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ABSTRACT OF DISSERTATION

INFORMATIONAL INDEX AND ITS APPLICATIONS IN HIGH

DIMENSIONAL DATA

We introduce a new class of measures for testing independence between two ran-
dom vectors, which uses expected difference of conditional and marginal characteristic
functions. By choosing a particular weight function in the class, we propose a new
index for measuring independence and study its property. Two empirical versions are
developed, their properties, asymptotics, connection with existing measures and ap-
plications are discussed. Implementation and Monte Carlo results are also presented.

We propose a two-stage sufficient variable selections method based on the new
index to deal with large p small n data. The method does not require model specifi-
cation and especially focuses on categorical response. Our approach always improves
other typical screening approaches which only use marginal relation. Numerical stud-
ies are provided to demonstrate the advantages of the method.

We introduce a novel approach to sufficient dimension reduction problems using
the new measure. The proposed method requires very mild conditions on the predic-
tors, estimates the central subspace effectively and is especially useful when response
is categorical. It keeps the model-free advantage without estimating link function.
Under regularity conditions, root-n consistency and asymptotic normality are estab-
lished. The proposed method is very competitive and robust comparing to existing
dimension reduction methods through simulations results.
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lection, Sufficient dimension reduction
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Chapter 1 Introduction

1.1 Introduction

With the fast growing ability of doing computation and the decreasing cost to collect

data, nowadays, more and more data with high volume and complexity appear in var-

ious fields. For example in microarray gene expression data, there may be thousands

of predictor variables. Similar or more complex data appears in financial or network

area as well. Traditional methods could not be used directly to deal with data that

are of high volume and dimensionality. Facing this challenge, many new methods are

developed in Statistics to discover the hidden relationship among data. The way we

build models, do estimation and predictions have also changed. In this dissertation,

we propose new measures to do independence test and use such measures in two ap-

plications of sufficient variable selection and sufficient dimension reduction for high

dimensional data.

The Importance to Measure and Test Independence

Measuring and testing independence between variables is important in statistics.

Classical Pearson product-moment correlation and covariance measure linear depen-

dence between two random variables. In multivariate normal case, a diagonal covari-

ance matrix implies independence, but not in general case. Likelihood-based methods

such as Wilks’ Lambda (Wilks, 1935) or Puri and Sen (1993) are not applicable if di-

mension exceeds sample size, or distributional assumptions do not hold. Multivariate

nonparametric approaches are discussed by Taskinen et al. (2005). Rich literature

exists on measuring independence. For instance, Blomqvist (1950), Blum et al. (1961)

or other methods, see Hollander and Wolfe (1999) and Anderson (2003). A novel dis-

tance covariance (dCov, Székely et al., 2007), for testing independence between two

random vectors of arbitrary dimensions is very useful, as it is nonparametric but free

of tuning parameters. The work of dCov has opened new research such as in Shao
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and Zhang (2014), and has been used widely in other areas as well, for instance, in

variable selection (Li et al., 2012b) and dimension reduction (Sheng and Yin, 2013,

2016). Huo and Székely (2016) developed a fast algorithm for dCov. Heller et al.

(2013) proposed a new method of multivariate test of association effectively deals with

continuous and discrete random vectors but may have trouble to deal with nominal

random vectors due to its ranking.

Most of the measures for independence treat the two random vectors symmetri-

cally such as aforementioned methods or other informational indexes, say, Kullback-

Leibler distance (Kullback, 1959) or more general classes of divergences (Vajda, 1989).

These measures involve the ratio of joint density to the product of marginal densi-

ties. Although symmetry is important and flexible, especially in the use of correlation

analysis, conditional or asymmetry may have wider usage and importance such as

in regression analysis where we treat one variable as response conditioning on the

other predictors, or vice versa in classification and discriminant analysis. Symmetric

measures may be linked to asymmetric measures, for instance, in simple regression,

correlation coefficient as a symmetric measure is proportional to the fitted regres-

sion coefficient as an asymmetric measure, and they do have different interpretations.

Some symmetric measures can be regarded as conditional measures flexibly as in

Kullback-Leibler distance or other informational divergences, but not always. For

instance, in dCov, both sets are treated equally but they cannot simply be treated

as one set conditional on the other one.

Sufficient Variable Selection

Variable screening and variable selection are very popular in modern data analysis.

The idea of variable selection is to select a small group of predictors that are related

with the response, so that a subset consists of important predictors could be detected.

By deleting the irrelevant variables, the accuracy of model fitting and prediction would

be greatly improved. Variable screening and selection techniques are particular useful

for high dimensional data, where the number of predictors p is much larger than the

number of observations n. Those kind of data are very common in daily life, for
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example the micro array, image, network, financial data and so on.

The current variable screening and selection procedure could not detect the ac-

tive predictors which are marginally independent of the response, therefore is not

sufficient. However in practice, many predictor variables are correlated, there are

many variables that are marginally dependent of the response but are indeed active

predictors. And methods based on model assumption may be biased if the assumed

model is not reliable, though iterative methods and nonparametric methods could

partly solve the problem. Another issue occurs when the response variable is a cat-

egorical variable, especially when the categories do not have order relationship, or

the response has multiple dimensions. Finding a method with minimum assumptions

that could do sufficient variable selection, especially for categorical response is an

interesting topic.

Sufficient Dimension Reduction

With the increase of dimensionality, the volume of the space increases so fast that

the available data become sparse (Bellman, 1961). The sparsity is a problem to any

statistical methods since not enough data is available to do model fitting or make

any inference. Therefore, in terms of the situations discussed above, many classical

models derived from oversimplified assumptions and nonparametric methods are no

longer reliable. High dimensional data would lead to high computational cost to do

estimation and inference and it would cause the problem of overfitting.

Sufficient dimension reduction means to find a linear transformation of the pre-

dictor matrix, so that if given that transformation, the response and the predictor

is independent (Li, 1991; Cook, 1994, 1996). Various ways have been proposed to

estimate the dimension reduction subspace (Cook, 2007; Yin, 2010; Ma and Zhu,

2013b). Therefore, dimension reduction that reduces the data dimension but retains

(sufficient) important information can play a critical role in high-dimensional data

analysis. With dimension reduction as a pre-process, often the number of reduced

dimensions is small. Hence, parametric and nonparametric modeling methods can

then be readily applied to the reduced data. Our proposed method works especially

3



well when the response is categorical.

1.2 Overview of the Dissertation

There are three main projects involved in this dissertation. In Chapter 2, we de-

velop a novel class of informational measures to reflect the dependency between two

random vectors, especially to deal with categorical data. Simulation studies show

that the measure has similar power as the distance covariance measure, which is a

very general method currently available for reflecting the dependency of two random

vectors. And the newly proposed measure performs best when one of the vectors

is a categorical vector. The properties of the measure, asymptotic results and the

connection with existing measures are also discussed. In Chapter 3, we propose a

two-stage sufficient variable selections algorithm. A nice property is that any inde-

pendence measure can be adapted to our proposed procedure, thus the procedure

does not require particular model specification. This model-free approach makes our

method robust against model mis-specification, which is a very appealing property in

practice. In addition, our approach always improves over typical screening approach

which only uses marginal relation. Sure screening property of the new measure and

the two-stage sufficient variable selection algorithm is proved. Simulation examples

show that it has superior performance than the Kolmogorov filter (Mai and Zou,

2013), fused Kolmogorov filter (Mai and Zou, 2015) or MV-SIS method (Cui et al.,

2015) when the data has two or more classes. The project in chapter 4 introduces

a novel approach for the sufficient dimension reduction problem based on the mea-

sure in chapter 2. The approach requires very mild conditions on the predictors, and

works especially well for categorical response. Under regularity condiitons, root-n

consistency and asymptotic normality properties are established. These theoretical

and methodological developments involve multivariate data and computational tech-

niques, which have wide applications in biostatistics, bioinformatics, business and

economics, etc., where high dimensional data sets are often encountered.

Copyright c© Qingcong Yuan, 2017.
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Chapter 2 A New Class of Measure for Testing Independence

2.1 Introduction

In this chapter, our goal is to establish a new class of measures to test independence

between two random vectors. We define it as a conditional class based on character-

istic functions, treating one of them as a response, much similar to the idea in clas-

sification and discriminant analysis or as in inverse regression. Typical classification

and discriminant methods or inverse regression methods only measure the relations in

the inverse mean function (or moments), or dependence that involve densities, ours is

going to measure the dependence between the two sets of variables without involving

densities. The novel class defines a general collection of new measures by choosing

different weight functions in the definition, as we will see later in the chapter that

the weight function in the class determines the actual measure. For the purpose of

illustration, however, in this chapter we use a particular weight function similar to

what was used by Székely et al. (2007).

With such a chosen weight function, if a slicing method is chosen, our index is a

variant of DISCO (Rizzo and Székely, 2010) method. Such an index has a simple/easy

population version and it only needs to calculate Euclidean distance, while keeping

the advantage of nonparametric. However, the test defined in DISCO method is only

for categorical variable Y and is a type of generalized ANOVA from Two-sample

to K-sample extension but using untypical formulation (differences among groups).

Ours is defined for both continuous and categorical Y , and in the categorical case of

Y , we use typical formulation which is more common and unique (difference between

group and overall). Slicing is only one particular approach that we want to show the

link to existing approaches. There are many other estimations that can be used, and

we provide a smoothing approach (kernel estimation) to demonstrate the advantage.

Our general definition (by choosing a special weight function) is more concise and

comparable/parallel with dCov. This index together with dCov forms a class that
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is analogous to divergence family (such as Kullback-Leibler (KL)-distance). Such

a class (with respect to weight function choices), together with dCov and Hilbert-

Schmidt Independence Criterion (HSIC) form a more general class, filling a gap by

using characteristic functions to that of densities (of divergences). That is, using the

discrepancy between the conditional characteristic function and marginal character-

istic function, our class fills the gap for distance-based criterion defined by Sejdinvoc

et al. (2013) where only discrepancy between joint characteristic function and prod-

uct of marginal characteristic functions is measured, so that the distance-based class

together with our proposed class is comparable with other divergence families, where

both joint and conditional discrepancies are measured.

Throughout this chapter X ∈ Rp and Y ∈ Rq are random vectors, where p and

q are positive integers. If p = 1, we use X = X; if q = 1, we use Y = Y . The

characteristic functions of X, X|Y and (X,Y) are denoted by fX, fX|Y and fX,Y,

respectively. For complex-valued function f(·), we denote f̄ as the complex conjugate

of f . Let |f |2 = ff̄ , and the Euclidean norm of X ∈ Rp be |X|p.

The rest of the chapter is organized as follows. We propose the new class in Section

2.2. By choosing a particular weight function, we study the resulting index and

its properties in Section 2.3, and obtain special formulas for certain distributions in

Section 2.3. An empirical version by slicing on Y is proposed in Section 2.4, including

the establishment of its properties. A smoothing estimation approach using kernel

approach is proposed in section 2.4. A permutation test is outlined in section 2.5.

Simulations to illustrate its usefulness are presented in Section 4.5. Some concluding

remarks are made in Section 2.7. All derivations and proofs are arranged in the

appendix.

2.2 The New Class of Measures

The hypothesis test of independence between X and Y is as follows:

H0 : fX|Y = fX vs. H1 : fX|Y 6= fX.

6



This is because if X is independent of Y, then fX|Y = fX; and if fX|Y = fX,

then eis
TYfX|Y = eis

TYfX for s ∈ Rq, by taking expectation over Y, we obtain

fX,Y = fXfY. Suppose that w(t), where t ∈ Rp, is a nonnegative weight function.

We assume that such a weight function ensures the existence of integrals.

Definition 2.2.1. The nonnegative measure of conditional difference for the charac-

teristic function of X|Y is denoted by Cw,Y(X|Y), whose squared value is

C2
w,Y(X|Y) = ||fX|Y(t)− fX(t)||2 =

∫
Rp
|fX|Y(t)− fX(t)|2w(t)dt. (2.1)

Note that C2
w,Y(X|Y) ≥ 0. The term C2

w,Y(X|Y) is a Y-measurable random

variable which depends on w. That is, the subscript w in C2
w,Y(X|Y) indicates that

each w may lead to a different index. The expected conditional difference is defined

as next:

Definition 2.2.2. The expectation of the conditional difference (ECD) for the char-

acteristic function of X|Y is denoted by Cw(X|Y), whose squared value is

C2
w(X|Y) = EY[C2

w,Y(X|Y)] = EY[

∫
Rp
|fX|Y(t)− fX(t)|2w(t)dt]. (2.2)

Note again that C2
w(X|Y) ≥ 0. Although C2

w(X|Y) depends on the choice of

w, we omit the subscript w, and write C2
w(X|Y) as C2(X|Y) for simplicity without

ambiguity. The next lemma whose proof is in the appendix indicates that C2(X|Y) =

0 is equivalent to the independence of X and Y. Thus, C2(X|Y) is a measure of

independence.

Lemma 2.2.1. C2(X|Y) = 0 ⇔ C2
w,Y(X|Y) = 0 almost surely for Y ⇔ fX|Y(t) =

fX(t) almost surely for Y ∈ Rq and t ∈ Rp.

A direct application of (2.2) indicates that

C2(X|X) = EX[C2
w,X(X|X)] = EX[

∫
Rp
|eitX − fX(t)|2w(t)dt]. (2.3)

7



And thus, a statistic that is similar to correlation type can be defined as

Rc = Rc(X|Y) =
C(X|Y)

C(X|X)
. (2.4)

The result below indicates properties of C(X|X), C(X|Y) and Rc.

Theorem 2.2.2. The following properties hold:

1. C(X|X) = 0 iff X = E(X), almost surely.

2. C(W1+W2|V1+V2) ≤ C(W1|V1)+C(W2|V2) for independent random vectors

(W1,V1) and (W2,V2). Equality holds if and only if W1 and V1 are both

constant, or W2 and V2 are both constant, or W1,V1,W2,V2 are mutually

independent.

3. C(X + Y|X + Y) ≤ C(X|X) + C(Y|Y) for independent random vectors X and

Y. Equality holds if and only if at least one of the random vectors X and Y is

constant.

4. 0 ≤ C(X|Y) ≤ C(X|X), and 0 ≤ Rc ≤ 1.

Most of the independence measures in literature are symmetric, but ours is asym-

metric due to its conditional set up. Certainly, if needed, we can modify it to a

symmetric version: C2
s (X,Y) = C2(X|Y) + C2(Y|X). Note that the combination of

two measures of discrepancies: C2(X|Y), and the discrepancy between the joint char-

acteristic function and the product of two marginal characteristic functions (Sejdinvoc

et al., 2013) makes a larger class which is comparable with divergence family such as

φ-divergence (Vajda, 1989) where the discrepancy via joint density over the product

of marginal densities is used. Furthermore, in our class, different weight functions

can result in different indexes for testing independence. For instance, weight func-

tions used by Sejdinvoc et al. (2013) result in Hilbert-Schmidt Information Criterion

(HSIC) may be used here. Hence, the choice of weight function is important as the

resulting indexes may be very different, and may become a simple one or a complicate

one. In this chapter, we consider a particular weight function that is similar to that
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was used by Székely et al. (2007). Such a weight function results in a very simple

formula of the index.

2.3 The New Index and Its Properties

Let C̃(p, α) = 2πp/2Γ(1−α/2)
α2αΓ((p+α)/2)

for 0 < α < 2. In the case, α = 1, define c̃p = C̃(p, 1) =

π(1+p)/2

Γ((1+p)/2)
. Suppose that t ∈ Rp, let the weight function w(t) = (c̃p|t|1+p

p )−1, which is

a positive weight function and is very similar to that was in Székely et al. (2007) and

Székely and Rizzo (2009). Hereafter, we use this particular weight function.

Let (X′,Y′) be an iid copy of (X,Y), XY denotes a random variable distributed

as X|Y (Cook, 2007), X′Y′ denotes a random variable distributed as X′|Y′ and X′Y

denotes a random variable distributed as X′|Y′ with Y′ = Y. Throughout the

manuscript, we assume E|X| < ∞, E|XY| < ∞ and E|X′Y′| < ∞. And these

assumptions can guarantee the finiteness of C2(X|Y). Based on these assumptions

we can obtain a simpler but equivalent formula of (2.2) and a special case as follows,

again the proofs are in the appendix.

Theorem 2.3.1. An equivalent form of (2.2) can be expressed as follows:

C2(X|Y) = E|X−X′Y| − E|XY −X′Y| = E|X−X′| − E|XY −X′Y|, (2.5)

where the expectation is over all random vectors. For instance, the last expectation is

first taking the conditional expectation given Y, then over Y.

Note that strictly speaking, E|XY −X′Y| = EyE[|X−X′||Y = y,Y′ = y]. Also,

formula (2.2) is more general than formula (2.5). For instance, conditional Cauchy

distribution in section 2.3 can be calculated via (2.2) but not (2.5).

Theorem 2.3.2. 1. C2(X|X) = E[C2
w,X(X|X)] = E|X−X′|.

2. C2(a+bBX|Y) = |b|C2(X|Y) for all constant vector a, scalar b and orthonormal

matrix B.

9



3. Rc = 1 iff X is a function of Y, i.e., X = g(Y), where g is a p × 1 vector

function.

Special distributions

In this section, we illustrate the connection between this index and some special

distributions including normal, binomial and Cauchy distribution. The derivations

of these relations are in the appendix.

Conditional normal distribution. Suppose that X|Y ∼ N(µY , σ
2
Y ), where Y ∈ {0, 1}.

For simplicity, we assume that σ2
Y = σ2 = 1, and define that ∆ = µ0 − µ1. Let py

be the probability for the class Y = y, by using the characteristic function of normal

distribution, let erf(z) = 2√
π

∫ z
0
e−t

2
dt, the Gaussian Error Function, we have:

C2(X|Y ) = 4p0p1[
∆

2
erf(

∆

2
) +

e−∆2/4 − 1√
π

].

Note that this equivalence indicates that ∆ = 0 iff C2(X|Y ) = 0, as we expected.

Bivariate normal distribution. Suppose that X and Y follow standard normal distri-

bution with correlation coefficient ρ. Then we have that X|Y ∼ N(ρY, (1−ρ2)). Our

index can be expressed using ρ as follows:

C2(X|Y ) =
2√
π

(1−
√

1− ρ2).

Again, in this case, naturally we have that C2(X|Y ) = 0 iff ρ = 0.

Conditional Binomial distribution. Suppose that X|Y ∼ Ber(n, qY ), where Y ∈

{0, 1}. Let py be the probability for the class Y = y. For n = 1 which is Bernoulli

distribution, we have that

C2(X|Y ) = 4p0p1(q0 − q1)2.

For n = 2, then we have that C2(X|Y ) = 4p0p1(q0− q1)2[1 + (1− q0− q1)2]. It is clear

to see that in both cases, C2(X|Y ) = 0 iff q0 = q1. A general formula of C2(X|Y ) = 0

for conditional Binomial distribution can be found in the appendix.
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Conditional Cauchy distribution. Although we do require finiteness of conditional

means to develop the equivalence formula for C2(X|Y ) as in (2.5), the original defini-

tion of our index C2(X|Y ) only requires the existence of its respective characteristic

functions. It’s well-known that Cauchy has its characteristic function but without

finite moments. Nevertheless, we could still do such a calculation. Suppose that

Cauchy distribution has density: p(x|y) = qy
π(q2y+x2)

, where y ∈ {0, 1}. Let py be the

probability for the class Y = y, then we have that

C2(X|Y ) =
4p0p1

π
(q0 ln

2q0

q0 + q1

+ q1 ln
2q1

q0 + q1

).

Again, q0 ln 2q0
q0+q1

+ q1 ln 2q1
q0+q1

≥ 0, and it is 0 iff q0 = q1.

2.4 Estimation Approaches

Slicing Estimator

In the previous development of population version, we do not require Y to be discrete

or continuous. We now consider a special sample version of Y: unless Y is categorical

variable or discrete, otherwise for continuous Y, we slice it into finite categories.

Slicing techniques for continuous variables have been used in many other areas, such

as in sufficient dimension reduction, SIR (Li, 1991), SAVE (Cook and Weisberg, 1991),

CR (Li et al., 2005), DR (Li and Wang, 2007), SR (Wang and Xia, 2008) and the fused

approaches (Cook and Zhang, 2014). The use of slicing in our development is a natural

choice because of the last term in the second equation of (2.5) in Theorem 2.3.1, and

it is especially for its technical simplicity as well. To facilitate our development, we

then further assume that X ∈ Rp, Y is a categorical variable with H levels. That is,

let Y = {1, · · · , H}.

The defined measure has no restriction on the dimensions of the random vectors.

However, when Y is multivariate with high dimensions, slicing on each element of Y

will result in very few observations in each slice, and that may affect the proposed

test. Nevertheless, slicing techniques for high dimensional response have been used in

11



other areas effectively. For instance, one may adapt the slicing schemes developed by

Zhu et al. (2010) and Li et al. (2008) to our statistic. In general, effectively dealing

with multivariate Y with high dimensions is an interesting but independent topic.

We leave a thorough study on such topic as our future research.

Let (Xk, Yk), k = 1, · · · , n, be a random sample of (X, Y ). For the purpose of

slicing method, these n observations can be equivalently written as (Xy,ky , Yy,ky),

where y = 1, · · · , H, ky = 1, · · · , ny, where Yy,ky = y for any ky.

Definition 2.4.1. An empirical measure is defined as

C2
n(X|Y ) =

H∑
y=1

pyC2
w,y,n(X|Y = y) =

H∑
y=1

py||fnX|y(t)− fnX(t)||2, (2.6)

We establish a different formula for the empirical version which gives us practically

simple calculations as follows. Again its proof is in the appendix.

Theorem 2.4.1. The empirical measure can be written as

C2
n(X|Y ) =

1

n2

H,H∑
y,y′=1

ny ,ny′∑
ky ,ly′=1

|Xy,ky −Xy′,ly′
| − 1

n

H∑
y=1

1

ny

ny ,ny∑
ky ,ly=1

|Xy,ky −Xy,ly |. (2.7)

Theorem 2.4.1 immediately implies the next result.

Corollary 2.4.2.

C2
n(X|Y ) =

1

n2

n,n∑
k,l=1

|Xk −Xl| −
1

n

H∑
y=1

1

ny

ny ,ny∑
ky ,ly=1

|Xy,ky −Xy,ly |. (2.8)

C2
n(X|Y ) ≤ C2

n(X|X) =
1

n2

n,n∑
k,l=1

|Xk −Xl|. (2.9)

Based on the empirical measure definition, it is easy to see that the following

results hold and thus, we omit the proof.

Lemma 2.4.3. The following properties hold:

1. C2
n(X|Y ) ≥ 0
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2. C2
n(X|X) = 0 iff every sample observation is identical.

We establish the following result and put the proof in the appendix.

Lemma 2.4.4.

lim
n→∞

C2
n(X|Y ) = C2(X|Y ) almost surely

This lemma indicates that our sample version is properly defined and it is con-

sistent. We now develop asymptotic distribution for the empirical measure. Let

Γ(·) denote a complex-valued zero-mean Gaussian random process with covariance

function covΓ(s, s0) = [fX(s− s0)− fX(s)fX(s0)], where s, s0 ∈ Rp.

Theorem 2.4.5. (Weak convergence)

a. Assume that X and Y are independent, and E(|X|) <∞, then

nC2
n(X|Y )

D−−−→
n→∞

(H − 1)||Γ(s)||2.

b. Assume that X and Y are independent, and E(|X|) <∞, then

nC2
n(X|Y )/Sn

D−−−→
n→∞

Q,

where Q is a nonnegative quadratic form of centered Gaussian random variable

with E(Q) = 1 and Sn = (H − 1) 1
n2

∑n,n
k,l=1 |Xk −Xl|.

c. If X and Y are dependent, then nC2
n(X|Y )/Sn

P−−−→
n→∞

∞.

Its proof is in the appendix. We now state the limit distribution. If Q is a

quadratic form of centered Gaussian random variable and E(Q) = 1, then

P{Q ≥ χ2
1−α0

(1)} ≤ α0, for all 0 < α0 ≤ 0.215,

where χ2
1−α0

(1) is the (1 − α0) quantile of a chi-square variable with 1 degree of

freedom. This result follows from a theorem of Székely and Bakirov (2003, page 189).

Thus a test that rejects independence if nC2
n(X|Y )/Sn ≥ χ2

1−α0
(1) has an asymptotic
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significance level at most α0. The asymptotic test criterion could be quite conservative

for many distributions. See Székely et al. (2007), Székely and Rizzo (2009) and Rizzo

and Székely (2010), for further comments.

By slicing, the measure is equivalent to DISCO (Rizzo and Székely, 2010) whose

definition employed conditional moments directly similar to that of (2.5) and for

categorical variable Y only. Hence, in general, DISCO limits certain distributions

such as conditional Cauchy distribution in section 2.3. Our theoretical justification

differs from theirs but similar to dCov. Both our measure and dCov are defined using

characteristic functions, thus theoretical justifications of these two are analogous. For

continuous Y, we change Y to a class variable by slicing on it. In such a case, our

index provides an alternative way to dCov. However, one does not have to use slicing

approach, other approaches may be used as well. Thus, our index provides many

possible approaches for continuous random vectors which may lead to new research

directions. As such, a kernel approach is proposed in the next section.

Kernel Estimator

Note that for continuous Y, slicing Y is just one of the approaches. In fact, even

for slicing approach, one can improve it by using techniques such as “moving slicing”

(Li et al., 2005), and fused approach (Cook and Zhang, 2014). In this section, we

propose a nonparametric approach: Kernel method to estimate (2.5), in particular,

the last term in (2.5), which differs from DISCO.

For simplicity, let m = E|XY − X′Y|. Thus, our main goal is to estimate m

by using kernel method. Write m = EYE|XY − X′Y| = EYm(Y), then m(Y) =

E(X,X′)(|X−X′||Y) = EX[m(X,Y)|Y], where m(X,Y) = EX′(|X−X′||Y).

For kernel estimation, Kh(t) = h−qK(t/h), h > 0 denotes a q-dimensional kernel

function. Let p0(y) be the density function of Y, then the kernel estimator of p0(y)

is given by p0(y) = n−1
∑n

k=1Kh(yk − y). And thus an estimate of m(X,Y) is

m̂(X,Y) =
n−1

∑n
j=1 |X−Xj|Kh(Y −Yj)

n−1
∑n

j=1 Kh(Y −Yj)
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Following this, an estimate of m(Y) is

m̂(Y) =
n−1

∑n
i=1 m̂(Xi,Y)Kh(Y −Yi)

n−1
∑n

i=1Kh(Y −Yi)

=
n−2

∑n
i=1,j=1 |Xi −Xj|Kh(Y −Yi)Kh(Y −Yj)

n−1
∑n

j=1Kh(Y −Yj)n−1
∑n

i=1 Kh(Y −Yi)

Finally, an estimate of m is m̂ = 1
n

∑n
l=1 m̂(Yl). Hence, the kernel estimator of

C2(X|Y) is C2
n,k(X|Y) = 1

n2

∑
i,j |Xi −Xj| − m̂. We now establish the property for

the kernel estimator. For the consistency of the result for Theorem 2.4.7, we need

the following regularity conditions (Chen et al., 2015)

Condition A1: The density functions, p(x|y) and p(y) are continuous and bounded

away from zero. The support of y is bounded and compact in Rq.

Condition A2: The continuous kernel function K(t) is Lipschitz on [−1, 1], and

for some s > q/2,

∫
K(t)dt = 1,

∫
tiK(t)dt = 0, (1 ≤ i ≤ s− 1), 0 6=

∫
tsK(t)dt <∞.

Condition A3: As n → ∞, the bandwidth h satisfies h → 0, nh2q → ∞ and

nh2s+q/2 log n→ 0.

Condition A4: We have that E|Xy|4 <∞.

Condition A5: Write p1(x,y) = p(x|y)p(y), which is s times differentiable with

respect to y, and its sth-order derivative is uniformly bounded by a constant C0

which does not depend on y.

ConditionsA1 andA5 require that the density functions be positive and sufficiently

smooth. Condition A5 facilitates the control of remainder terms in Taylor expansions;

one may relax this condition by assuming local Lipschitz properties for the density

functions, which are widely imposed in the literature (Li et al. (2011)). Condition A2

implies that the kernel function is bounded from above, which holds for many well-

known kernel functions. Condition A3 gives conditions on the bandwidth h, which

are relatively mild. Condition A4 requires certain moments to be finite as typical. To

prove Theorem 2.4.7, we establish the following lemma which is a direct application
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of Lemma S5 of Chen et al. (2015).

Lemma 2.4.6. Suppose Conditions (A1)-(A5) hold, then

sup
y∈Rq
|m̂(y)−m(y)| = O(hs + (nhq)−1/2 log n), almost surely.

Here, we directly use the assumptions of Chen et al. (2015) for simplicity. As-

sumption A seems restrictive, although our simulations show otherwise. However,

one can weaken assumption A by using different conditions such as those of Härdle

and Stoker (1989) and Samarov (1993), or Wang et al. (2015), which nevertheless,

need to modify our estimator with a trim/weight function, respectively, to deal with

density near 0 and of large bias. We establish the consistency result below.

Theorem 2.4.7. Under the assumptions (A1)− (A5), we have that C2
n,k(X|Y)

P−−−→
n→∞

C2(X|Y).

Note that the first term in C2
n,k(X|Y) is a typical U-statistic which is root-n

asymptotic normal. By using the technicals in Chen et al. (2015), one can establish

the asymptotic normality for the second term in C2
n,k(X|Y), which however, has rate

nhq/2. Combining the two terms, we can still manipulate the asymptotic normality at

the same rate, however, one of the asymptotic variances in the two terms vanishes in a

faster rate. Hence, it is not much useful practically when sample size is large. Even if

in the same rate of convergence, for instance, Székely et al. (2007), Székely and Rizzo

(2009), Rizzo and Székely (2010), Shao and Zhang (2014) and Wang et al. (2015),

asymptotic distributions are not practically used but permutation or bootstrap tests

are preferred. We will describe the use of permutation test in the next section.

Note that Kh(t) is a q-dimensional kernel function. Therefore, kernel method can be

used for Y with any dimensions theoretically. Practically due to the high-dimension

issue, kernel method certainly has its own restriction. Nevertheless, there exist kernel

estimations in using (conditional) distance covariance as in Wang et al. (2015) and

Chen et al. (2015).
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2.5 Testing Procedure

To obtain the p-value for the independence test, we used permutation approach (Efron

and Tibshirani (1998); Davison and Hinkley (1997)). Based on previous discussions,

we use Rc as the illustrative test statistic while calculating the p-value. For example,

in slicing method, we use Rc(slice) as the test statistic, and illustrate the procedure as

follows: Let πb represent one permutation of the sample, b = 1, · · · , B, where B is the

total number of permutations. In our simulations, we set B = 999 unless otherwise

stated. Let Rc(slice)b be the test statistic computed corresponding to permuted

sample πb and Rc(slice)0 be the observed test statistic. Compute the p-value using

the following formula ( 1(·) is the indicator function)

p̂ =
1 +

∑B
b=1 1(Rc(slice)b ≥ Rc(slice)0)

B + 1
.

2.6 Simulation Studies

In this section we provide some empirical evidences for the new measure and compare

with existing methods, in particular, dCov and DISCO, for both continuous and

categorical Y .

UsingRc as the test statistic, three estimation methods are used: slicing [Rc(slice)];

Epanechnikov kernel [Rc(epa)]; Gaussian kernel, [Rc(gau)]. We do not compare our

methods to other available testing methods, as Székely et al. (2007) and Rizzo and

Székely (2010) have detailed comparisons.

Example 2.6.1. Six characteristics of aircraft designs which appeared during the

twentieth century were recorded in the aircraft data (Saviotti (1996)). The data is

in r package sm, the data and example are from Bowman and Azzalini (1997, 2007),

also see example 3 in Székely and Rizzo (2009). Two variables wing span(m) and

speed (km/h), in period 3 with n = 230 designs were considered. We want to test

the independence of log(Speed) and log(Span).

To apply slicing method, we slice log(Span) into H groups. The number of ob-

servations in each slice is bn/Hc. Table 2.1 reports the corresponding test statistic
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and p-value using various number of slices and the two kernel methods. For different

numbers of slices, we find that as long as the number of slices is not too small or too

big, in other words, the number of data points in each slice is greater than 5 but not

close to n/2, the test results are very consistent and comparable. In addition, the

p-values indicate that all three methods give the same test result as dCov of Székely

and Rizzo (2009), which has p-value 0.001.

Table 2.1: Test results using different methods

Rc(slice) Rc(epa) Rc(gau)
H = 2 H = 5 H = 10 H = 23 H = 46 H = 115

Test statistic 0.161 0.264 0.328 0.453 0.528 0.752 0.302 0.237
p-value 0.004 0.001 0.001 0.001 0.001 0.007 0.001 0.001

Example 2.6.2. In this example, we study the type-I error for dCov, kernel methods,

and slice on continuous variable to apply DISCO and slicing method. We simulate

four models. In model 2.6.2 (a), the marginal distributions of X and that of Y are

standard normal, where p = 5 and q = 1. The elements of X are independent and are

also independent of Y . In models 2.6.2 (b)-(d), the dimensions of X and Y are the

same as in 2.6.2 (a), except that each individual random variable is independently

generated from t(1), χ2(1) and χ2(3) distributions, respectively.

We fix the number of slices at H = 5 for DISCO and Rc(slice). The total sample

sizes n = 25, 30, 35, 50, 70, 100, respectively, and we use the number of replicates

B= b200+5000/nc as suggest by Székely et al. (2007) to obtain p-value for each test.

We use 10,000 tests to obtain the type-I error at nominal significance level 0.1. The

empirical type-I error rates for each case are recorded in Table 2.2. It appears that

all methods perform similarly, close to the level and none of them can consistently

beat the others. Simulation results for additional models and nominal level of 0.05

in the appendix indicate similar conclusion. Some models also appear in example 1

in Székely et al. (2007).

Example 2.6.3. The model is: (X, Y ) = (X,φ(X)), where X is standard normal

random variable and φ(·) is the standard normal density (Example 2 in Székely and

Rizzo (2009)). Our goal is to make a power comparison. The power is computed as
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Table 2.2: Empirical type-I error rates for 10,000 tests at nominal significance level
0.1, using B replicates

(a) N(0, 1), p = 5, q = 1 (b) t(1), p = 5, q = 1
n B dCov DISCO Rc(slice) Rc(epa) Rc(gau) dCov DISCO Rc(slice) Rc(epa) Rc(gau)
25 400 0.094 0.103 0.100 0.096 0.101 0.104 0.097 0.095 0.094 0.103
30 366 0.102 0.095 0.099 0.100 0.100 0.102 0.100 0.099 0.098 0.097
35 342 0.105 0.099 0.101 0.102 0.099 0.104 0.100 0.102 0.093 0.095
50 300 0.103 0.099 0.100 0.097 0.101 0.100 0.106 0.104 0.097 0.103
70 271 0.103 0.097 0.103 0.100 0.100 0.100 0.098 0.100 0.099 0.098
100 250 0.101 0.098 0.098 0.104 0.098 0.094 0.105 0.103 0.097 0.102

(c) χ2(1), p = 5, q = 1 (d) χ2(3), p = 5, q = 1
n B dCov DISCO Rc(slice) Rc(epa) Rc(gau) dCov DISCO Rc(slice) Rc(epa) Rc(gau)
25 400 0.096 0.099 0.099 0.099 0.098 0.097 0.099 0.098 0.100 0.098
30 366 0.102 0.094 0.095 0.098 0.098 0.094 0.100 0.100 0.096 0.102
35 342 0.096 0.102 0.104 0.101 0.098 0.101 0.103 0.104 0.102 0.103
50 300 0.102 0.097 0.098 0.103 0.099 0.099 0.102 0.102 0.103 0.100
70 271 0.103 0.099 0.098 0.101 0.100 0.104 0.100 0.102 0.102 0.100
100 250 0.098 0.101 0.098 0.098 0.102 0.099 0.101 0.102 0.100 0.100

the proportion of significant tests out of 10,000 at significance level 0.1. Again, we

use the number of replicates B= b200 + 5000/nc in each permutation test.

Since Y is continuous, we slice it into several categories for DISCO and slicing

methods. Based on example 2.6.1, we use 3, 3 and 4 slices when sample size n = 10, 15

and 20, and 5 slices for sample sizes greater than 20. Figure 2.1 plots the power of

different methods with the increase of sample size n. We find that for n ≥ 35, all

five methods are equivalently powerful with powers near 1. For n < 35, Gaussian

kernel is the best, followed by dCov and Epanechnikov kernel. As expected, slicing

and DISCO methods may lose certain power for small sample size.

Example 2.6.4. To estimate the acceleration due to gravity at Washington, the

dataset (gravity) consists of 81 measurements in a series of eight experiments between

May, 1934 to July, 1935. The experiments are conducted by the National Bureau of

Standards in Washington DC. In each experiment, there are replicated measurements

of a reversible pendulum expressed as deviations from 980cm/sec2. Davison and

Hinkley (1997) discussed this data in their example 3.2. The data is also available in

r package boot (Canty and Ripley (2009)).

Our goal is to show that for categorical variables, changing the values of categorical

variable shall not affect the conclusion of a robust method. We test the independence

between the original X (gravity), then the residuals after fitting a linear model, and
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Figure 2.1: Empirical power comparisons at 0.1 level with different sample size n.

the group indicator, respectively, as in Rizzo and Székely (2010). We use three indica-

tors: the original indicator series0 = (1, 2, 3, 4, 5, 6, 7, 8) and two different indicators:

series1 = (1, 10, 15, 20, 45, 70, 200, 500) and series2 = (100, 10, 15, 20, 45, 70, 200, 500).

Table 2.3 shows if Y indicator changes, only slicing and DISCO methods are robust.

Table 2.3: P-values using different group indicators

Gravity dCov DISCO Rc(slice) Rc(epa) Rc(gau)
series0 0.001 0.001 0.001 0.001 0.001
series1 0.133 0.001 0.001 0.401 0.288
series2 0.125 0.001 0.001 0.006 0.019

Residual dCov DISCO Rc(slice) Rc(epa) Rc(gau)
series0 0.001 0.046 0.044 0.002 0.001
series1 0.148 0.046 0.046 0.443 0.339
series2 0.264 0.045 0.043 0.008 0.014

Example 2.6.5. In a four group balanced design with common sample size n = 30,

multivariate observations are generated. The marginal distributions are independent.

Group 1 is non-central t(4) with non-centrality parameter δ. Groups 2-4 are all central

t(4) distributions. The group indicator is Y . This is example 3 in Rizzo and Székely
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(2010). We want to show that for categorical variable, changing values will not change

the power of robust methods.

We first look at the empirical power by fixing dimension p = 10 and non-centrality

parameter δ varies, then we look at the empirical power when p varies and δ = 0.2.

Results of the simulations are summarized in Figures 2.2-2.3 at significance level 0.1.

We use B = 199 in each test and conduct 10,000 tests.

By fixing dimension p = 10, and δ varies, Figure 2.2 (a) shows that the empirical

power for testing the independence of X and Y is roughly the same when comparing

the five methods with group indicator: 1, 2, 3, and 4. However, when we change the

group indicator Y from 1-4 to 1, 8, 0.5, and 1.2, Figure 2.2 (b) shows that the powers

of DISCO and slicing methods remain the same. dCov and kernel methods have

empirical power much smaller than the others. We also apply dCov for the dummy

variables. The purple line in Figure 2.2 (b) shows that, although dCov with dummy

variables has higher power compared with treating Y as one dimension, with values

(1,0.8,0.5,1.2), it still has less power than Rc(slice) or DISCO method. Figure 2.3

(a) shows that when dimension p varies and non-centrality parameter δ = 0.2, the

empirical power for testing the independence of X and Y is also roughly the same

when comparing the five methods with group indicator: 1, 2, 3, and 4. However, when

changing the group indicator from 1-4 to 1, 8, 0.5, and 1.2, Figure 2.3 (b) shows only

DISCO and Rc(slice) are robust. Therefore, we believe that whether using dummy

variable or not, dCov method has less power and not stable comparing with DISCO

or Rc(slice).

Example 2.6.6. The model is Y = a(βTX)2ε, where β = (1, 1, 1, 1, 1, 0, · · · , 0)T ,

X ∼ N(0,Σx), Σx is a p × p diagonal matrix with the same diagonal element σ2
x, a

is a constant and, ε ∼ N(0, σ2) is independent of X. This is an example that X and

Y has non-linear relationship and is similar to Example C in Sheng and Yin (2013).

We use the number of replicates B= b200 + 5000/nc in each permutation test and

use 10,000 tests to get the power. We have different combinations for the values of

a, p, σ2
x and σ2. Within each combination, we change the sample size n to see how

the power of testing independence of X and Y will change using different methods.
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Figure 2.2: Empirical power for testing independence of X and Y using five methods,
n = 30 per group, dimension p = 10 and non-centrality parameter δ varies, where
group indicator is (a) 1, 2, 3, 4; (b) 1, 8, 0.5, 1.2, except for the purple line, Y is
transformed to dummy variables.
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Figure 2.3: Empirical power for testing independence of X and Y using five methods,
n = 30 per group, dimension p varies and non-centrality parameter δ = 0.2 where
group indicator is (a) 1, 2, 3, 4; (b) 1, 8, 0.5, 1.2.
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Figure 2.4: Empirical power with the change of sample size n.

Figure 2.4 shows the power change under four different cases. It clearly shows that

for such a model with continuous response, discrete methods of DISCO and Rc(slice)

are not good, while the two kernel methods are much better than dCov. Additional

simulations in the appendix show the same conclusion.

To summarize, for categorical Y , we showed that Rc(slice) is equivalent to DISCO,
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which is stable and better than dCov. For continuous Y , we showed that kernel

methods with Rc(gau) and Rc(epa) perform better than dCov, and better than the

discrete methods (DISCO and slicing) consistently.

2.7 Discussion

We introduce a new class of measures to test independence, which can be used flexibly

for continuous and categorical random vectors. We study a particular weight function

and its details in the class, however, weight functions used in HSIC or others can be

used for developing new independence measures.

Note that dCov calculates Euclidean distance, which does not involve additional

“tuning-parameters”, and thus it will lead to a unique value for the same data. Al-

though our measure is defined similarly, it involves conditional distribution, which

does require a step of its estimation. However, for continuous Y , simulations indicate

that the number of slices does not affect the independence test result much, thus it

is not very sensitive to the tuning parameter. We believe this is because, although

the value changes when using different tuning parameters for the same data, once

the tuning parameter is selected, the effect of such a tuning parameter will be can-

celed in permutation test. In general, estimating a conditional distribution is more

subtle. However, in statistics, when we study the relations between two sets of vari-

ables, there are only two ways to do: conditional approaches and correlation-type

approaches. Getting rid of directly estimating conditional distributions is important

but it does require stronger conditions to do so. Correlation type also explicitly or

implicitly requires certain restrictive conditions. Certainly, methods avoiding directly

using estimation of conditional distribution could lead us to new interesting research

direction.

Székely and Rizzo (2013) discussed the bias of dCov statistic in practice, when

the dimensions of the random vectors are large. They constructed an unbiased t-test

of independence. Since our measure is defined similarly to theirs, we believe that

an analogous calculation will result in a similar unbiased statistic when p tends to

infinity while q is fixed. When q tends to infinity as well, such a development seems
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straightforward intuitively and theoretically. However, our statistic is different as Y

is conditional on.

The index can be used in other areas beyond independence test. In later chapters,

we would provide two applications: feature screening and sufficient dimension selec-

tion. We believe that it very much worth to investigate it along this direction. The

appendix contains the proofs of the theoretical results, additional plots and tables for

the numerical studies.

Copyright c© Qingcong Yuan, 2017.
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Chapter 3 Sufficient Variable Selection in High Dimensional Data

3.1 Introduction

In this chapter, focusing on categorical response we propose a new sufficient variable

selection procedure: a two-stage sufficient variable selections method. Any inde-

pendence measure can be adapted to our proposed procedure, thus the procedure

does not require particular model specification. This model-free approach makes our

method robust against model mis-specification, which is a very appealing property in

practice. In addition, our approach always improves over typical screening approach

which only uses marginal relation. Numerical studies are provided to demonstrate

the advantages of the finite sample performances.

Feature screening and variable selection have become increasingly important in

various research fields, as data are being collected at a relatively low cost due to

modern technology. Many methods have been proposed during the last two decades,

penalized approaches such as the least absolute shrinkage and selection operator

(LASSO, Tibshirani, 1996), the smoothly clipped absolute deviation (SCAD, Fan

and Li, 2001), and the Dantzig selector (Candes and Tao, 2007). These methods

have shown promising results in dealing with high dimensional data. However, for

the ultrahigh dimensional data,Fan and Lv (2008) pointed out that these aforemen-

tioned methods had their limitation due to the challenges of computational cost,

statistical accuracy and algorithmic stability. These concerns lead to sure indepen-

dent screening (SIS, Fan and Lv, 2008) for the ultrahigh dimensional data. SIS is

based on the marginal Pearson correlation learning and designs for linear regressions

with Gaussian predictors and responses. SIS not only can speed up variable selec-

tion drastically but also can improve the estimation accuracy when dimensionality is

ultrahigh.

Many existing methods follow SIS with some restrictions on underlying distribu-

tions, model specification and structure of the data. Fan and Song (2010) extended
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SIS to a generalized linear models using maximum marginal likelihood. Fan et al.

(2011) proposed nonparametric independence screening (NIS) in additive models.

They used a B-spline basis to do the nonparametric smoothing and ranks the vari-

ables according to the strength of marginal nonparametric regression. This method

captures the active predictors that have nonlinear relationship with response vari-

able. Chang et al. (2013) proposed marginal empirical likelihood approach for sure

independence feature screening in linear and generalized linear models. Fan et al.

(2014) discussed the use of nonparametric independence screening in varying coeffi-

cient models. Song et al. (2014) proposed varying coefficient independence screening

for time-varying coefficient model. Chang et al. (2016) used marginal empirical likeli-

hood to select the variables that locally contribute the response variable in nonpara-

metric additive models, single index and multiple index models and varying coefficient

models.

Feature screening methods using more general types of correlations and some

model-free screening approaches are also proposed for high-dimensional variable selec-

tion. Zhu et al. (2011) proposed a sure independent ranking and screening procedure

(SIRS) that does not require a specific model structure on regression functions. Li

et al. (2012a) proposed robust rank correlation screening using Kendall τ correlation

coefficient instead of the Pearson correlation. Li et al. (2012b) uses distance correla-

tion (DC-SIS, Székely et al., 2007) to do the marginal correlation screening. Mai and

Zou (2013) uses Kolmogorov-Smirnov statistic to do variable selection especially for

when response variable Y is binary. Mai and Zou (2015) extended it to fused Kol-

mogorov filter for the cases when Y has more categories or is continuous. Cui et al.

(2015) proposed a MV-SIS method based on conditional distribution function that

target the marginal sure independence feature screening for ultrahigh dimensional

discriminant analysis.

Problems arise when the marginal screening methods fail to identify some im-

portant predictors which are marginally independent of the response. For instance,

recent methods developed by Zhu et al. (2011), Li et al. (2012b) are only able to detect

marginal correlated predictors. As pointed in Zhu et al. (2011), the marginal screen-
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ing procedure may miss some active predictors that are marginally independent of the

response, thus marginal screening procedure is not sufficient variable selection, and

they proposed an iterative feature screening to overcome the problem partly. Many

other methods also use the iterative procedure to get a better variable selection result.

However, the iterative procedure, making efforts to have sufficiently select variables,

is not completely clear. On the other hand, penalized approaches have great impact

but may not be sufficiently select variables. One of the difficulties for model-based

penalized approaches such as LASSO or model-free based penalized approaches such

as sufficient dimension reduction (SDR) sparse solution Li (2007) mainly due to the

singularity of sample covariance of the predictors, i.e., large p small n issue.

To overcome the above issue, in this chapter, we propose a new sufficient variable

selection procedure. This approach in collaboration with any measure of indepen-

dence is model-free, thus, it is robust against model mis-specification. In particular,

using the newly developed independence measure in chapter 2, we focus on categorical

response variable and illustrate the usefulness of the procedure. Feature screening for

categorical response and grouped/correlated predictors is of great interest in genome-

wide association study (GWAS), discriminant analysis and classification problems.

The rest of this chapter is organized as follows. Section 3.2 develops the sufficient

variable selection procedure. Section 3.3 studies the theoretic properties using the

independence measure proposed in chapter 2, while Section 3.4 contains simulation

studies and real data example, which followed by a short discussion in Section 3.5.

Proof of the theorem is in appendix.

Throughout this chapter, we assume that Y is a categorical or continuous response

variable, and X = (X1, · · · , Xp)
T is a covariate vector. Let (Yi,Xi), i = 1, · · · , n, be

a random sample from the random vector (Y,X). For any random vectors U , V and

W , the notation U V |W means that given W , U and V are independent.
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3.2 Methodology

Review of sufficient variable selection

Yin and Hilafu (2015) formally defined sufficient variable selection (SVS) and in

particular, they discussed the difference between SDR and SVS. Let XD = {Xk :

Xk ∈ X} and XD̄ denotes the complement of XD. SVS means to find a set XD so

that Y XD̄|XD, see Cook (2004). That is, given the set XD, Y is independent

of XD̄. Therefore, the goal of sufficient variable selection is to test the conditional

independence of Y XD̄, given XD. From this notation, D and D̄ are the index set

of the active and inactive predictors respectively.

While it is relatively easy to make such a statement of sufficient variable selection,

it is rather difficult to construct such a test unless p is not too large. For instance,

we view that traditional model diagnostic tests are sufficient test procedure for the

conditional independence. However, in large p small n case, it is already difficult to

build a reasonable model at the first place. Penalized approaches regardless of model-

based or model-free may not be sufficient methods due to their ad hoc algorithm and

the singularity of sample covariance of predictors, as we mentioned earlier, while

SIS type methods are not testing this conditional independence, but using marginal

independence tests only. Instead of directly testing such conditional independence,

we follow a result of Yin and Hilafu (2015) to test sufficient conditions which then

force the the conditional independence. Proposition below is a simplified version of

Yin and Hilafu (2015, Proposition 1).

Proposition 3.2.1. Let X1 and X2 be random vectors, then the following statement

(i) or, statement (ii) implies statement (iii):

(i) (Y,X2) X1;

(ii) X1 X2|Y and Y X1;

(iii) Y X1|X2.
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Statement (iii) implies that p(Y |X1,X2) = p(Y |X2). Therefore, if statement (iii)

holds we can eliminate X1 without losing any regression information. Let X =

(X1,X2)T , after eliminating X1, we treat X2 as a new X, split it, and then do a

further test until nothing can be eliminated. Further reduction of similar procedures

can be used again on this set, if necessary. Hence, in the end, the final selected

set contains XD. Our procedure is a sufficient variable selection procedure. Thus,

statement (iii) is very important. However, directly testing (iii) is impossible as we

need (1), a measure of the conditional independence and (2), X2 need to contain D.

While testing statistics do exist such as the conditional distance correlation measure

by Wang et al. (2015), among others, situation (2) again block the possibility as we

discuss early. Nevertheless, Proposition 3.2.1 does provide very nice alternatives to

statement (iii), by using statements (i) or (ii), since (iii) can be forced to hold if either

statement (i) or statement (ii) holds.

The two statements (i) and (ii) are very general, requiring no particular model or

assumptions on Y and X, but a test index/measure. And one has the flexibility to

choose different independence measures, though a chosen measure may bring extra

conditions due to the way it is formated. It is very natural to use statement (i) for

continuous Y , since an assigned value of Y is important/meaningful when measuring

the dependency between (Y,X2) and X1. But statement (i) does not work well for

categorical or discrete variable Y , when the value of Y is not meaningful, while on the

other hand, statement (ii) can be more useful in such a case. In this chapter, we only

focus on statement (ii) to propose a sufficient variable selection procedure, and we

shall use the newly developed measure of independence in chapter 2 to illustrate this

sufficient procedure, as such a measure has simple sample calculation and without

any additional condition.

A measure of independence

In chapter 2, a new measure of independence is proposed: C2(X|Y) = E|X −X
′ | −

E|XY−X
′
Y|, where X

′
is i.i.d copy of X, and X

′
Y is iid copy of XY. Note that notation

XY means observations of X conditioning on Y. Here | · | is the Euclidean norm in
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the respective dimension. An attractive property of C2(X|Y) is that it equals 0 if

and only if the two random vectors are independent. This property makes it possible

that C2(X|Y) can be used as an independence test statistic. Furthermore, we defined

a statistic that is similar to correlation coefficient as follows:

Rc(X|Y) =
C(X|Y)

C(X|X)
, where C2(X|X) = E|X−X

′|. (3.1)

0 ≤ Rc ≤ 1, the higher value of Rc means a higher dependency between X and Y .

Therefore, we may use the sample version of R2
c as the statistic to test independence.

Following from chapter 2, there are two ways to estimate C2(X|Y).

• Sclicing estimator. Note that in the definition of population version of C2(X|Y),

we do not require Y to be discrete or continuous. We now consider a special

sample version of Y : unless Y is categorical variable or discrete, otherwise for

continuous Y , we slice it into finite C categories, that is Y = {1, · · · , H}.

The sample version of C2(X|Y ) denoted by C2
n(X|Y ), has a very simple form:

C2
n(X|Y ) =

1

n2

n,n∑
k,l=1

|Xk −Xl| −
1

n

H∑
y=1

1

ny

ny,ny∑
k,l=1

|Xk −Xl|. (3.2)

• Kernel estimator. For continuous Y , usual kernel method can be used to obtain

a sample estimate of C2(X|Y ), which is denoted by C2
n,k(X|Y ):

C2
n,k(X|Y ) =

1

n2

∑
i,j

|Xi −Xj| − m̂,

where m̂ = 1
n

∑n
l=1 m̂(Yl). Kh(t) = h−1K(t/h), h > 0 denotes a 1-dimensional

kernel function, and m̂(Y) =
n−2

∑n
i=1,j=1 |Xi−Xj |Kh(Y−Yi)Kh(Y−Yj)

n−1
∑n
j=1Kh(Y−Yj)n−1

∑n
i=1Kh(Y−Yi) . (Although the

original estimation formula is for arbitrary dimensional response, we use a spe-

cial case when Y is a continuous variable.)
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The sample version C2
n(X|X) is the same for the above two methods:

C2
n(X|X) =

1

n2

n,n∑
k,l=1

|Xk −Xl|. (3.3)

Different kernels(Gaussian kernel and Epanechnikov kernel) are used for the

kernel estimator. Let Rc
2(slice), Rc

2(gau) and Rc
2(epa) be the slicing estimator

and kernel estimator with Gaussian and Epanechnikov kernel, respectively in

later sections.

Algorithm

In an ultrahigh-dimensional setting, the number of predictors p is usually much larger

than the sample size n. Using the notation in earlier sections, sufficient variable

selection means to correctly detect XD, or a set containing such XD. To achieve this

goal, we could use proposition 3.2.1 to test the conditional independence and marginal

independence in (ii). Although such an approach is elegant to reach D, it has a

high computational cost and is time consuming. Since our goal of sufficient variable

selection is to achieve a set S ⊇ D, while the size of S is small enough comparing

with data size n, we propose an alternative screening approach as compared with the

testing approach for sufficient variable selection.

Based on proposition 3.2.1, the newly proposed two-stage sufficient variable screen-

ing method uses both parts in statement (ii). It is different from marginal indepen-

dence screening that is popular in independence screening area, which only utilizes

the second part of statement (ii).

We use the measure Rc
2(X|Y ) to illustrate the method, though it can be replaced

by any other appropriate independence measures, for example correlation coefficient.

The marginal screening will miss active predictors which are marginally unrelated but

jointly related to the response. On the other hand, the two stage approach combines

marginal and conditional relationship to fully recover the active predictor set XD.

• Marginal Screening:
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1. Calculate Imk = Rc
2(Xk|Y ) for k = 1, · · · , p, and sort it by descending

order.

2. For a given model size d, select a set of the Xk’s that correspond to the

largest d values of Imk .

• Two-Stage Sufficient Variable Screening: For a given model size d, determine

the model size dm and dc for the marginal and conditional sequence respectively,

dm + dc = d.

1. Obtain the first set of active predictors:

Apply the above marginal screening method, obtain the first set of active

predictors with size dm.

2. Obtain the second set of active predictors:

(a) Suppose Y hasH groups, or if Y is a continuous variable, slice it intoH

groups. For observations belong to category y, y = 1, · · · , H, calculate

Ick,y = Rc
2(X−k|Xk), where X−k a vector of X after eliminated Xk,

k = 1, · · · , p. Compute Ick =
∑H

y=1 pyIck,y, where py = ny/n is a

weight, ny is the number of observations in group y, n is the total

number of observations.

(b) Sort Ick by descending order.The second part of active predictors is a

set of Xk’s with the largest dc values of Ick that have not been selected

in the first stage.

3. An estimate of XD is the union of the two sets.

In practice, we use the sample index instead of the population index. Note that

d has to be chosen. Typically, d < p, in general we can use d = n − 1, otherwise,

in the simulation examples in section 3.4, we follow existing literature and let d

equal to d1 = bn/ log(n)c, d2 = 2bn/ log(n)c and d3 = 3bn/ log(n)c, respectively.

In addition, in screening approach of SVS2 procedure, we use dm = b0.95dc since

marginal relation is more important in selecting active predictors. while dc = d− dm
variables are selected in the conditional sequence.
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3.3 Theoretical Properties

We now discuss the theoretical properties of the proposed screening approach of the

two-stage sufficient variable selection procedure. Two measures are used: Imk =

Rc
2(Xk|Y ) and Ick =

∑H
y=1 pyIck,y, where Ick,y = Rc

2(X−k|Xk) and is computed based

on observations in group y. Treat Xk as the variable Y , the measure Ick,y is the same

as Imk . Thus, we would first study the theoretical properties of marginal screening

stage and focus on estimation using slicing method. In particular, we follow what

have been studied by Li et al. (2012b) on the theoretical properties of the screening

method using distance correlation. The theoretical properties for the conditional

stage can be obtained using similar argument, and will be proved to have the similar

results as the marginal stage. After that, we will show the sure screening property of

the proposed two-stage screening approach.

Note that Rc(Xk|Y ) = 0 if and only if Xk and Y are independent with k =

1, · · · , p, guarantees Rc
2(Xk|Y ) ranks the active predictor above the inactive one,

i.e. maxi∈D̄Rc
2(Xk|Y ) < mini∈DRc

2(Xk|Y ), and separates the active ones from the

inactive ones. Hence, the quantity Rc
2(Xk|Y ) can be used for variable screening.

We use this measure since it is model free and works especially well if the response

variable is categorical.

For ease of presentation, let the population and sample version, respectively, be

ωk = Rc
2(Xk|Y ), ω̂k = R̂c

2
(Xk|Y ) for k = 1, · · · , p.

While ωk ranks the importance of Xk at the population level, ω̂k helps to select a set

of active predictors with large values. Let D̂m be the estimated index set of active

predictors considering the marginal relationship:

D̂m = {k : ω̂k ≥ cn−τ , for 1 ≤ k ≤ p},

where c and τ are two pre-specified threshold. And Dm is the true index set of

marginally active predictors. The following three conditions are needed for technical
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proofs:

(C1) Predictor X satisfies the subexponential tail probability uniformly in p. That

is, there exists a positive constant s0 such that for all 0 < s ≤ 2s0,

sup
p

max
1≤k≤p

E{exp(s|Xk|2)} <∞.

For some constant c > 0 and 0 ≤ τ < 1
2
, the dependency measures satisfy:

(C2)

min
k∈D

ωk ≥ 2cn−τ ,

(C
′
2)

min
k∈D

H∑
y=1

pyIck,y ≥ 2cn−τ .

Condition (C1) is used to facilitate the technical derivations as in Li et al. (2012b).

It follows immediately when X is bounded uniformly, or when it has a multivariate

normal distribution, which is widely used in ultrahigh-dimensional data analysis.

Condition (C2) is equivalent to the condition 3 of Fan and Lv (2008) and condition

(C2) in Li et al. (2012b). Condition C
′
2 is a similar condition as C2 for the conditional

screening stage. Conditions C2 and C
′
2 reflect the signal strength of individual active

predictors, which in turn controls the rate of probability error in selecting the ac-

tive predictors (Zhu et al., 2011). The following theorem establishes the asymptotic

property.

Theorem 3.3.1. Under condition (C1), for any 0 < γ < 1
2
− τ , there exist positive

constants c1, c2 > 0 such that

Pr( max
1≤k≤p

|ω̂k − ωk| ≥ cn−τ ) ≤ O(p[exp(−c1n
1−2(τ+γ)) + n exp(−c2n

2γ)]) (3.4)

Under conditions (C1) and (C2), we have that

Pr(Dm ⊆ D̂m) ≥ 1−O(sm[exp(−c1n
1−2(τ+γ)) + n exp(−c2n

2γ)]), (3.5)
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where sm is the cardinality of Dm.

The inequality (3.4) in Theorem 3.3.1 shows the rank consistency of ω̂k, it also in-

dicates that we can handle the non-polynomial (NP) dimensionality of order log(p) =

o(n(1−2τ)/4). If we further assume that Xk is bounded uniformly in p, we can handle

the NP dimensionality of order log(p) = o(n1−2τ ). Based on (3.5), the true active pre-

dictors survive with probability approaching to one with exponential rate as n→∞.

Similarly, define D̂c as the estimated index set of active predictors considering the

conditional relationship:

D̂c = {k :
H∑
y=1

pyÎck,y ≥ cn−τ , for 1 ≤ k ≤ p},

where Îck,y is the sample version of Ick,y, c and τ are two pre-specified threshold. And

Dc is the true index set of conditionally active predictors.

Theorem 3.3.2. Under condition (C1), for any 0 < γ < 1
2
− τ , there exist positive

constants c3, c4 > 0 such that

Pr( max
1≤k≤p

|
H∑
y=1

pyÎck,y−
H∑
y=1

pyIck,y| ≥ cn−τ ) ≤ O(pH[exp(−c3n
1−2(τ+γ))+n exp(−c4n

2γ)])

(3.6)

Under conditions (C1) and (C
′
2), we have that

Pr(Dc ⊆ D̂c) ≥ 1−O(scH[exp(−c3n
1−2(τ+γ)) + n exp(−c4n

2γ)]), (3.7)

where sc is the cardinality of Dc.

Combine the marginal and the conditional procedure together, we would get the

following result:

Theorem 3.3.3. Let D = Dc ∪Dm, and D̂ = D̂c ∪ D̂m, there exist positive constants
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c5, c6 > 0 such that

Pr(D ⊆ D̂) ≥ 1−O[s(exp(−c5n
1−2(τ+γ)) + n exp(−c6n

2γ))],

where s is the minimum of sm and scH.

We use slicing method as an example to prove the above theorem, however, other

methods, for example the kernel method, or dCorr2 can lead to similar results.

3.4 Numerical Studies

Simulations

In this section, we assess the performance of the screening approach for the two-stage

sufficient variable selection procedure through simulation studies. For each model

below, we repeat the experiment 500 times, and report the results in terms of the

following criteria:

1. Ps: the proportion that an individual active predictor is selected for a given

model size d in the 500 replications.

2. Pa: the proportion that all active predictors are selected for a given model size

d in the 500 replications.

Note: For a given model size d, we set b0.95dc and d − b0.95dc to be the

cutoff point for marginal and conditional sequence, respectively. In a certain

replication, for each individual active predictor Xk, if it appears in the estimated

set XD̂, we say this predictor is selected for the given model size. If all the active

predictors in the model are selected within the same replication, we say all active

predictors are selected for the given model size in this replication.

Note that Ps measure the probability of an individual active predictors Xs being

selected by the variable selection method, while Pa represents the probability that all

active predictors are selected. If Ps and Pa are closer to 1, the method is better.
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For models with categorical variable Y , we report the results of SVS2 using

Rc
2(slice) as the independence measure in both the marginal and conditional screen-

ing stage. In the conditional screening stage, to compute Ick,y = Rc
2(X−k|Xk), for

observations belong to category y, we slice Xk into 2, 3 or 4 slices respectively when

ny ≤ 5, 5 < ny ≤ 15 or 15 < ny ≤ 20, and 5 slices when ny is greater than 20.

We compare the results with Kolmogorov filter, fused Kolmogorov filter and MV-SIS

methods.

Although we focus on categorical response Y , we also simulate a model with a

continuous response. For such a model, we use Rc
2(gau) in the marginal screening

stage of SVS2 method, since it is naturally defined for continuous variables. In the

conditional screening stage, we slice the response variable Y into 5 categories (based

on Yin and Yuan (2016)), then compute the corresponding value using Rc
2(gau). We

compare the result with DC-SIS method.

Example 3.4.1. We generate the following model from example (1.b) in Li et al.

(2012b) to compare the finite sample performance of DC-SIS, SVS2 method with

Rc(gau) and SVS2 method with dCorr:

Y = c1β1X1X2 + c2β21(X12 < 0) + c3β3X22 + ε,

where X is drawn from a multivariate normal distribution with mean zero and co-

variance Σ = (σij)p×p with σij = 0.5|i−j| and σij = 0.8|i−j| respectively. The error

term ε ∼ N(0, 1), 1(·) is an indicator function and (c1, c2, c3) = (2, 3, 2). We choose

βi = (−1)U(a + |Z|) for i = 1, 2, 3, where a = 4logn/
√
n, U ∼ Bernoulli(0.4) and

Z ∼ N(0, 1). We fix n = 200 and vary the dimension p from 2000 to 5000.

From table 3.1, it is clear that SVS2 procedure using dCorr performs better than

the marginal screening procedure via distance correlation method (DC-SIS) in most

cases. On the other hand, SVS2 procedure using Rc(gau) is very comparable with

SVS2 using dCorr. Note that DC-SIS method performs better than SIS and SIRS

methods (Li et al., 2012b). Thus we conclude that the SVS2 procedure does improve

the existing marginal screening procedure, even for continuous response variable.
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Example 3.4.2. Generate X = (X1, X2, · · · , Xp)
T from standard multivariate nor-

mal distribution as follows:

P (Y = 1|X) = exp(g(βT4 X))/[1 + exp(g(βT4 X))]

g(βT4 X) = exp(5βT4 X− 2)/{1 + exp(5βT4 X− 3)} − 1.5

with β4 = (1, 1, 0, . . . , 0)T/
√

2, n = 200 and vary p from 2000 to 5000. .

This example is a binary classification problem. We compare Kolmogorov filter

method (Mai and Zou, 2013), MV-SIS method (Cui et al., 2015) and SVS2 method

with Rc(slice) as the measure for both marginal and conditional sequence. With

higher probability to select both individual active predictors and all active predictors,

compared with the two existing methods, SVS2 has superior performance.

Table 3.2: Proportions comparison of Ps and Pa in example 3.4.2

Kolmogorov filter MV-SIS SVS2 with Rc
2(slice)

Ps Pa Ps Pa Ps Pa
X1 X2 All X1 X2 All X1 X2 All

n = 200, p = 2000
d1 0.926 0.920 0.850 0.950 0.968 0.924 0.952 0.966 0.918
d2 0.956 0.964 0.920 0.968 0.976 0.944 0.974 0.986 0.960
d3 0.968 0.978 0.946 0.976 0.980 0.956 0.982 0.990 0.972

n = 200, p = 5000
d1 0.820 0.860 0.702 0.900 0.884 0.796 0.916 0.924 0.846
d2 0.874 0.888 0.772 0.944 0.930 0.880 0.946 0.952 0.900
d3 0.902 0.916 0.824 0.952 0.938 0.894 0.960 0.962 0.922

Example 3.4.3. Let Y = 1(βTX < −1) + 21(βTX > 2), where 1(·) is an indicator

function and β = (5, 5, 5,−15ρ1/2, 0, . . . , 0)T . Generate X from a multivariate normal

distribution with mean zero and covariance Σ = (σij)p×p with σii = 1 for i = 1, · · · , p,

σi4 = σ4i = ρ1/2 for i 6= 4, and σij = ρ, for i 6= j, i 6= 4, and j 6= 4. In this model,

n = 200 and p = 2000.

This example is a classification problem with more than two outcomes. This

covariance setup is similar to that in example 4 of Zhu et al. (2011). All predictors are

equally correlated with correlation coefficient ρ except for X4 and X4 has correlation
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ρ1/2 with all the other predictors. Note that X4 is marginally independent of Y , so

that the marginal procedure can only pick up X4 by chance, whereas X4 is indeed

an active predictor when ρ 6= 0. The conditional procedure can pick up X4 correctly.

Three variable selection methods are compared: fused Kolmogorov filter (Mai and

Zou, 2015), MV-SIS and SVS2 method. In order to see how the correlation among

predictor variables will affect the variable selection result, we use different value of ρ

to be 0, 0.1, 0.5 and 0.9.

With the probability to select all the active predictors in the fused Kolmogorov

filter or MV-SIS method almost equal to 0, SVS2 procedure has a very high probability

to select all the active predictors. This example demonstrates that SVS2 is indeed a

very powerful tool in picking up active predictors that are marginally independent of

the response, compared with marginal screening methods.

Example 3.4.4. Consider model Y = 1(β1
TX > 0)+21(β2

TX > 0), where 1(·) is an

indicator function. Set β1 = (1, 1, 0, 0, 0, . . . , 0)T , β2 = (0, 0, 1, 1, 1,−3ρ7/10/(ρ1/16 +

1),−3ρ7/10/(ρ1/16+1), 0, . . . , 0)T . Generate X from a multivariate normal distribution

with mean zero and covariance Σ = (σij)p×p with σii = 1 for i = 1, · · · , p, σ67 =

σ76 = ρ1/16, σi6 = σ6i = σ7i = σi7 = ρ7/10 for i 6= 1, 2, 6, 7, and σij = ρ, for i 6= j,

i 6= 1, 2, 6, 7, and j 6= 1, 2, 6, 7. All other elements in the covariance matrix are zero.

In this model, n = 200 and p = 2000.

We vary the value of ρ to be 0, 0.2, 0.5, 0.8 and 0.9 to see how the correlation

among predictor variables will affect the variable selection result. Table 3.4 records

the proportions Ps and Pa.

This example shows if the active predictors are from two dimensions and all pre-

dictors are highly correlated with each other, the marginal selection method will miss

some important predictors while the sufficient variable selection method performs

significantly better. It also indicates that our procedure will not be affected much by

multi-dimensions.

41



T
ab

le
3.

3:
P

ro
p

or
ti

on
s

co
m

p
ar

is
on

of
P
s

an
d
P
a

in
ex

am
p
le

3.
4.

3

fu
se

d
K

ol
m

og
or

ov
F

il
te

r
M

V
-S

IS
S
V

S
2

w
it

h
R
c
2
(s

li
ce

)
P
s

P
a

P
s

P
a

P
s

P
a

X
1

X
2

X
3

X
4

A
ll

X
1

X
2

X
3

X
4

A
ll

X
1

X
2

X
3

X
4

A
ll

ρ
=

0
d

1
0.

99
0

0.
98

4
0.

99
4

N
A

0.
96

8
1.

00
0

1.
00

0
1.

00
0

N
A

1.
00

0
1.

00
0

1.
00

0
1.

00
0

N
A

1.
00

0
d

2
0.

99
4

0.
99

2
1.

00
0

N
A

0.
98

6
1.

00
0

1.
00

0
1.

00
0

N
A

1.
00

0
1.

00
0

1.
00

0
1.

00
0

N
A

1.
00

0
d

3
0.

99
8

0.
99

4
1.

00
0

N
A

0.
99

2
1.

00
0

1.
00

0
1.

00
0

N
A

1.
00

0
1.

00
0

1.
00

0
1.

00
0

N
A

1.
00

0
ρ

=
0.

1
d

1
0.

98
4

0.
97

6
0.

98
6

0.
00

6
0.

00
6

1.
00

0
1.

00
0

0.
99

8
0.

00
4

0.
00

4
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

d
2

0.
99

8
0.

99
0

0.
99

4
0.

03
0

0.
03

0
1.

00
0

1.
00

0
0.

99
8

0.
02

0
0.

02
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
d

3
1.

00
0

0.
99

6
1.

00
0

0.
05

0
0.

05
0

1.
00

0
1.

00
0

0.
99

8
0.

03
2

0.
03

2
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

ρ
=

0.
5

d
1

0.
89

2
0.

87
4

0.
89

6
0.

00
4

0.
00

4
0.

97
6

0.
97

8
0.

97
8

0.
00

0
0.

00
0

0.
98

4
0.

98
8

0.
98

6
1.

00
0

0.
96

8
d

2
0.

93
0

0.
91

8
0.

93
0

0.
00

6
0.

00
4

0.
98

4
0.

98
8

0.
98

4
0.

00
4

0.
00

4
0.

99
2

0.
99

6
0.

99
0

1.
00

0
0.

98
2

d
3

0.
94

6
0.

93
8

0.
95

2
0.

01
0

0.
00

8
0.

99
0

0.
99

2
0.

99
0

0.
00

8
0.

00
6

0.
99

4
0.

99
8

0.
99

2
1.

00
0

0.
98

6
ρ

=
0.

9
d

1
0.

64
8

0.
65

8
0.

66
6

0.
00

0
0.

00
0

0.
70

6
0.

72
6

0.
72

8
0.

00
0

0.
00

0
0.

71
0

0.
71

2
0.

71
2

1.
00

0
0.

61
2

d
2

0.
69

4
0.

71
2

0.
71

6
0.

00
6

0.
00

4
0.

74
2

0.
74

6
0.

76
6

0.
00

0
0.

00
0

0.
74

6
0.

74
6

0.
75

6
1.

00
0

0.
65

0
d

3
0.

72
2

0.
74

8
0.

73
4

0.
01

4
0.

01
0

0.
76

4
0.

76
6

0.
77

8
0.

00
0

0.
00

0
0.

76
2

0.
76

6
0.

77
6

1.
00

0
0.

67
2

42



T
ab

le
3.

4:
P

ro
p

or
ti

on
s

co
m

p
ar

is
on

of
P
s

an
d
P
a

in
ex

am
p
le

3.
4.

4

F
u
se

d
K

o
lm

o
g
o
ro

v
fi
lt

er
M

V
-S

IS
S
V

S
2

w
it

h
R
c
2
(s

li
ce

)
P
s

P
a

P
s

P
a

P
s

P
a

X
1

X
2

X
3

X
4

X
5

X
6

X
7

A
ll

X
1

X
2

X
3

X
4

X
5

X
6

X
7

A
ll

X
1

X
2

X
3

X
4

X
5

X
6

X
7

A
ll

ρ
=

0
d
1

1
.0

0
0

1
.0

0
0

1
.0

0
0

0
.9

8
8

0
.9

9
4

N
A

N
A

0
.9

8
2

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

N
A

N
A

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

N
A

N
A

1
.0

0
0

d
2

1
.0

0
0

1
.0

0
0

1
.0

0
0

0
.9

9
8

0
.9

9
8

N
A

N
A

0
.9

9
6

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

N
A

N
A

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

N
A

N
A

1
.0

0
0

d
3

1
.0

0
0

1
.0

0
0

1
.0

0
0

0
.9

9
8

0
.9

9
8

N
A

N
A

0
.9

9
6

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

N
A

N
A

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

N
A

N
A

1
.0

0
0

ρ
=

0
.2

d
1

1
.0

0
0

1
.0

0
0

0
.9

7
8

0
.9

8
8

0
.9

8
4

0
.0

1
0

0
.0

0
0

0
.0

0
0

1
.0

0
0

1
.0

0
0

0
.9

9
8

1
.0

0
0

1
.0

0
0

0
.0

0
6

0
.0

0
6

0
.0

0
2

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

0
.9

9
6

1
.0

0
0

0
.9

9
6

d
2

1
.0

0
0

1
.0

0
0

0
.9

8
6

0
.9

9
2

0
.9

9
4

0
.0

1
2

0
.0

0
8

0
.0

0
2

1
.0

0
0

1
.0

0
0

0
.9

9
8

1
.0

0
0

1
.0

0
0

0
.0

1
2

0
.0

1
6

0
.0

0
8

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

d
3

1
.0

0
0

1
.0

0
0

0
.9

9
6

0
.9

9
6

0
.9

9
6

0
.0

1
6

0
.0

1
2

0
.0

0
4

1
.0

0
0

1
.0

0
0

0
.9

9
8

1
.0

0
0

1
.0

0
0

0
.0

1
4

0
.0

1
8

0
.0

0
8

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

ρ
=

0
.5

d
1

0
.9

9
8

0
.9

9
8

0
.9

0
8

0
.8

8
2

0
.8

8
2

0
.0

0
2

0
.0

0
0

0
.0

0
0

1
.0

0
0

1
.0

0
0

0
.9

9
6

0
.9

9
4

0
.9

9
6

0
.0

0
4

0
.0

0
4

0
.0

0
4

1
.0

0
0

1
.0

0
0

0
.9

9
6

0
.9

9
8

0
.9

9
4

1
.0

0
0

1
.0

0
0

0
.9

8
8

d
2

1
.0

0
0

0
.9

9
8

0
.9

5
4

0
.9

3
2

0
.9

6
2

0
.0

0
2

0
.0

0
2

0
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

0
.9

9
8

0
.9

9
6

0
.0

0
8

0
.0

0
4

0
.0

0
4

1
.0

0
0

1
.0

0
0

0
.9

9
8

1
.0

0
0

0
.9

9
8

1
.0

0
0

1
.0

0
0

0
.9

9
6

d
3

1
.0

0
0

0
.9

9
8

0
.9

7
8

0
.9

5
4

0
.9

8
2

0
.0

0
4

0
.0

0
6

0
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

0
.9

9
8

0
.0

0
8

0
.0

0
4

0
.0

0
4

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

0
.9

9
8

1
.0

0
0

1
.0

0
0

0
.9

9
8

ρ
=

0
.8

d
1

0
.9

9
6

1
.0

0
0

0
.5

4
8

0
.5

7
6

0
.5

9
0

0
.0

1
8

0
.0

2
4

0
.0

0
0

1
.0

0
0

1
.0

0
0

0
.9

4
8

0
.9

2
2

0
.9

1
4

0
.0

2
8

0
.0

2
8

0
.0

0
4

1
.0

0
0

1
.0

0
0

0
.9

4
8

0
.9

3
8

0
.9

4
0

1
.0

0
0

1
.0

0
0

0
.8

5
2

d
2

1
.0

0
0

1
.0

0
0

0
.6

5
4

0
.6

7
8

0
.7

1
8

0
.0

2
4

0
.0

3
4

0
.0

0
2

1
.0

0
0

1
.0

0
0

0
.9

7
0

0
.9

6
0

0
.9

5
4

0
.0

3
6

0
.0

3
0

0
.0

0
8

1
.0

0
0

1
.0

0
0

0
.9

6
8

0
.9

7
0

0
.9

6
8

1
.0

0
0

1
.0

0
0

0
.9

1
8

d
3

1
.0

0
0

1
.0

0
0

0
.7

3
6

0
.7

3
8

0
.7

9
2

0
.0

4
4

0
.0

4
2

0
.0

0
6

1
.0

0
0

1
.0

0
0

0
.9

8
4

0
.9

6
6

0
.9

6
8

0
.0

4
2

0
.0

3
2

0
.0

1
4

1
.0

0
0

1
.0

0
0

0
.9

8
0

0
.9

7
8

0
.9

8
0

1
.0

0
0

1
.0

0
0

0
.9

4
4

ρ
=

0
.9

d
1

0
.9

9
8

1
.0

0
0

0
.3

8
4

0
.3

6
2

0
.3

8
0

0
.0

4
0

0
.0

2
8

0
.0

0
0

1
.0

0
0

1
.0

0
0

0
.7

7
2

0
.8

0
6

0
.7

8
4

0
.0

4
2

0
.0

4
8

0
.0

0
4

1
.0

0
0

1
.0

0
0

0
.8

3
4

0
.7

9
8

0
.8

1
8

0
.9

9
8

0
.9

9
8

0
.6

2
4

d
2

0
.9

9
8

1
.0

0
0

0
.5

1
4

0
.4

9
6

0
.5

1
0

0
.0

5
4

0
.0

4
8

0
.0

0
0

1
.0

0
0

1
.0

0
0

0
.8

3
0

0
.8

5
4

0
.8

4
8

0
.0

6
0

0
.0

6
8

0
.0

0
8

1
.0

0
0

1
.0

0
0

0
.9

0
2

0
.8

6
8

0
.8

8
2

1
.0

0
0

1
.0

0
0

0
.7

6
6

d
3

0
.9

9
8

1
.0

0
0

0
.5

9
6

0
.5

7
0

0
.6

0
4

0
.0

6
0

0
.0

6
8

0
.0

0
2

1
.0

0
0

1
.0

0
0

0
.8

5
8

0
.8

7
0

0
.8

7
4

0
.0

7
2

0
.0

8
0

0
.0

1
0

1
.0

0
0

1
.0

0
0

0
.9

3
0

0
.8

9
4

0
.9

0
2

1
.0

0
0

1
.0

0
0

0
.8

1
4

43



Leukaemia data analysis

In this section, we apply the screening approach of SVS2 procedure on a leukaemia

data set. The data set contains 72 samples and 7129 genes from high density

Affymetrix oligonucleotide arrays. Among the subjects, 25 have acute myeloid leukemia

(AML) and 47 have acute lymphoblastic leukemia (ALL).

The data is first analyzed by Golub et al. (1999) and then by Chiaromonte and

Martinelli (2002), Dudoit et al. (2002) and Fan and Lv (2008), among others. It is

available at http://portals.broadinstitute.org/cgi-bin/cancer/publications/

view/43.

We treat the grouping of the subjects as the response variable and the explanatory

variable has dimension p = 7129, which is much larger than sample size n = 72. We

want to select the genes that can well separate the two groups.

Before applying any method, we preprocess the data following Golub et. al.

(1999). Three preprocessing steps were applied as follows and 3194 genes were kept.

• (a) thresholding, gene expression readings of 100 or fewer were set to 100 and

expression readings of 16000 or more were set to 16000;

• (b) screening, only genes where maxmin > 500 and max/min > 5 were included,

where max and min refer to the maximum and minimum readings of a gene

expression among the 72 samples respectively;

• (c) transformation, gene expression readings of the genes selected were log-

transformed, and were also standardized to have mean 0 and variance 1.

We first select n − 1 = 71 variables using SVS2 procedure, then apply sliced

inverse regression (SIR) method (Li, 1991) with sparse solution (Li, 2007) to reduce

the dimension of selected n−1 variables, and select active variables. We finally select

10 genes. Figure 1 shows the boxplot of the estimate of first direction by SIR using

the 10 selected genes. From the plot, we clearly see the separation of the two groups.
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Figure 3.1: Boxplot by plotting the grouping on the first direction, where 0 is ALL
group and 1 is the AML group.

3.5 Discussion

In this paper, we propose a novel two-stage sufficient variable selection procedure

with screening approach, using a newly developed independence measure. This pro-

cedure provides a new aspect that does not rely on model assumption and better than

those of SIS approaches, while inherits the advantages of model-free property. It is

particularly useful when response is categorical or discrete, such as in classification

or high dimensional discriminant analysis. In addition, the procedure can detect the

active predictors which are marginally independent of the response, and it has an

easier computation and interpretation compared with iterative methods (in marginal

screening procedures). Although we do not use testing approach in the procedure, it

can be implemented with fine statistical testing methods. We expect that the idea of

sufficient variable selection shall lead to new research directions on variable selection.

Copyright c© Qingcong Yuan, 2017.
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Chapter 4 Sufficient Dimension Reduction in Big Data

4.1 Introduction

For the past 25 years, sufficient dimension reduction is a hot topic, many methods have

been developed to estimate the central subspace (Cook, 1996). These methods can

be classified into three classes: inverse, forward and joint regression methods. Inverse

regression methods use the regression of X|Y, and require certain conditions on X,

such as linearity condition and/or constant covariance condition. Specific methods

include sliced inverse regression (SIR; Li, 1991), sliced average variance estimation

(SAVE; Cook and Weisberg, 1991) and directional regression (DR; Li and Wang,

2007). Also see Zhu and Fang (1996), Fung et al. (2002), Yin and Cook (2003), Cook

and Ni (2005), Li and Dong (2009), Dong and Li (2010) and Cook and Zhang (2015).

The forward regression methods include the minimum average variance estimation

(MAVE; Xia et al., 2002) and its variants, Xia (2007) and Wang and Xia (2008),

average derivative estimate (Härdle and Stoker, 1989; Powell et al., 1989), Ichimura

(1993), Härdle et al. (1993), Horowitz and Härdle (1996), structure adaptive method

(Hristache et al., 2001) and Ma and Zhu (2013a). The forward methods require

nonparametric approaches such as kernel smoothing. Joint regression methods require

the joint distribution of (Y, X), and methods include principal hessian direction

(PHD; Li, 1992; Cook, 1998a), the fourier method (Zhu and Zeng, 2006), Zeng and

Zhu (2010), Yin and Cook (2005) and Yin et al. (2008). They require either smoothing

techniques or stronger conditions.

In this chapter, we develop a new sufficient dimension reduction method based

on the measure in chapter 2 to estimate the central subspace. It is similar to the

classical inverse approaches, such as SIR and SAVE, but without requiring any lin-

ear or constant variance condition and can exhaustively recover the central subspace

without smoothing requirement. On the other hand, its algorithm keeps the advan-

tage of Sheng and Yin (2013, 2016) needs no smoothing, and it requires very mild
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conditional on the predictors. It is particularly useful when response is categorical,

or discrete but its numerical value is not meaningful, compared with Sheng and Yin

(2013, 2016).

This chapter is organized as follows: Section 4.2 includes a detailed description

of the proposed method. Section 4.3 include some theoretical properties. Section 4.4

presents two simulation examples. The appendix contain the proofs.

4.2 Methodology

A measure of divergence

In chapter 2, we propose a new measure of divergence for independence between two

random vectors. Let X ∈ Rp and Y ∈ Rq, where p and q are positive integers, then

the measure between X and Y with finite first moments is a nonnegative number,

C(X|Y), defined by

C2(X|Y) =

∫
Rp
|fX|Y(t)− fX(t)|2w(t)dt, (4.1)

where fX|Y and fX stand for the characteristic functions of X|Y and X, respectively.

Let |f |2 = ff̄ for a complex-valued function f , with f̄ being the conjugate of f . The

weight function w(t) is a specially chosen positive function. More details of w(t) can

be found in chapter 2. They also give an equivalent formula as

C2(X|Y) = E|X−X′Y| − E|XY −X′Y| = E|X−X′| − E|XY −X′Y|, (4.2)

where the expectation is over all random vectors. For instance, the last expectation

is first taking the conditional expectation given Y, then over Y. (X′,Y′) is an iid

copy of (X,Y), XY denotes a random variable distributed as X|Y, X′Y′ denotes a

random variable distributed as X′|Y′ and X′Y denotes a random variable distributed

as X′|Y′ with Y′ = Y.

An attractive property of C2(X|Y) is that it equals 0 if and only if the two random

vectors are independent 2). This property makes it possible that C2(X|Y) can be used
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as a sufficient dimension reduction tool. What’s more, the measure works well for

both continuous and categorical Y. This is particularly useful when the class index

of dataset is not meaningful, where other measures do not attain similar power.

Review of sufficient dimension reduction

Let B be a matrix and S(B) be the subspace spanned by the column vectors of

B. dim(S(B)) is the dimension of S(B). PB(ΣX) denotes the projection operator

which projects onto S(B) with respect to the inner product < a, b >= aTΣXb, that

is, PB(ΣX) = B(BTΣXB)−1BTΣX . Let QB(ΣX) be the projection of the orthogonal

complement of B(ΣX). QB(ΣX) = I − PB(ΣX), where I is the identity matrix.

Let β be a p × q matrix with q ≤ p, and be the independence notation.

The following conditional independence leads to the definition of sufficient dimension

reduction:

Y X|βTX, (4.3)

where (4.3) indicates that the regression information of Y given X is completely

contained in the linear combinations of X, βTX. The column space of β in (4.3),

denoted by S(β), is called a dimension reduction subspace.

If the intersection of all dimension reduction subspace is itself a dimension reduc-

tion subspace, then it is called the central subspace (CS), and it is denoted by SY |X
(Li, 1991; Cook, 1994, 1996). Under mild conditions, CS exists (Yin et al., 2008).

Throughout the chapter, we assume CS exists, which is unique. Furthermore, let d

denote the structural dimension of the central subspace, and let ΣX be the covariance

matrix of X, which is assumed to be nonsingular. Our primary goal is to identify the

central subspace by estimating d and a p× d basis matrix B of CS.
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The new sufficient dimension reduction method

Let β be an p× d0 arbitrary matrix, where 1 ≤ d ≤ p. We will show that under mild

conditions, solving (4.4) will yield a basis of the central subspace.

max
βTΣXβ=Id

1≤d≤p

C2(βTX|Y), (4.4)

Here the squared divergence between βTX and Y is defined as

C2(βTX|Y) =

∫
Rd+1

|fβTX|Y(t)− fβTX(t)|2w(t)dt.

The conditions E|X| < ∞ and E|XY| < ∞ in chapter 2 guarantee that the

C2(βTX|Y) is finite, thus throughout the chapter we assume they hold. In the op-

timization problem (4.4), we use the constraint βTΣXβ = Id. The reason is that

C2(cβTX|Y) = |c|C2(βTX|Y) for any constant c (2), and therefore we can always get

a bigger value of C2(βTX|Y) by multiplying β a constant with bigger absolute value,

so we need a scale constraint to make the maximization procedure work.

We distinguish two cases, when d = 1 and when d > 1. For the single index

of d = 1, we can explicitly have the inference, while for multi-index of d > 1, only

projection matrix is identifiable, thus its inference may not be meaningful.

Single index

The following propositions ensure that if we maximize C2(βTX|Y) with respect to β

under the constraint, the solution indeed spans the CS.

Proposition 4.2.1. Let η to be a basis of the central subspace SY|X and ηTΣXη =

1. If P T
η(ΣX)X QT

η(ΣX)X, then C2(ηTX|Y) ≥ C2(βTX,Y) for any β ∈ Rp with

βTΣXβ = 1. The equality holds if and only if Span(β) = Span(η).
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Multi-index

The following propositions ensure that if we maximize C2(βTX|Y) with respect to β

under the constraint and some mild conditions, the solution indeed spans the central

subspace.

Proposition 4.2.2. Let η be a basis of the central subspace, β be a p×d1 matrix with

d1 ≤ d, dim(S(β)) = d1, ηTΣXη = Id and βTΣXβ = Id1. Assume S(β) ⊆ S(η),

then C2(βTX|Y) ≤ C2(ηTX|Y). The equality holds if and only if S(β) = S(η).

Proposition 4.2.3. Let η be a basis of the central subspace, β be a p × d2 matrix

with ηTΣXη = Id and βTΣXβ = Id2. Here d2 could be bigger, less or equal to d.

Suppose P T
η(ΣX)X QT

η(ΣX)X and S(β) * S(η), then C2(βTX|Y) < C2(ηTX|Y).

Proposition 4.2.2 indicates that if S(β) is a subspace of the central subspace

SY|X = S(η), then C2(βTX|Y) is always less or equal to C2(ηTX|Y) and the equality

holds if and only if β is also a basis matrix of the central subspace, i. e., S(β) = S(η).

Proposition 4.2.3 indicates that if S(β) is not a subspace of the central subspace, then

under a mild condition C2(βTX|Y) is always less than C2(ηTX|Y). The above two

propositions indicate that we can always identify the central subspace by maximizing

C2(βTX|Y) with respect to β under the quadratic constraint. The independence

condition, P T
η(ΣX)X QT

η(ΣX)X, in proposition 4.2.3 is not as strong as it seems to

be, and it could be satisfied asymptotically when p is reasonably large. Proofs for

proposition 4.2.1, 4.2.2 and 4.2.3 are in the appendix.

Estimating the central subspace when d is specified

In this section, we propose an algorithm for estimating the central subspace when the

structural dimension d is known. Let (X,Y) = {(Xi, Yi), i = 1, · · · , n} be a random

sample from (X,Y) and let β be a p× d matrix. The sample version of C2(βTX|Y)

denoted by C2
n(βTX|Y), has the following form:
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C2
n(X|Y) =

1

n2

n,n∑
k,l=1

|Xk −Xl| −
1

n

H∑
y=1

1

ny

ny,ny∑
k,l=1

|Xk −Xl|. (4.5)

Here | · | is the Euclidean norm in the respective dimension. Let Σ̂X be the sample

version of ΣX , then an estimated basis matrix of the central subspace, say ηn, is

ηn = arg maxβT Σ̂Xβ=Id
C2
n(βTX|Y).

To find such an ηn, we use Sequential Quadratic Programming method (SQP;

Gill et al., 1981, Ch.6) to solve the above nonlinear optimization problem. The SQP

procedure incorporated in MATLAB can be directly adopted in our algorithm. In

this chapter, we use SIR, SAVE and LAD to estimate the initials and we choose the

one, which gives the biggest squared distance covariance, as the final initial value.

Note that by invariance law, we can equivalently work on standardized predictor

Z-scale, then transform back to X-scale. Indeed, propositions 4.2.1 and 4.2.2 hold

for standardized predictor Z. Thus, we write the algorithm under Z scale, and we

transform the estimate back into X scale later. This scheme seems to work well in

our simulations. In the next section, we show the estimator ηn is consistent and

asymptotically normal.

If we don’t know the dimension, then it can be estimated by using bootstrap

method (Ye and Weiss, 2003; Zhu and Zeng, 2006; Sheng and Yin, 2016).

4.3 Theoretical Properties

Single-index case

Proposition 4.3.1. Let η ∈ Rp to be a basis of the central subspace with ηTΣXη = 1,

and ηn = arg maxβT Σ̂Xβ=1 C2
n(βTX|Y). Assume P T

η(ΣX)X QT
η(ΣX)X and the support

of X ∈ Rp, say S, is a compact set, then there exists a constant c = 1 or c = −1 such

that ηn
P−→ cη as n→∞.
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Similar to the population level, C2
n(βTX|Y) = C2

n(−βTX|Y), thus maximizing

C2
n(βTX|Y) with respect to β under the constraint will have two solutions: ηn or

−ηn, which, respectively, spans the same subspace. The purpose of using the constant

c = 1 or c = −1 is to make sure that the first nonzero component of ηn and cη have

the same sign.

In general, the support of X doesn’t have to be compact. However, Yin et al.

(2008, proposition 11) showed that as long as compact set S is large enough, then

SY|Xs = SY|X, where Xs is X restricted onto S. Hence we can restrict our discussion

on a compact set S for simplifying the proof. Under such condition, E|X| < ∞

holds, which together with E|Y| < ∞ satisfy the definition of distance covariance.

Proof of proposition 4.3.1 is given in the appendix. Indeed, we can further prove the
√
n-consistency and asymptotic normality of the estimator as stated below. And the

proof of proposition 4.3.2 is again delayed in the appendix.

Proposition 4.3.2. Let η ∈ Rp to be a basis of the central subspace with ηTΣXη = 1,

and ηn = arg maxβT Σ̂Xβ=1 C2
n(βTX|Y). Under the same conditions as in proposition

4.2.2 and also the regularity conditions in the appendix, there exist a constant c = 1

or c = −1 such that
√
n(ηn−cη)→ N(0, V11), where V11 is covariance matrix defined

in the appendix.

Multi-index case

Proposition 4.3.3. Assume η is a basis matrix of the central subspace SY|X and

ηTΣXη = Id. Suppose the support of X, say S, is compact, E|Y | < ∞ and

P T
η(ΣX)X QT

η(ΣX)X. Let ηn = arg maxβT Σ̂Xβ=Id
C2
n(βTX|Y), then ηn is a consistent

estimator of a basis of SY |X , that is, there exists a rotation matrix Q: QTQ = Id,

such that ηn
P−→ ηQ.

Proposition 4.3.4. Assume η is a basis matrix of the central subspace SY|X and

ηTΣXη = Id. Suppose the support of X is compact, E|Y| <∞ and P T
η(ΣX)X QT

η(ΣX)X.

Let ηn = arg maxβT Σ̂Xβ=Id
C2
n(βTX|Y), then under the regularity conditions given in

the appendix, there exists a rotation matrix Q: QTQ = Id such that
√
n[vec(ηn) −
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vec(ηQ)]
D−→ N(0, V11(ηQ)), where V11(ηQ) is the covariance matrix defined in the

appendix.

Corollary 4.3.5. Let η be a basis matrix of the central subspace and

ηn = arg maxβT Σ̂Xβ=Id
C2
n(βTX|Y), then under the same assumptions and conditions

in proposition 4.3.1, we have
√
n[vec(ηnη

T
n Σ̂)−vec(ηηTΣ)]

D−→ N(0, V22(ηQ)), where

V22(ηQ) is the covariance matrix defined in the appendix.

4.4 Simulation Studies

Estimation accuracy is measured by ∆m(Ŝ,S) =‖ PŜ−PS ‖ (Li et al. (2005)), where

S is the real d-dimensional central subspace of Rp, Ŝ is the estimate, PS , PŜ are the

orthogonal projections onto S and Ŝ, respectively. And ‖ · ‖ is the maximum singular

value of a matrix. The smaller the ∆m is, the better the estimate is. Also a method

works better if it has smaller standard error of ∆m. The following two examples

show the nice performance of the proposed method in terms of both continuous and

categorical response, assuming we already know the dimension d.

Example 4.4.1. The model (model (A); Sheng and Yin (2016)) is Y = (βT1 X)2 +

(βT2 X) + 0.1ε, where X ∼ N(0, Ip), ε ∼ N(0, 1) and is independent of X. β1 =

(1, 0, · · · , 0)T , β2 = (0, 1, · · · , 0)T . We compare dCov (Sheng and Yin (2016)) with

Rc(slice) (uses 6 slice when n = 100 and 10 slices for n > 100).

Assume there are two dimensions, table 4.1 shows the average estimation accu-

racy (∆̄m) and its standard error (SE) under different (n, p) combinations and 500

replications. Note that Rc(slice) performs consistently better than dCov, under all

the different (n, p) combinations.

Table 4.1: Comparison of dimension reduction accuracy using dCov and Rc(slice)

(100,6) (200,6) (300,6) (400,6) (500,20)
dCov Rc(slice) dCov Rc(slice) dCov Rc(slice) dCov Rc(slice) dCov Rc(slice)

∆̄m 0.190 0.188 0.130 0.101 0.101 0.075 0.087 0.062 0.162 0.119
SE 0.059 0.078 0.039 0.032 0.029 0.023 0.026 0.019 0.026 0.020
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Example 4.4.2. This example is an example for categorical Y . In a four groups

balanced design, the total number of observations from all groups is n, X has di-

mension p = 6, with marginal distributions independent. We set up the following

scheme: X1 follows non-central t(4) distribution with non-centrality parameter δ = 5

in the first group, and it follows central t(4) distribution in the other groups. While,

X2 ∼ N(0, 1), X3 ∼ U(0, 1), X4 ∼ N(0, 1), X5 ∼ χ2(1) and X6 ∼ χ2(3) and each of

these elements of X follows the same distribution across different groups.

Table 4.2 shows the average estimation accuracy (∆̄m) and its standard error

(SE), under different (n, p) combinations and replicate 500 times, assume there is

one dimension. The dimension reduction accuracy of Rc(slice) is consistently better

than that of dCov.

Table 4.2: Comparison of dimension reduction accuracy using dCov and Rc(slice)

(100,6) (200,6) (300,6) (400,6)
dCov Rc(slice) dCov Rc(slice) dCov Rc(slice) dCov Rc(slice)

∆̄m 0.956 0.594 0.948 0.449 0.936 0.397 0.928 0.338
SE 0.076 0.187 0.096 0.189 0.100 0.173 0.105 0.152

4.5 Discussion

In this chapter, we propose a new sufficient dimension reduction method. It’s asymp-

totic properties under single and multiple index cases are discussed. Simulation re-

sults show its advantage and it is particularly useful when Y is a categorical variable.

Along this line, in the future, we will apply the framework of Yin and Hilafu (2015)

for large p and small n problem, and further combine the penalized methods such as

LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001) and Dantzig selector (Candes

and Tao, 2007) for large p and small n data.

Copyright c© Qingcong Yuan, 2017.
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Appendix

Supplementary Materials for Chapter 2

This section provides materials related to the newly proposed index in section 2.3.

It includes proofs of propositions and theorems stated in chapter 2, and additional

simulation results.

Brownian Motion Approach

We use the discrepancy between the characteristic functions and a particular weight

function to lead to our index (2.5). However, in this section, we show that a Brownian

motion procedure also can derive our index (2.5).

Let W be a two-sided one-dimensional Brownian motion/Wiener process with

expectation zero and covariance function |s| + |t| − |s − t| = 2 min(s, t), s, t > 0

(Székely and Rizzo, 2009, (3.3)).

Definition S. 4.5.1. The Brownian conditional difference or the Wiener conditional

difference of a real-valued random vector X given Y with finite second moments is

a non-negative number defined by D2
W (X|Y) = E(XWX′W |Y), where W does not

depend on (X,X′,Y).

With this definition, we then have the following result.

Proposition S. 4.5.1. If X is an Rp valued random vector, Y is an Rq valued

random vector, and E[|X|2 +E(|X|2|Y)] <∞, then E(XWX′W |Y) is nonnegative and

finite. Let X and X′ be iid, and XY and X′Y be iid; Expectations are taken over every

random vector except conditioning on Y if it appears. Then, (2.5) holds. That is,

C2(X|Y) = E[D2
W (X|Y)].
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Proof of Proposition S.4.5.1:

D2
W (X|Y) = E[E(XWX′W |Y,W )|Y] = E[E(XW |Y,W )E(X′W |Y,W )|Y]

= E[{E(XW |Y,W )}2|Y],

which is nonnegative. Finiteness can be obtained as Székely and Rizzo (2009, page

1262). Note that D2
W (X|Y) = E[E(XWX′W |Y,X,X′)|Y]. Now using the same argu-

ment on page 1263 of Székely and Rizzo (2009), we have that

E(XWX′W |Y,X,X′) = E′|XY −X′|+ E|X′Y −X| − |XY −X′Y| − E|X−X′|,

where the first expectation E′ is over X′, the second expectation is over X, and the

last one is over both X, and X′. Thus, by using the fact that X and X′ are iid, and

XY and X′Y are iid,

D2
W (X|Y) = E[(E′|XY−X′|)|Y]+E[(E|X′Y−X|)|Y]−E[(|XY−X′Y|)|Y]−E|X−X′|.

By taking expectation over Y, and the fact that the first term and the last term

are equal, consequently, we have that C2(X|Y) = E[D2
W (X|Y)]. That is, again (2.5)

holds. �

Relations to DISCO

Our index does not require Y to be discrete. However, if Y is categorical variable,

then it is much intuitive and clear that our estimation method provides a close link

to ANOVA, MANOVA and, most recently DISCO (Rizzo and Székely (2010)).

To be more specific, we can define the following population within distance and

sample within distance, total distance and its sample version, respectively, where if

we consider eit
TXY as an observation, E(eit

TXY ) as the group mean and E(eit
TX) as

the overall mean.

Definition S. 4.5.2. The population within distance is defined as:
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W2(X|Y ) = E[W2
w(X|Y )] = E

∫
|eitTXY − Eeit

TXY |2w(t)dt;

The sample within distance is defined as:

W2
n(X|Y ) =

∑H
y=1 py||eit

TXy − fnX|y(t)||2.

The population total distance is defined as:

T 2(X|Y ) = E[T 2
w (X|Y )] = E

∫
|eitTXY − Eeit

TX|2w(t)dt;

The sample total distance is defined as:

T 2
n (X|Y ) =

∑H
y=1 py||eit

TXy − fnX(t)||2.

We can have their respective equivalent formulas, stated below.

Proposition S. 4.5.2. The population within distance can be rewritten as:

W2(X|Y ) = E[W2
w(X|Y )] = E|XY −X′Y |;

The sample within distance can be rewritten as:

W2
n(X|Y ) = 1

n

∑H
y=1

1
ny

∑ny ,ny
ky ,ly=1 |Xy,ky −Xy,ly |.

The population total distance can be rewritten as:

T 2(X|Y ) = C2(X|X) = E|X−X′|;

The sample total distance can be rewritten as:

T 2
n (X|Y ) = 1

n2

∑H,H
y,y′=1

∑ny ,ny′

ky ,ly′=1 |Xy,ky −Xy′,ly′
|.

The following result is a straightforward calculation, thus we omitted its proof.

Proposition S. 4.5.3. 1. T 2(X|Y ) = C2(X|Y ) +W2(X|Y );

2. T 2
n (X|Y ) = C2

n(X|Y ) +W2
n(X|Y ).

Under the null hypothesis, by SLLN, as n → ∞, W2
n(X|Y ) → E|X − X′|. Or

note that E[T 2
n (X|Y )] = E[W2

n(X|Y )], thus analogous to ANOVA, we may use test

statistic,

C2
n(X|Y )/(H − 1)

W2
n(X|Y )/(n−H)

,
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which is the ratio of between distance over within distance. Note that the previous

test statistic in Section 2.4,

nC2
n(X|Y )

Sn
=
C2
n(X|Y )/(H − 1)

T 2
n (X|Y )/n

=
n

n− 1

C2
n(X|Y )/(H − 1)

T 2
n (X|Y )/(n− 1)

.

With negligible factor n
n−1

, this is the ratio of between distance over total distance.

Note that nC2n(X|Y )
Sn

(H−1)
n

= R2
c,n, an estimator of R2

c .

In particular, one can show that for response with two categories, the energy

distance of Rizzo and Székely (2010, page 1038) is proportion to C2(X|Y ). Indeed,

one also can show that nC2
n(X|Y ) = 2Sα and nW2(X|Y ) = 2Wα, with α = 1, where

Sα and Wα are defined in Rizzo and Székely (2010).

Classical methods of ANOVA or MANVOA for multi-sample usually require nor-

mally distributed error (see, e.g., Cochran and Cox (1957); Hand and Taylor (1987);

Mardia et al. (1979)), especially for inference. When such condition fails, one may ap-

ply F statistics via permutation test procedure (Efron and Tibshirani (1998); Davison

and Hinkley (1997)). Rich literature exists in beyond testing the mean differences but

on distributions, for instance, Akritas and Arnold (1994) and Gower and Krzanowski

(1999) for structured data, and Anderson (2001), McArdle and Anderson (2001), Ex-

coffier et al. (1992) and Zapala and Schork (2006) with applications in ecology and

genetics.

The class of α-divergence

We also can extend our measure (2.5) to a one parameter family of measures indexed

with a positive exponent α. Note that in our previous application the exponent α = 1.

Suppose that E|XY|α < ∞. Let C(α)(X|Y) denote the α−measure which is the

nonnegative number defined by

C2(α)(X|Y) = EY||fX|Y(t)− fX(t)||2α = EY

∫
Rp

|fX|Y(t)− fX(t)|2

C̃(p, α)|t|α+p
dt.

The α−measure statistics are defined by replacing the exponent 1 with expo-
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nent α in the respective formulas (2.5) and (2.7). That is, for instance, in (2.7)

replace |Xy,ky − Xy′,ly′
| by |Xy,ky − Xy′,ly′

|α. Lemma 2.4.4 can be generalized for

|| · ||α−norms, so that almost surely convergence of C2(α)
n (X|Y )→ C2(α)(X|Y ) follows

if the α−moments are finite. Similarly one can prove the weak convergence and sta-

tistical consistency for α exponents, 0 < α < 2, provided that α moments are finite.

However, when α = 2, it leads to 2E(µY − µ)2, where µY is the mean for group Y

and µ is the overall mean. Thus in such a case, C2(2)(X|Y ) = 0 iff µY = µ for all Y .

Furthermore, for 0 < α ≤ 2, nC2(α)
n (X|Y ) = 2Sα and nW2(α)

n (X|Y ) = 2Wα, where Sα

and Wα are defined in Rizzo and Székely (2010).

One can consider the Levy fractional Brownian motion {W d
H(t), t ∈ Rd}, with

Hurst index H ∈ (0, 1), which is a centered Gaussian random process with covariance

function (Herbin and Merzbach, 2007):

E[W d
H(t)W d

H(s)] = |t|2H + |s|2H − |t− s|2H , t, s ∈ Rd.

Using Lemma 1 of Székely and Rizzo (2009), we can show that under E|X|2h < ∞

and E|XY|2h <∞, for Hurst parameters 0 < H ≤ 1, and h = 2H (0 < h ≤ 2),

C2
W p
H

(X|Y) = EY

∫
Rp

|fX|Y(t)− fX(t)|2

C̃(p, h)|t|h+p
dt = E|X−X′|h − E|XY −X′Y|h.

When h = 1, that is our Theorem 3.1. Theories for 0 < α < 2 can be established

similarly.

Proofs of results for chapter 2

Proof of Lemma 2.2.1: If X Y, then fX|Y(t) = E[eit
TX|Y] = E[eit

TX] = fX(t).

Thus C2
w,Y(X|Y) = 0, so does C2(X|Y). On the other hand, if C2(X | Y) = 0, then

it implies that C2
w,Y(X | Y) = 0 almost surely for Y. Hence, fX|Y(t) = fX(t) almost
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surely for t. Let s ∈ Rq, then eis
TYfX|Y(t) = eis

TYfX(t). Hence,

E(eis
TYE[eit

TX|Y]) = E(eis
TYE[eit

TX])

E[eis
TYeit

TX] = E(eis
TY)E[eit

TX]

fX,Y(t, s) = fX(t)fY(s)

That means, X Y. �

Proof of Theorem 2.2.2:

1. C2(X|X) = 0 iff eit
TX = E[eit

TX] almost surely for X, t; Note that the right

hand side is constant with regards to X. Hence, X must be a constant. And

X = E(X) almost surely. If X = E(X) almost surely, the result is obvious.

2. For simplicity, in the following we omit the term w(t)dt in the integrals. Note

that by using the independence of (W1,V1) and (W2,V2), suppose W1,W2 ∈

Rp, V1,V2 ∈ Rq, we have:

C2(W1 + W2|V1 + V2)

= EV1+V2

∫
|fW1+W2|V1+V2 − fW1+W2|2

= EV1+V2

∫
|E[(Eeit

TW1+itTW2 |V1,V2)|V1 + V2]− fW1fW2|2.

Now apply Propositions 4.6 and 4.5 of Cook (1998b), we have W1 W2|(V1,V2).

Hence,

· · · = EV1+V2

∫
|E[(Eeit

TW1|V1,V2)E(eit
TW2|V1,V2)|V1 + V2]− fW1fW2|2.
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Use (W1,V1) V2, we further have

· · · = EV1+V2

∫
|E[fW1|V1fW2|V2 |V1 + V2]− fW1fW2|2

= EV1+V2

∫
|E[(fW1|V1 − fW1)fW2|V2 + fW1fW2|V2|V1 + V2]− fW1fW2|2

= EV1+V2

∫
|E[(fW1|V1 − fW1)fW2|V2 |V1 + V2] + fW1E[fW2|V2 − fW2|V1 + V2]|2

Let a = E[(fW1|V1 − fW1)fW2|V2|V1 + V2], b = fW1E[fW2|V2 − fW2 |V1 + V2],

· · · = E

∫
|a|2 + 2E

∫
|ab|+ E

∫
|b|2.

By using Cauchy-Scwarz inequality twice E
∫
|ab| ≤ (E

∫
|a|2E

∫
|b|2)1/2,

· · · ≤ ([E

∫
|a|2]1/2 + [E

∫
|b|2]1/2)2.

That is,

C(W1 + W2|V1 + V2) ≤ [E

∫
|a|2]1/2 + [E

∫
|b|2]1/2. (S.4.5.6)

By applying conditional Hölder’s inequality, separately on a and b with power

2, we have

C(W1 + W2|V1 + V2)

≤ [E

∫
|fW1|V1 − fW1 |2]1/2 + [E

∫
|fW2|V2 − fW2|2]1/2 (S.4.5.7)

= C(W1|V1) + C(W2|V2).

We can see that if (i) W1 and V1 are both constant, (ii) W2 and V2 are both

constant, or (iii) W1, V1, W2 and V2 are mutually independent, then we have

the equality. On the other hand, if we have the equality, then we must have

equality in (S.4.5.6) and (S.4.5.7), which implies (i) or (ii) holds. If none of the

(i) and (ii) conditions is satisfied, the equality holds only if W1 and V1, and
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W2 and V2 are independent, but W1,V1 and W2,V2 are already independent,

so they must be mutually independent. We complete the proof.

3. This follows from item 2. above by choosing W1 = V1 = X, and W2 = V2 =

Y. And the independence in item 2. means (i) X is constant; or (ii) Y is

constant; or (iii) both of them are constant, because this is the only case when

a random vector can be independent of itself.

4. Note that by definition,

C2(X|Y) = EY[

∫
Rp
|fX|Y(t)− fX(t)|2w(t)dt]

= EY[

∫
Rp

(Eeit
TXY − Eeit

TX)(Ee−it
TXY − Ee−it

TX)w(t)dt]

= EY[

∫
Rp

(Eeit
T (XY−X′Y) − Eeit

T (X−X′Y) − Eeit
T (XY−X′) + Eeit

T (X−X′))w(t)dt]

= EY[

∫
Rp
−{1− Eeit

T (XY−X′Y)}+ {1− Eeit
T (X−X′Y)}

+ {1− Eeit
T (XY−X′)} − {1− Eeit

T (X−X′)}w(t)dt]

= EY[−E

∫
Rp
{1− cos[tT (XY −X′Y)]}w(t)dt]

+ EY[E

∫
Rp
{1− cos[tT (X−X′Y)]}w(t)dt]

+ EY[E

∫
Rp
{1− cos[tT (XY −X′)]}w(t)dt]

− EY[E

∫
Rp
{1− cos[tT (X−X′)]}w(t)dt]

Note that the last three terms are equal

= EY[E

∫
Rp
{1− cos[tT (X−X′)]}w(t)dt]

− EY[E

∫
Rp
{1− cos[tT (XY −X′Y)]}w(t)dt]

= E

∫
Rp
{1− cos[tT (X−X′)]}w(t)dt− EY[E

∫
Rp
{1− cos[tT (XY −X′Y)]}w(t)dt]

≤ E

∫
Rp
{1− cos[tT (X−X′)]}w(t)dt.
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However,

C2(X|X) = E[C2
w,X(X|X)] = E

∫
|eitTX − Eeit

TX|2w(t)dt

= E

∫
(1− eitTXEe−it

TX − e−itTXEeit
TX + Eeit

TXEe−it
TX)w(t)dt

=

∫
(1− Eeit

TXEe−it
TX)w(t)dt = E

∫
Rp
{1− cos[tT (X−X′)]}w(t)dt.

Hence, conclusion follows. Consequently, 0 ≤ Rc ≤ 1. �

Proof of Theorem 2.3.1: By the proof in part 4 of Theorem 2.2.2 and Lemma 1

of Székely et al. (2007), we have

C2(X|Y) = E

∫
Rp
{1− cos[tT (X−X′)]}w(t)dt− EY[E

∫
Rp
{1− cos[tT (XY −X′Y)]}w(t)dt]

= E|X−X′| − E|XY −X′Y|.

The last equality holds. Because E|X−X′| = EYE[(|X−X′|)|Y] = E|XY−X′|, and

hence, E|XY −X′| = E|X−X′|, which immediately indicates that the first equality

in (2.5) holds. Thus we complete the proof. �

Proof of Theorem 2.3.2:

1. This can be proved easily by plugging X for Y in the second formula of (2.5).

Because, E|XY − X′Y| = EyE[|X − X′||Y = y,Y′ = y]. If X = Y, then

X′ = Y′ and X′ = Y′ = Y = X. Hence, E|XY −X′Y| = 0. Or by the proof

in part 4 of Theorem 2.2.2, and Lemma 1 in Székely et al. (2007) we have

C2(X|X) =
∫

(1− Eeit
TXEe−it

TX)w(t)dt = E|X−X′|.

2. By using formula (2.5), and note that BTB = Ip, we can prove it easily.

3. If X = g(Y), for some function g, then XY = X′Y. Thus the second term in

C2(X|Y) must be 0. Therefore, C2(X|Y) = C2(X|X), implying that Rc = 1.

On the other hand, if Rc = 1, then the second term in C2(X|Y) must be 0,

which means that almost surely for Y, there is only one X corresponding to

such a value of Y. Thus, X = g(Y). �
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Section 2.3: Conditional normal distribution :

πC2(X|Y ) =

∫
EY |E[eisX |Y ]− EeisX |2ds

s2

=

∫
EY |eisµy−s

2/2 − E[E(eisX |Y )]|2ds
s2

=

∫
EY |eisµy−s

2/2 − p0e
isµ0−s2/2 − p1e

isµ1−s2/2|2ds
s2

=

∫
p0p1|eisµ0−s

2/2 − eisµ1−s2/2|2ds
s2

=

∫
p0p1|eisµ0 − eisµ1|2e−s

2 ds

s2

=

∫
2p0p1(1− cos(s∆))e−s

2 ds

s2

= 2p0p1F (∆),

where F (∆) =
∫

(1− cos(s∆))e−s
2 ds
s2

. Note that F (0) = 0, and F ′(0) = 0, but

F ′′(∆) =

∫
cos(s∆)e−s

2

ds =
√
πe−∆2/4.

Thus

F ′(Y ) =
√
π

∫ Y

0

e−z
2/4dz.

By using the function (error function, or Gaussian Error Function), erf(z) = 2√
π

∫ z
0
e−t

2
dt,

we have that
∫ Y

0
e−z

2/4dz =
√
πerf(Y/2).

Hence,

F (∆) =
√
π

∫ ∆

0

∫ y

0

e−z
2/4dzdy =

√
π

∫ ∆

0

√
πerf(y/2)dy

= π

∫ ∆

0

erf(y/2)dy = 2π

∫ ∆/2

0

erf(y)dy

= 2π[
∆

2
erf(

∆

2
) +

e−∆2/4 − 1√
π

],

where, we have used the fact that
∫

erf(z)dz = zerf(z) + e−z
2

√
π

.
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Finally,

C2(X|Y ) = 4p0p1[
∆

2
erf(

∆

2
) +

e−∆2/4 − 1√
π

].

Section 2.3: Bivariate normal distribution :

Note that if X ∼ N(µx, σ
2
x), then E(eisX) = eisµx−

s2

2
σ2
x , and E(esX) = esµx+ s2

2
σ2
x .

Hence, C2(X|Y ) = F (ρ)/π, where

F (ρ) =

∫
EY |eisρY−

s2

2
(1−ρ2) − e−

s2

2 |2ds
s2

=

∫
EY |eisρY+ ρ2s2

2 − 1|2 e
−s2

s2
ds

=

∫
EY (eρ

2s2 − eisρY+ ρ2s2

2 − e−isρY+ ρ2s2

2 + 1)
e−s

2

s2
ds

=

∫
(eρ

2s2 − 1)
e−s

2

s2
ds.

By Taylor expansion, we have that

eρ
2s2 − 1 =

∞∑
n=1

(ρ2s2)n

n!
.

Thus,

F (ρ) = ρ2

∞∑
n=1

ρ2(n−1)

n!

∫
s2(n−1)e−s

2

ds = ρ2G(ρ).

Note that G(ρ) is an increasing function, then

πC2(X|Y ) = F (ρ) ≤ F (1) = πC2(X|X).

In addition, F (0) = 0, F ′(0) = 0. Simple calculation shows that F ′(ρ) = 2ρ
√
π√

1−ρ2
.

Therefore, we have F (ρ) =
∫ ρ

0
2z
√
π√

1−z2dz = 2
√
π(1−

√
1− ρ2), And we have:

C2(X|Y ) =
2√
π

(1−
√

1− ρ2).

Section 2.3: Binomial distribution :
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Note that if XY ∼ Bin(n, qY ), where Y ∈ {0, 1}, then we have that

C2(X|Y )

=

∫
EY |E[eitX |Y ]− EeitX |2w(t)dt

= p0p1

∫
|(q0e

it + 1− q0)n − (q1e
it + 1− q1)n|2w(t)dt

= p0p1

∫
|

n∑
k=0

cknq
k
0e
ikt(1− q0)n−k −

n∑
k=0

cknq
k
1e
ikt(1− q1)n−k|2w(t)dt

= p0p1

∫
{

n∑
k=0

ckne
ikt[qk0(1− q0)n−k − qk1(1− q1)n−k]}

× {
n∑
l=0

clne
−ilt[ql0(1− q0)n−l − ql1(1− q1)n−l]}w(t)dt

= p0p1

∫
{

n∑
k,l=0

cknc
l
n[qk0(1− q0)n−k − qk1(1− q1)n−k][ql0(1− q0)n−l − ql1(1− q1)n−l]

× [(eit(k−l) − 1) + 1]}w(t)dt

= −p0p1{
n∑

k,l=0

cknc
l
n[qk0(1− q0)n−k − qk1(1− q1)n−k][ql0(1− q0)n−l − ql1(1− q1)n−l]|k − l|}.

Now consider

qk0(1− q0)n−k − qk1(1− q1)n−k

= (q0 − q1 + q1)k(1− q0)n−k − qk1(1− q1)n−k

=
k∑
i=0

cik(q0 − q1)iqk−i1 (1− q0)n−k − qk1(1− q1)n−k

= (q0 − q1)
k∑
i=1

cik(q0 − q1)i−1qk−i1 (1− q1)n−k + qk1 [(1− q0)n−k − (1− q1)n−k]

= (q0 − q1)[
k∑
i=1

cik(q0 − q1)i−1qk−i1 (1− q1)n−k − qk1
n−k∑
i=1

(1− q0)n−k−i(1− q1)i−1]
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Therefore,

C2(X|Y )

= −p0p1(q0 − q1)2{
n∑

k,l=0

cknc
l
n[

k∑
i=1

cik(q0 − q1)i−1qk−i1 (1− q1)n−k − qk1
n−k∑
i=1

(1− q0)n−k−i(1− q1)i−1]

× [
l∑

i=1

cil(q0 − q1)i−1ql−i1 (1− q1)n−l − ql1
n−l∑
i=1

(1− q0)n−l−i(1− q1)i−1]|k − l|}.

When n = 1, we simply it to C2(X|Y ) = 2p0p1(q0 − q1)2; and when n = 2, we have

C2(X|Y ) = 4p0p1(q0 − q1)2[1 + (q0 + q1 − 1)2].

Section 2.3: Conditional Cauchy distribution :

Note that q0, q1 > 0, and without loss of generality we assume that q1 ≥ q0. Define

a function Ei(x) =
∫ x
−∞

es

s
ds, and integral is taken in the principal as ε to ε−1 when

ε→ 0. We then have,

C2(X|Y ) =

∫
EY |E[eitX |Y ]− EeitX |2w(t)dt

=
p0p1

π

∫
|e−q0|t| − e−q1|t||2dt

t2

=
2p0p1

π

∫ +∞

0

[e−2q0t − 2e−(q0+q1)t + e−2q1t]
dt

t2

C2(X|Y ; ε) =
2p0p1

π

∫ ε−1

ε

[e−2q0t − 2e−(q0+q1)t + e−2q1t]
dt

t2

=
2p0p1

π

∫ ε−1

ε

[e−2q0t − 2e−(q0+q1)t + e−2q1t]
dt

t2
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Now by using 1.3.2.20 and 1.3.2.12 of Prudnikov et al. (1986), we have that

C2(X|Y ; ε) =
2p0p1

π

∫ ε−1

ε

[e−2q0t − 2e−(q0+q1)t + e−2q1t]
dt

t2

=
2p0p1

π
[−e

−2q0t

t
− 2q0Ei(−2q0t)− 2(−e

−(q0+q1)t

t
− (q0 + q1)Ei(−(q0 + q1)t))

− e−2q1t

t
− 2q1Ei(−2q1t)]|ε

−1

ε

=
2p0p1

π
[−e

−2q0t

t
+ 2

e−(q0+q1)t

t
− e−2q1t

t

− 2q0Ei(−2q0t) + 2(q0 + q1)Ei(−(q0 + q1)t)− 2q1Ei(−2q1t)]|ε
−1

ε

But [− e−2q0t

t
+ 2 e

−(q0+q1)t

t
− e−2q1t

t
]|ε−1

ε → 0 as ε→ 0. Thus, as ε→ 0 we can have

C2(X|Y ; ε) =
2p0p1

π
[−2q0Ei(−2q0t) + 2(q0 + q1)Ei(−(q0 + q1)t)− 2q1Ei(−2q1t)]|ε

−1

ε

=
2p0p1

π
[−2q0

∫ −2q0ε−1

−2q0ε

et

t
dt+ 2(q0 + q1)

∫ −(q0+q1)ε−1

−(q0+q1)ε

et

t
dt− 2q1

∫ −2q1ε−1

−2q1ε

et

t
dt]

=
2p0p1

π
[2q0

∫ (q0+q1)ε−1

2q0ε−1

e−t

t
dt− 2q0

∫ (q0+q1)ε

2q0ε

e−t

t
dt

− 2q1

∫ 2q1ε−1

(q0+q1)ε−1

e−t

t
dt+ 2q1

∫ 2q1ε

(q0+q1)ε

e−t

t
dt]

=
2p0p1

π
[2q0A1 − 2q0B1 − 2q1A2 + 2q1B2]

But A1 =
∫ q0+q1

2q0
e−yε

−1
y−1dy ≤ (2q0)−1(q1 − q01)e−2q0ε−1 → 0 as ε → 0. Similarly,

A2 → 0 as ε→ 0. Now by using 1.3.2.13 of Prudnikov et al. (1986), we have

B1 = ln[(q0 + q1)ε] +
∞∑
k=1

(−(q0 + q1)ε)k

k!k
− ln(2q0ε)−

∞∑
k=1

(−2q0ε)
k

k!k

= ln
q0 + q1

2q0

+
∞∑
k=1

(−(q0 + q1)ε)k − (−2q0ε)
k

k!k

= ln
q0 + q1

2q0

+
∞∑
k=1

(−(q0 + q1))k − (−2q0)k

k!k
εk

= ln
q0 + q1

2q0

as ε→ 0.
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While by similar argument, we have B2 = ln 2q1
q0+q1

as ε→ 0. Therefore,

C2(X|Y ) = lim
ε→0
C2(X|Y ; ε) =

4p0p1

π
(q0 ln

2q0

q0 + q1

+ q1 ln
q1

q0 + q1

).

Note that C2(X|Y ) ≥ 0, and it is 0 if q1 = q0; However, C2(X|Y ) ≥ 0 increases as

q1 > q0; decreases as q1 < q0. Thus C2(X|Y ) = 0 iff q1 = q0.

Proof of Theorem 2.4.1: Following Székely et al. (2007), we have that

fnX|y(t)f
n
X|y(t) =

1

n2
y

ny ,ny∑
ky ,ly=1

cos tT (Xy,ky −Xy,ly) + v1

fnX|y(t)f
n
X(t) =

1

nny

H∑
y′=1

ny ,ny′∑
ky ,ly′=1

cos tT (Xy,ky −Xy′,ly′
) + v2

fnX(t)fnX(t) =
1

n2

H,H∑
y,y′=1

ny ,ny′∑
ky ,ly′=1

cos tT (Xy,ky −Xy′,ly′
) + v3,

where v1, v2 and v3 vanish when integral is evaluated. Since

cos tT (Xk−Xl) = 1−(1−cos tT (Xk−Xl)), and

∫
[1−cos tT (Xk−Xl)]w(t)dt = |Xk−Xl|,

by choosing k = y, ky and l = y, ly, we have

cos tT (Xy,ky −Xy,ly) = 1− (1− cos tT (Xy,ky −Xy,ly))

and

∫
[1− cos tT (Xy,ky −Xy,ly)]w(t)dt = |Xy,ky −Xy,ly |;

by choosing k = y, ky and l = y′, ly′ , we have

cos tT (Xy,ky −Xy′,ly′
) = 1− (1− cos tT (Xy,ky −Xy′,ly′

))

and

∫
[1− cos tT (Xy,ky −Xy′,ly′

)]w(t)dt = |Xy,ky −Xy′,ly′
|.
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We also have

|fnX|y(t)− fnX(t)|2 = fnX|y(t)f
n
X|y(t)− f

n
X|y(t)f

n
X(t)− fnX|y(t)f

n
X(t) + fnX(t)fnX(t).

Therefore,

C2
w,y,n(X|Y = y) = ||fnX|y(t)− fnX(t)||2

=
2

nny

H∑
y′=1

ny ,ny′∑
ky ,ly′=1

|Xy,ky −Xy′,ly′
| − 1

n2
y

ny ,ny∑
ky ,ly=1

|Xy,ky −Xy,ly |

− 1

n2

H,H∑
y,y′=1

ny ,ny′∑
ky ,ly′=1

|Xy,ky −Xy′,ly′
|.

And thus, we have

C2
n(X|Y ) =

H∑
y=1

pyC2
w,y,n(X|Y = y)

=
2

n2

H∑
y=1

H∑
y′=1

ny ,ny′∑
ky ,ly′=1

|Xy,ky −Xy′,ly′
| − 1

n

H∑
y=1

1

ny

ny ,ny∑
ky ,ly=1

|Xy,ky −Xy,ly |

− 1

n2

H,H∑
y,y′=1

ny ,ny′∑
ky ,ly′=1

|Xy,ky −Xy′,ly′
|

=
1

n2

H,H∑
y,y′=1

ny ,ny′∑
ky ,ly′=1

|Xy,ky −Xy′,ly′
| − 1

n

H∑
y=1

1

ny

ny ,ny∑
ky ,ly=1

|Xy,ky −Xy,ly |.

Note that the summation in the first and third term after the second equality sign

are the same. We complete the proof. �

Proof of Lemma 2.4.4: This can follow from Theorem 2 of Székely et al. (2007)

and Theorem 3 of Shao and Zhang (2014). By applying SLLN of V-statistic to

achieve the conclusion. Note that let ξn,y(t) = fnX|y(t) − fnX(t), then C2
w,y,n(X|y) =

||ξn,y(t)||2. Hence, by (2.6), we have C2
n(X|Y ) = EY C2

w,y,n(X|Y ) = EY ||ξn,Y ||2 =∑H
y=1 py||fnX|y(t)− fnX(t)||2.

Define ξy(t) = fX|y(t)− fX(t), and let uy,ky = exp(itTXy,ky)− fX|y(t) and vy,ky =
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exp(itTXy,ky)− fX(t). Then, ξn,y(t) = 1
ny

∑ny
ky=1 uy,ky − 1

n

∑H
y=1

∑ny
ky=1 vy,ky + ξy(t).

In integrals, we can use the symbol dω, which is defined by dω = w(t)dt, where

w(t) is defined previously. Define the region D(δ) = {t : δ ≤ |t|p ≤ 1/δ}, for each

δ > 0, and the random variables C2
w,y,n,δ(X|y) =

∫
D(δ)
|ξn,y(t)|2dω. For any fixed δ,

the weight function w(t) is bounded on D(δ). Hence, C2
w,y,n,δ(X|y) is a combination

of V−statistics with finite expectation. By the SLLN for V−statistics, it follows that

almost surely

lim
n→∞

C2
w,y,n,δ(X|y) = C2

w,y,·,δ(X|y) =

∫
D(δ)

|ξy(t)|2dω.

Clearly C2
w,y,·,δ(X|y) converges to C2

w,y(X|y) as δ → 0. Therefore, it remains to prove

that almost surely

lim sup
δ→0

lim sup
n→∞

|C2
w,y,n(X|y)− C2

w,y,n,δ(X|y)| = 0.

For each δ > 0,

|C2
w,y,n(X|y)− C2

w,y,n,δ(X|y)| =
∫
|t|<δ
|ξn,y(t)|2dω +

∫
|t|> 1

δ

|ξn,y(t)|2dω. (S.4.5.8)

For z = (z1, · · · , zp)T ∈ Rp, define the function G(s) =
∫
|z|<s

1−cos z1
|z|1+p dz. By Lemma 1

of Székely et al. (2007), clearly G(s) is bounded by c̃p and lims→0G(s) = 0. Using the

inequality |a+ b+ c|2 ≤ 3(|a|2 + |b|2 + |c|2), and applying Cauchy-Schwarz inequaltiy,

we have that

|ξn,y(t)|2 ≤ 3(| 1

ny

ny∑
ky=1

uy,ky |2 + | 1
n

H∑
y=1

ny∑
ky=1

vy,ky |2 + |ξy(t)|2)

≤ 3(
1

ny

ny∑
ky=1

|uy,ky |2 +
1

n

H∑
y=1

ny∑
ky=1

|vy,ky |2 + |ξy(t)|2). (S.4.5.9)
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After a suitable change of variables, we have

∫
|t|<δ

|uy,ky |2

c̃p|t|1+p
dt ≤ 2EX|y|X−Xy,ky |G|y(|X−Xy,ky |δ)∫

|t|<δ

|vy,ky |2

c̃p|t|1+p
dt ≤ 2EX|X−Xy,ky |G(|X−Xy,ky |δ)

Therefore, we have

∫
|t|<δ
|ξn,y(t)|2dω ≤

6

ny

ny∑
ky=1

EX|y|X−Xy,ky |G|y(|X−Xy,ky |δ)

+
6

n

H∑
y=1

ny∑
ky=1

EX|X−Xy,ky |G(|X−Xy,ky |δ) + 3

∫
|t|<δ
|ξy(t)|2dω

By the SLLN, then

lim sup
n→∞

∫
|t|<δ
|ξn,y(t)|2dω ≤ 6E|y(|X−X′|)G|y(|X−X′|δ)

+ 6E(|X−X′|)G(|X−X′|δ) + 3

∫
|t|<δ
|ξy(t)|2dω

By the Lebesgue Dominated Convergence theorem, we then have

lim sup
δ→0

lim sup
n→∞

∫
|t|<δ
|ξn,y(t)|2dω = 0, almost surely.

Now consider the second term in equation (S.4.5.8), since |uy,ky |2, |vy,ky |2, |ξy(t)|2 ≤ 4

and the inequality (S.4.5.9) implies that |ξn,y(t)|2 ≤ 36. Hence,

∫
|t|> 1

δ

|ξn,y(t)|2dω ≤ 36

∫
|t|> 1

δ

1

c̃p|t|1+p
dt = 36h(δ).

But h(δ) goes to zero as δ → 0. That means C2
w,y,n(X|y)→ C2

w,y(X|y) almost surely,

for any given y. And the conclusion then follows. �

Proof of Theorem 2.4.5: The argument is very similar to that presented in the

proofs of Theorem 5 and Corollary 2 of Székely et al. (2007) and that of Theorem 4 of

Shao and Zhang (2014). Note that fX|Y (s) = E(eisX|Y ), fX(s) = E(eisX), py = ny/n,
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where ny is the number of observations in Y ∈ y, y = 1, 2, ...H and
∑H

y=1 ny = n. In

addition, fX(s) = EY fX|Y (s) =
∑

Y pY fX|Y (s), where pY = P (y ∈ Y ).

a. Define the empirical process Γn,y(s) =
√
ny[f

n
X|y(s) − fnX(s)]. Under indepen-

dence hypothesis, EX|y[Γn,y(s)] = 0 and EX|y[Γn,y(s)Γn,y(s0)] = (1− ny
n

)[fX(s−

s0) − fX(s)fX(s0)] = (1 − ny
n

)covΓ(s, s0). In particular, EX|y|Γn,y(s)|2 = (1 −
ny
n

)[1− |fX(s)|2] ≤ 1.

Note that nC2
n(X|Y ) =

∑H
y=1 ||Γn,y(s)||2.

For each δ > 0, define the region D(δ) = {s : δ ≤ |s|p < 1/δ}. For each δ we

construct a sequence of random variables {Qn,y(δ)} such that

– (i) Qn,y(δ)
D−→ Qy(δ) for each δ > 0;

– (ii) lim supn→∞ E|y|Qn,y(δ)− ||Γn,y||2| → 0 as δ → 0;

– (iii) E|y|Qy(δ)− (1− pY )||Γ||2| → 0 as δ → 0.

Then the weak convergence of ||Γn,y||2 to (1 − pY )||Γ||2 follows from Theorem

8.6.2 of Resnick (1999). Therefore,

nC2
n(X|Y ) =

H∑
y=1

||Γn,y(s)||2 ⇒ (H − 1)||Γ||2.

Following the construction in Shao and Zhang (2014) and Székely et al. (2007),

we define

Qn,y(δ) =

∫
D(δ)

|Γn,y(s)|2dω and Qy(δ) = (1− pY )

∫
D(δ)

|Γ(s)|2dω.

Given ε = 1/q > 0, q ∈ N , choose a partition {Dk}Nk=1 of D(δ) into N = N(ε)

measurable sets with diameter at most ε. Then Qn,y(δ) =
∑N

k=1

∫
Dk
|Γn,y(s)|2dω

and Qy(δ) = (1− pY )
∑N

k=1

∫
Dk
|Γ(s)|2dω.

DefineQq
n,y(δ) =

∑N
k=1

∫
Dk
|Γn,y(s0(k))|2dω andQq

y(δ) = (1−pY )
∑N

k=1

∫
Dk
|Γ(s0(k))|2dω,

where {s0(k)}Nk=1 is a set of distinct points such that s0(k) ∈ Dk. By multivari-

ate CLT and continuous mapping theorem, Qq
n,y(δ)

D−→ Qq
y(δ), for any q ∈ N .
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Thus based on Theorem 8.6.2 of Resnick (1999), (i) holds if we can show that

lim sup
q→∞

E|Qq
y(δ)−Qy(δ)| = 0, (S.4.5.10)

and lim sup
q→∞

lim sup
n→∞

E|Qq
n,y(δ)−Qn,y(δ)| = 0. (S.4.5.11)

Let βn,y(ε) = sups,s0 E||Γn,y(s)|2 − |Γn,y(s0)|2| and β(ε) = sups,s0 E||Γ(s)|2 −

|Γ(s0)|2|, where the supremum is taken over all s and s0, under the restrictions:

δ < |s|p, |s0|p < 1/δ and |s− s0|p < ε.

β(ε) = sup
s,s0

E||Γ(s)|2 − |Γ(s0)|2|

= sup
s,s0

E|(Γ(s)− Γ(s0))Γ(s) + Γ(s0)(Γ(s)− Γ(s0))|

≤ sup
s,s0

E1/2|Γ(s)− Γ(s0)|2(E1/2|Γ(s)|2 + E1/2|Γ(s0)|2)

≤ 2 sup
s,s0

E1/2|Γ(s)− Γ(s0)|2

= 2 sup
s,s0

|covΓ(s, s)− covΓ(s, s0)− covΓ(s0, s) + covΓ(s0.s0)|1/2.

Since fX(s) is uniform continuous in s ∈ Rp, it is clear that β(ε)→ 0 as ε→ 0.

To show (S.4.5.10), note that

E|Qq
y(δ)−Qy(δ)| = (1− pY )E

∣∣∣∣∣
N∑
k=1

∫
Dk

|Γ(s0(k))|2dω −
∫
D(δ)

|Γ(s)|2dω

∣∣∣∣∣
= (1− pY )E

∣∣∣∣∣
N∑
k=1

∫
Dk

(|Γ(s0(k))|2 − |Γ(s)|2)dω

∣∣∣∣∣
≤ (1− pY )β(1/q)

∫
D(δ)

w(s)ds→ 0 as q →∞.

Using the same argument, we can show (S.4.5.11) holds, hence (i) is true.
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To prove (ii), note that

E|
∫
D(δ)

|Γn,y(s)|2dω−
∫
Rp
|Γn,y(s)|2dω| =

∫
|s|<δ

E|Γn,y(s)|2dω+

∫
|s|>1/δ

E|Γn,y(s)|2dω.

By noting that EX|Y |Γn,y(s)|2 = (1 − ny
n

)[1 − |fX(s)|2] and following from the

proof of Lemma 2.4.4, we have that

∫
|s|<δ

E|Γn,y(s)|2dω ≤ (1− ny
n

)E|X−X′|G(|X−X′|δ).

The fact EX|Y |Γn,y(s)|2 ≤ 1 implies that
∫
|s|>1/δ

E|Γn,y(s)|2dω ≤ h(δ), where

h(δ) is defined in Lemma 2.4.4 and foes to zero as δ → 0. Thus (ii) holds.

Applying a similar argument, (iii) holds. Thus we complete the proof of (a).

b. This can easily follow from Corollary 2 of Székely et al. (2007) and see Theorem

4 of Shao and Zhang (2014) as well.

Based on (a), nC2
n(X|Y )

D−−−→
n→∞

(H − 1)||Γ(s)||2. Note that

E||Γ(s)||2 =

∫
Rp

covΓ(s, s) =

∫
Rp

(1− |fX(s)|2)dω = E|X−X′|.

By the SLLN for V−statistics, as n → ∞, Sn → (H − 1)E|X − X′|, almost

surely. Therefore,

nC2
n(X|Y )/Sn

D−−−→
n→∞

Q,

where E(Q) = 1 and Q is a nonnegative quadratic form of centered Gaussian

random variable following the argument in the proof of Corollary 2 of Székely

et al. (2007).

c. If X and Y are dependent, then C2(X|Y ) > 0. Lemma 2.4.4 implies that when

for large n, C2
n(X|Y ) > 0, and thus nC2

n(X|Y )→∞ as n→∞. By the SLLN,

Sn converges to a constant and therefore, as n→∞, nC2
n(X|Y )/Sn →∞.

�
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Proof for the Kernel estimator :

Proof of Theorem 2.4.7: Note that C2
n,k(X|Y) = 1

n2

∑
i,j |Xi −Xj| − m̂, the first

term is a V-statistic, which is root-n consistent to E|X−X′|. For the second term,

m̂− E(m(y)) =
1

n

n∑
i=1

m̂(yi)− E(m(y))

=
1

n

n∑
i=1

(m̂(yi)−m(yi)) +
1

n

n∑
i=1

m(yi)− E(m(y))

The first part tends to 0 based on Lemma 2.4.6 and the second part tends to 0 by

LLN theory, Thus Theorem 2.4.7 holds. �

Additional simulation studies

In this section, we report additional simulations results in chapter 2.

Example S. 4.5.1. Following example 2.6.2, we construct models 2.6.2 (e)-(g), where

the dimensions of X and Y are the same as the models 2.6.2 (a)-(d), except that

each individual random variable is independently generated from t(2), t(3) and χ2(2)

distributions, respectively. The empirical type-I errors at the nominal level of 0.1 for

models 2.6.2 (e)-(g) are shown in table S.4.5.1, while at the nominal significance level

of 0.05 are shown in table S.4.5.2 for models 2.6.2 (a)-(d), and in table S.4.5.3 for

models 2.6.2 (e)-(g). Again, we have the same conclusion as in the paper.

Example S. 4.5.2. These additional simulations follow from Example 2.6.6 in the

paper, but with different combinations of a, p, σ2
x and σ2. Figure S.4.5.1 shows similar

power changes as in the paper. Again, kernel methods are the best.
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Table S.4.5.1: Empirical type-I error rates for 10,000 tests at nominal significance
level 0.1, using B replicates for models (e) - (g)

(e) t(2), p = 5, q = 1 (f) t(3), p = 5, q = 1
n B dCov DISCO Rc(slice) Rc(epa) Rc(gau) dCov DISCO Rc(slice) Rc(epa) Rc(gau)
25 400 0.105 0.103 0.105 0.101 0.102 0.101 0.102 0.101 0.105 0.100
30 366 0.097 0.096 0.096 0.093 0.099 0.101 0.099 0.101 0.096 0.099
35 342 0.105 0.103 0.102 0.097 0.105 0.098 0.102 0.102 0.100 0.096
50 300 0.095 0.096 0.095 0.101 0.102 0.096 0.097 0.097 0.102 0.099
70 271 0.100 0.103 0.103 0.100 0.101 0.098 0.096 0.096 0.097 0.097
100 250 0.098 0.095 0.097 0.098 0.100 0.099 0.098 0.099 0.102 0.102

(g) χ2(2), p = 5, q = 1
n B dCov DISCO Rc(slice) Rc(epa) Rc(gau)
25 400 0.100 0.097 0.099 0.099 0.099
30 366 0.099 0.097 0.098 0.096 0.097
35 342 0.097 0.098 0.099 0.099 0.098
50 300 0.102 0.102 0.103 0.103 0.104
70 271 0.100 0.097 0.097 0.095 0.101
100 250 0.100 0.100 0.099 0.100 0.096

Table S.4.5.2: Empirical type-I error rates for 10,000 tests at nominal significance
level 0.05, using B replicates for models (a) - (d)

(a) N(0, 1), p = 5, q = 1 (b) t(1), p = 5, q = 1
n B dCov DISCO Rc(slice) Rc(epa) Rc(gau) dCov DISCO Rc(slice) Rc(epa) Rc(gau)
25 400 0.051 0.054 0.054 0.050 0.051 0.047 0.046 0.048 0.050 0.050
30 366 0.049 0.055 0.055 0.050 0.049 0.050 0.053 0.051 0.049 0.052
35 342 0.049 0.050 0.051 0.049 0.053 0.051 0.047 0.046 0.049 0.050
50 300 0.049 0.051 0.051 0.054 0.054 0.048 0.048 0.048 0.050 0.051
70 271 0.050 0.048 0.048 0.047 0.048 0.045 0.046 0.047 0.051 0.049
100 250 0.047 0.049 0.051 0.049 0.043 0.044 0.046 0.047 0.045 0.046

(c) χ2(1), p = 5, q = 1 (d) χ2(3), p = 5, q = 1
n B dCov DISCO Rc(slice) Rc(epa) Rc(gau) dCov DISCO Rc(slice) Rc(epa) Rc(gau)
25 400 0.053 0.054 0.053 0.050 0.050 0.047 0.046 0.046 0.049 0.055
30 366 0.050 0.050 0.050 0.051 0.048 0.048 0.051 0.052 0.050 0.051
35 342 0.052 0.049 0.048 0.052 0.053 0.047 0.052 0.052 0.044 0.048
50 300 0.050 0.050 0.049 0.048 0.049 0.046 0.046 0.048 0.050 0.047
70 271 0.045 0.048 0.047 0.046 0.050 0.046 0.049 0.047 0.049 0.046
100 250 0.051 0.048 0.047 0.046 0.053 0.050 0.048 0.046 0.045 0.051

Table S.4.5.3: Empirical type-I error rates for 10,000 tests at nominal significance
level 0.05, using B replicates for models (e) - (g)

(e) t(2), p = 5, q = 1 (f) t(3), p = 5, q = 1
n B dCov DISCO Rc(slice) Rc(epa) Rc(gau) dCov DISCO Rc(slice) Rc(epa) Rc(gau)
25 400 0.051 0.050 0.050 0.054 0.053 0.051 0.050 0.051 0.052 0.049
30 366 0.050 0.049 0.048 0.050 0.051 0.049 0.046 0.045 0.050 0.047
35 342 0.050 0.050 0.049 0.051 0.047 0.050 0.048 0.048 0.055 0.051
50 300 0.052 0.050 0.049 0.049 0.051 0.050 0.050 0.051 0.050 0.048
70 271 0.045 0.047 0.048 0.048 0.045 0.044 0.045 0.046 0.047 0.046
100 250 0.047 0.046 0.045 0.045 0.049 0.046 0.047 0.047 0.047 0.047

(g) χ2(2), p = 5, q = 1
n B dCov DISCO Rc(slice) Rc(epa) Rc(gau)
25 400 0.050 0.048 0.048 0.047 0.050
30 366 0.051 0.052 0.051 0.048 0.050
35 342 0.050 0.050 0.049 0.049 0.050
50 300 0.046 0.050 0.050 0.050 0.048
70 271 0.049 0.049 0.050 0.046 0.048
100 250 0.051 0.052 0.050 0.045 0.049
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(a) a = 0.5, p = 10, σ2
x = 1 and σ2 = 1. (b) a = 0.3, p = 15, σ2

x = 1 and σ2 = 1.
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(c) a = 0.3, p = 20, σ2
x = 1 and σ2 = 1. (d) a = 0.3, p = 10, σ2

x = 1 and σ2 = 0.25.
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Figure S.4.5.1: Empirical power with the change of sample size n for other different
parameter combinations.
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Supplementary Materials for Chapter 3

This section provides proof of theorem 3.3.1 stated in chapter 3.

Proof of Theorem 3.3.1: We aim to show the uniform consistency of ω̂k under

regularity condition. We use c as a generic constant, which may take different values

at each appearance. Let {X̃k, Ỹ } be an independent copy of {Xk, Y }, and X̃kY be

an independent copy of XkY . That, X̃kY and XkY are X̃k and Xk, conditioning on Y

respectively.

Define Sk1 = E|X̃k −Xk|, Sk2 = E|X̃kY −XkY | = EY=yE|X̃kY −XkY | = ESk2y,

Ŝk1 =
1

n2

n,n∑
i=1,j=1

|Xik −Xjk|

Ŝk2y =
1

n2
y

ny ,ny∑
i=1,j=1

|Xiky −Xjky|.

By the definitions, C2(Xk|Y ) = Sk1 − Sk2 and C2
n(Xk|Y ) = Ŝk1 −

∑H
y=1 pyŜk2y =

Ŝk1 − Ŝk2, where py = ny/n.

Note that given Y = y, basically term Sk1 and Sk2y, and Ŝk1 and Ŝk2y are of no

difference, respectively. Hence, it suffices to prove Ŝk1. However, note that Sk1 = Sk2,1

and Ŝk1 = Ŝk2,1, where Sk2,1 and Ŝk2,1 appeared in (Li et al., 2012b, page 1137). And

following their proof exactly as in (B.7), we have

Pr(|Ŝk1 − Sk1| ≥ 4ε) ≤ 2 exp(−ε2n1−2γ) + 2nc exp(−sn2γ/4),

Consequently, for any y = 1 · · · , H, we have

Pr(|Ŝk2y − Sk2y| ≥ 4ε) ≤ 2 exp(−ε2n1−2γ
y ) + 2nyc exp(−sn2γ

y /4).
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By the Bonferroni’s inequality, we have that

Pr(|(Ŝk1 − Ŝk2)− (Sk1 − Sk2)| ≥ ε) ≤ Pr(|Ŝk1 − Sk1| ≥
ε

2
) +

H∑
y=1

Pr(|Ŝk2y − Sk2y| ≥
ε

2
)

= O{exp(−c1ε
2n1−2γ) + n exp(−c2n

2γ)}.

In fact, the convergence rate of the denominator of ω̂k and itself are also the same as

the numerator. Therefore,

Pr(|ω̂k − ωk| > ε) ≤ O{exp(−c1ε
2n1−2γ) + n exp(−c2n

2γ)}.

Let ε = cn−τ , where 0 < τ + γ < 1/2, we have that

Pr( max
1≤k≤p

|ω̂k − ωk| ≥ cn−τ ) ≤ p max
1≤k≤p

Pr(|ω̂k − ωk| ≥ cn−τ )

≤ O[p{exp(−c1n
1−2(τ+γ)) + n exp(−c2n

2γ)}]

Hence, we prove the first part of the Theorem. If Dm * D̂m, then there must exist

some k ∈ Dm such that ω̂k < cn−τ . It follows from condition (C2) that |ω̂k − ωk| >

cn−τ for some k ∈ Dm, indicating that the events satisfy {Dm * D̂m} ⊆ {|ω̂k−ωk| >

cn−τ , for some k ∈ Dm}, and hence, let εn = {maxk∈D |ω̂k − ωk| ≤ cn−τ} ⊆ {Dm ⊆

D̂m}. Consequently,

Pr(Dm ⊆ D̂m) ≥ Pr(εn) = 1− Pr(εcn)

= 1− Pr(min
k∈D
|ω̂k − ωk| ≥ cn−τ )

= 1− smPr(|ω̂k − ωk| ≥ cn−τ )

≥ 1−O[sm(exp(−c1n
1−2(τ+γ)) + n exp(−c2n

2γ))],

where sm is the cardinality of Dm. This completes the proof of the second part. �

Proof of Theorem 3.3.2: Using similar argument, the above theorem also holds
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for the marginal screening sequence.

Pr( max
1≤k≤p

|
H∑
y=1

pyÎck,y −
H∑
y=1

pyIck,y| ≥ cn−τ ) ≤ p max
1≤k≤p

Pr(|
H∑
y=1

py(Îck,y − Ick,y)| ≥ cn−τ )

= p max
1≤k≤p

Pr(|
H∑
y=1

py(Îck,y − Ick,y)| ≥
H∑
y=1

pycn
−τ )

≤ p max
1≤k≤p

H∑
y=1

Pr(|py(Îck,y − Ick,y)| ≥ pycn
−τ )

= p max
1≤k≤p

H∑
y=1

Pr(|(Îck,y − Ick,y)| ≥ cn−τ )

≤ O[pH{exp(−c3n
1−2(τ+γ)) + n exp(−c4n

2γ)}]

Using similar argument, and denote the true and predictor active predictor set for

the marginal dependency to be Dc and D̂c, we have similar result as follows:

Pr(Dc ⊆ D̂c) ≥ 1−O[scH(exp(−c3n
1−2(τ+γ)) + n exp(−c4n

2γ))]. �

Proof of Theorem 3.3.3:

Pr(D ⊆ D̂) = Pr((Dc ∪ Dm) ⊆ (D̂c ∪ D̂m))

≥ Pr((Dc ⊆ D̂c) ∩ (Dm ⊆ D̂m))

= Pr(Dc ⊆ D̂c) + Pr(Dm ⊆ D̂m)− Pr((Dc ⊆ D̂c) ∪ (Dm ⊆ D̂m))

≥ Pr(Dc ⊆ D̂c) + Pr(Dm ⊆ D̂m)− 1

≥ 1−O[sm(exp(−c1n
1−2(τ+γ)) + n exp(−c2n

2γ))]

+ 1−O[scH(exp(−c3n
1−2(τ+γ)) + n exp(−c4n

2γ))]− 1

≥ 1−O[s(exp(−c5n
1−2(τ+γ)) + n exp(−c6n

2γ))].

Where s is the minimum of sm and scH. �
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Supplementary Materials for Chapter 4

This section provides proofs of propositions and theorems stated in chapter 4.

Lemma S. 4.5.4. Suppose η is a basis of the central subspace. Let (η1,η2) be any

partition of η, where ηTΣXη = Id. We have C2(ηTi |, Y ) < C2(ηTX|Y ), i = 1, 2.

Proof: Let X̃1 = ηT1X, X̃2 = ηT2X, F (a, b) = C2(

 aX̃1

bX̃2

 |Y ), a ∈ R and b ∈ R,

and G1(a, b) = ∂F (a, b)/∂a, G2(a, b) = ∂F (a, b)/∂b. A simple calculation shows that

aG1(a, b) + bG2(a, b) = F (a, b)

If (η1, η2) ∈ S(η), then F(0,1), F(1,0) > 0; otherwise, the conclusion automatically

holds.

Claim, if 0 ≤ λ < 1, then F (1, λ) < F (1, 1) and F (λ, 1) < F (1, 1).

If not, then there exist a 0 ≤ λ0 < 1 such that F (1, λ0) ≥ F (1, 1) or F (λ0, 1) ≥

F (1, 1). Without loss of generality, we assume there exist a 0 ≤ λ0 < 1 such that

F (1, λ0) ≥ F (1, 1).

But F (1, λ) = λF ( 1
λ
, 1), and as λ → ∞, F ( 1

λ
, 1) → F (0, 1) > 0. Thus F (1, λ) →

∞, as λ → ∞. That means, there exists a λ1 ∈ (λ0,∞) such that F (1, λ1) achieves

a minimum in (λ0,∞). Hence, G2(1, λ1) = 0. Note that function F (a, b) is a “ray”

function, i. e. F (ca, cb) = cF (a, b). Thus using the fact that F (1, λ) = λF ( 1
λ
, 1), we

can have G1( 1
λ1
, 1) = 0. And it is easy to calculate that G1(1, λ1) = G1( 1

λ1
, 1) = 0.

But 0 = 1G1(1, λ1)+λ1G2(1, λ1) = F (1, λ1). F (1, λ1) = 0 means that

 X̃1

λ1X̃2

 Y ,

which conflicts with our assumption. �

Proof of Proposition 4.2.1: Let η0 be the projection of β onto η, which means

η0 = Pη(ΣX)β = ηc, where c is a scalar. Let η⊥0 = β − η0, where the orthogonality

‘⊥’ is the inner product induced by ΣX , then 1 = βTΣXβ = c2 + η⊥,T0 ΣXη
⊥
0 ≥ c2.
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Now, by (4.1)

C2(βTX|Y)

=

∫
|E(ei<t,β

TX>|Y)− Eei<t,βTX>|2dw

=

∫
|E[E{ei<t,(ηT0 +η⊥,T0 )X>|Y,ηTX}|Y]− Eei<t,(ηT0 +η⊥,T0 )X>|2dw

=

∫
|E[E{ei<t,(ηT0 +η⊥,T0 )X>|ηTX}|Y]− Eei<t,(ηT0 +η⊥,T0 )X>|2dw

=

∫
|E[ei<t,η

T
0 X>E{ei<t,η

⊥,T
0 X>|ηTX}|Y]− Eei<t,ηT0 X>Eei<t,η

⊥,T
0 X>|2dw

=

∫
|E[ei<t,η

T
0 X>|Y]Eei<t,η

⊥,T
0 X> − Eei<t,ηT0 X>Eei<t,η

⊥,T
0 X>|2dw

=

∫
|Eei<t,η

⊥,T
0 X>{E[ei<t,η

T
0 X>|Y]− Eei<t,ηT0 X>}|2dw

=

∫
|Eei<t,η

⊥,T
0 X>|2|E[ei<t,η

T
0 X>|Y]− Eei<t,ηT0 X>|2dw

≤
∫
|E[ei<t,η

T
0 X>|Y]− Eei<t,ηT0 X>|2dw

= C2(ηT0 X|Y)

≤ C2(ηTX,Y)

The third equality follows from the assumption Y X|ηTX, and η0 = ηc. The

fourth equality follows from the assumption P T
η(ΣX)X QT

η(ΣX)X. The last inequality

follows from the second property in chapter 2. The maximum is achieved by setting

|c| = 1, which indicates Span(β) = Span(η). �

Proof of Proposition 4.2.2: Since S(β) ⊆ S(η) = SY |X , d1 ≤ d, there exists a

matrix A, which satisfies β = ηA. Therefore, C2(βTX|Y ) = C2(ATηTX|Y ).

Assume the single value decomposition of A is UΣV T , where U is a d× d orthog-

onal matrix, V is a d1×d1 orthogonal matrix and Σ is a d×d1 diagonal matrix with

nonnegative numbers on the diagonal, and it is easy to prove that all nonnegative

numbers on the diagonal of Σ are 1. Based on Theorem 2.3.2, part (2) in chapter 2,

C2(βTX|Y ) = C2(V ΣTUTηTX|Y ) = C2(ΣTUTηTX|Y ).

Let UTηTX = (X̃1, · · · , X̃d)
T . Since all nonnegative numbers on the diagonal of Σ

are 1 and ΣTUTηTX = (X̃1, · · · , X̃d1)
T , by Lemma S. 4.5.4, we get C2(ΣTUTηTX|Y ) ≤
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C2(UTηTX|Y ). The equality holds if and only if d = d1. And again based on Theo-

rem 2.3.2, part (2) in chapter 2, C2(UTηTX, Y ) = C2(ηTX|Y ). Thus, C2(βTX|Y ) ≤

C2(ηTX, Y ), and equality holds if and only if S(β) = S(η). �

Proof of Proposition 4.2.3: For the β and η described in Proposition 2, there

exists a rotation matrix Q such that βQ = (ηa,ηb), and S(ηa) ⊆ S(η), S(ηb) ⊆

S(η)⊥, where S(η)⊥ is the orthogonal space of S(η).

Since Y ηTb X|ηTX and P T
η(ΣX)X QT

η(ΣX)X, therefore

 Y

ηTX

 ηTb X,

and according to Proposition 4.3 (Cook, 1998b),

 Y

ηTaX

 ηTb X. Let W1 = ηTaX

0

, V1 = Y , W2 =

 0

ηTb X

, and V2 = 0, then (W1, V1) (W2, V2). Accord-

ing to Theorem 2.3.2, part (3) in chapter 2, C(W1+W2|V1+V2) < C(W1|V1)+C(W2|V2),

that is C2(QTβTX|Y ) = C2(βTX|Y ) < C2(ηTaX|Y ) ≤ C2(ηTX|Y ). �

Notations and Conditions

We reconstruct the optimization problem by using the Lagrange multiplier technique,

and we introduce the following notations.

Let (X,Y) = {(Xk, Yk), k = 1, · · · , n} to be a random sample from the joint

distribution of random vector X ∈ Rp and Y ∈ R. Let L(ζ) = C2(βTX|Y ) +

λ(βTΣXβ − 1) and Ln(ζ) = C2
n(βTX|Y) + λ(βT Σ̂Xβ − 1).

Here ζ =

 β

λ

 ∈ Rp+1, β ∈ Rp , λ ∈ R, ΣX is the covariance matrix of X, and Σ̂X

is the sample estimate for ΣX .

Under the condition P T
η(ΣX)X QT

η(ΣX)X and the assumption that CS is unique,

let η = arg maxβTΣXβ=1 C2(βTX|Y ) and ηn = arg maxβT Σ̂Xβ=1 C2
n(βTX|Y), then

there exist λ0 and λn such that

 η

λ0

 is a stationary point for L(ζ) and

 ηn

λn


is a stationary point for Ln(ζ). On the other hand, since −η is another maximizer of

C2(βTX|Y ), and (−βT )ΣX(−β) = βTΣXβ, therefore

 −η
λ0

 is also a stationary
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point of L(ζ). So to speak,

 −ηn
λn

 is also stationary point for Ln(ζ).

Now let θn =

 ηn

λn

, then θn = arg maxLn(ζ). Note that

 cη

λ0

 = arg maxL(ζ),

where, c = ±1. Here ±η and ηn ∈ Rp, λ0 and λn ∈ R.

In order to simplify the proofs, throughout this section in the appendix, without

loss of generality, we can assume that the first none zero elements in both of ηn and

η have the same sign by setting c = 1, and let θ =

 η

λ0

. Otherwise, set c = −1.

Furthermore, we make the following assumption.

Assumption S. 4.5.1. V ar
[
φ(1)(X1, X2)

]
, V ar

[
φ(2)(X1y, X2y)

]
, V ar

[
φ(4)(X1)

]
,

V ar
[
φ(5)(X1, X2)

]
, V ar

[
φ(6)(X1)

]
, V ar

[
φ(7)(X1, X2)

]
are all < ∞, where X1 and

X2 are iid copies, and X1y and X2y are iid copies, respectively, and

φ(1)(X1, X2) =
(X1 −X2)(X1 −X2)Tη

|ηT (X1 −X2)|
,

φ(2)(X1y, X2y) =
(X1y −X2y)(X1y −X2y)

Tη

|ηT (X1y −X2y)|
, for y = 1, · · · , C,

φ(4)(X1) = X1X
T
1 η,

φ(5)(X1, X2) =
1

2
(X1X

T
2 +X2X

T
1 )η,

φ(6)(X1) = ηTX1X
T
1 η,

φ(7)(X1, X2) =
1

2
ηT (X1X

T
2 +X2X

T
1 )η.

Assumption 4.5.1 is needed for Proposition 4.2.3 in the paper and Lemma 4.5.7

in the next Section, which is similar to the assumed conditions of Theorem 6.1.6

(Lehmann, 1999, Ch.6) so that in the spirit of von Mises proposition (Serfling, 1980,

Section 6.1), the first nonvanishing term of our Taylor expansion is the linear term.

Hence root-n result can be proved. If this term is vanished, then n or higher order-

consistency can be proved.
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Relevant Lemmas

Lemma S. 4.5.5. If the support of X, say S, is compact, E|Y | <∞ and θn
P−→ θ,

then Ln(θn)− Ln(θ)
P−→ 0.

Lemma S. 4.5.6. If the support of X, say S, is compact, E|Y | <∞, then θn
P−→ θ.

Lemma S. 4.5.7. Under assumption 4.5.1 and the assumptions in Proposition 4.2.3,

then
√
n(θn − θ)

D−→ N(0, V ). The explicit expression for V is in the proof.

Proofs of the Relevant Lemmas

Proof of Lemma S. 4.5.5:

Ln(θn)− Ln(θ) = C2
n(ηTnX|Y) + λn(ηTn Σ̂Xηn − 1)− C2

n(ηTX|Y)− λ0(ηT Σ̂Xη − 1)

= C2
n(ηTnX|Y)− C2

n(ηTX|Y) + λn(ηTn Σ̂Xηn − 1)− λ0(ηT Σ̂Xη − 1).

Since θn
P−→ θ, therefore ηn

P−→ η and λn
P−→ λ0, and we know Σ̂X

a.s.−→ ΣX.

Hence λnη
T
n Σ̂Xηn

P−→ λ0η
TΣXη = λ0, and λ0η

T Σ̂Xη
a.s.−→ λ0η

TΣXη = λ0. Therefore

λn(ηTn Σ̂Xηn−1)−λ0(ηT Σ̂Xη−1) = (λnη
T
n Σ̂Xηn−λ0η

T Σ̂Xη)−(λn−λ0)
P−→ 0. Now

in order to prove Lemma 4.5.5, we only need to prove C2
n(ηTnX|Y)−C2

n(ηTX|Y)
P−→ 0,

which is proved next.

We have that

akl(ηn) = |ηTnXk − ηTnXl|, for k, l = 1, · · · , n, ,

bkly(ηn) = |ηTnXky − ηTnXly|, for k, l = 1, · · · , ny, y = 1 · · · , C .

Then we have

C2
n(ηTnX|Y) =

1

n2

n∑
k,l=1

akl(ηn)− 1

n

C∑
y=1

1

ny

ny∑
k,l=1

akly(ηn),

and,

C2
n(ηTX|Y) =

1

n2

n∑
k,l=1

akl(η)− 1

n

C∑
y=1

1

ny

ny∑
k,l=1

akly(η).
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Because ηn → η in probability, let ηn = η + εn, then for any ε > 0, |εn| < ε,

when n → ∞. Hence, by the condition on X, we have that for a positive constant

Cx, and large n, |akl(ηn)− akl(η)| and |akly(ηn)− akly(η)| ≤ εCx. Therefore,

|C2
n(ηTnX|Y)− C2

n(ηTX|Y)| ≤ 1

n2

n∑
k,l=1

|akl(ηn)− akl(η)|+ 1

n

C∑
y=1

1

ny

ny∑
k,l=1

|akly(ηn)− akly(η)|

≤ 2εCx.

Hence, the conclusion follows. �

Proof of Lemma S. 4.5.6: Suppose θn fails to converge to θ with probability 1,

then there exists a subsequence, still to be indexed by n, and an θ∗ =

 η∗

λ∗

 ∈ Rp+1

satisfying η∗TΣXη
∗ = 1 and θ∗ 6= θ, such that θn

P−→ θ∗. If so, ηn
P−→ η∗ and

λn
P−→ λ∗. Note that η∗ 6= −η by setting c = 1, previously.

By lemma S. 4.5.5, if θn
P−→ θ∗ , then Ln(θn) − Ln(θ∗)

P−→ 0, where Ln(θ∗) =

C2
n(η∗TX|Y) + λ∗(η∗T Σ̂Xη

∗ − 1).

We know C2
n(η∗TX|Y)

a.s.−→ C2(η∗TX|Y ). And since Σ̂X = 1
n

∑n
i=1XiX

T
i −

X̄X̄T a.s.−→ ΣX, therefore λ∗(η∗T Σ̂Xη
∗ − 1)

a.s.−→ λ∗(η∗TΣXη
∗ − 1). Hence Ln(θ∗)

a.s.−→

L(θ∗). With Ln(θn)− Ln(θ∗)
P−→ 0 , we get Ln(θn)

P−→ L(θ∗).

On the other hand, since θn = arg maxLn(ζ), therefore Ln(θn) ≥ Ln(θ). If we

take the limit on both sides of the inequality, we get L(θ∗) ≥ L(θ). However, this

result conflicts with our assumption that θ = arg maxL(ζ) and the uniqueness of the

CS. Therefore, θn
P−→ θ. �

Proof of Lemma 4.5.7: For simplicity of notation, let Cn(η) = C2
n(ηTX|Y ). The

Taylor expansion of L′n(θn) at θ is 0 = L′n(θn) = L′n(θ) + L′′n(θ)(θn − θ) +R1(θ∗n),

where |θ∗n− θ| ≤ |θn− θ|, and θ∗n =

 η∗n

λ∗n

. Next, we will give explicit expressions

of L′n(θ), L′′n(θ) and R1(θ∗n). With simple calculation,

L′n(θ) =

 C ′n(η) + 2λ0Σ̂Xη

ηT Σ̂Xη − 1

; L′′n(θ) =

 C ′′n(η) + 2λ0Σ̂X 2Σ̂Xη

2ηT Σ̂X 0

.
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Furthermore, we notice that C ′′n(η) = 0. This is because Cn(η) = C2
n(ηTX|Y ) =

S1(η)− S2(η), where

S1(η) =
1

n2

n∑
k,l=1

|ηT (Xk −Xl)|,

S2(η) =
1

n

C∑
y=1

1

ny

ny∑
k,l=1

|ηT (Xky −Xly)|.

However, a simple calculation shows that

S
′′

1 (η) =
1

n2

n∑
k,l=1

{[(Xk −Xl)(Xk −Xl)
T ][ηT (Xk −Xl)(Xk −Xl)

Tη]
− 1

2

− [(Xk −Xl)(Xk −Xl)
Tη][ηT (Xk −Xl)(Xk −Xl)

Tη]
− 3

2ηT (Xk −Xl)(Xk −Xl)
T} = 0.

Similarly, S
′′
2 (η) = 0, therefore C ′′n(η) = 0.

Thus we obtain that

 C ′′n(η) + 2λ0Σ̂X 2Σ̂Xη

2ηT Σ̂X 0

 =

 2λ0Σ̂X 2Σ̂Xη

2ηT Σ̂X 0

, which

converges to

 2λ0ΣX 2ΣXη

2ηTΣX 0

 almost surely.

Since

∣∣∣∣∣∣ 2λ0ΣX 2ΣXη

2ηTΣX 0

∣∣∣∣∣∣ = −2p+1λp−1
0 |ΣX| 6= 0, thus

 2λ0Σ̂X 2Σ̂Xη

2ηT Σ̂X 0

 is in-

vertible when n is large.

As for R1(θ∗n), let Tn = L′′′n (θ∗n), where Tn is a (p + 1) × (p + 1) × (p + 1) array.

Each Tn(j, :, :), j = 1, · · · , p+ 1 is a (p+ 1)× (p+ 1) matrix.

Let Σ̂X =


σ̂11 σ̂12 · · · σ̂1p

σ̂21 σ̂22 · · · σ̂2p

...
...

. . .
...

σ̂p1 σ̂p2 · · · σ̂pp

, then we can write
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Tn(j, :, :) = 2



0 0 · · · 0 σ̂j1

0 0 · · · 0 σ̂j2
...

...
. . .

...
...

0 0 · · · 0 σ̂jp

σ̂j1 σ̂j2 · · · σ̂jp 0


, j = 1, 2, · · · , p and

Tn(p+ 1, :, :) = 2



σ̂11 σ̂21 · · · σ̂p1 0

σ̂12 σ̂22 · · · σ̂p2 0
...

...
. . .

...
...

σ̂1p σ̂2p · · · σ̂pp 0

0 0 · · · 0 0


.

The form of Tn(j, :, :), j = 1, 2, · · · , p + 1 indicates that Tn is not affected by the

value of θ∗. The form of R1(θ∗n) can be written as

R1(θ∗n) = 1
2


(θn − θ)TTn(1, :, :)(θn − θ)

(θn − θ)TTn(2, :, :)(θn − θ)
...

(θn − θ)TTn(p+ 1, :, :)(θn − θ)

 .

Therefore, the Taylor expansion of L′n(θn) at θ can be written as

0 =

 C ′n(η) + 2λ0Σ̂Xη

ηT Σ̂Xη − 1

+

 2λ0Σ̂X 2Σ̂Xη

2ηT Σ̂X 0

 ηn − η

λn − λ0



+ 1
2


(θn − θ)TTn(1, :, :)(θn − θ)

(θn − θ)TTn(2, :, :)(θn − θ)
...

(θn − θ)TTn(p+ 1, :, :)(θn − θ)

 . And from the above Taylor expansion of

L′n(θn), we obtain that

−

 2λ0Σ̂X 2Σ̂Xη

2ηT Σ̂X 0

−1

√
n

 C ′n(η) + 2λ0Σ̂Xη

ηT Σ̂Xη − 1

 =
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[Ip+1 + 1
2

 2λ0Σ̂X 2Σ̂Xη

2ηT Σ̂X 0

−1


(θn − θ)TTn(1, :, :)

(θn − θ)TTn(2, :, :)
...

(θn − θ)TTn(p+ 1, :, :)

]
√
n(θn − θ).

Next, we are going to prove two parts:

Part 1:

 2λ0Σ̂X 2Σ̂Xη

2ηT Σ̂X 0

−1

√
n

 C ′n(η) + 2λ0Σ̂Xη

ηT Σ̂Xη − 1

 D−→ N(0,V).

Part 2:
√
n(θn − θ)

D
=

[Ip+1 + 1
2

 2λ0Σ̂X 2Σ̂Xη

2ηT Σ̂X 0

−1


(θn − θ)TTn(1, :, :)

(θn − θ)TTn(2, :, :)
...

(θn − θ)TTn(p+ 1, :, :)

]
√
n(θn − θ).

To prove Part 1, we will use the asymptotic properties for U-statistics. We will

show that both C ′n(η) + 2λ0Σ̂Xη and ηT Σ̂Xη are linear combinations of U-statistics.

Based on chapter 2, Cn(η) = C2
n(ηTX,Y) = S1(η)− S2(η), where

S1(η) =
1

n2

n∑
k,l=1

|ηT (Xk −Xl)|,

S2(η) =
1

n

C∑
y=1

1

ny

ny∑
k,l=1

|ηT (Xky −Xly)|.

Therefore, C ′n(η) + 2λ0Σ̂Xη = S
′
1(η)− S ′2(η) + 2λ0Σ̂Xη, where

S
′

1(η) =
1

n2

n∑
k,l=1

(Xk −Xl)(Xk −Xl)
Tη

|ηT (Xk −Xl)|
,

S
′

2(η) =
1

n

C∑
y=1

1

ny

ny∑
k,l=1

(Xky −Xly)(Xky −Xly)
Tη

|ηT (Xky −Xly)|
,

Σ̂X =
1

n

n∑
i=1

XiX
T
i − X̄X̄T =

1

n

n∑
i=1

XiX
T
i −

1

n2

n∑
i,j=1

XiX
T
j .

Here S
′
1(η), S

′
2(η) , S

′
3(η) and Σ̂X are V-statistics, which can be written as U-
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statistics. Let

U1n =

(
n

2

)−1 ∑
1≤k<l≤n

(Xk −Xl)(Xk −Xl)
Tη

|ηT (Xk −Xl)|
,

U2ny =

(
ny
2

)−1 ∑
1≤k<l≤ny

(Xky −Xly)(Xky −Xly)
Tη

|ηT (Xky −Xly)|
,

U4n =
1

n

n∑
i=1

XiX
T
i η,

U5n =

(
n

2

)−1∑
i<j

1

2
(XiX

T
j +XjX

T
i )η.

Based on the following calculations, we will write S
′
1(η), S

′
2(η) , S

′
3(η) and Σ̂X as

linear combinations of these U-statistics.

S
′

1(η) =
2

n2

(
n

2

)
{
(
n

2

)−1 ∑
1≤k<l≤n

(Xk −Xl)(Xk −Xl)
Tη

|ηT (Xk −Xl)|
}

=
n− 1

n
U1n,

S
′

2(η) =
1

n

C∑
y=1

(ny − 1)U2ny.

And

Σ̂X =
1

n

n∑
i=1

XiX
T
i − X̄X̄T =

1

n

n∑
i=1

XiX
T
i −

1

n2

n∑
i,j=1

XiX
T
j

=
1

n

n∑
i=1

XiX
T
i −

1

n2

n∑
i=1

XiX
T
i −

1

n2

n∑
i 6=j

XiX
T
j

=
n− 1

n
[
1

n

n∑
i=1

XiX
T
i ]− 2

n2
(
n∑
i<j

1

2
(XiX

T
j +XjX

T
i ))

=
n− 1

n
[
1

n

n∑
i=1

XiX
T
i ]− n− 1

n
[

(
n

2

)−1 n∑
i<j

1

2
(XiX

T
j +XjX

T
i )].
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That is,

S
′

1(η) =
n− 1

n
U1n,

S
′

2(η) =
1

n

C∑
y=1

(ny − 1)U2ny,

Σ̂Xη =
n− 1

n
U4n −

n− 1

n
U5n.

Thus C ′n(η)+2λ0Σ̂Xη = (n−1)
n

U1n− 1
n

∑C
y=1(ny−1)U2ny+2λ0

n−1
n

U4n−2λ0
n−1
n

U5n.

And ηT Σ̂Xη is also a linear combination of U-statistics. Let

U6n =
1

n

n∑
i=1

ηTXiX
T
i η,

U7n =

(
n

2

)−1∑
i<j

1

2
ηT (XiX

T
j +XjX

T
i )η,

then ηT Σ̂Xη = n−1
n

U6n − n−1
n

U7n.

With iid copies of Xk and Xl, and Xky and Xly, respectively, let

φ(1)(Xk, Xl) =
(Xk −Xl)(Xk −Xl)

Tη

|ηT (Xk −Xl)|
,

φ(2)(Xky, Xly) =
(Xky −Xly)(Xky −Xly)

Tη

|ηT (Xky −Xly)|
, for y = 1, · · · , C,

φ(4)(Xk) = XkX
T
k η,

φ(5)(Xk, Xl) =
1

2
(XkX

T
l +XlX

T
k )η,

φ(6)(Xk) = ηTXkX
T
k η,

φ(7)(Xk, Xl) =
1

2
ηT (XkX

T
l +XlX

T
k )η.
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and let

µ1 = E
(X −X ′)(X −X ′)Tη
|ηT (X −X ′)|

,

µ2y = E
(Xy −X

′
y)(Xy −X

′
y)
Tη

|ηT (Xy −X ′y)|
, for y = 1, · · · , C.

µ4 = EXXTη,

µ5 = (EX)(EX)Tη,

µ6 = ηT (EXXT )η,

µ7 = ηT (EX)(EX)Tη.

Here X and X
′

are i.i.d copies, and XY and X
′
Y are i.i.d copies. By Theorem 6.1.6

(Lehmann, 1999, Ch.6), under assumption 4.5.1,

√
n



U1n − µ1

U2n1 − µ21

· · ·

U2nC − µ2C

U4n − µ4

U5n − µ5

U6n − µ6

U7n − µ7



D−→ N(0,Σ),

where Σ =



Σ11 Σ12y Σ14 Σ15 Σ16 Σ17

· Σ2y2y Σ2y4 Σ2y5 Σ2y6 Σ2y7

· · Σ44 Σ45 Σ46 Σ47

· · · Σ55 Σ56 Σ57

· · · · Σ66 Σ67

· · · · · Σ77


, and y = 1, · · · , C for simplicity

of the expression.

Using Hoeffding’s result (Hoeffding, 1948, Section 6), we obtain that

Σ11 = 4cov(φ(1)(X1, X2), φ(1)(X1, X
′
2), where X1, X2, X

′
2 are i.i.d.
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Σ12y = 4cov(φ(1)(X1, X2), φ(2)(X1y, X
′
2y)), where X1 and X2 are iid copies, and

X1y and X
′
2y are i.i.d. copies.

Σ14 = 2cov(φ(1)(X1, X2), φ(4)(X1), where X1, X2 are i.i.d.

Σ15 = 4cov(φ(1)(X1, X2), φ(5)(X1, X
′
2)), where X1, X2, X

′
2 are i.i.d.

Σ16 = 2cov(φ(1)(X1, X2), φ(6)(X1)), where X1, X2 are i.i.d.

Σ17 = 4cov(φ(1)(X1, X2), φ(7)(X1, X
′
2)), where X1, X2, X

′
2 are i.i.d.

Σ2y2y = 4cov(φ(2)(X1y, X2y), φ
(2)(X1y, X

′
2y)), where X1y, X2y, X

′
2y are i.i.d.

Σ2y4 = 2cov(φ(2)(X1y, X2y), φ
(4)(X1)), where X1y, X2y are i.i.d.

Σ2y5 = 4cov(φ(2)(X1y, X2y), φ
(5)(X1, X

′
2)), where X1y, X2y are iid, and X1, X

′
2 are

i.i.d.

Σ2y6 = 2cov(φ(2)(X1y, X2y), φ
(6)(X1)),

where X1y, X2y are i.i.d.

Σ2y7 = 4cov(φ(2)(X1y, X2y), φ
(7)(X1, X

′
2)), where X1y, X2y are i.i.d., and X1, X

′
2

are iid copies.

Σ44 = cov(φ(4)(X1), φ(4)(X1)).

Σ45 = 2cov(φ(4)(X1), φ(5)(X1, X
′
2)), where X1, X

′
2 are i.i.d.

Σ46 = cov(φ(4)(X1), φ(6)(X1)).

Σ47 = 2cov(φ(4)(X1), φ(7)(X1, X
′
2)), where X1, X

′
2 are i.i.d.

Σ55 = 4cov(φ(5)(X1, X2), φ(5)(X1, X
′
2)), where X1, X2, X

′
2 are i.i.d.

Σ56 = 2cov(φ(5)(X1, X2), φ(6)(X1)), where X1, X2 are i.i.d.

Σ57 = 4cov(φ(5)(X1, X2), φ(7)(X1, X
′
2)), where X1, X2, X

′
2 are i.i.d.

Σ66 = cov(φ(6)(X1), φ(6)(X1)).

Σ67 = 2cov(φ(6)(X1), φ(7)(X1, X
′
2)), where X1, X

′
2 are i.i.d.

Σ77 = 4cov(φ(7)(X1, X2), φ(7)(X1, X
′
2)), where X1, X2, X

′
2 are i.i.d.

Let Â =

 2λ0Σ̂X 2Σ̂Xη

2ηT Σ̂X 0

−1

, A =

 2λ0ΣX 2ΣXη

2ηTΣX 0

−1

and

B =

 Ip Ip ⊗ (−p1) · · · Ip ⊗ (−pC) Ip ⊗ 2λ0 Ip ⊗ (−2λ0) 0p 0p

0Tp 0Tp · · · 0Tp 0Tp 0Tp 1 −1

, where

0p is a p×1 zero vector, then by the definitions of µi, for instance µ6−µ7 = ηTΣXη =
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1. In addition, p1, · · · pC are the probabilities in group y for y = 1, · · · , C. We have

√
nB



U1n − µ1

U2n1 − µ21

· · ·

U2nC − µ2C

U4n − µ4

U5n − µ5

U6n − µ6

U7n − µ7



=
√
n

 U1n −
∑C

y=1 pyU2ny + 2λ0U4n − 2λ0U5n

U6n − U7n − 1

.

Note that

√
n

 C ′n(η) + 2λ0Σ̂Xη

ηT Σ̂Xη − 1

 =

√
n

 (n−1)
n

U1n −
∑C

y=1
ny−1

n
U2ny + 2λ0

n−1
n

U4n − 2λ0
n−1
n

U5n

n−1
n

U6n − n−1
n

U7n − 1

.

Hence,

√
n

 C ′n(η) + 2λ0Σ̂Xη

ηT Σ̂Xη − 1

−√nB



U1n − µ1

U2n1 − µ21

· · ·

U2nC − µ2C

U4n − µ4

U5n − µ5

U6n − µ6

U7n − µ7



=

√
n

 −1
n

U1n −
∑c

y=1
ny−npy−1

n
U2ny + 2λ0

−1
n

U4n − 2λ0
−1
n

U5n

−1
n

U6n − −1
n

U7n

 P−→ 0, by assump-

tion 4.5.1.
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Therefore, by Slutsky’s theorem,
√
n

 C ′n(η) + 2λ0Σ̂Xη

ηT Σ̂Xη − 1

 D
=
√
nB



U1n − µ1

U2n1 − µ21

· · ·

U2nC − µ2C

U4n − µ4

U5n − µ5

U6n − µ6

U7n − µ7



.

Hence,

 2λ0Σ̂X 2Σ̂Xη

2ηT Σ̂X 0

−1

√
n

 C ′n(η) + 2λ0Σ̂Xη

ηT Σ̂Xη − 1

 D
=
√
nAB



U1n − µ1

U2n1 − µ21

· · ·

U2nC − µ2C

U4n − µ4

U5n − µ5

U6n − µ6

U7n − µ7



D−→

N(0,V), where V = ABΣBTAT . We complete the proof of Part 1.

Now we prove Part 2:
√
n(θn − θ)

D
=

[Ip+1 + 1
2

 2λ0Σ̂X 2Σ̂Xη

2ηT Σ̂X 0

−1


(θn − θ)TTn(1, :, :)

(θn − θ)TTn(2, :, :)
...

(θn − θ)TTn(p+ 1, :, :)

]
√
n(θn − θ).

As shown previously, all elements of Tn(i, :, :), i = 1, · · · , p+1 are zero or elements

from Σ̂X, which are bounded. Â−1 → A−1, thus all elements of Â−1 are bounded as

well. Lemma S. 4.5.6 indicates that θn
P−→ θ, we see that

[Ip+1 + 1
2

 2λΣ̂X 2Σ̂Xη

2ηT Σ̂X 0

−1


(θn − θ)TTn(1, :, :)

(θn − θ)TTn(2, :, :)
...

(θn − θ)TTn(p+ 1, :, :)

]
P−→ Ip+1.
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Then by Slutsky’s theorem,
√
n(θn − θ)

D
=

[Ip+1 + 1
2

 2λΣ̂X 2Σ̂Xη

2ηT Σ̂X 0

−1


(θn − θ)TTn(1, :, :)

(θn − θ)TTn(2, :, :)
...

(θn − θ)TTn(p+ 1, :, :)

]
√
n(θn−θ). Therefore,

√
n(θn − θ)

D
=

 2λΣ̂X 2Σ̂Xη

2ηT Σ̂X 0

−1

√
n

 C ′n(η) + 2λΣ̂Xη

ηT Σ̂Xη − 1

 D−→ N(0,V). In

other word, θn is
√
n-consistent estimation of θ. �

Proof of Consistency

In order to prove the Proposition 4.3.3, we first prove the following Lemma S. 4.5.8.

Proof of Lemma S. 4.5.8

Lemma S. 4.5.8. If the support of X, say S, is compact, E|Y | <∞ and furthermore,

ηn
P−→ η, then C2

n(ηTnX|Y)− C2
n(ηTX|Y)

P−→ 0.

Proof of Lemma S. 4.5.8: Based on chapter 2, we have that

akl(ηn) = |ηTnXk − ηTnXl|, for k, l = 1, · · · , n, ,

bkly(ηn) = |ηTnXky − ηTnXly|, for k, l = 1, · · · , ny, y = 1 · · · , C .

Then we have

C2
n(ηTnX|Y) =

1

n2

n∑
k,l=1

akl(ηn)− 1

n

C∑
y=1

1

ny

ny∑
k,l=1

akly(ηn),

and,

C2
n(ηTX|Y) =

1

n2

n∑
k,l=1

akl(η)− 1

n

C∑
y=1

1

ny

ny∑
k,l=1

akly(η).

Because ηn → η in probability, let ηn = η + εn, then for any ε > 0, |εn| < ε, when

n→∞. Hence, by the condition on X, we have that for a positive constant Cx, and

large n, |akl(ηn)− akl(η)| and |akly(ηn)− akly(η)| ≤ εCx.
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Therefore,

|C2
n(ηTnX|Y)− C2

n(ηTX|Y)|

≤ 1

n2

n∑
k,l=1

|akl(ηn)− akl(η)|+ 1

n

C∑
y=1

1

ny

ny∑
k,l=1

|akly(ηn)− akly(η)|

≤ 2εCx.

Hence, the conclusion follows. �

Proof of Proposition 4.3.3

Proof of Proposition 4.3.3: Without loss of generality, we assume Q = Id. Sup-

pose ηn is not a consistent estimator of SY |X , then there exists a subsequence, still

to be indexed by n, and an η∗ satisfying η∗T Σ̂Xη
∗ = Id such that ηn

P−→ η∗ but

Span(η∗) 6= Span(η).

By Lemma S. 4.5.8, C2
n(ηTnX|Y)−C2

n(η∗TX|Y)
P−→ 0 and by chapter 2, C2

n(η∗TX|Y)
a.s.−→

C2(η∗TX|Y), therefore C2
n(ηTnX|Y)

P−→ C2(η∗TX|Y). On the other hand, because

ηn = arg maxβT Σ̂Xβ=Id
C2
n(βTX|Y), we have C2

n(ηTnX|Y) ≥ C2
n(ηTX|Y). If we take

the limit on both sides of the above inequality, we get C2(η∗TX|Y) ≥ C2(ηTX|Y),

however, we have proved that under the assumption P T
η(ΣX)X QT

η(ΣX)X, η =

arg maxβTΣXβ=Id
C2(βTX|Y), and we also assume that the central subspace is unique,

therefore C2(η∗TX|Y) ≥ C2(ηTX|Y) conflicts with the above assumption, so ηn is a

consistent estimator of a basis of the central subspace. �

Proof of
√
n-consistency

To prove the
√
n-consistency of vec(ηn) in Proposition 4.3.4 in chapter 4, we recon-

struct the optimization problem by using the Lagrange multiplier technique, and first

we introduce the following notations, conditions and we also give a new definition.
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Notations and Conditions

For a random sample (X,Y) = {(Xk, Yk) : k = 1, · · · , n} from the joint distribution

of random vectors X in Rp and Y in R.

Let L(ζ) = C2(βTX|Y ) + λT (vec(βTΣXβ)− vec(Id)) and Ln(ζ) = C2
n(βTX|Y) +

λT (vec(βT Σ̂Xβ) − vec(Id)). Here ζ =

 vec(β)

λ

 ∈ Rpd+d2 , β ∈ Rp×d , λ ∈ Rd2 ,

ΣX is the covariance matrix of X, and Σ̂X is the sample estimate for ΣX . Let

ηn = arg maxβT Σ̂Xβ=Id
C2
n(βTX|Y), then there exists a λn such that

 vec(ηn)

λn

 is

a stationary point for Ln(ζ). Let θn =

 vec(ηn)

λn

, then L′n(θn) = 0. Let η to be

a basis of CS, then under the assumption P T
η(ΣX)X QT

η(ΣX)X, there exists a rotation

matrix Q : QTQ = Id, such that ηQ = arg maxβTΣXβ=Id
C2(βTX|Y ). Without loss of

generality, we assume Q = Id here, therefore there exists a λ0 such that

 vec(η)

λ0


is a stationary point for L(ζ). Let θ =

 vec(η)

λ0

.

In the proof, we need to take derivatives of C2(ηTX|Y ) and C2
n(ηTX|Y) with

respect to vec(η), so for the simplicity of notation, when we consider the derivatives

of C2(ηTX|Y ) and C2
n(ηTX|Y), we use C(η) and Cn(η) to denote C2(ηTX|Y ) and

C2
n(ηTX|Y), respectively.

Here are additional notations, which will be used later in the following proof.

I(d,d) is the vec-permutation matrix. Im is a identity matrix with rank m, and Im(:, i)

denotes the ith column of Im. A ⊗B denotes Kronecker product between matrix A

and B. vec(·) is a vec operator. Furthermore, we give the following definition and

assumptions.

Definition S. 4.5.3. Let ∆(η) = {α : ||α−η|| ≤ c}, where α is a p× d matrix and

αTΣXα = Id, c is a fixed small constant, || · || is the Frobenius norm. We define an
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indicator function

ρ(X,X ′) =

 0 if |αT (X −X ′)| ≤ ε0, for α ∈ ∆(η)

1 if |αT (X −X ′)| > ε0, for α ∈ ∆(η)

where X ′ is an i.i.d. copy of X and ε0 is a small number. We define the second and

third derivative of C(η) with respect to vec(η) as C ′′(η)ρ(X,X ′) and C ′′′(η)ρ(X,X ′).

For the simplicity of notation, we will still use C ′′(η) and C ′′′(η) to denote C ′′(η)ρ(X,X ′)

and C ′′′(η)ρ(X,X ′), respectively.

The reason we use this definition is by definition S. 4.5.3, the second and third

derivative of C(η) and Cn(η) are bounded, near the neighborhood of the central

subspace.

Assumption S. 4.5.2. V ar
[
φ(1)(X1, X2)

]
, V ar

[
φ(2)(X1y, X2y)

]
, V ar

[
φ(4)(X1)

]
,

V ar
[
φ(5)(X1, X2)

]
, V ar

[
φ(6)(X1)

]
, V ar

[
φ(7)(X1, X2)

]
, V ar

[
φ(8)(X1)

]
are all <∞.

Here

φ(1)(X1, X2) =
(Id ⊗ (X1 −X2))(Id ⊗ (X1 −X2)T )vec(η)

|(Id ⊗ (X1 −X2)T )vec(η)|
,

φ(2)(X1y, X2y) =
(Id ⊗ (X1y −X2y))(Id ⊗ (X1y −X2y)

T )vec(η)

|(Id ⊗ (X1y −X2y)T )vec(η)|
,

φ(4)(X1) = (Id ⊗X1X
T
1 η)(Id2 + ITd,d)λ0,

φ(5)(X1, X2) =
1

2
(Id ⊗ (X1X

T
2 +X2X

T
1 )η)(Id2 + ITd,d)λ0,

φ(6)(X1) = vec(ηTX1X
T
1 η),

φ(7)(X1, X2) =
1

2
vec(ηT (X1X

T
2 +X2X

T
1 )η),

φ(8)(X1) = vec(X1 − EX1)(X1 − EX1)T .

Assumption S. 4.5.3.

 C ′′(η) + L (Id ⊗ ΣXη)(Id2 + I(d,d))

(Id2 + IT(d,d))(Id ⊗ ηTΣX) 0

 is

nonsingular, where L is defined later in the proof.
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Assumption 4.5.2 is needed for Proposition 4.3.4 in the main article and Lemma S.

4.5.9 in the next Section, which is similar to the assumed conditions of Theorem 6.1.6

(Lehmann, 1999, Ch.6). This assumption is required by the asymptotic properties of

U-statistics.

Assumption 4.5.3 is in the spirit of von Mises proposition (Serfling, 1980, Section

6.1). In this proposition, it claims that if the first nonvanishing term of Taylor ex-

pansion is the linear term, then the root-n consistency of the differentiable statistical

function can be achieved. In our case, we assume the corresponding matrix is non-

singular, which guarantees the root-n consistency. If the matrix is singular, then n

or higher order consistency of some parts of our estimates can be proved.

Proof of Lemma S. 4.5.9

In order to prove Proposition 4.3.4, we first prove the following Lemma S. 4.5.9.

Lemma S. 4.5.9. Under assumptions 4.5.2 and 4.5.3, and the assumptions in Propo-

sition 4.3.4, then
√
n(θn − θ)

D−→ N(0, V ). The explicit expression for V is in the

proof.

Proof of Lemma S. 4.5.9: The Taylor expansion of L′n(θn) at θ is 0 = L′n(θn) =

L′n(θ)+L′′n(θ)(θn−θ)+R1(θ∗n), where ||θ∗n−θ|| ≤ ||θn−θ||, where ||·|| is the Frobenius

norm and θ∗n =

 vec(η∗n)

λ∗n

. Next, we will give explicit expressions of L′n(θ), L′′n(θ)

andR1(θ∗n). With simple calculation, L′n(θ) =

 C ′n(η) + (Id ⊗ Σ̂Xη)(Id2 + I(d,d))λ0

vec(ηT Σ̂Xη)− vec(Id)


L′′n(θ) =

 C ′′n(η) + L̂ (Id ⊗ Σ̂Xη)(Id2 + I(d,d))

(Id2 + IT(d,d))(Id ⊗ ηT Σ̂X) 0

.

where L̂ = (vec(L̂11), vec(L̂21), · · · , vec(L̂p1), · · · , vec(L̂1d), vec(L̂2d), · · · , vec(L̂pd))T

and L̂ij = Σ̂T
XIp(:, i)λ

T
0 (Id2 + IT(d,d))(Id(:, j)⊗ Id). It is obvious that L̂

a.s.−→ L, where

L = (vec(L11), vec(L21), · · · , vec(Lp1), · · · , vec(L1d), vec(L2d), · · · , vec(Lpd))T and Lij =

ΣT
XIp(:, i)λ

T
0 (Id2 + IT(d,d))(Id(:, j)⊗ Id). Here i = 1, · · · , p and j = 1, · · · , d.
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The remainder term R1(θ∗n) involves the third derivative of L(ζ) at θ∗n. Let

Tn = L′′′n (θ∗n), where Tn is a (pd+ d2)× (pd+ d2)× (pd+ d2) array and each Tn(j, :, :

), j = 1, · · · , pd+ d2, is a (pd+ d2)× (pd+ d2) matrix. Therefore, the form of R1(θ∗n)

can be written as

R1(θ∗n) = 1
2


(θn − θ)TTn(1, :, :)(θn − θ)

(θn − θ)TTn(2, :, :)(θn − θ)
...

(θn − θ)TTn(pd+ d2, :, :)(θn − θ)

 .

Based on the above explicit expression of L′n(θ), L′′n(θ) and R1(θ∗n), the Taylor ex-

pansion of L′n(θn) at θ can be written as

0 =

 C ′n(η) + (Id ⊗ Σ̂Xη)(Id2 + I(d,d))λ0

vec(ηT Σ̂Xη)− vec(Id)


+

 C ′′n(η) + L̂ (Id ⊗ Σ̂Xη)(Id2 + I(d,d))

(Id2 + IT(d,d))(Id ⊗ ηT Σ̂X) 0

 vec(ηn)− vec(η)

λn − λ0



+1
2


(θn − θ)TTn(1, :, :)(θn − θ)

(θn − θ)TTn(2, :, :)(θn − θ)
...

(θn − θ)TTn(pd+ d2, :, :)(θn − θ)

 . From the above Taylor expansion of L′n(θn)

at θ, we get

−

 C ′′n(η) + L̂ (Id ⊗ Σ̂Xη)(Id2 + I(d,d))

(Id2 + IT(d,d))(Id ⊗ ηT Σ̂X) 0

−1

×

√
n

 C ′n(η) + (Id ⊗ Σ̂Xη)(Id2 + I(d,d))λ0

vec(ηT Σ̂Xη)− vec(Id)

 =

[Ipd+d2 + 1
2

 C ′′n(η) + L̂ (Id ⊗ Σ̂Xη)(Id2 + I(d,d))

(Id2 + IT(d,d))(Id ⊗ ηT Σ̂X) 0

−1

×
(θn − θ)TTn(1, :, :)

(θn − θ)TTn(2, :, :)
...

(θn − θ)TTn(pd+ d2, :, :)

]
√
n(θn − θ).
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Next, we will prove two parts:

Part 1:

 C ′′n(η) + L̂ (Id ⊗ Σ̂Xη)(Id2 + I(d,d))

(Id2 + IT(d,d))(Id ⊗ ηT Σ̂X) 0

−1

×

√
n

 C ′n(η) + (Id ⊗ Σ̂Xη)(Id2 + I(d,d))λ0

vec(ηT Σ̂Xη)− vec(Id)

−→N(0,V).

Part 2:
√
n(θn − θ)

D
=

[Ipd+d2 + 1
2

 C ′′n(η) + L̂ (Id ⊗ Σ̂Xη)(Id2 + I(d,d))

(Id2 + IT(d,d))(Id ⊗ ηT Σ̂X) 0

−1

×
(θn − θ)TTn(1, :, :)

(θn − θ)TTn(2, :, :)
...

(θn − θ)TTn(pd+ d2, :, :)

]
√
n(θn − θ).

Proof of part 1: We will show that both C ′n(η) + (Id ⊗ Σ̂Xη)(Id2 + I(d,d))λ0 and

vec(ηT Σ̂Xη) − vec(Id) are linear combinations of U-statistics and the asymptotic

distribution can be achieved by the asymptotic property of U-statistics.

Based on chapter 2Cn(η) = S1(η)− S2(η), where

S1(η) =
1

n2

n∑
k,l=1

|ηT (Xk −Xl)|,

S2(η) =
1

n

C∑
y=1

1

ny

ny∑
k,l=1

|ηT (Xky −Xly)|.

Therefore, C ′n(η) + (Id ⊗ Σ̂Xη)(Id2 + I(d,d))λ0 = S
′
1(η)− S ′2(η) + (Id ⊗ Σ̂Xη)(Id2 +

I(d,d))λ0, where

S
′

1(η) =
1

n2

n∑
k,l=1

(Id ⊗ (Xk −Xl))(Id ⊗ (Xk −Xl)
T )vec(η)

|(Id ⊗ (Xk −Xl)T )vec(η)|
,

S
′

2(η) =
1

n

C∑
y=1

1

ny

ny∑
k,l=1

(Id ⊗ (Xky −Xly))(Id ⊗ (Xky −Xly)
T )vec(η)

|(Id ⊗ (Xky −Xly)T )vec(η)|
,

Σ̂X =
1

n

n∑
i=1

XiX
T
i − X̄X̄T =

1

n

n∑
i=1

XiX
T
i −

1

n2

n∑
i,j=1

XiX
T
j .
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Here S
′
1(η), S

′
2(η) and Σ̂X are V-statistics, which can be written as linear combi-

nations of U-statistics. Let

U1n =

(
n

2

)−1 ∑
1≤k<l≤n

(Id ⊗ (Xk −Xl))(Id ⊗ (Xk −Xl)
T )vec(η)

|(Id ⊗ (Xk −Xl)T )vec(η)|
,

U2ny =

(
ny
2

)−1 ∑
1≤k<l≤ny

{(Id ⊗ (Xky −Xly))(Id ⊗ (Xky −Xly)
T )vec(η)

|(Id ⊗ (Xky −Xly)T )vec(η)|
},

U4n =
1

n

n∑
i=1

(Id ⊗XiX
T
i η)(Id2 + ITd,d)λ0,

U5n =

(
n

2

)−1∑
i<j

1

2
(Id ⊗ (XiX

T
j +XjX

T
i )η)(Id2 + ITd,d)λ0.

Through some tedious calculations, we can get C ′n(η) + (Id ⊗ Σ̂Xη)(Id2 + IT(d,d))λ0 =

(n−1)
n

U1n −
∑C

y=1
ny−1

n
U2ny + n−1

n
U4n − n−1

n
U5n.

vec(ηT Σ̂Xη) is also a linear combination of U-statistics, let

U6n =
1

n

n∑
i=1

vec(ηTXiX
T
i η)

U7n =

(
n

2

)−1∑
i<j

1

2
vec(ηT (XiX

T
j +XjX

T
i )η),

then vec(ηT Σ̂Xη) = n−1
n

U6n − n−1
n

U7n.

let

µ1 = E
(Id ⊗ (X −X ′))(Id ⊗ (X −X ′)T )vec(η)

|(Id ⊗ (X −X ′)T )vec(η)|
,

µ2y = E
(Id ⊗ (Xy −X

′
y))(Id ⊗ (Xy −X

′
y)
T )vec(η)

|(Id ⊗ (Xy −X ′y)T )vec(η)|
, for y = 1, · · · , C,

µ4 = E(Id ⊗XXTη)(Id2 + IT(d,d))λ0,

µ5 = (Id ⊗ (EX)(EX)Tη)(Id2 + IT(d,d))λ0,

µ6 = vec(ηT (EXXT )η),

µ7 = vec(ηT (EX)(EX)Tη).
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Here X,X
′

are iid copies and Xy,X
′
y are i.i.d copies.

According to Theorem 6.1.6 (Lehmann, 1999, Ch.6),

√
n



U1n − µ1

U2n1 − µ21

· · ·

U2nC − µ2C

U4n − µ4

U5n − µ5

U6n − µ6

U7n − µ7



D−→ N(0,Σ),

where Σ =



Σ11 Σ12y Σ14 Σ15 Σ16 Σ17

· Σ2y2y Σ2y4 Σ2y5 Σ2y6 Σ2y7

· · Σ44 Σ45 Σ46 Σ47

· · · Σ55 Σ56 Σ57

· · · · Σ66 Σ67

· · · · · Σ77


, and y = 1, · · · , C for sim-

plicity of the expression. And Σij = aijcov(φ(i), φ(j)). Here aij is a constant, which

equals to the number of inputs of φ(i) multiplies the number of inputs of φ(j).

Let B =

 Ipd (−p1)Ipd · · · (−pC)Ipd Ipd Ipd 0 0

0T 0T · · · 0T 0T 0T Id2×d2 −Id2×d2

, where 0

is a pd× d2 zero matrix, then

√
nB



U1n − µ1

U2n1 − µ21

· · ·

U2nC − µ2C

U4n − µ4

U5n − µ5

U6n − µ6

U7n − µ7



=
√
n

 U1n −
∑C

y=1 pyU2ny + U4n − U5n

U6n − U7n − vec(Id)

.
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Note that
√
n

 C ′n(η) + (Id ⊗ Σ̂Xη)(Id2 + I(d,d))λ0

vec(ηT Σ̂Xη)− vec(Id)

 =

√
n

 (n−1)
n

U1n −
∑C

y=1
(ny−1)

ny
U2ny + n−1

n
U4n − n−1

n
U5n

n−1
n

U6n − n−1
n

U7n − vec(Id)

 ,

under assumption S. 4.5.2,

√
n

 (n−1)
n

U1n −
∑C

y=1
(ny−1)

ny
U2ny + n−1

n
U4n − n−1

n
U5n

n−1
n

U6n − n−1
n

U7n − vec(Id)

−
√
n

 U1n − 2U2n + U3n + U4n − U5n

U6n − U7n − vec(Id)

 P−→ 0, therefore by Slutsky’s theorem,

√
n

 C ′n(η) + (Id ⊗ Σ̂Xη)(Id2 + I(d,d))λ0

vec(ηT Σ̂Xη)− vec(Id)

 D
=
√
nB



U1n − µ1

U2n1 − µ21

· · ·

U2nC − µ2C

U4n − µ4

U5n − µ5

U6n − µ6

U7n − µ7



.

Let An =

 C ′′n(η) + L̂ (Id ⊗ Σ̂Xη)(Id2 + I(d,d))

(Id2 + IT(d,d))(Id ⊗ ηT Σ̂X) 0

−1

,

A =

 C ′′(η) + L (Id ⊗ ΣXη)(Id2 + I(d,d))

(Id2 + IT(d,d))(Id ⊗ ηTΣX) 0

−1

,

under assumption S. 4.5.3 and our definition of second derivative of Cn(η), by SLLN of

U-statistics, An
a.s.−→ A, therefore

 C ′′n(η) + L̂ (Id ⊗ Σ̂Xη)(Id2 + I(d,d))

(Id2 + IT(d,d))(Id ⊗ ηT Σ̂X) 0

−1

×
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√
n

 C ′n(η) + (Id ⊗ Σ̂Xη)(Id2 + I(d,d))λ0

vec(ηT Σ̂Xη)− vec(Id)

 D
=
√
nAB



U1n − µ1

U2n1 − µ21

· · ·

U2nC − µ2C

U4n − µ4

U5n − µ5

U6n − µ6

U7n − µ7



−→N(0,V),

where V = ABΣBTAT .

Proof of part 2 :

Under assumption S. 4.5.3 and Definition S. 4.5.3,

[Ipd+d2 + 1
2

 C ′′n(η) + L̂ (Id ⊗ Σ̂Xη)(Id2 + I(d,d))

(Id2 + IT(d,d))(Id ⊗ ηT Σ̂X) 0

−1

×


(θn − θ)TTn(1, :, :)

(θn − θ)TTn(2, :, :)
...

(θn − θ)TTn(pd+ d2, :, :)

]
P−→ Ipd+d2 , therefore by Slutsky’s theorem,

√
n(θn − θ)

D
=

[Ipd+d2 + 1
2


C ′′n(η) +


vecT (L̂11)

...

vecT (L̂pd)

 (Id ⊗ Σ̂Xη)(Id2 + I(d,d))

(Id2 + IT(d,d))(Id ⊗ ηT Σ̂X) 0



−1

×


(θn − θ)TTn(1, :, :)

(θn − θ)TTn(2, :, :)
...

(θn − θ)TTn(pd+ d2, :, :)

]
√
n(θn − θ).

Therefore
√
n(θn − θ)

D−→ N(0,V), or in other words, θn is
√
n-consistent esti-

mation of θ.

In the above proof, without loss of generality we assume that Q = Id. Note that
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with an orthogonal matrix Q, C2
n(QTβTX|Y) = C2

n(βTX|Y) and C2(QTβTX|Y ) =

C2(βTX|Y ) (chapter 2). If define ηQ = ηQ, without assuming Q = Id, then Lemma

B holds by using V(ηQ) which is obtained by replacing every η in V with ηQ. (of

course, then V(ηId) = V in the proof). �

Proof of Proposition 4.3.4

Proof of Proposition 4.3.4: Let G = (Ipd, 0) be a pd× (pd+ d2) matrix, where Ipd

is a pd × pd identity matrix. Then vec(ηn) = Gθn and vec(ηQ) = Gθ. By Lemma

4.5.9, we have
√
n(vec(ηn)−vec(ηQ)) =

√
nG(θn−θ)

D−→ N(0,V11(ηQ)), or in other

word,
√
n[vec(ηn)− vec(ηQ)]

D−→ N(0,V11(ηQ)), where V11(ηQ) = GV(ηQ)GT . �

Proof of Corollary 4.3.5

Proof of Corollary 4.3.5: In our proof of the
√
n-consistency, without loss

of generality we assume that Q = Id. Note that with an orthogonal matrix Q,

C2
n(QTβTX|Y) = C2

n(βTX|Y) and C2(QTβTX|Y ) = C2(βTX|Y ) (chapter 2). If de-

fine ηQ = ηQ, then Proposition 4 holds by using V11(ηQ) which is obtained by

replacing every η in V11 with ηQ. (of course, then V11(ηId) = V11 in the proof).

To simplify the proof, here we still use η by assuming Q = Id. Let A11 = C ′′n(η)+L̂,

where L̂ is given in the proof of Lemma B in the section B.2, A12 = (Id⊗ Σ̂Xη)(Id2 +

I(d,d)), A21 = AT12 and A22 = 0 (A22 is a d2 × d2 zero matrix), A22.1 = −A21A
−1
11 A12

then D = −(A−1
11 + A−1

11 A12A
−1
22.1A21A

−1
11 ) and F = A−1

11 A12A
−1
22.1

Without loss of generality, we can expand ηn as ηn = η+En{A∗}+ op(n
−1/2), and

we can expand Σ̂ as Σ̂ = Σ + En{Σ∗} + op(n
−1/2). Then we can get the asymptotic

expansion of ηnη
T
nΣ as

ηnη
T
n Σ̂ = ηηTΣ +En{A∗ηTΣ}+En{η(A∗)TΣ}+En{ηηTΣ∗}+ op(n

−1/2). (S.4.5.12)

therefore, vec(ηnη
T
n Σ̂)− vec(ηηTΣ) = [(Ση ⊗ Ip) + (Σ⊗ η)I(d,p)]vec(En{A∗}) + (Ip ⊗

ηηT )vec(En{Σ∗}) + op(n
−1/2), where vec(En{A∗}) = D[C ′n(η) + (Id ⊗ Σ̂Xη)(Id2 +
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I(d,d))λ0] + F [vec(ηT Σ̂Xη) − vec(Id)] and vec(En{Σ∗}) = 1
n

∑n
i=1 vec(Xi − µ)(Xi −

µ)T − vec(E(X − µ)(X − µ)T ), where µ = E(X).

Let C = [(Ση⊗Ip)+(Σ⊗η)I(d,p)], H = Ip⊗ηηT , U8n = 1
n

∑n
i=1 vec(Xi−µ)(Xi−µ)T ,

µ8 = vec(E(X − µ)(X − µ)T ), then vec(ηnη
T
n Σ̂) − vec(ηηTΣ) = (n−1)

n
CDU1n −∑C

y=1
(ny−1)

n
CDU2ny+

n−1
n
CDU4n−n−1

n
CDU5n+n−1

n
CFU6n−n−1

n
CFU7n−CFvec(Id)+

HU8n −Hvec(E(X − µ)(X − µ)T ),

Let U∗1n = CDU1n, U∗2ny = CDU2ny, U
∗
4n = CDU4n, U∗5n = CDU5n, U∗6n = CFU6n,

U∗7n = CFU7n and U∗8n = HU8n; let µ∗1 = CDµ1, µ∗2y = CDµ2y, µ
∗
4 = CDµ4,

µ∗5 = CDµ5, µ∗6 = CFµ6, µ∗7 = CFµ7, µ∗8 = Hµ8, where U1n, U2ny, U4n, U5n, U6n,

U7n, µ1, µ2y, µ4, µ5, µ6, µ7 are defined in the proof of Lemma S. 4.5.9.

According to Theorem 6.1.6 (Lehmann, 1999, Ch.6),

√
n



U∗1n − µ∗1
U∗2ny − µ∗2y
· · ·

U∗2nC − µ∗2nC
U∗4n − µ∗4
U∗5n − µ∗5
U∗6n − µ∗6
U∗7n − µ∗7
U∗8n − µ∗8



D−→ N(0,Σ?),

where Σ? =



Σ?
11 Σ?

12y Σ?
14 Σ?

15 Σ?
16 Σ?

17 Σ?
18

· Σ?
2y2y Σ?

2y4 Σ?
2y5 Σ?

2y6 Σ?
2y7 Σ?

2y8

· · Σ?
44 Σ?

45 Σ?
46 Σ?

47 Σ?
48

· · · Σ?
55 Σ?

56 Σ?
57 Σ?

58

· · · · Σ?
66 Σ?

67 Σ?
68

· · · · · Σ?
77 Σ?

78

· · · · · · Σ?
88


,

Σ?
ij = CDΣijD

TCT , i, j = 1, 2y, 4, 5, Σ?
ij = CDΣijF

TCT , i = 1, 2y, 4, 5, j = 6, 7,

Σ?
ij = CFΣijF

TCT , i, j = 6, 7, where Σij, i, j = 1, · · · , 7 are defined in the proof of
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lemma S. 4.5.9 in this appendix; Σ?
i8 = CDΣi8H

T , i = 1, 2y, 4, 5; Σ?
i8 = CFΣi8H

T , i =

6, 7; Σ?
i8 = HΣi8H

T , where Σi8 = ai8cov(φ(i), φ(8)) ai8 corresponding to the number of

entries in φ(i).

Let B? =
(
Ip2 (−p1)Ip2 · · · (−pC)Ip2 Ip2 −Ip2 Ip2 −Ip2 Ip2

)
, then by

Slutsky’s theorem,
√
n
(
vec(ηnη

T
n Σ̂)− vec(ηηTΣ)

)
D
=
√
nB?



U∗1n − µ∗1
U∗2n1 − µ∗21

· · ·

U∗2nC − µ∗2nC
U∗4n − µ∗4
U∗5n − µ∗5
U∗6n − µ∗6
U∗7n − µ∗7
U∗8n − µ∗8



−→N(0,V22),

where V22 = B?Σ?B?T . In general, without assuming Q = Id, we have V22(ηQ) =

B?Σ?(ηQ)B?T , and Σ?(ηQ) is obtained by replacing every η in Σ? with ηQ. �
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