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ABSTRACT OF DISSERTATION

STATISTICAL INFERENCE ON TRIMMED MEANS, LORENZ CURVES, AND

PARTIAL AREA UNDER ROC CURVES BY EMPIRICAL LIKELIHOOD

METHOD

Traditionally the inference on trimmed means, Lorenz Curves, and partial AUC
(pAUC) under ROC curves have been done based on the asymptotic normality of
the statistics. Based on the theory of empirical likelihood, in this dissertation we de-
veloped novel methods to do statistical inferences on trimmed means, Lorenz curves,
and pAUC. A common characteristic among trimmed means, Lorenz curves, and
pAUC is that their inferences are not based on the whole set of samples. Qin and
Tsao (2002), Qin et al. (2013), and Qin et al. (2011) recently published their re-
searches on the inferences of trimmed means, Lorenz curves, and pAUC based on
empirical likelihood method, where they treated the cutting points in the samples
fixed at the sample quantiles. They concluded that the limiting distributions of
the empirical likelihood tests had scaled chi-square distributions under the null hy-
potheses. In our novel empirical likelihood methods, we treat the cutting points as
the nuisance parameter(s). We conduct the inferences on trimmed means, Lorenz
Curves, and pAUC in two steps. First, we make inferences on the parameter in-
terested ( trimmed means, Lorenz curves, or pAUC) and the nuisance parameter(s)
(the cutting point(s) in the samples) simultaneously. Then we profile out the nui-
sance parameter(s) from the test statistics. Under the null hypotheses, the limiting
distributions of our empirical likelihood methods are chi-square. We innovate a com-
putational algorithm ’ELseesaw’ to accomplish our empirical likelihood method for
the inference on pAUC. Eventually, we contribute a R package to implement our
empirical likelihood inferences on trimmed means, Lorenz curves, and pAUC. The
R package we have developed can be downloaded free-of-charge on the internet at
http://www.ms.uky.edu/~mai/EmpLik.html.

KEYWORDS: Empirical Likelihood Ratio Test, Trimmed Means, Lorenz Curves,
pAUC of ROC Curves

http://www.ms.uky.edu/~mai/EmpLik.html


Author’s signature: Yumin Zhao

Date: December 14, 2016



STATISTICAL INFERENCE ON TRIMMED MEANS, LORENZ CURVES, AND
PARTIAL AREA UNDER ROC CURVES BY EMPIRICAL LIKELIHOOD

METHOD

By
Yumin Zhao

Director of Dissertation: Dr. Mai Zhou

Director of Graduate Studies: Dr. Constance Wood

Date: December 14, 2016



To my dream over the years since I started learning Statistics.



ACKNOWLEDGMENTS

I am very grateful for the insights I received during my dissertation research. First, my

Dissertation Chair, Dr. Mai Zhou, an expert in empirical likelihood theories and other

statistical fields inspires me on every innovating solution of the dissertation research.

In addition, Dr. Zhou provides timely and instructive comments and evaluation at

every stage of the dissertation process. I appreciate Dr. Zhou’s humble attitude to

his students as well. Next, I wish to thank the complete Dissertation Committee:

Dr. William Griffith, Dr. Christopher Bollinger, Dr. Yanbing Zheng, Dr. Xiangrong

Yin, and Dr. Simon Bonner. I am very thankful for Dr. Bollinger’s guidance on

the household income data from IPUMS-CPS. Finally, I also want to thank all the

professors in the Department of Statistics who taught me in their classes during my

Master and Doctoral curriculum, from which I built the theoretical foundation for

my dissertation research and my career.

iii



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1 Review of Likelihood Ratio Test and Outline of the Dissertation . 1

1.1 Parametric Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . 1

1.2 Empirical Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . . 4

1.3 Profile Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2 Statistical Inference on Trimmed Means and Lorenz Curves by Em-

pirical Likelihood Method . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The Empirical Likelihood Ratio Test for the Trimmed Mean/General-

ized Lorenz Curves/Lorenz Curves and Its Limiting Distribution . . . 16

2.3 Simulation: Chi Square QQ Plots . . . . . . . . . . . . . . . . . . . . 28

2.4 Simulation: Confidence Intervals and Coverage Probabilities . . . . . 29

2.5 Lorenz Curves Based on Real Data . . . . . . . . . . . . . . . . . . . 31

2.6 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 32

iv



Chapter 3 Statistical Inference on the Partial Area Under ROC Curves by

Empirical Likelihood Method . . . . . . . . . . . . . . . . . . . . 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 The Empirical Likelihood Ratio Test for pAUC and Its Limiting Dis-

tribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Simulation: Chi square QQ plots . . . . . . . . . . . . . . . . . . . . 49

3.4 Simulation: Confidence Intervals and Coverage Probabilities . . . . . 49

3.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 52

Chapter 4 Computational Algorithm and R Package . . . . . . . . . . . . . . 56

4.1 Smoothing the Indicator Functions in (2.8), (2.21), (2.26) and (3.7) . 56

4.2 Algorithm for Calculating the Empirical Likelihood Functions in Chap-

ter 2 and Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 The Profile likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 R Package ‘pAUC’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Chapter 5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

R codes for Simulations in Chapter 2 . . . . . . . . . . . . . . . . . . . . . 102

R codes for Simulations in Chapter 3 . . . . . . . . . . . . . . . . . . . . . 106

R codes for Simulations in Chapter 4 . . . . . . . . . . . . . . . . . . . . . 119

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

v



Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

vi



LIST OF TABLES

2.1 Coverage Probability and Average Length of 95% Confidence Intervals of

estimated population means by empirical likelihood trimmed mean (EL),

trimmed t, and Winsorized t methods . . . . . . . . . . . . . . . . . . . . 31

3.1 Coverage Probability and Average Length of nominal 95% Confidence

Intervals of Partial AUC of Normal Samples . . . . . . . . . . . . . . . . 53

3.2 Coverage Probability and Average Length of nominal 95% Confidence

Intervals of Partial AUC of Exponential Samples . . . . . . . . . . . . . 54

vii



LIST OF FIGURES

2.1 Chi Square QQ Plots for the Empirical Likelihood Test on trimmed means 29

2.2 Chi Square QQ Plots for the Empirical Likelihood Test on generalized

Lorenz Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Chi Square QQ Plots for the Empirical Likelihood Test on Lorenz Curve 31

2.4 Lorenz Curves for States Indiana and Kentucky Based on Household In-

comes from IPUMS-CPS, University of Minnesota, www.ipums.org. The

error bar at each point is the 95% confidence interval by empirical likeli-

hood method at each estimated point . . . . . . . . . . . . . . . . . . . . 33

3.1 Illustration of ROC curves A and B with equal AUCs and unequal pAUCs

between p1 = 0.5 and p2 = 0.7 . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Chi-square QQ plots for empirical likelihood tests on hypotheses in equa-

tions (3.3), (3.3.a) and (3.3.b) . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Chi-square QQ plots for profiled empirical likelihood tests . . . . . . . . 51

4.1 An example of the smoothing function (4.1) at x∗ = 0 and ε = 0.6 . . . . 57

4.2 Sum of -2LLR as a function of temporary pAUC . . . . . . . . . . . . . . 60

4.3 Negative test statistics (-results) for µT as a function of t1 (ax) and t2 (bx) 62

viii



Chapter 1 Review of Likelihood Ratio Test and Outline of the

Dissertation

In this chapter, we briefly review the basics of empirical likelihood ratio test method,

which is the fundamental statistical theory that our research is based on.

1.1 Parametric Likelihood Ratio Test

Based on Casella and Berger (2002) pages 374 - 375, parametric likelihood ratio Test

is defined as the following.

Suppose X1, · · · , Xn is a random sample from a population with pdf or pmf f(x|θ)

(θ may be a vector), the likelihood function is defined as

L(θ|X1, · · · , Xn) = L(θ|X) =
n∏
i=1

f(xi|θ) (1.1)

Let Θ denote the entire parameter space. Θ0 is a subset of Θ and Θc
0 is the

complement of Θ0 in Θ. The likelihood ratio test statistic for testing the hypotheses

H0: θ ∈ Θ0 versus H1: θ ∈ Θc
0 (1.2)

is formulated as

R(X) =
supΘ0

L(θ|X)

supΘ L(θ|X)
(1.3)
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A likelihood ratio test (LRT) is any test that has a rejection region

{X : R(X) ≤ c}, (1.4)

where c is any number in 0 ≤ c ≤ 1.

θ̂, a maximum likelihood estimator (MLE), is obtained by maximizing L(θ|X)

over the entire parameter space. In other words, θ̂ is an unrestricted maximizer of

L(θ|X). We define θ̂0 as the restricted maximizer of L(θ|X) in the null hypothesis

parameter space Θ0. That is, θ̂0 maximizes L(θ|X) over θ ∈ Θ0. Then, the LRT

statistics in (1.3) is

R(X) =
L(θ̂0|X)

L(θ̂|X)
(1.5)

To define a level α test, the constant c in (1.4) must be chosen so that

sup
θ∈Θ0

Pθ(R(X) ≤ c) ≤ α (1.6)

Wilks (1938) showed that if H0 is true, then −2 logR(X) has an asymptotic χ2
p

distribution under certain regularity conditions, where p is the number of restrictions

imposed on the parameters by H0. Thus, the constant c in (1.6) is chosen based on

χ2
p.

It is convenient to formulate LRT (1.5) as

−2 logR(X) = 2(logL(θ̂|X)− logL(θ̂0|X)) (1.7)

2



From (1.1),

logL(θ̂|X) =
n∑
i=1

log f(xi|θ̂) (1.8)

logL(θ̂0|X) =
n∑
i=1

log f(xi|θ̂0) (1.9)

Then, the level α test is defined as

sup
θ∈Θ0

Pθ(−2 logR(X) > c1−α) ≤ α, (1.10)

The level 1− α likelihood confidence set is

{θ : −2 logR(X) ≤ c1−α} (1.11)

where c1−α is the 1− α quantile of χ2
p, i.e. p(χ2

p > c1−α) = α.

The advantages of parametric LRT are as follows:

1. The likelihood (and log likelihood) function is only defined over the parameter

space Θ. Consequently, the likelihood ratio confidence set will only ever contain

valid values of the parameter, while Wald interval may accommodate invalid

values, i.e. values outside of the parameter space.

2. The likelihood ratio set is transformation invariant. That is, we will get the same

confidence set for θ from the transformation of set {g(θ) : −2 logR(X) ≤ c1−α}

as the one directly from {θ : −2 logR(X) ≤ c1−α}, where g(·) is a function.
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3. It is not necessary to construct a variance-covariance matrix in order to form a

confidence set for a parameter θ.

1.2 Empirical Likelihood Ratio Test

In parametric likelihood methods described in the previous section, we suppose that

the joint distribution of all available data has a known form. However, a problem

with parametric likelihood inference is that we might not know which parametric

distribution family the data derive from. Misspecification of the distribution family

may fail the confidence sets and tests.

Empirical likelihood is a nonparametric method of statistical inference, which

utilize likelihood methods without having to assume that the data come from a known

family of distribution. Empirical likelihood ratio test inherits all the advantages of

parametric likelihood ratio test. Thus, empirical likelihood ratio method has been

applied in many situations since Owen (1988) extended earlier work of Thomas and

Grunkemeier (1975) who employed a nonparametric likelihood ratio idea to construct

confidence intervals for the survival function. The review of this section on empirical

likelihood ratio method is largely based on the book by Owen (2001) on pages 1 - 74.

Let X1, · · · , Xn ∈ R. The empirical cumulative distribution function (ECDF) of

X1, · · · , Xn is

Fn(x) =
1

n

n∑
i=1

I(xi ≤ x) (1.12)

for −∞ < x <∞.

4



I(xi ≤ x) =


1 if xi ≤ x

0 otherwise

From (1.12), we can see that the probability jump for each data point of the

empirical distribution is 1
n
.

Assume X1, · · · , Xn independent with common CDF F0, the nonparametric like-

lihood of the CDF F is

L(F ) =
n∏
i=1

(F (Xi)− F (Xi−)), (1.13)

where F (Xi) = P(Xi ≤ x), F (Xi−) = P(Xi < x), and F (Xi = x) = F (Xi) −

F (Xi−).

Owen (2001) on page 8 proved that the nonparametric likelihood in (1.13) is

maximized by the ECDF in (1.12). That is, the ECDF is the nonparametric MLE

(NPMLE) of F.

Thus, nonparametric likelihood ratio is written as

R(F ) =
L(F )

L(Fn)
(1.14)

To test

H0: T (F0) = θ0 versus H1: T (F0) 6= θ0, (1.15)

where T (·) is some function of distribution function F and F is a member of a set F

5



of distribution, we formulate the empirical likelihood function as

R(θ) = sup{R(F )|T (F ) = θ, F ∈ F} (1.16)

When R(θ0) < r0, we reject the null hypothesis in (1.15). The empirical likelihood

confidence regions of θ are of the form

{θ|R(θ) ≥ r0} (1.17)

The constant r0 for mean type of hypotheses may be chosen using an empirical

likelihood theorem (ELT), a nonparametric analogue of Wilks theorem.

Let wi be the weight that F places on sample Xi. Based on Owen (2001) page

30, the empirical likelihood ratio function for the mean µ is

R(µ) = max{
n∏
i=1

nwi|
n∑
i=1

wiXi = µ. wi ≥ 0.
n∑
i=1

wi = 1} (1.18)

and the resulting empirical likelihood confidence region for the mean as

Cr, n = {
n∑
i=1

wiXi|
n∏
i=1

nwi ≥ r0. wi ≥ 0.
n∑
i=1

wi = 1} (1.19)

Empirical Likelihood Theorem (Owen (2001) page 30)

Let X1, · · · , Xn be independent random vectors in Rd (d ≥ 1) with common dis-

tribution F0 having mean µ0 and finite variance covariance matrix V0 of rank q > 0.

Then Cr, n is a convex set and −2 logR(µ0) converges in distribution to a χ2
q random

6



variable as n→∞

Owen (2001) proved ELT on pages 219 - 222.

1.3 Profile Likelihood Ratio Test

Parametric likelihood ratio test can handle nuisance parameters, that is, parameters

that are present in a model but are not of direct inferential interest. The presence of

such nuisance parameters does not affect the LRT construction method (see Casella

and Berger (2002) page 378).

Let θT = (ψt, λt), ψ is a p× 1 vector of parameters of interest, λ is a q× 1 vector

of nuisance parameters. The test statistics for the null hypotheses for ψ is

Wp(ψ0) = 2{logL(ψ̂, λ̂|X)− logL(ψ0, λ̂ψ0|X)} (1.20)

Davison (2003) pages 127 - 128 defined the profile likelihood ratio test as

logLp(ψ|X) = max
λ

logL(ψ, λ|X) = logL(ψ, λ̂ψ|X) (1.21)

which may be used to form the confidence region for ψ.

Davison (2003) pages 138 - 139 proved that under the null hypotheses of ψ0,

the limiting distribution of Wp(ψ0) in (1.20) is a chi-square with degree of freedom

p. Profile likelihood method is not as widely used in empirical likelihood test as

in parametric likelihood test. Similar results about nuisance parameters and profile

likelihood for empirical likelihood are studied in Qin and Lawless (1994). In empiri-

7



cal setting, it can be computationally challenging to optimize a likelihood over some

nuisance parameters. In parametric setting, this issue can be avoided by making a

quadratic approximation to the log likelihood. The maximization in parametric pro-

file likelihood ratio method sometimes can also be done analytically by differentiation.

1.4 Outline of the Dissertation

In this dissertation research, we incorporate profile likelihood method into empirical

likelihood method to conduct inferences on some very practically useful parameters:

trimmed means, Lorenz curves, and partial AUC under the ROC curves. A common

characteristic among trimmed means, Lorenz curves, and pAUC is that their infer-

ences are not based on the whole set of samples. Quantile function(s) is(are) involved

to determine the cutting point(s) of the samples to be included in the inferences

on these parameters. Since the true quantile function(s) is(are) unknown, it(they)

has(have) to be estimated, which results in a very complex variance estimation for

the asymptotic normality of the parameter estimator. In our novel empirical likeli-

hood methods, we treat the cutting points as nuisance parameters. We conduct the

inferences on trimmed means, Lorenz curves, and pAUC in two steps. First, we made

inferences on the parameter interested (trimmed means, Lorenz curves, or pAUC)

and the nuisance parameter(s) (the cutting point(s) in the samples) simultaneously.

After the test statistics is obtained, we profile out the nuisance parameter(s) from

the test statistics. The limiting distributions of our novel empirical likelihood ratio

methods on the inferences of these parameters are the regular chi-square distribution

under the null hypotheses. Thus we do not need to formulate the variances for the

8



estimators of these parameters. Our novel empirical likelihood methods inherit all

the advantages of parametric LRT mentioned in Section 1.1 as well. Additionally, our

novel empirical likelihood ratio methods are not affected by the original distributions

of the data. Thus, our novel empirical likelihood ratio methods do not need to be

based on any assumptions of the original distributions.

An outline of the development of our empirical likelihood methods, the computa-

tional algorithms, and the programs is as follows:

In Chapter 2, we apply our empirical likelihood method to the one sample cases

for the trimmed means and Lorenz Curves. We formulate the empirical likelihood

tests on trimmed means and Lorenz curves and prove the limiting distribution of

the empirical likelihood tests under the null hypotheses is a chi-square distribution.

We also provide QQ chi-square plots to demonstrate the limiting distribution of the

empirical likelihood tests on trimmed means and Lorenz curves. Based on simulation

data with a symmetric distribution, we compare the estimated population mean by

our empirical likelihood method with the ones by other well known robust population

mean estimators. In the end of this chapter, we apply our empirical likelihood method

on Lorenz Curve to a real data.

In Chapter 3, we apply our empirical likelihood method to the two sample case for

pAUC. Besides formulating the empirical likelihood test on pAUC and presenting the

theories of empirical likelihood and profile likelihood. We also provide QQ chi-square

plots to demonstrate the limiting distribution of the empirical likelihood tests on

pAUC and list the comparisons on coverage probabilities and the lengths of confidence

intervals among several inference methods of pAUC based on simulation results.

9



In Chapter 4, we detail our computational algorithm for profile likelihood method

and the computational algorithm “ELseesaw” for empirical likelihood method for the

two sample case. Algorithm “ELseesaw” is another innovative contribution of this

dissertation research, which simplifies the minimization of the empirical likelihood

ratio test of two samples to the minimization of one sample empirical likelihood ratio

tests. In the end of Chapter 4, we introduce the R package we developed based on

our algorithms.

In Chapter 5, we suggest directions that this dissertation could be extended in

the future.

In Appendix we list the annotated R-code for the simulations used in the disser-

tation.

Copyright c© Yumin Zhao, 2016.
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Chapter 2 Statistical Inference on Trimmed Means and Lorenz Curves

by Empirical Likelihood Method

2.1 Introduction

The sample mean, as one of the standard estimators of central tendency, is very

frequently used because of well established inference methods based on central limit

theory. However, it is extremely sensitive to outliers. The trimmed mean, which is

computed after the smallest and largest observations are deleted from the sample, in

other words, the observations are trimmed at each end, is insensitive to outliers. For

a symmetric distribution, the symmetrically trimmed mean is an unbiased estimate

of the population mean. Thus, the trimmed mean has been a very popular robust

estimator of location parameters. Winsorized Mean is another robust estimator of the

location that is relatively insensitive to outliers. The Winsorized mean is computed

as the ordinary mean after the k smallest observations are replaced by the (k + 1)st

smallest observation and the k largest observations are replaced by the (k + 1)st

largest observation. Trimmed mean and Winsorized mean are employed to correct

the vulnerability of the Student’s t test of the sample mean when the population

has a symmetric distribution with tails longer than the normal distribution. Many

researches about the variance and asymptotic normality of the trimmed mean had

been done based on asymptotic variance of Winsorized variance such as Tukey and

McLaughlin (1963), Bickel (1965), Dixon and Tukey (1968), Stigler (1973), Caperra

11



and Rivest (1995). With the variances, the trimmed t test and Winsorized t test

are built for the inference of trimmed mean and Winsorized mean, respectively (see

Tukey and McLaughlin (1963), Dixon and Tukey (1968)). SAS Institute Inc. (2010)

applies this approach for the inference on the trimmed mean and Winsorized mean.

Instead of the above parametric approach, we develop a nonparametric method

- empirical likelihood method to do inference on trimmed means. The empirical

likelihood method proposed here is based on the trimmed mean defined in equation

(2.1) and its estimation in equation (2.2).

For a cumulative distribution F , the theoretical trimmed mean between given

quantiles p1 and p2 (0 ≤ p1 < p2 ≤ 1) is computed as

µT =

∫ ξ(p2)

ξ(p1)

xdF (x) (2.1)

here ξ(pi) = F−1(pi) = inf{x : F (x) ≥ pi}, i = 1, 2.

Let X1, X2, · · · , Xn be a random sample from the distribution F . The trimmed

mean based on this sample is calculated as

µ̂T =
1

n

n∑
i=1

xiI[t1 ≤ xi ≤ t2] (2.2)

where t1 = F̂−1(p1) = sup{t : F̂ (t) < p1}; t2 = F̂−1(p2) = sup{t : F̂ (t) < p2};

I[t1 ≤ xi ≤ t2] =


1 if t1 ≤ xi ≤ t2

0 otherwise

12



If the distribution F is symmetric and the trims at the sides are symmetric as

well (i.e. p1 = 1− p2), the trimmed mean µt and population mean µ have a relation

as

µ =
µT

p2 − p1

and

µ̂ =

∑n
i=1 xiI[t1 ≤ xi ≤ t2]∑n
i=1 I[t1 ≤ xi ≤ t2]

Our empirical likelihood method is not limited to symmetric distributions and

symmetric cuts. In other words, our empirical likelihood method works on any dis-

tributions and any cut including cut on one side of the ordered samples, which is

usually named as the truncated mean. Truncated means actually have many appli-

cations in economics, health services research and other fields. For instance, Lorenz

Curve is widely used by economist to represent the inequality of wealth distribu-

tion since Lorenz (1905). On a Lorenz Curve, the 45o diagonal line from lower

left corner to the upper right corner represents the equality of wealth. 1 − 2 ×

area under the Lorenz curve is defined as Gini index, which is usually used as the

single measure of inequality. Gini index ranges from 0 for complete equality to 1 for

complete inequality.

For a distribution of F (x) defined on non-negative x, the generalized Lorenz Curve

is defined as (see Gastwirth (1972))

GLC(p) =

∫ ξ(p)

0

xdF (x) for 0 ≤ p ≤ 1 (2.3)
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where ξ(p) = F−1(p) = inf{x : F (x) ≥ p}.

The Lorenz Curve is defined as

LC(p) =
GLC(p)

µ
(2.4)

where µ is the mean of F (·).

Gastwirth (1972) had defined and studied the nonparametric lower and upper

bounds of the Lorenz curve and Gini index by constructing the tangents to the curve

at the points and by straight line connecting the points on the Lorenz Curve. Gast-

wirth (1972) estimated Gini index by the area under the Lorenz Curve. Beach and

Davidson (1983) performed statistical inference on empirical Lorenz Curve based on

asymptotic multivariate normality. Bishop et al. and Chakraborti (1994) extended

Beach and Davidson’s theory to build confidence intervals for several pre-selected

points on generalized Lorenz Curves. They needed to estimate the covariance-variance

matrix to construct the test statistics.

In this study, we apply empirical likelihood ratio method to the influence of µT in

equation (2.1), GLC(p) in equation (2.3) and LC(p) in equation (2.4). The empiri-

cal likelihood ratio method has been applied in many situations (see Owen (1988)).

Compared to parametric methods, the empirical likelihood ratio method is not af-

fected by the original distribution of the data. Thus, the empirical likelihood ratio

method does not need to be based on any assumptions of the original distributions.

The empirical likelihood method has the following advantages over the traditional

parametric method; (1) our method is workable on different original distributions, no
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matter symmetric or very skewed distributions. Thus, our method can be applied

to the trimmed mean of symmetric population at symmetrically trimming and to

Lorenz Curve inference of population under the right skewed distribution with a long

right tail at the trimming on right tail only; (2) our method is insensitive to sam-

ple size and the breakdown points (studied by Hampel (1985)) as long as there are

enough unremoved data; we do not need to formulate the variance since the limiting

distribution of our empirical likelihood ratio under the null hypothesis is a chi-square.

Qin and Tsao (2002) applied empirical likelihood ratio method to the trimmed

mean inference and Qin et al. (2013) applied empirical likelihood ratio method to the

Lorenz Curve inference. They directly used sample quantiles in the test statistics.

Their methods proposed scaled chi-square limiting distributions. They derived a very

complicated formulas for the scale coefficients and utilized bootstrap procedures to

estimate them.

The rest of this chapter is organized as follows: in Section 2.2 we define the

empirical likelihood for the trimmed means, generalized Lorenz Curves, and Lorenz

Curves and prove that the limiting distribution of the empirical likelihood ratio test

is a chi-square distribution if the null hypothesis is true. In Section 2.3, we present

several Chi-square QQ plots based on the simulation results from different original

distributions. In Section 2,4, we compare the coverage probability and average length

of 95% confidence intervals of trimmed means from our empirical likelihood method

and from the trimmed t test and winsorized t test that SAS Institute Inc. (2010)

utilizes in the robust location estimation. In Section 2.5 we show an application of

our inference method of Lorenz Curves on a real data. In Section 2.6, we finalize this
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chapter with discussions and conclusions. The computational algorithm and R codes

applying the algorithm will be included in Chapter 4. Simulation R codes are listed

in the appendix.

2.2 The Empirical Likelihood Ratio Test for the Trimmed Mean/Gener-

alized Lorenz Curves/Lorenz Curves and Its Limiting Distribution

Hypothesis Test on the Trimmed Mean

We test hypotheses on the trimmed mean in two steps. First, we test hypotheses on

µT , t1 (p1 quantile), and t2 (p2 quantile) simultaneously. Then, we proile the nuisance

parameters t1 and t2. We discuss the first step here and the second step at the end

of this section.

Based on equation 2.1, we will first simultaneously test

H00 :



F−1(p1) = t1

F−1(p2) = t2∫ t2

t1

xdF (x) = µT

, for some t1 < t2 (2.5)

The above hypotheses are equivalent to

H00 :



F (t1) = p1

F (t2) = p2

∫ t2
t1
xdF (x) = µT
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For the discrete X, we use g1(X), g2(X), and g3(X) to generalize the hypotheses.



g1(X, t1) = g1(X) = I(X < t1)

g2(X, t2) = g2(X) = I(X < t2)

g3(X, t1, t2) = g3(X) = XI(t1 ≤ X ≤ t2)

(2.6)

Let v1, v2, · · · , vn be the probabilities of X1, X2, · · · , Xn, respectively, from dis-

tribution function F̂ (vi = F̂ (Xi) − F̂ (X−i )); vi > 0 and
∑n

i=1 vi = 1. The above

hypotheses can be written as



∑n
i=1(g1(xi)− p1)vi = 0

∑n
i=1(g2(xi)− p2)vi = 0

∑n
i=1(g3(xi)− µT )vi = 0

We can express the simultaneous equalities of the hypotheses using vectors as

follows:
n∑
i=1

(g(xi)− θ)vi = 0 (2.7)

where (g(X))T = (g1(X), g2(X), g3(X)) , θT = (p1, p2, µT ), and 0T = (0, 0, 0).

(t1, t2, µT ) are the parameters. t1 and t2 are contained in g1(x), g2(x), and g3(x).

Based on Owen (1988), the empirical distribution function of the above samples

F̂n(t) = 1
n

∑n
i=1 I[xi ≤ t] is often considered a nonparametric maximum likelihood
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estimate of F and the empirical likelihood ratio function is defined as

R(F̂ ) =
L(F̂ )

L(F̂n)
= nn

n∏
i=1

vi

The logarithm of the empirical likelihood ratio under constrains is

logR(t10 , t20 , µT0) = sup
vi

{
n∑
i=1

log nvi: vi > 0,
n∑
i=1

vi = 1,
n∑
i=1

(g(xi)− θ)vi = 0}

(2.8)

To calculate the sup in (2.8), we use Lagrangian Multiplier as usual (see Owen

(1988) and Zhou (2016)). The Lagrangian function for constrained logarithm of the

empirical likelihood ratio function is

G(vi) = n log n+
n∑
i=1

log vi + γ

(
n∑
i=1

vi − 1

)
− nλT

n∑
i=1

(g(xi)− θ)vi (2.9)

To maximize the Lagrangian function, let

∂G

∂vi
=

1

vi
+ γ − nλT (g(xi)− θ) = 0 (2.10)

and,
n∑
i=1

(vi
∂G

∂vi
) = n+ γ

n∑
i=1

vi + nλT
n∑
i=1

(vi(g(xi)− θ)) = 0 (2.11)

from (2.11), we have γ = −n, substitute it to (2.10), then

vi =
1

n (1 + λT (g(xi)− θ))
(2.12)
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Thus,

1

n

n∑
i=1

g(xi)− θ
1 + λT (g(xi)− θ)

= 0 (2.13)

By Taylor expansion about λ = 0, we have,

1

n

n∑
i=1

(
(g(xi)− θ)− (g(xi)− θ)(g(xi)− θ)Tλ+ o(λ)

)
= 0 (2.14)

Thus,

λ ≈ ḡ(X)− θ
n−1

∑n
i=1(g(xi)− θ)(g(xi)− θ)T

(2.15)

Theorem 2.1.a Suppose X1, X2, · · · , Xn be a random sample from the distri-

bution F with E(X2) < ∞, furthermore, the density function f of F is posi-

tive and continuous at t1 and t2 corresponding to the p1 and p2 quantile respec-

tively, 0 < p1 < p2 < 1. Under the hypotheses (2.5), the limiting distribution of

−2 logR(t10 , t20 , µT0) is a chi-square with degree of freedom 3.

Proof:

Substitute (2.12) to the formula for −2 logR(t10 , t20 , µT0), we have

−2 logR(t10 , t20 , µT0) = 2
n∑
i=1

log
(
1 + λT (g(xi)− θ)

)

≈ 2
n∑
i=1

(
λT (g(xi)− θ)−

1

2
λT (g(xi)− θ)(g(xi)− θ)Tλ

)

≈ 2nλT (ḡ(X)− θ)− λT
n∑
i=1

(g(xi)− θ)(g(xi)− θ)Tλ (2.16)
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Substitute (2.15) to (2.16),

≈ n2 (ḡ(X)− θ)T (ḡ(X)− θ)∑n
i=1(g(xi)− θ)(g(xi)− θ)T

(2.17)

By central limit theorem, (2.17) −→d χ2
3.

It follows from Theorem 2.1.a that for any 0 < α < 1 an empirical likelihood

confidence region for τ = (t1, t2, µT ) with an asymptotic coverage probability 1 − α

is given by {τ | − 2 logR(τ) < c1−α} where c1−α is defined such as P (χ2
3 > c1−α) = α.

Next step of our approach will be to profile the t1 and t2 out of the likelihood ratio

test. But due to the similarity of the profile empirical likelihood ratio test among

trimmed mean, Generalized Lorenz Curve, and Lorenz Curve, we discuss the profile

empirical likelihood ratio test at the end of this section after we address the first step

of hypothesis tests on the Generalized Lorenz Curve and Lorenz Curve.

Hypothesis Test on the Generalized Lorenz Curve

Similar to the hypothesis test on the trimmed mean, the hypothesis test on the

generalized Lorenz Curve is done in two steps. We discuss the first step here.

The hypotheses about the generalized Lorenz Curve GLC(p) and t (the p quantile)

are expressed as

H00 :


F−1(p) = t∫ t

0

xdF (x) = GLCp

, for some 0 < t (2.18)
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The above hypotheses are equivalent to

H00 :


F (t) = p

∫ t
0
xdF (x) = GLCp

For the discrete X, we use h1(X), and h2(X) to generalize the hypotheses.


h1(X, t) = h1(X) = I(X < t)

h2(X, t) = h2(X) = XI(0 ≤ X ≤ t)

Let v1, v2, · · · , vn be the probabilities of X1, X2, · · · , Xn, respectively, from dis-

tribution function F̂ (vi = F̂ (Xi) − F̂ (X−i )); vi > 0 and
∑n

i=1 vi = 1. The above

hypotheses can be written as


∑n

i=1(h1(xi)− p)vi = 0

∑n
i=1(h2(xi)−GLCp)vi = 0

We can express the simultaneous equalities of the hypotheses using vectors as

follows:
n∑
i=1

(h(xi)− θ)vi = 0 (2.19)

where (h(X))T = (h1(X), h2(X)), θT = (p, GLCp), and 0T = (0, 0). (t, GLCp) are

the parameters. t is contained in h1(x) and h2(x).

The empirical likelihood ratio function of the hypotheses test on the generalized
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Lorenz is defined as

R(F̂ ) =
L(F̂ )

L(F̂n)
= nn

n∏
i=1

vi (2.20)

The logarithm of the empirical likelihood ratio under constrains is

logR(t0, GLCp0) = sup
vi

{
n∑
i=1

log nvi: vi > 0,
n∑
i=1

vi = 1,
n∑
i=1

(h(xi)− θ)vi = 0}

(2.21)

Follow the same derivation steps as from (2.9) to (2.15), we have

vi =
1

n (1 + λT (h(xi)− θ))
(2.22)

and

λ ≈ h̄(X)− θ
n−1

∑n
i=1(h(xi)− θ)(h(xi)− θ)T

(2.23)

Theorem 2.1.b Suppose X1, X2, · · · , Xn be a random sample from the distribu-

tion F with E(X2) < ∞, furthermore, the density function f of F is positive and

continuous at t (the p quantile), 0 < p < 1. Under the hypotheses (2.18), the limiting

distribution of −2 logR(t0, GLCp0) is a chi-square with degree of freedom 2.

The proof of Theorem 2.1.b is the same as the proof of Theorem 2.1.a.

Hypothesis Test on the Lorenz Cure

The hypothesis test on the Lorenz Curve is accomplished in two steps as well. Here

we discuss the first step.

Based on the definition in (2.4), testing the hypothesis LC(p) = LCp is equivalent
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to testing GLC(p) = µLCp. The hypotheses about the Lorenz Curve LC(p) and t

(the p quantile) are expressed as

H00 :


F−1(p) = t∫ t

0

xdF (x) = µLCp

, for some 0 < t (2.24)

The above hypotheses are equivalent to

H00 :


F (t) = p

∫ t
0
xdF (x)− LCp

∫∞
0
xdF (x) = 0

For the discrete X, we use r1(X), and r2(X) to generalize the hypotheses.


r1(X, t) = r1(X) = I(X < t)

r2(X, t) = r2(X) = XI(0 ≤ X ≤ t)− LCpX

Let v1, v2, · · · , vn be the probabilities of X1, X2, · · · , Xn, respectively, from dis-

tribution function F̂ (vi = F̂ (Xi) − F̂ (X−i )); vi > 0 and
∑n

i=1 vi = 1. The above

hypotheses can be written as


∑n

i=1(r1(xi)− p)vi = 0

∑n
i=1 r2(xi)vi = 0

We can express the simultaneous equalities of the hypotheses using vectors as
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follows:
n∑
i=1

(r(xi)− θ)vi = 0 (2.25)

where (r(X))T = (r1(X), r2(X)), θT = (p, 0) , and 0T = (0, 0). (t, LCp) are the

parameters. t is contained in r1(x) and r2(x), and LCp is contained in r2(x).

The logarithm of the empirical likelihood ratio test on the Lorenz curve under

constrains is

logR(t0, LCp0) = sup
vi

{
n∑
i=1

log nvi: vi > 0,
n∑
i=1

vi = 1,
n∑
i=1

(r(xi)− θ)vi = 0} (2.26)

Follow the same derivation steps as from (2.9) to (2.15), we have

vi =
1

n (1 + λT (r(xi)− θ))
(2.27)

and

λ ≈ r̄(X)− θ
n−1

∑n
i=1(r(xi)− θ)(r(xi)− θ)T

(2.28)

Theorem 2.1.c Suppose X1, X2, · · · , Xn be a random sample from the distribu-

tion F with E(X2) < ∞, furthermore, the density function f of F is positive and

continuous at t (the p quantile), 0 < p < 1. Under the hypotheses (2.24), the limiting

distribution of −2 logR(t0, LCp0) is a chi-square with degree of freedom 2.

The proof of Theorem 2.1.c is the same as the proof of Theorem 2.1.a if g(xi)− θ

is replaced by r(xi)− θ.
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Profiled Empirical Likelihood Ratio Test

In reality, we are just interested in the inference on µT , GLCp or LC(p) and not

the nuisance parameter(s), which can be accomplished by profile out the nuisance

parameters t1 and t2 in the empirical likelihood function (2.8), where t1 and t2 are

included in the function g(·) or profile out the nuisance parameter t in the empirical

likelihood function (2.21) for GLCp or (2.26) for LC(p), where t is included in function

h(·) or r(·).

Profile likelihood statistic has been used in parametric likelihood ratio test (See

review in Chapter 1).

We apply the profile likelihood statistic method to (2.8), (2.21), or (2.26) and we

have

−2 logR(θ) = −2 max
t

logR(t, θ) = min
t

(−2 logR(t, θ)) = −2 logR(t̂, θ) (2.29)

where t̂ = (t̂1, t̂2) maximizes logR(θ) = logR(t, µT0) with respect to t = (t1, t2) for

the hypotheses test of the trimmed mean and µ = µT0 ; t̂ = t̂ maximizes logR(θ) =

logR(t, GLCp0), or logR(t, LCp) with respect to t for the hypotheses test of the gen-

eralized Lorenz Curve or Lorenz Curve and µ = GLCp0 , or LCp.

Theorem 2.2 Under the same condition as Theorem 2.1.a, Theorem 2.1.b, and

Theorem 2.1.c, the limiting distribution of the above defined profile empirical likeli-

hood ratio test −2 logR(θ0) is a chi-square with degree of freedom 1. Here θ0 = µT 0

or θ0 = GLCp0 or θ0 = LCp.

To prove Theorem 2.2, we start from the following Lemma.
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Lemma 2.2.1. Suppose θ̂n = (θ̂1n, θ̂2n, ... , θ̂mn) are n sequences of m × 1 random

vectors. Assume
√
n(θ̂n − µ0) converges to a multivariate normal distribution with

mean 0 and a m ×m variance Σ, where µ0 = (µ10, µ20, ... , µm0). From the above,

we have

Q(µ0) = n(θ̂n − µ0)Σ−1(θ̂n − µ0)T −→ χ2
(m)

Then,

min
µ10 , µ20 , ..., µp0

Q(µ10, µ20, ... , µm0) −→ χ2
(m−p) for p < m

Proof. To simplify the symbols, we let A = Σ−1 and A =

A11 A12

AT12 A22

, here A11 is

a p × p matrix; A12 is a p × (m − p) matrix; A22 is a (m − p) × (m − p) matrix.

Let X1 = (θ̂1n − µ10 , θ̂2n − µ20 , ..., θ̂pn − µp0) and X2 = (θ̂(p+1)n
− µ(p+1)0

, θ̂(p+2)n
−

µ(p+2)0
, ..., θ̂mn − µm0). Then,

Q = n(X1, X2)

A11 A12

AT12 A22


XT

1

XT
2


= n(X1A11X

T
1 +X2A

T
12X

T
1 +X1A12X

T
2 +X2A22X

T
2 )

(2.30)

To minimize Q over µ10 , µ20 , ..., µp0 , we take partial derivatives of Q with regard

to µ10 , µ20 , ..., µp0 and let the partial derivatives equal to 0 (a vector of length p),

then

A11X
T
1 + A12X

T
2 = 0
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Solve this linear equations, we have

XT
1 = −A−1

11 A12X
T
2 (2.31)

Substitute equation 2.31 to equation 2.30,

min
µ10 , µ20 , ..., µp0

Q = n(X2A
T
12A

−1
11 A11A

−1
11 A12X

T
2 −X2A

T
12A

−1
11 A12X

T
2

−X2A
T
12A

−1
11 A12X

T
2 +X2A22X

T
2 )

= nX2(A22 − AT12A
−1
11 A12)XT

2

(2.32)

The variance matrix Σ = A−1 =

B11 B12

BT
12 B22

, B22 is the variance matrix of
√
nX2

and B22 = (A22 − AT12A
−1
11 A12)−1.

Var(

√
A22 − AT12A

−1
11 A12

√
nX2) = (A22 − AT12A

−1
11 A12)Var(

√
nX2) = Im−p

Therefore, we prove that

min
µ10 , µ20 , ..., µp0

Q(µ10 , µ20 , ... , µm0) −→ χ2
(m−p) for p < m

From the proof of Theorem 2.1.a, we know that −2 log(θ0) in (2.8) can be written

as 2.17, from which and the Lemma 2.2.1, we prove Theorem 2.2.

It follows from Theorem 2.2 that for any 0 < α < 1 an empirical likelihood
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confidence interval for θ = µT or θ = GLCp0 or θ = LCp with an asymptotic coverage

probability 1 − α is given by {θ| − 2 logR(θ) < c1−α} where c1−α is defined such as

P (χ2
1 > c1−α) = α.

2.3 Simulation: Chi Square QQ Plots

Section 2.2 indicates that the empirical likelihood ratio test on the trimmed mean,

the generalized Lorenz Curve, or Lorenz Curve are achieved in two steps. First, we

compute the test statistics of the hypothesis (2.5), (2.18) or (2.24) based on equations

2.12 and 2.15. Here we use the function ’el.test’ in the R package of ’emplik’ by Zhou

and Yang (2014) to compute the test statistics of the hypothesis (2.5), (2.18) or (2.24).

At this step, we apply the smoothing function discussed in Chapter 4 to the indicators

in the test statistics. We will list the smoothing parameters used in the simulation

studies. At the second step, we profile the t in the empirical likelihood ratio test by

minimizing the test statistics obtained from Step 1 among a set of quantiles in the

samples. The detail algorithm and R codes are given in Chapter 4. The R codes for

the QQ plots are provided in the Appendix.

Simulation results in Figures 2.1, 2.2, and 2.3 have shown that the test statis-

tics from Step 1 is a Chi-square with degree of freedom 3 for the trimmed mean

under the null hypotheses and a Chi-square with degree of freedom 2 for the gen-

eralized Lorenz Cure under the null hypotheses and for the Lorenz Cure under the

null hypotheses. The profiled empirical likelihood ratio test for the trimmed mean,

the generalized Lorenz Curve, and Lorenz Curve is a chi-square distribution with one

degree of freedom when the null hypothesis is true. The smoothing parameter used
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in this simulation is equal to 1/n, n is the sample size.

Figure 2.1: Chi Square QQ Plots for the Empirical Likelihood Test on trimmed means

2.4 Simulation: Confidence Intervals and Coverage Probabilities

To evaluate the performance of our empirical likelihood method for trimmed mean

inference, we conducted a simulation study to compare the coverage probability and

length of confidence interval of estimated population means from our empirical like-

lihood method (EL) and the ones from the trimmed t and Winsorized t that SAS

Institute Inc. (2010) uses. The simulation samples are generated from logistic dis-

tribution with location parameter 0 and scale parameter 1. The logistic distribution

is symmetric and has longer tails than normal distribution, which is the appropriate

distribution for the trimmed t and Winsorized t tests. We generated 1000 samples

at each sample size listed on the Table 2.1 in R and calculated the mean coverage

probability and average length of 95% confidence intervals of the estimated popula-
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Figure 2.2: Chi Square QQ Plots for the Empirical Likelihood Test on generalized
Lorenz Curve

tion means by our empirical likelihood method in R. The trimmings are at p1 = 0.1

and p1 = 0.9. The R codes of this simulation study are provided in the appendix.

The 1000 random samples at each sample size generated in R and used by the EL

method were then read into SAS. From these same random samples EL method used

in R, the mean coverage probability and average length of 95% confidence intervals

of the estimated population means by trimmed t and Winsorized t are calculated by

proc univariate in SAS at the same trimmings. The SAS codes are provided in the

appendix as well. The results in Table 2.1 shows that the lengths of confidence inter-

val of EL method are slightly shorter than the ones from trimmed t and Winsorized

t and the coverage probabilities of these three methods are about the same. The

smoothing parameter used in this simulation study equals to n−1/2, n is the sample

size.
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Figure 2.3: Chi Square QQ Plots for the Empirical Likelihood Test on Lorenz Curve

Table 2.1: Coverage Probability and Average Length of 95% Confidence Intervals of
estimated population means by empirical likelihood trimmed mean (EL), trimmed t,
and Winsorized t methods

Sample size Method Coverage Probability Average Length
40 trimmed t 0.947 1.111

Winsorized t 0.941 1.115
EL 0.940 1.093

60 trimmed t 0.948 0.899
Winsorized t 0.939 0.901
EL 0.945 0.894

80 trimmed t 0.959 0.774
Winsorized t 0.953 0.775
EL 0.958 0.770

2.5 Lorenz Curves Based on Real Data

We applied our empirical likelihood inference method on Lorenz Curves to the total

household income (variable ‘HHINCOME’) from IPUMS-CPS, University of Min-

nesota, www.ipums.org. IPUMS-CPS includes data of the Current Population Sur-
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vey (CPS) since 1962. HHINCOME is from the the Annual Social and Economic

Supplement (ASEC) survey, which reports the total money income during the previ-

ous calendar year of all adult household members. We selected HHINCOME in 2015

from the states of Indiana and Kentucky in our analyses. Even though our inference

method on Lorenz Curves could include negative income, we excluded one record with

HHINCOME = -9999 from Indiana since this negative number is most likely a coded

value. The final data included in the analysis has 2053 records with the minimum 0

dollar and the maximum $2,204,000; of which 1140 records are from Indiana and 913

records are from Kentucky. We calculated the Lorenz Curves and 95% confidence

intervals at every deciles of samples in each state from the low income to high income

using our empirical likelihood method. By connecting all the estimated points of each

state, we plotted the Lorenz Curves for each state as shown in Figure 2.4. The error

bar at each point of the plots is the 95% confidence interval of the estimate on each

point. The Lorenz Curve of Indiana is completely above the one of Kentucky, which

indicates that the equality of Indiana is better than that of Kentucky. However, we

can not know if the difference on Lorenz curves between Indiana and Kentucky is sta-

tistically significant since we did the statistical inference neither on the whole Lorenz

Curve nor on the Gini index.

2.6 Discussion and Conclusions

Empirical likelihood method for the inference on the trimmed means, generalized

Lorenz Curves, and Lorenz Curves does not need to estimate the variance of the

estimate since the limiting distribution of test statistics is a chi-square with one
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Figure 2.4: Lorenz Curves for States Indiana and Kentucky Based on Household
Incomes from IPUMS-CPS, University of Minnesota, www.ipums.org. The error bar
at each point is the 95% confidence interval by empirical likelihood method at each
estimated point

degree of freedom under the null hypotheses. Empirical likelihood method for the

trimmed mean inference provides comparable inferential results on the population

mean estimate with the trimmed t and Winsorized t methods if the samples are

from a symmetric distribution with longer tails than normal distribution. Empirical

likelihood method on Lorenz Curves provides the inference on the selected points on

Lorenz Curves. However, more work need to be done in order that our empirical

likelihood method on Lorenz Curves is able to calculate the confidence bands of

Lorenz Curves and provide inference on Gini index.

Copyright c© Yumin Zhao, 2016.
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Chapter 3 Statistical Inference on the Partial Area Under ROC Curves

by Empirical Likelihood Method

3.1 Introduction

The purpose of diagnostic tests is to confirm the presence of disease and to deny the

possibility of the disease in healthy subjects. Ideally such tests correctly identify all

patients with the disease (True Positive), and similarly correctly identify all patients

who are disease free (True Negative). In other words, a perfect test is never positive in

a patient who is disease free (False Positive) and is never negative in a patient who is

in fact diseased (False Negative) (see Hajian-Tilaki (2013)). However, a perfect test is

hardly found in reality. The accuracy of a diagnostic test with dichotomous outcome

(positive/negative test results) can be measured by sensitivity and specificity, which

are defined as the probabilities of the test correctly identifying the diseased and

non-diseased subjects, respectively. The sensitivity and specificity can be computed

across all the possible threshold values of the test results reported on continuous

scale. The plot of the sensitivity or the true positive rate (TPR) versus 1-Specificity

or the false positive rate (FPR) as the threshold value of the test results is varied is

called receiver operating characteristic (ROC) curve (Hajian-Tilaki (2013) and Zweig

and Campbell (1993)). The ROC curve was first developed during World War II by

electrical engineers and radar engineers for detecting enemy objects and was soon

found other uses in psychology, medicine, radiology, biometrics, and is increasingly
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applied in machine learning and data mining research.

Let X and Y , with respective distribution functions F and G, be the results of

a continuous-scale test for a non-diseased and a diseased subject, respectively. For a

given cut-off point c, without loss of generality we assume that a test value greater

than c is indicative of the positive test result. Sensitivity or true positive rate is

defined as TPR = p(Y > c) = 1−G(c). 1-Specificity or false positive rate is defined

as FPR = p(X > c) = 1− F (c). The ROC curve {1− F (c), 1−G(c)} at FPR = r

can be express as ROC(r) = 1−G(F−1(1− r)), where r = 1− F (c).

The area under a ROC curve (AUC) represents the overall accuracy of a diagnostic

test, which can be interpreted as the probability that in a randomly selected pair of

diseased and non-diseased subjects, the test value of the diseased subject is higher

than that of the non-diseased subject (Hajian-Tilaki (2013) and Hanley and McNeil

(1982)). A perfect test has AUC equal to 1.0, which has an ROC curve that passes

through the upper left corner where the sensitivity or TPR is 1.0 and the false positive

rate is 0; A test not better than a random guess has AUC equal to 0.5 with a 45o

diagonal line from the lower left corner to the upper right corner as the ROC curve.

A test with an AUC value approaching 1.0 indicates a high sensitivity and specificity.

The AUC of the results X and Y of the above non-diseased and diseased subjects can

be represented by AUC =
∫

(1−G(x))dF (x) (Hanley and McNeil (1982)). However,

AUC of a ROC as a measure of the overall performance of a diagnostic test may not

be informative, or even misleading. For example, two diagnostic tests may have the

equal AUC but not identical ROCs when the two ROC curves cross (For example

ROC curves A and B in Figure 3.1). One test may be better than the other in the
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Figure 3.1: Illustration of ROC curves A and B with equal AUCs and unequal pAUCs
between p1 = 0.5 and p2 = 0.7

high FPR range; while the other test may be better in the low FPR range. When

screening for a high risk disease, good sensitivity is expected even if the FPR is

high; however, if screening for a low risk disease with risky subsequent confirmatory

tests and/or treatments, a high specificity or low FPR is required. To evaluate two

diagnostic tests on a portion of ROC curves, the partial AUC is desirable, which

is defined as the area under a ROC curve between two FPRs (see McClish (1989)).

Figure 3.1 shows partial AUCs under ROC curves A and B between FPR = 0.5 and

FPR = 0.7.
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The partial AUC of the results X and Y of the above non-diseased and diseased

subjects at FPR = (p1, p2), 0 < p1 < p2 < 1, is calculated as

pAUC =

∫ ξ(p1)

ξ(p2)

(1−G(x))dF (x) (3.1)

where ξ(p1) = F−1(1 − p1) = inf{x : F (x) ≥ 1 − p1}; ξ(p2) = F−1(1 − p2) = inf{x :

F (x) ≥ 1− p2}.

If the partial AUC is at FPR = [0, p), 0 < p < 1, then

pAUC =

∫ ∞
ξ(p)

(1−G(x))dF (x) (3.1.a)

where ξ(p) = F−1(1− p) = inf{x : F (x) ≥ 1− p}.

If the partial AUC is at FPR = (p, 1], 0 < p < 1, then

pAUC =

∫ ξ(p)

−∞
(1−G(x))dF (x) (3.1.b)

where ξ(p) = F−1(1− p) = inf{x : F (x) ≥ 1− p}.

The partial AUC of ROC curves has been studied by different researchers. McClish

(1989) first proposed the pAUC assuming binormal data. Y. Jiang (1996) derived

the mathematical formation of the pAUC from the conventional binormal model only

in a high-sensitivity region. Dodd and Pepe (2003) proposed the non-parametric
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estimator for the pAUC.

p̂AUC =
1

mn

m∑
i=1

n∑
j=1

I(yj > xi)I(xi ∈ (t1,t2)) (3.2)

where X1, X2, · · · , Xm are the test results of non-diseased samples and Y1, Y2, · · · , Yn

are the test results of the diseased samples. If the quantiles (t1,t2) will not be known,

Dodd and Pepe (2003) suggested that empirical quantiles estimates were substituted.

t1 = F̂−1(1 − p2) = sup{t : F̂ (t) < 1 − p2}; t2 = F̂−1(1 − p1) = sup{t : F̂ (t) <

1 − p1}. If the empirical quantile value does not coincide precisely with the desired

value, as may happen with small sample sizes, they use linearly interpolated values.

They showed the estimator is consistent and asymptotically normal and recommended

using the bootstrap to obtain variance estimates. Qin et al. (2011) applied a pseudo

empirical likelihood ratio method to the above pAUC estimator. Instead of using

the two samples of partial AUC (both diseased and non-diseased samples), they

expressed the empirical likelihood test of partial AUC using only the non-diseased

sample. Additionally, they directly used sample quantiles of non-diseased sample in

the empirical likelihood test. They concluded that the limiting distribution of the

test statistic was a scaled chi-square under the null hypothesis. They proposed a

very complex bootstrap procedure to estimate the scale constant. Jihnhee Yu (2011)

formulated a generalized empirical likelihood test for AUC utilizing both samples,

where they incorporated the variance of AUC estimate to the empirical likelihood test

statistic. Yang et al. (2016) recently published their study on pAUC at [0, p) by using

normal approximation method, jackknife method and jackknife empirical likelihood
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(JEL) method. Yang et al. (2016) proposed very complicate variance estimates for

normal approximation method and the jackknife method and they built their JEL

method upon the asymptotic normality and variance consistency of jackknife pseudo-

samples.

In our study, we apply a different empirical likelihood ratio method to the infer-

ence of the above pAUC estimator. The empirical likelihood ratio method has been

applied in many situations (Owen (1988)). Compared to parametric method, empir-

ical likelihood ratio method is not affected by the original distributions of the data.

Thus, empirical likelihood ratio method does not need to be based on any assump-

tions of the original distributions. We do not need to formulate the variance since

the limiting distribution of our empirical likelihood ratio test of the pAUC estimate

under the null hypothesis is a regular chi-square.

The rest of this chapter is organized as follows: in Section 3.2 we define the empir-

ical likelihood for the pAUC and show that the limiting distribution of the empirical

likelihood ratio test statistics for the pAUC is a chi-square distribution under the null

hypothesis. In Section 3.3, we show Chi-square QQ plots of the empirical likelihood

ratio test of pAUC from different original distributions. In Section 3.4, we compare

the coverage probability and average length of 95% confidence intervals of pAUC from

different inference methods. In Section 3.5, we finalize this chapter with discussions

and conclusions. The computational algorithm and R codes applying the algorithm

will be included in Chapter 4. The simulation R codes are listed in the appendix.
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3.2 The Empirical Likelihood Ratio Test for pAUC and Its Limiting Dis-

tribution

Suppose we have two independent samples; xi, x2, · · · , xm from the test results of non-

diseased subjects with distribution F; yi, y2, · · · , yn from the test results of diseased

subjects with distribution G.

Hypothesis Test for pAUC at FPR = (p1,p2), 0 < p1 < p2 < 1

Based on the definition of pAUC (equation (3.1)) in Section 3.1, we will first simul-

taneously test

H00 :



F−1(1− p2) = t1

F−1(1− p1) = t2∫ t2

t1

(1−G(x))dF (x) = pAUC

, for some t1 < t2 (3.3)

The above hypotheses are equivalent to

H00 :



1− F (t1) = p2

1− F (t2) = p1

∫ t2
t1

(1−G(x))dF (x) = pAUC

For the discrete X and Y , we use g1(X), g2(X), and g3(X, Y ) to generalize the
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hypotheses.



g1(X, t1) = g1(X) = I(X > t1)

g2(X, t2) = g2(X) = I(X > t2)

g3(X, Y, t1, t2) = g3(X, Y ) = I(Y > X)I(t1 ≤ X ≤ t2)

(3.4)

Let u1, u2, · · · , um be the probabilities at X1, X2, · · · , Xm, respectively, from dis-

tribution function F ∗ (ui = F ∗(Xi) − F ∗(X−i )); ui > 0 and
∑m

i=1 ui = 1. Let

v1, v2, · · · , vn be the probabilities at Y1, Y2, · · · , Yn, respectively, from distribution

function G∗ (vj = G∗(yj)−G∗(y−j )); vj > 0 and
∑n

j=1 vj = 1. The above hypotheses

can be written as



∑m
i=1(g1(xi)− p2)ui = 0

∑m
i=1(g2(xi)− p1)ui = 0

∑m
i=1

∑n
j=1(g3(xi, yj)− pAUC)uivj = 0

We can express the simultaneous equalities of the hypotheses using vector notation

as follows:
m∑
i=1

n∑
j=1

(g(xi, yj)− θ)uivj = 0 (3.5)

where (g(X, Y ))T = (g1(X), g2(X), g3(X, Y )) , θT = (p2, p1, pAUC), and 0T =

(0, 0, 0). (t1, t2, pAUC) are the true parameters and t1 and t2 are contained in the

function g(X, Y ).

The empirical likelihood of the non-diseased sample X and diseased sample Y
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with the above constraints is expressed as

L(t1, t2, pAUC) = sup
ui,vj

{
m∏
i=1

n∏
j=1

uivj: ui > 0, vj > 0,

m∑
i=1

ui = 1,
n∑
j=1

vj = 1,
m∑
i=1

n∑
j=1

(g(xi, yj)− θ)uivj = 0}
(3.6)

It is well known that the unconstrained empirical likelihood is maximized at ui =

1
m

, i = 1, 2, · · · ,m and vj = 1
n
, j = 1, 2, · · · , n. Thus the logarithm of the empirical

likelihood ratio function of the above hypotheses is then written as

logR(t1, t2, pAUC) = log
L(θ)∏m

i=1
1
m

∏n
j=1

1
n

= sup
ui,vj

{
m∑
i=1

logmui +
n∑
j=1

log nvj:

ui > 0, vj > 0,
m∑
i=1

ui = 1,
n∑
j=1

vj = 1,
m∑
i=1

n∑
j=1

(g(xi, yj)− θ)uivj = 0}
(3.7)

To calculate the sup in (3.7), we use Lagrangian Multiplier as usual (see Owen

(1988) and Zhou (2016)). The Lagrangian function for constrained logarithm of the

empirical likelihood ratio function is

G(ui, vj) =
m∑
i=1

log ui +
n∑
j=1

log vj + γ

(
m∑
i=1

ui − 1

)
+

η

(
n∑
j=1

vj − 1

)
− λT

m∑
i=1

n∑
j=1

(g(xi, yj)− θ)uivj

By Lagrangian multiplier method, the maximum of the constrained logarithm of
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the empirical likelihood ratio function (3.7) occurs at

ui =
1

m+ λT
∑n

j=1(g(xi, yj)− θ)vj

vj =
1

n+ λT
∑m

i=1(g(xi, yj)− θ)ui

(3.8)

These two equations do not immediately provide a solution for the probabilities

ui and vj, but as we shall see in Chapter 4, they lead to an algorithm that can be

used to find the solutions.

We now introduce some more notation.

Let

A(X, t1, t2) = E[I[Y > X]I[t1 < X < t2]|X] = I[t1 < X < t2](1−G(X))

and

B(Y, t1, t2) = E[I[Y > X]I[t1 < X < t2]|Y ]

= (F (t2)− F (t1))I[t2 < Y ] + (F (Y )− F (t1))I[t1 < Y < t2]

Theorem 3.1 Suppose that Xi and Yj are independent random variables with

continuous distribution functions F and G.

Furthermore suppose the following conditions hold

(i) 0 < p1 < p2 < 1,

(ii) ∞ > V arA(X) > 0 and ∞ > V arB(Y ) > 0,

(iii) the density function f of F is positive and continuous at t1 and t2.
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If 0 < ρ = limm,n→∞m/n < ∞, then the limiting distribution of −2 logR(θ0) in

(3.7) is a chi-square with degree of freedom 3 when the null hypotheses (3.3) is true,

that is, when t1 = F−1(1− p2), t2 = F−1(1− p1) and pAUC = pAUC0(p1, p2).

In fact we have

−2 logR(µ0) = (n+m)(U − θ0)Σ−1(U − θ0)> + op(1) (3.9)

where

U =

(
1

m

m∑
i=1

g1(Xi, t1),
1

m

m∑
i=1

g2(Xi, t2),
1

m

m∑
i=1

A(Xi, t1, t2) +
1

n

n∑
j=1

B(Yj, t1, t2)

)
,

θ0 = (1− p2, 1− p1, pAUC), and µ0 = (t10, t20, pAUC).

The above condition (i) assures that the pAUC is the internal portion of the ROC

curve between p1 and p2. Condition (ii) ascertains that the variance of pAUC estimate

is finite and larger than zero. Here the variance structure is the consistent estimate

of the variance for the U-statistic provided by Sen (1967). Condition (iii) indicates

that t1 and t2 corresponding to 1−p2 and 1−p1 quantiles of the non-diseased sample

exist.

For the proof of Theorem 3.1, please refer to Owen (2001), where Owen proved

that the empirical likelihood test on two independent samples with one constrain esti-

mation equation has an asymptotic χ2
(1) and Owen also mentioned that the empirical

likelihood test on two independent samples with k constrains has an asymptotic χ2
(k).
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It follows from Theorem 3.1 that for any 0 < α < 1 an empirical likelihood con-

fidence region for µ = (t1, t2, pAUC(p1, p2)) with an asymptotic coverage probability

1−α is given by {µ|− 2 logR(µ) < c1−α} where c1−α is defined as P (χ2
3 > c1−α) = α.

Hypothesis Test for pAUC at FPR = (0,p) or FPR = (p,1), 0 < p < 1

For the partial AUC at [0, p) or (p, 1] as calculated in equations (3.1.a) or (3.1.b)

the hypothesis is respectively formulated as

H00 :


1− F (t) = p∫ ∞
t

(1−G(x))dF (x) = pAUC

(3.3.a)

or

H00 :


1− F (t) = p∫ t

−∞
(1−G(x))dF (x) = pAUC

(3.3.b)

The discrete version of the above hypothesis on the parameters are


g(X, t) = g(X) = I(X > t)

g4(X, Y, t) = g4(X, Y ) = I(Y > X)I(X ≥ t)

or 
g(X, t) = g(X) = I(X > t)

g5(X, Y, t) = g5(X, Y ) = I(Y > X)I(X ≤ t)

The simultaneous equalities of the hypotheses using vector notation are expressed
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as
m∑
i=1

n∑
j=1

(g(xi, yj)− θ)uivj = 0

where (g(X, Y ))T = (g(X), g4(X, Y )) or (g(X, Y ))T = (g(X), g5(X, Y )), θT =

(p, pAUC), and 0T = (0, 0). (t, pAUC) are the true parameters and t is contained

in the function g(X, Y ).

With the above g(X, Y ) and θ, the constrained logarithm (logR(t, pAUC)) of the

empirical likelihood ratio function of hypothesis (3.3.a) or (3.3.b) has the same form

as the right hand side of function (3.7) and the equations of ui, vj in (3.8) maximize

this constrained logarithm of the empirical likelihood ratio function of hypothesis

(3.3.a) or (3.3.b).

Let A1(X, t) = I[X > t](1 − G(X)) and B1(Y, t) = (F (Y ) − F (t))I[Y > t] or

Let A2(X, t) = I[X < t](1−G(X)) and B2(Y, t) = F (t)I[Y > t] + F (Y )I[Y ≤ t] for

hypothesis (3.3.a) or (3.3.b), respectively.

Theorem 3.1.a Suppose that Xi and Yj are independent random variables with

continuous distribution functions F and G.

Furthermore suppose the following conditions hold

(i) 0 < p < 1,

(ii) ∞ > V arA1(X) > 0 and ∞ > V arB1(Y ) > 0,

(iii) the density function f of F is positive and continuous at t.

If 0 < ρ = limm,n→∞m/n < ∞, then the limiting distribution of −2 logR(θ0) in

(3.7) is a chi-square with degree of freedom 2 when the null hypotheses (3.3.a) is true,

that is, when t = F−1(1− p) and pAUC = pAUC0[0, p).
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Theorem 3.1.b Suppose that Xi and Yj are independent random variables with

continuous distribution functions F and G.

Furthermore suppose the following conditions hold

(i) 0 < p < 1,

(ii) ∞ > V arA2(X) > 0 and ∞ > V arB2(Y ) > 0,

(iii) the density function f of F is positive and continuous at t.

If 0 < ρ = limm,n→∞m/n < ∞, then the limiting distribution of −2 logR(θ0) in

(3.7) is a chi-square with degree of freedom 2 when the null hypotheses (3.3.b) is true,

that is, when t = F−1(1− p) and pAUC = pAUC0(p, 1].

From Theorem 3.1.a and Theorem 3.1.b, we still have expression (3.9)

−2 logR(µ0) = (n+m)(U − θ0)Σ−1(U − θ0)> + op(1) (3.9)

where

U =

(
1

m

m∑
i=1

g(Xi, t),
1

m

m∑
i=1

A1(Xi, t) +
1

n

n∑
j=1

B1(Yj, t)

)
,

θ0 = (p, pAUC[0, p)), and µ0 = (t, pAUC[0, p)) for Theorem 3.1.a.

U =

(
1

m

m∑
i=1

g(Xi, t),
1

m

m∑
i=1

A2(Xi, t) +
1

n

n∑
j=1

B2(Yj, t)

)
,

θ0 = (p, pAUC(p, 1]), and µ0 = (t, pAUC(p, 1]) for Theorem 3.1.b.

It follows from Theorem 3.1.a or Theorem 3.1.b that for any 0 < α < 1 an em-

pirical likelihood confidence region for µ = (t, pAUC0[0, p)) or µ = (t, pAUC0(p, 1])

with an asymptotic coverage probability 1 − α is given by {µ| − 2 logR(µ) < c1−α}
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where c1−α is defined as P (χ2
2 > c1−α) = α.

Profile Empirical Likelihood Function

In reality, we are just interested in the inference on pAUC alone, which can be

accomplished by profile out the nuisance parameter t1 and t2 (or t) from the above

empirical likelihood ratio functions (3.7). t1 and t2 (or t) are contained in the function

g(·) in (3.7). In other words, t1 and t2 (or t) become the nuisance parameters and

need to be profiled out.

Profile likelihood statistic has been used in parametric likelihood ratio test (See

the review in Chapter 1).

We apply the profile likelihood statistic method to (3.7), and we have

−2 logR(pAUC) = −2 max
t

logR(t, pAUC)

= min
t

(−2 logR(t, pAUC))

= −2 logR(t̂, pAUC)

(3.10)

Theorem 3.2 Under the same condition as Theorem 3.1, the limiting distribution

of the above defined profile empirical likelihood ratio test −2 logR(pAUC) is a chi-

square with one degree of freedom when the null hypotheses H0 : pAUC = pAUC0 is

true.

Proof: We minimize expression (3.9) with respect to the two nuisance parameters

t1 and t2 or one nuisance parameter t and use the Lemma 2.2.1 in Chapter 2 to arrive

that the likelihood ratio test (3.10) is chi square with one degree of freedom under

the null hypothesis.
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It follows from Theorem 3.2 that for any 0 < α < 1 an empirical likelihood

confidence interval for θ = pAUC0(p1, p2) or θ = pAUC0[0, p) or θ = (pAUC0(p, 1]

with an asymptotic coverage probability 1 − α is given by {θ| − 2 logR(θ) < c1−α}

where c1−α is defined as P (χ2
1 > c1−α) = α.

3.3 Simulation: Chi square QQ plots

QQ plots in Figure 3.2 show that the test statistics for hypotheses in equation (3.3) is

a chi-square distribution with three degrees of freedom when the null hypotheses are

true; the test statistics for hypotheses in equations (3.3.a) or (3.3.b) is a chi-square

distribution with two degrees of freedom when the null hypotheses are true. The

smoothing parameter used in these simulations is m−1/2.

Figure 3.3 shows the QQ plots of the profiled test statistics of the hypotheses

tests in Figure 3.2, which indicates that the test statistics of the profiled empirical

likelihood ratio test has a chi-square distribution with one degree of freedom when

the null hypothesis is true.

3.4 Simulation: Confidence Intervals and Coverage Probabilities

Qin et al. (2011) did two simulation studies of pAUC inference. In the first simulation

study, they chose standard normal distribution for the non-diseased population and

N(2, 2) for the diseased population. In the second simulation study, they chose stan-

dard exponential distribution (with rate=1) for the non-diseased population and a

exponential distribution with rate=0.25 for the diseased population. In both studies,

they generate 1,000 random samples of size m from the non-diseased population and
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Figure 3.2: Chi-square QQ plots for empirical likelihood tests on hypotheses in equa-
tions (3.3), (3.3.a) and (3.3.b)

of size n from the diseased population at several combinations of sample sizes (m,n).

Based on the two simulation studies, Qin et al. (2011) recommended four methods

(NA-QJZ, BII, HBELI and HBELII) for the inference of pAUC after they compared

the performance of 95% confidence intervals of several different inference methods for

the partial AUC at (p1, p2) = (0, 0.1), (0, 0.7), (0.05, 0.5). Here NA-QJZ is a normal
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Figure 3.3: Chi-square QQ plots for profiled empirical likelihood tests

approximation-based confidence interval; BII is a bootstrap-based interval; HBELI

and HBELII are hybrid bootstrap and empirical likelihood (HBEL) confidence inter-

vals. HBELI applied bootstrap to estimate the variance of pAUC estimate. HBELII

is a bootstrap interval based on the empirical likelihood test statistics they formu-

lated. To compare with the methods Qin et al. (2011) recommended, we perform the

same simulation studies using the ELseesaw method. Tables 3.1 and 3.2 show the
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comparisons of ELseesaw method with the four methods (NA-QJZ, BII, HBELI and

HBELII). ELseesaw method achieves the shortest confidence intervals in all the sim-

ulations of exponential samples of different sample sizes and different partial AUC at

(p1, p2). ELseesaw method obtains comparable confidence intervals with NA-QJZ for

the normal samples, which are shorter than the confidence intervals from BII, HBELI

and HBELII. In most cases, coverage probabilities of ELseesaw method are accurate

except at (m,n) = (30, 30) and (p1, p2) = (0, 0.1) the coverage probabilities are

lower than 95% for both normal samples and exponential samples. The smoothing

parameter used in these simulations is m−1.

3.5 Discussion and Conclusion

Tables 3.1 and 3.2 show that Elseesaw method generates relatively more accurate

coverage probabilities and shorter confidence intervals at all combinations of different

portions of pAUC and sample sizes listed on Tables 3.1 and 3.2 except pAUC of

(0, 0.1) at sample sizes (30, 30) compared to the methods suggested by Qin et al.

(2011). The computation speed of ELseesaw method is adequate. On average it

takes a laptop computer with Intel(R) Core(TM) i5-4310U CPU at 2.00GHz and

3.88 GB usable memory (RAM) about 6 minutes to calculate one confidence interval

for pAUC at (0.05, 0.5) for normal samples with sample sizes (100, 100), which is

the most time-consuming scenario on Table 3.1. The actual coverage probabilities

from ELseesaw method for pAUC of (0, 0.1) at sample sizes (30, 30) are smaller than

the nominal coverage probability for both normal samples and exponential samples.

NA-QJZ method obtains comparable coverage probabilities with ELseesaw method
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Table 3.1: Coverage Probability and Average Length of nominal 95% Confidence
Intervals of Partial AUC of Normal Samples

Coverage Probability Average Length
(m, n) Method (0, 0.1) (0, 0.7) (0.05, 0.5) (0, 0.1) (0, 0.7) (0.05, 0.5)
(30, 30) NA-QJZ 0.929 0.927 0.951 0.042 0.194 0.135

BII 0.998 0.936 0.954 0.080 0.215 0.170
HBELI 0.998 0.957 0.977 0.070 0.213 0.163
HBELII 0.998 0.969 0.987 0.071 0.220 0.180
ELseesaw 0.922 0.948 0.962 0.040 0.187 0.135

(50, 50) NA-QJZ 0.913 0.938 0.945 0.033 0.149 0.106
BII 0.990 0.949 0.968 0.052 0.160 0.124
HBELI 0.996 0.957 0.967 0.048 0.155 0.120
HBELII 0.994 0.954 0.975 0.049 0.157 0.125
ELseesaw 0.973 0.957 0.973 0.035 0.146 0.108

(100, 100) NA-QJZ 0.947 0.947 0.941 0.023 0.105 0.076
BII 0.976 0.948 0.928 0.031 0.110 0.082
HBELI 0.983 0.942 0.952 0.029 0.106 0.080
HBELII 0.986 0.950 0.950 0.030 0.106 0.082
ELseesaw 0.973 0.952 0.958 0.025 0.105 0.076

(50, 30) NA-QJZ 0.936 0.927 0.927 0.039 0.186 0.131
BII 0.982 0.929 0.918 0.057 0.193 0.144
HBELI 0.986 0.925 0.961 0.052 0.184 0.139
HBELII 0.990 0.937 0.962 0.056 0.193 0.149
ELseesaw 0.965 0.947 0.956 0.039 0.180 0.129

(80, 50) NA-QJZ 0.939 0.950 0.943 0.030 0.144 0.104
BII 0.978 0.945 0.932 0.039 0.146 0.111
HBELI 0.990 0.947 0.953 0.038 0.147 0.108
HBELII 0.985 0.940 0.956 0.038 0.147 0.110
ELseesaw 0.966 0.945 0.953 0.031 0.141 0.102

at the same conditions. While methods BII, HBELI and HBELII gain higher coverage

probabilities than the nominal coverage probability at these conditions. These three

methods applied bootstrap in the algorithms and the sample sizes were augmented

from bootstrap, which might be the reason why these three methods acquired high

coverage probability for pAUC of (0, 0.1) at sample sizes (30, 30).

In conclusion, the ELseesaw method, an empirical likelihood ratio method for
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Table 3.2: Coverage Probability and Average Length of nominal 95% Confidence
Intervals of Partial AUC of Exponential Samples

Coverage Probability Average Length
(m, n) Method (0, 0.1) (0, 0.7) (0.05, 0.5) (0, 0.1) (0, 0.7) (0.05, 0.5)
(30, 30) NA-QJZ 0.906 0.905 0.945 0.046 0.200 0.148

BII 0.990 0.936 0.968 0.078 0.227 0.179
HBELI 0.997 0.954 0.981 0.065 0.218 0.169
HBELII 0.999 0.969 0.988 0.075 0.223 0.181
ELseesaw 0.902 0.949 0.960 0.041 0.194 0.142

(50, 50) NA-QJZ 0.919 0.939 0.944 0.035 0.156 0.115
BII 0.970 0.936 0.944 0.051 0.167 0.129
HBELI 0.977 0.958 0.964 0.045 0.164 0.125
HBELII 0.995 0.949 0.970 0.047 0.165 0.130
ELseesaw 0.955 0.946 0.956 0.035 0.153 0.115

(100, 100) NA-QJZ 0.947 0.942 0.938 0.025 0.110 0.082
BII 0.970 0.944 0.946 0.030 0.114 0.087
HBELI 0.970 0.949 0.958 0.029 0.114 0.086
HBELII 0.970 0.962 0.972 0.030 0.111 0.085
ELseesaw 0.964 0.941 0.951 0.025 0.109 0.081

(50, 30) NA-QJZ 0.924 0.932 0.943 0.041 0.188 0.138
BII 0.985 0.936 0.950 0.056 0.198 0.150
HBELI 0.977 0.926 0.956 0.050 0.190 0.146
HBELII 0.990 0.950 0.966 0.060 0.195 0.152
ELseesaw 0.949 0.953 0.957 0.040 0.184 0.136

(80, 50) NA-QJZ 0.926 0.941 0.936 0.032 0.148 0.109
BII 0.954 0.960 0.934 0.039 0.152 0.117
HBELI 0.967 0.950 0.952 0.036 0.149 0.113
HBELII 0.982 0.932 0.954 0.039 0.143 0.115
ELseesaw 0.950 0.952 0.962 0.031 0.145 0.107

pAUC is based on solid statistical theories and is practically applicable. The ad-

vantages of this method include (1) it doesn’t need any assumptions of the original

distributions. (2) it doesn’t need a formula for the variance. The limiting distribution

of our empirical likelihood ratio method of the pAUC estimate under the null hypoth-

esis is a regular chi-square with one degree of freedom. (3) Coverage probabilities are

very close to the nominal. (4) Shorter confidence intervals than methods BII, HBELI
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and HBELII and comparable confidence intervals to NA-QJZ method. Eventually we

will publish an R package of our ELseesaw method as a tool to calculate pAUC.

Copyright c© Yumin Zhao, 2016.
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Chapter 4 Computational Algorithm and R Package

4.1 Smoothing the Indicator Functions in (2.8), (2.21), (2.26) and (3.7)

Chen and Hall (1993) has shown that the coverage accuracy of empirical likelihood

confidence intervals for quantiles can be improved by smoothing the quantile func-

tions. The g(·) functions in the test statistics for µT in (2.8) and pAUC in (3.7)

comprises several indicator functions (see (2.6) and (3.4)). These indicator functions

are equivalent to the empirical quantile function. Thus, we use the following function

to smooth the indicator function I(x ≤ x∗) in our final definition of g(·) functions

and also use it in our algorithm of calculating the statistics of µT , GLCp, LCp, and

pAUC:

Iε(x, x
∗) =



1 if x ≤ x∗ − ε

0.5− 3(x−x∗)
4ε

+ (x−x∗)3
4ε3

if x∗ − ε ≤ x ≤ x∗ + ε

0 if x ≥ x∗ + ε

for any ε > 0. The above is a second-order kernel smoothing function with ε as the

smoothing parameter. Figure 4.1 shows an example of the smoothing function (4.1)

at x∗ = 0 and ε = 0.6.

Chen and Hall (1993) suggested that the smoothing parameter in the range n−1/2,

n−3/4 generally provided good coverage accuracy for empirical likelihood confidence

intervals of the quantiles. Chen and Hall (1993) also mentioned that less smoothing
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Figure 4.1: An example of the smoothing function (4.1) at x∗ = 0 and ε = 0.6

than this range is desired when the underlying distribution is heavily skewed. We try

different smoothing parameters in this study, which are listed in each simulation.
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4.2 Algorithm for Calculating the Empirical Likelihood Functions in Chap-

ter 2 and Chapter 3

The empirical likelihood functions (2.8), (2.21), and (2.26) in Chapter 2 are based

on one sample, which can be calculated by the function ‘el.test’ in the R package

‘emplik’ developed by Zhou and Yang (2014). Thus, we directly call function ‘el.test’

to compute the empirical likelihood functions (2.8), (2.21), and (2.26).

The empirical likelihood ratio function (3.7) in Chapter 3 involves two samples.

To calculate the the empirical likelihood ratio function (3.7), we need to solve (3.8)

and (3.5) simultaneously to get the u and v that maximize the logarithm of the

empirical likelihood ratio function (3.7). However, numerically solving (3.5) and

(3.8) is not easy since u and v are cross-related. None of the traditional optimization

algorithms such as Newton Raphson and quadratic programming methods worked

out of the box here. When sample sizes are relatively small, for example, m = 50 and

n = 40, Newton Raphson method failed because of the computational singularity of

the derivative matrix with respect to λ of the function in (3.5) after substituting (3.8)

to it for quite amount of samples. Quadratic programming method often ran into

not positive definite leading minor of the derivative matrix. Here we originate a new

method “ELseesaw”, which simplifies the minimization of the empirical likelihood

ratio test of two samples to the minimization of one sample empirical likelihood ratio

test in four steps.

1. Minimize the one sample (Xi sample) empirical likelihood ratio −2 logR(θ
′
0)

over ui, when we fix vj = 1/n, and θ
′
0
T = (t1, t2, pAUC

′) and pAUC
′

is a
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temporary point in the vicinity of pAUC0 and p̂AUC.

2. Minimize the one sample (for Yj sample) −2 logR(θ0) over vj at ui gotten from

step 1. Here θ0 = pAUC0.

3. Sum the minimum −2 logR calculated from steps 1 and 2. This summation is

a function of pAUC
′
.

4. Apply Golden Section Search Optimization method in the vicinity of pAUC0

and p̂AUC to find pAUC
′
= pAUC∗ so that pAUC∗ minimizes the summation

of step 3.

We use the function ‘el.test’ in the R package of ‘emplik’ by Zhou and Yang (2014)

to minimize the test statistics of the one sample empirical likelihood ratio test in steps

1 and 2.

Figure 4.2 shows that such point pAUC∗ that minimizes the summation of the

empirical likelihood ratio test statistics of step 1 and step 2 exists. In fact, ui and

vj obtained from the above steps at pAUC∗ minimize −2 logR(θ) and satisfy all the

constrains in the empirical likelihood function (3.7). The summation of step 3 at

pAUC∗ is the minimum of −2 logR(θ).

4.3 The Profile likelihood

The empirical likelihood functions (2.8), (2.21), (2.26), and (3.7) contain two or three

parameters. In reality we are just interested in the inference on one parameter such as

trimmed mean or general Lorenz curve for the one sample scenario or pAUC for the
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Figure 4.2: Sum of -2LLR as a function of temporary pAUC

X ∼ N(0, 1), m = 50; Y ∼ N(1, 1), n = 45; p = (0.2, 0.6)

two sample scenario, which can be achieved by profile empirical likelihood method

as discussed in Chapter 2 and Chapter 3. It can be computationally challenging to

optimize a likelihood over some nuisance parameters in the empirical setting. We note

that the test statistics is a piecewise constant function of t1 and t2 for the trimmed

mean or pAUC at (p1, p2) or is a piecewise constant function of t for general Lorenz

Curve or pAUC at [0, p) or (p, 1], which makes the minimization relatively easy.

For simplicity, we describe the situation that profiles out one nuisance parameter

such as general Lorenz curve and pAUC at [0, p) or (p, 1].

To minimize the test statistics over one quantile, we follow the following steps:

1. Search t over three consecutive ti to find the minimum of the test statistics and
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the ti at which the minimum occurred.

2. Center at this t found at Step 1 where the minimum test statistics occurred

adding new consecutive t value and compare the test statistics at new consec-

utive t value with the minimum test statistics from Step 1.

3. If the t at which the minimum test statistics occurred changes, repeat step 2

until the t at which the minimum test statistics occurred is stable, when the

nuisance parameter t is profiled out and the minimum test statistics is the

profiled empirical likelihood test.

If we start the above search at some strategical t values, such as the sample p

quantile for the general Lorenz Curve or the sample 1−p quantile for pAUC at [0, p)

or (p, 1], we can quickly find the profiled empirical likelihood test for hypothesis test

on GLCp, LCp or pAUC at [0, p) or (p, 1].

For profiling the empirical likelihood test on µT or pAUC(p1, p2), we need to

do the above search at t1 and t2 simultaneously and find the minimum among all

the combinations of t1 and t2, which renders the computation of profiling empirical

likelihood test on µT or pAUC(p1, p2) three times as much as the computation for

profiling empirical likelihood test on GLCp, LCp or pAUC at [0, p) or (p, 1].

Figure 4.3 shows that 2LLR of test on µT at (p1 = 0.2, p2 = 0.8) as a function

of t1 and t2. The sample is from N(0, 1) and sample size is 200. Figure 4.3 shows

that the minimum of -2LLR (the red dot) exists among the different combinations of

quantiles t1 and t2.
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Figure 4.3: Negative test statistics (-results) for µT as a function of t1 (ax) and t2
(bx)

4.4 R Package ‘pAUC’

Based on the above-described algorithms, we develop an R package ‘pAUC’ to com-

pute the empirical likelihood test statistics, p value for hypothesis on pAUC/AUC/-

trimmed mean/truncated mean/Lorenz Curve and to calculate the estimate and con-

fidence interval of pAUC/AUC/trimmed mean/truncated mean/Lorenz Curve. In

this section, we provide the documentations for 14 external functions and a list of

annotated code for both external functions and internal functions.

External Functions

The names of the external functions are as follows:

eltest
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neighb

eltest.p

neighb.p

eltest.p.lc

neighb.p.lc

est.tr.mean

eltest2step

neighb.xy

eltest2step.p12

neighb.xy3p12

eltest2step.all

est.pAUC

find.UL

We will individually introduce these external functions here.
eltest

Compute the empirical likelihood ratio test of three parameters: percentiles at p1
and p2, and trimmed mean at (p1, p2)

Description:

This function calls the function ’el.test’ in R Package ’emplik’

Usage:

eltest(ab = vector(”numeric”, 2), x.sample, mu, eps)

Arguments:

ab
x.sample
mu
eps

a vector of two elements for the percentiles at p1 and p2
a random sample
the null hypothesis vector with three elements (p1, p2, µT )
a smoothing parameter

Details:

If mu is far away from the true value vector, ”-2LLR” may be positive infinite.

Value:

“-2LLR” the -2 log likelihood ratio; approximate chi square distribution
with a degree of freedom 3 under H0

Reference:

Zhou and Yang (2014)
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Example:

set.seed (123)

nsize <- 50

p1<- 0.21

p2<- 0.79

q1 <- qnorm(p1)

q2 <- qnorm(p2)

rp_trim <- function(x){

y <- x*dnorm(x)

y

}

omu_trim <- integrate(rp_trim , lower=q1 , upper=q2)$value

mu_trim <- c(p1 , p2 , omu_trim)

x <- rnorm(nsize)

eltest(c(q1 , q2), x, mu=mu_trim , eps=1/nsize)

Code

#a function to call el.test in emplik to compute -2LLR for trimmed

mean at (p1, p2)

#the internal smoothing function ’myfun5 ’ is called as well

eltest <- function(ab = vector("numeric" ,2), x.sample , mu , eps )

{

axb <- matrix(c(myfun5(x.sample , ab[1], eps), myfun5(x.sample , ab

[2], eps), x.sample*((1- myfun5(x.sample , ab[1], eps)) * myfun5

(x.sample , ab[2], eps))), ncol =3)

all <- el.test(axb , mu)

list(’-2LLR’=all$‘-2LLR ‘)

}

neighb

Compute the empirical likelihood ratio test for trimmed mean at (p1, p2), 0 <
p1 < p2 < 1

Description:

This function apples the profile algorithm described in Section 4.3

Usage:

neighb(sp12 = vector(”numeric”, 2), x, true, eps)

Arguments:
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sp12
x
true
eps

a vector of two elements for p1 and p2
a random sample
the trimmed mean to be tested
a smoothing parameter

Details:

The empirical likelihood ratio test for trimmed mean at (p1, p2) is executed in
two steps. First, test the hypotheses with three parameters, two of which are the
nuisance parameters p1 and p2. Second, profile out the nuisance parameters p1 and
p2. This function performs the second step - profiling out the nuisance parameters.
This function searches the minimum of the empirical likelihood ratio test statistics
among combinations of p1-th quantile and p2-th quantile with p1-th quantile and
p2-th quantile moving along the consecutive sample points separately. Since the test
statistics is a piecewise constant function of the quantiles for p1 and p2, the min-
imum is easily found if searching starts at some strategical quantiles such as the
sample quantiles at p1 and p2.

Value:

“-2LLR”

Pval

the -2 loglikelihood ratio; approximate chi square distribution
with one degree of freedom under H0

the observed P-value by chi square approximation

Example:

set.seed (123)

nsize <- 50

p1<- 0.21

p2<- 0.79

q1 <- qnorm(p1)

q2 <- qnorm(p2)

rp <- function(x){

y <- x*dnorm(x)

y

}

omu <- integrate(rp , lower=q1 , upper=q2)$value

sp12 <- c(p1 , p2)

x <- rnorm(nsize)

neighb(sp12=sp12 , x=x, true=omu , eps=1/nsize)

Code

# a function to find the min of -2LLR among different cutting points

of x sample at two sides

neighb <- function (sp12 = vector("numeric", 2), x, true , eps)

{

if (sp12 [1] >= sp12 [2])
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stop("the first sample quantile has to be smaller than the

second")

n <- length(x)

sortx_w <- myWdataclean2(z = x)

sortedx <- sortx_w$value

cx <- cumsum(sortx_w$weight/n)

idex1 <- ifelse(sp12 [1] == 0, 1, max(which(cx <= sp12 [1])))

idex2 <- max(which(cx <= sp12 [2]))

mu <- c(sp12 , true)

abs <- data.frame(x1 = idex1 , x2 = idex2)

res <- eltest(c(sortedx[idex1], sortedx[idex2]), x, mu , eps)

best <- res$"-2LLR"

neg2.llr <- as.vector(best)

ite <- TRUE

while (ite == TRUE) {

neib1 <- c((idex1 - 1), idex2)

if (idex1 - 1 > 0) {

if ((!any(abs[, 1] == neib1 [1])) || (!any(which(neib1 [1]

==

abs[, 1]) %in% which(neib1 [2] == abs[, 2])))) {

abs <- rbind(abs , neib1)

res <- eltest(ab = c(sortedx[idex1 - 1], sortedx[

idex2]),

x, mu , eps)

neg2.llr <- c(neg2.llr , res$"-2LLR")

}

}

neib2 <- c(idex1 , (idex2 - 1))

if (idex2 - 1 > idex1) {

if ((!any(abs[, 2] == neib2 [2])) || (!any(which(neib2 [1]

==

abs[, 1]) %in% which(neib2 [2] == abs[, 2])))) {

abs <- rbind(abs , neib2)

res <- eltest(ab = c(sortedx[idex1], sortedx[idex2 -

1]), x, mu , eps)

neg2.llr <- c(neg2.llr , res$"-2LLR")

}

}

neib3 <- c((idex1 + 1), idex2)

if (idex1 + 1 < idex2) {

if ((!any(abs[, 1] == neib3 [1])) || (!any(which(neib3 [1]

==

abs[, 1]) %in% which(neib3 [2] == abs[, 2])))) {

abs <- rbind(abs , neib3)

res <- eltest(ab = c(sortedx[idex1 + 1], sortedx[

idex2]),

x, mu , eps)

neg2.llr <- c(neg2.llr , res$"-2LLR")

}

}

neib4 <- c(idex1 , (idex2 + 1))

if (idex2 + 1 < n) {

if ((!any(abs[, 2] == neib4 [2])) || (!any(which(neib4 [1]

==
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abs[, 1]) %in% which(neib4 [2] == abs[, 2])))) {

abs <- rbind(abs , neib4)

res <- eltest(ab = c(sortedx[idex1], sortedx[idex2 +

1]), x, mu , eps)

neg2.llr <- c(neg2.llr , res$"-2LLR")

}

}

neib5 <- c((idex1 - 1), (idex2 - 1))

if ((idex1 - 1 > 0) & (idex2 - 1 > idex1)) {

if (!any(which(neib5 [1] == abs[, 1]) %in% which(neib5 [2]

==

abs[, 2]))) {

abs <- rbind(abs , neib5)

res <- eltest(ab = c(sortedx[idex1 - 1], sortedx[

idex2 -

1]), x, mu , eps)

neg2.llr <- c(neg2.llr , res$"-2LLR")

}

}

neib6 <- c((idex1 - 1), (idex2 + 1))

if ((idex1 - 1 > 0) & (idex2 + 1 < n)) {

if (!any(which(neib6 [1] == abs[, 1]) %in% which(neib6 [2]

==

abs[, 2]))) {

abs <- rbind(abs , neib6)

res <- eltest(ab = c(sortedx[idex1 - 1], sortedx[

idex2 +

1]), x, mu , eps)

neg2.llr <- c(neg2.llr , res$"-2LLR")

}

}

neib7 <- c((idex1 + 1), idex2 - 1)

if (idex1 + 1 < idex2 - 1) {

if (!any(which(neib7 [1] == abs[, 1]) %in% which(neib7 [2]

==

abs[, 2]))) {

abs <- rbind(abs , neib7)

res <- eltest(ab = c(sortedx[idex1 + 1], sortedx[

idex2 -

1]), x, mu , eps)

neg2.llr <- c(neg2.llr , res$"-2LLR")

}

}

neib8 <- c((idex1 + 1), (idex2 + 1))

if ((idex1 + 1 < idex2) & (idex2 + 1 < n)) {

if (!any(which(neib8 [1] == abs[, 1]) %in% which(neib8 [2]

==

abs[, 2]))) {

abs <- rbind(abs , neib8)

res <- eltest(ab = c(sortedx[idex1 + 1], sortedx[

idex2 +

1]), x, mu , eps)

neg2.llr <- c(neg2.llr , res$"-2LLR")

}
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}

if (min(neg2.llr) == best) {

return(list(‘-2LLR ‘ = best , Pval = 1 - pchisq(best ,

df = 1)))

ite <- FALSE

}

else {

best = min(neg2.llr)

idex1 <- abs[which(neg2.llr == best), 1]

idex2 <- abs[which(neg2.llr == best), 2]

ite <- TRUE

}

}

}

eltest.p

Compute the empirical likelihood ratio test of two parameters: percentile p, and
truncated mean at [0, p)

Description:

This function calls the function ’el.test’ in R Package ’emplik’

Usage:

eltest.p(cutx1, x.sample, mu, eps )

Arguments:

cutx1
x.sample
mu
eps

the p-th percentile
a random sample
the null hypothesis vector with two elements (p, µT )
a smoothing parameter

Details:

If mu is far away from the true value vector, ”-2LLR” may be positive infinite.

Value:

“-2LLR” the -2 loglikelihood ratio; approximate chi square distribution
with a degree of freedom 2 under H0

Reference:

Zhou and Yang (2014)
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Example:

nsize <- 50

p<- 0.89

rate <- 0.25

q <- qexp(p, rate)

rp_glc <- function(x){

y <- x*dexp(x, rate =0.25)

y

}

omu_glc <- integrate(rp_glc , lower= 0, upper=q)$value

mu_glc <- c(p, omu_glc)

x <- rexp(n=nsize , rate=rate)

eltest.p(q, x, mu=mu_glc , eps=1/nsize)

Code

#a function to call el.test in emplik to compute -2LLR for trimmed

mean at (0, p)

eltest.p <- function(idex1 , x.sample , mu , eps )

{

axb <- matrix(c(myfun5(x.sample , idex1 , eps), x.sample*as.numeric(

myfun5(x.sample , idex1 , eps))), ncol =2)

all <- el.test(axb , mu)

list(’-2LLR’=all$‘-2LLR ‘)

}

neighb.p

Compute the empirical likelihood ratio test for truncated mean at [0, p), 0 < p < 1

Description:

This function apples the profile algorithm described in Section 4.3

Usage:

neighb.p(p, x, true, eps)

Arguments:

p
x
true
eps

a cutting percentage p
a random sample
the truncated mean to be tested
a smoothing parameter

Details:
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The empirical likelihood ratio test for trimmed mean at [0, p) is executed in two
steps. First, test the hypotheses with two parameters, one of which is the nuisance
parameters p. Second, profile out the nuisance parameter p. This function performs
the second step - profiling out the nuisance parameter. This function searches the
minimum of the empirical likelihood ratio test statistics along the consecutive sample
points. Since the test statistics is a piecewise constant function of the quantile for p,
the minimum is easily found if the searching starts at the sample p-th quantile.

Value:

“-2LLR”

Pval

the -2 loglikelihood ratio; approximate chi square distribution
with one degree of freedom under H0

the observed P-value by chi square approximation

Example:

nsize <- 50

p<- 0.89

q <- qnorm(p)

rp <- function(x){

y <- x*dnorm(x)

y

}

omu <- integrate(rp , lower= -Inf , upper=q)$value

x <- rnorm(nsize)

neighb.p(p, x=x, true=omu , eps=1/nsize)

Code

# a function to find the min of -2LLR among different cutting points

of x sample at one side

neighb.p <- function(p, x, true , eps){

n <- length(x)

sortx_w <- myWdataclean2(z=x)

sortedx <- sortx_w$value

cx<- cumsum(sortx_w$weight/n)

idex1 <- max(which(cx <= p ))

mu <- c(p, true)

abs <- as.vector(idex1)

res <- eltest.p(idex1 , x, mu , eps)

best <- res$’-2LLR’

neg2.llr <- as.vector(best)

ite <- TRUE

while (ite==TRUE) {

neib1 <- idex1 -1

if ((neib1 > 0) & (!any(abs== neib1))) {

abs <- c(abs , neib1)

res <- eltest.p(sortedx[idex1 -1], x, mu , eps)

neg2.llr <- c(neg2.llr , res$’-2LLR’)

}
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neib2 <- idex1 +1

if ((neib2 <= n) & (!any(abs== neib2))){

abs <- c(abs , neib2)

res <- eltest.p(sortedx[idex1 + 1], x, mu , eps)

neg2.llr <- c(neg2.llr , res$’-2LLR’)

}

if (min(neg2.llr)==best){

return(list(’-2LLR’=best , Pval = 1 - pchisq(best , df=1)))

ite <- FALSE

}

else {

best=min(neg2.llr)

idex1 <- abs[which(neg2.llr==best)]

ite <- TRUE

}

}

}

eltest.p.lc

Compute the empirical likelihood ratio test of two parameters: percentile p, and
Lorenz Curve at [0, p)

Description:

This function calls the function ’el.test’ in R Package ’emplik’

Usage:

eltest.p(cutx1, x.sample, mu, eps )

Arguments:

cutx1
x.sample
mu
eps

the p-th percentile
a random sample
the null hypothesis vector with two elements (p, LCp)
a smoothing parameter

Details:

If mu is far away from the true value vector, ”-2LLR” may be positive infinite.

Value:

“-2LLR” the -2 loglikelihood ratio; approximate chi square distribution
with a degree of freedom 2 under H0

Reference:
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Zhou and Yang (2014)

Example:

nsize <- 500

p<- 0.89

rate <- 0.25

q <- qexp(p, rate)

rp_glc <- function(x){

y <- x*dexp(x, rate =0.25)

y

}

omu_glc <- integrate(rp_glc , lower= 0, upper=q)$value

mu_lc <- c(p, omu_glc*rate)

x <- rexp(n=nsize , rate=rate)

eltest.p.lc(q, x, mu=mu_lc , eps=1/nsize)

Code

#a function to call el.test in emplik to compute -2LLR for Lorenz

Curve at (0, p)

eltest.p.lc <- function (cutx1 , x.sample , mu , eps)

{

axb <- matrix(c(myfun5(x.sample , cutx1 , eps), (x.sample *

as.numeric(myfun5(x.sample , cutx1 , eps)) - x.sample *

mu[2])), ncol = 2)

all <- el.test(axb , c(mu[1], 0))

list(‘-2LLR ‘ = all$‘-2LLR ‘)

}

neighb.p.lc

Compute the empirical likelihood ratio test for Lorenz Curve at [0, p), 0 < p < 1

Description:

This function apples the profile algorithm described in Section 4.3

Usage:

neighb.p.lc(p, x, true, eps)

Arguments:

p
x
true
eps

a cutting percentage p
a random sample
the Lorenz Curve to be tested
a smoothing parameter
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Details:

The empirical likelihood ratio test for Lorenz Curve at [0, p) is executed in two
steps. First, test the hypotheses with two parameters, one of which is the nuisance
parameters p. Second, profile out the nuisance parameter p. This function performs
the second step - profiling out the nuisance parameter. This function searches the
minimum of the empirical likelihood ratio test statistics along the consecutive sample
points. Since the test statistics is a piecewise constant function of the quantile for p,
the minimum is easily found if the searching starts at the sample p-th quantile.

Value:

“-2LLR”

Pval

the -2 loglikelihood ratio; approximate chi square distribution
with one degree of freedom under H0

the observed P-value by chi square approximation

Example:

set.seed (123)

nsize <- 50

p<- 0.89

rate <- 0.25

q <- qexp(p, rate)

rp_glc <- function(x){

y <- x*dexp(x, rate =0.25)

y

}

omu_glc <- integrate(rp_glc , lower= 0, upper=q)$value

mu_lc <- omu_glc*rate

x <- rexp(n=nsize , rate=rate)

neighb.p.lc(p, x, mu_lc , eps=1/nsize)

Code

# a function to find the min of -2LLR among different cutting points

of x sample at one side

neighb.p.lc <- function (p, x, true , eps)

{

n <- length(x)

sortx_w <- myWdataclean2(z = x)

sortedx <- sortx_w$value

cx <- cumsum(sortx_w$weight/n)

idex1 <- max(which(cx <= p))

mu <- c(p, true)

abs <- as.vector(idex1)

res <- eltest.p.lc(sortedx[idex1], x, mu , eps)

best <- res$"-2LLR"

neg2.llr <- as.vector(best)

ite <- TRUE

while (ite == TRUE) {
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neib1 <- idex1 - 1

if ((neib1 > 0) & (!any(abs == neib1))) {

abs <- c(abs , neib1)

res <- eltest.p.lc(sortedx[idex1 - 1], x, mu , eps)

neg2.llr <- c(neg2.llr , res$"-2LLR")

}

neib2 <- idex1 + 1

if ((neib2 <= n) & (!any(abs == neib2))) {

abs <- c(abs , neib2)

res <- eltest.p.lc(sortedx[idex1 + 1], x, mu , eps)

neg2.llr <- c(neg2.llr , res$"-2LLR")

}

if (min(neg2.llr) == best) {

return(list(‘-2LLR ‘ = best , Pval = 1 - pchisq(best ,

df = 1)))

ite <- FALSE

}

else {

best = min(neg2.llr)

idex1 <- abs[which(neg2.llr == best)]

ite <- TRUE

}

}

}

est.tr.mean

Estimate trimmed/truncated means

Description:

This function estimates the trimmed means or truncated means depended on the
parameter p

Usage:

est.tr.mean(x.sample, p, ...)

Arguments:

x.sample
p

...

a random sample
for a trimmed mean p = (p1, p2), 0 < p1 < p2 < 1; for a truncated
mean p is a scalar, 0 ≤ p ≤ 1
there is an additional argument ’eps’ for the smoothing parameter

Details:

For trimmed means at (p1, p2), µ̂T = 1
n

∑n
i=1 xiI[t1 ≤ xi ≤ t2] where t1 = F̂−1(p1) =

sup{t : F̂ (t) ≤ p1}; t2 = F̂−1(p2) = sup{t : F̂ (t) ≤ p2}; If the population has a sym-
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metric distribution and trims are symmetric (i.e., p1 = 1 − p2) as well, µ̂ = µ̂T
p2−p1 ,

where µ̂ is the estimate of population mean. For truncated means at [0, p), µ̂Tn =
1
n

∑n
i=1 xiI[xi ≤ t] where t = F̂−1(p) = sup{t : F̂ (t) ≤ p};

Value:

the returned value is the estimate of trimmed/truncated mean

Example:

## An example of trimmed mean at (0.21 , 0.79)

nsize <- 50

p1 <- 0.21

p2 <- 0.79

eps <- 1/nsize

x <- rnorm(nsize)

est.tr.mean(x, p=c(p1 , p2), eps)

## An example of truncated mean at (0, 0.79)

nsize <- 50

p <- 0.89

eps <- 1/nsize

x <- rnorm(nsize)

est.tr.mean(x, p, eps)

Code

est.tr.mean <- function(x.sample , p, ...){

sortedx <- x.sample[order(x.sample)]

nx <- length(x.sample)

cx<-cumsum(rep(1/nx , nx))

if(length(p)==2){

lowx <- sortedx[max(which(cx <= p[1]))]

highx <- sortedx[max(which(cx <= p[2] ))]

est <- mean(as.vector(x.sample*((1- myfun5(x.sample , lowx , ...)

) * myfun5(x.sample , highx , ...))))

}

else if (length(p)==1){

highx <- sortedx[max(which(cx <= p ))]

est <- mean(as.vector(x.sample*myfun5(x.sample , highx , ...)))

}

return(est)

}

eltest2step

Empirical likelihood test for percentiles at (1 − p2) and (1 − p1), and pAUC at
(p1, p2). P1 and p2 are false positive rates, p1 < p2
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Description:

Compute the empirical likelihood ratio test with three parameters: percentiles at
(1-p2) and (1-p1), and pAUC fixed at pAUC0

Usage:

eltest2step(x, ab= vector(”numeric”,2), y, p1, p2, truepauc, tol=.001, eps)

Arguments:

x
ab
y
p1
p2
truepauc
tol

eps

a sample of test results from non-diseased population
a vector of two percentiles at (1− p2) and (1− p1), 0 < p1 < p2 < 1
a sample of test results from diseased population
the smaller false positive rate to be included in pAUC
the larger false positive rate to be included in pAUC
the pAUC to be tested
the maximum distance between the current guess and the current
range on Golden Section Search Optimization method
a smoothing parameter

Details:

The function apples the ’ELseesaw’ algorithm described in Section 4.2 to mini-
mize the empirical likelihood ratio test. ”-2LLR” may be positive infinite if the tested
values of the parameters are far away from the true values.

Value:

”-2LLR” the -2 loglikelihood ratio; approximate chi-square distribution with
three degrees of freedom under the null hypotheses

Example:

mux <- 0

stddx <- 1

muy <- 1

stddy <- 1

p1 <- 0.05

p2 <- 0.5

q1 <- qnorm(p=1-p2 , mean=mux , sd=stddx)

q2 <- qnorm(p=1-p1 , mean=mux , sd=stddx)

rp<-function(p, mux , stddx , muy , stddy)

{

y<-1-pnorm(qnorm(1-p, mux , stddx), muy , stddy)

y

}
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###true pAUC at (p1 , p2)

truepauc <-integrate(rp, mux=mux , stddx=stddx , muy=muy , stddy=stddy ,

lower=p1 ,upper=p2)$value

nx <- 40

ny <- 30

x <- rnorm(nx , mux , stddx)

y <- rnorm(ny , muy , stddy)

eltest2step(ab=c(q1, q2), x=x, y=y, truepauc=truepauc , p1=p1, p2=p2,

tol =0.001 , eps=1/nx)

Code

eltest2step <- function(x, ab= vector("numeric" ,2), y, p1, p2,

truepauc , tol =.001, eps){

nx <- length(x)

ny <- length(y)

est.pauc <- rep(1/nx , nx)%*% mean.pauc(x, ab[1], ab[2], eps , y)%*%

rep(1/ny , ny)

search.low <- ifelse ((min(est.pauc , truepauc) -0.1) >0, (min(est.

pauc , truepauc) -0.1), 0)

search.high <- ifelse ((max(est.pauc , truepauc)+0.1) <1 , (max(est.

pauc , truepauc)+0.1), 1)

grat <- (sqrt (5) -1)/2

d <- grat * (search.high - search.low)

x2 <- search.low + d

x1 <- search.high - d

res1 <- eltest2u(ab , x.sample=x, mu=c(1-p2 , 1-p1 , x1), y, vvec=rep

(1/ny , ny), eps)

res2 <- eltest2v(ab , x.sample=x, mu=truepauc , y, res1$uvec/nx , eps

)

fun.x1 <- res1$"-2LLR" + res2$"-2LLR"

res1 <- eltest2u(ab , x.sample=x, mu=c(1-p2 , 1-p1 , x2), y, vvec=rep

(1/ny , ny), eps)

res2 <- eltest2v(ab , x.sample=x, mu=truepauc , y, res1$uvec/nx , eps

)

fun.x2 <- res1$"-2LLR" + res2$"-2LLR"

err <- 100

numit <- 0

while (err > tol) {

numit <- numit + 1

if (fun.x1 < fun.x2){

xopt <- x1

err <- (1 - grat) * abs(( search.high - search.low)/xopt)

if (err > tol) {

search.high <- x2

x2 <- x1

fun.x2 <- fun.x1

d <- grat * (search.high - search.low)

x1 <- search.high - d

res1 <- eltest2u(ab , x.sample=x, mu=c(1-p2 , 1-p1 , x1), y,

vvec=rep(1/ny , ny), eps)

res2 <- eltest2v(ab , x.sample=x, mu=truepauc , y, res1$uvec/

nx, eps)
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fun.x1 <- res1$"-2LLR" + res2$"-2LLR"

}

}

else {

xopt <- x2

err <- (1 - grat) * abs(( search.high - search.low)/xopt)

if (err > tol) {

search.low <- x1

x1 <- x2

fun.x1 <- fun.x2

d <- grat * (search.high - search.low)

x2 <- search.low + d

res1 <- eltest2u(ab , x.sample=x, mu=c(1-p2 , 1-p1 , x2), y,

vvec=rep(1/ny , ny), eps)

res2 <- eltest2v(ab , x.sample=x, mu=truepauc , y, res1$uvec/

nx, eps)

fun.x2 <- res1$"-2LLR" + res2$"-2LLR"

}

}

}

res1 <- eltest2u(ab , x.sample=x, mu=c(1-p2 , 1-p1 , xopt), y, vvec=

rep(1/ny , ny), eps)

res2 <- eltest2v(ab , x.sample=x, mu=truepauc , y, res1$uvec/nx , eps

)

return("-2LLR"= res1$"-2LLR" + res2$"-2LLR")

}

neighb.xy

Empirical likelihood test for pAUC at (p1, p2), 0 < p1 < p2 < 1

Description:

This function apples the profile algorithm described in Section 4.3

Usage:

neighb.xy(sp12 = vector(”numeric”, 2), x, y, true, tol = 0.001, eps)

Arguments:

sp12

x
y
true
tol

eps

a vector of two False Positive Rates between which the pAUC is
tested, sp12=(p1, p2)
a sample of test results from non-diseased population
a sample of test results from diseased population
the pAUC to be tested
the maximum distance between the current guess and the current
range on Golden Section Search Optimization method
a smoothing parameter
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Details:

The empirical likelihood ratio test for pAUC at (p1, p2) is executed in two steps.
First, test the hypotheses with three parameters, two of which are the nuisance pa-
rameters p1 and p2. Second, profile out the nuisance parameters p1 and p2. This
function performs the second step - profiling out the nuisance parameters. This func-
tion searches the minimum of the empirical likelihood ratio test statistics among
combinations of (1 - p1)-th quantile and (1 - p2)-th quantile with (1 - p1)-th quantile
and (1 - p2)-th quantile moving along the consecutive non-diseased sample points
separately. Since the test statistics is a piecewise constant function of the quantiles
for (1 - p1) and (1 - p2), the minimum is easily found if searching starts at some
strategical quantiles such as the sample quantiles at (1 - p1) and (1 - p2).

Value:

“-2LLR”

Val

the -2 log likelihood ratio; approximate chi square distribution
with one degree of freedom under H0

the observed P-value by chi square approximation

Example:

mux <- 0

stddx <- 1

muy <- 1

stddy <- 1

p1 <- 0.05

p2 <- 0.5

rp<-function(p, mux , stddx , muy , stddy)

{

y<-1-pnorm(qnorm(1-p, mux , stddx), muy , stddy)

y

}

##ture pAUC at (p1 , p2)

truepauc <-integrate(rp, mux=mux , stddx=stddx , muy=muy , stddy=stddy ,

lower=p1 ,upper=p2)$value

nx <- 40

ny <- 30

x <- rnorm(nx , mux , stddx)

y <- rnorm(ny , muy , stddy)

neighb.xy(sp12=c(p1 , p2), x=x, y=y, true=truepauc , tol =0.001 , eps=1/

nx)

Code

neighb.xy <- function (sp12 = vector("numeric", 2), x, y, true , tol

= 0.001 ,

eps)
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{

nx <- length(x)

ny <- length(y)

if (sp12 [1] >= sp12 [2])

stop("the first sample quantile has to be smaller than the

second")

sortx_w <- myWdataclean2(z = x)

sortedx <- sortx_w$value

cx <- cumsum(sortx_w$weight/nx)

idex1 <- ifelse(sp12 [2] < 1, max(which(cx <= 1 - sp12 [2])), 1)

idex2 <- max(which(cx <= 1 - sp12 [1]))

abs <- data.frame(x1 = idex1 , x2 = idex2)

best <- eltest2step(ab = c(sortedx[idex1], sortedx[idex2]),

x = x, y = y, p1 = sp12[1], p2 = sp12[2], true , tol ,

eps = eps)

neg2.llr <- data.frame(value = best)

ite <- TRUE

while (ite == TRUE) {

neib1 <- c((idex1 - 1), idex2)

if (idex1 - 1 > 0) {

if ((!any(abs[, 1] == neib1 [1])) || (!any(which(neib1 [1]

==

abs[, 1]) %in% which(neib1 [2] == abs[, 2])))) {

abs <- rbind(abs , neib1)

neg2.llr <- rbind(neg2.llr , eltest2step(ab = c(

sortedx[idex1 -

1], sortedx[idex2]), x = x, y = y, p1 = sp12[1],

p2 = sp12[2], true , tol , eps = eps))

}

}

neib2 <- c(idex1 , (idex2 - 1))

if (idex2 - 1 > idex1) {

if ((!any(abs[, 2] == neib2 [2])) || (!any(which(neib2 [1]

==

abs[, 1]) %in% which(neib2 [2] == abs[, 2])))) {

abs <- rbind(abs , neib2)

neg2.llr <- rbind(neg2.llr , eltest2step(ab = c(

sortedx[idex1],

sortedx[idex2 - 1]), x = x, y = y, p1 = sp12[1],

p2 = sp12[2], true , tol , eps = eps))

}

}

neib3 <- c((idex1 + 1), idex2)

if (idex1 + 1 < idex2) {

if ((!any(abs[, 1] == neib3 [1])) || (!any(which(neib3 [1]

==

abs[, 1]) %in% which(neib3 [2] == abs[, 2])))) {

abs <- rbind(abs , neib3)

neg2.llr <- rbind(neg2.llr , eltest2step(ab = c(

sortedx[idex1 +

1], sortedx[idex2]), x = x, y = y, p1 = sp12[1],

p2 = sp12[2], true , tol , eps = eps))

}

}
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neib4 <- c(idex1 , (idex2 + 1))

if (idex2 + 1 < nx) {

if ((!any(abs[, 2] == neib4 [2])) || (!any(which(neib4 [1]

==

abs[, 1]) %in% which(neib4 [2] == abs[, 2])))) {

abs <- rbind(abs , neib4)

neg2.llr <- rbind(neg2.llr , eltest2step(ab = c(

sortedx[idex1],

sortedx[idex2 + 1]), x = x, y = y, p1 = sp12[1],

p2 = sp12[2], true , tol , eps = eps))

}

}

neib5 <- c((idex1 - 1), (idex2 - 1))

if ((idex1 - 1 > 0) & (idex2 - 1 > idex1)) {

if (!any(which(neib5 [1] == abs[, 1]) %in% which(neib5 [2]

==

abs[, 2]))) {

abs <- rbind(abs , neib5)

neg2.llr <- rbind(neg2.llr , eltest2step(ab = c(

sortedx[idex1 -

1], sortedx[idex2 - 1]), x = x, y = y, p1 = sp12

[1],

p2 = sp12[2], true , tol , eps = eps))

}

}

neib6 <- c((idex1 - 1), (idex2 + 1))

if ((idex1 - 1 > 0) & (idex2 + 1 < nx)) {

if (!any(which(neib6 [1] == abs[, 1]) %in% which(neib6 [2]

==

abs[, 2]))) {

abs <- rbind(abs , neib6)

neg2.llr <- rbind(neg2.llr , eltest2step(ab = c(

sortedx[idex1 -

1], sortedx[idex2 + 1]), x = x, y = y, p1 = sp12

[1],

p2 = sp12[2], true , tol , eps = eps))

}

}

neib7 <- c((idex1 + 1), idex2 - 1)

if (idex1 + 1 < idex2 - 1) {

if (!any(which(neib7 [1] == abs[, 1]) %in% which(neib7 [2]

==

abs[, 2]))) {

abs <- rbind(abs , neib7)

neg2.llr <- rbind(neg2.llr , eltest2step(ab = c(

sortedx[idex1 +

1], sortedx[idex2 - 1]), x = x, y = y, p1 = sp12

[1],

p2 = sp12[2], true , tol , eps = eps))

}

}

neib8 <- c((idex1 + 1), (idex2 + 1))

if ((idex1 + 1 < idex2) & (idex2 + 1 < nx)) {
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if (!any(which(neib8 [1] == abs[, 1]) %in% which(neib8 [2]

==

abs[, 2]))) {

abs <- rbind(abs , neib8)

neg2.llr <- rbind(neg2.llr , eltest2step(ab = c(

sortedx[idex1 +

1], sortedx[idex2 + 1]), x = x, y = y, p1 = sp12

[1],

p2 = sp12[2], true , tol , eps = eps))

}

}

if (min(neg2.llr) == best) {

idex1 <- abs[which(neg2.llr == best), 1]

idex2 <- abs[which(neg2.llr == best), 2]

return(list(‘-2LLR ‘ = best , Pval = 1 - pchisq(best ,

df = 1)))

ite <- FALSE

}

else {

best = min(neg2.llr)

idex1 <- abs[which(neg2.llr == best), 1]

idex2 <- abs[which(neg2.llr == best), 2]

ite <- TRUE

}

}

}

eltest2step.p12

Empirical likelihood test for percentile at (1− p) and pAUC at (0, p) or (p, 1). P
is the false positive rate, 0 < p < 1

Description:

Compute the empirical likelihood ratio test with two parameters: percentiles at
(1-p) and pAUC fixed at pAUC0

Usage:

eltest2step.p12(x, highx, y, vp, truepauc, tol=.001, eps)

Arguments:
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x
highx
y
vp

truepauc
tol

eps

a sample of test results from non-diseased population
the percentile at (1− p), 0 < p < 1
a sample of test results from diseased population
vector of (0, p) or (p, 1), p is the false positive rate to be included
in pAUC
the pAUC to be tested
the maximum distance between the current guess and the current
range on Golden Section Search Optimization method
a smoothing parameter

Details:

The function apples the ’ELseesaw’ algorithm described in Section 4.2 to mini-
mize the empirical likelihood ratio test. ”-2LLR” may be positive infinite if the tested
values of the parameters are far away from the true values.

Value:

“-2LLR” the -2 loglikelihood ratio; approximate chi-square distribution with
two degrees of freedom under the null hypotheses

Example:

p <- 0.4

rate.x <- 1

rate.y <- 0.25

rp.exp2 <-function(p, rate.x, rate.y)

{

y<- 1- pexp(qexp(1-p, rate=rate.x), rate=rate.y)

y

}

p1 <- 0

p2 <- p

###true pAUC at (0, p)

truepauc <- integrate(rp.exp2 , rate.x, rate.y,lower=p1,upper=p2)$

value

highx <- qexp(1-p, rate=rate.x)

nx <- 50

ny <- 40

x <- rexp(nx , rate.x)

y <- rexp(ny , rate.y)

eltest2step.p12(vp =c(p1, p2), x=x, y=y, highx=highx , truepauc=

truepauc , tol =0.001 , eps=1/nx)

Code

eltest2step.p12 <- function (x, highx , y, vp, truepauc , tol = 0.001,

eps)
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{

if (vp[1] == 0 & vp[2] > 0 & vp[2] < 1) {

p <- vp[2]

mean.fun <- mean.paucp2

}

if (vp[2] == 1 & vp[1] > 0 & vp[1] < 1) {

p <- vp[1]

mean.fun <- mean.paucp1

}

nx <- length(x)

ny <- length(y)

est.pauc <- rep(1/nx , nx) %*% mean.fun(x, highx , eps , y) %*%

rep(1/ny , ny)

search.low <- ifelse ((min(est.pauc , truepauc) - 0.1) > 0,

(min(est.pauc , truepauc) - 0.1), 0)

search.high <- ifelse ((max(est.pauc , truepauc) + 0.1) < 1,

(max(est.pauc , truepauc) + 0.1), 1)

grat <- (sqrt (5) - 1)/2

d <- grat * (search.high - search.low)

x2 <- search.low + d

x1 <- search.high - d

res1 <- eltest2up12(mean.fun , highx , x.sample = x, mu = c(1 -

p, x1), y, vvec = rep(1/ny , ny), eps)

res2 <- eltest2vp12(mean.fun , highx , x.sample = x, mu = truepauc

,

y, res1$uvec/nx , eps)

fun.x1 <- res1$"-2LLR" + res2$"-2LLR"

res1 <- eltest2up12(mean.fun , highx , x.sample = x, mu = c(1 -

p, x2), y, vvec = rep(1/ny , ny), eps)

res2 <- eltest2vp12(mean.fun , highx , x.sample = x, mu = truepauc

,

y, res1$uvec/nx , eps)

fun.x2 <- res1$"-2LLR" + res2$"-2LLR"

err <- 100

numit <- 0

while (err > tol) {

numit <- numit + 1

if (fun.x1 < fun.x2) {

xopt <- x1

err <- (1 - grat) * abs(( search.high - search.low)/xopt)

if (err > tol) {

search.high <- x2

x2 <- x1

fun.x2 <- fun.x1

d <- grat * (search.high - search.low)

x1 <- search.high - d

res1 <- eltest2up12(mean.fun , highx , x.sample = x,

mu = c(1 - p, x1), y, vvec = rep(1/ny , ny),

eps)

res2 <- eltest2vp12(mean.fun , highx , x.sample = x,

mu = truepauc , y, res1$uvec/nx , eps)

fun.x1 <- res1$"-2LLR" + res2$"-2LLR"

}

}
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else {

xopt <- x2

err <- (1 - grat) * abs(( search.high - search.low)/xopt)

if (err > tol) {

search.low <- x1

x1 <- x2

fun.x1 <- fun.x2

d <- grat * (search.high - search.low)

x2 <- search.low + d

res1 <- eltest2up12(mean.fun , highx , x.sample = x,

mu = c(1 - p, x2), y, vvec = rep(1/ny , ny),

eps)

res2 <- eltest2vp12(mean.fun , highx , x.sample = x,

mu = truepauc , y, res1$uvec/nx , eps)

fun.x2 <- res1$"-2LLR" + res2$"-2LLR"

}

}

}

res1 <- eltest2up12(mean.fun , highx , x.sample = x, mu = c(1 -

p, xopt), y, vvec = rep(1/ny , ny), eps)

res2 <- eltest2vp12(mean.fun , highx , x.sample = x, mu = truepauc

,

y, res1$uvec/nx , eps)

return(‘-2LLR ‘ = res1$"-2LLR" + res2$"-2LLR")

}

neighb.xy3p12

Empirical likelihood test for pAUC at [0, p) or (p, 1], 0 < p < 1

Description:

This function applys the profile algorithm described in Section 4.3

Usage:

neighb.xy3p12(vp, x, y, true, tol = 0.001, eps, ...)

Arguments:

vp

x
y
true
tol

eps
...

a vector of the False Positive Rate cutting point for pAUC; vp = (0,
p) or vp = (p, 1)
a sample of test results from non-diseased population
a sample of test results from diseased population
the pAUC to be tested
the maximum distance between the current guess and the current
range on Golden Section Search Optimization method
a smoothing parameter
additional arguments, if any, to pass to the function
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Details:

This function searches the minimum of the empirical likelihood ratio test statis-
tics among the consecutive non-diseased sample points. Since the test statistics is a
piecewise constant function of the quantile for (1 - p), the minimum is easily found
if searching starts at some strategical quantile such as the sample quantile at (1 - p).

Value:

“-2LLR”

Pval

the -2 loglikelihood ratio; approximate chi square distribution
with one degree of freedom under H0

the observed P-value by chi square approximation

Example:

p <- 0.4

rate.x <- 1

rate.y <- 0.25

rp.exp2 <-function(p, rate.x, rate.y)

{

y<- 1- pexp(qexp(1-p, rate=rate.x), rate=rate.y)

y

}

p1 <- 0

p2 <- p

###true pAUC at (0, p)

truepauc <- integrate(rp.exp2 , rate.x, rate.y,lower=p1,upper=p2)$

value

nx <- 50

ny <- 40

x <- rexp(nx , rate.x)

y <- rexp(ny , rate.y)

neighb.xy3p12(vp =c(p1 , p2), x=x, y=y, true=truepauc , tol =0.001 , eps

=1/nx)

Code

neighb.xy3p12 <- function (vp , x, y, true , tol = 0.001, eps , ...)

{

if (vp[1] == 0 & vp[2] > 0 & vp[2] < 1) {

p <- vp[2]

}

if (vp[2] == 1 & vp[1] > 0 & vp[1] < 1) {

p <- vp[1]

}

nx <- length(x)

ny <- length(y)

sortx_w <- myWdataclean2(z = x)

sortedx <- sortx_w$value
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cx <- cumsum(sortx_w$weight/nx)

idex <- ifelse(p < 1, max(which(cx <= 1 - p)), 1)

abs <- data.frame(x = idex)

highx = sortedx[idex]

best <- eltest2step.p12(highx , x = x, y = y, vp = vp , truepauc =

true ,

tol , eps)

neg2.llr <- data.frame(value = best)

ite <- TRUE

while (ite == TRUE) {

neib1 <- idex - 1

if ((idex - 1 > 0) & (!any(abs == neib1))) {

abs <- rbind(abs , neib1)

highx = sortedx[neib1]

neg2.llr <- rbind(neg2.llr , eltest2step.p12(highx ,

x = x, y = y, vp = vp, truepauc = true , tol ,

eps))

}

neib2 <- idex + 1

if ((neib2 <= nx) & (!any(abs == neib2))) {

abs <- rbind(abs , neib2)

highx = sortedx[neib2]

neg2.llr <- rbind(neg2.llr , eltest2step.p12(highx ,

x = x, y = y, vp = vp, truepauc = true , tol ,

eps))

}

if (min(neg2.llr) == best) {

return(list(‘-2LLR ‘ = best , Pval = 1 - pchisq(best ,

df = 1)))

ite <- FALSE

}

else {

best = min(neg2.llr)

idex <- abs$x[which(neg2.llr == best)]

ite <- TRUE

}

}

}

eltest2step.all

Empirical likelihood test for AUC

Description:

Compute the empirical likelihood ratio with AUC fixed at AUC0

Usage:

eltest2step.all(true, x, y, tol)
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Arguments:

x
y
true
tol

a sample of test results from non-diseased population
a sample of test results from diseased population
the AUC to be tested
the maximum distance between the current guess and the current
range on Golden Section Search Optimization method

Details:

This function searches the minimum of the empirical likelihood ratio test statis-
tics among the consecutive non-diseased sample points. Since the test statistics is a
piecewise constant function of the quantile for (1 - p), the minimum is easily found
if searching starts at some strategical quantile such as the sample quantile at (1 - p).

Value:

“-2LLR”

Pval

the -2 loglikelihood ratio; approximate chi square distribution
with one degree of freedom under H0

the observed P-value by chi square approximation

Example:

rate.x <- 1

rate.y <- 0.25

rp.exp2 <-function(p, rate.x, rate.y)

{

y<- 1- pexp(qexp(1-p, rate=rate.x), rate=rate.y)

y

}

p1 <- 0

p2 <- 1

###true AUC

truepauc <- integrate(rp.exp2 , rate.x, rate.y,lower=p1,upper=p2)$

value

nx <- 40

ny <- 30

x <- rexp(nx , rate.x)

y <- rexp(ny , rate.y)

eltest2step.all(x=x, y=y, true=truepauc)

Code

eltest2step.all <- function (true , x, y, tol = 0.001)

{

nx <- length(x)
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ny <- length(y)

est.pauc <- rep(1/nx , nx) %*% mean.whole(x, y) %*% rep(1/ny ,

ny)

search.low <- ifelse ((min(est.pauc , true) - 0.1) > 0, (min(est.

pauc ,

true) - 0.1), 0)

search.high <- ifelse ((max(est.pauc , true) + 0.1) < 1, (max(est.

pauc ,

true) + 0.1), 1)

grat <- (sqrt (5) - 1)/2

d <- grat * (search.high - search.low)

x2 <- search.low + d

x1 <- search.high - d

res1 <- eltest2u.all(x.sample = x, mu = x1 , y, vvec = rep(1/ny ,

ny))

res2 <- eltest2v.all(x.sample = x, mu = true , y, res1$uvec/nx)

fun.x1 <- res1$"-2LLR" + res2$"-2LLR"

res1 <- eltest2u.all(x.sample = x, mu = x2 , y, vvec = rep(1/ny ,

ny))

res2 <- eltest2v.all(x.sample = x, mu = true , y, res1$uvec/nx)

fun.x2 <- res1$"-2LLR" + res2$"-2LLR"

err <- 100

numit <- 0

while (err > tol) {

numit <- numit + 1

if (fun.x1 < fun.x2) {

xopt <- x1

err <- (1 - grat) * abs(( search.high - search.low)/xopt)

if (err > tol) {

search.high <- x2

x2 <- x1

fun.x2 <- fun.x1

d <- grat * (search.high - search.low)

x1 <- search.high - d

res1 <- eltest2u.all(x.sample = x, mu = x1 , y,

vvec = rep(1/ny, ny))

res2 <- eltest2v.all(x.sample = x, mu = true ,

y, res1$uvec/nx)

fun.x1 <- res1$"-2LLR" + res2$"-2LLR"

}

}

else {

xopt <- x2

err <- (1 - grat) * abs(( search.high - search.low)/xopt)

if (err > tol) {

search.low <- x1

x1 <- x2

fun.x1 <- fun.x2

d <- grat * (search.high - search.low)

x2 <- search.low + d

res1 <- eltest2u.all(x.sample = x, mu = x2 , y,

vvec = rep(1/ny, ny))

res2 <- eltest2v.all(x.sample = x, mu = true ,

y, res1$uvec/nx)
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fun.x2 <- res1$"-2LLR" + res2$"-2LLR"

}

}

}

res1 <- eltest2u.all(x.sample = x, mu = xopt , y, vvec = rep(1/ny

,

ny))

res2 <- eltest2v.all(x.sample = x, mu = true , y, res1$uvec/nx)

fun.xopt <- res1$"-2LLR" + res2$"-2LLR"

return(list(‘-2LLR ‘ = fun.xopt , Pval = 1 - pchisq(fun.xopt ,

df = 1)))

}

est.pAUC

Estimate pAUC/AUC by a non-parametric method

Description:

Compute the estimation of pAUC/AUC based on the equation in Detail

Usage:

est.pAUC(x, y, p, ...)

Arguments:

x
y
p

...

a sample of test results from non-diseased population
a sample of test results from diseased population
a vector with two elements: p = (p1, p2) for pAUC at (p1, p2),
0 ≤ p1 < p2 ≤ 1; p = (0, 1) for AUC.
additional arguments, if any, to pass to the function

Details:

the estimation of pAUC is based on equation (3.2).

Value:

the returned value is the estimate of pAUC/AUC

Example:

### An example for pAUC at (0.05 , 0.55)

nx <- 50

rate.x <- 1

ny <- 50
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rate.y <- 0.25

p1 <- 0.05

p2 <- 0.55

eps <- 1/nx

x <- rexp(nx , rate.x)

y <- rexp(ny , rate.y)

est.pAUC(x, y, p=c(p1 , p2), eps=eps)

### An example for pAUC at (0, 0.45)

nx <- 50

ny <- 40

p1 <- 0

p2 <- 0.45

x <- rnorm(nx)

y <- rnorm(ny , 2, 1)

eps <- 1/nx

est.pAUC(x, y, p=c(p1 , p2), eps=eps)

### An example for pAUC at (0.45 , 1)

nx <- 100

ny <- 80

p1 <- 0.45

p2 <- 1

x <- rnorm(nx)

y <- rnorm(ny , 2, 1)

eps <- 1/nx

est.pAUC(x, y, p=c(p1 , p2), eps=eps)

### An example for AUC

nx <- 40

ny <- 30

x <- rnorm(nx)

y <- rnorm(ny , 1, 1)

est.pAUC(x, y, p=c(0, 1))

Code

est.pAUC <- function (x, y, p, ...)

{

sortedx <- x[order(x)]

nx <- length(x)

cx <- cumsum(rep(1/nx , nx))

if (0 < p[1] & p[1] < p[2] & p[2] < 1) {

lowx <- sortedx[max(which(cx <= 1 - p[2]))]

highx <- sortedx[max(which(cx <= 1 - p[1]))]

est <- rep(1/length(x), length(x)) %*% mean.pauc(x = x,

y = y, lowx , highx , ...) %*% rep(1/length(y), length(y))

}

else if (p[1] == 0 & 0 < p[2] & p[2] < 1) {

lowx <- sortedx[max(which(cx <= 1 - p[2]))]

est <- rep(1/length(x), length(x)) %*% mean.paucp2(x = x,

y = y, lowx , ...) %*% rep(1/length(y), length(y))
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}

else if (p[2] == 1 & 0 < p[1] & p[1] < 1) {

highx <- sortedx[max(which(cx <= 1 - p[1]))]

est <- rep(1/length(x), length(x)) %*% mean.paucp1(x = x,

y = y, highx , ...) %*% rep(1/length(y), length(y))

}

else if (p[1] == 0 & p[2] == 1) {

est <- rep(1/length(x), length(x)) %*% mean.whole(x = x,

y = y) %*% rep(1/length(y), length(y))

}

return(est)

}

find.UL

Find the Wilks Confidence Interval from the Given (empirical) Likelihood Ratio
Function

Description:

This program uses simple search to find the upper and lower (Wilks) confidence
limits based on the -2 log likelihood ratio, which the required input fun is supposed
to supply.
Basically, starting from MLE, we search on both directions, by step away from MLE,
until we find values that have -2LLR = level. (the value of -2LLR at MLE is supposed
to be zero.) At current implementation, only handles one dimensional parameter, i.e.
only confidence intervals, not confidence regions

Usage:

find.UL(step = 0.01, initStep = 0, fun, MLE, level = 3.84, ...)

Arguments:

92



step

initStep

fun

MLE

level

. . .

a positive number. The starting step size of the search. Reasonable
value should be about 1/5 of the SD of MLE
a nonnegative number. The first step size of the search. Sometimes,
you may want to put a larger innitStep to speed the search

a function that returns ”-2LLR”, which is the -2 log (empiri-
cal) likelihood ratio.

For pAUC/AUC: x is a non diseased sample; y is a diseased
sample; true is the pAUC/AUC to be tested.
fun=neighb.xy(sp12 = vector(”numeric”,2), x, y, true, tol=.001, eps)
for pAUC at [p1, p2] (p1 and p2 are false positive rates and p1 < p2)
and sp12 = (p1, p2);
neighb.xy3p12(vp, x, y, true, tol = 0.001, eps, ...) for pAUC at (p, 1]
or [0, p). vp = (p, 1) or vp = (0, p), which is chosen based on the
pAUC at (p, 1] or [0, p) accordingly;
fun=eltest2step.all(true, x, y, tol) for AUC.

For trimmed/truncated mean: x is a sample; true is the trimmed/trun-
cated mean to be tested.
fun=neighb(sp12 = vector(”numeric”,2), x, true, eps) for trimmed
mean at (p1, p2) (0 < p1 < p2 < 1), where sp12 = (p1, p2);
fun=neighb.p((p, x, true, eps)) for truncated mean at [0, p)
(0 < p < 1).

In all the above cases, eps is a smoothing parameter. tol is the
maximum distance between the current guess and the current range
on Golden Section Search Optimization method.

The MLE of the parameter. No need to be exact, as long as it
is inside the confidence interval
an optional positive number, controls the confidence level. Default to
3.84 = chisq(0.95, df=1). Change to 2.70=chisq(0.90, df=1) to get a
90% confidence interval
additional arguments, if any, to pass to function

Details:

Basically we repeatedly testing the value of the parameter, until we find those
which the -2 log likelihood value is equal to 3.84 (or other level, if set differently).
If there is no value exactly equal to 3.84, we stop at the value which result a -2 log
likelihood just below 3.84. (as in the discrete case, like quantiles.)

Value:
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Low
Up
FstepL

FstepU
Lvalue

Uvalue

the lower limit of the confidence interval
the upper limit of the confidence interval
the final step size when search lower limit. An indication of the pre-
cision
Ditto. An indication of the precision of the upper limit
The -2LLR value of the final Low value. Should be approximately
equal to level. If larger than level, than the confidence interval limit
Low is wrong.
Ditto. Should be approximately equal to level

Example:

### An example for pAUC at (0.05 , 0.55)

nx <- 50

rate.x <- 1

ny <- 50

rate.y <- 0.25

p1 <- 0.05

p2 <- 0.55

eps <- 1/nx

x <- rexp(nx , rate.x)

y <- rexp(ny , rate.y)

est <- est.pAUC(x, y, p=c(p1 , p2), eps=eps)

find.UL(step =0.01, fun=neighb.xy , sp12=c(p1 , p2), x=x, y=y, MLE=est ,

eps=eps)

### An example for pAUC at [0, 0.45)

nx <- 50

ny <- 40

p1 <- 0

p2 <- 0.45

x <- rnorm(nx)

y <- rnorm(ny , 2, 1)

eps <- 1/nx

est <- est.pAUC(x, y, p=c(p1 , p2), eps=eps)

find.UL(step =0.01, fun=neighb.xy3p12 , vp=c(p1 , p2), MLE=est , x=x, y=

y, eps=eps)

### An example for pAUC at (0.45 , 1]

nx <- 100

ny <- 80

p1 <- 0.45

p2 <- 1

x <- rnorm(nx)

y <- rnorm(ny , 2, 1)

eps <- 1/nx

est <- est.pAUC(x, y, p=c(p1 , p2), eps=eps)

find.UL(step =0.01, fun=neighb.xy3p12 , vp=c(p1 , p2), MLE=est , x=x, y=

y, eps=eps)

### An example for AUC
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nx <- 40

ny <- 30

x <- rnorm(nx)

y <- rnorm(ny , 1, 1)

est <- est.pAUC(x, y, p=c(0, 1))

find.UL(step =0.01, fun=eltest2step.all , MLE=est , x=x, y=y)

### An example of trimmed mean at (0.21 , 0.79)

nsize <- 50

p1<- 0.21

p2<- 0.79

x <- rnorm(nsize)

est <- est.tr.mean(x, p=c(p1 , p2), eps=1/nsize)

find.UL(step =0.01, fun=neighb , sp12=c(p1 , p2), MLE=est , x=x, eps=1/

nsize)

### An example of trunated mean at (0, 0.79)

nsize <- 50

p<- 0.89

x <- rnorm(nsize)

est <- est.tr.mean(x, p, eps=1/nsize)

find.UL(step =0.001 , fun=neighb.p, p=p, MLE=est , x=x, eps=1/nsize)

### An example of Lorenz Curve at (0, 0.89)

nsize <- 500

p<- 0.89

x <- rexp(nsize , rate =0.25)

est <- est.tr.mean(x, p, eps=1/nsize)/mean(x)

find.UL(step =0.001 , fun=neighb.p.lc , p=p, MLE=est , x=x, eps=1/nsize)

Code

find.UL <- function (step = 0.01, initStep = 0, fun , MLE , level =

3.84, ...)

{

value <- 0

step1 <- step

Lbeta <- MLE - initStep

for (i in 1:8) {

while (value < level) {

Lbeta <- Lbeta - step1

val <- fun(true = Lbeta , ...)

value <- val$"-2LLR"

}

Lbeta <- Lbeta + step1

step1 <- step1/10

val <- fun(true = Lbeta , ...)

value <- val$" -2LLR"

}

value1 <- value

value <- 0

Ubeta <- MLE + initStep
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for (i in 1:8) {

while (value < level) {

Ubeta <- Ubeta + step

val <- fun(true = Ubeta , ...)

value <- val$"-2LLR"

}

Ubeta <- Ubeta - step

step <- step/10

val <- fun(true = Ubeta , ...)

value <- val$" -2LLR"

}

if (( value1 > level) | (value > level))

warning("Something wrong. Check the MLE and step inputs.")

return(list(Low = Lbeta , Up = Ubeta , FstepL = step1 , FstepU =

step ,

Lvalue = value1 , Uvalue = value))

}

Internal Functions

Among the 13 internal functions, ”myWdataclean2” is from Barton (2010) and ”my-
fun5” is from r package ’emplik’ by Zhou and Yang (2014). The annotated r codes of
each internal function are as follows:

###################################################################

# myWdataclean2 sorts the data , keeps the individual value , and

# saves the number of tied values as the weights.

###################################################################

myWdataclean2 <-function (z, wt = rep(1, length(z))) {

niceorder <- order(z)

sortedz <- z[niceorder]

sortedw <- wt[niceorder]

n <- length(sortedz)

#y checks for jumps in sortedz using offsets of sortedz

y <- sortedz [-1] != sortedz[-n]

#ind stores jump indices (final index will be n)

ind <- c(which(y | is.na(y)), n)

#csum is cumulative sum of the weights

csumw <- cumsum(sortedw)

#value contains the (unique) obs in sortedz

#weight has the weights of the obs in sortedz

list(value = sortedz[ind], weight = diff(c(0,csumw[ind])))

}

###################################################################

# myfun5 is a function for smoothing the cumulative dist fun

# F(X < theta), eps is the smoothing parameter

###################################################################

myfun5 <- function(x, theta , eps) {

u <- (x-theta)*sqrt (5)/eps

INDE <- (u < sqrt (5)) & (u > -sqrt (5))

u[u >= sqrt (5)] <- 0
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u[u <= -sqrt (5)] <- 1

y <- 0.5 - (u - (u)^3/15)*3/(4*sqrt (5))

u[ INDE ] <- y[ INDE ]

return(u)

}

###################################################################

# mean.pauc is a function for (Y > X)I(lowx < X <= highx)

# mean.pauc returns a maxtrix with dimensions of length(X) by length

(Y)

# mean.pauc calls myfun5

# Y is a diseased sample

# X is a non diseased sample

# [lowx , highx] is X range for the partial AUC

# lowx is the (1 - p2)th quantile of X sample

# high is the (1 - p1)th quantile of X sample

# [p1 , p2] is the range of FPR of the pAUC

###################################################################

mean.pauc <- function(x, lowx , highx , eps , y){

outer(x, y, FUN="<")* ((1- myfun5(x, lowx , eps)) * myfun5(x, highx ,

eps))

}

###################################################################

# eltest2u is a function to call el.test in package "emplik" to

compute -2LLR by

# assuming a fixed mean vector (mu) when Y probability equals to

vvec

# eltest2u also returns X probability that minimizes -2LLR

# ab is a vector with 2 elements for the X range of the partial AUC.

ab[1] < ab[2]

# x.sample is a non diseased sample

# y is a diseased sample

# mu is a vector with 3 elements (1-p2, 1-p1, pAUC)

# vvec is generally assumed as empirical distribution of Y sample.

###################################################################

eltest2u <- function(ab = vector("numeric" ,2), x.sample , mu, y, vvec

, eps )

{

axb <- matrix(c(myfun5(x.sample , ab[1], eps), myfun5(x.sample , ab

[2], eps), mean.pauc(x.sample , ab[1], ab[2], eps , y)%*%vvec),

ncol =3)

all <- el.test(axb , mu)

list(’-2LLR’=all$‘-2LLR ‘, uvec=all$wts)

}

###################################################################

# eltest2v is a function to call el.test in package "emplik" to

compute -2LLR with

# a fixed partial pAUC at X probability equals to uvec

# ab is a vector with 2 elements for the X range of the partial AUC.

ab[1] < ab[2]

# x.sample is a non diseased sample
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# y is a diseased sample

# mu is pAUC

# uvec is generally returned from eltest2u

###################################################################

eltest2v <- function(ab = vector("numeric" ,2), x.sample , mu, y, uvec

, eps )

{

axb <- matrix(uvec%*%mean.pauc(x.sample , ab[1], ab[2], eps , y),

ncol =1)

all <- el.test(axb , mu)

list(’-2LLR’=all$‘-2LLR ‘, vvec=all$wts)

}

###################################################################

# mean.paucp1 is a function for (Y > X)I(X <= highx), which is the

pAUC at [p1, 1]

# mean.paucp1 returns a maxtrix with dimensions of length(X) by

length(Y)

# mean.paucp1 calls myfun5

# Y is a diseased sample

# X is a non diseased sample

# (-\infty , highx] is X range for the partial AUC

# highx is the (1 - p1)th quantile of X sample

###################################################################

mean.paucp1 <- function(x, highx , eps , y){

outer(x, y, FUN=" <=")* myfun5(x, highx , eps)

}

###################################################################

# mean.paucp2 is a function for (Y > X)I(X > lowx), which is the

pAUC at [0, p2]

# mean.paucp2 returns a maxtrix with dimensions of length(X) by

length(Y)

# mean.paucp2 calls myfun5

# Y is a diseased sample

# X is a non diseased sample

# [lowx , \infty) is X range for the partial AUC

# lowx is the (1 - p2)th quantile of X sample

###################################################################

mean.paucp2 <- function(x, lowx , eps , y){

outer(x, y, FUN="<")* (1 - myfun5(x, lowx , eps))

}

###################################################################

# eltest2up12 is a function to call el.test in package "emplik" to

compute -2LLR by

# assuming a fixed mean vector (mu) when Y probability equals to

vvec

# eltest2up12 also returns X probability that minimizes -2LLR

# mean.fun is mean.paucp1 or mean.paucp2 , which is chosen based on

the pAUC at [p1 , 1] or [0, p2]

# mu is a vector with 2 elements (1-p1, pAUC) or (1-p2, pAUC)
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# x.sample is a non diseased sample

# y is a diseased sample

# vvec is generally assumed as empirical distribution of Y sample

# highx is the (1 - p1)th quantile or the (1 - p2)th quantile

###################################################################

eltest2up12 <- function(mean.fun , x.sample , highx , mu, y, vvec , eps ,

... )

{

axb <- matrix(c(myfun5(x.sample , highx , eps), mean.fun(x.sample ,

highx , eps , y)%*%vvec), ncol =2)

all <- el.test(axb , mu)

list(’-2LLR’=all$‘-2LLR ‘, uvec=all$wts)

}

###################################################################

# eltest2vp12 is a function to call el.test in package "emplik" to

compute -2LLR with

# a fixed partial pAUC at X probability equals to uvec

# mean.fun is mean.paucp1 or mean.paucp2 , which is chosen based on

the pAUC at [p1 , 1] or [0, p2]

# x.sample is a non diseased sample

# y is a diseased sample

# mu is pAUC

# uvec is generally returned from eltest2up12

# highx is the (1 - p1)th quantile or the (1 - p2)th quantile

###################################################################

eltest2vp12 <- function(mean.fun , x.sample , highx , mu, y, uvec , eps ,

... )

{

axb <- matrix(uvec%*%mean.fun(x.sample , highx , eps , y), ncol =1)

all <- el.test(axb , mu)

list(’-2LLR’=all$‘-2LLR ‘, vvec=all$wts)

}

###################################################################

# mean.whole is a function for (Y > X), which is the AUC at [0, 1]

# mean.whole returns a matrix with dimensions of length(X) by length

(Y)

# Y is a diseased sample

# X is a non diseased sample

###################################################################

mean.whole <- function(x, y){

outer(x, y, FUN="<")

}

###################################################################

# eltest2u.all is a function to call el.test in package "emplik" to

compute -2LLR by

# assuming a fixed mean AUC (mu) when Y probability equals to vvec

# eltest2u.all also returns X probability that minimizes -2LLR

# mu is the AUC

# x.sample is a non diseased sample

# y is a diseased sample

# vvec is generally assumed as empirical distribution of Y sample
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###################################################################

eltest2u.all <- function(x.sample , mu, y, vvec )

{

all <- el.test(mean.whole(x.sample , y)%*%vvec , mu)

list(’-2LLR’=all$‘-2LLR ‘, uvec=all$wts)

}

###################################################################

# eltest2v.all is a function to call el.test in package "emplik" to

compute -2LLR with

# a fixed pAUC at X probability equals to uvec

# x.sample is a non diseased sample

# y is a diseased sample

# mu is pAUC

# uvec is generally returned from eltest2up12

###################################################################

eltest2v.all <- function(x.sample , mu, y, uvec )

{

axb <- matrix(uvec%*%mean.whole(x.sample , y), ncol =1)

all <- el.test(axb , mu)

list(’-2LLR’=all$‘-2LLR ‘, vvec=all$wts)

}

Copyright c© Yumin Zhao, 2016.
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Chapter 5 Future Work

This dissertation research could be extended in the future as the following:

1. Censoring data, which is the partial known value of a observation, exists in

many situations. For example, in a clinical trial with overall survival as the

end point, we may only know that an alive patient’s survival time (T) is longer

than certain observed number (t) by the end of the clinical trial, i.e., T > t.

Censoring data exists in economics as well, for example, a wealthy family’s

income is usually known as more than a certain number. One of the future

work of this research is to include the censoring data in our inference method

such that we can do the inference on the trimmed mean survival time or the

generalized Lorenz Curve with censoring data.

2. The other future work of this research on Lorenz Curve is to draw the confidence

band of Lorenz Curve and do the statistical inference on Gini index.

3. Diagnostic tests are often influenced by subjects’ age, gender, and other co-

variates. Our analysis in this thesis of pAUC representing the accuracy of a

diagnostic test at some area does not include the influences by covariates. The

future research is to include covariates so that we can do regression analysis on

pAUC.

4. The computation speed of R package ’pAUC’ can be improved if the loops in

R can be written in C.

Copyright c© Yumin Zhao, 2016.
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Appendix

R codes for Simulations in Chapter 2

R code for Figure 2.1

set.seed (123)

maxit <- 400

nsize <- 50

p1<- 0.21

p2<- 0.79

q1 <- qnorm(p1)

q2 <- qnorm(p2)

rp_trim <- function(x){

y <- x*dnorm(x)

y

}

omu_trim <- integrate(rp_trim , lower=q1 , upper=q2)$value

mu_trim <- c(p1 , p2 , omu_trim)

chisq_trim3 <- numeric (0)

chisq_trim1 <- numeric (0)

for (ite in 1: maxit){

x <- rnorm(nsize)

res_trim3 <- eltest(c(q1 , q2), x, mu=mu_trim , eps=1/nsize)

chisq_trim3[ite] <- res_trim3$’-2LLR’

res_trim1 <- neighb(sp12=c(p1 , p2), x=x, true=omu_trim , eps=1/

nsize)

chisq_trim1[ite] <- res_trim1$’-2LLR’

}

par(mfrow = c(1, 2))

plot(qchisq (1: maxit/(maxit +1), df=3), sort(chisq_trim3), xlab="Chisq

(3) Quantiles", ylab="Sorted -2LLR values")

abline(a=0, b=1)

text (1.5, 16, "P=(0.21 , 0.79)", cex =0.85, adj =0)

text (1.5, 14, "X: N(0, 1), N=50", cex =0.85, adj =0)

text (1.5, 12, bquote(paste(H[0], ": ", eq (2.4))), cex =0.85, adj =0)

plot(qchisq (1: maxit/(maxit +1), df=1), sort(chisq_trim1), xlab="Chisq

(1) Quantiles", ylab="Sorted -2LLR values")

abline(a=0, b=1)

text (1.5, 8, "P=(0.21 , 0.79)", cex =0.85, adj =0)

text (1.5, 7, "X: N(0, 1), N=50", cex =0.85, adj =0)

text (1.5, 6, bquote(paste(H[0], ": ", mu[T])), cex =0.85, adj =0)

R code for Figures 2.2 and 2.3

set.seed (123)

maxit <- 800
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nsize <- 500

p<- 0.89

rate <- 0.25

q <- qexp(p, rate)

rp_glc <- function(x){

y <- x*dexp(x, rate =0.25)

y

}

omu_glc <- integrate(rp_glc , lower= 0, upper=q)$value

mu_glc <- c(p, omu_glc)

lc <- omu_glc*rate

chisq_glc2 <- numeric (0)

chisq_glc1 <- numeric (0)

chisq_lc2 <- numeric (0)

chisq_lc1 <- numeric (0)

for (ite in 1: maxit){

x <- rexp(n=nsize , rate=rate)

res_glc2 <- eltest.p(q, x, mu=mu_glc , eps=1/nsize)

chisq_glc2[ite] <- res_glc2$’-2LLR’

res_glc1 <- neighb.p(p, x=x, true=omu_glc , eps=1/nsize)

chisq_glc1[ite] <- res_glc1$’-2LLR’

res_lc2 <- eltest.p.lc(q, x, mu=c(p, lc) , eps=1/nsize)

chisq_lc2[ite] <- res_lc2$’-2LLR’

res_lc1 <- neighb.p.lc(p, x=x, true=lc , eps=1/nsize)

chisq_lc1[ite] <- res_lc1$’-2LLR’

}

par(mfrow = c(1, 2))

plot(qchisq (1:( length(chisq_glc2[chisq_glc2 <50]))/(length(chisq_glc2

[chisq_glc2 <50]) +1),df=2), sort(chisq_glc2[chisq_glc2 <50]) , xlab=

"Chisq (2) Quantiles", ylab="Sorted -2LLR values")

abline(a=0, b=1)

text(6, 3, "P=0.89", cex =0.85, adj =0)

text(6, 2, "X: exp(rate =0.25) , N=500", cex =0.85, adj =0)

text(6, 1, bquote(paste(H[0], ": ", eq (2.17))), cex =0.85, adj =0)

plot(qchisq (1:( length(chisq_glc1[chisq_glc1 <50]))/(length(chisq_glc1

[chisq_glc1 <50]) +1),df=1), sort(chisq_glc1[chisq_glc1 <50]) , xlab=

"Chisq (1) Quantiles", ylab="Sorted -2LLR values")

abline(a=0, b=1)

text(5, 2.6, "P=0.89", cex =0.85, adj =0)

text(5, 1.8, "X: exp(rate =0.25) , N=500", cex =0.85, adj =0)

text(5, 1, bquote(paste(H[0], ": ", GLC[p])), cex =0.85, adj =0)

par(mfrow = c(1, 2))

plot(qchisq (1:( length(chisq_lc2[chisq_lc2 <50]))/(length(chisq_lc2[

chisq_lc2 <50]) +1),df=2), sort(chisq_lc2[chisq_lc2 <50]) , xlab="

Chisq (2) Quantiles", ylab="Sorted -2LLR values")

abline(a=0, b=1)

text (1.4, 14, "P=0.89", cex =0.85, adj =0)

text (1.4, 13, "X: exp(rate =0.25) , N=500", cex =0.85, adj =0)

text (1.4, 12, bquote(paste(H[0], ": eq (2.23)")), cex =0.85, adj =0)
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plot(qchisq (1:( length(chisq_lc1[chisq_lc1 <50]))/(length(chisq_lc1[

chisq_lc1 <50]) +1),df=1), sort(chisq_lc1[chisq_lc1 <50]) , xlab="

Chisq (1) Quantiles", ylab="Sorted -2LLR values")

abline(a=0, b=1)

text (1.5, 11, "P=0.89", cex =0.85, adj =0)

text (1.5, 10, "X: exp(rate =0.25) , N=500", cex =0.85, adj =0)

text (1.5, 9, bquote(paste(H[0], ": ", LC[p])), cex =0.85, adj =0)

R code for Table 2.1

library(pAUC)

trim.mean <- function(maxit =1000, nsize=60, true.m=0, t.scale=1, p1

=0.1, p2=0.9, eps=1/sqrt(nsize)){

all.x <- numeric(nsize)

results <- matrix(NA , maxit , 3)

for (i in 1: maxit){

x <- rlogis(nsize , true.m, t.scale)

niceorder <- order(x)

sortedx <- x[niceorder]

all.x <- cbind(all.x, x)

el.est <- est.tr.mean(x.sample=x, p=c(p1 , p2), eps=eps)

el.ci <- find.UL(step =0.01, initStep=0, fun=neighb , sp12=c(p1 , p2)

, MLE=el.est , x=x, eps=eps , level=qchisq (0.95, 1))

results[i, 1] <- (true.m >= el.ci$Low/(p2 -p1)) & (true.m <= el.ci$

Up/(p2 -p1))

results[i, 2] <- (el.ci$Up - el.ci$Low)/(p2 -p1)

temp <- neighb(sp12=c(p1 , p2), x=x, true=true.m*(p2 -p1), eps=eps)

results[i, 3] <- temp$’-2LLR’

}

return(list(logist.sample=all.x[, 2:1001] , results=results))

}

set.seed (123)

mean40 <- trim.mean(nsize=40, eps=1/sqrt (40))

write.csv(mean40$logist.sample , file="C:/Users/C173518/Downloads/

logist40sample2.csv")

save(mean40 , file="C:/Users/C173518/Downloads/logist40result2.RData"

)

set.seed (123)

mean60 <- trim.mean(nsize=60, eps=1/sqrt (60))

write.csv(mean60$logist.sample , file="C:/Users/C173518/Downloads/

logist60sample2.csv")

save(mean60 , file="C:/Users/C173518/Downloads/logist60result2.RData"

)

set.seed (123)

mean80 <- trim.mean(nsize=80, eps=1/sqrt (80))

write.csv(mean80$logist.sample , file="C:/Users/C173518/Downloads/

logist80sample2.csv")

save(mean80 , file="C:/Users/C173518/Downloads/logist80result2.RData"

)

SAS code for Table 2.1

%macro comp();

%do i=2 %to 1001;
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ods output TrimmedMeans = trm&i WinsorizedMeans = wsm&i;

proc univariate data=two trim =0.1 (type=twosided) winsor =0.1( type=

twosided);

var var&i;

run;

%end;

%mend comp;

%macro trim_winsor(sample =);

dm log ’clear ’ ; dm output ’clear ’;

proc import datafile ="C:\ Users\C173518\Downloads\&sample ..csv"

out=one

dbms=csv replace;

getnames=yes;

run;

data two;

set one;

drop var1;

rename x=var2;

run;

%comp();

data alltrm;

length varname $10;

set trm:;

if LCLMean <=0<= UCLMean then p=1;

else p=0;

l=UCLMean -LCLMean;

run;

data allwsm;

length varname $10;

set wsm:;

if LCLMean <=0<= UCLMean then p=1;

else p=0;

l=UCLMean -LCLMean;

run;

ods pdf style=journal file="C:\ Users\C173518\Downloads\&sample ..pdf

";

title "Winsorized Mean";

proc means data=allwsm;

var p l;

run;

title "Trimmed Mean";

proc means data=alltrm;

var p l;

run;

ods pdf close;

proc datasets library=work;

delete one two alltrm allwsm wsm: trm:;

run;quit;

%mend;

%trim_winsor(sample=logist40sample2);

%trim_winsor(sample=logist60sample2);
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%trim_winsor(sample=logist80sample2);

R code for Figure 2.4

library(pAUC)

library(ggplot2)

cps <- read.csv(file = "C:\\ Users\\ yumin\\ Documents \\ Research \\

succeeded \\cps06.csv", header = TRUE)

cps0 <- subset(cps , HHINCOME >= 0)

indiana <- subset(cps0 , STATECENSUS == ’Indiana ’)

ky <- subset(cps0 , STATECENSUS == ’Kentucky ’)

income.in <- indiana$HHINCOME

income.ky <- ky$HHINCOME

indi <- matrix(NA , nrow=9, ncol =3)

kent <- matrix(NA , nrow=9, ncol =3)

eps.in <- 1/length(income.in)

eps.ky <- 1/length(income.ky)

for (i in 1:9){

p <- i/10;

est.in <- est.tr.mean(income.in , p, eps.in)/mean(income.in)

ul.in <- find.UL(step =0.001 , fun=neighb.p.lc , p=p, MLE=est.in , x=

income.in , eps=eps.in)

indi[i,] <- c(est.in , ul.in$Low , ul.in$Up)

est.ky <- est.tr.mean(income.ky , p, eps.ky)/mean(income.ky)

ul.ky <- find.UL(step =0.001 , fun=neighb.p.lc , p=p, MLE=est.ky , x=

income.ky , eps=eps.ky)

kent[i,] <- c(est.ky , ul.ky$Low , ul.ky$Up)

}

ind <- data.frame(matrix(c(seq(0, 1, 0.1), 0, indi[,1], 1, 0, indi

[,2], 0, 0, indi[,3], 0), ncol=4, dimnames=list(NULL , c(’p’, ’est

’, ’low’, ’up’))))

ken <- data.frame(matrix(c(seq(0, 1, 0.1), 0, kent[,1], 1, 0, kent

[,2], 0, 0, kent[,3], 0), ncol=4, dimnames=list(NULL , c(’p’, ’est

’, ’low’, ’up’))))

ind$state <- rep(’IN’, 11)

ken$state <- rep(’KY’, 11)

all <- rbind(ind , ken)

par(lwd=2)

ggplot(all , aes(x=p, y=est , colour=state , group=state)) + geom_

errorbar(aes(ymin=low , ymax = up), width =0.01) + geom_line() +

geom_point () + ylab(’LC(p)’) + theme_bw() + theme(legend.

justification=c(1,0), legend.position=c(1,0))

R codes for Simulations in Chapter 3

R code for Figure 3.1

set.seed (123)

rp<-function(p, mux , stddx , muy , stddy)

{

y<-1-pnorm(qnorm(1-p, mux , stddx), muy , stddy)

y
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}

#AUC for N(1.2, 0.8) and N(0,1)

auc1 <- integrate(rp , mux=0, stddx=1, muy=1.2, stddy =0.8, lower=0,

upper =1)$value

#AUC for N(2, 1.8) and N(0 ,1.2)

auc2 <- integrate(rp , mux=0, stddx =1.2, muy =2.027 , stddy =1.8, lower

=0,upper =1)$value

x <- seq(0, 1, by =0.01)

c <- qnorm(1-x)

y <- 1 - pnorm(c, 1.2, 0.8)

x1 <- seq(0, 1, by =0.01)

c1 <- qnorm(1-x1 , 0, 1.2)

y1 <- 1 - pnorm(c1 , 2.027, 1.8)

plot(x, y, type=’l’, xlab=’1 - Specificity (FPR)’, ylab=’Sensitivity

(TPR)’ )

abline(a=0, b=1)

lines(x1, y1)

lines(x=c(0.5, 0.5), y=c(0, (1 - pnorm(qnorm (0.5) , 1.2, 0.8))))

lines(x=c(0.7, 0.7), y=c(0, (1 - pnorm(qnorm (0.3) , 1.2, 0.8))))

text(x=0.15, y=0.5, ’A’, cex =0.8)

text(x=0.05, y=0.6, ’B’, cex =0.8)

text(x=0.5, y=0, expression(paste(’p’[1], ’=0.5’)), cex =0.7)

text(x=0.7, y=0, expression(paste(’p’[2], ’=0.7’)), cex =0.7)

R code for Figure 3.2 and Figure 3.3

# A function to compute the test statistics of pAUC(p1, p2) and 0<p1

<p2 <1 based on normal samples

norm.simu.p12 <- function(mux , stddx , nx , muy , stddy , ny , p1 , p2 ,

maxit =1000 , tol=.001 , eps){

rp<-function(p, mux , stddx , muy , stddy)

{

y<-1-pnorm(qnorm(1-p, mux , stddx), muy , stddy)

y

}

truepauc <-integrate(rp, mux=mux , stddx=stddx , muy=muy , stddy=stddy

,lower=p1 ,upper=p2)$value

t1 <- qnorm(1-p2 , mux , stddx)

t2 <- qnorm(1-p1 , mux , stddx)

chisp <- numeric(maxit)

chisp3 <- numeric(maxit)

for (ite in 1: maxit){

x <- rnorm(nx, mux , stddx)

y <- rnorm(ny, muy , stddy)

chisp3[ite] <- eltest2step(x=x, ab=c(t1 , t2), y=y, p1=p1 , p2=p2 ,

truepauc=truepauc , tol , eps)

temp <- neighb.xy(sp12=c(p1 , p2), x=x, y=y, true=truepauc , tol ,

eps)

chisp[ite] <- temp$’-2LLR’

}

return(list(chisp=chisp , chisp3=chisp3))

}
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# A function to compute the test statistics of pAUC[0, p) or pAUC(p,

1] based on normal samples

norm.simu.p_1 <- function(mux , stddx , nx , muy , stddy , ny , p1 , p2 ,

maxit =1000 , tol=.001 , eps){

rp<-function(p, mux , stddx , muy , stddy)

{

y<-1-pnorm(qnorm(1-p, mux , stddx), muy , stddy)

y

}

truepauc <-integrate(rp, mux=mux , stddx=stddx , muy=muy , stddy=stddy

,lower=p1 ,upper=p2)$value

t <- qnorm(1-p1, mux , stddx)

chisp <- numeric(maxit)

chisp2 <- numeric(maxit)

for (ite in 1: maxit){

x <- rnorm(nx, mux , stddx)

y <- rnorm(ny, muy , stddy)

chisp2[ite] <- eltest2step.p12(x=x, t, y=y, vp=c(p1 , p2),

truepauc=truepauc , tol , eps)

temp <- neighb.xy3p12(vp=c(p1 , p2), x=x, y=y, true=truepauc , tol

, eps)

chisp[ite] <- temp$’-2LLR’

}

return(list(chisp=chisp , chisp2=chisp2))

}

# A function to compute the test statistics of pAUC(p1, p2) and 0<p1

<p2 <1 based on exponential samples

norm.simu.p12 <- function(mux , stddx , nx , muy , stddy , ny , p1 , p2 ,

maxit =1000 , tol=.001 , eps){

exp.simu.p12 <- function(rate.x, nx , rate.y, ny , p1 , p2 , maxit =1000 ,

tol =.001, eps){

rp.exp2 <-function(p, rate.x, rate.y)

{

y<- 1- pexp(qexp(1-p, rate=rate.x), rate=rate.y)

y

}

truepauc <- integrate(rp.exp2 , rate.x, rate.y, lower=p1, upper=p2)

$value

t1 <- qexp(1-p2 , rate.x)

t2 <- qexp(1-p1 , rate.x)

chisp <- numeric(maxit)

chisp3 <- numeric(maxit)

for (ite in 1: maxit){

x <- rexp(nx, rate.x)

y <- rexp(ny, rate.y)

chisp3[ite] <- eltest2step(x=x, ab=c(t1 , t2), y=y, p1=p1 , p2=p2 ,

truepauc=truepauc , tol , eps)

temp <- neighb.xy(sp12=c(p1 , p2), x=x, y=y, true=truepauc , tol ,

eps)

chisp[ite] <- temp$’-2LLR’

}
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return(list(chisp=chisp , chisp3=chisp3))

}

# A function to compute the test statistics of pAUC[0, p) or pAUC(p,

1] based on exponential samples

exp.simu.p2 <- function(rate.x, nx , rate.y, ny , p1 , p2 , maxit =1000 ,

tol=.001 , eps){

rp.exp2 <-function(p, rate.x, rate.y)

{

y<- 1- pexp(qexp(1-p, rate=rate.x), rate=rate.y)

y

}

truepauc <- integrate(rp.exp2 , rate.x, rate.y,lower=p1,upper=p2)$

value

t <- qexp(1-p2, rate.x)

chisp <- numeric(maxit)

chisp2 <- numeric(maxit)

for (ite in 1: maxit){

x <- rexp(nx, rate.x)

y <- rexp(ny, rate.y)

chisp2[ite] <- eltest2step.p12(x=x, t, y=y, vp=c(p1 , p2),

truepauc=truepauc , tol , eps)

temp <- neighb.xy3p12(vp=c(p1 , p2), x=x, y=y, true=truepauc , tol

, eps)

chisp[ite] <- temp$’-2LLR’

}

return(list(chisp=chisp , chisp2=chisp2))

}

set.seed (123)

ptm <- proc.time()

chisp_n55_95<-norm.simu.p12(mux=0, stddx=1, nx=95, muy=1, stddy=1,

ny=85, p1=0.55, p2=0.90, maxit =1000, eps=1/sqrt (95))

save(chisp_n55_95, file="chisp_n55_95")

proc.time() - ptm

ptm <- proc.time()

chisp_n60_100 <-norm.simu.p_1(mux=0, stddx=1, nx=100, muy=1, stddy=1,

ny=95, p1=0.55, p2=1, maxit =1000, eps=1/10)

save(chisp_n60_100, file="chisp_n60_100")

proc.time() - ptm

set.seed (123)

ptm <- proc.time()

chisp1exp05_50 <- exp.simu.p12(rate.x=1, nx=75, rate.y=0.25, ny=65,

p1=0.2, p2=0.5, maxit =1000, eps=1/sqrt (75))

save(chisp1exp05_50, file="chisp1exp05_50")

proc.time() - ptm

ptm <- proc.time()

chisp1exp00_45 <- exp.simu.p2(rate.x=1, nx=50, rate.y=0.25, ny=40,

p1=0, p2=0.45, maxit =1000, eps=1/sqrt (50))

save(chisp1exp00_45, file="chisp1exp00_45")
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proc.time() - ptm

############### chi_sqare_2_3.png ###############

par(mfrow=c(2,2), mar=c(2.5, 2.5, 0, 0.5), mgp=c(0.95 , 0.3, 0), cex.

lab=0.75 , cex.axis =0.65 , cex.main =0.65 , tck =0.01)

plot(qchisq (1:1000/(1000+1) ,df=3), sort(chisp1exp05_50$chisp3), xlab

="Chisq (3) Quantiles", ylab="Sorted -2LLR Values")

abline(a=0, b=1)

text (1.5, 10, "P=(0.2, 0.5)", cex =0.75, adj =0)

text (1.5, 9, "X: exp (1), m=75", cex =0.75, adj =0)

text (1.5, 8, "Y: exp (0.25) , n=65", cex =0.75, adj =0)

plot(qchisq (1:1000/(1000+1) ,df=3), sort(chisp_n55_95$chisp3), xlab="

Chisq (3) Quantiles", ylab="Sorted -2LLR Values")

abline(a=0, b=1)

text (1.5, 14, "P=(0.55 , 0.90)", cex =0.75, adj =0)

text (1.5, 13, "X: N(0, 1), m=95", cex =0.75, adj =0)

text (1.5, 12, "Y: N(1, 1), n=85", cex =0.75, adj =0)

plot(qchisq (1:1000/(1000+1) ,df=2), sort(chisp1exp00_45$chisp2), xlab

="Chisq (2) Quantiles", ylab="Sorted -2LLR Values")

abline(a=0, b=1)

text (1.5, 10, "P=(0, 0.45)", cex =0.75, adj =0)

text (1.5, 9, "X: exp (1), m=50", cex =0.75, adj =0)

text (1.5, 8, "Y: exp (0.25) , n=40", cex =0.75, adj =0)

plot(qchisq (1:1000/(1000+1) ,df=2), sort(chisp_n60_100$chisp2), xlab=

"Chisq (2) Quantiles", ylab="Sorted -2LLR Values", ylim=c(0, 20))

abline(a=0, b=1)

text (1.5, 11, "P=(0.55 , 1)", cex =0.75, adj =0)

text (1.5, 10, "X: N(0, 1), m=100", cex =0.75, adj =0)

text (1.5, 9, "Y: N(1, 1), n=95", cex =0.75, adj =0)

########### chi_square_1.png ####################

par(mfrow=c(2,2), mar=c(2.5, 2.5, 0, 0.5), mgp=c(0.95 , 0.3, 0), cex.

lab=0.75 , cex.axis =0.65 , cex.main =0.65 , tck =0.01)

plot(qchisq (1:1000/(1000+1) ,df=1), sort(chisp1exp05_50$chisp), xlab=

"Chisq (1) Quantiles", ylab="Sorted -2LLR Values")

abline(a=0, b=1)

text (1.5, 7.8, "P=(0.2, 0.5)", cex =0.75, adj =0)

text (1.5, 7.2, "X: exp (1), m=75", cex =0.75, adj =0)

text (1.5, 6.6, "Y: exp (0.25) , n=65", cex =0.75, adj =0)

plot(qchisq (1:1000/(1000+1) ,df=1), sort(chisp_n55_95$chisp), xlab="

Chisq (1) Quantiles", ylab="Sorted -2LLR Values")

abline(a=0, b=1)

text (1.5, 12, "P=(0.55 , 0.90)", cex =0.75, adj =0)

text (1.5, 11, "X: N(0, 1), m=95", cex =0.75, adj =0)

text (1.5, 10, "Y: N(1, 1), n=85", cex =0.75, adj =0)
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plot(qchisq (1:1000/(1000+1) ,df=1), sort(chisp1exp00_45$chisp), xlab=

"Chisq (1) Quantiles", ylab="Sorted -2LLR Values")

abline(a=0, b=1)

text (1.5, 10, "P=(0, 0.45)", cex =0.75, adj =0)

text (1.5, 9, "X: exp (1), m=50", cex =0.75, adj =0)

text (1.5, 8, "Y: exp (0.25) , n=40", cex =0.75, adj =0)

plot(qchisq (1:1000/(1000+1) ,df=1), sort(chisp_n60_100$chisp), xlab="

Chisq (1) Quantiles", ylab="Sorted -2LLR Values")

abline(a=0, b=1)

text (1.5, 11, "P=(0.55 , 1)", cex =0.75, adj =0)

text (1.5, 10, "X: N(0, 1), m=100", cex =0.75, adj =0)

text (1.5, 9, "Y: N(1, 1), n=95", cex =0.75, adj =0)

R code for Table 3.1

source(’all_functions_pauc_eps.R’)

###it was used before package ’pAUC ’ is developed ###

ci.cover.norm.0p1 <- function(mux=0, stddx=1, muy=2, stddy=2, nx

=100, ny=100, p1=0, p2=0.7, n.repeat =1000, eps , level =3.84, ...){

rp<-function(p, mux , stddx , muy , stddy)

{

y<-1-pnorm(qnorm(1-p, mux , stddx), muy , stddy)

y

}

truepauc <-integrate(rp, mux=mux , stddx=stddx , muy=muy , stddy=stddy

,lower=p1 ,upper=p2)$value

p <- ifelse(p1==0, p2, p1)

results <- foreach(icount(n.repeat), .combine=cbind , .multicombine

=TRUE , .init=numeric (2)) %dopar% {

x <- rnorm(nx, mux , stddx)

y <- rnorm(ny, muy , stddy)

sortedx <- x[order(x)]

cx<-cumsum(rep(1/nx , nx))

highx <- sortedx[max(which(cx <= 1- p ))]

if (p1==0) {

est <- rep(1/nx , nx)%*%mean.paucp2(x=x, lowx=highx , eps=eps ,

y=y)%*% rep(1/ny , ny)

} else {

est <- rep(1/nx , nx)%*% mean.paucp1(x=x, highx=highx , eps=eps

, y=y) %*% rep(1/ny , ny)

}

if (p1==0) {

res.ci <- find.UL(step =0.01 , fun=neighb.xy3p12 , mean.fun=mean.

paucp2 , p=p, nx=nx , x=x, ny=ny , y=y, MLE=est , eps=eps ,

level=level)

} else {

res.ci <- find.UL(step =0.01 , fun=neighb.xy3p12 , mean.fun=mean.

paucp1 , p=p, nx=nx , x=x, ny=ny , y=y, MLE=est , eps=eps ,

level=level)

}

prob <- (truepauc >= res.ci$Low & truepauc <= res.ci$Up)

ci.length <- res.ci$Up - res.ci$Low

c(prob , ci.length)

}
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return(results)

}

###the above function will be as the following after package ’pAUC ’

is developed ###

ci.cover.norm.0p1 <- function(mux=0, stddx=1, muy=2, stddy=2, nx

=100, ny=100, p1=0, p2=0.7, n.repeat =1000, eps , level =3.84, ...){

rp<-function(p, mux , stddx , muy , stddy)

{

y<-1-pnorm(qnorm(1-p, mux , stddx), muy , stddy)

y

}

truepauc <-integrate(rp, mux=mux , stddx=stddx , muy=muy , stddy=stddy

,lower=p1 ,upper=p2)$value

results <- foreach(icount(n.repeat), .combine=cbind , .multicombine

=TRUE , .init=numeric (2)) %dopar% {

x <- rnorm(nx, mux , stddx)

y <- rnorm(ny, muy , stddy)

est <- est.pAUC (x, y, p=c(p1 , p2), eps=eps)

res.ci <- find.UL(step =0.01 , fun = neighb.xy3p12 , vp=c(p1 , p2),

MLE =est , x=x, y=y, eps =eps )

prob <- (truepauc >= res.ci$Low & truepauc <= res.ci$Up)

ci.length <- res.ci$Up - res.ci$Low

c(prob , ci.length)

}

return(results)

}

############### pAUC at [0, 0.1)

M <-20

library(doMC)

registerDoMC(M)

library(emplik)

RNGkind("L’Ecuyer -CMRG")

set.seed (123)

## start M workers

s <- .Random.seed

for (i in 1:M) {

s <- nextRNGStream(s)

# send s to worker i as .Random.seed

}

norm.ci0p1 .100.100 <- ci.cover.norm.0p1( nx=100, ny=100, p1=0, p2

=0.1, n.repeat =1000, eps=1/100)

save.image(norm.ci0p1 .100.100 , file=’norm.ci0p1 .100.100. RData’,

version = NULL , ascii = TRUE , compress=FALSE)

norm.ci0p1 .50.50 <- ci.cover.norm.0p1(nx=50, ny=50, p1=0, p2=0.1, n.

repeat =1000, eps=1/50)

save.image(norm.ci0p1 .50.50 , file=’norm.ci0p1 .50.50. RData’, version

= NULL , ascii = TRUE , compress=FALSE)

norm.ci0p1 .30.30 <- ci.cover.norm.0p1( nx=30, ny=30, p1=0, p2=0.1, n

.repeat =1000 , eps=1/30)

save.image(norm.ci0p1 .30.30 , file=’norm.ci0p1 .30.30. RData’, version

= NULL , ascii = TRUE , compress=FALSE)

norm.ci0p1 .50.30 <- ci.cover.norm.0p1(nx=50, ny=30, p1=0, p2=0.1, n.

repeat =1000, eps=1/50)
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save.image(norm.ci0p1 .50.30 , file=’norm.ci0p1 .50.30. RData’, version

= NULL , ascii = TRUE , compress=FALSE)

norm.ci0p1 .80.50 <- ci.cover.norm.0p1(nx=80, ny=50, p1=0, p2=0.1, n.

repeat =1000, eps=1/80)

save.image(norm.ci0p1 .80.50 , file=’norm.ci0p1 .80.50. RData’, version

= NULL , ascii = TRUE , compress=FALSE)

############### pAUC at [0, 0.7)

M <-20

library(doMC)

registerDoMC(M)

library(emplik)

RNGkind("L’Ecuyer -CMRG")

set.seed (123)

## start M workers

s <- .Random.seed

for (i in 1:M) {

s <- nextRNGStream(s)

# send s to worker i as .Random.seed

}

norm.ci0p7 .100.100 <- ci.cover.norm.0p1( nx=100, ny=100, p1=0, p2

=0.7, n.repeat =1000, eps=1/100)

save.image(norm.ci0p7 .100.100 , file=’norm.ci0p7 .100.100. RData’,

version = NULL , ascii = TRUE , compress=FALSE)

norm.ci0p7 .50.50 <- ci.cover.norm.0p1(nx=50, ny=50, p1=0, p2=0.7, n.

repeat =1000, eps=1/50)

save.image(norm.ci0p7 .50.50 , file=’norm.ci0p7 .50.50. RData’, version

= NULL , ascii = TRUE , compress=FALSE)

norm.ci0p7 .30.30 <- ci.cover.norm.0p1( nx=30, ny=30, p1=0, p2=0.7, n

.repeat =1000 , eps=1/30)

save.image(norm.ci0p7 .30.30 , file=’norm.ci0p7 .30.30. RData’, version

= NULL , ascii = TRUE , compress=FALSE)

norm.ci0p7 .50.30 <- ci.cover.norm.0p1(nx=50, ny=30, p1=0, p2=0.7, n.

repeat =1000, eps=1/50)

save.image(norm.ci0p7 .50.30 , file=’norm.ci0p7 .50.30. RData’, version

= NULL , ascii = TRUE , compress=FALSE)

norm.ci0p7 .80.50 <- ci.cover.norm.0p1(nx=80, ny=50, p1=0, p2=0.7, n.

repeat =1000, eps=1/80)

save.image(norm.ci0p7 .80.50 , file=’norm.ci0p7 .80.50. RData’, version

= NULL , ascii = TRUE , compress=FALSE)

############### pAUC at (0.05 , 0.5)

M <-20

library(doMC)

registerDoMC(M)

library(emplik)

RNGkind("L’Ecuyer -CMRG")

set.seed (123)

## start M workers

s <- .Random.seed

for (i in 1:M) {

s <- nextRNGStream(s)

# send s to worker i as .Random.seed
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}

###it was used before package ’pAUC ’ is developed ###

ci.cover.norm.p12 <- function(mux=0, stddx=1, muy=2, stddy=2, nx

=100, ny=100, p1=0.05, p2=0.5, n.repeat =1000, eps ,...){

rp<-function(p, mux , stddx , muy , stddy)

{

y<-1-pnorm(qnorm(1-p, mux , stddx), muy , stddy)

y

}

truepauc <-integrate(rp, mux=mux , stddx=stddx , muy=muy , stddy=stddy

,lower=p1 ,upper=p2)$value

results <- foreach(icount(n.repeat), .combine=cbind , .multicombine

=TRUE , .init=numeric (2)) %dopar% {

x <- rnorm(nx, mux , stddx)

y <- rnorm(ny, muy , stddy)

sortedx <- x[order(x)]

cx<-cumsum(rep(1/nx , nx))

lowx <- sortedx[max(which(cx <= 1- p2))]

highx <- sortedx[max(which(cx <= 1- p1 ))]

est <- rep(1/nx , nx)%*% mean.pauc(x=x, lowx=lowx , highx=highx ,

eps=eps , y=y)%*% rep(1/ny , ny)

res.ci <- find.UL(step =0.01 , fun=neighb.xy , sp12=c(p1 , p2), MLE=

est , nx=nx , x=x, ny=ny , y=y, eps=eps)

prob <- (truepauc >= res.ci$Low & truepauc <= res.ci$Up)

ci.length <- res.ci$Up - res.ci$Low

c(prob , ci.length)

}

return(results)

}

###the above function will be as the following after package ’pAUC ’

is developed ###

ci.cover.norm.p12 <- function(mux=0, stddx=1, muy=2, stddy=2, nx

=100, ny=100, p1=0.05, p2=0.5, n.repeat =1000, eps ,...){

rp<-function(p, mux , stddx , muy , stddy)

{

y<-1-pnorm(qnorm(1-p, mux , stddx), muy , stddy)

y

}

truepauc <-integrate(rp, mux=mux , stddx=stddx , muy=muy , stddy=stddy

,lower=p1 ,upper=p2)$value

results <- foreach(icount(n.repeat), .combine=cbind , .multicombine

=TRUE , .init=numeric (2)) %dopar% {

x <- rnorm(nx, mux , stddx)

y <- rnorm(ny, muy , stddy)

est <- est.pAUC(x, y, p=c(p1 , p2), eps=eps)

res.ci <- find.UL( step =0.01 , fun = neighb.xy , sp12 =c(p1 , p2),

x=x, y=y, MLE =est , eps=eps )

prob <- (truepauc >= res.ci$Low & truepauc <= res.ci$Up)

ci.length <- res.ci$Up - res.ci$Low

c(prob , ci.length)

}

return(results)

}
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norm.ci .100.100 <- ci.cover.norm.p12( nx=100, ny=100, p1=0.05, p2

=0.5, n.repeat =1000, eps=1/100)

save.image(norm.ci.100.100 , file=’norm.ci .100.100. RData’, version =

NULL , ascii = TRUE , compress=FALSE)

norm.ci .50.50 <- ci.cover.norm.p12(nx=50, ny=50, p1=0.05, p2=0.5, n.

repeat =1000, eps=1/50)

save.image(norm.ci.50.50 , file=’norm.ci .50.50. RData’, version = NULL

, ascii = TRUE , compress=FALSE)

norm.ci .30.30 <- ci.cover.norm.p12( nx=30, ny=30, p1=0.05, p2=0.5, n

.repeat =1000 , eps=1/30)

save.image(norm.ci.30.30 , file=’norm.ci .30.30. RData’, version = NULL

, ascii = TRUE , compress=FALSE)

ptm <- proc.time()

norm.ci .50.30 <- ci.cover.norm.p12(nx=50, ny=30, p1=0.05, p2=0.5, n.

repeat =1000, eps=1/50)

proc.time() - ptm

save.image(norm.ci.50.30 , file=’norm.ci .50.30. RData’, version = NULL

, ascii = TRUE , compress=FALSE)

norm.ci .80.50 <- ci.cover.norm.p12(nx=80, ny=50, p1=0.05, p2=0.5, n.

repeat =1000, eps=1/80)

save.image(norm.ci.80.50 , file=’norm.ci .80.50. RData’, version = NULL

, ascii = TRUE , compress=FALSE)

R code for Table 3.2

###it was used before package ’pAUC ’ is developed ###

ci.cover.exp.0p1 <- function(rate.x=1, rate.y=0.25, nx=100, ny=100,

p1=0.05, p2=0.5, n.repeat =1000, eps , level =3.84, ...){

rp.exp2 <-function(p, rate.x, rate.y)

{

y<- 1- pexp(qexp(1-p, rate=rate.x), rate=rate.y)

y

}

truepauc <- integrate(rp.exp2 , rate.x, rate.y,lower=p1, upper=p2)$

value

p <- ifelse(p1==0, p2, p1)

results <- foreach(icount(n.repeat), .combine=cbind , .multicombine

=TRUE , .init=numeric (2)) %dopar% {

x <- rexp(nx, rate.x)

y <- rexp(ny, rate.y)

sortedx <- x[order(x)]

cx<-cumsum(rep(1/nx , nx))

highx <- sortedx[max(which(cx <= 1- p ))]

if (p1==0) {

est <- rep(1/nx , nx)%*%mean.paucp2(x=x, lowx=highx , eps=eps ,

y=y)%*% rep(1/ny , ny)

} else {

est <- rep(1/nx , nx)%*% mean.paucp1(x=x, highx=highx , eps=eps

, y=y) %*% rep(1/ny , ny)

}

if (p1==0) {

res.ci <- find.UL(step =0.01 , fun=neighb.xy3p12 , mean.fun=mean.

paucp2 , p=p, nx=nx , x=x, ny=ny , y=y, MLE=est , eps=eps ,

level=level)

} else {
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res.ci <- find.UL(step =0.01 , fun=neighb.xy3p12 , mean.fun=mean.

paucp1 , p=p, nx=nx , x=x, ny=ny , y=y, MLE=est , eps=eps ,

level=level)

}

prob <- (truepauc >= res.ci$Low & truepauc <= res.ci$Up)

ci.length <- res.ci$Up - res.ci$Low

c(prob , ci.length)

}

return(results)

}

###the above function will be as the following after package ’pAUC ’

is developed ###

ci.cover.exp.0p1 <- function(rate.x=1, rate.y=0.25, nx=100, ny=100,

p1=0.05, p2=0.5, n.repeat =1000, eps , level =3.84, ...){

rp.exp2 <-function(p, rate.x, rate.y)

{

y<- 1- pexp(qexp(1-p, rate=rate.x), rate=rate.y)

y

}

truepauc <- integrate(rp.exp2 , rate.x, rate.y,lower=p1, upper=p2)$

value

results <- foreach(icount(n.repeat), .combine=cbind , .multicombine

=TRUE , .init=numeric (2)) %dopar% {

x <- rexp(nx, rate.x)

y <- rexp(ny, rate.y)

est <- est.pAUC (x, y, p=c(p1 , p2), eps=eps)

res.ci <- find.UL(step =0.01 , fun = neighb.xy3p12 , vp=c(p1 , p2),

MLE =est , x=x, y=y, eps =eps )

prob <- (truepauc >= res.ci$Low & truepauc <= res.ci$Up)

ci.length <- res.ci$Up - res.ci$Low

c(prob , ci.length)

}

return(results)

}

############### pAUC at [0, 0.1)

M <-20

library(doMC)

registerDoMC(M)

library(emplik)

RNGkind("L’Ecuyer -CMRG")

set.seed (123)

## start M workers

s <- .Random.seed

for (i in 1:M) {

s <- nextRNGStream(s)

# send s to worker i as .Random.seed

}

exp.ci0p1 .100.100 <- ci.cover.exp.0p1(rate.x=1, rate.y=0.25 , nx=100,

ny=100, p1=0, p2=0.1, n.repeat =1000, eps=1/100)

save.image(exp.ci0p1 .100.100 , file=’exp.ci0p1 .100.100. RData’,

version = NULL , ascii = TRUE , compress=FALSE)

exp.ci0p1 .50.50 <- ci.cover.exp.0p1(rate.x=1, rate.y=0.25 , nx=50, ny

=50, p1=0, p2=0.1, n.repeat =1000, eps=1/50)
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save.image(exp.ci0p1 .50.50 , file=’exp.ci0p1 .50.50. RData’, version =

NULL , ascii = TRUE , compress=FALSE)

exp.ci0p1 .30.30 <- ci.cover.exp.0p1(rate.x=1, rate.y=0.25 , nx=30, ny

=30, p1=0, p2=0.1, n.repeat =1000, eps=1/30)

save.image(exp.ci0p1 .30.30 , file=’exp.ci0p1 .30.30. RData’, version =

NULL , ascii = TRUE , compress=FALSE)

exp.ci0p1 .50.30 <- ci.cover.exp.0p1(rate.x=1, rate.y=0.25 , nx=50, ny

=30, p1=0, p2=0.1, n.repeat =1000, eps=1/50)

save.image(exp.ci0p1 .50.30 , file=’exp.ci0p1 .50.30. RData’, version =

NULL , ascii = TRUE , compress=FALSE)

exp.ci0p1 .80.50 <- ci.cover.exp.0p1(rate.x=1, rate.y=0.25 , nx=80, ny

=50, p1=0, p2=0.1, n.repeat =1000, eps=1/80)

save.image(exp.ci0p1 .80.50 , file=’exp.ci0p1 .80.50. RData’, version =

NULL , ascii = TRUE , compress=FALSE)

############### pAUC at [0, 0.7)

M <-20

library(doMC)

registerDoMC(M)

library(emplik)

RNGkind("L’Ecuyer -CMRG")

set.seed (123)

## start M workers

s <- .Random.seed

for (i in 1:M) {

s <- nextRNGStream(s)

# send s to worker i as .Random.seed

}

exp.ci0p7 .100.100 <- ci.cover.exp.0p1(rate.x=1, rate.y=0.25 , nx=100,

ny=100, p1=0, p2=0.7, n.repeat =1000, eps=1/100)

save.image(exp.ci0p7 .100.100 , file=’exp.ci0p7 .100.100. RData’,

version = NULL , ascii = TRUE , compress=FALSE)

exp.ci0p7 .50.50 <- ci.cover.exp.0p1(rate.x=1, rate.y=0.25 , nx=50, ny

=50, p1=0, p2=0.7, n.repeat =1000, eps=1/50)

save.image(exp.ci0p7 .50.50 , file=’exp.ci0p7 .50.50. RData’, version =

NULL , ascii = TRUE , compress=FALSE)

exp.ci0p7 .30.30 <- ci.cover.exp.0p1(rate.x=1, rate.y=0.25 , nx=30, ny

=30, p1=0, p2=0.7, n.repeat =1000, eps=1/30)

save.image(exp.ci0p7 .30.30 , file=’exp.ci0p7 .30.30. RData’, version =

NULL , ascii = TRUE , compress=FALSE)

exp.ci0p7 .50.30 <- ci.cover.exp.0p1(rate.x=1, rate.y=0.25 , nx=50, ny

=30, p1=0, p2=0.7, n.repeat =1000, eps=1/50)

save.image(exp.ci0p7 .50.30 , file=’exp.ci0p7 .50.30. RData’, version =

NULL , ascii = TRUE , compress=FALSE)

exp.ci0p7 .80.50 <- ci.cover.exp.0p1(rate.x=1, rate.y=0.25 , nx=80, ny

=50, p1=0, p2=0.7, n.repeat =1000, eps=1/80)

save.image(exp.ci0p7 .80.50 , file=’exp.ci0p7 .80.50. RData’, version =

NULL , ascii = TRUE , compress=FALSE)

############### pAUC at (0.05 , 0.5)

###it was used before package ’pAUC ’ is developed ###

ci.cover.exp.p12 <- function(rate.x=1, rate.y=0.25, nx=100, ny=100,

p1=0.05, p2=0.5, n.repeat =1000, eps ,...){
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rp.exp2 <-function(p, rate.x, rate.y)

{

y<- 1- pexp(qexp(1-p, rate=rate.x), rate=rate.y)

y

}

truepauc <- integrate(rp.exp2 , rate.x, rate.y,lower=p1, upper=p2)$

value

results <- foreach(icount(n.repeat), .combine=cbind , .multicombine

=TRUE , .init=numeric (2)) %dopar% {

x <- rexp(nx, rate.x)

y <- rexp(ny, rate.y)

sortedx <- x[order(x)]

cx<-cumsum(rep(1/nx , nx))

lowx <- sortedx[max(which(cx <= 1- p2))]

highx <- sortedx[max(which(cx <= 1- p1 ))]

est <- rep(1/nx , nx)%*% mean.pauc(x=x, lowx=lowx , highx=highx ,

eps=eps , y=y)%*% rep(1/ny , ny)

res.ci <- find.UL(step =0.01 , fun=neighb.xy , sp12=c(p1 , p2), MLE=

est , nx=nx , x=x, ny=ny , y=y, eps=eps)

prob <- (truepauc >= res.ci$Low & truepauc <= res.ci$Up)

ci.length <- res.ci$Up - res.ci$Low

c(prob , ci.length)

}

return(results)

}

###the above function will be as the following after package ’pAUC ’

is developed ###

ci.cover.exp.p12 <- function(rate.x=1, rate.y=0.25, nx=100, ny=100,

p1=0.05, p2=0.5, n.repeat =1000, eps ,...){

rp.exp2 <-function(p, rate.x, rate.y)

{

y<- 1- pexp(qexp(1-p, rate=rate.x), rate=rate.y)

y

}

truepauc <- integrate(rp.exp2 , rate.x, rate.y,lower=p1, upper=p2)$

value

results <- foreach(icount(n.repeat), .combine=cbind , .multicombine

=TRUE , .init=numeric (2)) %dopar% {

x <- rexp(nx, rate.x)

y <- rexp(ny, rate.y)

est <- est.pAUC(x, y, p=c(p1 , p2), eps=eps)

res.ci <- find.UL( step =0.01 , fun = neighb.xy , sp12 =c(p1 , p2),

x=x, y=y, MLE =est , eps=eps )

prob <- (truepauc >= res.ci$Low & truepauc <= res.ci$Up)

ci.length <- res.ci$Up - res.ci$Low

c(prob , ci.length)

}

return(results)

}

M <-20

library(doMC)

registerDoMC(M)

library(emplik)

RNGkind("L’Ecuyer -CMRG")
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set.seed (123)

## start M workers

s <- .Random.seed

for (i in 1:M) {

s <- nextRNGStream(s)

# send s to worker i as .Random.seed

}

exp.ci .100.100 <- ci.cover.exp.p12(rate.x=1, rate.y=0.25 , nx=100, ny

=100, p1=0.05, p2=0.5, n.repeat =1000, eps=1/100)

save.image(exp.ci.100.100 , file=’exp.ci .100.100. RData’, version =

NULL , ascii = TRUE , compress=FALSE)

exp.ci .50.50 <- ci.cover.exp.p12(rate.x=1, rate.y=0.25 , nx=50, ny

=50, p1=0.05, p2=0.5, n.repeat =1000, eps=1/50)

save.image(exp.ci.50.50 , file=’exp.ci .50.50. RData’, version = NULL ,

ascii = TRUE , compress=FALSE)

exp.ci .30.30 <- ci.cover.exp.p12(rate.x=1, rate.y=0.25 , nx=30, ny

=30, p1=0.05, p2=0.5, n.repeat =1000, eps=1/30)

save.image(exp.ci.30.30 , file=’exp.ci .30.30. RData’, version = NULL ,

ascii = TRUE , compress=FALSE)

exp.ci .50.30 <- ci.cover.exp.p12(rate.x=1, rate.y=0.25 , nx=50, ny

=30, p1=0.05, p2=0.5, n.repeat =1000, eps=1/50)

save.image(exp.ci.50.30 , file=’exp.ci .50.30. RData’, version = NULL ,

ascii = TRUE , compress=FALSE)

exp.ci .80.50 <- ci.cover.exp.p12(rate.x=1, rate.y=0.25 , nx=80, ny

=50, p1=0.05, p2=0.5, n.repeat =1000, eps=1/80)

save.image(exp.ci.80.50 , file=’exp.ci .80.50. RData’, version = NULL ,

ascii = TRUE , compress=FALSE)

R codes for Simulations in Chapter 4

R code for Figure 4.1

myfun5 <- function(x, theta , eps) {

u <- (x-theta)*sqrt (5)/eps

INDE <- (u < sqrt (5)) & (u > -sqrt (5))

u[u >= sqrt (5)] <- 0

u[u <= -sqrt (5)] <- 1

y <- 0.5 - (u - (u)^3/15)*3/(4*sqrt (5))

u[ INDE ] <- y[ INDE ]

return(u)

}

theta <- 0;

eps <- 0.6

x <- seq ( -1.8 , 1.8 , 0.1)

plot (x, myfun5 (x, theta , eps ), type =’l’, xlim =c(-2, 2) , ylim

=c( -0.5, 1.5) , xlab =’x’, ylab = expression ( paste ( bold (I),

epsilon , "(x, x*)")))

lines (x=c( -0.6 , -0.6) , y=c( -0.3 , 1.3) , lty =2)

lines (x=c(0.6 , 0.6) , y=c( -0.3 , 1.3) , lty =2)

text (x= -0.6 , y= -0.45 , expression ( paste (’x = x’, ’*’, ’ - ’,

epsilon )), cex =0.8)
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text (x=0.6 , y= -0.45 , expression ( paste (’x = x’, ’*’, ’ + ’,

epsilon )), cex =0.8)

text (x=1, y=1, expression ( paste (’x*’==0) ), cex =0.8)

text (x=1.02 , y=0.8 , expression ( paste ( epsilon == 0.6) ), cex

=0.8)

R code for Figure 4.2

*****************************************************************

The following R codes call the internal functions ’eltest2u ’ and

’eltest2v ’ of package ’pAUC’

*****************************************************************

set.seed (2)

omu <- 0

p1 <- 0.2

p2 <- 0.6

muy <-1

stddy <-1

rp<-function(p,muy ,stddy)

{

y<-1-pnorm(qnorm(1-p),muy ,stddy)

y

}

truepauc <-integrate(rp, muy=muy ,stddy=stddy ,lower=p1,upper=p2)$value

nx <- 50

ny <- 45

x <- rnorm(nx , omu , 1)

y <- rnorm(ny , muy , stddy)

sortedx <- x[order(x)]

cx<-cumsum(rep(1/nx , nx))

sp12 = c(p1 , p2)

idex1 <- max(which(cx <=1- sp12 [2] ))

idex2 <- max(which(cx <=1- sp12 [1] ))

ab <- sortedx[c(idex1 , idex2)]

est.pauc <- rep(1/nx , nx)%*% mean.pauc(x, ab[1], ab[2], eps=1/nx , y)

%*% rep(1/ny, ny)

search.low <- ifelse ((min(est.pauc , truepauc) -0.1) >0, (min(est.pauc

, truepauc) -0.1), 0)

search.high <- ifelse ((max(est.pauc , truepauc)+0.1) <1 , (max(est.

pauc , truepauc)+0.1), 1)

temp.pauc <- seq(search.low ,search.high , length.out =30)

res.plot <- numeric (30)

for (i in 1:30){

res1p <- eltest2u(ab, x.sample=x, mu=c(1-p2, 1-p1, temp.pauc[i]),

y, vvec=rep(1/ny , ny), eps=1/nx)

res2p <- eltest2v(ab, x.sample=x, mu=truepauc , y, res1p$uvec/nx,

eps=1/nx)

res.plot[i] <- res1p$"-2LLR" + res2p$"-2LLR"

}

par(mfrow = c(1, 1), mar = c(3, 3.5, 1, 0.5), mgp = c(2, 0.7, 0),

cex.lab = 0.95, cex.axis = 0.85, cex.main =0.65)

plot(temp.pauc , res.plot , ylim=c(0, 100), ylab="sum of -2LLR from

steps 1 and 2")

points(est.pauc , 0, pch =6)

points(truepauc , 0, pch =17)
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legend(temp.pauc [20], 25, pch=c(6, 17), legend=c(’est. pAUC’, ’true

pAUC’), bty=’n’, cex =0.85)

R code for Figure 4.3

set.seed (5)

omu <- 0

p1 <- 0.2

p2 <- 0.8

mu <- c(p1 , p2 , omu)

nx <- 200

x <- rnorm(nx , omu , 1)

p <- 0.15

#p is a number chosen to search a among samples in (p1-p, p1+p),

search b among samples in (p2 -p, p2+p)

sortedx <- x[order(x)]

cx<-cumsum(rep(1/nx , nx))

ax <- sortedx[which((cx >= p1 - p) & (cx <= p1 + p))]

bx <- sortedx[which((cx >= p2 - p) & (cx <= p2 + p))]

nax <- length(ax)

nbx <- length(bx)

results <- matrix(NA , nrow=nax , ncol=nbx)

for (i in 1:nax){

for (j in 1:nbx){

axb <- matrix(c(as.vector(x < ax[i] ), as.vector(x < bx[j]), as.

vector(x*(x >= ax[i] & x <= bx[j]))), ncol =3)

all <- el.test(axb , mu)

results[i, j] <- all$‘-2LLR ‘

}

}

persp(ax, bx, (-1)*results , theta =30, phi=30, ticktype="detailed")

ab <- which(results ==min(results), arr.ind = TRUE)

res <- persp(ax , bx , (-1)*results , theta=30, phi=30, ticktype="

detailed")

points(trans3d(ax[ab[1]], bx[ab[2]], (-1)*results[ab[1], ab[2]],

pmat=res), col=’red’, pch =16)

Copyright c© Yumin Zhao, 2016.
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