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ABSTRACT OF DISSERTATION 
 
 
 
 
 

CONTINUOUS TIME MULTI-STATE MODELS FOR INTERVAL CENSORED DATA 

Continuous-time multi-state models are widely used in modeling longitudinal data 
of disease processes with multiple transient states, yet the analysis is complex when 
subjects are observed periodically, resulting in interval censored data. Recently, most 
studies focused on modeling the true disease progression as a discrete time stationary 
Markov chain, and only a few studies have been carried out regarding non-homogenous 
multi-state models in the presence of interval-censored data. In this dissertation, several 
likelihood-based methodologies were proposed to deal with interval censored data in 
multi-state models.  

Firstly, a continuous time version of a homogenous Markov multi-state model 
with backward transitions was proposed to handle uneven follow-up assessments or 
skipped visits, resulting in the interval censored data. Simulations were used to compare 
the performance of the proposed model with the traditional discrete time stationary 
Markov chain under different types of observation schemes. We applied these two 
methods to the well-known Nun study, a longitudinal study of 672 participants aged ≥ 75 
years at baseline and followed longitudinally with up to ten cognitive assessments per 
participant. 

Secondly, we constructed a non-homogenous Markov model for this type of panel 
data. The baseline intensity was assumed to be Weibull distributed to accommodate the 
non-homogenous property. The proportional hazards method was used to incorporate risk 
factors into the transition intensities. Simulation studies showed that the Weibull 
assumption does not affect the accuracy of the parameter estimates for the risk factors. 
We applied our model to data from the BRAiNS study, a longitudinal cohort of 531 
subjects each cognitively intact at baseline. 

Last, we presented a parametric method of fitting semi-Markov models based on 
Weibull transition intensities with interval censored cognitive data with death as a 
competing risk. We relaxed the Markov assumption and took interval censoring into 



 
 
 

account by integrating out all possible unobserved transitions. The proposed model also 
allowed for incorporating time-dependent covariates. We provided a goodness-of-fit 
assessment for the proposed model by the means of prevalence counts. To illustrate the 
methods, we applied our model to the BRAiNS study. 

 

KEYWORDS: Longitudinal Data, Multi-State Model, Interval Censoring, Markov,  
Semi-Markov, NUN Study, BRAiNS Study 
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Chapter 1 Introduction 

1.1 Overview  

In most longitudinal medical studies on progression of healthy individuals to 

chronic diseases, such as cancer, AIDS, and dementia, the nature of the development is 

often expressed in terms of distinct health stages, where patients are observed at certain 

time points and covariate information is collected at several occasions. 

 Multi-state models (MSM), as generalizations of survival and competing risks 

models, are the most common models for describing longitudinal failure time data. These 

models have wide application in modeling the complex evolution of chronic diseases. In 

epidemiology, multi-state models are used to represent the trajectory of subjects through 

different discrete states, generally including clinical disease and death. 

Handling interval-censored data is considerably more difficult, both analytically 

and numerically, in MSMs than in survival models and competing risk models, especially 

for more complex models. The complexity of a MSM mainly depends on the number of 

states and the possible transitions from these states.  The more complex the model, the 

more difficult it is to define and evaluate the likelihood. For the homogeneous Markov 

model (HMM), the solution to this problem has long been known, although not widely 

used in medical research or epidemiology. For non-homogenous Markov Models 

(NHMM) or semi-Markov models, the problem of inference with interval-censored data 

is considerably more difficult. One key point is that transition probabilities can be 

expressed simply in terms of transition intensities in HMM but not in more general multi-

state models. Another key point is that that interval-censoring in multi-state models gives 

rise to a new difficulty, which does not arise in survival models. Generally, several paths 
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are possible for transitioning from state h to state j between time s and time t, so it is not 

known which paths occurred [1]. 

We aim to develop flexible and powerful statistical methods to address the issue 

of interval-censored data in the application of MSM. In the following, we will introduce 

the Nun Study and BRAiNS Study, a review of multi-state models, the problems 

encountered with current methods, and the methodologies we propose to address this 

problem.  

1.2 Background of the Nun Study 

The Nun Study is a well-known cohort study designed to assess the influence of 

early life exposures and cognitive ability on the development of Alzheimer-type dementia 

and pathology in late life. 672 members of the School Sisters of Notre Dame religious 

congregation born between 1890 and 1916 and living in the Midwestern, eastern, and 

southern United States agreed to  annual cognitive and functional assessments, and  to 

brain donation [2]. The Nun Study was established at the University of Kentucky in 1991 

and moved to the University of Minnesota in 2008. Only the data collected until 2008 is 

used in this dissertation. 

Both time-independent and time-dependent covariates were recorded.  Time 

independent covariates were recorded only once; for example, education level and the 

gene-related factor, Apolipoprotein E4 carrier status. Time dependent covariates were 

recorded at each of the follow up assessments.  

At each assessment, the cognitive status of each subject was categorized into 

several different states. In our study, we focused on three cognitive states: Not Serious 
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Impairment (NSI), Global Impairment (GI) and Dementia. A fourth state, Death, was also 

included in our model as an important competing risk for states GI and Dementia. The 

transition flow among these four states is shown in Figure 1.1. 

Subject follow-up was planned to last until death. However, some subjects were 

still alive at the end of the data collection period which results in right censored data. The 

time to each cognitive state and dementia is subject to interval censoring, due to the fact 

that each assessment was taken at irregularly spaced discrete time points.  

1.3 Background of the BRAiNS Study 

The Biologically Resilient Adults in Neurological Studies (BRAiNS) began 

enrolment in 1989 at the Sanders Brown Center on Aging at the University of Kentucky. 

The purpose of the BRAiNS project is to study normal aging of the brain in contrast to 

Alzheimer’s disease. Subjects are recruited in phases and receive annual assessments 

with brain donation at death. All subjects were cognitively intact at study entry.  

Using results of annual assessments, a subject was placed into one of several 

mutually exclusive clinical cognitive states. In our studies, we focused on the transitions 

between the following states: normal, MCI, dementia and death. Figure 1.2 presents the 

transition flow and the frequencies for each possible transition. 

Right-censored data arises due to subjects’ early drop out or the fact that some 

subjects were still in the normal or MCI state when data collection for the current study 

ended.  Transition time to MCI and dementia are all interval-censored. Cognitive 

assessments were taken at discrete time points, thus the exact transition times to MCI and 

Dementia were unknown.  
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1.4 Multi-State Models 

A multi-state model (MSM) is a model for a stochastic process allowing individuals to 

move among a finite number of states. In biomedical applications, the states might be based 

on clinical symptoms (e.g. bleeding episodes), biological markers (e.g. CD4 T-lymphocyte 

cell counts; serum immunoglobulin levels), severity levels of the disease (e.g. stages of 

cancer or HIV infection) or a non-fatal complication in the course of the illness (e.g. cancer 

recurrence). A change of state is called a transition, or an event. States can be transient, if 

the transitions to and from the state are possible, or absorbing, if no transitions can emerge 

from the state (for example, death) [3-6]. 

1.4.1 Multi-State Process 

Continuous-time multi-state models are based on the theory of a multi-state 

process, which is assumed to be a stochastic process X(t) with a finite state space 𝑆𝑆 =

{1,2, … ,𝐾𝐾}. It can be fully characterized by its transition probability matrix or its 

transition intensity matrix. The transition probability matrix 𝑃𝑃(𝑠𝑠, 𝑡𝑡) is a K × K matrix, and 

its (ℎ, 𝑗𝑗)th entry is 

𝑝𝑝ℎ𝑗𝑗(𝑠𝑠, 𝑡𝑡) = 𝑃𝑃(𝑋𝑋(𝑡𝑡) = 𝑗𝑗|𝑋𝑋(𝑠𝑠) = ℎ,𝐻𝐻𝑠𝑠−) , 𝑠𝑠 < 𝑡𝑡 

𝑃𝑃ℎ𝑗𝑗(𝑠𝑠, 𝑡𝑡) represents the probability of the process being in state j at time 𝑡𝑡 given its state ℎ 

at time 𝑠𝑠 and the history of the process before time 𝑠𝑠,𝐻𝐻𝑠𝑠− . 

The transition intensity matrix measures the instantaneous hazard of transition to 

other states given the current state. The (ℎ, 𝑗𝑗)th entry of the transition intensity matrix 

𝑄𝑄(𝑡𝑡)  at time  𝑡𝑡 has the form: 

𝛼𝛼ℎ𝑗𝑗(𝑡𝑡) = 𝑙𝑙𝑙𝑙𝑙𝑙
∆𝑡𝑡→0

𝑃𝑃(𝑋𝑋(𝑠𝑠 +  ∆𝑠𝑠) = 𝑗𝑗|𝑋𝑋(𝑠𝑠) = ℎ,𝐻𝐻𝑠𝑠−) /∆𝑡𝑡 ,  𝑙𝑙𝑖𝑖 ℎ ≠ 𝑗𝑗 
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and  

𝛼𝛼ℎℎ(𝑡𝑡) = −∑ 𝛼𝛼ℎ𝑗𝑗(𝑡𝑡)𝑗𝑗≠ℎ . 

Different model assumptions can be made about the dependence of the transition 

rates on time. Examples include:  

1. Time homogeneous models: the intensities are constant over time t.  

2. Markov models: the transition intensities only depend on the history of the 

process through the current state.  

3. Semi-Markov models: future evolution not only depends on the current 

state ℎ, but also on the entry time 𝑡𝑡ℎ into state h. Therefore, we may consider 

intensity functions of the general form  𝛼𝛼ℎ𝑗𝑗(𝑡𝑡, 𝑡𝑡 −  𝑡𝑡ℎ) or, as the special 

homogeneous case 𝛼𝛼ℎ𝑗𝑗(𝑡𝑡 −  𝑡𝑡ℎ). 

1.4.2 Markov Models 

The process (𝑋𝑋(𝑡𝑡), 𝑡𝑡 ≥ 0)  is Markovian if the transition probabilities and 

transition intensities are independent of the past history, that is, for any 𝑠𝑠, 𝑡𝑡 with 0 ≤ 𝑠𝑠 <

𝑡𝑡, we have 

𝑃𝑃(𝑋𝑋(𝑡𝑡) = 𝑗𝑗| 𝑋𝑋(𝑠𝑠) = ℎ,𝐻𝐻𝑠𝑠−) = 𝑃𝑃(𝑋𝑋(𝑡𝑡) = 𝑗𝑗| 𝑋𝑋(𝑠𝑠) = ℎ) 

and 

𝛼𝛼ℎ𝑗𝑗(𝑡𝑡) = �
lim
∆𝑡𝑡→0

P(𝑋𝑋(𝑡𝑡 + ∆𝑡𝑡) = 𝑗𝑗|𝑋𝑋(𝑡𝑡) = ℎ) /∆𝑡𝑡                           𝑗𝑗 ≠ ℎ

−�𝛼𝛼ℎ𝑘𝑘(𝑡𝑡)
𝑘𝑘≠ℎ

                                                                       𝑗𝑗 = ℎ 

For a Markov process, the future of the process after time 𝑡𝑡 depends only on the 

state occupied at time 𝑡𝑡.  Under the Markov assumption, the transition probabilities can 
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be calculated from the intensities by solving the forward Kolmogorov differential 

equation [4].  

1.4.3 Semi-Markov Models 

For the semi-Markov model, the transition intensities of the process depend on the 

time elapsed at the current state. These processes are generalizations of both continuous 

and discrete parameter Markov processes with countable state spaces. An issue in using a 

semi-Markov model is identifying the time origin, the exact time of entrance into the 

initial state. 

1.4.4 Modeling Intensities 

Covariates in multi-state models are often incorporated through the transition 

intensity functions to explain differences among individuals in the course of the disease 

progression. A popular choice is the proportional hazards model, which has the following 

form 

𝛼𝛼ℎ𝑗𝑗(𝑡𝑡|𝒁𝒁𝑖𝑖) = 𝛼𝛼ℎ𝑗𝑗,0(𝑡𝑡)𝑒𝑒𝑒𝑒𝑝𝑝�𝜷𝜷ℎ𝑗𝑗𝑇𝑇 𝒁𝒁𝑖𝑖�. 

In an MSM, the transition intensities define the hazard of a movement from one 

state to another. These functions can also be used to determine the mean sojourn time in a 

given state and the number of individuals in different states at a certain moment.  

1.5 A Review of Methods for Dealing Interval Censoring Data 

Markov models are popular tools for analysis of longitudinal data, since the 

assumption simplifies statistical modelling. According to this assumption, the transition 

to the next state only depends on the current state, ignoring any previous history of the 

process. 
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Only a few studies have been carried out regarding NHMM in the presence of 

interval-censored data. Most of the literature is limited to the three-state models. One of 

the first such studies was that of Hsien, et al.[7], who examined a three-state progressive 

non-homogenous Markov model with the incorporation of Weibull distribution or the 

piecewise exponential model to accommodate non-constant transition rates. Hout, et al. 

[8] extended this approach  by including the possibility to move directly from the health 

state  to the death state, resulting in an illness-death model. Both the Weibull distribution 

and the piecewise-constant model are investigated to deal with the time dependency of 

the intensities. The model is extended by using logistic regression models for both 

misclassification probabilities and the latent distribution of the states at baseline. 

Nonparametric approaches to NHMMs may follow two paths: one is the completely non-

parametric approach as a generalization of the Turnbull approach; the other implies a 

restriction to smooth intensities models. The first explicit non-parametric treatment of 

interval-censored observations from a MSM in continuous time is given by Frydman, 

who studied a progressive three-state model [9], and a special case of the illness-death 

model [10]. The penalized likelihood approach already proposed for interval-censored 

survival data [11] was extended to a three-state progressive model by Joly and 

Commenges [12] and to the illness-death model by Joly, et al. [13].  

However, in many applications, the Markov assumption might not be appropriate 

and may lead to biased conclusions. A semi-Markov model would be more appropriate in 

this case, to allow the transition intensities of the process to depend not only on the 

current state, but also the time elapsed in the current state.  
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There has not been much literature on the application of semi-Markov models for 

interval censored data. Satten [14] proposed non-parametric estimators based on an EM 

algorithm in the case of a unidirectional model without covariates. Foucher [15, 16] 

defined a semi-Markov model based on a generalized Weibull hazard function. The 

model is defined by the probability of transition among states and, independently, the 

holding time it takes for that transition to occur. The holding times of the underlying 

process are assumed to follow a generalized Weibull distribution. Kapetanakis [17] 

recently  presented a parametric method of fitting semi-Markov models with piecewise-

constant hazards in the presence of left, right, and interval censoring.   

Our research is motivated by two longitudinal studies investigating cognitive 

ability in the older population, the Nun Study and BRAiNS Study. Previous work was 

carried out by Salazar, et al. [18] , Yu, et al. [19], Abner, et al. [20] and Kryscio, et al. 

[21, 22]. Salazar, et al. [18] proposed a multi-state Markov model with shared random 

effects to estimate the one-step transition matrix. In their model, polytomous logistic 

regression models with shared random effects were first introduced to account for the 

correlations between observations among the same subjects. The likelihood functions 

were constructed by integrating the random effect out. Their simulation study showed the 

approximation to their integral produced reasonable estimates of the unknown model 

parameters in the one-step transition matrix, and that these parameter estimates are robust 

across a spectrum of distributions for the shared random effect. However, the model 

approximated the joint distribution of the response variable using a conditional 

distribution given the baseline outcome of the response variable, which could produce a 

so-called “baseline confounding” problem. Yu, et al. [19] extended Salazar's model to 
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include the information of the baseline state to address this limitation by accommodating 

the baseline confounding in the Markov model using shared random effects approaches. 

However, under a shared random effects model, separating the baseline distribution from 

the overall model likelihood can lead to underestimation of the effects of risk factors on 

the one-step transitions.  Abner, et al. [20] expanded Salazar's model to investigate the 

transient nature of MCI by including a clinically determined MCI state as an outcome. 

The multistate Markov chain with three transient states (normal cognition, aMCITB, and 

mMCITB), one quasi-absorbing state (MCICC), and two absorbing state (death and 

dementia) was used to model the probability of maintaining the current state or moving to 

a different state at the next assessment. Here aMCITB and mMCITB represent amnestic 

and mixed forms of the MCI state as determined by cognitive tests (test based). However, 

transitions to MCICC and dementia states are still assumed to have occurred on the date 

of assessment. The model also ignores any transitions among the transient states between 

regularly scheduled assessments. While these methods are all easy to implement and 

quite useful, several assumptions need to be satisfied. First, time intervals between two 

consecutive assessments are required to be equally spaced. However, in many 

observational longitudinal studies, it is very common to have unequally spaced 

longitudinal data resulting from uneven assessments or skipped visits. Second, the exact 

transition times are assumed to occur exactly at the discrete assessment time points since 

modeling assumptions do not permit the inclusion of interval censoring-type approaches. 

In reality, interval censored data commonly exist and transitions may take place at any 

time. Third, those models assume no censored states exist. They assume all possible 

transitions could be observed between two consecutive assessments. Any transitions 
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among the transient states during the follow-up assessments are ignored since those 

models use only the state of the individual at the next assessment. In fact, in most studies 

we might not be able to tell whether a patient went through other transient states before 

the following assessment. From the above, the Markov chain model does have some 

limitations since they rely on a discrete-time model. 

Kryscio, et al. [21, 22] applied a semi-Markov model, which is defined by the 

probability of the transition among states and independently the holding time it takes for 

that transition to occur.  The model is useful to identify risk factors for transitions to MCI 

and dementia by adjusting the competing risk of death. However, this model is still based 

on a discrete model, and has the limitation of ignoring interval-censored transition times 

or unobserved transitions between successive assessments. 

1.6 Outline of the Dissertation 

The remainder of this dissertation is organized as follows. 

In Chapter 2, a continuous time version of homogenous Markov multi-state model 

with backward transitions is proposed to handle the uneven follow-up assessments or 

skipped visits, resulting from the interval censored data. Simulations are used to compare 

the performance of the proposed model with the traditional discrete time stationary 

Markov chain under different types of observation schemes. 

In Chapter 3, we construct a non-homogenous Markov model for this type of 

panel data. The baseline intensity is assumed to be Weibull distributed to accommodate 

the non-homogenous property. The proportional hazards method is used to incorporate 

risk factors into the transition intensities. 
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In Chapter 4, we present a parametric method of fitting semi-Markov models 

based on Weibull transition intensities to interval censored cognitive data with death as a 

competing risk. We relax the Markov assumption and take into account interval 

censoring by integrating out all possible unobserved transitions. The proposed model also 

allows for incorporating time-dependent covariates. A goodness-of-fit assessment is 

provided for the proposed model by the means of prevalence counts. 

Finally in Chapter 5, we summarize the work and offer some potential areas for 

future study. 
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Figure 1.1 Transition flows among the four states recorded in the Nun Study data 

 

 

Figure 1.2 Transition flows among the four states recorded in the BRAiNS data 
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Chapter 2 A Comparison of Discrete-time and Continuous-time Multi-state Models 

2.1 Introduction 

In most longitudinal medical studies on the progression of healthy individuals to 

chronic diseases, such as cancer, AIDS, and dementia, the natural development is often 

expressed in terms of distinct states. The analyses in such studies where individuals may 

transition among several states are often performed by using multi-state models (MSMs). 

There are two major types of multi-state models in literature, one is based on discrete-

time Markov chain, and the other one is based on continuous-time Markov process. 

These two types of modeling techniques are related in certain ways, and both enable 

researchers to study transitions between different disease states simultaneously. However, 

the two types of models are constructed under different assumptions, and might generate 

different results and conclusions under certain cases. Thus, researchers need to be careful 

when deciding which models to use in real data applications.   

Multi-state models based on the discrete-time Markov chain have become popular 

in analyzing longitudinal data collected in chronic disease studies. Such models are also 

called Markov chain transitional models [23] in the literature. Kryscio, et al. [24] used a 

Markov chain model to identify risk factors associated with transitions from cognitively 

normal to various forms of mild cognitive impairment (MCI) and then from MCI into 

early dementia, with death before dementia as a competing state. A series of polytomous 

logistic models were used to model the one step transition probabilities, and they focused 

on the effects of baseline age, education, sex, family history of dementia, and APOE4 

status on the transition probabilities.  
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Use of Continuous-time MSMs has grown quickly in literature. A continuous-

time MSM is a model for a continuous time stochastic process allowing individuals to 

move among a finite number of states [4]. There exists an extensive literature on 

Continuous-time MSMs [4-6, 25]. Applications of continuous-time MSMs can be found 

in liver cirrhosis [26], dementia [11-13, 27], etc.  

In real data applications, the observation schemes vary among different studies. In 

some studies, investigators are able to collect the data at equally spaced time points, for 

example once a month or once a year. In this case, the resulting longitudinal data will be 

evenly spaced. In other studies, collecting the data at equal time intervals is unrealistic; in 

these cases the longitudinal data will be unevenly spaced. Both types of MSMs are 

widely used in applications to model similar longitudinal data without considering the 

observation schemes. In this manuscript we will conduct a comparison study between the 

two types of models. To the best of our knowledge, there are few studies in the literature 

that compares these methods.  

The rest of this chapter is structured as follows. In Section 2.2, the discrete-time 

MSM and continuous-time MSM are introduced respectively. In Section 2.3, a simulation 

study is conducted to compare the two modeling methods under different observation 

schemes. Section 2.4 applies the two methods to a real dataset, the Nun study. Conclusion 

and discussion are provided in Section 2.5. 

2.2 Discrete-time and continuous-time multi-state models 

For a chronic disease with 𝐾𝐾 possible outcome states, we could write the 

underlying disease process as 𝑋𝑋(𝑡𝑡) ∈ {1,2, … ,𝐾𝐾}, 𝑡𝑡 ≥ 0. Here, the value of 𝑋𝑋(𝑡𝑡) denotes 

the occupied disease state at time 𝑡𝑡. Suppose an individual has observations at time 
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points 𝑻𝑻 = ( 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡m), we write 𝑿𝑿 = (𝑋𝑋0,𝑋𝑋1, … ,𝑋𝑋𝑚𝑚) the corresponding occupied 

states such that 𝑋𝑋𝑙𝑙 = 𝑋𝑋(𝑡𝑡𝑙𝑙), 𝑙𝑙 = 1, 2, … ,𝑙𝑙.  The initial state 𝑋𝑋0 is usually given.  

2.2.1 Discrete-time multi-state model 

In a discrete-time multi-state model, the longitudinal data are modeled through a 

joint probability mass function 𝑃𝑃(𝑋𝑋0,𝑋𝑋1, … ,𝑋𝑋𝑚𝑚 ). The observation time points 𝑻𝑻 =

( 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡m) are ignored under the assumption that the data are evenly spaced. In most 

applications, the outcome data (𝑋𝑋0,𝑋𝑋1, … ,𝑋𝑋𝑚𝑚) are assumed to follow a discrete-time 

Markov chain, in which we have 

 𝑃𝑃(𝑋𝑋0,𝑋𝑋1, … ,𝑋𝑋𝑚𝑚 ) = 𝑃𝑃(𝑋𝑋0) × 𝑃𝑃(𝑋𝑋1|𝑋𝑋0) × ⋯× 𝑃𝑃(𝑋𝑋𝑚𝑚|𝑋𝑋𝑚𝑚−1). 

The one-step transition probability from state ℎ to state 𝑗𝑗 at 𝑙𝑙th step can be written as 

𝑃𝑃ℎ𝑗𝑗,𝑙𝑙 = 𝑃𝑃(𝑋𝑋𝑙𝑙 = 𝑗𝑗|𝑋𝑋𝑙𝑙−1 = ℎ). 

Thus, the joint probability mass function 𝑃𝑃(𝑋𝑋0,𝑋𝑋1, … ,𝑋𝑋𝑚𝑚 ) can be characterized by the 

one-step transition probability matrix 

𝑷𝑷𝒍𝒍 = �
𝑃𝑃11,𝑙𝑙 ⋯ 𝑃𝑃1𝐾𝐾,𝑙𝑙
⋮ ⋱ ⋮

𝑃𝑃𝐾𝐾1,𝑙𝑙 ⋯ 𝑃𝑃𝐾𝐾𝐾𝐾,𝑙𝑙

�. 

The rows of 𝑷𝑷𝒍𝒍 satisfy the condition ∑ 𝑃𝑃ℎ𝑗𝑗,𝑙𝑙
𝐾𝐾
𝑗𝑗=1 = 1. The Markov chain is often assumed 

to be time homogenous. In this case, we have𝑷𝑷𝒍𝒍 = 𝑷𝑷 and 𝑃𝑃ℎ𝑗𝑗,𝑙𝑙 = 𝑃𝑃ℎ𝑗𝑗, which is a constant 

of time.  

Baseline covariates 𝒁𝒁 are usually linked to the transition probabilities through a 

series of polytomous logistic regressions 

 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑃𝑃ℎ𝑗𝑗
𝑃𝑃ℎℎ

� = 𝛽𝛽ℎ𝑗𝑗,0 + 𝜷𝜷𝒉𝒉𝒉𝒉𝑻𝑻 𝒁𝒁, 𝑗𝑗 ≠ ℎ. 
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There are 𝐾𝐾 possible polytomous logistic regressions, one model for each row of the 

transition probability matrix. When the model only involves baseline covariates, standard 

software such as PROC LOGISTIC and PROC CATMOD (SAS Institute, Inc.; Cary NC) 

[28] can be used to fit each logistic model separately.  

2.2.2 Continuous-time multi-state model 

In a continuous-time multi-state model, the transition process is modeled as a 

stochastic process. The longitudinal data are allowed to be unevenly spaced. We can 

write the transition probability from state ℎ at time 𝑠𝑠 to state 𝑗𝑗 at time 𝑡𝑡 as 

𝑃𝑃ℎ𝑗𝑗(𝑠𝑠, 𝑡𝑡|𝐻𝐻𝑠𝑠−) = 𝑃𝑃(𝑋𝑋(𝑡𝑡) = 𝑗𝑗|𝑋𝑋(𝑠𝑠) = ℎ,𝐻𝐻𝑠𝑠− ) , s < t. 

Here, 𝐻𝐻𝑠𝑠− is the history of the process up to time 𝑠𝑠. For a Markov process, the transition 

probabilities is independent of the past history before time 𝑠𝑠. In this case, we have 

𝑃𝑃ℎ𝑗𝑗(𝑠𝑠, 𝑡𝑡) = 𝑃𝑃(𝑋𝑋(𝑡𝑡) = 𝑗𝑗|𝑋𝑋(𝑠𝑠) = ℎ ) , s < t. 

The transition probabilities can be fully characterized by the corresponding 

transition intensities, which have the following definition 

𝛼𝛼ℎ𝑗𝑗(𝑡𝑡) = lim
∆𝑡𝑡→0

𝑃𝑃ℎ𝑗𝑗(𝑡𝑡 + ∆𝑡𝑡, 𝑡𝑡)/∆𝑡𝑡 , 𝑗𝑗 ≠ ℎ. 

Similar to the hazard function in survival models, the transition intensities 

measure the instantaneous hazard of transition from the current state ℎ to another state 𝑗𝑗. 

For 𝑗𝑗 = ℎ, we have 

𝛼𝛼ℎℎ(𝑡𝑡) = −�𝛼𝛼ℎ𝑗𝑗
𝑗𝑗≠ℎ

(𝑡𝑡). 
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Different assumptions can be made about the dependence of the transition 

intensities on time. In this study, we focus on time homogenous models. In a time 

homogenous model, we have 𝛼𝛼ℎ𝑗𝑗(𝑡𝑡) = 𝛼𝛼ℎ𝑗𝑗. 

Covariates of interest can be incorporated into the transition intensities using the 

Cox proportional hazards regression model, which has the following form 

𝛼𝛼ℎ𝑗𝑗(𝒁𝒁) = 𝛼𝛼ℎ𝑗𝑗,0 𝑒𝑒𝑒𝑒𝑝𝑝�𝜷𝜷𝒉𝒉𝒉𝒉𝑻𝑻 𝒁𝒁� = 𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽ℎ𝑗𝑗,0 + 𝜷𝜷𝒉𝒉𝒉𝒉𝑻𝑻 𝒁𝒁� . 

Here,  𝛼𝛼ℎ𝑗𝑗,0 = 𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽ℎ𝑗𝑗,0� is called the baseline intensity from state ℎ to state 𝑗𝑗.   

Write the transition intensity matrix as  

 𝑸𝑸 = �
𝛼𝛼11(𝒁𝒁) ⋯ 𝛼𝛼1𝐾𝐾(𝒁𝒁)

⋮ ⋱ ⋮
𝛼𝛼𝐾𝐾1(𝒁𝒁) ⋯ 𝛼𝛼𝐾𝐾𝐾𝐾(𝒁𝒁)

�,  

and write the transition probability matrix as 

𝑷𝑷(𝑠𝑠, 𝑡𝑡) = �
𝑃𝑃11(𝑠𝑠, 𝑡𝑡) ⋯ 𝑃𝑃1𝐾𝐾(𝑠𝑠, 𝑡𝑡)

⋮ ⋱ ⋮
𝑃𝑃𝐾𝐾1(𝑠𝑠, 𝑡𝑡) ⋯ 𝑃𝑃𝐾𝐾𝐾𝐾(𝑠𝑠, 𝑡𝑡)

�. 

For a time homogenous model, 𝑷𝑷(𝑠𝑠, 𝑡𝑡) can be calculated in terms of the transition 

intensity matrix 𝑸𝑸 using the Kolmogorov differential equation [5] 

𝑷𝑷(𝑠𝑠, 𝑡𝑡) = 𝑷𝑷(𝑡𝑡 − 𝑠𝑠) = 𝐸𝐸𝑒𝑒𝑝𝑝((𝑡𝑡 − 𝑠𝑠)𝑸𝑸) 

Estimation of the model can be done using the maximum likelihood method. 

Given an individual has observations at time points ( 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡m) and corresponding 

observed states (𝑋𝑋0,𝑋𝑋1, … ,𝑋𝑋𝑚𝑚), its likelihood contribution can be calculated as 

𝐿𝐿 =  𝑃𝑃(𝑋𝑋0,𝑋𝑋1, … ,𝑋𝑋𝑚𝑚 ) = 𝑃𝑃(𝑋𝑋0) × 𝑃𝑃𝑋𝑋0𝑋𝑋1( 𝑡𝑡0,  𝑡𝑡1) × ⋯× 𝑃𝑃𝑋𝑋𝑚𝑚−1𝑋𝑋𝑚𝑚( 𝑡𝑡𝑚𝑚−1,  𝑡𝑡𝑚𝑚). 

Through the transition intensities, we are able to calculate the transition probabilities at 

any given time period. Thus, we are able to handle unevenly spaced longitudinal data.  
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We can also handle transitions with exact transition times. Death is an important 

competing risk in many chronic diseases and is often included in the model. The exact 

time of death will be recorded, while the state just before death might be unknown. 

Suppose the last state 𝑋𝑋𝑚𝑚 = 𝐾𝐾 is death and 𝑡𝑡m is the time of death. In this case, the 

likelihood contribution can be calculated as 

 𝐿𝐿 =  𝑃𝑃(𝑋𝑋0,𝑋𝑋1, … ,𝑋𝑋𝑚𝑚 )

= 𝑃𝑃(𝑋𝑋0) × 𝑃𝑃𝑋𝑋0𝑋𝑋1( 𝑡𝑡0,  𝑡𝑡1) × ⋯× ��𝑃𝑃𝑋𝑋𝑚𝑚−1𝑗𝑗( 𝑡𝑡𝑚𝑚−1,  𝑡𝑡𝑚𝑚)
𝑗𝑗≠𝐾𝐾

𝛼𝛼𝑗𝑗𝐾𝐾(𝒁𝒁)� 

2.2.3 Relationship between the two models 

Two types of models are constructed under different assumptions about the 

response data. The discrete-time MSM assumes the transitions follow a Markov chain. 

However, the continuous-time MSM assumes the transitions follow a continuous-time 

Markov process. Thus, the covariates coefficients in the two types MSMs have different 

interpretations. The discrete-time MSM incorporates covariates into the model through a 

series multinomial logit regressions; the corresponding coefficients have the log odds 

ratio interpretation. The continuous-time MSM incorporates covariates trough transition 

intensity functions by proportional hazard regressions; the corresponding coefficients 

have the log hazard ratio interpretation.  

The relationship between the two types of models is linked through their one step 

transition probabilities. Note that in our notation 𝑷𝑷 is the one step transition probability 

for the discrete-time model and 𝑷𝑷(𝑡𝑡 − 𝑠𝑠) is the transition probability matrix from time s 
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to time t for the continuous-time model. Suppose the time interval between two 

assessments equals one time unit; thus we have 𝑷𝑷 = 𝑷𝑷(1). 

2.3 Simulation Study 

In chronic disease studies, the collected longitudinal data are often not evenly 

spaced. In this section, we conduct simulation studies to compare the performance of the 

two types of MSMs under different observation schemes. The comparisons are taken 

under three types of observed data:  

(1) Evenly spaced data: the time intervals between two consecutive observations 

are all equal to 1 year; 

(2) Unevenly spaced data 1: the time intervals between two consecutive 

observations follow a truncated Normal distribution with mean 1 and standard 

deviation 0.5, left truncated at 0.25. 

(3) Unevenly spaced data 2: the time intervals between two consecutive 

observations follow a Normal distribution with mean 1 and standard deviation 

1.5, left truncated at 0.25. 

We focus on the one-year transition probability estimates �𝑃𝑃ℎ𝑗𝑗�. Comparisons are 

made by their percent biases (% bias) for the two methods under these three types of 

observed data.  

Data are generated from a four-state model with state 1 and state 2 representing 

two transient states, and state 3 and state 4 representing two absorbing states. The true 

model has the following transition intensity matrix: 
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𝑸𝑸 = �

𝛼𝛼11                       𝛼𝛼12,0𝑒𝑒𝑒𝑒𝑝𝑝 (𝛽𝛽12𝑍𝑍)
𝛼𝛼21,0𝑒𝑒𝑒𝑒𝑝𝑝 (𝛽𝛽21𝑍𝑍) 𝛼𝛼22                       

𝛼𝛼13,0𝑒𝑒𝑒𝑒𝑝𝑝 (𝛽𝛽13𝑍𝑍) 𝛼𝛼14,0
𝛼𝛼23,0𝑒𝑒𝑒𝑒𝑝𝑝(𝛽𝛽23𝑍𝑍) 𝛼𝛼24,0

0                           0                          
0                           0                          

0                          0
0                          0     

� . 

Here, 𝑍𝑍 is a binary baseline covariate. In our simulation study, 𝑍𝑍 follows a Bernoulli 

distribution with probability of 0.4 with value 1. We set the baseline intensities 

 �𝛼𝛼12,0,𝛼𝛼13,0,𝛼𝛼14,0,𝛼𝛼21,0,𝛼𝛼23,0,𝛼𝛼24,0� = (0.25, 0.03, 0.05, 0.2, 0.15, 0.05), 

and the regression coefficients 

(𝛽𝛽12,𝛽𝛽13,𝛽𝛽21,𝛽𝛽23) = (0.5,−0.2,−0.3, 0.15). 

For all three observation schemes, each subject has up to 30 observations. If a 

patient is still at state 2 or state 3 after 30 years, it will be right censored at year 30. The 

exact transition times to state 4 are recorded, while the transition time to state 1, 2, or 3 

are all interval censored because of the discrete time observations as we described above.  

Simulations are set to 1000 iterations, with each containing 500 subjects. For 

simplicity, all subjects start at state 1. All calculations are done by using the “msm” 

package [29] in R and the PROC IML [30] and PROC CATMOD [28] procedures in SAS 

9.3 system.  

Table 2.1 and Table 2.2 list the percent bias of the one year transition probabilities 

by discrete-time MSM and by continuous-time MSM respectively. The results show that 

the discrete-time MSM and continuous-time MSM work equally well when the data is 

evenly spaced. Since the calculation of transition probabilities through the transition 

intensities are usually complicated, discrete-time MSM has the computational advantage 

over the continuous-time MSM.  
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When the collected longitudinal data are unevenly spaced, the discrete-time MSM 

will provide biased estimates for the one year transition probabilities. We may observe 

that the biases of the estimations of one year transition probabilities increase as the 

spacing gets more uneven. For example, the percent bias of the transition probability 

estimate from state 1 to state 3 with the covariate 𝑍𝑍 = 1 by the discrete-time Markov 

MSM could be as large as 20% in unevenly spaced data with relative less the observation 

time interval variation (unevenly spaced data 1 in the tables), and increase to 69% in 

unevenly spaced data with relatively larger observation time interval variation (unevenly 

spaced data 2 in the tables). For the same case, the percent bias of transition probability 

estimate from state 1 to state 3 with the covariate 𝑍𝑍 = 1 by the continuous-time Markov 

MSM is only 1.3% in unevenly spaced data 1, and 1.8% in unevenly spaced data 2. Thus, 

in those longitudinal chronic disease studies in which the actual visit times deviate from 

the planned visit times, with possible skipped visits, continuous-time MSMs are 

recommended.  

2.4 Application to the Nun Study 

In this section, we apply both the discrete-time MSM and continuous-time MSM 

to the Nun Study dataset. The models include four states: Not Serious Impairment (NSI), 

Global Impairment (GI), Dementia, and Death. The transition flows and frequencies 

among these states are shown in Figure 2.1.  

A total of 55 subjects were excluded from the study due to missing APOE4 

genotype (55 or 8.18%).  The final analytic sample used in the study consists of 617 

subjects having 3312 observations. At baseline, 440 (71.3%) subjects were in state NSI; 

60 (9.7%) subjects were already in state GI and 117 (19.0%) subjects have already 
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developed dementia. At the end of the study, there were 74 subjects who survived 

without dementia or censored before converting to dementia, 279 subjects who developed 

dementia, 264 who died without dementia, and 263 subjects who died with dementia.  

Even though the study was designed to conduct cognitive assessments annually, 

the actual number of total assessments and the time interval between two consecutive 

assessments varied across subjects. The number of assessments ranges from 2 to 12 with 

an average of 6 assessments.  The time interval between two assessments ranges from 

0.01 year to 10 years, with an average of 1.4 ± 0.6 years.  Figure 2.2 presents the 

histogram of the time intervals between two consecutive assessments up to 4 years.   

We considered two risk factors in our four-state model: baseline age and APOE4 

(1=at least one ε4 allele, 0= noε4 allele). The baseline ages range from 75.37 to 102.01 

with mean 83.45 ± 5.53. In the model, baseline ages were centered at age 75. There are 

141 (22.85%) subjects with at least one APOE4 allele. Table 2.3 lists the odds ratios of 

these two risk factors estimated by the discrete-time MSM described in Section 2.1. And 

Table 2.4 lists the hazard ratios of these two risk factors estimated by the continuous-time 

MSM described in Section 2.2.  Both models show baseline age has significant effects on 

transitions from NSI to GI, Dementia and Death, from GI to Dementia, and from 

Dementia to Death; and APOE4 has significant effects on transition from NSI to GI.  

The two models differ on the transition probability estimations. Figure 2.3 plots 

the estimated transition probabilities from NSI to dementia and from GI to dementia for 

an 80-years-old subjects with and without APOE4. The plots indicate that the discrete-

time model has relatively lower long-term transition probabilities from NSI to dementia 

and from GI to dementia than the continuous-time model.   
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To see which model fits the data better, we conducted a goodness-of-fit analysis 

by using prevalence counts [31]. Figure 2.4 presents the comparison of observed 

prevalence and expected prevalence counts from both discrete-time and continuous-time 

models. The dot circle line is the observed prevalence counts; the dashed line is the 

expected prevalence counts estimated from the discrete-time model; and the solid line is 

the expected prevalence counts estimated from the continuous-time model. In general, the 

expected prevalence estimated from the continuous-time model is closer to the observed 

prevalence than the expected prevalence estimated from the discrete-time model. This 

provides some evidence that the continuous-time model fits the data better than then 

discrete-time model. 

2.5 Discussion 

In longitudinal chronic disease studies, the natural development of a chronic 

disease is often expressed in terms of distinct states and MSMs are widely used to model 

the progression of individuals through these states. Most studies focused on modeling the 

true disease progression as a discrete time Markov chain. While Markov chain models 

can accommodate the simultaneous analysis of multiple events of interest and inclusion 

of competing risks through the states defined in the model, use of Markov chains have 

some potential limitations. As it requires the time intervals between two consecutive 

assessments are all equal among subjects, and it does not allow unobserved transitions 

between two consecutive assessments. In real studies, the data are often unevenly spaced 

and multiple unobserved transitions may take place between cycle assessments. A more 

general model, continuous-time MSM could be an alternative approach which can 

accommodate the evenly spaced data under different types of observation schemes. 
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To the best of our knowledge, this research is the first to compare the 

performance of the widely used discrete-time multi-state model with the continuous-time 

multi-state model for unevenly spaced data. The simulation study compares the one year 

transition probability under three types of observed data, one evenly spaced data and two 

unevenly spaced data. The results show that when the longitudinal observations are 

evenly spaced, both versions of MSMs work equally well. Since the calculation of 

transition probabilities through the transition intensities is usually complicated, the 

discrete-time MSMs have the computational advantage over the continuous-time version 

MSMs. When longitudinal observations are unevenly spaced, the discrete-time MSMs 

would be biased. In this case, the continuous-time MSMs are recommended.  

In the application of the Nun’s data, the discrete-time model has relative worse 

performance compared to the continuous-time model. Both models provided similar 

results of the effects of baseline age and APOE4 in the model. However, the estimations 

of the transition probabilities are different by the two models. The discrete-time model 

has relative lower long-term transition probability estimations from state NSI to dementia 

and from state GI to dementia. The average time interval between two consecutive 

assessments was 1.4±0.6 years (larger than 1 year assumption of the discrete-time model) 

in the Nun’s data, which is one of the reason the discrete-time model underestimates the 

long-term transition probabilities from NSI to dementia and from GI to dementia.  

In conclusion, discrete-time Markov chain models are useful tools for survival 

analysis that allow for more nuanced modeling that is available in most standard time to 

event methods. However, most journal readers and reviewers may readily comprehend 

the results from discrete-time Markov chain models, but they may lack familiarity with 
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the underlying statistical assumptions. If so, they may neglect to challenge investigators 

to demonstrate these assumptions are tenable [32]. A continuous time MSM could be an 

alternative approach and should have a potential to being used much more by 

practitioners, although the lack of knowledge of the available software may be 

responsible for its lack of popularity. Given that improper use of Markov models may 

result in biased estimation, perhaps some standardization in the reporting of MSM results 

and assumption verification is needed.   



 

26 
 

Table 2.1 Percent bias of one year transition probability for each path by the discrete-time 
multi-state model under three observation schemes. 

Transition 
Evenly Spaced 

Data 
Unevenly Spaced  

Data 1 
Unevenly Spaced  

Data 2 
Z=0 Z=1 Z=0 Z=1 Z=0 Z=1 

1 to 1 -0.29% 0.22% 0.77% 2.50% -2.00% -1.10% 
1 to 2 0.40% -0.42% -2.00% -10.00% -5.50% -14.00% 
1 to 3 -0.74% 1.00% -1.40% 20.00% 38.00% 69.00% 
1 to 4 -0.38% 0.76% -3.30% 7.00% 19.00% 28.00% 
2 to 1 0.27% -0.39% -3.10% -7.90% -7.20% -12.00% 
2 to 2 -0.18% 0.21% -0.51% 2.90% -3.30% -0.09% 
2 to 3 0.45% -0.45% 3.60% -5.90% 16.00% 6.60% 
2 to 4 0.66% -0.94% 7.20% -9.50% 27.00% 5.20% 

 

Table 2.2 Percent bias of one year transition probability for each path by the continuous-
time multi-state model under three observation schemes.  

Transition 
Evenly Spaced  

Data 
Unevenly Spaced  

Data 1 
Unevenly Spaced  

Data 2 
Z=0 Z=1 Z=0 Z=1 Z=0 Z=1 

1 to 1 -0.06% -0.31% -0.01% 0.12% 0.02% -0.49% 
1 to 2 0.42% 0.51% -0.04% -0.45% -0.06% 0.73% 
1 to 3 -0.44% 1.50% 0.86% 1.30% -0.91% 1.80% 
1 to 4 -0.23% -0.31% -0.39% -0.37% 0.64% 0.54% 
2 to 1 0.41% 0.23% 0.55% 0.82% 0.74% -0.14% 
2 to 2 -0.08% 0.03% -0.27% -0.17% -0.27% 0.11% 
2 to 3 0.22% -0.08% 0.74% 0.17% 0.62% -0.48% 
2 to 4 -0.72% -0.72% 0.24% 0.30% 0.10% 0.15% 
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Table 2.3 Discrete-time MSM results on the Nun’s data 
Covariates  Transition Path  Coefficient Std.Err P value 
Intercept NSI to GI -2.9425 0.1512 <.01 

 NSI to Dementia -3.9931 0.2213 <.01 
 NSI to Death -3.0251 0.1613 <.01 
 GI to NSI -1.1615 0.3001 <.01 
 GI to Dementia -1.4880 0.2901 <.01 
 GI to Death -0.6328 0.2429 <.01 
 Dementia to Death -1.3189 0.1677 <.01 

Baseline Age NSI to GI 0.1044 0.0171 <.01 
 NSI to Dementia 0.1405 0.0225 <.01 
 NSI to Death 0.0963 0.0186 <.01 
 GI to NSI 0.0101 0.0294 0.73 
 GI to Dementia 0.0525 0.0254 0.04 
 GI to Death 0.0161 0.0235 0.49 
 Dementia to Death 0.0632 0.0137 <.01 

APOE4 NSI to GI 0.5799 0.1940 <.01 
 NSI to Dementia 0.5064 0.2831 0.07 
 NSI to Death 0.3976 0.2191 0.07 
 GI to NSI -0.6509 0.4233 0.12 
 GI to Dementia 0.5268 0.3066 0.09 
 GI to Death -0.2533 0.3018 0.40 

  Dementia to Death 0.0417 0.1661 0.80 
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Table 2.4 Continuous-time MSM results on the Nun’s data 
Covariates  Transition Path  Coefficient Std.Err P value 
Intercept NSI to GI -2.8417 0.1515 <.01 

 NSI to Dementia -4.6231 0.3545 <.01 
 NSI to Death -3.8646 0.2856 <.01 
 GI to NSI -1.7183 0.2711 <.01 
 GI to Dementia -1.8899 0.2428 <.01 
 GI to Death -1.2368 0.2364 <.01 
 Dementia to Death -1.6425 0.1382 <.01 

Baseline Age NSI to GI 0.0882 0.0168 <.01 
 NSI to Dementia 0.1277 0.0360 <.01 
 NSI to Death 0.0646 0.0321 0.04 
 GI to NSI 0.0100 0.0268 0.71 
 GI to Dementia 0.0375 0.0183 0.04 
 GI to Death -0.0215 0.0246 0.38 
 Dementia to Death 0.0364 0.0106 <.01 

APOE4 NSI to GI 0.4447 0.1968 0.02 
 NSI to Dementia 0.0403 0.7244 0.96 
 NSI to Death 0.3561 0.3711 0.34 
 GI to NSI -0.6053 0.3994 0.13 
 GI to Dementia 0.4952 0.2611 0.06 
 GI to Death -0.5631 0.3679 0.13 

  Dementia to Death 0.0112 0.1331 0.93 
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Figure 2.1 Transition flows among the four states recorded in the Nun’s data 

 

 

 

Figure 2.2 Histogram of time intervals between two consecutive assessments. 
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Figure 2.3 Transition probabilities from NSI to dementia and from GI to dementia for an 
80 years old subject with and without APOE4.  

(Solid line: Transition probabilities estimated by the continuous-time model; and 
dashed line: Transition probabilities estimated by the discrete-time model.) 

 



 

31 
 

 

Figure 2.4 Comparison of observed and expected prevalence of the two types of 
MSMs. (Dot: observed prevalence; solid line: expected prevalence estimated from 
the continuous-time model; and dashed line: expected prevalence estimated from 
the discrete-time model.) 
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Chapter 3 A Non-homogenous Markov Multi-State Model for interval censored 
transient cognitive states with competing risk 

3.1 Introduction 

Multi-state interval-censored data are usually handled by time homogenous 

Markov models (HMM) [33, 34] or piece-wise homogenous models [29]. However, the 

assumption of time homogeneity would be inappropriate if the disease process is heavily 

dependent on the time scale considered in the model. In non-homogenous Markov 

Models (NHMM), the problem of inference with interval-censored data is considerably 

more difficult. Transition probabilities can be expressed simply in terms of transition 

intensities in a HMM but not in a more general NHMM.  

Only a few studies have been carried out regarding NHMM in the presence of 

interval-censored data. One of the first such studies was that of Hsien, et al.[35]. They 

presented a three-state progressive NHMM with the incorporation of Weibull distribution 

and the piecewise exponential model to accommodate non-constant transition rates. Hout, 

et al. [8] extended this approach by including the possibility to move directly from the 

health state to the death state, namely an “illness-death” model. Hubbard and Zhou [27] 

proposed a non-homogenous four-state model with one absorbing state (death) by using 

time-transformation. The non-homogenous model is converted to a homogenous model 

by transforming the time scale by a specific select transformation function. Selecting the 

appropriate transformation function is the key in their model. However, they did not 

provide a procedure for selecting the appropriate transformation function, and it is 

dependent on researcher’s personal judgment to choose which transformation function to 

use.  
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In this chapter, we develop a four-state NHMM that allows for interval-censored 

data as well as the possible unobserved transitions caused by discrete-time observations. 

The research is motivated by the Biologically Resilient Adults in Neurological Studies 

(BRAiNS). BRAiNS is a longitudinal study investigating cognitive ability in the older 

population. We aim to identify and evaluate the effects of the risk factors on the transition 

among different cognitive states.  

The rest of this chapter is structured as follows. In Section 3.2, we describe the 

data set which motivated this research. In Section 3.3, the four state continuous time 

Markov model with Weibull assumption is defined. In Section 3.4, a simulation study is 

conducted to check whether the Weibull assumption is robust. Section 3.5 applies this 

method to the BRAiNS data. At the last section, we discuss the proposed method and lay 

down some possible future directions. 

3.2 Data 

The BRAiNS is a longitudinal cohort of 1,030 older participants at the University 

of Kentucky’s Alzheimer’s Disease Center (UK ADC) [36]. Participants consent to 

extensive annual cognitive and clinical examinations as well as brain donation upon 

death. Subjects included in the current study (n=531) were assessed at least two times and 

all subjects were cognitively intact at study entry. 

Annual cognitive assessments are administered to each participant and used to 

classify them into one of three cognitive states: normal, clinical MCI, or dementia. The 

diagnosis of clinical MCI is based on a consensus team review by the examining 

physician, neuropsychologist, and the clinical research assistant who administered the 
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cognitive assessment. A dementia classification results from a clinical consensus 

diagnosis of dementia.  

Mortality has been shown to be an important competing risk for MCI and 

dementia [22]. Thus, we would also include the state death into our model. Participants 

were evaluated cognitively and during follow up may die or transition to clinical MCI or 

dementia. All transitions are unidirectional since it is assumed that once a participant 

meets the criteria for a diagnosis of clinical MCI (or dementia) he/she does not return to 

the normal state. In the application to these participants from the BRAiNS cohort, 19 

subjects made an apparent reverse transition from clinical MCI to normal, but as 

discussed in Abner, et al.[20], these were determined to be the result of either underlying 

medical comorbidities that influenced cognition or diagnostic misclassification; the errant 

diagnoses were recoded. The exact times of transitions into MCI or dementia are interval 

censored because of the irregularity of the observation process, while the time of entry 

into the study and the time of death are known exactly. 

3.3 Methodology 

3.3.1 The non-homogeneous Markov multi-state model 

We consider a four-state model with two transient states and two absorbing states. 

State 1, normal cognition, and State 2, mild cognitive impairment (MCI), are transient 

states. State 3, dementia, and State 4, death without dementia, are two absorbing states. 

See Figure 3.1 for the transition diagram.  

Let  𝑃𝑃ℎ𝑗𝑗(𝑠𝑠, 𝑡𝑡) be the transition probability from state ℎ at age 𝑠𝑠 to state 𝑗𝑗 at 

age 𝑡𝑡  (𝑡𝑡 > 𝑠𝑠). Let 𝛼𝛼ℎ𝑗𝑗(𝑡𝑡) be the transition intensity from state ℎ to state 𝑗𝑗 at age 𝑡𝑡. 
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Denote 𝑸𝑸(𝑡𝑡) the transition intensity matrix with the (ℎ, 𝑗𝑗)th being 𝛼𝛼ℎ𝑗𝑗(𝑡𝑡). Since the 

model is irreversible, and State 3 and State 4 are absorbing states, we have 

𝑸𝑸(𝑡𝑡) = �

𝛼𝛼11(𝑡𝑡) 𝛼𝛼12(𝑡𝑡)
0   𝛼𝛼22(𝑡𝑡)

𝛼𝛼13(𝑡𝑡) 𝛼𝛼14(𝑡𝑡)
𝛼𝛼23(𝑡𝑡) 𝛼𝛼24(𝑡𝑡)

0             0
0             0

0            0
0            0

� . 

Here, 

 𝛼𝛼11(𝑡𝑡) = −�𝛼𝛼12(𝑡𝑡) + 𝛼𝛼13(𝑡𝑡) + 𝛼𝛼14(𝑡𝑡)� 

and 

𝛼𝛼22(𝑡𝑡) = −�𝛼𝛼23(𝑡𝑡) + 𝛼𝛼24(𝑡𝑡)�. 

Since age is the major risk factor of MCI, dementia and death [2, 22], and we are 

mostly interested in age-specific incidence and age-specific mortality, we consider a non-

homogeneous Markov model where the intensities depend on age, and chose the actual 

age of participants as the time scale, 𝑡𝑡, in the form of transition intensities, rather than the 

calendar year or years since enrolment. 

3.3.2 Proportional hazard regression with Weibull baseline 

Other risk factors besides age can also be added to the model through proportional 

hazards regressions, which has the following form 

𝛼𝛼ℎ𝑗𝑗(𝑡𝑡|𝒁𝒁) = 𝛼𝛼ℎ𝑗𝑗,0(𝑡𝑡 − 𝐴𝐴0) 𝑒𝑒𝑒𝑒𝑝𝑝�𝜷𝜷𝒉𝒉𝒉𝒉𝑻𝑻 𝒁𝒁� , 𝑡𝑡 ≥ 𝐴𝐴0 

Here, 𝒁𝒁 is a vector of covariates, such as gender, education level, diabetes, smoking, etc., 

𝛼𝛼ℎ𝑗𝑗,0(𝑡𝑡) is the baseline intensity for transition from state ℎ to state 𝑗𝑗, 𝐴𝐴0 is the start time 

of the process, and the covariates coefficients 𝜷𝜷𝒉𝒉𝒉𝒉 are transition specific; in other words, 

the coefficients for the same covariates on different transition paths are specific to those 

paths.   
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We assume the baseline intensities follow the Weibull hazard form with scale 

parameter 𝜆𝜆ℎ𝑗𝑗 = 𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽ℎ𝑗𝑗,0� and shape parameter 𝜅𝜅ℎ𝑗𝑗 to accommodate the non-

homogeneous property. We have 

𝛼𝛼ℎ𝑗𝑗0(𝑡𝑡) = 𝜆𝜆ℎ𝑗𝑗𝜅𝜅ℎ𝑗𝑗𝑡𝑡𝜅𝜅ℎ𝑗𝑗−1 = 𝜅𝜅ℎ𝑗𝑗𝑡𝑡𝜅𝜅ℎ𝑗𝑗−1𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽ℎ𝑗𝑗,0�, ℎ = 1,2;  𝑗𝑗 = ℎ + 1, … ,4. 

Using the Weibull baseline hazards enable us to model a variety shapes of intensity 

forms. For example, the baseline intensity increases with age when 𝜅𝜅ℎ𝑗𝑗 > 1; the baseline 

intensity deceases with age when  0 < 𝜅𝜅ℎ𝑗𝑗 < 1; and the baseline intensity is time 

homogeneous when 𝜅𝜅ℎ𝑗𝑗 = 1. 

3.3.3 Observation Schemes 

Because the study design and the way the cognitive states were determined, the 

data is left truncated, right censored and interval-censored. First, the data is left truncated. 

Subjects included in the study are all at normal cognition state at their baseline, and we 

excluded these subjects who were already in MCI or dementia state from enrolling. Thus 

the data is left truncated [1]. Second, the data are also right censored. The right censoring 

occurs when participants drop out of the study before they develop dementia or die, or 

remain normal cognition or MCI at the end of the study. Since the cognitive states of 

participants are only assessed at discrete time points, the exact transition time into state 

MCI and dementia is unknown. The transition times are only known between two 

consecutive assessed time points where an transition were observed, thus the data is also 

interval-censored.  

The discrete-time observation scheme not only caused interval-censoring, but also 

lead to unobserved transitions. For example, a participant who is diagnosed with 
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dementia from normal cognition directly, it is unknown whether the participant has made 

the transition into MCI first or not. Similarly, if a subject dies with normal cognition at 

the latest assessment, it is not known whether the subject has made a transition into MCI 

in the interval between those events. Thus, it is possible that some transitions might not 

be observed and recorded in the data. 

Although the cognition assessments are made at discrete time points, the exact 

time of death can be retrieved and is recorded in the data. Since there is no cognition 

assessment at the time of death, the cognitive state just before death is unknown.  

There are total 6 possible observed transition paths for a subject, as shown in 

Figure 3.2. In the BRAiNS data, we set the start time of the process 𝐴𝐴𝑖𝑖,0 = 60 for all 

participants since they were all at least 60 years old at their baseline. Also let 𝐴𝐴𝑖𝑖,𝑏𝑏 be the 

age at baseline for participant 𝑙𝑙; 𝐴𝐴𝑖𝑖,1𝑁𝑁 be the age at the last time participant 𝑙𝑙 is observed 

in state 1 (normal); 𝐴𝐴𝑖𝑖,20 be the age at the first time the participant is observed in state 2 

(MCI); 𝐴𝐴𝑖𝑖,2𝑁𝑁 be the age at the last time the participant is observed in state 2; 𝐴𝐴𝑖𝑖,𝑁𝑁 be the 

age at the last time participant 𝑙𝑙 had an observation. We also write 𝑈𝑈𝑖𝑖,ℎ𝑗𝑗 to be the age at 

the time participant 𝑙𝑙 transitions from state ℎ to state 𝑗𝑗, for example,  𝑈𝑈𝑖𝑖,12 is the age at the 

time participant transitions from state 1 to state 2 and 𝑈𝑈𝑖𝑖,23 is the age at the time 

participant transitions from state 2 to state 3. All of 𝑈𝑈𝑖𝑖,12,𝑈𝑈𝑖𝑖,13 and 𝑈𝑈𝑖𝑖,23 are interval 

censored. The transition times to death, which are 𝑈𝑈𝑖𝑖,14 and 𝑈𝑈𝑖𝑖,24, are known exactly. In 

our case we have 𝑈𝑈𝑖𝑖,14 = 𝐴𝐴𝑖𝑖,𝑁𝑁 or 𝑈𝑈𝑖𝑖,24 = 𝐴𝐴𝑖𝑖,𝑁𝑁 if the last state recorded is death. 
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3.3.4 Likelihood 

Before we construct the likelihood for the model, we denote two transition 

probabilities that will help us write the likelihood function. First, we have 

𝑃𝑃11�𝐴𝐴𝑖𝑖,𝑏𝑏 , 𝑡𝑡� = 𝑒𝑒𝑒𝑒𝑝𝑝 �−�Λ𝑖𝑖,1(𝑡𝑡) − Λ𝑖𝑖,1�𝐴𝐴𝑖𝑖,𝑏𝑏���. 

Here, Λ𝑖𝑖,1(𝑡𝑡) is the cumulative hazard function of subject 𝑙𝑙 for leaving state 1 and it has 

the form: 

Λ𝑖𝑖,1(𝑡𝑡) = � �𝛼𝛼12(𝑢𝑢) + 𝛼𝛼13(𝑢𝑢) + 𝛼𝛼14(𝑢𝑢)�𝑑𝑑𝑢𝑢
𝑡𝑡

𝐴𝐴𝑖𝑖,0=60

= (𝑡𝑡 − 60)𝜅𝜅12 𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽12,0 + 𝜷𝜷12𝑇𝑇 𝒁𝒁� + (𝑡𝑡 − 60)𝜅𝜅13 𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽13,0 + 𝜷𝜷13𝑇𝑇 𝒁𝒁�

+ (𝑡𝑡 − 60)𝜅𝜅14 𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽14,0 + 𝜷𝜷14𝑇𝑇 𝒁𝒁� 

We also have 

𝑃𝑃22(𝑠𝑠, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑝𝑝 �−�Λ𝑖𝑖,2(𝑡𝑡) − Λ𝑖𝑖,2(𝑠𝑠)�� . 

Here, 

 Λ𝑖𝑖,2(𝑡𝑡) = � �𝛼𝛼23(𝑢𝑢) + 𝛼𝛼24(𝑢𝑢)�
𝑡𝑡

𝐴𝐴𝑖𝑖,0=60

= (𝑡𝑡 − 60)𝜅𝜅23 𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽23,0 + 𝜷𝜷23𝑇𝑇 𝒁𝒁� + (𝑡𝑡 − 60)𝜅𝜅24 𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽24,0 + 𝜷𝜷24𝑇𝑇 𝒁𝒁� 

We will discuss the likelihood construction by each of the six paths as shown in Figure 

3.2 .  

Path (1): the participant has no transition during the study and is stay in state 1 

(normal) at the end of study. In this case, the likelihood contribution for this participant 

would be 
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𝐿𝐿𝑖𝑖,1 = 𝑃𝑃11�𝐴𝐴𝑖𝑖,𝑏𝑏 ,𝐴𝐴𝑖𝑖,𝑁𝑁� = 𝑒𝑒𝑒𝑒𝑝𝑝 �−�Λ𝑖𝑖,1�𝐴𝐴𝑖𝑖,𝑁𝑁� − Λ𝑖𝑖,1�𝐴𝐴𝑖𝑖,𝑏𝑏���. 

Path (2): the participant has one observed transition from state normal to state 

MCI and stays in state MCI at the end of study. In this case, we have 

𝐿𝐿𝑖𝑖,2 = 𝑃𝑃�𝑋𝑋�𝐴𝐴𝑖𝑖,1𝑁𝑁� = 1,𝑋𝑋�𝐴𝐴𝑖𝑖,20� = 2,𝑋𝑋�𝐴𝐴𝑖𝑖,𝑁𝑁� = 2 |𝑋𝑋�𝐴𝐴𝑖𝑖,𝑏𝑏� = 1�                                                          

= � 𝑃𝑃�𝑋𝑋�𝑈𝑈𝑖𝑖,12 −� = 1|𝑋𝑋�𝐴𝐴𝑖𝑖,𝑏𝑏� = 1�𝛼𝛼12�𝑈𝑈𝑖𝑖,12�𝑃𝑃�𝑋𝑋�𝐴𝐴𝑖𝑖,𝑁𝑁� = 2|𝑋𝑋�𝑈𝑈𝑖𝑖,12� = 2�

𝐴𝐴𝑖𝑖,20

𝐴𝐴𝑖𝑖,1𝑁𝑁

𝑑𝑑𝑈𝑈𝑖𝑖,12

= � 𝑃𝑃11�𝐴𝐴𝑖𝑖,𝑏𝑏 ,𝑈𝑈𝑖𝑖,12�𝛼𝛼12�𝑈𝑈𝑖𝑖,12�𝑃𝑃22�𝑈𝑈𝑖𝑖,12,𝐴𝐴𝑖𝑖,𝑁𝑁�

𝐴𝐴𝑖𝑖,20

𝐴𝐴𝑖𝑖,1𝑁𝑁

𝑑𝑑𝑈𝑈𝑖𝑖,12                                                             

 

Path (3): the patient has one observed transition from normal to state dementia. In 

this case, because of the interval-censoring, there could be two possible true paths; we 

need to take into account all the information available in such cases of incomplete data. 

Scenario 1, the subject might have one transition from state normal directly to state 

dementia at time 𝑈𝑈𝑖𝑖,13. Scenario 2, the subject might have two transitions, first transition 

from state normal to state MCI at time 𝑈𝑈𝑖𝑖,12  then transition from state MCI to state 

dementia at time 𝑈𝑈𝑖𝑖,23. Thus, the likelihood of this path has two parts: 

𝐿𝐿𝑖𝑖,3 = 𝑃𝑃�𝑋𝑋�𝐴𝐴𝑖𝑖,1𝑁𝑁� = 1,𝑋𝑋�𝐴𝐴𝑖𝑖,𝑁𝑁� = 3|𝑋𝑋�𝐴𝐴𝑖𝑖,𝑏𝑏� = 1�                                                                                

= � 𝑝𝑝11�𝐴𝐴𝑖𝑖,𝑏𝑏 ,𝑈𝑈𝑖𝑖,13�𝛼𝛼13�𝑈𝑈𝑖𝑖,13�

𝐴𝐴𝑖𝑖,𝑁𝑁

𝐴𝐴𝑖𝑖,1𝑁𝑁

𝑑𝑑𝑈𝑈𝑖𝑖,13                                                                              

+ � � 𝑝𝑝11�𝐴𝐴𝑖𝑖,𝑏𝑏 ,𝑈𝑈𝑖𝑖,12�𝛼𝛼12�𝑈𝑈𝑖𝑖,12�𝑝𝑝22�𝑈𝑈𝑖𝑖,12,𝑈𝑈𝑖𝑖,23�𝛼𝛼23�𝑈𝑈𝑖𝑖,23�𝑑𝑑𝑈𝑈𝑖𝑖,12𝑑𝑑𝑈𝑈𝑖𝑖,23

𝐴𝐴𝑖𝑖,𝑁𝑁

𝑈𝑈𝑖𝑖,12

𝐴𝐴𝑖𝑖,𝑁𝑁

𝐴𝐴𝑖𝑖,1𝑁𝑁

 

Path (4): subject 𝑙𝑙 has one observed transition from state normal to death without 

dementia. Similar in Path (3), there could be two possible scenarios. The subject might 



 

40 
 

have just one transition from state 1 directly to state 4 at time 𝐴𝐴𝑖𝑖,𝑁𝑁; or it might have two 

transitions, first from state normal to state MCI at time 𝑈𝑈𝑖𝑖,12 then transition from state 

MCI to death at time 𝐴𝐴𝑖𝑖,𝑁𝑁. Note that in the BRAiNS data the exact age of death is 

recorded but the state just before death is unknown except dementia.  Thus the subject 

might be at either state normal or state MCI before death. The likelihood for this path can 

be calculated as follows: 

𝐿𝐿𝑖𝑖,4 = 𝑃𝑃�𝑋𝑋�𝐴𝐴𝑖𝑖,1𝑁𝑁� = 1,𝑋𝑋�𝐴𝐴𝑖𝑖,𝑁𝑁� = 4,𝑈𝑈𝑖𝑖,14 = 𝐴𝐴𝑖𝑖,𝑁𝑁|𝑋𝑋�𝐴𝐴𝑖𝑖,𝑏𝑏� = 1�                               
= 𝑝𝑝11�𝐴𝐴𝑖𝑖,𝑏𝑏 ,𝑈𝑈𝑖𝑖,14�𝛼𝛼14�𝑈𝑈𝑖𝑖,14�                                                                           

+ � 𝑝𝑝11�𝐴𝐴𝑖𝑖,𝑏𝑏,𝑈𝑈𝑖𝑖,12�𝛼𝛼12�𝑈𝑈𝑖𝑖,12�𝑝𝑝22�𝑈𝑈𝑖𝑖,12,𝐴𝐴𝑖𝑖,𝑁𝑁�𝛼𝛼24�𝑈𝑈𝑖𝑖,24|𝑈𝑈𝑖𝑖,12�𝑑𝑑𝑈𝑈𝑖𝑖,12

𝐴𝐴𝑖𝑖,𝑁𝑁

𝐴𝐴𝑖𝑖,1𝑁𝑁

 

Path (5): subject 𝑙𝑙 has two observed transitions, first transition from state normal 

to state MCI at time 𝑈𝑈𝑖𝑖,12 �𝐴𝐴𝑖𝑖,1𝑁𝑁 < 𝑈𝑈𝑖𝑖,12 ≤ 𝐴𝐴𝑖𝑖,20� and then from state MCI to state 

dementia at time 𝑈𝑈𝑖𝑖,23 �𝐴𝐴𝑖𝑖,2𝑁𝑁 < 𝑈𝑈𝑖𝑖,23 ≤ 𝐴𝐴𝑖𝑖,𝑁𝑁�. In this case we have 

 

𝐿𝐿𝑖𝑖,5 = 𝑃𝑃�𝑋𝑋�𝐴𝐴𝑖𝑖,1𝑁𝑁� = 1,𝑋𝑋�𝐴𝐴𝑖𝑖,20� = 2,𝑋𝑋�𝐴𝐴𝑖𝑖,2𝑁𝑁� = 2,𝑋𝑋�𝐴𝐴𝑖𝑖,𝑁𝑁� = 3 |𝑋𝑋�𝐴𝐴𝑖𝑖,𝑏𝑏� = 1�                                   

= � � � 𝑝𝑝11�𝐴𝐴𝑖𝑖,𝑏𝑏 ,𝑈𝑈𝑖𝑖,12�𝛼𝛼12�𝑈𝑈𝑖𝑖,12�𝑝𝑝22�𝑈𝑈𝑖𝑖,12,𝑈𝑈𝑖𝑖,23�𝛼𝛼23�𝑈𝑈𝑖𝑖,23�𝑑𝑑𝑈𝑈𝑖𝑖,23

𝐴𝐴𝑖𝑖,𝑁𝑁

𝐴𝐴𝑖𝑖,2𝑁𝑁

�𝑑𝑑𝑈𝑈𝑖𝑖,12

𝐴𝐴𝑖𝑖,20

𝐴𝐴𝑖𝑖,1𝑁𝑁

 

Path (6): subject 𝑙𝑙 has two observed transitions, the first is from state normal to 

state MCI at time 𝑈𝑈𝑖𝑖,12 �𝐴𝐴𝑖𝑖,1𝑁𝑁 < 𝑈𝑈𝑖𝑖,12 ≤ 𝐴𝐴𝑖𝑖,20� and the second is from state MCI to state 

death at time 𝐴𝐴𝑖𝑖,𝑁𝑁. In this case we have 

𝐿𝐿𝑖𝑖,6 = 𝑃𝑃�𝑋𝑋�𝐴𝐴𝑖𝑖,1𝑁𝑁� = 1,𝑋𝑋�𝐴𝐴𝑖𝑖,20� = 2,𝑋𝑋�𝐴𝐴𝑖𝑖,𝑁𝑁 −� = 2 ,𝑋𝑋�𝐴𝐴𝑖𝑖,𝑁𝑁� = 4|𝑋𝑋�𝐴𝐴𝑖𝑖,𝑏𝑏� = 1�  

= � 𝑝𝑝11�𝐴𝐴𝑖𝑖,𝑏𝑏 ,𝑈𝑈𝑖𝑖,12�𝛼𝛼12�𝑈𝑈𝑖𝑖,12�𝑝𝑝22�𝑈𝑈𝑖𝑖,12,𝐴𝐴𝑖𝑖,𝑁𝑁�𝛼𝛼24�𝐴𝐴𝑖𝑖,𝑁𝑁�

𝐴𝐴𝑖𝑖,20

𝐴𝐴𝑖𝑖,1𝑁𝑁

𝑑𝑑𝑈𝑈𝑖𝑖,12
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3.3.5 Parameter estimation 

Since there are no closed forms for likelihood, the trapezoidal rule is used to 

approximate the integrals to calculate the transition probabilities in terms of transition 

intensities. The parameter estimation is implemented by maximizing the conditional log-

likelihood. In particular, all the calculations are conducted in SAS PROC IML procedure 

[30]. The log likelihood function can be maximized by the Newton-Raphson Method. 

The Hessian matrix of the log likelihood function could be approximated by the finite-

differences method, and its inverse yields the estimated covariance matrix of the 

parameters. 

3.4 Simulation Study  

The main purpose of the simulation study is to examine the sensitivity of the 

MLEs of the beta estimates in Equation (1) and (2) to the violation of the Weibull 

assumption on the baseline transition intensities. The goal is to quantify how the different 

true underlying baseline transition intensities affects the covariate coefficient estimates 

using the Weibull baseline intensities in the model. The criteria are bias and mean square 

errors of the MLEs of the covariate coefficients.  

Data are generated from a model with the following transition intensity matrix 

𝑸𝑸(𝑡𝑡) = �

𝛼𝛼11(𝑡𝑡) 𝛼𝛼12,0(𝑡𝑡)𝑒𝑒𝑒𝑒𝑝𝑝(𝛽𝛽12𝑍𝑍)
0   𝛼𝛼22(𝑡𝑡)                      

𝛼𝛼13,0(𝑡𝑡)𝑒𝑒𝑒𝑒𝑝𝑝(𝛽𝛽13𝑍𝑍) 𝛼𝛼14,0(𝑡𝑡)𝑒𝑒𝑒𝑒𝑝𝑝(𝛽𝛽14𝑍𝑍)
𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽23,0�              𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽24,0�              

0      0
0      0                             0                                 0

0                                 0                               
�. 

Here, 𝑍𝑍 is a binary covariate distributed as Bernoulli (0.5) and (𝛽𝛽12,𝛽𝛽13,𝛽𝛽14) are the 

corresponding coefficients. We set the true values of the coefficients(𝛽𝛽12,𝛽𝛽13,𝛽𝛽14) =



 

42 
 

(2.0, 1.5, 0). For the baseline intensities 𝛼𝛼12,0(𝑡𝑡),𝛼𝛼13,0(𝑡𝑡), and 𝛼𝛼14,0(𝑡𝑡), we consider three 

different forms:  

(1) Exponential: 𝛼𝛼1𝑗𝑗,0(𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑝𝑝(𝛽𝛽1𝑗𝑗,0
𝐸𝐸 ) , 𝑗𝑗 = 2, 3, 4. We �𝛽𝛽12,0

E ,𝛽𝛽13,0
E ,𝛽𝛽14,0

E � =

(−4.2,−4.3,−4) for the true model.  

(2) Weibull: 𝛼𝛼1𝑗𝑗,0(𝑡𝑡) = 𝜆𝜆1𝑗𝑗𝜅𝜅1𝑗𝑗𝑡𝑡𝜅𝜅1𝑗𝑗 =  𝑒𝑒𝑒𝑒𝑝𝑝(𝛽𝛽1𝑗𝑗,0
𝑊𝑊 )𝜅𝜅1𝑗𝑗𝑡𝑡𝜅𝜅1𝑗𝑗−1 , 𝑗𝑗 = 2, 3, 4. We 

set �𝛽𝛽12,0
W ,𝛽𝛽13,0

W ,𝛽𝛽14,0
W � = (−6.5,−6.7,−6) and (κ12,κ13, κ14) = (1.9, 2, 2.1). 

(3) Gompertz: 𝛼𝛼1𝑗𝑗,0(𝑡𝑡) = 𝛿𝛿1𝑗𝑗 𝑒𝑒𝑒𝑒𝑝𝑝�𝛾𝛾1𝑗𝑗𝑡𝑡� = 𝑒𝑒𝑒𝑒 𝑝𝑝�𝛽𝛽1𝑗𝑗,0
𝐺𝐺 + 𝛾𝛾1𝑗𝑗𝑡𝑡� , 𝑗𝑗 = 2, 3, 4. 

Here, �𝛽𝛽12,0
G ,𝛽𝛽13,0

G ,𝛽𝛽14,0
G � = (−8.3,−8.6,−8.1) and (γ12, γ13, γ14) =

(0.2, 0.22, 0.26). 

To simplify, we set the transition intensities from MCI to dementia and death to 

be time-homogenous. We set �𝛽𝛽23,0,𝛽𝛽24,0� = (−1.5,−2.0) in the true model. Choice of 

the model parameters is made to come as close to those estimated from the real dataset of 

the next section without producing simulations that lead to non-estimable parameters, i.e. 

the likelihood function fails to converge. 

The processes are annually observed starting from State 1 (Normal cognition), 

with up to 25 follow-up waves. Latent failure time method [37, 38] is used to simulate the 

multi-state data. Simulations were set to have 1000 iterations, with each containing either 

300 or 500 subjects. All simulations are done using the IML procedure [30] in SAS 

system. The results are presented in Table 3.1 Simulation results of covariate effects for 

sample sizes 300 and 500. 
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As expected, increasing the sample size improves the estimates in terms of 

reducing mean squared error (MSE) and increasing 95% confidence coverage rates. The 

biases are reduced considerably when the sample size is increased.  

The simulation results also show that the proposed model using Weibull baseline 

intensities provides good estimates of the covariate coefficients even in cases where the 

true baseline intensities are not Weibull. For all the three intensity forms considered in 

this study, the bias and mean square error (MSE) of the estimated effects are all relatively 

small. The nominal 95% confidence coverage rates are all close to 95%, except the 

91.36% for the Exponential form and 91.75% for the Gompertz form for sample size 300. 

3.5 Application to the BRAiNS Study 

Subjects included in the current study (n=531) were assessed at least two times 

and comprise those included in a previous report [24]. All subjects were cognitively 

normal at study entry. The mean baseline age of these participants was 72.6 ± 7.5 years. 

The mean number of cognitive assessments for the cohort was 10.3 ± 4.1. During this 

follow-up period participants made transitions into MCI and or dementia, while many 

others died before such transitions.  

The frequency of each type of transition is provided in Table 3.2. Note that over 

one-third of the subjects (35.6%) are still at risk for a serious cognitive impairment, while 

another third (35.8%) died before converting to a clinical MCI or dementia state. Another 

19 subjects with MCI (3.6%) died before converting to dementia. Also, 105 (19.8%) of 

the participants transitioned to clinical MCI during follow-up, and 31 of these remain at 

risk for a dementia or death. Finally, 88 participants (16.6%) developed dementia during 
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follow-up, with 52 of these transitioning directly from normal to dementia between 

successive cognitive assessments. 

Risk factors of interest here include APOE4 (Apolipoprotein E-4 allele) status, 

female gender, and low education (coded as 12 years or less, or more than 12 years). The 

subjects have an average of 16.0±2.4 years of education. About 63.1% of the patients are 

female and about 30.4% have at least one APOE E-4 allele.  

We applied the proposed Weibull model, as well as a time-homogenous model, 

and a piecewise-constant model to the BRAiNS data for comparisons. Time-homogenous 

model and piecewise-constant model have been discussed in detail by Jackson [29]. Since 

all participants were older than 60 years old at baseline, the time scale used in the 

Weibull model is the participant’s age minus 60. In the piecewise-constant model, we 

divided the age into three periods, below 75, between 75 and 90, and above 90.  

Figure 3.3 presents the baseline transition intensities estimated from three models. 

Solid line represents the intensity curves estimated by the proposed Weibull model. 

Dotted horizontal lines are estimated from the time-homogenous model, and the dash 

stepwise lines are from the piecewise-constant model. Here we could see both piecewise-

constant model and Weibull model show that the transition intensities increase as 

participants get older.  

Table 3.3 lists the hazard ratios and the corresponding 95% confidence interval 

(95% C.I.) for each covariate on each of the 5 transition paths by the three models 

mentioned above. The results of the hazard ratio estimates are close among these three 

models. Having at least one APOE4 (versus no APOE4) significantly increases the 

hazard rate for the transition from Normal to MCI, and cognitively normal females have 
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lower hazard of death than males. The proposed Weibull model also shows that having 

APOE4 would also increase the hazard ratio of transition from normal cognitive directly 

to dementia, which is consistent with the previous studies [2, 20, 22]. While, the time-

homogenous model and piecewise-constant model failed to indicate the effect of APOE4 

on transition from normal cognitive directly to dementia. The Akaike information 

criterion (AIC) statistics also show that the proposed Weibull model has the best fit 

among the three models, while the time-homogenous model has the worst fit. This further 

verifies that it is unrealistic to assume the time homogenous transition intensities in 

practice. 

3.6 Discussion 

Continuous-time multi-state models are useful in analyzing longitudinal event 

data. The regression models are simple and intuitive. All the characteristics of disease 

progression process could be modeled through the regression of intensity functions. The 

coefficients of the covariates have a similar log hazard ratio explanation as in survival 

models. Interval-censored data can be easily incorporated in the model, and it allows 

equally spaced longitudinal data in which the time interval between two consecutive 

longitudinal records varies.  

We have presented non-homogeneous Markov models with incorporation of 

Weibull distribution to analyze multi-state longitudinal data. Our Weibull assumption 

allows us to have non-homogenous hazards, which is more appropriate for most 

applications than the widely used homogenous model. Unlike many other non-

homogenous models, we are still able to construct the exact likelihood function through 
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our unique model structure, combining Weibull type non-homogenous and homogenous 

hazards. 

Another advantage of our continuous Weibull model is that it allows us to fit both 

right censored and interval-censored data easily. In practice the mixed discrete and 

continuous pattern of observational data is very common in chronic disease studies. 

Patients are scheduled to visit the hospital at some pre-specified time points, so the exact 

transition times are interval-censored. In most cases, the death time is known exactly, but 

the state just before the death is unknown. Our continuous Weibull model works well for 

both situations. 

One limitation of the proposed model is that the likelihood of our model does not 

have a closed form, which is needed to calculate the integrals. Multiple integrations were 

involved in the likelihood construction. The use of numerical integration solves our 

problem, but it reduces the estimation speed of our program, since hundreds of iterations 

are needed for each integration calculation. A faster and more reliable numerical 

integration method might help.  

One possible avenue for future work is verification of the model assumptions, 

such as the Markov assumption for transition intensities and the proportional hazards 

assumption on covariate effects. A Semi-Markov Model might be a possibility if the 

Markov assumption is violated.  

In conclusion, exponential regression Markov models with incorporation of the 

Weibull distribution were developed to a four state model to model the effects of 

covariates on the natural history of chronic disease with dispensing constant hazard 

assumption and with necessity for data on interval and right censored cases. In addition to 
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Alzheimer disease, our non-homogenous Markov model with Weibull assumption can be 

easily applied to data for other chronic disease with or without interval cases.  
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Table 3.1 Simulation results of covariate effects for sample sizes 300 and 500 
N True Baseline Coefficient (True value) Bias MSE 95% CR 
300 Exponential 𝛽𝛽12(2.0) -0.007 0.075 91.4% 
  𝛽𝛽13(1.5) 0.020 0.082 93.9% 
  𝛽𝛽14(0.0) -0.006 0.144 95.5% 
 Weibull 𝛽𝛽12(2.0) 0.034 0.076 94.0% 
  𝛽𝛽13(1.5) 0.030 0.070 95.0% 
  𝛽𝛽14(0.0) -0.020 0.066 95.6% 
 Gompertz 𝛽𝛽12(2.0) -0.089 0.104 91.8% 
  𝛽𝛽13(1.5) -0.039 0.099 93.0% 
  𝛽𝛽14(0.0) -0.055 0.060 95.0% 
500 Exponential 𝛽𝛽12(2.0) -0.005 0.043 94.4% 
  𝛽𝛽13(1.5) 0.007 0.046 94.0% 
  𝛽𝛽14(0.0) -0.001 0.085 96.7% 
 Weibull 𝛽𝛽12(2.0) 0.015 0.038 96.5% 
  𝛽𝛽13(1.5) -0.004 0.044 95.5% 
  𝛽𝛽14(0.0) 0.006 0.036 96.3% 
 Gompertz 𝛽𝛽12(2.0) -0.083 0.062 93.3% 
  𝛽𝛽13(1.5) -0.065 0.061 95.0% 
    𝛽𝛽14(0.0) -0.055 0.032 95.8% 

Note: N--number of subjects, MSE--mean square error, 95% CP--95% confidence 
coverage rate. 
 

 

Table 3.2 Observed transition frequency of each transition type 
Transition Type Frequency Percent % 
Normal → Normal 184 35.65 
Normal → MCI 52 9.79 
Normal → Dementia 19 3.58 
Normal → Death 190 35.78 
Normal  → MCI → MCI 31 5.84 
Normal  → MCI → Dementia 36 6.78 
Normal  → MCI → Death 19 3.58 
Total 531 100 
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Table 3.3 Hazard Ratio estimates of each covariate by three models 
    Hazard Ratio (95% C.I.) 

Risk Factor Path Time 
homogeneous Piece-wise constant Weibull 

APOE4 1->2 1.73 (1.14, 2.62) 1.90 (1.25, 2.87) 1.90 (1.26, 2.85 ) 
1->3 1.75 (0.80, 3.85) 1.98 (0.90, 4.37) 2.03 (1.08, 3.81 ) 
1->4 0.71 (0.48, 1.04) 0.78 (0.53, 1.15) 0.83 (0.57, 1.22 ) 
2->3 1.01 (0.48, 2.13) 0.98 (0.46, 2.08) 0.98 (0.48, 2.00 ) 
2->4 1.90 (0.76, 4.75) 1.86 ( 0.73, 4.72) 1.78 (0.70, 4.52 ) 

Low 
Education 

1->2 1.55 (0.90, 2.67) 1.54 ( 0.89, 2.67) 1.55 (0.91, 2.64 ) 
1->3 0.39 (0.04, 3.85) 0.31 ( 0.02, 5.08) 0.44 (0.10, 1.98 ) 
1->4 1.19 (0.74, 1.91) 1.14 ( 0.71, 1.82) 1.07 (0.67, 1.72 ) 
2->3 0.92 (0.33, 2.60) 0.97 ( 0.34, 2.78) 0.94 (0.34, 2.56 ) 
2->4 0.61 (0.15, 2.53) 0.59 ( 0.14, 2.51 ) 0.63 (0.15, 2.55 ) 

Female 1->2 0.82 (0.55, 1.23) 0.85 ( 0.57, 1.27 ) 0.79 (0.53, 1.18 ) 
1->3 1.94 (0.78, 4.79) 1.67 ( 0.69, 4.07 ) 1.73 (0.84, 3.57 ) 
1->4 0.71 (0.52, 0.97) 0.65 ( 0.48, 0.89 ) 0.67 (0.50, 0.92 ) 
2->3 1.66 (0.83, 3.35) 1.75 ( 0.80, 3.83 ) 1.63 (0.81, 3.25 ) 
2->4 1.17 (0.48, 2.88) 1.21 ( 0.46, 3.19 ) 1.15 (0.46, 2.89 ) 

AIC*   3521.48 3346.88 3298.25 
Bold number: significant at 0.05 level. * Akaike information criterion. 
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Figure 3.1 Transition flows of the four-state model 
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Figure 3.2 Possible observed transition paths 
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Figure 3.3 Baseline intensities estimated by three models for the BRAiNS data. 
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Chapter 4 A four-state Semi-Markov model with interval censored data and 

time-dependent covariates 

4.1 Introduction 

Longitudinal event-history data arises in many chronic disease studies, such as 

dementia [11], diabetes [39], HIV [40], cancer [41], liver cirrhosis [26], just to name a 

few. There are multiple possible states or stages in the process of the disease. For 

example, in the study of dementia, although dementia is the outcome of interest, study 

participants could first convert to clinically relevant states such as clinical mild 

cognitive impairment (MCI) for several years before finally entering a demented state. 

Participants in these longitudinal studies are usually observed over time. The outcome 

data consist of times of occurrence of transitions from one state to another state and 

the types of transitions that occur.  

In the analysis of longitudinal event-history data, the first issue is to handle 

intermediate states and final absorbing states at the same time. The final absorbing 

states are usually the disease states of primary interest. However, the process of the 

disease will change dramatically if participants enter into a particular intermediate 

state. For example, in the development of dementia, participants with clinical MCI 

will have much higher risk converting to dementia than those without clinical MCI 

[20].  

As an extension of survival models, Markov multi-state models [4-6, 42] 

enable researchers to investigate the transitions among multiple states at the same 

time. Two types of multi-state models are mainly used in practice. The multi-state 

Markov chain models are not appropriate when the longitudinal data are unequally 

spaced. Participants are usually assessed periodically, leading to interval censoring 

observations of transitions between the states. An alternative to handle interval 
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censored data is to model the transitions as a continuous-time Markov process. The 

process can be fully characterized by its transition intensities. In many applications, 

the Markov assumption might not be appropriate and may lead to biased conclusions. 

For instance, in the study of dementia, a person often first converts to a clinically 

relevant outcome such as clinical mild cognitive impairment (MCI) for several years 

before finally entering a demented state. The time spent at MCI seems to have a 

strong association to the future development of the dementia process.  In this 

manuscript, we propose a continuous-time semi-Markov model to account for the 

effects of holding times on the future development of the disease process. The 

proposed model allows the transition intensities to be dependent on both the calendar 

time and the holding time the participant spends in the current state. This model can 

also handle left-truncation, interval-censored, right censored data. Both baseline and 

time-dependent covariates can be easily added into the model assuming the 

proportional hazards regression form. To facilitate the model building process, we 

also provide two model selection strategies and a graphic goodness-of-fit method 

based on prevalence counts [43]. 

The remaining of this chapter is structured as follows. In Section 4.2, we detail 

the model and the associated inference methods. In Section 4.3, we propose two 

model selection strategies to facilitate the model building process. In Section 4.4, a 

graphic goodness-of-fit method will be presented to check how the model fits the 

data. Results of the application to the BRAiNS data will be presented in Section 4.5. 

In the last section, we discuss the proposed method and outline some possible future 

directions.  
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4.2 The method 

In this section, we introduce the notation and the likelihood function for the 

four-state semi-Markov model. The four-state model is an extension of the widely 

used “illness-death” model. We relax the commonly assumed Markov property, 

letting the future evolution of the process not only depend on the current state, but 

also on the entry time into the current state. Time dependent covariates can be easily 

incorporated into the model through proportional hazard properties for the transition 

intensities. 

4.2.1 The Semi-Markov Framework 

Different from a Markov process, the future of a semi-Markov process is not 

only dependent on the current state but also on the time the process entry into the 

current state. Let 𝑋𝑋(𝑡𝑡) be a continuous time semi-Markov process with a finite state 

space S = {1,2,3,4}. Define the transition probability from state ℎ at time 𝑠𝑠 to state 𝑗𝑗 

at time 𝑡𝑡 given that the process entry into state ℎ at time 𝜏𝜏ℎ as 

 𝑝𝑝ℎ𝑗𝑗(𝑠𝑠, 𝑡𝑡|𝜏𝜏ℎ) =𝑃𝑃(𝑋𝑋(𝑡𝑡) = 𝑗𝑗|𝑋𝑋(𝑠𝑠) = ℎ, 𝜏𝜏ℎ) 𝜏𝜏ℎ < s < t. 

The associated transition intensity has the following definition 

𝛼𝛼ℎ𝑗𝑗(𝑡𝑡|𝜏𝜏ℎ) = �
lim
∆𝑡𝑡→0

𝑝𝑝ℎ𝑗𝑗(𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡|𝜏𝜏ℎ)/∆𝑡𝑡 , 𝑗𝑗 ≠ ℎ

−�𝛼𝛼ℎ𝑘𝑘(𝑡𝑡|𝜏𝜏ℎ)
𝑘𝑘≠ℎ

,                          𝑗𝑗 = ℎ , 

which represents the instantaneous hazard of transition from the current state ℎ to 

state 𝑗𝑗 at time 𝑡𝑡 given the current state ℎ and entry time 𝜏𝜏ℎ when ℎ ≠ 𝑗𝑗.  

The time scale 𝑡𝑡 is the age of participants in this study. Since each subject is in 

the same initial state, normal, at baseline in our motivating example, we do not have a 

left truncation problem and simply assume a unique time (age 60) as the time origin 

for all subjects, which is the time we assumed participant entry into the state normal. 
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The strategy of dealing with initial time points is applied by Kryscio, et al. [22] and 

Kapetanakis, et al.[17]. Thus we have 𝜏𝜏1 = 60. 

4.2.2 Weibull Regression Model 

Time dependent covariates 𝒁𝒁(𝑡𝑡) can be incorporated into the transition intensities 

using the proportional intensity regression model: 

𝛼𝛼ℎ𝑗𝑗(𝑡𝑡|𝜏𝜏ℎ) = 𝛼𝛼ℎ𝑗𝑗,0(𝑡𝑡|𝜏𝜏ℎ) 𝑒𝑒𝑒𝑒𝑝𝑝 �𝜷𝜷ℎ𝑗𝑗𝑇𝑇 𝒁𝒁(𝑡𝑡)� , 𝑗𝑗 ≠ ℎ . 

Here 𝛼𝛼ℎ𝑗𝑗,0(𝑡𝑡|𝜏𝜏ℎ) is called the baseline transition intensity. We assume the baseline 

intensities have the time reset property. Let 𝑤𝑤 = 𝑡𝑡 − 𝜏𝜏ℎ be the holding time the 

participant has been in the current state, we have 

𝛼𝛼ℎ𝑗𝑗,0(𝑡𝑡|𝜏𝜏ℎ) = �
𝛼𝛼ℎ𝑗𝑗,0(𝑡𝑡 − 𝜏𝜏ℎ) = 𝛼𝛼ℎ𝑗𝑗,0(𝑤𝑤),            𝑡𝑡 ≥ 𝜏𝜏ℎ
0                                                        𝑡𝑡 < 𝜏𝜏ℎ

 

We assume the baseline intensity functions have the Weibull form 

𝛼𝛼ℎ𝑗𝑗,0(𝑤𝑤) = 𝜆𝜆ℎ𝑗𝑗𝜅𝜅ℎ𝑗𝑗𝑤𝑤𝜅𝜅ℎ𝑗𝑗−1 = 𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽ℎ𝑗𝑗,0�𝜅𝜅ℎ𝑗𝑗𝑤𝑤𝜅𝜅ℎ𝑗𝑗−1. 

Here, the scale parameter is 𝜆𝜆ℎ𝑗𝑗 = 𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽ℎ𝑗𝑗,0� > 0 and the shape parameter is 𝜅𝜅ℎ𝑗𝑗 >

0.  

4.2.3 The Likelihood Function 

Since we assume the target populations are all cognitively normal at the age of 

60, and that participants who were not in the normal cognition state at their baseline 

age are left out of the dataset, the data are left truncated. And also we only observed 

the participants at discrete fixed time points, the entering times into state MCI and 

dementia are interval censored. The right censored data occurs when participants drop 

out of the study before they develop MCI or dementia, or is still in normal cognition 

or MCI at the end of the study. There are also possibilities that some transitions might 

not be observed. For example, if a participant was assessed as normal at this 
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assessment and then assessed as dementia at the next assessment, it is possible that he 

or she might have an observed transition from normal to MCI before finally 

converting to dementia sometime between assessments. We will consider all these 

cases when constructing the likelihood function. 

To construct the likelihood, we let 𝐴𝐴𝑖𝑖,10 be the age before the beginning of the 

study at which participants first enter into the initial state (normal), here we 

have 𝐴𝐴𝑖𝑖,0 = 𝜏𝜏1 = 60. Also let 𝐴𝐴𝑖𝑖,𝑏𝑏 be the age at baseline for participant 𝑙𝑙; 𝐴𝐴𝑖𝑖,1𝑁𝑁 be the 

age at the last time participant 𝑙𝑙 is observed in state 1 (normal); 𝐴𝐴𝑖𝑖,20 be the age at the 

first time the participant is observed in state 2 (MCI); 𝐴𝐴𝑖𝑖,2𝑁𝑁 be the age at the first time 

the participant is observed in state 2; 𝐴𝐴𝑖𝑖,𝑁𝑁 be the age at the last time participant 𝑙𝑙 had 

an observation. Let 𝑈𝑈𝑖𝑖,ℎ𝑗𝑗  be the age when participant 𝑙𝑙 transitions from state ℎ to 

state 𝑗𝑗, for example,  𝑈𝑈𝑖𝑖,12 is the age at the time participant transition from state 1 to 

state 2 and 𝑈𝑈𝑖𝑖,23 is the age at the time participant transition from state 2 to state 3. 

These ages are all interval censored. However, the transition times to death, which 

are 𝑈𝑈𝑖𝑖,14 and 𝑈𝑈𝑖𝑖,24, are known exactly. In our case we have 𝑈𝑈𝑖𝑖,14 = 𝐴𝐴𝑖𝑖,𝑁𝑁 or  𝑈𝑈𝑖𝑖,24 =

𝐴𝐴𝑖𝑖,𝑁𝑁 if the last state recorded is death. Since every subject starts at state 1, and the 

process has no backward transitions, we have 𝜏𝜏2 = 𝑈𝑈𝑖𝑖,12, which is interval 

censored: 𝐴𝐴𝑖𝑖,1𝑁𝑁 < 𝜏𝜏2 = 𝑈𝑈𝑖𝑖,12 ≤ 𝐴𝐴𝑖𝑖,20. Thus we have 

𝛼𝛼2𝑗𝑗(𝑡𝑡|𝜏𝜏2) = 𝛼𝛼2𝑗𝑗�𝑡𝑡|𝑈𝑈𝑖𝑖,12�, 𝑡𝑡 ≥ 𝑈𝑈𝑖𝑖,12. 

Before we construct the likelihood for the model, we denote two transition 

probabilities that will help us write the likelihood functions. First, we 

write 𝑝𝑝11�𝐴𝐴𝑖𝑖,𝑏𝑏 , 𝑡𝑡� = 𝑃𝑃�𝑋𝑋(𝑡𝑡) = 1|𝑋𝑋�𝐴𝐴𝑖𝑖,𝑏𝑏� = 1�, which is the probability that the 

participant is still in state normal at time 𝑡𝑡 given it was at state normal at baseline 

age 𝐴𝐴𝑖𝑖,𝑏𝑏. We have 
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𝑝𝑝11�𝐴𝐴𝑖𝑖,𝑏𝑏 , 𝑡𝑡� = 𝑒𝑒𝑒𝑒𝑝𝑝 �− �Λ𝑖𝑖,1(𝑡𝑡) − Λ𝑖𝑖,1�𝐴𝐴𝑖𝑖,𝑏𝑏���. 

Here, Λ𝑖𝑖,1(𝑡𝑡) is the cumulative hazard function of subject 𝑙𝑙 for leaving state 1 and it 

has the form: 

Λ𝑖𝑖,1(𝑡𝑡) = � �𝛼𝛼12(𝑢𝑢) + 𝛼𝛼13(𝑢𝑢) + 𝛼𝛼14(𝑢𝑢)�𝑑𝑑𝑢𝑢
𝑡𝑡

𝐴𝐴𝑖𝑖,10=60

 

We also write 𝑝𝑝22�𝑈𝑈𝑖𝑖,12, 𝑡𝑡� = 𝑃𝑃�𝑋𝑋(𝑡𝑡) = 2|𝑋𝑋�𝑈𝑈𝑖𝑖,12� = 2, 𝜏𝜏2 = 𝑈𝑈𝑖𝑖,12 �, which is 

the probability that the subject remains in state 2 given that it entered state 2 at 

time 𝑈𝑈𝑖𝑖,12. We have 

𝑝𝑝22�𝑈𝑈𝑖𝑖,12, 𝑡𝑡� = 𝑒𝑒𝑒𝑒𝑝𝑝�− � �𝛼𝛼23�𝑢𝑢|𝑈𝑈ℎ,12� + 𝛼𝛼24�𝑢𝑢|𝑈𝑈ℎ,12��
𝑡𝑡

𝑈𝑈𝑖𝑖,12

𝑑𝑑𝑢𝑢� 

There would be total 6 possible observed transition paths for a subject, as 

shown in Figure 3.2. We will discuss the likelihood construction below case by case.  

Path (1): the patient has no transition during the study and is still in state 1 

(normal) at the end of study. In this case, the likelihood for this patient would be 

𝐿𝐿𝑖𝑖,1 = 𝑃𝑃�𝑋𝑋�𝐴𝐴𝑖𝑖,𝑁𝑁� = 1|𝑋𝑋�𝐴𝐴𝑖𝑖,𝑏𝑏� = 1� = 𝑝𝑝11�𝐴𝐴𝑖𝑖,𝑏𝑏 ,𝐴𝐴𝑖𝑖,𝑁𝑁�

= 𝑒𝑒𝑒𝑒𝑝𝑝 �− �Λ𝑖𝑖,1�𝐴𝐴𝑖𝑖,𝑁𝑁� − Λ𝑖𝑖,1�𝐴𝐴𝑖𝑖,𝑏𝑏���. 

Path (2): the patient has one observed transition from state normal to state 

MCI and stays in state MCI at the end of study. In this case, we have 

𝐿𝐿𝑖𝑖,2 = 𝑃𝑃�𝑋𝑋�𝐴𝐴𝑖𝑖,1𝑁𝑁� = 1,𝑋𝑋�𝐴𝐴𝑖𝑖,20� = 2,𝑋𝑋�𝐴𝐴𝑖𝑖,𝑁𝑁� = 2 |𝑋𝑋�𝐴𝐴𝑖𝑖,𝑏𝑏� = 1�                                                    

= � 𝑝𝑝11�𝐴𝐴𝑖𝑖,𝑏𝑏 ,𝑈𝑈𝑖𝑖,12�𝛼𝛼12�𝑈𝑈𝑖𝑖,12�𝑝𝑝22�𝑈𝑈𝑖𝑖,12,𝐴𝐴𝑖𝑖,𝑁𝑁�

𝐴𝐴𝑖𝑖,20

𝐴𝐴𝑖𝑖,1𝑁𝑁

𝑑𝑑𝑈𝑈𝑖𝑖,12
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Path (3): the patient has one observed transition from normal to state 

dementia. In this case, because of the interval-censoring, there could be two possible 

true paths, we need to take into account all the information available in such type of 

incomplete data. Scenario 1, the subject might have one transition from state normal 

directly to state dementia at time 𝑈𝑈𝑖𝑖,13. Scenario 2, the subject might have two 

transitions, first transition from state normal to state MCI at time 𝑈𝑈𝑖𝑖,12  then transition 

from state MCI to state dementia at time 𝑈𝑈𝑖𝑖,23. Thus, the likelihood of this path has 

two parts: 

𝐿𝐿𝑖𝑖,3 = 𝑃𝑃�𝑋𝑋�𝐴𝐴𝑖𝑖,1𝑁𝑁� = 1,𝑋𝑋�𝐴𝐴𝑖𝑖,𝑁𝑁� = 3|𝑋𝑋�𝐴𝐴𝑖𝑖,𝑏𝑏� = 1�                                                                                

= � 𝑝𝑝11�𝐴𝐴𝑖𝑖,𝑏𝑏 ,𝑈𝑈𝑖𝑖,13�𝛼𝛼13�𝑈𝑈𝑖𝑖,13�

𝐴𝐴𝑖𝑖,𝑁𝑁

𝐴𝐴𝑖𝑖,1𝑁𝑁

𝑑𝑑𝑈𝑈𝑖𝑖,13                                                                              

+ � � 𝑝𝑝11�𝐴𝐴𝑖𝑖,𝑏𝑏 ,𝑈𝑈𝑖𝑖,12�𝛼𝛼12�𝑈𝑈𝑖𝑖,12�𝑝𝑝22�𝑈𝑈𝑖𝑖,12,𝑈𝑈𝑖𝑖,23�𝛼𝛼23�𝑈𝑈𝑖𝑖,23|𝑈𝑈𝑖𝑖,12�𝑑𝑑𝑈𝑈𝑖𝑖,12𝑑𝑑𝑈𝑈𝑖𝑖,23

𝐴𝐴𝑖𝑖,𝑁𝑁

𝐴𝐴𝑖𝑖,1𝑁𝑁

𝐴𝐴𝑖𝑖,𝑁𝑁

𝐴𝐴𝑖𝑖,1𝑁𝑁

 

Path (4): subject 𝑙𝑙 has one observed transition from state normal to death 

without dementia. Similar in Path (3), there could be two possible scenarios. The 

subject might have just one transition from state 1 directly to state 4 at time 𝐴𝐴𝑖𝑖,𝑁𝑁; or it 

might have two transitions, first from state normal to state MCI at time 𝑈𝑈𝑖𝑖,12 then 

transition from state MCI to death at time 𝐴𝐴𝑖𝑖,𝑁𝑁. Note that in BRAiNS data the exact 

age of death is recorded but the state just before death is unknown except dementia.  

Thus the subject might be at either state normal or state MCI before death. The 

likelihood for this path can be calculated as follows: 

𝐿𝐿𝑖𝑖,4 = 𝑃𝑃�𝑋𝑋�𝐴𝐴𝑖𝑖,1𝑁𝑁� = 1,𝑋𝑋�𝐴𝐴𝑖𝑖,𝑁𝑁� = 4,𝑈𝑈𝑖𝑖,14 = 𝐴𝐴𝑖𝑖,𝑁𝑁|𝑋𝑋�𝐴𝐴𝑖𝑖,𝑏𝑏� = 1�                               
= 𝑝𝑝11�𝐴𝐴𝑖𝑖,𝑏𝑏 ,𝑈𝑈𝑖𝑖,14�𝛼𝛼14�𝑈𝑈𝑖𝑖,14�                                                                           

+ � 𝑝𝑝11�𝐴𝐴𝑖𝑖,𝑏𝑏 ,𝑈𝑈𝑖𝑖,12�𝛼𝛼12�𝑈𝑈𝑖𝑖,12�𝑝𝑝22�𝑈𝑈𝑖𝑖,12,𝐴𝐴𝑖𝑖,𝑁𝑁�𝛼𝛼24�𝐴𝐴𝑖𝑖,𝑁𝑁|𝑈𝑈𝑖𝑖,12�𝑑𝑑𝑈𝑈𝑖𝑖,12

𝐴𝐴𝑖𝑖,𝑁𝑁

𝐴𝐴𝑖𝑖,1𝑁𝑁
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Path (5): subject 𝑙𝑙 has two observed transitions, first transition from state 

normal to state MCI at time 𝑈𝑈𝑖𝑖,12 �𝐴𝐴𝑖𝑖,1𝑁𝑁 < 𝑈𝑈𝑖𝑖,12 ≤ 𝐴𝐴𝑖𝑖,20� and then from state MIC to 

state dementia at time 𝑈𝑈𝑖𝑖,23 �𝐴𝐴𝑖𝑖,2𝑁𝑁 < 𝑈𝑈𝑖𝑖,23 ≤ 𝐴𝐴𝑖𝑖,𝑁𝑁�. In this case we have 

 

𝐿𝐿𝑖𝑖,5 = 𝑃𝑃�𝑋𝑋�𝐴𝐴𝑖𝑖,1𝑁𝑁� = 1,𝑋𝑋�𝐴𝐴𝑖𝑖,20� = 2,𝑋𝑋�𝐴𝐴𝑖𝑖,2𝑁𝑁� = 2,𝑋𝑋�𝐴𝐴𝑖𝑖,𝑁𝑁� = 3 |𝑋𝑋�𝐴𝐴𝑖𝑖,𝑏𝑏� = 1�                                   

= � � � 𝑝𝑝11�𝐴𝐴𝑖𝑖,𝑏𝑏 ,𝑈𝑈𝑖𝑖,12�𝛼𝛼12�𝑈𝑈𝑖𝑖,12�𝑝𝑝22�𝑈𝑈𝑖𝑖,12,𝑈𝑈𝑖𝑖,23�𝛼𝛼23�𝑈𝑈𝑖𝑖,23|𝑈𝑈𝑖𝑖,12�𝑑𝑑𝑈𝑈𝑖𝑖,23

𝐴𝐴𝑖𝑖,𝑁𝑁

𝐴𝐴𝑖𝑖,2𝑁𝑁

�𝑑𝑑𝑈𝑈𝑖𝑖,12

𝐴𝐴𝑖𝑖,20

𝐴𝐴𝑖𝑖,1𝑁𝑁

 

Path (6): subject 𝑙𝑙 has two observed transitions, the first is from state normal 

to state MCI at time 𝑈𝑈𝑖𝑖,12 �𝐴𝐴𝑖𝑖,1𝑁𝑁 < 𝑈𝑈𝑖𝑖,12 ≤ 𝐴𝐴𝑖𝑖,20� and the second is from state MCI to 

state death at time 𝐴𝐴𝑖𝑖,𝑁𝑁. In this case we have 

 

𝐿𝐿𝑖𝑖,6 = 𝑃𝑃�𝑋𝑋�𝐴𝐴𝑖𝑖,1𝑁𝑁� = 1,𝑋𝑋�𝐴𝐴𝑖𝑖,20� = 2,𝑋𝑋�𝐴𝐴𝑖𝑖,𝑁𝑁 −� = 2 ,𝑋𝑋�𝐴𝐴𝑖𝑖,𝑁𝑁� = 4|𝑋𝑋�𝐴𝐴𝑖𝑖,𝑏𝑏� = 1�  

= � 𝑝𝑝11�𝐴𝐴𝑖𝑖,𝑏𝑏 ,𝑈𝑈𝑖𝑖,12�𝛼𝛼12�𝑈𝑈𝑖𝑖,12�𝑝𝑝22�𝑈𝑈𝑖𝑖,12,𝐴𝐴𝑖𝑖,𝑁𝑁�𝛼𝛼24�𝐴𝐴𝑖𝑖,𝑁𝑁|𝑈𝑈𝑖𝑖,12�

𝐴𝐴𝑖𝑖,20

𝐴𝐴𝑖𝑖,1𝑁𝑁

𝑑𝑑𝑈𝑈𝑖𝑖,12
 

4.2.4 Parameter Estimations 

The calculation of the likelihood function involves multiple integrals, which 

do not have closed forms. We implement the quasi-Monte Carlo (QMC) [44] method 

to approximate the likelihood. QMC will provide considerably better accuracy, with 

the expected integration error of the order of 𝑁𝑁−1 (N being the number of Halton 

sequence points from the integration space), to approximate the integrations of the 

likelihood function.[45]. 

Parameters contained in the model are the scale parameters 𝜆𝜆ℎ𝑗𝑗 = 𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽ℎ𝑗𝑗,0�, 

the shape parameters 𝜅𝜅ℎ𝑗𝑗, and the regression coefficients 𝜷𝜷𝒉𝒉𝒉𝒉, where ℎ < 𝑗𝑗,ℎ ∈

{1,2}, 𝑗𝑗 ∈ {2,3,4}. Estimation and inference on these parameters can be achieved by 
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maximizing the likelihood function discussed above. We used “optim function” in R 

version 3.2.2 with the quasi-Newton method to maximize the log-likelihood function 

and to compute the numerically differentiated Hessian matrix. All programing was 

done in R.  

4.3 Model Selection Strategy 

In multi-state models, there are multiple possible transition paths and each 

covariate may have a different effect on different transition intensities. For example, 

in our four-state model there are 5 different transition intensity functions implying 

each covariate has up to 5 different coefficient parameters one per transition intensity. 

Thus model selection in multi-state models is more complicated than in other models 

such as linear models, logistical models, survival models, etc. In this section, we 

propose two model selection strategies for multi-state models. Both strategies help us 

to select the covariates and the coefficients on the associated transition path intensity 

functions and to determine the initial values for fitting the final selected model. 

Strategy 1 is revised forward-backward step-wise selection method. The 

algorithm has the follow four steps:  

Step 1. Fit a model with no covariate. Denote this model as ℳ0. 

Step 2. Add a single covariate 𝑍𝑍1(𝑡𝑡) into the model ℳ0. Since 𝑍𝑍1(𝑡𝑡) would affect 

each transition with different coefficient, five 

parameters �𝛽𝛽12,1,𝛽𝛽13,1,𝛽𝛽14,1,𝛽𝛽23,1,𝛽𝛽24,1� are added into the model at the same 

time. Fit the model with the initial values for the baseline intensity parameters 

computed in Step 1. Next, apply a backward deletion. Parameter with the 

largest 𝑝𝑝 value among the newly added parameters 

�𝛽𝛽12,1,𝛽𝛽13,1,𝛽𝛽14,1,𝛽𝛽23,1,𝛽𝛽24,1� is removed from the model. Refit the model and 
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repeat the above backward deletion algorithm until all covariate coefficients 

associated with 𝑍𝑍1(𝑡𝑡) are significant at level 𝑝𝑝 ≤ 0.1. Denote this model 

as ℳ1. 

Step 3. Add a second covariate 𝑍𝑍2(𝑡𝑡) into the previous model ℳ1. Repeat Step 2. 

When applying the backward deletion algorithm in this step, we only delete 

the newly added parameters that are not significant at level 𝑝𝑝 ≤ 0.1. 

Parameters that are already in the previous model ℳ1 are not removed even 

though they might be not significant at level 𝑝𝑝 ≤ 0.1. The resulting model 

after adding covariate 𝑍𝑍2(𝑡𝑡) and applying the backward deletion procedure is 

denoted as ℳ2. Repeat the same procedure until all covariates are added in the 

model. Denote the resulting model as ℳ𝑝𝑝. 

Step 4. Beginning from model ℳ𝑝𝑝, we apply a step-wise backward selection method. 

At each step, coefficient with the largest p value is removed from the model 

until all the coefficients are significant at level 𝑝𝑝 ≤ 0.05.  

Strategy 2 is a two stage modeling technique. The first stage is a univariate 

modeling. The second stage is a multivariate modeling.  

1. Univariate modeling –We calculated one model for each covariate. Models were 

said to be univariate, because only one factor was taken into account, even if it 

could influence a few transitions. At this stage, covariate coefficients are not 

significant at 𝑝𝑝 ≤ 0.1 level are removed from the univariate model in a step-

fashion.  

2. Multivariate modeling – All the previously selected significant covariates are 

included in the model. The vector of covariates were transition-specific. By a 
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backward step-wise deletion procedure, each coefficient with a p-value>0.05 is 

removed from the model. 

4.4 Goodness of Fit 

In this section, we provide a goodness-of-fit assessment for the proposed 

model by the means of prevalence counts [43]. Prevalence counts provide an informal 

empirical measure of state occupancy. If the model fits the data well, the expected 

state occupancies by the fitted model should be close to the observed state 

occupancies. By comparing the observed and expected prevalence counts, we would 

have a general goodness-of-fit assessment of the fitted model. 

Let 𝑋𝑋�𝑖𝑖(𝑡𝑡) be the observed process for the multi-state model. Since the process 

is observed only at some discrete time points, the transition time is interval censored 

for transition from state normal to state MCI and dementia and for transition from 

MCI to dementia. Thus, observed process 𝑋𝑋�𝑖𝑖(𝑡𝑡) is unknown in the time interval with 

observed transitions. For example, subject 𝑙𝑙 has an observed transition from state 

normal at time 𝐴𝐴𝑖𝑖,1𝑁𝑁 to state dementia at time 𝐴𝐴𝑖𝑖,𝑁𝑁, the value of 𝑋𝑋�𝑖𝑖(𝑡𝑡) is unknown for 

time 𝑡𝑡 ∈ �𝐴𝐴𝑖𝑖,1𝑁𝑁 ,𝐴𝐴𝑖𝑖,𝑁𝑁�. Considering the proposed model is progressive, it is possible to 

interpolate the observed prevalence at any given time 𝑡𝑡. Titman, et al. [43] suggest 

assuming that the patient remains in the state they were in at the last observation. In 

this manuscript, we use the midpoint rule. As in the above example we have  

 

𝑋𝑋�𝑖𝑖(𝑡𝑡) = �
1 𝑡𝑡 < �𝐴𝐴𝑖𝑖,1𝑁𝑁 + 𝐴𝐴𝑖𝑖,𝑁𝑁�/2
3 𝑡𝑡 ≥ �𝐴𝐴𝑖𝑖,1𝑁𝑁 + 𝐴𝐴𝑖𝑖,𝑁𝑁�/2

 

Here, we assume that there are no unobserved transitions from state normal to 

state MCI in between the transition from state normal to state dementia.  
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Let 𝑂𝑂1𝑗𝑗(𝑡𝑡) be the observed prevalence counts in state 𝑗𝑗 at time 𝑡𝑡 among 

subjects started in state normal at baseline age. And let 𝑂𝑂2𝑗𝑗(𝑡𝑡) be the observed 

prevalence counts in state 𝑗𝑗 at time 𝑡𝑡 among subjects having a transition to state MCI. 

We have 

𝑂𝑂1𝑗𝑗(𝑡𝑡) = �𝐼𝐼�𝑋𝑋�𝑖𝑖(𝑡𝑡) = 𝑗𝑗|𝑋𝑋�𝑖𝑖�𝐴𝐴𝑖𝑖,𝑏𝑏� = 1�𝛿𝛿1𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑖𝑖=1

𝑂𝑂2𝑗𝑗(𝑡𝑡) = �𝐼𝐼�𝑋𝑋�𝑖𝑖(𝑡𝑡) = 𝑗𝑗|𝑋𝑋�𝑖𝑖�𝑈𝑈𝑖𝑖,12� = 2�𝛿𝛿2𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑖𝑖=1

. 

Here, 𝛿𝛿1𝑖𝑖(𝑡𝑡) and 𝛿𝛿2𝑖𝑖(𝑡𝑡) are indicators of whether patient 𝑙𝑙 was under observation at 

time 𝑡𝑡: 

𝛿𝛿1𝑖𝑖(𝑡𝑡) = �0, 𝑡𝑡 > 𝐴𝐴𝑖𝑖,𝑁𝑁 𝑎𝑎𝑎𝑎𝑑𝑑 𝑋𝑋�𝑖𝑖�𝐴𝐴𝑖𝑖,𝑁𝑁� ∈ (1,2)
1, 𝑙𝑙𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑙𝑙𝑠𝑠𝑒𝑒

  

and 

𝛿𝛿2𝑖𝑖(𝑡𝑡) = �0, 𝑡𝑡 > 𝐴𝐴𝑖𝑖,𝑁𝑁 𝑎𝑎𝑎𝑎𝑑𝑑 𝑋𝑋�𝑖𝑖�𝐴𝐴𝑖𝑖,𝑁𝑁� ∈ (1,2)
1, 𝐴𝐴𝑖𝑖,𝑁𝑁 > 𝑡𝑡 ≥ 𝑈𝑈𝑖𝑖,12

. 

The calculation of 𝑂𝑂2𝑗𝑗(𝑡𝑡) is dependent on the transition time to state MCI, we 

assume 𝑈𝑈𝑖𝑖,12 = �𝐴𝐴𝑖𝑖,1𝑁𝑁 + 𝐴𝐴𝑖𝑖,20�/2 for the purpose of calculating the prevalence counts 

among these subjects. In the above observed prevalence counts, we assume that there 

are no unobserved transitions. The observed prevalence counts for state MCI would 

be under estimated, since we do not account for the possible unobserved transitions 

from state normal to state MCI for subjects with observed transition from normal 

directly to dementia or death.  

The calculations of expected prevalence counts are straightforward. Denote 

𝐸𝐸1𝑗𝑗(𝑡𝑡) and 𝐸𝐸2𝑗𝑗(𝑡𝑡) the expected prevalence counts in state 𝑗𝑗 at time 𝑡𝑡 among all 

subjects and among subjects having a transition into MCI respectively. We have 
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𝐸𝐸1𝑗𝑗(𝑡𝑡) = �𝑃𝑃��𝑋𝑋𝑖𝑖(𝑡𝑡) = 𝑗𝑗|𝑋𝑋𝑖𝑖�𝐴𝐴𝑖𝑖,𝑏𝑏� = 1�𝛿𝛿1𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑖𝑖=1

 

𝐸𝐸2𝑗𝑗(𝑡𝑡) = �𝑃𝑃��𝑋𝑋𝑖𝑖(𝑡𝑡) = 𝑗𝑗|𝑋𝑋𝑖𝑖�𝑈𝑈𝑖𝑖,12� = 2�𝛿𝛿2𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑖𝑖=1

 

Here the expected transition probability from state normal at baseline to state 𝑗𝑗 

at time 𝑡𝑡, 𝑃𝑃��𝑋𝑋𝑖𝑖(𝑡𝑡) = 𝑗𝑗|𝑋𝑋𝑖𝑖�𝐴𝐴𝑖𝑖,𝑏𝑏� = 1�, and the expected transition probability from 

state MCI at time 𝑈𝑈𝑖𝑖,12 to state 𝑗𝑗 at time 𝑡𝑡, 𝑃𝑃��𝑋𝑋𝑖𝑖(𝑡𝑡) = 𝑗𝑗|𝑋𝑋𝑖𝑖�𝑈𝑈𝑖𝑖,12� = 2� can be 

calculated by using in the estimated model parameters and covariate values. Here we 

assume 𝑈𝑈𝑖𝑖,12 = �𝐴𝐴𝑖𝑖,1𝑁𝑁 + 𝐴𝐴𝑖𝑖,20�/2. 

A comparison of the observed prevalence counts and the expected prevalence 

counts by the fitted model can be made by plotting the observed prevalence and 

expected prevalence functions on the same graph.  

4.5 Application 

BRAiNS is a longitudinal cohort of 1,030 older participants at the University 

of Kentucky’s Alzheimer’s disease Center (UK ADC) [36]. Participants consent to 

extensive annual cognitive and clinical examinations. The sample included in this 

study consists of 531 participants, who were assessed at least two times, and were at 

least 60 years old at baseline. All subjects were cognitively intact at study entry. The 

baseline age for the sample is 73.2 (STD=7.4) years. We have 6 possible transition 

paths among the four states under consideration. Table 4.1 presents the frequency and 

percentage for each observed transition path.  

The list of factors to be examined as potential risks for transitions among the 

states were selected by matching factors reported in the literature with the data 
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elements collected on participants in the BRAiNS cohort. The factors examined and 

entered as indicator variables in the statistical models below are: APOE4 carrier status 

(with and without an ε4 allele), female gender, low education (defined as high school 

or less), family history of dementia among 1st degree relatives, baseline current 

smoker and presence of Type II diabetes. These covariates are all baseline covariates. 

See Table 4.2 for the summary of these covariates. A time dependent covariate Age 

Group will also be added to the transition intensity functions from state MCI to 

dementia and death. Age Group has two levels and it is defined as follows: 

𝐴𝐴𝑙𝑙𝑒𝑒 𝐺𝐺𝑒𝑒𝑙𝑙𝑢𝑢𝑝𝑝(𝑡𝑡) = �0, 𝑡𝑡 < 82.5
1, 𝑡𝑡 ≥ 82.5. 

Here, the time scale 𝑡𝑡 is the age and the cut point 82.5 is set to be around the 

median value of midpoint of the time interval who transition from state normal to 

state MCI. 

We applied both model selection strategies presented in Section 4, which 

resulted in the same final model. The parameter estimates of the final model are listed 

in Table 4.3. The time dependent covariate Age Group is not significant on the 

intensity from clinical MCI to dementia, but it is significant on the transition path 

from MCI to death. As expected, older subjects have higher mortality rate for these 

have been in clinical MCI. Having at least one APOE4 allele increases the log hazard 

of transition from NSI into clinical MCI. Female gender has lower hazard for the 

transition from NSI to death than male. And baseline smoker increase the intensity 

rate for both the transition from NSI to death and from clinical MCI to dementia. 

Family history of dementia and baseline type II diabetes are not significant in this 

model. 
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In left panel of Figure 4.3, we plotted the baseline transition intensities against 

age for the three transitions from NSI to clinical MCI, from NSI to dementia and from 

NSI to death. The dark solid line represents the intensity function for the transition 

from NSI to clinical MCI. The dark dot line represents the intensity for the transition 

path from NSI to dementia. And the light dot line represents the intensity of the 

transition from NSI to death. The plots show that the intensities for the transition from 

NSI to clinical MCI and death increase steadily with the later has a higher increase 

rate; the transition intensity for the path from NSI directly to dementia remain flat 

under age 80, then it begins to increase as subject gets older. 

In the right panel of Figure 4.3, we plotted the baseline transition intensities 

from clinical MCI to either dementia or death against the time since subject first went 

into clinical MCI state. The dark solid line represents the transition intensity of path 

from clinical MCI to dementia. The dark dot line represents the transition intensity of 

the path from clinical MCI to death for these older than 82.5 years of age. And the 

light dot line represent the intensity of the path form clinical MCI to death for these 

who are younger than 82.5 years of age. In these plots, the intensity rate of the 

transition from clinical MCI to dementia is relatively flat against the years the subject 

has spent in the MCI state. The intensities of both age groups for transition from MCI 

to death increase steadily as subjects spend more time on state MCI. As we noted in 

the plots, older subjects have higher increased rates than younger subjects. 

We check the goodness-of-fit of the model by the prevalence plots discussed 

in Section 5. The goodness of fit plots are presented in Figure 4.4 and Figure 4.5. The 

dots are the observed prevalence counts, and the solid dark lines are the expected 

prevalence counts in these plots. Figure 4.4 presents the prevalence counts for all 

subjects started at state NSI. Figure 4.5 presents the prevalence counts for those 
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subjects having an observed transition to MCI. Except for the prevalence counts for 

MCI in Figure 4.4, there is a good agreement between the expected prevalence and 

the observed prevalence, which shows the proposed model is a good fit to the data. 

One possible reason for the disagreement between observed and expected prevalence 

of MCI for those subjects started at NSI state in Figure 4.4 is that there might be 

unobserved transitions from NSI to MCI due to the interval censoring. 

4.6 Discussion 

In this chapter we proposed a four-state continuous-time semi-Markov model 

applicable for left truncated, interval and right censored data. The proposed model 

also allows time-dependent covariates. Two model selection strategies are proposed to 

help select the “best” model that both fits the data and has a manageable number of 

parameters.    

Despite this connection between our semi-Markov model and the one 

proposed by Foucher, et al. [16] and Kryscio, et al. [22], the modeling techniques are 

different. In their models, the semi-Markov process was modeled through two 

separate parts. The first part models one-step transition probabilities using standard 

logistic models; and the second part models the hold times given the transition paths. 

We need two coefficient parameters for each covariate on each possible transition 

path; one coefficient assesses its effect on transition probability and the other one 

assesses its effects on the holding time if that transition occurs. In our model, we 

modeled the process through the transition intensities. We allow the transition 

intensities to be dependent on both the calendar time and the holding time the subject 

has been in the state. We need only one parameter for each covariate on each 

transition path. And our model also allows time-dependent covariates.  
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The graphic goodness-of-fit method proposed in Section 4.5 can only be used 

a rough measurement of how will the model fits the data, since the true observed 

prevalence counts are unknown because of the interval-censoring. The observed 

prevalence counts calculated using the mid-point rule are usually under-estimated for 

intermediate states, since the unobserved transitions into these states are ignored. 

More sensitive goodness-of-fit tools are needed to for multi-state models. 
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Table 4.1 Frequency of each transition type 
Observed Path N Percent 
NSI -> NSI 184 34.65 
NSI -> MCI 50 9.42 
NSI -> Dementia 52 9.79 
NSI -> Death 190 35.78 
NSI -> MCI -> Dementia 36 6.78 
NSI -> MCI -> Death 19 3.58 
All 531 100 

 

Table 4.2 Summary of the fixed covariates 
Baseline Characteristic N Percent 
APOE4 160 30.3 
Low Education 187 35 
Female 334 63.1 
Family history of dementia 214 40.3 
Baseline smoker 49 9.2 
Type II diabetes 44 8.3 
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Table 4.3 Parameter estimates for the four-state semi-Markov model 
Covariate Regression coefficient Estimation S.E. P value 
Shape parameters 𝜅𝜅12 2.467 0.256 0.000 

 𝜅𝜅13 5.613 1.472 0.000 
 𝜅𝜅14 3.869 0.261 0.000 
 𝜅𝜅23 1.119 0.121 0.000 
 𝜅𝜅24 2.606 0.455 0.000 

Model intercepts 𝛽𝛽12,0 -9.138 0.892 0.000 
 𝛽𝛽13,0 -21.554 5.283 0.000 
 𝛽𝛽14,0 -13.274 0.907 0.000 
 𝛽𝛽23,0 -1.732 0.233 0.000 
 𝛽𝛽24,0 -6.089 1.025 0.000 

Age group  𝛽𝛽24,𝐺𝐺 1.349 0.659 0.041 
APOE4 𝛽𝛽12,𝐴𝐴 0.717 0.182 0.000 
Female 𝛽𝛽14,𝐹𝐹 -0.328 0.147 0.026 
Baseline Smoker 𝛽𝛽14,𝑆𝑆 0.878 0.210 0.000 
  𝛽𝛽23,𝑆𝑆 1.448 0.611 0.018 
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Figure 4.1 Model structure of the four-state model 
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Figure 4.2 Possible observed transition path of a participant 
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Figure 4.3 Baseline transition intensity plots. 

Left panel: dark solid line-from NSI to clinical MCI; dark dot line-from NSI to 
dementia; light dot-from NSI to death.  

Right panel: dark solid line-from clinical MCI to dementia; dark dot line-from clinical 
MCI to death (older group); light dot line-form clinical MCI to death (younger group) 
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Figure 4.4: Prevalence plots for all the subjects started at NSI at 60 years old. Dots: 
Observed prevalence counts; Lines: expected prevalence counts. 
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Figure 4.5 Prevalence plots for these subjects having an observed transition to MCI 
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Chapter 5 Discussions and Future Research 

In dementia studies, clinical assessments of a participants’ cognitive status is 

taken periodically at discrete visit time points; and the cognitive status can be 

classified into different states. This type of longitudinal data is commonly modeled by 

discrete-time Markov chain models. Since the clinical assessments are taken 

periodically at discrete time points, the transition times from one state to another state 

are interval-censored. Another problem caused by the discrete-time observation 

scheme is that some transitions might not be observed. In this dissertation, we 

explored the use of continuous-time multi-state models to analyze this type of 

longitudinal data raised in many chronic disease studies.  

First, we compared the two types of multi-state models, discrete-time Markov 

chain model and continuous-time Markov process model. Our study showed that 

when the data are equally-spaced the two types models perform equally well. 

However, when the data are not equally-spaced, the continuous-time Markov process 

model has better performance than the discrete-time Markov chain model. The 

Markov chain model is biased when the data is unequally-spaced. Thus, our 

recommendation is that when the data are equally-spaced, either type of multi-state 

model can be used. The discrete-time Markov chain model might be more attractive to 

some researchers since it can be solved through standard statistical software. When 

the data are unequally-spaced, the continuous-time process model is recommended.  

Calculations involved in the general continuous-time Markov process model 

could be very complex. Time-homogenous assumption is often used to simplify these 

calculations. However, the time-homogenous assumption is not appropriate in some 

cases. As we known, the hazards of developing dementia and death are heavily 

depended on a participants’ age. Older people generally have higher risk of 
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developing dementia or risk of mortality. In this dissertation, we propose a Weibull 

Markov four-state model with two transient states and two absorbing states. By using 

the Weibull hazard form, we were able to model a variety of shapes for the transition 

intensities. This methodology can be easily generalized to models with more states as 

long as there are no backward transitions. With backward transitions, the likelihood 

calculation under the Weibull model will be complex, thus more powerful numerical 

calculation method should be developed in this case. This would be an interesting 

possible future research topic.  

The Markov assumption is very common in the literature. Relaxing the 

Markov assumption is a challenging but also an important topic. As we know, in some 

chronic diseases studies the past history of the disease would have large impact on the 

future development of the disease. For example, beside the participant’s age, the time 

that participant has stayed in state MCI would also have an impact on its transition 

hazards to dementia and death. In this dissertation, we proposed a semi-Markov 

model to allow the disease process not only depended on the participants’ age but also 

on the time they have stayed on the current state. The importance of this model is that 

it helps us understand the participants’ transition hazards and future transition 

probabilities based on their time stayed in the current state, thus we can treat 

participants differently according to the time they have stayed in some critical states, 

i.e. MCI.  

Both the Markov model and semi-Markov model we presented in this 

dissertation requires the data contains no backward transitions. Treating backward 

transitions in a discrete-time observation scheme in Markov model and semi-Markov 

model is challenging in two ways. First, transition times are interval-censored. With 

interval-censored data, multiple integrations are involved in likelihood calculations. 
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Second, there are unobserved transitions. In a multi-state model with backward 

transitions, theoretically there are infinite numbers of unobserved transitions.   
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Appendices 

A. SAS codes for Chapter 2 

/********************************************************************/ 
/*1 Simulation Study*/ 
/********************************************************************/ 
PROC IML; reset storage= P1Sim.W1Sim;  
START TranPD(parms,z); 
    P=J(4,4,0); 

int1=parms[1];int2=parms[2];int3=parms[3]; 
ps1=parms[4];ps2=parms[5];ps3=parms[6]; 

    z1=parms[7];z2=parms[8];z3=parms[9]; ps=1;  
    pexp1=exp(int1+ps1*ps+z1*z); pexp2=exp(int2+ps2*ps+z2*z); 
    pexp3=exp(int3+ps3*ps+z3*z); 
    P[1,2]=pexp1/(1+pexp1+pexp2+pexp3); P[1,3]=pexp2/(1+pexp1+pexp2+pexp3); 
    P[1,4]=pexp3/(1+pexp1+pexp2+pexp3); P[1,1]=1/(1+pexp1+pexp2+pexp3); 
    ps=0;  
    pexp1=exp(int1+ps1*ps+z1*z); pexp2=exp(int2+ps2*ps+z2*z); 
    pexp3=exp(int3+ps3*ps+z3*z); 
    P[2,2]=pexp1/(1+pexp1+pexp2+pexp3); P[2,3]=pexp2/(1+pexp1+pexp2+pexp3); 
    P[2,4]=pexp3/(1+pexp1+pexp2+pexp3); P[2,1]=1/(1+pexp1+pexp2+pexp3); 
    return(P); 
FINISH TranPD; 
 
START TranPC(parms,z); 

Q=J(4,4,0); 
Q[1,2]=exp(parms[1]+parms[7]*z); Q[1,3]=exp(parms[2]+parms[8]*z); 
Q[1,4]=exp(parms[3]+parms[9]*z); Q[1,1]=-Q[1,2]-Q[1,3]-Q[1,4]; 
Q[2,1]=exp(parms[4]+parms[10]*z); Q[2,3]=exp(parms[5]+parms[11]*z); 
Q[2,4]=exp(parms[6]+parms[12]*z); Q[2,2]=-Q[2,1]-Q[2,3]-Q[2,4]; 
A=teigvec(Q); V=teigval(Q);  D=diag(exp(V[,1])); P=A*D*inv(A); return(P); 

FINISH TranPC; 
 
START TrueP(parms,z); 

Q=J(4,4,0); Q[1,2]=exp(log(parms[1])+parms[7]*z); 
Q[1,3]=exp(log(parms[2])+parms[8]*z); Q[1,4]=exp(log(parms[3])+parms[9]*z); 
Q[1,1]=-Q[1,2]-Q[1,3]-Q[1,4]; 
Q[2,1]=exp(log(parms[4])+parms[10]*z); Q[2,3]=exp(log(parms[5])+parms[11]*z); 
Q[2,4]=exp(log(parms[6])+parms[12]*z); Q[2,2]=-Q[2,1]-Q[2,3]-Q[2,4]; 
A=teigvec(Q); V=teigval(Q);  D=diag(exp(V[,1])); P=A*D*inv(A); return(P); 

FINISH TrueP; 
 
START W1Sim(type, Nsim);  

row=J(1,12,0); rows=J(1,12,0);  
do iSim=1 to Nsim;  

      Submit type; 
        Data W1Sim1; 

do subject=1 to 500;  
              z=RAND('BERNOULLI',0.4); time=0; output; 
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                do i=1 to 15; 
                  if &type=1 then duration=1; else if &type=2 then 

duration=RAND('NORMAL',1,0.5);  
                   else if &type=3 then duration=RAND('NORMAL',1,1.5);  
                   if duration<0.25 then duration=0.25; time=time+duration; output;  
                 end; 
               end; 
             Run; 
          Endsubmit; 

Run ExportDataSetToR("W1Sim1", "W1Sim1" ); 
Submit /R; 

      library("msm") 
          qmatrix <- rbind(c(0, 0.25,  0.03, 0.05), c(0.2,0, 0.15, 0.05 ), c(0,0,0,0), 

c(0,0,0,0)) 
          W1Sim2=simmulti.msm(W1Sim1, qmatrix,  
             covariates=list(z = c(0.5,-0.2,0,      -0.3, 0.15, 0)), death=4) 
           ObsL.msm <-msm(state ~ time, subject=subject, data =W1Sim2, 
              covariates = list("1-2" =~z, "1-3"=~z,  "2-1"=~z,"2-3"=~z),qmatrix =qmatrix,  

death=4,center=FALSE, method = "BFGS", control = list(fnscale = 4000, 
maxit = 10000)) 

           EstR=ObsL.msm$estimates 
         Endsubmit; 
         Run ImportDatasetFromR("W1Sim2", "W1Sim2" ); Run 

ImportMatrixFromR(EstC, "EstR" ); 
        Submit; 
          Data W1Sim3; set W1Sim2; by subject time; Pstate=lag(state);  
            if first.subject ne 1 then output; keep subject time Z state pstate; Run; 
          Data W1Sim4; set W1Sim3;if state=1 then state=5;if pstate=2 then pstate=0; Run; 
          ods select none;  

Proc CATMOD data=W1Sim4; direct pstate Z; model state=pstate Z;  
          ods output Estimates=EstD; Run;  

ods select all; 
        Endsubmit; 
        Use EstD; read all var{estimate} into parms; close EstD; 

PD0=TranPD(parms,0);row[1]=type;row[2]=isim;row[3]=1;row[4]=0;row[5:8]=
pd0[1,];row[9:12]= pd0[2,];  
if iSim=1 then rows=row; else rows=rows//row;  
PD1=TranPD(parms,1); row[1]=type; row[2]=iSim; row[3]=1;  
row[4]=1; row[5:8]=PD1[1,];row[9:12]=PD1[2,];rows=rows//row; 
PC0=TranPC(EstC,0); row[1]=type; row[2]=iSim; row[3]=2; row[4]=0; 
row[5:8]=PC0[1,]; row[9:12]=PC0[2,];rows=rows//row; 
PC1=TranPC(EstC,1);row[1]=type; row[2]=iSim; row[3]=2; row[4]=1; 
row[5:8]=PC1[1,]; row[9:12]=PC1[2,];rows=rows//row; 

End; 
varnames={"Type" "IDSim" "Method" "Z" "P11" "P12" "P13" "P14" "P21" "P22" 
"P23" "P24"}; 
create W1Sim from rows[colname=varNames];append from rows; close W1Sim;  

FINISH W1Sim;  
STORE module=_all_;  
Quit; 
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PROC IML; 
reset storage= P1Sim.W1Sim;  /* set location for storage */ load module=_all_; 
call W1Sim(1,1000); Submit; Data W1Sim1; set W1Sim; Run; Endsubmit;  
call W1Sim(2,1000); Submit; Data W1Sim2; set W1Sim; Run; Endsubmit;  
call W1Sim(3,1000); Submit; Data W1Sim3; set W1Sim; Run; Endsubmit;  

Quit; 
 
 
/********************************************************************/ 
/*2 Application to the Nun’s data*/ 
/********************************************************************/ 
/*Discrete-time MSM*/ 
Data Nun_p1; set Nun_4state; where priorstate=1; run; 
PROC logistic data=nun_p1;model currentstate(ref="1")=Bage apoe4/link=glogit;run; 
Data Nun_p2; set Nun_4state; where priorstate=2; run; 
PROC logistic data=nun_p2;model currentstate(ref="2")=Bage apoe4/link=glogit;run; 
Data Nun_p3; set Nun_4state; where priorstate=3; run; 
PROC logistic data=nun_p3;model currentstate(ref="3")=Bage apoe4/link=glogit;run; 
 
/*Continous-time MSM*/ 
PROC IML;  
START loglhm(parms) global(dataset, error); 
n=nrow(dataset);Q=J(4,4,0); logLike=.0;  
do i=1 to n;  

first_id=dataset[i,1];page=dataset[i,2];cage=dataset[i,3];pstate=dataset[i,4]; 
cstate=dataset[i,5];  bage=dataset[i,6]; apoe4=dataset[i,7];  
Q[1,2]=exp(parms[1]+parms[8]*bage+parms[15]*apoe4); 
Q[1,3]=exp(parms[2]+parms[9]*bage+parms[16]*apoe4);  
Q[1,4]=exp(parms[3]+parms[10]*bage+parms[17]*apoe4);  
Q[2,1]=exp(parms[4]+parms[11]*bage+parms[18]*apoe4);  
Q[2,3]=exp(parms[5]+parms[12]*bage+parms[19]*apoe4); 
Q[2,4]=exp(parms[6]+parms[13]*bage+parms[20]*apoe4);  
Q[3,4]=exp(parms[7]+parms[14]*bage+parms[21]*apoe4); 
Q[1,1]=-Q[1,2]-Q[1,3]-Q[1,4]; Q[2,2]=-Q[2,1]-Q[2,3]-Q[2,4]; Q[3,3]=-Q[3,4]; 
A=teigvec(Q); V=teigval(Q);D=diag(exp(V[,1]*(cage-page))); P=A*D*inv(A); 
if cstate=4 then Li=P[pstate,1]*Q[1,4]+P[pstate,2]*Q[2,4]+P[pstate,3]*Q[3,4]; 
else Li=P[pstate,cstate]; if Li<=0 then error=error+1;  
else logLike=logLike+log(Li); 

end; return(-logLike); 
FINISH loglhm;  
 
USE Nun;  
Read all var{ID priorage  currentage  priorstate  currentstate bage apoe4} into dataset;  
CLOSE Nun;  
h0={-2.8451 -4.6193 -3.8569 -1.7184 -1.8959 -1.2406 -1.6418 
0.0887    0.1269    0.0638    0.0100    0.0381    -0.0211    0.0364 
0.4383    0.0941    0.3494    -0.6053    0.4893    -0.5624    0.0110}; 
error=0; call nlpnra(rc,xres,"loglhm",h0); estimate=xres` ; call 
nlpfdd(f,g,hes1,"loglhm",estimate); 
cov=inv(hes1); stderr=sqrt(abs(vecdiag(cov)));  
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z=abs(estimate/stderr);p=2*(1-probnorm(z)); 
print error f; print estimate stderr p; print cov;  
QUIT;  
 
/********************************************************************/ 
/*3 Transition probability plots*/ 
/********************************************************************/ 
%MACRO TransP(Age,Bage,APOE4); 
PROC IML;  
START TranPMD(parms, Age, Bage, APOE4); 
    P=J(4,4,0);  
    /*Bage APOE4 age p11 p12 p13 p14 p21 p22 p23 p24 p33 p34*/ 
    rows={0 0 0 0 0 0 0 0 0 0 0 0 0};  
    pexp11=1;  
    pexp12=exp(parms[1]+parms[8]*bage+parms[15]*apoe4); 
    pexp13=exp(parms[2]+parms[9]*bage+parms[16]*apoe4); 
    pexp14=exp(parms[3]+parms[10]*bage+parms[17]*apoe4); 
    pexp22=1;  
    pexp21=exp(parms[4]+parms[11]*bage+parms[18]*apoe4); 
    pexp23=exp(parms[5]+parms[12]*bage+parms[19]*apoe4); 
    pexp24=exp(parms[6]+parms[13]*bage+parms[20]*apoe4); 
    pexp33=1;  
    pexp34=exp(parms[7]+parms[14]*bage+parms[21]*apoe4); 
    pexp1=pexp11+pexp12+pexp13+pexp14; 

P[1,1]=pexp11/pexp1; P[1,2]=pexp12/pexp1; P[1,3]=pexp13/pexp1; 
P[1,4]=pexp14/pexp1; 

    pexp2=pexp21+pexp22+pexp23+pexp24; 
P[2,1]=pexp21/pexp2; P[2,2]=pexp22/pexp2; P[2,3]=pexp23/pexp2; 
P[2,4]=pexp24/pexp2; 

    P[3,3]=pexp33/(pexp33+pexp34); P[3,4]=pexp34/(pexp33+pexp34); P[4,4]=1;  
do i=0 to Age;  

if i=0 then TPM=I(4); else TPM=TPM*P;  
row={0 0 0 0 0 0 0 0 0 0 0 0 0}; row[1]=Bage; row[2]=APOE4; row[3]=i; 
row[4]=TPM[1,1]; row[5]=TPM[1,2]; row[6]=TPM[1,3]; row[7]=TPM[1,4]; 
row[8]=TPM[2,1]; row[9]=TPM[2,2]; row[10]=TPM[2,3]; row[11]=TPM[2,4]; 
row[12]=TPM[3,3]; row[13]=TPM[3,4];rows=rows//row;   

end;  
varnames={"Bage" "APOE4" "Age" "P11D" "P12D" "P13D" "P14D" "P21D"  

"P22D" "P23D" "P24D" "P33D" "P34D"}; 
create TranPMD from rows[COLNAME=varNames];append from rows; close 

TranPMD;  
FINISH TranPMD; 
 
START TranPMC(parms,Age,Bage, APOE4); 
    Q=J(4,4,0); rows={0 0 0 0 0 0 0 0 0 0 0 0 0};  
    Q[1,2]=exp(parms[1]+parms[8]*bage+parms[15]*apoe4); 
    Q[1,3]=exp(parms[2]+parms[9]*bage+parms[16]*apoe4); 
    Q[1,4]=exp(parms[3]+parms[10]*bage+parms[17]*apoe4); 
    Q[1,1]=-Q[1,2]-Q[1,3]-Q[1,4]; 
    Q[2,1]=exp(parms[4]+parms[11]*bage+parms[18]*apoe4); 
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    Q[2,3]=exp(parms[5]+parms[12]*bage+parms[19]*apoe4); 
    Q[2,4]=exp(parms[6]+parms[13]*bage+parms[20]*apoe4); 
    Q[2,2]=-Q[2,1]-Q[2,3]-Q[2,4]; 
    Q[3,4]=exp(parms[7]+parms[14]*bage+parms[21]*apoe4); 
    Q[3,3]=-Q[3,4]; 
    A=teigvec(Q); V=teigval(Q); D=diag(exp(V[,1])); P=A*D*inv(A); 
    do i=0 to Age;  
        if i=0 then TPM=I(4); else TPM=TPM*P;  

row={0 0 0 0 0 0 0 0 0 0 0 0 0}; row[1]=Bage; row[2]=APOE4; row[3]=i; 
row[4]=TPM[1,1]; row[5]=TPM[1,2]; row[6]=TPM[1,3]; row[7]=TPM[1,4]; 
row[8]=TPM[2,1]; row[9]=TPM[2,2]; row[10]=TPM[2,3]; row[11]=TPM[2,4]; 
row[12]=TPM[3,3]; row[13]=TPM[3,4];rows=rows//row;   

    end;  
varnames={"Bage" "APOE4" "Age" "P11C" "P12C" "P13C" "P14C" "P21C" 

"P22C" "P23C" "P24C" "P33C" "P34C"}; 
    create TranPMC from rows[COLNAME=varNames];append from rows; close 
TranPMC;  
FINISH TranPMC; 
 
Data TranPData; merge tranpmd tranpmc; age=age+80; by age; where bage ne 0; 
PROC SGplot data=TranPData noautolegend;  

SERIES x=age y=p13C/lineattrs=(color=black pattern=1 thickness=2);  
SERIES x=age y=p13D/lineattrs=(color=black pattern=2 thickness=2); 
xaxis label="Age" labelattrs=(size=16 weight=bold)  
valueattrs=(size=16 weight=bold) ; 
yaxis label="Probability" labelattrs=(size=16 weight=bold)  
valueattrs=(size=16 weight=bold) max=0.16;   

Run;  
PROC SGplot data=TranPData noautolegend;  

SERIES x=age y=p23C/lineattrs=(color=black pattern=1  thickness=2);  
SERIES x=age y=p23D/lineattrs=(color=black pattern=2  thickness=2);  
xaxis label="Age" labelattrs=(size=16 weight=bold)  
valueattrs=(size=16 weight=bold);  
yaxis label="Probability" labelattrs=(size=16 weight=bold)  
valueattrs=(size=16 weight=bold) values=(0 0.10 0.20 0.30);  

Run;  
%MEND;  
 
/********************************************************************/ 
/*4 Goodness-of_fit: prevelance*/ 
/********************************************************************/ 
Data NunPrev; set Nun;  
  if first_id then do; state=priorstate; vage=priorage-75; output; end; 
  state=currentstate; vage=currentage-75; output;  keep id vage state bage lage death; 
Run; 
Data NunPrev; set Nunprev; by id vage; first_id=0; last_id=0;   
  if first.id then first_id=1;  
  if last.id then last_id=1; age=ceil(vage); 
Run;  
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PROC IML;  
START PrevObs;  

use nunprev;read all var{id age state first_id lage death} into dataset;close nunprev;  
n=nrow(dataset); obsv=J(617*40,7,0); Idn=0;  
do i=1 to n;  

id=dataset[i,1]; age=dataset[i,2]; state=dataset[i,3]; first_id=dataset[i,4]; 
lage=dataset[i,5]; death=dataset[i,6]; 
if death=0 then cutage=lage; else cutage=40;  
if first_id=1 then Idn=Idn+first_id; cstate=state;  
do j=1 to 40;  

obsv[(idn-1)*40+j, 1]=id; obsv[(idn-1)*40+j, 2]=j;  
if j>=age & j<=cutage then do;  

obsv[(idn-1)*40+j, 3]=cstate;  
if cstate=1 then obsv[(idn-1)*40+j, 4:7]={1 0 0 0};  
else if cstate=2 then obsv[(idn-1)*40+j, 4:7]={0 1 0 0};  
else if cstate=3 then obsv[(idn-1)*40+j, 4:7]={0 0 1 0};  
else if cstate=4 then obsv[(idn-1)*40+j, 4:7]={0 0 0 1};  

end;  
end; 

end; 
varnames={"ID" "Age" "state"  "state1"  "state2"  "state3"  "state4" }; 
create PrevObs from obsv[colname=varNames];append from obsv; close PrevObs;  

FINISH prevObs;  
Run PrevObs;  
Quit;  
 
PROC SQL;  
create table PrevObsP as select Age, sum(state1) as state1_OBS, sum(state2) as 
state2_OBS,  
sum(state3) as state3_OBS, sum(state4) as state4_OBS from PrevObs group by age; 
Quit;   
Data EpC; set Nun_4state; where first_id=1; keep id bstate bage apoe4 lage death; 
RUN;  
 
Proc IML;  
START PrevEstC(parms); 
    use EpC; read all var {ID bstate bage apoe4 lage death } into Dataset; close EpC;  
    prevc=J(617*40,10,0);  Q=J(4,4,0);  
    do i=1 to 617;  
        id=dataset[i,1]; bstate=dataset[i,2]; bage=dataset[i,3];  
        apoe4=dataset[i,4]; lage=dataset[i,5]; death=dataset[i,6]; 
        Q[1,2]=exp(parms[1]+parms[8]*bage+parms[15]*apoe4); 
        Q[1,3]=exp(parms[2]+parms[9]*bage+parms[16]*apoe4);  
        Q[1,4]=exp(parms[3]+parms[10]*bage+parms[17]*apoe4);  
        Q[2,1]=exp(parms[4]+parms[11]*bage+parms[18]*apoe4);  
        Q[2,3]=exp(parms[5]+parms[12]*bage+parms[19]*apoe4);  
        Q[2,4]=exp(parms[6]+parms[13]*bage+parms[20]*apoe4);  
        Q[3,4]=exp(parms[7]+parms[14]*bage+parms[21]*apoe4); 
        Q[1,1]=-Q[1,2]-Q[1,3]-Q[1,4]; Q[2,2]=-Q[2,1]-Q[2,3]-Q[2,4]; Q[3,3]=-Q[3,4];  
        A=teigvec(Q); V=teigval(Q);     



 

86 
 

        do age=1 to 40;  
            prevc[(i-1)*40+age,1]=i; prevc[(i-1)*40+age,2]=age;  
            prevc[(i-1)*40+age,3]=bstate;  
            prevc[(i-1)*40+age,4]=bage; prevc[(i-1)*40+age,5]=lage;  
            prevc[(i-1)*40+age,6]=death;  
            if death=0 then cutage=lage; else cutage=40;  
            if age>=bage & age<=cutage then do;  
                D=diag(exp(V[,1]*(age-bage))); P=A*D*inv(A); 
                prevc[(i-1)*40+age,7]=P[bstate,1]; prevc[(i-1)*40+age,8]=P[bstate,2];  
                prevc[(i-1)*40+age,9]=P[bstate,3]; prevc[(i-1)*40+age,10]=P[bstate,4];  
            end;   
        end; 
    end;  

varnames={"ID" "Age" "bstate" "bage" "lage" "death" "state1"  "state2"   
   "state3"  "state4" }; 

    create Prevc from prevc[COLNAME=varNames];append from prevc; close prevc;  
FINISH PrevEstC;  
  
Proc IML;  
START PrevEstD(parms); 
    use EpC; read all var {ID bstate bage apoe4 lage death } into Dataset; close EpC;  
    prevd=J(617*40,10,0); P=J(4,4,0);  
    do i=1 to 617;  
        id=dataset[i,1]; bstate=dataset[i,2]; bage=dataset[i,3];  
        apoe4=dataset[i,4]; lage=dataset[i,5]; death=dataset[i,6]; 
        pexp11=1; pexp12=exp(parms[1]+parms[8]*bage+parms[15]*apoe4); 
        pexp13=exp(parms[2]+parms[9]*bage+parms[16]*apoe4); 
        pexp14=exp(parms[3]+parms[10]*bage+parms[17]*apoe4); 
        pexp22=1; pexp21=exp(parms[4]+parms[11]*bage+parms[18]*apoe4); 
        pexp23=exp(parms[5]+parms[12]*bage+parms[19]*apoe4); 
        pexp24=exp(parms[6]+parms[13]*bage+parms[20]*apoe4); 
        pexp33=1; pexp34=exp(parms[7]+parms[14]*bage+parms[21]*apoe4); 
        pexp1=pexp11+pexp12+pexp13+pexp14; 
        P[1,1]=pexp11/pexp1; P[1,2]=pexp12/pexp1;  
        P[1,3]=pexp13/pexp1; P[1,4]=pexp14/pexp1; 
        pexp2=pexp21+pexp22+pexp23+pexp24; 
        P[2,1]=pexp21/pexp2; P[2,2]=pexp22/pexp2;  
        P[2,3]=pexp23/pexp2; P[2,4]=pexp24/pexp2; 
        P[3,3]=pexp33/(pexp33+pexp34); P[3,4]=pexp34/(pexp33+pexp34); P[4,4]=1;   
        TPM=I(4); 
        do age=1 to 40;  
            TPM=TPM*P;  
            prevd[(i-1)*40+age,1]=i; prevd[(i-1)*40+age,2]=age;  
            prevd[(i-1)*40+age,3]=bstate;  
            prevd[(i-1)*40+age,4]=bage; prevd[(i-1)*40+age,5]=lage;  
            prevd[(i-1)*40+age,6]=death;  
            if death=0 then cutage=lage; else cutage=40;  
            if age>=bage & age<=cutage then do;  
                prevD[(i-1)*40+age,7]=TPM[bstate,1];  
                prevD[(i-1)*40+age,8]=TPM[bstate,2];  
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                prevD[(i-1)*40+age,9]=TPM[bstate,3];  
                prevD[(i-1)*40+age,10]=TPM[bstate,4];  
            end;   
        end; 
    end;  

varnames={"ID" "Age" "bstate" "bage" "lage" "death" "state1"  "state2"  
  "state3"  "state4" }; 

    create PrevD from prevD[colname=varNames];append from prevD; close prevD;  
FINISH PrevEstD;  
Quit;  

B. SAS codes for Non-homogenous Markov Model 

/********************************************************************/ 
/*1. %Macro SimData(SimN,SubjN); */ 
/********************************************************************/ 
options set=R_HOME='C:\Program Files\R\R-2.15.2'; 
%Macro SimData(SimN,SubjN,betas);  
%let rowN=%eval(&SimN * &SubjN); 
PROC IML; 
Nrows=&rowN; SN=&SimN; SbjN=&SubjN; 
%include "~ \GenDataR.txt"; 
RUN ImportDataSetFromR("SimH&SubjN", "SimH"); 
RUN ImportDataSetFromR("SimG&SubjN", "SimG"); 
Quit;  
%Mend SimData; 
 
/********************************************************************/ 
/*2. %Macro DataPrep(Dataset); */ 
/********************************************************************/ 
%Macro DataPrep(Dataset); 
Data SimD1; set &Dataset; 
rename V1=SimN V2=Id V3=T1 V4=T2 V5=T3 V6=T4 V7=T5 V8=Z; Run; 
Data SimD2; set SimD1; 
    if T1<T2 and T1<T3 then do;State1=2;T=T1;TL1=floor(T);TR1=ceil(T);end; 
    if T2<T1 and T2<T3 then do;State1=3;T=T2;TL1=floor(T);TR1=ceil(T);end; 
    if T3<T1 and T3<T2 then do;State1=4;T=T3;TL1=floor(T);TR1=T;end; 
    if T>25 then do; TL1=25; TR1=25; State1=1; end; 
    if State1=2 then do; 
           if T4<T5 then do; State2=3; TT=T+T4; TL2=floor(TT); TR2=ceil(TT);end; 
           if T5<T4 then do; State2=4; TT=T+T5; TL2=floor(TT); TR2=TT;end; 
           if TT>25 then do; State2=2; TL2=25;TR2=25; end; 
    end; 
    if TL1=TL2 then do;State1=State2; State2=.; TR1=TR2; TL2=.; TR2=.; end; 
RUN;     
Data SimD3;  set SimD2;  
    if State1=1 then do;case=1; TL=0; TR=TR1;output;end; 
    if State1=2 then do; 
        case=1; TL=0; TR=TL1; output; case=2; TL=TL1; TR=TR1;output; 
        if State2=2 then do;case=5; TL=TR1;TR=TR2;output; end; 
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        if State2=3 then do; 
          case=5; TL=TR1;TR=TL2; output; case=6; TL=TL2;TR=TR2;output; 
        end; 
        if State2=4 then do; 
          case=5; TL=TR1;TR=TL2; output; case=7; TL=TL2;TR=TR2;output; 
        end; 
    end; 

if State1=3 then do;  
  case=1; TL=0; TR=TL1;output; case=3; TL=TL1;TR=TR1; output;  
end; 
if State1=4 then do;  
  case=1; TL=0; TR=TL1;output; case=4; TL=TL1;TR=TR1; output;  
end; 

   keep SimN id case TL TR Z; 
Run; 
Data SimD3; set SimD3; if TL ne TR; run; 
Data C&Dataset; set SimD3; by SimN id; 

if first.id then first=1;else first=0; if last.id then last=1; else last=0;  
if TL=0 then TL=0.000001; 

Run; 
%Mend DataPrep; 
 
/********************************************************************/ 
/*3. %Macro WLLike;*/ 
/********************************************************************/ 
%MACRO WLLike; 
START logLikeWeibull(parms) global(Dataset); 

lamda12=parms[1];lamda13=parms[2];lamda14=parms[3];int12=parms[4]; 
int13=parms[5]; int14=parms[6]; int23=parms[7];int24=parms[8];  
Z12=parms[9];Z13=parms[10];Z14=parms[11];  
logLike=.0; n=nrow(DataSet); 
do i=1 to n; 

case=DataSet[i,1];TL=DataSet[i,2];TR=DataSet[i,3];Z=DataSet[i,4]; 
first=DataSet[i,5];last=DataSet[i,6];  
if first=1 then do; 

expZ12=exp(int12+Z12*Z);expZ13=exp(int13+Z13*Z); 
expZ14=exp(int14+Z14*Z); a23=exp(int23); a24=exp(int24); 

end; 
/*Case 1: 1->1*/  
if case=1 then  do;  

A12TL=expZ12*(TL)**lamda12; A13TL=expZ13*(TL)**lamda13; 
A14TL=expZ14*(TL)**lamda14; 
A12TR=expZ12*(TR)**lamda12; A13TR=expZ13*(TR)**lamda13; 
A14TR=expZ14*(TR)**lamda14;  
logL=(A12TL+A13TL+A14TL)-(A12TR+A13TR+A14TR); 

end;  
/*Case 2: 1->2*/  
if case=2 then do;  

intg=.0; h=(TR-TL)/150; 
do j=0 to 150;u=TL+j*h; 
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*1. Get P11(TL,u); 
A12TL=expZ12*(TL)**lamda12; A13TL=expZ13*(TL)**lamda13; 
A14TL=expZ14*(TL)**lamda14; 
A12u=expZ12*(u)**lamda12; A13u=expZ13*(u)**lamda13; 
A14u=expZ14*(u)**lamda14; 
p11=exp((A12TL+A13TL+A14TL)-(A12u+A13u+A14u));  
*2. Get a12(u); 
q12=expZ12*(lamda12)*(u)**(lamda12-1);  
*3. Get p22(u,TR); 
p22=exp(-(a23+a24)*(TR-u)); 
*4. do intergration p11(TL,u)*a12(u)*p22(u,TR); 
f=p11*q12*p22; if j=0 | j=150 then intg=intg+f/2; else intg=intg+f; 

end; 
logL=log(intg*h); 

end; 
/*Case 3: 1->3*/ 
if case=3 then do;  

intg=.0; h=(TR-TL)/150; 
do j=0 to 150; u=TL+j*h; 

*1. Get P11(TL,u); 
A12TL=expZ12*(TL)**lamda12; A13TL=expZ13*(TL)**lamda13; 
A14TL=expZ14*(TL)**lamda14; 
A12u=expZ12*(u)**lamda12; A13u=expZ13*(u)**lamda13; 
A14u=expZ14*(u)**lamda14; 
p11=exp((A12TL+A13TL+A14TL)-(A12u+A13u+A14u));  
*2. Get a12(u) a13(u); 
q12=expZ12*(lamda12)*(u)**(lamda12-1); 
q13=expZ13*(lamda13)*(u)**(lamda13-1);  
*3. Get p23(u,TR); 
p23= a23/(a23+a24)*(1-exp((a23+a24)*(u-TR)));  
*4. do intergration p11(TL,u)*(a13(u)+a12(u)*p23(u,TR)); 
f=p11*(q12*p23+q13); if j=0 | j=150 then intg=intg+f/2; else intg=intg+f; 

end; 
logL=log(intg*h); 

end; 
/*Case 4: 1->4*/ 
if case=4 then do;  

intg=.0; h=(TR-TL)/150; 
*1. get p14(TL,TR)=p11(TL,TR)*a14(TR); 
A12TL=expZ12*(TL)**lamda12; A13TL=expZ13*(TL)**lamda13; 
A14TL=expZ14*(TL)**lamda14; A12TR=expZ12*(TR)**lamda12; 
A13TR=expZ13*(TR)**lamda13; A14TR=expZ14*(TR)**lamda14; 
p11TR=exp((A12TL+A13TL+A14TL)-(A12TR+A13TR+A14TR));  
q14TR=expZ14*(lamda14)*(TR)**(lamda14-1); p14=p11TR*q14TR; 
do j=0 to 150; 

u=TL+j*h; 
*1. Get P11(TL,u); 
A12TL=expZ12*(TL)**lamda12; A13TL=expZ13*(TL)**lamda13; 
A14TL=expZ14*(TL)**lamda14; A12u=expZ12*(u)**lamda12; 
A13u=expZ13*(u)**lamda13;A14u=expZ14*(u)**lamda14; 
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p11=exp((A12TL+A13TL+A14TL)-(A12u+A13u+A14u));  
*2. Get a12(u); 
q12=expZ12*(lamda12)*(u)**(lamda12-1);  
*3. Get p24(u,TR); 
p22=exp(-(a23+a24)*(TR-u));p24=p22*a24;  
*4. do intergration p11(TL,u)*a12(u)*p24(u,TR)); 
f=p11*q12*p24; if j=0 | j=150 then intg=intg+f/2; else intg=intg+f; 

end; 
logL=log(p14+intg*h); 

end; 
/*Case 5: 2->2*/ 
if case=5 then logL=-(a23+a24)*(TR-TL); 
/*Case 6: 2->3*/ 
if case=6 then do;  

p23=(1-exp(-(a23+a24)*(TR-TL)))*a23/(a23+a24); logL=log(p23);  
end; 
/*Case 7: 2->4*/ 
if case=7 then  logL=-(a23+a24)*(TR-TL)+log(a24); 
logLike=logLike+logL; 

end; 
return(logLike); 

FINISH logLikeWeibull; 
%Mend WLLike; 
 
/********************************************************************/ 
/*4. %Macro EstLJ(Dataset,Nsim,H0,Con); */ 
/********************************************************************/ 
%Macro EstLJ(Dataset,Nsim,H0,Con);   
  PROC IML; 
    %WLLike; &H0; &Con; optn={1 0 1 3}; ct={1000 1000}; Est=J(&Nsim,55,0); 
    use &Dataset; 
    do sim=1 to &Nsim; 
        read all var {Case TL TR Z First Last} into Dataset where(SimN=sim); 
        call nlpnra(rc,xres,"logLikeWeibull",h0,optn,con,ct); estimate=xres` ; 
        call nlpfdd(f,g,hes2,"logLikeWeibull",estimate);cov=-inv(hes2); 
        norqua=probit(1-0.05/2); stderr=sqrt(vecdiag(cov)); 
        low=estimate-norqua*stderr; up=estimate+norqua*stderr; 
        z=abs(estimate/stderr);p=2*(1-probnorm(z)); 
        Est[sim,1:11]=xres;Est[sim,12:22]=low`;Est[sim,23:33]=up`;  
        Est[sim,34:44]=p`;Est[sim,45:55]=stderr`; 
    end; 

varNames={"lamda12" "lamda13" "lamda14" "int12" "int13" "int14" "int23"  
"int24" "Z12" "Z13" "Z14" "lamda12CL" "lamda13CL" "lamda14CL" "int12CL"  
"int13CL" "int14CL" "int23CL" "int24CL" "Z12CL" "Z13CL" "Z14CL"  
"lamda12CU" "lamda13CU" "lamda14CU" "int12CU"  
"int13CU" "int14CU" "int23CU" "int24CU" "Z12CU" "Z13CU" "Z14CU"  
"lamda12p" "lamda13p" "lamda14p" "int12p" "int13p" "int14p" "int23p" "int24p"  
"Z12p" "Z13p" "Z14p" "lamda12SD" "lamda13SD" "lamda14SD" "int12SD"  
"int13SD" "int14SD" "int23SD" "int24SD" "Z12SD" "Z13SD" "Z14SD"};  
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    create R&Dataset from Est[COLNAME=varNames] ;Append from Est; close 
R&Dataset; 
Quit; 
%Mend; 
  
/********************************************************************/ 
/*5. %Macro SimLJTable(Dataset);*/ 
/********************************************************************/ 
%Macro SimLJTable(Dataset); 
Data SimT; Set &Dataset (keep=lamda13 Z12 Z13 Z14 Z12CL Z13CL Z14CL 
Z12CU Z13CU Z14CU Z12SD Z13SD Z14SD);Beta1=2; Beta2=1.5; Beta3=0; 
Ebeta1=Z12;Ebeta2=Z13; 
Ebeta3=Z14; Bias1=Ebeta1-Beta1;Bias2=Ebeta2-Beta2;Bias3=Ebeta3-Beta3; 
SE1=Bias1**2; SE2=Bias2**2;SE3=Bias3**2; 
if Z12CL<=2 and Z12CU>=2 then Cbeta1=1; else Cbeta1=0; 
if Z13CL<=1.5 and Z13CU>=1.5 then Cbeta2=1; else Cbeta2=0; 
if Z14CL<=0 and Z14CU>=0 then Cbeta3=1; else Cbeta3=0; 
where lamda13 ne 0.01; Run; 
Proc tabulate data=SimT; var Z12 Z13 Z14 Z12SD Z13SD Z14SD Se1 Se2 Se3 Bias1 
Bias2 Bias3 Cbeta1 Cbeta2 Cbeta3;  
table (Z12 Z13 Z14)*(N mean*f=8.4 std*f=8.4) (Se1 Se2 Se3)*Mean*f=8.4  
(Z12SD Z13SD Z14SD)*Mean*f=8.4 (Bias1 Bias2 Bias3)*Mean*f=8.4   
(Cbeta1 Cbeta2 Cbeta3)*Mean*f=percentn10.2; Run; 
%Mend; 
 
/********************************************************************/ 
/*6. %Macro SimModel1LJ(Nsim,SubjN);*/ 
/********************************************************************/ 
%Macro SimModel1LJ(Nsim,SubjN); 
  %SimData(&Nsim,&SubjN); 
    /*1. Homogenous Data */ 
  %DataPrep(SimH&SubjN); 
  %let h0H=%str(h0={1 1 1 -4.2 -4.3 -4 -1.5 -2  2 1.5 0};); 
  %let conH=%str(con={0.01 0.01  0.01  . . . . .  . . ., . . .  . . . . .  . . .};); 
  %EstLJ(CSimH&SubjN,&Nsim,&H0H,&ConH); %SimLJTable(RCSimH&SubjN); 
    /*2. Weibull Data  */ 
  %DataPrep(SimW&SubjN); 
  %let H0W=%str(h0={1.9 2 2.1 -6.5 -6.7 -6 -1.5 -2  2 1.5 0};); 
  %let ConW=%str(con={1.00001 1.00001  1.00001  . . . . .  . . ., . . .  . . . . .  . . .};); 
  %EstLJ(CSimW&SubjN,&Nsim,&H0W,&ConW);  
  %SimLJTable(RCSimW&SubjN); 
    /*3. Gomperz Data  */ 
  %DataPrep(SimG&SubjN); 
  %let H0G=%str(h0={3.5 5 5.5 -12.5 -17 -18 -1.5 -2  2 1.5 0};); 
  %let ConG=%str(con={1.00001 1.00001  1.00001  . . . . .  . . .,  . . .  . . . . .  . . .};);  
  %EstLJ(CSimG&SubjN,&Nsim,&H0G,&ConG);  
%Mend SimModel1LJ;  
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C. R codes for Semi-Markov model 

library(rngWELL) 
library(randtoolbox) 
a12=function(t,pars) {return(pars[2]*pars[1]*(t^(pars[1]-1)))} 
a13=function(t,pars) {return(pars[4]*pars[3]*(t^(pars[3]-1)))} 
a14=function(t,pars) {return(pars[6]*pars[5]*(t^(pars[5]-1)))} 
a23<-function(u1,t,cutage,pars) { 
  if (t>u1) { 
    if (t>cutage) res=pars[8]*pars[7]*(t-u1)^(pars[7]-1)*exp(pars[9]) 
    else res=pars[8]*pars[7]*(t-u1)^(pars[7]-1) 
  } 
  else res=0 
  return(res) 
} 
 
a24<-function(u1,t,cutage,pars) { 
  if (t>u1) { 
    if (t>cutage) res=pars[11]*pars[10]*(t-u1)^(pars[10]-1)*exp(pars[12]) 
    else res=pars[11]*pars[10]*(t-u1)^(pars[10]-1) 
  } 
  else res=0 
  return(res) 
}  
p11=function(t,pars)  
  return(exp(-pars[2]*(t^pars[1])-pars[4]*(t^pars[3])-pars[6]*(t^pars[5]))) 
p22=function(u1,u2,cutage,pars){ 
  if (cutage>u2) A2=pars[8]*(u2-u1)^pars[7]+pars[11]*(u2-u1)^pars[10] 
  else if (cutage>u1) A2=pars[8]*exp(pars[9])*(u2-u1)^pars[7] 
     +pars[8]*(1-exp(pars[9]))*(cutage-u1)^pars[7]+ pars[11]*exp(pars[12]) 
     *(u2-u1)^pars[10]+pars[11]*(1-exp(pars[12]))*(cutage-u1)^pars[10] 
  else A2=pars[8]*exp(pars[9])*(u2-u1)^pars[7]+pars[11]*exp(pars[12]) 
     *(u2-u1)^pars[10] 
  return(exp(-A2)) 
} 
 
#case 2: 1->2 or 1->2->2 
p12<-function(t1,t2,t5,cutage,pars,SN){ 
  pf12=function(u,t5,cutage,pars) 
    return(p11(u,pars)*a12(u,pars)*p22(u,t5,cutage,pars)) 
  r1<-t1+(t2-t1)*halton(2*SN) 
  #r1<-t1+(t2-t1)*sobol(2*SN,scrambling=1) 
  res<-rep(0,SN) 
  for (i in 1:SN) res[i]=pf12(r1[i+SN],t5,cutage,pars) 
  return(mean(res)*(t2-t1)) 
} 
 
#case 3: 1->3 
p13<-function(t1,t2,cutage,pars,SN){ 
  pf13<-function(u,pars) return(p11(u,pars)*a13(u,pars)) 
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  pf123<-function(u1,u2,cutage,pars) { 
    p22e=ifelse(u2>u1,p22(u1,u2,cutage,pars)*a23(u1,u2,cutage,pars),0) 
    res=p11(u1,pars)*a12(u1,pars)*p22e 
    return(res)} 
  r1<-t1+(t2-t1)*halton(2*SN) 
  r2<-t1+(t2-t1)*halton(n=2*SN,dim=2) 
  #r1<-t1+(t2-t1)*sobol(2*SN,,scrambling=1) 
  #r2<-t1+(t2-t1)*sobol(n=2*SN,dim=2,,scrambling=1) 
  res1<-rep(0,SN) 
  res2<-rep(0,SN) 
  for (i in 1:SN) { 
    res1<-pf13(r1[i+SN],pars) 
    res2<-pf123(r2[i+SN,1],r2[i+SN,2],cutage,pars) 
  } 
  p1300=mean(res1)*(t2-t1) 
  p1230<-mean(res2)*(t2-t1)^2 
  return(p1300+p1230) 
} 
 
#case 4: 1->4 
p14<-function(t,pars) return(p11(t,pars)*a14(t,pars)) 
 
#Case 5: 1->2->3 
p123<-function(t1,t2,t3,t4,cutage,pars,SN){ 
  pf123<-function(u1,u2,cutage,pars) 
     return(p11(u1,pars)*a12(u1,pars)*p22(u1,u2,cutage,pars)*a23(u1,u2,cutage,pars)) 
  r1<-halton(2*SN,dim=2) 
  #r1<-sobol(2*SN,dim=2,,scrambling=1) 
  r1[,1]=t1+(t2-t1)*r1[,1] 
  r1[,2]=t3+(t4-t3)*r1[,2] 
  res<-rep(0,SN) 
  for (i in 1:SN) res[i]<-pf123(r1[i+SN,1],r1[i+SN,2],cutage,pars) 
  return(mean(res)*(t2-t1)*(t4-t3)) 
} 
 
#Case 6: 1->2->4 
p124<-function(t1,t2,t5,cutage,pars,SN){ 
  pf124<-function(u,t5,cutage,pars)  
     return(p11(u,pars)*a12(u,pars)*p22(u,t5,cutage,pars)*a24(u,t5,cutage,pars)) 
  r1<-t1+(t2-t1)*halton(2*SN) 
  #r1<-t1+(t2-t1)*sobol(2*SN,,scrambling=1) 
  res<-rep(0,SN) 
  for (i in 1:SN) res[i]<-pf124(r1[i+SN],t5,cutage,pars) 
  return(mean(res)*(t2-t1)) 
} 
# Main log-likelihood function 
logLSemi<-function(parms,dataset,cutage,SN) { 
  assign("dataset",dataset,envir=.GlobalEnv) 
  k12=parms[1];k13=parms[2];k14=parms[3]; k23=parms[4];k24=parms[5] 
  int12=parms[6]; int13=parms[7];int14=parms[8];int23=parms[9];int24=parms[10] 
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  par23_t=0;  
  par24_t=parms[11] 
  Apoe12=parms[12]; Female14=parms[13]  
  Sm14=parms[14]; Sm23=parms[15] 
  n=nrow(dataset);logLike=.0 
  for (i in 1:n){ 
    case=dataset[i,1] 

Bage=dataset[i,2]; t1=dataset[i,3]; t2=dataset[i,4]; t3=dataset[i,5]; t4=dataset[i,6]; 
t5=dataset[i,7]; 

    Apoe=dataset[i,8];Female=dataset[i,9]; Educ=dataset[i,10]; Fam=dataset[i,11] 
    Db=dataset[i,12]; Sm=dataset[i,13];Hd=dataset[i,14] 
    expz12=exp(int12+Apoe12*Apoe) 
    expz13=exp(int13) 
    expz14=exp(int14+Female14*Female+Sm14*Sm) 
    expz23=exp(int23+Sm23*Sm) 
    expz24=exp(int24) 
    pars=c(k12,expz12,k13,expz13,k14,expz14,k23,expz23,par23_t,k24, 
       expz24,par24_t) 
    if (case==1) Li=p11(t5,pars) 
    else if (case==2) Li=p12(t1,t2,t5,cutage,pars,SN) 
    else if (case==3) Li=p13(t1,t2,cutage,pars,SN) 
    else if (case==4) Li=p14(t5,pars) 
    else if (case==5) Li=p123(t1,t2,t3,t4,cutage,pars,SN) 
    else Li=p124(t1,t2,t5,cutage,pars,SN)   
    logLike=logLike+log(Li)-log(p11(Bage,pars)) 
  } 
  return(-logLike) 
} 
 
 



 

95 
 

Bibliography 

1. Commenges D. Inference for multi-state models from interval-censored data. Stat 
Methods Med Res 2002; 11: 167-182. 
2. Abner EL, Nelson PT, Schmitt FA, Browning SR, Fardo DW, Wan LJ, Jicha GA, 
Cooper GE, Smith CD, Caban-Holt AM, Van Eldik LJ, Kryscio RJ. Self-Reported Head 
Injury and Risk of Late-Life Impairment and AD Pathology in an AD Center Cohort. 
Dement Geriatr Cogn Disord 2014; 37: 294-306. 
3. Andersen PK, Keiding N. Multi-state models for event history analysis. Stat 
Methods Med Res 2002; 11: 91-115. 
4. Meira-Machado L, de Una-Alvarez J, Cadarso-Suarez C, Andersen PK. Multi-state 
models for the analysis of time-to-event data. Stat Methods Med Res 2009; 18: 195-
222. 
5. Commenges D. Multi-state models in epidemiology. Lifetime Data Anal 1999; 5: 
315-327. 
6. Hougaard P. Multi-state models: a review. Lifetime Data Anal 1999; 5: 239-264. 
7. Hsieh HJ, Chen THH, Chang SH. Assessing chronic disease progression using non-
homogeneous exponential regression Markov models: an illustration using a selective 
breast cancer screening in Taiwan. Stat Med 2002; 21: 3369-3382. 
8. van den Hout A, Matthews FE. Multi-state analysis of cognitive ability data: a 
piecewise-constant model and a Weibull model. Stat Med 2008; 27: 5440-5455. 
9. Frydman H. A Nonparametric-Estimation Procedure for a Periodically Observed 3-
State Markov Process, with Application to Aids. Journal of the Royal Statistical Society 
Series B-Methodological 1992; 54: 853-866. 
10. Frydman H, Szarek M. Nonparametric Estimation in a Markov "Illness-Death" 
Process from Interval Censored Observations with Missing Intermediate Transition 
Status. Biometrics 2009; 65: 143-151. 
11. Joly P, Commenges D, Letenneur L. A penalized likelihood approach for 
arbitrarily censored and truncated data: Application to age-specific incidence of 
dementia. Biometrics 1998; 54: 185-194. 
12. Joly P, Commenges D. A penalized likelihood approach for a progressive three-
state model with censored and truncated data: Application to AIDS. Biometrics 1999; 
55: 887-890. 
13. Joly P, Commenges D, Helmer C, Letenneur L. A penalized likelihood approach 
for an illness-death model with interval-censored data: application to age-specific 
incidence of dementia. Biostatistics 2002; 3: 433-443. 
14. Satten GA, Sternberg MR. Fitting semi-Markov models to interval-censored data 
with unknown initiation times. Biometrics 1999; 55: 507-513. 
15. Foucher Y, Mathieu E, Saint-Pierre P, Durand JF, Daures JP. A semi-Markov 
model based on generalized Weibull distribution with an illustration for HIV disease. 
Biometrical Journal 2005; 47: 825-833. 
16. Foucher Y, Giral M, Soulillou JP, Daures JP. A flexible semi-Markov model for 
interval-censored data and goodness-of-fit testing. Stat Methods Med Res 2010; 19: 
127-145. 
17. Kapetanakis V, Matthews FE, Hout A. A semi-Markov model for stroke with 
piecewise-constant hazards in the presence of left, right and interval censoring. Stat 
Med 2013; 32: 697-713. 



 

96 
 

18. Salazar JC, Schmitt FA, Yu L, Mendiondo MM, Kryscio RJ. Shared random 
effects analysis of multi-state Markov models: application to a longitudinal study of 
transitions to dementia. Stat Med 2007; 26: 568-580. 
19. Yu L, Tyas SL, Snowdon DA, Kryscio RJ. Effects of ignoring baseline on 
modeling transitions from intact cognition to dementia. Computational Statistics & 
Data Analysis 2009; 53: 3334-3343. 
20. Abner EL, Kryscio RJ, Cooper GE, Fardo DW, Jicha GA, Mendiondo MS, Nelson 
PT, Smith CD, Van Eldik LJ, Wan L. Mild cognitive impairment: statistical models of 
transition using longitudinal clinical data. International Journal of Alzheimer’s Disease 
2012; 2012. 
21. Kryscio RJ, Abner EL, Cooper GE, Fardo DW, Jicha GA, Nelson PT, Smith CD, 
Van Eldik LJ, Wan L, Schmitt FA. Self-reported memory complaints Implications from 
a longitudinal cohort with autopsies. Neurology 2014; 83: 1359-1365. 
22. Kryscio RJ, Abner EL, Lin YS, Cooper GE, Fardo DW, Jicha GA, Nelson PT, 
Smith CD, Van Eldik LJ, Wan LJ, Schmitt FA. Adjusting for Mortality when 
Identifying Risk Factors for Transitions to Mild Cognitive Impairment and Dementia. 
Journal of Alzheimers Disease 2013; 35: 823-832. 
23. Agresti A. Categorical data analysis. (2nd edn). Wiley-Interscience: New York, 
2002. 
24. Kryscio RJ, Schmitt FA, Salazar JC. Risk factors for transitions from normal to 
mild cognitive impairment and dementia. Neurology 2006; 66: 828-832. 
25. Andersen AH, Smith CD, Slevin JT, Kryscio RJ, Martin CA, Schmitt FA, Blonder 
LX. Dopaminergic Modulation of Medial Prefrontal Cortex Deactivation in Parkinson 
Depression. Parkinsons Disease 2015. 
26. Andersen PK, Esbjerg S, Sorensen TIA. Multi-state models for bleeding episodes 
and mortality in liver cirrhosis. Stat Med 2000; 19: 587-599. 
27. Hubbard RA, Zhou XH. A comparison of non-homogeneous Markov regression 
models with application to Alzheimer's disease progression. Journal of Applied 
Statistics 2011; 38: 2313-2326. 
28. Inc S. SAS/STAT® 9.3 User’s Guide. Cary, North Carolina: SAS Institute Inc 
2011. 
29. Jackson CH. Multi-State Models for Panel Data: The msm Package for R. Journal 
of Statistical Software 2011; 38: 1-28. 
30. Institute S. SAS/IML 9.3 User's Guide. SAS Institute, 2011. 
31. Titman AC, Sharples LD. A general goodness-of-fit test for Markov and hidden 
Markov models. Stat Med 2008; 27: 2177-2195. 
32. Abner EL, Charnigo RJ, Kryscio RJ. Markov chains and semi-Markov models in 
time-to-event analysis. Journal of biometrics & biostatistics 2013: 19522. 
33. Kalbfleisch JD, Lawless JF. The Analysis of Panel Data under a Markov 
Assumption. Journal of the American Statistical Association 1985; 80: 863-871. 
34. Gentleman RC, Lawless JF, Lindsey JC, Yan P. Multistate Markov-Models for 
Analyzing Incomplete Disease History Data with Illustrations for Hiv Disease. Stat 
Med 1994; 13: 805-821. 
35. Hsieh HJ, Chen TH, Chang SH. Assessing chronic disease progression using non-
homogeneous exponential regression Markov models: an illustration using a selective 
breast cancer screening in Taiwan. Stat Med 2002; 21: 3369-3382. 
36. Schmitt FA, Nelson PT, Abner E, Scheff S, Jicha GA, Smith C, Cooper G, 
Mendiondo M, Danner DD, Van Eldik LJ, Caban-Holt A, Lovell MA, Kryscio RJ. 
University of Kentucky Sanders-Brown Healthy Brain Aging Volunteers: Donor 



 

97 
 

Characteristics, Procedures and Neuropathology. Current Alzheimer Research 2012; 9: 
724-733. 
37. David HA, Moeschberger ML. The theory of competing risks. Griffin London, 
1978. 
38. Beyersmann J, Latouche A, Buchholz A, Schumacher M. Simulating competing 
risks data in survival analysis. Stat Med 2009; 28: 956-971. 
39. Andersen PK. Multistate Models in Survival Analysis - a Study of Nephropathy 
and Mortality in Diabetes. Stat Med 1988; 7: 661-670. 
40. Mathieu E, Foucher Y, Dellamonica P, Daures JP. Parametric and non 
homogeneous semi-markov process for HIV control. Methodology and Computing in 
Applied Probability 2007; 9: 389-397. 
41. Putter H, van der Hage J, de Bock GH, Elgalta R, van de Velde CJH. Estimation 
and prediction in a multi-state model for breast cancer. Biometrical Journal 2006; 48: 
366-380. 
42. Andersen PK, Borgan O, Gill RD, Keiding N. Statistical models based on counting 
processes. Springer Science & Business Media, 2012. 
43. Titman AC, Sharples LD. Model diagnostics for multi-state models. Stat Methods 
Med Res 2010; 19: 621-651. 
44. Bhat CR. Quasi-random maximum simulated likelihood estimation of the mixed 
multinomial logit model. Transportation Research Part B-Methodological 2001; 35: 
677-693. 
45. Wei S, Kryscio RJ. Semi-Markov models for interval censored transient cognitive 
states with back transitions and a competing risk. Stat Methods Med Res 2014: 
0962280214534412. 

 

  



 

98 
 

Vita 

Lijie Wan 

Education 

M.S. in Statistics, University of Kentucky, 2010-2012 

Employment 

Teaching Assistant, August 2010-May 2011 

Department of Statistics, University of Kentucky 

Research Assistant, August 2011-March 2016 

Sanders-Brown Center on Aging, University of Kentucky 

 

Publications 

Abner, E.L., Schmitt, F.A., Nelson, P.T., Lou, W., Wan, L., Gauriglia, R., Dodge, H.H., 
Woltjer, R.L., Yu, L., Bennet, D.A. and Schneider, JA. The Statistical Modeling of 
Aging and Risk of Transition Project: Data collection and harmonization across 11 
longitudinal cohort studies of aging, cognition, and dementia. Observational studies 
1.2015 (2015): 56. 

Chuan-hua Wei, Lijie Wan, Chunling Liu (2014). Efficient Estimation in 
Heteroscedastic Partially Linear Varying Coefficient Models. Communications in 
Statistics-Simulation and Computation 44.4 (2015): 892-901.  

Richard J. Kryscio, Erin L. Abner, Gregory E. Cooper, David W. Fardo, Gregory A. 
Jicha, Peter T. Nelson, Charles D. Smith, Linda J. Van Eldik, Lijie Wan and Frederick 
A. Schmitt. Self-reported memory complaints Implications from a longitudinal cohort 
with autopsies. Neurology 83.15 (2014): 1359-1365. 

Erin L Abner, Peter T Nelson, Frederick A Schmitt, Steven R Browning, David W 
Fardo, Lijie Wan, Gregory A Jicha, Gregory E Cooper, Charles D Smith, Allison M 
Caban-Holt, Linda J Van Eldik, Richard J Kryscio (2013). Self-Reported Head Injury 
and Risk of Late-Life Impairment and AD Pathology in an AD Center Cohort. 
Dementia and geriatric cognitive disorders. Vol. 37, No. 5-6, 2014. 

Richard J Kryscio, Erin L Abner, Yushun Lin, Gregory E Cooper, David W Fardo, 
Gregory A Jicha, Peter T Nelson, Charles D Smith, Linda J Van Eldik, Lijie Wan, 
Frederick A Schmitt (2013). Adjusting for Mortality when Identifying Risk Factors for 
Transitions to Mild Cognitive Impairment and Dementia. Journal of Alzheimer's 
Disease 35.4 (2013): 823-832. 

Erin L Abner, Richard J Kryscio, Gregory E Cooper, David W Fardo, Gregory A Jicha, 
Marta S Mendiondo, Peter T Nelson, Charles D Smith, Linda J Van Eldik, Lijie Wan, 
Frederick A Schmitt. Mild cognitive impairment: statistical models of transition using 
longitudinal clinical data. International Journal of Alzheimer’s Disease 2012 (2012). 


	CONTINUOUS TIME MULTI-STATE MODELS FOR INTERVAL CENSORED DATA
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Overview
	1.2 Background of the Nun Study
	1.3 Background of the BRAiNS Study
	1.4 Multi-State Models
	1.4.1 Multi-State Process
	1.4.2 Markov Models
	1.4.3 Semi-Markov Models
	1.4.4 Modeling Intensities

	1.5 A Review of Methods for Dealing Interval Censoring Data
	1.6 Outline of the Dissertation

	Chapter 2 A Comparison of Discrete-time and Continuous-time Multi-state Models
	2.1 Introduction
	2.2 Discrete-time and continuous-time multi-state models
	2.2.1 Discrete-time multi-state model
	2.2.2 Continuous-time multi-state model
	2.2.3 Relationship between the two models

	2.3 Simulation Study
	2.4 Application to the Nun Study
	2.5 Discussion

	Chapter 3 A Non-homogenous Markov Multi-State Model for interval censored transient cognitive states with competing risk
	3.1 Introduction
	3.2 Data
	3.3 Methodology
	3.3.1 The non-homogeneous Markov multi-state model
	3.3.2 Proportional hazard regression with Weibull baseline
	3.3.3 Observation Schemes
	3.3.4 Likelihood
	3.3.5 Parameter estimation

	3.4 Simulation Study
	3.5 Application to the BRAiNS Study
	3.6 Discussion

	Chapter 4 A four-state Semi-Markov model with interval censored data and time-dependent covariates
	4.1 Introduction
	4.2 The method
	4.2.1 The Semi-Markov Framework
	4.2.2 Weibull Regression Model
	4.2.3 The Likelihood Function
	4.2.4 Parameter Estimations

	4.3 Model Selection Strategy
	4.4 Goodness of Fit
	4.5 Application
	4.6 Discussion

	Chapter 5 Discussions and Future Research
	Appendices
	A. SAS codes for Chapter 2
	B. SAS codes for Non-homogenous Markov Model
	C. R codes for Semi-Markov model

	Bibliography
	Vita

