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ABSTRACT OF DISSERTATION

AGGREGATED QUANTITATIVE MULTIFACTOR DIMENSIONALITY
REDUCTION

We consider the problem of making predictions for quantitative phenotypes based on
gene-to-gene interactions among selected Single Nucleotide Polymorphisms (SNPs).
Previously, Quantitative Multifactor Dimensionality Reduction (QMDR) has been
applied to detect gene-to-gene interactions associated with elevated quantitative phe-
notypes, by creating a dichotomous predictor from one interaction which has been
deemed optimal. We propose an Aggregated Quantitative Multifactor Dimensional-
ity Reduction (AQMDR), which exhaustively considers all k-way interactions among
a set of SNPs and replaces the dichotomous predictor from QMDR with a continu-
ous aggregated score. We evaluate this new AQMDR method in a series of simula-
tions for two-way and three-way interactions, comparing the new method with the
original QMDR. In simulation, AQMDR yields consistently smaller prediction error
than QMDR when more than one significant interaction is present in the simulation
model. Theoretical support is provided for the method, and the method is applied
on Alzheimer’s Disease (AD) data to identify significant interactions between APOE4
and other AD associated SNPs.
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Chapter 1

Introduction

1.1 Multifactor Dimensionality Reduction

The detection and characterization of susceptibility genes for common complex

diseases such as atrial fibrillation, autism, breast cancer, and hypertension (among

many others) has long been a concern in the field of genetics. These diseases often have

inheritance patterns that are complex [2]. Due to advancements in the availability

and cost-efficiency of genotypic data, Single Nucleotide Polymorphisms (SNPs) have

been used to explore variation in susceptibility to such diseases [1]. Abundance of

such data has raised concerns regarding traditional, parametric statistical methods.

For example, logistic regression is frequently used for models involving categorical

predictor variables and categorical response variables [2]. However, using genotypes

as predictors in these models and a phenotype (or clinical outcome) as the response is

not ideal, as logistic regression is ill-equipped to handle high-dimensional data which

may result in contingency table cells which are empty [3]. It is possible to remedy

this problem with large sample sizes, but of course, this may come at high expense to

researchers. To avoid this, alternative non-parametric solutions have been developed

in recent years, which can be applied to smaller sample sizes from case-control and

discordant-sib-pair studies [2].

One such alternative solution, Multifactor Dimensionality Reduction (MDR) was

developed by Ritchie et al. [2], and inspired by the combinatorial partitioning method

[4]. MDR is a method for characterizing and identifying nonlinear complex gene-to-

gene interactions which may be related to susceptibility to complex diseases. MDR

converts high dimensional genotypic data into a single predictive variable by identi-

fying gene-to-gene interactions as “high risk” or “low risk” [1]. MDR is appealing be-
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cause it can identify non-linear epistasis (significant gene-to-gene interactions) with no

assumptions about underlying distributions of predictors (genotypes) or phenotypic

outcomes (apart from the dichotomous nature of these outcomes), and no requirement

for large sample sizes [5].

The MDR method can be implemented in four general steps. Note that a balanced

case-control study is typical for Ritchie’s original MDR approach. In step 1, a set of

genotypic (SNPs) and/or categorical environmental factors are selected from all pos-

sible factors. In step 2, an interaction among these factors is selected and represented

by cells or multifactor classes which represent genotypic combinations within that

interaction. For example, a two-way interaction for SNPs with three states can be

represented by a 3× 3 table, where each cell in the table is a genotypic combination

or multifactor class. For a case-control study, the ratio of the number of cases to the

number of controls is calculated within each multifactor class. In a discordant-sib-

pair study, the ratio of the number of affected sibs to the number of unaffected sibs

is calculated within each multifactor class. In step 3, each of the multifactor cells is

identified as“high risk”or“low risk”. We define a“high risk”cell as any multifactor cell

in which the cases:controls ratio is greater than or equal to some pre-defined thresh-

old. Cells in which cases:controls is less than the threshold are defined as “low risk”.

In balanced case-control studies, a commonly used threshold is 1 [2]. Extensions to

the original MDR method have focused on changing this threshold to accommodate

unbalanced case control studies, in order to avoid assigning a “high risk” classification

simply due to dominance of cases over controls in the data [6]. Then the “high risk”

cells are pooled into a group, and the “low risk” cells are pooled into another group.

The result is a one-dimensional model, that is, a single binary variable which takes a

value of 1 if a subject is “high risk” and 0 otherwise.
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In step 4, 10-fold cross-validation is used to estimate the prediction error of each

one-dimensional model. In this process, the data are divided into ten equal subsets

and MDR is performed on nine of the subsets (the training data), and used to make

predictions about the remaining subset of subjects (validation data). Prediction error

is estimated by calculating the proportion of subjects for which an incorrect prediction

is made. The process is repeated ten times using one of the subsets for validation

data, and the prediction error is averaged over the ten repetitions [2].

The four steps of the MDR method are repeated for each possible two-factor combi-

nation. Among all possible two-factor combinations, the model which maximizes the

cases:controls ratio for the “high risk” group is selected as a candidate model. Then,

this process is repeated in consideration of three-way gene-to-gene interactions, and

a candidate three-way model is chosen. Eventually, a candidate model is selected for

each of two to n way gene-to-gene interactions (resulting in n-1 candidate models).

Among the set of candidate models, the one which minimizes the prediction error av-

eraged over the ten repetitions of cross validation is selected as the best overall model.

Finally, the optimal model is evaluated for statistical significance using 1000 count

permutation testing. In this process, the distribution of the cross validation consis-

tencies (under the null hypothesis that the gene-to-gene interaction is not associated

with disease status) is estimated empirically by shuffling the response variable (per-

muting), and performing 10-fold cross validation. For each permutation, consistency

of the selected model across cross validation sets (the number of times the selected

model is identified as optimal in each possible 9/10 of the subjects) is calculated. The

average cross validation consistency from the original data set is compared to the dis-

tribution of average consistencies found empirically from 1000 permutations, under

the null hypothesis of no association. A model is said to be statistically significant

if the relative frequency of average consistencies obtained by permutation which are

3



greater than the cross validation consistency obtained from the original data is less

than .05 [2]. The MDR method is illustrated in figure 1.1, which has been adapted

from a similar figure produced by Ritchie et al. [2].

Figure 1.1: The steps of MDR [2].

Software for implementing the MDR algorithm has been developed by Hahn et

al. [5], Bush et. al. [7], Winham and Motsinger-Reif [8] and Moore [9] and the

method has been widely used in the analysis of SNP data relating to common complex

diseases. Despite the advantages of MDR in detecting and characterizing gene-to-gene

interactions which are associated with disease susceptibility, the method does have

some limitations. MDR can be computationally intensive when more than ten SNPs

are included in a data set [2]. For example, consider a data set which includes M

SNPs. There are
(
M
k

)
possible k-way combinations. For large values of M , the number

of combinations which are to be considered can become overwhelming. In some cases,

MDR can be combined with a filter preprocess to select the optimal number of SNPs

to include in MDR [1]. The original MDR approach is also strictly applicable to

phenotypes with binary outcomes (absence or presence of a disease, for example).

Many extensions to the MDR method have been investigated in order to make the
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method applicable to quantitative outcomes, and to replace “high risk” and “low risk”

susceptibility categories with a quantifier. Some of these extensions are discussed in

this work.

1.2 Quantitative Traits

An area of interest concerning MDR involves the extension of the method to ac-

count for quantitative outcomes (phenotypes). Rather than focusing on discrete,

dichotomous outcomes, researchers may be interested in continuous outcomes such

as body mass index, survival time, and tumor growth. In these cases, the original

MDR method [2] cannot be applied. Several methods have been suggested in order

to address this possible extension. One such method is Generalized MDR (GMDR),

which is based on the score statistic of generalized linear models [10]. This extension

of MDR allows continuous phenotypes by replacing the ratio of cases and controls

which was used in MDR with a score-based statistic for a given cell. This statistic

is used to classify gene-to-gene interactions (cells) as “high risk” or “low risk” [10].

Another approach to identifying interactions for quantitative traits is Model-based

MDR (MB-MDR), which implements parametric regression within the MDR method

[11].

Unfortunately, when considering quantitative phenotypes, GMDR and MB-MDR

are not computationally efficient. Further, although an R package has been devel-

oped to implement Model-based MDR, this package does not consider gene-to-gene

interactions with higher dimension than three [12]. To address the possible limi-

tations of these two methods, Gui [12] suggests an extension of the original MDR

method called Quantitative MDR (QMDR). The steps involved in implementation

of QMDR are analogous to the original method. However, instead of comparing the

cases:controls ratio within each multifactor cell to some threshold, we compare the
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mean value within each multifactor cell to the overall mean. If the mean value for a

genotypic combination is greater than the overall mean, the combination is considered

to be in the “high-level” group, and if it is lower than the overall mean, the combi-

nation is “low-level”. Once again, a new one-dimensional, binary variable is created

by pooling subjects within “high-level” multifactor classes into a group and subjects

within “low-level” multifactor classes into another.

Recall that in MDR, prediction error was used to evaluate the possible models.

A 0-1 prediction error is meaningless for quantitative outcomes, so Gui suggests the

use of a T-statistic calculated based on the difference in the “high-level” group mean

and the “low-level” group mean as a training score to be maximized when selecting

the best k-way interaction model. Cross-validation is performed in the same way,

except we calculate a testing score based on assigning subjects in the testing data

into “high-level” and “low-level” groups in regard to the classification obtained from

the training data. We maximize the testing score to select the optimal model out

of all candidate models. The final model is then evaluated for statistical significance

with permutation testing. Gui tested the model against the GMDR method, and

found that QMDR provided similar results to GMDR with decreased computation

time [12].

1.3 Aggregated Multifactor Dimensionality Reduction

Another extension to Ritchie’s original method was developed by Dai et al.[1], whose

notation we adopt in the sequel. Aggregated-Multifactor Dimensionality Reduction

(A-MDR) replaces the dichotomous “high risk” and “low risk” groups designated in

the original MDR method with an epistasis enriched risk score. This risk factor aims

to quantify disease susceptibility. The A-MDR method is described here. Assume

we have SNPs which occur in one of three states: 0-homozygous, 1-heterozygous,
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2-homozygous variant. For example, consider a SNP which contains one allele, with

three possible states: AA, Aa, and aa. Then 0 is assigned to AA, 1 to Aa, and 2 to

aa. In the first step of A-MDR, the predisposing risk factor is calculated as follows:

Suppose we are interested in k-way gene-to-gene interactions among M different SNP

factors. For one such k-way interaction, there are 3k possible combinations, because

SNP(1) has three possible states (0, 1, 2), SNP(2) has three possible states, and so

forth. There are also
(
M
k

)
k-way gene-to-gene interactions among M SNP factors.

Let j = 1, 2, ..., 3k represent all possible genotypic combinations (or multifactor

cells) within a k-way gene-to-gene interaction. Let i = 1, 2, ...,
(
M
k

)
represent all

possible k-way interactions among M SNPs. Let Xi,j be the number of cases in the

jth genotypic combination of the ith k-way gene-to-gene interaction. Similarly, let Yi,j

be the number of control subjects in the jth genotypic combination of the ith k-way

gene-to-gene interaction. These counts are used to create a threshold. A genotypic

combination is classified as “highly susceptible” if the disease risk associated with that

combination is greater than the threshold defined as:

p0 =

3k∑
j=1

Xi,j

3k∑
j=1

Xi,j +
3k∑
j=1

Yi,j

(1.1)

Note that this threshold itself is an extension of the original MDR method, because

it does not assume a balanced case-control study. Gene-to-gene interactions are then

classified into “high risk” and “low risk” groups as shown in the contingency table

(table 1.1), which is reproduced from Dai et al. [1]. Note that I[∗] represents an

indicator function which takes a value of 1 if [∗] is true and 0 otherwise. This table

accounts for N subjects in a study. Dai suggests three different measures calculated
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Table 1.1: Predisposing Risk Table, reproduced from Dai et al. [1]
Case Control Total

High Risk n11 =
3k∑
j=1

XijI[
Xij

Xij+Yij
> p0] n12 =

3k∑
j=1

YijI[
Xij

Xij+Yij
> p0] n1+

Low Risk n21 =
3k∑
j=1

XijI[
Xij

Xij+Yij
≤ p0] n22 =

3k∑
j=1

YijI[
Xij

Xij+Yij
≤ p0] n2+

Total n+1 n+2 N

from the contingency table (table 1.1), which can be used to evaluate the statistical

significance of a k-way gene-to-gene interaction. These include the predisposing odds

ratio (pOR), the predisposing chi-square (pChi) and the predisposing relative risk

(pRR). To date, using inference based on normal or χ2 asymptotic distributions with

one degree of freedom (as is typically appropriate for contingency table analysis) has

not been justified in this case. As a result, permutation testing has been be used to

assess significance [1]. Formulas for the three measures are as follows:

pORi =
n11n22/(n12n21)

F−1
0 (F (n11n22/(n12n21)))

(1.2)

pRRi =

n11/(n11+n12)
n21/(n21+n22)

F−1
0 F (n11/(n11+n12)

n21/(n21+n22)
)

(1.3)

pChii =

2∑
s=1

2∑
t=1

(nst−est)2
est

F−1
0 F (

2∑
s=1

2∑
t=1

(nst−est)2
est

)

. (1.4)

Note that pChi is the based on the traditional calculation of a χ2 test statistic, where

nst is the “observed” value in a contingency table cell, and est is the “expected” value
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for the cell under the null hypothesis of no association. The expected value for each

cell is calculated by est = ns+n+t

N
[1].

Regardless of the chosen measure (pOR, pRR or pChi), it is necessary to calcu-

late F (x) and F−1
0 (x), where x is the numerator of the chosen measure provided

in (1.2), (1.3) and (1.4). For example, if the measure of interest is pOR, then

x = n11n22/(n12n21). Note that the denominators in each of these measure calcu-

lations are necessary only to facilitate the interpretation of 95% confidence intervals.

That is, exempting the occurrence of a type II error, confidence intervals for each

statistic (pOR, pRR or pChi) will contain 1 when H0 (no interaction is present) is

true. We can calculate the cumulative distribution of x under the alternative hypoth-

esis that a gene-to-gene interaction is present in nature, and call it F (x). Similarly,

let F0(x) denote the cumulative distribution function under the null hypothesis that

the interaction is not present, and F−1
0 be the inverse of F0(x). We estimate these

cumulative distributions empirically. In order to estimate F0(x), the phenotypes are

permuted among individuals in the data set while the SNPs (factors) are maintained

for each individual. For each of these permutations, the chosen statistic (the numer-

ator from (1.2), (1.3) or (1.4)) is computed. This process is repeated, say 1000 times,

allowing a cumulative distribution function of the statistic under the null hypothesis

to be estimated empirically. The logic here is that if no relationship between the

predisposing risk and disease status is present, then pOR, pRR, or pChi obtained

from the original data will be similar to those obtained by permuting the response

variable. F (x) is estimated empirically through a process known as jackknife resam-

pling. Subsets of the data are selected such that 80 − 90% of the data are used to

calculate the numerator from (1.2), (1.3) or (1.4), and again, a cumulative distribution

function for a statistic is estimated from many, say 1000 repetitions of this process.

We use F (x) and F−1
0 (x) in the calculation of pOR, pRR and pChi. F0(x) is used to
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calculate a p-value for the statistic (the numerator from (1.2), (1.3) or (1.4)) obtained

from the original data (call it z), by calculating the percentage of statistics from the

permutations that are greater than z [1].

For subject n (noting that n may be a new subject for which a prediction is to

be made or n ∈ {1, 2, ..., N}), an aggregated k-way epistasis enriched risk score is

calculated as follows:

R(k, n) =

(M
k )∑
i=1

I[pvali < α̂]
3k∑
j=1

I[n ∈ Cij]I
[

Xij

Xij + Yij
> p0

] (1.5)

where α̂ = argmax[AUC|α] for 0 ≤ α ≤ .05, Cij represents the cell corresponding to

genotypic combination j within gene-to-gene interaction i, and pvali is the p-value

obtained from the permutation process performed on the chosen measure. Notice that

the aggregated risk score only includes the significant k-way gene-to-gene interactions

and those which are assigned to the “high risk” group. The area under a receiver

operating characteristic curve (AUC) is maximized over possible values of α ∈ [0, .05]

to maximize the risk score’s ability to predict disease susceptibility [1].

1.4 Motivation and Outline of this Work

Current methodology allows for the aggregation of cumulative effects of multiple

gene-to-gene interactions regarding dichotomous phenotypes. Progress has been made

in the identification of significant gene-to-gene interactions under the consideration of

quantitative phenotypes. In this work, we will examine a new approach to predicting

quantitative phenotypes in which the effects from multiple significant interactions are

combined to form a continuous, aggregated score to be used in a model for prediction.
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In chapter 2, we will propose a new method, Aggregated Quantitative Multifactor

Dimensionality Reduction (AQMDR), in which the dichotomous categorization from

Quantitative Multifactor Dimensionality Reduction (QMDR) is replaced by a contin-

uous score developed by accumulating effects from multiple (or all possible) k-way

gene-to-gene interactions. We propose three distinct aggregated scores, which dictate

which interactions are included in the model, and the weight assigned to each of these

interactions. We apply these aggregated scores to simulated data, and evaluate the

method in the realm of two-way interactions.

In chapter 3, we will extend the AQMDR method to three-way interactions, and

look at accumulating effects from two-way and three-way interactions.

In chapter 4, we will explore quadratic models as opposed to simple linear models

in the context of AQMDR.

In chapter 5, we will provide theoretical support for the AQMDR method.

In chapter 6, we will apply the methodology of this work to a real-world data set.

We will seek to explore interactions between the epsilon 4 allele of the APOE gene and

several other genetic factors that are known to be associated with AD. In particular,

we want to examine how these interactions influence the quantitative factors CSF Aβ

and CSF tau.
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Chapter 2

AQMDR and Considerations for Two-way Interactions

2.1 Aggregated Score for Quantitative Phenotypes

In the present work, an Aggregated Quantitative Multifactor Dimensionality Re-

duction (AQMDR) method is proposed, in which gene-to-gene interactions are consid-

ered exhaustively to generate aggregated scores. This score improves on Quantitative

Multifactor Dimensionality Reduction [12] and replaces the dichotomous predisposing

risk factor from the original QMDR. We introduce the new methodology, and propose

three distinct aggregated scores. We evaluate the method through simulation study

with focus on two-way gene-to-gene interactions.

In the following sequence, we adopt the notation of Dai et al. [1] where appro-

priate. For concreteness, we present the proposed AQMDR method with respect to

SNPs with three common states (0-homozygous reference, 1- heterozygous, 2 - ho-

mozygous variant). The method can be extended to incorporate interactions among

other explanatory variables (e.g. environmental factors) which are categorical in na-

ture. Suppose we are interested in k-way gene-to-gene interactions among M SNPs.

There are 3k possible genotypic combinations (recalling that each SNP exhibits three

possible states). We denote these combinations as Cij, where the j = 1, 2, ..., 3k in-

dex different genotypic combinations within one k-way gene-to-gene interaction and

i = 1, 2, ...,
(
M
k

)
represents the possible k-way interactions among M SNPs. For ex-

ample, for a 2-way gene-to-gene interaction, we can think of the Cij as cells in a 3× 3

table. Figure 2.1 shows a two-way interaction between SNP 1 and SNP 2, each of

which contain one allele with three possible states (AA, Aa, aa, BB, Bb, bb). Each

of the nine cells represents a Cij (the jth genotypic combination within the ith k-way

gene-to-gene interaction).
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Figure 2.1: A two-way interaction between SNP 1 and SNP 2

Departing from the notation of Dai et al. [1], suppose we consider N subjects and

a continuous phenotype Y . Let Ȳij be the mean value of Y among subjects exhibiting

genotypic combination j of the ith k-way gene-to-gene interaction. Let ¯̄Y denote the

overall mean of Y among the N subjects. Genotypic combinations are classified into

groups based on Ȳij. Combinations in which Ȳij >
¯̄Y are classified as “high” and

receive a value of 1 and all others are classified as “low” and receive a value of 0. In

figure 2.2, the mean of Y among subjects in each cell is given (Ȳij), as well as the

grand mean, ¯̄Y . Shaded cells represent those receiving a classification of “high” (1)

and white cells represent those receiving a classification of “low” (0).

Figure 2.2: Cell classification of a two-way interaction.

13



After all genotypic combinations in the ith k-way gene-to-gene interaction are iden-

tified as “high” or “low” combinations, the subjects within the “high” group are pooled

together, and the “low” group subjects are pooled as well. Then these groups are used

to calculate the following test statistic for the ith k-way interaction:

t∗ =
Ȳhigh − Ȳlow√
sd2high
nhigh

+
sd2low
nlow

(2.1)

where sdhigh is the standard deviation among phenotypes of the nhigh individuals

classified as “high”, sdlow is the standard deviation among phenotypes of the nlow

individuals classified as “low”. Note that this test statistic was inspired by the QMDR

method [12].

As the parametric distribution of this test statistic is unknown, permutation test-

ing is used to evaluate the significance of the ith k-way interaction. For permutation

testing, we shuffle the Y outcomes while keeping genotypes fixed. For each permuta-

tion of the phenotype, “high” and “low” classifications are reassigned, and the t∗ test

statistic is recalculated. After many repetitions, say 1000, we calculate the relative

frequency of the t∗’s calculated from permutation which are greater than or equal to

the t∗ calculated from the original data. This relative frequency is then used as a

p-value.

This process is repeated for all
(
M
k

)
k-way gene-to-gene interactions resulting in

a one-dimensional binary variable identifying whether subjects are in the “high” or

“low” group and a p-value for each interaction. These binary variables and p-values

are then used to calculate an aggregated score for each subject. In this work, we

define and compare three possible aggregated scores.
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2.2 Aggregated Score with a Convex Weighting Function

The first aggregated score is characterized by a convex weighting function, designed

to assign weights to gene-to-gene interactions based on the p-values obtained through

permutation testing. With this weighting function, interactions with low p-values

are assigned high weights, and those with high p-values receive lower weights. For

interpretability and proper comparison among individuals, the risk score is presented

on a scale between 0 and 1, where values close to 1 are assigned to individuals most

at risk for elevated values of the phenotype. This aggregated score, referred to as the

Convex Weighting Aggregated Score (CWAS) in this work, for individual n, where

k-way interactions are considered is calculated as follows:

CWAS(k, n) =

(M
k )∑
i=1

(1− pval1/2i )
3k∑
j=1

I[n ∈ Cij]I[Ȳij >
¯̄Y ]

(M
k )∑
i=1

(1− pval1/2i )

(2.2)

where pvali is the p-value for gene-to-gene interaction i obtained from permutation

testing. Note that this aggregated score (as well as the other two aggregated scores

to be defined in this work) may be calculated for an individual in the original data

set, or for a new individual.

2.3 Aggregated Score with an Arbitrary Cutoff

The second proposed aggregated score is inspired by the score proposed for binary

phenotypes by Dai et al. [1]. This score is based on an arbitrary cutoff for the

Monte Carlo p-values for the gene-to-gene interactions obtained from permutation

testing. Interactions with p-values less than this cutoff value are included in the

aggregated score, and all others are omitted. Choosing the arbitrary cutoff is left to
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the researcher, but cutoffs of .05 and .20 will be considered later in this work. This

aggregated score will be referred to as the Arbitrary Cutoff Aggregated Score (ACAS)

in this work. Let c be the cutoff chosen for inclusion in the aggregated score. The

Arbitrary cutoff score is calculated as follows:

ACAS(k, n) =

(M
k )∑
i=1

I[pvali < c]
3k∑
j=1

I[n ∈ Cij]I[Ȳij >
¯̄Y ]

(M
k )∑
i=1

I[pvali < c]

(2.3)

Should an investigator encounter a situation in which none of the Monte Carlo p-

values for the
(
M
k

)
interactions are less than c (resulting in an undefined aggregated

score), a larger value of c may be considered.

2.4 Hybrid Aggregated Score

The third and final proposed aggregated score is a hybrid of the first two aggregated

scores. A weight of 1 is assigned to interactions which produced p-values less than a

cutoff (again, call this cutoff value c), and the same convex weight function discussed

in section 2.2 is applied to those interactions with p-values greater than the cutoff.

In this work, we will refer to this aggregated score as the Hybrid Aggregated Score

(HAS). HAS can be calculated as follows:

HAS(k, n) =
A+B(

M
k

) (2.4)

where

16



A =

(M
k )∑
i=1

I[pvali < c]
3k∑
j=1

I[n ∈ Cij]I[Ȳij >
¯̄Y ] (2.5)

and

B =

(M
k )∑
i=1

I[pvali ≥ c](1− pval1/2i )
3k∑
j=1

I[n ∈ Cij]I[Ȳij >
¯̄Y ] (2.6)

2.5 The Aggregated Score as a Predictor

Recall that the original QMDR method results in a single, binary variable to be

used as a predictor of phenotype values. This binary variable corresponds to the

“high” or “low” categorization produced by the gene-to-gene interaction deemed to

be optimal [12]. By calculating an aggregated score with AQMDR, we replace the

dichotomous predictor with a continuous predictive variable. The aggregated score

allows us to incorporate all k-way gene-to-gene interactions, or some subset of the

interactions (significant interactions) to more adequately predict values of a quantita-

tive phenotype. The potential advantage of QMDR over our method is that QMDR

explicitly identifies which particular gene-to-gene interaction may be driving changes

in phenotypes among individuals. However, if accurate prediction of a phenotype

is the goal, AQMDR may provide a better predictor for linear regression with the

phenotype. AQMDR may be most useful in situations where more than one gene-to-

gene interaction influences the phenotype. The aggregated score may be extended to

incorporate environmental factors, and the aggregated scores from multiple orders of

interaction may be combined (for example, the accumulation of two-way and three-

way gene-to-gene interactions). The latter idea will be explored in a later chapter of

this work.
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2.6 Empirical Assessment for Two-way Gene-to-gene Interactions

An extensive simulation study was performed to assess the performance of the

AQMDR method in detection and making predictions based upon two-way interac-

tions. The study is a factorial design in which we examined variations of the number

of SNPs to be considered and the number of interactions present in nature. Let M

be the number of SNPs under consideration, and x be the number of two-way in-

teractions present. SNPs were generated under the assumption of Hardy-Weinberg

equilibrium [13]. For example, consider a SNP, call it SNPA, with two alleles, each

of which take states of A or a. We let the probability that an individual carries allele

A on a single chromosome be p = .5, and the probability that a person carries allele

a on a single chromosome be q = .5. Then the SNP states AA and aa each have

probability p2 = .25 and q2 = .25 of occurring. SNP state Aa occurs with probability

2pq = .5. Phenotypes for individuals were randomly generated by a N(120, σ2) distri-

bution, where the mean of this normal distribution was increased by the presence of

an interaction. For example, suppose that the two-way interaction of SNP1 and SNP2

was included in simulation. Then the mean of the random normal distribution used

to generate the phenotype was increased by 30 in the event that an individual carried

a genotypic combination such as (SNP1 = 2)(SNP2 = 2). This example simulation

model is displayed in equation 2.7.

In the factorial simulation study, we varied the standard deviation, σ of the normal

distribution used to generate phenotypes as well. See table 2.1 for the particular

variations considered in this factorial simulation study. Each training and testing

data set contained phenotypes and SNP states for 1000 simulated subjects. If one

interaction was present, SNP1× SNP2 was selected as the present interaction. If three

interactions were present in simulation, SNP1 × SNP2, SNP1 × SNP3, and SNP1 ×

SNP4 were the interactions selected. If six interactions were present in simulation,
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SNP1 × SNP2, SNP1 × SNP3, SNP1 × SNP4, SNP2 × SNP3, SNP2 × SNP4,

and SNP3 × SNP4 were included. For each interaction, the homozygous variant

(SNP=2) was used to define an interaction leading to an elevated phenotype, and all

interactions were generated using the same magnitude of elevation. That is, the mean

of the random normal was increased by 30 in the presence of each interaction.

Yi = 120 + 30(I[SNP1i = 2]I[SNP2i = 2]) + εi, εi
iid∼ N(0, σ2) (2.7)

Table 2.1: The values of variants considered in the two-way interaction factorial
simulation study.

M x σ

4 1 10
10 3 15

6 20

The AQMDR method aims to produce more accurate predictions for quantitative

phenotypes than current methodology. Thus, the focus of this simulation study is on

quality of prediction. For each combination of variants (as shown in table 2.1) 100

independent training and testing data sets were generated. We applied the AQMDR

method to each set of training data and subsequently made predictions for the test-

ing data. Each of the proposed aggregated scores (CWAS, ACAS and HAS) were

implemented in the AQMDR method and compared. ACAS and HAS were varied by

using c = .05 and c = .20. For further comparison, we considered three alternative

methods of prediction. The first method was the original QMDR method developed

by Gui et al. [12] and discussed extensively in section 1.2 of this work. The second

method involved using the overall mean for the phenotype in the training data as the

prediction for all of the phenotype values in the testing data. For simplicity, we refer

to this prediction method as the training mean (TM) method. The final alternative
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prediction method was based on knowledge of the truth used for simulation. For

example, if it was known that an interaction between SNP1 and SNP2 was present

in the simulation, the presence of (SNP1=2)(SNP2=2) resulted in an increased mean

for the normal distribution used to generate the phenotype. Thus, in this method

(referred to as the oracle method), a binary variable in which individuals carrying

a genotypic combination ((SNP1=2)(SNP2=2) in the previous example) receive a

value of 1 is used as a linear predictor of the phenotype. Multiple present interactions

result in multiple linear predictors. As this method is based on knowledge of the

truth, we included it in this simulation study as a best-case-scenario (in the absence

of dimensionality reduction) for comparison. After predictions for the phenotypes

in the testing data were made based on the training data, mean squared prediction

error (MSPE) was calculated for each testing set. Equation 2.8 shows the MSPE for

n observations (yi’s) and the corresponding predictions (ŷi’s).

MSPE =

n∑
i=1

(yi − ŷi)2

n
(2.8)

The results of the factorial simulation study are displayed in table 2.2. Each value in

the table is the average MSPE over 100 independent repetitions of generating training

and testing data sets. The first three columns of the table indicate the variants of

M , x and σ used in the simulation scenario for each row. Columns four through nine

correspond to implementations of AQMDR using the indicated proposed aggregated

scores. A value under the header such as .05 and .20 indicates the chosen cutoff value

c in ACAS and HAS. The final three columns correspond to the alternative prediction

methods, QMDR, the oracle method, and the training mean method, respectively.
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As shown in table 2.2, when more than one gene-to-gene interaction is present,

the average MSPEs are consistently lower for the AQMDR implementations when

compared to the traditional QMDR method. In these cases, the AQMDR method

demonstrated more adequate predictions. This is apparent, regardless of which of the

aggregated scores were implemented in the AQMDR method. However, the lowest

MSPEs for cases where x > 1 occurred when applying the Arbitrary Cutoff aggregated

score with c = .05. These results provide evidence that AQMDR may be providing

more predictive ability in scenarios where multiple gene-to-gene interactions affect

the phenotype (x > 1).

Table 2.2: Average MSPE over 100 independent testing data sets for two-way inter-
action simulation study.
M x σ CWAS ACAS

(.05)
ACAS
(.20)

HAS
(.05)

HAS
(.20)

QMDR Oracle TM

4 1 10 127.19 126.59 127.27 128.30 128.09 107.78 100.55 153.96
4 1 15 255.00 254.51 254.79 255.92 255.80 247.02 225.65 277.17
4 1 20 437.61 437.03 437.40 439.31 438.87 431.89 403.66 456.85
10 1 10 133.91 131.25 132.91 131.82 133.47 109.41 100.61 153.67
10 1 15 262.52 258.09 260.87 259.29 261.85 247.03 225.28 277.70
10 1 20 444.32 438.73 440.95 440.42 442.51 435.32 402.44 454.40
4 3 10 203.78 203.78 203.78 203.78 203.78 225.70 99.57 320.45
4 3 15 331.22 331.26 331.26 331.26 331.26 354.72 225.45 448.18
4 3 20 505.97 506.35 506.20 506.36 506.20 525.42 402.17 620.46
10 3 10 223.39 220.25 223.18 220.87 223.68 226.41 100.41 320.52
10 3 15 349.97 345.91 350.19 346.67 350.87 352.16 224.93 446.17
10 3 20 528.69 523.60 528.67 524.69 529.72 527.73 400.41 623.86
4 6 10 423.23 423.23 423.23 423.23 423.23 561.48 101.14 675.00
4 6 15 554.04 554.04 554.04 554.04 554.04 693.65 227.01 805.64
4 6 20 719.00 719.00 719.00 719.00 719.00 856.36 403.00 970.46
10 6 10 338.23 329.28 336.23 330.49 337.40 561.73 101.42 674.75
10 6 15 458.38 450.28 456.92 451.36 457.97 683.20 225.75 800.40
10 6 20 631.19 622.48 630.08 623.71 631.07 844.66 402.48 954.56

To further explore the distinctions between methods in the simulation study, a

single factor, within-subjects ANOVA was performed for each simulation scenario,

followed by post hoc multiple pairwise comparisons among the aggregated scores and
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alternative methods. For all simulation scenarios, the ANOVA yielded significance

at α = .05 level, suggesting that there are differences among the average MSPEs for

the prediction methods. The prediction methods were ranked according to the results

from multiple pairwise comparisons. The rankings from multiple pairwise comparisons

with a Bonferroni correction based on the total number of comparisons (α = .05
28

) are

displayed in table 2.3. For each simulation scenario (a row in the table), prediction

methods were assigned rankings a, b , c, etc. where a is the ranking assigned to the

method with the lowest average MSPE. Methods sharing a letter ranking were not

determined to be statistically significant in a pairwise comparison.

Table 2.3: Within-subjects ANOVA with a Bonferroni correction, α = .05
28

for two-way
interaction simulation study.
M x σ CWAS ACAS

(.05)
ACAS
(.20)

HAS
(.05)

HAS
(.20)

QMDR Oracle TM

4 1 10 c c c c c b a d
4 1 15 c c c c c b a d
4 1 20 b b b b b b a d
10 1 10 d c c c d b a e
10 1 15 d c c c d b a e
10 1 20 d c c cd d b a e
4 3 10 b b b b b c a d
4 3 15 b b b b b c a d
4 3 20 b b b b b c a d
10 3 10 c b b b c d a e
10 3 15 c b b b c d a e
10 3 20 c b b b c c a d
4 6 10 b b b b b c a d
4 6 15 b b b b b c a d
4 6 20 b b b b b c a d
10 6 10 b b b b b c a d
10 6 15 b b b b b c a d
10 6 20 b b b b b c a d

First, notice that the AQMDR method performs significantly better than QMDR

in all scenarios with x > 1. As expected, QMDR excels in those cases with a single

interaction present. In scenarios with only four SNPs, the five proposed aggregated
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scores within AQMDR are not significantly different. When M = 10, we see that the

five aggregated scores begin to differ, and in all of these cases the ACAS with c = .05

always yields lower average MSPEs.

Table 2.4 displays the average testing R2 values for each prediction method within

each simulation scenario. When comparing the average R2 values of QMDR with

the AQMDR aggregated scores, we clearly see that AQMDR outperforms QMDR

in all scenarios with x > 1. For example, the advantage of AQMDR is especially

apparent when M = 10, x = 6 and σ = 20. In this case, QMDR produced an R2

of approximately 11.51%, while AQMDR (with ACAS, c = .05) produced an R2 of

approximately 34.79%.

Table 2.4: Average testing R2 values (as percentages) for two-way interaction simu-
lation study.

M x σ CWAS ACAS
(.05)

ACAS
(.20)

HAS
(.05)

HAS
(.20)

QMDR Oracle

4 1 10 17.39% 17.78% 17.34% 16.67% 16.80% 29.99% 34.69%
4 1 15 8.00% 8.18% 8.07% 7.67% 7.71% 10.88% 18.59%
4 1 20 4.21% 4.34% 4.26% 3.84% 3.94% 5.46% 11.64%
10 1 10 12.86% 14.59% 13.51% 14.22% 13.15% 28.80% 34.53%
10 1 15 5.47% 7.06% 6.06% 6.63% 5.71% 11.04% 18.88%
10 1 20 2.22% 3.45% 2.96% 3.08% 2.62% 4.20% 11.43%
4 3 10 36.41% 36.41% 36.41% 36.41% 36.41% 29.57% 68.93%
4 3 15 26.10% 26.09% 26.09% 26.09% 26.09% 20.85% 49.70%
4 3 20 18.45% 18.39% 18.42% 18.39% 18.42% 15.32% 35.18%
10 3 10 30.30% 31.28% 30.37% 31.09% 30.21% 29.36% 68.67%
10 3 15 21.56% 22.47% 21.51% 22.30% 21.36% 21.07% 49.59%
10 3 20 15.26% 16.07% 15.26% 15.90% 15.09% 15.41% 35.82%
4 6 10 37.30% 37.30% 37.30% 37.30% 37.30% 16.82% 85.02%
4 6 15 31.23% 31.23% 31.23% 31.23% 31.23% 13.90% 71.82%
4 6 20 25.91% 25.91% 25.91% 25.91% 25.91% 11.76% 58.47%
10 6 10 49.87% 51.20% 50.17% 51.02% 50.00% 16.75% 84.97%
10 6 15 42.73% 43.74% 42.91% 43.61% 42.78% 14.64% 71.80%
10 6 20 33.88% 34.79% 33.99% 34.66% 33.89% 11.51% 57.84%

23



In table 2.5, we see the ratios of each prediction method average testing R2 value

to that of the oracle method. For the AQMDR aggregated scores, these ratios tend

to be larger for scenarios with multiple interactions present. The opposite is true of

QMDR, where increases in x produce smaller ratios.

An interesting finding in the simulation study can be seen in those simulation sce-

narios with six interactions present in nature (x = 6). Focusing on the AQMDR

implementations, one can see that average MSPEs for scenarios with four SNPs and

six significant interactions present were consistently larger than the average MSPEs

for scenarios with ten SNPs and six significant interactions (see table 2.2). In other

words, the more complicated simulation scenario (ten SNPs) produced better pre-

dictions than the less complicated scenario (four SNPs). This phenomenon may be

related to overestimation of an individual’s phenotype value when he/she carries mul-

tiple (or all) of the gene-to-gene interactions present in nature.

Table 2.5: Method:Oracle R2 Ratio for two-way interaction simulation study.
M x σ CWAS ACAS

(.05)
ACAS
(.20)

HAS
(.05)

HAS
(.20)

QMDR

4 1 10 0.50 0.51 0.50 0.48 0.48 0.86
4 1 15 0.43 0.44 0.43 0.41 0.41 0.59
4 1 20 0.36 0.37 0.37 0.33 0.34 0.47
10 1 10 0.37 0.42 0.39 0.41 0.38 0.83
10 1 15 0.29 0.37 0.32 0.35 0.30 0.59
10 1 20 0.19 0.30 0.26 0.27 0.23 0.37
4 3 10 0.53 0.53 0.53 0.53 0.53 0.43
4 3 15 0.53 0.52 0.52 0.52 0.52 0.42
4 3 20 0.52 0.52 0.52 0.52 0.52 0.44
10 3 10 0.44 0.46 0.44 0.45 0.44 0.43
10 3 15 0.43 0.45 0.43 0.45 0.43 0.42
10 3 20 0.43 0.45 0.43 0.44 0.42 0.43
4 6 10 0.44 0.44 0.44 0.44 0.44 0.20
4 6 15 0.43 0.43 0.43 0.43 0.43 0.19
4 6 20 0.44 0.44 0.44 0.44 0.44 0.20
10 6 10 0.59 0.60 0.59 0.60 0.59 0.20
10 6 15 0.60 0.61 0.60 0.61 0.60 0.20
10 6 20 0.59 0.60 0.59 0.60 0.59 0.20
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Chapter 3

Higher Order Interactions

3.1 Empirical Assessment for Three-way Gene-to-gene Interactions

In 2001, Ritchie et. al [2] identified a four-way gene-to-gene interaction related

to sporadic breast cancer. Based on this and other similar findings, we may be in-

terested in the consideration of higher order interactions. Currently, we turn our

attention toward three-way interactions in the context of the same AQMDR method

and proposed aggregated scores discussed in chapter 2. Again, we performed a simu-

lation study using a factorial design in which we examined variations of the number

of SNPs to be considered (M) and the number of present interactions (x). SNPs were

generated in the same manner discussed in chapter 2. Phenotypes for subjects were

generated using a N(120, σ2) distribution. The mean of this normal distribution was

increased by 30 with the presence of a three-way interaction. For example, suppose

that an interaction between SNP1, SNP2 and SNP3 was included in a simulation sce-

nario. In this case, the mean of the random normal distribution used to generate the

phenotype was increased in the event that an individual carried a genotypic combi-

nation such as (SNP1 = 2)(SNP2 = 2)(SNP3 =2). This example simulation scenario

is displayed in equation 3.1. In the factorial simulation study, we varied the standard

deviation of the normal distributions used to generate the phenotypes. See table 3.1

for the particular variations considered in this study. Each training and testing data

set contained phenotypes and SNP states for 1000 subjects.

Yi = 120 + 30(I[SNP1i = 2]I[SNP2i = 2]I[SNP3i = 2]) + εi, εi
iid∼ N(0, σ2) (3.1)
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Table 3.1: The values of variants considered in the three-way interaction factorial
simulation study.

M x σ

4 1 10
10 2 15

20

For each combination of variants (M , x, σ), 100 independent training and testing

data sets were generated. We applied the AQMDR method to each set of training data

and subsequently made predictions for the testing data. The methods considered were

the same as those described in chapter 2, including AQMDR (ACAS and HAS with

cutoffs of c = .05 and c = .20, and CWAS), QMDR, the training mean method and

the oracle method. As we considered only three-way interactions in this simulation

study, the QMDR method was limited only to the selection of three-way interaction

models. After predictions for the phenotypes in the testing data were made based

on the training data, the mean squared prediction error (MSPE) was calculated for

each testing set using equation 2.8. The results of the factorial simulation study

are displayed in table 3.2. Each value in the table is the average MSPE over 100

independent testing data sets. If one interaction was present in simulation, SNP1

× SNP2 × SNP3 was used. If two interactions were present in simulation, SNP1

× SNP2 × SNP3 and SNP1 × SNP2 × SNP4 were used. For each interaction, the

homozygous variant (SNP=2) was used to define an interaction leading to an elevated

phenotype, and all interactions were generated using the same magnitude of elevation.

That is, the mean of the random normal was increased by 30 in the presence of each

interaction.

As we saw with two-way interactions, QMDR performs well when only one interac-

tion is present (x = 1). In scenarios with more than one present interaction, AQMDR

yields lower MSPEs than QMDR. This is apparent, regardless of which of the aggre-
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gated scores were implemented in AQMDR. These results provide empirical evidence

that AQMDR may provide more predictive ability than QMDR in scenarios where

multiple three-way gene-to-gene interactions act on the phenotype.

Table 3.2: Average MSPE over 100 independent testing data sets for three-way in-
teraction simulation study.
M x σ CWAS ACAS

(.05)
ACAS
(.20)

HAS
(.05)

HAS
(.20)

QMDR Oracle TM

4 1 10 117.26 117.26 117.26 117.26 117.26 105.21 100.17 208.32
4 1 15 250.27 250.32 250.32 250.32 250.32 249.87 225.50 332.00
4 1 20 435.61 436.10 436.09 436.29 436.27 441.55 400.84 508.61
10 1 10 147.45 144.75 146.96 144.89 147.07 106.28 99.91 208.83
10 1 15 271.20 265.96 271.13 266.25 271.34 246.01 223.67 330.63
10 1 20 456.11 447.47 455.27 447.94 455.64 438.04 400.56 507.22
4 2 10 152.08 152.08 152.08 152.08 152.08 201.06 101.15 345.97
4 2 15 278.18 278.18 278.18 278.18 278.18 323.70 223.56 470.72
4 2 20 457.59 457.59 457.59 457.59 457.59 497.20 397.00 644.16
10 2 10 175.67 173.43 174.89 173.50 174.96 200.34 100.27 346.25
10 2 15 303.76 301.19 302.78 301.28 302.87 323.12 225.83 468.38
10 2 20 487.30 483.83 485.95 483.97 486.08 508.05 401.86 646.56

As we observed with the two-way interactions, it appears that the arbitrary cut-

off aggregated score (ACAS) with c = .05 tends to yield average MSPEs which are

a bit more favorable than the other four implementations of AQMDR. To see this

distinction a bit more clearly, a single factor, within-subjects ANOVA was performed

for each of the twelve simulation scenarios, followed by post hoc multiple pairwise

comparisons among the aggregated scores and alternative methods. In each simula-

tion scenario, the ANOVA yielded significance at α = .05 level, suggesting that there

are differences among the average MSPEs for the methods. Prediction methods were

ranked according to results from multiple pairwise comparisons (with a Bonferroni

correction, α = .05
28

). These rankings are displayed in table 3.3. For each simula-

tion scenario (represented by a row in the table), prediction methods were assigned

rankings a, b, c, etc. where a is the ranking assigned to the method with the lowest

average MSPE. Recall from chapter 2 that methods sharing a letter ranking were not
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determined to be statistically significant in a pairwise comparison (that is, there is

no significant difference between the methods).

Table 3.3: Within-subjects ANOVA with a Bonferroni correction, α = .05
28

for three-
way interaction simulation study.
M x σ CWAS ACAS

(.05)
ACAS
(.20)

HAS
(.05)

HAS
(.20)

QMDR Oracle TM

4 1 10 c c c c c b a d
4 1 15 c c c c c b a d
4 1 20 b b b b b c a d
10 1 10 d c cd c d b a e
10 1 15 d c d c d b a e
10 1 20 d c d c d b a e
4 2 10 b b b b b c a d
4 2 15 b b b b b c a d
4 2 20 b b b b b c a d
10 2 10 b b b b b c a d
10 2 15 b b b b b c a d
10 2 20 b b b b b c a d

As we saw in scenarios for two-way interactions, AQMDR performs significantly

better than QMDR in scenarios in which more than one three-way interaction is

present, and thus receives a higher letter ranking in all such scenarios. Recall from

chapter 2 that QMDR always performed better than AQMDR in situations with x =

1, but for three-way interactions this is not always the case. With a smaller number of

SNPs (M = 4), a single present interaction and σ = 20, we see that AQMDR performs

better than expected and has a higher ranking than QMDR. However, when M = 10,

we see that QMDR provides average MSPEs that are consistently lower than those

of AQMDR. When x = 2, the AQMDR methods are ranked higher than QMDR in

all cases, providing evidence that AQMDR may provide more adequate predictions

than QMDR when multiple three-way interactions are present (regardless of which

aggregated score is used). In nearly all scenarios, the five variations of AQMDR are

not significantly different. In fact, differences among the AQMDR aggregated scores
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are only present when we have ten SNPs and one present three-way interaction. In

these cases, the arbitrary cutoff aggregated score and the hybrid aggregated score

(with c = .05) perform a bit better than the other three variations of AQMDR, with

the convex weighting aggregated score yielding the highest MSPEs.

Table 3.4 displays the average R2 values (as percentages) for each prediction method

within each simulation scenario. As we saw in the simulation study for two-way

interactions, these R2 values decrease as σ increases, and tend to be higher when

there are four SNPs under consideration rather than ten. Table 3.5 displays the

Table 3.4: Average R2 values (as percentages) for three-way interaction simulation
study.

M x σ CWAS ACAS
(.05)

ACAS
(.20)

HAS
(.05)

HAS
(.20)

QMDR Oracle

4 1 10 43.71% 43.71% 43.71% 43.71% 43.71% 49.50% 51.92%
4 1 15 24.62% 24.60% 24.60% 24.60% 24.60% 24.74% 32.08%
4 1 20 14.35% 14.26% 14.26% 14.22% 14.22% 13.18% 21.19%
10 1 10 29.39% 30.69% 29.63% 30.62% 29.57% 49.11% 52.16%
10 1 15 17.97% 19.56% 18.00% 19.47% 17.93% 25.59% 32.35%
10 1 20 10.08% 11.78% 10.24% 11.69% 10.17% 13.64% 21.03%
4 2 10 56.04% 56.04% 56.04% 56.04% 56.04% 41.89% 70.76%
4 2 15 40.90% 40.90% 40.90% 40.90% 40.90% 31.23% 52.51%
4 2 20 28.96% 28.96% 28.96% 28.96% 28.96% 22.81% 38.37%
10 2 10 49.26% 49.91% 49.49% 49.89% 49.47% 42.14% 71.04%
10 2 15 35.15% 35.70% 35.36% 35.68% 35.34% 31.01% 51.78%
10 2 20 24.63% 25.17% 24.84% 25.15% 24.82% 21.42% 37.85%

ratios of each prediction method average R2 value to that of the oracle method. As

we saw with two-way interactions, these ratios for the AQMDR aggregated scores tend

to be larger when more than one three-way interaction is present, and the opposite is

true for QMDR.
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Table 3.5: Method:Oracle R2 Ratio for three-way interaction simulation study.
M x σ CWAS ACAS

(.05)
ACAS
(.20)

HAS
(.05)

HAS
(.20)

QMDR

4 1 10 0.84 0.84 0.84 0.84 0.84 0.95
4 1 15 0.77 0.77 0.77 0.77 0.77 0.77
4 1 20 0.68 0.67 0.67 0.67 0.67 0.62
10 1 10 0.56 0.59 0.57 0.59 0.57 0.94
10 1 15 0.56 0.60 0.56 0.60 0.55 0.79
10 1 20 0.48 0.56 0.49 0.56 0.48 0.65
4 2 10 0.79 0.79 0.79 0.79 0.79 0.59
4 2 15 0.78 0.78 0.78 0.78 0.78 0.59
4 2 20 0.75 0.75 0.75 0.75 0.75 0.59
10 2 10 0.69 0.70 0.70 0.70 0.70 0.59
10 2 15 0.68 0.69 0.68 0.69 0.68 0.60
10 2 20 0.65 0.67 0.66 0.66 0.66 0.57

3.2 Combining Two-way and Three-way Interactions

Now we turn our attention toward the simultaneous consideration of two-way and

three-way interactions. If two-way and three-way interactions are considered using

the QMDR technique, candidate interactions are selected for k = 2 and k = 3. Then

10-fold cross-validation is used to choose a single, optimal interaction among these

candidates to be used in the regression model. Rather than choosing between k = 2

and k = 3, we propose three distinct extensions to AQMDR in which the aggregated

scores for two-way and three-way interactions are considered simultaneously. The

three proposed approaches are as follows:

1. Sequential Inclusion - In this extension, the aggregated scores for two-way

and three-way interactions are considered sequentially. That is, the aggregated

score for k = 2 (two-way interactions) is developed and used as a predictor in

a regression model for the phenotype. Then, the residuals from this regression

are regressed on the aggregated score for k = 3 (three-way interactions).

2. Simultaneous Inclusion - In this extension, the aggregated scores for two-

way and three-way interactions are considered simultaneously. That is, the
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aggregated scores for k = 2 and k = 3 are both used as predictors in a single

regression model for the phenotype.

3. Principal Components - In this extension, the first principal component of

the aggregated score for k = 2 and the aggregated score for k = 3 is used as a

predictor in a regression model for the phenotype.

To compare these three approaches with the QMDR method, we perform an exten-

sive simulation study. In each simulation, we consider ten SNPs (M = 10) and SNP

states are generated using Hardy-Weinberg Equilibrium [13]. For example, consider

a SNP, call it SNPA, with two alleles, each of which take states of A or a. We let the

probability that an individual carries allele A on a single chromosome be p = .5, and

the probability that a person carries allele a on a single chromosome be q = .5. Then

the SNP states AA and aa each have probability p2 and q2 of occurring. SNP state

Aa occurs with probability 2pq. In previous simulation studies, p was fixed at p = .5.

For this study, the value of p for each SNP is generated using a continuous uniform

distribution on (.5, .9). Phenotypes for individuals were randomly generated by a

N(120, 152) distribution, where the mean of this normal distribution was increased

by 30 with the presence of an interaction. For example, suppose that the two-way

interaction of SNP1 and SNP2 was included in simulation, and the three-way inter-

action of SNP3, SNP4 and SNP5 was included as well. Then the mean of the random

normal distribution used to generate the phenotype was increased in the event that

an individual carried a genotypic combination such as (SNP1 = 2)(SNP2 = 2), or the

genotypic combination (SNP3 = 2)(SNP4 = 2)(SNP5 = 2). This example simulation

scenario is defined as

Yi = 120 + 30(I[SNP1i = 2]I[SNP2i = 2])

+ 30(I[SNP3i = 2]I[SNP4i = 2]I[SNP5i = 2]) + εi

31



where εi
iid∼ N(0, 152).

In table 3.6, the “1-way” column indicates which of the ten SNPs considered in sim-

ulation (SNPA, SNPB,..., SNPJ) are included as a one-way interaction (main effect).

For example, if SNPJ is included as a main effect in simulation, then ”J” appears

in this column. The “2-way” column indicates which two-way interactions were in-

cluded. For example, if the interaction between SNPA and SNPB was included in

simulation, then AB appears in this column. Similarly, the “3-way” column indicates

which three-way interactions were included. For example, if the interaction between

SNPC, SNPD and SNPE was included in simulation, then “CDE” appears in this

column. The magnitude of all one-way, two-way and three-way interactions included

in simulation was 30. That is, the presence of an interaction in simulation increased

the mean of the random normal distribution by 30. When calculating aggregated

scores in the AQMDR method, the arbitrary cutoff aggregated score with a cutoff of

c = .05 was used. This aggregated score was selected because previous simulations

indicated that this particular score may have a slight advantage over the other pro-

posed scores. In table 3.6, the “Seq.” column corresponds to the Sequential Inclusion

method, the “Sim.” column corresponds to the Simultaneous Inclusion approach, and

the “P.C.” column corresponds to the Principal Components method. Each value in

these columns is the average MSPE calculated from 100 independent testing data

sets. For discussion that follows, we have assigned a numerical value to each scenario

in the first column of table 3.6.

There were some simulation scenarios in which we expected QMDR to perform well,

specifically scenarios with a single present interaction (either a three-way interaction

or a two-way interaction) such as scenarios 2, 4, and 6. QMDR is well-suited for

these situations because the method selects a single “optimal” interaction among all

possible two-way and three-way interactions. Looking at the MSPEs for these three
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scenarios, we see that QMDR did indeed produce smaller average MSPEs than the

three AQMDR implementations. Table 3.7 displays the results of post hoc multiple

pairwise comparisons among the prediction methods, performed after single factor,

within subjects ANOVA tests which all yielded significance at the α = .05 signifi-

cance level. The prediction methods were ranked according to the multiple pairwise

comparisons (with Bonferroni correction, α = .05
10

), where a ranking of a is assigned to

the method with the lowest MSPE. As in previous sections, methods sharing a letter

ranking were not determined to be statistically different. If we look at scenario num-

bers 2, 4, and 6 in table 3.7, we see that the difference between QMDR and the three

AQMDR methods is statistically significant (as they don’t share a letter ranking).

QMDR also yielded significantly lower MSPEs in scenarios 3 and 5. In both of

these scenarios, we have two three-way interactions present and no present two-way

interactions. QMDR may have performed well in scenarios 3 and 5 because it selects

one of the two present three-way interactions as the optimal interaction. Even though

QMDR will ignore the other interaction which is not deemed optimal, it may pro-

duce better predictions than AQMDR. In fact, as the AQMDR methods include an

aggregated score for two-way interactions when there are actually no two-way inter-

actions present, the two-way aggregated scores may incorporate unnecessary two-way

interactions due to confounding with the present three-way interactions. However, we

did not see the same results when there were multiple two-way interactions and no

three way interactions present. This can be seen in scenario 11, where the AQMDR

methods yielded lower MSPEs than QMDR.

In more complicated simulation scenarios in which there were a combination of two-

way and three-way interactions (such as scenarios 9, 10, 12, 13, 14, 15), the AQMDR

approaches resulted in lower average MSPEs than QMDR. With the exception of

scenarios 7 and 8, the differences between the AQMDR methods and QMDR were
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statistically significant (see table 3.7). In scenarios 16-30, the first fifteen simulation

scenarios were repeated with the addition of a single main effect. With the exception

of scenario 16 (in which no two-way or three-way interactions were present), AQMDR

provided more adequate predictions than QMDR for all of these scenarios, with sta-

tistically significant differences between the AQMDR approaches and QMDR. Note

that in scenarios 7 and 8, the Simultaneous Inclusion implementation of AQMDR

yielded a lower average MSPE than QMDR, but the Sequential Inclusion and Princi-

pal Components implementations both yielded higher average MSPEs than QMDR.

Pairwise comparisons in scenarios 7 and 8 determined that Simultaneous Inclusion,

Principal Components and QMDR were not significantly different, but Sequential In-

clusion performed significantly worse than QMDR and the other two implementations

of AQMDR.

In several scenarios (scenarios 3, 6, 11 and 18), there were no significant differences

among the three AQMDR approaches for inclusion of two-way and three-way interac-

tions. All four of these scenarios are scenarios in which there were either no two-way

interactions present, or no three-way interactions present. In all other scenarios (with

the exception of scenarios 1 and 16 in which no two-way or three-way interactions

were present), Simultaneous Inclusion and Principal Components are slightly favor-

able over Sequential Inclusion. Simultaneous Inclusion and Principal Components

were not significantly different in any of the simulation scenarios with the exception

of scenario 1.

Table 3.8 displays the average R2 values (as percentages) for the simulation scenar-

ios. One can see that these average R2 values tend to be higher when a main effect

is included in the simulation (scenarios 16-30).
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Table 3.6: Average MSPEs for two-way and three-way interactions combined.
No. 1-way 2-way 3-way Seq. P.C. Sim. QMDR TM

1 - - - 240.02 236.45 239.69 229.69 225.49
2 - - ABE 273.58 261.44 261.20 229.65 427.74
3 - - ABE & CDF 272.03 260.41 261.85 229.85 429.08
4 - - EFG 270.43 260.03 261.68 230.93 429.75
5 - - EFG & HIJ 268.50 257.28 258.02 229.04 420.92
6 - AB - 276.57 268.59 267.84 230.91 381.19
7 - AB ABE 332.05 310.38 301.97 311.47 622.86
8 - AB ABE & CDF 327.36 307.80 301.70 304.53 614.35
9 - AB EFG 313.17 294.00 292.28 358.02 581.11
10 - AB EFG & HIJ 309.87 290.69 288.42 358.65 583.58
11 - AB & CD - 314.14 300.61 303.04 355.12 540.66
12 - AB & CD ABE 366.72 339.59 339.34 465.36 768.77
13 - AB & CD ABE & CDF 367.72 339.94 338.14 481.86 791.92
14 - AB & CD EFG 349.83 326.19 327.28 511.12 749.87
15 - AB & CD EFG & HIJ 348.32 325.15 326.83 511.89 738.48
16 J - - 234.79 228.98 230.71 227.02 431.37
17 J - ABE 277.43 262.18 261.74 359.98 637.26
18 J - ABE & CDF 278.91 262.92 261.85 366.59 638.97
19 J - EFG 275.66 261.64 261.74 363.91 639.04
20 J - EFG & HIJ 271.56 257.94 258.51 352.67 630.41
21 J AB - 295.75 276.33 271.15 296.91 586.28
22 J AB ABE 333.72 308.15 305.91 488.95 832.80
23 J AB ABE & CDF 329.56 304.58 302.56 481.66 819.86
24 J AB EFG 318.15 295.20 295.72 482.74 786.77
25 J AB EFG & HIJ 316.42 293.29 292.92 489.47 784.29
26 J AB & CD - 328.99 305.46 305.49 451.17 747.47
27 J AB & CD ABE 367.91 340.29 341.44 635.78 981.25
28 J AB & CD ABE & CDF 366.24 339.03 340.91 651.35 994.43
29 J AB & CD EFG 353.67 328.51 330.26 646.87 964.19
30 J AB & CD EFG & HIJ 351.97 326.85 329.04 637.61 947.39
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Table 3.7: Within-subjects ANOVA with a Bonferroni correction, α = .05
10

No. 1-way 2-way 3-way Seq. P.C. Sim. QMDR TM

1 - - - d c d b a
2 - - ABE c b b a d
3 - - ABE & CDF c b b a c
4 - - EFG c b b a d
5 - - EFG & HIJ c b b a d
6 - AB - b b b a c
7 - AB ABE b a a a c
8 - AB ABE & CDF b a a a c
9 - AB EFG b a a c d
10 - AB EFG & HIJ b a a c d
11 - AB & CD - a a a b c
12 - AB & CD ABE b a a c d
13 - AB & CD ABE & CDF b a a c d
14 - AB & CD EFG b a a c d
15 - AB & CD EFG & HIJ b a a c d
16 J - - b ab ab a c
17 J - ABE b a a c d
18 J - ABE & CDF b a a c d
19 J - EFG b a a c d
20 J - EFG & HIJ b a a c d
21 J AB - b a a c d
22 J AB ABE b a a c d
23 J AB ABE & CDF b a a c d
24 J AB EFG b a a c d
25 J AB EFG & HIJ b a a c d
26 J AB & CD - b a a c d
27 J AB & CD ABE b a a c d
28 J AB & CD ABE & CDF b a a c d
29 J AB & CD EFG b a a c d
30 J AB & CD EFG & HIJ b a a c d
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Table 3.8: Average R2 values (as percentages) for two-way and three-way interactions
combined

No. 1-way 2-way 3-way Seq. P.C. Sim. QMDR

1 - - - -6.44% -4.86% -6.30% -1.86%
2 - - ABE 36.04% 38.88% 38.93% 46.31%
3 - - ABE & CDF 36.60% 39.31% 38.97% 346.43%
4 - - EFG 37.07% 39.49% 39.11% 46.26%
5 - - EFG & HIJ 36.21% 38.88% 38.70% 45.59%
6 - AB - 27.45% 29.54% 29.74% 39.42%
7 - AB ABE 46.69% 50.17% 51.52% 49.99%
8 - AB ABE & CDF 46.71% 49.90% 50.89% 50.43%
9 - AB EFG 46.11% 49.41% 49.70% 38.39%
10 - AB EFG & HIJ 46.90% 50.19% 50.58% 38.54%
11 - AB & CD - 41.90% 44.40% 43.95% 34.32%
12 - AB & CD ABE 52.30% 55.83% 55.86% 39.47%
13 - AB & CD ABE & CDF 53.57% 57.07% 57.30% 39.15%
14 - AB & CD EFG 53.35% 56.50% 56.36% 31.84%
15 - AB & CD EFG & HIJ 52.83% 55.97% 55.74% 30.68%
16 J - - 45.57% 46.92% 46.52% 47.37%
17 J - ABE 56.47% 58.86% 58.93% 43.51%
18 J - ABE & CDF 56.35% 58.85% 59.02% 42.63%
19 J - EFG 56.86% 59.06% 59.04% 43.05%
20 J - EFG & HIJ 56.92% 59.08% 58.99% 44.06%
21 J AB - 49.55% 52.87% 53.75% 49.36%
22 J AB ABE 59.93% 63.00% 63.27% 41.29%
23 J AB ABE & CDF 59.80% 62.85% 63.10% 41.25%
24 J AB EFG 59.56% 62.48% 62.41% 38.64%
25 J AB EFG & HIJ 59.66% 62.60% 62.65% 37.59%
26 J AB & CD - 55.99% 59.13% 59.13% 39.64%
27 J AB & CD ABE 62.51% 65.32% 65.20% 35.21%
28 J AB & CD ABE & CDF 63.17% 65.91% 65.72% 34.50%
29 J AB & CD EFG 63.32% 65.93% 65.75% 32.91%
30 J AB & CD EFG & HIJ 62.85% 65.50% 65.27% 32.70%
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Chapter 4

Model Selection

4.1 Introduction

In previous chapters of this work, we used a simple linear regression to model the

quantitative outcome variable against the predictor derived from AQMDR, known

as the aggregated score. The reasoning behind this model selection was in interest

of consistent comparison with current methodology. However, a general strategy for

this type of analysis may require model selection. We have shown that AQMDR is

an adequate method for developing a predictor, but in some cases a simple linear

regression including the aggregated score may be improved upon by performing poly-

nomial regression, or by taking other transformations of the aggregated score. In this

chapter, we provide a simple example of this model selection, and simulation results

for the new model.

4.2 The Quadratic Model

Consider an example scenario with 4 SNPs of interest (SNP1, SNP2, SNP3, SNP4)

and an outcome variable which is simulated with a normal distribution, where the

mean of this normal distribution was increased by the presence of interactions. That

is,

Yi = 120 + 30I[SNP1i = 2]I[SNP2i = 2] + 30I[SNP1i = 2]I[SNP3i = 2]

+ 30I[SNP1i = 2]I[SNP4i = 2] + εi

(4.1)

where εi
iid∼ N(0, 16) and Yi is the value of some quantitative trait for individual i.

For 1000 simulated testing subjects, the aggregated score using an arbitrary cutoff

of c = .05 (ACAS) based on 1000 training subjects was calculated. The scatterplot
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of Y vs. the numerator of the arbitrary cutoff aggregated score for the testing data

is displayed in figure 4.1. By examining this plot, one can see that a simple linear

Figure 4.1: Scatterplot of Y vs. the Numerator of the Aggregated Score

regression may not be appropriate in this case. In fact, the relationship between the

response and the aggregated score seems to follow a parabolic pattern. Based on this

visual analysis, a quadratic model may be a better fit. In fact, suppose we have the

following:

Full model: Yi = β0 + β1AggregatedScorei + β2AggregatedScore
2
i + εi

Reduced model: Yi = β0 + β1AggregatedScorei + εi

where εi
iid∼ N(0, σ2). If we examine the hypotheses H0 : β2 = 0 vs H1 : β2 6= 0, we

observe a p-value that is less than .001, and reject H0. Thus, we determine that the

full, quadratic model is a better fit than the reduced, simple linear model.

With the exception of the variance used in simulation of phenotypes, simulation

model 4.1 is very similar to the simulation scenarios used in previous chapters of this
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work. In what follows, we recreate the simulation scenarios presented in chapter 2

and chapter 3, but this time we also use the following quadratic data analysis model

to replace the simple linear data analysis model previously employed in AQMDR:

Yi = β0 + β1AggregatedScorei + β2AggregatedScore
2
i + εi (4.2)

where εi
iid∼ N(0, σ2).

4.3 Simulation Results: Two-way Interactions

Recall the simulation scenarios for two-way interactions presented in chapter 2 of

this work. The study was a factorial design in which we examined variations of the

number of SNPs to be considered and the number of interactions present in nature.

Let M be the number of SNPs under consideration, and x be the number of two-way

interactions present. SNPs were generated under the assumption of Hardy-Weinberg

equilibrium [13]. For example, consider a SNP, call it SNPA, with two alleles, each

of which take states of A or a. We let the probability that an individual carries

allele A on a single chromosome be p = .5, and the probability that a person carries

allele a on a single chromosome be q = .5. Then the SNP states AA and aa each

have probability p2 = .25 and q2 = .25 of occurring. SNP state Aa occurs with

probability 2pq = .5. Phenotypes for individuals were randomly generated by a

N(120, σ2) distribution, where the mean of this normal distribution was increased by

the presence of an interaction. For example, suppose that the two-way interaction of

SNP1 and SNP2 was included in simulation. Then the mean of the random normal

distribution used to generate the phenotype was increased by 30 in the event that

an individual carried a genotypic combination such as (SNP1 = 2)(SNP2 = 2). This

example simulation model is displayed in equation 4.3. In the factorial simulation

study, we varied the standard deviation, σ of the normal distribution used to generate
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phenotypes as well. See table 2.1 for the particular variations considered in this

factorial simulation study. Each training and testing data set contained phenotypes

and SNP states for 1000 simulated subjects.

Yi = 120 + 30(I[SNP1i = 2]I[SNP2i = 2]) + εi, εi
iid∼ N(0, σ2). (4.3)

For each combination of x, M , and σ2 variants, 100 independent training and

testing data sets were generated. After predictions for the phenotypes in the testing

data were made based on the training data, mean squared prediction error (MSPE)

was calculated for each testing set. The results of the simulation study are presented

in table 4.1. Note that this table is identical to table 2.2 except for the addition

of a new column called “Quad”. This column contains the average MSPEs obtained

from implementing AQMDR (with ACAS, c = .05) and using the model expressed in

equation 4.2. In all scenarios, the Quadratic AQMDR MSPEs are lower than those

produced by the five original AQMDR methods (CWAS, ACAS (.05), ACAS (.20),

HAS (.05) and HAS (.20)). The Quad MSPEs are also lower than MSPEs produced

by QMDR in all scenarios. In many scenarios, AQMDR with a quadratic model

produced results that are very close to the Oracle approach.

To further explore the distinctions between methods in the simulation study, a single

factor, within-subjects ANOVA was performed for each simulation scenario, followed

by post hoc multiple pairwise comparisons among AQMDR, Quadratic AQMDR,

QMDR and the oracle method. For simplicity, we selected ACAS (c = .05) as the

representative variation of the original AQMDR, to be compared with QMDR, the

Oracle Method, and Quadratic AQMDR (Quad). For all simulation scenarios, the

ANOVA yielded significance at α = .05 level, suggesting that there are differences

among the average MSPEs for the prediction methods. The prediction methods were

ranked according to the results from multiple pairwise comparisons. The rankings
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Table 4.1: Average MSPE over 100 independent testing data sets for two-way inter-
action simulation study (with Quadratic AQMDR included).
M x σ CWAS ACAS

(.05)
ACAS
(.20)

HAS
(.05)

HAS
(.20)

QMDR Oracle TM Quad

4 1 10 127.19 126.59 127.27 128.30 128.09 107.78 100.55 153.96 101.93
4 1 15 255.00 254.51 254.79 255.92 255.80 247.02 225.65 277.17 231.77
4 1 20 437.61 437.03 437.40 439.31 438.87 431.89 403.66 456.85 416.76
10 1 10 133.91 131.25 132.91 131.82 133.47 109.41 100.61 153.67 103.18
10 1 15 262.52 258.09 260.87 259.29 261.85 247.03 225.28 277.70 232.19
10 1 20 444.32 438.73 440.95 440.42 442.51 435.32 402.44 454.40 417.65
4 3 10 203.78 203.78 203.78 203.78 203.78 225.70 99.57 320.45 114.06
4 3 15 331.22 331.26 331.26 331.26 331.26 354.72 225.45 448.18 241.28
4 3 20 505.97 506.35 506.20 506.36 506.20 525.42 402.17 620.46 424.07
10 3 10 223.39 220.25 223.18 220.87 223.68 226.41 100.41 320.52 149.30
10 3 15 349.97 345.91 350.19 346.67 350.87 352.16 224.93 446.17 277.99
10 3 20 528.69 523.60 528.67 524.69 529.72 527.73 400.41 623.86 458.92
4 6 10 423.23 423.23 423.23 423.23 423.23 561.48 101.14 675.00 190.14
4 6 15 554.04 554.04 554.04 554.04 554.04 693.65 227.01 805.64 320.52
4 6 20 719.00 719.00 719.00 719.00 719.00 856.36 403.00 970.46 500.87
10 6 10 338.23 329.28 336.23 330.49 337.40 561.73 101.42 674.75 109.62
10 6 15 458.38 450.28 456.92 451.36 457.97 683.20 225.75 800.40 235.75
10 6 20 631.19 622.48 630.08 623.71 631.07 844.66 402.48 954.56 413.61

from multiple pairwise comparisons with a Bonferroni correction based on the total

number of comparisons (α = .05
6

) are displayed in table 4.2.
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Table 4.2: Within-subjects ANOVA with a Bonferroni correction, α = .05
6

for two-way
interaction simulation study (with Quadratic AQMDR included).

M x σ ACAS
(.05)

QMDR Oracle Quad

4 1 10 c b a a
4 1 15 d c a b
4 1 20 d c a b
10 1 10 c b a a
10 1 15 d c a b
10 1 20 c c a b
4 3 10 c d a b
4 3 15 c d a b
4 3 20 c d a b
10 3 10 c d a b
10 3 15 c d a b
10 3 20 c c a b
4 6 10 c d a b
4 6 15 c d a b
4 6 20 c d a b
10 6 10 b c a a
10 6 15 c d a b
10 6 20 c d a b

For each simulation scenario (a row in the table), prediction methods were as-

signed rankings a, b , c, etc. where a is the ranking assigned to the method with

the lowest average MSPE. Methods sharing a letter ranking were not determined to

be statistically significant in a pairwise comparison. Note that in every scenario,

Quadratic AQMDR receives a higher ranking than ACAS and QMDR, and in some

scenarios receives a ranking equivalent to that of the Oracle Method.

4.4 Simulation Results: Three-way Interactions

Recall the simulation scenarios for three-way interactions presented in chapter 3.

Again, we performed a simulation study using a factorial design in which we examined

variations of the number of SNPs to be considered (M) and the number of present

interactions (x). SNPs were generated in the same manner discussed in the previous
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section. Phenotypes for subjects were generated using a N(120, σ2) distribution. The

mean of this normal distribution was increased by 30 with the presence of a three-

way interaction. For example, suppose that an interaction between SNP1, SNP2 and

SNP3 was included in a simulation scenario. In this case, the mean of the random

normal distribution used to generate the phenotype was increased in the event that

an individual carried a genotypic combination such as (SNP1 = 2)(SNP2 = 2)(SNP3

=2). This example simulation scenario is displayed in equation 4.4. In the factorial

simulation study, we varied the standard deviation of the normal distributions used

to generate the phenotypes. See table 3.1 for the particular variations considered in

this study. Each training and testing data set contained phenotypes and SNP states

for 1000 subjects.

Yi = 120 + 30(I[SNP1i = 2]I[SNP2i = 2]I[SNP3i = 2]) + εi, εi
iid∼ N(0, σ2) (4.4)

For each combination of variants (M , x, σ), 100 independent training and testing

data sets were generated. The methods considered were the same as those described

in chapter 2, including AQMDR (ACAS and HAS with cutoffs of c = .05 and c = .20,

and CWAS), QMDR, the training mean method and the oracle method. As we

considered only three-way interactions in this simulation study, the QMDR method

was limited only to the selection of three-way interaction models. After predictions

for the phenotypes in the testing data were made based on the training data, the mean

squared prediction error (MSPE) was calculated for each testing set. The results of

the factorial simulation study are displayed in table 4.3. Each value in the table is

the average MSPE over 100 independent testing data sets. Note that this table is

identical to table 3.2 except for the addition of a new column called “Quad”. This

column contains the average MSPEs obtained from implementing AQMDR (with

ACAS, c = .05) and using the model expressed in equation 4.2. Again we see that
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in all scenarios, the Quadratic AQMDR MSPEs are lower than those produced by

the five original AQMDR methods (CWAS, ACAS (.05), ACAS (.20), HAS (.05) and

HAS (.20)). The Quad MSPEs are also lower than MSPEs produced by QMDR in

all scenarios.

Table 4.3: Average MSPE over 100 independent testing data sets for three-way in-
teraction simulation study (with Quadratic AQMDR included).
M x σ CWAS ACAS

(.05)
ACAS
(.20)

HAS
(.05)

HAS
(.20)

QMDR Oracle TM Quad

4 1 10 117.26 117.26 117.26 117.26 117.26 105.21 100.17 208.32 102.91
4 1 15 250.27 250.32 250.32 250.32 250.32 249.87 225.50 332.00 233.68
4 1 20 435.61 436.10 436.09 436.29 436.27 441.55 400.84 508.61 419.16
10 1 10 147.45 144.75 146.96 144.89 147.07 106.28 99.91 208.83 114.14
10 1 15 271.20 265.96 271.13 266.25 271.34 246.01 223.67 330.63 240.71
10 1 20 456.11 447.47 455.27 447.94 455.64 438.04 400.56 507.22 428.03
4 2 10 152.08 152.08 152.08 152.08 152.08 201.06 101.15 345.97 131.69
4 2 15 278.18 278.18 278.18 278.18 278.18 323.70 223.56 470.72 257.36
4 2 20 457.59 457.59 457.59 457.59 457.59 497.20 397.00 644.16 434.38
10 2 10 175.67 173.43 174.89 173.50 174.96 200.34 100.27 346.25 124.85
10 2 15 303.76 301.19 302.78 301.28 302.87 323.12 225.83 468.38 254.09
10 2 20 487.30 483.83 485.95 483.97 486.08 508.05 401.86 646.56 437.34

A single factor, within-subjects ANOVA was performed for each of the twelve simu-

lation scenarios, followed by post hoc multiple pairwise comparisons among AQMDR,

Quadratic AQMDR, QMDR and the oracle method. For simplicity, we selected ACAS

(c = .05) as the representative variation of the original AQMDR, to be compared with

QMDR, the Oracle Method, and Quadratic AQMDR (Quad). In each simulation sce-

nario, the ANOVA yielded significance at α = .05 level, suggesting that there are

differences among the average MSPEs for the methods. Prediction methods were

ranked according to results from multiple pairwise comparisons (with a Bonferroni

correction, α = .05
6

). These rankings are displayed in table 4.4.
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Table 4.4: Within-subjects ANOVA with a Bonferroni correction, α = .05
6

for three-
way interaction simulation study (with Quadratic AQMDR included).

M x σ ACAS
(.05)

QMDR Oracle Quad

4 1 10 d c a b
4 1 15 c c a b
4 1 20 c d a b
10 1 10 d c a b
10 1 15 d c a b
10 1 20 d c a b
4 2 10 c d a b
4 2 15 c d a b
4 2 20 c d a b
10 2 10 c d a b
10 2 15 c d a b
10 2 20 c d a b

For each simulation scenario (represented by a row in the table), prediction meth-

ods were assigned rankings a, b, c, etc. where a is the ranking assigned to the method

with the lowest average MSPE. Again, methods sharing a letter ranking were not

determined to be statistically significant in a pairwise comparison (that is, there is

no significant difference between the methods). As we saw with the simulations for

two-way interactions, the Quadratic AQMDR method performed better than ACAS

(c = .05) and QMDR. However, there were no scenarios in which Quadratic AQMDR

received a rank equivalent to that of the Oracle Method.

4.5 Simulation Results: Two-way and Three-way Interactions Combined

In chapter 3, we also examined the combination of two-way and three-way interac-

tions through a simulation study. In each simulation, we consider ten SNPs (M = 10)

and SNP states are generated using Hardy-Weinberg Equilibrium [13]. For example,

consider a SNP, call it SNPA, with two alleles, each of which take states of A or a.

We let the probability that an individual carries allele A on a single chromosome be

p = .5, and the probability that a person carries allele a on a single chromosome
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be q = .5. Then the SNP states AA and aa each have probability p2 and q2 of oc-

curring. SNP state Aa occurs with probability 2pq. In the two previous sections, p

was fixed at p = .5. As we saw in chapter 3, for the study of two and three-way

interactions combined, the value of p for each SNP is generated using a continuous

uniform distribution on (.5, .9). Phenotypes for individuals were randomly gener-

ated by a N(120, σ2) distribution, where the mean of this normal distribution was

increased by 30 with the presence of an interaction. For example, suppose that the

two-way interaction of SNP1 and SNP2 was included in simulation. Then the mean of

the random normal distribution used to generate the phenotype was increased in the

event that an individual carried a genotypic combination such as (SNP1 = 2)(SNP2

= 2). The standard deviation of this normal distribution was fixed for each scenario

in the study.

In table 4.5, the “One-way” column indicates which of the ten SNPs considered

in simulation (SNPA, SNPB,..., SNPJ) are included as a one-way interaction (main

effect). For example, if SNPJ is included as a main effect in simulation, then ”J”

appears in this column. The “Two-way” column indicates which two-way interactions

were included. For example, if the interaction between SNPA and SNPB was included

in simulation, then AB appears in this column. Similarly, the “Three-way” column

indicates which three-way interactions were included. For example, if the interaction

between SNPC, SNPD and SNPE was included in simulation, then “CDE” appears

in this column. The magnitude of all one-way, two-way and three-way interactions

included in simulation was 30. That is, the presence of an interaction in simulation

increased the mean of the random normal distribution by 30. When calculating ag-

gregated scores in the AQMDR method, the arbitrary cutoff aggregated score with

a cutoff of c = .05 was used. Further, the Simultaneous Inclusion method (see chap-

ter 3) was selected as the representative AQMDR method in this study. That is,
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Simultaneous Inclusion was used for both the original AQMDR implementation and

the Quadratic AQMDR implementation, respectively labeled “Sim.” and “Sim-Quad”

in table 4.5. Note that “Sim-Quad” data analysis model required a quadratic term

for the two-way interaction aggregated score and a quadratic term for the three-way

aggregated score. Each value in the “Sim.”, “Sim-Quad”, and “QMDR” columns in

table 4.5 is the average MSPE calculated from 100 independent testing data sets. For

discussion that follows, we have assigned a numerical value to each scenario in the first

column of table 4.5. One can see that Quadratic AQMDR yielded smaller average

MSPEs than the original AQMDR in all simulation scenarios (with the exception of

scenarios 1 and 16 in which no interactions were present). Quadratic AQMDR also

produced lower average MSPEs than QMDR in most simulation scenarios. However,

in scenarios 1-6 and 16, QMDR performed better than Quadratic AQMDR.

Table 4.6 displays the results of post hoc multiple pairwise comparisons among the

prediction methods, performed after single factor, within subjects ANOVA tests which

all yielded significance at the α = .05 significance level. The prediction methods were

ranked according to the multiple pairwise comparisons (with Bonferroni correction,

α = .05
3

), where a ranking of a is assigned to the method with the lowest MSPE.

As in previous sections, methods sharing a letter ranking were not determined to

be statistically different. Note that Quadratic AQMDR received a ranking of “a” in

nearly all scenarios, except for 1-6 and 16 as mentioned above.

The example presented in this chapter implores us to recommend model selection

as a general strategy for AQMDR. Although we saw promising empirical results in

chapters 2 and 3 of this work, these results were improved with the implementation of

the quadratic model in place of the simple linear model applied in previous chapters.

Other models, such as a piece-wise linear model may have also yielded promising

results.

48



Table 4.5: Average MSPEs for two-way and three-way interactions combined (with
Quadratic AQMDR included).

No. One-
way

Two-way Three-way Sim. Sim-
Quad

QMDR

1 - - - 239.69 241.85 229.69
2 - - ABE 261.20 247.60 229.65
3 - - ABE & CDF 261.85 250.80 229.75
4 - - EFG 261.68 247.28 230.93
5 - - EFG & HIJ 258.02 242.99 229.04
6 - AB - 267.84 240.29 230.91
7 - AB ABE 301.97 279.18 311.47
8 - AB ABE & CDF 301.70 279.22 304.53
9 - AB EFG 292.28 280.61 358.02
10 - AB EFG & HIJ 288.42 277.01 358.65
11 - AB & CD - 303.04 280.28 355.12
12 - AB & CD ABE 339.34 318.10 465.36
13 - AB & CD ABE & CDF 338.14 320.09 481.86
14 - AB & CD EFG 327.28 313.96 511.12
15 - AB & CD EFG & HIJ 326.83 313.37 511.89
16 J - - 230.71 230.90 227.02
17 J - ABE 261.74 255.56 359.98
18 J - ABE & CDF 261.85 256.58 366.59
19 J - EFG 261.74 255.81 363.91
20 J - EFG & HIJ 258.51 252.98 352.67
21 J AB - 271.15 259.59 296.91
22 J AB ABE 305.91 290.42 488.95
23 J AB ABE & CDF 302.56 289.19 481.66
24 J AB EFG 295.72 286.20 482.74
25 J AB EFG & HIJ 292.92 283.20 489.47
26 J AB & CD - 305.49 290.70 451.17
27 J AB & CD ABE 341.44 328.28 635.78
28 J AB & CD ABE & CDF 340.91 327.75 651.35
29 J AB & CD EFG 330.26 319.47 646.87
30 J AB & CD EFG & HIJ 329.04 318.07 637.61
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Table 4.6: Within-subjects ANOVA with a Bonferroni correction, α = .05
3

for two-way
and three-way interactions combined (with Quadratic AQMDR included).

No. One-way Two-way Three-way Sim. Sim-
Quad

QMDR

1 - - - b b a
2 - - ABE c b a
3 - - ABE and CDF c b a
4 - - EFG c b a
5 - - EFG and HIJ c b a
6 - AB - c b a
7 - AB ABE b a c
8 - AB ABE and CDF b a c
9 - AB EFG a a b
10 - AB EFG and HIJ b a c
11 - AB and CD - b a c
12 - AB and CD ABE b a c
13 - AB and CD ABE and CDF b a c
14 - AB and CD EFG b a c
15 - AB and CD EFG and HIJ b a c
16 J - - ab b a
17 J - ABE a a b
18 J - ABE and CDF a a b
19 J - EFG a a b
20 J - EFG and HIJ a a b
21 J AB - b a c
22 J AB ABE b a c
23 J AB ABE and CDF b a c
24 J AB EFG a a b
25 J AB EFG and HIJ a a b
26 J AB and CD - b a c
27 J AB and CD ABE b a c
28 J AB and CD ABE and CDF b a c
29 J AB and CD EFG a a b
30 J AB and CD EFG and HIJ a a b
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Chapter 5

Theoretical Considerations

5.1 Theoretical Support of AQMDR with Arbitrary Cutoff Aggregated

Score: Two-way Interactions

Suppose we have the following 2 × 2 table: Assume µhigh > µlow. Y1, ..., Y4n

Table 5.1: Distribution of Y phenotypes among SNP condition combinations.
SNP2 Condition 1 SNP2 Condition 2

SNP1 Condition 1 Y1, ..., Yn
iid∼ N(µhigh, σ

2) Yn+1, ..., Y2n
iid∼ N(µlow, σ

2)

SNP1 Condition 2 Y2n+1, ..., Y3n
iid∼ N(µlow, σ

2) Y3n+1, ..., Y4n
iid∼ N(µlow, σ

2)

represent the values of some quantitative phenotype for each subject, i = 1, 2, ..., 4n.

For interpretative purposes, for SNPs with three states (AA, Aa, and aa), Condition

1 might be the combination of SNP states AA and Aa, while Condition 2 is the SNP

state aa. Alternatively, Condition 1 may be the SNP state AA, while condition 2 is

the combination of states Aa and aa. By relabeling condition 1 and condition 2, the

configuration in table 5.1 covers any situation in which the phenotype mean of one

quadrant is higher than that of the other three quadrants (under the assumption that

the other three quadrants all have the same mean).

Let p1 be the high/low classification from the AQMDR method of a 2 × 2 table

in which cell 1 (the cell in the top left) is correctly identified as “high” and the three

remaining cells are classified as “low”. See figure 5.1, in which the shaded cell is

the one categorized as “high”, and the light cells are categorized as “low”. In what

follows, we assume that AQMDR is applied to two-way interactions in which there

are four multifactor classes, rather than the nine multifactor classes we observed for

each two-way interaction in previous chapters.
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Figure 5.1: The p1 “high”/“low” configuration.

Our goal is to prove that the under the parameter state in table 5.1, the probability

that the gene-to-gene interaction of SNP1 and SNP2 is included in the AQMDR

Arbitrary Cutoff aggregated score (ACAS with fixed c > 0) and that the p1 high/low

configuration of this interaction is correctly assigned in AQMDR tends to 1 as n goes

to infinity. To simplify notation, all probability calculations in this proof are based

on the parameter state shown in table 5.1. To clarify, suppose we have the following

events:

1. Event A: the event that the gene-to-gene interaction of SNP1 and SNP2 is

included in the AQMDR arbitrary cutoff aggregated score. That is, the inter-

action receives a weight of 1.

2. Event B: the event that the p1 high/low configuration of this interaction is

correctly assigned in AQMDR.

We want to show that P (A ∩B)→ 1 as n→∞.

The proof proceeds as follows:

Without loss of generality, let c = .05. First note that P (B) = P ((Ȳ1 >
¯̄Y )∩ (Ȳ2 ≤

¯̄Y ) ∩ (Ȳ3 ≤ ¯̄Y ) ∩ (Ȳ4 ≤ ¯̄Y )), where ¯̄Y is the overall mean of of Y1, Y2, ..., Y4n, and Ȳj
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for j ∈ {1, 2, 3, 4} is the mean within cell j. That is, Ȳ1 is the mean of Y1, Y2, ..., Yn,

Ȳ2 is the mean of Yn+1, Yn+2, ..., Y2n, etc. See figure 5.2.

Figure 5.2: Individual cell means.

By DeMorgan’s Law and Boole’s inequality, we have

P (A ∩B) = 1− P (Ac ∪Bc)

≥ 1− P (Ac)− P (Bc)

= 1− P (Ac)− P ((Ȳ1 ≤ ¯̄Y ) ∪ (Ȳ2 >
¯̄Y ) ∪ (Ȳ3 >

¯̄Y ) ∪ (Ȳ4 >
¯̄Y ))

≥ 1− P (Ac)− (P (Ȳ1 ≤ ¯̄Y ) + P (Ȳ2 >
¯̄Y ) + P (Ȳ3 >

¯̄Y ) + P (Ȳ4 >
¯̄Y ))

(5.1)

By the Weak Law of Large Numbers and Slutsky’s Theorem, we have the following:

1. Ȳ1
p→ µhigh, as n→∞.

2. Ȳ2
p→ µlow, Ȳ3

p→ µlow, Ȳ4
p→ µlow, as n→∞.

3. ¯̄Y = n(Ȳ1+Ȳ2+Ȳ3+Ȳ4)
4n

= (Ȳ1+Ȳ2+Ȳ3+Ȳ4)
4

p→ µhigh+3µlow
4

:= µ, as n→∞.

4. µ < µhigh and µ > µlow.

Thus, as n→∞, P (Ȳ1 ≤ ¯̄Y ) + P (Ȳ2 >
¯̄Y ) + P (Ȳ3 >

¯̄Y ) + P (Ȳ4 >
¯̄Y )→ 0.
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This leaves only the consideration of P (Ac). Recall that in AQMDR with ACAS,

the inclusion of a gene-to-gene interaction in the aggregated score is based on a p-value

determined from permutation testing (see chapter 2). When c = .05, an interaction is

assigned a weight of 1 in the aggregated score if the permutation p-value associated

with that interaction is less than .05. Our goal is to show that, with probability

approaching 1 as n → ∞, the p-value achieved by permutation for the T-statistic

corresponding to this interaction is less than .05. That is, the probability that the

interaction is included in the aggregated score tends to 1 as n→∞. By establishing

this, we can then determine that P (Ac) → 0 as n → ∞. We will prove this with

a series of corollaries. Then, by the expression in (5.1), we will have shown that

P (A ∩B)→ 1 as n→∞.

First note that (disregarding 0 probability events) there are 14 possible“high”/“low”

configurations (labeling of quadrants as “high” or “low”) which can be assigned to a

2 × 2 table with AQMDR. Let them be indexed by p = 1, 2, ..., 14. See figure 5.3,

in which shaded cells are categorized as “high” and the light cells are categorized as

“low”.
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Figure 5.3: 14 possible “high”/“low” configurations.

We will define ci(p) for each p ∈ {1, 2, ..., 14}, as shown in table 5.2. Note that for

all p ∈ {1, 2, ..., 14},
∑4n

i=1 ci(p) = 0. Define T (p) for each p ∈ {1, ..., 14} as follows:

Table 5.2: ci(p) for each p ∈ {1, 2, ..., 14}.
p i ∈ {1, ..., n} i ∈ {n+ 1, ..., 2n} i ∈ {2n+ 1, ..., 3n} i ∈ {3n+ 1, ..., 4n}
1 3 -1 -1 -1
2 -1 3 -1 -1
3 -1 -1 3 -1
4 -1 -1 -1 3
5 1 1 -1 -1
6 1 -1 1 -1
7 -1 1 -1 1
8 -1 -1 1 1
9 1 -1 -1 1
10 -1 1 1 -1
11 1 1 1 -3
12 -3 1 1 1
13 1 -3 1 1
14 1 1 -3 1
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T (p) :=

4n∑
i=1

ci(p)Yi√
4n∑
i=1

ci(p)2

.

Note that for any p with one cell categorized as “high” and three cells categorized as

“low”, or one cell categorized as “low” and three cells categorized as “high”,

4n∑
i=1

ci(p)
2 =

n∑
i=1

(3)2 +
3n∑
i=1

(−1)2 = 12n.

This includes p ∈ {1, 2, 3, 4, 11, 12, 13, 14}. For all other values of p,

4n∑
i=1

ci(p)
2 =

2n∑
i=1

(1)2 +
2n∑
i=1

(−1)2 = 4n.

Corollary 1: T (p) ∼ N(kn(p)(µhigh − µlow), σ2), for a constant kn(p).

Proof: There are six cases we will consider for the distribution of T (p).

Case 1: One cell is classified as “high”, and the “high” cell is cell 1. That is, p = 1.

Consider T(1).

T (1) =

4n∑
i=1

ci(1)Yi
√

12n

=

n∑
i=1

(3)Yi +
4n∑

i=n+1

(−1)Yi
√

12n

=
3nȲhigh − 3nȲlow√

12n

=
3n(Ȳhigh − Ȳlow)√

12n
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where Ȳhigh is a sample mean of realized values of Yi from a cell with mean µhigh (cell

1), and Ȳlow is a sample mean of realized values of Yi from cells with mean µlow (cells

2, 3, and 4). As
∑4n

i=1 ci(1) = 0,

T (1) ∼ N
(
kn(1)(µhigh − µlow), σ2

)
where kn(1) = 3n√

12n
=
(

3n
4

)1/2
.

Case 2: One cell is classified as “high”, and the “high” cell is not cell 1. That is,

p ∈ {2, 3, 4}.

Consider T(2).

T (2) =

4n∑
i=1

ci(2)Yi
√

12n

=

n∑
i=1

(−1)Yi +
2n∑

i=n+1

(3)Yi +
4n∑

i=2n+1

(−1)Yi
√

12n

=
−nȲhigh + 3nȲlow − 2nȲlow√

12n

As
4n∑
i=1

ci(2) = 0,

T (2) ∼ N

(
(−nµhigh + 3nµlow − 2nµlow)√

12n
, σ2

)
= N

(
kn(2) (µhigh − µlow) , σ2

)
where kn(2) = −n√

12n
= −

(
n
12

)1/2
. The same is true for T (3) and T (4).

Case 3: Two cells are classified as “high”, and one of the “high” cells is cell 1. That

is, p ∈ {5, 6, 9}.
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Consider T(5).

T (5) =

4n∑
i=1

ci(5)Yi
√

4n

=

2n∑
i=1

(1)Yi +
2n∑

i=n+1

(1)Yi +
4n∑

i=2n+1

(−1)Yi
√

4n

=
nȲhigh + nȲlow − 2nȲlow√

4n

As
4n∑
i=1

ci(5) = 0,

T (5) ∼ N

(
(nµhigh + nµlow − 2nµlow)√

4n
, σ2

)
= N

(
kn(5) (µhigh − µlow) , σ2

)
where kn(5) = n√

4n
=
(
n
4

)1/2
. The same is true for T (6) and T (9).

Case 4: Two cells are classified as “high”, but cell 1 is classified as “low”. That

is, p ∈ {7, 8, 10}.

Consider T(7).

T (7) =

4n∑
i=1

ci(7)Yi
√

4n

=

n∑
i=1

(−1)Yi +
2n∑

i=n+1

(1)Yi +
3n∑

i=2n+1

(−1)Yi +
4n∑

i=3n+1

(1)Yi
√

4n

=
−nȲhigh + nȲlow − nȲlow + nȲlow√

4n
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As
4n∑
i=1

ci(7) = 0,

T (7) ∼ N

(
(−nµhigh + nµlow − nµlow + nµlow)√

4n
, σ2

)
= N

(
kn(7) (µhigh − µlow) , σ2

)
where kn(7) = −n√

4n
= −

(
n
4

)1/2
. The same is true for T (8) and T (10).

Case 5: Three cells are classified as “high”, one of which is cell 1. That is, p ∈

{11, 13, 14}.

Consider T(11).

T (11) =

4n∑
i=1

ci(11)Yi
√

12n

=

n∑
i=1

(1)Yi +
2n∑

i=n+1

(1)Yi +
3n∑

i=2n+1

(1)Yi +
4n∑

i=3n+1

(−3)Yi
√

12n

=
nȲhigh + nȲlow + nȲlow − 3nȲlow√

12n

As
4n∑
i=1

ci(11) = 0,

T (11) ∼ N

(
(nµhigh + nµlow + nµlow − 3nµlow)√

12n
, σ2

)
= N

(
kn(11) (µhigh − µlow) , σ2

)
where kn(11) = n√

12n
=
(
n
12

)1/2
. The same is true for T (13) and T (14).

Case 6: Three cells are classified as “high”, but cell 1 is classified as “low”. That

is, p = 12.
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Consider T(12).

T (12) =

4n∑
i=1

ci(12)Yi
√

12n

=

n∑
i=1

(−3)Yi +
4n∑

i=n+1

(1)Yi
√

12n

=
−3nȲhigh + 3nȲlow√

12n

As
4n∑
i=1

ci(12) = 0,

T (12) ∼ N

(
(−3nµhigh + 3nµlow)√

12n
, σ2

)
= N

(
kn(12) (µhigh − µlow) , σ2

)
where kn(12) = −3n√

12n
= −

(
3n
4

)1/2
.

In summary, T (p) ∼ N(kn(p)(µhigh−µlow), σ2), for a constant kn(p). The values of

kn(p) for each p are displayed in table 5.3. Note that kn(1) = max1≤p≤14kn(p). Thus

Table 5.3: kn(p) for each p ∈ {1, 2, ..., 14}.

p kn(p) p kn(p)

1
(

3n
4

)1/2
8 −

(
n
4

)1/2

2 −
(
n
12

)1/2
9

(
n
4

)1/2

3 −
(
n
12

)1/2
10 −

(
n
4

)1/2

4 −
(
n
12

)1/2
11

(
n
12

)1/2

5
(
n
4

)1/2
12 −

(
3n
4

)1/2

6
(
n
4

)1/2
13

(
n
12

)1/2

7 −
(
n
4

)1/2
14

(
n
12

)1/2
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we have proved Corollary 1. Now, define a T-statistic as follows:

T := max1≤p≤14T (p)

This T-statistic is not quite identical to the one used in AQMDR (see equation 2.1)

because sample variances are not incorporated. We forgo the estimation of the vari-

ances because we assume that Y1, ..., Y4n all have the same underlying variance. Let

δ be an arbitrary small positive number. Assume n is large enough such that

(kn(1)−max2≤p≤14kn(p))(µhigh − µlow) ≥ 2σ

δ
(5.2)

That is, [(3n
4

)1/2 − (n
4
)1/2](µhigh − µlow) ≥ 2σ

δ
.

Corollary 2: P (T = T (1)) ≥ 1− 13δ2.

Proof: Put µdiff := µhigh − µlow. Note that E[T (p) − T (1)] = (kn(p) − kn(1))µdiff

and V ar[T (p)− T (1)] ≤ 4σ2. By Chebychev’s Inequality, for all p ∈ {1, 2, ..., 14} we

have

P

(
|T (p)− T (1) + (kn(1)− kn(p))µdiff | ≥

2σ

δ

)
≤ δ2 (5.3)
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For any p ∈ {2, 3, ..., 14},

P (T (p) > T (1)) = P (T (p)− T (1) ≥ 0)

= P (T (p)− T (1) + (kn(1)− kn(p)) (µdiff ) ≥ (kn(1)− kn(p))µdiff )

≤ P

(
T (p)− T (1) + (kn(1)− kn(p)) (µdiff ) ≥

2σ

δ

)
by (5.2),

≤ P

(
|T (p)− T (1) + (kn(1)− kn(p)) (µdiff ) | ≥

2σ

δ

)
≤ δ2 by the inequality expressed in (5.3).

Now, consider P (T 6= T (1)). By Boole’s inequality, we have

P (T 6= T (1)) = P (T (1) 6= max1≤p≤14T (p))

= P ((T (2) > T (1)) ∪ (T (3) > T (1)) ∪ ... ∪ (T (14) > T (1)))

≤ P (T (2) > T (1)) + P (T (3) > T (1)) + ...+ P (T (14) > T (1))

≤ 13δ2

Hence,

P (T = T (1)) ≥ 1− 13δ2 (5.4)

and we have proved Corollary 2. Note that since T (p) is normally distributed, this

bound is not sharp.

Consider a fixed permutation π : {1, 2, ..., 4n} → {1, 2, ..., 4n}. Define Tπ(p) as

follows:

Tπ(p) :=

4n∑
i=1

cπ(i)(p)Yπ(i)√
4n∑
i=1

cπ(i)(p)2

=

4n∑
i=1

cπ(i)(p)Yπ(i)√
4n∑
i=1

ci(p)2

Define the test statistic for permutation π as follows:

Tπ := max1≤p≤14Tπ(p)
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Corollary 3: For all p ∈ {1, 2, ..., 14}:

Tπ(p) ∼ N(kπn(p)(µdiff ), σ
2)

where kπn(p) depends upon π only through Xp, where Xp is the number of phenotypes

which were originally in cell 1 that remained in a “high” cell after permutation.

Proof: Let C = {1, 2, ..., n}. We will consider 3 cases for the distribution of Tπ(p).

Case 1: p ∈ {1, 2, 3, 4}

For p configurations in which one cell is categorized as “high”, and three are cat-

egorized as “low” (p ∈ {1, 2, 3, 4}), we define D to be the set of π(i)’s correspond-

ing to the cell categorized as “high” in the p configuration. For example, if p = 1,

D = {π(1), ..., π(n)}, and if p = 2, D = {π(n + 1), ..., π(2n)}. Let Xp = |C ∩ D|.

That is, Xp is the number of phenotypes which were originally in cell 1, that remained

in a cell classified as “high” after permutation. For all p ∈ {1, 2, 3, 4}, we have the

following:

1. |C ∩Dc| = n−Xp

2. |Cc ∩D| = n−Xp

3. |Cc ∩Dc| = 4n−Xp − (n−Xp)− (n−Xp) = 2n+Xp
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Consider Tπ(p):

Tπ(p) =

4n∑
i=1

cπ(i)(p)Yπ(i)√
4n∑
i=1

ci(p)2

=

4n∑
i=1

cπ(i)(p)Yπ(i)

√
12n

=

∑
C∩D

(3)Yπ(i) +
∑
Cc∩D

(3)Yπ(i) +
∑
C∩Dc

(−1)Yπ(i) +
∑

Cc∩Dc

(−1)Yπ(i)

√
12n

=
3XpȲhigh + 3(n−Xp)Ȳlow − (n−Xp)Ȳhigh − (2n+Xp)Ȳlow√

12n

Thus,

Tπ(p) ∼ N

(
3Xpµhigh + (3n− 3Xp)µlow − (n−Xp)µhigh − (2n+Xp)µlow√

12n
, σ2

)
= N

(
(4Xp − n) (µdiff )√

12n
, σ2

)

That is, Tπ(p) ∼ N(kπn(p)(µdiff ), σ
2) where kπn(p) = 4Xp−n√

12n
depends on π only through

Xp.

Case 2: p ∈ {5, 6, 7, 8, 9, 10}

For p configurations in which two cells are categorized as “high”, and two are cat-

egorized as “low” (p ∈ {5, 6, 7, 8, 9, 10}), we define D to be the set of π(i)’s corre-

sponding to cells categorized as “high” in the p configuration. For example, if p = 5,

D = {π(1), ..., π(2n)}, and if p = 6, D = {π(1), ..., π(n)}∪{π(2n+ 1), ..., π(3n)}. Let

Xp = |C ∩D|. For all p ∈ {5, 6, 7, 8, 9, 10}, we have the following:

1. |C ∩Dc| = n−Xp

2. |Cc ∩D| = 2n−Xp
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3. |Cc ∩Dc| = 4n−Xp − (2n−Xp)− (n−Xp) = n+Xp

For p ∈ {5, 6, 7, 8, 9, 10}, we have

Tπ(p) =

4n∑
i=1

cπ(i)(p)Yπ(i)√
4n∑
i=1

ci(p)2

=

4n∑
i=1

cπ(i)(p)Yπ(i)

√
4n

=

∑
C∩D

(1)Yπ(i) +
∑
Cc∩D

(1)Yπ(i) +
∑
C∩Dc

(−1)Yπ(i) +
∑

Cc∩Dc

(−1)Yπ(i)

√
4n

=
XpȲhigh + (2n−Xp)Ȳlow − (n−Xp)Ȳhigh − (n+Xp)Ȳlow√

4n

Thus,

Tπ(p) ∼ N

(
Xpµhigh + (2n−Xp)µlow − (n−Xp)µhigh − (n+Xp)µlow√

4n
, σ2

)
= N

(
(2Xp − n) (µdiff )√

4n
, σ2

)

That is, Tπ(p) ∼ N(kπn(p)(µdiff ), σ
2) where kπn(p) = 2Xp−n√

4n
depends on π only through

Xp.

Case 3: p ∈ {11, 12, 13, 14}

For p configurations where 3 cells are categorized as “high”, and 1 is categorized

as “low” (p ∈ {11, 12, 13, 14}), we define D to be the set of π(i)’s corresponding

to cells categorized as “high” in the p configuration. For example, if p = 11, D =

{π(1), ..., π(3n)}. Let Xp = |C ∩D|. For p ∈ {11, 12, 13, 14}, we have the following:

1. |C ∩Dc| = n−Xp

2. |Cc ∩D| = 3n−Xp

65



3. |Cc ∩Dc| = 4n−Xp − (3n−Xp)− (n−Xp) = Xp

For p ∈ {11, 12, 13, 14}, we have

Tπ(p) =

4n∑
i=1

cπ(i)(p)Yπ(i)√
4n∑
i=1

ci(p)2

=

4n∑
i=1

cπ(i)(p)Yπ(i)

√
12n

=

∑
C∩D

(1)Yπ(i) +
∑
Cc∩D

(1)Yπ(i) +
∑
C∩Dc

(−3)Yπ(i) +
∑

Cc∩Dc

(−3)Yπ(i)

√
12n

=
XpȲhigh + (3n−Xp)Ȳlow + (−3n+ 3Xp)Ȳhigh − 3(Xp)Ȳlow√

12n

Thus,

Tπ(p) ∼ N

(
Xpµhigh + (3n−Xp)µlow + (−3n− 3Xp)µhigh − (3Xp)µlow√

12n
, σ2

)
= N

(
(4Xp − 3n) (µdiff )√

12n
, σ2

)

That is, Tπ(p) ∼ N(kπn(p)(µdiff ), σ
2) where kπn(p) = 4Xp−3n√

12n
depends on π only through

Xp.

Thus, we have the following general result for all p ∈ {1, 2, ..., 14}:

Tπ(p) ∼ N(kπn(p)(µdiff ), σ
2)

where kπn(p) depends upon π only through Xp. Thus, we have proved Corollary 3.

By Chebychev’s inequality,

P
(
Tπ(p)− kπn(p)(µdiff ) ≥

σ

δ

)
≤ P

(
|Tπ(p)− kπn(p)(µdiff )| ≥

σ

δ

)
≤ δ2 (5.5)
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Assume (kn(1)− kπn(p)) (µdiff ) ≥ 2σ
δ

. Then we have

P (T (1) < Tπ(p)) = P (Tπ(p)− T (1) ≥ 0)

= P (Tπ(p)− T (1) + (kn(1)− kπn(p))µdiff ≥ (kn(1)− kπn(p))µdiff )

≤ P (|Tπ(p)− T (1) + (kn(1)− kπn(p))µdiff | ≥ (kn(1)− kπn(p))µdiff )

≤ P

(
|Tπ(p)− T (1) + (kn(1)− kπn(p))µdiff | ≥

2σ

δ

)
≤ P (|Tπ(p)− kπn(p)µdiff |+ |T (1)− kn(1)µdiff | ≥

2σ

δ
)

by the triangle inequality.

Note that {|Tπ(p)−kπn(p)µdiff |+ |T (1)−kn(1)µdiff | ≥ 2σ
δ
} ⊆ {(|Tπ(p)−kπn(p)µdiff | ≥

σ
δ
) ∪ (|T (1)− kn(1)µdiff | ≥ σ

δ
)}. Thus,

P (T (1) < Tπ(p)) ≤ P (|Tπ(p)− kπn(p)µdiff |+ |T (1)− kn(1)µdiff | ≥
2σ

δ
)

≤ P (|Tπ(p)− kπn(p)µdiff | ≥
σ

δ
) + P (|T (1)− kn(1)µdiff | ≥

σ

δ
)

≤ 2δ2

Thus, by Boole’s inequality we have for any fixed permutation π such that (kn(1) −

kπn(p))(µdiff ) ≥ 2σ
δ

, for 1 ≤ p ≤ 14,

P (T (1) < Tπ) = P ((T (1) < Tπ(1)) ∪ (T (1) < Tπ(2)) ∪ ... ∪ (T (1) < Tπ(14)))

≤ P (T (1) < Tπ(1)) + P (T (1) < Tπ(2)) + ...+ P (T (1) < Tπ(14))

≤ 2δ2 + 2δ2 + ...+ 2δ2

= 28δ2

(5.6)
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Hence, we have

P (T < Tπ|T = T (1)) ≤ P (T (1) < Tπ)

P (T = T (1))

≤ 28δ2

1− 13δ2
by (5.4) and (5.6)

This gives us

P (T ≥ Tπ|T = T (1)) ≥ 1− 28δ2

1− 13δ2

=
1− 41δ2

1− 13δ2

≥ 1− 41δ2

(5.7)

Now we impose a discrete uniform distribution on all permutations. For all p ∈

{1, 2, ..., 14}, this imposes a hypergeometric distribution on Xp. This follows because

we can think of Xp as the number of “successes” (that is, the number of phenotypes

which were originally in cell 1 that remained in a “high” cell in configuration p after

permutation) in K draws from a finite population of size 4n which contains n possible

“successes”. In particular, K is determined by the number of cells classified as “high”

in the p configuration after permutation. For example, if p = 1, K = n, but if p = 5,

K = 2n. Let Ap be a subset of the support of Xp, Supp(Xp) such that x ∈ Ap implies

that (kn(1)− kπn(p))(µdiff ) ≥ 2σ
δ

.

Corollary 4: P (Xp ∈ Ap) ≥ 1− δ2 for all p.

Proof: Again, we will consider three cases.

Case 1: p ∈ {1, 2, 3, 4}

In this case, K = n. By known formulas for moments of a hypergeometric distri-

bution, E[Xp] = n
4

and V ar[Xp] = 9n2

16(4n−1)
.
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Thus, by Chebychev’s Inequality we have

P (Xp /∈ Ap) = P

(
(kn(1)− kπn(p))(µdiff ) ≤

2σ

δ

)
= P

((
3n

4

)1/2

− 4Xp − n√
12n

≤ 2σ

δµdiff

)

= P

(
4Xp − n√

12n
≥ − 2σ

δµdiff
+

(
3n

4

)1/2
)

≤
(

9n2

12n(4n− 1)

)(
12nµ2

diff

(−2σ
√

12n+ 3nδµdiff )2

)
δ2

≤ δ2 for sufficiently large n

Thus, P (Xp ∈ Ap) ≥ 1− δ2 for sufficiently large n.

Case 2: p ∈ {5, 6, 7, 8, 9, 10}

In this case, K = 2n. By known formulas for moments of a hypergeometric dis-

tribution, E[Xp] = n
2

and V ar[Xp] = 3n2

4(4n−1)
. Thus, by Chebychev’s Inequality we

have

P (Xp /∈ Ap) = P

(
(kn(1)− kπn(p))(µdiff ) ≤

2σ

δ

)
= P

((
3n

4

)1/2

− 2Xp − n√
4n

≤ 2σ

δµdiff

)

= P

(
2Xp − n√

4n
≥ − 2σ

δµdiff
+

(
3n

4

)1/2
)

≤
(

3n2

4n(4n− 1)

)(
12nµ2

diff

(−2σ
√

12n+ 3nδµdiff )2

)
δ2

≤ δ2 for sufficiently large n

Thus, P (Xp ∈ Ap) ≥ 1− δ2 for sufficiently large n.

69



Case 3: p ∈ {11, 12, 13, 14}

In this case, K = 3n. By known formulas for moments of a hypergeometric dis-

tribution, E[Xp] = 3n
4

and V ar[Xp] = 9n2

16(4n−1)
.

Thus, by Chebychev’s Inequality we have

P (Xp /∈ Ap) = P

(
(kn(1)− kπn(p))(µdiff ) ≤

2σ

δ

)
= P

((
3n

4

)1/2

− 4Xp − 3n√
12n

≤ 2σ

δµdiff

)

= P

(
4Xp − 3n√

12n
≥ − 2σ

δµdiff
+

(
3n

4

)1/2
)

≤
(

9n2

12n(4n− 1)

)(
12nµ2

diff

(−2σ
√

12n+ 3nδµdiff )2

)
δ2

≤ δ2 for sufficiently large n

Thus, P (Xp ∈ Ap) ≥ 1− δ2 for sufficiently large n.

This yields the following general result: Let Ap be a subset of Supp(Xp) such that

x ∈ Ap implies (kn(1) − kπn(p))(µdiff ) ≥ 2σ
δ

. For sufficiently large n, we have

P (Xp ∈ Ap) ≥ 1 − δ2 for all 1 ≤ p ≤ 14, and we have proved Corollary 4. By

Boole’s inequality we have the following:

P (Xp ∈ Ap∀p ∈ {1, 2, ..., 14}) = P ((X1 ∈ A1) ∩ (X2 ∈ A2) ∩ ... ∩ (X14 ∈ A14))

= 1− P ((X1 /∈ A1) ∪ (X2 /∈ A2) ∪ ... ∪ (X14 /∈ A14))

≥ 1− P (X1 /∈ A1)− P (X2 /∈ A2) ...− P (X14 /∈ A14)

≥ 1− 14δ2

(5.8)

By independence we have P (Xp ∈ Ap∀p|T = T (1)) = P (Xp ∈ Ap∀p). Thus, by the
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law of total probability we have

P (T > Tπ|T = T (1)) = P (T > Tπ|Xp ∈ Ap∀p, T = T (1))P (Xp ∈ Ap∀p|T = T (1))

+ P (T > Tπ|Xp /∈ Ap∀p, T = T (1))P (Xp /∈ Ap∀p|T = T (1))

≥ P (T > Tπ|Xp ∈ Ap∀p, T = T (1))P (Xp ∈ Ap∀p|T = T (1))

= P (T > Tπ|Xp ∈ Ap∀p, T = T (1))P (Xp ∈ Ap∀p)

≥ (1− 41δ2)(1− 14δ2) by (5.7) and (5.8)

= 1− 55δ2 + (14)(41)δ4

≥ 1− 55δ2

(5.9)

As δ can be chosen arbitrarily, this yields P (T > Tπ|T = T (1))→ 1 as n→∞. Thus,

we have

P (T > Tπ) = P (T > Tπ|T = T (1))P (T = T (1)) + P (T > Tπ|T 6= T (1))P (T 6= T (1))

≥ P (T > Tπ|T = T (1))P (T = T (1))

≥ (1− 55δ2)(1− 13δ2) by (5.4) and (5.9)

= 1− 68δ2 + (55)(13)δ4

≥ 1− 68δ2

(5.10)

As δ can be chosen arbitrarily, this yields P (T > Tπ)→ 1 as n→∞. Thus, for 1000

randomly selected permutations, {π1, π2..., π1000}, the probability that T > Tπi for at
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least 951 of the πi’s (i.e., that the permutation p-value is less than .05) is

P (T > Tπi for at least 951 of the πi’s) ≥ P (T > Tπi for 1000 of the πi’s)

≥ (1− 68δ2)1000 by (5.10)

= 1− ε

where for every ε > 0, δ can be chosen such that

δ =

√
1− (1− ε) 1

1000

68

Thus, the probability that the permutation p-value is less than .05 must also tend to

1 as n→∞. Returning to the beginning of the proof, we have shown that P (A)→ 1

as n → ∞, implying that P (Ac) tends to 0 as n tends to infinity. Thus, by the

expression in (5.1), we have shown P (A ∩ B) → 1 as n → ∞. Note that this result

still holds for any arbitrary value chosen for c, instead of c = .05.

5.2 Analogous Theoretical Results for Three-way Interactions

Consider the three-way interaction among three SNPs: SNPA, SNPB and SNPC .

As in the previous section, suppose each of these SNPs carry two states, condition 1

and condition 2. For illustration, assign labels to each of the SNP states as follows:

• A1 := SNPA, condition 1

• A2 := SNPA, condition 2

• B1 := SNPB, condition 1

• B2 := SNPB, condition 2

• C1 := SNPC , condition 1

• C2 := SNPC , condition 2
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This three-way interaction is represented by the cube at the top of figure 5.4. Each

multifactor class (cell) is represented by one of the eight smaller cubes, illustrated

at the bottom of the figure. We assign labels to these multifactor classes (1-8) as

shown in figure 5.4. Suppose i = 1, 2, ..., n correspond to subjects in cell 1, i =

Figure 5.4: Illustration of the three-way interaction between SNPA, SNPB, SNPC

n + 1, n + 2, ..., 2n correspond to subjects in cell 2, and so forth. Let Y1, ..., Y8n

represent the values of some quantitative phenotype for each subject, i = 1, 2, ..., 8n.

Let Y1, ..., Yn
iid∼ N(µhigh, σ

2) and Yn+1, ..., Y8n
iid∼ N(µlow, σ

2), where µhigh > µlow.

Let p1 be the high/low classification from the AQMDR method of a three-way in-

teraction in which cell 1 is correctly identified as “high” and the seven remaining cells

are classified as “low”. See figure 5.5, in which the shaded cell is the one categorized
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as “high”, and the light cells are categorized as “low”. In what follows, we assume

that AQMDR is applied to three-way interactions in which there are eight multi-

factor classes, rather than the 27 multifactor classes we observed for each three-way

interaction in previous chapters.

Figure 5.5: The p1 “high”/“low” configuration.

Once again, our goal is to prove that the probability that the gene-to-gene in-

teraction of SNPA, SNPB and SNPC is included in the AQMDR Arbitrary Cutoff

aggregated score (ACAS with fixed c > 0) and that the p1 high/low configuration of

this interaction is correctly assigned in AQMDR tends to 1 as n goes to infinity. We

will do so with an argument that is analogous to that of the previous section. We

have the following events:

1. Event A: the event that the three-way gene-to-gene interaction of SNPA, SNPB

and SNPC is included in the AQMDR arbitrary cutoff aggregated score. That

is, the interaction receives a weight of 1.

2. Event B: the event that the p1 high/low configuration of this interaction is

correctly assigned in AQMDR.

We want to show that P (A ∩B)→ 1 as n→∞.

The proof proceeds as follows:
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Without loss of generality, let c = .05. First note that P (B) = P ((Ȳ1 >
¯̄Y )∩ (Ȳ2 ≤

¯̄Y )∩ (Ȳ3 ≤ ¯̄Y )∩ (Ȳ4 ≤ ¯̄Y )∩ (Ȳ5 ≤ ¯̄Y )∩ (Ȳ6 ≤ ¯̄Y )∩ (Ȳ7 ≤ ¯̄Y )∩ (Ȳ8 ≤ ¯̄Y )), where ¯̄Y is

the overall mean of Y1, Y2, ..., Y8n, and Ȳj for j ∈ {1, ..., 8} is the mean within cell j.

That is, Ȳ1 is the mean of Y1, Y2, ..., Yn, Ȳ2 is the mean of Yn+1, Yn+2, ..., Y2n, etc. By

DeMorgan’s Law and Boole’s inequality, we have

P (A ∩B) = 1− P (Ac ∪Bc)

≥ 1− P (Ac)− P (Bc)

= 1− P (Ac)− P ((Ȳ1 ≤ ¯̄Y ) ∪ (Ȳ2 >
¯̄Y ) ∪ (Ȳ3 >

¯̄Y ) ∪ (Ȳ4 >
¯̄Y ) ∪ (Ȳ5 >

¯̄Y )

∪ (Ȳ6 >
¯̄Y ) ∪ (Ȳ7 >

¯̄Y ) ∪ (Ȳ8 >
¯̄Y ))

≥ 1− P (Ac)− (P (Ȳ1 ≤ ¯̄Y ) + P (Ȳ2 >
¯̄Y ) + P (Ȳ3 >

¯̄Y ) + P (Ȳ4 >
¯̄Y )

+ (Ȳ5 >
¯̄Y ) + (Ȳ6 >

¯̄Y ) + (Ȳ7 >
¯̄Y ) + (Ȳ8 >

¯̄Y ))

(5.11)

By the Weak Law of Large Numbers and Slutsky’s Theorem, we have the following:

1. Ȳ1
p→ µhigh, as n→∞.

2. Ȳ2, Ȳ3, Ȳ4, Ȳ5, Ȳ6, Ȳ7, Ȳ8
p→ µlow, as n→∞.

3. ¯̄Y = n(Ȳ1+Ȳ2+Ȳ3+Ȳ4+Ȳ5+Ȳ6+Ȳ7+Ȳ8)
8n

= Ȳ1+Ȳ2+Ȳ3+Ȳ4+Ȳ5+Ȳ6+Ȳ7+Ȳ8
8

p→ µhigh+7µlow
8

:= µ,

as n→∞.

4. µ < µhigh and µ > µlow.

Thus, as n → ∞, P (Ȳ1 ≤ ¯̄Y ) + P (Ȳ2 >
¯̄Y ) + P (Ȳ3 >

¯̄Y ) + P (Ȳ4 >
¯̄Y ) + P (Ȳ5 >

¯̄Y ) + P (Ȳ6 >
¯̄Y ) + P (Ȳ7 >

¯̄Y ) + P (Ȳ8 >
¯̄Y )→ 0.

This leaves only the consideration of P (Ac). Recall that in AQMDR with ACAS,

the inclusion of a gene-to-gene interaction in the aggregated score is based on a p-value
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determined from permutation testing (see chapter 2). When c = .05, an interaction is

assigned a weight of 1 in the aggregated score if the permutation p-value associated

with that interaction is less than .05. Our goal is to show that, with probability

approaching 1 as n → ∞, the p-value achieved by permutation for the T-statistic

corresponding to this interaction is less than .05. That is, the probability that the

interaction is included in the aggregated score tends to 1 as n→∞. By establishing

this, we can then determine that P (Ac) → 0 as n → ∞. We will prove this with

a series of corollaries. Then, by the expression in (5.11), we will have shown that

P (A ∩B)→ 1 as n→∞.

First note that (disregarding 0 probability events) there are 254 possible“high”/“low”

configurations (labeling of cells as “high” or “low”) which can be assigned to a three-

way interaction with AQMDR. Denote these configurations as p = 1, ..., 254. All

possible configurations can be categorized into one of 14 configuration cases. Let Pj

represent the group of p’s in configuration case j for j ∈ {1, ..., 14}. These configura-

tion cases are described in the following table.

Table 5.4: Description of configuration cases.
j Case Description

1 One cell is labeled “high” and that cell is cell 1.
2 Two cells are labeled “high”, one of which is cell 1.
3 Three cells are labeled “high”, one of which is cell 1.
4 Four cells are labeled “high”, one of which is cell 1.
5 Five cells are labeled “high”, one of which is cell 1.
6 Six cells are labeled “high”, one of which is cell 1.
7 Seven cells are labeled “high”, one of which is cell 1.
8 One cell is labeled “high” and that cell is not cell 1.
9 Two cells are labeled “high”, neither of which are cell 1.
10 Three cells are labeled “high”, none of which are cell 1.
11 Four cells are labeled “high”, none of which are cell 1.
12 Five cells are labeled “high”, none of which are cell 1.
13 Six cells are labeled “high”, none of which are cell 1.
14 Seven cells are labeled “high”, none of which are cell 1.
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We will define ci(p) for each p ∈ {1, 2, ..., 254} such that
∑8n

i=1 ci(p) = 0. The ci(p)

definitions for representative examples of p’s within each configuration case Pj for

j ∈ {1, 2, ..., 14} are shown in table 5.5.

Table 5.5: ci(p) for representative examples of p’s within each configuration case Pj
for j ∈ {1, 2, ..., 14}.

j cell 1 cell 2 cell 3 cell 4 cell 5 cell 6 cell 7 cell 8

1 7 -1 -1 -1 -1 -1 -1 -1
2 3 3 -1 -1 -1 -1 -1 -1
3 5 5 5 -3 -3 -3 -3 -3
4 1 1 1 1 -1 -1 -1 -1
5 3 3 3 3 3 -5 -5 -5
6 1 1 1 1 1 1 -3 -3
7 1 1 1 1 1 1 1 -7
8 -1 7 -1 -1 -1 -1 -1 -1
9 -1 3 3 -1 -1 -1 -1 -1
10 -3 5 5 5 -3 -3 -3 -3
11 -1 1 1 1 1 -1 -1 -1
12 -5 3 3 3 3 3 -5 -5
13 -3 1 1 1 1 1 1 -3
14 -7 1 1 1 1 1 1 1

Define T (p) for each p = 1, ..., 254 as follows:

T (p) :=

8n∑
i=1

ci(p)Yi√
8n∑
i=1

ci(p)2

.

Corollary 1: T (p) ∼ N(kn(p)(µhigh − µlow), σ2), for a constant kn(p).

Proof: There are 14 cases we will consider for the distribution of T (p) (one for each

configuration case Pj).

Case 1: p ∈ P1
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There is only one configuration in P1, so let’s call this configuration p = 1.

T (1) =

8n∑
i=1

ci(1)Yi
√

56n

=

n∑
i=1

(7)Yi +
8n∑

i=n+1

(−1)Yi
√

56n

=
7nȲhigh − 7nȲlow√

56n

=
7n(Ȳhigh − Ȳlow)√

56n

where Ȳhigh is a sample mean of realized values of Yi from a cell with mean µhigh (cell

1), and Ȳlow is a sample mean of realized values of Yi from cells with mean µlow (cells

2, 3,...,8). As
∑8n

i=1 ci(1) = 0,

T (1) ∼ N
(
kn(1)(µhigh − µlow), σ2

)
where kn(1) = 7n√

56n
=
(

7n
8

)1/2
.

Case 2: p ∈ P2.

T (p) =

8n∑
i=1

ci(p)Yi
√

24n

=

n∑
i=1

(3)Yi +
2n∑

i=n+1

(3)Yi +
8n∑

i=2n+1

(−1)Yi
√

24n

=
3nȲhigh + 3nȲlow − 6nȲlow√

24n
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As
8n∑
i=1

ci(2) = 0,

T (p) ∼ N

(
(3nµhigh + 3nµlow − 6nµlow)√

24n
, σ2

)
= N

(
kn(p) (µhigh − µlow) , σ2

)
where kn(p) = 3n√

24n
=
(

3n
8

)1/2
for p ∈ P2.

The 12 remaining cases can be considered using similar calculations. In summary,

T (p) ∼ N(kn(p)(µhigh−µlow), σ2), for a constant kn(p). Thus, we have proved Corol-

lary 1. The values of kn(p) for each configuration case are displayed in table 5.6. Note

that kn(1) = max1≤p≤254kn(p). Now, define a T-statistic as follows:

Table 5.6: kn(p)

p kn(p) p kn(p)

p = 1
(

7n
8

)1/2
p ∈ P8 −

(
n
56

)1/2

p ∈ P2

(
3n
8

)1/2
p ∈ P9 −

(
n
24

)1/2

p ∈ P3

(
5n
24

)1/2
p ∈ P10 −

(
3n
40

)1/2

p ∈ P4

(
n
8

)1/2
p ∈ P11 −

(
n
8

)1/2

p ∈ P5

(
3n
40

)1/2
p ∈ P12 −

(
5n
24

)1/2

p ∈ P6

(
n
24

)1/2
p ∈ P13 −

(
3n
8

)1/2

p ∈ P7

(
n
56

)1/2
p ∈ P14 −

(
7n
8

)1/2

T := max1≤p≤254T (p).
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This T-statistic is not quite identical to the one used in AQMDR (see equation 2.1)

because sample variances are not incorporated. We forgo the estimation of the vari-

ances because we assume that Y1, ..., Y8n all have the same underlying variance. Let

δ be an arbitrary small positive number. Assume n is large enough such that

(kn(1)−max2≤p≤254kn(p))(µhigh − µlow) ≥ 2σ

δ
(5.12)

That is, [(7n
8

)1/2 − (3n
8

)1/2](µhigh − µlow) ≥ 2σ
δ

.

Corollary 2: P (T = T (1)) ≥ 1− 253δ2.

Proof: Put µdiff := µhigh − µlow. Note that E[T (p) − T (1)] = (kn(p) − kn(1))µdiff

and V ar[T (p)− T (1)] ≤ 4σ2. By Chebychev’s Inequality, for all p ∈ {1, 2, ..., 254} we

have

P

(
|T (p)− T (1) + (kn(1)− kn(p))µdiff | ≥

2σ

δ

)
≤ δ2 (5.13)

For any p ∈ {2, 3, ..., 254},

P (T (p) > T (1)) = P (T (p)− T (1) ≥ 0)

= P (T (p)− T (1) + (kn(1)− kn(p))µdiff ≥ (kn(1)− kn(p))µdiff )

≤ P

(
T (p)− T (1) + (kn(1)− kn(p))µdiff ≥

2σ

δ

)
by (5.12),

≤ P

(
|T (p)− T (1) + (kn(1)− kn(p))µdiff | ≥

2σ

δ

)
≤ δ2 by (5.13).
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Now, consider P (T 6= T (1)). By Boole’s inequality, we have

P (T 6= T (1)) = P (T (1) 6= max1≤p≤254T (p))

= P ((T (2) > T (1)) ∪ (T (3) > T (1)) ∪ ... ∪ (T (254) > T (1)))

≤ P (T (2) > T (1)) + P (T (3) > T (1)) + ...+ P (T (254) > T (1))

≤ 253δ2

Hence,

P (T = T (1)) ≥ 1− 253δ2 (5.14)

and we have proved Corollary 2.

Consider a fixed permutation π : {1, 2, ..., 8n} → {1, 2, ..., 8n}. Define Tπ(p) as

follows:

Tπ(p) :=

8n∑
i=1

cπ(i)(p)Yπ(i)√
8n∑
i=1

cπ(i)(p)2

=

8n∑
i=1

cπ(i)(p)Yπ(i)√
8n∑
i=1

ci(p)2

.

Define the test statistic for permutation π as follows:

Tπ := max1≤p≤254Tπ(p).

Corollary 3: For all p:

Tπ(p) ∼ N(kπn(p)(µdiff ), σ
2)

where kπn(p) depends upon π only through Xp, where Xp is the number of phenotypes

which were originally in a cell 1 that remained in a “high” cell after permutation..

Proof: Let C = {1, 2, ..., n}. We will consider 7 cases for the distribution of Tπ(p).
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Case 1: Cases in which one cell is labeled “high”, including p = 1 and p ∈ P8.

We define D to be the set of π(i)’s corresponding to the cell categorized as “high”

in the p configuration. For example, if p = 1, D = {π(1), ..., π(n)}. Let Xp = |C∩D|.

That is, Xp is the number of phenotypes which were originally in cell 1, that remained

in a cell classified as “high” after permutation. For all p ∈ ({1} ∪ P8), we have the

following:

1. |C ∩Dc| = n−Xp

2. |Cc ∩D| = n−Xp

3. |Cc ∩Dc| = 8n−Xp − (n−Xp)− (n−Xp) = 6n+Xp

Consider Tπ(p):

Tπ(p) =

8n∑
i=1

cπ(i)(p)Yπ(i)√
8n∑
i=1

ci(p)2

=

8n∑
i=1

cπ(i)(p)Yπ(i)

√
56n

=

∑
C∩D

(7)Yπ(i) +
∑
Cc∩D

(7)Yπ(i) +
∑
C∩Dc

(−1)Yπ(i) +
∑

Cc∩Dc

(−1)Yπ(i)

√
56n

=
7XpȲhigh + 7(n−Xp)Ȳlow − (n−Xp)Ȳhigh − (6n+Xp)Ȳlow√

56n

Thus,

Tπ(p) ∼ N

(
7Xpµhigh + (7n− 7Xp)µlow − (n−Xp)µhigh − (6n+Xp)µlow√

56n
, σ2

)
= N

(
(8Xp − n) (µdiff )√

56n
, σ2

)

That is, Tπ(p) ∼ N(kπn(p)(µdiff ), σ
2) where kπn(p) = 8Xp−n√

56n
depends on π only through
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Xp.

Case 2: Cases in which two cells are labeled “high”, including p ∈ (P2 ∪ P9).

We define D to be the set of π(i)’s corresponding to the cell categorized as “high”

in the p configuration. Let Xp = |C ∩D|. We have the following:

1. |C ∩Dc| = n−Xp

2. |Cc ∩D| = 2n−Xp

3. |Cc ∩Dc| = 8n−Xp − (2n−Xp)− (n−Xp) = 5n+Xp

For p ∈ (P2 ∪ P9), we have

Tπ(p) =

8n∑
i=1

cπ(i)(p)Yπ(i)√
8n∑
i=1

ci(p)2

=

8n∑
i=1

cπ(i)(p)Yπ(i)

√
24n

=

∑
C∩D

(3)Yπ(i) +
∑
Cc∩D

(3)Yπ(i) +
∑
C∩Dc

(−1)Yπ(i) +
∑

Cc∩Dc

(−1)Yπ(i)

√
24n

=
3XpȲhigh + 3(2n−Xp)Ȳlow − (n−Xp)Ȳhigh − (5n+Xp)Ȳlow√

24n

Thus,

Tπ(p) ∼ N

(
3Xpµhigh + (6n− 3Xp)µlow − (n−Xp)µhigh − (5n+Xp)µlow√

24n
, σ2

)
= N

(
(4Xp − n) (µdiff )√

24n
, σ2

)

That is, Tπ(p) ∼ N(kπn(p)(µdiff ), σ
2) where kπn(p) = 4Xp−n√

24n
depends on π only through

Xp.
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The remaining cases can be considered using similar calculations. We have the fol-

lowing general result for all p ∈ {1, 2, ..., 254}:

Tπ(p) ∼ N(kπn(p)(µdiff ), σ
2)

where kπn(p) depends upon π only through Xp. Thus we have proved Corollary 3. The

kπn(p)’s for each of the 7 cases are displayed in the following table.

Table 5.7: kπn(p)

p kπn(p)

p ∈ ({1} ∪ P8) 8Xp−n√
56n

p ∈ (P2 ∪ P9) 4Xp−n√
24n

p ∈ (P3 ∪ P10) 8Xp−3n√
120n

p ∈ (P4 ∪ P11) 2Xp−n√
8n

p ∈ (P5 ∪ P12) 8Xp−5n√
120n

p ∈ (P6 ∪ P13) 4Xp−3n√
24n

p ∈ (P7 ∪ P14) 8Xp−7n√
56n

By Chebychev’s inequality,

P
(
Tπ(p)− kπn(p)µdiff ≥

σ

δ

)
≤ P

(
|Tπ(p)− kπn(p)µdiff | ≥

σ

δ

)
≤ δ2 (5.15)
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Assume (kn(1)− kπn(p))µdiff ≥ 2σ
δ

. Then we have

P (T (1) < Tπ(p)) = P (Tπ(p)− T (1) ≥ 0)

= P (Tπ(p)− T (1) + (kn(1)− kπn(p))µdiff ≥ (kn(1)− kπn(p))µdiff )

≤ P (|Tπ(p)− T (1) + (kn(1)− kπn(p))µdiff | ≥ (kn(1)− kπn(p))µdiff )

≤ P

(
|Tπ(p)− T (1) + (kn(1)− kπn(p))µdiff | ≥

2σ

δ

)
≤ P (|Tπ(p)− kπn(p)µdiff |+ |T (1)− kn(1)µdiff | ≥

2σ

δ
)

by the triangle inequality.

Note that {|Tπ(p)−kπn(p)µdiff |+ |T (1)−kn(1)µdiff | ≥ 2σ
δ
} ⊆ {(|Tπ(p)−kπn(p)µdiff | ≥

σ
δ
) ∪ (|T (1)− kn(1)µdiff | ≥ σ

δ
)}. Thus,

P (T (1) < Tπ(p)) ≤ P (|Tπ(p)− kπn(p)µdiff |+ |T (1)− kn(1)µdiff | ≥
2σ

δ
)

≤ P (|Tπ(p)− kπn(p)µdiff | ≥
σ

δ
) + P (|T (1)− kn(1)µdiff | ≥

σ

δ
)

≤ 2δ2

Thus, by Boole’s inequality we have for any fixed permutation π such that (kn(1) −

kπn(p))(µdiff ) ≥ 2σ
δ

, for 1 ≤ p ≤ 254,

P (T (1) < Tπ) = P ((T (1) < Tπ(1)) ∪ (T (1) < Tπ(2)) ∪ ... ∪ (T (1) < Tπ(254)))

≤ P (T (1) < Tπ(1)) + P (T (1) < Tπ(2)) + ...+ P (T (1) < Tπ(254))

≤ 2δ2 + 2δ2 + ...+ 2δ2

= 508δ2.

(5.16)
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Hence, we have

P (T < Tπ|T = T (1)) ≤ P (T (1) < Tπ)

P (T = T (1))

≤ 508δ2

1− 253δ2
by (5.14) and (5.16).

For any fixed permutation π such that (kn(1)− kπn(p))(µdiff ) ≥ 2σ
δ

, for 1 ≤ p ≤ 254,

P (T ≥ Tπ|T = T (1)) ≥ 1− 508δ2

1− 253δ2

=
1− 761δ2

1− 253δ2

≥ 1− 761δ2.

(5.17)

Now we impose a discrete uniform distribution on all permutations. For all p ∈

{1, 2, ..., 254}, this imposes a hypergeometric distribution on Xp. This follows because

we can think of Xp as the number of “successes” (that is, the number of phenotypes

which were originally in cell 1 that remained in a “high” cell in configuration p after

permutation) in K draws from a finite population of size 8n which contains n possible

“successes”. In particular, K is determined by the number of cells classified as “high”

in the p configuration after permutation. For example, if p = 1, K = n, but if p ∈ P2,

K = 2n. Let Ap be a subset of the support of Xp, Supp(Xp) such that x ∈ Ap implies

that (kn(1)− kπn(p))(µdiff ) ≥ 2σ
δ

.

Corollary 4: P (Xp /∈ Ap) ≥ 1− δ2 for all p.

Proof: Again, we will consider seven cases.

Case 1: p ∈ ({1} ∪ P8)

In this case, K = n. By known formulas for moments of a hypergeometric distri-

bution, E[Xp] = n
8

and V ar[Xp] = 49n2

64(8n−1)
.
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Thus, by Chebychev’s Inequality we have

P (Xp /∈ Ap) = P

(
(kn(1)− kπn(p))(µdiff ) ≤

2σ

δ

)
= P

((
7n

8

)1/2

− 8Xp − n√
56n

≤ 2σ

δµdiff

)

= P

(
8Xp − n√

56n
≥ − 2σ

δµdiff
+

(
7n

8

)1/2
)

≤
(

49n2

56n(8n− 1)

)(
56nµ2

diff

(−2σ
√

56n+ 7nδµdiff )2

)
δ2

≤ δ2 for sufficiently large n

Thus, P (Xp ∈ Ap) ≥ 1− δ2 for sufficiently large n.

Case 2: p ∈ (P2 ∪ P9)

In this case, K = 2n. By known formulas for moments of a hypergeometric dis-

tribution, E[Xp] = n
4

and V ar[Xp] = 21n2

16(8n−1)
. Thus, by Chebychev’s Inequality we

have

P (Xp /∈ Ap) = P

(
(kn(1)− kπn(p))(µdiff ) ≤

2σ

δ

)
= P

((
7n

8

)1/2

− 4Xp − n√
24n

≤ 2σ

δµdiff

)

= P

(
4Xp − n√

24n
≥ − 2σ

δµdiff
+

(
7n

8

)1/2
)

≤
(

21n2

24n(8n− 1)

)(
56nµ2

diff

(−2σ
√

56n+ 7nδµdiff )2

)
δ2

≤ δ2 for sufficiently large n

Thus, P (Xp ∈ Ap) ≥ 1− δ2 for sufficiently large n.
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Case 3: p ∈ (P3 ∪ P10)

In this case, K = 3n. By known formulas for moments of a hypergeometric dis-

tribution, E[Xp] = 3n
8

and V ar[Xp] = 105n2

64(8n−1)
. Thus, by Chebychev’s Inequality we

have

P (Xp /∈ Ap) = P

(
(kn(1)− kπn(p))(µdiff ) ≤

2σ

δ

)
= P

((
7n

8

)1/2

− 8Xp − 3n√
120n

≤ 2σ

δµdiff

)

= P

(
8Xp − 3n√

120n
≥ − 2σ

δµdiff
+

(
7n

8

)1/2
)

≤
(

105n2

120n(8n− 1)

)(
56nµ2

diff

(−2σ
√

56n+ 7nδµdiff )2

)
δ2

≤ δ2 for sufficiently large n

Thus, P (Xp ∈ Ap) ≥ 1− δ2 for sufficiently large n.

Case 4: p ∈ (P4 ∪ P11)

In this case, K = 4n. By known formulas for moments of a hypergeometric dis-

tribution, E[Xp] = n
2

and V ar[Xp] = 7n2

4(8n−1)
. Thus, by Chebychev’s Inequality we
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have

P (Xp /∈ Ap) = P

(
(kn(1)− kπn(p))(µdiff ) ≤

2σ

δ

)
= P

((
7n

8

)1/2

− 2Xp − n√
8n

≤ 2σ

δµdiff

)

= P

(
2Xp − n√

8n
≥ − 2σ

δµdiff
+

(
7n

8

)1/2
)

≤
(

7n2

8n(8n− 1)

)(
56nµ2

diff

(−2σ
√

56n+ 7nδµdiff )2

)
δ2

≤ δ2 for sufficiently large n

Thus, P (Xp ∈ Ap) ≥ 1− δ2 for sufficiently large n.

Case 5: p ∈ (P5 ∪ P12)

In this case, K = 5n. By known formulas for moments of a hypergeometric dis-

tribution, E[Xp] = 5n
8

and V ar[Xp] = 105n2

64(8n−1)
. Thus, by Chebychev’s Inequality we

have

P (Xp /∈ Ap) = P

(
(kn(1)− kπn(p))(µdiff ) ≤

2σ

δ

)
= P

((
7n

8

)1/2

− 8Xp − 5n√
120n

≤ 2σ

δµdiff

)

= P

(
8Xp − 5n√

120n
≥ − 2σ

δµdiff
+

(
7n

8

)1/2
)

≤
(

105n2

120n(8n− 1)

)(
56nµ2

diff

(−2σ
√

56n+ 7nδµdiff )2

)
δ2

≤ δ2 for sufficiently large n

Thus, P (Xp ∈ Ap) ≥ 1− δ2 for sufficiently large n.
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Case 6: p ∈ (P6 ∪ P13)

In this case, K = 6n. By known formulas for moments of a hypergeometric dis-

tribution, E[Xp] = 3n
4

and V ar[Xp] = 21n2

16(8n−1)
. Thus, by Chebychev’s Inequality we

have

P (Xp /∈ Ap) = P

(
(kn(1)− kπn(p))(µdiff ) ≤

2σ

δ

)
= P

((
7n

8

)1/2

− 4Xp − 3n√
24n

≤ 2σ

δµdiff

)

= P

(
4Xp − 3n√

24n
≥ − 2σ

δµdiff
+

(
7n

8

)1/2
)

≤
(

21n2

24n(8n− 1)

)(
56nµ2

diff

(−2σ
√

56n+ 7nδµdiff )2

)
δ2

≤ δ2 for sufficiently large n

Thus, P (Xp ∈ Ap) ≥ 1− δ2 for sufficiently large n.

Case 7: p ∈ (P7 ∪ P14)

In this case, K = 7n. By known formulas for moments of a hypergeometric dis-

tribution, E[Xp] = 7n
8

and V ar[Xp] = 49n2

64(8n−1)
. Thus, by Chebychev’s Inequality we
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have

P (Xp /∈ Ap) = P

(
(kn(1)− kπn(p))(µdiff ) ≤

2σ

δ

)
= P

((
7n

8

)1/2

− 8Xp − 7n√
56n

≤ 2σ

δµdiff

)

= P

(
8Xp − 7n√

56n
≥ − 2σ

δµdiff
+

(
7n

8

)1/2
)

≤
(

49n2

56n(8n− 1)

)(
56nµ2

diff

(−2σ
√

56n+ 7nδµdiff )2

)
δ2

≤ δ2 for sufficiently large n

Thus, P (Xp ∈ Ap) ≥ 1− δ2 for sufficiently large n.

This yields the following general result: Let Ap be a subset of Supp(Xp) such that

x ∈ Ap implies (kn(1) − kπn(p))(µdiff ) ≥ 2σ
δ

. For sufficiently large n, we have

P (Xp ∈ Ap) ≥ 1 − δ2 for all 1 ≤ p ≤ 254. Thus we have proved Corollary 4.

By Boole’s inequality we have the following:

P (Xp ∈ Ap∀p ∈ {1, 2, ..., 254}) = P ((X1 ∈ A1) ∩ (X2 ∈ A2) ∩ ... ∩ (X254 ∈ A254))

= 1− P ((X1 /∈ A1) ∪ (X2 /∈ A2) ∪ ... ∪ (X254 /∈ A254))

≥ 1− P (X1 /∈ A1)− P (X2 /∈ A2) ...− P (X254 /∈ A254)

≥ 1− 254δ2

(5.18)

By independence we have P (Xp ∈ Ap∀p|T = T (1)) = P (Xp ∈ Ap∀p). Thus, by the

91



law of total probability we have

P (T > Tπ|T = T (1)) = P ((T > Tπ|Xp ∈ Ap∀p, T = T (1))P (Xp ∈ Ap∀p|T = T (1))

+ P ((T > Tπ|Xp /∈ Ap∀p, T = T (1))P (Xp /∈ Ap∀p|T = T (1))

≥ P ((T > Tπ|Xp ∈ Ap∀p, T = T (1))P (Xp ∈ Ap∀p|T = T (1))

= P ((T > Tπ|Xp ∈ Ap∀p, T = T (1))P (Xp ∈ Ap∀p)

≥ (1− 761δ2)(1− 254δ2) by (5.17) and (5.18)

= 1− 1015δ2 + (761)(254)δ4

≥ 1− 1015δ2

(5.19)

As δ can be chosen arbitrarily, this yields P (T > Tπ|T = T (1))→ 1 as n→∞. Thus,

we have

P (T > Tπ) = P (T > Tπ|T = T (1))P (T = T (1)) + P (T > Tπ|T 6= T (1))P (T 6= T (1))

≥ P (T > Tπ|T = T (1))P (T = T (1))

≥ (1− 1015δ2)(1− 253δ2) by (5.14) and (5.19)

= 1− 1268δ2 + (1268)(253)δ4

≥ 1− 1268δ2

(5.20)

As δ can be chosen arbitrarily, this yields P (T > Tπ)→ 1 as n→∞. Thus, for 1000

randomly selected permutations, {π1, π2..., π1000}, the probability that T > Tπi for at
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least 951 of the πi’s (i.e., that the permutation p-value is less than .05) is

P (T > Tπi for at least 951 of the πi’s) ≥ P (T > Tπi for 1000 of the πi’s)

≥ (1− 1268δ2)1000 by (5.20)

= 1− ε

where for every ε > 0, δ can be chosen such that

δ =

√
1− (1− ε) 1

1000

1268

Thus, the probability that the permutation p-value is less than .05 must also tend to

1 as n→∞. Returning to the beginning of the proof, we have shown that P (A)→ 1

as n → ∞, implying that P (Ac) tends to 0 as n tends to infinity. Thus, by the

expression in (5.11), we have shown P (A ∩ B)→ 1 as n→∞. Note that this result

still holds for any arbitrary value chosen for c, instead of c = .05.

5.3 Theoretical Considerations for Present and Non-present Two-way

and Three-way Interactions

Suppose we have ten SNPs, SNPA, SNPB, ..., SNPJ , and are interested in four

independent interactions:

1. SNPA × SNPB

2. SNPC × SNPD × SNPE

3. SNPF × SNPG

4. SNPH × SNPI × SNPJ

Suppose each of the ten SNPs carry two states, condition 1 and condition 2. For

illustration, assign labels to each of the SNP states as shown in table 5.8. Suppose
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Table 5.8: Labels for the SNP states.

A1 := SNPA, condition 1 A2 := SNPA, condition 2

B1 := SNPB, condition 1 B2 := SNPB, condition 2

C1 := SNPC , condition 1 C2 := SNPC , condition 2

D1 := SNPD, condition 1 D2 := SNPD, condition 2

E1 := SNPE, condition 1 E2 := SNPE, condition 2

F1 := SNPF , condition 1 F2 := SNPF , condition 2

G1 := SNPG, condition 1 G2 := SNPG, condition 2

H1 := SNPH , condition 1 H2 := SNPH , condition 2

I1 := SNPI , condition 1 I2 := SNPI , condition 2

J1 := SNPJ , condition 1 J2 := SNPJ , condition 2

we have 8n subjects, and let Y1, ..., Y8n represent the values of some quantitative

phenotype for each subject, i = 1, 2, ..., 8n. Assume that subjects are distributed

evenly among multifactor classes within interactions. That is, each multifactor cell

within a two-way interaction contains 2n subjects, and each multifactor cell within a

three-way interaction contains n subjects. Further, suppose that the SNPA × SNPB

interaction and the SNPC × SNPD × SNPE interaction are present and that the

remaining two interactions are not. That is,

Yi = µ0 + µ1(A1i)(B1i) + µ2(C1i)(D1i)(E1i) + εi (5.21)

where ε
iid∼ N(0, σ2) and µ1, µ2 > 0. Note that some loss of generality occurs with the

µ1, µ2 > 0 assumption. Figure 5.6 illustrates the four interactions. Here, the shaded
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Figure 5.6: Illustration of the four interactions to be considered.

multifactor cells represent genotypic combinations for which the phenotype mean is

increased by the presence of an interaction.

Regarding the arbitrary cutoff aggregated score (ACAS) with c = .05, we will show

the following propositions:

1. P (SNPA × SNPB is included in the aggregated score) → 1, n→∞.

2. P (SNPC × SNPD × SNPE is included in the aggregated score) → 1, n→∞.

3. P (SNPF × SNPG is included in the aggregated score) ≤ .05

4. P (SNPH × SNPI × SNPJ is included in the aggregated score) ≤ .05
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The proofs proceed as follows:

Proposition 1: P (SNPA × SNPB is included in the aggregated score) → 1,

n→∞.

To show this, we refer back to section 5.1. If we let µhigh = µ0 + µ1 + 1
8
µ2 and

adjust for a doubled sample size, the proof for proposition follows from the sequence

in which we proved that P (A)→ 1, n→∞ in section 4.1.

Proposition 2: P (SNPC × SNPD × SNPE is included in the aggregated score)

→ 1, n→∞.

To show this, we refer back to section 5.2. If we let µhigh = µ0 + µ2 + 1
4
µ1,

the proof of this proposition follows from the sequence in which we proved that

P (A)→ 1, n→∞ in section 4.2.

Proposition 3: P (SNPF × SNPG is included in the aggregated score) ≤ .05

As illustrated in section 5.1, there are there are 14 possible “high”/“low” configu-

rations (labeling of quadrants as “high” or “low”) which can be assigned to a 2 × 2

table with AQMDR. Let them be indexed by p = 1, 2, ..., 14. See figure 5.3. Again,

we define ci(p) for each p = {1, 2, ..., 14}, as shown in table 5.2. Define T (p) for each

p ∈ {1, ..., 14} as follows:

T (p) :=

8n∑
i=1

ci(p)Yi√
8n∑
i=1

ci(p)2
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Consider T(1).

T (1) =

8n∑
i=1

ci(1)Yi
√

24n

=

2n∑
i=1

(3)Yi +
8n∑

i=2n+1

(−1)Yi
√

24n

=
6nȲ1 − 6nȲ2√

24n

=
6n(Ȳ1 − Ȳ2)√

24n

where Ȳ1 is a sample mean of realized values of Yi for i ∈ {1, ..., 2n}, and Ȳ2 is a

sample mean of Yi for i ∈ {2n + 1, ..., 8n} (all of which have mean µ0 + 1
4
µ1 + 1

8
µ2).

As
∑8n

i=1 ci(1) = 0,

T (1) ∼ N
(
0, σ2

)
.

A series of similar calculations yield the following general result for all p ∈ {1, ..., 14}:

T (p) ∼ N
(
0, σ2

)
.

Define a T-statistic as follows:

T := max1≤p≤14T (p).

Consider a fixed permutation π : {1, 2, ..., 8n} → {1, 2, ..., 8n}. Define Tπ(p) as

follows:

Tπ(p) :=

8n∑
i=1

cπ(i)(p)Yπ(i)√
8n∑
i=1

cπ(i)(p)2

=

8n∑
i=1

cπ(i)(p)Yπ(i)√
8n∑
i=1

ci(p)2

.
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Define the test statistic for permutation π as follows:

Tπ := max1≤p≤14Tπ(p).

As T and Tπ are functions of the Yi’s, let’s call them T (Y) and Tπ(Y) where

Y =



Y1

.

.

.

Y8n


.

Now, suppose we have 1000 permutations π1, π2, ..., π1000, and these correspond to

Tπ1(Y), Tπ2(Y), ..., Tπ1000(Y). It is obvious that if we were to sort the set T (Y),

Tπ1(Y),..., Tπ1000(Y) from lowest to highest, the ordering would be random. That is,

T (Y) is equally likely to be between any two of the Tπi(Y)’s for i ∈ {1, ..., 1000}.

Let Ai be I[T (Y) < Tπi(Y)]. Then
1000∑
j=1

Aj is equal to the number of Tπi(Y)’s on the

right side of T (Y) in the ordering mentioned above. Because this ordering is random,
1000∑
j=1

Aj ∼ Unif(0, 1000). In order for this interaction to be included in the arbitrary

cutoff aggregated score with c = .05, less than 50 of 1000 independent permutations

of the Yi’s should produce Tπ’s that are greater than T . That is,
1000∑
j=1

Aj ≤ 50. Based

on the uniform distribution of
1000∑
j=1

Aj, P (the interaction is included in the aggregated

score) = P (
1000∑
j=1

Aj < 50) < .05.

Proposition 4: P (SNPH × SNPI × SNPJ is included in the aggregated score)

≤ .05 The proof of this proposition is analogous to that of Proposition 3.
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Chapter 6

Application: Exploring Interactions Between APOE and Known

Alzheimer’s Disease Associated SNPs

6.1 Introduction

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder that is char-

acterized by impairment in memory and decreased cognition [14]. AD is progressive in

nature, typically beginning with mild loss of memory but often leading to difficulties

with communication, loss of ability to respond to surroundings and loss of autonomy

[15]. AD is the most common form of dementia worldwide, affecting more than 24

million people [14]. Forecasts suggest that by 2050, Alzheimer’s disease will affect 1

out 85 people. In the United States alone, an estimated 5 million people are currently

diagnosed with AD, and this number is expected to increase to about 14 million by

2050 [16].

The criteria for diagnosis of AD established by the National Institute on Aging

and Alzheimer’s Association are dispersed between two categories. The first category

includes core clinical criteria, which can be assessed by physicians without the need

for advanced imaging equipment or cerebrospinal fluid analysis. The second category

includes research criteria, which involve the use of biomarkers based on imaging and

measures from cerebrospinal fluid [17]. For this research we focus on biomarkers that

directly reflect the pathology of AD by providing evidence of the presence of proteins

deposited in the brain during the course of AD, such as the amyloid-beta protein (Aβ)

and tau. Research suggests that build up of these two proteins in the brain may be

a mark of AD. A low measure of Aβ in cerebrospinal fluid (CSF) serves as a marker

of Aβ deposition in the brain. Similarly, a high level of tau or phosphorylated-tau

(p-tau) in CSF serves as a marker of tau accumulation in the brain [17].
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In addition to these CSF biomarkers, genetic influences on AD risk have also been

identified. The most notable of these is the apolipoprotein E (APOE ) gene [17]. In

humans, the APOE gene exists in three polymorphic alleles: ε2, ε3, and ε4. Genome-

wide association studies (GWAS) suggest that ε4 is the strongest genetic risk factor

for AD. In the overall population, ε4 occurs in 13.7% of people, but among AD

patients this frequency is increased to 40% [18]. In fact, research has shown that the

ε4 allele of the APOE gene (APOE4 ) carries a two-to-three fold increase in AD risk

for individuals with one ε4 allele, and a 12-fold increase in risk for those with two ε4

alleles [19].

Previous studies have identified SNPs with known main effect associations with

Alzheimer’s disease status. Lambert et al. [20] analyzed 7,055,881 SNPs as main

effects, and found that 19 SNPs were associated with AD. Some of these susceptibil-

ity loci had previously been identified in similar studies (from the ABCA7, APOE,

BIN1, CLU, CR1, CD2AP, EPHA1, MS4A6A, and PICALM genes), but several

susceptibility loci were newly-identified in the study. These loci are found on the

following genes: HLA, PTK2B, SORL1, SLC24A4, DSG2, INPP5D, MEF2C, NME8,

ZCWPW1, CELF1, FERMT2, and CASS4 [20]. Although CD33 was not identified

by the Lambert et al. study as an AD susceptibility gene, Griciuc et al. produced

results which suggest that CD33 may play a role in reducing Alzheimer’s risk by pre-

venting diminishing Aβ in cerebrospinal fluid [21]. Similarly, MAPT (which encodes

for CSF tau) has been identified as a possible susceptibility gene for AD [22], as well

as Presenilin E318G [23] and TREM2 [24]. Based on these studies, a set of 23 known

AD associated SNPs (in addition to APOE4 count) were selected for this study, and

are displayed in table 6.1 [20, 23, 24, 21]. Note that these SNPs each take values of

0, 1, or 2.
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Table 6.1: SNPs considered in this study.
Chromosome SNP Position Gene

1 rs6656401 207518704 CR1
2 rs6733839 127135234 BIN1
2 rs35349669 233159830 INPP5D
5 rs190982 88927603 MEF2C
6 rs75932628 41161514 TREM2
6 rs10948363 47520026 CD2AP
7 rs2718058 37801932 NME8
7 rs1476679 100406823 ZCWPW1
7 rs11771145 143413669 EPHA1
8 rs28834970 27337604 PTK2B
8 rs9331896 27610169 CLU
11 rs10838725 47536319 CELF1
11 rs983392 60156035 MS4A6A
11 rs10792832 86156833 PICALM
11 rs11218343 121564878 SORL1
14 rs17125944 52933911 FERMT2
14 rs17125721 73206470 PSEN1
14 rs10498633 92460608 SLC24A4
17 rs8070723 46003698 MAPT
18 rs8093731 31508995 DSG2
19 rs4147929 1063444 ABCA7
19 rs3865444 51224706 CD33
20 rs7274581 56443204 CASS4

In this study, we aimed to identify gene-to-gene interactions that demonstrated

association with counts of tau and Aβ found in cerebrospinal fluid, while restricting

ourselves to only those two-way and three-way interactions including APOE4. We ap-

plied the Aggregated Quantitative Multifactor Dimensionality Reduction (AQMDR)

method proposed in this work to exhaustively search for significant interactions and

aggregate them into two predictors (one aggregated score for two-way interactions,

and one for three-way interactions). We also applied the Quantitative Multifactor

Dimensionality Reduction (QMDR) technique, which resulted in candidate two-way

and three-way interactions, and selected an optimal interaction between the two can-

didates. We then evaluated the resulting AQMDR and QMDR models by providing

a training data R2 for each method.
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6.2 Methods

Data for this study were obtained from the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI). The ADNI study is a longitudinal study conducted in multiple North

American sites in which participants are assessed clinically, and genetic and biomarker

information is recorded for these individuals throughout the aging process [25]. The

sample data set for this application study included observations from 419 individuals

for whom baseline measures of CSF tau and CSF Aβ were available. 253 of these

subjects were female and 166 subjects were male. The subjects ranged in age from

54 to 89, with an average age of 74.51. About 28% of the subjects were classified as

normal controls (N) regarding disease status, about 48% were diagnosed with mild

cognitive impairment (MCI), and 24% were diagnosed with mild Alzheimer’s disease

(AD).

We restricted attention to gene-to-gene interactions which included APOE4. That

is, we considered 23 two-way interactions (APOE4 with each of the SNPs listed in

table 6.1) and
(

23
2

)
three-way interactions. These interactions were evaluated for

association with two quantitative outcome variables, CSF Aβ and CSF tau. Each of

these outcome variables were considered separately using the following analysis steps:

1. Subjects were stratified based on disease status (N, MCI or AD), and a separate

analysis was performed for each stratification group. The rationale for this

stratification stems from the fact that the three disease strata represent three

vastly different populations.

2. To control for common AD covariates [26], the quantitative outcome variables

were regressed on gender, age, and education and the residuals were used as the

new quantitative outcome variable of interest.

3. We applied the Aggregated Quantitative Multifactor Dimensionality Reduction
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(AQMDR) method to these subsets of interactions and recorded the permu-

tation p-values obtained for each interaction. Note that the sample data had

missing values, which were excluded in this initial application study. That is, for

each interaction, only subjects with observations for all SNP factors involved in

the interaction were included in the analysis. For each interaction, the main ef-

fects for involved SNPs were incorporated in a regression model for the outcome

variable, and then residuals of this model were used as the outcome variable for

the AQMDR analysis.

4. The permutation p-values were then used to develop an aggregated score for

two-way interactions and an aggregated score for three-way interactions. These

aggregated scores were developed using the Arbitrary Cutoff Aggregated Score

(ACAS) with c = .10. Note that lower values for c were initially considered, but

a higher cutoff was chosen in order to have at least one interaction included in

an aggregated score for the quantitative outcomes. Again, subjects with missing

values for SNPs which were included in the aggregated score were excluded from

the analysis.

5. We combined the aggregated scores (the two-way aggregated score and the

three-way aggregated score) in a linear regression model for the outcome using

the Simultaneous Inclusion method described in chapter 3.

6. The regression model was evaluated with a training R2.

7. To compare the proposed AQMDR method with current methodology, for each

of the outcome variables we used Quantitative Multifactor Dimensionality Re-

duction (QMDR) to select a candidate two-way interaction and a candidate

three-way interaction, and to identify an optimal interaction between the two

candidates (see chapter 1 of this work for details of the QMDR method). The
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optimal interaction was used as a predictor in a linear regression model and

evaluated with a training R2.

6.3 AQMDR Results

In the results that follow, an AQMDR permutation p-value that is less than .10 is

denoted with (*), a p-value that is less than .05 is denoted with (**). Also note that

although the interactions we consider in this study are SNP-by-SNP interactions, for

ease of interpretation, we denote each SNP by its gene name. For example, in some

of the following tables we write CR1 instead of rs6656401.

Table 6.2 displays the permutation p-values obtained in the AQMDR implemen-

tation for two-way interactions regarding CSF tau. Each row in the table represents

the two-way interaction between the given SNP and APOE4. Permutation p-values

are given for each disease status stratum (N, MCI or AD). Note that for an arbitrary

cutoff of c = .10, only one of the 23 two-way interactions is identified as significant,

APOE4 by ABCA7. Further, APOE4 by ABCA7 was only identified as significant

within the normal control (N) stratum.

Table 6.3 summarizes the significant interactions for CSF tau obtained from the

consideration of three-way interactions and the corresponding permutation p-values

obtained for the interactions in the AQMDR analysis. Note that if an interaction was

significant in any of the three disease strata, it is included in this table along with

the permutation p-values for all three strata.

Table 6.4 displays the permutation p-values obtained in the AQMDR implemen-

tation for two-way interactions regarding CSF Aβ. Again, each row in the table

represents the two-way interaction between the given SNP and APOE4. Permutation

p-values are given for each disease status stratum (N, MCI or AD). For an arbitrary
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Table 6.2: Two-way interaction permutation p-values for CSF tau.
SNP Gene N MCI AD

rs6656401 CR1 1.000 0.961 0.743
rs6733839 BIN1 0.995 0.642 0.937
rs35349669 INPP5D 0.589 0.996 0.982
rs190982 MEF2C 0.996 0.998 0.390

rs75932628 TREM2 1.000 1.000 1.000
rs10948363 CD2AP 0.921 0.964 0.593
rs2718058 NME8 1.000 1.000 0.896
rs1476679 ZCWPW1 1.000 0.993 0.691
rs11771145 EPHA1 0.950 1.000 0.641
rs28834970 PTK2B 0.337 0.940 0.895
rs9331896 CLU 0.924 0.988 0.462
rs10838725 CELF1 0.682 0.985 0.999
rs983392 MS4A6A 0.993 0.574 1.000

rs10792832 PICALM 0.402 0.759 0.872
rs11218343 SORL1 1.000 1.000 1.000
rs17125944 FERMT2 0.995 0.982 0.717
rs17125721 PSEN1 0.707 0.180 1.000
rs10498633 SLC24A4 1.000 0.896 1.000
rs8070723 MAPT 0.953 0.991 0.985
rs8093731 DSG2 1.000 0.388 0.981
rs4147929 ABCA7 0.084* 0.792 0.984
rs3865444 CD33 1.000 0.877 0.891
rs7274581 CASS4 0.883 1.000 0.636

cutoff of c = .10, only one interaction is identified as significant, APOE4 by PTK2B.

Further, APOE4 by PTK2B was only significant in disease stratum MCI.

Table 6.5 summarizes the significant interactions for CSF Aβ obtained from the

consideration of three-way interactions and the corresponding permutation p-values

obtained for the interactions in the AQMDR analysis. Note that if an interaction was

significant in any of the three disease strata, it is included in this table along with

the permutation p-values for all three strata.
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Table 6.3: Significant three-way interactions for CSF tau.
Interaction N MCI AD

APOE4 x CD2AP x PICALM 0.086* 0.969 0.998
APOE4 x ABCA7 x NME8 0.080* 0.656 0.984
APOE4 x CR1 x MS4A6A 0.836 0.065* 0.987

APOE4 x MEF2C x CD2AP 0.988 0.998 0.043**
APOE4 x TREM2 x ZCWPW1 0.981 1.000 0.084*
APOE4 x MAPT x CELF1 0.845 0.983 0.093*

6.4 QMDR Results

Table 6.6 displays the candidate two-way and three-way interactions for CSF tau

selected by the QMDR analysis, and identifies which candidate interaction was se-

lected as the optimal interaction. Interactions printed in bold face indicate those that

were identified as significant (permutation p-value less than .10) in the AQMDR anal-

ysis. Note that for the quantitative outcome variable, CSF tau, all of the interactions

identified as optimal by QMDR were also selected by AQMDR (with c = .10) for

inclusion in the Arbitrary Cutoff Aggregated Score. For disease stratum N, APOE4

x INPP5D x PTK2B was selected as the candidate three-way interaction in QMDR,

but the permutation p-value obtained for that interaction in AQMDR was 0.327.

As we saw in table 6.3, two three-way interactions were identified as significant by

AQMDR, neither of which were APOE4 x INPP5D x PTK2B. For disease stratum

MCI, APOE4 x PSEN1 was selected as the candidate two-way interaction by QMDR,

but the AQMDR permutation p-value was 0.180. AQMDR did not identify any signif-

icant two-way interactions for disease stratum MCI. For disease stratum AD, APOE4

x SLC24A4 (which had an AQMDR permutation p-value of 1.000) was identified as

a candidate interaction in QMDR. AQMDR did not identify any significant two-way

interactions in the AD stratum.

Table 6.7 displays the candidate two-way and three-way interactions for CSF Aβ

selected by the QMDR analysis, and identifies which candidate interaction was se-
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Table 6.4: Two-way interaction permutation p-values for CSF Aβ.
SNP Gene N MCI AD

rs6656401 CR1 0.527 0.824 0.776
rs6733839 BIN1 0.799 0.848 0.933
rs35349669 INPP5D 0.838 0.971 0.983
rs190982 MEF2C 0.998 0.883 0.403

rs75932628 TREM2 1.000 1.000 1.000
rs10948363 CD2AP 1.000 0.945 0.625
rs2718058 NME8 0.705 0.986 0.871
rs1476679 ZCWPW1 0.595 0.632 0.611
rs11771145 EPHA1 0.867 0.956 0.660
rs28834970 PTK2B 1.000 0.011** 0.896
rs9331896 CLU 1.000 0.780 0.487
rs10838725 CELF1 0.988 0.839 1.000
rs983392 MS4A6A 0.945 0.616 1.000

rs10792832 PICALM 0.706 0.973 0.878
rs11218343 SORL1 1.000 1.000 1.000
rs17125944 FERMT2 0.999 0.842 0.710
rs17125721 PSEN1 0.707 0.180 1.000
rs10498633 SLC24A4 0.634 1.000 1.000
rs8070723 MAPT 0.617 0.986 0.988
rs8093731 DSG2 1.000 0.806 0.984
rs4147929 ABCA7 0.995 0.977 0.984
rs3865444 CD33 0.961 0.971 0.872
rs7274581 CASS4 0.712 1.000 0.632

lected as the optimal interaction. Interactions printed in bold face indicate those

that were identified as significant (permutation p-value less than .10) in the AQMDR

analysis. In disease stratum MCI, both candidate interactions were also identified

as significant by AQMDR. For disease stratum N, APOE4 x MAPT was selected

as the two-way candidate interaction by QMDR. However, this interaction yielded

a permutation p-value of 0.617 in the AQMDR analysis. AQMDR did not identify

any significant two-way interactions within the N disease stratum. QMDR identified

APOE4 x BIN1 x PICALM as the candidate three-way interaction (as well as the op-

timal interaction) for the N stratum, yet this interaction yielded an AQMDR p-value

of 0.238. AQMDR identified two significant three-way interactions for the N group,

neither of which were APOE4 x BIN1 x PICALM. Within the AD group, APOE4
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Table 6.5: Significant three-way interactions for CSF Aβ.
Interaction N MCI AD

APOE4 x CR1 x SLC24A4 0.067* 0.986 0.518
APOE4 x BIN1 x SLC24A4 0.098* 0.539 0.997
APOE4 x PTK2B x MAPT 0.986 0.100* 0.989
APOE4 x PTK2B x TREM2 0.999 0.021** 0.936
APOE4 x PTK2B x NME8 0.698 0.074* 0.956

APOE4 x PTK2B x ZCWPW1 0.941 0.012* 0.642
APOE4 x PTK2B x CELF1 1.000 0.099* 0.553
APOE4 x PTK2B x SORL1 1.000 0.011** 0.697
APOE4 x PTK2B x FERMT2 0.983 0.016** 0.950
APOE4 x PTK2B x PSEN1 0.985 0.031** 0.980
APOE4 x PTK2B x DSG2 0.827 0.014** 0.584
APOE4 x PTK2B x ABCA7 0.999 0.085* 0.270
APOE4 x PTK2B x CD33 0.993 0.008** 0.970
APOE4 x PTK2B x CASS4 0.930 0.077* 0.688

Table 6.6: QMDR candidate interactions for CSF tau.
Strat. Two-way Candidate Three-way Candidate Optimal

N APOE4 x ABCA7 APOE4 x INPP5D x PTK2B two-way
MCI APOE4 x PSEN1 APOE4 x CR1 x MS4A6A three-way
AD APOE4 x SLC24A4 APOE4 x MAPT x CELF1 three-way

x TREM2 and APOE4 x CD2AP x CLU were selected as candidate interactions

by QMDR, and yielded respective AQMDR permutation p-values of 1.000 and 0.329.

AQMDR did not identify any significant two-way or three-way interactions for the

AD disease stratum.

Table 6.7: QMDR candidate interactions for CSF Aβ.
Strat. Two-way Candidate Three-way Candidate Optimal

N APOE4 x MAPT APOE4 x BIN1 x PICALM three-way
MCI APOE4 x PTK2B APOE4 x PTK2B x CD33 two-way
AD APOE4 x TREM2 APOE4 x CD2AP x CLU two-way

6.5 Model Implementation

The results described in the previous sections for both CSF tau and CSF Aβ were

implemented in linear models, and these models were evaluated using training R2
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values. To illustrate the model implementation process (steps 4-6 from section 6.2

above) for AQMDR, we will consider the quantitative outcome variable, CSF tau, and

focus on the N disease group. Recall from tables 6.2 and 6.3 that APOE4 x ABCA7,

APOE4 x ABCA7 x NME8, and APOE4 x CD2AP x PICALM yielded permutation

p-values less than the arbitrary cutoff of c = .10. The two-way aggregated score will

contain only the APOE4 x ABCA7 interaction and the three-way aggregated score

will contain both APOE4 x ABCA7 x NME8 and APOE4 x CD2AP x PICALM.

All other interactions will be ignored. As the two-way aggregated score is based

off of only one interaction, the score for each subject in the data set will be the

“high”/“low” classification (1 for “high” or “0” for low) assigned to the subject in the

AQMDR classification. That is, the value of this aggregated score for each subject

will be 0, or 1. The three-way aggregated score is based on two interactions, and for

each subject will be the sum of the “high”/“low” classification value from APOE4 x

ABCA7 x NME8 and the “high”/“low” classification value from APOE4 x CD2AP x

PICALM. That is, the value of this aggregated score for each subject will be 0, 1, or

2.

Before implementing the AQMDR and QMDR models, we first regressed the out-

come variable, CSF tau on the three covariates and the main effects of all SNPs which

are included in the aggregated scores and the optimal QMDR interaction (APOE4,

ABCA7, NME8, CD2AP, and PICALM ). We include all SNPs included in the aggre-

gated score and the QMDR optimal interaction in the interest of using the same set

of residuals as the quantitative outcome for the AQMDR model implementation and

the QMDR model implementation. Only those subjects in the N stratum with obser-

vations for all of these covariates and relevant SNPs were included in the analysis.

For the AQMDR model implementation, the residuals from the previously men-

tioned regression model were used as the response in a linear regression model with
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the aggregated scores as predictors. Using the Simultaneous Inclusion method de-

scribed in chapter 3, the two-way aggregated score and the three-way aggregated

score were included in the linear model simultaneously. For the QMDR implementa-

tion, the same set of residuals used for the AQMDR implementation were used as the

response in a linear regression model with the “high”/“low” classification of subjects

based on the optimal interaction (APOE4 x ABCA7 in our example) as the only

predictor.

This process was repeated for each disease stratum, and again for CSF Aβ in

the three disease strata. Training R2’s for each of the QMDR and AQMDR linear

models were recorded in tables 6.8 and 6.9. For CSF tau (table 6.8), the AQMDR

implementation yields higher training R2’s for disease strata N and AD. Note that

the two implementations were identical for stratum MCI because AQMDR identified

only one significant interaction, which was the same interaction identified as optimal

by QMDR.

Table 6.8: Training R2’s for CSF tau.
Stratum AQMDR R2 QMDR R2

N 0.2342 0.0730
MCI 0.1435 0.1435
AD 0.2790 0.1884

For CSF Aβ, in disease stratum N, AQMDR yielded a slightly higher training R2

than QMDR. Recall that in this stratum, neither candidate interaction from QMDR

was identified as significant by AQMDR. As AQMDR still yielded a training R2 value

comparable to that of QMDR, perhaps AQMDR identified two important three-way

interactions, yet failed to pick up on APOE4 x BIN1 x PICALM (which was selected

as optimal by QMDR). This may have been addressed with a larger ACAS cutoff

value, c. For disease stratum MCI, the AQMDR implementation yielded a higher
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training R2 than QMDR. Recall that in this case, AQMDR identified both of the

QMDR candidate interactions as significant, and many others as well. This may

be the type of situation for which AQMDR was designed. That is, there may be

many gene-to-gene interactions present in nature. If this is the case, QMDR ignores

all but one of these interactions due to the selection of a single optimal interaction.

AQMDR would be advantageous in this case, as it incorporates the effects of multiple

gene-to-gene interactions based on permutation p-values. For the AD stratum, recall

that AQMDR did not identify any significant two-way or three-way interactions, thus

there was no aggregated score to implement in a model. QMDR selected an optimal

interaction by default, but when this interaction was implemented in a linear model,

the model yielded a very low training R2 value of 4.685 x 10−32, likely due to the

regression of the main effects.

Table 6.9: Training R2’s for CSF Aβ.
Stratum AQMDR R2 QMDR R2

N 0.2717 0.2369
MCI 0.4373 0.1512
AD - 4.685 x 10−32

6.6 Confounding

One concern surrounding the AQMDR results is the possibility of confounding.

For example, for CSF tau within disease stratum N, the two-way interaction between

APOE4 and ABCA7 was identified as significant. The three-way interaction among

APOE4, ABCA7 and NME8 was also identified as significant. It is possible that this

three-way interaction was only significant due to confounding caused by APOE4 x

ABCA7. If this is the case, inclusion of both of these interactions in the AQMDR

implementation would be redundant. In order to explore this possibility, we have

displayed the “high”/“low” classifications assigned to the significant interactions by
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AQMDR in figure 6.1. In this figure, the shaded multifactor cells are those classified

as “high” (1), and the white cells are those classified as “low”.

Based on the classification assigned to the two-way interaction, we would expect a

three-way interaction induced by confounding to exhibit the same pattern of classifi-

cation. That is, we expect the three-way interaction to exhibit“high”classifications in

multifactor cells where (APOE4 = 0 ∩ ABCA7 = 1 ), (APOE4 = 1 ∩ ABCA7 = 0 ),

(APOE4 = 1 ∩ ABCA7 = 2 ), or (APOE4 = 2 ∩ ABCA7 = 1 ). However, when we

observe the classification pattern of the three-way interaction among APOE4, ABCA7

and NME8, we see that the “high” multifactor cells extend beyond the APOE4 and

ABCA7 combinations identified in the two-way interaction. Based on these patterns,

we cannot conclude that the significance of the three-way interaction is merely a

consequence of the two-way interaction.
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Figure 6.1: “High”/“low” classifications for significant AQMDR interactions for CSF
tau in stratum N.

For CSF Aβ within the MCI stratum, the interaction between APOE4 and PTK2B

was identified as significant in AQMDR. Twelve three-way interactions were also iden-

tified, all of which contain APOE4 and PTK2B. Figure 6.2 illustrates the“high”/“low”

classifications assigned to the significant interactions by AQMDR. In this figure, the

shaded multifactor cells are those classified as “high”, and the white cells are those
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classified as “low”. As we saw with the CSF tau interactions, the classification pat-

terns extend beyond those we would expect based on confounding caused by the

two-way interaction, and the three-way interactions all display distinct “high”/“low”

classification patterns. Thus, we cannot conclude that the three-way interactions are

significant due only to the significance of the two-way interaction.
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Figure 6.2: “High”/“low” classifications for significant AQMDR interactions for CSF
Aβ in stratum MCI.
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6.7 Future Work

In this chapter, we have provided some interesting results regarding the analysis

of ADNI data using AQMDR and QMDR. We have provided data-driven evidence

that AQMDR may provide better predictions and identification of significant inter-

actions than QMDR in situations where more than one interaction is influencing a

quantitative trait. Future analysis of the sample data will be preceded by imputation

of the data to eliminate missing observations. Data with fewer missing SNP values

will allow for consistent sample sizes across all interaction considerations, and will

also facilitate the implementation of the more complex aggregated scores (CWAS and

HAS) discussed in chapter 2 of this work. A larger sample size for each interaction

consideration will also provide higher power. It is also important to note that if a

bonferroni correction were used to correct for multiple tests, none of the interactions

identified as significant with a cutoff of c = .10 in AQMDR would have been identified

as significant using the correction. In the continuation of this study with imputed

data, we hope to explore the necessity for correction of multiple tests.

In addition to the continuation of this data application, there are also avenues to

explore regarding the AQMDR method. Future work may include the consideration

of outcome variables in vector form. For example, rather than performing separate

analyses regarding CSF tau and Aβ, we may be able to use the AQMDR framework

to consider the vectorized outcome (tau, Aβ). It may also be of interest to consider

alternate approaches to the categorization of multifactor cells. For example, we may

want to consider weighting each multifactor class within an interaction with some

continuous score between 0 and 1. In addition, AQMDR is based on an extension

of QMDR, but could easily be adapted to incorporate Generalized MDR (GMDR)

[10]. As the GMDR approach yields a “high”/“low” classification of multifactor cells

within each interaction as well as a p-value associated with each k-way interaction,
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the method easily lends itself to the aggregated scores discussed in this work.
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