.3.3 are:

• the dimension of P[n] is 2
n − (n+ 1), and it is a simple polytope;

• the expression of facets of P[n] can be obtained by Lemma 3.2.8 and Theorem

3.2.10.
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Remark 3.3.5. Note that the equality in Theorem 3.3.3 is actually P[n] = Δ20−1 ×

Δ21−1×Δ22−1×· · ·×Δ2n−1−1, where Δ20−1 is omitted as it has dimension 0 (a point).

Theorem 3.3.3 and its proof also imply that ∀x ∈ P[n], x ∈ vert(P[n]) if and only if

with the permutation of coordinates in Remark 3.3.2, x can be written in the form

of x = (v1, v2, . . . , vn−1), where vi is the vertex of Δ2i−1, i = 1, . . . , n − 1. Suppose

x = cG, G ∈ G[n], then vi = cGi
, where Gi is in Gi,1 with diseases N[i] and symptom

a[i+1], i = 1, . . . , n− 1, and paGi
(a[i+1]) = paG(a[i+1]).

The following theorem will be stated in two forms which are equivalent by Theorem

3.3.3 and Lemma 3.2.2.

Theorem 3.3.6. Fix an underlying ordering [n] over N .

• (From the view of graph theory.) Two graphs, G1, G2 ∈ G[n] are neighbors in

G[n] if and only if: ∃ a[i] ∈ N such that paG1(a[i]) �= paG2(a[i]) and paG1(a[j]) =

paG2(a[j]), ∀ a[j] ∈ N and a[j] �= a[i], i.e., all nodes but one have exactly the

same parent sets in both G1 and G2.

• (From the view of polyhedral geometry.) ∀ x ∈ P[n], x is on an edge of P[n] if

and only if with the permutation of coordinates showed in Remark 3.3.2 x can be

written in the form of x = (v1, . . . , vi−1, ei, vi+1, . . . , vn−1), where ei belongs to an

edge on Δ2i−1, i ∈ {1, . . . , n−1}, and vj ∈ vert(Δ2j−1), j ∈ {1, . . . , n−1}\{i}.

Proof. The proof from the view of graph theory will be very similar with the proof of

Theorem 3.2.3, so we are going to give a proof from the view of polyhedral geometry,

i.e. prove that: “∃ vertices of v1, v2 ∈ P[n] such that x = βv1 + (1 − β)v2 where

0 ≤ β ≤ 1, and v1, v2 form an edge in P[n]” if and only if “x can be written in the

form of x = (v1, . . . , vi−1, ei, vi+1, . . . , vn−1), i ∈ {1, . . . , n− 1}”.

We will prove “if” and “only if” separately.

(1) Prove “if” part.
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Suppose x has the form x = (v1, . . . , vi−1, ei, vi+1, . . . , vn−1).

Since ei belongs to an edge on Δ2i−1, we can find two vertices v1i , v
2
i ∈ Δ2i−1

which form this edge, and this implies ei = βv1i + (1 − βv2i ), 0 ≤ β ≤ 1.

Suppose the cost vector for this edge is we
i , then for any v3i ∈ vert(Δ2i−1),

we
i v

3
i ≤ we

i v
1
i = we

i v
2
i , where “=” holds if and only if v3i = v1i or v3i = v2i .

We can also find wv
j which is a cost vector for vertex vj in Δ2j−1, j ∈ {1, . . . , n−

1}\{i}. Still, we have: ∀v3j ∈ vert(Δ2j−1), w
v
j v

3
j ≤ wv

j vj, where “=” holds if

and only if v3j = vj.

Now let v1 = (v1, . . . , vi−1, v
1
i , vi+1, . . . , vn−1), v

2 = (v1, . . . , vi−1, v
2
i , vi+1, . . . , vn−1)

and w = (wv
1 , . . . , w

v
i−1, w

e
i , w

v
i+1, . . . , w

v
n−1). Obviously x = βv1 + (1 − β)v2,

where 0 ≤ β ≤ 1. In addition, ∀v3 = (v31, . . . , v
3
n−1) ∈ vert(P[n]), we have:

wv3 = we
i v

3
i +

n−1∑
j=1, j �=i

wv
j v

3
j ≤ we

i v
1
i +

n−1∑
j=1, j �=i

wv
j vj = wv1

= we
i v

2
i +

n−1∑
j=1, j �=i

wv
j vj = wv2,

where “=” holds if and only if v3 = v1 or v3 = v2, i.e. v1 and v2 form an edge

on P[n].

(2) Prove “only if” part.

Suppose ∃ v1 = (v11, . . . v
1
n−1), v

2 = (v21, . . . v
2
n−1) ∈ vert(P[n]) such that x =

βv1+(1−β)v2 where 0 ≤ β ≤ 1, and v1, v2 form an edge in P[n]. If we can prove

that ∃ i ∈ {1, . . . , n−1} such that v1i �= v2i and v1j = v2j , ∀ j ∈ {1, . . . , n−1}\{i},

then x has the form x = (v1, . . . , vi−1, ei, vi+1, . . . , vn−1), where ei is on the

edge of Δ2i−1 formed by v1i and v2i . We are going to prove this statement by

contradiction.

Suppose ∃ i, j ∈ {1, . . . , n− 1} distinct such that v1i �= v2i and v1j �= v2j , but v
1

and v2 still form an edge on P[n]. Let w = (w1, . . . , wn−1) be the cost vector for
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this edge, i.e. ∀v3 = (v31, . . . v
3
n−1) ∈ vert(P[n]), wv

3 ≤ wv1 = wv2 where “=”

holds if and only if v3 = v1 or v3 = v2.

– If we set v3 as following: v3i = v2i , v
3
k = v1k, ∀ k ∈ {1, . . . , n − 1}\{i}.

Obviously v3 �= v1 and v3 �= v2. Thus:

wv3 = wiv
2
i +

n−1∑
k=1, k �=i

wkv
1
k < wv1 =

n−1∑
k=1

wkv
1
k = wiv

1
i +

n−1∑
k=1, k �=i

wkv
1
k

=⇒ wiv
2
i < wiv

1
i .

– If we set v3 as following: v3j = v2j , v
3
k = v1k, ∀ k ∈ {1, . . . , n − 1}\{j}.

Obviously v3 �= v1 and v3 �= v2. Thus:

wv3 = wjv
2
j +

n−1∑
k=1, k �=j

wkv
1
k < wv1 =

n−1∑
k=1

wkv
1
k = wjv

1
j +

n−1∑
k=1, k �=j

wkv
1
k

=⇒ wjv
2
j < wjv

1
j .

Now we set v3 as following: v3i = v1i , v
3
j = v1j , v

3
k = v2k, ∀ k ∈ {1, . . . , n−1}\{i, j}.

Then we have:

wv3 = wiv
1
i+wjv

1
j+

n−1∑
k=1, k �=i,j

wkv
2
k > wiv

2
i+wjv

2
j+

n−1∑
k=1, k �=i,j

wkv
2
k =

n−1∑
k=1

wkv
2
k = wv2,

i.e. wv3 > wv2, which is a contradiction with our assumption.

Copyright c© Jing Xi, 2013.

104



Chapter 4 Discussion and Future Work

4.1 Discussion and future work for SIS for zero-one three-way tables with

fixed two-way marginals

4.1.1 Discussion on the computational results in Chapter 2

In this dissertation we do not have a sufficient and necessary condition for the exis-

tence of the three-way zero-one table so we cannot avoid rejection. However, since

the SIS procedure gives an unbiased estimator, we may only need a small sample size

as long as it converges. For example, the sample size is fixed to be 1000 in Table 2.1

since most estimators (the column “Estimation” in Table 2.1 in Table 2.1, i.e. |̂Σ|)

are exactly the same as the true numbers of tables (the column “# tables”, i.e. Σ).

Also note that the acceptance rate does not depend on a sample size. Thus, it would

be interesting to investigate the convergence rate of the SIS procedure with CP for

zero-one three-way tables.

It seems that the convergence rate is slower when we have a “large” table, where

“large” means in terms of |Σ| rather than its dimension, i.e., the number of cells. A

large value of |̂Σ| usually corresponds to a larger cv2, and this often comes with large

variations of |̂Σ| and cv2, i.e. |̂Σ| and cv2 obtained from different iterations can vary

much. For example, we ran six iterations for the 8 × 8 × 8 semimagic cube with all

two-way marginals equal to 3 (see Table 2.3 for Example 2.4.17): three iterations of

1000 and three iterations of 5000. The results for the former are: |̂Σ| = 3.24e+59 with

cv2 = 7.05; |̂Σ| = 2.90e+ 59 with cv2 = 9.05; and |̂Σ| = 3.88e+ 59 with cv2 = 55.59.

The results for the latter are: |̂Σ| = 3.36e + 59 with cv2 = 25.88; |̂Σ| = 3.39e + 59

with cv2 = 18.64; and |̂Σ| = 4.92e + 59 with cv2 = 461.60. We can see that: 1)

in general, a large cv2 would most possibly point to an unreliable estimator; and
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2) cv2 is not necessarily smaller when the sample size increases, but with a larger

sample, the estimator |̂Σ| will be more stable if cv2 is not inflated compared with

other iterations with the same sample size. Although we have the issue of large cv2

when |Σ| is large, fortunately, the estimation of number of tables seems to be still

reliable and the computational time seems to be still reasonable if the acceptance rate

is still high. Thus, for a fixed sample size, when one finds a large |̂Σ| or a large cv2

(especially a large cv2), we recommend to apply several iterations and pick the one

with a relatively small cv2 (we do not necessarily choose the one with the smallest cv2

because a small improvement in cv2 does not necessarily mean a better estimator (see

Example 2.4.10)). Take the three iterations of 1000 for example. We first exclude the

one with cv2 = 55.59 since this cv2 is too large compared with the other two. Then we

can choose either result from the rest two iterations. For reference, Table 2.4 gives the

bootstrap-t confidence intervals (see details in Appendix) for semimagic cubes with

m = n = l = 7, . . . , 10 in Example 2.4.17. Bootstrap-t confidence intervals will be

more useful if cv2 is not very small, but if cv2 is too large, then another iteration with

a smaller cv2 will preferable to produce a more informative and reliable confidence

interval.

For the experiment with Sampson’s data set, we observed a very low acceptance

rate compared with experimental studies on simulated data sets. We investigated

why this happens and found two possible reasons: first, it seems that our sampling

works better when the success rates of cells are balanced, i.e. P (Xijk = 1), ∀i, j, k, are

close to each other; second, a bigger table size might be unfavorable for acceptance

rate. Simulations show that the acceptance rates can be very low when we have a

large table with unbalanced success rates of cells: a simulation of a 10 × 10 × 10

table with unbalanced success rates of cells has acceptance rate only 40%, and it

decreases to only 1% for a 18× 18× 10 table. On the other hand, a large cv2, which

reflects a large variation in |̂Σ|, can also cause problem. We noticed that among the
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1000 sampled tables, there are a few of them with extremely small probabilities that

resemble outliers and may cause a large cv2. These “outliers” can make the results

very unstable: Table 1 in Appendix gives the results with and without 7 “outliers”,

we can see that the cv2 without the “outliers” is much smaller than the one with

“outliers”.

4.1.2 Open problems and future work on SIS procedures

1. The trial distribution q(·) for sampling contingency tables is designed to approxi-

mate the target distribution p(·). Setting the target distribution to be the uniform

distribution performs much better than hypergeometric distribution in estimating

the total number of tables, while setting the target distribution to be the hyperge-

ometric distribution is more preferable in goodness-of-fit tests (see Section 1.1.1).

However, in general, sampling according to a hypergeometric distribution is more

difficult than according to a uniform distribution because the marginal distri-

butions for the hypergeometric distribution are not trivial except in very small

examples. In [10], they proposed a “hypergeometric sampling method”, in which

the marginal distribution q(xi|xi−1, . . . , x1) is assumed to be the hypergeometric

distribution over [li, ui], where li and ui are the lower and upper bounds of the

support of the marginal distribution, i = 1, . . . , t. This method gives a reason-

able marginal approximation and works nicely for some non-sparse tables. But

for sparse tables, it fails to give proper p-values. Therefore, how to find a better

approximation of the marginal function for the hypergeometric distribution in

sparse table case is still an open problem.

2. In Section 4.1.1, we showed that low acceptance rates will lead to less reliable |̂Σ|

and larger variation in the estimators. In [9], the Gale–Ryser Theorem (see Section

1.1.2) was used to obtain an SIS procedure with no rejection for two-way zero-one

tables. An generalization of this theorem for three-way contingency tables is given
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in [34]. Although we can not apply it directly to produce an SIS procedure with

no rejection for three-way tables because we naturally have structural zeros and

trivial cases in a process of sampling one table, it is interesting to generalize the

results in [34] to contingency tables with structural zeros.

3. At the end of Section 4.1.1, we showed that cv2 can be reduced remarkably by

removing several “outliers”. However, new issues come up because it is not clear

whether it is reasonable to remove “outliers”, i.e. whether the result is still reliable

after removing them, and if the result is still reliable, then how to decide the cutoff

of “outliers”.

4.2 Discussion and future work for the characteristic imset polytopes for

Bayesian networks

4.2.1 Discussion on the results in Chapter 3 and its connection with the

K2 algorithm for learning Bayesian networks

Using similar strategy, the results in Section 3.3 can be further generalized: with

fixed underlying ordering of nodes [n] and sets of nodes Ω = {Ωi, i = 2, . . . , n} such

that Ωi ⊆ {a[1], . . . , a[i−1]}, if we define the class of graphs G[n],Ω = {G ∈ DAGs(N) :

[n]G = [n], paG(a[i]) ⊆ Ωi, i = 2, . . . , n}, then the cim-polytope PG[n],Ω,c is a direct

product of a sequence of simplices:

PG[n],Ω,c = Δ2|Ω2|−1 ×Δ2|Ω3|−1 × . . .×Δ2|Ωn|−1, (4.2.1)

where the i-th simplex Δ2|Ωi+1|−1 is the same with the cim-polytope for diagnosis

models, P|Ωi+1|,1, with diseases A = Ωi+1 and one symptom a[i+1]. It is obvious

that the cim-polytope for diagnosis models, Pm,n, is a special case of PG[n],Ω,c: the

underlying ordering of nodes is (a1, . . . , am, b1, . . . , bn) (the ordering is not unique in

the sense that the order of two diseases or two symptoms can exchange), Ωi = ∅,

i = 1, . . . ,m, and Ωi = {a1, . . . , am}, i = m+ 1, . . . ,m+ n.

108



Once the cim-polytope can be written as a direct product of a sequences of sim-

plices, we are able to find the optimal BN structure by maximizing a target function

in each simplex (see Section 1.3.2): given data D ∈ DATA(N, d),

max
G∈G[n],Ω

Q(G,D) =⇒ min
x∈PG[n],Ω,c

rTDx =
n∑

i=2

min
xi∈Δ2|Ωi|−1

rTD,ixi, (4.2.2)

where xi contains the coordinates {T ⊆ Ωi∪{a[i]} : |T | ≥ 2, a[i] ∈ T , a[j] /∈ T , ∀j > i}

in x, and the coordinates of rTD,i matches the coordinates of xi. This implies that we

can find the optimal parent sets of a[i], i = 2, . . . , n, sequentially until we obtain the

whole BN structure, which will be exactly the optimal BN structure in G[n],Ω.

Equation (4.2.2) gives a polyhedral geometric insight of the K2 algorithm [13],

which is a well-known heuristic method in learning Bayesian networks. Recall that

in K2 algorithm, an ordering on the nodes is also fixed and parent sets of a[i], i =

2, . . . , n, are also determined sequentially. However, in order to find the optimal

BN, Equation (4.2.2) claims that we need to find Gi ∈ G|Ωi|,1 such that rTD,icGi
=

minxi∈Δ2|Ωi|−1
rTD,ixi, while the K2 algorithm obtain each parent set paG(a[i]) by adding

nodes to ∅ stepwisely (or removing nodes from {a[1], . . . , a[i−1]} stepwisely), which

cannot guarantee that the resulting parent sets are optimal (see Example 4.2.1 for a

counter-example).

Example 4.2.1. Consider G3,1. The characteristic imsets of all possible graphs in

G3,1 is listed as a matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cG0

cG1

cG2

cG3

cG12

cG23

cG13

cG123

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T a1b1 a2b1 a3b1 a1a2b1 a1a3b1 a2a3b1 a1a2a3b1

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

1 1 0 1 0 0 0

1 0 1 0 1 0 0

0 1 1 0 0 1 0

1 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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We are going to give counter-examples that the resulting BN of the K2 algorithm is

not the optimal solution.

• Forward selection, i.e. each parent set paG([i]) is obtained by adding nodes

to ∅ stepwisely. Suppose rTD = (−1,−2,−1,−3,−10,−4, 20) which satisfies

rTDcG13 = −12 < rTDcG, ∀G ∈ G3,1, G �= G13, i.e. the optimal graph is G13. In

K2 algorithm, we start from paG(b1) = ∅. Next, a2 is added to paG(b1) because

rTDcG2 = −2 < rTDcG1 = rTDcG3 = −1. Then a3 is added to paG(b1) because

rTDcG23 = −7 < rTDcG12 = −6. Procedure ends here because rTDcG23 = −7 <

rTDcG123 = −1. The graph chosen by K2 algorithm, G23, is not the optimal

graph.

• Backward selection, i.e. each parent set paG(a[i]) is obtained by removing nodes

from {a[1], . . . , a[i−1]} stepwisely. Suppose rTD = (−3,−1,−1, 3, 3, 0, 10) which

satisfies rTDcG1 = −3 < rTDcG, ∀G ∈ G3,1, G �= G1, i.e. the optimal graph is

G1. In K2 algorithm, we start from paG(b1) = {a1, a2, a3}. Next, a1 is removed

from paG(b1) because rTDcG23 = −2 < rTDcG12 = rTDcG13 = −1. Procedure ends

here because rTDcG23 = −2 < rTDcG2 = rTDcG3 = −1. The graph chosen by K2

algorithm, G23, is not the optimal graph.

4.2.2 Open problems and future work on characteristic imset polytopes

of Bayesian networks

1. PG[n],Ω,c is define in Section 4.2.1. Consider a vertex v ∈ vert(PG[n],Ω,c). A normal

cone at v is a cone (see Section 1.3.1) generated by the normal vectors of all facets

that contain v. In fact, the normal cone at v is the set of all cost vectors for vertex

v (see Definition 1.3.4). The normal fan of PG[n],Ω,c is the union of normal cones

for all vertices of PG[n],Ω,c. We want to compute the normal fan of PG[n],Ω,c so that

we can analyze sensitivity of the quality criterions and data.
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2. All work in Chapter 3 is theoretical. Although we have simplified our problem of

learning BNs to LP problems over each simplex (see Equation (4.2.2)) in the direct

produce showed in Theorem 3.3.3 and Equation (4.2.1), and have described all

edges and facets of these simplices (see Section 3.2), if the number of nodes is large,

we still have to face the possibility that the procedure of searching the optimal

solutions in each simplex can be very time-consuming. In this sense, simulations

and analysis on real datasets are very important to compare the solution and

time complexity of our method with other existing classifiers [58]. On the other

hand, we also need to study on the misspecification problem of our method via

simulations, i.e. how our method performs when the underlying ordering of nodes

is misspecified and how sensitive the assumed underlying ordering is to the results.

3. Consider a class of BNs G we are interested in. In practice, sometimes some

BNs in G are preferable than others, in which case larger prior probabilities can

be assigned to these BNs to actualize the trend of choosing these models, or

sometimes we are more interested in the existence of some directed edges than

others. However, it is not trivial to carry out this information in our method. Two

possible ways can be considered as candidates. First, we may think about putting

weights to the coordinates of the data vector rTD in Equation (4.2.2). Second, we

may consider the class of graphs where some edges are forbidden and some edges

are fixed, i.e. given a set of forbidden edges EN and a set of fixed edges EY ,

consider the structure of cim-polytope for G = {G ∈ DAGs(N) : ∀ε ∈ EN , ε is

not in G, ∀ε′ ∈ EY , ε′ is in G}.

4. We are also interested in the structure of cim-polytopes for other types of BNs.

Example are: the cim-polytope for all trees over N , the cim-polytope for all BNs

over N where an upper bound on the number of parents for each node is fixed,

and so on.
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5. This dissertation focuses on the case that all random variables in N are finite

random variables. It is still an open problem that how to generalize our method

to the case that some or all of the random variables in N are continuous random

variables.

Copyright c© Jing Xi, 2013.

112



Appendix

A.1 Non-parametric bootstrap method to compute confidence intervals

for SIS procedure

In this section we will explain how to use a non-parametric bootstrap method to get

the (1− α)100% confidence interval for |Σ|. Notice that the bootstrap sample size is

denoted by B, and see Chapter 2 for the notation.

(1) Drawing pseudo dataset.

◦ Concept In an SIS procedure with sample size N, we get a sequence of

random tables X1, . . . ,XN. Define Yi =
IXi∈Σ

q(Xi)
, i = 1, . . . ,N, where q(X)

is the trial distribution, then Y1, . . . ,YN form a sequence of i.i.d random

variables. This means that we can consider the empirical distribution of

Yi, which is nonparametric maximum likelihood estimator of the real dis-

tribution of Yi (since Yi can only take finitely many values, the empirical

distribution is in fact the maximum likelihood estimator of the real dis-

tribution). We can draw a pseudo sample Y∗
1, . . . ,Y

∗
N from the empirical

distribution.

◦ Algorithm Use the SIS procedure introduced in Chapter 2 to sample

N tables X1, . . . ,XN. If Xi is sampled successfully, then IXi∈Σ = 1 and

q(Xi) will be outputted, else IXi∈Σ = 0. Thus we can compute the values

of Yi =
IXi∈Σ

q(Xi)
, i = 1, . . . ,N, and draw N elements from this sequence with

replacement.

(2) One Bootstrap replication.
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◦ Concept Consider the pseudo sample Y∗
1, . . . ,Y

∗
N as a ”new” sample

from the empirical distribution. Then the cumulative distribution func-

tion (CDF) of θ̂∗ = T (Y∗
1, . . . ,Y

∗
N) is a consistent estimator of the CDF

of θ̂ = T (Y1, . . . ,YN). In this dissertation we consider the estimators for

|Σ|,

|̂Σ| = θ̂1 = T1(Y1, . . . ,YN) =
1

N

N∑
i=1

Yi,

and cv2,

ĉv2 = θ̂2 = T2(Y1, . . . ,YN) =

∑N
i=1{Yi −

[∑N
j=1 Yj

]
/N}2/(N− 1)

{
[∑N

j=1 Yj

]
/N}2

.

◦ Algorithm Consider the pseudo sample Y∗
1, . . . ,Y

∗
N as a sample from the

SIS procedure and compute the first bootstrap replication

|̂Σ|
∗1

=
1

N

N∑
i=1

Y∗
i and ĉv2

∗1
= cv2of(Y∗

1, . . . ,Y
∗
N).

(3) Bootstrap-t Confidence Interval.

◦ Concept Repeat step (1) and step (2) until we get B Bootstrap replica-

tions: θ̂i
∗1
, . . . , θ̂i

∗B
, i = 1, 2. Because the empirical distribution of θ̂i

∗
is

the nonparametric maximum likelihood estimator of CDF of θ̂i
∗
and the

latter is a consistent estimator of the CDF of θ̂i, we can use the (α
2
)100th

and (1− α
2
)100th percentiles of the empirical distribution as the lower and

upper bounds of the confidence interval.

◦ Algorithm Repeat step (1) and step (2) for B times. For {|̂Σ|
∗1
, . . . , |̂Σ|

∗B
},

for 0 < a < 1, define |̂Σ|
∗
(a) as the 100ath percentile of the list of values.

Then bootstrap-t (1−α)100% confidence interval of |̂Σ| is
[
|̂Σ|

∗
(α/2), |̂Σ|

∗
(1−α/2)

]
.

Similarly we can get the confidence interval for ĉv2.
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A.2 Manual for the R code to sample and estimate the number of zero-

one three-way tables with given two-way marginals

The software is implemented in R. It can be either used to sample a zero-one three-

way table with given two-way marginals via the SIS procedure introduced in Chapter

2, or used to estimate the number of such tables. Note that this software needs minor

modification to allow the existence of structures in the observed table. We are going

to give the syntaxes and examples for the two main functions, genbin and numtable.

• Function genbin.

Description This function is used to sample a zero-one three-way table with given

two-way marginals via the SIS procedure introduced in Chapter 2.

Usage genbin(outinfo, output = T)

genbin(outinfo = tabinfo(x0), output = T)

Arguments outinfo: a list of three matrices that present the fixed two-way marginals.

These three matrices are denoted as si, sj and sk (see Section 2.4). This

list can either be given by users directly, or be computed through an ob-

served table x0. Function tabinfo is available to compute the two-way

marginals: outinfo = tabinfo(x0).

output: logical; if TRUE (default), the output will a list consist of A,

logcpr and ntable, otherwise the output will be a list that only includes

ntable.

Output A: a zero-one three-way table sampled by SIS procedure that satisfies the

given two-way marginals. Only appear if the sampling succeeds.

logcpr: the logarithm of q(A), where q(·) is the trial distribution and A is

the sampled table. Only appear if the sampling succeeds.

ntable: the value of 1/q(A), which can be considered as the estimator of
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|Σ|, |̂Σ|, based on this single sample. Only appear if the sampling succeeds.

If the sample is rejected, then the output will be a number 0.

Example Sample a 3-dimensional semimagic cube in Example 2.4.1.

si = sj = sk = matrix(c(1, 1, 1, 1, 1, 1, 1, 1, 1), 3, 3)

outinfo = list(si = si, sj = sj, sk = sk)

genbin(outinfo)

The output of the above code:

$A

, , 1

[,1] [,2] [,3]

[1,] 0 0 1

[2,] 0 1 0

[3,] 1 0 0

, , 2

[,1] [,2] [,3]

[1,] 0 1 0

[2,] 1 0 0

[3,] 0 0 1

, , 3

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 0 1

[3,] 0 1 0

$logcpr

[1] -2.484907

$ntable
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[1] 12

• Function numtable.

Description This function is used to estimate the number of zero-one three-way tables

with given two-way marginals via the SIS procedure introduced in Chapter

2.

Usage numtable(N = 1000, outinfo, knotprint=50)

numtable(N = 1000, outinfo = tabinfo(x0), knotprint=50)

Arguments N: the number of samples produced by SIS procedure, including those which

are rejected.

outinfo: a list of three matrices that present the fixed two-way marginals.

These three matrices are denoted as si, sj and sk (see Section 2.4). This

list can either be given by users directly, or be computed through an ob-

served table x0. Function tabinfo is available to compute the two-way

marginals: outinfo = tabinfo(x0).

knotprint: a number of samples to print a note to the screen. The pur-

pose of this argument is giving users the information about how many

samples have been finished so that users can estimate how much time left

to end the process.

Output NumofTables: the estimator of |Σ|, |̂Σ|, based on the N samples.

cv2: the estimator of cv2, ĉv2, which is a measurement of accuracy for |̂Σ|

(see Section 2.4).

acceptance: the acceptance rate of the N sampled tables, which is the

ratio of the number of accepted tables to N.

Example Estimate the number of zero-one 3×3×4 tables with the two-way marginals

given in Example 2.4.2.

seed = 6;
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m = 3; n = 3; l = 4; prob = 0.8;

N = 1000; k = 200

set.seed(seed)

A = array( rbern(m*n*l, prob), c(m, n, l) )

numtable(N = 1000, outinfo = tabinfo(A), k = 200)

The output of the above code:

Finished 200 tables

Finished 400 tables

Finished 600 tables

Finished 800 tables

Finished 1000 tables

$NumofTables

[1] 3.005

$cv2

[1] 0.1116811

$acceptance

[1] 1
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A.3 R code to sample and estimate the number of zero-one three-way

tables with given two-way marginals

The code is available at http://www.polytopes.net/code/CP/.

u=1

printDebug <- 0 # 0 = no printing, 1 = print debug information

preclearcheck <- 0 # whether do preclear2way check

myPrint <- function(myStr) {

if (printDebug==1) {

print(myStr)

}

}

cp <- function(p, c) # all elements in p are in (0,1) {

m = length(p); w = p/(1-p)^u; # m may not be num of rows

Z=rep(0,m)

rest=1:m; done=NULL;

if(c==0) return(list(Z=Z,done=done,logcpr=0))

if(m==c) return(list(Z=rep(1,m),done=rest,logcpr=0))

if(m<c) return(0) ###fail, should back, use is.list to judge

if(c>m/2) {

outcp=cp(1-p,m-c); Z=rep(1,m)-outcp$Z;

done=(1:m)[-outcp$done]

return(list(Z=Z,done=done,logcpr=outcp$logcpr))

}

#only left 0<c<=m/2

while(length(done)<c) {

outd=drawone(w,rest,done,c)

120



ik=outd$ik

done=c(done,ik); rest=rest[rest!=ik] #k=length(done)

if(length(done)==1) denompr=outd$invconst

}

#compute cp prob

Z[done]=1

lognumpr=sum(Z*log(w))

logcpr=lognumpr-log(denompr) #log(cp prob)

return(list(Z=Z,done=done,logcpr=logcpr))

}

Rfunc <- function(s, A, w)

{ #A is subset of {1,...,m}, w=(w1,...,wm)

lA=length(A)

if(lA<s)

{print("Invalid R function"); return(0)}

if(s==0) return(1)

if(s==1) return(sum(w[A]))

if(s==lA) return(prod(w[A]))

RsA=Rfunc(s,A[-1],w)+w[A[1]]*Rfunc(s-1,A[-1],w)

return(RsA)

}

drawone <- function(w, rest, done, c) {

lenr=length(rest); lend=length(done)

Pj=rep(0,lenr)

up=w[rest[1]]*Rfunc(c-lend-1,rest[-1],w)

downR=Rfunc(c-lend,rest[-1],w)+up
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Pj[1]=up/((c-lend)*downR)

if(lenr>1)

{

for(i in 2:lenr)

{

up=w[rest[i]]*Rfunc(c-lend-1,rest[-i],w)

Pj[i]=up/((c-lend)*downR)

}

}

ik=sample(rest,1,prob=Pj)

return(list(ik=ik,invconst=downR))

}

tabinfo <- function(x0) {

judge=1

if(sum(x0<0)) judge=0

if(sum((x0==0),(x0==1))<length(x0)) judge=0

si=apply(x0,c(2,3),sum) # sum, only 1st index not fixed

sj=apply(x0,c(1,3),sum)

sk=apply(x0,c(1,2),sum)

return(list(si=si,sj=sj,sk=sk,judge=judge))

}

onecol <- function(si,rs,cs,m=m,n=length(cs),l=length(rs),strucA)

{ # no trivial case but may has structrual 0, generate first col

if(cs[1]==0) return(list(vec=rep(0,l),logcpr=0))

ck=si[1,]

rk=rs

vec=rep(-1,l)
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struc0=which(strucA[1,1,]==1)

vec[struc0]=0

if(length(struc0)==l) {

if(sum(vec)!=cs[1]) return(0) # not feasible

else return(list(vec=vec,logcpr=0))

}

left=(1:l)

if(length(struc0)>0) left=left[-struc0]

if(length(left)<cs[1]) {

return(0) # not feasible for binary

}

grk=apply(strucA[1,,],2,sum)

gck=apply(strucA[,1,],2,sum)

t1=n-grk[left]-rk[left]

t2=m-gck[left]-ck[left]

if(sum(t1<=0)+sum(t2<=0)>0) return(0) else{

p=rk[left]*ck[left]/(rk[left]*ck[left]+t1*t2)

# cat("p=",p," rk=",rk," ck=",ck," m=",m,"\n")

outcp=cp(p,cs[1])

vec[left]=outcp$Z

logcpr=outcp$logcpr

return(list(vec=vec,logcpr=logcpr))

}

}

firstgencol <- function(cs,m) # firstgen2 in 11th-GR-ver2.R

{

j=which(cs==max(cs))[1]
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return(gen=j)

}

# Find layer with largest sum (most 1’s)

firstgenlay <- function(sj) # first layer to generated {

layersum=apply(sj,1,sum)

mlayer=max(layersum)

i=which(layersum==mlayer)[1]

return(gen=i)

}

# si is not used in this function at all.

# This function uses the structure 0 information,

# and the row and column sum to check if there are

# trivial rows or columns.

clear2way <- function(si,rs,cs,m,n,l,strucA) {

myPrint(sprintf("clear2way: m=%f, n=%f, l=%f",m,n,l))

myPrint(si)

myPrint(rs)

myPrint(cs)

myPrint(sprintf("clear2way: sum(strucA)=%d",sum(strucA)))

A2 <- t(strucA[1,,])

B2 <- matrix(0,l,n)

clearr=NULL; clearc=NULL

stop=0

while(stop==0) {

myPrint("clear2way: Loop:")

#print(A2)

#print(B2)
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stop=1

A2rs=apply(A2,1,sum)

B2rs=apply(B2,1,sum)

myPrint(sprintf("clear2way: A2rs"))

myPrint(A2rs)

myPrint(sprintf("clear2way: B2rs"))

myPrint(B2rs)

pr=(rs-B2rs)/(n-A2rs)

myPrint(sprintf("clear2way: pr"))

myPrint(pr)

for(k in 1:l) {

if((rs-B2rs)[k]!=0 || (n-A2rs)[k]!=0) {

if(pr[k]<0 || pr[k]>1)

{

myPrint(sprintf("clear2way: Row sum [%d]

probability not in [0,1]",k))

return(0)

}

if(pr[k]==1)

B2[k,][which(A2[k,]==0)]=1 # B2 records the structure [1]

if(pr[k]==0 || pr[k]==1) {

myPrint(sprintf("clear2way: Row sum [%d] value

in {0,1}.",k))

A2[k,]=1

clearr=c(clearr,k)

stop=0

}
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}

}

myPrint("clear2way: Loop (cs check):")

#print(A2)

#print(B2)

A2cs=apply(A2,2,sum)

B2cs=apply(B2,2,sum)

myPrint(sprintf("clear2way: A2cs"))

myPrint(A2cs)

myPrint(sprintf("clear2way: B2cs"))

myPrint(B2cs)

pc=(cs-B2cs)/(l-A2cs)

myPrint(sprintf("clear2way: pc"))

myPrint(pc)

for(j in 1:n) {

if((cs-B2cs)[j]!=0 || (l-A2cs)[j]!=0) {

if(pc[j]<0 || pc[j]>1)

{

myPrint(sprintf("clear2way: Col sum [%d]

probability not in [0,1]",j))

return(0)

}

if(pc[j]==1)

B2[,j][which(A2[,j]==0)]=1

if(pc[j]==0 || pc[j]==1) {

myPrint(sprintf("clear2way: Col sum [%d] value

in {0,1}.",j))
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A2[,j]=1

clearc=c(clearc,j)

stop=0

}

}

}

}

leftr=(1:l); leftc=(1:n)

if(length(clearr)>0) leftr=leftr[-clearr]

if(length(clearc)>0) leftc=leftc[-clearc]

change=1

if(length(clearr)==0 && length(clearc)==0) {

change=0

myPrint(sprintf("clear2way: change = %d,sum(X) = %d",change,sum(B2)))

return(list(X=B2,continue=1,change=change))

}

strucA[1,,]=t(A2)

if(length(leftr)==0 || length(leftc)==0) {

myPrint(sprintf("clear2way: change = %d,sum(X) = %d",change,sum(B2)))

return(list(X=B2,continue=0))

} else

myPrint(sprintf("clear2way: change = %d",change))

return(list(X=B2,leftr=leftr,leftc=leftc,strucA=strucA,continue=1,

change=change))

}

twoway <- function(si, rs, cs, m, n=length(cs), l=length(rs), strucA){

myPrint(sprintf("twoway: m=%f, n=%f, l=%f",m,n,l))
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myPrint(si)

myPrint(rs)

myPrint(cs)

myPrint(sprintf("twoway: sum(strucA) = %d",sum(strucA)))

if(n==1) return(list(X=rs,logcpr=0))

if(l==1) return(list(X=cs,logcpr=0))

X <- matrix(-1, l, n)

p <- rs/n

pcol <- cs/l

logcpr=0

#If any p>1 or p<0, already unfeasible

badrow=c(which(p<0),which(p>1))

badcol=c(which(pcol<0),which(pcol>1))

if(length(badrow)+length(badcol)>0)

{ myPrint(sprintf("twoway: length(badrow)+length(badcol)>0. %f

+ %f > 0. Returning 0",length(badrow),length(badcol)))

myPrint(p)

myPrint(pcol)

return(0)

}

#initialize the structures

strucA1=t(strucA[1,,])

for(i in 1:l) {

for(j in 1:n) {

if(strucA1[i,j]==1)

{

myPrint(sprintf("twoway: Setting X[%d,%d]=0",i,j))
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X[i,j]=0

}

}

}

# Maybe comment out this since clear2way is better.

# In fact, this section could lead to bugs as Jing pointed out.

# Eg. if the row sum is equal to the number of cells,

# this code will fill in the entire row with 1’s. However,

# this is potentially a problem since there may be

# structure 0’s which implies the row is infeasible!

# BEGIN ___

# fill those with row p=0 or 1

indp0<- which(p==0)

indp1<- which(p==1)

if((length(indp0)>0 || length(indp1)>0) && preclearcheck == 1) {

myPrint("twoway: Some row probs 0 or 1")

leave <- which((p>0)*(p<1)>0)

X[indp0,] <- 0

X[indp1,] <- 1

if(length(leave)==0) {

myPrint ("twoway: No other row probabilities in (0,1).

Returning.")

return(list(X=X,logcpr=0))

}

else {

myPrint ("twoway: Still some row probabilities in (0,1).

Calling twoway.")
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out2w1=twoway(si=si[,leave],rs=rs[leave],cs=cs-length(indp1),

m=m,strucA=strucA[,,leave])

if(!is.list(out2w1))

{

myPrint ("twoway: Function returned empty list.")

return(0)

}

else {

X[leave, ] <- out2w1$X;

logcpr=logcpr+out2w1$logcpr

return(list(X=X,logcpr=logcpr))

}

}

}

# END ___

else {

# fill those with col pcol=0 or 1

cindp0<- which(pcol==0)

cindp1<- which(pcol==1)

if((length(cindp0)>0 || length(cindp1)>0) && preclearcheck == 1) {

myPrint("twoway: Some col probs 0 or 1")

cleave <- which((pcol>0)*(pcol<1)>0)

X[,cindp0] <- 0

X[,cindp1] <- 1

if(length(cleave)==0)

{

130



myPrint ("twoway: No other probabilities in (0,1).

Returning.")

return(list(X=X,logcpr=0))

}

else {

out2w2=twoway(si=si[cleave,],rs=rs-length(cindp1),cs=cs[cleave],

m=m,strucA=strucA[,cleave,])

if(!is.list(out2w2))

{

myPrint ("twoway: Function twoway (col) returned

empty list.")

return(0)

}

else {

X[,cleave] <- out2w2$X;

logcpr=logcpr+out2w2$logcpr

return(list(X=X,logcpr=logcpr))

}

}

}

# left only cases with p, 0<p<1, and pcol, 0<pcol<1

else {

myPrint ("twoway: No p entries 0 or 1")

outc2w=clear2way(si,rs,cs,m,n,l,strucA)

if(!is.list(outc2w))

{

myPrint("twoway: clear2way returned empty list.
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Returning.")

return(0)

}

else {

if(outc2w$continue==0) return(list(X=outc2w$X,logcpr=0))

else {

if(outc2w$change) {

X=outc2w$X; leftc=outc2w$leftc; leftr=outc2w$leftr

#si=si[leftc,leftr]

strucA=outc2w$strucA[,leftc,leftr]

myPrint ("twoway: outc2w$change non-zero.

Calling twoway.")

myPrint ("#\\___//\\___//#\\___//#")

myPrint ("t(X)=")

myPrint (t(X))

Xrs=apply(X,1,sum)

Xcs=apply(X,2,sum)

myPrint("Xrs=")

myPrint(Xrs)

myPrint("Xcs=")

myPrint(Xcs)

out2w4=twoway(si=si[leftc,leftr],rs=(rs - Xrs)[leftr],cs=(cs - Xcs)

[leftc],m=m,strucA=strucA)

if(!is.list(out2w4)) return(0)

else {

X[leftr,leftc]=out2w4$X

logcpr=logcpr+out2w4$logcpr
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return(list(X=X,logcpr=logcpr))

}

}

else {

genj=firstgencol(cs,l)

neworderc=1:n; neworderc[1]=genj; neworderc[genj]=1

tempcs=cs[neworderc]; # pretend that the jth col is the 1st col

myPrint(sprintf("twoway: Calling onecol. genj = %d",genj))

outonecol <- onecol(si[neworderc,], rs, tempcs, m=m,

strucA=strucA[,neworderc,])

myPrint("twoway: outonecol$vec = ")

myPrint(outonecol$vec)

if(!is.list(outonecol)) return(0)

else {

X[,genj] <- outonecol$vec

logcpr=logcpr+outonecol$logcpr

myPrint ("twoway: outc2w$change zero. Calling twoway.")

out2w3=twoway(si=si[-genj,],rs=rs-X[,genj],cs=cs[-genj],m=m,

strucA=strucA[,-genj,])

if(!is.list(out2w3)) return(0)

else {

X[,-genj] <- out2w3$X

logcpr=logcpr+out2w3$logcpr

return(list(X=X,logcpr=logcpr))

}

}

}
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}

}

}

}

myPrint("twoway: Reached end of function. Is this possible?")

return(list(X=X,logcpr=logcpr))

}

# Using marginals, return the structure 0’s and structure 1’s

# Recalculate marginals by subtracting structure 1’s

# In the end, we will add the B matrix below

# A matrix: 1 means SOME structure there at that position

# B matrix: 1 means structure 1 at that position (if 1 in A),

# 0 means structure 0.

strucarray <- function(si, sj, sk, m=dim(sk)[1], n=dim(si)[1], l=dim

(si)[2]) {

A <- array(0,c(m,n,l)) #store all structures

B <- array(0,c(m,n,l)) #only struc 1

stop=0

while(stop==0) {

stop=1

Asi=apply(A,c(2,3),sum)

Bsi=apply(B,c(2,3),sum)

pi <- (si-Bsi)/(m-Asi)

for(j in 1:n) {

for(k in 1:l) {

if((si-Bsi)[j,k]!=0 || (m-Asi)[j,k]!=0) {

if(pi[j,k]<0 || pi[j,k]>1) return(0)
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if(pi[j,k]==1) B[,j,k][which(A[,j,k]==0)] <-1

if(pi[j,k]==0 || pi[j,k]==1)

{A[,j,k] <- 1; stop=0}

}

}

}

Asj=apply(A,c(1,3),sum)

Bsj=apply(B,c(1,3),sum)

pj <- (sj-Bsj)/(n-Asj)

for(i in 1:m) {

for(k in 1:l) {

if((sj-Bsj)[i,k]!=0 || (n-Asj)[i,k]!=0) {

if(pj[i,k]<0 || pj[i,k]>1) return(0)

if(pj[i,k]==1) B[i,,k][which(A[i,,k]==0)] <-1

if(pj[i,k]==0 || pj[i,k]==1)

{A[i,,k] <- 1; stop=0}

}

}

}

Ask=apply(A,c(1,2),sum)

Bsk=apply(B,c(1,2),sum)

pk <- (sk-Bsk)/(l-Ask)

for(i in 1:m) {

for(j in 1:n) {

if((sk-Bsk)[i,j]!=0 || (l-Ask)[i,j]!=0) {

if(pk[i,j]<0 || pk[i,j]>1) return(0)

if(pk[i,j]==1) B[i,j,][which(A[i,j,]==0)] <-1
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if(pk[i,j]==0 || pk[i,j]==1)

{A[i,j,] <- 1; stop=0}

}

}

}

}

newsi=si-apply(B,c(2,3),sum)

newsj=sj-apply(B,c(1,3),sum)

newsk=sk-apply(B,c(1,2),sum)

return(list(A=A,B=B,si=newsi,sj=newsj,sk=newsk))

}

# Single three way table.

# si = X_+jk, sj = X_i+k, sk = X_ij+

threeway <- function(si, sj, sk, m=dim(sk)[1], n=dim(si)[1], l=dim

(si)[2]) {

myPrint(sprintf("threeway: m=%f, n=%f, l=%f",m,n,l))

if(m==1) return(list(A=si,logcpr=0))

if(n==1) return(list(A=sj,logcpr=0))

if(l==1) return(list(A=sk,logcpr=0))

A <- array(-1,c(m,n,l))

logcpr <- 0

outsa=strucarray(si,sj,sk)

if(!is.list(outsa)) {

myPrint("threeway: Function strucarray returned empty list.

Returning 0.")

return(0)

}
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#if the whole table is made of structures

outsaA=outsa$A

if(sum(outsaA)==m*n*l) {

myPrint ("threeway: Entire tables is structure. Returning.")

return(list(A=outsa$B,logcpr=0))

}

myPrint(sprintf("threeway: Number of structures %d", sum(outsaA)))

si=outsa$si

sj=outsa$sj

sk=outsa$sk

for(i in 1:m) {

for(j in 1:n) {

for(k in 1:l) {

if(outsaA[i,j,k]==1) A[i,j,k]=0 #add B later

}

}

}

geni=firstgenlay(sj)

myPrint(sprintf("threeway: geni=%d",geni))

#if the whole layer is made of structures

if(sum(outsa$A[geni,,])==n*l) {

A[geni,,]=0

out3way0=threeway(si,sj[-geni,],sk[-geni,],m=m-1)

# sj[-geni,] removes the geni element in the vector

if(!is.list(out3way0)) {

myPrint ("threeway: Function threeway (all structs) return

empty list. Returning 0.")
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return(0)

}

else {

A[-geni,,]=out3way0$A

logcpr=logcpr+out3way0$logcpr

return(list(A=A+outsa$B,logcpr=logcpr))

}

}

else {

rs=sj[geni,]; cs=sk[geni,]

neworderl=1:m; neworderl[1]=geni; neworderl[geni]=1

out2way=twoway(si,rs,cs,m,strucA=outsa$A[neworderl,,])

if(!is.list(out2way)) {

myPrint ("threeway: Function twoway returned empty list.

Returning 0.")

return(0)

}

else {

A[geni,,]=t(out2way$X);

logcpr=logcpr+out2way$logcpr

out3way=threeway(si-A[geni,,],sj[-geni,],sk[-geni,],m=m-1)

if(!is.list(out3way))

{

myPrint ("threeway: Function threeway returned empty

list. Returning 0.")

return(0)

}
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else {

A[-geni,,]=out3way$A

logcpr=logcpr+out3way$logcpr

return(list(A=A+outsa$B,logcpr=logcpr))

}

}

}

}

genbin <- function(outinfo, output=T) {

si=outinfo$si; sj=outinfo$sj; sk=outinfo$sk

out3way=threeway(si,sj,sk)

if(is.list(out3way)) {

A <- out3way$A

outti <- tabinfo(A)

check=checkbin(A, si, sj, sk) # Checks the rows and column sums

} else return(0);

if(!check) return(0);

logcpr=out3way$logcpr;

ntable=1/(exp(logcpr))

if(output) {

return(list(A=A,logcpr=logcpr,ntable=ntable));

}

else return(list(ntable=ntable))

}

checkbin <- function(A, si, sj, sk) {

check=1;

outti=tabinfo(A)
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if(outti$judge==0) check=0

j1=sum((si-outti$si)^2)+sum((sj-outti$sj)^2)+sum((sk-outti$sk)^2)

if(j1>0) check=0

return(check)

}

numtable <- function(N=1000,outinfo,knotprint=50) {

success=NULL

vecntable=rep(0,N)

for(i in 1:N) {

outgb=genbin(outinfo,output=F)

if(is.list(outgb)) {

vecntable[i]=outgb$ntable

success=c(success,i)

}

if(i%%knotprint==0) cat("Finished ",i," tables\n");

}

aventable=mean(vecntable) # suggested by Dr. Chen, should be unbiased

varntable=var(vecntable[success])

aventable2=mean(vecntable[success])

acceptance=length(success)/N

return(list(NumofTables=aventable,cv2=varntable/(aventable2)^2,

acceptance=acceptance))

}
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B.1 Additional theorems and proofs in Chapter 3

This section will provide some additional theorems and proofs for Section 3.2. Recall

that in Section 3.2, we first proved that Pm,1 is a simplex Δ2m−1, and then we proved

that Pm,n is a direct product of n many Δ2m−1, which implies that Pm,n is a simple

polytope with dimension n · (2m − 1). In this section, we are going to show another

flow to prove the results in Section 3.2.

First, we will use linear algebra to show that Pm,n has dimension n · (2m− 1). We

adopt the notation from Section 3.2. Given N , by Proposition 3.1.2 and Proposition

3.1.6, we can define Sm,n as the support of {cG : G ∈ Gm,n}, i.e.:

Sm,n = {T : ∃ G ∈ Gm,n such that cG(T ) = 1} ⊂ P(N),

where P(N) is the power set of N .

Theorem 4.2.2. Fix m and n. The dimension of Pm,n is exactly n · (2m − 1).

Proof. Similar with imsets, we can consider the standard basis eT, T ⊂ N , as func-

tions eT : P(N) �→ Z such that ∀ T0 ⊂ N , eT(T0) = 1 if T0 = T , and 0 otherwise.

Each eT can also be considered as a vector with coordinates T0 ⊂ N .

It is obvious that: 1 ) {cG, G ∈ Gm,n} ⊂ R2m+n−(m+n+1); 2 ) {eT, T ∈ Sm,n} is

a basis of Rn·(2m−1) that is embedded in R2m+n−(m+n+1) (Proposition 3.1.6); and 3

){cG, G ∈ Gm,n} can be written as a linear combination of {eT, T ∈ Sm,n}. We are

going to prove that {eT, T ∈ Sm,n} can be expressed as a linear combination of {cG,

G ∈ Gm,n}. Notice that {eT, T ∈ Sm,n} is equivalent with {eT, T ⊂ N and T has the

form of ai1 . . . aikbj, where 1 ≤ k ≤ m, {i1, . . . , ik} ⊆ {1, . . . ,m} and j ∈ {1, . . . , n}}

(Proposition 3.1.2), we can prove the statement by induction on |T |.

• When |T | = 2 (i.e. k = 1), i.e. T = aibj, where ai ∈ A and bj ∈ B, we know

cG = eT, where G ∈ Gm,n has only one edge ai → bj.
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• Suppose ∀ T , T has the form in Proposition 3.1.2 and |T | ≤ k, eT can be written

as a linear combination of {cG, G ∈ Gm,n}. Now consider Tk = ai1 . . . aikbj,

where {i1, . . . , ik} ⊆ {1, . . . ,m} and j ∈ {1, . . . , n}.

Let G ∈ Gm,n have k edges: ail → bj, l = 1 . . . k. Then:

eTk
= cG −

∑
Ta⊂{ai1 ,...,aik},0<|Ta|<k

eTa∪{bj}.

Since ∀ Ta ⊂ {ai1 , . . . , aik}, 0 < |Ta| < k (i.e. Ta � {ai1 , . . . , aik}), |Ta ∪ bj| ≤ k,

eTa∪bj
can be expressed as a linear combination of {cG, G ∈ Gm,n}. Therefore,

eTk
can be written as a linear combination of {cG, G ∈ Gm,n}.

A special case of n = 1 in Theorem 4.2.2 and Proposition 3.1.5 claims that Pm,1

has 2m vertices and dimension 2m − 1. This directly lead to Corollary 4.2.3.

Corollary 4.2.3. Fix m, Pm,1 is a simplex with dimension 2m−1, i.e. Pm,1 = Δ2m−1.

Lemma 3.2.2 is an immediate result of Corollary 4.2.3, while Theorem 3.2.5 and

Theorem 3.2.7 can be obtained based on Lemma 3.2.2 and Corollary 4.2.3 using the

same proofs in Section 3.2. It is worth mentioning that Theorem 4.2.2 and Theorem

3.2.5 imply that Pm,n is a simple polytope with dimension n · (2m − 1) because the

number of neighbors for each vertex equals to the dimension of the polytope. In 2000,

V. Kaibel and M. Wolff proved that a zero-one polytope is simple if and only if it

equals to a direct product of zero-one simplices [33]. Recall that characteristic imset

polytopes are zero-one polytopes (Theorem 1.3.10), we are able to conclude that

Pm,n is a direct product of zero-one simplices [33]. Our progress is that we proved a

even strong result in Theorem 3.2.7 with an intuitive graphical interpretation of each

simplex in the direct product.

Copyright c© Jing Xi, 2013.

142



Bibliography

[1] A. Agresti. Exact inference for categorical data: recent advances an continuing
controversies. Statistics in Medicine, 20:2709–2722, 2001.

[2] A. Agresti. Categorical Data Analysis. Wiley, second edition, 2002.

[3] S. A. Andersson, D. Madigan, and M. D. Perlman. A characterization of markov
equivalence classes for acyclic digraphs. Annals of Statistics, 25:505–541, 1997.

[4] E. A. Bender and J. R. Goldman. On the application of mobius inversion in
combinatorial analysis. The American Mathematical Monthly, 82:789–803, 1975.
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