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ABSTRACT OF DISSERTATION

Spherulitic Growth and Thermodynamic Equilibrium in Multicomponent Elastic
Films Under Solvent-vapor Annealing

In this dissertation, we will study solvent-vapor induced spherulitic growth in mul-
ticomponent thin films modeled as prestressed elastic solids. The interface between
the crystalline phase and the amorphous phase will be treated as an evolving ther-
modynamic system and no diffusion of any component will be considered.

The dissertation is divided into three parts. In Part I we will determine necessary
conditions of thermodynamic equilibrium between the two solid phases, the interface,
and the vapor. In Part II we will derive the thermodynamic driving force for solvent-
vapor induced spherulitic growth in multicomponent elastic thin films. In Part III we
will investigate the effect of prestress on the directional dependence of the growth.
There a formula that delineates how the prestress affects the shape of the spherulite
will be proposed.
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Chapter 1 Introduction

1 Background

Organic small-molecule semiconductors have attractive features for applications in

organic photovoltaics (OPVs), organic thin-film transistors (OTFTs), and organic

light-emitting diodes (OLEDs) [1]. They have been actively studied as the host-guest

pair in OTFTs and as the donor-acceptor pair in bulk heterojunction OPVs [2].

Solvent-vapor annealing is known to have positive effect on device performance

which is measured by the power conversion efficiency of OPVs and field-effect mo-

bility of OTFTs. For thin-film blends of small-molecule semi-conductors which are

formed by spin coating and are largely amorphous in the as-spun state, film restruc-

turing upon exposition to solvent vapor often proceeds by crystallization through

heterogeneous nucleation and spherulitic growth [1].

In experiments reported in [2] and [3], TES ADT (triethylsilylethynyl anthra-

dithiophene) was dissolved in toluene and the solution was subsequently spin coated

onto substrates to form 100-nm thick uniform films. The substrates were thermally

annealed to drive off residual toluene and then exposed to DCE (1,2-dichloroethane)

solvent vapor during which the originally amorphous film crystallized through nucle-

ation and growth of spherulites; see Figure 1.1. We assume that the film no longer

contains any toluene after thermal annealing and, after exposure of the film to DCE

vapor, the solvent DCE dissolves in the film.

As was pointed out in a 2012 paper by Hedge et al. [4], the thermodynamic driving

force behind the solvent-vapor induced crystallization was not hitherto addressed

explicitly. Clarifying the physics of the spherulitic growth is therefore of crucial

importance for further development of the subject.
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Figure 1.1: Growth of spherulites; courtesy of Y.-L. Loo and S.S. Lee (Princeton)

Jabbour, Man and Paroni [1] proposed an interface-driven, thermodynamically

consistent, macroscopic theory to predict the growth rate of spherulites by identifying

the thermodynamic driving force in question. By imposing the assumptions that,

among others, the stress tensor in both amorphous and crystalline phase be spherical,

the motion be smooth and the interface be massless, it is shown that the growth rate,

measured by the normal velocity of the phase interface, was constant.

2 Main results and outline

In this dissertation, we will develop for the same process a theory parallel to and

more general than that in [1] by relaxing the assumptions mentioned above. Specif-

ically, instead of assuming the motion to be smooth, we assume that the motion be

continuous and satisfies Hadamard’s compatibility condition. The assumption that

the stress tensor in both phases be spherical will be dropped and we will treat the

interface as a thermodynamical system in itself by endowing it with excess quantities.

Our main results include a derivation of the thermodynamic driving force for

isothermal crystallization of an isolated spherulite under solvent-vapor annealing and

a formula that delineates the effect of prestress on the shape of the spherulites.

We will first review in chapter 2 some basic concepts in continuum mechanics,

evolving curves and thermodynamics that are important to our discussion.

In chapter 3, thermodynamic equilibrium conditions, which will shed light on the
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driving force formula, will be obtained for the system consisting of two solid phases,

an interface and vapor when it is immersed in a heat bath of constant temperature.

To this end, unlike the usual practice of minimizing the Helmholtz free energy, we will

use the Duhem’s principle of minimum ballistic free energy, which was reintroduced

in the 1960s by Ericksen [5].

In chapter 4, balance of mass and momentum as well as the first two laws of

thermodynamics will be discussed. By combining the energy balance and entropy

imbalance, we will get for isothermal systems and processes the free energy imbalance

which will deliver the dissipation inequalities for both bulk phases and the interface

upon localization. The dissipation inequalities will restrict the constitutive relations

adopted for the system, as per in essence the Coleman-Noll procedure [6]. The driving

force behind the crystallization will be identified as the quantity conjugate to the

normal velocity in the dissipation inequality on the interface. The main difference

between the present theory and the existing ones on the similar topics, such as [7, 8,

9, 10, 11], among others, is that we treat the interface as a thermodynamic system

in itself by endowing it with excess quantities as well as a well defined interface

velocity. The product of the interface velocity and the interfacial stress will give the

power expended by the interface. We will end chapter 4 by a comparison between

the driving force we get and the counterpart in [1], which will deliver some insight on

the role of the phase interface.

In chapter 5, we will specialize our theory and investigate the effect of the prestress

on the shape of the spherulite by deriving a formula of the normal velocity as a

function of the direction of the outward normal and an estimate of the shape of the

spherulite. The formula is, to the best of our knowledge, new.
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Chapter 2 Preliminaries

In this chapter, we will recall some results and definitions in continuum mechanics,

evolving curves and thermodynamics of elastic solids that will be instrumental for

our discussion. The readers are referred to [8, 9, 12, 13, 14, 15, 16] for more details

on these topics.

Note that the thin film will be modeled as a plane and therefore we will restrict

our theory to two space dimensions. Summation over repeated indices is implied

throughout this dissertation unless otherwise specified.

1 Continuum mechanics

We start by presenting some important concepts in continuum mechanics.

Bodies and configurations

In continuum mechanics, a body B is a collection of particles p which can be put into

one-to-one correspondence with a region in a Euclidean space E. Such a correspon-

dence is called a placement of the body B, i.e. the one-to-one mapping χ from B into

E such that

x = χ(p) where p ∈ B, x ∈ E. (2.1)

is a placement of the body B and x is the position occupied by particle p under

the placement χ. The image of the mapping Bχ = {x
∣∣x = χ(p), p ∈ B} is called

the configuration under the placement χ. Bodies are only available to us in their

configurations.

It is usually convenient to choose a particular configuration, say Bκ, as reference

and use the position X = κ(p) to label the particles and to describe the change in

geometrical quantities from the configuration Bκ to some other configuration. We
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will call Bκ the (chosen) reference configuration. Note that the choice of the reference

configuration is arbitrary and usually chosen for reasons of convenience.

Let Bκ be a reference configuration, Bχ be any other configuration of the body B.

The mapping χκ : Bκ → Bχ

x = χκ(X) = χ(κ−1(X)) (2.2)

defines a deformation from placement κ to placement χ; see Figure 2.1.

Bκ
Bχ

B

p

X x

κ

χκ

χ

Figure 2.1: Placements and deformation

When we work with one fixed reference configuration, we may identify the body

B with the reference configuration Bκ in question, drop the subscript κ in equation

(2.2)1 and write x = χ(X) for simplicity.

In addition, we require that J = det F(X) > 0 where F = gradχ is called the

deformation gradient.

A motion of B is a one-parameter family of placements where the parameter is

time t, i.e. we call

χ = {χt, t ∈ [0,∞)
∣∣χt : B → E} (2.3)

a motion of B. The configuration of the body at time t will be denoted by Bt. A

motion can be written as

χ : B × [0,∞)→ E, x = χ(X, t) = χt(X). (2.4)

5



Similarly, we require that det F(X, t) > 0 for all t. When we investigate a body, Bt is

the region actually observed during the motion, B serves only to label the particles.

Referential and spatial description of fields

Consider a motion χ of a body B. Let ϕ be a scalar, vector or tensor field defined

over B × [0,∞) with its value in some space W , i.e.

ϕ : B × [0,∞)→ W. (2.5)

Since x = χ(X, t) is invertible in X for fixed t, it has an inverse X = χ−1(x, t). Then

the field can also be defined on the region that currently occupied by the body

φ(·, t) : Bt → W (2.6)

by

φ(x, t) = ϕ(χ−1(x, t), t) = ϕ(X, t). (2.7)

The left hand side of the above equation is called the spatial description of the field

and the the right hand side the referential description of the field.

In continuum mechanics, we usually use the same symbol for both referential and

spatial description of the field, i.e. we write,

ϕ = ϕ(X, t) = ϕ(x, t) (2.8)

For instance, as we shall see in the next subsection, we will use the same symbol T

to express the Cauchy stress tensor both spatially T(x, t) and referentially T(X, t).

Cauchy stress and Piola-Kirchhoff stress

Central to the discussion of continuum mechanics are Cauchy’s hypothesis and Cauchy’s

theorem which state, in two dimensional case, as follows:

Cauchy’s Hypothesis Given any oriented curve C in the current configuration with

unit normal vector m̂, s(m̂,x, t) represents the force, per unit length, exerted across

C upon the material on the negative side of m̂ by the material on the positive side.

6



Theorem 1 (Cauchy’s Theorem). [12] A consequence of balance of forces is that

there exists a spatial tensor field T called the Cauchy stress tensor, such that

s(m̂) = Tm̂ (2.9)

Therefore the term ∫
C
T(x)m̂(x) ds(x) (2.10)

represents the contact force exerted across the curve C in the current configuration.

Assume S is a curve in the reference configuration such that C = χ(S) and m is

the unit normal to S, then [12, Section 24.1]∫
S
J(X)T(X)F−>(X)m(X) ds(X) =

∫
C
T(x)m̂(x) ds(x). (2.11)

We call the second-order tensor

S = JTF−> (2.12)

the first Piola-Kirchhoff stress tensor and the tensor

P = F−1S (2.13)

the second Piola-Kirchhoff stress tensor. Note that the second Piola-Kirchhoff stress

is symmetric.

2 Evolving curves

In this section, we shall discuss some facts on evolving curves which we will use to

model the motion of phase interfaces in a thin film.

Definitions

An evolving curve is a family of curves Σ(t) together with a smooth mapping (p, t) 7→

r(p, t) where {(p, t) ∈ [P (t), Q(t)] × [0, T )} with P,Q : [0, T ) → R (P < Q) being

7



smooth functions. For each t, r(·, t) is a parametrization of Σ(t) and ‖rp‖ never

vanish where the subscript p denotes the partial derivative with respective to p. We

choose the parametrization to be such that the region enclosed by the curve falls to

the right of the direction of increasing p.

Let (p, t) 7→ s(p, t) be the arc-length map defined by

s(p, t) =

∫ p

P (t)

‖rp(λ, t)‖ dλ (2.14)

where p ∈ [P (t), Q(t)]. Since ‖rp‖ never vanish, s = s(p, t) is invertible with respect

to p. Any function ϕ(p, t) may be considered a function ϕ(s, t) and vice versa.

Let t(s, t) be the unit tangent vector of the evolving curve at time t, and m(s, t)

be the unit normal pointing away from the enclosed region and falls to the left of the

unit tangent vector. The curvature κ of the evolving curve at time t is given by the

Frenet relation

∂t

∂s
= κm. (2.15)

Under this choice of t and m, κ ≤ 0 on Σ(t) whenever the enclosed region is convex.

Normal velocity and normal time-derivative

Let Σ(t) be an evolving curve and r(p, t) be its parametrization. We refer to

V =
∂r

∂t
·m (2.16)

as the scalar normal velocity of the evolving curve and ν = Vm as the vector normal

velocity.

Let X0 be a point on Σ(t0), the curve at time t0. The normal trajectory through

X0 at time t0 is a curve X(t) which is the solution to the initial value problem

dX(t)

dt
= ν(X(t), t), X(t0) = X0. (2.17)

8



Then given a scalar, vector or tensor field ϕ(X, t) for X ∈ Σ(t), the normal time-

derivative of ϕ following Σ(t) is defined by

ϕ̊(X, t) =
dϕ(X(t), t)

dt

∣∣∣∣
t=t0

(2.18)

which represents the rate of change of ϕ following the normal trajectory X(t).

Hadamard’s compatibility condition

A coherent phase transition is manifested by the propagation of the phase interface

Σ(t) in the reference configuration B during which the motion χ(X, t) is continuous

while the velocity χ̇ and deformation gradient F = gradχ suffer a jump discontinuity

across Σ(t). The overhead dot denotes the partial derivative with respective to time

t.

Let ϕ be a scalar, vector or tensor field that is smooth up to the phase interface

Σ(t). For each X ∈ Σ(t), let ϕ−(X, t) and ϕ+(X, t) denote the values of ϕ when X is

a limit point from the region enclosed by Σ(t) and from outside of Σ(t), respectively.

We use

JϕK(X, t) = ϕ+(X, t)− ϕ−(X, t) (2.19)

to denote the jump of the field ϕ across Σ(t).

We introduce Hadamard’s compatibility condition [12]

Jχ̇K = −JFKmV and JFKt = 0 (2.20)

where F is the deformation gradient and m is the unit normal vector pointing away

from the enclosed region. In fact, if we let C(t) = χ(Σ(t), t) be the deformed curve

in the deformed body and r(s, t) be the arc-length parametrization of Σ(t), then

x̂(s, t) = χ(r(s, t), t) is the parametrization of C(t).

Note that

∂x̂(s, t)

∂s
= F±t. (2.21)

9



Therefore we have JFKt = 0.

One the other hand, we have, by the chain rule

∂x̂(s, t)

∂t
= χ̇± + F±

∂r(s, t)

∂t
. (2.22)

Together with (2.20)2, we have (2.20)1.

Note that the normal time derivative of the motion is, by the chain rule,

χ̊ =
d

dt
χ(X(t), t)

= χ̇± + F±mV

= 〈〈χ̇〉〉+ 〈〈F〉〉m

(2.23)

where 〈〈f〉〉 = 1
2
(f+ + f−) for any scalar, vector or tensor field that is smooth up to

the interface.

Transport identities

Let S(t) be an evolving subcurve of Σ(t) and Xa(t), Xb(t) be the endpoints of S(t).

For any scalar or vector interfacial field ϕ, we write ϕa(t) = ϕ(Xa(t), t) and ϕb(t) =

ϕ(Xb(t), t). We have the following transport theorem for line integrals.

Theorem 2 (Transport Theorem for Line Integrals). [8] For S(t) a smoothly evolving

subcurve of Σ(t) and ϕ a smooth interfacial field,

d

dt

∫
S(t)

ϕds =

∫
S(t)

(ϕ̊− ϕκV ) ds+

∫
∂S(t)

ϕW (2.24)

where ∫
∂S(t)

ϕW = ϕbWb − ϕaWa (2.25)

and W = dX
dt
· t denotes the tangential component of the velocity of the endpoints of

S(t).

We also introduce the transport relation in the bulk with singular curve:

10



Theorem 3 (Transport Theorem with Singular Curve). [12] Let R be any fixed region

in B and Σ(t) ⊂ B be a curve such that a scalar, vector or tensor field ϕ is smooth

up to Σ(t), then we have

d

dt

∫
R
ϕda =

∫
R

∂ϕ

∂t
da−

∫
R∩Σ(t)

JϕKV ds (2.26)

where V is the normal velocity of Σ(t).

3 Gibbs dividing interface and excess quantities

In this section, we briefly introduce the notion of the Gibbs dividing interface.

A phase interface, in reality, is not a sharp interface. Instead, it is a transition

layer with certain thickness where quantities, for instance the mass density, can have

a drastic but smooth change. Different models had been proposed to describe the

phase interface. In this dissertation, we shall adopt the model proposed by Gibbs,

namely the Gibbs dividing interface.

The Gibbs dividing interface, which we shall just call the interface for simplicity,

is an imaginary interface that separate the thin film into two parts with area Aα and

Aβ, such that

A = Aα + Aβ (2.27)

where A is the area of the entire film. All other extensive quantities can be written

as a sum of three terms: one for bulk phase α, one for bulk phase β and one for the

interfacial region Σ. For example

U = Uα + Uβ + UΣ

S = Sα + Sβ + SΣ

M = Mα +Mβ +MΣ

(2.28)

where U , S and M represent the internal energy, entropy and mass, respectively.

If we assume that the bulk phases are homogeneous and ρα and ρβ are the mass

11



ρ

ρα

ρβ

Gibbs dividing interface

phase α phase β

Figure 2.2: A sketch of the Gibbs dividing interface

densities of the two phases, then

MΣ = M − ραAα − ρβAβ, (2.29)

which we will call the mass excess on the interface. We will define the mass excess

density :

Γ =
MΣ

L
(2.30)

where L is the length of Σ. Similarly one can define the excess internal energy density

ε = UΣ

L
, excess entropy density ς = SΣ

L
, etc.

4 Thermodynamics of elastic solids with interface

In this section, we will derive a thermodynamic relation for the phase interface of a

planar two phase system.

The work form

Consider an elastic film that consists of two phases, α and β, and a sharp phase

interface. Let B be the reference configuration of the elastic film and Bα, Bβ ⊂ B

denotes region occupied by the respective phases. The phase interface is denoted by

12



Σ

Ba

m∂B
Sm∂BSm∂B

σ

Bs

Figure 2.3: A sketch of a body with two phases and a sharp interface

Σ = ∂Bα ∩ ∂Bβ in the reference configuration. We assume that the interface Σ is

closed and the region Bα is enclosed by Σ; see Figure 2.3.

Consider a process that the thin film undergoes in the time interval [a, b], during

which the body is acted upon by contact force. The work done on B, i.e. W , by the

environment during the process is given by

−W =

∫ b

a

(∫
∂B

Sm∂B · χ̇ ds
)
dt (2.31)

where S denotes the first Piola-Kirchhoff stress defined by (2.12) and m∂B denotes

the outward unit normal of ∂B.

In order to further exploit equation (2.31), we introduce the interfacial stress

tensor σ(X, t); see Figure 2.3. The vector σ(X, t) represents the force exerted across

X by the material that t points to on the material that t points from. It will be

shown in (4.23) that the interfacial stress vector σ is tangential to the phase interface

in the current configuration. The relationship between the interfacial stress vector

and the excess free energy density will be discussed later in this chapter.

By the principle of balance of linear momentum, we have (as special cases of (4.16)
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and (4.17) respectively, where Fi = 0, fi = 0 and V = 0)

ρχ̈ = divS (2.32)

in both Bα and Bβ where ρ is the mass density and

Γχ̈ = JSKm +
∂σ

∂s
(2.33)

where m denotes the outward unit normal of Σ, σ denotes the interfacial stress and

Γ is the excess mass density defined in section 3.

From the divergence theorem with the presence of a singular surface, we have for

a closed interface Σ(t),∫
∂B

Sm∂B · χ̇ ds =
∑
j=α,β

(∫
Bj

divS · χ̇ da+

∫
Bj

S : Ḟ da

)
+

∫
Σ

JSKm · χ̇ ds

=
∑
j=α,β

(
d

dt

∫
Bj

1

2
ρχ̇ · χ̇ da

)
+
d

dt

∫
Σ

1

2
Γχ̇ · χ̇ ds (2.34)

+
∑
j=α,β

(∫
Bj

S : Ḟ da

)
+

∫
Σ

σ · ė ds,

where

F = gradχ, e =
∂χ

∂s
, (2.35)

and for any second-order tensor A and B, A : B = tr(AB>) denotes the inner

product of the two tensors. If one chooses an orthonormal basis {e1, e2} and assume

that Aij, Bij for i = 1, 2 are the components of A and B under the given basis, then

A : B = AijBij. It then follows that

−W = K(b)−K(a) +

∫ b

a

(∑
j=α,β

(∫
Bj

S : Ḟ da

)
+

∫
Σ

σ · ė ds

)
dt (2.36)

where K(·) denotes the kinetic energy of the body at any given time. For a process

that K(a) = K(b) and S : Ḟ, σ · ė being homogeneous for each t, we have

−W =

∫ b

a

(∑
j=α,β

S : ḞAj + σ · ėL

)
dt (2.37)
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where Aj and L denote the area of the j-th phase and the length of the interface,

respectively. We can write

−Wα = Aα
∫ b

a

S : Ḟ dt

−W β = Aβ
∫ b

a

S : Ḟ dt (2.38)

−WΣ = L

∫ b

a

σ · ė dt

where W j (for j = α, β,Σ) stands for the work done on the respective part of the

body by the environment.

Remark 1. The vector e in (2.35) describes the deformation of the interface. By the

compatibility relation (2.20)2,

e =
∂χ

∂s
= Ft. (2.39)

Therefore it is parallel to the tangent vector of the interface in the current configu-

ration. The magnitude of e, i.e. j = ‖e‖, is called the interfacial stretch ratio.

Thermodynamical relations

Assume further that the elastic film consists of N components and consider a homo-

geneous deformation χ of the film.

By (2.38), one can write down the work form for each part of the body,

wα = −AαS : dF− µαi dMα
i

wβ = −AβS : dF− µβi dM
β
i (2.40)

wΣ = −Lσ · de− µΣ
i dM

Σ
i

where M j
i and µji for j = α, β are the total mass and chemical potential of the i-th

component in the respective phases. The quantity MΣ
i is the mass excess of the i-

th component on the interface. The second term in equations (2.40) represent the

chemical work [17, p. 32].
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Recall equation (2.28), let U = Uα +Uβ +UΣ and S = Sα +Sβ +SΣ be the total

internal energy and entropy of the system. Then by the first two laws of thermody-

namics, we have for a reversible system,

dU = q − w, TdS = q (2.41)

For the purpose of the discussion that follows, we are particularly interested in an

isothermal case and hence consider the Helmholtz free energy F = Fα + F β + FΣ

where Fα,β,Σ = Uα,β,Σ − TSα,β,Σ and

dF = d(U − TS) = dU − TdS = −(wα + wβ + wΣ). (2.42)

It follows that

dF j = AjSj : dF + µji dM
j
i for j = α, β (2.43)

dFΣ = Lσ · de + µΣ
i dM

Σ
i (2.44)

In terms of Helmholtz free energy density Ψj = F j/Aj for j = α, β, the excess

Helmholtz free energy per unit length ψ = FΣ/L, (2.43) and (2.44) can be recast as

dΨj = Sj : dF + µji dρi for j = α, β (2.45)

dψ = σ · de + µΣ
i dΓi (2.46)

where ρi and Γi are the mass density of the i-th component and the excess mass

density of the interface, respectively.

Note that by (2.44), we have

FΣ = FΣ(Le, ~MΣ) (2.47)

where ~MΣ = 〈MΣ
1 , · · · ,MΣ

N〉. Assume that FΣ is a homogeneous function of degree

1, we have, with the help of (2.44)

FΣ =
∂FΣ

∂(Le)
· (Le) +

∂FΣ

∂MΣ
i

MΣ
i (2.48)

= σ · (Le) + µΣ
i M

Σ
i (2.49)
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and therefore

ψ = σ · e + µΣ
i Γi (2.50)

Remark 2. Note that as mentioned before, the vector σ is tangential to the interface

in the current configuration, i.e.

σ = σt̂, (2.51)

where t̂ denotes the unit tangent in the current configuration and σ is the surface

tension. Hence equation (2.50) can be recast as

ψ = σj + µΣ
i Γi (2.52)

Therefore the excess free energy per unit length in the current configuration is

ψ̂ = σ + µΣ
i Γ̂i (2.53)

where Γ̂i = Γi/j; see [18].

As noted in [19], different conjugate pairs of stress and strain can be utilized in

the work form (2.40). Let E = 1
2

(
F>F− 1

)
denotes the Lagrange strain tensor and

P denote the second Piola-Kirchhoff stress tensor defined by (2.13), we then have the

relation

P : Ė = F−1S :
1

2

(
Ḟ>F + F>Ḟ

)
=

1

2
S : F−T

(
Ḟ>F + F>Ḟ

)
=

1

2

(
S : F−>Ḟ>F + S : Ḟ

)
=

1

2
tr
(
SF>ḞF−1

)
+

1

2
S : Ḟ

=
1

2
tr
(
S>Ḟ

)
+

1

2
S : Ḟ

= S : Ḟ.

It follows that (2.45) can be recast as

dΨj = Pj : dE + µjidρi for j = α, β (2.54)
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In this dissertation, we will use both (2.45) and (2.54) as well as (2.46) when discussing

the constitutive relation.
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Chapter 3 Equilibrium of a Two-Phase Thermoelastic Solid

In this chapter, we will investigate the conditions of thermodynamic equilibrium

between the two solid phases, the interface and the vapor when the system is immersed

in a heat bath of constant temperature Tb. The equilibrium conditions will serve as

a check on the driving force that we will derive in the next chapter. Specifically,

one would expect that the driving force vanishes when equilibrium conditions are

satisfied.

Similar topic has been studied by, among others, Šilhavỳ [20], Johnson and

Alexander [21], Leo and Sekerka [22]. As was pointed out in [22], the result of

Johnson and Alexander was incomplete.

In what follows, we will use the principle of minimum ballistic energy, which

could be traced back to Duhem and was reintroduced in the 1960’s by Ericksen [5],

to determine the equilibrium conditions. We will incorporate the thermodynamical

relation (2.50) in our derivation. It should be pointed out that Ericksen [23] showed

working with the Helmholtz free energy at fixed temperature F ( · , Tb) is not equivalent

to working with the ballistic free energy E − TbS.

1 Equilibrium conditions

We will focus on an isolated spherulite in a thin-film, modeled as a planar object,

which undergoes isothermal crystallization while exposed to the vapor of its own

constituents.

Assume that the thin film consists of N components and two coexistent phases,

the amorphous phases, denoted by (a) and the crystalline phase, dented by (s). The

thin film is placed in a chamber filled with vapor of its own species. The whole system

is immersed in a heat bath at fixed temperature Tb. We further assume that the gas
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chamber wall is rigid and the boundary of the thin film is fixed so that the system is

mechanically isolated.

The ballistic free energy B is defined by [5],

B = E − TbS (3.1)

where E and S are the internal energy and the entropy of the system, respectively,

and Tb is the absolute temperature of the heat bath the system in contact with. We

have the following minimizing principle [5]:

For the equilibrium of any mechanically isolated system, in contact with a

heat bath at constant temperature, it is necessary and sufficient that in all

possible variations of the system the variation of its ballistic free energy shall

either vanish or be positive

Now, let Ω denote the region that the thin film occupies. We use B to denote

the reference configuration of the film and we will use referential description in the

discussion that follows.

The given equilibrium configuration of the film in Ω is described by a one-to-one

mapping χ0 : B → Ω. Let Σ ⊂ B be the simple closed curve that represents the

phase interface in the equilibrium configuration. The interface Σ divides B into two

regions Bs and Ba. The points in Bs are in crystalline phase and the points in Ba are

in amorphous phase. We assume that χ0 is continuous in B while the deformation

gradient F0 = gradχ0 can have a jump discontinuity across Σ. We also assume that

the crystalline phase (s) is enclosed by the curve Σ.

Let Es and Ea be the internal energy density of the respective phase and ε be the

excess internal energy per unit length of the interface.

The total ballistic free energy of the film at the given equilibrium configuration is

given by

Bf
0 =

∫
Ba
Ea(η0)− Tbη0 da+

∫
Bs
Es(η0)− Tbη0 da+

∫
Σ

ε(ς0)− Tbς0 ds (3.2)
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where Ea,s, η0, ε, ς0 represent the internal energy density of the respective phases,

entropy density, excess internal energy, and excess entropy density, respectively. The

subscript “0” means the value of the functions when the system is at equilibrium.

Note that η0 and ς0 are functions of X and, because we shall consider only variations

in η and ς as a first step, we have suppressed the dependence of Ea,s and ε on variables

other than η and ς for simplicity.

The total ballistic energy of the system is then

B0 = Bf
0 +

∫
V
Ev(ηv0)− Tbηv0 dv (3.3)

where Ev, ηv denote the internal energy density and entropy density of the vapor,

respectively, and V stands for the region that the vapor occupies.

First, consider a variation in the entropy, i.e. η(X, ε), ηv(X, ε) and ς(X, ε) which

satisfy

η(X, 0) = η0, ηv(X, 0) = ηv0 , ς(X, 0) = ς0 (3.4)

We treat ε as if it were virtual time and we shall use the the language in standard

continuum mechanics in what follows.

The ballistic free energy after the variation is then

Bε = Bf
ε +

∫
V
Ev(ηv(X, ε))− Tbηv(X, ε) dv (3.5)

where Bf
ε denotes the ballistic free energy of the film at virtual time ε.

The minimizing principle dictates that

B0 ≤ Bε for each ε. (3.6)

Therefore a necessary condition for (3.6) is

dBε

dε

∣∣∣∣
ε=0

= 0. (3.7)
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Substituting (3.5) into (3.7), we obtain(∑
α=a,s

∫
Bα

(
∂Eα

∂η
− Tb

)
∂η

∂ε
da+

∫
Σ

(
∂ε

∂ς
− Tb

)
∂ς

∂ε
ds+

∫
V

(
∂Ev

∂ηv
− Tb

)
∂ηv

∂ε
dv

)∣∣∣∣∣
ε=0

= 0. (3.8)

We deduce, by the arbitrariness of the variations in the entropy densities, that

T a,s|ε=0 = TΣ
∣∣
ε=0

= T v|ε=0 = Tb, (3.9)

where we have invoked the thermodynamic relations

∂Ea,s

∂η
= T a,s,

∂ε

∂ς
= TΣ,

∂Ev

∂ηv
= T v, (3.10)

i.e., the temperature distribution is homogeneous across the entire system when it is

in equilibrium.

Note that the ballistic free energy and the Helmholtz free energy coincide when

the temperature of the system is the same as that of the heat bath. Henceforth, we

will assume that the system is isothermal with the absolute temperature being the

same as the heat bath and drop the explicit dependence on temperature. Instead of

writing Ψ(F, ~ρ, Tb), we will simply write Ψ(F, ~ρ). Substituting (3.9) into (3.3), we

obtain

F0 = F f
0 +

∫
V

Ψv(~ρv0) dv, (3.11)

where Ψv is the Helmholtz free energy density of the vapor, ~ρv0 = 〈ρv10
, · · · ρvN0

〉 denotes

the list of corresponding variables, and

F f
0 =

∫
Bs

Ψs(F0, ~ρ0) da+

∫
Ba

Ψa(F0, ~ρ0) da+

∫
Σ

ψ(e0, ~Γ0) ds, (3.12)

with Ψa,s being the Helmholtz free energy density of the respective phases and ψ

being the excess free energy density of the interface.

Now we consider the following set of virtual changes of the system:

{χ(X, ε), Σε, ~ρ(X, ε), ~ρv(X, ε), ~Γ(X, ε)} (3.13)
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The one-parameter families χ(X, ε) and Σε represent the perturbation caused by

deformation and phase transition, respectively. The rest of the set describe the per-

turbation caused by condensation and/or evaporation. The one-parameter family of

curve Σε divides B into Bsε and Baε . The points in Bsε are in crystalline phase and the

points in Baε are in amorphous phase.

The perturbation of the system satisfies the following conditions:

χ(X, ε) = χ0(X) for X ∈ ∂B

χ(X, 0) = χ0(X) for X ∈ B

~ρ(X, 0) = ~ρ0(X) for X ∈ B

~Γ(X, 0) = ~Γ0(X) for X ∈ Σ

~ρv(X, 0) = ~ρv0(X) for X ∈ V

Σ0 = Σ.

(3.14)

Note that since we allow the mass density to change, we shall impose an additional

constraint on the change of the system, i.e., the total mass should be conserved for

each component provided that there is no chemical reaction.

The total free energy of the system, at each virtual ‘time’, is given by

Fε = F f
ε +

∫
V

Ψv(~ρv) dv (3.15)

where

F f
ε =

∫
Baε

Ψa(F, ~ρ(X, ε)) da+

∫
Bsε

Ψs(F, ~ρ(X, ε)) da+

∫
Σε

ψ(e, ~Γ(X, ε)) ds. (3.16)

and

F = gradχ(X, ε), e =
∂χ(X, ε)

∂s
. (3.17)

The total mass of the i-th component is

Miε =

∫
Baε∪Bsε

ρi(X, ε) da+

∫
Σε

Γi(X, ε) ds+

∫
V
ρvi (X, ε) dv. (3.18)
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The minimizing principle should now be interpreted as

F0 ≤ Fε for each ε, (3.19)

under the constraint that

Miε = Mi0 , (3.20)

where Mi0 are constants for all i.

By the method of Lagrange multipliers, each minimizer of the constrained prob-

lem:

minimize Fε

subject to Miε = Mi0

(3.21)

for all i = 1, · · · , N with Mi0 being constants, is necessarily a stationary point of the

following functional

Fε − λiMiε (3.22)

without constraint, where λi ∈ R, i = 1, · · · , N are the Lagrange multipliers.

Therefore, we have (
dFε
dε
− λi

dMiε

dε

)∣∣∣∣∣
ε=0

= 0. (3.23)

Substituting (3.15), (3.16) and (3.18) into the preceding equation, we compute,

by using the transport identities (2.24) and (2.26) to obtain

dFε
dε

= ∫
Bsε

Ss :
∂F

∂ε
da+

∫
Bsε
µsi
∂ρi
∂ε

da+

∫
Baε

Sa :
∂F

∂ε
da+

∫
Baε
µai
∂ρi
∂ε

da+∫
V
µvi
∂ρvi
∂ε

dv −
∫

Σε

JΨKV ds+

∫
Σε

σ · e̊ + µΣ
i Γ̊i − ψκV ds. (3.24)

In the equation above, we have used the relations (2.45) and (2.46) for each phases,

as well as

∂Ψv

∂ρvi
= µvi . (3.25)
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Similarly, by using the transport identities, we have

dMiε

dε
=

∫
Bsε∪Baε

∂ρi
∂ε

da−
∫

Σε

JρiKV ds+

∫
V

∂ρvi
∂ε

dv +

∫
Σε

Γ̊i − ΓiκV ds (3.26)

With (3.24) and (3.26), (3.23) can be recast as(∫
Bsε

(µsi − λi)
∂ρi
∂ε
da+

∫
Baε

(µai − λi)
∂ρi
∂ε
da

+

∫
V
(µvi − λi)

∂ρvi
∂ε

dv +

∫
Σε

(µΣ
i − λi)̊Γids+

∫
Bsε

Ss :
∂F

∂ε
da+

∫
Baε

Sa :
∂F

∂ε
da

+

∫
Σε

σ · e̊ ds−
∫

Σε

JΨ− λiρiKV ds−
∫

Σε

(ψ − λiΓi)κV ds

)∣∣∣∣∣
ε=0

= 0. (3.27)

Note that equation (3.27) is valid for any virtual change satisfying (3.14). We

first consider the virtual change where

χ(X, ε) = χ0(X), Σε = Σ (3.28)

for all ε, i.e. only virtual condensation and evaporation take place. In this case, the

normal time-derivative Γ̊i reduces to standard partial derivative with respective to

the virtual time ε, and only the first four terms of the sum in parentheses in (3.27)

remain. Thus we have(∫
Bsε

(µsi − λi)
∂ρi
∂ε

da+

∫
Baε

(µai − λi)
∂ρi
∂ε

da

+

∫
V
(µvi − λi)

∂ρvi
∂ε

dv +

∫
Σε

(µΣ
i − λi)

∂Γi
∂ε

ds

)∣∣∣∣∣
ε=0

= 0 (3.29)

By the arbitrariness of the variations in ρi, ρ
v
i and Γi, we observe that

µsi |ε=0 = µai |ε=0 = µvi |ε=0 = µΣ
i

∣∣
ε=0

= λi (3.30)

for all i throughout the film and the vapor.

Substituting (3.30) into (3.27), we have(∫
Bsε

Ss :
∂F

∂ε
da+

∫
Baε

Sa :
∂F

∂ε
da

+

∫
Σε

σ · e̊ ds−
∫

Σε

JΨ− µΣ
i ρiKV ds−

∫
Σε

(ψ − µΣ
i Γi)κV ds

)∣∣∣∣∣
ε=0

= 0. (3.31)
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By integration by parts with boundary condition (3.14)1 and the divergence theorem,

the preceding equation can be rewritten as(
−
∫
Bsε

divSs · χ̇ da−
∫
Baε

divSa · χ̇ da−
∫

Σε

JSm · χ̇K ds

+

∫
Σε

σ · e̊ ds−
∫

Σε

JΨ− µΣ
i ρiKV ds−

∫
Σε

(ψ − µΣ
i Γi)κV ds

)∣∣∣∣∣
ε=0

= 0, (3.32)

where χ̇ denote the partial derivative with respect to the virtual time ε.

Consider a subclass of virtual changes where only virtual deformation can occur,

i.e. V = 0. In this case, the normal time-derivative e̊ reduces to the ordinary time

derivative and the compatibility condition (2.20) dictates that Jχ̇K = 0. By the fact

that Σ is closed, we have

−
∫
Bs

divSs · v da−
∫
Ba

divSa · v da−
∫

Σ

(
JSKm +

∂σ

∂s

)
· v ds = 0, (3.33)

where

v =
∂χ

∂ε
(X, ε)

∣∣∣∣
ε=0

(3.34)

Since v can be arbitrarily assigned, we have

divS = 0 (3.35)

in both of the bulk phases Bs and Ba, and

JSKm +
∂σ

∂s
= 0 (3.36)

on the interface Σ.

Substituting (3.35) into (3.32), we have, at ε = 0

−
∫

Σ

JSm · vK ds+

∫
Σ

σ · e̊ ds−
∫

Σ

JΨ− µΣ
i ρiKV ds−

∫
Σ

(ψ− µΣ
i Γi)κV ds = 0. (3.37)

Note that by the commutator relation [8, equation (14.15)], for any scalar, vector or

tensor field ϕ, one has

∂ϕ̊

∂s
=

˚(
∂ϕ

∂s

)
− κV ∂ϕ

∂s
. (3.38)
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Therefore by replacing ϕ with χ, we have

e̊ =
∂χ̊

∂s
+ eκV. (3.39)

Then by the fact that Σ is closed, we have, through integration by parts∫
Σ

σ · e̊ ds = −
∫

Σ

∂σ

∂s
· χ̊ ds+

∫
Σ

σ · eκV ds. (3.40)

By (2.20), (2.23), (3.36) and the relation

Jf1f2K = Jf1K〈〈f2〉〉+ 〈〈f1〉〉Jf2K, (3.41)

where f1 and f2 are any scalar, vector or tensor field that is smooth up to the interface,

we calculate

−JSm · vK− ∂σ

∂s
· χ̊ = −〈〈Sm〉〉 · JvK− ∂σ

∂s
· 〈〈Fm〉〉V = JSm · FmKV. (3.42)

Eventually, we have

−
∫

Σ

(
JΨ− Sm · Fm− µΣ

i ρiK + (ψ − σ · e− µΣ
i Γi)κ

)
V ds = 0. (3.43)

By invoking the thermodynamical relation (2.50) and (3.30) as well as the arbitrari-

ness of V , we conclude that

Jω − Sm · FmK = 0 (3.44)

on the interface Σ where

ω = Ψ− µiρi (3.45)

is the grand canonical potential in the reference configuration.

Consider the special case where the Cauchy stress is spherical, i.e. T = −p1.

Equation (3.44) reduces to

Jω + JpK = JJ(ω̂ + p)K = 0, (3.46)
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where J = det F and ω̂ denotes the grand canonical potential in the current config-

uration. By the fact that ω̂ = −p, equation (3.44) does not deliver new information

in this case. The set of equilibrium conditions are given by (3.9), (3.30), and (3.36).

Let m̂ denote the unit normal of the interface in the current configuration that

points to the amorphous phase. Note that m and m̂ are related through

m̂ =
F±

−>
m

‖F±−>m‖
. (3.47)

Together with the definition of the first Piola-Kirchhoff stress (2.12) and the relation

[12, (8.14)]

j = J±‖F±−>m‖, (3.48)

we have

JSKm +
∂σ

∂s
= j

(
−JpKm̂ +

∂σ

∂ŝ

)
, (3.49)

where ŝ is the arc length in the current configuration. Therefore (3.36) can be recast

as

−JpKm̂ +
∂σ

∂ŝ
= 0 (3.50)

If we assume that the surface tension σ is constant, then by the Frenet relation, we

have

−JpK + σκ = 0. (3.51)

If the interface is a circle, then (3.51) reduces to the two-dimensional version of the

classical Young-Laplace equation

−JpK +
σ

r
= 0, (3.52)

where r is the radius.
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Chapter 4 Driving Force for Spherulitic Growth

This chapter will be devoted to the derivation of the thermodynamic driving force

for spherulitic crystallization.

Continuum theories of phase transitions in solids have been studied extensively in

the past few decades. Abeyaratne and Knowles [7] investigated the surface of strain

discontinuity in a continuum media and no interfacial structure was considered. The

driving traction was identified to be the quantity conjugate to the normal velocity

and the product of the two gave the entropy production on the interface. Gurtin

and Struthers [11], Gurtin [9, 10], Fried and Gurtin [8] studied phase interfaces of

different kinds, including solid-vapor interface with adatom density; massless solid-

solid interface, with the notion of configurational force balance. Jabbour, Man and

Paroni [1] considered a special case where the phase transition was induced by solvent

vapor. The proposed driving force had explicit dependence on the chemical potential

of the vapor and delivered a constant growth rate of the crystalline phase.

In what follows, we will make the same assumptions as in the last chapter on the

system under consideration. Specifically, we consider a thin-film, modeled as a planar

object, which at all times consists of N components and of two phases, namely the

crystalline phase and the amorphous phase. The region occupied by the crystalline

phase is assumed to be bounded and simply connected while that of the amorphous

phase can be either bounded or unbounded. The film is placed in a chamber filled with

vapor of the same components and each of the components can undergo evaporation

and condensation. The vapor is modeled as a mixture of ideal gases. It is assumed

that there is no diffusion of any species occurring in the process and the entire system

is at all times isothermal at absolute temperature Tb. Moreover, configurational forces

will not be considered in this discussion.
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We will proceed by writing down the equations of balance of mass, balance of

linear and angular momentum, the first two laws of thermodynamics and eventually

the imbalance of free energy, which will deliver the dissipation inequality upon lo-

calization. The driving force will be identified as the term that is conjugate to the

normal velocity in the dissipation inequality.

Note that by the compatibility condition (2.20), the velocity field of the thin film

generally suffers a jump discontinuity across the interface. So before diving into the

derivation of the driving force, we first introduce the notion of the interface velocity

and the Lagrangian description of the interface [24].

1 Interface velocity

Let B be the reference configuration of the film and Σ(t) ⊂ B be the one-parameter

family of smooth closed simple curves that represent the phase interface at each time

t. The curves Σ(t) separates B into two parts, Bst and Bat . For each t, Bst represents the

region in the crystalline phase in the reference configuration and Bat the amorphous

phase. We use the same convention as described in the paragraph containing equation

(2.15) for t, m and κ which denotes the unit tangent, unit normal and curvature of

Σ(t), respectively.

Let χ : B × [0, d]→ E be the motion of the film in the time interval [0, d], where

E is the two-dimensional Euclidean space. We assume that the motion χ satisfies the

following conditions:

• χ is continuous on B × [0, d],

• χ is smooth in Bst , (i.e. the closure of Bst ), and Bat ,

• χ satisfies the compatibility condition (2.20).

We further assume that for different instants t1 and t2, Σ(t1) ∩ Σ(t2) = ∅, i.e.,

the interface sweeps through different material points of the film as it evolves. Fix
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a point P0 on Σ(0) and take it as the starting point for measuring arc length. If

X̂(s) is the arc-length parametrization of the initial curve Σ(0), then a generic point

X̂(s0) in Σ(0) is specified by a number s0, which is its distance from P0 as measured

along Σ(0). The parametrization of the normal trajectory Ns0 through X̂(s0) is the

solution of the initial value problem:

dX(t)

dt
= Vm, X(0) = X̂(s0); (4.1)

see (2.17). We can use the same name s0 to specify the points in Σ(t). Indeed we

can plot the normal trajectory Ns0 that starts from a given point s0 in Σ(0) and use

the same name “s0” for the point in Σ(t) where Ns0 meets Σ(t); see Figure 4.1.

Σ(0)

P0
s0

s0

Σ(t)

Ns0

Bst
Bat

Figure 4.1: The initial curve Σ(0) serving as a “reference”

Therefore we will use the name “s0” to label the particles of Σ(t). The location

of the particle labeled by s0 at some time t is none other than the point in Σ(t) with

the same label.

Recall the normal time derivative of the motion in section 2. If X(t) in (4.1) is a

parametrization of the normal trajectory Ns0 , then χ̊ in (2.23) gives the velocity in

physical space of the interfacial particle labeled by s0. Hence we will call the quantity

χ̊ the interface velocity.
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What we describe above can be taken as a Lagrangian description of the evolution

of the interface: Σ(0) is the “reference configuration” of the interface in the reference

configuration of the body and χ̊ is the “material velocity” of the particle named s0.

Remark 3. It should be noted that it is not our intention to use Σ(0) as the reference

for the constitutive relation of the interface which we will discuss later in this chapter.

It is solely for the introduction of the notion of interface velocity.

2 Balance of mass

For the i-th component, let ρi, Γi, Fi and fi be the bulk mass density, the excess

mass density on the interface, the molecule flux from the vapor into the bulk and into

the interface, respectively, measured per unit reference area or length. Thus Fi > 0,

fi > 0 (Fi < 0, fi < 0) during condensation (evaporation). Let R be a fixed region in

B, and S(t) = R∩Σ(t). We let the regionR be such that the tangential component of

the velocity of the endpoints of S(t) is 0, i.e. W = 0 in (2.24), but otherwise arbitrary.

We make the above choice because we find the tangential component W irrelevant to

our discussion when configurational forces are not considered. For simplicity, we will

drop the argument and write S for the part of the interface that lies in R; see Figure

4.2.

The balance of mass requires that, for each component,

d

dt

(∫
R
ρi da+

∫
S

Γi ds

)
=

∫
R
Fi da+

∫
S
fi ds. (4.2)

By applying (2.24) with W = 0 and (2.26), (4.2) becomes∫
R
ρ̇i da−

∫
S
JρiKV ds+

∫
S
(̊Γi − ΓiκV ) ds =

∫
R
Fi da+

∫
S
fi ds, (4.3)

where the overhead dot represents the partial derivative with respect to time t.
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∂R

Bst

Xa Bat

Xb

Σ(t)

S

Vm

m∂R

Figure 4.2: A sketch of the region R

We first consider the case where R lies entirely in Bst or Bat , i.e. R ∩ Σ = ∅. In

this case, (4.3) reduces to ∫
R

(ρ̇i −Fi) da = 0. (4.4)

By the arbitrariness of R, we conclude that

ρ̇i = Fi (4.5)

in both of the crystalline phase Bst and the amorphous phase Bat .

Next [13] we take the limit of (4.3) by shrinking ∂R down to S in such a way that

the area of R tends to 0 while the length of S remains unchanged. The area integrals

will vanish in such a process, which leads to

−
∫
S
JρiKV ds+

∫
S
(̊Γi − ΓiκV ) ds =

∫
S
fi ds (4.6)

and therefore,

Γ̊i − ΓiκV − JρiKV = fi (4.7)

on the interface Σ(t) for each component.
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Let

ρ =
N∑
i=1

ρi, Γ =
N∑
i=1

Γi, F =
N∑
i=1

Fi, f =
N∑
i=1

fi (4.8)

denote the total mass density in the bulk, the total excess density on the interface,

the net mass flux in the bulk, the net mass flux on the interface, respectively, and

sum over all components in (4.5) as well as in (4.7), we then have the mass balance

relation

ρ̇ = F (4.9)

in both Bst and Bat and

Γ̊− ΓκV − JρKV = f (4.10)

on the interface Σ(t).

3 Balance of linear and angular momentum

Balance of linear momentum

We endowed the interface with non-zero excess mass density; therefore the interface

carries momentum with it. By our notion of interface velocity introduced in section

1, the linear momentum associated with the interface is then∫
Σ

Γχ̊ ds.

In discussing the momentum balance and the first law of thermodynamics, we

shall consider the following force system:

S first Piola-Kirchoff stress

σ interfacial stress

B body force in the bulk phases

b body force on the interface.

(4.11)

The first Piola-Kirchhoff stress S is defined in (2.12) and the interfacial stress σ

represents the traction exerted on S by the reset of the interface; see Fig 2.3 and the
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discussion that follows equation (2.31). As opposed to contact forces such as S and

σ, the body forces B and b represent forces that exerted on the interior points of

a body by the environment. Specifically, B and b denote the force exerted on the

points in the bulk phases Bst ∪Bat and Σ, measured per unit area and per unit length,

respectively. We will will regard B and b as assignable1.

Let ui denotes the velocity of the molecules of i-th component that are condensing

or evaporating. Then

ui =


vv during condensation

χ̊ during evaporation from interface

χ̇ during evaporation from bulk phases

, (4.12)

where vv is the velocity of the vapor flow. The balance of linear momentum requires

that

d

dt

(∫
R
ρχ̇ da+

∫
S

Γχ̊ ds

)
=∫

∂R
Sm∂R ds+

∫
∂S

σ +

∫
R
Fiui da+

∫
S
fiui ds+

∫
R

B da+

∫
S

b ds, (4.13)

where m∂R is the outward unit normal of ∂R. In the above equation∫
∂S

σ = σ(Xb, t)− σ(Xa, t)

where Xa and Xb are the endpoints of S; see Figure 4.2.

By applying the transport identities (2.24), (2.26), the divergence theorem with

the presence of a discontinuity as well as invoking the mass balance relations (4.9) on

(4.13), we obtain∫
R
Fχ̇ + ρχ̈ da−

∫
S
Jρχ̇KV ds+

∫
S

Γ̊χ̊− Γχ̊κV ds =∫
R

divS da+

∫
S
JSKm ds+

∫
S

∂σ

∂s
ds+∫

R
Fiui da+

∫
S
fiui ds+

∫
R

B da+

∫
S

b ds. (4.14)

1More discussion on the presence of body forces can be found in [6] and [25, Chapter 4]
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In the case where R lies entirely in the bulk phases, i.e. R ∩ Σ = ∅, (4.14) reduces

to ∫
R

(Fχ̇ + ρχ̈− divS−Fiui −B) da = 0 (4.15)

which leads to

ρχ̈ = divS +
N∑
i=1

Fi(ui − χ̇) + B (4.16)

upon localization.

Then by shrinking ∂R down to S while keeping the length of S unchanged, one

can get the balance of linear momentum on the interface, i.e.

Γ̊χ̊− Γχ̊κV = Jρχ̇KV + JSKm +
∂σ

∂s
+ uifi + b. (4.17)

Balance of angular momentum

Balance of angular momentum requires that

d

dt

(∫
R
χ× ρχ̇ da+

∫
S
χ× Γχ̊ ds

)
=∫

∂R
χ× Sm∂R ds+

∫
∂S

χ× σ +

∫
R
χ×Fiui da+

∫
S
χ× fiui ds+∫

R
χ×B da+

∫
S
χ× b ds. (4.18)

If we choose an orthonormal basis {e1, e2}, then X = Xiei, χ = χiei, S = Sijei⊗ej

and m = miei, where Xi, χi, Sij and mi are scalars. By introducing the alternating

symbol εijk which is defined by

εijk =


1, if {i, j, k} is an even permutation of {1, 2, 3}

−1, if {i, j, k} is an odd permutation of {1, 2, 3}

0, if an index is repeated

, (4.19)

then for any vector a = aiei and b = biei, we let the cross product of two vectors a

and b be

a× b = ε3jkajbk = a1b2 − a2b1.
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Together with the divergence theorem, we have∫
∂R

χ× Sm ds =

∫
∂R
χjSklmlε3jk ds

=

∫
R

∂(Sklχj)

∂Xl

ε3jk da+

∫
S
χ× JSKm ds

=

∫
R
ε3jk

∂Skl
∂Xl

χj da+

∫
R

ε3jkSkl
∂χj
∂Xl

da+

∫
S
χ× JSKm ds

=

∫
R
χ× divS da+

∫
R
ε3jkSkl

∂χj
∂Xl

da+

∫
S
χ× JSKm ds.

(4.20)

Therefore by invoking the transport identities and the balance of mass relation

(4.9), (4.18) can be rewritten as

∫
R
χ×Fχ̇ + χ× ρχ̈ da−

∫
S
χ× Jρχ̇KV ds+

∫
S
χ× Γ̊χ̊− χ× Γχ̊κV ds =∫

R
χ× divS + εijkSkl

∂χj
∂Xl

ei da+

∫
S

∂χ

∂s
× σ + χ× JSKm + χ× ∂σ

∂s
ds+∫

R
χ×Fiui da+

∫
S
χ× fiui ds+

∫
R
χ×B da+

∫
S
χ× b ds. (4.21)

With the help of balance of linear momentum (4.16), we conclude that away from the

interface,

ε3jkSkl
∂χj
∂Xl

= 0,

which implies

SF> = FS> (4.22)

in the bulk phases where F> denotes the transpose of F. By shrinking ∂R to S and

invoking the balance of linear momentum on the interface (4.17), we obtain

∂χ

∂s
× σ = 0 (4.23)

on the phase interface. Note that by (2.39), the interfacial stress vector is parallel to

phase interface in the current configuration.
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4 The first two laws of thermodynamics and the free energy imbalance

The first two laws of thermodynamics

Let E and ε be the internal energy density in the bulk and on the interface, respec-

tively. By the thermodynamical analysis in [1] and the first law of thermodynamics,

we have

d

dt

(∫
R

(
E +

1

2
ρ|χ̇|2

)
da+

∫
S

(
ε+

1

2
Γ|χ̊|2

)
ds

)
=∫

∂R
Sm∂R · χ̇ ds+

∫
∂S

σ · χ̊ +
N∑
i=1

(∫
R

pvi
ρvi
Fi da+

∫
S

pvi
ρvi

fi ds

)
︸ ︷︷ ︸

I1

+

∫
R

B · χ̇ da+

∫
S

b · χ̊ ds︸ ︷︷ ︸
I2

+

∫
R
Evi Fi +

1

2
Fi|ui|2 da+

∫
S
Evi fi +

1

2
fi|ui|2 ds︸ ︷︷ ︸

II

+

∫
R
Rda+

∫
S
r ds︸ ︷︷ ︸

III

, (4.24)

where pvi , ρ
v
i and Evi denote the partial pressure, mass density, and internal energy

density of the i-th component in the vapor, respectively. The term I1 + I2 represents

the power expended on the thin film. As noted in the paragraph above (4.11), the

second term in I represents the power of the interfacial stress σ. The energy flow

from the vapor to the film is expressed by term II and the term III describes the

heat supply to the film where R and r denote the heat supply densities into the bulk

phases and the interface, respectively.

The second law asserts that the rate at which the entropy is increasing is not

smaller than the entropy inflow. Therefore if we let η denote the entropy density in

the bulk and ς denote the excess entropy density on the interface, then we have

d

dt

(∫
R
η da+

∫
S
ς ds

)
≥
∫
R

R

Tb
da+

∫
S

r

Tb
ds+

∫
R
ηviFi da+

∫
S
ηvi fi ds, (4.25)
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where ηvi is the entropy density of the vapor of the i-th component.

Free energy imbalance and constitutive relations

By combining (4.24), (4.25), we have the free energy inequality

d

dt

(∫
R

Ψ +
1

2
ρ|χ̇|2 da+

∫
S
ψ +

1

2
Γ|χ̊|2 ds

)
≤∫

∂R
Sm∂R · χ̇ ds+

∫
∂S

σ · χ̊ +

∫
R

B · χ̇ da+

∫
S

b · χ̊ ds+∫
R

1

2
|ui|2Fi da+

∫
S

1

2
|ui|2fi ds+

∫
R
µviFi da+

∫
S
µvi fi ds, (4.26)

where Ψ = E −Tbη and ψ = ε−Tbς are the Helmholtz free energy density in the bulk

phases and the excess free energy density on the interface, respectively, and

µvi = Evi − ηvi Tb +
pvi
ρvi

(4.27)

is the chemical potential of the i-th component in the vapor.

In view of the mass balance relation (4.5), the balance of linear momentum rela-

tions (4.16), (4.17), we obtain the dissipation inequalities

Ψ̇− S : Ḟ− µviFi −
∑
i

1

2
|χ̇− ui|2Fi ≤ 0 (4.28)

in both the crystalline phase and the amorphous phase and

− JΨKV − 1

2
Jρ|χ̇|2KV + ψ̊ − ψκV +

◦
1

2
Γ|χ̊|2 − 1

2
Γ|χ̊|2κV−

JSm · χ̇K− ∂σ

∂s
· χ̊− σ · ∂χ̊

∂s
− 1

2
|ui|2fi − µvi fi − b · χ̊ ≤ 0 (4.29)

on the interface upon localization of the free energy imbalance (4.26).

Next, we simplify the inequality (4.29) to convert it to a more informative form.

By the relation (2.23),

−JSm · χ̇K− ∂σ

∂s
· χ̊

= −JSmK · (χ̊− 〈〈Fm〉〉V )− 〈〈Sm〉〉 · Jχ̇K− ∂σ

∂s
· χ̊ (4.30)

= JSm · FmKV −

(
Γ̊χ̊−

N∑
i=1

fi(ui − χ̊)− 〈〈ρ〉〉Jχ̇KV + JρK〈〈Fm〉〉V 2 − b

)
· χ̊.
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By (2.20), (3.41) as well as the relation

〈〈f1f2〉〉 = 〈〈f1〉〉〈〈f2〉〉+
1

4
Jf1KJf2K

for f1, f2 being any scalar, vector or tensor fields, we have

−1

2
Jρ|χ̇|2KV + 〈〈ρ〉〉Jχ̇K · χ̊V − JρK〈〈Fm〉〉 · χ̊V 2

= −1

2
〈〈ρ〉〉JFm · FmKV 3 − 1

2
JρK〈〈χ̇ · χ̇〉〉V − JρK〈〈Fm〉〉 · 〈〈χ̇〉〉V 2 − JρK〈〈Fm〉〉 · 〈〈Fm〉〉V 3

= −1

2
JρKχ̊ · χ̊V − 1

2
JρFm · FmKV 3. (4.31)

By invoking the mass balance on the interface (4.7), we have

−Γ̊χ̊ · χ̊− 1

2
JρKχ̊ · χ̊V +

◦
1

2
Γ|χ̊|2 − 1

2
Γ|χ̊|2κV =

1

2
f χ̊ · χ̊ (4.32)

and

1

2
f χ̊ · χ̊ +

N∑
i=1

fi(ui − χ̊) · χ̊− 1

2
|ui|2fi = −1

2

N∑
i=1

|ui − χ̊|2fi. (4.33)

The last term on the right hand side of (4.31) can be recast as

1

2
JρFm · FmKV 3 =

1

2
Jρ|χ̊− χ̇|2KV, (4.34)

which represent the jump in the relative kinetic energy [10].

With (4.30)–(4.34), (4.29) can be rewritten as

−
(

JΨ +
1

2
ρ|χ̊− χ̇|2K− JSm · FmK

)
V − 1

2

N∑
i=1

|ui − χ̊|2fi

+ ψ̊ − ψκV − σ · ∂χ̊
∂s
− µvi fi ≤ 0. (4.35)

Constitutive relations

We will take as basic hypothesis the requirement that all constitutive processes be

consistent with the dissipation inequalities [12]. A constitutive process P of the

isothermal thermodynamic system in question is defined by
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- χ : B× [0, d]→ E, which satisfies the three conditions laid out at the beginning

of Section 1 and specifies also the evolution of the interface Σ(t), t ∈ [0, d],

- ρi(X, t), where X ∈ B \ Σ(t) for each t,

- Γi(X, t), where X ∈ Σ(t) for each t,

- the fields B, b, Fi, fi, and vv,

which for each time t ∈ [0, d] satisfy the balance equations (4.5), (4.7), (4.16), and

(4.17). Besides B and b, we also assume that Fi, fi and vv are assignable.

We are focusing on spherulitic growth under isothermal condition at constant ab-

solute temperature Tb. Therefore we will drop the explicit dependence on temperature

in all the constitutive relations. We shall consider the relation

Ψ = Ψ(F, ~ρ) (4.36)

that gives the free energy density in the reference configuration in both of the bulk

phases where F = gradχ and ~ρ = 〈ρ1, · · · , ρN〉 denotes the list of mass densities.

By invoking the mass balance (4.5) and the constitutive relation (2.45), equation

(4.28) reduces to

(µi − µvi )Fi −
N∑
i=1

1

2
|χ̇− ui|2Fi ≤ 0. (4.37)

The reduced dissipation inequality (4.37) will put restrictions on the constitutive

processes P that the system may undergo.

Note that when the i-th component is evaporating, i.e. Fi < 0 and ui = χ̇ by

(4.12), we have

−1

2
|χ̇− ui|2Fi = 0 (4.38)

for each admissible process P. When the component is condensing, i.e., Fi > 0 and

ui = vv, the same term will be non-positive, i.e.,

−1

2
|χ̇− ui|2Fi ≤ 0. (4.39)
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Hence a sufficient condition for the bulk dissipation inequality (4.37) to be observed

is that the inequality

(µi − µvi )Fi ≤ 0 (4.40)

holds for all admissible processes.

We proceed to prove that condition (4.40) is also necessary [26]. Indeed, suppose

there is an admissible process P for which

(µi(Xo, to)− µvi (Xo, to))Fi(Xo, to) > 0 (4.41)

for some Xo ∈ B \ Σ(t) and to ∈ [0, d]. Let us construct a new admissible process

P̃ as follows: Replace the field vv (that pertains to the process P) by the constant

velocity field

ṽv = vv(Xo, to). (4.42)

Let ũi be the modified ui with vv replaced by ṽv. Let

B̃ = B + Fiui −Fiũi, (4.43)

b̃ = b + fiui − fiũi. (4.44)

We make no change on Fi and fi. Then the motion χ and the fields ρi, Γi that pertain

to process P will satisfy the balance equations for the process P̃, i.e., (4.5), (4.7), and

ρχ̈ = divS +
N∑
i

Fi(ũi − χ̇) + B̃, (4.45)

Γ̊χ̊− Γχ̊κV = Jρχ̇KV + JSKm +
∂σ

∂s
+ ũifi + b̃. (4.46)

Note that except for the assignable B,b,vv, and ui, which is none other than vv as far

as condensing solvent molecules are concerned, all fields of the process P̃ remain the

same as their respective counterpart that pertains to P. For the process P̃, however,

we have

(µi(Xo, to)− µvi (Xo, to))Fi(Xo, to) > 0, (4.47)

1

2
|χ̇(Xo, to)− ũi(Xo, to)|2Fi(Xo, to) = 0. (4.48)
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Thus the constitutive process P̃ violates the bulk dissipation inequality. Hence a

necessary condition for the bulk dissipation inequality to hold is:

(µi − µvi )Fi ≤ 0 (4.49)

for all constitutive processes P.

Therefore a sufficient and necessary condition for (4.37) to hold is that

(µi − µvi )Fi ≤ 0 (4.50)

In the product (µi−µvi )Fi (no sum), (µi−µvi ) is the thermodynamic driving force

for the evaporation or condensation conjugate to the flux Fi. If we further assume

that the molecule flux of the i-th component Fi is a smooth function of µi − µvi and

other parameters which are suppressed for simplicity, i.e.

Fi = F̂i(µi − µvi ), (4.51)

such that F̂i(0) = 0, then linearization of (4.51) will lead to

Fi = −Ki(µi − µvi ) (no sum), (4.52)

where Ki ≥ 0 when the driving force is small. The preceding constitutive relation

has the same theoretical status as Fourier’s law of heat conduction and Fick’s law of

diffusion. It should be emphasized that (4.52) is a special case of the more general

statement presented in the paragraph that follows equation (4.50). One has to ap-

peal to experimental approaches to single out the constitutive relation for a specific

material.

On the phase interface Σ(t), we shall assume that

ψ = ψΣ(t)(e, ~Γ) (4.53)

which represents the excess free energy per unit length in the reference configuration,

where

e =
∂χ

∂s
, ~Γ = 〈Γ1, · · · ,ΓN〉. (4.54)
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Remark 4. The subscript Σ(t) in (4.53) indicates that the reference of the the argu-

ments of the function is Σ(t) instead of Σ(0), i.e. it is changing with time.

Gathering (2.46), (2.50) and the interfacial mass balance (4.7), we obtain

ψ̊ − ψκV − σ · ∂χ̊
∂s
− µvi fi = σ · e̊ + µΣ

i Γ̊i − ψκV − σ · (̊e− κV e)− µvi fi

= µΣ
i (fi + κV Γi + JρiKV )− (ψ − σ · e)κV − µvi fi

=
(
µΣ
i − µvi

)
fi −

(
ψ − σ · e− µΣ

i Γi
)
κV + µΣ

i JρiKV

=
(
µΣ
i − µvi

)
fi + µΣ

i JρiKV.

Therefore, (4.35) can be rewritten as

−
(

JΨ +
1

2
ρ|χ̊− χ̇|2K− JSm · FmK− µΣ

i JρiK
)
V +(µΣ

i −µvi )fi−
1

2

N∑
i=1

|ui− χ̊|2fi ≤ 0.

(4.55)

In the experiments reported in [2] and [3], the measured values of V for the thin

films studied were less than 3 × 10−5 m/s. By (4.34) the jump in relative kinetic

energy is given by

1

2
Jρ|χ̊− χ̇|2K =

1

2
JρFm · FmKV 2 =

1

2
JρKV 2 + Jρm · EmKV 2, (4.56)

where E is the Lagrangian strain. Hence this term would be very small with the

measured values of V , which is consistent with the fact that motion in both bulk

phases was unnoticed in those experiments. If motion in both bulk phases is negligible,

then so is the jump in relative kinetic energy, which we shall neglect in our further

discussions. In the discussion that follows, we will consider the dissipation inequality

of the form

−
(
JΨK− JSm · FmK− µΣ

i JρiK
)
V + (µΣ

i − µvi )fi −
1

2

N∑
i=1

|ui − χ̊|2fi ≤ 0. (4.57)

By an argument similar to that which we use to prove (4.50) as a necessary and

sufficient condition for the reduced bulk dissipation inequality (4.37) to hold for all
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constitutive processes, it is easy to show that a necessary and sufficient condition for

the reduced interfacial dissipation inequality (4.57) to be observed in all constitutive

processes is that the inequality

−
(
JΨK− JSm · FmK− µΣ

i JρiK
)
V + (µΣ

i − µvi )fi ≤ 0 (4.58)

holds for all constitutive processes.

Let us assume the

−
(
JΨK− JSm · FmK− µΣ

i JρiK
)
V ≤ 0 (4.59)

and

(µΣ
i − µvi )fi ≤ 0 (4.60)

hold and let

f = JΨK− JSm · FmK− µΣ
i JρiK (4.61)

be the driving force of the spherulitic growth. Then we have

fV > 0 if f 6= 0 and V 6= 0,

fi(µ
Σ
i − µvi ) < 0 if fi 6= 0 and µΣ

i − µvi 6= 0.
(4.62)

If we further assume that V and fi are smooth functions for f and µΣ
i − µvi , i.e.

V = V(f), fi = f̂i(µ
Σ
i − µvi ) (no sum), (4.63)

and that V(0) = 0 and fi(0) = 0, then with small driving forces f and µΣ
i − µvi , we

have

V =
f

β
(4.64)

and

fi = −ki(µΣ
i − µvi ) (no sum) (4.65)

by linearization where β = 1/V ′(0) is referred to as the kinetic coefficient.

When the equilibrium conditions (3.30) and (3.44) are satisfied, it is clear that f

will vanish.
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If we consider the special case where the Cauchy stress is hydrostatic, i.e. T =

−pI, then Sm · Fm = −Jp where J = det F. We further assume that the normal

velocity V is small, then by (4.34), the relative kinetic energy is of higher order term

of V and thus ignored. Thus

f = JΨ + Jp− µΣ
i ρiK

= J(µi − µΣ
i )ρiK. (4.66)

One can compare (4.66) with the driving force

f̂ = J(µi − µvi )ρiK (4.67)

derived in [1] where the interface was assumed to be massless.

Other than the obvious mathematical cause of the difference between the two

driving forces, i.e. assumption that the interface is massless or not, one can look at

it in a more physics point of view [26].

In fact, f̂ can be seen as a special case of f when the evaporation/condensation

happens reversibly. Let us consider a simple example to illustrate the difference.

Assume that the amorphous phase of a certain one-component B involatile solid

film can form a solution with molecules of solvent A, while the crystallized phase

rejects all molecules of A. Consider the growth of a spherulite in a film where the

amorphous phase initially carries “dissolved” A at concentration ρ0. Since there is

no diffusion, the molecules of A are rejected into the interface and then evaporate.

Indeed, after an initial buildup, the density of the A will come to a steady state,

i.e. Γ̊A is practically 0. If we assume that the curvature κ is small enough that the

term ΓAκV can be neglected, then by (4.7), we have 0 > −ρ0V ≈ fA which implies

µΣ
A > µvA. Therefore

−µΣ
Aρ0 < −µvAρ0. (4.68)

If we assume all other quantities are the same, then f will deliver a smaller driving

force than f̂
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Chapter 5 Effects of Prestress on Directional Dependence of Growth

Rate

In this chapter, we will derive a formula for the normal velocity V of the phase

interface as a function of the direction of its outward unit normal and get an estimate

on the shape of the spherulite under V to investigate the effect of prestress.

Consider a homogeneous amorphous thin film modeled as a two dimensional planar

object. It is kept at a fixed temperature Tb and is subjected to boundary traction so

that the film initially carries a homogeneous Cauchy stress Ta. We will assume that

the amorphous film is isotropic1 and linearly elastic.

The following assumptions are crucial to our discussion:

• the amorphous film possesses a stress-free natural configuration;

• the natural configuration will be taken as reference, denoted by B, for each

material point in the thin-film at all time (before and after crystallization);

• after spherulitic crystallization of the material point, the chosen reference con-

figuration carries an initial stress;

• the amorphous phase can be taken at all time as in a state of a fixed homoge-

neous Cauchy stress Ta;

• the crystalline phase is also isotropic.

In the experiments, the ternary thin film is composed of chemical components,

say A,B and S, among which A, B can be taken as involatile and S be of minuscule

amount. Since no diffusion of any species is considered, the density of A and B are

1We take the definition given in [25], i.e. a material is isotropic if there is a reference placement

κ such that the peer group Gκ ⊃ O(2). If we let S = Ŝ(E), then QŜ(E)Q> = Ŝ(QEQ>) for any
Q ∈ O(2)
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constants in each phase, as is suggested by (4.5) with Fi = 0 for i = A,B. Note that

since components A and B are involatile and non-diffusive, there is no mechanism in

our model that may cause the density to change in the reference configuration before

and after the phase transition, i.e. JρiK = 0 for i = A,B. Furthermore, since the

amount of component S is very small, for the sake of simplicity, we will also assume

that JρSK = 0. Therefore by (4.61) and (4.64), we have

βV = JΨ− Sm · FmK, (5.1)

where β > 0 is referred to as the kinetic coefficient. In the discussion that follows, we

will also ignore the effect of inertia which is usually a reasonable assumption to make

when dealing with phase-transition phenomena in deformable solids [12, footnote

116].

1 Stress tensors and Helmholtz free energy

In this section, we will discuss the stress tensors and derive the expression for the

Helmholtz free energy for later use. The following discussion is based on a private

communication [26].

Consider a material point with 3 components A,B and S at the reference config-

uration. The discussion that follows can be extended to any number of components

easily. Henceforth we shall use a superposed ? to specify the quantities pertaining

to the material point at the reference configuration. Suppose that the constitu-

tive equations of a material point depend also on a list of microstructural variables

~ξ = (
?

ξ1, · · · ,
?

ξk).

With the assumption that the component S be of very small amount, the effect

of the change in density of S can be ignored and thus, the film can be treated as a

closed system, i.e. ρi =
?
ρi for i = A,B, S.
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Let E = 1
2

(
H + H>

)
be the infinitesimal strain tensor where H = F − 1 is the

displacement gradient. The relationship between the infinitesimal strain tensor and

the (finite) Lagrange strain tensor is

E =
1

2
(F>F− 1) =

1

2
(H + H> + H>H) = E + o(‖H‖). (5.2)

For a closed system with fixed temperature, i.e. constant T , if the second Piola-

Kirchhoff stress P( · ;~ξ) is a smooth function of (T,E, ρA, ρB, ρS), We have [27, 28]

P(T,E, ρA, ρB, ρS;~ξ) =
?

T + L(T,0,
?
ρA,

?
ρB,

?
ρS; ~ξ)[E], (5.3)

where
?

T = P(T,0,
?
ρA,

?
ρB,

?
ρS; ~ξ) (5.4)

denotes the initial stress and

L(T,0,
?
ρA,

?
ρB,

?
ρS; ~ξ) = D2P(T,0,

?
ρA,

?
ρB,

?
ρS; ~ξ). (5.5)

In (5.3), the o(‖E‖) terms are dropped. For notational simplicity, we will suppress

the dependence of L on T ,
?
ρi (for i = A,B, S) and ~ξ. Note that with fixed T ,

?
ρi and

~ξ, L is a constant fourth-order tensor with major and minor symmetries.

In what follows we derive, for the amorphous and for the crystalline phase, re-

spectively, an expression that delineates the dependence of the free energy density

on E when all the other independent variables remain fixed. The empirical Harting’s

Law [29] suggests that for many materials the initial stress
?

T should be treated as a

microstructural variable, and that L can be taken as [27, 30]

L[E] = C[E] + D[
?

T,E]. (5.6)

where C is a fourth-order tensor and D is a sixth-order tensor which will vanish when
?

T = 0.

By integrating (2.54) with constant T and ρi, we have

Ψ =
?

Ψ +
?

T : E +
1

2
L[E] : E, (5.7)
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where
?

Ψ is the free energy density pertaining to the reference configuration.

Now for our application, prior to crystallization the reference configuration B is

natural, i.e.
?

Ta = 0. Then by (5.3) and (5.6)

Pa = Ca[Ea]. (5.8)

It follows from (2.12) and (2.13) that

Pa(Ea) = (I−Ha)Ca[Ea] = Sa (5.9)

and

Ta = (1 + trHa)Ca[Ea]
(
I + Ha>) = Sa, (5.10)

i.e. the Cauchy stress, the first and second Piola-Kirchhoff stress coincide up to

o(‖Ha‖) when there is no initial stress. The free energy in the amorphous phase is

then, by letting
?

T = 0 in (5.7)

Ψa =
?

Ψa +
1

2
Ca[Ea] : Ea. (5.11)

After spherulitic crystallization, the material points in the crystalline phase will

carry an initial stress
?

Ts. Then it follows from (5.3) and (5.6) that

Ps(Es) =
?

Ts + Cs[Es] + D[
?

Ts,Es]. (5.12)

By the relation between the first and second Piola-Kirchhoff stress, we have

Ss = FsPs (5.13)

= (I + Hs)(
?

Ts + L[Es])

=
?

Ts + Hs
?

Ts + L[Es].

The free energy density in the crystalline phase is then

Ψs =
?

Ψs +
?

Ts : Es +
1

2
Ls[Es] : Es. (5.14)
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A comparison of (5.7) with the integrated fundamental equation [31, cf. (54.15),

where the case with a natural reference configuration is considered]

Ψ = P : E + ρiµi (5.15)

may raise the question that whether the two formulas are compatible. The answer is

affirmative. In fact by (2.54) and (5.15), we can get, for constant temperature T , the

Gibbs-Duhem equation

E : dP + ρidµi = 0. (5.16)

Since the incremental tensor L is a constant fourth-order tensor,

E : dP = E : d(
?

T + L[E]) = L[E] : dE. (5.17)

By integrating (5.16) from state (T,0,
?
ρA,

?
ρB,

?
ρS;~ξ) to state (T,E,

?
ρA,

?
ρB,

?
ρS;~ξ), we

get

?
ρiµi =

?
ρi
?
µi −

1

2
L[E] : E. (5.18)

Substituting (5.18) into (5.15), we obtain

Ψ =
?
ρi
?
µi +

?

T : E +
1

2
L[E] : E, (5.19)

which agrees with (5.7) with
?

Ψ =
?
ρi
?
µi.

2 Derivation of growth rate

Let σ1 and σ2 be the principal stresses of the prestress tensor Sa = Ta, and let e1

and e2 be orthonormal vectors that agree with the principal stress directions. Let

σ̄ =
1

2
(σ1 + σ2), τ =

1

2
(σ1 − σ2). (5.20)

We assume that τ 6= 0. Under the Cartesian coordinate system defined by the basis

ei (i = 1, 2), the stress Sa is given by

Sa = σ̄I +

 τ 0

0 −τ

 . (5.21)
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By a judicious choice of e1 and e2, we can make τ positive or negative as we please.

By the representation theorem for isotropic linear tensor functions [12, Section

52.4.1] and (5.8), we have

Sa = λa(trEa)I + 2µaEa, (5.22)

where λa and µa are elastic constants that satisfy

µa > 0, λa + µa > 0 (5.23)

and we have used relations (5.9) and (5.8). Moreover, we assume that the initial

infinitesimal rotation

Wa =
1

2

(
Ha −Ha>) = 0. (5.24)

It follows from (5.21) and (5.22) that under the basis ei (i = 1, 2) the strain Ea is

given by

Ea =
σ̄

2(λa + µa)
I +

1

2µa

 τ 0

0 −τ

 . (5.25)

Suppose at some instant a nucleus of spherulitic crystallization is formed and at

time t the spherulite occupies a region Bst in the film. In what follows we consider the

growth of the spherulitic region and adopt the physical assumption that outside Bst ,

the amorphous phase can be taken at all time as in a state of a fixed homogeneous

stress Sa.

Let
?

Ts be the initial stress carried by the the part of the reference configuration

where spherulitic crystallization occurred. As was shown in [30, 32], with the presence

of the initial stress and in two-dimensional case,

D[
?

Ts,Es] = β1(trEs)(tr
?

Ts)I + β2(tr
?

Ts)Es + β3

(
(trEs)

?

Ts + (trEs
?

Ts)I

)
(5.26)

where β1, β2, β3 are material constants. Since we assume that the material point in

the crystallized phase remains isotropic, then
?

Ts = −p0I [33]. By (5.13), the stress
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tensor in the crystalline phase can be written as

Ss = −p0I− p0H
s + λ̃s(trEs)I + 2µ̃sEs, (5.27)

where

λ̃s = λs − 2p0β1 − 2p0β3, (5.28)

µ̃s = µs − p0β2, (5.29)

and λs and µs are the elastic constants of the prestressed crystalline phase.

Since F = I + H, we have

JFK = JHK. (5.30)

Then by (5.24), Ha+
= Ea. The kinematic compatibility condition (2.20) requires

that

Ha+ −Hs− = Ea −Hs− = a⊗m (5.31)

for some vector a. Let

m = (cos θ, sin θ) (5.32)

under the basis ei (i = 1, 2). We choose a new orthonormal basis f1, f2 such that

f1 = m. Under this basis we have

a⊗m =

 a1 0

a2 0

 , (5.33)

and the stress and strain tensor in the amorphous phase under the new basis become

Sa = σ̄I + τ

 cos 2θ − sin 2θ

− sin 2θ − cos 2θ

 , (5.34)

Ea =
σ̄

2(λa + µa)
I +

τ

2µa

 cos 2θ − sin 2θ

− sin 2θ − cos 2θ

 , (5.35)
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respectively. It follows that

Hs− = Ea − a⊗m

=
σ̄

2(λa + µa)
I +

τ

2µa

 cos 2θ − sin 2θ

− sin 2θ − cos 2θ

−
 a1 0

a2 0

 (5.36)

and

Es
−

=
1

2

(
Hs− + (Hs−)>

)
(5.37)

=
σ̄

2(λa + µa)
I +

τ

2µa

 cos 2θ − sin 2θ

− sin 2θ − cos 2θ

−
 a1 a2/2

a2/2 0

 .

Then by (5.27), we have

Ss
−

=

(
λ̃s + µ̃s − p0/2

λa + µa
σ̄ − λ̃sa1 − p0

)
I

+
µ̃s − p0/2

µa
τ

 cos 2θ − sin 2θ

− sin 2θ − cos 2θ

+

 (p0 − 2µ̃s)a1 −µ̃sa2

(p0 − µ̃s)a2 0

 . (5.38)

By neglecting inertia effects, (4.17) reduces to

JSmK +
∂σ

∂s
= 0. (5.39)

When the radius of the spherulite is sufficiently large, the effect of the interfacial

stress σ can be neglected. Thus we have JSmK = 0, i.e. Sa
+
m = Ss

−
m on the

interface. With (5.34) and (5.38), we obtain the equations

λ̃s + µ̃s − p0/2

λa + µa
σ̄ − p0 − λ̃sa1 +

µ̃s − p0/2

µa
τ cos 2θ + (p0 − 2µ̃s)a1 = σ̄ + τ cos 2θ,

(5.40)

− µ̃
s − p0/2

µa
τ sin 2θ + (p0 − µ̃s)a2 = −τ sin 2θ, (5.41)
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from which we get

a1 =
1

p0 − λ̃s − 2µ̃s

(
p0 +

(
1− λ̃s + µ̃s − p0/2

λa + µa

)
σ̄ + τ

(
1− µ̃s − p0/2

µa

)
cos 2θ

)
,

(5.42)

a2 =

(
µ̃s−p0/2

µa
− 1
)
τ sin 2θ

p0 − µ̃s
. (5.43)

It follows that

JSm · FmK = a1(σ̄ + τ cos 2θ)− a2τ sin 2θ. (5.44)

The growth rate relation is given by (5.1) and the Helmholtz free energy densities

for the amorphous phase and the crystalline phase are give by (5.11) and (5.14),

respectively.

We calculate

Sa : Ea =
σ̄2

λa + µa
+
τ 2

µa
(5.45)

and

Ls[Es−] : Es
−

=
λ̃s + µ̃s

(λa + µa)2
σ̄2 − 2(λ̃s + µ̃s)

λa + µa
a1σ̄ (5.46)

+
τ 2µ̃s

(µa)2
− 2µ̃sτ

µa
(a1 cos 2θ − a2 sin 2θ)

+ λ̃sa2
1 + 2µ̃sa2

1 + µ̃sa2
2

and therefore with (5.1) and (5.44)–(5.46),
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βV =
?

Ψa −
?

Ψs (5.47)

+
1

2

(
σ̄2

λa + µa

(
1− λ̃s + µ̃s

λa + µa

)
+
τ 2

µa

(
1− µ̃s

µa

)
+2

λ̃s + µ̃s

λa + µa
σ̄a1 +

2µ̃sτ

µa
(a1 cos 2θ − a2 sin 2θ)

−λ̃sa2
1 − 2µ̃sa2

1 − µ̃sa2
2

)
+

p0σ̄

λa + µa
− p0a1

− (a1(σ̄ + τ cos 2θ)− a2τ sin 2θ) .

From the expressions of a1 and a2 in (5.42), we observe that the growth-rate

formula is in the form

βV = A+B cos 2θ + C cos2 2θ, (5.48)

where A,B,C are all constants. A straightforward calculation shows that

B =
τ

p0 − λ̃s − 2µ̃s

(
1− µ̃s − p0/2

µa

)((
µ̃s + λ̃s

λa + µa
− 1

)
σ̄ − p0+ (5.49)(

p0 + σ̄

(
1− λ̃s + µ̃s − p0/2

λa + µa

)(
µ̃s − µa

µa − µ̃s − p0/2
− p0

p0 − λ̃s − 2µ̃s

)))
and

C =τ 2

(
1− µ̃s − p0/2

µa

)2

(5.50)(
µ̃s − µa

µa − µ̃s − p0/2

(
1

p0 − λ̃s − 2µ̃s
− 1

p0 − µ̃s

)
− λ̃s/2 + µ̃s

(p0 − λ̃s − 2µ̃s)2
+

µ̃s

2(p0 − µ̃s)2

)
.

It is obvious from the explicit expression of B and C that when τ = 0, i.e. the

prestress is spherical, we will recover the constant growth rate feature obtained in [1].

A rotation of the Cartesian coordinate system by π/2 about the normal direction

of the planar film changes θ to θ + π/2 and the growth-rate formula (5.48) is recast

as

βV = A−B cos 2θ + C cos2 2θ. (5.51)
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Hence, without loss of generality, we may restrict our attention to (5.48) with B ≥ 0.

We are primarily interested in situations defined by A > 0, A >> B and A >> |C|.

Examples of polar plots of βV versus θ for growth-rate formula (5.48) are given

in Figure 5.1 and Figure 5.2. For comparison purposes, we include in Figure 5.3 and

Figure 5.4 where B and C are of the same order as A. It should be emphasized that

these polar plots show the dependence of βV on the direction of the unit outward

normal m of the interface.
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Figure 5.1: A=30, B=1.5, C=-0.5
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Figure 5.2: A=30, B=1.0, C=-1.0

3 Implication on the shape of the phase boundary

Let the arc-length map s = s(p, t) be prescribed where s(·, t) is the arc-length for the

curve Σ(t) at time t and p is the parameter. Then

dθ

ds
= κ (5.52)

where θ is defined in (5.32). As was noted in the paragraph containing equation

(2.15), under our choice of t and m, κ < 0 for the curve that is the boundary of a

strictly convex region.
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Figure 5.3: A=30, B=15, C=-5
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Figure 5.4: A=30, B=10, C=-10

The rate of change of curvature following a normal trajectory of the evolving curve

is given by [8]

κ̊ = Vss + κ2V (5.53)

where

Vss = Vθθκ
2 + Vθκθκ. (5.54)

It is clear from (5.53) and (5.54) that κ̊ = 0 when κ = 0. Thus if the initial curve

Σ(0) is the boundary of a convex region, then the region that Σ(t) encloses will be

convex for all t.

Consider the special case where the initial curve Σ(0) is a circle of radius r0; see

Figure 5.5. As was noted in the beginning of section 3, we choose a fixed point on

the initial curve and measure from it the arc-length to the intersection of Σ(0) with

the axes e1 and e2, which we call s1 and s2, respectively. By symmetry, the normal

trajectories starting from s1 and s2 will always stay on the axes; see Ns1 and Ns2

in Figure 5.5. Therefore, at time t, the evolving curve Σ(t) will intersect with the

axis e1 at the point (r0 + t (A + B + C)/β, 0) and with the axis e2 at the point

(0, r0 + t (A − B + C)/β). Note that (A − B − |C|)/β ≤ V ≤ (A + B + |C|)/β.
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The curve will always enclose a convex region and stay between two dashed circles

of radius r0 + t (A + B + |C|)/β and r0 + t (A − B − |C|)/β. One can compare the

predicted shape of a spherulite in Figure 5.5 with the experimental picture in Figure

1.1.

Σ(0)

e1

e2

s1

s2

Ns1

Ns2

r0

Figure 5.5: A sketch of shape estimation (not to scale)
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Chapter 6 Closing Remarks and Future Work

In this dissertation, we have derived the driving force of solvent-vapor induced crys-

tallization with the interface treated as a thermodynamic system of its own right.

We derived the equilibrium condition of a system that consists of two bulk phases,

a phase interface, and the vapor with the same constituents. The approach we took

was slightly different than the usual practice, namely by minimizing the ballistic free

energy and incorporating the interfacial thermodynamic relation (2.50).

We then proceeded to investigating the driving force of the crystallization. In

doing so, we treated the interface as a whole thermodynamical system by endowing

it with excess quantities. The driving force was identified and was compared with

the counterpart proposed in [1].

The last part of the dissertation was focused on the effect of the prestress on the

shape of the crystallized spherulite. We derived a new formula for the normal velocity

and inferred the shape of the spherulite under it. In [1], the stress tensors in both

phases were assumed to be spherical. Under this assumption and with other physically

reasonable assumptions, the growth rate was shown to be constant. The implication

of a constant growth rate is that the shape of the spherulite would approach that of

a disc as time elapses. A comparison between Fig 1.1 and Fig 5.5 might suggest that

the present theory delivers a better prediction.

We introduced the “Lagrange description” of the interface and the particle name

“s0” in section 1. This seems counter-intuitive at first glance since the particle labeled

by “s0” pertains to different material points as time evolves. However the Lagrange

description was originally used in fluid mechanics. In a gas flow, the gas molecules

that occupy a “material point” are constantly in the process of being partially re-

placed by its peers. In fact, open systems by definition can exchange matter with
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the environment and generally will not consist of the same constituents all the time.

Therefore we consider the particle name “s0” well defined [24].

In deriving the formula for the normal velocity V , for the sake of simplicity, we

ignored the effect of inertia and interfacial stress. For a better result, one needs to

incorporate the aforementioned aspects into the calculation.

In modeling the phase interface, we adopt the model proposed by Gibbs where a

dividing surface of zero thickness is introduced and endowed with excess quantities to

replace the interfacial region. Other models such as the ones proposed by Guggenheim

or Hansen [34] are plausible choices which in fact comprises possible direction of future

work.

In one of the experiments reported in [2] and [3], TES ADT and a small-molecule

additive were both dissolved in toluene. Different roles played by the additive were

postulated and examined; see [35, 36]. In another possible scenario, after crystalliza-

tion the additive is expelled from the spherulite into the amorphous phase. Therefore

building a model that allows diffusion is another possible direction of future work.

In the present work, the thin film is modeled as a 2-dimensional object. However,

in reality the film has certain thickness. The effect of thickness of the film on the

spherulitic growth remains to be investigated.
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