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ABSTRACT OF DISSERTATION

Improving the Computational Efficiency in Bayesian Fitting of Cormack-Jolly-Seber

Models with Individual, Continuous, Time-Varying Covariates

The extension of the CJS model to include individual, continuous, time-varying co-

variates relies on the estimation of covariate values on occasions on which individuals

were not captured. Fitting this model in a Bayesian framework typically involves

the implementation of a Markov chain Monte Carlo (MCMC) algorithm, such as a

Gibbs sampler, to sample from the posterior distribution. For large data sets with

many missing covariate values that must be estimated, this creates a computational

issue, as each iteration of the MCMC algorithm requires sampling from the full con-

ditional distributions of each missing covariate value. This dissertation examines two

solutions to address this problem. First, I explore variational Bayesian algorithms,

which derive inference from an approximation to the posterior distribution that can

be fit quickly in many complex problems. Second, I consider an alternative approx-

imation to the posterior distribution derived by truncating the individual capture

histories in order to reduce the number of missing covariates that must be updated

during the MCMC sampling algorithm. In both cases, the increased computational

efficiency comes at the cost of producing approximate inferences. The variational

Bayesian algorithms generally do not estimate the posterior variance very accurately

and do not directly address the issues with estimating many missing covariate val-

ues. Meanwhile, the truncated CJS model provides a more significant improvement in

computational efficiency while inflating the posterior variance as a result of discarding

some of the data. Both approaches are evaluated via simulation studies and a large

mark-recapture data set consisting of cliff swallow weights and capture histories.

KEYWORDS: Mark-recapture; Bayesian Inference; Variational Bayes; Individual

time-varying continuous covariates



Author’s signature: Woodrow Burchett

Date: June 27, 2017



Improving the Computational Efficiency in Bayesian Fitting of Cormack-Jolly-Seber

Models with Individual, Continuous, Time-Varying Covariates

By

Woodrow Burchett

Co-Director of Dissertation: Simon Bonner, PhD

Co-Director of Dissertation: Arnold Stromberg, PhD

Director of Graduate Studies: Constance Wood, PhD

Date: June 27, 2017



ACKNOWLEDGMENTS

This dissertation would not have been possible without the leadership, guidance

and constant support of my advisor, Dr. Simon Bonner. Dr. Bonner’s patience and

enthusiasm are seemingly without limit and I cannot possibly thank him enough for

his assistance.

I would like to express gratitude to Dr. Arnold Stromberg, Dr. Katherine Thomp-

son, Dr. William Griffith, and Dr. David Westneat for serving on my committee and

offering valuable suggestions and insights during this process. Thanks also to Dr.

Kwok-Wai Ng for serving as the outside examiner.

I would also like to express my thanks to Dr. Matthew Schofield for initiating

this project. Dr. Schofield’s enthusiasm, advice and direction were integral to the

development of this dissertation.

Lastly, I would like to thank my friends and family for their support and encour-

agement throughout this endeavor.

iii



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Mark Recapture Methods . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Cormack-Jolly-Seber Model . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Continuous Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Cliff Swallows Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 2 Variational Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Introduction to Variational Bayesian Methods . . . . . . . . . . . . . 15

2.2 Application of the Mean Field Approach to the CJS Model with Con-

tinuous Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 3 Improvements to the Variational Bayesian Algorithm . . . . . . . 37

3.1 Mixed Effects Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Modified Mean Field Approach to the CJS Model with Continuous

Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Hybrid Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Application to Cliff Swallows . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Chapter 4 Truncated CJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Introduction to Truncated CJS Model . . . . . . . . . . . . . . . . . . 66

4.2 Truncated CJS Likelihood . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Accuracy and Precision of the Truncated CJS Model . . . . . . . . . 69

4.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Application to Cliff Swallows . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

iv



Chapter 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Chapter A Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.1 Proof of Mean Field Maximization Result . . . . . . . . . . . . . . . 92

A.2 Expected Values for MFVB Algorithm . . . . . . . . . . . . . . . . . 95

A.3 Derivation of Optimal Variational Densities for the MFVB Method

Applied to the Mixed Effects Model . . . . . . . . . . . . . . . . . . . 97

A.4 Temporary Emigration . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

v



LIST OF FIGURES

2.1 Iterations Required for Convergence: MFVB vs MCMC . . . . . . . . . . 29

2.2 MFVB and MCMC Parameter Estimates in Low Capture Scenario . . . 31

2.3 Simulation Results Comparing MFVB and MCMC in Low Capture Scenario 32

2.4 MFVB and MCMC Parameter Estimates in High Capture Scenario . . . 34

2.5 Simulation Results Comparing MFVB and MCMC in High Capture Scenario 35

3.1 Ormerod and Wand’s Algorithm and MCMC Parameter Estimates from

Orthodont Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Ormerod and Wand’s Algorithm and MCMC Parameter Estimates from

Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 New Algorithm, Ormerod and Wand’s Algorithm, and MCMC Parameter

Estimates from Orthodont Data . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 New Algorithm, Ormerod and Wand’s Algorithm, and MCMC Parameter

Estimates from Simulated Data . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Iterations Required for Convergence: MFVB vs Corrected MFVB vs MCMC 49

3.6 MFVB, Corrected MFVB, and MCMC Parameter Estimates in Low Cap-

ture Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 Simulation Results Comparing MFVB, Corrected MFVB, and MCMC in

Low Capture Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 MFVB, Corrected MFVB, and MCMC Parameter Estimates in High Cap-

ture Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9 Simulation Results Comparing MFVB, Corrected MFVB, and MCMC in

High Capture Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.10 MFVB, Corrected MFVB, Hybrid MFVB, and MCMC Parameter Esti-

mates in Low Capture Scenario . . . . . . . . . . . . . . . . . . . . . . . 56

3.11 MFVB, Corrected MFVB, Hybrid MFVB, and MCMC Parameter Esti-

mates in High Capture Scenario . . . . . . . . . . . . . . . . . . . . . . . 57

3.12 Simulation Results Comparing MFVB, Corrected MFVB, Hybrid MFVB,

and MCMC in Low Capture Scenario . . . . . . . . . . . . . . . . . . . . 58

3.13 Simulation Results Comparing MFVB, Corrected MFVB, Hybrid MFVB,

and MCMC in High Capture Scenario . . . . . . . . . . . . . . . . . . . 59

3.14 Comparison of Parameter Estimates for a Subset of Cliff Swallows Data . 61

3.15 Comparison of Parameter Estimates for Cliff Swallows Data . . . . . . . 62

vi



4.1 KL Distances between MLEs at Different Values of k and p . . . . . . . . 72

4.2 KL Distances between MLEs at Different Values of k and φ . . . . . . . 73

4.3 Parameter Estimates from the Truncated CJS Model at Different Values

of k for Simulated Data with T = 15 . . . . . . . . . . . . . . . . . . . . 77

4.4 Parameter Estimates from the Truncated CJS Model at Different Values

of k for Simulated Data with T = 20 . . . . . . . . . . . . . . . . . . . . 79

4.5 Estimates of Capture Parameters from the Truncated CJS Model for 8

Years of Cliff Swallows Data . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Estimates of Survival Parameters from the Truncated CJS Model for 8

Years of Cliff Swallows Data . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7 Estimates of Capture Parameters from the Truncated CJS Model for Cliff

Swallows Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.8 Estimates of Survival Parameters from the Truncated CJS Model for Cliff

Swallows Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.1 Estimates of Capture Parameters from the Truncated CJS Model for a

Single Simulated Data Set with No Temporary Emigration . . . . . . . . 100

A.2 Estimates of Survival Parameters from the Truncated CJS Model for a

Single Simulated Data Set with No Temporary Emigration . . . . . . . . 101

A.3 Estimates of Capture Parameters from the Truncated CJS Model for a

Single Simulated Data Set with Severe Temporary Emigration . . . . . . 102

A.4 Estimates of Survival Parameters from the Truncated CJS Model for a

Single Simulated Data Set with Severe Temporary Emigration . . . . . . 103

A.5 Estimates of Capture Parameters from the Truncated CJS Model for a

Single Simulated Data Set with Moderate Temporary Emigration . . . . 104

A.6 Estimates of Survival Parameters from the Truncated CJS Model for a

Single Simulated Data Set with Moderate Temporary Emigration . . . . 105

A.7 Average Estimates of Capture Parameters from the Truncated CJS Model

across 100 Simulated Data Sets with No Temporary Emigration . . . . . 106

A.8 Average Estimates of Survival Parameters from the Truncated CJS Model

across 100 Simulated Data Sets with No Temporary Emigration . . . . . 107

A.9 Average Estimates of Capture Parameters from the Truncated CJS Model

across 100 Simulated Data Sets with Severe Temporary Emigration . . . 108

A.10 Average Estimates of Survival Parameters from the Truncated CJS Model

across 100 Simulated Data Sets with Severe Temporary Emigration . . . 109

vii



A.11 Average Estimates of Capture Parameters from the Truncated CJS Model

across 100 Simulated Data Sets with Moderate Temporary Emigration . 110

A.12 Average Estimates of Survival Parameters from the Truncated CJS Model

across 100 Simulated Data Sets with Moderate Temporary Emigration . 111

viii



LIST OF TABLES

1.1 Possible probabilities assigned to an individual’s capture history . . . . . 10

3.1 Differences between the original MFVB algorithm and the correlation cor-

rected MFVB algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Possible probabilities assigned to individual i’s capture history . . . . . . 68

4.2 Run times, estimated % bias, average relative standard errors, and ef-

fective samples per second when fitting the truncated CJS model (at 4

different values of k) to a data set with n = 600 and T = 15 capture

occasions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Run times, estimated % bias, average relative standard errors, and ef-

fective samples per second when fitting the truncated CJS model (at 4

different values of k) to a data set with n = 600 and T = 20 capture

occasions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Run times and effective samples per second when fitting the truncated CJS

model (at 4 different values of k) to the first 8 years of the cliff swallow

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

ix



Chapter 1 Introduction

1.1 Overview

Mark-recapture studies have been performed by ecological researchers for over a cen-

tury, beginning with Danish biologist C.G. Johannes Petersen’s study of the European

plaice population in 1896 (Petersen, 1896). Since then, researchers have studied many

different animal populations via mark-recapture methods, from wild Soay sheep living

on an isolated Scottish island (Clutton-Brock and Pemberton, 2004) to cliff swallows

nesting under bridges in the Western United States (Brown and Brown, 1996). These

mark-recapture studies, which consist of capturing the animals, assigning them unique

marks, and releasing them back into the population over multiple discrete capture

occasions, can produce estimates of a variety of different parameters that describe

the population of interest, including population size, birth rates, and survival rates.

The development of methods to analyze data generated from these studies is an active

area of research, incorporating many modern statistical and computational techniques

such as Markov Chain Monte Carlo (Bonner and Schwarz, 2006), multiple imputa-

tion (Worthington et al., 2015), Bayesian model selection (King et al., 2008), and the

expectation-maximization (EM) algorithm (Xi et al., 2009).

Many experiments are designed to estimate the survival of individuals in a popula-

tion and to identify the characteristics of the animals or environment which might im-

pact an individual’s survival. Most models for studying survival from mark-recapture

data are based on the Cormack-Jolly-Seber (CJS) model (Cormack, 1964; Jolly, 1965;

Seber, 1965). The CJS model assigns probabilities to the individual capture histories

as a function of two sets of parameters: the capture probabilities (the probability that

an individual alive on a particular capture occasion is caught on that occasion) and

the survival probabilities (the probability that an individual alive on a particular cap-

ture occasion will also be alive on the next capture occasion). In the original model,

these probabilities are allowed to vary over time, but not between individuals in the

population. Additionally, the CJS model assumes that each capture occasion occurs

instantaneously, marks are not mistakenly identified or lost, death or emigration is

permanent, and individuals in the population behave independently of one another

(Seber, 2002, page 196).

The desire for researchers to study the effects of different factors on survival

and to account for possible differences in capture susceptibility led to extensions of
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the CJS model being developed (Pollock, 2002). These extensions initially included

models to allow for the effects of individual and environmental continuous covariates

on survival and/or capture via a link function (Lebreton et al., 1992), and later those

incorporating dichotomous and categorical individual covariates that change over

time by way of the multi-state model (Brownie et al., 1993; Schwarz et al., 1993).

The multi-state model was developed because individual, time-varying covariates are

missing on capture occasions where individuals are not observed, and these missing

covariate values are necessary to define the survival and/or capture probabilities.

This missing data problem is solved by assuming that the covariate values follow the

Markov property, which allows for the summation over all possible covariate values in

the likelihood. Applying the multi-state approach to model the effect of an individual,

time-varying, continuous covariate, however, would require integrating, rather that

summing, over all possible missing covariate values, which results in an intractable

likelihood function.

One solution to the problem of missing individual, time-varying, continuous co-

variates is to discretize any such variables into discrete bins and analyze the data via

the multi-state model (Nichols et al., 1992). Simple imputation techniques, such as

carrying the last observation forward or taking the mean of an individual’s observed

values, can also be implemented to address the issue of missing covariates. How-

ever, the parameter estimates can be very biased if the imputation algorithm does

not closely match the true underlying process and these imputation methods do not

account for the uncertainty in covariate estimation, which will lead to artificially low

standard errors (Bonner et al., 2010).

Bonner and Schwarz (2006) solved this problem by explicitly modeling the miss-

ing covariates to construct a complete data likelihood. The fitting then occurs via a

Bayesian framework in which Markov Chain Monte Carlo (MCMC) algorithms are

applied to generate samples from the joint posterior distribution of both the model

parameters and missing covariate values. This avoids the analytically intractable

integration over all possible covariate values that a maximum likelihood approach

would necessitate. The specific covariate model introduced in Bonner and Schwarz

(2006) assumes that the differences in covariate values from one capture occasion

to the next are normally distributed, with a constant precision across all capture

occasions and individuals, and that the average change between subsequent capture

occasions is constant for all individuals. This is a Markov process, as was the covari-

ate model assumed in the multi-state model. King et al. (2008) applied this technique

to analyze Soay sheep data, slightly modifying the Bonner and Schwarz (2006) co-
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variate model and conducting Bayesian model selection via reversible jump MCMC

to probabilistically evaluate the appropriateness of different modeling assumptions.

This demonstrates that the Bayesian approach to the estimation of missing contin-

uous covariates is both flexible, allowing the model for the missing covariates to be

easily modified to fit different real world problems, and that the assumptions made

in the modeling process can be rigorously examined via Bayesian model selection

techniques.

The main assumptions underlying the model for the missing covariates presented

by Bonner and Schwarz (2006) are that the change in an individual’s covariate value

on consecutive capture occasions is normally distributed, that the mean change be-

tween subsequent capture occasions is constant across all individuals in the pop-

ulation, that the variance or precision of this process is constant across sampling

occasions and individuals, and that the changes are independent across sampling

occasions and between individuals.

This approach, however, has limitations when it comes to analyzing very large data

sets. Markov Chain Monte Carlo methods that rely on sampling repeatedly from full

conditional distributions until convergence is reached often scale very poorly as the

sample size increases, especially when every missing covariate value must be gener-

ated on each iteration of the algorithm. This repeated sampling of a potentially large

number of missing covariates can make the traditional MCMC approach unfeasible,

especially when the experiment was conducted over many capture occasions and indi-

viduals are short lived and/or capture rates are low so that there are many occasions

where individuals are not captured.

Langrock et al. (2013) attempted to address these issues by returning to the

maximum likelihood framework. In particular, they finely discretized the continuous

covariates to facilitate numerically integrating over the range of possible values, ex-

tending the coarse binning approach found in Nichols et al. (1992). The resulting

likelihood is equivalent to that of a hidden Markov model, which allowed the authors

to take advantage of an efficient, recursion-based evaluation of the likelihood function.

This increased efficiency in evaluating the likelihood makes maximum likelihood esti-

mation feasible. Additionally, although the discretization of the continuous covariate

results in the maximization of an approximate likelihood, this approximation can be

made arbitrarily more accurate by more finely discretizing the covariate at the cost

of computational efficiency. Langrock et al. (2013) mentioned that in the presence of

two continuous, time-varying individual covariates, however, the Bayesian approach

introduced by Bonner and Schwarz (2006) may be preferable, as the computational

3



burden for their maximum likelihood method quickly becomes untenable. Addition-

ally, although Langrock et al. (2013) specifically considered mark-recapture-recovery

data, the technique they introduce also applies to mark-recapture data. Note that a

mark-recapture-recovery experiment is simply a mark-recapture study in which de-

ceased individuals may be recovered. Also note that although the model proposed by

Bonner and Schwarz (2006) was originally fit to mark-recapture data, it could just

as easily be applied to mark-recapture-recovery data.

Worthington et al. (2015) approached the problem by applying the technique

of multiple imputation to facilitate maximum likelihood estimation. This method

begins by first modeling only the continuous covariates and then generating multiple

complete sets of covariates from the fitted model. Maximum likelihood estimates can

then be obtained very quickly by fitting the CJS model to each of the generated data

sets with complete covariate information. This set of estimates can then be aggregated

via non-parametric bootstrap techniques in order to appropriately account for the

uncertainty in the estimation of the covariates. In addition to being significantly

faster than the Bayesian approach introduced by Bonner and Schwarz (2006), it also

avoids the computational issues present in Langrock et al. (2013) when incorporating

multiple continuous covariates. The downside to the multiple imputation approach

is that it relies on the assumption that the covariates are missing at random (i.e. the

information contained in the capture histories is ignored when imputing the missing

covariates). The authors admit that this is an unrealistic assumption, and while this

method performs extremely well in the simulation results presented in Worthington

et al. (2015), the simulation study only considered a covariate effect on survival. If

there was a covariate effect on the capture probabilities, then the missing at random

assumption would be more severely violated and I believe that substantial bias in the

parameter estimates could occur.

Another approach to estimate the effects of continuous covariates on survival prob-

abilities estimated from mark-recapture-recovery data was introduced by Catchpole

et al. (2008). This method produces parameter estimates without the need to impute

or model any missing covariates and is known as the trinomial model. The trinomial

model only considers events on the occasions directly following capture occasions on

which an individual was captured and the covariate measured. The likelihood, con-

taining only information from those capture occasions, is then maximized to obtain

parameter estimates without the need to estimate or impute any missing covariates

or assume any model associated with the covariates, as all of the survival probabilities

included in the likelihood will have an associated observed covariate. One drawback
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of this method is the increased variance of the parameter estimates, as potentially

useful information contained in individual capture histories is discarded when there

is no available covariate information. This model also relies heavily on the recovery

of deceased individuals present in mark-recapture-recovery data and has difficulties

when covariates are associated with capture probabilities. Bonner et al. (2010) pro-

vided a thorough comparison of the Bayesian missing covariate estimation and the

trinomial model introduced by Catchpole et al. (2008) and found that the trinomial

method can produce biased results when capture probabilities and/or sample sizes

are low.

Bonner (2003) explored the implementation of an EM algorithm to address the

missing data challenge when fitting the CJS model with individual, continuous, time-

varying covariates. Unfortunately, the expectation step of the algorithm requires

the evaluation of multi-dimensional integrals with no analytic solutions. Bonner

(2003) attempted to solve this issue by approximating the expected values numeri-

cally through Monte Carlo integration. However, the variability associated with the

parameter estimates needed to be bootstrapped. This made the method extremely

computationally demanding, as Monte Carlo integration needed to occur on every

iteration of the EM algorithm which itself needed to be run multiple times to gen-

erate bootstrapped variability estimates and confidence intervals. Additionally, the

Monte Carlo EM approach did not perform as well as a Bayesian MCMC algorithm

in simulation studies. Xi et al. (2009), while not directly addressing this problem,

did successfully implement an EM algorithm to solve a missing data problem in the

case of a closed population model (i.e. individuals cannot die or leave the population

throughout the duration of the study) where the covariates are not time-varying.

In this dissertation, I attempt to solve the missing, individual, time-varying, con-

tinuous covariate problem by exploring two very different approaches. The first in-

volves abandoning the MCMC methodology for sampling from the posterior distri-

bution in favor of analytical approximation (specifically, variational Bayesian tech-

niques). Variational Bayesian methods provide an alternative to MCMC algorithms

and have been widely applied in the field of computer science (Jordan et al., 1999;

Jaakkola and Jordan, 2000; Minka, 2001; Mandt and Blei, 2014; Polatkan et al.,

2015). These techniques are significantly faster and deterministic, but rely on mak-

ing some assumptions about the posterior distributions to simplify the estimation

process (Jordan et al., 1999; Ormerod and Wand, 2010). The idea behind variational

Bayesian methodology is to replace the potentially time consuming and resource in-

tensive sampling that occurs in an MCMC algorithm with an optimization problem
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that is rendered tractable by making some assumptions about the underlying poste-

rior distribution. The increase in speed comes at the cost of deriving inference from

an approximate posterior distribution (rather than sampling from the true posterior

distribution, as MCMC does) restricted by the aforementioned assumptions. Addi-

tionally, this approximate posterior distribution usually underestimates the variability

of the true posterior distribution (Ormerod and Wand, 2010).

My second approach relies on a different approximation to the posterior distri-

bution obtained by altering the CJS likelihood to allow the truncation of capture

histories, the same basic idea underlying the method described in Catchpole et al.

(2008). This will reduce the number of missing covariates that must be imputed by fo-

cusing on the missing data that has the most influence over the parameter estimates.

To accomplish this, I truncate individual capture histories after each recapture ac-

cording to a tuning parameter k. I call this approach the truncated CJS model. This

method does discard some data and, as a result, produces posterior samples with

higher variance than that of the true posterior distribution. As I will show, however,

the posterior estimates produced when fitting this model are still unbiased and care-

fully choosing the value of k can result in an MCMC algorithm capable of generating

samples from a posterior distribution that are almost indistinguishable from samples

of the true posterior distribution in a fraction of the time.

The manuscript begins with an introduction to mark-recapture methods in Section

1.2, followed by the definition of the original CJS model in Section 1.3, the extension to

time-varying, individual, continuous covariates in Section 1.4, and a description of the

large mark-recapture data set I will analyze as an example when evaluating both of my

new methods in Section 1.5. I then apply a standard variational Bayesian approach

to the CJS model with individual, time-varying, continuous covariates in Chapter 2

and describe some of issues with the approximation. In Chapter 3 I produce a better

variational Bayesian approximation at the cost of a large computational burden and

introduce a method that combines this more accurate approximation with the faster

algorithm from Chapter 2. In Chapter 4 I take a different approach and introduce

the truncated CJS model, which I fit using MCMC algorithms. Finally, I conclude

with some discussion about my findings in Chapter 5.

1.2 Mark Recapture Methods

Before any discussion of models or fitting algorithms can begin, I must first define

the structure of data collected during mark-recapture studies. I begin by providing
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a list of notation. Then, I describe how data is collected and recorded during a

mark-recapture study.

Notation

The following list describes the data and parameters necessary to define the CJS

model:

• Study Parameters

T = number of capture occasions

• Observed Data

n = number of individuals marked during the T capture occasions

ωi,t =

1, if individual i is captured at occasion t

0, otherwise

ωi = (ωi,1, ωi,2, . . . , ωi,T ) = capture history for individual i

Ω = n by T matrix where the ith row is ωi

ai = first capture occasion on which individual i was captured

• Model Parameters

pt = probability that an individual is captured on

sampling occasion t, given that the individual is alive

φt = probability that an individual survives to occasion

t+ 1, given that the individual is alive at occasion t

χt = probability that an individual is not observed after occasion t,

given that the individual was captured alive on occasion t

Mark Recapture Data

A mark-recapture study proceeds by sampling individuals from a population over T

distinct capture occasions. This process begins on the first capture occasion, when

individuals are captured, given unique marks, and released back into the population.
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On subsequent capture occasions, both marked and unmarked individuals are cap-

tured. On these subsequent capture occasions, the presence of previously marked

individuals is noted and unmarked individuals are given a unique mark. Both previ-

ously marked and unmarked individuals are then released back into the population.

At the conclusion of a mark-recapture study, n unique individuals have been

recorded across T capture occasions. The capture histories of these individuals, after

being recorded on each capture occasion, are stored in an n by T matrix Ω. The i, t-th

entry in this matrix, ωi,t is an indicator variable that takes the value 1 if individual

i was captured on occasion t and 0 if not. The ith row of Ω, ωi = (ωi,1, . . . , ωi,T ),

is defined as the capture history for individual i. For example, suppose that I have

data from a mark-recapture study with T = 3 capture occasions and that individual i

was first captured on the 1st capture occasion and later captured on the 3rd capture

occasion. That individual’s capture history would be ωi = (101).

In addition, it is common for covariates of interest to be recorded when individuals

are captured. These covariates may be static, such as gender, and need only be

recorded on an individual’s initial capture while others may be time varying, such

as size or weight, and must be recorded on each occasion on which an individual is

captured. Furthermore, these covariates can often be environmental and not related

to individuals at all, such as temperature or rainfall. In the next section, I describe

the original formulation of the CJS model, which does not allow for the effect of

covariates. Later in Section 1.4, however, I describe the extension of the CJS model

to include covariates.

1.3 Cormack-Jolly-Seber Model

Fitting a model to the mark recapture data described in the previous section allows

researchers to estimate parameters of interest about the population from which the in-

dividuals are sampled. The basis for most models of open population mark-recapture

studies is the CJS model (Cormack, 1964; Jolly, 1965; Seber, 1965) which, in its orig-

inal form, assigns probabilities to the individual capture histories as a function of two

sets of parameters: capture probabilities (the probability that an individual alive on

a particular capture occasion is caught on that occasion) and survival probabilities

(the probability that an individual alive on a particular capture occasion will also

be alive on the next capture occasion). The CJS model assigns these probabilities

to capture histories conditional on each individual’s first release and assumes that

individuals behave independently, sampling occasions are instantaneous, marks are
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not lost or overlooked, and all death or emigration from the population is permanent.

See Seber (2002, page 196) for more details on the assumptions associated with the

CJS model.

To define the likelihood associated with the CJS model, I must first define some

notation. Let pt represent the probability that an individual will be captured on

sampling occasion t (given that the individual is alive on occasion t), φt represent

the probability that an individual will survive until occasion t + 1 (given that the

individual is alive on occasion t), and χt represent the probability that an individual

is not observed after occasion t (given that the individual is captured alive on occasion

t). Note that χt is a function of p and φ, where p = (p1, p2, . . . , pt) and φ =

(φ1, φ2, . . . , φt), and can be defined recursively as:

χt = (1− φt) + φt(1− pt+1)χt+1, t = 1, ..., T − 1

and χT = 1.

Probabilities which are functions of p, φ, and the derived quantity χ may then be

assigned to each capture history.

As an example, consider the hypothetical individual mentioned in the previous

section with a capture history of ω = (101). This individual’s capture history would

be assigned the probability φ1(1 − p2)φ2p3. The survival parameters φ1 and φ2 are

included because I know that this individual survived from capture occasion 1 to

capture occasion 3. Additionally, since I know this individual was alive on capture

occasions 2 and 3, I can include (1− p2) for the capture occasion on which this indi-

vidual was not captured and p3 for the capture occasion on which this individual was

captured. Note that p1 is not included, as the probability assigned to this individual’s

capture history is conditional on the first capture.

Table 1.1 provides a complete list of all individual capture histories and the as-

signed probabilities for a study with T = 3 capture occasions. The capture histories

ωi = 001 and ωi = 000 are not included in the table because they do not contribute

any information to the likelihood function due to the fact that probabilities assigned

to capture histories under the CJS model condition on an individual’s first capture.

Once probabilities are assigned to every possible capture history, the likelihood

for the CJS model can be written as

L(p,φ|Ω) =
n∏
i=1

Pr(ωi|ai) (1.1)

where ai denotes the occasion on which individual i was first captured. From here,

the model can be easily fit to the data using maximum likelihood estimation. This
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fitting can also be made extremely efficient by modeling the data in terms of sufficient

statistics contained in the m-array (Burnham, 1987). The m-array summarizes the

data by reporting how many individuals were captured and released at each occasion,

in addition to how many of these individuals were recaptured at each of the subse-

quent occasions. This information (a vector of size T − 1 containing the amounts of

released individuals and a T − 1 by T − 1 upper triangular matrix of first subsequent

recaptures) is all that is required to fit the original CJS model. However, the m-

array is insufficient for including individual covariates, and I will therefore consider

the likelihood associated with individual capture histories for the remainder of this

manuscript.

Table 1.1: Possible probabilities assigned to an individual’s capture history

Capture History Probability

111 φ1p2φ2p3

110 φ1p2χ2

101 φ1(1− p2)φ2p3

100 χ1

011 φ2p3

010 χ2

1.4 Continuous Covariates

Researchers are often interested in the effects of covariates on the parameters associ-

ated with members of a population. Consider, for example, the effect of weight on the

survivability of wild Soay sheep living on the Scottish island of Hirta (Clutton-Brock

and Pemberton, 2004; King et al., 2008; Bonner et al., 2010). The original form of

the CJS model described in Section 1.2 only allows capture and survival probabilities

to vary by capture occasion, which facilitates the modeling of temporal changes in

these parameters but cannot incorporate the effects of covariates. Fortunately, this

model was later extended to incorporate survival and capture probabilities that are

functions of covariates. Originally, these covariates were either static, such as an in-

dividual’s gender, or common to all individuals, like the amount of rainfall observed

before each capture occasion (Lebreton et al., 1992). Later, this model was extended

to allow individual, categorical covariates via the multi-state model (Brownie et al.,

1993; Schwarz et al., 1993). Bonner and Schwarz (2006) described a further exten-

sion of the CJS model in which capture and survival probabilities may be functions of
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continuous, time-varying, individual covariates. Fitting this model does present some

challenges not present in models that include static or common covariates, however,

as the values of such covariates cannot be observed on occasions on which individuals

are not captured.

To solve this problem, Bonner and Schwarz (2006) modeled the distribution of

the missing covariates to construct a complete data likelihood. Let zi,t represent the

covariate for individual i at time t (missing if ωi,t = 0). Bonner and Schwarz (2006)

considered this specific model for the continuous covariates:

[zi,t|zi,t−1,∆t, τ ] ∼ N
(
zi,t−1 + ∆t,

1

τ

)
(1.2)

where ∆t represents the average change in the covariate from capture occasion t− 1

to t and τ represents the precision of the change in an individual’s covariate value

between consecutive capture occasions. The main assumptions underlying this model

for the missing covariates are that the change in an individual’s covariate value on

consecutive capture occasions is normally distributed, that the mean change between

subsequent capture occasions is constant across all individuals in the population,

that the variance or precision of this process is constant across sampling occasions

and individuals, and that all individual’s in the population are independent of each

other.

Once the model for the covariate is defined, a link function, usually the logit,

relates the covariate information to the capture or survival probabilities. For example,

if I wanted to model the effect of a continuous, individual time-varying covariate on

survival, then I would define the survival probabilities as:

logit(φi,t) = β0 + β1zi,t

where φi,t now represents the probability that individual i survives from capture

occasion t to t+1, given that individual i was alive on capture occasion t. Likewise, if

the capture probabilities were dependent on an individual, time-varying covariate, the

probability that individual i is captured on capture occasion t, given that individual

i is alive on capture occasion t, would be denoted by pi,t. Additionally, if either the

capture or survival probabilities are modeled with respect to an individual, time-

varying covariate, the probability that individual i is not observed after occasion t

will be denoted χi,t. The capture histories are then assigned probabilities which are

nearly identical to those presented in Table 1.1 (for a study with 3 capture occasions),

with the only difference being the additional subscript to denote individual specific
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p, φ, and χ terms. The complete data likelihood can then be written as

L(β,∆, τ |Ω,Z) =
n∏
i=1

(
Pr(ωi|zi, ai)×

T∏
t=ai+1

Pr(zi,t|zi,t−1)

)
.

Note that the first term inside the parentheses denotes the probability associated with

individual i’s capture history while the second term represents the covariate model.

Due to the presence of missing covariate data, this model is typically fit in a

Bayesian framework via a Gibbs sampler, an MCMC technique, although maximum

likelihood approaches have also been proposed. Two of these methods were briefly

introduced in Section 1.1. The first, proposed by Langrock et al. (2013) relies on

approximating the integral over all possible missing covariate values by discretizing

the range of covariates, similar to the method from Nichols et al. (1992). The key

difference, however, is that the range of covariate values is much more finely dis-

cretized, and the likelihood is re-formulated as a hidden Markov model to make the

estimation much more efficient. The other technique comes from Worthington et al.

(2015) and relies on multiple imputation. First, a model is fit to the observed co-

variates, ignoring any capture history data. Many complete sets of covariates are

then generated by sampling missing covariate values from the fitted covariate model.

Lastly, the CJS model extended to include continuous covariates is fit separately to

each complete set of covariates and the parameter estimates are then aggregated us-

ing a non-parametric bootstrap to properly account for uncertainty in the missing

covariate values (Buckland, 1984; Buckland and Garthwaite, 1991; Little and Rubin,

2014).

One of the primary reasons these maximum likelihood approaches were developed

is that this particular extension of the CJS model can be computationally intensive

to fit with MCMC, as missing covariate values must be imputed for every individual

at every capture occasion after an individual’s first capture on which they are not

captured. For extremely large data sets, this can make fitting this model via a Gibbs

sampler computationally unfeasible. For example, if I were analyzing a data set in

which there were 5,000 instances where individuals were not recaptured after their

first capture, fitting this model via a Gibbs sampler would require sampling from

5,000 different full conditional distributions of missing covariates on each iteration

of the Gibbs sampler. If I want my Gibbs sampler to generate 3 Markov chains of

length 10,000, this would require sampling from the full conditional distributions of

the missing covariates 150 million times. Additionally, the full conditional distribu-

tions of the missing covariates are rarely in closed form, so the Gibbs sampler will
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need to be generalized into a Metropolis-Hastings or other rejection sampling algo-

rithm to facilitate sampling from the unknown distributions, making those 150 million

sampling procedures even more computationally demanding. The new methods I de-

scribe in this manuscript present new ways to reduce this computational burden by

first implementing an alternative approach to MCMC, and secondly by defining a

new model where fewer missing covariates need to be imputed.

1.5 Cliff Swallows Data

The ability of the two new methods I will present to improve the efficiency of the model

fitting algorithms will be evaluated both via simulation studies and the analysis of

an actual, large, mark-recapture data set that gives existing methods computational

problems. This large mark-recapture data set comes from a 35 year study of cliff

swallows led by Dr. Charles R. Brown (Brown and Brown, 1996).

To assess the performance of my two new methods, I will analyze T = 29 years

of data (each year acting as a capture occasion) collected from 1984 to 2012. A total

of 223,092 unique birds were marked during this period. However, we wish to incor-

porate a weight covariate into our analysis, so captures that did not have a weight

covariate associated with them were ignored. Note that if the individual covariates

missing on capture occasions where the associated individual was captured are not

missing at random, this could produce biased parameter estimates. In addition, to

simplify the modeling process, only birds that were banded and observed as adults

were included in the analysis. If adolescent birds were included in the analysis, we

would likely need to modify the covariate model and treat survival as age category

dependent. Removing adolescent birds and captures without associated weight co-

variates brings the total number of birds in the data set down to n = 164, 621.

Modeling the effect of an individual, time-varying covariate (weight, in this case)

on capture and/or survival probabilities using the approach outlined in Bonner and

Schwarz (2006) requires an MCMC algorithm to generate samples from the posterior

distribution. Unfortunately, fitting this model to the cliff swallows data set requires

the imputation of 1, 968, 151 missing covariates on each iteration of the algorithm.

Gibbs sampling software packages such as JAGS (Plummer, 2003) or BUGS (Lunn

et al., 2000) will therefore require substantial amounts of time and computational

resources to generate samples that have converged to the posterior distribution. Later

in this manuscript, I fit the CJS model with weight included as a covariate to a small
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subset of this data (27, 973 individuals with 56, 742 missing covariate values) via

JAGS, and the MCMC algorithm required 18.6 hours to reach convergence. Assuming

that the run time scales linearly with the number of missing covariates, I would

estimate that fitting the same model to the full cliff swallows data set would require

nearly four weeks to reach convergence. Note that this estimate is quite conservative,

as the additional missing covariates and capture occasions present in the complete

data set would likely result in the algorithm requiring more iterations than the smaller

subset to reach convergence. My goal is to reduce this computational burden by first

using an alternative to MCMC algorithms that will generate estimates of the posterior

distribution more quickly. Then, I will modify the likelihood so that I do not need to

impute so many covariate values on each iteration of an MCMC algorithm.

Copyright c© Woodrow Burchett, 2017.
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Chapter 2 Variational Bayes

2.1 Introduction to Variational Bayesian Methods

Variational Bayesian methods are an alternative to MCMC for approximating pos-

terior distributions and are often faster while sacrificing some accuracy. Variational

Bayesian methods are widespread in computer science, particularly in machine learn-

ing applications (Jordan et al., 1999; Jaakkola and Jordan, 2000; Minka, 2001; Mandt

and Blei, 2014; Polatkan et al., 2015). However, this approach is starting to gain trac-

tion in the statistics literature (Ormerod and Wand, 2010; Kucukelbir et al., 2015).

This approach is especially helpful when large data sets render MCMC impractical,

as is the situation with the CJS model extended to include individual, time-varying

covariates.

Given data (y), parameters (θ), a model (p(y|θ)), and prior distributions on

the parameters (p(θ)), the goal of variational Bayesian inference is to approximate

the posterior distribution, p(θ|y) = p(y|θ)p(θ)
p(y)

, with a distribution, q(θ), coming from

some restricted class of distributions. The optimal variational distribution q∗(θ) is the

member of the restricted class that minimizes the Kullback-Leibler distance between

itself and the true posterior. The restricted class of distributions should be chosen

such that finding the optimal variational distribution is tractable and the restrictions

placed on the variational distributions do not depart too radically from properties of

the true posterior distribution.

The critical step in finding the optimal variational distribution is the minimization

of the Kullback-Leibler (K-L) distance between p(θ|y) and q(θ). The K-L distance

is defined as:

KL(q(θ), p(θ|y)) = Eq(θ)

[
log

(
q(θ)

p(θ|y)

)]
=

∫
log

(
q(θ)

p(θ|y)

)
q(θ)dθ.

Minimizing the K-L distance between the true posterior distribution and mem-

bers of a restricted class of distributions requires algebraic manipulation such that

optimizing the K-L distance for q(θ) will not require knowledge of the true posterior

distribution. This is a critical step that nearly all variational Bayesian algorithms

depend on. Consider that:
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KL(q(θ), p(θ|y)) =

∫
log

(
q(θ)

p(θ|y)

)
q(θ)dθ

=

∫
log

(
q(θ)

p(y|θ)p(θ)

)
q(θ)dθ + log(p(y))

∫
q(θ)dθ

= −Eq(θ)
[
log

(
p(y|θ)p(θ)

q(θ)

)]
+ log(p(y)).

Note that log(p(y)) does not depend on q(θ), so minimizing the K-L distance between

q(θ) and the true posterior distribution is equivalent to maximizing

Eq(θ)

[
log
(
p(y|θ)p(θ)

q(θ)

)]
, an expression which only depends on the the likelihood and

prior distribution of θ. This expression is often denoted by F [q] and can be interpreted

as the lower bound on the marginal likelihood (Ormerod and Wand, 2010). Making

the maximization of this quantity tractable is the primary concern when selecting a

class of variational distributions.

Ormerod and Wand (2010) and McGrory et al. (2009) described several advan-

tages of the variational Bayes methodology relative to MCMC. These advantages

include speed (particularly with regards to large data sets), results that are deter-

ministic, and approximate posterior distributions in closed form. Disadvantages of

these methods include the fact that they rely on distributional assumptions placed

on the variational distribution, q(θ), to make the minimization of the K-L distance

tractable. These distributional assumptions can be difficult or impossible to check.

Additionally, the variances of the optimal variational distribution typically underes-

timate the true posterior variance, sometimes radically so, depending on the assump-

tions made when restricting the family of variational distributions (Grimmer, 2010).

These methods are also not nearly as general as MCMC approaches, often requiring

quite a bit of analytical work, and while the MCMC algorithm will eventually sample

from the true posterior distribution if run for enough iterations, variational Bayesian

algorithms produce an approximation of the true posterior distribution.

Mean Field Variational Bayes

One of the most common variational approximations is the mean field variational

Bayesian method (MFVB) (Ormerod and Wand, 2010). The key assumption of

MFVB is that the joint variational density factorizes such that

q(θ) =
M∏
i=1

qi(θi)
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where (θ1,θ2, ...,θM) ia a partition of θ. Note that this class of variational distri-

butions can be thought of as nonparametric, as the product factorization is the only

assumption made on q(θ).

The primary reason for this method’s popularity is that the mean field method’s

product restriction results in tractable minimization of the Kullback-Leibler distance.

A variational calculus result shows that the optimal variational distribution, denoted

q∗(θ), that achieves the minimum Kullback-Leibler distance is

q∗(θi) ∝ exp(E−θi log p(y,θ)), for each i such that 1 ≤ i ≤M (2.1)

where E−θi denotes the expectation operator with respect to q−i(θ) =
∏

j 6=i qj(θj).

It follows that E−θi log p(y,θ) is a function of expected values of functions of θj

(j 6= i) and parameters from the prior distributions. A detailed proof of this result is

presented in Appendix A.1. Note that if a parameter or vector of parameter’s full con-

ditional distribution is of known form, then that parameter or vector of parameter’s

optimal variational density will also be of known form and expectations with respect

to that parameter can usually be easily evaluated. The resulting optimal densities,

q∗, introduce circular dependencies which can be resolved in an iterative coordinate

ascent algorithm in which the variational parameters are repeatedly, sequentially

updated until convergence is reached (Ormerod and Wand, 2010). Moreover, condi-

tionally conjugate priors will, by definition, lead to full conditional distributions of

known form, leading to a variational Bayesian algorithm with nice analytical prop-

erties (Winn and Bishop, 2005) and, coincidentally, will also lead to nice analytical

properties for a Gibbs sampler (Gelman et al., 2014, pg. 280).

For illustrative purposes, I present an example of applying the mean field varia-

tional Bayesian approach to a very simplistic model presented by Ormerod and Wand

(2010): fitting a normal distribution to data with constant mean and variance. Sup-

pose that Y1, . . . , Yn are independent normal random variables with common mean µ

and precision τ . To ensure that the prior distributions are conditionally conjugate, µ

is assigned a normal prior with mean µ0 and precision τ0 while τ is assigned a gamma

prior with shape parameter α0 and rate parameter β0. Setting q(µ, τ) = q(µ)q(τ)

as the product restriction results in closed form optimal variational densities. The

optimal variational density of µ derived via result 2.1 is:

q∗µ(µ) ∝ exp(Eτ [log p(y|µ, τ) + log p(µ) + log p(τ)])

∝ exp

(
n∑
i=1

−(yi − µ)2Eτ [τ ]

2
− (µ− µ0)2τ0

2

)
.
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Completing the square shows that q∗µ(µ) is proportional to the kernel of a normal

distribution:

q∗µ(µ) is N
(
nEτ [τ ]ȳ + τ0µ0

nEτ [τ ] + τ0

, (nEτ [τ ] + τ0)−1

)
.

Similar derivations show that q∗τ (τ) is proportional to the kernel of a gamma distri-

bution:

q∗τ (τ) is G

(
α0 +

n

2
, β0 +

1

2

n∑
i=1

Eµ[(yi − µ)2]

)
.

Note that the definition of these densities are circular because the optimal variational

density for µ depends on the expected value of τ which in turn depends on an expected

value with respect to µ. This interdependency is resolved with an iterative algorithm.

Let µq∗(µ) represent the mean of the normally distributed variational density for µ,

τq∗(µ) represent the precision of the normally distributed variational density for µ, and

βq∗(τ) represent the rate parameter of the gamma distributed variational density for

τ . The shape parameter of the gamma distributed variational density for τ is αq∗(τ)

= α0 + n
2

and does not need to be included in the iterative algorithm as it does not

depend on the variational density of µ. The other three variational parameters need

to be included in the iterative algorithm, which I begin by initializing βq∗(τ). Note

that µq∗(µ) and τq∗(µ) could also have been initialized first. After initialization, the

algorithm can proceed:

τq∗(µ) = n
α0 + n

2

βq∗(τ)

+ τ0

µq∗(µ) =

[
n

(
α0 + n

2

βq∗(τ)

)
ȳ + τ0µ0

]
τ−1
q∗(µ)

βq∗(τ) = β0 +
1

2

(
n∑
i=1

(yi − µq∗(µ))
2 +

n

τq∗(µ)

)
.

Cycling through these steps leads to rapid convergence.

In this example, the resulting variational densities will be identical to the true

marginal posterior distributions due to the fact that the MFVB restriction requiring

independence between the variational distributions of τ and µ happens to occur in the

true posterior distribution. This is rarely the case in more complex models (Wang and

Blei, 2013) and in fact the MFVB algorithm may perform quite poorly if parameters

assumed to have independent variational distributions are highly correlated in the true

posterior distribution, as I will demonstrate in section 3.1. This can be accounted
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for by partitioning the variational densities so that highly dependent parameters are

grouped together and therefore independence between them is not assumed. However,

this will often make it more difficult to derive an efficient algorithm, due to the

absence of closed form full conditional distributions, and also requires knowledge of

which parameters will be correlated prior to fitting the model.

In Section 2.2, I apply the MFVB method to the CJS model extended to include

individual, time-varying covariates, presented in Section 1.4, in an attempt to alleviate

the computational burden associated with the traditional MCMC implementation of

the model.

Note that there are other variational Bayesian approaches that I considered, such

as nonparametric variational inference (Gershman et al., 2012) (which uses a Gaus-

sian mixture to model approximate the posterior distribution) and more parametric

approaches that involve specifying parametric distributions for the variational densi-

ties and finding a tractable way to maximize the K-L distance. Ultimately, however,

these alternative methods did not lead to an algorithm as fast, accurate, or analyti-

cally convenient as the mean field approach.

2.2 Application of the Mean Field Approach to the CJS Model with

Continuous Covariates

Alteration to the CJS Model with Continuous Covariates

Parameter estimates for the traditional CJS model (without covariates) can be esti-

mated analytically, and for that reason, I immediately apply the variational Bayesian

approach to the CJS model extended to allow for continuous, time-varying individual

covariates, as described in Section 1.4. When continuous covariates are incorporated

into the model, there are no closed form analytical solutions to parameter estimation

and Bayesian approaches are implemented (Bonner and Schwarz, 2006). Unfortu-

nately, MCMC algorithms can be computationally unfeasible for large samples and/or

many capture occasions. In this section I develop a variational Bayesian algorithm

to address this issue.

I use the notation described in Section 1.4 to represent the data and parameters

associated with the CJS model extended to include continuous covariates. However, I

define a complete data likelihood, adding a latent variable, to make deriving the vari-

ational Bayesian algorithm more tractable. Recall that in Section 1.4, χi,t represented

the probability that individual i was not observed after occasion t (given that the

individual was alive on occasion t). Here, rather than summing over all possibilities
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after an individual’s last capture with χ, I consider the time of an individual’s death.

Let di represent the sampling occasion on which individual i was last alive. I can now

define a complete data likelihood that does not include any χ terms, but instead relies

on the unobserved latent variable di to encapsulate the information about an indi-

vidual after it is last observed. To simplify it’s definition, I can factor the complete

data likelihood contribution from each individual into two separate components: the

first modeling the capture process and the second modeling survival. The capture

component of the likelihood for a single individual, i, is defined as:

[ωi|di,p, fi] ∝
T∏

t=fi+1

(pt × 1[t≤di])
ωi,t(1− pt × 1[t≤di])

1−ωi,t

where fi denotes the capture occasion on which individual i was first captured. The

indicator function 1[t≤di] is 1 if the individual is alive at time t and 0 otherwise. I

then model di as a categorical random variable with support 1 through T :

[di|φi] ∼ Categorical

(
1− φi,1, φi,1(1− φi,2), ..., (1− φi,T−1)

T−2∏
t=1

φi,t,
T−1∏
t=1

φi,t

)
where each term in the above distribution, separated by commas, is a cell probability

representing the probability that an individual dies on a particular capture occasion.

The relationship between continuous covariates, such as weight or length, and

survival is often of primary interest to researchers. To derive an algorithm that is

easy to follow, I focus on models including a single covariate associated with survival

and allow capture probabilities to vary across capture occasions. The algorithm below

could be extended to include more covariates and covariates associated with capture

probabilities relatively easily following the derivation of the MFVB algorithm below

as a guide. I employ a logit link function to model the effect of a single, individual,

time-varying covariate on survival:

logit(φi,t) = β0 + β1zi,t.

Additionally, the missing covariates are modeled as in Bonner and Schwarz (2006),

discussed in more detail in Section 1.4:

[zi,t|zi,t−1,∆t, τ ] ∼ N
(
zi,t−1 + ∆t,

1

τ

)
.

To complete the specification of the posterior distribution, I assign β0 and β1 inde-

pendent normal priors with means µβ0 and µβ1 and precisions τβ0 and τβ1 , each ∆t

independent normal priors with mean µ∆ and precision τ∆, each pt independent beta
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priors with shape parameters αp and βp, and τ a gamma prior with shape parameter

ατ and rate parameter βτ . The hyperparameters that define the prior distributions

can be chosen such that the priors are weakly informative, which is the approach I

take in the simulations and analysis to follow.

Mean Field Variational Bayesian Algorithm

I define the class of variational distributions by assuming that the posterior distri-

bution of each parameter is independent of the posterior distributions of the other

parameters, following the mean field variational Bayes approach introduced in Section

2.1. The only exception is that we model q(β0, β1), allowing the two β parameters to

be correlated. This restriction to the class of variational distributions, combined with

the new CJS likelihood presented in Section 2.2, yields a product restriction that can

be written mathematically as:

q(β0, β1,p,d,∆, τ,Z) = q(β0, β1)q(τ)

( T∏
t=1

q(pt)q(∆t)

)( n∏
i=1

q(di)

)( ∏
i,t|zi,t∈Zmis

q(zi,t)

)

where Zmis denotes the set of all missing covariates (i.e. only the missing covariates

have variational densities). Recall that in a Bayesian framework, latent variables and

missing data have posterior distributions along with the parameters in the model.

The optimal variational distributions of d, p, ∆, and τ derived by applying Equa-

tion 2.1 are:
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1. Variational Distribution of di

Categorical with probabilities:

q∗(di) ∝



exp(Eβ0,β1,zi,li
[log(1− φi,li)]), if di = li.

exp(
∑di−1

t=li
Eβ0,β1,zi,t [log(φi,t)]

+
∑di

t=li+1 Ep[log(1− pt)]

+Eβ0,β1,zi,di
[log(1− φi,di)]), if di = li + 1, ..., T − 1.

exp(
∑T−1

t=li
Eβ0,β1,zi,t [log(φi,t)]

+
∑T

t=li+1 Ep[log(1− pt)]), if di = T .

0, otherwise.

2. Variational Distribution of pt

Beta with parameters:

αq∗(pt) = αp +

(
N∑
i=1

xi,t1[fi<t]

)

βq∗(pt) = βp +

(
N∑
i=1

(1− xi,t)1[fi<t]P(t ≤ di)

)

3. Variational Distribution for ∆t

Normal with parameters:

µq∗(∆t) =
Eτ [τ ]

∑
i|t>fi(Ez[zi,t]− Ez[zi,t−1]) + τ∆µ∆

Eτ [τ ](
∑

i|t>fi 1) + τ∆

τq∗(∆t) = Eτ [τ ]

( ∑
i|t>fi

1

)
+ τ∆
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4. Variational Distribution of τ

Gamma with parameters:

αq∗(τ) = ατ +

( N∑
i=1

T∑
t=fi+1

1

2

)

βq∗(τ) = βτ +

∑N
i=1

∑T
t=fi+1 E∆,Z [(zi,t − zi,t−1 −∆t)

2]

2

The joint variational distribution of β0 and β1 is:

q∗(β0, β1) ∝ exp

([ N∑
i=1

T∑
t=fi

P(t < di)Ezi,t [log(φi,t)] + P(t = di)Ezi,t [log(1− φi,t)]
]

− τβ0
(β0 − µβ0)2

2
− τβ1

(β1 − µβ1)2

2

)
This variational distribution does not have a recognizable kernel and therefore must

be approximated in some way. To resolve this issue, I have applied a Laplace ap-

proximation to construct an approximate multivariate normal density for q∗(β0, β1).

Laplace approximations have been implemented previously in variational Bayesian

contexts if some of the distributions are not conditionally conjugate (see Wang and

Blei (2013)). Assigning log q∗(β0, β1) as the objective function in a second order

Laplace approximation results in an approximate bivariate normal distribution for

q∗(β0, β1) with variational parameters

µq∗(β0,β1) =

(
β∗0

β∗1

)
,

Σq∗(β0,β1) = −

(
∂2

∂β2
0

log q∗(β∗0 , β
∗
1) ∂2

∂β0∂β1
log q∗(β∗0 , β

∗
1)

∂2

∂β0∂β1
log q∗(β∗0 , β

∗
1) ∂2

∂β2
1

log q∗(β∗0 , β
∗
1)

)−1
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where β∗0 and β∗1 are the values that maximize log q∗(β0, β1) and

∂2

∂β2
0

f(β0, β1) =

[ N∑
i=1

T∑
t=fi

−P(t ≤ di)Ezi,t [expit(β0 + β1zi,t)×

(1− expit(β0 + β1zi,t))]

]
− τβ0

∂2

∂β0∂β1

f(β0, β1) =

[ N∑
i=1

T∑
t=fi

−P(t ≤ di)Ezi,t [zi,texpit(β0 + β1zi,t)×

(1− expit(β0 + β1zi,t))]

]
∂2

∂β2
1

f(β0, β1) =

[ N∑
i=1

T∑
t=fi

−P(t ≤ di)Ezi,t [z
2
i,texpit(β0 + β1zi,t)×

(1− expit(β0 + β1zi,t))]

]
− τβ1

and expit(x) = (1 + e−x)−1, the inverse logit or logistic function.

Similar problems also arise in deriving the variation distributions of the missing

covariates. The variational distribution of any missing zi,T (i.e. an individual’s co-

variate value on the last capture occasion of the study) is a normal distribution with

variational parameters

µq∗(zi,T ) = Ez[zi,T−1] + E∆[∆T ]

τq∗(zi,T ) = Eτ [τ ]

Unfortunately, the variational distribution of a missing covariate, zi,t, with t < T has

an unrecognizable kernel:

q∗(zi,t) ∝ exp

(
− Eτ [τ ]

(
(zmisi,t )2 + zmisi,t (E∆[∆t+1]− Ez[zi,t+1]− Ez[zi,t−1]− E∆[∆t])

)
+ P(t < di)Eβ0,β1 [log(expit(β0 + β1zi,t))]

+ P(t = di)Eβ0,β1 [log(1− expit(β0 + β1zi,t))]

)
, t < T.

I again utilize a Laplace approximation, this time separately on each missing zi,t with

t < T . The resulting approximate variational distribution for each missing covariate,

zi,t where t < T , then follows a normal distribution with variational parameters

µq∗(zi,t) = z∗i,t

σ2
q∗(zi,t)

=
(
2Eτ [τ ] + P(t ≤ di)Eβ0,β1 [β

2
1φi,t(1− φi,t)]

)−1
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where z∗i,t is the value that maximizes log(q∗(zi,t)).

The optimal variational densities derived above have circular dependencies with

one another manifested in the expected value terms. Most of these expected val-

ues are straightforward to compute. However, there are a few that do not have

closed form solutions. In particular, the expected value of any function of φi,t =

(eβ0+β1zi,t)/(1 + eβ0+β1zi,t) with respect to β0, β1, and/or a missing covariate cannot

be computed analytically. I approximate these expected values with 1st order Taylor

series expansions. As with the simple normal model presented in Section 2.1, the

circular dependencies can then be resolved iteratively via Algorithm 1. The expected

values necessary to compute the updates in Algorithm 1 can be found in Appendix

A.2.

Algorithm 1 Variational Bayesian Algorithm for the Analyses of CJS Models with

Individual, Continuous, Time-Varying Covariates

1: Initialize the variational parameters of q∗(pj), q
∗(β0, β1), q∗(τ), q∗(∆j), and q∗(zi,j)

for any missing covariates.

2: while Change in the variational parameters’ joint Euclidean norm is greater than

the tolerance do

3: for i in 1 : n do

4: Update cell probabilities for q∗(di).

5: for j in 2 : T do

6: Update parameters of q∗(pj).

7: Update Laplace approximation for q∗(β0, β1).

8: Use numerical optimization to find the mean vector of the Laplace ap-

proximation.

9: Use the mean vector to compute the variance-covariance matrix.

10: for i in 1 : n and do

11: for j in fi : T do

12: if zi,j is missing then

13: Update the Laplace approximation for q∗(zi,j).

14: Use numerical optimization to find the mean of the Laplace

approximation.

15: Use the mean to compute the variance.

16: Update the parameters of q∗(τ).

17: for j in 2 : T do

18: Update the parameters of q∗(∆j).
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In practice I found that the missing covariates, updated in steps 10 through 15 of

Algorithm 1, converged more slowly than the other parameters in the model due to the

fact that each missing covariate’s variational density depends on both its neighbors.

More precisely, the variational density of a missing covariate, zi,t, depends on both

Ez[zi,t−1] and Ez[zi,t+1] when t < T , which are functions of the variational densities of

other missing covariates. Because the variational parameters of the missing covariates

are updated sequentially, missing covariate updates can potentially include parameter

values from the current iteration and the previous iteration. Repeating lines 10

through 15 until the the variational parameters associated with all missing covariates

converge is a technique that has proven successful in similar situations (McGrory

et al., 2009) and leads to fewer total iterations of the algorithm being required to

reach convergence.

Simulation Study

The two most important aspects to examine when assessing the performance of the

variational Bayes algorithm are the speed of convergence and the degree of accuracy

with which the optimal variational density approximates the true posterior distribu-

tion. Speed of convergence is a key metric because the entire motivation behind the

variational Bayesian algorithm is to present a faster alternative to the MCMC ap-

proach, which struggles with large mark-recapture data sets that contain continuous,

individual, time-varying covariates. The accuracy component is necessary to ensure

that the resulting optimal variational density is reasonably close to the true posterior

distribution.

To evaluate accuracy and speed of convergence, I generated one hundred data sets

with 300 individuals observed over 5 capture occasions under two sets of parameter

values, one where the capture probabilities were low (0.4), and one where they were

high (0.9). For the low capture scenario, I set the true parameter values as β0 = −1,

β1 = 1, pt = 0.4 for all t, ∆t = 0.8 for all t, and τ = 1. I generated each individual’s

initial covariate value from a continuous uniform distribution on (−0.5, 0.5), regard-

less of when the individual was first captured. This set of true parameter values, in

conjunction with the distribution of the initial covariate values, results in expected

survival probabilities of 0.27 from fi to fi + 1, 0.45 from fi + 1 to fi + 2, 0.65 fi + 2 to

fi + 3, and 0.80 from fi + 3 to fi + 4 where fi denotes the capture occasion on which

individual i was first captured.

Both the MCMC algorithm and the variational Bayesian algorithm were initial-

ized with the same starting values. The initial value for each ∆t was generated by
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computing differences in neighboring covariate observations. Initial values for the

missing covariates were generated by interpolating with equal step lengths where

possible, and the estimates for ∆t after the last observed covariate. The initial values

for each pt and both β parameters were generated by fitting a CJS model assuming

that the missing covariates interpolated above were observed. The MCMC algorithm

was implemented via JAGS version 4.2.0, a statistical software package that per-

forms Gibbs sampling to generate samples from posterior distributions (Plummer,

2003). The posterior samples from JAGS were then processed through R to generate

summaries, create graphics, and compare to the variational Bayes approach. The

variational Bayes algorithm was programmed with R (R Core Team, 2014).

Due to the fact that the MCMC algorithm is converging to the true posterior dis-

tribution while the variational Bayesian algorithm is converging to an approximate

posterior distribution, some discussion is necessary to describe how speed of conver-

gence was measured. Since the MFVB algorithm is converging to an approximation

of the true posterior distribution, q∗(θ), the speed of the MFVB method was assessed

by recording the number of iterations required to produce variational distributions

within a specified threshold of the MFVB’s optimal variational distribution, q∗(θ),

rather than the true posterior distribution, p(θ|y). I approximated the optimal vari-

ational distribution as closely as possible by first running the MFVB algorithm given

an extremely strict convergence criterion. Similarly, the MCMC approach converges

asymptotically to the true posterior distribution, and so the speed of the MCMC

algorithm was judged by looking at the number of iterations required for the poste-

rior samples generated by the MCMC method to be as similar to my sample of the

true posterior distribution, p(θ|y), as the MFVB’s estimates were to its approximate

posterior target, q∗(θ). The true posterior distribution cannot be computed directly

for the CJS model with continuous covariates, so output from an MCMC chain of

length 1,000,000 was used as an approximation.

The parameters I focused on to assess speed of convergence are β0 and β1, the

intercept and slope of the logit of survival probability, as a practitioner fitting this

model would be most concerned with those two parameters. The Kullback-Liebler

distance between two multivariate normal distributions is leveraged to measure how

close each algorithm’s current estimate is to it’s target estimate (q̂∗(θ) in the case

of the variational Bayes and p̂(θ|y) in the case of MCMC, where the hat symbols

denote that these distributions approximate the targets as described in the previous

paragraph). The K-L distance was chosen as the distance measure because it has

a closed form when comparing two multivariate normal distributions and it can be
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interpreted as the information lost when one distribution is used to approximate

another. It therefore makes sense to use the K-L distance as a tool to gauge how

close an approximate posterior density at a particular iteration of an algorithm is to

its algorithm’s target density (Burnham and Anderson, 1998, pg. 51). The MCMC

chains begin with a burn-in of 1000 iterations when generating estimates, as this gives

the chains sufficient time to converge to the posterior distribution.

The boxplots in Figure 2.1 show how many iterations were required from each

algorithm for the K-L distance of the approximate distributions of β0 and β1 to be

within 0.001, 0.0001, and 0.00001 units of each algorithm’s respective target distribu-

tion. The number of iterations on the y-axis of the figures have been log-transformed

to make the figures more visually appealing and readable. The boxplots show that

for all three convergence criteria, the MFVB algorithm never required more iterations

than the MCMC algorithm to reach convergence and that the difference in conver-

gence speed only increases as the criteria becomes more strict. Additionally, the mean

of the iterations necessary to reach convergence are reported in the figure. Even for

the most strict convergence criterion (0.00001), the MFVB algorithm did not require

more than 200 iterations, on average, while the MCMC algorithm required more than

7,000 iterations, on average, to reach the most liberal convergence criterion considered

(0.001).
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Figure 2.1: Iterations Required for Convergence: MFVB vs MCMC

Distribution of the number of iterations required to reach convergence for the MFVB algo-

rithm (blue boxes) and MCMC algorithm (red boxes) in the simulation study. The conver-

gence criterion was set at 10−3 (left), 10−4 (center), and 10−5 (right). The mean number

of iterations required to satisfy each convergence criteria is stated under each of the plots.

Now that the efficiency advantage of the MFVB algorithm has been established,

the accuracy of the approximate posterior distribution that MFVB algorithm con-

verges to, q∗(θ), needs to be demonstrated. The coefficients on survival and the

capture probabilities for a single simulation replicate are presented in Figure 2.2.

The optimal variational distribution generated from the MFVB (in blue) have poste-

rior means that are close to the means of the MCMC generated posterior distribution

meant to represent the true posterior. However, the MFVB densities have lower vari-

ances than the MCMC densities, consistent with the results from the literature in

which posterior distributions approximated via mean field variational Bayesian algo-

rithms typically underestimate the posterior variance (Ormerod and Wand, 2010).

This result can be seen even more clearly in Figure 2.3, which displays the target

posterior means and standard deviations for both algorithms across all 100 simulated

replicates, in addition to the percentage of samples of survival parameters from the

true posterior contained in the 95% credible intervals from the optimal variational
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distribution. Note that this differs from the usual notion of coverage, which con-

cerns the true parameter value. If close to 95% of the posterior samples fall within

the 95% credible intervals generated from my variational Bayesian algorithm, this

suggests that these credible intervals are similar to those of the true posterior dis-

tribution. Similarly, coverage values higher than 95% suggest that my variational

Bayesian credible intervals are too wide and coverage values lower than 95% suggest

that my variational Bayesian credible intervals are too narrow. The posterior means

for the optimal variational distribution and true posterior distribution (approximated

by the MCMC algorithm) are very similar while the standard deviations of the target

distributions are underestimated by the MFVB results. The underestimation of the

true posterior variance is also clear when looking at the proportion of draws from the

true posterior distribution (given by the MCMC algorithm) contained in the MFVB

generated 95% credible intervals. The proportion of draws contained in the MFVB

credible intervals is always under 95% for both β parameters, with most coverage val-

ues for β0 between 0.5 and 0.8 while most of the coverage values for β1 fall between

0.6 and 0.8, indicating that the credible intervals from the MFVB are much more

narrow than those from the true posterior distribution.
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Figure 2.2: MFVB and MCMC Parameter Estimates in Low Capture Scenario

MCMC (red) and MFVB (blue) target posterior means (points) and 95% credible intervals

(vertical lines) for capture and survival parameters from a single simulated data set under

the low capture scenario (p = 0.4). Parameter labels are located on the x-axis.
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Figure 2.3: Simulation Results Comparing MFVB and MCMC in Low Capture Scenario

These plots summarize the 100 simulation results comparing the MFVB and MCMC al-

gorithms under the low capture scenario (p = 0.4). The left column of plots shows the

relationship between the posterior means of the survival parameters for the MFVB (x-axis)

and MCMC (y-axis) algorithms. The center column of plots compares the posterior stan-

dard deviations of the capture parameters for the MCMC (red) and MFVB (blue) algorithms.

The right column of plots shows histograms of the proportion of MCMC draws that were

contained in the 95% credible interval generated by the MFVB algorithm for each simulated

data set. Proportions close to 95% would indicate that the posterior distributions generated

by the two algorithms match closely.

The underestimation of the posterior variance present when the MFVB method is

applied is likely due to the high degree of correlation between the capture and survival

parameters in the true posterior distribution. One way to estimate the correlation

between parameters in the posterior distribution is to look at the correlation present

in the posterior samples generated from a MCMC algorithm. Selecting a random

MCMC sample from the aforementioned simulation results shows that β0 is highly

negatively correlated with p2 (ρ = −0.44), p3 (ρ = −0.48), p4 (ρ = −0.54), and p5

(ρ = −0.62) where ρ denotes the Pearson correlation coefficient. This is not terribly

surprising, as the product of survival and capture parameters occur quite often in the
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likelihood function. Unfortunately, this relationship violates a key assumption made

when developing my MFVB algorithm: that the survival and capture parameters are

independent.

To demonstrate that the correlation between capture and survival parameters is

responsible for the underestimation of posterior variance shown in Figures 2.2 and

2.3, I ran a second set of simulations identical to those described previously in this

section with one key difference: the capture probabilities were set to 0.9 rather than

0.4. I refer to this as the high capture scenario. Looking at a set of MCMC results

from these simulations yields a much smaller set of correlations between β0 and p2

(ρ = −0.12), p3 (ρ = −0.17), p4 (ρ = −0.17), and p5 (ρ = −0.29). This is because

the estimates of the capture and survival parameters become less correlated as the

capture probabilities approach 1 due to increased certainty of the reason that an

individual is not captured. Additionally, Figures 2.4 and 2.5 show that the posterior

approximations generated from the MFVB algorithm are much closer to the true

posterior distribution (as approximated by an extremely large MCMC sample). Most

of the MFVB 95% credible intervals for the survival parameters now contain between

85% and 94% of the MCMC samples and the posterior means from the optimal

variational distribution and true posterior distribution are more similar.
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Figure 2.4: MFVB and MCMC Parameter Estimates in High Capture Scenario

MCMC (red) and MFVB (blue) target posterior means (points) and 95% credible intervals

(vertical lines) for capture and survival parameters from a single simulated data set under

the high capture scenario (p = 0.9). Parameter labels are located on the x-axis.

34



Figure 2.5: Simulation Results Comparing MFVB and MCMC in High Capture Scenario

These plots summarize the 100 simulation results comparing the MFVB and MCMC al-

gorithms under the high capture scenario (p = 0.9). The left column of plots shows the

relationship between the posterior means of the survival parameters for the MFVB (x-axis)

and MCMC (y-axis) algorithms. The center column of plots compares the posterior stan-

dard deviations of the capture parameters for the MCMC (red) and MFVB (blue) algorithms.

The right column of plots shows histograms of the proportion of MCMC draws that were

contained in the 95% credible interval generated by the MFVB algorithm for each simulated

data set. Proportions close to 95% would indicate that the posterior distributions generated

by the two algorithms match closely.

Discussion

The simulation results indicate that the MFVB algorithm converges much faster than

the traditional MCMC approach. However, the approximations are not as accurate as

hoped. Examining the posterior samples generated by the MCMC chains, it becomes

clear that the posterior distributions of the survival and capture parameters are highly

correlated. It seems as though this could be corrected by allowing the variational

densities of β and p to be correlated by considering a single variational distribution
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for β and p. The new product restriction would be:

q(β,p,d,∆, τ,Z) = q(β,p)q(τ)

( T∏
t=1

q(∆t)

)( n∏
i=1

q(di)

)( ∏
i,t|zi,t∈Zmis

q(zi,t)

)
.

Unfortunately, this product restriction does not address the problem, as β and p do

not directly appear in the likelihood together. Instead, the correlation arises because

they depend on each other through the latent variable di, the capture occasion on

which individual i was last alive. In other words, this product restriction would still

result in independent variational densities for β and p (i.e. q(β,p) still factorizes into

q(β) and q(p) using this likelihood and product restriction). Moreover, modeling the

joint variational density of β , p, and d is not tractable. In the next chapter, I explore

potential solutions to this problem by investigating a simpler example where a similar

phenomenon occurs.

Copyright c© Woodrow Burchett, 2017.
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Chapter 3 Improvements to the Variational Bayesian Algorithm

The correlation of the posterior samples generated by the MCMC algorithm indicates

that the assumptions required to implement the MFVB method, namely that the pos-

terior distributions of the capture and survival parameters are independent, cannot

accurately approximate the true posterior distribution. To further understand this

issue, I investigated the performance of the MFVB method when fitting simpler mod-

els featuring posterior distributions with highly correlated parameters that depend

on each other via a latent variable (di in the case of the CJS model). In particular, I

focus on the variational Bayesian implementation of the linear mixed model featured

in Ormerod and Wand (2010).

3.1 Mixed Effects Model

Ormerod and Wand (2010) define the general form of a linear mixed model as:

y|β,u,G,R ∼ N (Xβ + Zu,R)

u|G ∼ N (0,G)

where y is an n × 1 vector of responses, β is a p × 1 vector of fixed effects, u is a

vector of random effects, X is the design matrix for the fixed effects, Z is the design

matrix for the random effects, R is the observation level covariance matrix, and G

is the covariance matrix of the random effects. To make the derivations easier to

follow, Ormerod and Wand (2010) restrict their model to the variance component

model where

G = blockdiag(σ2
u1IK1 , . . . , σ

2
urIKr)

and

R = σ2
ε In.

Additionally, the parameters are given the following priors:

β ∼ N (0, σ2
βIp)

σ2
ul ∼ IG(Aul, Bul), 1 ≤ l ≤ r

σ2
ε ∼ IG(Aε, Bε)
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where the hyperparameter values can be chosen to make the priors weakly informative.

To implement the mean field variational Bayesian method, Ormerod and Wand

(2010) apply a variational density restriction that assumes independence between the

variance parameters (σ2
u1, . . . , σ

2
ur, σ

2
ε ) and the fixed and random effects (β,u):

q(β,u, σ2
u1, . . . , σ

2
ur, σ

2
ε ) = qβ,u(β,u)qσ2(σ2

u1, . . . , σ
2
ur, σ

2
ε ).

Applying equation 2.1 to the linear mixed model with the variational density re-

striction described above leads to an iterative algorithm with closed form updates.

Ormerod and Wand (2010) omit the derivations; however I have provided them in

Appendix A.3 for illustrative purposes. The optimal variational distributions are:

q∗β,u is N (µqβ,u ,Σqβ,u)

where

µqβ,u =Σqβ,u

(
Eσ2

[
1

σ2
ε

]
CTy

)
Σqβ,u =

(
blockdiag

(
1

σ2
β

Ip, Eσ2

[
1

σ2
u1

]
IK1 , . . . , Eσ2

[
1

σ2
ur

]
IKr

)
+ Eσ2

[
1

σ2
ε

]
CTC

)−1

with C = [X,Z], and

q∗σ2
ε

is IG

(
n

2
+ Aε,

1

2
tr(CΣq(β,u)C

T ) +
1

2
(y −Cµq(β,u))

T (y −Cµq(β,u)) +Bε

)
q∗σ2

ul
is IG

(
Kl

2
+ Aul,

1

2
tr(Σq(ul)) +

1

2
µTq(ul)µq(ul) +Bul

)
.

Note that the optimal variational distributions imply that σ2
ε and each σ2

ul are in-

dependent. This restriction was not imposed on the variational distributions, but

arises as a result of applying the mean field variational Bayes method. The two dif-

ferent variance parameters only depend on each other through the random effects

(u), leading to independent optimal variational densities.

As an example, Ormerod and Wand (2010) apply their variational Bayesian algo-

rithm to analyze the Orthodont data set available in the nlme R package (Pinheiro

et al., 2014), including age and gender as predictors and random intercepts for each

subject. Reproducing those results produces Figure 3.1.
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Figure 3.1: Ormerod and Wand’s Algorithm and MCMC Parameter Estimates from Or-

thodont Data

Posterior means and 95% credible intervals for Ormerod and Wand’s algorithm (blue) and

an MCMC implementation (red) of a mixed effects model applied to the Orthodont data set.

Parameter labels are located on the x-axis.

Ormerod and Wand’s algorithm produces a very good approximation to the true

posterior distribution, particularly for the β parameters in this case, and produces

these results very quickly (less than one second on my machine). It’s possible, how-

ever, to generate data where this method does a very poor job of approximating

the posterior distributions of the variance parameters. Specifically, this occurs in

situations in which the variance parameters are highly correlated a posteriori. For

example, I generated a single data set from a simple model with no predictors and

random intercepts, setting σ2
ε = 2 and σ2

u = 1 and fitting with an MCMC algorithm.

I then observed a posterior correlation of −0.271 between the two variance parame-

ters in my MCMC output (compared to 0.079 for the Orthodont data). Fitting with

the MFVB algorithm results in the approximate posteriors displayed in Figure 3.2.

The algorithm is severely underestimating the posterior variance of σ2
u, although the

estimate for the intercept is still extremely accurate. This error is caused by the same

issues encountered when applying the MFVB method to the CJS model with time

varying, individual covariates in Section 2.2. Namely, a high degree of correlation in
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the posterior distribution between parameters that are uncorrelated conditional on

latent data. If I can solve this problem for the MFVB algorithm for the linear mixed

effects model, then I can attempt to apply that solution to the more complicated CJS

model with time varying, individual covariates.

Figure 3.2: Ormerod and Wand’s Algorithm and MCMC Parameter Estimates from Sim-

ulated Data

Posterior means and 95% credible intervals for Ormerod and Wand’s algorithm (blue) and

an MCMC implementation (red) of a mixed effects model applied to a simulated data set

with highly correlated variance parameters. Parameter labels are located on the x-axis.

Allowing Correlation Between Variance Parameters

Recall that the independence of the variational distributions of the variance param-

eters is not imposed when defining the family of variational distributions, but comes

from the fact that the variance parameters only depend on each other through the

random effects. This is extremely similar to the problem I encountered when deriv-

ing an MFVB algorithm for the CJS model with continuous, time-varying covariates

in which my approximate posterior distribution assumes independence between the

survival and capture parameters.

In the mixed model situation, correlation between the variance parameters could

be incorporated by estimating the joint variational density of both the variance pa-
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rameters and the random effects, but this makes the derivations too difficult. As an

alternative, one can integrate the likelihood over the random effects, which yields a

more complicated R matrix. For example, consider a mixed effects model with only a

random intercept. The following formulation of that model is equivalent to Ormerod

and Wand’s formulation of the mixed model, with the latent random effects vector u

integrated out:

y|β,R ∼ N (Xβ,R)

where

R =


Rcluster 0 . . . 0

0 Rcluster . . . 0
...

...
. . .

0 0 Rcluster


and

Rcluster =


σ2
ε + σ2

u σ2
u . . . σ2

u

σ2
u σ2

ε + σ2
u . . . σ2

u
...

...
. . .

σ2
u σ2

u σ2
ε + σ2

u

 .

Additional random effects will result in a more complicated R matrix that involves

covariate values. The non-diagonal R matrix results in the derivations of the optimal

variational densities being more difficult and leads to non-conjugacy, as shown below.

Note that the derivations apply to a general covariance matrix R, not necessarily

restricted to the random intercept model. The optimal variational density for σ2 is:

q∗σ2 ∝ exp

(
−1

2
log(|R|)− 1

2
Eβ

[
(y −Xβ)TR−1(y −Xβ)

])
[σ2
ε ][σ

2
u]

= exp

(
−1

2
log(|R|)− 1

2

(
tr(R−1XΣβX

T ) + (y −Xµβ)TR−1(y −Xµβ)
))

[σ2
ε ][σ

2
u]

41



where [σ2
ε ] and [σ2

u] represent the prior distributions of σ2
ε and σ2

u. When R is diagonal

it is possible to calculate the derminant and the inverse in closed form, isolate the

variance parameters, and combine like terms to reveal a product of inverse gamma

distributions. The more complex nature of R in this situation prevents us from ap-

plying a similar technique, so I utilize a Laplace approximation to model the variance

parameters as a multivariate log-normal distribution. Next, I derive the optimal

variational density of the coefficients:

q∗β ∝ exp

(
Eσ2

[
−1

2
(y −Xβ)TR−1(y −Xβ)

]
− 1

2
βT (σ2

βIp)
−1β

)
.

Letting Σ∗ denote the element-wise expected value of R−1 with respect to σ2, I have

q∗β ∝ exp

(
−1

2
(y −Xβ)TΣ∗(y −Xβ)− 1

2
βT (σ2

βIp)
−1β

)
.

Completing the square yields:

q∗β is N (µqβ ,Σqβ)

where

Σqβ =
(
(σ2

βIp)
−1 + XTΣ∗X

)−1

and

µqβ =ΣqβX
−1Σ∗y.

Note that calculating the element-wise expected value of R−1 is potentially quite dif-

ficult. For the random intercept model, deriving the inverse is relatively simple, as it

is block-diagonal, and each diagonal has a compound symmetric structure. However,

once random slopes or multiple clusters are involved, the R matrix becomes much

more difficult to invert in closed form and calculating the expected value with respect

to each element is therefore challenging. For the implementation in the examples to

follow, I assume that the expected value of the inverse is the inverse of the expected

values, an approach that is not theoretically justified and could potentially lead to

issues in approximating the true posterior distribution, but seems to perform well.

Figures 3.3 and 3.4 below compare results from the above method with the method

described in Ormerod and Wand (2010) for both the Orthodont data set and the

simulated data with highly correlated variance parameters. It took longer for the
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new algorithm, which allows correlation between the variance parameters, to converge

(0.4 seconds vs 12.8 seconds for the simple intercept model), due to the numeric

optimization routine necessary to compute the Laplace approximation for the variance

parameters. However, the new method does estimate the posterior densities of the

variance parameters more accurately than the method presented in Ormerod and

Wand in the situation in which the variance parameters were highly correlated (see

Figure 3.4). The new method also produces results similar to the method presented

in Ormerod and Wand when applied to the Orthodont data set (see Figure 3.3).

The new MFVB algorithm effectively solved the problem by removing the latent

variable (the random effects) from the likelihood and allowing the MFVB algorithm

to correctly model the correlated parameters. In Section 3.2, I attempt a similar

solution by replacing the latent death indicators, di, with χ, which effectively sums

over all the possible times of death after an individual’s last capture.

Figure 3.3: New Algorithm, Ormerod and Wand’s Algorithm, and MCMC Parameter Es-

timates from Orthodont Data

Posterior means and 95% credible intervals for my new method (purple), Ormerod and

Wand’s algorithm (blue), and an MCMC implementation (red) of a mixed effects model

applied to the Orthodont data set. Parameter labels are located on the x-axis.
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Figure 3.4: New Algorithm, Ormerod and Wand’s Algorithm, and MCMC Parameter Es-

timates from Simulated Data

Posterior means and 95% credible intervals for my new method (purple), Ormerod and

Wand’s algorithm (blue) and an MCMC implementation (red) of a mixed effects model

applied to a simulated data set with highly correlated variance parameters. Parameter labels

are located on the x-axis.

3.2 Modified Mean Field Approach to the CJS Model with Continuous

Covariates

In Section 3.1, I needed to remove a latent variable from the likelihood in order to

explicitly model the correlation between two parameters. I follow a similar approach

in this section, removing the latent variable representing the time of death of indi-

vidual i (labeled di in Section 2.2). I can allow correlation between p and β in an

MFVB algorithm by implementing the product restriction mentioned in Section 2.2

and working with the traditional form of the CJS likelihood defined in Section 1.4

that sums over all possible times of death after an individual’s last capture through

the χ term. I also model the logit of capture probabilities so that both the capture

and survival parameters are on a continuous scale from −∞ to ∞ in order to more

straightforwardly approximate the joint variational distribution of p and β. The

likelihood contribution of individual i is:
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[xi|p,φ] ∝

(
li∏

t=fi+1

φi,t−1p
xi,t
t (1− pt)1−xi,t

)
χi,li

where

χi,t = (1− φi,t) + φi,t(1− pt+1)χi,t+1, for t = 1, ..., T − 1

χi,T = 1

logit(pt) = ηt

logit(φi,t) = β0 + β1zi,t

and

[zi,t|zi,t−1,∆j, τ ] ∼ N
(
zi,t−1 + ∆t,

1

τ

)
.

The prior distributions of β and η do not need to be explicitly defined to derive

the algorithm, as the optimal variational densities will need to be approximated and

therefore do not require a specific prior distribution to achieve a closed from solution.

These prior distributions will be denoted [β] and [η] in the derivations to follow. In

practice, I assign independent normal distributions as priors for β0, β1, and each ηt

parameter. As in the previous MFVB algorithm for the CJS model with continuous

covariates, each ∆t is assigned an independent, normal prior distribution and τ is

assigned a gamma prior distribution.

Recall that in my original MFVB algorithm presented in Section 2.2, I used

Laplace’s method to approximate the optimal variational distributions of β and the

missing covariates because they did not have recognizable kernels. Additionally, I

used the latent variable di (rather than χ) to encapsulate the information about

what happens to an individual after their last capture. Unfortunately, when using

the product restriction and likelihood defined in this section, the capture parameters

can no longer be updated in closed form as they are now incorporated into a joint

optimal variational distribution with the survival parameters. This joint optimal vari-

ational distribution of capture and survival parameters, β, η, must be approximated

via Laplace’s method. The addition of the capture parameters to this variational

distribution makes the numerical optimization necessary to estimate the mean more

computationally demanding than the earlier algorithm. Additionally, the missing co-

variates still need to be approximated via a Laplace approximation. However, the

addition of the χ term to the likelihood makes this numerical optimization slightly
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more computationally intensive than before, and, while the difference in computation

time is very small for a single missing covariate, these small differences add up to

make noticeable difference in the run time of the algorithm (relative to my original

MFVB algorithm).

I approximate the optimal variational density of β and η as a multivariate normal

via a Laplace approximation. First, I follow Equation 2.1 to derive the optimal

variational density using the product restriction specified in Section 2.2:

q∗η,β ∝ exp

(
N∑
i=1

(
li∑

t=fi+1

Ez[log(φi,t−1)] + xi,t log(pt) + (1− xi,t) log(1− pt)

)

+ Ez[log(χi,li)] + log([η]) log([β])

)

∝ exp

( N∑
i=1

(
li∑

t=fi+1

Ez[log(φi,t−1)] + xi,t log(pt) + (1− xi,t) log(1− pt)

)

+ Ez

[
log

(
(1− φi,li) +

T∑
j=li+1

(
j−1∏
k=li

φi,k(1− pk+1)

)
(1− φi,j)

)]

+ log([η]) log([β])

)
.

Numerical optimization of log q∗η,β with respect to η and β leads to the mean for

the Laplace approximation of the joint variational distribution of η and β. The

gradient and Hessian can both be derived in closed form to compute the covariance

matrix of the Laplace approximation, but the derivations are unwieldy and have been

omitted. Note that this is an approximation of the optimal variational density of η

and β under a specific product restriction. The optimal variational density that I am

approximating using Laplace’s method is itself an approximation of the true posterior

distribution, so there are two levels of approximation taking place in this algorithm.

The optimal variational densities of τ and ∆j remain unchanged from the previ-

ous algorithm. However the variational densities of each missing covariate are now

different because of changes to the likelihood:

q∗zmisi,t
∝ exp

(
− Eτ [τ ]

(
(zmisi,t )2 + zmisi,t (E∆[∆t+1]− Ez[zi,t+1]− Ez[zi,t−1]− E∆[∆t])

)
+ 1[t<li]Eβ[log(expit(β0 + β1z

mis
i,t ))]

+ 1[t≥li]Eβ,z[log(χi,li)]

)
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where Eβ,z denotes the expected value with respect to β and any missing covariate

other than zmisi,t . Unfortunately, q∗
zmisi,t

cannot be simplified any more than this and

the entire χi,li term must be included when computing the variational distribution

of each missing covariate. This distribution is also not in closed form, so a Laplace

approximation is applied. The second derivative can be derived so that the covari-

ance matrix of the Laplace approximation can be computed exactly. There is also

the issue of the two expected value terms that do not have closed form solutions:

Eβ[log(expit(β0 + β1z
mis
i,t ))] and Eβ,z[log(χi,li)]. I approximate these expected values

by applying a first order Taylor series expansion. Looking back at Algorithm 1, if I

remove lines 3 through 6 that update the optimal variational densities d and p and

replace the Laplace approximations of q∗(β0, β1) (line 7) and q∗(zi,j) (line 13) with

the Laplace approximations of q∗η,β and q∗(zi,j) defined in this section, I have a com-

plete variational Bayesian algorithm that takes into account the correlation between

the survival and capture probabilities. This new algorithm, which I call the correla-

tion corrected algorithm, is compared with the original MFVB algorithm I derived in

Table 3.1.

I evaluate my new, modified MFVB algorithm in the same manner I evaluated my

first MFVB algorithm in Section 2.2. Figure 3.5 shows that, like my original MFVB

algorithm, the correlation corrected MFVB algorithm also converges to its target

distribution much faster than the MCMC algorithm. For the most strict convergence

criterion I considered (0.00001), the correlation corrected MFVB algorithm needed

an average of 283 iterations to converge. Meanwhile, the MCMC algorithm, applying

the most liberal convergence criterion I considered (0.001), required an average of

7830 iterations to converge to its target distribution (as approximated by an MCMC

algorithm run for 1,000,000 iterations).
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Figure 3.5: Iterations Required for Convergence: MFVB vs Corrected MFVB vs MCMC

Distribution of the number of iterations required to reach convergence for the MFVB al-

gorithm (blue boxes), MCMC algorithm (red boxes), and the correlation corrected MFVB

algorithm (purple boxes) in the simulation study. The convergence criterion was set at 10−3

(left), 10−4 (center), and 10−5 (right). The mean number of iterations required to satisfy

each convergence criteria is stated under each of the plots.

Comparing the number of iterations required to reach convergence of the corre-

lation corrected MFVB algorithm with my original MFVB algorithm referenced in

Figure 2.1, it is clear that the correlation corrected MFVB requires more iterations

to converge. Furthermore, because of the additional numeric optimization necessary

in the correlation corrected MFVB algorithm, the correlation corrected MFVB al-

gorithm will take slightly more time during each iteration than my original MFVB

algorithm (0.5 seconds vs. 0.8 seconds per iteration, on average for these simulations).

In summary, the correlation corrected MFVB requires fewer iterations to converge to

its target distribution than the MCMC algorithm for these simulated data sets, but

converges more slowly than my original MFVB algorithm.

The additional time required for the correlation corrected MFVB algorithm to

converge to its target distribution does yield some significant advantages with regard

to accuracy. Figure 3.6 displays the densities of the capture and survival parameters

from the approximate posterior distributions generated from both the MCMC and

correlation corrected MFVB algorithms for one randomly selected simulated data set.
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Comparing this plot to Figure 2.2 shows that the posterior variability estimated by

the correlation corrected MFVB is a much closer match to the true posterior distri-

bution (estimated by the MCMC results) than my original MFVB algorithm. Figure

3.7 shows that the posterior means of the survival parameters are just as accurate

as they would be applying the previous algorithm most of the time. However, note

that there were a few generated data sets that resulted in posterior means for β1 that

were not very similar to the MCMC results. This is due to the numerical optimiza-

tion technique necessary in the Laplace approximation reaching local optima and is

certainly a drawback to this algorithm, although this does not happen frequently.

However, Figure 3.7 does show that the posterior standard deviations are a signifi-

cantly better match to the MCMC results, and the MCMC draws are contained in

the 95% correlation corrected MFVB credible intervals between 85% to 95% of the

time. Similar results can be found for the scenario in which p2 = p3 = p4 = p5 = 0.9

in Figures 3.8 and 3.9. However, with capture probabilities of 0.9, I no longer see the

numerical optimization issues I experienced when the capture probabilities used to

generate the data were set at 0.4.
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Figure 3.6: MFVB, Corrected MFVB, and MCMC Parameter Estimates in Low Capture

Scenario

MCMC (red), MFVB (blue), and correlation corrected MFVB (purple) target posterior

means (points) and 95% credible intervals (vertical lines) for capture and survival parame-

ters from a single simulated data set under the low capture scenario (p = 0.4). Parameter

labels are located on the x-axis.
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Figure 3.7: Simulation Results Comparing MFVB, Corrected MFVB, and MCMC in Low

Capture Scenario

These plots summarize the 100 simulation results comparing the correlation corrected MFVB

and MCMC algorithms under the low capture scenario (p = 0.4). The left column of plots

shows the relationship between the posterior means of the survival parameters for the cor-

relation corrected MFVB (x-axis) and MCMC (y-axis) algorithms. The center column of

plots compares the posterior standard deviations of the capture parameters for the MCMC

(red) and correlation corrected MFVB (purple) algorithms. The right column of plots shows

histograms of the proportion of MCMC draws that were contained in the 95% credible in-

terval generated by the correlation corrected MFVB algorithm for each simulated data set.

Proportions close to 95% would indicate that the posterior distributions generated by the

two algorithms match closely.
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Figure 3.8: MFVB, Corrected MFVB, and MCMC Parameter Estimates in High Capture

Scenario

MCMC (red), MFVB (blue), and correlation corrected MFVB (purple) target posterior

means (points) and 95% credible intervals (vertical lines) for capture and survival parame-

ters from a single simulated data set under the high capture scenario (p = 0.9). Parameter

labels are located on the x-axis.
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Figure 3.9: Simulation Results Comparing MFVB, Corrected MFVB, and MCMC in High

Capture Scenario

These plots summarize the 100 simulation results comparing the correlation corrected MFVB

and MCMC algorithms under the high capture scenario (p = 0.9). The left column of plots

shows the relationship between the posterior means of the survival parameters for the cor-

relation corrected MFVB (x-axis) and MCMC (y-axis) algorithms. The center column of

plots compares the posterior standard deviations of the capture parameters for the MCMC

(red) and correlation corrected MFVB (purple) algorithms. The right column of plots shows

histograms of the proportion of MCMC draws that were contained in the 95% credible in-

terval generated by the correlation corrected MFVB algorithm for each simulated data set.

Proportions close to 95% would indicate that the posterior distributions generated by the

two algorithms match closely.

3.3 Hybrid Algorithm

Allowing correlation in the variational densities between the capture and survival pa-

rameters increases the accuracy of the approximate posterior distributions, matching

MCMC results much more closely than my original MFVB algorithm, particularly

with regard to the posterior variances. This increased accuracy, however, comes with

a cost: significantly longer run time compared to my original MFVB algorithm. There
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are some situations in which the modified MFVB algorithm can converge even more

slowly than the MCMC algorithm, due to the computationally demanding nature of

the numerical optimization routine necessary to find the mean vector of the Laplace

approximation of q∗η,β. Additionally, the modified algorithm will scale poorly as the

number of capture occasions increase, as η will grow in dimension and the numerical

optimization necessary to update q∗η,β will be even more computationally intensive.

In this section, I attempt to combine the two previously derived algorithms to create

a hybrid algorithm which possesses the speed of the original MFVB approach and

some of the improved accuracy present in the modified MFVB algorithm.

The idea behind the hybrid algorithm is to run the original MFVB algorithm until

convergence, and then to run a final iteration using the modified MFVB algorithm.

Looking at the left-most column in Figures 2.3 and 2.5, it is apparent that the original

MFVB algorithm estimates the posterior means of the capture parameters quite well.

By running the final iteration using the modified MFVB algorithm, the posterior

variances can be more accurately estimated without running the computationally

intensive updates of q∗η,β every iteration while waiting for the optimal variational

distributions of the missing covariates, ∆, and τ to converge.

Using the same simulated data sets described in detail in Section 2.2 and referred

to again in Section 3.2, I can ascertain the effectiveness of this approach. First, note

that I do not include boxplots comparing iterations required to reach convergence.

This is due to the fact that the hybrid algorithm takes exactly one more iteration

that my first MFVB algorithm detailed in Section 2.2. You may refer to Figure 2.1

for a comparison of convergence speed between the hybrid MFVB algorithm and the

MCMC algorithm.

A comparison of the approximate posterior distribution computed by the hybrid

MFVB algorithm, the results obtained via the MCMC approach, and the previously

described MFVB algorithms for a single data set simulated under the the low capture

scenario can be viewed in Figure 3.10. The posterior means from the hybrid algorithm

are closely aligned with the posterior means generated from the other three algorithms

across all six parameters, and the posterior variances (represented by the 95% credible

intervals) demonstrate that the hybrid algorithm is much closer to the correlation

corrected MFVB and MCMC estimates. Similar results can be seen for a data set

simulated under the high capture scenario in Figure 3.11.
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Figure 3.10: MFVB, Corrected MFVB, Hybrid MFVB, and MCMC Parameter Estimates

in Low Capture Scenario

MCMC (red), MFVB (blue), correlation corrected MFVB (purple), and hybrid MFVB

(green) target posterior means (points) and 95% credible intervals (vertical lines) for cap-

ture and survival parameters from a single simulated data set under the low capture scenario

(p = 0.4). Parameter labels are located on the x-axis.
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Figure 3.11: MFVB, Corrected MFVB, Hybrid MFVB, and MCMC Parameter Estimates

in High Capture Scenario

MCMC (red), MFVB (blue), correlation corrected MFVB (purple), and hybrid MFVB

(green) target posterior means (points) and 95% credible intervals (vertical lines) for capture

and survival parameters from a single simulated data set under the high capture scenario

(p = 0.9). Parameter labels are located on the x-axis.

The performance of the hybrid MFVB algorithm across all 100 simulated data

sets can be assessed by examining Figures 3.12 (low capture scenario) and 3.13 (high

capture scenario). The posterior means of the capture parameters (β) from the hy-

brid MFVB algorithm match very closely with the posterior means generated via

MCMC. Additionally, the posterior standard deviations from the hybrid MFVB al-

gorithm are more closely aligned with the MCMC results than the output from the

original MFVB algorithm were. Also, the proportion of MCMC draws contained in

the 95% hybrid MFVB credible intervals are almost all between 0.85 and 0.95 for the

low capture scenario and 0.90 and 0.95 for the high capture scenario. These findings

are quite similar to the results presented in Figures 3.7 and 3.9 in the correlation

corrected MFVB section. However, the hybrid algorithm is significantly faster than

the full correlation corrected algorithm (on average, 2.0 minutes vs 6.5 minutes for

these simulations) due to the fact that the computationally intensive numerical opti-
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mization required to update q∗(β,p) only occurs on the final iteration. Additionally,

in the low capture scenario I did not observe any of the convergence issues that af-

fected the correlation corrected algorithm in Figure 3.7. This can be attributed to

the hybrid algorithm’s use of the simpler, original MFVB algorithm to converge to

reasonable approximate posterior means before utilizing one iteration of the correla-

tion corrected algorithm to more accurately reflect the posterior variance. Relying on

high dimensional numerical optimization from the very beginning is what led to the

convergence issues with the correlation corrected algorithm, and the hybrid algorithm

avoids this problem.

Figure 3.12: Simulation Results Comparing MFVB, Corrected MFVB, Hybrid MFVB,

and MCMC in Low Capture Scenario

These plots summarize the 100 simulation results comparing the hybrid MFVB and MCMC

algorithms under the low capture scenario (p = 0.4). The left column of plots shows the

relationship between the posterior means of the survival parameters for the hybrid MFVB

(x-axis) and MCMC (y-axis) algorithms. The center column of plots compares the poste-

rior standard deviations of the capture parameters for the MCMC (red) and hybrid MFVB

(green) algorithms. The right column of plots shows histograms of the proportion of MCMC

draws that were contained in the 95% credible interval generated by the hybrid MFVB algo-

rithm for each simulated data set. Proportions close to 95% would indicate that the posterior

distributions generated by the two algorithms match closely.
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Figure 3.13: Simulation Results Comparing MFVB, Corrected MFVB, Hybrid MFVB,

and MCMC in High Capture Scenario

These plots summarize the 100 simulation results comparing the hybrid MFVB and MCMC

algorithms under the high capture scenario (p = 0.9). The left column of plots shows the

relationship between the posterior means of the survival parameters for the hybrid MFVB

(x-axis) and MCMC (y-axis) algorithms. The center column of plots compares the poste-

rior standard deviations of the capture parameters for the MCMC (red) and hybrid MFVB

(green) algorithms. The right column of plots shows histograms of the proportion of MCMC

draws that were contained in the 95% credible interval generated by the hybrid MFVB algo-

rithm for each simulated data set. Proportions close to 95% would indicate that the posterior

distributions generated by the two algorithms match closely.

The hybrid algorithm yields an approximate posterior distribution extremely sim-

ilar to the correlation corrected MFVB algorithm, and converges almost 3 times faster

(based on my simulation results). Additionally, both of these algorithms generate

approximate posterior distributions much closer in posterior variance to the MCMC

results than my original MFVB algorithm could. This suggests that the computa-

tionally demanding optimization step necessary to update q∗(β,p) need not occur on

every iteration of the algorithm. The missing covariates and the parameters associ-

ated with the change in covariates over time (∆ and τ) can converge to reasonable
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variational parameter estimates using the more naive updates for the (assumed in-

dependent) optimal variational densities of β and p present in the original MFVB

algorithm. Using the update to q∗(β,p) that allows the capture and survival pa-

rameters to be correlated at the very end of the original MFVB algorithm to correct

underestimated posterior variances results in an algorithm that produces both rapid

convergence and a more accurate approximate posterior distribution. In essence,

this algorithm combines the two most attractive features from the original MFVB

algorithm and the correlation corrected MFVB algorithm.

3.4 Application to Cliff Swallows

The simulated data sets I have presented thus far have been relatively small mark-

recapture data sets (n = 300 and T = 5). While this is a reasonable criteria to

compare the variational Bayesian results with the more traditional MCMC approach,

my purpose in exploring variational Bayesian methods was to analyze extremely large

data sets that MCMC algorithms would not be able to handle. In this section, I

analyze a very large mark-recapture data set to demonstrate that the MFVB approach

is applicable to problems of this magnitude.

Recall the cliff swallows study described in Section 1.5 that consisted of n =

164, 621 birds observed over T = 29 capture occasions. The model I have fit to

this data set includes time-varying capture probabilities and an effect of weight on

survival, similar to the models examined in Sections 2.2, 3.3 and 3.2. Weights were

standardized before analysis. The first 8 years of data were analyzed initially to

assess how well the variational Bayesian algorithms performed compared to an MCMC

approach. The entire 29 years of data were then analyzed with the original MFVB

algorithm and the hybrid algorithm. The MCMC and correlation corrected MFVB

algorithm were not used to analyze the entire 29 years worth of data, as this would

not be computationally feasible. For the MCMC analysis on the first 8 years of data, I

generated 3 chains each of length 50, 000, discarding the first 2, 000 as burn-in. JAGS

version 3.4.0 was used to generate the posterior samples (Plummer, 2003), which were

then processed through R to create summaries, tables, and graphics (R Core Team,

2014).

The posterior means and 95% credible intervals generated by each of the methods

for the first 8 years of cliff swallows data can be viewed in Figure 3.14. Note that

all three MFVB methods match the MCMC results closely with regard to the cap-

ture probabilities, however the original MFVB algorithm severely underestimates the
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posterior variance of the survival parameters (β), as I expected based on my previ-

ously presented simulation studies. In contrast, the correlation corrected MFVB and

hybrid MFVB methods generate 95% credible intervals very similar in length to the

MCMC produced credible intervals. Surprisingly, the hybrid algorithm also appears

to produce posterior mean estimates for the survival parameters closer to the MCMC

results than those of the correlation corrected MFVB.

Figure 3.14: Comparison of Parameter Estimates for a Subset of Cliff Swallows Data

MCMC (red), MFVB (blue), correlation corrected MFVB (purple), and hybrid MFVB

(green) posterior means (points) and 95% credible intervals (vertical lines) for capture and

survival parameters for the first 8 years of cliff swallows data. Parameter labels are located

on the x-axis.

The hybrid algorithm and the original MFVB algorithm were also the most com-

putationally efficient, taking a little more than a half hour to converge. Meanwhile,

the correlation corrected MFVB algorithm and MCMC algorithm required 12 hours

and 23 minutes and 7 hours and 9 minutes, respectively. As in the simulation results

from Section 3.3, the hybrid algorithm shows comparable accuracy to the correlation

corrected MFVB algorithm for a fraction of the run time. The correlation corrected

algorithm also demonstrates its inability to handle large mark-recapture data sets,

requiring even more time than the MCMC algorithm to converge. For this reason,
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only the hybrid and original MFVB algorithms will be used to analyze the full cliff

swallows data set.

Figure 3.15 displays the results generated from the original and hybrid MFVB

algorithm when applying the CJS model extended to include an effect of weight

on survival to the full 29 years of cliff swallows data. The two algorithms generate

very similar posterior means, although the posterior variance is higher for the survival

parameters for the hybrid MFVB results. This is consistent with the simulation study

and analysis of the first 8 years of cliff swallows data. Additionally, the aforementioned

previous results demonstrated that this higher posterior variance is more consistent

with the true posterior distribution (represented by posterior samples generated via

an MCMC algorithm).

Figure 3.15: Comparison of Parameter Estimates for Cliff Swallows Data

MFVB (blue) and hybrid MFVB (green) posterior means (points) and 95% credible intervals

(vertical lines) for capture and survival parameters for the entire 29 years of cliff swallows

data. Parameter labels are located on the x-axis.

Interpreting these results, it does not appear that the weight of a cliff swallow has

a significant effect on its survival as the hybrid algorithm estimated that β1 has a

posterior mean of −0.001 with a 95% credible interval of (−0.015, 0.013). Addition-

ally, an average cliff swallow has a survival probability of around 56% from one year
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to another. Also, the capture probabilities vary from year to year, ranging from a

high of 32% in 2004 to a low of 6% in 1985.

This algorithm required over 22 days to converge. Although this result is some-

what disappointing and I had hoped for a faster, more efficient algorithm, using the

traditional MCMC approach would have taken even longer to converge (when analyz-

ing the smaller subset of cliff swallows data, the MCMC algorithm converged over 14

times more slowly than my MFVB algorithm, suggesting that the MCMC algorithm

would have required almost a year to provide the same information). As I will discuss

in more detail in Section 3.5, the reason my MFVB algorithm does not scale as well

as I had hoped is the same reason that the MCMC algorithm has difficulties: I still

need to impute every single missing covariate on each iteration of the algorithm.

3.5 Discussion

In conclusion, the MFVB algorithm introduced in Section 2.2 results in optimal vari-

ational distributions that converge much more quickly than an MCMC approach.

However, the optimal variational distributions from the MFVB algorithm are an ap-

proximation of the true posterior distribution and significantly underestimate the

posterior variance, as my simulation studies have shown. The primary reason for

the inaccuracy with regard to the posterior variance is that the survival and cap-

ture parameters are often highly correlated. Section 3.1 demonstrated that a similar

phenomenon could be observed by simulating data and fitting a mixed effects model

via the MFVB framework. After deriving a solution to the mixed model accuracy

problem, I applied a similar solution to the mark-recapture model. Allowing correla-

tion between the survival and capture parameters in the target approximate posterior

distribution resulted in the variational Bayesian algorithm presented in Section 3.2.

This algorithm produced optimal variational densities that converged to approxi-

mate posterior distributions that are much closer to the true posterior distributions,

although the multidimensional numerical optimization procedure required causes very

slow convergence (even slower than the chains produced by an MCMC algorithm in

some situations).

The hybrid algorithm introduced in Section 3.3 attempts to achieve the accuracy

of the correlation corrected MFVB algorithm while maintaining the convergence speed

of the optimal variational densities from the original MFVB algorithm. The hybrid

algorithm utilizes the original MFVB algorithm until convergence of the optimal

variational densities is achieved, then computes a single iteration of the correlation
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corrected MFVB algorithm as a correction for the underestimated posterior variance.

I have found that this works very well in practice, as the original MFVB can properly

estimate the posterior means of the nuisance parameters (missing covariates, ∆, and

τ) just as well as the correlation corrected MFVB algorithm in a fraction of the

time. If the nuisance parameter estimates from the original MFVB algorithm are

similar to the nuisance parameter estimates that the correlation corrected MFVB

algorithm produces, then the final iteration of the hybrid algorithm will result in an

approximate posterior distribution similar to what the correlation corrected MFVB

algorithm would have produced. Although the hybrid algorithm lacks a rigorous

mathematical justification, I have shown via simulation study and the cliff swallows

data that this admittedly ad hoc method performs well.

While I have demonstrated that the hybrid algorithm results in optimal variational

densities that converge much faster than an MCMC approach with comparable accu-

racy, my MFVB algorithms still do not scale very well to extremely large data sets,

such as the cliff swallows data. The optimal variational densities from the hybrid

algorithm required 22 days to reach convergence when analyzing the full 29 years

of cliff swallows data, and while this is an improvement over an MCMC approach,

I would like to do better. Unfortunately, the MFVB algorithms will scale just as

poorly as the MCMC algorithms, due to the fact that they do not truly address the

reason that MCMC methods struggle with large data sets that feature individual,

continuous, time varying covariates: the imputation of missing covariates.

In my MFVB approaches, I am still required to impute every single missing covari-

ate at every iteration. If these updates only required a simple, closed form update,

this would not be much of an issue. However, Algorithm 1 reveals that the missing co-

variate updates require numerical optimization due to the fact that their approximate

posterior distribution is approximated via Laplace’s method. While this numerical

optimization is one dimensional and therefore not overly resource intensive, it does

need to occur on each iteration of the algorithm and will scale poorly as the data

sets increase in size, with respect to both n and T , as this will increase the number

of missing covariates.

For an algorithm to more successfully address the large data problem, I must

devise an approach that reduces the computational burden associated with imputing

missing covariates. This is precisely what I attempt to do in Chapter 4, and, al-

though my approach in that section does not involve the use of variational Bayesian

methods, I have demonstrated in this section that variational Bayesian methods can

be effective in reducing convergence time when applied mark-recapture models. The
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decision to employ variational Bayesian methods as an alternative to MCMC for

mark-recapture models similar to the modified CJS model we’ve been examining will

involve considering the trade-off between improved convergence speed and the need

to mathematically derive the updates to the variational Bayesian algorithm. While

the algorithms presented in Sections 2.2 and 3.2 can be relatively easily modified to

apply to other CJS extensions, the process will never be as easy as modifying the

model file of a general MCMC software package such as JAGS, BUGS, or STAN.

Nevertheless, if convergence speed is of primary concern, the variational Bayesian

techniques outlined in this section will prove useful.

Copyright c© Woodrow Burchett, 2017.
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Chapter 4 Truncated CJS

While implementing a variational Bayesian algorithm as an alternative to MCMC

does result in improved convergence speed, it does not address the primary reason

that fitting CJS models extended to incorporate individual, continuous, time-varying

covariates to very large data sets scales so poorly. To truly address this issue, I must

find a way to spend fewer resources imputing missing covariates. The repeated updat-

ing of these values makes the traditional MCMC approach unfeasible for extremely

large data sets, especially when there are many capture occasions and individuals are

short lived or capture rates are low. I address this in this chapter by introducing the

truncated CJS model.

By focusing on the data that have the most influence on the parameter estimates,

the truncated CJS model allows us to decrease the number of missing covariates I

am required to update on each MCMC iteration. A tuning parameter, k, is also

included, allowing researchers to have control over the trade-off between efficiency

and increased parameter certainty.

4.1 Introduction to Truncated CJS Model

Notation

In addition to the notation introduced in Section 1.2, I must introduce some addi-

tional notation in order to define the truncated CJS model:

ri = number of times individual i was released,

not including releases on the final occasion

ti,1, . . . , ti,ri = occasions on which individual i was released,

not including the final occasion

Yi,j = number occasions between release j of individual i and

the next recapture or -1 if individual i is not recaptured after release j

Y
(k)
i,j = number occasions between release j of individual i and

the next recapture if the next recapture occurs k occasions

after release or sooner, -1 otherwise
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Alternative CJS Likelihood

Recall the likelihood associated with the CJS model introduced in Section 1.3, in

which individual capture histories were assigned probabilities and these probabilities

were function of survival and capture parameters. The truncated CJS model I will in-

troduce in the next section extends from an equivalent definition of the CJS likelihood

function constructed by considering separate likelihood contributions for each release

of each individual instead of considering the contributions for the capture histories of

each individual as a whole. Let ri denote the number of releases and ti,1, . . . , ti,ri the

occasions of release for individual i, not including the final occasion. The likelihood

in equation (1.1) can then be written as

L(p,φ|Ω) =
n∏
i=1

ri∏
j=1

Pr(Yi,j|ti,j) (4.1)

where

Yi,j =

{
ti,j+1 − ti,j if j < ri

−1 if j = ri
. (4.2)

Heuristically, Yi,j is equal to the number of occasions between release and recapture or

-1 if the individual not recaptured after ti,j. If T = 3, then there are only five possible

pairs of release and recapture times, and the probabilities assigned to these pairs are

given in Table 4.1. Note that each entry in Table 1.1 is a product of these new

probabilities. More generally, there are
∑T

t=2 t = T (T+1)
2
− 1 possible pairs of release

and recapture times for an experiment with T occasions and the new probabilities

are

P (Yi,j = y|ti,j) =


φi,ti,jpi,ti,j+1 y = 1

φi,ti,jφi,ti,j+1φti,j+2(1− pti,j+1)pti,j+2 y = 2

φi,ti,j · · ·φti,j+y−1(1− pti,j+1) · · · (1− pti,j+y−1)pti,j+y y ≥ 3

χi,ti,j y = −1.

(4.3)

Note that χi,t, the probability that individual i is not recaptured after occasion t, can

also be defined as χi,t = 1−
∑T

s=t+1 P (Yi,j = s|ti,j) by simple complements.
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Table 4.1: Possible probabilities assigned to individual i’s capture history

Release Time to Probability
Occasion (ti) Recapture (Yi,t)

1 2 φi,1pi,2
1 3 φi,1(1− pi,2)φi,2pi,3
1 -1 χi1
2 3 φi,2pi,3
2 -1 χi,2

4.2 Truncated CJS Likelihood

I define the new likelihood function associated with the truncated CJS model by

truncating the release specific times to recapture, Yi,j, defined in equation (4.2).

Specifically, I define truncated recapture times for some pre-determined k representing

the maximum number of occasions I consider until an individual is recaptured. The

truncated recapture times, denoted by Y
(k)
i,t , are then defined such that Y

(k)
i,t = Yi,t

if Yi,t ≤ k and Yi,t = −1 otherwise. Probabilities assigned to the events Y
(k)
i,t =

1, . . . , Y
(k)
i,t = k are defined exactly as in equation (4.3). However, the event Y

(k)
i,t = −1,

now combines the events that an individual is recaptured more than k occasions after

it is released or not at all. The probability assigned to this event is most easily

computed as one minus the sum of the probabilities assigned to the other events so

that

P (Y
(k)
i,t = y|ti,j) =



φi,ti,jpi,ti,j+1 y = 1

φi,ti,jφi,ti,j+1φti,j+2(1− pti,j+1)pti,j+2 y = 2

φi,ti,j · · ·φti,j+y−1(1− pti,j+1) · · · (1− pti,j+y−1)pti,j+y y = 3, . . . , k

1−
∑k

s=1 P (Y
(k)
i,t = s|ti,j) y = −1

The new likelihood function is then defined as

L(k)(p,φ|Ω) =
n∏
i=1

ri∏
j=1

Pr(Y
(k)
i,j |ti,j)

after simply replacing Pr(Yi,j|ti,j) with P (Y
(k)
i,t = y|ti,j).

Estimates of the capture and survival parameters (and other parameters if, for ex-

ample, a covariate is being modeled) can then be obtained by maximizing L(k)(p,φ|Ω)

to obtain MLEs or by constructing a posterior distribution based on this likelihood in

the Bayesian context. The truncation parameter, k, can be seen as a tuning param-

eter. The smaller k is, the faster the parameter estimation will take place, but more
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data will be discarded and the credible regions or confidence intervals will be larger.

It is immediate that setting k = T results in the likelihood from the CJS model as

defined in Section 1.4.

Note that an individual capture history may be truncated more than once and

that truncation may occur before an individuals last capture. For example, the

capture history ωi = 100001000 would be truncated twice when fitting the truncated

CJS model with k = 3, contributing both P (Y
(3)
i,1 = −1) and P (Y

(3)
i,6 = −1) to the

likelihood.

In the presence of extremely large data sets (with respect to n and/or T ), fitting

the truncated CJS model can lead to significant improvements in the computational

efficiency of the parameter estimation algorithms. Truncation is especially effective

when capture probabilities are high and survival probabilities are low. Suppose, for

example, that individual i is marked on the first occasion of a study with T = 30

capture occasions and never seen again. The likelihood contribution for this individual

is simply χi,1. This is a function of φi,1, ..., φi,29, pi,2, ..., pi,30. However, it is

unlikely that the individual lived to the end of the study and remained uncaptured

if either the survival probabilities are low or the capture probabilities are high. The

truncated CJS model allows us to discard the least influential data points in this

individual’s capture history (in this case, the capture occasions late in the study

after this individual is very likely deceased) while still producing unbiased estimates

of capture and survival parameters. The ability to discard weakly influential data

points can greatly reduce the computational burden of MCMC algorithms in the

presence of continuous, individual, time-varying covariates, as I will demonstrate in

Sections 4.4 and 4.5. First, I quantify how much precision is lost when truncating

capture histories in Section 4.3.

4.3 Accuracy and Precision of the Truncated CJS Model

The truncated CJS model aims to improve algorithmic efficiency by focusing only

on the most influential data. However, this improvement in efficiency comes at the

cost of ignoring less influential data, which will decrease the precision of parameter

estimates. In this section, I analytically quantify the precision that is lost when

capture histories are truncated. In Section 4.4, I examine the performance of the

truncated CJS model via a simulation study.

To make the analytical calculation tractable, I consider a simple model in which

all n individuals in the sample are marked and released at the beginning of the study.
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Additionally, the capture probability, p, and survival probability, φ, are assumed to

be common for all individuals in the study and do not vary across capture occasions.

Let mt represent the number of individuals first recaptured on capture occasion t, m0

represent the number of individuals never recaptured, and k represent the duration of

the study. Note that because all individuals are marked and released at the beginning

of the study and we are only concerned with the first recapture, k is analogous to the

truncation parameter from the truncated CJS model rather than the study duration,

T . The likelihood for this simplified model is:

L(φ, p) =

(
k∏
t=1

Pmt
t

)
× Pm0

0

where

Pt =φt(1− p)t−1p

is the probabilty that an individual is recaptured after t occasions and

P0 =1−
k∑
t=1

Pt

is the probability that an individual is never recaptured. I can estimate the sur-

vival and capture parameters from this simplified CJS model using maximum like-

lihood techniques. Furthermore, because of the model’s simplicity, I am able to

compute both the Fisher information matrix and its inverse (the asymptotic variance-

covariance matrix of the maximum likelihood estimator).

Having the asymptotic distribution of the maximum likelihood estimator in closed

form allows us to analytically determine the effect of truncation on precision. To

evaluate the degree to which k affects the precision of both the survival and capture

parameter estimates simultaneously, I will use the Kullback-Liebler distance between

the asymptotic multivariate normal distribution of the MLEs at a fixed value of k

and the asymptotic multivariate normal distribution of the MLEs when k → ∞. I

chose to use the Kullback-Liebler distance as the metric because the results can be

interpreted as the amount of information lost when approximating one distribution

with another (Burnham and Anderson, 1998, pg. 51).

Figures 4.1 and 4.2 display the analytically calculated Kullback-Liebler distances

between the asymptotic multivariate normal distribution of the MLEs at 6 different

values of k and the asymptotic multivariate normal distribution of the MLEs when
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k → ∞. Additionally, Figure 4.1 presents Kullback-Liebler distances at 3 different

values of p (0.5, 0.7, and 0.9) and a single value of φ (0.7), while Figure 4.2 presents

Kullback-Liebler distances at 3 different values of φ (0.5, 0.7, and 0.9) and a single

value of p (0.7). These figures show that, when fitting the simplified CJS model

described above to data in which the true values of p and φ are between 0.5 and 0.9,

a study duration, k, of 5 capture occasions or more results in asymptotic maximum

likelihood estimates of φ and p that are nearly indistinguishable from those in which

k → ∞. Additionally, I found that asymptotic maximum likelihood estimates from

smaller study durations are more similar to to the asymptotic maximum likelihood

estimates when k →∞ when the true, underlying values of φ are low and p are high.

Conversely, when the true values of φ are high and p were are low, the Kullback-Liebler

distances between the asymptotic distribution of the MLEs of low, fixed values of k

and k →∞ are the largest.

The results presented in Figures 4.1 and 4.2 are intuitive. When individuals are

long lived and rarely captured more capture occasions will be required to accurately

estimate the capture and survival probabilities. The analytical results presented in

this section apply to a very simple mark-recapture model. However, the information

obtained is applicable to the more complex truncation of the CJS model, as k, the

length of the study in the simplified CJS model presented in this section, still repre-

sents the truncation of capture histories. The simulation study presented in Section

4.4 and the example data set analyzed in Section 4.5 came to similar conclusions, as

a truncation parameter (k) of 5 was sufficient for the posterior distributions to closely

resemble those obtained when fitting a model with no truncation of capture histories

in both scenarios.
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Figure 4.1: KL Distances between MLEs at Different Values of k and p

This figure displays the Kullback-Liebler distances between the asymptotic multivariate nor-

mal distributions of the MLEs at 6 different values of k with the asymptotic multivariate

normal distributions of the MLEs as k → ∞. I fix φ at 0.7 and present the KL distances

for 3 different values of p: p = 0.5 (in red), p = 0.7 (in green), and p = 0.9 (in blue).
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Figure 4.2: KL Distances between MLEs at Different Values of k and φ

This figure displays the Kullback-Liebler distances between the asymptotic multivariate nor-

mal distributions of the MLEs at 6 different values of k with the asymptotic multivariate

normal distributions of the MLEs as k → ∞. I fix p at 0.7 and present the KL distances

for 3 different values of φ: φ = 0.5 (in red), φ = 0.7 (in green), and φ = 0.9 (in blue).

4.4 Simulation Study

To ensure that the parameter estimates generated from the truncated CJS model are

unbiased, confirm the improved efficiency of the truncated CJS model, and determine

how changing k affects precision, I analyzed data sets simulated with known param-

eter values and assessed the performance of the truncated CJS model in the presence

of continuous, time varying covariates. Note that the truncated CJS model may be

extended to incorporate covariates in the same manner as the traditional CJS model

was in Section 1.4, as both likelihoods are functions of the same capture and survival

parameters, which can be modeled as a function of covariates via a logit link function.
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The truncated CJS model also does not impose any specific model for the missing

covariates, and therefore the process described by Bonner and Schwarz (2006) that

was introduced in Section 1.4 may also be implemented here.

I generated 100 data sets from two simulation scenarios with n = 600 individuals

in each in order to assess the degree to which fitting the truncated CJS model will

result in increased algorithmic efficiency in the presence of continuous, time-varying

covariates. The first 100 data sets consisted of T = 15 capture occasions while the

second group of 100 data sets consisted of T = 20 capture occasions, to demonstrate

how the efficiency gains from the truncated CJS model improve as the number of

capture occasions increases. Individual, time-varying covariates were included, with

the initial covariate value generated from the uniform distribution on (−0.5, 0.5). Af-

ter the first capture, the covariate values followed the model in Equation 1.2 with

∆t = 0.4 for all t and τ = 1. I included covariate effects on both the capture and

survival probabilities, with β0,p = −0.4, β1,p = 1, β0,φ = 1, and β1,φ = −0.3. These

parameters lead to an individual with a covariate value of 1 having a survival proba-

bility of around 67% and a capture probability of 65%. An individual with a covariate

value of 0 would have a survival probability of 73% with a capture probability of 40%

and an individual with a covariate value of −1 would have a survival probability of

79% and a capture probability of 20%.

For each scenario, the truncated CJS model was implemented with k = 2, k = 3,

k = 5, and k = T (which replicates the original CJS model) using JAGS version

4.2.0, a statistical software package that performs Gibbs sampling (Plummer, 2003).

When T = 15, I generated 3 Markov chains of length 10, 000 for each data set,

discarding the first half as burn-in. When T = 20, more iterations were required to

reach convergence and 3 chains each of length 20, 000 were generated.

Table 4.2 shows the estimated percent bias and average relative standard error of

the four capture and survival parameters (β0,p, β1,p, β0,φ, and β1,φ), in addition to the

average run time required to fit the model using each algorithm at the four different

values of k when T = 15. I define the percent bias and relative standard error as the

bias and standard error divided by the absolute value of the true parameter value

used to generate the data multiplied by 100 (e.g. the percent bias for β0,p is given by

(E[β̂0,p] − β0,p)/|β0,p| × 100). Observe that the estimated percent bias never exceeds

±7% for any parameter at any value of k, but that the estimated percent bias and

average relative standard error of each parameter do get larger as k decreases.

Note that while the relative standard error and percent bias estimates were highest

when k = 2, the algorithm ran in less than one third of the time required to fit the

74



non-truncated CJS model. Likewise, when k = 3 the MCMC algorithm required less

than half the time required to fit the non-truncated CJS model. Additionally, models

with lower values of k result in MCMC algorithms that mix better and converge to

the posterior distribution more quickly, due to the fact that fewer missing covariates

occurring well after an individual’s last capture need to be imputed. This property is

exhibited by the effective samples per second column in Table 4.2, which I define as

the sum of the effective sample sizes for the posterior samples of β0,p, β1,p, β0,φ, and

β1,φ divided by the run time (in seconds). Note that effective sample size is a measure

of posterior sample size that has been corrected to account for the autocorrelation

present in MCMC chains. This measure of algorithm efficiency shows that algorithms

fitting models with smaller values of k not only run faster when the chains are of equal

length, but will also generate more effective samples given a fixed run time.

Table 4.3 contains similar results for simulations in which T = 20. Note that the

efficiency improvements that the truncated CJS model demonstrated over the non-

truncated CJS model become even more pronounced for data sets with more capture

occasions.

Figures 4.3 and 4.4 compare the posterior densities from all four values of k for

each βj for a single simulated data set with T = 15 and T = 20. As seen in the

cumulative results, the parameter estimates are more uncertain as k decreases. All

the densities, however, are roughly centered around the same estimate.
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Figure 4.3: Parameter Estimates from the Truncated CJS Model at Different Values of k

for Simulated Data with T = 15

Posterior means (points), 80% credible intervals (thick vertical lines), and 95% credible

intervals (thin vertical lines) for capture and survival parameters estimated from a single

simulated data set with n = 600 and T = 15 capture occasions. The results from the

truncated CJS model with k = 2 (red), k = 3 (orange), k = 5 (green), and the full CJS

model (k = T , blue) are presented. Parameter labels are located on the x-axis.
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Figure 4.4: Parameter Estimates from the Truncated CJS Model at Different Values of k

for Simulated Data with T = 20

Posterior means (points), 80% credible intervals (thick vertical lines), and 95% credible

intervals (thin vertical lines) for capture and survival parameters from a single simulated

data set with n = 600 and T = 20 capture occasions. The results from the truncated CJS

model with k = 2 (red), k = 3 (orange), k = 5 (green), and the full CJS model (k = T ,

blue) are presented. Parameter labels are located on the x-axis.

4.5 Application to Cliff Swallows

Recall the data set consisting of records from 164,621 cliff swallows observed over

a 29 year period introduced in Section 1.5. Fitting the truncated CJS model is

particularly useful for improving the computational efficiency of the fitting algorithm

for this data set. This is because individuals who are only observed early in the

study will, using the non-truncated CJS model with continuous covariates, continue

to have their covariates imputed on many capture occasions after their last sighting

when many individuals are likely deceased. For example, fitting the non-truncated

CJS model with continuous covariates with this data set requires imputing 1, 968, 151

covariate values each iteration of an MCMC algorithm. However, fitting the truncated
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CJS algorithm with k = 5 reduces this number to 742, 518, while k = 3 reduces this

number to 478, 806. This is the primary reason that computational efficiency is

improved when fitting the truncated CJS algorithm.

The model I have fit includes time-varying intercepts for each year and an effect

of weight on both capture and survival. Note that the model considered in Chapters

2 and 3 did not consider an effect of weight on capture or survival probabilities with

time-varying intercepts (this led to variational Bayesian algorithms with derivations

that were easier to follow). Weights were standardized before analysis. The first 8

years of data was analyzed initially to assess how well models using different values

of k performed compared to the non-truncated CJS model. The truncated CJS

model was fit to this subset of data with k = 2, k = 3, and k = 5. I generated

3 Markov chains each of length 50, 000 from the Gibbs sampler, discarding the first

2, 000 as burn-in. JAGS version 4.2.0 was used to generate the posterior samples

(Plummer, 2003), which were then processed through R (R Core Team, 2014) to

create summaries, tables, and graphics.

Figures 4.5 and 4.6 compare the estimated posterior distributions of parameters

for the first 8 years of cliff swallows data. The posterior distribution plots show that

when k = 3 or k = 5, the estimated posterior distributions match quite closely to the

estimated posterior distribution from the non-truncated CJS model with continuous

covariates. When k = 2, it is clear that the estimated marginal posterior distributions

of the capture parameters are drastically overestimated while the survival parameters

are underestimated (when compared to the estimated posterior distribution obtained

when fitting the non-truncated CJS model). I did not see this systematic bias in the

simulation results presented in Section 4.4, indicating that this data deviates from

the assumptions made in the modeling process in some way. One possible deviation

would be the presence of temporary emigration (i.e. individuals leave the study

population but eventually return). I explore the effects of temporary emigration

further in Appendix A.4 and find similar systematic bias with respect to the choice

of k. Table 4.4 displays the performance gains associated with lower values of k,

detailing the run time in hours and the effective samples per second (the sum of the

effective sample sizes for all β parameters divided by the run time in seconds).
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Figure 4.5: Estimates of Capture Parameters from the Truncated CJS Model for 8 Years

of Cliff Swallows Data

Posterior means (points), 80% credible intervals (thick vertical lines), and 95% credible

intervals (thin vertical lines) for the capture parameters estimated from the first 8 years

of cliff swallows data. The results from the truncated CJS model with k = 2 (red), k = 3

(orange), k = 5 (green), and the full CJS model (k = T , blue) are presented. Parameter

labels are located on the x-axis.
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Figure 4.6: Estimates of Survival Parameters from the Truncated CJS Model for 8 Years

of Cliff Swallows Data

Posterior means (points), 80% credible intervals (thick vertical lines), and 95% credible

intervals (thin vertical lines) for the survival parameters estimated from the first 8 years

of cliff swallows data. The results from the truncated CJS model with k = 2 (red), k = 3

(orange), k = 5 (green), and the full CJS model (k = T , blue) are presented. Parameter

labels are located on the x-axis.

Table 4.4: Run times and effective samples per second when fitting the truncated CJS

model (at 4 different values of k) to the first 8 years of the cliff swallow data.

k Run Time (hours) Effective Samples per Second

2 12.5 7.6

3 15.9 4.9

5 18.5 0.8

T 18.6 1.8

Finally, I analyzed the entire 29 year data set containing records from the 164,621

birds with at least one recorded weight. Due to the size of the data set, it is no longer

computationally feasible to fit the non-truncated CJS model. Additionally, due to

the poor accuracy of the estimates obtained when fitting the truncated CJS model

with k = 2, I only fit the truncated CJS models with k = 3 and k = 5 to the full
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cliff swallows data set. The estimated capture parameters are presented in Figure

4.7 while the estimated survival parameters are presented in Figure 4.8. Lastly, even

when fitting the truncated CJS model with k = 3, the MCMC algorithm required

roughly 156 hours (nearly a week) to generate 3 Markov chains of length 50,000.

When k = 5, the MCMC algorithm required roughly 233 hours (nearly 10 days) to

generate the posterior samples. While these estimates of the posterior distribution

still require many hours of computational resources to generate, this still represents

a substantial improvement in computationally efficiency while producing results that

are extremely similar to those that would have been generated by fitting the non-

truncated CJS model to this data set.

Figure 4.7: Estimates of Capture Parameters from the Truncated CJS Model for Cliff

Swallows Data

Posterior means (points), 80% credible intervals (thick vertical lines), and 95% credible

intervals (thin vertical lines) for the capture parameters estimated from the full cliff swallows

data set. The results from the truncated CJS model with k = 3 are displayed in orange,

while the results from the truncated CJS model with k = 5 are in green. Parameter labels

are located on the x-axis.
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Figure 4.8: Estimates of Survival Parameters from the Truncated CJS Model for Cliff

Swallows Data

Posterior means (points), 80% credible intervals (thick vertical lines), and 95% credible in-

tervals (thin vertical lines) for the survival parameters estimated from the full cliff swallows

data set. The results from the truncated CJS model with k = 3 are displayed in orange,

while the results from the truncated CJS model with k = 5 are in green. Parameter labels

are located on the x-axis.

Examining the results from fitting the truncated CJS model with k = 5 in more

detail, the estimate of βp,1 was 1.25 with a 95% credible interval of (1.22, 1.28), in-

dicating that heavier individuals are more likely to be captured. Conversely, the

estimate of βφ,1 was −0.919 (−0.964,−0.875), which indicates that lighter birds are

more likely to survive from one capture occasion to the next. Additionally, Figure 4.7

clearly displays that the baseline capture probabilities varied significantly over time.

The high point occurred in 1992, when a living individual of average weight had a

42.6% (39.4%, 45.9%) chance to be captured. A similar trend is visible in Figure 4.8,

as the survival probabilities also exhibit differences over time. The high point for

survival probabilities occurred in 1990, when individuals of average weight had an

84.3% (80.3%, 87.9%) chance of surviving and remaining in the population until at

least 1991. Note that the results from fitting the truncated CJS model with k = 3

are quite similar. However, I chose to report the results with k = 5 because those are

likely closer to the true posterior distribution of the non-truncated CJS model, based
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on the previously described simulation study and analysis of the first 8 years of cliff

swallows data.

4.6 Discussion

In this chapter I introduced the truncated CJS model, a modification to the Cormack-

Jolly-Seber model in which capture histories are truncated according to a tuning

parameter. This truncation allows data sets to be fit more efficiently, especially those

that contain many captured individuals, are collected over many capture occasions, or

both. The increased computational efficiency associated with fitting this new model

containing truncated capture histories is especially significant for models that include

individual, continuous, time-varying covariates, as the need to impute covariate values

when individuals are not captured exacerbates the computational challenges of fitting

models to large mark-recapture data sets. The truncated CJS model does have some

drawbacks, however. The increased efficiency of the model fitting algorithms, be

they maximum likelihood estimation or MCMC, comes at the expense of less precise

parameter estimates, as one would expect from a method that is using less data than

the full, non-truncated CJS model. However, this method discards the least influential

data points while still providing unbiased estimates, making the truncated CJS model

an attractive option when analyzing data sets where the number of individuals and/or

number of capture occasions make the use of traditional methods computationally

unfeasible.

In Section 4.3 I quantified how much precision was lost by discarding the trun-

cated data for different values of k, the truncation parameter, and for various capture

and survival probabilities. In general, I found that the ratios of the standard errors

from the truncated CJS model and original CJS model increased as either the sur-

vival probability increased and/or the capture probability decreased. For survival

probabilities of less than 0.9 and capture probabilities greater than 0.5, I found that

a truncation parameter of k = 5 resulted in parameter estimates with asymptotic

distributions almost identical to those of the non-truncated model.

The relationship between the degree of truncation and the uncertainty associated

with parameter estimates can also be seen quite clearly in my study of the truncated

CJS model extended to incorporate individual, time varying covariates, via simula-

tion in Section 4.4 and in the analysis of the cliff swallows data set in Section 4.5.

Additionally, when analyzing the cliff swallows data, I noticed that there appeared

to be a systematic trend with respect to k: more extreme truncation led to lower
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estimates of survival parameters and higher estimates of capture parameters. As I

did not encounter this problem in any of my simulation scenarios, I found it likely

that the cliff swallows data violated some of the assumptions made when applying

the CJS model. One such possibility was the presence of temporary emigration (that

is, the ability of individuals to leave the population and later return). I explored

this situation via a simulation study and the results presented in Appendix A.4 are

consistent with the systematic patterns, with respect to k, observed when analyz-

ing the cliff swallows data. Other explanations, such as changing study dynamics or

unmodeled behavioral effects may also be possible.

Sections 4.4 and 4.5 also demonstrated the degree to which fitting the truncated

CJS model positively impacts the efficiency of the MCMC algorithm. In addition

to improving the run time for a fixed posterior sample size, fitting the truncated

CJS models also yielded MCMC algorithms with increased effective sample sizes per

iteration and per unit time.

I believe that the truncated CJS model is a useful tool for fitting CJS-like models

to mark-recapture studies that involve many individuals, take place over long periods

of time, or both, particularly in the presence of individual, time-varying, continuous

covariates. My method is similar to the trinomial model developed by Catchpole

et al. (2008), with a few key differences. First, their method was developed for

mark-recapture-recovery data in which the recovery of dead individuals assists in the

estimation of survival probabilities. Second, they truncate the capture histories at

k = 1, requiring no estimation of missing covariates whatsoever. This allows the trino-

mial model to avoid making modeling assumptions on the distribution of the missing

covariate values. However, this also introduces difficulties when modeling the effect

of individual, continuous covariates on capture probabilities, as the covariate value

from the previous capture occasion must be carried forward. Bonner et al. (2010)

provides a thorough comparison between the full Bayesian imputation of covariates

introduced by Bonner and Schwarz (2006) and the trinomial model when fitting mod-

els that involve continuous, time-varying, covariates to mark-recapture-recovery data.

By allowing the degree to which capture histories are truncated to vary via a tuning

parameter, my method provides a compromise between these two methods in the

presence of mark-recapture data without recoveries of dead individuals.

Lastly, I caution that an overly aggressive choice of k can inflate the uncertainty

associated with parameter estimation and, in the case of data that does not strictly

adhere to the assumptions of the CJS model, can result in parameter estimates quite

different from those obtained from fitting the non-truncated model. In practice, I
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would recommend fitting the truncated CJS model at multiple values of k to smaller

subsets of any large mark-recapture data set being analyzed. If strong, systematic

biases are present in the parameter estimates with respect to different values of k, this

likely indicates that the data set does not follow all assumptions made regarding the

CJS model, such as the permanence of emigration, or the model associated with the

missing covariates. The uncertainty exhibited in the parameter estimates at different

values of k can also guide the choice of k, although one should be aware that this

uncertainty will likely reduce considerably once the entire, large data set is included in

the analysis, depending on the specifics of how the survival and capture probabilities

are modeled. In addition to smaller data subsets, the analysis of data sets simulated

from rough or expected parameter estimates may also be useful in selecting a value

of k, though it’s important to note that this will not detect data that deviates from

the assumptions that underly the CJS model. More analytical work, similar to what

I presented in Section 4.3 but for more complex models that include covariates, could

be an area of future research.

Copyright c© Woodrow Burchett, 2017.
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Chapter 5 Conclusion

I have proposed two methods that reduce the computational burden associated with

estimating missing covariate values when fitting the CJS model extended to include

individual, continuous, time-varying covariates. In Chapter 2, I proposed a variational

Bayesian algorithm in lieu of the Markov chain Monte Carlo algorithm described in

Bonner and Schwarz (2006). Variational Bayesian techniques are typically much faster

than MCMC approaches, although this speed comes at the cost of deriving inference

from an approximate posterior distribution. This approximate posterior distribution

is restricted by difficult-to-check distributional assumptions that are necessary to

make optimization tractable. The particular variational Bayesian technique I have

employed, mean field variational Bayes, is known to underestimate the true posterior

variance (Ormerod and Wand, 2010).

Simulation studies indicated that the original mean field variational Bayesian

algorithm I developed, which assumed independence between the variational distri-

butions of the capture and survival parameters, was significantly faster than the

traditional MCMC approach. However, as is expected when the mean field product

restriction is not realistic, this algorithm radically underestimated the posterior vari-

ance. I attempted to correct this issue in Chapter 3, modifying the distributional

assumptions underlying my variational Bayesian algorithm and allowing correlation

between the survival and capture parameters in the approximate posterior distribu-

tion. This corrected algorithm resulted in approximate posterior distributions that

were significantly closer to the true posterior distribution. Unfortunately, this cor-

rected algorithm was much slower than the original VB algorithm, and converged

even more slowly than the MCMC algorithm when applied to a subset of the cliff

swallows data in Section 3.4. To address this issue, I created a hybrid algorithm that

only uses the corrected algorithm’s computationally cumbersome steps for one iter-

ation after first converging to an approximate posterior under the originally defined

VB algorithm. I found, in both simulation studies and analysis of the cliff swallows

data, that this hybrid algorithm converged almost as quickly as the original VB al-

gorithm and approximated the posterior variance just as closely as the corrected VB

algorithm did.

The hybrid variational Bayesian algorithm converged much more quickly than the

MCMC approach with comparable accuracy. However, all three of the variational

Bayesian algorithms I implemented still do not scale well to extremely large data
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sets due to the same reason that MCMC algorithms do not: every missing covariate

value must still be updated on every iteration of the algorithm. To demonstrate the

severity of this problem, the hybrid MFVB algorithm required 22 days to converge

to an approximate posterior distribution when applied to the full 29 years of cliff

swallows data. Although this is better performance than I would expect from an

MCMC approach, I failed to address the root cause of the computational difficulties

associated with fitting this model by reducing the number of missing covariates I

must estimate.

The truncated CJS model introduced in Chapter 4 aimed to reduce the number of

missing covariate values that must be estimated. This is accomplished by modeling

capture histories that have been truncated after an individual has not been observed

for a set number of capture occasions, rather than modeling every individual’s entire

capture history over the whole duration of the study. Truncating the capture histories

does discard some information, which results in less precise parameter estimates.

However, the way in which the capture histories are truncated ensures that the least

influential data is being discarded. Additionally, I have defined a tuning parameter,

k, which allows investigators to determine precisely the degree to which the capture

histories will be truncated. I provided guidance regarding the selection of k in this

manuscript via a simplified analytical solution in Section 4.3 and a simulation study

in Section 4.4. The simulation study, along with the analysis of cliff swallows data

presented in Section 4.5, also demonstrated that the truncated CJS model is effective

in reducing the computational burden of fitting the CJS model with continuous, time-

varying, individual covariates while still producing accurate parameter estimates with

only marginally less precision (depending on the chosen value of k).

I believe that the truncated CJS model has significant advantages over the existing

alternative approaches to improving the efficiency of fitting the truncated CJS model

with continuous, time-varying, individual covariates to very large data sets. The

method most similar to the truncated CJS approach is the trinomial model developed

by Catchpole et al. (2008). Like the truncated CJS model, the trinomial model

reduces the number of missing covariates that must be imputed. However, this is

accomplished by eliminating the need to impute missing covariates altogether by re-

writing the likelihood as a product of transition probabilities and only considering

transitions where covariate information is available (analogous to the truncated CJS

model with k = 1). This model is intended to be fit to mark-recapture-recovery data,

where the recovery of deceased individuals can aide in the estimation of survival

parameters. Based on the performance of the truncated CJS model at very small
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values of k, however, the increased uncertainty in parameter estimates would quickly

become untenable if the trinomial model were to be applied to mark-recapture data.

Additionally, modeling capture probabilities as functions of continuous, individual

covariates presents difficulties, as there are now transition probabilities where missing

covariate values must be estimated in some way (typically the previous occasion’s

covariate value being carried forward). Lastly, Bonner et al. (2010) found that fitting

the trinomial model can produce biased results with low capture probabilities and/or

low sample sizes. By allowing the degree of truncation to be a tunable parameter

and the estimation of some missing covariate values to be permitted, the truncated

CJS model addresses these shortcomings.

Another approach, first advocated in Nichols et al. (1992) and improved upon by

Langrock et al. (2013), is to discretize the continuous covariates and apply the multi-

state model, which can account for individual, time-varying, categorical covariates.

Transforming continuous data into categorical bins does discard potentially valuable

information. However, Langrock et al. (2013) pointed out that this approximation

can be made arbitrarily more accurate by increasing the number of bins at the cost

of computational efficiency. Unfortunately, when more than one continuous, time-

varying, individual covariates are included in the model, this approach may actually

become more computationally intensive than fitting the model via the MCMC ap-

proach outlined in Bonner and Schwarz (2006). The truncated CJS model does not

have this problem and will outperform fitting the full, non-truncated CJS model with

individual, time-varying, continuous covariates via MCMC, with regard to compu-

tational efficiency, regardless of how many covariates are included in the modeling

process.

Worthington et al. (2015) applied a multiple imputation approach, first modeling

the individual, continuous, time-varying covariates separately from the capture his-

tories. After the covariate model was fit, missing covariate values were sampled from

this fitted covariate model, generating multiple data sets with complete covariate in-

formation. Approximate maximum likelihood estimates were then obtained by fitting

the CJS model with covariates to each of the complete data sets. Finally, these max-

imum likelihood estimates estimates were aggregated to account for the uncertainty

in the estimation of the missing covariates. This method does not suffer from the one

covariate limitation that was present in Langrock et al. (2013). However, this mul-

tiple imputation procedure must assume that the covariates are missing at random,

as no capture history information is taken into account when modeling the missing

covariates. The authors admitted that this is an unrealistic assumption, and while
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the simulation study results they presented in the paper are quite accurate, these

simulations are limited. In particular, the authors only included a covariate effect on

the survival probabilities. If a covariate effect is included when modeling the capture

probabilities, the missing at random assumption becomes even less reasonable, as the

covariates, missing when the individual is either dead or not captured, now affect

both the ability to capture and the survivability of individuals. Multiple imputation

techniques are known to produce biased estimates when invalid missing at random

assumptions are made for simpler models (Schafer and Graham, 2002; White and

Carlin, 2010; Little and Rubin, 2014), so this method could produce biased estimates

when capture probabilities are influenced by a covariate. The truncated CJS method,

while not as computationally efficient as the multiple imputation approach, does not

make the missing at random assumption and is therefore not subject to this potential

source of bias.

While I believe that the truncated CJS method possesses significant advantages

over competing approaches, there is future work that can be done to improve the

usefulness of this approach. The selection of k is a critical component when fitting

the truncated CJS model, and more work needs to be done to prospectively assess the

effect of this choice on the uncertainty of parameter estimates. Section 4.3 gave some

guidance for an extremely simplistic model that contains no covariates, continuous

or otherwise, and in Section 4.6 I recommended fitting the truncated CJS model

with different values of k to small subsets of a larger data set, or simulated data

from expected parameter values, to assess the degree of truncation that would be

appropriate. However, a more sophisticated analytical solution would be ideal.

Finally, combining the two approaches discussed in this document by fitting the

truncated CJS model using a variational Bayesian algorithm could lead to an even

more substantial improvement in computational efficiency. Although all of the pa-

rameter estimates I presented in Chapter 4 are generated via an MCMC algorithm,

this does not necessarily have to be the case. The truncated CJS model could po-

tentially be fit through the implementation of variational Bayesian algorithm, and I

demonstrated in Chapters 2 and 3 that there are significant gains in computational

efficiency that could be achieved. Nevertheless, fitting the truncated CJS model via

MCMC resulted in a significant gain in computational efficiency and has distinct and

important advantages over competing methods.

Copyright c© Woodrow Burchett, 2017.
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Chapter A Appendices

A.1 Proof of Mean Field Maximization Result

The following is a proof of the result, presented in Section 2.1 that the optimal

density for the K-L disance is q∗(θi) ∝ exp(E−θi log p(y,θ)) under the mean field

approximation, where q(θ) factorizes into
∏M

i=1 qi(θi) for a partition {θ1, θ2, ..., θM} of

θ and E−θi indicates the expectation with respect to all random variables in θ other

than θi. The proof comes from Ormerod and Wand (2010) with some added detail

between steps.

Recall that minimizing the K-L distance is equivalent to maximizing

F [q] = Eq(θ)

[
log
(
p(y|θ)p(θ)

q(θ)

)]
. The proof will start by maximizing this quantity with

respect to q1(θ1), and all of the other optimal variational distributions of the other

parameters, q2, ..., qM , will follow identical logic.
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F [q] =Eq(θ)

[
log

(
p(y|θ)p(θ)

q(θ)

)]
=

∫
q(θ)[log p(y,θ)− log q(θ)]dθ

=

∫
· · ·
∫ M∏

i=1

qi(θi)

[
log p(y,θ)−

M∑
i=1

log qi(θi)

]
dθ1...dθM

=

∫
q1(θ1)

[∫
· · ·
∫
q2(θ2)...qM(θM) log p(y,θ)dθ2...dθM

]
dθ1

−
∫
· · ·
∫ M∏

i=1

qi(θi) log q1(θ1)dθ1...dθM −
∫
· · ·
∫ M∏

i=1

qi(θi) log q2(θ2)dθ1...dθM

· · · −
∫
· · ·
∫ M∏

i=1

qi(θi) log qM(θM)dθ1...dθM

=

∫
q1(θ1)

[∫
· · ·
∫
q2(θ2)...qM(θM) log p(y,θ)dθ2...dθM

]
dθ1

−
∫
q1(θ1) log q1(θ1)dθ1 −

∫
q2(θ2) log q2(θ2)dθ2

· · · −
∫
qM(θM) log qM(θM)dθM

=

∫
q1(θ1) log

(
exp

(∫
·· ·
∫
q2(θ2)...qM(θM) log p(y,θ)dθ2...dθM

)
q1(θ1)

)
dθ1

+ terms not involving q1

Next, create a valid density from exp
(∫
·· ·
∫
q2(θ2)...qM(θM) log p(y,θ)dθ2...dθM

)
by

diving from it some constant C that makes the quantity integrate to 1. Call this

density p̃(y, θ1).

F [q] =

∫
q1(θ1) log

(
exp

(∫
·· ·
∫
q2(θ2)...qM(θM) log p(y,θ)dθ2...dθM

)
Cq1(θ1)

)
dθ1

+ log(C) + terms not involving q1

=

∫
q1(θ1) log

(
p̃(y, θ1)

q1(θ1)

)
dθ1 + terms not involving q1

=Eq1

[
p̃(y, θ1)

q1(θ1)

]
+ terms not involving q1

Next, use the fact that the K-L distance is nonnegative to derive an upper bound on

this quantity:

Eq1

[
p̃(y, θ1)

q1(θ1)

]
≤ Eq1

[
p̃(y, θ1)

q1(θ1)

]
+

∫
q1(θ1) log

(
q1(θ1)

p̃(θ1|y)

)
dθ1

93



Observe that this upper bound is actually the logarithm of the marginal likelihood

from the derivation in section 3.1. It should be obvious from the inequality that the

quantity F [q] is maximized with respect to q1 when this upper bound is attained.

This occurs when:

q1(θ1) = p̃(θ1|y) ∝ exp

(∫
· · ·
∫
q2(θ2)...qM(θM) log p(y,θ)dθ2...dθM

)
∝ exp (E−θ1 [log(y,θ)])

The proof for each of the other variational distributions is identical.
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A.2 Expected Values for MFVB Algorithm

This section of the appendix gives the required expected values to fully define Algo-

rithm 1 presented in Section 2.2. Complex expected value terms are approximated

by applying a first order Taylor series approximation centered around the mean of

the variable(s) of interest. For simplicity of notation, for any parameter or set of

parameters θ, let θ∗ = Eθ[θ]. Additionally, any expected value with respect to a

covariate, zi,t, apply for missing covariates. The following expected value approxi-

mations and calculations can be derived for an observed covariate, zobsi,t , by letting

E[zi,t] = z∗i,t = zobsi,t and Var(zobsi,t ) = 0.

1. Expected Values Necessary for the Variational Density of di

The variational density of di involves two expected values that need to be ap-

proximated and one which can be computed directly:

Eβ0,β1,zi,t [log(1− φi,t)] =Eβ0,β1,zi,t [log(1− expit(β0 + β1zi,t))] ≈ log(expit(β∗0 + β∗1z
∗
i,t))

Eβ0,β1,zi,t [log(φi,t)] =Eβ0,β1,zi,t [log(expit(β0 + β1zi,t))] ≈ log(expit(β∗0 + β∗1z
∗
i,t))

Ept [log(1− pt)] =ψ(βq∗(pt))− ψ(αq∗(pt) + βq∗(pt))

2. Expected Values Necessary for the Variational Density of pt

The optimal variational density of pt only requires computing P(t ≤ di) for

every i ∈ 1, . . . , n, which is simply a summation of cell probabilities from each

di.

3. Expected Values Necessary for the Variational Density of ∆t

The variational density of ∆t only relies on simple expected values of parameters

with normal and gamma variational distributions.

4. Expected Values Necessary for the Variational Density of τ

The variational density of τ involves computing the following expectation:

Ez,∆[(zi,j − zi,j−1 −∆j)
2] =(z∗i,j − z∗i,j−1 −∆∗j)

2 + Var(zi,j) + Var(zi,j−1) + Var(∆j)

5. Expected Values Necessary for the Variational Density of β
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The variational density of the coefficients for survival involve complex expecta-

tions with respect to a potentially missing covariate, particularly for computing

the variance:

Ezi,t [log(φi,t)] =Ezi,t [log(expit(β0 + β1zi,t))]

≈ log(expit(β0 + β1z
∗
i,t))

Ezi,t [log(1− φi,t)] =Ezi,t [log(expit(1− β0 + β1zi,t))]

≈ log(1− expit(β0 + β1z
∗
i,t))

Ezi,t [expit(β0 + β1zi,t)(1− expit(β0 + β1zi,t))]

≈ expit(β0 + β1z
∗
i,t)(1− expit(β0 + β1z

∗
i,t))

Ezi,t [zi,texpit(β0 + β1zi,t)(1− expit(β0 + β1zi,t))]

≈ z∗i,texpit(β0 + β1z
∗
i,t)(1− expit(β0 + β1z

∗
i,t))

Ezi,t [z
2
i,texpit(β0 + β1zi,t)(1− expit(β0 + β1zi,t))]

≈ (z∗i,t)
2expit(β0 + β1z

∗
i,t)(1− expit(β0 + β1z

∗
i,t))

Like the variational density for pt, there are also expected values with respect

to each di which are direct functions of cell probabilities.

6. Expected Values Necessary for the Variational Density of Missing Covariates

The variational densities for the missing covariates contain the following com-

plicated expected values involving the coefficients on survival:

Eβ0,β1 [log(expit(β0 + β1zi,t))] ≈ log(expit(β∗0 + β∗1zi,t))

Eβ0,β1 [log(1− expit(β0 + β1zi,t))] ≈ log(1− expit(β∗0 + β∗1zi,t))

Eβ0,β1 [β
2
1expit(β0 + β1zi,t)(1− expit(β0 + β1zi,t))] ≈(β∗1)2expit(β∗0 + β∗1zi,t)

× (1− expit(β∗0 + β∗1zi,t))

Additionally, there are straightforward expected values of parameters with nor-

mal and gamma variational densities and also expected values with respect to

each di which are direct functions of cell probabilities.
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A.3 Derivation of Optimal Variational Densities for the MFVB Method

Applied to the Mixed Effects Model

Beginning with the optimal variational density for u and β, we have:

q∗β,u ∝ exp

(
Eσ2

[
− 1

2
log
(
(2π)n(σ2

ε )
n
)
− 1

2
(y −Xβ − Zu)TR−1(y −Xβ − Zu)

− 1

2
log

(
(2π)

∑
Kl

r∏
l=1

(σ2
ul)

Kl

)
− 1

2
uTG−1u− 1

2
βT (σ2

βIp)
−1β

])
q∗β,u ∝ exp

(
− 1

2
Eσ2

[
(y −Xβ − Zu)TR−1(y −Xβ − Zu) + uTG−1u + βT (σ2

βIp)
−1β

])
q∗β,u ∝ exp

(
− 1

2

(
(y −Xβ − Zu)T

(
Eσ2

[
1

σ2
ε

]
In

)
(y −Xβ − Zu)

+ uTblockdiag

(
Eσ2

[
1

σ2
u1

]
IK1 , . . . , Eσ2

[
1

σ2
ur

]
IKr

)
u + βT (σ2

βIp)
−1β

))
q∗β,u ∝ exp

(
− 1

2

(
(β,u)Tblockdiag

(
1

σ2
β

Ip, Eσ2

[
1

σ2
u1

]
IK1 , . . . , Eσ2

[
1

σ2
ur

]
IKr

)
(β,u)

(y −Xβ − Zu)T
(
Eσ2

[
1

σ2
ε

]
In

)
(y −Xβ − Zu)

))
q∗β,u ∝ exp

(
− 1

2

(
(β,u)Tblockdiag

(
1

σ2
β

Ip, Eσ2

[
1

σ2
u1

]
IK1 , . . . , Eσ2

[
1

σ2
ur

]
IKr

)
(β,u)

Eσ2

[
1

σ2
ε

]
(y −C(β,u))T (y −C(β,u))

))
where C = [X,Z]. Completing the square yields:

q∗β,u is N (µqβ,u ,Σqβ,u)

where

Σqβ,u =

(
blockdiag

(
1

σ2
β

Ip, Eσ2

[
1

σ2
u1

]
IK1 , . . . , Eσ2

[
1

σ2
ur

]
IKr

)
+ Eσ2

[
1

σ2
ε

]
CTC

)−1

and

µqβ,u =Σqβ,u

(
Eσ2

[
1

σ2
ε

]
CTy

)
.

97



The optimal variational density for σ2 is derived by:

q∗σ2 ∝ exp

(
Eβ,u

[
− n

2
log(σ2

ε )−
1

2
(y −Xβ − Zu)TR−1(y −Xβ − Zu)

− 1

2
log

(
r∏
l=1

(σ2
ul)

Kl

)
− 1

2
uTG−1u +

r∑
l=1

[
(−Aul − 1) log(σ2

ul)−
Bul

σ2
ul

]
+ (−Aε − 1) log(σ2

ε )−
Bε

σ2
ε

])
q∗σ2 ∝ exp

(
− n

2
log(σ2

ε )−
1

2
Eβ,u

[
(y −Xβ − Zu)TR−1(y −Xβ − Zu)

]
− 1

2
log

(
r∏
l=1

(σ2
ul)

Kl

)
− 1

2
Eβ,u[uTG−1u] +

r∑
l=1

[
(−Aul − 1) log(σ2

ul)−
Bul

σ2
ul

]
+ (−Aε − 1) log(σ2

ε )−
Bε

σ2
ε

)
q∗σ2 ∝ exp

(
− n

2
log(σ2

ε )−
1

2

(
tr(R−1CΣq(β,u)C

T ) + (y −Cµq(β,u))
TR−1(y −Cµq(β,u))

)
− 1

2
log

(
r∏
l=1

(σ2
ul)

Kl

)
− 1

2

(
tr(G−1Σq(u)) + µTq(u)G

−1µq(u)

)
+

r∑
l=1

[
(−Aul − 1) log(σ2

ul)−
Bul

σ2
ul

]
+ (−Aε − 1) log(σ2

ε )−
Bε

σ2
ε

)
q∗σ2 ∝ exp

((
−n

2
− Aε − 1

)
log(σ2

ε ) +
r∑
l=1

(
−Kl

2
− Aul − 1

)
log(σ2

ul)

− 1

σ2
ε

(
1

2
tr(CΣq(β,u)C

T ) +
1

2
(y −Cµq(β,u))

T (y −Cµq(β,u)) +Bε

)
−

r∑
l=1

1

σ2
ul

(
1

2
tr(Σq(ul)) +

1

2
µTq(ul)µq(ul) +Bul

)

I now have the kernel of a product of inverse gamma distributions and can determine

that:

q∗σ2
ε

is IG

(
n

2
+ Aε,

1

2
tr(CΣq(β,u)C

T ) +
1

2
(y −Cµq(β,u))

T (y −Cµq(β,u)) +Bε

)
q∗σ2

ul
is IG

(
Kl

2
+ Aul,

1

2
tr(Σq(ul)) +

1

2
µTq(ul)µq(ul) +Bul

)
.

This completes the derivations of the optimal variational densities when applying the

MFVB method to the mixed effects model.
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A.4 Temporary Emigration

In Section 4.5, I found that when fitting the truncated CJS model to the cliff swal-

lows data, smaller values of k yielded estimates of survival parameters that were

systematically lower and capture parameters that were systematically higher than

those obtained when fitting the full, non-truncated CJS model. As I did not see this

effect in any of the simulation scenarios presented in Section 4.4, this suggests that

the cliff swallows data violates an assumption necessary to fit CJS-type models. One

of these assumptions, detailed in Section 1.3, is that all death and emigration from

the population is permanent. In this section, I explore the implications of fitting the

truncated CJS model in the presence of temporary emigration by simulating data

that allows individuals, who are alive, to freely enter and exit the population.

I simulated data sets containing n = 3000 individuals observed over T = 34 cap-

ture occasions. The simulated data follow a CJS model with capture probabilities,

p2, . . . , p34, and survival probabilities, φ1, . . . , φ33, that vary by capture occasion, with

one important deviation: individuals may leave and re-enter the catchable population

after they are first captured. Specifically, I consider random emigration and immi-

gration such that individuals who are alive and members of the study population

may exit the population on any capture occasion with probability η and individuals

who are alive and have exited the population may re-enter the population on any

subsequent capture occasion with probability ν. For simplicity, I also assume that in-

dividuals inside and outside of the population have a common probability of survival,

φt.

The true capture probabilities were drawn from a uniform distribution ranging

from 0.3 to 0.7 while the true survival probabilities were drawn from a uniform dis-

tribution ranging from 0.5 to 0.9. After determining the capture and survival proba-

bilities, 3 different data sets were generated: one with η = 0.4 and ν = 0.2, one with

η = 0.3 and ν = 0.3, and one with η = 0 (i.e. no temporary emigration). I then

fit the truncated CJS model to each data set with truncation parameters of k = 3,

k = 5, k = 10, and k = T (no truncation).

The results for the analysis of the data set with no temporary emigration, seen

in Figure A.1 for capture probabilities and Figure A.2 for survival probabilities, are

consistent with what I observed in my earlier simulation study (described in Section

4.4). There appears to be no systematic bias in the capture or survival probability

estimates with respect to k. Although, setting k = 3 does seem to result in parameter

estimates that are more variable than the estimates produced by fitting the non-
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truncated model and truncated models with k=5 or k=10. You can also observe, by

looking at the relationship of the parameter estimates to the true parameter values

(indicated by the gray horizontal lines), that no value of k results in parameter

estimates consistently closer to the true parameter values than the others.

Figure A.1: Estimates of Capture Parameters from the Truncated CJS Model for a Single

Simulated Data Set with No Temporary Emigration

Parameter estimates (colored points) and true underlying parameter values (horizontal gray

lines) for the capture parameters of a simulated data set with n = 3000 individuals observed

over T = 34 capture occasions. There was no temporary emigration present in this simulated

data set. The parameter estimates from fitting the truncated CJS model with k = 3 (orange),

k = 5 (green), k = 10 (purple), and the non-truncated CJS model (k = T , blue) are

presented. Parameter labels are located on the x-axis.
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Figure A.2: Estimates of Survival Parameters from the Truncated CJS Model for a Single

Simulated Data Set with No Temporary Emigration

Parameter estimates (colored points) and true underlying parameter values (horizontal gray

lines) for the survival parameters of a simulated data set with n = 3000 individuals observed

over T = 34 capture occasions. There was no temporary emigration present in this simulated

data set. The parameter estimates from fitting the truncated CJS model with k = 3 (orange),

k = 5 (green), k = 10 (purple), and the non-truncated CJS model (k = T , blue) are

presented. Parameter labels are located on the x-axis.

This is not the case, however, once temporary emigration is introduced into the

simulated data sets. Figures A.3 and A.4 display the estimated capture and survival

probabilities obtained when fitting the truncated and non-truncated CJS models to

data in which individuals may leave the population with probability η = 0.4 and re-

enter the population with probability ν = 0.2. I now see that smaller values of k (i.e.

more extreme truncation of capture histories) lead to consistently higher estimates of

capture probability and consistently lower estimates of survival probability. Not only

is this trend consistent across all capture occasions, but more extreme truncation also

appears to produce less accurate estimates of survival probability. Capture probabili-

ties are consistently underestimated by all of the models in the presence of temporary

emigration, as one would expect. This result can also be observed in Figures A.5 and

A.6, which display estimated capture and survival probabilities obtained when fitting
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the models to data where individuals have a leave probability of η = 0.3 and re-entry

probability of ν = 0.3.

Figure A.3: Estimates of Capture Parameters from the Truncated CJS Model for a Single

Simulated Data Set with Severe Temporary Emigration

Parameter estimates (colored points) and true underlying parameter values (horizontal gray

lines) for the capture parameters of a simulated data set with n = 3000 individuals observed

over T = 34 capture occasions. There was temporary emigration present in this simulated

data set, with individuals leaving the population with probability η = 0.4 and re-entering

the population with probability ν = 0.2. The parameter estimates from fitting the truncated

CJS model with k = 3 (orange), k = 5 (green), k = 10 (purple), and the non-truncated CJS

model (k = T , blue) are presented. Parameter labels are located on the x-axis.
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Figure A.4: Estimates of Survival Parameters from the Truncated CJS Model for a Single

Simulated Data Set with Severe Temporary Emigration

Parameter estimates (colored points) and true underlying parameter values (horizontal gray

lines) for the survival parameters of a simulated data set with n = 3000 individuals observed

over T = 34 capture occasions. There was temporary emigration present in this simulated

data set, with individuals leaving the population with probability η = 0.4 and re-entering

the population with probability ν = 0.2. The parameter estimates from fitting the truncated

CJS model with k = 3 (orange), k = 5 (green), k = 10 (purple), and the non-truncated CJS

model (k = T , blue) are presented. Parameter labels are located on the x-axis.
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Figure A.5: Estimates of Capture Parameters from the Truncated CJS Model for a Single

Simulated Data Set with Moderate Temporary Emigration

Parameter estimates (colored points) and true underlying parameter values (horizontal gray

lines) for the capture parameters of a simulated data set with n = 3000 individuals observed

over T = 34 capture occasions. There was temporary emigration present in this simulated

data set, with individuals leaving the population with probability η = 0.3 and re-entering

the population with probability ν = 0.3. The parameter estimates from fitting the truncated

CJS model with k = 3 (orange), k = 5 (green), k = 10 (purple), and the non-truncated CJS

model (k = T , blue) are presented. Parameter labels are located on the x-axis.
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Figure A.6: Estimates of Survival Parameters from the Truncated CJS Model for a Single

Simulated Data Set with Moderate Temporary Emigration

Parameter estimates (colored points) and true underlying parameter values (horizontal gray

lines) for the survival parameters of a simulated data set with n = 3000 individuals observed

over T = 34 capture occasions. There was temporary emigration present in this simulated

data set, with individuals leaving the population with probability η = 0.3 and re-entering

the population with probability ν = 0.3. The parameter estimates from fitting the truncated

CJS model with k = 3 (orange), k = 5 (green), k = 10 (purple), and the non-truncated CJS

model (k = T , blue) are presented. Parameter labels are located on the x-axis.

Additionally, to further illustrate these conclusions, I performed simulations from

the aforementioned three different temporary emigration scenarios on a larger scale,

simulating from each scenario 100 times. Figures A.7 and A.8 display the estimates of

capture and survival probability, respectively, averaged over 100 simulated data sets

without any temporary emigration present. Figures A.9 and A.10, however, display

the averaged parameter estimates from data sets where temporary emigration was

present, with individuals leaving the population with probability η = 0.4 and re-

entering the population with probability ν = 0.2 Lastly, Figures A.11 and A.12 show

the corresponding plots when individuals have a leave probability of η = 0.3 and

re-entry probability of ν = 0.3. Note that these are the same three scenarios depicted

in the plots introduced before, but the parameter estimates are averaged across 100
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simulated data sets, reducing variability and making the effects of different values of

k more clear.

Figure A.7: Average Estimates of Capture Parameters from the Truncated CJS Model

across 100 Simulated Data Sets with No Temporary Emigration

Average parameter estimates (colored points) and true underlying parameter values (hori-

zontal gray lines) for the capture parameters from 100 simulated data sets with n = 3000

individuals observed over T = 34 capture occasions. There was no temporary emigration

present in these simulated data sets. The average parameter estimates from fitting the trun-

cated CJS model with k = 3 (orange), k = 5 (green), k = 10 (purple), and the non-truncated

CJS model (k = T , blue) are presented. Parameter labels are located on the x-axis.
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Figure A.8: Average Estimates of Survival Parameters from the Truncated CJS Model

across 100 Simulated Data Sets with No Temporary Emigration

Average parameter estimates (colored points) and true underlying parameter values (hori-

zontal gray lines) for the survival parameters from 100 simulated data sets with n = 3000

individuals observed over T = 34 capture occasions. There was no temporary emigration

present in these simulated data sets. The average parameter estimates from fitting the trun-

cated CJS model with k = 3 (orange), k = 5 (green), k = 10 (purple), and the non-truncated

CJS model (k = T , blue) are presented. Parameter labels are located on the x-axis.
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Figure A.9: Average Estimates of Capture Parameters from the Truncated CJS Model

across 100 Simulated Data Sets with Severe Temporary Emigration

Average parameter estimates (colored points) and true underlying parameter values (hori-

zontal gray lines) for the capture parameters from 100 simulated data sets with n = 3000 in-

dividuals observed over T = 34 capture occasions. There was temporary emigration present

in these simulated data sets, with individuals leaving the population with probability η = 0.4

and re-entering the population with probability ν = 0.2. The average parameter estimates

from fitting the truncated CJS model with k = 3 (orange), k = 5 (green), k = 10 (purple),

and the non-truncated CJS model (k = T , blue) are presented. Parameter labels are located

on the x-axis.

108



Figure A.10: Average Estimates of Survival Parameters from the Truncated CJS Model

across 100 Simulated Data Sets with Severe Temporary Emigration

Average parameter estimates (colored points) and true underlying parameter values (hori-

zontal gray lines) for the survival parameters from 100 simulated data sets with n = 3000 in-

dividuals observed over T = 34 capture occasions. There was temporary emigration present

in these simulated data sets, with individuals leaving the population with probability η = 0.4

and re-entering the population with probability ν = 0.2. The average parameter estimates

from fitting the truncated CJS model with k = 3 (orange), k = 5 (green), k = 10 (purple),

and the non-truncated CJS model (k = T , blue) are presented. Parameter labels are located

on the x-axis.
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Figure A.11: Average Estimates of Capture Parameters from the Truncated CJS Model

across 100 Simulated Data Sets with Moderate Temporary Emigration

Average parameter estimates (colored points) and true underlying parameter values (hori-

zontal gray lines) for the capture parameters from 100 simulated data sets with n = 3000 in-

dividuals observed over T = 34 capture occasions. There was temporary emigration present

in these simulated data sets, with individuals leaving the population with probability η = 0.3

and re-entering the population with probability ν = 0.3. The average parameter estimates

from fitting the truncated CJS model with k = 3 (orange), k = 5 (green), k = 10 (purple),

and the non-truncated CJS model (k = T , blue) are presented. Parameter labels are located

on the x-axis.
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Figure A.12: Average Estimates of Survival Parameters from the Truncated CJS Model

across 100 Simulated Data Sets with Moderate Temporary Emigration

Average parameter estimates (colored points) and true underlying parameter values (hori-

zontal gray lines) for the survival parameters from 100 simulated data sets with n = 3000 in-

dividuals observed over T = 34 capture occasions. There was temporary emigration present

in these simulated data sets, with individuals leaving the population with probability η = 0.3

and re-entering the population with probability ν = 0.3. The average parameter estimates

from fitting the truncated CJS model with k = 3 (orange), k = 5 (green), k = 10 (purple),

and the non-truncated CJS model (k = T , blue) are presented. Parameter labels are located

on the x-axis.

The bias observed in the estimated capture and survival probabilities obtained

when fitting the truncated CJS model at low values of k makes intuitive sense. If

an individual leaves the population only to eventually return, a truncated capture

history is less likely to contain both that individuals exit and re-entry to the study

population than a full, non-truncated CJS model or a truncated CJS model with

a higher value of k. Therefore, the truncated capture history would be assigned a

higher probability that the individual had died when that individual had truly only

left the population. The same capture history observed in the full, non-truncated

CJS model, however, may eventually see that individual again, after the individual

has returned to the population, and instead conclude that the individual was simply
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not captured, and estimate artificially low capture probabilities instead. This result is

also consistent with the systematic bias I observed when examining the cliff swallows

data. This indicates that the cliff swallows data may exhibit temporary emigration

of individuals from the study population and, if this is the case, than the survival

parameters estimated when fitting the truncated CJS model are likely to be more

affected by this temporary emigration at lower values of k.
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