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ABSTRACT OF DISSERTATION

DEVELOPMENT IN NORMAL MIXTURE AND MIXTURE OF EXPERTS

MODELING

In this dissertation, first we consider the problem of testing homogeneity and or-

der in a contaminated normal model, when the data is correlated under some known

covariance structure. To address this problem, we developed a moment based ho-

mogeneity and order test, and design weights for test statistics to increase power for

homogeneity test. We applied our test to microarray about Down’s syndrome data.

This dissertation also studies a singular Bayesian information criterion (sBIC) for a

bivariate hierarchical normal mixture model with varying weights, and develops a

new data dependent information criterion (sFLIC). We apply our model and criteria

to birthweight and gestational age data for the same model, whose purposes are to

select model complexity from data.
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Chapter 1 Introduction

1.1 Finite Mixture models

Finite mixture models provided an reasonable approach to modeling many phenomena

which can not be accurately described via a commonly encountered distribution. And

it can be used in many areas like: epidemiology, genetics, marketing(Jedidi et al.

[1997]), finance(Lamoureux and Lastrapes [1994]) and agriculture(Atkinson et al.

[1997]).

Example 1: In epidemiologic area, the mixture model can describe the birth-

weight distribution and guide inference about the relation between birthweight and

infant mortality(see Charnigo et al. [2010], Wilcox and T Russell [1986], Gage and

Therriault [1998]). Simple bell curves are not adequate to describe the birthweight

distribution, especially for ’low birthweight group(less than 2500g) which is uninfor-

mative and seldom justified. Also for different types of population, the data may be

shown in different feature. In such a scenario, mixture models are potentially inter-

pretable, since the components of the mixture may correspond to subpopulation with

biologically meaningful characteristics.

Example 2: Mixture models can also be used in genetics. Ott [1999] proposed

using a mixture of Binomials to describe the distribution of recombination between

genetic traits and markers. Since in a homogeneous population, the probability of

recombination θ between a gene and a marker inherited by a child from a parent is

1
2

if the gene and the marker are independent and is in [0, 1
2
) if they are linked, the

model can be written as

λB(n, θ) + (1− λ)B(n,
1

2
) where λ ∈ [0, 1] θ ∈ [0,

1

2
] and n ∈ {2, 3, ...} .

Also,λ is the unknown proportion of families with linkage and n is the family size.

1



Now we describe the model. We discuss two cases: with and without nuisance

parameters.Consider {f(y; θ, β) : θ ∈ Θ, β ∈ R} or {f(y; θ) : θ ∈ Θ, } to be a family

of probability density( or mass) functions. Let B be the space of probability measures

on Θ.

Case one (with nuisance parameter β) For a finite mixture model with k com-

ponents, the mixture density(or mass) function can be written as

k∑
j=1

λjf(x, θj, β) where λj ∈ [0, 1] and
k∑
j=1

λj = 1. (1.1)

And more generally speaking, the model can be written as

g(y;Q, β) =

∫
f(y; θ, β)dQ(θ) for Q ∈ B (1.2)

a mixture density(or mass function) with mixing distribution Q. Note that, for a

finite mixture model, Q is a finitely supported discrete distribution.

Case two (without nuisance parameters) For a finite mixture , the mixture den-

sity(or mass) function is

k∑
j=1

λjf(x, θj) where λj ∈ [0, 1] and
k∑
j=1

λj = 1. (1.3)

The general model is defined by Charnigo and Pilla [2007]

g(y;Q) =

∫
f(y; θ)dQ(θ) for Q ∈ B (1.4)

a mixture density(or mass function) with mixing distribution Q.

As noted above, Q is always modeled parametrically for a finite mixture model,

although Q can be modeled parametrically in the more general setting; for instance,

Q can be a normal distribution. If Q is modeled non-parametrically, g is referred to

as a semi-parametric mixture model(Charnigo and Pilla [2007]).

2



1.2 EM approach

A general description of the EM algorithm is provided by Dempster et al. [1977]. EM

approach is a general strategy to iteratively compute maximum-likelihood estimates

and has two general steps each iteration: expectation step(E step) and maximum

step(M step). For mixture models, we usually apply EM algorithm to estimate the

unknown parameters( here we assume, perhaps only temporarily that the number of

components is known), due to the following reasons. Firstly, EM algorithm provides

an approximation to MLE(maximum likelihood estimation) without requiring numer-

ical solutions to the difficult high-dimensional optimization problems. Secondly, we

can consider which component an individual belongs to as a latent variable, then

the mixture model can be expressed in terms of incomplete data. As mentioned in

Dempster, Laird and Rubin’s paper, EM approach has a more natural interpretation

than MLE in the context of incomplete data.

In what follows, we describe application of the EM algorithm to mixture model;

Suppose we have X1, X2, ...Xn be iid random variables from a finite mixture model

with k components

k∑
j=1

λjf(x|µj, β) where λj ∈ [0, 1] and
k∑
j=1

λj = 1. (1.5)

Let zij = I[individual i belongs to the jth component], then the complete data log-

likelihood function can be written as

l(x, z|θ) =
n∑
i=1

k∑
j=1

zij[log λij + log f(xi|µj, β)]. (1.6)

At the tth iteration, perform the following two steps:

E-step

Put

3



Q(θ|θ(t)) = E[l(x, z|θ)|x, λ(t)
1 ...λ

(t)
j , µ

(t)
1 ...µ

(t)
j , β

(t)] (1.7)

where quantities labeled (t) are estimates after iteration t.

Let

w
(t)
ij =

λjf(xi|µ(t)
j , β

(t))∑k
j′=1 λj′f(xi|µ(t)

j′ , β
(t))

(1.8)

Then equation 1.7 becomes:

n∑
i=1

k∑
j=1

w
(t)
ij log λj +

n∑
i=1

k∑
j=1

w
(t)
ij f(xi;µj, β) (1.9)

For example, if f(x;µj, β) is normal with mean µj and variance β, then we obtain

n∑
i=1

k∑
j=1

w
(t)
ij log λj +

n∑
i=1

k∑
j=1

w
(t)
ij [−1

2
log β − 1

2

(xi − µj)2

β
] (1.10)

M-step

Maximizing the function 1.10 gives the estimator after the next iteration. Con-

tinuing our normal example, we have

λ
(t+1)
j =

∑n
i=1 w

(t)
ij

n
,

µ
(t+1)
j =

∑n
i=1w

(t)
ij xi∑n

i=1w
(t)
ij

,

and

β(t+1) =

∑k
j=1

∑n
i=1w

(t)
ij (xi − µ(t+1)

j )2∑k
j=1

∑n
i=1w

(t)
ij

.

4



Then, update 1.10 with the new parameter estimates, and iterate until

|l(µ(t+1)
1 , ...µ

(t+1)
k , β(t+1), λ

(t+1)
1 , ...λ

(t+1)
k )− l(µ(t)

1 , ...µ
(t)
k , β

(t), λ
(t)
1 , ...λ

(t)
k )| < ε

, for some small ε > 0; that is iterate until the likelihood converges. And if the

model is correct, then under regularity conditions, the MLE’s as approximated by the

EM approach are
√

n-consistent(Redner and Walker [1984]). Note,
√
n-consistency

dose not hold if the model is not correct(i.e. there are either too few or two many

components).

1.3 Estimate the number of mixture component

Testing

Let m := |supp Q| an important but challenging problem in mixture model is deter-

mining m, which is the order of the mixture distribution.

Even for the simplest case, testing for homogeneity in finite mixture models with-

out nuisances parameters(1 component vs. 2 component) is not that easy.i.e

(1− γ)f(x; θ1) + γf(x; θ2), θ1, θ2 ∈ Θ, γ ∈ [0, 1] (1.11)

where {f(x; θ), θ ∈ Θ} is family of pdfs(or pmfs).

Testing hypothesis:

H0 : γ(1− γ)(θ2 − θ1) = 0 vs. H1 : γ(1− γ)(θ2 − θ1) 6= 0

(If H0 is true, then equation(1.11) simplifies to f(x, θ0) for some θ0.) is not easy.

LRT(likelihood ratio test) seems to be the best choice since it locally ,most power-

ful test(Chen et al. [2001]). But Hartigan [1985] showed that the LRT statistics will

diverges to ∞ under the null hypothesis(homogeneity) when the family is normal,

which has known mean θ1, unknown mean θ2, standard deviation equals to 1 and

5



Θ = R. To solve this problem, much research has been done (see McLachlan and

Basford [1988], Lindsay [1995], and reference therein ).

More recently, Chen et al. [2001], Dacunha-Castelle et al. [1999] showed that if Θ

is compact, θ1, θ2, γ are unknown and {f(x, θ), : θ ∈ Θ} satisfied some condition, then

the LRT statistic will converges in law to a random variable supθ∈Θ{(max(0,W (θ)))2},

where {W (θ), θ ∈ Θ} is a Gaussian process. Even though we have the limit distribu-

tion of the test statistic, there are still some problems. Since the Gaussian process

depends on the parameter space Θ, it may vary as the space is changed. Even we

fixed a space, the critical value is hard to calculate.Chen et al. [2001] developed a new

method by introducing the MLRT(Modified likelihood ratio test). Different from the

LRT, MLRT adds a penalty term into the likelihood function, in order to force the

estimator of γ away from 0 and 1. Then under basically the same condition, MLRT

statistic converges in law to (max(0,W (θ0))2. Then under null hypothesis, θ1, θ2, γ

unknown, test statistic will converge in law to 1
2
χ2

1 + 1
2
χ2

0 (where χ2
0 is a degenerate

random variable at value 0). The MLRT is also a locally most powerful test and has

asymptotic tractable distribution under the null. Further more, Dai and Charnigo

[2008] showed that forθ1 known,θ2, γ unknown, the MLRT statistic will converge in

law to χ2
k under the null hypothesis, where the k ∈ N is known, and is the dimension

of parameter space.

The MLRT also has some drawbacks, like the formal expressions for the test

statistic in terms of parameter estimators are not only complicated, but also still

require the exact value of x1...xn. Charnigo and Sun [2004] proposed a new test,

D-test, which is based on the L2 distance between a fitted homogeneous model and a

fitted heterogeneous model. This test may be applied for mixture from a parametric

family of continuous distribution and has a greater advantage than MLRT if the full

dataset is not readily accessible, since D-test statistics depend on data only through

mixture parameter estimators and has a simple form. Also, if θ1, θ2,γ are estimated

using modified likelihood, D-test statistic has a tractable null distribution which is

6



provided in Charnigo and Sun [2010]. Charnigo and Sun also developed a test for

mixtures from a parametric family of discrete distributions in 2008(see Charnigo and

Sun [2008]), called W-test. This test is competitive with MLRT in terms of power,

and it also depends on data solely through the parameter estimators. Moreover, in

many situation, W-test can use large sample critical value with small to moderate

size samples.

It seems that the problem of choosing the order of the mixture model is solved

by those tests. For more complex cases, however, like testing 2 components vs. 3

components or even a test of homogeneity under more general circumstances, those

tests can not be easily be applied, since the asymptotic distribution is unclear. To

solve this problem, Chen and Li [2009] proposed the EM-test, which has a simple

limiting distribution. This test based on the EM algorithm using a small number of

iterates to estimate parameters before construction the test statistics. The limiting

distribution of the EM-test statistic has a nice asymptotic distribution, for testing 1

component vs. 2 components, it has the same asymptotic distribution as the MLRT.

While for 2 components vs. 3 or 4 components, under the null hypothesis, the EM-

test statistic converges in law to α0χ
2
0 +α1χ

2
1 +α2χ

2
2 where α0, α1, α2 sum up to 1 and

can be calculated based on the parametric family {f(x, θ) : θ ∈ Θ}. And for testing 3

components vs. 4,5 or 6 components, the asymptotic form of the test statistic under

the null hypothesis is α0χ
2
0 + α1χ

2
1 + α2χ

2
2 + α3χ

2
3 where α0, α1, α2, α3 sum up to 1

and can be calculated based on the parametric family {f(x, θ) : θ ∈ Θ}. These are

useful results, but the EM-test does have some complications: Firstly, for testing

1 vs. 2 components, the weight for the chi-square distributions are immediately

apparent. But it seems less easy to solve α0 to α3 for testing 3 components vs. 4,5 or

6 components. Secondly, the level of significance is associated with sequential testing,

which makes its ascertainment complex. What’s more, the test works beautifully if θ

is a scalar, but above conclusions do not hold for the case in which θ is a vector nor

for hierarchical mixture models. There is much work remaining to be done.
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Information criterion

Besides testing, another major contribution to selecting the proper number of mixture

components is the development of model selection criteria, such as AIC(Akaike infor-

mation criterion) and BIC(Bayesian information criterion). These two criteria belong

to the family of penalized likelihood criteria, as well as the algorithm provided by

Figueiredo and Leitã [1993] for estimating a mixture model. Suppose we generalized

our model selection problem wit h models indexed by m ∈ {1, 2...M}. Denote the

complexities of those models to be C1 < C2 < ... < CM .Then the AIC(Akaike [1973])

and BIC(Schwarz et al. [1978]) have penalty terms 2Cm and Cm log n respectively.

Figueiredo and Leitã [1993] showed an criterion named MMDL(mixture minimum

description length type criterion) which is based on the identication of an equiva-

lent sample size, for each component. MMDL introduced a lower penalty than BIC,

but still compatible with BIC. Lahiri [2001] showed that the AIC is an inconsistent

estimator when n is large, while the BIC will underestimate the number of compo-

nents when n is small. So some researchers have defined new criteria which could

have the consistency of BIC, while also retaining the small sample performance of

AIC. Keribin [2000] proposed an almost surely consistent penalized likelihood esti-

mator for given appropriate penalization sequence, based on locally conic parameter-

izations(Dacunha-Castelle et al. [1999]).However, Kerbin’s estimator did not have a

data-dependent penalty.

Thus, Pilla and Charnigo [2006] proposed a new model selection criteria named

FLIC(Flexible information criterion). FLIC performs better than BIC when com-

ponents are poorly separated and n is small, while also performing better than

AIC when components are well separated and n is large. Importantly, FLIC takes

into account the structure of the data to determine the strength of the penalty

term. More specifically, when the dimension of θ is 3m, the penalty term for FLIC

is 2(log
√
n)B(n,δ)(3m − 1), where 3m-1 is the number of free parameters in a m-

component mixture model. n is the sample size, δ denotes the fraction of within-
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component variability to the total variability, and B(n, γ) = Φ[(log
√
n)γ ]−Φ(1)

1−Φ(1)
is a bi-

variate function taking a value between 0 and 1. Since the penalty term is not only

determined by simple size n, but also by the data configuration, it tends to select

more components if the data suggest greater heterogeneity.

Drton and Plummer [2013] proposed a new information criterion called sBIC(singular

Bayesian information criterion), which is a Bayesian information criterion in context

of a singular model selection problem. Note that the singular model refers to the

models whose Fisher information matrices may be singular and fail to be invertible.

For BIC, the large sample quadratic approximation to the log-likelihood function

is not possible when the Fisher-information matrix is singular(Watanabe [2009a]).

However sBIC can circumvent this singularity problem. The sBIC agrees with the

BIC for regular model, and can be calculated without using the Monte Carlo compu-

tations. Since the sBIC makes use of the information about the learning coefficients

that capture the large sample behavior of the concerned marginal likelihood integrals,

the sBIC is not only consistent, but also enjoys some nice properties about Bayesian

model choice in singular settings, which normal BIC is not applicable due to the

invertible of Fisher information matrix. Note that sBIC penalty is no more stronger

than ordinary BIC penalty. Hence sBIC will select a equal or greater complexity than

BIC.

While the FLIC and sBIC have been applied to univariate mixture models, to our

knowledge, neither has been applied to multivariate mixture models expect in one

special case: a bivariate normal mixture(Fan [2014]). Fan [2014], Chapter 4 introduces

a hierarchical normal mixture model with nuisance parameters(HNP+NP model) and

applied the sBIC to it. Chapter 5 shows a new data dependent information criterion

inspired by Pilla and Charnigos FLIC (see Charnigo and Pilla [2007]) for HNP+NP

model.

Copyright c© Meng Qi, 2016.
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Chapter 2 Two component normal model under correlation

2.1 Modeling contamination under correlation

In microarray data analysis and large-scale hypothesis testing, p-values of multiple

tests can be modeled as a mixture of Beta distributions(Allison et al. [2002], Dai

and Charnigo [2008] ). Furthermore, Dai and Charnigo [2010] examined a different

approach of using a contaminated normal model to describe the distribution of Z

statistics from such tests.

For iid Z statistics, the homogeneity testing problem was solved by Dai and

Charnigo [2010]. They indicated that, under the null hypothesis, both the MLRT

statistic (modified likelihood ratio test, proposed by Chen et al. [2001]) and empir-

ical D-test statistic(proposed by Charnigo and Sun [2004]) will converge in law to

χ2
1. Under any fixed alternative, MLRT statistic and D-test statistic will converge to

positive constant. Thus these tests are consistent. However, this theory can not be

applied to correlated Z statistics.

The assumption about iid may sometimes not be applicable, though, for example,

when 2 genes are in a common biological pathway, their expression levels that defined

two Z statistics may be correlated with each other. This motivates the development

of methodology for analyzing the distribution of correlated Z statistics, specified

within known clusters by biological pathways. Even though the assumptions of known

clusters may not be perfect, it is more satisfactory in practice than assumptions of iid

data. In any event, the development of such methodology at least permits a rigorous

investigation of robustness of scientific conclusions to the assumption of iid data.

Therefore, in this chapter, we show a methodology to deal with correlated data, with

focus on homogeneity testing: Z statistics arising from tests of differential expression

on some genes constitute a second component with non-zero mean in a contaminated
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normal model.

The problem description:

We start with paired correlated data. This is a special case which indicates that

there are only two genes in each biological pathway. The data is constructed as

following: let X ∈ {1, 2} be a variable identifying component membership, P (X =

2) = λ, where 0 ≤ λ ≤ 1. Consider Y |X = 1 ∼ N(0, 1), Y |X = 2 ∼ N(µ, 1). So

Y ∼ (1− λ)N(0, 1) + λN(µ, 1),

a contaminated normal without nuisance parameters, the variance is known to be 1

for each component.

Suppose Y1 and Y2 may be correlated. Let Z1, Z2, Z3 be independent, Z1, Z2 ∼

N(0, σ2), Z3 ∼ N(0, τ 2), put Y1 = Z1 + µ(X1 − 1) + Z3, Y2 = Z2 + µ(X2 − 1) + Z3,

here we assume σ2 + τ 2 = 1 for now and that σ2, τ 2 are known.

Now, we will show the calculations of conditional and marginal moments of a

contaminated normal distribution, which are necessary for establishing a homogeneity

test for whether some genes are differentially expressed.There are some questions:

Question 1

If X1 = X2 = X(perfectly dependent component membership), then the correla-

tion between Y1 and Y2 conditionally on X and marginally follow:

Conditionally, we can find

E(Y1|X) = E(Y2|X) = µ(X − 1)

cov(Y1, Y2|X) = E[(Y1 − E(Y1|X))(Y2 − E(Y2|X)] = τ 2

var(Y1|X) = var(Z1) + var(Z3) = σ2 + τ 2 = 1

Then the covariance matrix of Y1 and Y2 is

Σ =

 1 τ 2

τ 2 1

 .
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Marginally, we can find

E(X1) = E(X2) = 1 + λ

E(Y1) = E(Y2) = µ(1 + λ)− µ = µλ

cov(Y1, Y2) = E[(Y1 − E(Y1))(Y2 − E(Y2)] = µ2λ(1− λ) + τ 2

var(Y1) = var(Y2) = σ2 + τ 2 + µ2λ(1− λ) = 1 + µ2λ(1− λ)

Then, the covariance matrix of Y1 and Y2 is

Σ =

 1 + µ2λ(1− λ) τ 2 + µ2λ(1− λ)

τ 2 + µ2λ(1− λ) 1 + µ2λ(1− λ)

 .

Question 2

If X1, X2 are independent then the correlations between Y1 and Y2, conditionally

on (X1, X2) follow:

Conditionally, we can find:

E(Y1|X1) = µ(X1 − 1) and E(Y2|X2) = µ(X2 − 1)

cov(Y1, Y2|X1, X2) = τ 2

var(Y1|X1) = var(Y2|X2) = σ2 + τ 2 = 1

Then, the covariance matrix of Y1 and Y2 is

Σ =

 1 τ 2

τ 2 1


. Marginally, we can find:

E(Y1) = E(Y2) = µλ

cov(Y1, Y2) = τ 2

var(Y1) = var(Y2) = 1 + µ2λ(1− λ)

Then, the covariance matrix of Y1 and Y2 is

Σ =

 1 + µ2λ(1− λ) τ 2

τ 2 1 + µ2λ(1− λ)

 .
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Question 3

Suppose that X1 6= X2 but X1 and X2 are correlated.

var

 X1

X2

 =

 1 θ

θ 1

λ(1− λ)

for θ ∈ (0, 1)

Marginally, we can find:

E(X1) = E(X2) = 1 + λ

E(Y1) = E(Y2) = µλ

cov(Y1, Y2|(X1, X2)) = τ 2 + µ2θλ(1− λ)

var(Y1) = var(Y2) = 1 + µ2λ(1− λ)

Conditionally, we have

E(Y1|X1) = µ(X1 − 1)

E(Y2|X2) = µ(X2 − 1)

cov(Y1, Y2|X1, X2) = τ 2

var(Y1|X1) = var(Y2|X2) = σ2 + τ 2 = 1

2.2 Define moment estimators

Toward developing a homogeneity test, we will define moment estimators:

m̂1 = n−1

n∑
i=1

(Y1i + Y2i) and m̂2 = n−1

n∑
i=1

(Y1i + Y2i)
2

since

E(Y1i + Y2i) = 2µλ

E(Y1i + Y2i)
2 = 4µ2λ2 + 2σ2 + 2µ2λ(1− λ) + 4τ 2 + 2µ2θλ(1− λ),
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Then we define µ̂ and λ̂ by m̂1 = 2µ̂λ̂

m̂2 = 4µ̂2λ̂2 + 2σ2 + 2µ̂2λ̂(1− λ̂) + 4τ 2 + 2µ̂2θλ̂(1− λ̂).

which may be solved as follows:

 λ̂ =
(1+θ)m2

1

2(m2−m2
1−2−2τ2)+(1+θ)m2

1

µ̂ =
m1

2λ̂

(2.1)

2.3 Homogeneity hypothesis Testing

Testing null hypothesis µλ = 0 is the homogeneity testing: some genes differently ex-

pressed as represented by a second component with non-zero mean in a contaminated

normal model.

We consider a moment-based approach for testing the hypothesis since for like-

lihood ratio test, the assumption of regularity conditions is violated, such as identi-

fiability(Chen et al. [2001]; Dai and Charnigo [2008]). We first show a special case

which is paired correlated data. Then we show a more general case for different size

of clusters.

Only with paired data per group

Description

As before, κ1, kappa2 are discrete random variables taking values 1 or 2 and are

defined as follows: P(kappai = 1) = 1 − λ, P(kappai = 2) = λ, where i = 1, 2. For

calculation convenience, we further define Xi = κi − 1, thus

P(Xi = 0) = 1− λ, P(Xi = 1) = λ, where i = 1, 2.

var

 X1

X2

 =

 1 θ

θ 1

λ(1− λ),

where θ ∈ [0, 1]
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Let Z1, Z2, Z3 be iid Normal(0,1) random variables,

Y1|X1 = x ∼ µx+ σZ1 + τZ3

Y1|X2 = x ∼ µx+ σZ2 + τZ3

Testing

For testing

H0 : µλ = 0 vs. Ha : µλ 6= 0,

define m = (m1,m2), m̂ = (m̂1, m̂2); where

m̂1 = n−1
∑n

i=1(Y1i + Y2i)

m̂2 = n−1
∑n

i=1(Y1i + Y2i)
2

and

m1 = E(Y1i + Y2i) = 2µλ

m2 = E(Y1i + Y2i)
2 = 2 + 2τ 2 + 2µ2λ(1− λ)(1 + θ) + 4µ2λ2

Then for testing the hypothesis, under H0 m1 = 0, while under Ha m1 6= 0, then

define

V(m̂) = var(m̂1) = Em̂2 − (Em̂1)2

V̂(m) = ̂var(m1) = m̂2 − m̂1
2

Then under the null hypothesis, m1 = 0, thus by central limit theorem and slutsky’s

theorem:
√
n

m̂1√
V̂(m)

d→ N(0, 1)

Consider

T =

√
n

V̂(m)
m̂1, (2.2)

and let zp denote the p quantile of standard normal distribution. Then we have

proved
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Theorem 1 : Under null hypothesis:

lim
n→∞

P (|T | > z1−α/2) = α

for any α ∈ (0, 1).

Theorem 2 Under any fixed alternative, m1 6= 0

lim
n→∞

P (|T | > z1−α/2) = 1

for any α ∈ (0, 1). Theorem 2 is a corollary of Theorem 4.

Generalized case

Description

Suppose the data is clustered in known groups of size mi, X1i, X2i, ...Xmii are

discrete random variables taking values 1 or 2 and are defined as follows P(Xi = 0) =

1− λ, P(Xi = 1) = λ, where i = 1, 2, ...mi;

var


X1i

X2i

...

Xmii


=


1 θ ... θ

θ 1 ... θ

... ... ...

θ θ ... 1


λ(1− λ),

where θ ∈ [0, 1]

Then define Z1i, Z1i, ...Z(mi+1)i be iid standard normal, then

Y1i|X1i = x = µx+ σZ1i + τZ(mi+1)i

Y2i|X2i = x = µx+ σZ2i + τZ(mi+1)i

... ... ...

Ymii|Xmii = x = µx+ σZmii + τZ(mi+1)i

We divide analysis into three cases:

Case 1 When n is finite but minmi goes to infinity. In real case study, this

indicates that the number of biological pathways is finite, but size of each biological

pathway approaches infinity.
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For any fixed i, there is no constant limit of 1
mi

∑mi
j=1 Yji, just use a simple example

to illustrate

Without loss of generality, suppose min1≤i≤nmi is m1.Suppose θ = 1, if X11 =

X21 = ... = Xm11 = 0, then Y11, Y21, ...Ym11 are N(0, σ2) random variables; While

if X11 = X21 = ... = Xm11 = 1, then Y11, Y21, ...Ym11 are N(µ, σ2) random vari-

ables. Thus m−1
i

∑mi
j=1 Yji cannot converge to λµ, precluding a test based on such

convergence.

Case 2 When all m′is and n are all goes to infinity, which indicates that both the

number of subjects and the biological pathways become infinity large;

Here we assume that all m′is are equal to m, then

Y1i + Y2i + ...+ Ymi
m

=
σ(Z1i + Z2i + ...Zmi)

m
+µ

X1i +X2i + ...Xmi

m
+ τZ(m+1)i (2.3)

Since
1
mn

∑n
i=1

∑m
j=1 σZji is N(0, σ2/nm)

1
n

∑n
i=1 τZ(m+1)i is N(0, τ 2/n),

since µE( 1
mn

∑n
i=1

∑m
j=1 µXji) = λ and var( 1

mn

∑n
i=1

∑m
j=1 µXji) = µ2

nm
λ(1 − λ)(1 −

θ) + µ2

n
θλ(1− λ),

√
n(

1

mn

n∑
i=1

m∑
j=1

µXji − µλ)
d→ N(0, µ2θλ(1− λ)/m).

Then
√
n(

1

mn

n∑
i=1

m∑
j=1

Yji − µλ)
d→ N(0, µ2θλ(1− λ) + τ 2)

Case 3 When m′is are all bounded, but n goes to infinity;

This case is the one we focus on. First, define:

m̂c
1 = n−1

∑n
i=1

∑mi
j=1m

−1
i Yji

m̂c
2 = n−1

∑n
i=1

∑mi
j=1m

−1
i Y 2

ji

(2.4)
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and

mc
1 = E(m̂c

1) = µλ

mc
2 = E(m̂c

2) = 1 + µ2λ

In order to get a test with the best local power , we consider adding a weight to each

cluster. For a weight wi, define

m̂∗ = n−1

n∑
i=1

wi(Y1i + ...+ Ymii). (2.5)

We have

m∗ = E(m̂∗) = n−1

n∑
i=1

wiµλ (2.6)

and

var(m̂∗) = var(n−1
∑n

i=1wi(Y1i + ...+ Ymii))

= n−2
∑n

i=1w
2
i [mivar(Y11) +mi(mi − 1)cov(Y11, Y12)]

= n−2
∑n

i=1w
2
imi(µ

2λ(1− λ) + 1) + n−2
∑n

i=1 w
2
imi(mi − 1)(µ2θλ(1− λ) + τ 2)

= n−2
∑n

i=1w
2
iPi

(2.7)

where Pi = mi(µ
2λ(1− λ) + 1) +mi(mi − 1)(µ2θλ(1− λ) + τ 2).

We may estimate thus as

̂var(m̂∗) = n−2
∑n

i=1 ŵi
2mi(µ̂

2λ̂(1− λ̂) + 1) + n−2
∑n

i=1 ŵi
2mi(mi − 1)(µ̂2θλ̂(1− λ̂) + τ 2)

= n−2
∑n

i=1 ŵi
2P̂i,

(2.8)
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where P̂i = mi(µ̂
2λ̂(1 − λ̂) + 1) + mi(mi − 1)(µ̂2θλ̂(1 − λ̂) + τ 2) and ŵi is to be

determined.

We write ŵi instead of wi since as we will see, ŵi will depend on P̂i.

How to choose the weight wi, first we need to calculate the local power for testing

H0 : µλ = 0 vs. Ha : µλ 6= 0. We set the local alternative to be H∗a : µλ = cn−1/2,

where c is a constant and c ∈ (0,∞). Let T = m̂∗√
var(m̂∗)

Then under the locally

alternative,

P(|T | > 1.96) = P(T − cn−1/2∗n−1
∑n
i=1 wimi√

var(m̂∗)
> 1.96− cn−1/2∗n−1

∑n
i=1 wimi√

var(m̂∗)
)

+P(T − cn−1/2∗n−1
∑n
i=1 wimi

var(
√
m∗)

< −1.96− cn−1/2∗n−1
∑n
i=1 wimi√

var(m̂∗)
)

≈ Φ(−1.96− cn−1/2∗n−1
∑n
i=1 wimi√

var(m̂∗)
) + 1− Φ(1.96− cn−1/2∗n−1

∑n
i=1 wimi√

var(m̂∗)
).

(2.9)

Next, choose wi to maximize

n−1
∑n

i=1wimi√
var(m̂∗)

.

Since

n−1
∑n

i=1 wimi√
var(m∗)

=

∑n
i=1 wimi√∑n
i=1w

2
iPi

, then, if 0 ≤ wi ≤ 1 and
∑n

i=1 wi = 1, define

f(w
∼

) =

∑n
j=1w

2
jPj

(
∑n

j=1 wjmj)2
,

F (w
∼

) =

∑n
j=1w

2
jPj

(
∑n

j=1wjmj)2
+ λ(1−

n∑
i=1

wi)

Here F (w
∼

) is defined for optimization by Lagrange multiplier. Next, try to minimize

F (w
∼

) with respect to wi. Take derivative with respect to wi and setting to zero:

∂F
∂wi

= 2wiPi
(
∑n
j=1 wjmj)

2 −
2
∑n
i=1 w

2
jPjmi

(
∑n
j=1 wjmj)

3 − λ = 0

⇒ wi = mi
Pi

∑n
j=1 w

2
jPj∑n

j=1 wjmj
+

λ(
∑n
j=1 wjmj)

2

2Pi

. (2.10)
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Since
∑n

i=1wi = 1, then

⇒ λ =
1−

∑n
j=1 w

2
jPj∑n

j=1 wjmj

∑n
j=1

mj
Pj

(
∑n

j=1 wjmj)2
∑n

j=1
1

2Pj

. (2.11)

If set wi = mi
Pi

∑ mi
Pi

take back to equation 2.11, we have

λ =
1− 1∑n

j=1
mi
Pi

∑n
j=1

mi
Pi

(
∑n

j=1

m2
j

Pj
∑ mi

Pi

)2
∑n

j=1
1

2Pj

= 0.

Then equation 2.10 satisfying:

∂F

∂wi
=

2wiPi
(
∑n

j=1 wjmj)2
−

2
∑n

i=1w
2
jPjmi

(
∑n

j=1 wjmj)3
= 0.

Thus, the solution wi = mi
Pi

∑ mi
Pi

minimizes the equation F (w
∼

).

We could use the moment estimator of the unknown parameters,

µ̂ =
m̂c

2 − 1

m̂c
1

and λ̂ =
m̂c

1

2

m̂c
2 − 1

Then define

ŵi =
mi

P̂i
∑

mi
P̂i

, (2.12)

where P̂i := mi(µ̂2λ̂(1− λ̂) + 1) +mi(mi − 1)(µ̂2θλ̂(1− λ̂) + τ 2), and

̂var(m̂∗) := n−2

n∑
i=1

ŵ2
imi(µ̂

2λ̂(1− λ̂) + 1) + n−2

n∑
i=1

ŵ2
imi(mi − 1)(µ̂2θλ̂(1− λ̂) + τ 2).

(2.13)

Next we discuss the size, power and local power of the test.

To test

H0 : µλ = 0 vs. Ha : µλ 6= 0,

we set the test statistic:
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T =
m̂∗√
var(m̂∗)

. (2.14)

Since the denominator contains unknown parameters, if we further assume that mi’s

are bounded above and have some discrete distribution, we could use ̂var(m̂∗) ap-

proximate var(m̂∗), then

T ≈ m̂∗√
̂var(m̂∗)

. (2.15)

Under null hypothesis H0 : µλ = 0, If we assume that mi are all bounded

above and have some discrete distribution. Then we have

wi =
1

1 + (mi − 1)τ 2
/

n∑
i=1

1

1 + (mi − 1)τ 2
,

var(m̂∗) = n−2

n∑
i=1

mi

1 + (mi − 1)τ 2
/(

n∑
i=1

1

1 + (mi − 1)τ 2
)2,

and

m̂c = µ̂λ̂
p→ 0 = µλ.

By Continuous Mapping Theorem and Slutsky’s Theorem,

µ̂2λ̂(1− λ̂) + 1
p→ 1 and µ̂2θλ̂(1− λ̂) + τ 2 p→ τ 2,

thus, P̂i
p→ mi +mi(mi + 1)τ 2 uniformly over i, then

wi
ŵi

=

1
1+(mi−1)τ2

/
∑n

i=1
1

1+(mi−1)τ2

mi/(P̂i
∑n

j=1
mj

P̂j
)

p→ 1

uniformly over i.

Moreover,

var(m̂∗)

̂var(m̂∗)
=
n−2

∑n
i=1 ŵi

2P̂i
n−2

∑n
i=1 w

2
iPi

p→ 1,
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then by Slutsky’s Theorem,

T
d→ N(0, 1). under H0.

We have thus established

Theorem 3 : Under the null hypothesis:

lim
n→∞

P(|T | > z1−α/2) = α,

where α ∈ (0, 1).

Under local alternative H∗a : µλ = cn−1/2 where c > 0.

Note that µ̂λ̂
p→ 0, then by CMT(Continuous Mapping Theorem) and Slutsky’s

Theorem,

P̂i
Pi

p→ 1,

and ∑n
i=1 ŵi

2∑n
i=1w

2
i

p→ 1.

note that wi here are slightly different than on last page.

Furthermore,
̂var(m̂∗)
var(m̂∗)

p→ 1.

Therefore,

P(|T | > z1−α/2) = P( m̂∗√
̂var(m̂∗)

− cn−1/2n−1
∑n
i=1 wimi√

var(m̂∗)

√
var(m̂∗)
̂var(m̂∗)

> z1−α/2 +
cn−1/2n−1

∑n
i=1 wimi√

var(m̂∗)

√
var(m̂∗)
̂var(m̂∗)

)

+P( m̂∗√
̂var(m̂∗)

− cn−1/2n−1
∑n
i=1 wimi√

var(m̂∗)

√
var(m̂∗)
̂var(m̂∗)

< −z1−α/2 +
cn−1/2n−1

∑n
i=1 wimi√

var(m̂∗)

√
var(m̂∗)
̂var(m̂∗)

).

(2.16)

Moreover,
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cn−1/2n−1
∑n
i=1 wimi√

var(m̂∗)
=

cn−1/2n−1
∑n
i=1 wimi√

n−2
∑n
i=1 w

2
i [mi(µ2λ(1−λ)+1)+mi(mi−1)(µ2θλ(1−λ)+τ2)]

=

c
∑n
i=1

m2
i

(
∑n
j=1

mj
Pj

)Pi√√√√n
∑n
i=1

m2
i

(
∑n
j=1

mj
Pj

)2Pi

.
(2.17)

Put M :=
∑n

j=1
mj
Pj

, we have

cn−1/2n−1
∑n
i=1 wimi√

var(m̂∗)
=

c 1
M

∑n
i=1

m2
i

Pi

1
M

√
n
∑n
i=1

m2
i

Pi

= c
√
n−1

∑n
i=1

m2
i

Pi
.

(2.18)

where Pi = mi(µ
2λ(1− λ) + 1) +mi(mi − 1)(µ2θλ(1− λ) + τ 2).

Since we assume m′is are bound above for each i, and if we further assume that

mi has some distribution: for example

P(mi = 2) = P(mi = 3) =
1

2
.

Thus, m′is are iid random variables and E(mi) = 5
2
. Then, under the assumption

about mi,

n−1

n∑
i=1

m2
i

Pi

p→ 1

2

4

2 + 2τ 2
+

1

2

9

3 + 6τ 2

some finite number. Thus establish

Theorem 4 : Under the local alternative and the assumption about mi above:

limn→∞ P(|T | > z1−α/2) = Φ(−z1−α/2 − c
√

1
2

4
2+2τ2

+ 1
2

9
3+6τ2

)

+1− Φ(z1−α/2 − c
√

1
2

4
2+2τ2

+ 1
2

9
3+6τ2

)

≈ 1− Φ(z1−α/2 − c
√

1
2

4
2+2τ2

+ 1
2

9
3+6τ2

),

(2.19)

which is between 0 and 1. Here α ∈ (0, 1).

Under a fixed alternative H1 : µλ = µ1λ1, where λ1 ∈ (0, 1] and µ1 > 0

23



Since under our assumption about mi,

n−1
∑n

i=1
m2
i

Pi

p→ 1
2

4
2(µ21λ1(1−λ1)+1)+2(µ21θλ1(1−λ1)+τ2)

+1
2

9
3(µ21λ1(1−λ1)+1)+6(µ21θλ1(1−λ1)+τ2)

Then
n∑
i=1

m2
i

Pi

p→∞

Thus we proved :

Theorem 5 : Under a fixed alternative, since

√
var(m̂∗)
̂var(m̂∗)

→ 1.

P(|T | > z1−α/2) = P( m∗√
̂var(m∗)

− µ1λ1n−1
∑n
i=1 wi√

var(m∗)

√
var(m∗)
̂var(m∗)

> z1−α/2 − µ1λ1n−1
∑n
i=1 wi√

var(m∗)

√
var(m∗)
̂var(m∗)

)

+P( m∗√
̂var(m̂∗)

− µ1λ1n−1
∑n
i=1 wi√

̂var(m̂∗)

√
var(m∗)
̂var(m̂∗)

< −z1−α/2 − µ1λ1n−1
∑n
i=1 wi√

var(m̂∗)

√
var(m̂∗)
̂var(m̂∗)

)

= Φ(−z1−α/2 − µ1λ1

√∑n
i=1

m2
i

Pi

√
var(m̂∗)
̂var(m̂∗)

)

+1− Φ(z1−α/2 − µ1λ1

√∑n
i=1

m2
i

Pi

√
var(m̂∗)
̂var(m̂∗)

)

→ Φ(−∞) + 1− Φ(−∞) = 0 + 1− 0 = 1

(2.20)

Some special cases

1. If m′is are equal to m

Then,

w1 = w2 = ... = wn =
1

n

m̂∗ = n−2

n∑
i=1

m∑
j=1

Yji

̂var(m̂∗) = n−3(m(µ̂2λ̂(1− λ̂) + 1) +m(m− 1)(µ̂2θλ̂(1− λ̂) + τ 2))

T =
m∗√
̂var(m̂∗)

=
n−1/2

∑n
i=1

∑m
j=1 Yji√

m(µ̂2λ̂(1− λ̂) + 1) +m(m− 1)(µ̂2θλ̂(1− λ̂) + τ 2)
(2.21)
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2. If there are no correlations, i.e: θ = 0, τ = 0

Then,

wi = ŵi =
mi

mi(µ̂2λ̂(1− λ̂) + 1)
∑n

i=1
mi

mi(µ̂2λ̂(1−λ̂)+1)

=
1

n

m̂∗ = n−2

n∑
i=1

m∑
j=1

Yji

̂var(m̂∗) = n−4

n∑
i=1

mi(µ̂
2λ̂(1− λ̂) + 1)

T =
m∗√
̂var(m̂∗)

=

∑n
i=1

∑m
j=1 Yji√

(µ̂2λ̂(1− λ̂) + 1)
∑n

i=1 mi

(2.22)

2.4 Simulations

We did size and power simulations for general case, and special cases when m′is are

all equal to m( here we set m=5).

For special case:

For size simulation, we estimate the rejection rate under the null hypothesis. We

take Y1i, Y2i, ...Ymi, i = 1, 2, .., n from normal distribution with

var


Y1i

Y2i

...

Ymi


=


1 τ 2 ... τ 2

τ 2 1 ... τ 2

...

τ 2 τ 2 ... 1


.

Here we take τ 2 = 0.3 and τ 2 = 0.6 respectively, sample size n from 20 to 1500.For

each of various sample size, we generate 2000 sets of normal data. Next, we calculate

how many times out of 2000, we reject H0 based on theoretical critical value as

estimated size of the test. As shown in figure 2.1 and figure 2.2, the estimated size

all fall in the band of 0.05(±0.01)( the nominal rejection rate is 0.05), this result is

satisfactory.
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Figure 2.1: Simulation Size 2000, special case,τ 2 = 0.3,σ2 = 0.7

Figure 2.2: Simulation Size 2000, special case,τ 2 = 0.6,σ2 = 0.4

The power simulation concerns the behavior of the test under a fixed alternative.

We generate data from a contaminated normal mixture distribution. We take sample

size n = 500, µ varies from 0.01 to 1.5 and λ is various increments from 0.01 to 1 by
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0.1.

First we generate X1i, ...Xmi as correlated binary data with correlation θ = 0.3,

next generate Z1i...Zmi from N(0, σ2) where σ2 = 0.4, and Z(m+1),i from N(0, τ 2)

where τ 2 = 0.6. Thus let Yji = µXji+Zji+Z(m+1)i where i = 1, 2, ..., n, j = 1, 2, ...,m,

Y1i, Y2i, ...Ymi are from (1− λ)N(0, 1) + λN(µ, 1)

We estimate the rates that we reject H0 based on theoretical critical value as

estimated power of the test. As shown in figure 2.3, for a fixed λ away from 0, when

we increase µ, or for a fixed µ > 0.3 when we increase λ, the power goes to 1. This

is believable since for µ and λ away from 0, the probability of rejecting H0 should go

to 1.

Figure 2.3: Simulation Size 2000, special case,τ 2 = 0.3, σ2 = 0.7

Next, we take τ 2 = 0.6 and σ2 = 0.4, other settings remain the same, the power

simulation is shown in figure 2.4, which is also satisfactory.

For general case:

For size simulation, m′is are chosen to be 2 or 3 each with probability 1
2
. We take

n from 100 to 1500, for each of various sample sizes, we generate 2000 sets of normal

data. We take λ = 0.3, θ = 0.3 σ2 = 0.4 and τ 2 = 0.6.
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Figure 2.4: Simulation Size 2000, special case,τ 2 = 0.6, σ2 = 0.4

As show in figure 2.5, the sizes fall in the band of 0.05(±0.01)( the nominal

rejection rate is 0.05), which is satisfactory.

Figure 2.5: Simulation Size 2000, general case,τ 2 = 0.3, σ2 = 0.7

Again, we tried τ 2 = 0.6, σ2 = 0.4, while other settings remain the same. The

plot is shown in figure 2.6.

For power simulation, m′is are chosen to be either 2 or 3 with probability 1
2
. We

take sample size n to be 500, µ from 0.01 to 1.3 in various increments and λ from 0
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Figure 2.6: Simulation Size 2000, general case,τ 2 = 0.6, σ2 = 0.4

to 1 by 0.1.

The result shown in figure 2.7 is satisfactory, since the power of the test goes to

1 when µλ is away from 0.

Figure 2.7: Simulation Size 2000, general case,τ 2 = 0.3, σ2 = 0.7

Next, we change τ 2 = 0.6 and σ2 = 0.4, the contour plot is shown in figure 2.8.

As we can see, similarly the power will go to 1 when µλ is away from 0, and since
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σ2 is smaller, which means that there is less between subject correlations, then the

effective sample size becomes larger than 2.7, thus the power goes to 1 faster.

Figure 2.8: Simulation Size 2000, general case,τ 2 = 0.6, σ2 = 0.4

2.5 Real data application

For this section, we analyze microarray data from Mao et al. [2005], data can be

download from http://www.partek.com. According to Mao’s description, Down’s

syndrome is caused by an extra copy of chromosome 21, so we examine chromosome

21 only. In the data set, there are four samples from four human subjects with Down’s

syndrome from cerebral tissue, as well as seven samples without Down’s syndrome

from four human subjects. There are in total 251 genes of interest.

For each of the 251 genes, we apply method mentioned in Charnigo et al. [2013].

First, we fit a linear mixed model Yij = β0 +β1xi+αi+εij where i = 1, 2, ..., 8; j = 1, 2

for each of the 251 genes. Here Yij denotes the gene expression level in sample j from

subject i, and xi is the indicator of Down’s syndrome: xi = 1 if subject i has Down’s

syndrome, otherwise, xi = 0. By using the R function lme in nlme package, we

can get 251 T-statistics of testing β1 = 0. For each of the 251 T-statistics, we
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transformed them through T cumulative distribution function(cdf) and the inverse

standard normal cdf to get 251 Z-statistics.

Next, we use EM algorithm get the fitted contaminated normal mixture model

(1− λ̂)N(0, 1) + λ̂N(µ̂, 1) with (λ̂, µ̂) = (0.29, 2.41). Figure 3.16 shows the histogram

of Z-statistics, fitted standard normal curve, and fitted contaminated normal mixture

model with (λ̂, µ̂) = (0.29, 2.41) when we assume that there is no correlation among

the Y’s.

Figure 2.9: Histogram of Z-statistics, blue line is fitted standard normal curve, red
line is fitted contaminated normal mixture model with (λ̂, µ̂) = (0.29, 2.41)

To construct the test, we first need to group the 251 Z-statistics. We sepa-

rate those Z-statistics into 6 groups according to different Chromosomal locations

of Chromosome 21(q21,q22.1,q22.2,q22.3,q23,other locations). The group size are

(m1,m2,m3,m4,m5,m6) = (20, 54, 23, 122, 23, 9) and n = 6. Here we assume that

the correlation structure within each group is known as compound symmetric with

known θ and τ 2. Figure 2.10 shows the contour plots of P-values. As we can see in

the plot, the contour are close to the straight lines, and as we increase θ and τ 2, the
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p-value also increases. We use a red dashed line to separate the region of accepting

and rejecting H0 : µλ = 0 at α = 0.05.

The result is reasonable since when we increase θ and τ , the effective sample

size decreases, so the power of the test is decreasing. This also indicates that if

we ignore the correlation structure of some correlated data, we may obtain some

wrong inferences. This result is consistent with many published articles, for example,

Goeman and Bühlmann [2007] show by simulation that, for some gene expression

models which are based on independence assumption between genes, the P-values

derived can be wildly anti-conservative. Moreover, as we can see in Figure 2.9, the

contaminated normal mixture model is also not a good fit for the data. Note that λ̂

and µ̂ as obtained previously do assume independence: τ 2 = 0 and θ = 0. But for

the test, when we increase τ 2 and θ, λ̂ and µ̂ will change. To update λ̂ and µ̂ for

different τ 2 and θ, we use optim in R to minimize the negative likelihood, and using

(λ̂, µ̂) = (0.29, 2.41) as initial values. The rationale is that µ̂λ̂ should be consistently

estimated permitting its substitution for µλ in the denominator of a moment based

test statistics. As we can see if we update µ̂ and λ̂, the shape of the contour does not

change noticeably, only the slope changes slightly. Comparing Figure 2.10 and Figure

2.11, we see that failing to take into account correlation may massively understate

the p-value, but failing to adjust for correlation in estimation of µ and λ( even when

taking correlation into account for the test statistic) may slightly understate the

p-value.

Copyright c© Meng Qi, 2016.
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Figure 2.10: Contour plot of P-values with τ̂ 2 and θ̂ fixed

Figure 2.11: Contour plot of P-values with τ̂ 2 and θ̂ changing with τ 2 and θ
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Chapter 3 Three component normal model under correlation

In chapter 2, we discussed contaminated mixture modeling under correlation. As we

mentioned in the application section, a two components normal mixture is not a good

fit of the presumably correlated Z-values, this motivates us to expand the method to

testing 2 versus 3 component when data is correlated under some known correlation

structure.

3.1 Three component normal model under correlation for paired data

First, we show the structure of three component normal model under correlated paired

data. Let X1j, X2j, j=1,2,...,n, be random variables taking values from {0, 1, -1} and

with probability

P(Xij = 1) = λ1, P(Xij = −1) = λ2, P(Xij = 0) = 1− λ1 − λ2,

where i=1, 2 and j=1, 2, ..., n. And the correlation between X1j, X2j is θ which is

treated as known.

Next, consider the joint probability distributions of X1j and X2j. Define

a = P(X1j = 0, X2j = 0) b = P(X1j = 0, X2j = 1) c = P(X1j = 0, X2j = −1)

b = P(X1j = 1, X2j = 0) d = P(X1j = 1, X2j = 1) f = P(X1j = 1, X2j = −1)

c = P(X1j = −1, X2j = 0) f = P(X1j = −1, X2j = 1) e = P(X1j = −1, X2j = −1).

We have the equations:

a+ b+ c = 1− λ1 − λ2, b+ d+ f = λ1, c+ f + e = λ2

The specific probabilities are

a = (1− λ1 − λ2)− (1− θ)(1− λ1 − λ2)(λ1 + λ2)

b = (1− θ)(1− λ1 − λ2)λ1 c = (1− θ)(1− λ1 − λ2)λ2

d = λ2
1(1− θ) + θλ1 e = λ2

2(1− θ) + θλ2 f = λ1λ2(1− θ).
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Define random variables

Y1j = X1j(I[X1j=1]µ1+I[X1j=−1]µ2)+σZ1i+τZ
∗
i , Y2j = X2j(I[X2j=1]µ1+I[X2j=−1]µ2)+σZ2i+τZ

∗
i ,

where Z1i, Z2i, Z
∗
i are iid standard normal random variables, µ1, µ2, σ, τ are all

nonnegative and σ, τ are known with σ2 + τ 2 = 1. Then Y1j, Y2j are correlated

random variables distributed as 3 component normal mixture: (1−λ1−λ2)N(0, 1) +

λ1N(µ1, 1) + λ2N(−µ2, 1) and have marginal density function:

f(Yij = y) =
1√
2π

(1−λ1−λ2) exp(−y2/2)+λ1 exp(−(y−µ1)2/2)+λ2 exp(−(y+µ2)2/2)

(3.1)

3.2 Define moments estimator

To develop a moment based test of 2 vs. 3 components with correlated data, we first

need to define the first six moments of the data. Define:

m̂c
1 = n−1

n∑
j=1

(Y1j+Y2j)/2, m̂c
2 = n−1

n∑
j=1

(Y 2
1j+Y

2
2j)/2, ..., m̂c

6 = n−1

n∑
j=1

(Y 6
1j+Y

6
2j)/2.

Let mc
1 through mc

6 be the expected value of the moments respectively. In the follow-

ing calculation, we define XijIi := I[Xij=1]µ1 + I[Xij=−1](−µ2), X2
ijI

2
i := I[Xij=1]µ

2
1 +

I[Xij=−1](−µ2)2, X3
ijI

3
i := I[Xij=1]µ

3
1 + I[Xij=−1](−µ2)3 and so forth. Then we have
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mc
1 = n−1

∑n
j=1 E((Y1j + Y2j)/2) = µ1λ1 − µ2λ2

mc
2 = n−1

∑n
j=1 E((Y 2

1j + Y 2
2j)/2) = E(X2

11I
2
1 + σ2Z2

11 + τ 2(Z∗1)2) = 1 + µ2
1λ1 + µ2

2λ2

mc
3 = n−1

∑n
j=1 E((Y 3

1j + Y 3
2j)/2) = λ1(µ3

1 + 3µ1)− λ2(µ3
2 + 3µ2)

mc
4 = n−1

∑n
j=1 E((Y 4

1j + Y 4
2j)/2)

= E(X4
11I

4
1 + σ4Z4

11 + τ 4(Z∗1)4 + 6X2
11I

2
1σ

2Z2
11 + 6X2

11I
2
1τ

2(Z∗1)2 + 6σ2Z2
11τ

2(Z∗1)2)

other terms expected value equal zero

= λ1µ
4
1 + λ2µ

4
2 + 3(σ2 + τ 2)2 + 6(σ2 + τ 2)(µ2

1λ1 + µ2
2λ2)

= λ1µ
4
1 + λ2µ

4
2 + 6mc

2 − 3

mc
5 = n−1

∑n
j=1 E((Y 5

1j + Y 5
2j)/2)

= E(X5
11I

5
1 + 3X3

11I
3
1 (σ2Z2

11 + τ 2(Z∗1)2) +X3
11I

3
1 (σ2Z2

11 + τ 2(Z∗1)2) + 3X11I1(σ4Z4
11

+τ 4(Z∗1)4) + 30X11I1σ
2Z2

11τ
2(Z∗1)2 + 2X11I1(σ4Z4

11 + τ 4(Z∗1)4)

+6X3
11I

3
1 (σ2Z2

11 + τ 2(Z∗1)2))

other terms expected value equal zero

= µ5
1λ1 − µ5

2λ2 + 10(µ3
1λ1 − µ3

2λ2) + (15τ 4 + 30σ2τ 2)

= µ5
1λ1 − µ5

2λ2 + 10mc
3 − 15mc

1

mc
6 = n−1

∑n
j=1 E((Y 6

1j + Y 6
2j)/2)

= E(X6
11I

6
1 + σ6Z6

11 + τ 6(Z∗1)6 + 15(σ2Z2
11 + τ 2(Z∗1)2)X4

11I
4
1 + 15(σ4Z4

11 + τ 4(Z∗1)4)X2
11I

2
1

+90(σ2Z2
11 + τ 2(Z∗1)2)X2

11I
2
1 + 15σ4Z4

11 + 15σ2Z2
11 + τ 4(Z∗1)4)

other terms expected value equal zero

= µ6
1λ1 + µ6

2λ2 + 15(µ4
1λ1 + µ4

2λ2) + 45(σ2 + τ 2)2(µ2
1λ1 + µ2

2λ2) + 15(σ2 + τ 2)3

= µ6
1λ1 + µ6

2λ2 + 15mc
4 − 45mc

2 + 15.

(3.2)

3.3 Hypothesis Testing

The test of 2 vs. 3 components is equivalent to testing H0 : λ1µ1λ2µ2 = 0 vs.

Ha : λ1µ1λ2µ2 6= 0. Then if −λ1µ1λ2µ2(µ1 + µ2)2 = 0 holds, that implies that H0 is

true. Then let the test statistic be(Charnigo et al. [2013])
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M = m̂c
2

2
− 2m̂c

2 − 1 + 3m̂c
1

2
− m̂c

3m̂
c
1, (3.3)

we have

E(M) = −λ1µ1λ2µ2(µ1 + µ2)2 = 0 (3.4)

if H0 holds. Note that the test statistic contains first three moments. Next, consider

a variance-covariance matrix of the first three moments.Define

V1 = cov


(Y11 + Y21)(Y11 + Y21) (Y11 + Y21)(Y 2

11 + Y 2
21) (Y11 + Y21)(Y 3

11 + Y 3
21)

(Y11 + Y21)(Y 2
11 + Y 2

21) (Y 2
11 + Y 2

21)(Y 2
11 + Y 2

21) (Y 2
11 + Y 2

21)(Y 3
11 + Y 3

21)

(Y11 + Y21)(Y 3
11 + Y 3

21) (Y 2
11 + Y 2

21)(Y 3
11 + Y 3

21) (Y 3
11 + Y 3

21)(Y 3
11 + Y 3

21)

 .

Then

V = var


m̂c

1

m̂c
2

m̂c
3

 =
1

4
V1/n.
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We have

cov(Y11 + Y21, Y11 + Y21) = var(Y11 + Y21) = 2var(Y11) + 2cov(Y11, Y21)

= 2[E(Y 2
11)− (EY11)2] + 2[E(Y11Y21)− E(Y11)E(Y21)]

= 2[mc
2 − (mc

1)2] + 2[dµ2
1 − 2µ1µ2f + eµ2

2 + τ 2 − (mc
1)2]

= 2[(1− θ)(µ2
1λ

2
1 + µ2

2λ
2
2 − 2µ1µ2λ1λ2) + θ(µ2

1λ1 + µ2
2λ2)

+τ 2 − (mc
1)2] + 2[mc

2 − (mc
1)2]

= 2[θmc
2 − θmc2

1 + τ 2 − θ] + 2[mc
2 − (mc

1)2]

= 2(1 + θ)(mc
2 − (mc

1)2) + 2(τ 2 − θ)

cov(Y11 + Y21, Y
2

11 + Y 2
21) = E((Y11 + Y21)(Y 2

11 + Y 2
21))− E(Y11 + Y21)E(Y 2

11 + Y 2
21)

= E(Y 3
11 + Y 2

11Y21 + Y 2
21Y11 + Y 3

21)− 4mc
2m

c
1

= 2E(Y11Y
2

21) + 2mc
3 − 4mc

2m
c
1

= 2E(X11I1X
2
21I

2
2 + σ2Z2

21X11I1 + τ 2(Z∗)2X11I1 + 2X21I2(Z∗)2τ 2)

+2mc
3 − 4mc

2m
c
1 other terms expected value equal zero

= 2[µ3
1d+ µ1µ

2
2f − µ2

1µ2f − eµ3
2 + (2τ 2 + 1)mc

1] + 2mc
3 − 4mc

2m
c
1

= 2[(1− θ)(mc
2 − 1)mc

1 + θ(mc
3 − 3mc

1) + (1 + 2τ 2)mc
1]

+2mc
3 − 4mc

2m
c
1

= 2(1 + θ)(mc
3 −mc

2m
c
1) + 4mc

1(τ 2 − θ)

cov(Y11 + Y21, Y
3

11 + Y 3
21) = E((Y11 + Y21)(Y 3

11 + Y 3
21))− E(Y11 + Y21)E(Y 3

11 + Y 3
21)

= E(Y 4
11 + Y 4

21 + Y11Y
3

21 + Y 3
11Y21)− 4mc

3m
c
1

= 2E(Y11Y
3

21) + 2mc
4 − 4mc

3m
c
1

= 2E(X11I1X
3
21I

3
2 + 3X11I1X21I2(σ2Z2

21 + τ 2(Z∗1)2) + τ 4(Z∗1)4

+3X2
21I

2
2τ

2(Z∗1)2 + 3σ2Z2
21τ

2(Z∗1)2) + 2mc
4 − 4mc

3m
c
1

other terms expected value equal zero
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= 2(µ4
1d− µ1µ

3
2f − µ3

1µ2f + µ4
1e

+3(σ2 + τ 2)(µ2
1d− 2µ1µ2f + µ2

2e) + 3τ 4

+3(µ2
1λ1 + µ2

2λ2)τ 2 + 3τ 2σ2) + 2mc
4 − 4mc

3m
c
1

= 2((1− θ)(mc
3m

c
1 − 3mc

1) + θ(mc
4 − 6mc

2 + 3) + 3(θ + τ 2)(mc
2 − 1)

+3(1− θ)(mc
1)2 + 3τ 2(τ 2 + σ2)) + 2mc

4 − 4mc
3m

c
1

= 2(1 + θ)(mc
4 −mc

3m
c
1)− 6(τ 2 − θ)mc

2

cov(Y 2
11 + Y 2

21, Y
2

11 + Y 2
21) = var(Y 2

11 + Y 2
21) = 2var(Y 2

11) + 2cov(Y 2
11, Y

2
21)

= 2[E(Y 4
11)− (E(Y 2

11))2] + 2[E(Y 2
11Y

2
21)− E(Y 2

11)E(Y 2
21)]

= 2E(Y 2
11Y

2
21) + 2(mc

4 − (mc
2)2)− 4(mc

2)2

= 2E(X2
11I

2
1X

2
21I

2
2 + (σ2Z2

21 + τ 2(Z∗1)2)X2
11I

2
1 + (σ2Z2

11

+τ 2(Z∗1)2)X2
21I

2
2 + 2σ2τ 2(Z∗1)2Z2

11 + σ4Z2
11Z

2
21 + τ 4(Z∗1)4

+4X11I1X21I2τ
2(Z∗)2 + 2(mc

4 − (mc
2)2)− 4(mc

2)2

other terms expected value equal zero

= 2[µ4
1d+ 2µ2

1µ
2
2f + µ4

2e+ 2(σ2 + τ 2)(µ2
1λ1 + µ2

2λ2) + σ4 + 2σ2τ 2

+3τ 4 + 4τ 2(µ2
1d− 2µ1µ2f + µ2

2e) + 2(mc
4 − (mc

2)2)− 4(mc
2)2

= 2(θmc
4 − θ(mc

2)2 + 2(τ 2 − θ)(τ 2 − 1 + 2mc
2) + 2τ 2

+(θ − 1)(2mc
2 − 2(mc

1)2 − 1)) + 2(mc
4 − (mc

2)2)

= 2(θ + 1)(mc
4 − (mc

2)2) + 4(τ 2 − θ)(τ 2 − 1 + 2mc
2)

+4τ 2(θ − 1)(2mc
2 − 2(mc

1)2 − 1)

cov(Y 2
11 + Y 2

21, Y
3

11 + Y 3
21) = E((Y 2

11 + Y 2
21)(Y 3

11 + Y 3
21))− E(Y 2

11 + Y 2
21)E(Y 3

11 + Y 3
21)

= E(Y 5
11 + Y 2

11Y
3

21 + Y 212Y 3
11 + Y 5

21) + 4mc
3m

c
2

= 2E(Y 2
11Y

3
21) + 2mc

5 + 4mc
3m

c
2
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= 2E(X11I1X
3
21I

3
2 + 3X2

11I
2
1X21I2(σ2Z2

21 + τ 2(Z∗1)2)

+X3
11I

3
1 (σ2Z2

11 + τ 2(Z∗1)2) + 3X21I2(σ4Z2
11Z

2
21 + τ 2σ2Z2

11(Z∗1)2

+τ 2σ2Z2
21(Z∗1)2 + τ 4(Z∗1)4) + 2X11I1τ

4(Z∗1)4 + 6X11I1X
2
21I

2
2τ

2(Z∗1)2

+6X11I1τ
2(Z∗1)2σ2Z2

21) + 2mc
5 + 4mc

3m
c
2

other terms expected value equal zero

= 2[µ5
1d− µ2

1µ
3
2f + µ3

1µ
2
2f − µ5

2e+ (3 + 6τ 2)(µ3
1d

−µ2
1µ2f + µ1µ

2
2f − µ3

2e+ µ3
1λ+ 1

−µ3
2λ2 + 3(σ4 + 4σ2τ 2 + 5τ 4)(µ1λ1 − µ2λ2)] + 2mc

5 + 4mc
3m

c
2

= 2(θ + 1)(mc
5 −mc

3m
c
2) + 12θ(τ 2 − 1)(mc

3 −mc
1) + 12τ 2(1

−θ)mc
1m

c
2 + 12τ 2(τ 2 − θ)mc

1

cov(Y 3
11 + Y 3

21, Y
3

11 + Y 3
21) = var(Y 3

11 + Y 3
21) = 2var(Y 3

11) + 2cov(Y 3
11, Y

3
21)

= 2[E(Y 6
11)− (E(Y 3

11))2] + 2[E(Y 3
11Y

3
21)− E(Y 3

11)E(Y 3
21)]

= 2E(Y 3
11Y

3
21) + 2(mc

6 − (mc
3)2)− 2(mc

3)2

= 2E(X3
11I3X

3
21I

3
2 + 3(σ2Z2

11 + τ 2Z∗21 )X3
11I

3
1X21I2 + τ 6Z∗61

+3X2
21I

2
2τ

4Z∗41 + 3σ2Z2
21τ

4Z∗41

+3X2
11I

2
1τ

4Z∗41 + 9X2
11I

2
1X

2
21I

2
2τ

4Z∗41

+9X2
11I

2
1σ

2Z2
21τ

2Z∗21 + 3(σ2Z2
11

+τ 2Z∗21 )X11I1X
3
21I

3
2 + 9X11I1X21I2(σ4Z2

11Z
2
21 + 2σ2Z2

21τ
2Z∗21

+τ 4Z∗41 ) + 3X2
21I

2
2τ

4Z∗41 σ
2Z2

11 + 3τ 4Z∗41 σ
2Z2

11

+9σ4Z2
11Z

2
21τ

2Z∗21 ) + 2(mc
6 − (mc

3)2)− 4(mc
3)2

other terms expected value equal zero

= 2(θ + 1)(mc
6 − (mc

3)2) + 18θ(τ 2 − 1)mc
4 + 18τ 2(1− θ)(mc

2)2

+18mc
2θ(τ

4 + 2− 3τ 2)

+18τ 2(1− θ)(τ 2 + 1)(mc
1)2 + 12τ 6 − 12θ

−18τ 4θ + 18τ 2θ

Then, we could apply multivariate delta method to get the variance of test statis-

tics M: var(M) = G
′
V G where G is the matrix of the partial derivative, and defined
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as:

G =


∂EM
∂mc1

∂EM
∂mc2

∂EM
∂mc3

 =


6mc

1 −mc
3

2mc
2 − 2

−mc
1

 .

Then, plug in the 3.2, we have

var(M) = G
′
V G =


∂EM
∂mc1

∂EM
∂mc2

∂EM
∂mc3



=


6mc

1 −mc
3

2mc
2 − 2

−mc
1


′

V


6mc

1 −mc
3

2mc
2 − 2

−mc
1

 .

Then the estimated variance is

̂var(M) =


6m̂c

1 − m̂c
3

2m̂c
2 − 2

−m̂c
1


′

V̂


6m̂c

1 − m̂c
3

2m̂c
2 − 2

−m̂c
1


Define the test statistic as

T =
M√
̂var(M)

=
m̂c

2

2
− 2m̂c

2 − 1 + 3m̂c
1

2
− m̂c

3m̂
c
1√√√√√√√√√


6m̂c

1 − m̂c
3

2m̂c
2 − 2

−m̂c
1


′

V̂


6m̂c

1 − m̂c
3

2m̂c
2 − 2

−m̂c
1


Under the null hypothesis

By multivariate central limit theory and Cramer Theorem (Ferguson, 1996, p.45),

M − EM√
var(M)

d→ N(0, 1).

Then by slutsky’s theorem,

T =
M − EM√

̂var(M)

=
M√
var(M)

√
var(M)

̂var(M)
→ N(0, 1).
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Thus, we have proved:

Theorem 3.1:Under the null hypothesis,

lim
n→∞

P(T < −z1−α) = α,

where α ∈ (0, 1) and z1−α is the 1− α quantile of a standard normal distribution, then

testing procedure is approximately level α. Notice, here we use one sided rejection

region, since as we define T makes it no probability to be positive.

Under the local alternative hypothesis

Define the hypothesis as H0 : µ1µ2λ1λ2 = 0 vs Hak : µ1µ2λ1λ2 = µ∗1λ
∗
1λ
∗
2µ2n,

where µ∗1, λ∗1, λ∗2, are fixed positive numbers, while µ2n = kn−1/2. Then under the

local alternative,

limn→∞ P(T < −Z1−α/2) = limn→∞[P(T − kn−1/2µ∗1λ
∗
1λ
∗
2(µ∗1+kn−1/2)2√
̂var(M)

√
̂var(M)
var(M)

< −Z1−α/2 −
kn−1/2µ∗1λ

∗
1λ
∗
2(µ∗1+kn−1/2)2√
̂var(M)

√
̂var(M)
var(M)

)]

= limn→∞ P[(T − kn−1/2µ∗1λ
∗
1λ
∗
2(µ∗1+kn−1/2)2

n−1/2

√
1
4
Ĝ‘V̂1Ĝ

√
̂var(M)
var(M)

< −Z1−α/2 −
kn−1/2µ∗1λ

∗
1λ
∗
2(µ∗1+kn−1/2)2

n−1/2

√
1
4
Ĝ‘V̂1Ĝ

√
̂var(M)
var(M)

)]

= Φ(−Z1−α/2.

Since Ĝ
P→ G and V̂1

P→ V1. If k → ∞, then limn→∞ P(T < −Z1−α/2) = 1; If k → 0,

then limn→∞ P(T < −Z1−α/2) = Φ(−Z1−α/2)) = α. Thus, the test is asymptotically

locally unbiased, and we have proved

Theorem 3.2:Under the local alternative hypothesisHak : µ1µ2λ1λ2 = µ∗1λ
∗
1λ
∗
2µ2n,

lim
n→∞

P(T < −Z1−α/2) = Φ(−Z1−α/2 +
kµ∗1λ

∗
1λ
∗
2µ
∗2
1√

1
4
GTV1G

).

A fixed number between α and 1.

Under a fixed alternative hypothesis
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Consider a fixed alternative Ha : µ1µ2λ1λ2 = µ∗1µ
∗
2λ
∗
1λ
∗
2, where µ∗1,µ∗2, λ∗1, λ∗2 are

fixed positive numbers. Then

limn→∞ P(|T | > Z1−α/2) = limn→∞ P(T − µ∗1µ
∗
2λ
∗
1λ
∗
2(µ∗1+µ∗2)2√
̂var(M)

√
̂var(M)
var(M)

> Z1−α/2 −
µ∗1µ
∗
2λ
∗
1λ
∗
2(µ∗1+µ∗2)2√
̂var(M)

√
̂var(M)
var(M)

)

+ limn→∞ P(T − µ∗1µ
∗
2λ
∗
1λ
∗
2(µ1+µ∗2)2√
̂var(M)

√
̂var(M)
var(M)

< −Z1−α/2 −
µ∗1µ
∗
2λ
∗
1λ
∗
2(µ1+µ∗2)2√
̂var(M)

√
̂var(M)
var(M)

)

= limn→∞ P(T − µ∗1µ
∗
2λ
∗
1λ
∗
2(µ1+µ∗2)2

n−1/2

√
1
4
Ĝ‘V̂1Ĝ

√
̂var(M)
var(M)

> Z1−α/2 −
µ∗1µ
∗
2λ
∗
1λ
∗
2(µ1+µ∗2)2

n−1/2

√
1
4
Ĝ‘V̂1Ĝ

√
̂var(M)
var(M)

)

+ limn→∞ P(T − µ∗1µ
∗
2λ
∗
1λ
∗
2(µ1+µ∗2)2

n−1/2

√
1
4
Ĝ‘V̂1Ĝ

√
̂var(M)
var(M)

< −Z1−α/2 −
µ∗1µ
∗
2λ
∗
1λ
∗
2(µ1+µ∗2)2

n−1/2

√
1
4
Ĝ‘V̂1Ĝ

√
̂var(M)
var(M)

)

= limn→∞Φ(−Z1−α/2 +
µ∗1µ
∗
2λ
∗
1λ
∗
2(µ1+µ∗2)2n1/2√
1
4
Ĝ‘V̂1Ĝ

) + 1

− limn→∞Φ(Z1−α/2 +
µ∗1µ
∗
2λ
∗
1λ
∗
2(µ1+µ∗2)2n1/2√
1
4
Ĝ‘V̂1Ĝ

) = 1.

Thus, we have proved

Theorem 3.3:Under a fixed alternative hypothesis Hak : µ1µ2λ1λ2 = µ∗1µ
∗
2λ
∗
1λ
∗
2,

lim
n→∞

P(|T | > Z1−α/2) = 1.

3.4 Simulation study of paired data

We did size and power simulation for this case.

Size simulation

For size simulation, we estimate the rejection rate under the null hypothesis. We

take µ1 = 0, µ2 = 5, λ1 = 0.2, λ2 = 0.3, thus the model reduce to 2 component
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mixture normal: 0.7N(0, 1) + 0.3N(−5, 1). take τ 2 = 0.3 and τ 2 = 0.6 respectively,

sample size n from 20 to 1500.For each of various sample size, we generate 7000 sets

of two component normal data. Next, we calculate how many times out of 7000, we

reject H0 based on theoretical critical value as estimated size of the test. As shown in

figure 3.1 and figure 3.2, the estimated size all fall around 0.05( the nominal rejection

rate is 0.05), this result is satisfactory.

Figure 3.1: Simulation Size 7000, τ 2 = 0.3,σ2 = 0.7

Figure 3.2: Simulation Size 7000,τ 2 = 0.6,σ2 = 0.4

Power simulation
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For power simulation, we generate data from a 3 component normal mixture

distribution: λ1N(µ1, 1) + λ2N(−µ2, 1) + (1− λ1 − λ2)N(0, 1). We take sample size

n = 100. We simulate data with different θ and τ 2, see figure 3.3 to figure 3.6.

Under each condition, we generate X1i, X2i as correlated data with correlation

θ ∈ {0.2, 0.7}, next generate Z1i, Z2i from N(0, σ2) where σ2 ∈ {0.8, 0.3}, and Z∗i from

N(0, τ 2) where τ 2 ∈ {0.2, 0.7}. Thus let Yji = (µ1I[Xji=1]−µ2I[Xji=−1])+Zji+Z
∗
i where

i = 1, 2, ..., n, j = 1, 2, Y1i, Y2i are from λ1N(µ1, 1)+λ2N(−µ2, 1)+(1−λ1−λ2)N(0, 1).

We estimate the rates that we reject H0 based on theoretical critical value as

estimated power of the test. As shown in figure, for a fixed λ1(or λ2) away from 0,

when we increase µ1(or µ2), or for a fixed µ1(or µ2) when we increase λ1(or λ2), the

power goes to 1. Also, for a fixed µ1, if we increase µ2, or for a fixed µ2, we increase

µ1, the power will also go to 1. This is believable since for µ1λ1µ2λ2 away from 0, the

probability of rejecting H0 should go to 1.

Then if we compare the four figures for different θ and τ 2, we could see that, the

power will increase faster to 1 for smaller θ and τ 2 than larger ones. This makes sense

since if we increase the correlations, the effective sample size decreases. The effect of

changing τ 2, however, appears more pronounced than the effect of changing θ.

3.5 Three components normal model under correlation with group size

m

Next we consider a more general case: suppose each cluster has equal size of m(m >

2), then the data is constructed as following. X1i, X2i, ..., Xmi are correlated random

variables with values from {0, 1, -1} and with probability

P(Xij = 1) = λ1, P(Xij = −1) = λ2, P(Xij = 0) = 1− λ1 − λ2,

where i=1, 2,...,m and j=1, 2, ..., n. And the correlation is θ > 0 which is known.
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Figure 3.3: Power simulation for θ = 0.2,τ 2 = 0.2

Figure 3.4: Power simulation for θ = 0.2,τ 2 = 0.7

For i 6= k, we define the joint probability distributions of Xij and Xkj as

a = P(Xij = 0, Xkj = 0) b = P(Xij = 0, Xkj = 1) c = P(Xij = 0, Xkj = −1)

b = P(Xij = 1, Xkj = 0) d = P(Xij = 1, Xkj = 1) f = P(Xij = 1, Xkj = −1)

c = P(Xij = −1, Xkj = 0) f = P(Xij = −1, Xkj = 1) e = P(Xij = −1, Xkj = −1).
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Figure 3.5: Power simulation for θ = 0.7,τ 2 = 0.2

Figure 3.6: Power simulation for θ = 0.7,τ 2 = 0.7

Similar to m = 2, we can get

a = (1− λ1 − λ2)− (1− θ)(1− λ1 − λ2)(λ1 + λ2)

b = (1− θ)(1− λ1 − λ2)λ1 c = (1− θ)(1− λ1 − λ2)λ2

d = λ2
1(1− θ) + θλ1 e = λ2

2(1− θ) + θλ2 f = λ1λ2(1− θ).
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Next, define random variables

Yij = X1j(I[Xij=1]µ1 + I[Xij=−1]µ2) + σZij + τZ∗j ,

where i = 1, 2, ...,m, j = 1, 2, ..., n. Then Y1j, Y2j,...,Ymj are correlated random vari-

ables distributed as 3 component normal mixture: (1−λ1−λ2)N(0, 1)+λ1N(µ1, 1)+

λ2N(−µ2, 1).

The moments estimator can be defined as:

m̂c
1 = n−1m−1

m∑
i=1

n∑
j=1

Yij, m̂c
2 = n−1m−1

m∑
i=1

n∑
j=1

Y 2
ij , ..., m̂c

6 = n−1m−1

m∑
i=1

n∑
j=1

Y 6
ij .

Also like the m = 2 case, we can get the expected moments as:

mc
1 = n−1m−1

∑m
i=1

∑n
j=1 E(Yij) = µ1λ1 − µ2λ2

mc
2 = n−1m−1

∑m
i=1

∑n
j=1 E(Y 2

ij) = 1 + µ2
1λ1 + µ2

2λ2

mc
3 = n−1m−1

∑m
i=1

∑n
j=1 E(Y 3

ij) = λ1(µ3
1 + 3µ1)− λ2(µ3

2 + 3µ2)

mc
4 = n−1m−1

∑m
i=1

∑n
j=1 E(Y 4

ij) = λ1µ
4
1 + λ2µ

4
2 + 6mc

2 − 3

mc
5 = n−1m−1

∑m
i=1

∑n
j=1 E(Y 5

ij) = µ5
1λ1 − µ5

2λ2 + 10mc
3 − 15mc

1

mc
6 = n−1m−1

∑m
i=1

∑n
j=1 E(Y 6

ij) = µ6
1λ1 + µ6

2λ2 + 15mc
4 − 45mc

2 + 15.

Hypothesis Testing H0 : λ1µ1λ2µ2 = 0 vs. Ha : λ1µ1λ2µ2 6= 0. Similar to

m = 2, define

M = m̂c
2

2
− 2m̂c

2 − 1 + 3m̂c
1

2
− m̂c

3m̂
c
1,

then

E(M) = −λ1µ1λ2µ2(µ1 + µ2)2 = 0

if H0 holds. Define

V1 = cov


(
∑m

i=1 Yi1)(
∑m

i=1 Yi1) (
∑m

i=1 Yi1)(
∑m

i=1 Y
2
i1) (

∑m
i=1 Yi1)(

∑m
i=1 Y

3
i1)

(
∑m

i=1 Yi1)(
∑m

i=1 Y
2
i1) (

∑m
i=1 Y

2
i1)(
∑m

i=1 Y
2
i1) (

∑m
i=1 Y

2
i1)(
∑m

i=1 Y
3
i1)

(
∑m

i=1 Yi1)(
∑m

i=1 Y
3
i1) (

∑m
i=1 Y

2
i1)(
∑m

i=1 Y
3
i1) (

∑m
i=1 Y

3
i1)(
∑m

i=1 Y
3
i1)

 .

Then

V = var


m̂c

1

m̂c
2

m̂c
3

 = m−2n−1V1.
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After calculation, we have

cov(
∑m

i=1 Yi1,
∑m

i=1 Yi1) = mvar(Y11) +m(m− 1)cov(Y11, Y21)

= (m+ θm(m− 1))(mc
2 − (mc

1)2) +m(m− 1)(τ 2 − θ)

cov(
∑m

i=1 Yi1,
∑m

i=1 Y
2
i1) = mE(Y 3

11) +m(m− 1)E(Y11Y
2

21)−m2mc
1m

c
2

= (m+ θm(m− 1))(mc
3 −mc

2m
c
1) +m(m− 1)mc

1(τ 2 − θ)

cov(
∑m

i=1 Yi1,
∑m

i=1 Y
3
i1) = m(m− 1)E(Y11Y

3
21) +mmc

4 −m2mc
3m

c
1

= (m+ θm(m− 1))(mc
4 −mc

3m
c
1)−m(m− 1)3(τ 2 − θ)mc

2

cov(
∑m

i=1 Y
2
i1,
∑m

i=1 Y
2
i1) = mvar(Y 2

11) +m(m− 1)cov(Y 2
11, Y

2
21)

= (m+ θm(m− 1))(mc
4 − (mc

2)2) +m(m− 1)[2(τ 2 − θ)(τ 2 − 1

+2mc
2) + 2τ 2(θ − 1)(2mc

2 − 2(mc
1)2 − 1)]

cov(
∑m

i=1 Y
2
i1,
∑m

i=1 Y
3
i1) = m(m− 1)E(Y 2

11Y
3

21) +mmc
5 +m2mc

3m
c
2

= (m+ θm(m− 1)(mc
5 −mc

3m
c
2) +m(m− 1)6θ(τ 2 − 1)(mc

3 −mc
1)

+m(m− 1)6τ 2(1− θ)mc
1m

c
2 +m(m− 1)6τ 2(τ 2 − θ)mc

1

cov(
∑m

i=1 Y
3
i1,
∑m

i=1 Y
3
i1) = mvar(Y 3

11) +m(m− 1)cov(Y 3
11, Y

3
21)

= (m+ θm(m− 1))(mc
6 − (mc

3)2) +m(m− 1)[9θ(τ 2 − 1)mc
4 + 9τ 2(1

−θ)(mc
2)2 + 9mc

2θ(τ
4 + 2− 3τ 2) + 9τ 2(1− θ)(τ 2

+1)(mc
1)2 + 6(τ 6 − θ)− 9τ 4θ + 9τ 2θ]

var(M) = G
′
V G where G is the matrix of the partial derivative, and defined as:

G =


∂EM
∂mc1

∂EM
∂mc2

∂EM
∂mc3

 =


6mc

1 −mc
3

2mc
2 − 2

−mc
1

 .

Note that if we take m = 2, the equations still hold, then m = 2 is the special case

of group size of m.

Then the estimated variance is

̂var(M) =


6m̂c

1 − m̂c
3

2m̂c
2 − 2

−m̂c
1


′

V̂


6m̂c

1 − m̂c
3

2m̂c
2 − 2

−m̂c
1

 .
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Define the test statistic as

T =
M√
̂var(M)

=
m̂c

2

2
− 2m̂c

2 − 1 + 3m̂c
1

2
− m̂c

3m̂
c
1√√√√√√√√√


6m̂c

1 − m̂c
3

2m̂c
2 − 2

−m̂c
1


′

V̂


6m̂c

1 − m̂c
3

2m̂c
2 − 2

−m̂c
1


Under the null hypothesis

By multivariate central limit theory and Cramer Theorem (Ferguson [1996], p.45),

M − EM√
var(M)

d→ N(0, 1).

Then by slutsky’s theorem,

T =
M − EM√

̂var(M)

=
M√
var(M)

√
var(M)

̂var(M)
→ N(0, 1).

Thus, we have proved:

Theorem 3.4:Under the null hypothesis,

lim
n→∞

P(T < −z1−α) = α,

where α ∈ (0, 1) and z1−α is the 1− α quantile of a standard normal distribution.

Theorem is a more general case of Theorem 3.1.

Under the local alternative hypothesis Hak : µ1µ2λ1λ2 = µ∗1λ
∗
1λ
∗
2µ2n, where

µ∗1, λ∗1, λ∗2, are fixed positive numbers, while µ2n = kn−1/2.

Similar to m = 2 case, we have

Theorem 3.5:Under the local alternative hypothesisHak : µ1µ2λ1λ2 = µ∗1λ
∗
1λ
∗
2µ2n,

lim
n→∞

P(T < −Z1−α/2) = Φ(−Z1−α/2 +
kµ∗1λ

∗
1λ
∗
2µ
∗2
1√

m−2GTV1G
).

A fixed number between α and 1.

The proof of Theorem 3.5 is same as Theorem 3.2.

Under a fixed alternative hypothesis Ha : µ1µ2λ1λ2 = µ∗1µ
∗
2λ
∗
1λ
∗
2, where

µ∗1,µ∗2, λ∗1, λ∗2 are fixed positive numbers.
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Theorem 3.5:Under a fixed alternative hypothesis Ha : µ1µ2λ1λ2 = µ∗1µ
∗
2λ
∗
1λ
∗
2,

lim
n→∞

P(|T | > Z1−α/2) = 1.

Prove of the theorem is same as Theorem 3.3.

3.6 Simulation study

To simulate data with m per group, we need first get the joint distribution of m

variables. Assume m = 3, then define

ā = P(X1 = −1, X2 = −1, X3 = −1) b̄ = P(X1 = −1, X2 = −1, X3 = 0)

c̄ = P(X1 = −1, X2 = −1, X3 = 1) d̄ = P(X1 = −1, X2 = 0, X3 = 1)

ē = P(X1 = −1, X2 = 0, X3 = 0) f̄ = P(X1 = −1, X2 = 1, X3 = 1)

ḡ = P(X1 = 0, X2 = 0, X3 = 0) h̄ = P(X1 = 0, X2 = 0, X3 = 1)

ī = P(X1 = 0, X2 = 1, X3 = 1) j̄ = P(X1 = 1, X2 = 1, X3 = 1).

We have the following equations:

a = ē+ ḡ + h̄ b = h̄+ ī+ d̄ c = b̄+ d̄+ ē

d = f̄ + ī+ j̄ f = c̄+ d̄+ f̄ e = ā+ b̄+ c̄.
(3.5)

Make a conjecture that

ā = eλ2(1− θ) + λ2θ b̄ = cλ2(1− θ)

c̄ = fλ2(1− θ) d̄ = bλ2(1− θ)

ē = aλ2(1− θ) f̄ = dλ2(1− θ)− λ1λ2θ(1− θ)

ḡ = a− (1− θ)(λ1 + λ2)a h̄ = aλ1(1− θ)

ī = bλ1(1− θ) j̄ = dλ1(1− θ) + λ1θ − 2λ1λ2θ(1− θ),

then these satisfy the equation 3.5 , so we use them as the joint distribution of

X1, X2, X3.

Size Simulation
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For size simulation, assume µ1 = 0, µ2 = 5, λ1 = 0.2, λ2 = 0.3, thus the model

reduce to 2 component mixture normal: 0.7N(0, 1) + 0.3N(−5, 1). take τ 2 = 0.3 and

τ 2 = 0.6 respectively, sample size n from 20 to 1500. For each of various sample size,

generate 7000 sets of two component normal data. Next, we calculate how many

times out of 7000, we reject H0 based on theoretical critical value as estimated size

of the test. As shown in figure 3.7 and figure 3.8, the estimated size all fall in the

band of 0.05(±0.01)( the nominal rejection rate is 0.05).

Figure 3.7: Simulation Size 7000, τ 2 = 0.3,σ2 = 0.7

Power Simulation

For power simulation, similar to m = 2 case, simulate data with different θ and

τ 2.

Under each condition, we take sample size n = 100, generate X1i, X2i, ..., Xmi

as correlated data with correlation θ ∈ {0.2, 0.7}(we here take m=3), next generate

Z1i, Z2i, ..., Zmi from N(0, σ2) where σ2 ∈ {0.8, 0.3}, and Z∗i from N(0, τ 2) where

τ 2 ∈ {0.2, 0.7}. Thus let Yji = (µ1I[Xji=1]−µ2I[Xji=−1])+Zji+Z
∗
i where i = 1, 2, ..., n,

j = 1, 2, ...,m, Y1i, Y2i, ..., Ymi are from λ1N(µ1, 1)+λ2N(−µ2, 1)+(1−λ1−λ2)N(0, 1).
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Figure 3.8: Simulation Size 7000,τ 2 = 0.6,σ2 = 0.4

We estimate the rates that we reject H0 based on theoretical critical value as

estimated power of the test. Similar to m = 2, for a fixed λ1(or λ2) away from 0,

when we increase µ1(or µ2), or for a fixed µ1(or µ2) when we increase λ1(or λ2), the

power goes to 1. Also, for a fixed µ1, if we increase µ2, or for a fixed µ2, we increase

µ1, the power will also go to 1.

Also, if we compare the figure 3.9 to figure 3.12, if we increase the correlation

parameters τ 2 and θ, it will need larger value of µs or λs for power to reach 1.

For m ≥ 3, we could use NORTA method to simulate correlated multinomial data

X which is a general-purpose method for generating samples of a random vector with

given marginal distributions and given correlation matrix for its component random

variable(Aad et al. [2015]). For example, suppose we want to simulate correlated

multinomial data X = (X1, X2, X3, X4) with m = 4 and Xi taking value 0, 1 or −1

each with probability 1 − λ1 − λ2, λ1 and λ2 respectively. According to Ghosh and

Henderson(2002a), we could first simulate a normal vector Z = (Z1, Z2, Z3, Z4), with

53



Figure 3.9: Power simulation for θ = 0.2,τ 2 = 0.2

Figure 3.10: Power simulation for θ = 0.2,τ 2 = 0.7

covariance matrix

ΣZ =


1 a a a

a 1 a a

a a 1 a

a a a 1


,
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Figure 3.11: Power simulation for θ = 0.7,τ 2 = 0.2

Figure 3.12: Power simulation for θ = 0.7,τ 2 = 0.7

then do the transformation Xi = F−1(Φ(Zi)), where

F (x) = P (X1 ≤ x) =



0 x < −1

λ2 −1 ≤ x < 0

1− λ1 0 ≤ x < 1

1 x ≥ 1

.
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We will get a vector X with correlation matrix

ΣX =


1 θ θ θ

θ 1 θ θ

θ θ 1 θ

θ θ θ 1


for some θ, where θ is anticipated to be an increasing function of a. The relations

between a and θ are presented in Table 1 based on numerical search.

Cor between normals(a) 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Cor between multinormals(θ) 0.08 0.12 0.16 0.20 0.25 0.29 0.32 0.36 0.41

Cor between normals(a) 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Cor between multinormals(θ) 0.45 0.50 0.53 0.58 0.62 0.67 0.72 0.77 0.84

Table 3.1: Relations between a and θ

Actually, we can still use the aforementioned testing procedure if the sizes of two

groups are close but not the same. For example, if n1 groups of the sample have

group size 3, the other n2 groups have group size 5, where n1 and n2 are close, we

could then use the testing procedure as if m = 4 for each group. Below are simulation

results to support thus assertion.

For size simulation, we take n from 100 to 1500 and half of the groups to have

group size 3, while half of the groups have group size 5. Then we did the simulation

using the testing procedure as if m = 4. We had τ 2 = 0.3, θ = 0.2, µ1 = 0, µ2 = 5,

λ1 = 0.2 and λ2 = 0.3. For 7000 simulated data sets, calculated how often we rejected

H0 based on the theoretical critical value as the estimated size of the test, shown in

Figure 3.13. For n > 50, the estimated deviation from nominal rejection rate is no

more than 0.005.

For power simulation, we take n = 100, still half of the groups have size 3, half

have size 5, and we proceed as if m = 4. We had θ = 0.2, τ 2 = 0.2 . We take

different values of µ1, µ2, λ1 and λ2, simulate 7000 sets of data under each parameter

combination, then calculate the rate that we reject H0 based on theoretical critical
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Figure 3.13: Simulation Size 7000, τ 2 = 0.3,θ = 0.2

value as estimated power of the test. The simulation results are shown in Fig 3.14 as

contour plots.

Figure 3.14: Power simulation, τ 2 = 0.2,θ = 0.2
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Then, we change τ 2 = 0.7, θ = 0.7, other settings remain the same, perform the

power simulation again, the result is shown in Fig 3.15.

Figure 3.15: Power simulation, τ 2 = 0.7,θ = 0.7

3.7 Application

In application, we use the Down’s syndrome data same as shown in Chapter 2( data

can be download from http://www.partek.com). Follow the transform in Chapter 2,

we can get the histogram of 251 Z-statistics, and the fitted 3 component normal mix-

ture model(red line)3.58∗10−7N(0, 1)+0.4511324N(1.96, 1)+0.5488673N(−1.04, 1),

parameters are estimated from EM algorithm assume data are independent.

Next, we need to group the Z-statistics, still according to the Chromosomal loca-

tions, we divided the Z-statistics into 10 groups, with group size close to each other.

More specifically, the groups are (q22.1.1, q22.1.2, q22.2, q22.3.1, q22.3.2, q22.3.3,

q22.3.4, q22.3.5, q23,q21 and other locations), with group size (27, 27, 23, 25, 25, 24,

24, 25, 23, 29). Note that in order to have similar group size, we divide the loca-

tion q22.1 into 2 parts: q22.1.1, q22.1.2; similarly, we divided location q22.3 into 5

58



Figure 3.16: Histogram of Z-statistics, blue line is fitted standard normal curve, red
line is fitted 3 component normal mixture model

sub-groups.Here we assume that the correlation structure within each group is known

as compound symmetric with known θ and τ 2. Figure 3.17 shows the contour plots

of P-values. As we can see in the plot, the contour are close to the straight lines,

and as we increase θ and τ 2, the p-value also increases. We use a red dashed line to

separate the region of accepting and rejecting H0 : µλ = 0 at α = 0.05. Similar to the

previous chapter, failing to take into account correlation may massively understate

the p-value.

Copyright c© Meng Qi, 2016.
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Figure 3.17: Contour plot of P-values
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Chapter 4 Singular Bayesian Information Criterion For Hierarchical

Normal Mixture Models

4.1 Introduction of Hierarchical Normal Mixture Models

Hierarchical models(also multilevel models or nested models) as described in Rauden-

bush and Bryk [2002] are particularly used when data are organized at more than one

level, and are widely applied in many areas: social science, biology or public health

research, etc. For example, in social and behavioral studies, we collect data of risk

factors of early drop-out from two levels: the level describing an individual student(

grades, gender, hours of course-work), also the level describing schools( such as types

of school). Then the model could be built in these two levels, Rumberger [1995] indi-

cates that the level-1 model is a logistic regression model of whether a student have

early drop-out depending on the individual student level characteristics, while the

coefficients in the level-1 model varied from the school level as a function of school

characteristic. Therefore we may apply hierarchical models to simultaneously handle

measurements made from different levels.

In this chapter, we focus on hierarchical normal mixture models, constructed as

following:

Yi|Xi = j ∼MVN(µj ,Σj),

log P (Xi=l|Wi=wi)
P (Xi=m|Wi=wi)

= αl + βTl wi,
(4.1)

where j = 1, 2, ...,m is the index for component, i = 1, 2, ..., n is the index of obser-

vation. l = 1, 2...(m− 1), αm = βm = 0 and Wi
iid∼ MVN(ν, τ ). Then X is a random

variable which determines the mixture component, and the conditional probability

of X given W satisfies a multinomial logistic regression. µj and Σj are mean and

covariance matrix of Y in the jth component.
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This interpretation of model 4.1 is that: Y is the response variable, W is the

predictor, X is a latent indicator between W and Y, so that W affects Y through

X but not directly. Furthermore, we could consider another observed variable Z as

a predictor affecting Y directly. Then, this model is a hierarchical normal mixture

model.The group-based trajectory model(see Nagin and Tremblay [1999],Nagin and

Tremblay [2001], Charnigo et al. [2011]) is an example of hierarchical mixture model.

In group-based trajectory model, the response variable Y is a longitudinal sequence

of individual measurements over time, while W( risk factor) is a vector of time-stable

covariates which influence the probabilities of the individual belonging to a particular

group defined by X, but not affecting Y directly. Also we can have a time-dependent

covariates Z which affect Y directly(Jones etal. 2001). Neither model is a subset

of the other, however they do share a special case. More specifically, model 4.1

is simplified from a general hierarchical mixture by not including Z, while group-

based trajectory model is also simplified from general hierarchical mixture models

by assuming constraint on the component vector muj . Then model 4.1 and group-

based trajectory model shares a special case by intersecting the two aforementioned

simplifications.

4.2 EM Algorithm for Parameter Estimation

For mixture models, we usually apply EM algorithm to estimate the unknown pa-

rameters, since EM approach has a more natural interpretation than MLE in the

context of incomplete data, and could provide an approximation to MLE without

requiring numerical solutions to difficult high-dimensional optimization problems(see

Dempster et al. [1977], Redner and Walker [1984]). Here we first apply EM algorithm

to estimate the parameters of hierarchical normal mixture model. First, assume the

total number of components is known as m. Then define P (Xi = j|Wi = wi) as pij,

where i = 1, 2, ...n, j = 1, 2, ...,m then we have
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∑m

j=1 pij = 1

log(
pij
pim

) = αj + βTj wi

(4.2)

Then we will have pij =
exp(αj+β

T
j wi)∑m

l=1 exp(αl+β
T
l wi)

. Define Θ = {µ,Σ, ν, τ, α,β}. Also, we can

write out the likelihood function:

L(Θ|W,Y,X) = f(Y|X,µX ,ΣX)f(X|W, α,β)f(W|ν, τ ).

We can then form the following two cases to analyze:

Case 1: Y is a scalar for an individual and a vector for full sample

Here we assume that W is also a scalar for an individual. Then the data structure

can be written as

Yi|Xi = j ∼ N(µj, σ
2
j ),

log P (Xi=l|Wi=wi)
P (Xi=m|Wi=wi)

= αl + βlwi,

Wi ∼ N(ν, τ 2)

L(Θ|W,Y,X) = f(Y|X, µX, σX)f(X|W)f(W|ν, τ)

=
∏n

i=1

∑m
j=1 I[Xi=j]pij

1
2πσjτ

exp[−1
2
(

(yi−µj)2
σ2
j

+ (wi−ν)2

τ2
).]

(4.3)

Also, using Bayes’ Theorem, we can get

E(I[Xi=j]|Y,W) = P(Xi = j|Y,W) =
pijf(yi|wi, Xi = j)∑m
l=1 pilf(yi|wi, Xi = l)

,

we then could define E(I[Xi=j]|Y,W) := Φij, and the approximated complete data

log-likelihood function could be written as:

l(Θ) =
∑n

i=1

∑m
j=1{Φij[log pij − log σj − log(2πτ)− 1

2
(

(yi−µj)2
σ2
j

+ (wi−ν)2

τ2
)]}

=
∑n

i=1

∑m
j=1{Φij[αj + βjwi − log(

∑m
l=1 exp(αl + βlwi))− log σj − 1

2

(yi−µj)2
σ2
j

− log(2πτ)− 1
2

(wi−ν)2

τ2
]}.

(4.4)
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Since for ν and τ 2, we can use MLE to get the estimated ν̂ =
∑n
i=1 wi
n

and τ̂ 2 =∑n
i=1(wi−ν̂)2

n
, then the above log-likelihood approximately can be replaced by:

l(Θ) =
n∑
i=1

m∑
j=1

{Φij[αj + βjwi − log(
m∑
l=1

exp(αl + βlwi))− log σj −
1

2

(yi − µj)2

σ2
j

]}+C,

where C is constant with respect to Θ.

Then we can define the Q function as:

Q(Θ,Θ(t)) := E[l(Θ)|Y,W,Θ(t)]

=
∑n

i=1{
∑m−1

j=1 Φ
(t)
ij [αj + βjwi − log(1 +

∑m−1
l=1 exp(αl + βlwi))− log σj − 1

2

(yi−µj)2
σ2
j

]

+Φ
(t)
im[− log(1 +

∑m−1
l=1 exp(αl + βlwi))− log σm − 1

2
(yi−µm)2

σ2
m

]}+ C,

(4.5)

where Θ(t) is the estimation of Θ after t iterations of the EM algorithm, and Q is

the evaluation of log-likelihood approximation when Φij is evaluated at Θ(t).

Next, we take derivative with respect to every element of Θ and maximizing the

Q function gives the estimators after the (t+1) iterations, the new estimators are:

µ
(t+1)
j =

∑n
i=1 Φ

(t)
ij yi∑n

i=1 Φ
(t)
ij

,

σ
(t+1)
j =

√∑n
i=1 Φ

(t)
ij (yj−µ(t+1))2∑n
i=1 Φ

(t)
ij

.

For α
(t+1)
j and β

(t+1)
j , when j 6= m after differentiation we have the following

equations:

∂Q
∂αj

=
∑n

i=1 Φ
(t)
ij −

∑n
i=1

∑m
l=1 Φil

exp(αj+βjwi)

1+
∑m−1
q=1 exp(αq+βqwi)

∂Q
∂βj

=
∑n

i=1 Φ
(t)
ij wi −

∑n
i=1

∑m
l=1 Φil

wi exp(αj+βjwi)

1+
∑m−1
q=1 exp(αq+βqwi)

Note that α
(t+1)
m = β

(t+1)
m = 0. We then could use numerical method to find the

optimal value of α
(t+1)
j and β

(t+1)
j for j 6= m. Here we use ’optim’ in R to get

maximize Q function with respect to αj and βj respectively, and then set the value

to α
(t+1)
j and β

(t+1)
j .
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Case 2: Y is a vector for an individual and a matrix for full sample

For a more general case, suppose Y is a matrix, then ν̂ =
∑n
i=1 wi

n
and τ̂ 2 =∑n

i=1(wi−ν̂)(wi−ν̂)T

n
.

Here we further assume that Y and W are both n×2 matrices, which means that

the data is formed as following:

Wi ∼MVN(ν = (ν1, ν2)T , τ 2)

pij = P(Xi = j|Wi = wi) =
exp(αj+β1jwi1+β2jwi2)

1+
∑m−1
l=1 exp(αl+β1lwi1+β2lwi2)

Yi|Xi = j ∼MVN(µj = (µ1j, µ2j)
T ,Σj),

(4.6)

where τ 2 =

 τ 2
11 0

0 τ 2
22

 and Σj =

 σ2
11j σ2

12j

σ2
12j σ2

22j

 The Q function can be written

as a matrix form:

Q(Θ,Θ(t)) :=
∑n

i=1

∑m
j=1{Φ

(t)
ij [log pij − 1

2
log |Σj| − 1

2
(Yi − µj)TΣ−1

j (Yi − µj)]}+ C

=
∑n

i=1{
∑m−1

j=1 Φ
(t)
ij [αj + β1jwi1 + β2jwi2 − log(1 +

∑m−1
l=1 exp(αl + β1lwi1 + β2lwi2))

−1
2

log |Σj| − 1
2
(yi − µj)

TΣj
−1(yi − µj)]

+Φ
(t)
im[− log(1 +

∑m−1
l=1 exp(αl + β1lwi1 + β2lwi2))

−1
2

log |Σm| − 1
2
(yi − µm)TΣm

−1(yi − µm)]},
(4.7)

the estimators after the (t+1) iterations are:

µj
(t+1) =

∑n
i=1 Φ

(t)
ij yi∑n

i=1 Φ
(t)
ij

,

Σ
(t+1)
j =

∑n
i=1 Φ

(t)
ij (yi−µj

(t+1))(yi−µj
(t+1))T∑n

i=1 Φ
(t)
ij

.

For α
(t+1)
j , β

(t+1)
1j and β

(t+1)
2j when j 6= m, we still can use numerical method to get the

optimal values, here we use ’optim’ in R to get maximized Q function with respect

to αj and βj and set the value to α
(t+1)
j and β

(t+1)
j . Also we force α

(t+1)
m = β

(t+1)
1m =

β
(t+1)
2m = 0.
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4.3 Singular Bayesian Information Criteria

Introduction of Singular Bayesian Information Criteria

As discussed in Chapter 1, neither AIC(Akaike Information Criteria) nor BIC(Bayesian

information criterion) is appropriate when dealing with singular model selection prob-

lems due to the non-invertibility of Fisher-information matrices(Keribin [2000], Drton

[2009]), such as determining the number of components for mixture model with three

or more components, determining the rank in reduced-rank regression, etc.

Drton and Plummer [2013] proposed a new information criterion called sBIC(singular

Bayesian information criterion), which is a Bayesian information criterion in context

of a singular model selection problem. First we give an introduction of sBIC based

on Drton and Plummer [2013] and Watanabe [2009b].

Suppose Yn = (Yn1, Yn2, ..., Ynn) be a sample of iid observations, {Mi, i ∈ I} be a

finite set of candidate models. For each model Mi, we specify a a prior distribution

P (πi|Mi) for the probability distributions πi ∈ Mi. Also parameterize Mi as Mi =

{πi(ωi)ωi ∈ Ωi}, where Ωi ⊆ Rdi is a di-dimensional parameter space. Then we could

write the marginal likelihood of Yn as

L(Mi) = P (Yn|Mi) =

∫
Ωi

P (Yn|πi(ωi),Mi)dP (ωi|Mi). (4.8)

As mentioned in Drton and Plummer(2013), we can use Laplace approxima-

tion
∫
e−nh(x)dx ≈ e−nh(x̂)(2π)(d/2)|Σ|1/2n−d/2 with accuracy O(n−1/2) to approximate

equation (4.8 at point x̂, where Σ is the inverse of the Hessian of h(x) evaluated at x̂

. For equation(4.8), we have

L(Mi) =
∫

Ωi
P (Yn|πi(ωi),Mi)dP (ωi|Mi)

=
∫

Ωi
exp(−n( 1

n
logP (Yn|πi(ωi),Mi)))dP (ωi|Mi)

≈ P (Yn|π̂i,Mi)(2π)di/2|Σ|1/2n−di/2,

where P (Yn|π̂i,Mi),is the maximum of the likelihood function. Thus, we take loga-
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rithm to get

logL(Mi) = logP (Yn|π̂i,Mi)−
di
2

log(n) +Op(1)

where Op(1) stands for a remainder that is bounded in probability. Then the Bayesian

information criterion for model Mi (Schwarz et al. [1978]) is

BIC(Mi) = logP (Yn|π̂i,Mi)−
di
2

log(n).

However, A large-sample quadratic approximation to the log-likelihood function is

not possible when the model is singular. Thus Watanabe [2009a] Theorem 6.7 shows

that, for singular models, the approximation of log-likelihood has the property that,

for Yn drawn from π0 ∈Mi:

logL(Mi) = logP (Yn|π0,Mi)− λi(π0) log(n) + [mi(π0)− 1] log log(n) +Op(1),

where λi(π0) and mi(π0) are known as the learning coefficient and its multiplicity

respectively. Also as mentioned in Watanabe [2009a], λi(π0) ∈ [0, di/2] is a rational

number and mi(π0) ∈ {1, 2, ..., di} is an integer.

Then Drton and Plummer [2013], shows that if likelihood ratios P (Yn|π̂i,Mi)/P (Yn|π0,Mi)

is bounded in probability, we could also write the log-likelihood as:

logL(Mi) = logP (Yn|π̂i,Mi)− λi(π0) log(n) + [mi(π0)− 1] log log(n) +Op(1).

Drton and Plummer [2013] also shows that exponential families have the properties

that the likelihood ratios bounded in probability. Moreover, Azäıs et al. [2009] shows

that for mixture models, likelihood ratios is bounded in probability if we assume

compactness on the parameter space.

Then the difficulty is to determine learning coefficients. Since if π0 is known, the

marginal likelihood could be written as:

L
′

π0
(Mi) ∝ P (Yn|π̂i,Mi)n

−λi(π0)(log n)mi(π0)−1.

Then Drton and Plummer [2013] propose that for π0 unknown, we could give a

probability distribution Qi to the distributions in model Mi, and approximate the
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marginal likelihood as:

L
′

Qi
(Mi) =

∫
Mi

L
′

π0
(Mi)dQi(π0).

Then he mentioned that, by the usage of posterior distribution, we could choose Qi,

by conditioning on all sub-models of Mi, as

Qi(π0) = P (π0|{M : M ⊆Mi}, Yn) =

∑
j�i P (π0|Mj, Yn)P (Mj|Yn)∑

j�i P (Mj|Yn)
, (4.9)

where we define j � i if Mj ⊆Mi.

For example, in normal mixture model, define posterior distribution of 2 compo-

nent normal mixture as p2, posterior of normal as p1, then

Q(2comp) =
p2 ∗ P (2comp|data) + p1 ∗ P (normal|data)

P (2comp|data) + P (normal|data)

Since under certain conditions, λi(π0) and mi(π0) are almost surely constants, then

denote:

L
′

ij = P (Yn|π̂i,Mi)n
−λij(log n)mij−1 > 0.

Since if we define L
′
(Mi) = L

′
Qi

(Mi), we could get:

L
′
(Mi) =

∑
j�i L

′
ijL

′
(Mj)P (Mj)∑

j�i L
′(Mj)P (Mj)

, i ∈ I,

and further we can get

∑
j�i

[L
′
(Mi)− L

′

ij]L
′
(Mj)P (Mj) = 0, i ∈ I. (4.10)

Then, follow the definition 3.1 in Drton(2013),

sBIC(Mi) = log(L
′
(Mi)),

where {L′(Mi), i ∈ I} is the unique solution to equation (4.10) that has all entries

positive.

Also, singular BIC can be written as

sBIC(Mi) = logP (Yn|π̂i,Mi)− penalty(Mi),
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where penalty(Mi) ≤ dim(Mi)/2 ∗ log n, is milder than ordinary BIC penalty. Hence

sBIC will select a greater or equal number of component to BIC.

For our hierarchical normal mixture model (4.1) described in section 4.1 , as-

sume that the parameter space is compact, if the variance is equal and known, the

learning coefficients have been determined by Aoyagi [2010]. If variance is unequal

and unknown, according to Drton and Plummer [2013], we could apply methods in

Watanabe [2009b] Section 7.3.

For case 1: Y is a scalar for an individual and a vector for full sample, suppose l

is the total number of normal mixture components in the learning machine, m is the

number of components in a true model when π0 ∈ Mm ⊂ Ml, and m < l. Then for

the hierarchical normal mixture model, in layer 1, both τ 2 and ν have counts 1; for

layer 2, both α and β have counts (l − 1); for layer 3 both µ and σ have counts l.

Thus the parameter space have dimension 4l However, when π0 ∈Mm ⊂Ml, we will

leave l−m of α and l−m of β free. Then it leads to the bound of learning coefficient:

λlm ≤
1

2
(4l−2(l−m)) =

1

2
(2l+2m) = l+m <

dim(Ml)

2
=

1

2
∗4l = 2l when m < l.

For case 2: Since now Y and W are vectors. Then suppose l is the number of

normal mixture components in the learning machine, m is the number of components

in a true distribution when π0 ∈ Mm ⊂ Ml, and m < l. The dimension of total

parameter space is 8l + 2(5 from ν and T ; l − 1 from α, β1 and β2 respectively; 5l

from µ and Σ). However, when π0 ∈Mm ⊂Ml, we can leave l −m of α, l −m of β1

and l −m of β2 free. Then it leads to the bound of learning coefficient:

λlm ≤
1

2
(3l + 5m+ 2) <

dim(Ml)

2
= 4l + 1 when m < l.

Consistency of sBIC for hierarchical normal mixture model

Drton and Plummer [2013] exhibits three assumptions about the likelihood ratios and

the learning coefficients and their multiplicities to prove consistency:
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• (A1) For any i, j, ifMi andMj are true models, then the ratio of their likelihoods

are bounded in probability as the sample size goes to infinity.

• (A2) For any i, k, if Mi is a true model and Mk is a false model(π0 not in Mk),

then there exists δik > 0 such that

P (
L(Yn,Wn|π̂k,Mk)

L(Yn,Wn|π̂i,Mi)
≤ e−δikn)→ 1, n→∞,

where Yn and Wn stands for n-dimensional vector as mentioned before.

• (A3) For any true models Mi, Mk and their corresponding sub-models Mj ⊆Mi,

Ml ⊆ Mk, the Bayes complexity is monotonically increasing, i.e (λij,mij) <

(λkl,mkl), if i ≺ k and j � l.

To prove the consistency of sBIC for hierarchical normal mixture model, we need

to prove (A1)-(A3) for our model. First we assume that the parameter space is

compact.

Proof:

Proof. For (A1), suppose G is a set of densities g with respect to Lebesgue measure v,

Ma, Mb are two true models with densities ga ∈ G,gb ∈ G. Let the smallest true model

be Mc, Mc ⊆ Ma and Mc ⊆ Mb. Let gc be the unique true density of order c. The

density of Mc is gc ∈ G. The log-likelihood function of model Md can be written as

ln(Md) = logL(Yn,Wn|Md, π̂d), where Wn is a random vector. Then a log-likelihood

ratio test statistic for H0 : gc = f ∈ G can be written as,

LRTd = sup
g∈Gd

(ln(g)− ln(f)),

Thus, logP (Yn,Wn|Mc, πc)−logP (Yn,Wn|Ma, π̂a) and logP (Yn,Wn|Mc, πc)−logP (Yn,Wn|Mb, π̂b)

are both negative log-likelihood ratio test statistics. Following by Gassiat [2002], for

any g ∈ Gd, if we define the score function

sg =

g−f
f

‖ g−f
f
‖2

=

g
f
− 1

‖ g
f
− 1 ‖2

,

where ‖ · ‖2 is the norm in L2(fdv), then
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0 ≤ sup
g∈Gd

(ln(g)− ln(f)) ≤ 1

2
sup
g∈Gd

(
∑n

i=1 sg(Yi,Wi))
2∑n

i=1(sg)2
−(Yi,Wi)

. (4.11)

Note that, the left hand side of the inequality is 1 log-likelihood ratio test statistic.

For right hand side, we claim that it is Op(1). With this claim, we could conclude

that

logP (Yn,Wn|Mb, π̂b)− logP (Yn,Wn|Mc, πc) = Op(1)

and

logP (Yn,Wn|Mc, πc)− logP (Yn,Wn|Ma, π̂a) = Op(1).

Thus,

logP (Yn,Wn|Ma, π̂a)− logP (Yn,Wn|Mb, π̂b) = logP (Yn,Wn|Ma, π̂a)− logP (Yn,Wn|Mc, πc)

−(logP (Yn,Wn|Mb, π̂b)− logP (Yn,Wn|Mc, πc))

= Op(1)

.

Exponentiate both sides, we can further conclude that the ratios of their likelihoods

are bounded in probability, which shows that assumption (A1) holds.

Next, we argue that our claim is right. Define Sd to be the set of all score functions

corresponding to Gd. Following Gassiat [2002], we assume finite integration of square

root entropy, i.e. let Hβ(u) be the entropy with bracket of S with respect to ‖ · ‖2,

and assume that ∫ 1

0

√
Hβ(u)du < +∞.

Actually the finite integration of square root entropy for ga, gc ∈ G are,

g(Y,W |Ma, π̂a) =
Ja∑
j=1

exp(β̂jw)

1 +
∑Ja−1

l=1 exp(β̂lw)
fN(µ̂j ,σ̂j

2)(y),

g(Y,W |Mc, πc) =
Jc∑
j=1

exp(βjw)

1 +
∑Jc−1

l=1 exp(βlw)
fN(µj ,σ2

j )(y),

where fN(µj ,σ2
j )(y) is the pdf of N(µj, σ

2
j ).
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According to Van der Vaart [2000], the class of all monotone functions taking

values in [−1, 1] have finite integration of square root entropy( belongs to P-Donsker

class). Thus, F∞ = {fθ =
exp(βjw)

1+exp(βjw)
} is a Donsker class. Then class of normal pdf

functions F∈ = {fθ, θ ∈ Θ} is also a Donsker class, where Θ correspond to total

parameter space of normal probability density. It is a parametric class and satisfy

the condition that there exist a measurable function m such that

|fθ1(x)− fθ2(x)| ≤ m(x) ‖ θ1 − θ2 ‖ .

Actually, since we suppose our parameter space is compact, then there exist M > 0

such that −M < |µj| < M and 1
M
< |σj| < M . Then by Taylor Expansion we have

f(µ1,σ1)(x)− f(µ2,σ2)(x) = (µ1 − µ2)
∂f

∂µ
|(0,1) + (σ1 − σ2)

∂f

∂σ
|(0,1) +R1,

where R1 is a remainder and satisfy R1 ≤ M2 ∗ (‖ µ1 − µ2 ‖ + ‖ σ1 − σ2 ‖), M2 is

a upper bound of |∂2f
∂µ2
|, |∂2f

∂σ2 | and | ∂2f
∂µ∂σ
| along a line segment connecting (0, 1) and

(µ, σ), where µ = sup(|µ1|, |µ2|) and σ = sup(σ1, σ2). Thus,

|f(µ1,σ1)(x)− f(µ2,σ2)(x)| = (µ1 − µ2)
∂f

∂µ
|(0,1) + (σ1 − σ2)

∂f

∂σ
|(0,1) +R1 < |θ1 − θ2|m(x),

Then according to Van der Vaart [2000], the class of normal density functions with

compact parameter space is a Donsker class. Also since Linear combination of a finite

number of functions with bounded coefficients have finite integration of square root

entropy, then G = {g(Y,W |Ma, π̂a) =
∑Ja

j=1
exp(β̂jw)

1+exp(β̂jw)
fN(µ̂j ,σ̂j

2)(y)} is a Donsker class.

Next, we argue that the score functions have finite integration of square root entropy.

For Sd = {sg =
g
f
−1

‖ g
f
−1‖2}, f is a fixed function(here we define it as the density for

smallest true model). Then according to the definition in (Van der Vaart [2000]), we

have two bracketing functions l and u with finite L(P ) -norms. Since l ≤ g ≤ u,

g ∈ G, then for a fixed density function f, l
f
− 1 ≤ g

f
− 1 ≤ u

f
− 1. Then for l

f
− 1 and

u
f
− 1, we have∫
|u
f
− 1|dP =

∫
|u
f
− 1|fdv =

∫
|u− f |dv ≤

∫
|u|dv +

∫
|f |dv =

∫
|u|dv + 1,
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∫
| l
f
− 1|dP =

∫
| l
f
− 1|fdv =

∫
|l − f |dv ≥

∫
|l|dv −

∫
|f |dv =

∫
|l|dv − 1.

Then we have ∫
|l|dv − 1 ≤

∫
| g
f
− 1|dv ≤

∫
|u|dm+ 1.

Thus, the class of score functions still have finite integration of square root bracketing

numbers since l and u have finite L(P ) -norms.

So we have proved that the class of score functions has finite integration of square

root entropy. Then according to Theorem 1 of Doukhan et al. [1995]

sup
s∈S

1

n
(
n∑
i=1

s(Yi,Wi))
2 = Op(1).

Also, it is shown in Gassiat [2002] that

lim
n→∞

inf
s∈S

1

n

n∑
i=1

s2
−(Xi) = inf

s∈S
‖ s− ‖2

2,

and

inf
s∈S
‖ s− ‖2

2> 0.

Thus following Gassiat [2002], take Xi to be the vector of (Yi,Wi), the right hand

side of inequality (4.11) satisfies

sup
g∈G

(
∑n

i=1 sg(Yi,Wi))
2∑n

i=1(sg)2
−(Yi,Wi)

= Op(1)

For(A2), suppose Mt is true model, Mf is false model and Mc is the smallest true

model. Then we have:

log(
P (Yn,Wn|π̂f ,Mf )

P (Yn,Wn|πc) ) = log fMf
(Yn,Wn|π̂f )− log fMc(Yn,Wn|πc)

=
∑n

i=1 log fMf
(Yi,Wi|π̂f )−

∑n
i=1 log fMc(Yi,Wi|πc)

.

Assume f(x, θ) is a pdf, the assumptions for uniform law of large numbers are: firstly

the parameter space Θ is compact; secondly, f(x, θ) is continuous at each θ ∈ Θ;

then, there exists a dominating function d(x), which is independent of parameters,
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such that ‖f(x, θ)‖ ≤ d(x) for every x, x = (y, w). According to our case, the first

two assumptions are met. For the last one:

fMf
(Y,W |θ) ≤

mf∑
j=1

1√
2πσjτ

exp (−1

2
(
(Y − µj)2

σ2
j

+
(w − ν)2

τ 2
)),

since the parameter space is compact, then there exist U1, U2,U3 and U4 > 0, which

satisfy that max1≤j≤mf |µj| ≤ U1, |ν| ≤ U2, max1≤j≤mf |σj| ≥ U3, |τj| ≥ U4 and

min1≤j≤mf |σj| ≥ U3. Then the domination function can be defined as following:

d(Y,W ) =



U5U4/2π exp(−1
2
[U2

3 (Y + U1)2 + U2
4 (W + U2)2]), < Y < −U1, W < −U2;

U5U4/2π exp(−1
2
U2

3 (Y + U1)2), Y < −U1,−U2 ≤ W ≤ U2;

U5U4/2π exp(−1
2
[U2

3 (Y + U1)2 + U2
4 (W − U2)2]), Y < −U1, W > U2;

U5U4/2π exp(−1
2
U2

4 (W + U3)2), W < −U2,−U1 ≤ Y ≤ U1;

U5U4/2π, −U2 ≤ W ≤ U2,−U1 ≤ Y ≤ U1;

U5U4/2π exp(−1
2
[U2

3 (Y − U1)2 + U2
4 (W + U2)2]), Y > U1, W < −U2;

U5U4/2π exp(−1
2
U2

3 (Y − U1)2), Y > U1,−U2 ≤ W ≤ U2;

U5U4/2π exp(−1
2
[U2

3 (Y − U1)2 + U2
4 (W − U2)2]), Y > U1, W > U2.

U5U4/2π exp(−1
2
U2

4 (W − U2)2) W > U2,−U1 ≤ Y ≤ U1;

Then by uniform law of large numbers:

1
n

∑n
i=1 log fMf

(Yi, wi|π̃f )
a.s→ E[log fMf

(Y1, w1|π̃f )]
1
n

∑n
i=1 log fMc(Yi, wi|πc)

a.s→ E[log fMc(Y1, w1|πc)],

suppose, for the false model Mf , π̃f := arg maxπf E[log fMf
(Y,W |π̃f )], then, π̂f

a.s→ π̃f

and πc
a.s→ πc as n→∞. Thus, by Slutskys theorem we have

1
n

∑n
i=1 log fMf

(Yi, wi|π̂f )− 1
n

∑n
i=1 log fMc(Yi, wi|πc)

a.s→ E[log fMf
(Y1,W1|π̃f )]− E[log fMc(Y1,W1|πc)]

=
∫ ∫

log
fMf (Y1,W1|π̃f )

fMc (Y1,w1|πc) fMc(Y1,W1|πc)dY1dw1

by Jensen′s inequality

< log
∫ ∫ fMf (Y1,W1|π̃f )

fMc (Y1,w1|πc) fMc(Y1,W1|πc)dY1dw1

= log(1) = 0.
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Thus,

1

n

n∑
i=1

log
fMf

(Yi, wi|π̂f )
fMc(Yi, wi|πc)

a.s→ −κ < 0.

Then for any ε > 0 there exist Nε, such that n > Nε

P(
n∑
i=1

log
fMf

(Yi, wi|π̂f )
fMc(Yi, wi|πc)

≥> −nδ) ≤ ε

Then

P(
P (Yn, wn|π̂f ,Mf )

P (Yn, wn|πc,Mc)
≥ e−nδ) ≤ ε.

Also since Mc is the smallest true model, we have P (Yn|πc,Mc)
P (Yn,wn|π̂t,Mt)

≤ 1, then we have

P(
P (Yn, wn|π̂f ,Mf )

P (Yn, wn|π̂t,Mt)
) =

P (Yn, wn|π̂f ,Mf )

P (Yn, wn|πc,Mc)
) ∗ P (Yn, wn|πc,Mc)

P (Ynδ, wn|π̂t,Mt)
) ≥ e−nδ) ≤ ε.

Then we have proved that for any i, k, if Mi is true model, Mk is false model(π0 not

in Mk), then there exist δ > 0, such that

P (
P (Yn, wn|π̂k,Mk)

P (Yn, wn|π̂i,Mi)
≤ e−δn)→ 1, n→∞

For (A3), since for our model, we have for Y is a scalar for each individual:λij =

0.5(2i + 2j) and mij = 1, then if there exist Ml ⊆ Mk and i ≺ k and j � l, then

0.5(2i + 2j) < λij < λkl < 0.5(2k + 2l) and mij = mkl = 1. Thus we have prove

that (λij,mij) � (λkl,mkl), which means that the bayes complexity are monotonically

increasing.

For Y is a vector for each individual λij = 1
2
(3i + 5j + 2) and mij = 1. Then

assume there exist Ml ⊆Mk and i ≺ k and j � k, then 1
2
(3i+ 5j + 2) = λij < λkl =

1
2
(3k+ 5l+ 2), mij = mkl = 1. Thus we have prove that (λij,mij) � (λkl,mkl), which

means that the bayes complexity are monotonically increasing.

Similarly, we could prove the assumption (A1) and (A2) are hold when Y is a

vector.

Since we have proved that our hierarchical normal mixture model satisfies these

three assumption, then by Drton and Plummer [2013] theorem 4.1 the sBIC is consis-

tent for hierarchical normal mixture model. Moreover, by Lemma 4.1 in Drton(2013),
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if Mi is a smallest true model then since assumption (A2) satisfied, we have

sBIC(Mi) = log(L
′

ii) + op(1).

Thus, in the simulation and application section of Chapter 5, we will apply this

Lemma and approximate sBIC(Mi) ≈ log(L
′
ii) in order to avoid calculating a large

number of likelihood functions when n is large(for example n is larger than 500).

Copyright c© Meng Qi, 2016.
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Chapter 5 A Flexible Singular Information Criterion For Hierarchical

Normal Mixture Models

5.1 Introduction

In Chapter 1 we mentioned that AIC is an inconsistent estimator when n is large,

while the BIC will underestimate the number of components when n is small, so Pilla

and Charnigo [2007] proposed a new model selection criterion named FLIC(Flexible

information criterion).Pilla and Charnigo [2007] shows that FLIC works better than

BIC when sample size is small, also working better than AIC for large samples.

In addition, the penalty of FLIC are data generated, i.e ”it takes into account the

structure of the data to determine the strength of the penalty term”. In this chapter,

we will develop a new flexible information criterion following by Pilla and Charnigo

[2007] for a singular hierarchical normal mixture model 4.1; we will use the birth

weight data as an example to illustrate our methodology for and compare the new

information criterion with AIC, BIC and sBIC. Notice that our work is different from

Pilla and Charnigo [2007] from following three aspects: 1) we consider a hierarchical

mixture model with varying coefficients; 2) we consider the data with vector response

and vector covariates.

5.2 Singular Flexible Information Criterion for Hierarchical Normal Mix-

ture Model

As mentioned in Pilla and Charnigo [2007], the penalty term for FLIC is 2(log
√
n)B(n,δ)(3m−

1), where 3m-1 is the number of free parameters in a m-component mixture model

from Pilla and Charnigo [2007], n is the sample size, δ denotes the fraction of

within-component variability to the total variability, and B(n, γ) = Φ[(log
√
n)γ ]−Φ(1)

1−Φ(1)

is a bivariate function taking a value between 0 and 1. For multivariate case, ac-
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cording to Dunteman [1984] and Fan, we could define the data yilj as the observa-

tion from ith outcome of lth measurement in jth component of the mixture, where

i = 1, 2, ..., p, j = 1, 2, ....J , l = 1, 2, ..., nj( where
∑J

j=1 nj = N). Then according to

the MANOVA(multivariate analysis of variance) we would have that

SStotalJ =
J∑
j=1

SSwithinj + SSbetween,

where SStotalJ , SSwithin, SSbetween stand for total variability, within-component

variability and between-component variability for J-component mixture model, re-

spectively.(J ∈ index set I) SSwithinj is the within variability for jth component.

For example, in our model we could assume Y = (Y1, Y2)T , W = (W1,W2)T , where

W ∼MVN(ν =

 ν1

ν2

 , τ =

 τ 2
11 0

0 τ 2
22

),

Y |X = j ∼MVN(µj =

 µ1j

µ2j

 ,Σj =

 σ2
11j σ2

12j

σ2
12j σ2

22j

).

Then we will have the MANOVA as following:

SSwithinj =


SWj11 SWj12 SWj13 SWj14

SWj21 SWj22 SWj23 SWj24

SWj31 SWj32 SWj33 SWj34

SWj41 SWj42 SWj43 SWj44


,
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where

SWj11 =
∑nj

l=1(Y1lj − Y1·j)
2 ≈

∑N
i=1 p̂ijσ̂

2
11j

SWj22 =
∑nj

l=1(Y2lj − Y2·j)
2 ≈

∑N
i=1 p̂ijσ̂

2
22j

SWj33 =
∑nj

l=1(W1lj −W1·j)
2 ≈

∑N
i=1 p̂ijvar(Wi1|Xi = j)

SWj44 =
∑nj

l=1(W2lj −W2·j)
2 ≈

∑N
i=1 p̂ijvar(Wi2|Xi = j)

SWj12 =
∑nj

l=1(Y1lj − Y1·j)(Y2lj − Ŷ2·j) ≈
∑N

i=1 p̂ijσ̂
2
12j

SWj13 =
∑nj

l=1(Y1lj − Y1·j)(W1lj −W1·j) ≈
∑N

i=1 p̂ijσ11j

√
var(Wi1|Xi = j) ∗ 0 = 0

SWj14 =
∑nj

l=1(Y1lj − Y1·j)(W2lj − Ŵ2·j) ≈
∑N

i=1 p̂ijσ̂11j

√
var(Wi2|Xi = j) ∗ 0 = 0

SWj23 =
∑nj

l=1(Y2lj − Y2·j)(W1lj −W1·j) ≈
∑N

i=1 p̂ijσ̂22j

√
var(Wi1|Xi = j) ∗ 0 = 0

SWj24 =
∑nj

l=1(Y2lj − Y2·j)(W2lj −W2·j) ≈
∑N

i=1 p̂ijσ̂22j

√
var(Wi2|Xi = j) ∗ 0 = 0

SWj34 =
∑nj

l=1(W1lj −W1·j)(W2lj −W2·j) ≈
∑N

i=1 p̂ij
√
var(Wi1|Xi = j)

√
var(W2|X = j) ∗ 0 = 0

.

Since we have pij = P(Xi = j|

 Wi1

Wi2

 =

 wi1

wi2

) =
exp(αj+β1jwi1+β2jwi2)∑J
q=1 exp(αq+β1qwi1+β2qwi2)

,

thus by Bayes Theorem, we can get

f(

 w1

w2

 |Xi = j) = P(Xi=j|Wi=wi)f(wi)
P(Xi=j)

= P(Xi=j|Wi=wi)f(wi)∫ ∫
f(Xi=j|Wi=wi)f(wi)dwi

=

exp(αj+β1jwi1+β2jwi2)∑J
q=1 exp(αq+β1qwi1+β2qwi2)

∗(2π)−1 exp(− (wi1−ν1)
2

2τ211
− (wi2−ν2)

2

2τ222
)∫ ∫ exp(αj+β1jwi1+β2jwi2)∑J

q=1 exp(αq+β1qwi1+β2qwi2)
∗(2π)−1 exp(− (wi1−ν1)2

2τ211
− (wi2−ν2)2

2τ222
)dwi1dwi2

.

Also,

var(W1i|Xi = j) = E(W 2
1i|Xi = j)− (E(W1i|Xi = j))2

=
∫
w2

1if(w1i|Xi = j)dw1i − (
∫
w1if(w1i|Xi = j)dw1i)

2
.

The integral above could be solved by Monte Carlo Integration. In addition, these

quantities also depend on the estimation of αj and βj. For simulation convenience,

we could estimate the conditional variance of Wij as following:

̂var(Wi1|Xi = j) =
1∑n
i=1 p̂ij

n∑
i=1

p̂ij(wi1 −
∑n

i=1 p̂ijwi1∑n
i=1 p̂ij

)2.

79



For between component variability, we have

SSbetween =


B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44


,

where

B11 =
∑J

j=1 nj(Y1·j − Y1··)
2 ≈

∑J
j=1

∑N
i=1 p̂ij(µ̂1j − Y1)2

B22 =
∑J

j=1 nj(Y2·j − Y2··)
2 ≈

∑J
j=1

∑N
i=1 p̂ij(µ̂2j − Y2)2

B33 =
∑J

j=1 nj(W1·j −W1··)
2 ≈

∑J
j=1

∑N
i=1 p̂ij(E( ̂W1i|Xi = j)−W1)2

B44 =
∑J

j=1 nj(W2·j −W2··)
2 ≈

∑J
j=1

∑N
i=1 p̂ij(E( ̂W2i|Xi = j)−W2)2

B12 ≈
∑J

j=1

∑N
i=1 p̂j(µ̂1j − Y1)(µ̂2j − Y2)

B13 ≈
∑J

j=1

∑N
i=1 p̂ij(µ̂1j − Y1)(E( ̂W1i|Xi = j)−W1)

B14 ≈
∑J

j=1

∑N
i=1 p̂ij(µ̂1j − Y1)(E( ̂W2i|Xi = j)−W2)

B23 ≈
∑J

j=1

∑N
i=1 p̂ij(µ̂2j − Y2)(E( ̂W1i|Xi = j)−W1)

B24 ≈
∑J

j=1

∑N
i=1 p̂ij(µ̂2j − Y2)(E( ̂W2i|Xi = j)−W2)

B34 ≈
∑J

j=1

∑N
i=1 p̂ij(E( ̂W1i|Xi = j)−W1)(E( ̂W2i|Xi = j)−W2).

Thus, the total variability is

SStotalJ =
∑J

j=1 SSwithinj + SSbetween

=
∑J

j=1


SWj11 SWj12 SWj13 SWj14

SWj21 SWj22 SWj23 SWj24

SWj31 SWj32 SWj33 SWj34

SWj41 SWj42 SWj43 SWj44


+


B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44


.

Then the fraction of within-component variability to total variability for the esti-

mated J-component mixture model is

ξJ =
|SSwithin|
|SStotalJ |

,

where |SSwithinJ | and |SStotalJ | are the determinant of matrix SSwithinJ and

SStotalJ , respectively. Following to Pilla and Charnigo(2007), the penalty statistic

80



can be defined as:

Λ(Y,W ) :=
∑
J∈I

ξJP(Jcomponents),

where P(Jcomponents) is the prior of J-component model, the prior-weighted average

fraction of within-component variability to total variability over the |I| estimated

mixture models. First we claim that |SStotalJ | = |SSwithinJ + SSbetweenj| ≥

|SSwithinJ | + |SSbetweenJ |, then Λ(Y,W ) ∈ [P(1component), 1]. Suppose there

exist 1 > ε > 0 such that P(1component) ≥ ε, then we have Λ(Y,W ) ∈ [ε, 1]. A

larger penalty statistic suggests less heterogeneity.

Since according to Marcus and Minc(1964),

det(A+B) = det(A) det(I + A−1/2BA−1/2)

≥ detA[1 + det(A−1/2BA−1/2)]

= det(A) + det(A−1/2) det(A−1/2BA−1/2) det(A−1/2)

= det(A) + det(B)

.

Then the above claim is proved. Furthermore, define the bivariate ratio function:

B(n, κ) :=
Φ((log n)κ)− Φ(1)

1− Φ(1)

for n > exp(2), κ ∈ [ε, 1] and Φ(·) is the cumulative distribution function of standard

Gaussian distribution. As mentioned in Pilla and Charnigo(2007), B(n, κ) is non-

negative and increasing in both n and κ. Also for a fixed κ ∈ [ε, 1], limn→∞B(n, κ) =

1. Then let

Pn(Y,W ) := (log n)B(n,Λ(Y,W )).

We could then define the singular flexible information criterion (sFLIC) as

Definition 1. The singular flexible information criterion (sFLIC) of model Mj is:

sFLICj = l̂(Mj) + λj(π0)Pn(Y,W )

= l̂(Mj) + λj(π0)(log n)B(n,Λ(Y,W )),

where l̂(Mj) is the maximum log-likelihood of model Mj, λj(π0) ∈ [0, dj/2] is the

learning coefficient(here we use λj as a short form of λij mentioned in sBIC), and dj

is the dimension of the parameter space Ωj.
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The singular flexible information criterion is a modified flexible information cri-

terion, which has a mild penalty term since λj(π0) ∈ [0, dj/2]. Also, following Pilla

and Charnigo(2007), since 0 < B(n,Λ(Y,W )) ≤ 1, then for large n, the penalty term

approximately equal to λj log n, which equals to the penalty of sBIC, unless Λ(Y,W )

is very small. Also notice that, if n is small, the penalty term is much less than

λj log n, while for moderate n, it is sensitive to Λ(Y,W ). Thus for moderate n, if the

data indicates a strong heterogeneity then the criterion has a light penalty.

Referring to the birth weight data, we can suppose Y1 is the weight of new born

infant, Y2 stands for the obstetric gestation, W1 is the age, and W2 is the years of

smoking.

5.3 Consistency of sFLIC

In this section, we show consistency results for the sFLIC from Definition 5.1. First,

since we assume the same model, we have assumptions (A1) to (A3) from Chapter

4. Then for a finite set of models {Mi : i ∈ I} and fixed data-generating distribution

π0 ∈
⋃
i∈IMi, we have the following theorem:

Theorem 5.3.1. (Consistency). Let Mi be the model selected by the sFLIC,

i = arg max
j∈I

sFLIC(Mj).

Under assumptions (A1)-(A3), the probability that Mi is a true model of minimal

Bayes complexity tends to 1 as n→∞.

Following Drton and Plummer(2013), to show the theorem, it is sufficient to show

that 1) the sFLIC of any true model is asymptotically larger that of any false model;

2) the sFLIC of a true model can be asymptotically maximal only if the model

minimizes Bayes complexity among all true models. We will prove the two parts in

the following lemmas.
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Lemma 5.3.2. If Mi is true a model and Mk is a false model, then under assumption

(A2)

P(sFLIC(Mi) > sFLIC(Mk))→ 1,

as n→∞.

Proof. Since we have shown in Chapter 4 that assumption (A2) holds for our hierar-

chical model with varying coefficient:

P(sBIC(Mi) > sBIC(Mk))→ 1,

as n→∞. Moreover, by Drton(2013) we have exp(sBIC(Mi)) = o(exp(sBIC(Mk))).

Also we already know that

sBIC(Mi) = l̂(Mi)− λij log n

sFLIC(Mi) = l̂(Mi)− λij(log n)B(n,Λ).

We then prove

exp(sFLIC(Mi))

exp(sFLIC(Mk))
= op(1).

Since

exp(sFLIC(Mi))

exp(sFLIC(Mk))
=

exp(sFLIC(Mi))

exp(sBIC(Mi))

exp(sBIC(Mi))

exp(sBIC(Mk))

exp(sBIC(Mk))

exp(sFLIC(Mk))
,

and note that exp(sFLIC(Mi))
exp(sBIC(Mi))

> 0, exp(sBIC(Mk))
exp(sFLIC(Mk))

= op(1) and exp(sBIC(Mi))
exp(sBIC(Mk))

= op(1).

Since sBIC(Mj) < sFLIC(Mj), then we only need to show that for any model Mj,

exp(sFLIC(Mj))

exp(sBIC(Mj))
is bounded(= Op(1)).

Since

exp(sBIC(Mj)

exp(sFLIC(Mj))
=

L̂(Mj) exp(λj log n)

L̂(Mj) exp(λj(log n)B(n,Λ))
,

it suffices to show that

exp(λj log n)

exp(λj(log n)B(n,Λ))
= exp(λj(log n− (log n)B(n,Λ)))→ 1

in probability as n→∞.
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Since we have that Λ ∈ [ε, 1], then

log n− (log n)B(n,Λ) ≥ 0.

We also have that

(log n)B(n,Λ)

log n
= (log n)B(n,Λ)−1

Since according to Fan(2014),

B(n,Λ) ≤ 1− exp(−(log n)2Λ/2)

1− Φ(1)
,

details are shown in Fan(2014) page 86,thusB(n,Λ)−1 converges to 0 faster than log n

diverges to infinity. Actually, B(n,Λ)− 1 converges to 0 faster than log n ∗ log log n

diverges to infinity.

We have

lim
n→∞

(1−B(n,Λ)) log n log log n ≤ lim
n→∞

log n log log n

C exp((log n)2Λ/2)
,

where C > 0 is a constant. Note that, since Λ ∈ [ε, 1] then log n ≥ (log n)2Λ−1 ≥

(log n)2ε−1 > (log n)−1. By L’Hospital’s Rule:

0 ≤ lim
n→∞

(1−B(n,Λ)) log n log log n ≤ lim
n→∞

1
n

log log n+ 1
n

C exp((log n)2ε/2) ∗ ε(log n)2ε−1 ∗ 1
n

.

Case 1: if 2ε− 1 ≤ 0 then as n→∞:

log log n+ 1

C exp((log n)2ε/2) ∗ ε(log n)2ε−1
→ 0;

Case 2: if 2ε− 1 > 0 then define log n := u,

1
n

log log n+ 1
n

C exp((log n)2ε/2) ∗ ε(log n)2ε−1 ∗ 1
n

=
(log u+ 1) ∗ u1−2ε

C exp(u2ε/2) ∗ ε
→ 0

as u→∞.

Thus, (B(n,Λ)− 1) ∗ log n log log n→ 0 in probability as n→∞.

Next,

log n− (log n)B(n,Λ) = log n(1− (log n)B(n,Λ)−1).
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We have

(log n)(B(n,Λ)−1) = exp((B(n,Λ)− 1) log log n).

Next we apply Taylor’s expansion:

exp((B(n,Λ)−1) log log n) = 1+(B(n,Λ)−1) log log n+Op(((B(n,Λ)−1) log log n)2).

Thus,

log n(1−(log n)(B(n,Λ)−1)) = (1−B(n,Λ)) log n log log n+log n∗Op(((B−1) log log n)2)]→ 0,

Thus,
sFLIC(Mj)

sBIC(Mj)
is bounded, then

exp(sFLIC(Mi))

exp(sFLIC(Mk))
=

exp(sFLIC(Mi))

exp(sBIC(Mi))

exp(sBIC(Mi))

exp(sBIC(Mk))

exp(sBIC(Mk))

exp(sFLIC(Mk))
= op(1).

Thus, we have shown that the sFLIC of any true model is asymptotically larger

than that of any false model.

Lemma 5.3.3. Suppose π0 ∈ Mk, but Mk does not minimize the Bayes complexity

among all true models, assume there exist a true model Mi which minimize the Bayes

complexity such that

P(sFLIC(Mi) > sFLIC(Mk))→ 1,

as n→∞.

Proof. As shown by Drton and Plumner(2013) Proposition 4.2, the conclusion in

Lemma 5.3.2 holds for any model Mj, as in the proof of Lemma 5.3.2 then imply,

P(sFLIC(Mi) > sFLIC(Mk))→ 1,

as n→∞.
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5.4 Simulation study

In simulation study, we generate data from the hierarchical normal mixture model

as following first generate Wi from multivariate normal with mean ν and covariance

matrix τ . Then calculate P (Xi = j|Wi) with given parameter a, b1 and b2. Then we

generate Yi given Xi = j with mean µj and covariance matrix Σj from multivariate

normal distribution, with j = 1, 2, ...m and number of non-redundant components

m ∈ {2, 3, 4, 5}. We take sample size to n = 10000 then calculate the AIC, BIC and

sBIC for each candidate model. For each combination of m and n, we generate 10

datasets with following parameter settings and compare the results.

2 components model: µ1 = (−2, 1)T , µ2 = (2, 3)T ,

Σ1 =

 1 0.3

0.3 1

, Σ2 =

 1 0.4

0.4 1

,

a = (0.9, 0), b1 = (1.1, 0) and b2 = (2, 0).

3 components model: µ1 = (−2, 2)T , µ2 = (2, 4)T , µ3 = (5, 7)T ,

Σ1 =

 1 0.3

0.3 1

, Σ2 =

 1 0.4

0.4 1

, Σ3 =

 1 0.09

0.09 1

,

a = (0.9, 0.8, 0), b1 = (1.1, 1.2, 0) and b2 = (2, 1.8, 0).

4 components model: µ1 = (−3, 3)T , µ2 = (2, 1)T , µ3 = (6, 5)T , µ4 = (9, 9)T ,

Σ1 =

 1 0.3

0.3 1

, Σ2 =

 1 0.4

0.4 1

, Σ3 =

 1 0.09

0.09 1

, Σ4 =

 1 0.2

0.2 1

,

a = (0.9, 0.8, 0.8, 0), b1 = (1.1, 1.2, 1.2, 0) and b2 = (2, 1.8, 1.9, 0).

5 components model: µ1 = (−4,−3)T , µ2 = (−1, 1)T , µ3 = (2, 5)T , µ4 = (6, 9)T ,

µ5 = (9, 11)T ,

Σ1 =

 1 0.3

0.3 1

, Σ2 =

 1 0.4

0.4 1

, Σ3 =

 1 0.09

0.09 1

, Σ4 =

 1 0.2

0.2 1

,

Σ5 =

 1 0.5

0.5 1

,

a = (0.9, 0.8, 0.8, 0.9, 0), b1 = (1.1, 1.2, 1.2, 1.1, 0) and b2 = (2, 1.8, 1.9, 1.9, 0). Also,
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we have ν = (0, 0), τ =

 1 0

0 1

 for all models.

The contour plots of joint density of Y1 and Y2 are shown in figure 5.1:
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Figure 5.1: Contour plot of fitted joint density for sample data from the indicated distribution
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The following table shows the result of model being selected by AIC, BIC, sBIC

and sFLIC:

True/Select
AIC BIC sBIC sFLIC

2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

2 components 8 1 1 0 10 0 0 0 10 0 0 0 9 1 0 0

3 components 0 6 3 1 0 10 0 0 0 10 0 0 0 9 1 0

4 components 0 0 8 2 0 0 10 0 0 0 10 0 0 0 9 1

5 components 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10

For large n, BIC and sBIC work well for detecting true number of components;

AIC works worst and tend to select a larger number of components, while sFLIC

is intermediate between AIC and BIC. More specifically, when true models have

two components(M=2), AIC selects 8 out of 10 correctly, sFLIC selects 9 out of

10 correctly, while BIC and sBIC selects 10 correctly. When the true models have 3

components, AIC selects 6 out of 10 correctly, BIC and sBIC have correct classification

rates of 100%, while sFLIC is intermediate between AIC and BIC or sBIC, it selects

9 out of 10 correctly. The situation is similar for true models with 4 components,

sFLIC chooses 9 out of 10 correctly, which is between AIC(8) and BIC or sBIC(10).

For 5 component models, all of these criteria work well. Since our candidate sets

only contains up to 5 components model, then it is not possible to choose more

components.
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5.5 Real Data Applications

In this section, we apply our model 4.1 to NCHS’ Vital Statistics Natality Birth Data

from the National Vital Statistics System of the National Center for Health Statistics

in year 2014. The data is publicly available online at

http : //www.nber.org/data/vital − statistics− natality − data.html.

The data are based on information abstracted from birth certificates filed in vital

statistics offices of each State and the District of Columbia.

We wish to analyze the relationship between gestational age and birth weight

adjusted for other variables like mother’s age and father’s age. According to Charnigo

et al. [2010], since records with birthweight less than 500 grams or gestational age

less than 22 weeks were not consistently documented, then we select data with known

birthweight between 500 and 5500 grams and gestational age larger than or equal

to 22 weeks. Referring to our model, we treat mother’s age(in years) and father’s

age(in years) as W , gestational age(in weeks) and birthweight(in grams) as Y. We

randomly draw 10 samples of sizes n = 500, 1000, 2500, 5000, 10000 respectively and

fit models with number of non-redundant components m ∈ {2, 3, 4, 5}. For each m

and n combination, we use EM algorithm to estimate parameters and use AIC, BIC,

sBIC and sFLIC to infer the true number of components. Table 5.1 summarizes the

EM algorithm parameter estimates and Table 5.2-Table 5.5 shows the model selection

results by information criterion average over 10 samples.

Table 5.1: Preferences of Model Selection Criteria in Real Data

Sample size
AIC select BIC select sBIC select sFLIC select

2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

n=500 1 6 2 1 10 0 0 0 9 1 0 0 8 2 0 0
n=1000 0 2 1 7 7 3 0 0 4 6 0 0 4 6 0 0
n=2500 0 0 5 5 0 0 8 2 0 0 8 2 0 0 8 2
n=5000 0 1 6 3 0 1 8 1 0 1 8 1 0 1 8 1
n=10000 0 0 2 8 0 0 5 5 0 0 5 5 0 0 5 5
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Table 5.1 shows the results of 10 random samples. For small sample size(n=500

or n=1000), BIC, sBIC and sFLIC tend to select 2 or 3 component models. More

specifically, when n=500, BIC selects all models as 2-component, sFLIC selects 2

out of 10 as 3-component models others as 2-component; AIC selects all models but

tends to prefer to 3-component. When n=1000, AIC shows preference to 5 component

models, BIC still favors 2-component models, but sBIC and sFLIC choose more 3-

component than 2-component models. However, due to the numerical optimization

and the inherent multi-modality of the likelihood function, the results may not be

stable for small samples. As sample size increases to 2500, all criteria seem to choose

more components, none of them selects 2 or 3 component models. AIC shows equal

preference to 4 and 5 component models, while BIC, sBIC and sFLIC have similar

results and choose more 4-component models. For n=5000, still BIC, sBIC and

sFLIC agree with each other and tend to select more 4-component models. AIC as

well selects 6 out of 10 as 4-component models, but still chooses 3 as 5-component

models, which agrees with the theory that AIC is not stable when sample size is large

as mentioned in Pilla and Charnigo [2007]. When sample size increases to n=10000,

BIC, sBIC and sFLIC shows equal preference for 4 and 5-component models, while

AIC chooses 8 out of 10 as 5-component models, and 2 as 4-component models.

The scatter plots of real data and contour plots of the fitted densities for gestation

and birthweight, marginalized over mother and father’s age, are shown in Figure 5.2.

The parameters for fitted density are from table 5.2 to table 5.5 using n = 1000,

which is plotted against 1000 new observations not used to fit the model; the use of

new data could provide insight into the generalizability of the model to new data.

For 2-component model, we see that the first component accounts for most of the

low birthweight and premature babies, and has large variation in both Y1 and Y2 to

capture the diversity of these cases. The second component accounts for the majority

of the data, which captures most normal to high birthweight cases whose gestational

ages are of full term or nearly so.
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For the 3-component model, similar to the 2-component model, there is still one

component with large variation accounting for cases with low birthweights and short

gestational ages. One component accounts for the majority of the data. Besides that

there is an additional component accounting for many cases with high gestational

ages.

Fitted density of 4-component model seems more reasonable since the first com-

ponent tends to capture more low birthweight and premature cases, while other three

components together account for almost all normal to high birthweight cases whose

gestational ages are of full term or nearly so.

The 5-component model seems a little over-fitted, since compared to 4-component

model, it has an additional component to capture relatively low birthweight but

normal gestational age cases, which are infrequent. This also shows the reason that

BIC, sBIC and sFLIC tend to select 4-component model as the best fitted model.

Also, since the estimated b1 and b2 in the tables are very close to zero, we can

conclude that mother’s age and father’s age have very little influence on component

membership for the birthweight and gestational age. However, the model does not

explore whether parents’ age may influence birthweight and gestational ages within

a component.
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Table 5.2: Estimating Parameters in a 2-Component Mixture Model

Parameters n=1000 n=2500 n=5000 n=10000
µ1 (36.8, 2753)T (36.4, 2862)T (37.3, 2848)T (37.4, 2853)T

µ2 (39.1, 3516)T (38.9, 3456)T (39.1, 3521)T (39.1, 3516)T

Σ1

(
17.5 2395
2395 552236

) (
15.4 1971
1971 510546

) (
16.5 2247
2247 590887

) (
17.6 2217
2217 568091

)
Σ2

(
1.49 156.9
156.9 190990

) (
1.14 147.3
147.3 191553

) (
1.63 154.3
154.3 205321

) (
1.44 149.6
149.6 192252

)
a (1.75, 0) (2.44, 0) (1.49, 0) (1.24, 0)
b1 (0.004, 0) (0.002, 0) (0.014, 0) (0.010, 0)
b2 (−0.005, 0) (−0.003, 0) (−0.006, 0) (−0.007, 0)
ν (28.79, 32.79)T (28.89, 32.50)T (28.57, 32.75)T (28.37, 32.89)T

τ

(
861.2 944.2
944.2 1436

) (
866.6 938.8
938.8 1387

) (
850.1 934.3
934.3 1442

) (
857.8 943.0
943.0 1443

)
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Table 5.3: Estimating Parameters in a 3-Component Mixture Model

Parameters n=1000 n=2500 n=5000 n=10000
µ1 (36.7, 2772)T (36.9, 2817)T (37.2, 2808)T (36.9, 2791)T

µ2 (38.6, 3518)T (38.5, 3471)T (38.5, 3505)T (38.7, 3548)T

µ3 (39.1, 3072)T (39.5, 2941)T (39.3, 2986)T (39.2, 3035)T

Σ1

(
21.7 2558
2558 803403

) (
21.4 2627
2627 851339

) (
23.2 3139
3139 836011

) (
19.9 2279
2279 724088

)
Σ2

(
1.28 105.9
105.9 182895

) (
1.33 109.4
109.4 185928

) (
1.27 115.1
115.1 183038

) (
1.02 97.8
97.8 174403

)
Σ3

(
3.13 432.9
432.9 151404

) (
2.77 582.2
582.2 192953

) (
2.61 546.6
546.6 199232

) (
3.26 433.1
433.1 141631

)
a (−1.16, 1.02, 0) (−1.21, 1.08, 0) (−1.16, 0.93) (−0.72, 1.39, 0)T

b1 (0.086, 0.28, 0) (0.06, 0.05, 0) (0.057, 0.050, 0) (0.047, 0.059, 0)
b2 (0.027, 0.039, 0) (−0.015, 0.007, 0) (0.011, 0.1, 0) (0.013, 0.022, 0)
ν (28.79, 32.79)T (28.89, 32.50)T (28.57, 32.75)T (28.37, 32.89)T

τ

(
861.2 944.2
944.2 1436

) (
866.6 938.8
938.8 1387

) (
850.1 934.3
934.3 1442

) (
857.8 943.0
943.0 1443

)
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Table 5.4: Estimating Parameters in a 4-Component Mixture Model

Parameters n=1000 n=2500 n=5000 n=10000
µ1 (36.1, 2258)T (36.2, 2139)T (35.9, 2246)T (36.1, 2198)T

µ2 (38.1, 3160)T (37.9, 3283)T (37.6, 3182)T (38.4, 3200)T

µ3 (39.7, 3551)T (39.7, 3561)T (39.8, 3574)T (39.9, 3612)T

µ4 (38.8, 3281)T (38.9, 3031)T (38.8, 3051)T (38.9, 3176)T

Σ1

(
20.1 2833
2833 459540

) (
20.7 2566
2566 495962

) (
18.6 2900
2900 458287

) (
20.6 2863
2863 458287

)
Σ2

(
14.5 996
996 479716

) (
11.61 704
704 414000

) (
10.60 696
696 477921

) (
11.3 675
675 392403

)
Σ3

(
2.76 103.3
103.3 204631

) (
1.22 139.9
139.9 207002

) (
1.38 142.9
142.9 193885

) (
2.97 93.2
93.2 170252

)
Σ4

(
2.55 227.1
227.1 122116

) (
3.97 247.3
247.3 145140

) (
3.08 306.0
306.0 138422

) (
2.33 239.5
239.5 119216

)
a (−1.44, 1.056, 2.83, 0) (−1.32,−0.62, 1.49, 0) (−1.16,−0.22, 1.83, 0) (−1.82,−0.62, 0.25, 0)
b1 (−0.01, 0.05, 0.04, 0) (0.06, 0.11, 0.08, 0) (0.016, 0.2, 0.16, 0) (0.05, 0.02, 0.06, 0)
b2 (0.02, 0.22, 0.21, 0) (0.04, 0.07, 0.05, 0) (0.04, 0.05, 0.04, 0) (0.01, 0.03, 0.03, 0)T

ν (28.79, 32.79)T (28.89, 32.50)T (28.57, 32.75)T (28.37, 32.89)T

τ

(
861.2 944.2
944.2 1436

) (
866.6 938.8
938.8 1387

) (
850.1 934.3
934.3 1442

) (
857.8 943.0
943.0 1443

)
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Table 5.5: Estimating Parameters in a 5-Component Mixture Model

Parameters n=1000 n=2500 n=5000 n=10000
µ1 (35.3, 2214)T (35.8, 2196)T (35.7, 2179)T (35.5, 2232)T

µ2 (37.8, 3189)T (37.8, 3173)T (37.3, 3192)T (37.8, 3206)T

µ3 (38.9, 3319)T (39.2, 3324)T (39.1, 3279)T (38.9, 3317)T

µ4 (40.1, 3670)T (39.9, 3526)T (39.9, 3579)T (39.9, 3654)T

µ5 (38.8, 3173)T (38.8, 3146)T (38.7, 3078)T (38.8, 3130)T

Σ1

(
20.2 2441
2441 520451

) (
20.3 2709
2709 536479

) (
20.1 2022
2022 534640

) (
20.8 2614
2614 519112

)
Σ2

(
9.03 517.4
517.4 323629

) (
8.16 408.3
408.3 29480

) (
8.63 530.3
530.3 335853

) (
9.06 529.9
529.9 322149

)
Σ3

(
0.91 67.4
67.4 105828

) (
1.20 74.05
74.05 121725

) (
1.23 91.2
91.2 109495

) (
0.68 71.49
71.49 123333

)
Σ4

(
1.49 94.1
94.1 190121

) (
1.13 87.79
87.79 180379

) (
1.51 102.1
102.1 210575

) (
1.99 92.44
92.44 190431

)
Σ5

(
5.52 304.2
304.2 189227

) (
5.27 290.7
290.7 217762

) (
6.49 239.4
239.4 171510

) (
6.92 350.0
350.0 182401

)
a (0.71, 1.77, 3, 2.93, 0) (1.21, 0.29, 1.57, 2.99, 0) (0.91, 2.47, 2.98, 2.98, 0) (1.79, 2.26, 3, 2.3, 0)
b1 (0.09, 0.45, 0.22, 0.37, 0) (0.38, 0.5, 0.37, 0.38, 0) (0.28, 0.35, 0.33, 0.37, 0) (0.26, 0.30, 0.24, 0.27, 0)
b2 (0.05, 0.22, 0.12, 0.21, 0) (0.10, 0.49, 0.21, 0.2, 0) (0.09, 0.17, 0.14, 0.17, 0) (0.08, 0.09, 0.17, 0.10, 0)
ν (28.79, 32.79)T (28.89, 32.50)T (28.57, 32.75)T (28.37, 32.89)T

τ

(
861.2 944.2
944.2 1436

) (
866.6 938.8
938.8 1387

) (
850.1 934.3
934.3 1442

) (
857.8 943.0
943.0 1443

)
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Figure 5.2: Contour plots of fitted joint density(n=1000), with component means in colored dots
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5.6 Summary and Discussion

In this chapter, we develop a new data dependent information criterion sFLIC ,in-

spired in part by Pilla and Charnigo [2007] ’s FLIC, for bivariate hierarchical mixture

models 4.1 with varying weights. Our work is different from Pilla and Charnigo [2007]

in the following three aspects: 1)our hierarchical mixture model has varying weights;

2) our method is derived recognizing the singular structure of the models; 3) we

consider data with a vector response and a vector covariate.

In section 5.3, we proved asymptotic properties for our sFLIC criterion which

accommodates singularity of our hierarchical model (4.1). In section 5.4 simulation

study, we showed that sFLIC works as well as sBIC for large samples. In section 5.5,

we applied sFLIC to birthweight data from the National Center for Health Statistics

in year 2014. We saw that sFLIC shows concordant results with BIC and sBIC,

which tend to choose 4-component models as best for birthweight and gestational

age. Surprisingly, this result agrees with Charnigo et al. [2010], who considered only

birthweight as a variable and has no covariate.

But there are some limitations to this study. First non-uniqueness of local maxima

of the likelihood (Karlis and Xekalaki [2003]) and numerical optimization imply the

results may not be stable, especially for small samples; estimates may be local maxima

instead of global maxima. Second,since for birthweight and gestational age data, we

only include those cases with birthweight between 500 and 5500 grams and gestational

age larger than or equal to 22 weeks, the model is technically no longer a normal

mixture, but rather a truncated normal mixture. As such, we anticipate that model

selection criterion will try to capture empirical distribution which trend to select more

component for large n, meaning that the theoretical consistency may not be observed

in practice.

Copyright c© Meng Qi, 2016.
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