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For the second program, an approximate p-value for the p hypotheses is calculated,
based on the premise that -2log-likelihood-ratio is asymptotically distributed as χ2
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In addition we present a proof relating to use of a hazard-type hypothesis as the basis
of comparison. We show that -2log-likelihood-ratio is asymptotically distributed as
χ2

(1) for this hypothesis. The R programs we have developed can be downloaded

free-of-charge on the internet at the Comprehensive R Archive Network (CRAN) at
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Chapter 1 Outline of the Dissertation

In this dissertation we present a novel computational method, as well as its software

implementation, to compare two samples by a nonparametric likelihood-ratio test.

The basis of the comparison is a mean-type hypothesis. The software is written in

the R-language [4].

The two samples are assumed to be independent. Their distributions, which are

assumed to be unknown, may be discrete or continuous. The samples may be uncen-

sored, right-censored, left-censored, or doubly-censored.

Two software programs are offered. The first program covers the case of a single

mean-type hypothesis. The second program covers the case of multiple mean-type

hypotheses.

For the first program, an approximate p-value for the single hypothesis is calcu-

lated, based on the premise that -2log-likelihood-ratio is asymptotically distributed

as χ2
(1). For the second program, an approximate p-value for the p hypotheses is cal-

culated, based on the premise that -2log-likelihood-ratio is asymptotically distributed

as χ2
(p).

In addition we present a proof relating to use of a hazard-type hypothesis as the

basis of comparison. We show that -2log-likelihood-ratio is asymptotically distributed

as χ2
(1).

The R programs we have developed can be downloaded free-of-charge on the inter-

1



net at the Comprehensive R Archive Network (CRAN), http://cran.r-project.

org package name emplik2. The R-language itself is also available free-of-charge at

the same site.

An outline of the development of the computational method and the two software

programs is as follows:

• In Chapter 2 we introduce and discuss the nonparametric likelihood-ratio test.

• In Chapter 3 we derive the equations and algorithm that underlie the first

program (single-hypothesis case).

• In Chapter 4 we derive the equations and algorithm that underlie the second

program (multiple-hypothesis case).

• In Chapter 5 we give examples of how the programs can be used.

• In Chapter 6 we present a mathematical derivation for the case where a hazard-

type hypothesis is used.

• In Chapter 7 we present a proof that the estimated probability jumps calculated

by the two programs will be non-negative.

• In Chapter 8 we suggest ways that this dissertation could be extended in the

future.

• In Appendix A we list the annotated R-code for the two programs.

• In Appendix B we list the annotated R-code for the simulations used in the

dissertation.

Copyright c© William H. Barton, 2010.
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Chapter 2 Introduction

This chapter briefly reviews the parametric likelihood-ratio test and the nonparamet-

ric likelihood-ratio test.

2.1 Parametric Likelihood-Ratio Test

This section describes the parametric likelihood-ratio test. It largely follows the

discussion in Casella and Berger (2002) [1], pp. 374-375.

Suppose we have an uncensored random sample

x = (x1, x2, . . . , xn) (2.1)

with a common pdf or pmf f(x|θ), where the parameter θ (which can be a vector) is

an element of the parameter space Θ. Then the likelihood function L(θ|x) is defined

as

L(θ|x) =
n∏
i=1

f(xi|θ) . (2.2)

The likelihood-ratio statistic λ(x) for testing the set of hypotheses

3



Ho : θ ∈ Θo (2.3)

HA : θ ∈ Θc
o (2.4)

is defined as

λ(x) =

sup
θ∈Θo

L(θ|x)

sup
θ∈Θ

L(θ|x)
. (2.5)

We can evaluate the hypothesis Ho in (2.3) using a likelihood-ratio test (LRT), which

takes the following form:

Reject Ho when λ(x) ≤ c, where 0 ≤ c ≤ 1 . (2.6)

Consider the right-hand side (RHS) of (2.5). Let us denote the unrestricted

maximum-likelihood estimator of θ, where θ ∈ Θ, as θ̂. Let us denote the restricted

maximum-likelihood estimator of θ, where θ ∈ Θo, as θ̂o. Now the MLE is invariant,

that is, if θ̂ is the MLE of θ, then for any function g(θ), the MLE of g(θ) is g(θ̂) (see

Casella and Berger (2002) [1] p. 320). Therefore by the invariance property of the

MLE , (2.5) can be written as,

λ(x) =
L(θ̂o|x)

L(θ̂|x)
(2.7)

4



It is convenient to apply the (natural) log function to the inequality in (2.6). The

log function preserves the inequality since log is a monotonic function. Then the test

(2.6) takes the following form:

Reject Ho when log λ(x
)
≤ log c, where −∞ < log c ≤ 0 . (2.8)

And from (2.7) we see that log λ(x) has the following simple form:

log λ(x) = logL(θ̂o|x)− logL(θ̂|x) (2.9)

where from (2.2),

logL(θ̂o|x) =
n∑
i=1

log f(xi|θ̂o) (2.10)

logL(θ̂|x) =
n∑
i=1

log f(xi|θ̂) . (2.11)

Wilks (1938) [20] showed that if Ho is true, then −2 log λ(x) has an asymptotic

χ2
(p) distribution (under certain regularity conditions), where p is the number of re-

strictions imposed on the parameters by Ho. This χ2
(p) distribution can be used to

select a meaningful value for c in (2.6).

Advantages of the parametric LRT are as follows:

5



1. Confidence sets obtained by this method are transformation-invariant. That

is, if a confidence set for a parameter θ is {θ : −2 log λ(x) ≤ c}, then a confidence set

for g(θ) is {g(θ) : −2 log λ(x) ≤ c}, where g(·) is a function.

2. It is not necessary to construct a variance-covariance matrix in order to form

a confidence set for a parameter θ.

3. The confidence set for a parameter θ ∈ Θ always falls within Θ, even when θ is

close to the boundary of Θ. (By contrast, for example, it’s possible for a parametric

t-test to place θ partially outside Θ in this situation.)

2.2 Nonparametric Likelihood-Ratio Test

This section describes the nonparametric likelihood-ratio test. A good reference

for empirical likelihood is the book by Owen (2001) [12].

The parametric LRT described in the previous section requires that we know the

distribution family of the data. But often it’s not clear what distribution family is

applicable. In such a case we risk misspecifying the distribution family. The non-

parametric LRT avoids this problem.

The nonparametric LRT we will use is based on the empirical distribution of

the data. For this reason it is sometimes called the empirical likelihood-ratio test

(ELRT). The empirical LRT has all three advantages of the parametric LRT listed

in the previous section. Plus it also has the advantage that we do not have to specify

the distribution family of the data.

Owen (2001) [12] p. xiii describes the empirical likelihood method of inference as

6



follows:

Empirical likelihood is a nonparametric method of inference based on a

data-driven likelihood ratio function. Like the bootstrap and jackknife,

empirical likelihood inference does not require us to specify a family of

distributions for the data. Like parametric likelihood methods, empirical

likelihood makes an automatic determination of the shape of the confi-

dence regions; it straightforwardly incorporates side information expressed

through constraints or prior distributions; it extends to biased sampling

and censored data, and it has very favorable asymptotic power proper-

ties. Empirical likelihood can be thought of as a bootstrap that does not

resample, and as a likelihood without parametric assumptions.

It is well-known that the bootstrap technique, mentioned by Owen in his quote

above, yields a slightly different numerical result each time it is applied to the same

data set. By contrast, the empirical likelihood technique yields the identical numeri-

cal result each time it is applied to the same data set. This reproducibility is another

advantage of the empirical likelihood technique.

Recall that the empirical distribution of a data set x is defined as follows:

Fn(t) =
1

n

n∑
i=1

I[Xi ≤ t] . (2.12)

The empirical distribution shown above, which applies to an uncensored and uncon-

strained data set, is the maximum-likelihood estimator of the distribution F from

which the data set derives (see Owen (2001) [12] p. 29). From (2.12) we can see that

the probability jump for each data point of the empirical distribution is 1
n
, which is

7



a very simple result.

On the other hand, if the data are censored, or if the data are under some kind of

constraint so that their range is restricted, then the empirical distribution will not in

general be the maximum-likelihood estimator of F . This dissertation addresses this

situation, where the data are censored and under a constraint.

Chapter 3 derives the mathematical theory for the two-sample case where the

data are censored and are constrained by a single hypothesis Ho. It describes how to

construct the maximum-likelihood estimators for the two distributions and also how

to construct an appropriate likelihood-ratio test for the single hypothesis Ho.

Chapter 4 derives the mathematical theory for the two-sample case where the data

are censored and are constrained by a set of p simultaneous hypotheses. Ho1, Ho2, . . . ,

Hop. It describes how to construct the maximum-likelihood estimators for the two

distributions and also how to construct an appropriate likelihood-ratio test for the p

hypotheses.

The mathematical theory presented in Chapters 3 and 4 highlights one disad-

vantage of the ELRT, that it is computationally intensive. For this reason we have

written R-software that will run the necessary computations for both the single-

hypothesis case and the multiple-hypothesis case. As mentioned in Chapter 1, the

software we have developed can be downloaded free-of-charge on the internet at the

Comprehensive R Archive Network (CRAN), http://cran.r-project.org, package

name emplik2. The R-language itself is also available free-of-charge at the same site.

Copyright c© William H. Barton, 2010.
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Chapter 3 Single-Hypothesis Case

3.1 Introduction

In this chapter we derive the likelihood-ratio test for the case of two independent

censored samples and a single mean-type hypothesis. The R-code that implements

the derivation is listed in Appendix A.

First let us review the concept of censored data. We consider that a random

variable X is observed if and only if it lies within the interval [Si, Ri], where Si and

Ri are random variables. Then we can express the X data by the pair of random

variables (Txi, δxi) where for i in 1, . . . , n,

Txi =


Xi if Si ≤ Xi ≤ Ri

Ri if Ri < Xi <∞

Si if −∞ < Xi < Si

δxi =


1 if Si ≤ Xi ≤ Ri (uncensored)

0 if Ri < Xi <∞ (right-censored)

2 if −∞ < Xi < Si (left-censored) .

A “doubly-censored” data set is one that contains both right-censored and left-

censored values.

We denote the two independent censored samples as Tx = (Tx1, . . . , Txn) and

Ty = (Ty1, . . . , T ym). They are assumed to have the following properties:

• Tx and Ty are independent.

9



• Tx and Ty may be uncensored, right-censored, left-censored, or doubly-censored.

• For uncensored data, Tx1, . . . , Txn ∼ iid FX(·) and Ty1, . . . , T yn ∼ iid FY (·).

• FX(·) and FY (·) are unknown.

• FX(·) and FY (·) may be continuous or discrete.

We denote the single mean-type hypothesis as follows:

Ho : E
(
g(X, Y )

)
= θ (3.1)

where g is a function and θ is a constant.

Two illustrative examples of Ho are as follows:

Example 1 : Ho1 : E(X − Y ) = θ (3.2)

where g(X, Y ) = X − Y . This is equivalent to Ho1 : E(X)− E(Y ) = θ.

Example 2 : Ho2 : P (X > Y ) = θ (3.3)

where g(X, Y ) = I[X > Y ], hence E
(
g(X, Y )

)
= P (X > Y ).

The likelihood-ratio test (LRT) for Ho is derived in the next section.

3.2 Derivation of the LRT

In this section we derive the likelihood-ratio test for Ho.

10



The derivation below largely follows Zhou (2005)[23]. However, the derivation in

Zhou is for a single sample, whereas the calculations here are for two samples. Since

the calculations are involved it is convenient to organize them under several subsec-

tions.

We first establish the following notation:

• tx = (tx1, . . . , txn) and ty = (ty1, . . . , tym) are the distinct values observed.

• “Distinct value” means unique (txi, dxi) or (tyj, dyj).

• dx = (dx1, . . . , dxn) and dy = (dy1, . . . , dym) are the censoring-status values.

• A status is either 0 (right-censored) or 1 (uncensored) or 2 (left-censored).

• wx = (wx1, . . . , wxn) and wy = (wy1, . . . , wym) are the weights.

• The weight is the number of occurrences of a distinct value.

• Later on (in the EM algorithm) we allow the weights to be fractions.

• A “hat” (∧) over a variable indicates a maximum-likelihood estimation, e.g. µ̂.

• µ = (µ1, . . . , µn) are the probability jumps for x.

• ν = (ν1, . . . , νm) are the probability jumps for y.

• The probability jumps are non-negative.

• The probability jumps sum to 1, for both µ and ν.

• log is the natural logarithm.

11



3.2.1 Calculation of the Unconstrained Log-Likelihood

Let Θµ denote the space for µ and let `1(µ̂|tx) denote the supremum of the

unconstrained log-likelihood of µ|tx. Then by the definition of likelihood,

`1(µ̂|x) = sup
µ∈Θµ

log
( ∏

dxi=1

(µi)
wxi

∏
dxi=0

(
∑

Txk>Txi

µk)
wxi

∏
dxi=2

(
∑

Txk<Txi

µk)
wxi

)
(3.4)

= sup
µ∈Θµ

( ∑
dxi=1

wxi log(µi) +
∑
dxi=0

wxi log(
∑

Txk>Txi

µk)

+
∑
dxi=2

wxi log(
∑

Txk<Txi

µk)
)
.

(3.5)

In the RHS of equation (3.4)

• The first product involves the probability jumps of the uncensored data.

• The second product involves the survivals of the right-censored data.

• The third product involves the “left-survivals” of the left-censored data.

Calculation of the distribution µ̂ that maximizes (3.5) depends on the status of

the data.

• If the data are uncensored, µ̂ is the empirical distribution.

• If the data are right-censored, µ̂ is the Kaplan-Meier estimator as described in

Kaplan and Meier (1958) [8].

• If the data are left-censored, µ̂ is the “left-Kaplan-Meier-estimator” as described

in Gomez et. al. (1992) [5].

12



• If the data are doubly-censored, µ̂ is found via a numerical procedure as de-

scribed in Chang and Yang (1987) [2].

• In any case, non-zero jumps will occur only at uncensored points, as noted in

Zhou (2005) [23].

Similarly let Θν represent the space for ν and let `1(ν̂|ty) denote the supremum

of the unconstrained log-likelihood of ν|ty. The expression for `1(ν̂|ty) is analogous

to (3.5):

`1(ν̂|y) = sup
ν∈Θν

( ∑
dyj=1

wyj log(νj) +
∑
dyj=0

wyj log(
∑

Tyk>Tyj

νk)

+
∑
dyj=2

wyj log(
∑

Tyk<Tyj

νk)
)
.

(3.6)

We can calculate the maximum-likelihood estimator ν̂ for (3.6) using a procedure

analogous to that used for µ̂. Then since Tx and Ty are independent we can write

the unconstrained log-likelihood `1 as

`1 = `1(µ̂|tx) + `1(ν̂|ty) . (3.7)

3.2.2 Calculation of the Constrained Log-Likelihood

The constrained log-likelihood `o is found by solving a system of equations for µ̂

and ν̂. A direct solution of these equations is not available, hence numerical methods

must be applied.

Peto (1973)[15] shows how the constrained log-likelihood for interval-censored

data can be maximized using a constrained Newton-Raphson algorithm. However the

Newton-Raphson algorithm can become unwieldy with large data sets. We therefore

prefer to use an expectation-maximization (EM) algorithm as described in Turnbull

13



(1976)[18].

It is convenient to organize the description of the calculation of µ̂ and ν̂ via the

EM algorithm under four headings as follows:

1. Equations for µ̂ and ν̂.

2. Expectation step of the EM algorithm.

3. Maximization step of the EM algorithm.

4. Evaluation of Ho

3.2.2.1 Equations for µ̂ and ν̂

First we rewrite (3.1) as

Ho : E
(
g(X, Y )− θ

)
= 0 . (3.8)

Then we define an estimator Ê(g(X, Y )− θ) for the left-hand side (LHS) of (3.8) as

follows:

Ê
(
g(X, Y )− θ

)
=
∑
dxi=1

∑
dyj=1

(
g(txi, tyj)− θ

)
µ̂i ν̂j . (3.9)

We restrict (3.9) and the subsequent equations to the uncensored data (dxi = 1, dyj =

1) with additional ”shifted” weight, in accordance with the shifting procedure that is

explained below. Then the restrictions on µ̂ and ν̂ can be rendered as follows:

∑
dxi=1

µ̂i − 1 = 0 (3.10)

∑
dyj=1

ν̂j − 1 = 0 (3.11)

14



∑
dxi=1

∑
dyj=1

(
g(txi, tyj)− θ

)
µ̂i ν̂j = 0 from (3.8) and (3.9). (3.12)

Of course there is also the restriction that the entries in µ̂ and ν̂ must be non-

negative. Chapter 7 contains a proof showing that these entries will indeed be non-

negative if θ lies in the “feasible” range.

Let us define Θo as the set of (µ̂, ν̂) that are consistent with the constraint equa-

tions (3.10) - (3.12). We will use Lagrange multipliers γ, η, and λ to find (µ̂, ν̂)

∈ Θo that maximize the likelihood as in (3.5) and (3.6). Then `o can be expressed as

follows:

`o = sup
(µ,ν)∈Θo

( ∑
dxi=1

wxi log(µi) +
∑
dyj=1

wyj log(νj)− γ(1−
∑
dxi=1

µi)

−η(1−
∑
dyj=1

νj)− λ
∑
dxi=1

∑
dyj=1

(
g(txi, tyj)− θ

)
µi νj

)
.

(3.13)

We maximize the RHS of (3.13) by taking partial derivatives with respect to µi, νj, γ, η, λ

and setting the partial derivatives equal to 0. This results in the following system of

equations that must be solved for µ̂i and ν̂j:

∑
dxi=1

µ̂i − 1 = 0 (3.14)

∑
dyj=1

ν̂j − 1 = 0 (3.15)

µ̂i =
wxi∑

dxi=1

wxi + λ
∑
dyj=1

(
g(txi, tyj)− θ

)
ν̂j

(3.16)
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ν̂j =
wyj∑

dyj=1

wyj + λ
∑
dxi=1

(
g(txi, tyj)− θ

)
µ̂i

(3.17)

∑
dxi=1

∑
dyj=1

(
g(txi, tyj)− θ

)
µ̂i ν̂j = 0 . (3.18)

Taking a second partial derivative in the RHS of (3.13) with respect to µi yields a

negative number, confirming that µ̂i is indeed a maximizer (rather than a minimizer)

of (3.13). Likewise taking a second partial derivative in the RHS of (3.13) with re-

spect to νj yields a negative number, confirming that ν̂j is also a maximizer (rather

than a minimizer) of (3.13).

Expressions for µ̂i and ν̂j can be obtained by solving (3.16) - (3.18) simultaneously.

A direct solution is not available. However, the equations can be solved numerically

using the Expectation Maximization (EM) algorithm of Dempster, Laird, and Rubin

(1977) [3].

As mentioned previously, application of the EM algorithm to this type problem

is described in Turnbull (1976) [18]. Turnbull applies his algorithm to only a single

sample. This dissertation extends the work of Turnbull by applying the EM algo-

rithm to two-samples.

The EM algorithm is an iterative procedure. Each iteration of the EM algorithm

runs as follows:

1. Establish initial estimates µ̂(0), ν̂(0) for µ̂, ν̂, respectively.
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2. In the expectation step of the EM algorithm, shift the weights of the censored

data onto the uncensored data. This shifting converts the weights wx and wy

to their expected values, which we denote as Wx and Wy, respectively.

3. In the maximization step of the EM algorithm, convert µ̂(0) and ν̂(0) into im-

proved estimates, which we denote as µ̂(1) and ν̂(1), respectively.

4. Set µ̂(0) ← µ̂(1) and ν̂(0) ← ν̂(1) to complete the iteration.

3.2.2.2 Expectation Step of the EM Algorithm

As mentioned just above, the expectation step of the EM algorithm involves calcu-

lating the expectation of the “latent” (i.e., “present but of unknown value”) variables

wx and wy. We denote these expectations as Wx and Wy, respectively.

In calculating these expectations we reckon that a probability jump for a censored

event cannot occur at its censoring value (since by definition the event occurs beyond

the censoring value). Therefore per Zhou (2005) [23] the expectation step will involve

dividing the weights of the censored data among the uncensored data that lie beyond

them. The division will be done in proportion to the probability jumps of the un-

censored data. We call this procedure “shifting.” It is also known as “redistribution.”

As a simple example of the shifting procedure, suppose we have the following

situation for the tx data:

• The data (all unique, in ascending order) are tx1, . . . , tx10.

• The corresponding weights are wx1, wx2, . . . , wx10.

• The corresponding probability jumps, in the vector µ̂0, are µ̂1, . . . , µ̂10.
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• The data are uncensored except for tx8 which is right-censored.

Then we shift the weight of tx8 onto tx9 and tx10 as follows:

• Initialize Wxi = wxi for i = 1, . . . , 10.

• Increase Wx9 by (wx8)(µ̂9)/(µ̂9 + µ̂10).

• Increase Wx10 by (wx8)(µ̂10)/(µ̂9 + µ̂10).

• Set Wx8 = 0.

An intuitive explanation of the above shifting procedure is as follows. We know

the 8th observation must occur somewhere above its censoring value tx8. The only

practical choices for its expected occurrence are at tx9 and tx10, since we know events

occurred at those two values. So we “shift” the weight of tx8 to the right, splitting

its weight between tx9 and tx10 in proportion to their estimated probability jumps.

We express this shifting procedure in formal notation as follows:

Wxi =
n∑
k=1

EF
(
I[Txk=txi] | txk, δxk

)
(3.19)

Wyj =
m∑
k=1

EF
(
I[Tyk=tyj ] | tyk, δyk

)
. (3.20)

Equation (3.19) can be stated in words as follows: the expected weight at a lo-

cation txi, given txk and δxk, is its own weight plus all the shifted weight that it

receives from the censored observations. Equation (3.20) can be stated in a similar

manner.

The expectation in the RHS of (3.19) depends on the status of the data, as follows:

• For right-censored txk:
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EF
(
I[Txk=txi] | txk, δxk

)
=

∆F (txi)

1− F (txk)
for txi > txk (3.21)

EF
(
I[Txk=txi] | txk, δxk

)
= 0 for txi ≤ txk (3.22)

• For left-censored txk:

EF
(
I[Txk=txi] | txk, δxk

)
=

∆F (txi)

F (tx−k )
for txi < txk (3.23)

EF
(
I[Txk=txi] | txk, δxk

)
= 0 for txi ≥ txk (3.24)

• For uncensored txk:

EF
(
I[Txk=txi] | txk, δxk

)
= 1 for txi = txk (3.25)

EF
(
I[Txk=txi] | txk, δxk

)
= 0 for txi 6= txk (3.26)

The expectation in the RHS of (3.20) is similarly calculated, using equations analo-

gous to (3.21) - (3.26).

As a result of the expectation step (3.16) - (3.18) are transformed into the following

three equations:

µ̂
(1)
i =

Wxi∑
dxi=1

wxi + λ
∑
dyj=1

(
g(txi, tyj)− θ

)
ν̂

(0)
j

(3.27)

ν̂
(1)
j =

Wyj∑
dyj=1

wyj + λ
∑
dxi=1

(
g(txi, tyj)− θ

)
µ̂

(0)
i

(3.28)
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∑
dxi=1

∑
dyj=1

(
g(txi, tyj)− θ

)
µ̂

(1)
i ν̂

(1)
j = 0 (3.29)

Note the following in (3.27) - (3.29) just above:

1. Positive probability jumps for µ̂ and ν̂ occur only at the uncensored data points.

2. µ̂
(0)
i and µ̂

(1)
i are not the same value. Rather µ̂

(0)
i is an initial estimate and µ̂

(1)
i

is an improved estimate.

3. ν̂
(0)
j and ν̂

(1)
j are not the same value. Rather ν̂

(0)
j is an initial estimate and ν̂

(1)
j

is an improved estimate.

3.2.2.3 Maximization Step of the EM Algorithm

The maximization step is an iterative procedure that accomplishes three things

with reference to (3.27) - (3.29):

1. µ̂
(0)
i and µ̂

(1)
i become equal within some small tolerance.

2. ν̂
(0)
j and ν̂

(1)
j become equal within some small tolerance.

3. The LHS of (3.29) becomes equal to zero within some small tolerance.

Each iteration of the maximization runs as follows:

1. In (3.29) substitute the RHS of (3.27) for µ̂(1) and the RHS of (3.28) for ν̂(1),

forming a single equation in λ.

2. Solve the substituted (3.29) for λ, using Rgui “uniroot” function.

3. Use λ to calculate µ̂(1) and ν̂(1) in (3.27) and (3.28).
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4. Update µ̂(0) ← µ̂(1) and ν̂(0) ← ν̂(1).

5. Calculate the log-likelihood `0 as in RHS (3.13) using µ̂(1) and ν̂(1).

6. If `0 has not stabilized, return to the expectation step of the EM algorithm.

7. Otherwise, we are done, report µ̂(1), ν̂(1), `o.

3.2.3 Evaluation of Ho

Once we have found `1 and `0 we can calculate the log-likelihood ratio as,

LLR = `0 − `1. (3.30)

Using LLR we can then calculate an approximate p-value for Ho, assuming that

−2LLR is asymptotically distributed as χ2
(1) when Ho is true. The p-value is cal-

culated as 1 − F (−2LLR) where F is a χ2
(1) distribution. We reject Ho with 95%

confidence if this p-value is less than 0.05. Otherwise we fail to reject Ho with 95%

confidence.

It is also possible to calculate an approximate confidence interval for the pa-

rameter θ associated with Ho as in (3.1). For example, suppose the hypothesis is

Ho : P (X ≥ Y ) = 0.5. By trial-and-error we can find a number α < 0.5 such that

Ho : P (X ≥ Y ) = α has a p-value of 0.05. Similarly we can find a number β > 0.5

such that Ho : P (X ≥ Y ) = β has a p-value of 0.05. Then an approximate 95 %

confidence interval for the estimate θ = 0.5 is [α, β]. An example of this procedure is

given in section 5.1
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As noted above, the calculation of the approximate p-value for Ho and the ap-

proximate confidence limits for θ are based on the assumption that −2LLR is asymp-

totically distributed as χ2
(1) when Ho is true. We end this section with an argument

that this assumption is reasonable.

Wilks (1938) [20] demonstrated that the uncensored-single-sample likelihood-ratio-

statistic for a composite hypothesis is asymptotically distributed as χ2
(1). Pan and

Zhou (1999) [13] demonstrated the same result for single-sample right-censored data

with a mean-type constraint. Murphy and Van der Vaart (1997) [11] demonstrated

the same result for single-sample doubly-censored data with a mean-type constraint.

Owen (2001) [12] pp. 223-227 demonstrated that the uncensored two-sample

likelihood-ratio-statistic for a mean-type constraint is asymptotically distributed as

χ2
(1).

In light of this previous work one might reasonably expect that −2LLR should

similarly be asymptotically distributed as χ2
(1) in the two-sample censored-data case

that we are considering in this dissertation. This reasonable expectation is reinforced

by the simulation work shown in the four figures 3.1 to 3.4 below.

The four figures 3.1 to 3.4 below show probability plots of −2LLR versus chisq(1)

quantiles for some two-sample simulated data. Each of the two samples contains

50 values. The two samples are both generated from the same distribution and the

hypothesis is Ho : P (X ≥ Y ) = 0.5 as in (3.3). In this case Ho is true since the

two samples are from the same distribution. We see that the plots all fall along the

45◦ solid line up to a quantile of about 6 (which corresponds to a percentile of 98.6).

Therefore the four plots support the idea that −2LLR asymptotically follows a χ2
(1)
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distribution for two-sample uncensored, right-censored, left-censored, and doubly-

censored data with a mean-type constraint.

Figure 3.5 is a plot of two-sample right-censored data for which the hypothesis

Ho : E(X − Y ) = 0 is not true, rather in fact E(X − Y ) = −155.4. Each of the two

samples contains 50 values. It is evident that the plot does not lie on the 45◦ solid

line. This illustrates that −2LLR is not expected to be distributed as χ2
(1) when Ho

is not true.

Figure 3.6 is a plot of the same data as Figure 3.5 but plotted against chisq(df=1,

ncp=0.85) quantiles (a non-central χ2
(1) distribution). The ncp of 0.85 was found

by trial and error. The plot fits the 45◦ solid line reasonably well up to a quantile

of about 7.5, which corresponds to a percentile of 96.5. This suggests that −2LLR

under the alternate hypothesis asymptotically follows a non-central χ2
(1) distribution.

Such an asymptotic non-central χ2
(1) distribution for a univariate empirical likelihood

test is described in Owen [12] p. 16.

The code used to generate Figures 3.1 to 3.6 is listed in Appendix B.
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Figure 3.1: Probability Plot for Uncensored Data, Two Samples, Each 50 Values.

Figure 3.2: Probability Plot for Right-Censored Data, Two Samples, Each 50 Values.
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Figure 3.3: Probability Plot for Left-Censored Data, Two Samples, Each 50 Values.

Figure 3.4: Probability Plot for Doubly-Censored Data, Two Samples, Each 50 Val-
ues.
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Figure 3.5: Probability Plot for Right-Censored Data, Two Samples, Each 50 Values,
Ho False.

Figure 3.6: Probability Plot for Right-Censored Data, Two Samples, Each 50 Values,
Ho False, Using Chisq(df=1, ncp=0.85) Quantiles.

Copyright c© William H. Barton, 2010.
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Chapter 4 Multiple-Hypotheses Case

4.1 Introduction

In this chapter we derive the likelihood-ratio test for the case of two independent

censored samples and p mean-type hypotheses. The R-code that implements the

derivation is listed in Appendix A.

We denote the two independent censored samples as Tx = (Tx1, . . . , Txn) and

Ty = (Ty1, . . . , T ym). They are assumed to have the following properties:

• Tx and Ty are independent.

• Tx and Ty may be uncensored, right-censored, left-censored, or doubly-censored.

• For uncensored data, Tx1, . . . , Txn ∼ iid FX(·) and Ty1, . . . , T yn ∼ iid FY (·).

• FX(·) and FY (·) are unknown.

• FX(·) and FY (·) may be continuous or discrete.

We denote the p mean-type hypotheses as follows:

Ho : E
(
g1(X, Y )

)
= θ1 (4.1)

H1 : E
(
g2(X, Y )

)
= θ2 (4.2)

...

Hp : E
(
gp(X, Y )

)
= θp (4.3)
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where g1(X, Y ), g2(X, Y ), . . . , gp(X, Y ) are functions and θ1, θ2, . . . ,

θp are constants.

We can express the simultaneous equalities in (4.1) - (4.3) using vectors as follows:

E
(
g(X, Y )

)
= θ (4.4)

where

g(X, Y ) =
(
g1(X, Y ), g2(X, Y ), . . . , gp(X, Y )

)T
(4.5)

and

θ = (θ1, . . . , θp)
T (4.6)

The likelihood-ratio test (LRT) for the simultaneous hypotheses in (4.1) - (4.3) is

derived in the next section.

4.2 Derivation of the LRT

4.2.1 Calculation of the Unconstrained Log-Likelihood

The calculation of the unconstrained log-likelihood `1 is the same as the calcula-

tion of `1 in the single-hypothesis case (section 3.2.1) since `1 is not affected by the

hypotheses.

4.2.2 Calculation of the Constrained Log-Likelihood

The calculation of the constrained log-likelihood is similar to the calculation for

the single-hypothesis case in section 3.2.2, although it is somewhat more involved. As

28



in section 3.2.2 we use the EM algorithm to find the constrained-maximum-likelihood

estimators of the probability jumps, µ̂ = (µ̂1, . . . , µ̂p)
T and ν̂ = (ν̂1, . . . , ν̂p)

T .

It is convenient to organize the description of the calculation of µ̂ and ν̂ via the

EM algorithm under four headings as follows:

1. Equations for µ̂ and ν̂.

2. Expectation step of the EM algorithm.

3. Maximization step of the EM algorithm.

4. Evaluation of Ho

4.2.2.1 Equations for µ̂ and ν̂

First we rewrite (4.4) as

E
(
g(X, Y ) − θ

)
= 0 (4.7)

where 0 is a vertical vector of zeros of length p.

Then we define an estimator Ê
(
g(X, Y )− θ

)
for the LHS of (4.7) as follows:

Ê
(
g(X, Y ) − θ

)
=
(
µ̂TH1 ν̂, . . . , µ̂

THp ν̂
)T

(4.8)

where

Hk = [ gk(txi, tyj)−muk ], for dxi = 1, dyj = 1, k = 1, . . . , p (4.9)

and

µ̂THk ν̂ =
∑
dxi=1

∑
dyj=1

(
gk(txi, tyj)− θk

)
µ̂i ν̂j (4.10)
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We restrict (4.8) - (4.10) and the subsequent equations to the uncensored data

(dxi = 1, dyj = 1) with additional ”shifted” weight, in accordance with the shifting

procedure that is explained below.

Then the constraints on µ̂ and ν̂ can be rendered as follows:

∑
dxi=1

µ̂i − 1 = 0 (4.11)

∑
dyj=1

ν̂j − 1 = 0 (4.12)

(
µ̂TH1 ν̂, . . . , µ̂

THp ν̂
)T

= 0 (4.13)

where (4.13) stems from (4.7) and (4.8).

Of course there is also the restriction that the entries in µ̂ and ν̂ must be non-

negative. Chapter 7 contains a proof that these entries will indeed be non-negative

if the entries in θ all lie in their “feasible” ranges.

Let us define Θo as the set of (µ̂, ν̂) that are consistent with equations (4.11) -

(4.13). Then similar to (3.13) we can express `o using Lagrange multipliers γ, η, and

λ as follows:

`o = sup
(µ,ν)∈Θo

( ∑
dxi=1

wxi log(µi) +
∑
dyj=1

wyj log(νj)

−γ(1−
∑
dxi=1

µi)− η(1−
∑
dyj=1

νj)− ( µTH1 ν, . . . ,µ
THp ν ) λ

) (4.14)
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where

λ = (λ1, λ2, . . . , λp)
T (4.15)

and

( µ̂TH1 ν̂, . . . , µ̂
THp ν̂) λ = λ1

∑
dxi=1

∑
dyj=1

(
g1(txi, tyj)− θ1

)
µi νj

+ . . .+ λp
∑
dxi=1

∑
dyj=1

(
gp(txi, tyj)− θp

)
µi νj

(4.16)

We maximize the RHS of (4.14) by taking partial derivatives with respect to

µi, νj, γ, η, λ and setting the partial derivatives equal to 0. This results in the following

system of equations that must be solved for µ̂ and ν̂:

∑
dxi=1

µ̂i − 1 = 0 (4.17)

∑
dyj=1

ν̂j − 1 = 0 (4.18)

µ̂i =
wxi∑

dxi=1

wxi + λT
∑
dyj=1

(
g(txi, tyj)− θ

)
ν̂j

(4.19)

ν̂j =
wyj∑

dyj=1

wyj + λT
∑
dxi=1

(
g(txi, tyj)− θ

)
µ̂i

(4.20)

(
µ̂TH1 ν̂, . . . , µ̂

THp ν̂
)T

= 0 (4.21)

where µ̂ and ν̂ are vertical vectors of the maximum-likelihood probability jumps.
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Taking a second partial derivative in the RHS of (4.14) with respect to µi yields a

negative number, confirming that µ̂i is indeed a maximizer (rather than a minimizer)

of (4.14). Likewise taking a second partial derivative in the RHS of (4.14) with

respect to νj yields a negative number, confirming that ν̂j is likewise a maximizer

(rather than a minimizer) of (4.14).

Expressions for µ̂i and ν̂j can be obtained by solving (4.19) - (4.21) simultaneously.

A direct solution is not available. However, the equations can be solved numerically

using the Expectation Maximization (EM) algorithm of Dempster, Laird, and Rubin

(1977) [3].

The EM algorithm is an iterative procedure. Each iteration of the EM algorithm

runs as follows:

1. Establish initial estimates µ̂(0), ν̂(0) for µ̂, ν̂, respectively.

2. In the expectation step of the EM algorithm, shift the weights of the censored

data onto the uncensored data using µ̂(0) and ν̂(0).

3. This shifting increases the weights wx and wy to new values which we denote

as Wx and Wy, respectively.

4. Apply the maximization step of the EM algorithm to convert µ̂(0) and ν̂(0) into

improved estimates which we denote as µ̂(1) and ν̂(1), respectively.

5. Set µ̂(0) ← µ̂(1) and ν̂(0) ← ν̂(1)

4.2.2.2 Expectation Step of the EM Algorithm

The expectation step of the EM algorithm is similar to the expectation step in

the single-hypothesis case. It yields the following equations to be solved, analogous
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to (4.19) - (4.21):

µ̂
(1)
i =

Wxi∑
dxi=1

wxi + λT
∑
dyj=1

(
g(txi, tyj)− θ

)
ν̂

(0)
j

(4.22)

ν̂
(1)
j =

Wyj∑
dyj=1

wyj + λT
∑
dxi=1

(
g(txi, tyj)− θ

)
µ̂

(0)
i

(4.23)

(
(µ̂(1))TH1 ν̂

(1), . . . , (µ̂(1))THp ν̂
(1)
)

= 0 (4.24)

where µ̂(1) = ( µ̂
(1)
1 , µ̂

(1)
2 , . . . , µ̂(0)

n )T (4.25)

ν̂(1) = ( ν̂
(1)
1 , ν̂

(1)
2 , . . . , ν̂(1)

m )T (4.26)

Note the following in (4.22) - (4.24) above:

1. Positive probability jumps occur only at the uncensored data points.

2. µ̂
(0)
i and µ̂

(1)
i are not the same value. Rather µ̂

(0)
i is an initial estimate and µ̂

(1)
i

is an improved estimate.

3. ν̂
(0)
j and ν̂

(1)
j are not the same value. Rather ν̂

(0)
j is an initial estimate and ν̂

(1)
j

is an improved estimate.
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4.2.2.3 Maximization Step of the EM Algorithm

The maximization step is an iterative procedure that accomplishes three things

with reference to (4.22) - (4.24):

1. µ̂
(0)
i and µ̂

(1)
i become equal within some small tolerance.

2. ν̂
(0)
j and ν̂

(1)
j become equal within some small tolerance.

3. The LHS of (4.24) becomes equal to 0 within some small tolerance.

Each iteration of the maximization runs as follows:

1. In (4.24) substitute the RHS of (4.22) for µ̂(1) and the RHS of (4.23) for ν̂(1),

forming a single equation in λ.

2. Solve the substituted (4.24) for λ, using a Newton-Raphson routine.

3. Use λ to calculate µ̂(1) and ν̂(1) in (4.22) and (4.23).

4. Update µ̂(0) ← µ̂(1) and ν̂(0) ← ν̂(1).

5. Calculate the log-likelihood `0 as in RHS (3.13) using µ̂(1) and ν̂(1).

6. If `0 has not stabilized, return to the expectation step of the EM algorithm.

7. Otherwise, we are done, report µ̂(1), ν̂(1), `o.

4.2.3 Evaluation of Ho

Once we have found `1 and `0 we can calculate the log-likelihood ratio as,

LLR = `0 − `1. (4.27)
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Using LLR we can then calculate an approximate p-value for Ho, assuming that

−2LLR is asymptotically distributed as χ2
(p) when Ho is true. The p-value is cal-

culated as 1 − F (−2LLR) where F is a χ2
(p) distribution. We reject Ho with 95%

confidence if this p-value is less than 0.05. Otherwise we fail to reject Ho with 95%

confidence.

We assume here that the number of degrees of freedom p of the χ2
(p) distribution is

equal to the number of hypotheses. More specifically, we assume that the hypotheses

Ho1 : E
(
g1(X, Y )

)
= θ1

...

Hop : E
(
gp(X, Y )

)
= θp

are unrelated, so that

√
nm

n+m



1
nm

∑
dxi=1

∑
dyj=1

(
g1(txi, tyj)− θ1

)
...

1
nm

∑
dxi=1

∑
dyj=1

(
gp(txi, tyj)− θp

)


d−→ N(0p,Σ(pxp))

where Σ(pxp) is non-singular.

Copyright c© William H. Barton, 2010.
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Chapter 5 Examples of Use

5.1 Examples for el2.cen.EMs

We present four examples to illustrate how the el2.cen.EMs function can be used

with right-censored data.

Example 1: Difference between two means

This example uses two simulated right-censored data sets. Both were generated

from the same Weibull distribution using the Simulatr function listed in Appendix

B. The mean of the distribution is 1060. The two data sets are as follows:

tx=c(3,50,70,92,233,263,353,466,490,493,605,705,744,764,784,918,1041,

1071,1107,1212,1227,1233,1336,1475,1491,1547,1667,1708,1816,1942)

dx=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,0)

ty=c(31,37,73,78,105,125,237,251,261,277,280,293,295,419,515,637,756,

805,984,1016,1199,1210,1257,1344,1464,1473,1480,1516,1912,1994)

dy=c(0,1,0,1,0,0,1,1,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,1,1,1,1,1,1)

In this example we suppose that tx is a control data set and ty is a treatment

data set. We wish to test whether the mean of the control tx is different from

the mean of the treatment ty. The null hypothesis can therefore be written as

Ho : E(X) − E(Y ) = 0 or equivalently as Ho : E(X − Y ) = 0, as in (3.2). Ho is of
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course true since both data sets were simulated from the same distribution.

We execute el2.cen.EMs as follows:

el2.cen.EMs(tx,dx,ty,dy,fun=function(tx,ty){tx-ty},mean=0)

The resultant nonparametric maximum-likelihood estimator (NPMLE) of the differ-

ence in means is 31. The resultant Pval is 0.86, so we cannot with 95% confidence

reject Ho.

Example 2: Confidence interval for the difference between two means

We can invert the test in Example 1 to find an equal-tails 95% confidence interval

for the difference between the two means. Recall that −2LLR is approximately dis-

tributed as χ2
(1), which has only a single tail. Therefore we search by trial-and-error

on either side of the NPMLE to find p-values of 0.05. The results are as follows:

el2.cen.EMs(tx,dx,ty,dy,fun=function(tx,ty){tx-ty},mean=-318)

gives a p-value of 0.05.

el2.cen.EMs(tx,dx,ty,dy,fun=function(tx,ty){tx-ty},mean=380)

gives a p-value of 0.05.

So the equal-tails 95% confidence interval for the difference between the two means

is [-318, 380].
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Example 3: Area under the ROC curve

Receiver-Operating-Characteristic (ROC) curves are often used to assess the ac-

curacy of a test that discriminates between diseased and normal subjects. The area

under the ROC curve falls between 0.5 and 1.0. A value of 0.5 indicates a useless

test (no better than a coin-flip). A value of 1.0 indicates a perfect test. See Hadley

and McNeil (1982)[6] and Krzanowski and Hand (2009)[9] for a discussion of the area

under the ROC curve. See Wang et. al. (2009)[19] for a discussion of the area under

the ROC curve with censored data.

The area under the ROC curve for subjects X and Y can be interpreted as

P (X > Y ). The el2.cen.EMs function can be used to estimate P (X > Y ) with

censored data. Consider the following two right-censored data sets:

tx=c(5,6,13,25,35,62,146,204,248,296,309,331,365,411,436,504,665,

851,979,1069,1102,1195,1257,1463,1563,1594,1688,1813,1849,1917)

dx=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,0,0,0,0,0)

ty=c(7,20,41,48,57,82,83,84,106,113,133,134,153,153,172,185,194,

207,208,253,262,279,346,391,772,1086,1524,1578,1768,1792)

dy=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0)

Similar to (3.3) we execute el2.cen.EMs as follows (where mean=0.75 is simply a

guess at the true mean, midway between 0.5 and 1.0):

el2.cen.EMs(tx,dx,ty,dy,fun=function(tx,ty){tx>ty},mean=0.75)
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The resultant NPMLE of P (X > Y ) is 0.67. An equal-tails 95% confidence interval

is [0.52, 0.80], found as in Example 2 above.

Example 4: Change-point analysis

Change point analysis is performed on time-ordered data to detect whether any

changes have occurred. The number of changes is discerned and the times of the

changes are estimated.

We offer here an example involving a control chart which monitors a certain

process-characteristic versus time. There are 60 time points on the chart. All points

are observed, hence this is uncensored data. The mean of the process has apparently

shifted higher at some time point. We wish to infer the most likely value of k, where

k is the last time-point of sample tx which follows distribution F1. Subsequent time

points of sample ty follow the distribution F2 whose mean is higher. Based on our

knowledge of the process we believe that k lies in the set 28, 29, 30, 31, 32. So these

are the time points we wish to investigate as candidates for k.

A plot of the control chart is shown in Figure 5.1 below. It would be difficult to

discern the most likely value of k merely by looking at the chart.
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Figure 5.1: Control Chart for Change-Point Example

The R-code for the estimation of k using el2.cen.EMs is shown in Appendix B.

The p-values for the 5 possible values of k are (0.03, 0.07, 0.79, 0.32, 0.19) corre-

sponding to time-points (28, 29, 30, 31, 32) respectively. Therefore time-point 30 is

the most likely value for k since it corresponds to the highest p-value of 0.79. In fact

time-point 30 is the correct value, so the analysis is exactly correct in this example.

The NPMLE for the difference in means returned by the program, that is, E(X−

Y ), is 0.58. This is reasonably close to the correct value of 1.
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5.2 Example for el2.cen.EMm

We have a doubly-censored data set tx and a doubly-censored data set ty. Both data

sets were generated from the same Weibull distribution using the Simulatd function

listed in Appendix B. The mean of the distribution is 1060. The two data sets are as

follows:

tx<-c(10,80,209,273,279,324,391,415,566,85,852,881,895,954,1101,1133,

1337,1393,1408,1444,1513,1585, 1669,1823,1941)

dx<-c(1,2,1,1,1,1,1,2,1,1,1,1,1,1,1,0,0,1,0,0,0,0,1,1,0)

ty<-c(21,38,39,51,77,185,240,289,524,610,612,677,798,881,899,946,1010,

1074,1147,1154,1199,1269,1329,1484,1493,1559,1602,1684,1900,1952)

dy<-c(1,1,1,1,1,1,2,2,1,1,1,1,1,2,1,1,1,1,1,1,0,0,1,1,0,0,1,0,0,0)

We test the following set of hypotheses:

Ho1 : P (X ≥ Y ) = 0.5

Ho2 : E(X − 1060) = 0

In this case of course Ho1 and Ho2 are both true since both data sets were simu-

lated from the same distribution with mean 1060.

We must first calculate arguments for the el2.cen.EMm function as follows:

nx<-length(tx)

ny<-length(ty)
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mymaxit<-10

mymean<-c(0.5,0)

p<-2

H1<-matrix(NA,nrow=nx,ncol=ny)

H2<-matrix(NA,nrow=nx,ncol=ny)

for (i in 1:nx) {

for (j in 1:ny) {

H1[i,j]<-(tx[i]>ty[j])

H2[i,j]<-(tx[i]-ty[j]) } }

H<-matrix(c(H1,H2),nrow=nx,ncol=p*ny)

Then we execute el2.cen.EMm as follows:

el2.cen.EMm(tx, dx, ty, dy, p, H, mean=mymean, maxit=mymaxit)

The resultant Pval is 0.73, so we cannot with 95% confidence reject the two simul-

taneous hypotheses Ho1 and Ho2. The NPMLE for the mean is (0.51, 58).

Copyright c© William H. Barton, 2010.
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Chapter 6 Hazard-Type Hypothesis

In this chapter we prove a theorem involving a hypothesis based on the cumulative

hazard function.

Recall that the hypothesis treated in the previous chapters took the form

∫∫
H(t, s) dFX(t) dFY (s) = θ .

The hypothesis treated in this chapter is of an analogous form,

∫∫
H(t, s) dΛX(t) dΛY (s) = θ

where in place of the cumulative distribution functions FX(·), FY (·) we have em-

ployed the respective cumulative hazard functions ΛX(·), ΛY (·).

The relationship between the cumulative distribution function FX(t) and the cu-

mulative hazard function ΛX(t) is as follows:

ΛX(t) =

∫ t

0

dFX(u)

1− FX(u)
.

ΛY (t) is defined similarly.

We believe the treatment of this hazard-type hypothesis is a valuable theoretical

contribution in its own right. In addition we believe it represents a step toward estab-

lishing a relationship between mean-type hypotheses and hazard-type hypotheses for
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right-censored data. Developing such a relationship is valuable because hazard-type

hypotheses are typically more mathematically tractable than mean-type hypotheses,

for censored data. In this scenario the object would be to translate a mean-type

hypothesis into a corresponding hazard-type hypothesis; acquire the results for the

hazard-type hypothesis; and then translate those results back into results for the

mean-type hypothesis.

The proof of the theorem just below is collaborative effort of Ph.D. candidate Ms.

Yanling Hu and myself, under the supervision of our advisor Dr. Mai Zhou. Integral

signs without explicit limits are understood to encompass the entire support of the

variable, here and elsewhere.

Theorem(Hu and Barton): Suppose X = X1, . . . , Xn ∼ iid F1 and Y =

Y1, . . . , Ym ∼ iid F2 are continuous, independent, random variables subject to right-

censoring. There is a data sample x = (x1, . . . , xn) from F1 and a data sample

y = (y1, . . . , ym) from F2. Suppose further that there is a hypothesized constraint of

the following form:

Ho :

∫∫
H(t, s) dΛX(t) dΛY (s) = θ (6.1)

where ΛX(t) and ΛY (s) are the respective cumulative-hazard functions of X and Y ;

H(t, s) is a continuous function; and θ is the true value (that is, θ =
∫∫

HdΛXdΛY ). If

H(t, s) satisfies certain regularity conditions, so that
∫∫

H(t, s) dΛX(s) dΛY (t) <∞,

then under Ho, as min(n,m)→∞, the distribution of the log-likelihood ratio (LLR)

has the limit

−2LLR
d−→ χ2

(1)

where LLR is as defined in (3.30).
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Hazard functions are typically monotone-increasing and unbounded. Therefore

the function H(t, s) in (6.1) must approach 0 as s, t→∞ so that the integral will be

finite. Three examples of such an H(t, s) are e−|t+s|, e−|ts|, and g(t, s)I[t < n]I[s < m].

In order to evaluate Ho in the above theorem we will calculate a constraint, similar

in form to (6.1), but based on the data. The expression for this constraint is as follows:

n∑
i=1

m∑
j=1

Hijŵiν̂j − θ = 0 (6.2)

where ŵi and ν̂j are the estimated jumps in hazard at xi and yj, respectively; and

Hij is an abbreviated notation for H(xi, yj).

If we take the integrals in (6.1) to be Stieltjes integrals then (6.1) and (6.2) are

fundamentally similar, only (6.1) applies to continuous (t, s) whereas (6.2) applies to

discrete (xi, yj).

We organize the proof of the above Theorem into five sections. In section 6.1

we calculate maximum-likelihood estimates (MLE’s) of the hazard jumps for each of

the two samples. In section 6.2 we calculate the log-likelihood-ratio (LLR) for the

two samples. In section 6.3 we show that −2LLR is asymptotically distributed as

χ2
(1) under Ho. In section 6.4 we demonstrate that the Taylor expansions used in

the calculations are valid. In section 6.5 we prove two lemmas used in the previous

sections.

6.1 MLE’s for the Hazard Jumps

In this section we calculate the maximum-likelihood-estimators (MLE’s) for the

hazard jumps in (6.1) and (6.2).
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The calculation of the MLE’s for the hazard jumps generally follows the derivation

in Owen (2001) [12] pp. 223-227. There are some differences, however, since Owen’s

derivation involves a mean-type hypothesis for uncensored data, whereas our deriva-

tion involves a hazard-type hypothesis for right-censored data. Since the calculations

are based on likelihood, we first discuss the likelihood expression that we will employ.

The empirical likelihoods ELX and ELY for the two samples x and y can be

written as follows:

ELX =
n∏
i=1

wi
dxi exp

(
−

n∑
r=1

wr I[xr ≤ xi]
)

(6.3)

ELY =
m∏
j=1

νj
dyj exp

(
−

m∑
s=1

νs I[ys ≤ yj]
)

(6.4)

where dx = (dx1, . . . , dxn) and dy = (dy1, . . . , dym) are the respective censoring in-

dicators for x and y. For x we use the convention that dxi = 1 for an uncensored

datum and dxi = 0 for a right-censored datum, and similarly for y.

The likelihood expression as in (6.3) and (6.4) is described in Murphy (1995) [10].

It is a “Poisson extension” of the usual likelihood. Although it is not a true likeli-

hood, it does yield a meaningful likelihood-ratio test and it has the advantage that

the log-likelihood is easily formed from it. See also Pan and Zhou(2002) [14] for a

brief discussion of this Poisson extension.

The log-empirical-likelihoods (logELX and logELY ) for the two samples can then

be expressed as
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logELX =
n∑
i=1

(
dxi logwi −

n∑
r=1

wr I[xr ≤ xi]
)

from (6.3) (6.5)

logELY =
m∑
j=1

(
dyj log νj −

m∑
s=1

νs I[ys ≤ yj]
)

from (6.4). (6.6)

Since the two samples are independent, therefore the log-empirical-likelihood for

the set of both samples, denoted as logEL, can be expressed as the sum of (6.5) and

(6.6) as follows:

logEL = logELX + logELY . (6.7)

The maximization of the unconstrained likelihood in (6.5) is easily accomplished

by taking a partial derivative with respect to wi and then equating the partial deriva-

tive to zero. The maximization of the unconstrained likelihood in (6.6) is accom-

plished similarly. Expressions for the respective unconstrained hazard-jump MLE’s

w̃i and ν̃j are as follows:

w̃i =
dxi
Rxi

, i = 1, . . . , n (6.8)

ν̃j =
dyj
Ryj

, j = 1, . . . ,m. (6.9)

Rxi and Ryj are the number of survivors at x−i and y−j respectively, defined as,

Rxi =
n∑
r=1

I[xr ≥ xi] and Ryj =
m∑
s=1

I[ys ≥ yj]. (6.10)
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The estimators in (6.8) and (6.9) are commonly referred to as Nelson-Aalen es-

timators (e.g. Kalbfleisch and Prentice [7] p. 18). They are sometimes notated as

dΛ̂X(xi) and dΛ̂Y (yj), respectively, and we will adopt this latter notation in section

6.3.

The calculation of the MLE’s for the constrained hazard jumps, which is consid-

erably more complicated, will comprise the rest of this section 6.1.

We use logEL in (6.7) and the constraint in (6.2) to construct a constrained-log-

likelihood target-function G. The constraint in (6.2) is incorporated into G by means

of a Lagrange multiplier λ. The result is as follows:

G = logEL− λ
( n∑
i=1

m∑
j=1

Hijwiνj − θ
)
. (6.11)

We calculate the constrained MLE’s of wi, νj, and λ by taking partial derivatives

of G with respect to wi, νj, and λ and then equating these partial derivatives to zero.

We denote the resulting three constrained MLE’s as ŵi, ν̂j, and λ̂, respectively.

In the course of calculating the constrained MLE’s of wi, νj, and λ we will make

use of the following two quantities:

H̃i. =
m∑
j=1

ν̂jHij and H̃.j =
n∑
i=1

ŵiHij. (6.12)

Note that H̃i. and H̃.j are uniformly bounded since Hij is necessarily uniformly
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bounded per (6.1) above.

We proceed as follows:

∂G

∂wi

∣∣∣
wi=ŵi, νj=ν̂j , λ=λ̂

= 0. (6.13)

Combining (6.13), (6.5)-(6.7) and (6.11) gives

dxi
ŵi
−

n∑
r=1

I[xr ≥ xi]− λ̂
m∑
j=1

Hij ν̂j = 0. (6.14)

Rearranging (6.14) gives

ŵi =
dxi(

Rxi + λ̂H̃i.

) (6.15)

using (6.10) and (6.12).

Similarly we set

∂G

∂νj

∣∣∣
wi=ŵi,νj=ν̂j ,λ=λ̂

= 0. (6.16)

Combining (6.16), (6.5)-(6.7) and (6.11) gives

dyj
ν̂j
−

m∑
s=1

I[ys ≥ yj]− λ̂
n∑
i=1

Hijŵi = 0 (6.17)

Rearranging (6.17) gives

ν̂j =
dyj(

Ryj + λ̂H̃.j

) . (6.18)
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using (6.10) and (6.12).

The second derivatives ∂2G
∂w2

i
and ∂2G

∂ν2
j

are easily shown to be negative, confirming

that ŵi and ν̂j are indeed maxima.

Lastly we set

∂G

∂λ

∣∣∣
wi=ŵi,νj=ν̂j ,λ=λ̂

= 0. (6.19)

Combining (6.19), (6.5)-(6.7) and (6.11) gives

n∑
i=1

m∑
j=1

Hijŵiν̂j = θ (6.20)

which is just the constraint as in (6.2).

Equations (6.15), (6.18), and (6.20) must be solved simultaneously to find explicit

expressions for ŵi, ν̂j, and λ̂. A precise solution would require numerical methods.

We instead calculate an approximate solution using Taylor expansions. We begin by

finding an approximate value of λ̂.

First we expand ŵi and ν̂j in (6.15) and (6.18) in order to bring λ̂ into the

numerator. This results in the following two expressions:

ŵi =
dxi
Rxi

[
1−

( λ̂

Rxi
H̃i.

)
+
( λ̂

Rxi
H̃i.

)2

− . . .
]

(6.21)

ν̂j =
dyj
Ryj

[
1−

( λ̂

Ryj
H̃.j

)
+
( λ̂

Ryj
H̃.j

)2

− . . .
]

(6.22)
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where we have used the Taylor expansion

1

1 + ε
= 1− ε+ ε2 − . . . , valid for |ε| < 1. (6.23)

Later in section 6.4 we will show that

λ̂

Rxi
H̃i.

p−→ 0 as min(n,m)→∞ (6.24)

λ̂

Ryj
H̃.j

p−→ 0 as min(n,m)→∞ (6.25)

so that the restriction |ε| < 1 in (6.23) will hold when min(n,m) is sufficiently large.

Also, (6.24) and (6.25) will allow us to drop the higher-order terms in (6.21) and

(6.22) as asymptotically negligible.

To simplify the notation in (6.21) and (6.22) let

ηi =
λ̂

Rxi
H̃i. (6.26)

κj =
λ̂

Ryj
H̃.j . (6.27)

Then (6.21) and (6.22) can be written as

ŵi =
dxi
Rxi

(
1− ηi + η2

i − . . .
)

(6.28)

ν̂j =
dyj
Ryj

(
1− κj + κ2

j − . . .
)

(6.29)

where

ηi
p−→ 0 as min(n,m)→∞, from (6.24) and (6.26) (6.30)

κj
p−→ 0 as min(n,m)→∞, from (6.25) and (6.27). (6.31)
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Substituting (6.28) and (6.29) into (6.20) gives the following:

θ =
n∑
i=1

m∑
j=1

Hij
dxi
Rxi

dyj
Ryj

(
1− ηi + η2

i − . . .
)(

1− κj + κ2
j − . . .

)
(6.32)

= H .. −
n∑
i=1

m∑
j=1

Hij
dxi
Rxi

dyj
Ryj

(
ηi + κj

)
+

n∑
i=1

m∑
j=1

Hij
dxi
Rxi

dyj
Ryj

(
η2
i + κ2

j + ηiκj

)
− . . . (6.33)

where H .. =
n∑
i=1

m∑
j=1

Hij
dxi
Rxi

dyj
Ryj

(6.34)

.
= H .. −

n∑
i=1

m∑
j=1

Hij
dxi
Rxi

dyj
Ryj

(
ηi + κj

)
, (6.35)

dropping higher order terms per (6.30) and (6.31).

Now ηi and κj in the right-hand side (RHS) of (6.35) are themselves functions of λ̂,

per (6.26) and (6.27) above. In order to facilitate the objective of finding an explicit

approximation for λ̂ we introduce the terms H i. and H .j, which are not functions of

λ̂, as follows:

H i. =
m∑
j=1

Hij
dyj
Ryj

and H .j =
n∑
i=1

Hij
dxi
Rxi

. (6.36)

We obtain (6.36) by substituting
dyj

Ryj
for ν̂j and dxi

Rxi
for µ̂i in (6.12). Note that H i.

and H .j are uniformly bounded since Hij is assumed to be uniformly bounded per

(6.1) above.
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Now consider the following:

H̃i. = H i. + (H̃i. −H i.) (6.37)

= H i. +
m∑
j=1

Hij

(
ν̂j −

dyj
Ryj

)
from (6.12) and (6.36) (6.38)

= H i. +
m∑
j=1

Hij

[ dyj
Ryj

(
1− κj + κ2

j − . . .
)
− dyj
Ryj

]
from (6.29) (6.39)

= H i. −
m∑
j=1

Hij
dyj
Ryj

(
κj − κ2

j + . . .
)

(6.40)

= H i. −
m∑
j=1

Hij
dyj
Ryj

op(1) from (6.31), assuming max
1≤j≤m

(κj) = op(1) (6.41)

=
(

1− op(1)
)
H i. from (6.36). (6.42)

Similarly we can calculate

H̃.j =
(

1− op(1)
)
H .j assuming max

1≤i≤n
(ηi) = op(1). (6.43)

Then we can estimate λ̂ as follows:

θ
.
= H .. −

n∑
i=1

m∑
j=1

Hij
dxi
Rxi

dyj
Ryj

(
ηi + κj

)
from (6.35) (6.44)

= H .. −
n∑
i=1

m∑
j=1

Hij
dxi
Rxi

dyj
Ryj

( λ̂

Rxi
H̃i. +

λ̂

Ryj
H̃.j

)
from (6.26), (6.27) (6.45)
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= H .. −
n∑
i=1

m∑
j=1

Hij
dxi
Rxi

dyj
Ryj

[ λ̂

Rxi
H i.

(
1− op(1)

)
+

λ̂

Ryj
H .j

(
1− op(1)

)]
(6.46)

from (6.42), (6.43)

= H .. − λ̂
(
1− op(1)

) n∑
i=1

m∑
j=1

Hij
dxi
Rxi

dyj
Ryj

(H i.

Rxi
+
H .j

Ryj

)
(6.47)

.
= H .. − λ̂

n∑
i=1

m∑
j=1

Hij
dxi
Rxi

dyj
Ryj

(H i.

Rxi
+
H .j

Ryj

)
. (6.48)

Then from (6.48) the desired approximation of λ is,

λ̂
.
= (H .. − θ)/D (6.49)

where D =
n∑
i=1

m∑
j=1

Hij
dxi
Rxi

dyj
Ryj

(H i.

Rxi
+
H .j

Ryj

)
(6.50)

The RHS of (6.49) does not involve ŵi, ν̂j, or λ̂, rather it only involves the data.

Therefore the RHS of (6.49) is an explicit approximation of λ̂.

By a similar argument we can substitute (6.42) and (6.43) into (6.21) and (6.22),

respectively. This gives an approximation w̆i for ŵi and an approximation ν̆j for ν̂j,

as follows:

w̆i =
dxi
Rxi

(
1− λ̂

Rxi
H i.

)
.
= ŵi (6.51)

ν̆j =
dyj
Ryj

(
1− λ̂

Ryj
H .j

)
.
= ν̂j. (6.52)
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6.2 LLR for the Two Samples

In this section we calculate an expression for the log-likelihood-ratio (LLR) for

the two samples under the constraint in (6.1).

Let us define the following:

η̆i =
λ̂

Rxi
H i., i = 1, . . . , n similar to (6.26) (6.53)

η̆ = (η̆1, η̆2, . . . , η̆n) (6.54)

Q(η̆) =
n∑
i=1

(
dxi log

( dxi
Rxi

(1− η̆i)
)
−

n∑
r=1

dxr
Rxr

(1− η̆r)I[xr ≤ xi]

)
(6.55)

Qo = Q(0) =
n∑
i=1

(
dxi log(

dxi
Rxi

)−
n∑
r=1

dxr
Rxr

I[xr ≤ xi]
)
. (6.56)

From (6.5), (6.8), (6.51), and (6.53) we see that Q(η̆) in (6.55) is an estimator

for the constrained log-likelihood for the sample x and we see that Qo in (6.56) is an

estimator for the unconstrained log-likelihood for the sample x.

Similarly let us define the following:

κ̆j =
λ̂

Ryj
H .j, j = 1, . . . ,m similar to (6.27) (6.57)

κ̆ = (κ̆1, κ̆2, . . . , κ̆m) (6.58)

P (κ̆) =
m∑
j=1

(
dyj log

( dyj
Ryj

(1− κ̆j)
)
−

m∑
s=1

dys
Rys

(1− κ̆rs)I[ys ≤ yj]

)
(6.59)

Po = P (0) =
m∑
j=1

(
dyj log(

dyj
Ryj

)−
m∑
s=1

dys
Rys

I[ys ≤ yj]
)
. (6.60)

From (6.6), (6.9), (6.52), and (6.57) we see that P (κ̆) in (6.59)is an estimator for the

constrained log-likelihood for the sample y and we see that Po in (6.60)is an estimator
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for the unconstrained log-likelihood for the sample y.

It is convenient to rewrite Q(η̆) in (6.55) as follows:

Q(η̆) =
n∑
i=1

(
dxi log

( dxi
Rxi

(1− η̆i)
))
−

n∑
i=1

n∑
r=1

(
dxr
Rxr

(1− η̆r)I[xr ≤ xi]

)
(6.61)

=
n∑
i=1

(
dxi log

( dxi
Rxi

(1− η̆i)
))
−

n∑
r=1

(
dxr
Rxr

(1− η̆r)
n∑
i=1

I[xr ≤ xi]

)
(6.62)

=
n∑
i=1

(
dxi log

( dxi
Rxi

(1− η̆i)
))
−

n∑
r=1

(
dxr(1− η̆r)

)
using (6.10) (6.63)

=
n∑
i=1

(
dxi log

( dxi
Rxi

(1− η̆i)
)
− dxi(1− η̆i)

)
changing index r to i (6.64)

=
n∑
i=1

Qi(η̆i) (6.65)

where Qi(η̆i) =

(
dxi log

( dxi
Rxi

(1− η̆i)
)
− dxi(1− η̆i)

)
. (6.66)

By a similar calculation we can rewrite P (κ̆) in (6.59) as follows:

P (κ̆) =
m∑
j=1

Pj(κ̆j) (6.67)

where Pi(κ̆j) =

(
dyj log

( dyj
Ryj

(1− κ̆j)
)
− dyj(1− κ̆j)

)
. (6.68)
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We will require the quantities
∑n

i=1 η̆iQ
′
i(0),

∑m
j=1 κ̆jP

′
j(0),

∑n
i=1

η̆i
2

2
Q′′i (0),

and
∑m

j=1
κ̆j

2

2
P ′′j (0) which we calculate as follows:

n∑
i=1

η̆iQ
′
i(0) =

n∑
i=1

η̆i

(
−dxi dxi

Rxi

dxi

Rxi
(1− η̆i

) + dxi

)∣∣∣
η̆i=0

using (6.66) (6.69)

= 0 (6.70)

A similar calculation shows

m∑
j=1

κ̆jP
′
j(0) = 0 using (6.68) (6.71)

And,

n∑
i=1

η̆i
2

2
Q′′i (0) =

n∑
i=1

η̆i
2

2

( −dxi
(1− ηi)2

)∣∣∣
η̆i=0

using (6.69) (6.72)

= −
n∑
i=1

η̆i
2

2
dxi (6.73)

A similar calculation shows

m∑
j=1

κ̆j
2

2
P ′′j (0) = −

m∑
j=1

κ̆j
2

2
dyj (6.74)

Then we can calculate −2LLR as follows:
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−2LLR
.
= −2

(
Q(η̆)−Qo

)
− 2
(
P (κ̆)− Po

)
(6.75)

from (6.5)− (6.7), (6.53)− (6.60)

= −2Q(η̆) + 2Qo − 2P (κ̆) + 2Po (6.76)

= −2

(
Qo +

n∑
i=1

(
η̆iQ

′
i(0) +

η̆i
2

2
Q′′i (0)

))
+ 2Qo +Rn(η̆)

− 2

(
Po +

m∑
j=1

(
κ̆jP

′
j(0) +

κ̆j
2

2
P ′′j (0)

))
+ 2Po +Rm(κ̆) (6.77)

by Taylor expansion of Q(η̆) and P (κ̆) about 0,

where Rn(η̆) and Rm(κ̆) are the remainder terms

.
= −

n∑
i=1

η̆i
2Q′′i (0)−

m∑
j=1

κ̆j
2P ′′j (0) (6.78)

using (6.70), (6.71), dropping remainder terms

=
n∑
i=1

η̆i
2dxi +

m∑
j=1

κ̆j
2dyj using (6.73), (6.74) (6.79)

= λ̂2

n∑
i=1

(
Hi.

Rxi

)2

dxi + λ̂2

m∑
j=1

(
H.j

Ryj

)2

dyj using (6.53), (6.57) (6.80)

= λ̂2

n∑
i=1

m∑
j=1

Hij
dyj
Ryj

dxi
Rxi

Hi.

Rxi
+ λ̂2

n∑
i=1

m∑
j=1

Hij
dxi
Rxi

dyj
Ryj

H.j

Ryj
(6.81)

using (6.36)
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= λ̂2D from (6.50) (6.82)

.
=

(H .. − θ)2

D
from (6.49) (6.83)

6.3 Distribution of -2LLR

In this section we show that the distribution of -2LLR goes asymptotically to χ2
(1)

as min(n,m)→∞, when the null hypothesis Ho is true.

Let us establish the following notation:

Summations are represented as Stieltjes integrals (6.84)

xi is represented as t (6.85)

yj is represented as s (6.86)

Hij is represented as g(t, s) (6.87)

dxi
Rxi

is represented as dΛ̂1(t), a Nelson-Aalen jump as in (6.8) (6.88)

dyj
Ryj

is represented as dΛ̂2(s), a Nelson-Aalen jump as in (6.9) (6.89)

Ho in (6.1) can then be denoted as

∫∫
g(t, s)dΛ1(t)dΛ2(s) = θ. (6.90)

The derivation below uses Martingale theory and the reader will need to be famil-

iar with this theory in order to follow the derivation. A good reference for Martingale

theory is Kalbfleisch and Prentice (2002) [7], chapter 5.
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Now consider,√
nm

n+m
(H .. − θ) =

√
nm

n+m

( n∑
i=1

m∑
j=1

Hij
dxi
Rxi

dyj
Ryj
− θ
)

(6.91)

from (6.34)

=

√
nm

n+m

(∫∫
g(t, s)dΛ̂1(t)dΛ̂2(s)−

∫∫
g(t, s)dΛ1(t)dΛ2(s)

)
(6.92)

using (6.84) to (6.90)

=

√
nm

n+m

(∫∫
g(t, s)dΛ̂1(t)dΛ̂2(s)−

∫∫
g(t, s)dΛ1(t)dΛ2(s)

+

∫∫
g(t, s)dΛ1(t)dΛ̂2(s)−

∫∫
g(t, s)dΛ1(t)dΛ̂2(s)

)
(6.93)

add, subtract term

=

√
m

n+m

∫∫
g(t, s)dΛ2(s) d

√
n
(

Λ̂1(t)− Λ1(t)
)

+

√
n

n+m

∫∫
g(t, s)dΛ1(t) d

√
m
(

Λ̂2(s)− Λ2(s)
)

+ op(1) (6.94)

see explanation in (6.108) to (6.110) below

d−→
√

m

n+m

∫
f1(t)dB1

(
C1(t)

)
+

√
n

n+m

∫
f2(s)dB2

(
C2(s)

)
as min(n,m)→∞ , where

(6.95)
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∫
g(t, s)dΛ2(s) , f1(t) (6.96)∫
g(t, s)dΛ1(t) , f2(s) (6.97)

C1(t) =

∫ t

γ=0

dΛ1(γ)(
1− F1(γ−)

)(
1−G1(γ−)

) (6.98)

C2(s) =

∫ s

γ=0

dΛ2(γ)(
1− F2(γ−)

)(
1−G2(γ−)

) (6.99)

B1 is a Brownian motion with a “clock”C1(t) (6.100)

B2 is a Brownian motion with a “clock”C2(s) (6.101)

√
n
(

Λ̂1(t)− Λ1(t)
)

d−→ B1

(
C1(t)

)
as in Kalbfleisch [7] (6.102)

√
m
(

Λ̂2(s)− Λ2(s)
)

d−→ B2

(
C2(s)

)
as in Kalbfleisch [7]. (6.103)

Therefore,√
nm

n+m
(H .. − θ)

d−→ N(0, σ2) as min(n,m)→∞, from (6.95) (6.104)

where σ2 = α

∫
f 2

1 (t)
dΛ1(t)

(1− F1(t−))(1−G1(t−))

+ (1− α)

∫
f 2

2 (s)
dΛ2(t)

(1− F2(s−))(1−G2(s−))
(6.105)

and α is defined as in (6.115) below.

Therefore,

(H .. − θ)√
D

d−→ N

(
0,
σ2

ξ

)
as min(n,m)→∞, using (6.104) (6.106)
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where ξ is a constant such that

nm

n+m
D

p−→ ξ, as min(n,m)→∞. (6.107)

We demonstrate that (6.107) is true in (6.112) to (6.129) below.

In (6.94) above we use the following relationships:√
nm

n+m

∫∫
g(t, s) d[Λ̂1(t)− Λ1(t)] d[Λ̂2(s)− Λ2(s)] (6.108)

=

√
1

n+m

∫∫
g(t, s) d

√
n[Λ̂1(t)− Λ1(t)] d

√
m[Λ̂2(s)− Λ2(s)] (6.109)

d−→
√

1

n+m

∫∫
g(t, s) dB1(C1(t)) dB2(C2(s)) (6.110)

as min(n,m)→∞

= op(1) (6.111)

We subtract (6.108) from (6.111) (thus obtaining zero), add that expression to (6.93),

and simplify to obtain (6.94).

With reference to (6.107) above, we demonstrate that nm
n+m

D
p−→ ξ

as min(n,m)→∞ as follows:

D =
n∑
i=1

m∑
j=1

Hij
dxi

(Rxi)2

dyj
Ryj

H i. +
n∑
i=1

m∑
j=1

Hij
dxi
Rxi

dyj
(Ryj)2

H .j (6.112)

from (6.50)
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nm

n+m
D =

m

n+m

n∑
i=1

m∑
j=1

Hij
dxi
Rxi

n

Rxi

dyj
Ryj

H i. (6.113)

+
n

n+m

n∑
i=1

m∑
j=1

Hij
dxi
Rxi

dyj
Ryj

m

Ryj
H .j

p−→ α

∫∫
g(t, s)f1(t)

1

(1− F1(t−))(1−G1(t−))
dΛ1(t)dΛ2(s) (6.114)

+ (1−α)

∫∫
g(t, s)f2(s)

1

(1− F2(s−))(1−G2(s−))
dΛ1(t)dΛ2(s)

as min(n,m)→∞, by law of large numbers for Nelson-Aalen

estimators, where

We assume that
m

n+m

p−→ α as min(n,m)→∞, 1 ≥ α > 0 (6.115)

Therefore
n

n+m

p−→ 1− α as min(n,m)→∞ (6.116)

Hij is represented as g(t, s) as in (6.87) (6.117)

H i.
p−→ f1(t), where f1(t) is as in (6.96), per Lemma 1 in section 6.5 (6.118)

H .j
p−→ f2(s), where f2(s) is as in (6.97), per Lemma 1 in section 6.5 (6.119)

n

Rxi

p−→ 1

(1− F1(t−))(1−G1(t−))
per Lemma 2 in section 6.5 (6.120)

m

Ryj

p−→ 1

(1− F2(s−))(1−G2(s−))
per Lemma 2 in section 6.5 (6.121)

G1(t) is the censoring distribution of sample 1 (6.122)

G2(s) is the censoring distribution of sample 2 (6.123)

dxi
Rxi

is represented as dΛ̂1 as in (6.88) (6.124)

dyj
Ryj

is represented as dΛ̂2 as in (6.89) (6.125)
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= α

∫
f 2

1 (t)
dΛ1(t)

(1− F1(t−))(1−G1(t−))
(6.126)

+ (1− α)

∫
f 2

2 (s)
dΛ2(s)

(1− F2(s−))(1−G2(s−))
from (6.96) and (6.97)

= σ2 from (6.105) (6.127)

Hence,

nm

n+m
D → σ2 as min(n,m)

p−→∞, from (6.112) to (6.127) (6.128)

Combining (6.106) and (6.127) gives,

(H .. − θ)√
D

d−→ N(0, 1) as min(n,m)→∞ (6.129)

Squaring both sides of (6.129) gives,

(H .. − θ)2

D

d−→ χ2
(1) as min(n,m)→∞ (6.130)

Finally, combining (6.83) and (6.130) gives

−2LLR
d−→ χ2

(1) as min(n,m)→∞ (6.131)

This concludes the main portion of the proof. We can use (6.131) to calculate an

approximate p-value to test Ho based on −2LLR.
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6.4 Validation of the Taylor Expansions

In this section we justify the Taylor expansions in (6.35) by showing that λ̂
Rxi

H̃i.
p−→

0 as min(n,m)→∞, as in (6.24); and λ̂
Ryj

H̃.j
p−→ 0 as min(n,m)→∞, as in (6.25).

We will assume that H̃i., H̃.j, H i., and H .j are all uniformly bounded. We will also

assume that ζ ≥ n
m
≥ 1

ζ
for some positive number ξ. To simplify the calculations be-

low we will additionally assume, without loss of generality, that ζ = 1, so that n = m.

First we show that λ̂∗/n becomes small as n → ∞, where λ̂∗/n is the root of

H .. − θ − λD = 0.

From (6.106) and (6.107) we know that (H..−θ)√
D

d−→ N
(

0, σ2

nm
n+m

D

)
and from (6.127)

we know that nm
n+m

D
p−→ σ2 as min(n,m) → ∞. Without loss of generatlity let us

assume that n = m so that nm
n+m

= n
2
. Then nm

n+m
D = n

2
D so that

n

2
D

p−→ σ2 from (6.128) (6.132)

We will show that λ̂∗/n ∈ (−ε, ε) as n→∞ for any small ε > 0.

Now,
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H .. − θ − λD =
√
D
(H .. − θ√

D
− λ
√
D
)

(6.133)

.
=
√
D
(
Z − λ

√
D
)

where Z ∼ N(0, 1) from (6.129) (6.134)

=
√
D
(
Z − λ

√
2/n

√
n

2
D
)

(6.135)

.
=
√
D
(
Z − λ√

n

√
2 σ
)

from (6.132) (6.136)

Now let us choose a sequence indexed by the natural numbers (1, 2, . . . , n, . . .)

that goes slowly to ∞. Without loss of generality let us choose the sequence

(log(1), log(2), . . . , log(n), . . .). Then let λ√
n

= ± log(n) and substitute this into

(6.136) above. When λ√
n

= log(n) then the RHS of (6.135) is less than 0 for large n,

since Z is bounded in probability. And similarly when λ√
n

= − log(n) then the RHS

of (6.136) is greater than 0 for large n. This implies that λ̂∗

n
∈
(
− log(n)√

n
, log(n)√

n

)
for

large n with probability approaching 1, since H ..− θ− λD is monotone in λ. This in

turn implies that

λ̂∗

n
= Op

( log(n)√
n

)
(6.137)

Now,

lim
n→∞

(Rxi
n

)
= (1− F1(xi))(1−G1(xi)) similar to (6.173) (6.138)

which implies that

Rxi = Op(n). (6.139)
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Combining (6.137) and (6.139) gives

λ̂∗

Rxi
= Op

( log(n)√
n

)
(6.140)

Then since H̃i. and H̃.j are bounded, (6.140) implies

λ̂∗

Rxi
H̃i. = Op

( log(n)√
n

)
and

λ̂∗

Ryj
H̃.j = Op

( log(n)√
n

)
(6.141)

Then with reference to (6.33) of order λ̂ consider the following:

n∑
i=1

m∑
j=1

Hij
dxi
Rxi

dyj
Ryj

(
ηi + κj

)
=

n∑
i=1

m∑
j=1

dxi
Rxi

dyj
Ryj

( λ̂

Rxi
H̃i. +

λ̂

Ryj
H̃.j

)
using(6.26), (6.27) (6.142)

= Op

( log(n)√
n

) n∑
i=1

m∑
j=1

Hij
dxi
Rxi

dyj
Ryj

using (6.141) (6.143)

= Op

( log(n)√
n

)
using (6.34), since H .. is uniformly bounded (6.144)

Similarly with reference to (6.33) of order λ̂2,

n∑
i=1

m∑
j=1

Hij
dxi
Rxi

dyj
Ryj

[
η2
i + ηiκj + κ2

j

]

=
n∑
i=1

m∑
j=1

Hij
dxi
Rxi

dyj
Ryj

[( λ̂ H̃i.

Rxi

)2

+
λ̂

Rxi
H̃i.

λ̂

Ryj
H̃.j +

( λ̂ H̃.j

Ryj

)2]
(6.145)

= Op

( log(n)√
n

)2

(6.146)
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Finally consider the following:

H̃i. = H i. + (H̃i. −H i.) (6.147)

= H i. +
m∑
j=1

Hij

(
ν̂j −

dyj
Ryj

)
substituting (6.12) and (6.36) (6.148)

.
= H i. +

m∑
j=1

Hij

[ dyj
Ryj

(
1− λ̂

Ryj
H̃.j

)
− dyj
Ryj

]
from (6.22) to order λ̂ (6.149)

= H i. −
m∑
j=1

Hij
dyj
Ryj

( λ̂

Ryj
H̃.j

)
rearranging (6.149) (6.150)

= H i. −
m∑
j=1

Hij
dyj
Ryj

Op

( log(n)√
n

)
using (6.141) (6.151)

= H i. −Op

( log(n)√
n

) m∑
j=1

Hij
dyj
Ryj

rearranging (6.151) (6.152)

= H i. −Op

( log(n)√
n

)
H i. from (6.36) (6.153)

.
= H i. (6.154)

Therefore from (6.144), (6.146), and (6.154) we conclude that the Taylor expansion

in (6.35) is valid.

6.5 Lemmas

Lemma 1

For fixed t,

∫
g(t, s)dΛ̂2(s)

p−→
∫
g(t, s)dΛ2(s) (Refer to (6.94) - (6.96)

)
(6.155)
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Proof:

We will assume that
∫
g(t, s)dΛ2(s) < ∞. We first apply the law of large numbers

(LLN) to the case where the integral in (6.155) runs from 0 up to any large (but

finite) positive number τ .

∫ τ

0

g(t, s)dΛ̂2(s) =
m∑
j=1

I[yj < τ ] g(t, yj)
dyj
Ryj

(6.156)

=
1

m

m∑
j=1

I[yj < τ ] dyj

(g(t, yj)

Ryj/m
− g(t, yj)(

1− F2(y−j )
)(

1−G2(y−j )
))

+
1

m

m∑
j=1

I[yj < τ ]
g(t, yj) dyj(

1− F2(y−j )
)(

1−G2(y−j )
) add, subtract term (6.157)

The first term in (6.157) is bounded as follows:

1

m

m∑
j=1

I[yj < τ ] dyj

∣∣∣g(t, yj)

Ryj/m
− g(t, yj)(

1− F2(y−j )
)(

1−G2(y−j )
)∣∣∣ (6.158)

≤ sup
y<τ

∣∣∣g(t, yj)

Ryj/m
− g(t, yj)(

1− F2(y−j )
)(

1−G2(y−j )
)∣∣∣ (6.159)

= sup
y<τ

∣∣∣g(t, yj)
∣∣∣ ∣∣∣ 1

Ryj/m
− 1(

1− F2(y−j )
)(

1−G2(y−j )
)∣∣∣. (6.160)

Now supy<τ

∣∣∣g(t, yj)
∣∣∣ is bounded by assumption. And in Lemma 2 below we show that

Ryj/m
p−→
(
1−F2(y−j )

)(
1−G2(y−j )

)
, hence its reciprocal is at least uniformly conver-

gent on the set {y ≤ τ}. Hence the entire term in (6.160) is uniformly convergent to 0.

The last term in (6.157) is the average of an independent and identically dis-

tributed (iid) sum, so it converges to its expectation by the LLN. Now,

E
(
I[yj < τ ]

g(t, yj) dyj(
1− F2(y−j )

)(
1−G2(y−j )

)) =

∫ τ

0

g(t, s)dΛ2(s) (6.161)
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Therefore, for any finite τ ,

∫ τ

0

g(t, s)dΛ̂2(s)
p−→
∫ τ

0

g(t, s)dΛ2(s) (6.162)

Now we address the tail [τ,∞) in (6.155).

Consider the ratio,

sup
yj∈[0,∞)

∣∣∣(1− F2(y−j )
)(

1−G2(y−j )
)

Ryj/m

∣∣∣ (6.163)

This ratio in (6.163) is bounded in probability (per Zhou(1991)[22]). Therefore, ex-

cept on a set of probability η, for any 1 > η > 0, we have,

∣∣∣(1− F2(y−j )
)(

1−G2(y−j )

Ryj/m

)∣∣∣ < C, for some positive constant C (6.164)

Therefore,

m∑
j=1

I[yj < τ ]|g(t, yj)|
dyj
Ryj

≤ C
1

m

m∑
j=1

I[yj < τ ]
|g(t, yj)| dyj(

1− F2(y−j )
)(

1−G2(y−j )
) (6.165)

The RHS of (6.165) is an iid sum. Therefore by the strong law of large numbers it

converges to its mean, which is,

C

∫ ∞
τ

|g(t, s)|dΛ2(s) (6.166)
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Since
∫
|g(t, s)|dΛ2(s) <∞ by assumption, therefore

∫∞
τ
|g(t, s)|dΛ2(s) in (6.166) can

be made arbitrarily small by selecting a large value of τ , such that
∫
g(t, s)dΛ2(s) < ε

C
,

where ε is an arbitrarily small positive number. Therefore,

C

∫ ∞
τ

g(t, x)dΛ2(s) < ε (6.167)

Thus

∫ ∞
τ

g(t, s)dΛ̂2(s)
p−→ 0 (6.168)

hence

∫ ∞
0

g(t, s)dΛ̂2(s)
p−→
∫ ∞

0

g(t, s)dΛ2(s) (6.169)

Lemma 2

Suppose M <∞ is such that (1− F2(y−j ))(1−G2(y−j )) > 0.

Then for yj < M we have,

m

Ryj

p−→ 1

(1− F2(y−j ))(1−G2(y−j ))

(
Refer to (6.120), (6.121)

)
(6.170)

Proof:

lim
m→∞

(Ryj
m

)
= lim

m→∞

(∑m
r=1 I[yr ≥ yj]

m

)
from (6.10) (6.171)

= E
(
I[yr ≥ yj]

)
Glivenko-Cantelli, law of large numbers (6.172)

= P (yr ≥ yj) (6.173)

= (1− F1(y−j ))(1−G1(y−j )) (6.174)

Equation (6.174) involves the variable Y as well as the right-censoring variable

(which we may call R) associated with Y . We only observe the variable T =

min(Y,R). In order for T to exceed a value yj it is necessary that both Y and
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R exceed yj. Hence the probability that T exceeds yj is the product of the probabil-

ity that Y exceeds yj and the probability that R exceeds yj, where a product applies

since Y and R are assumed to be independent.

Then,

lim
m→∞

( m

Ryj

)
= lim

m→∞

( 1

Ryj/m

)
(6.175)

=
1

limm→∞
(
Ryj/m

) since s(t) = 1/t is continuous for t 6= 0 (6.176)

=
1

(1− F−2 (yj))(1−G−2 (yj))
from (6.174) (6.177)

Similarly,

lim
n→∞

( n

Rxi

)
=

1

(1− F1(x−i ))(1−G1(x−i ))
(6.178)

Copyright c© William H. Barton, 2010.
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Chapter 7 Non-Negative Probabilities

In this chapter we prove that the probabilities µ̂ and ν̂ obtained in Chapters 3 and

4 are non-negative for uncensored data, provided that θ is chosen in the “feasible”

range as in (7.5) below. (There is no concern about the censored data since their

weights are shifted to the uncensored data in the EM algorithm.) The proof we offer

is similar to the proof in Owen (2001) [12], p. 22.

Recall equations (3.16) - (3.18) in chapter 3 of this dissertation:

µ̂i =
wxi

n∑
i=1

wxi + λ
m∑
j=1

(
g(xi, yj)− θ

)
ν̂j

(7.1)

ν̂j =
wyj

m∑
j=1

wyj + λ
n∑
i=1

(
g(xi, yj)− θ

)
µ̂i

(7.2)

n∑
i=1

m∑
j=1

(
g(xi, yj)− θ

)
µ̂i ν̂j = 0 (7.3)

Let us denote g(xi, yj) as gij for simplicity. Then we can rewrite (7.3) above as,

n∑
i=1

m∑
j=1

gij µ̂i ν̂j = θ. (7.4)

Equation (7.4) says that θ is an average of the values of gi,j, where i = 1, . . . , n

and j = 1, . . . ,m. Let us denote the lowest value of gi,j as g(1) and let us denote
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the highest value of gi,j as g(N), where N = n + m. Since an average value must lie

between the lowest and highest values, then a “feasible” value for θ must be such

that,

g(1) ≤ θ ≤ g(N). (7.5)

We shall assume in the analysis below that θ has been chosen in the feasible range.

Now (7.1) is monotone in λ (which can easily be seen by taking its first deriva-

tive with respect to λ). Therefore from (7.5) the limits of the allowable range for

λ in (7.1) can be found by successively putting
(
gij = g(1), µ̂i = 1, ν̂j = 1

)
and(

gij = g(N), µ̂i = 1, ν̂j = 1
)

into (7.1).

Putting
(
gij = g(1), µ̂i = 1, ν̂j = 1

)
into (7.1) gives,

1 =
wx(1)

n∑
i=1

wxi + λH
(
g(1) − θ

) (7.6)

which implies,

λH =

wx(1) −
n∑
i=1

wxi(
g(1) − θ

) for θ 6= g(1) (7.7)

where λH is the high end of the allowable range for λ and wx(1) is the weight corre-

sponding to g(1). From (7.7) we see that λH is positive.

Similarly putting
(
gij = g(N), µ̂i = 1, ν̂j = 1

)
into (7.1) gives,
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1 =
wx(N)

n∑
i=1

wxi + λL
(
g(N) − θ

) (7.8)

which implies,

λL =

wx(N) −
n∑
i=1

wxi(
g(N) − θ

) for θ 6= g(N) (7.9)

where λL is the low end of the allowable range for λ and wx(N) is the weight corre-

sponding to g(N). From (7.9) we see that λL is negative.

Combining (7.7) and (7.9) gives the allowable range of λ as,

wx(N) −
n∑
i=1

wxi(
g(N) − θ

) ≤ λ ≤
wx(1) −

n∑
i=1

wxi(
g(1) − θ

) . (7.10)

Since (7.1) is monotone in λ we can find the allowable range of µ̂i by successively

putting the LHS and the RHS of (7.10) into (7.1). Putting the LHS of (7.10) into

(7.1) gives,

µ̂i(λL) =
wxi∑n

i=1 wxi +
(
wx(N) −

∑n
i=1wxi

)∑m
j=1

(
gij−θ

)
ν̂j

g(N)−θ

. (7.11)

In (7.11) if
∑m

j=1

(
gij−θ

)
ν̂j ≤ 0, let

∑m
j=1

(
gij−θ

)
ν̂j

g(N)−θ
= −ξ, where −ξ ≤ 0. Then

(7.11) can be rewritten as,
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µ̂i(λL) =
wxi∑n

i=1wxi +
(
wx(N) −

∑n
i=1wxi

)
(−ξ)

(7.12)

which is non-negative.

In (7.11) if
∑m

j=1

(
gij −mu

)
ν̂j > 0, let

∑m
j=1

(
gij−θ

)
ν̂j

g(N)−θ
= ζ, where 1 ≥ ζ > 0.

Then (7.11) can be rewritten as,

µ̂i(λL) =
wxi

(1− ζ)
∑n

i=1 wxi + ζ wx(N)

(7.13)

which is non-negative.

Combining (7.12) and (7.13) gives,

wxi
(1 + ξ)

∑n
i=1wxi − ξwx(N)

≤ µ̂i(λL) ≤ wxi
(1− ζ)

∑n
i=1wxi + ζ wx(N)

(7.14)

where the LHS and RHS of (7.14) are both positive. In addition, the LHS of

(7.14) is easily shown to be less than the RHS of (7.14).

Similarly, putting the RHS of (7.10) into (7.1) gives,

µ̂i(λH) =
wxi∑n

i=1wxi +
(
wx(1) −

∑n
i=1 wxi

)∑m
j=1

(
gij−θ

)
ν̂j

g(1)−θ

(7.15)
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In (7.15) if
∑m

j=1

(
gij−θ

)
ν̂j < 0, let

∑m
j=1

(
gij−θ

)
ν̂j

g(1)−θ
= ε, where 1 ≥ ε > 0. Then

(7.15) can be rewritten as,

µ̂i(λH) =
wxi

(1− ε)
∑n

i=1wxi + ε wx(1)

(7.16)

which is non-negative.

In (7.15) if
∑m

j=1

(
gij− θ

)
ν̂j ≥ 0, let

∑m
j=1

(
gij−θ

)
ν̂j

g(1)−θ
= −δ, where −δ ≤ 0. Then

(7.15) can be rewritten as,

µ̂i(λH) =
wxi

(1 + δ)
∑n

i=1 wxi − δwx(1)

(7.17)

which is non-negative.

Combining (7.16) and (7.17) gives,

wxi
(1 + δ)

∑n
i=1 wxi − δwx(1)

≤ µ̂i(λH) ≤ wxi
(1− ε)

∑n
i=1wxi + ε wx(1)

(7.18)

where the LHS and RHS of (7.18) are both positive. In addition, the LHS of (7.18)

is easily shown to be less than the RHS of (7.18).

Therefore from (7.14) µ̂i(λL) ≥ 0 and from (7.18) µ̂i(λH) ≥ 0, for {i : dxi = 1}.

Since µ̂i is monotone in λ per (7.1), therefore µ̂i(λ) is non-negative over the allowable
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range of λ, which is {λ : λL ≤ λ ≤ λH}.

By an analogous argument, ν̂j(λ) for j : dyj = 1 is likewise non-negative over the

allowable range of λ.

Therefore we conclude that the probabilities µ̂ and ν̂ obtained in Chapters 3 and

4 are non-negative for uncensored data, when θ is chosen in the feasible range as in

(7.5).

Copyright c© William H. Barton, 2010.
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Chapter 8 Future Work

Five ways that this dissertation could be extended in the future are as follows:

1. Prove that −2LLR
d−→ χ2

(1) for two right-censored, left-censored, and doubly-

censored samples with a mean-type hypothesis.

2. Prove that −2LLR
d−→ χ2

(1) for two right-censored, left-censored, and doubly-

censored samples with multiple mean-type hypotheses.

3. Write an algorithm, similar to that in chapter 3, for the case of two interval-

censored samples and a single mean-type hypothesis.

4. Write an algorithm, similar to that in chapter 3, for the case of two truncated

samples and a single mean-type hypothesis.

5. Rewrite the loops in the R-programs using the C-language, for greater speed.

Copyright c© William H. Barton, 2010.
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Appendix A: Program Code

This appendix is divided into two sections. The first section provides documentation

for the eight functions which comprise the emplik2 R-package. The second section

provides a listing of the code for the eight functions.

The names of the eight functions are as follows:

el2.cen.EMs

el2.cen.EMm

el2.test.wts

el2.test.wtm

myWKM

myWCY

myWdataclean2

myWdataclean3

Much of the code for the eight functions has been adapted, with permission, from

the emplik R-package written by my advisor Dr. Mai Zhou.
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A.1 Documentation for the Functions

el2.cen.EMs

Computes p-value for a single mean-type hypothesis, based on two independent

samples that may contain censored data.

Description: This function uses the EM algorithm to calculate a maximized empirical-

log-likelihood ratio for the hypothesis

Ho : E(g(x, y)− θ) = 0

where E indicates expected value; g(x, y) is a user-defined function of the two sam-

ples x and y; and θ is the hypothesized value of E(g(x, y)). The samples x and y

are assumed independent. They may be uncensored, right-censored, left-censored, or

left-and-right (“doubly”) censored. A p-value for Ho is also calculated, based on the

assumption that -2log-likelihood-ratio is approximately distributed as χ2
(1).

Usage: The function is called as follows:

el2.cen.EMs(x,dx,y,dy,fun=function(x,y){x>=y}, mean=0.5)

Arguments:

x vector of data for the first sample

dx vector of censoring indicators for x

y vector of data for the second sample

dy vector of censoring indicators for y
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fun user-defined, continuous-weight function

g(x, y) used to define the mean in Ho, default is x >= y

mean hypothesized value of θ = E(g(x, y)), default is 0.5

Details: The value of mean should be chosen between the maximum and minimum

values of g(xi, yj); otherwise there may be no distributions for x and y that will

satisfy Ho. If mean is inside this interval, but the convergence is still not satisfactory,

then the value of mean should be moved closer to the NPMLE for E(g(x, y)). (The

NPMLE itself should always be a feasible value for mean.)

Value: el2.cen.EMs returns a list of values as follows:

xd1 a vector of the unique, uncensored x-values in ascending order

yd1 a vector of the unique, uncensored y-values in ascending order

temp3 a list of values returned by the el2.test.wts function

mean the hypothesized value of θ = E(g(x, y))

funNPMLE the non-parametric-maximum-likelihood-estimator of θ

logel00 the log of the unconstrained empirical likelihood

logel the log of the constrained empirical likelihood

“− 2LLR” −2(logel − logel00)

Pval the estimated p-value for Ho

logvec vector of successive values of logel computed by EM algorithm

sum muvec sum of probability jumps for the uncensored x-values

sum nuvec sum of probability jumps for the uncensored y-values

constraint realized value of constraint, should be close to 0
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el2.cen.EMm

Computes p-value for multiple mean-type hypotheses, based on two independent sam-

ples that may contain censored data.

Description: This function uses the EM algorithm to calculate a maximized empir-

ical likelihood ratio for a set of p hypotheses as follows:

Ho : E(g(x, y)− θ) = 0

where E indicates expected value; g(x, y) is a vector of user-defined functions

g1(x, y), . . . , gp(x, y); and θ is a vector of p hypothesized values of E(g(x, y)). The

two samples x and y are assumed independent. They may be uncensored, right-

censored, left-censored, or left-and-right (“doubly”) censored. A p-value for Ho is

also calculated, based on the assumption that -2log-likelihood-ratio is asymptotically

distributed as χ2
(p).

Usage: The function is called as follows:

el2.cen.EMm(x, dx, y, dy, p, H, mean)

Arguments:

x vector of data for the first sample

dx vector of censoring indicators for x

y vector of data for the second sample
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dy vector of censoring indicators for y

p the number of hypotheses

H matrix defined as H = [H1, H2, . . . , Hp]

Hk equals [gk(xi, yj)−muk]nxm, k = 1, . . . , p

mean vector, hypothesized value of θ = E(g(x, y)

Details: The value of meank should be chosen between the maximum and minimum

values of gk(xi, yj); otherwise there may be no distributions for x and y that will sat-

isfy Ho. If meank is inside this interval, but the convergence is still not satisfactory,

then the value of meank should be moved closer to the NPMLE for E(gk(x, y)). (The

NPMLE itself should always be a feasible value for meank.)

Value: el2.cen.EMm returns a list of values as follows:

xd1 vector of unique, uncensored x-values in ascending order

yd1 vector of unique, uncensored y-values in ascending order

temp3 list of values returned by el2.test.wtm function

mean hypothesized value of θ = E(g(x, y))

NPMLE non-parametric-maximum-likelihood-estimator vector of θ

logel00 log of the unconstrained empirical likelihood

logel log of the constrained empirical likelihood

“− 2LLR” −2(logel − logel00)

Pval p-value for the p simultaneous hypotheses

logvec vector of successive values of logel computed by EM algorithm

sum muvec sum of probability jumps for the uncensored x-values

sum nuvec sum of probability jumps for the uncensored y-values
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el2.test.wts

Computes maximum-likelihood probability jumps for a single mean-type hypothesis,

based on two independent uncensored samples.

Description: This function computes the maximum-likelihood probability jumps for

a single mean-type hypothesis, based on two samples that are independent, uncen-

sored, and weighted. The target function for the maximization is the constrained

log-likelihood which can be expressed as,

∑
dxi=1wxi log µi +

∑
dyj=1wyj log νj − η(1−

∑
dxi=1 µi)− δ(1−

∑
dyj=1 νj)

−λ
∑

dxi=1

∑
dyj=1(g(xi, yj)− θ)µiνj

where the variables are defined as follows:

x is a vector of data for the first sample

y is a vector of data for the second sample

wx is a vector of weights for the first sample

wy is a vector of weights for the second sample

µ is a vector of probability jumps for the first sample

ν is a vector of probability jumps for the second sample

λ is a Lagrangian multiplier

θ is the hypothesized value of E(g(u, v))

Usage: The function is called as follows:

el2.test.wts(u,v,wu,wv,mu0,nu0,indicmat,mean)
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Arguments:

u vector of uncensored data for first sample

v vector of uncensored data for second sample

wu vector of weights for u

wv vector of weights for v

mu0 vector of probability jumps for u

nu0 vector of probability jumps for v

indicmat a matrix [g(ui, vj)−mean] where g(u, v) is a user-chosen function

mean is the hypothesized value of θ = E(g(u, v))

Details: This function is called by el2.cen.EMs and would not typically be accessed

by the user. It is listed here for reference.

The value of mean should be chosen between the maximum and minimum values

of g(ui, vj); otherwise there may be no distributions for u and v that will satisfy the

the mean-type hypothesis. If mean is inside this interval, but the convergence is still

not satisfactory, then the value of mean should be moved closer to the NPMLE for

E(g(u, v)). (The NPMLE itself should always be a feasible value for mean.)

Value: el2.test.wts returns a list of values as follows:

u vector of uncensored data for the first sample

wu vector of weights for u

jumpu vector of probability jumps for u

v vector of uncensored data for the second sample

wv vector of weights for v
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jumpv vector of probability jumps for v

lam value of the Lagrangian multipler found by the calculations
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el2.test.wtm

Computes maximum-likelihood probability jumps for multiple mean-type hypotheses,

based on two independent uncensored samples.

Description: This function computes the maximum-likelihood probability jumps for

multiple mean-type hypotheses, based on two samples that are independent, uncen-

sored, and weighted. The target function for the maximization is the constrained

log(empirical likelihood) which can be expressed as,

∑
dxi=1wxi log µi +

∑
dyj=1wyj log νj − η(1−

∑
dxi=1 µi)− δ(1−

∑
dyj=1 νj)

− (µTH1ν, . . . , µ
THpν) λ

where the variables are defined as follows:

x is a vector of data for the first sample

y is a vector of data for the second sample

wx is a vector of weights for the first sample

wy is a vector of weights for the second sample

µ is a vector of probability jumps for the first sample

ν is a vector of probability jumps for the second sample

Hk = a matrix [gk(xi, yj)−meank], where k = 1, . . . , p

gk(x, y) is a user-chosen function

mean is a vector of length p of hypothesized means

λ is a vector of Lagrangian multipliers
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Usage: The function is called as follows:

el2.test.wtm(xd1,yd1,wxd1new, wyd1new, muvec, nuvec, Hu, Hmu, Hnu, p,

mean)

Arguments:

xd1 vector of uncensored data for first sample

yd vector of uncensored data for second sample

wxd1new vector of weights for xd1

wyd1new vector of weights for yd1

muvec vector of probability jumps for xd1

nuvec vector of probability jumps for yd1

Hu equals [H1 − [mean1], . . . , Hp − [meanp]], dxi = 1, dyj = 1

Hmu a matrix (see code listing for its calculation)

Hnu a matrix (see code listing for its calculation)

p the number of hypotheses

mean vector of hypothesized values of E(gk(u, v)), k = 1, . . . , p

Details: This function is called by el2.cen.EMm and is not intended to be accessed

by the user. It is listed here for reference.

The value of meank should be chosen between the maximum and minimum val-

ues of gk(xd1i, yd1j); otherwise there may be no distributions for xd1 and yd1 that

will satisfy the the mean-type hypothesis. If meank is inside this interval, but the

convergence is still not satisfactory, then the value of meank should be moved closer

to the NPMLE for E(g(xd1, yd1)). (The NPMLE itself should always be a feasible

value for meank.)
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Value: el2.test.wtm returns a list of values as follows:

constmat a matrix whose kth row is µTHkν, k = 1, . . . , p

lam vector of Lagrangian mulipliers

muvec1 vector of probability jumps for xd1

nuvec1 vector of probability jumps for yd1

mean vector of hypothesized means
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myWCY, myWKM, myWdataclean2, myWdataclean3

These four functions are not intended to be accessed by the user. They are listed

here with brief descriptions for reference.

Description:

myWCY calculates the weighted Chang-Yang self-consistent estimator for

doubly-censored data. It is called by el2.cen.EMs and el2.cen.EMm.

myWKM calculates the weighted Kaplan-Meier estimator for right-censored data.

It is called by el2.cen.EMs and el2.cen.EMm.

myWdataclean2 sorts the data, collapses the true ties, and puts the number of

tied values as the weights. It is called by el2.cen.EMs.

myWdataclean3 sorts the data, collapses the true ties, and puts the number of

tied values as the weights. It is called by myWCY and myWKM .

Usage: The four functions are called as follows:

myWCY(x, d, zc = rep(1, length(d)), wt = rep(1, length(d)))

myWKM(x, d, zc = rep(1, length(d)), w = rep(1, length(d)))

myWdataclean2(z, d, wt = rep(1, length(z)))

myWdataclean3(z, d, zc = rep(1, length(z)), wt = rep(1, length(z)))
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A.2 Annotated Listing of Function Code

Annotated code for el2.cen.EMs

el2.cen.EMs<-function(x,dx,y,dy,fun=function(x,y) {x>=y}, mean=0.5,

maxit=25, ...){

#x,y pairs can be any combination of uncensored, left-cens,

#right-cens. Data can be discrete or continuous. Note that x>y is

#not the same as x>=y for discrete data

#Store data x,y as vectors.

xvec <- as.vector(x)

yvec <- as.vector(y)

#Store length of xvec,yvec.

nx <- length(xvec)

ny <- length(yvec)

#Check that there are at least 2 data in x,y.

if (nx <= 1)

stop("need more observations in x")

if (ny <= 1)

stop("need more observations in y")

#Check that status and observations have same length in x,y.

if (length(dx) != nx)

stop("length of x and dx must agree")
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if (length(dy) != ny)

stop("length of y and dy must agree")

#Check that status are only 0,1,2.

if (any((dx != 0) & (dx != 1) & (dx != 2)))

stop("dx must be 0(right-censored) or 1(uncensored) or 2(left-

censored")

if (any((dy != 0) & (dy != 1) & (dy != 2)))

stop("dy must be 0(right-censored) or 1(uncensored) or 2(left-

censored")

#Check that xvec,yvec are numeric (for example, no NA values).

if (!is.numeric(xvec))

stop("x must be numeric")

if (!is.numeric(yvec))

stop("y must be numeric")

#Check that mean has dimension 1.

if (length(mean) != 1)

stop("mean must have dimension 1")

#"Clean" data using fcn myWdataclean2="weighted dataclean 2"

temp1x <- myWdataclean2(xvec, dx)

temp1y <- myWdataclean2(yvec, dy)

#Redefine x,y as ascending, distinct data values.

x <- temp1x$value
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y <- temp1y$value

#Redefine status dx,dy corresponding to redefined x,y.

dx <- temp1x$dd

dy <- temp1y$dd

#Define weights wx,wy as the number of data at each distinct value.

wx <- temp1x$weight

wy <- temp1y$weight

#Set highest of all status 1,0 to 1.

xindex10 <- which(dx != 2)

yindex10 <- which(dy != 2)

dx[xindex10[length(xindex10)]] <- 1

dy[yindex10[length(yindex10)]] <- 1

#Set lowest of all status 1,2 to 1.

xindex12 <- which(dx != 0)

yindex12 <- which(dy != 0)

dx[xindex12[1]] <- 1

dy[yindex12[1]] <- 1

#Put censored,uncensored data into respective vectors.

xd0 <- x[dx == 0]

wxd0 <- wx[dx == 0]

xd1 <- x[dx == 1]

wxd1 <- wx[dx == 1]

xd2 <- x[dx == 2]

wxd2 <- wx[dx == 2]

yd0 <- y[dy == 0]

wyd0 <- wy[dy == 0]

yd1 <- y[dy == 1]
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wyd1 <- wy[dy == 1]

yd2 <- y[dy == 2]

wyd2 <- wy[dy == 2]

#Check that there are at least 2 uncensored data for x,y.

if (length(xd1) <= 1)

stop("need more distinct uncensored x obs.")

if (length(yd1) <= 1)

stop("need more distinct uncensored y obs.")

#Store vector lengths.

nx0 <- length(xd0)

ny0 <- length(yd0)

nx1 <- length(xd1)

ny1 <- length(yd1)

nx2 <- length(xd2)

ny2 <- length(yd2)

nx <- length(x)

ny <- length(y)

#LR denominator (unconstrained):

#Doubly-censored case.

if ( (nx0>0) & (nx2>0 ) ) {

temp2x <- myWCY(x = x, d = dx, wt = wx)

logelx00 <- temp2x$logEL

jumpxu <- temp2x$jump

#Adjust xd1, nx1 etc. to reflect repeat data with different

#censoring.

xd1<-temp2x$xd1
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nx1<-length(xd1)

wxd1<-temp2x$wd1

xd0<-temp2x$xd0

nx0<-length(xd0)

wxd0<-temp2x$wd0

}

if ( (ny0>0) & (ny2>0 ) ) {

temp2y <- myWCY(x = y, d = dy, wt = wy)

logely00 <- temp2y$logEL

jumpyu <- temp2y$jump

#Adjust yd1, ny1 etc. to reflect repeat data with different

#censoring.

yd1<-temp2y$xd1

ny1<-length(yd1)

wyd1<-temp2y$wd1

yd0<-temp2y$xd0

ny0<-length(yd0)

wyd0<-temp2y$wd0

}

#Right-censored case.

if ( (nx0>0) & (nx2==0 ) ) {

temp2x <- myWKM(x = x, d = dx, w = wx)

logelx00 <- temp2x$logel

jumpxu <- temp2x$jump[temp2x$jump>0]

#Adjust xd1, nx1 etc. to reflect repeat data with different

#censoring.

xd1<-temp2x$times[temp2x$jump>0]
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nx1<-length(xd1)

wxd1<-temp2x$weight[temp2x$jump>0]

xd0<-temp2x$times[temp2x$jump==0]

nx0<-length(xd0)

wxd0<-temp2x$weight[temp2x$jump==0]

}

if ( (ny0>0) & (ny2==0 ) ) {

temp2y <- myWKM(x = y, d = dy, w = wy)

logely00 <- temp2y$logel

jumpyu <- temp2y$jump[temp2y$jump>0]

#Adjust yd1, ny1 etc. to reflect repeat data with different

#censoring.

yd1<-temp2y$times[temp2y$jump>0]

ny1<-length(yd1)

wyd1<-temp2y$weight[temp2y$jump>0]

yd0<-temp2y$times[temp2y$jump==0]

ny0<-length(yd0)

wyd0<-temp2y$weight[temp2y$jump==0]

}

#Left-censored case.

if ( (nx0==0) & (nx2>0 ) ) {

dlx <- dx

dlx [dlx == 2] <- 0

temp2x <- myWKM(x = x, d = rev(dlx), w = rev(wx))

logelx00 <- temp2x$logel

jumpxu <- rev(temp2x$jump[temp2x$jump>0])

#Adjust xd1, nx1 etc. to reflect repeat data with different
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# censoring.

xd1<-temp2x$times[rev(temp2x$jump)>0]

nx1<-length(xd1)

wxd1<-rev(temp2x$weight)[rev(temp2x$jump)>0]

xd2<-temp2x$times[rev(temp2x$jump)==0]

nx2<-length(xd2)

wxd2<-rev(temp2x$weight)[rev(temp2x$jump)==0]

}

if ( (ny0==0) & (ny2>0 ) ) {

dly <- dy

dly[dly == 2] <- 0

temp2y <- myWKM(x = y, d = rev(dly), w = rev(wy))

logely00 <- temp2y$logel

jumpyu <- rev(temp2y$jump[temp2y$jump>0])

#Adjust yd1, ny1 etc. to reflect repeat data with different

#censoring.

yd1<-temp2y$times[rev(temp2y$jump)>0]

ny1<-length(yd1)

wyd1<-rev(temp2y$weight)[rev(temp2y$jump)>0]

yd2<-temp2y$times[rev(temp2y$jump)==0]

ny2<-length(yd2)

wyd2<-rev(temp2y$weight)[rev(temp2y$jump)==0]

}

#Uncensored case.

if ( (nx0==0) & (nx2==0 ) ) {

logelx00 <- sum(wxd1 * log(wxd1/sum(wxd1)))

jumpxu <- wxd1/sum(wxd1)
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}

if ( (ny0==0) & (ny2==0 ) ) {

logely00 <- sum(wyd1 * log(wyd1/sum(wyd1)))

jumpyu <- wyd1/sum(wyd1)

}

#Calculate likelihood.

logel00 <- logelx00 + logely00

#Calculate NPMLE.

indic <- matrix(NA,nrow=nx1,ncol=ny1)

for (i in 1:nx1) {

for (j in 1:ny1) {

indic[i,j] <- fun(xd1[i],yd1[j]) } }

indicmat <- indic - mean

funNPMLE=as.vector(jumpxu %*% indic %*% jumpyu)

#LR numerator (constrained):

#Initialize muvec,nuvec.

muvec <- jumpxu

nuvec <- jumpyu

#Initialize kx,ky and kkx,kky.

#For each rt-cens x,y value, kx,ky holds xd1,yd1 index of first

#uncensored value to its right.

#For each left-censored value, kkx,kky holds xd1,yd1 index of first

#uncensored value to its left.

if (nx0>0) {

kx <- rep(NA, nx0)

for (i in 1:nx0) {kx[i] <- 1 + nx1 - sum(xd1 > xd0[i])}
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}

if (nx2>0) {

kkx <- rep(NA, nx2)

for (i in 1:nx2) {kkx[i] <- sum(xd1 < xd2[i])}

}

if (ny0>0) {

ky <- rep(NA, ny0)

for (j in 1:ny0) {ky[j] <- 1 + ny1 - sum(yd1 > yd0[j])}

}

if (ny2>0) {

kky <- rep(NA, ny2)

for (j in 1:ny2) {kky[j] <- sum(yd1 < yd2[j])}

}

#Initialize iteration counter num and log-likelihood-holder

#logvec.

num <- 1

logvec <- rep(0,maxit)

#Repeat EM repeatedly for maxit iterations.

while (num <= maxit) {

#Initialize weights wxd1new,wyd1new.

wxd1new <- wxd1

wyd1new <- wyd1

#Perform Expectation step on uncensored x,y weights.

if (nx0>0) {

surx <- rev(cumsum(rev(muvec)))

for (i in 1:nx0) {wxd1new[kx[i]:nx1] <- wxd1new[kx[i]:nx1] +

wxd0[i] * muvec[kx[i]:nx1]/surx[kx[i]] }
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}

if (nx2>0) {

cdfx <- cumsum(muvec)

for (i in 1:nx2) {wxd1new[1:kkx[i]] <- wxd1new[1:kkx[i]] +

wxd2[i] * muvec[1:kkx[i]]/cdfx[kkx[i]] }

}

if (ny0>0) {

sury <- rev(cumsum(rev(nuvec)))

for (j in 1:ny0) {wyd1new[ky[j]:ny1] <- wyd1new[ky[j]:ny1] +

wyd0[j] * nuvec[ky[j]:ny1]/sury[ky[j]] }

}

if (ny2>0) {

cdfy <- cumsum(nuvec)

for (j in 1:ny2) {wyd1new[1:kky[j]] <- wyd1new[1:kky[j]] +

wyd2[j] * nuvec[1:kky[j]]/cdfy[kky[j]] }

}

#Perform Maximization step on uncensored x,y jumps.

temp3 <- el2.test.wts(xd1, yd1, wxd1new, wyd1new, muvec,

nuvec, indicmat, mean)

muvec <- temp3$jumpu

nuvec <- temp3$jumpv

#Calculate loglikelihood so its convergence can be tracked.

logelx <- sum(wxd1 * log(muvec))

if (nx0>0) {

surx <- rev(cumsum(rev(muvec)))

logelx <- logelx + sum(wxd0 * log(surx[kx]))

}
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if (nx2>0) {

cdfx <- cumsum(muvec)

logelx <- logelx + sum(wxd2 * log(cdfx[kkx]))

}

logely <- sum(wyd1 * log(nuvec))

if (ny0>0) {

sury <- rev(cumsum(rev(nuvec)))

logely <- logely + sum(wyd0 * log(sury[ky]))

}

if (ny2>0) {

cdfy <- cumsum(nuvec)

logely <- logely + sum(wyd2 * log(cdfy[kky]))

}

logel <- logelx + logely

logvec[num]<-logel

num <- num + 1

}

#Store -2log(likelihood ratio) in tval.

tval <- 2 * (logel00 - logel)

#Calculate constraint.

constraint <- as.vector(muvec %*% indicmat %*% t(nuvec))

#Return results of the el2.cen.EM function.

list(xd1=xd1,yd1=yd1,temp3=temp3, mean=mean, funNPMLE=

funNPMLE, logel00=logel00, logel=logel, "-2LLR"=tval,

Pval=1 - pchisq(tval, df = 1), logvec=logvec,

sum_muvec=sum(muvec), sum_nuvec=sum(nuvec),

constraint=constraint)}
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Annotated code for el2.cen.EMm

el2.cen.EMm<-function(x, dx, y, dy, p, H, xc=1:length(x),

yc=1:length(y), mean, maxit=25, ...) {

#x,y pairs can be any combination of uncensored, left-cens,

#right-cens.

#Check that p >= 2.

if (p <= 1)

stop("p must be 2 or greater")

#Check that p is integer.

if (floor(p) != p)

stop("p must be an integer")

#Store data as vectors.

xvec <- as.vector(x)

yvec <- as.vector(y)

dx <- as.vector(dx)

dy <- as.vector(dy)

mean <- as.vector(mean)

xc <- as.vector(xc)

yc <- as.vector(yc)

nx <- length(xvec)

ny <- length(yvec)

#Check that status and observations have same length in x,y.

if (length(dx) != nx)

stop("length of x and dx must agree")

if (length(dy) != ny)

stop("length of y and dy must agree")
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if (length(xc) != nx)

stop("length of xc and dx must agree")

if (length(dy) != ny)

stop("length of yc and dy must agree")

#Check that there are enough data in x,y.

if (nx <= length(mean))

stop("need more observations than length of mean in x")

if (ny <= 2*length(mean) + 1)

stop("need more observations than length of mean in y")

#Check that status are only 0,1,2.

if (any((dx != 0) & (dx != 1) & (dx != 2)))

stop("dx must be 0(right-censored) or 1(uncensored) or 2(left-

censored")

if (any((dy != 0) & (dy != 1) & (dy != 2)))

stop("dy must be 0(right-censored) or 1(uncensored) or 2(left-

censored")

#Check that xvec,yvec are numeric.

if (!is.numeric(xvec))

stop("x must be numeric")

if (!is.numeric(yvec))

stop("y must be numeric")

if (!is.numeric(mean))

stop ("mean must be numeric")

#Check that H dimensions are consistent with lengths of x,y.

if (dim(H)[1] != length(x) )

stop("dim(H)[1] must equal length(x)")

if (dim(H)[2] != p*length(y) )
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stop("dim(H)[2] must equal p*length(y)")

#"Clean" data using code from Wdataclean5

#("Weighted Dataclean5", found in emplik package by Dr. Mai Zhou).

#Clean x data.

niceorderx <- order(x, -dx)

x <- x[niceorderx]

dx <- dx[niceorderx]

wx <- wx[niceorderx]

xc <- xc[niceorderx]

t1 <- x[-1] != x[-nx]

t2 <- dx[-1] != dx[-nx]

t3 <- xc[-1] != xc[-nx]

t <- t1 | t2 | t3

ind <- c(which(t | is.na(t)), nx)

csumwx <- cumsum(wx)

x <- x[ind]

dx <- dx[ind]

wx <- diff(c(0, csumwx[ind]))

H <- as.matrix(H[niceorderx, ][ind,])

#Clean y data.

niceordery <- order(y, -dy)

y <- y[niceordery]

dy <- dy[niceordery]

wy <- wy[niceordery]

yc <- yc[niceordery]

t1 <- y[-1] != y[-ny]

t2 <- dy[-1] != dy[-ny]
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t3 <- yc[-1] != yc[-ny]

t <- t1 | t2 | t3

ind <- c(which(t | is.na(t)), ny)

csumwy <- cumsum(wy)

y <- y[ind]

dy <- dy[ind]

wy <- diff(c(0, csumwy[ind]))

for (k in 1:p) {

H[, ((k-1)*ny+1):(k*ny)] <-

H[, ((k-1)*ny+1):(k*ny)][,niceordery][,ind] }

#For data with status 0 or 1, set status of highest datum to 1.

xindex10 <- which(dx != 2)

yindex10 <- which(dy != 2)

dx[xindex10[length(xindex10)]] <- 1

dy[yindex10[length(yindex10)]] <- 1

# For data with status 2 or 1, set status of lowest datum to 1.

xindex12 <- which(dx != 0)

yindex12 <- which(dy != 0)

dx[xindex12[1]] <- 1

dy[yindex12[1]] <- 1

#Put censored,uncensored data into respective vectors.

xd0 <- x[dx == 0]

wxd0 <- wx[dx == 0]

xd1 <- x[dx == 1]

wxd1 <- wx[dx == 1]

xd2 <- x[dx == 2]

wxd2 <- wx[dx == 2]
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yd0 <- y[dy == 0]

wyd0 <- wy[dy == 0]

yd1 <- y[dy == 1]

wyd1 <- wy[dy == 1]

yd2 <- y[dy == 2]

wyd2 <- wy[dy == 2]

#Check that there are at least 2 uncensored data for x,y.

if (length(xd1) <= 1)

stop("need more distinct uncensored x obs.")

if (length(yd1) <= 1)

stop("need more distinct uncensored y obs.")

#Store vector lengths.

nx0 <- length(xd0)

ny0 <- length(yd0)

nx1 <- length(xd1)

ny1 <- length(yd1)

nx2 <- length(xd2)

ny2 <- length(yd2)

nx <- length(x)

ny <- length(y)

#LR denominator (unconstrained):

#Doubly-censored case.

if ( (nx0>0) & (nx2>0 ) ) {

temp2x <- myWCY(x = x, d = dx, wt = wx)

logelx00 <- temp2x$logEL

jumpxu <- temp2x$jump

}
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if ( (ny0>0) & (ny2>0 ) ) {

temp2y <- myWCY(x = y, d = dy, wt = wy)

logely00 <- temp2y$logEL

jumpyu <- temp2y$jump

}

#Right-censored case.

if ( (nx0>0) & (nx2==0 ) ) {

temp2x <- myWKM(x = x, d = dx, w = wx)

logelx00 <- temp2x$logel

jumpxu <- temp2x$jump[temp2x$jump>0]

}

if ( (ny0>0) & (ny2==0 ) ) {

temp2y <- myWKM(x = y, d = dy, w = wy)

logely00 <- temp2y$logel

jumpyu <- temp2y$jump[temp2y$jump>0]

}

#Left-censored case.

if ( (nx0==0) & (nx2>0 ) ) {

dlx <- dx

dlx [dlx == 2] <- 0

temp2x <- myWKM(x = x, d = rev(dlx), w = rev(wx))

logelx00 <- temp2x$logel

jumpxu <- rev(temp2x$jump[temp2x$jump>0])

}

if ( (ny0==0) & (ny2>0 ) ) {

dly <- dy

dly[dly == 2] <- 0
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temp2y <- myWKM(x = y, d = rev(dly), w = rev(wy))

logely00 <- temp2y$logel

jumpyu <- rev(temp2y$jump[temp2y$jump>0])

}

#Uncensored case.

if ( (nx0==0) & (nx2==0 ) ) {

logelx00 <- sum(wxd1 * log(wxd1/sum(wxd1)))

jumpxu <- wxd1/sum(wxd1)

}

if ( (ny0==0) & (ny2==0 ) ) {

logely00 <- sum(wyd1 * log(wyd1/sum(wyd1)))

jumpyu <- wyd1/sum(wyd1)

}

#Calculate likelihood.

logel00 <- logelx00 + logely00

#Calculate NPMLE.

NPMLE=rep(NA,p)

H1 <- as.matrix(H[which(dx==1),])

for (j in 1:p) {

H2 <- H1[,((j-1)*ny+1):(j*ny)]

H2 <- H2[,which(dy==1)]

NPMLE[j]=jumpxu%*%H2%*%jumpyu

}

#LR numerator (constrained):

#Create mean-centered H, denoted as Hmc.

Hmc <- matrix(NA, nrow=nx, ncol=p*ny)

for (k in 1:p) {
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M <- matrix(mean[k], nrow=nx, ncol=ny)

Hmc[,((k-1)*ny+1):(k*ny)] <-

H[,((k-1)*ny+1):(k*ny)] - M }

#Create uncensored version of Hmc, denoted as Hu.

whichdx <- which(dx == 1)

whichdy <- which(dy == 1)

Hu <- matrix(NA, nrow=nx1,ncol=p*ny1)

for (k in 1:p) {

Hu[,((k-1)*ny1+1):(k*ny1)] <-

Hmc[,((k-1)*ny+1):(k*ny)][whichdx,whichdy] }

#Calculate Hmu and Hnu matrices (mean-centered).

Hmu <- matrix(NA,nrow=p, ncol=ny1*nx1)

Hnu <- matrix(NA,nrow=p, ncol=ny1*nx1)

for (i in 1:p) {

for (k in 1:nx1) {

Hmu[i, ((k-1)*ny1+1):(k*ny1)] <-

Hu[k,((i-1)*ny1+1):(i*ny1)] } }

for (i in 1:p) {

for (k in 1:ny1) {

Hnu[i,((k-1)*nx1+1):(k*nx1)] <- Hu[(1:nx1),(i-1)*ny1+k]} }

#Initialize muvec,nuvec using unconstrained jumps.

muvec <- jumpxu

nuvec <- jumpyu

#Initialize kx,ky and kkx,kky.
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#For each rt-cens x,y value, kx,ky holds xd1,yd1 index of first

#uncensored value to its right.

#For each left-censored value, kkx,kky holds xd1,yd1 index of

#first uncensored value to its left

if (nx0>0) {

kx <- rep(NA, nx0)

for (i in 1:nx0) {kx[i] <- 1 + nx1 - sum(xd1 > xd0[i])}

}

if (nx2>0) {

kkx <- rep(NA, nx2)

for (i in 1:nx2) {kkx[i] <- sum(xd1 < xd2[i])}

}

if (ny0>0) {

ky <- rep(NA, ny0)

for (j in 1:ny0) {ky[j] <- 1 + ny1 - sum(yd1 > yd0[j])}

}

if (ny2>0) {

kky <- rep(NA, ny2)

for (j in 1:ny2) {kky[j] <- sum(yd1 < yd2[j])}

}

#Initialize iteration counter num and log-likelihood-holder

#logvec.

num <- 1

logvec <- rep(0,maxit)

#Repeat EM repeatedly for maxit iterations.

while (num <= maxit) {

#Initialize weights wxd1new,wyd1new.
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wxd1new <- wxd1

wyd1new <- wyd1

#Perform Expectation step on uncensored x,y weights.

if (nx0>0) {

surx <- rev(cumsum(rev(muvec)))

for (i in 1:nx0) {wxd1new[kx[i]:nx1] <- wxd1new[kx[i]:nx1] +

wxd0[i] * muvec[kx[i]:nx1]/surx[kx[i]] }

}

if (nx2>0) {

cdfx <- cumsum(muvec)

for (i in 1:nx2) {wxd1new[1:kkx[i]] <- wxd1new[1:kkx[i]] +

wxd2[i] * muvec[1:kkx[i]]/cdfx[kkx[i]] }

}

if (ny0>0) {

sury <- rev(cumsum(rev(nuvec)))

for (j in 1:ny0) {wyd1new[ky[j]:ny1] <- wyd1new[ky[j]:ny1] +

wyd0[j] * nuvec[ky[j]:ny1]/sury[ky[j]] }

}

if (ny2>0) {

cdfy <- cumsum(nuvec)

for (j in 1:ny2) {wyd1new[1:kky[j]] <- wyd1new[1:kky[j]] +

wyd2[j] * nuvec[1:kky[j]]/cdfy[kky[j]] }

}

#Perform Maximization step on uncensored x,y jumps.

temp3 <- el2.test.wtm(wxd1new, wyd1new, muvec,

nuvec, Hu, Hmu, Hnu, p)

muvec <- temp3$muvec1
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nuvec <- temp3$nuvec1

#Calculate loglikelihood so its convergence can be tracked.

logelx <- sum(wxd1 * log(muvec))

if (nx0>0) {

surx <- rev(cumsum(rev(muvec)))

logelx <- logelx + sum(wxd0 * log(surx[kx]))

}

if (nx2>0) {

cdfx <- cumsum(muvec)

logelx <- logelx + sum(wxd2 * log(cdfx[kkx]))

}

logely <- sum(wyd1 * log(nuvec))

if (ny0>0) {

sury <- rev(cumsum(rev(nuvec)))

logely <- logely + sum(wyd0 * log(sury[ky]))

}

if (ny2>0) {

cdfy <- cumsum(nuvec)

logely <- logely + sum(wyd2 * log(cdfy[kky]))

}

logel <- logelx + logely

logvec[num]<- logel

num <- num + 1

}

#Store -2log(likelihood ratio) in tval.

tval <- 2 * (logel00 - logel)

#Return results of the el2.cen.EM function.
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list(xd1=xd1,yd1=yd1,temp3=temp3, mean=mean, NPMLE=

NPMLE, logel00=logel00, logel=logel, "-2LLR"=tval,

Pval=1 - pchisq(tval, df = length(mean)), logvec=logvec,

sum_muvec=sum(muvec), sum_nuvec=sum(nuvec) )

}
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Annotated code for el2.test.wts

el2.test.wts <- function (u,v,wu,wv,mu0,nu0,indicmat,mean) {

#If mean is not a scalar then stop.

if (length(mean) != 1)

stop("mean must be a scalar")

#Calculate scalars to be used in calculations.

sumwu <- sum(wu)

sumwv <- sum(wv)

nu <- length(u)

nv <- length(v)

#Calculate matrix and vectors to be used in calculations.

indic4mu <- nu0 %*% t(indicmat)

indic4nu <- mu0 %*% indicmat

#Calculate the delta for lam search.

du <- 0.02 * sumwu/abs(sum(indic4mu))

dv <- 0.02 * sumwv/abs(sum(indic4nu))

dd <- min(du,dv)

#Define lamfun, where lamfun(true lam) = 0.

lamfun <- function(lam, wu, wv, sumwu, sumwv, indic4mu,

indic4nu, indicmat) {

mu <- wu/(sumwu+lam*indic4mu)
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nu <- wv/(sumwv+lam*indic4nu)

return(mu %*% indicmat %*% t(nu))

}

#Find upper and lower bounds on lam, for uniroot.

if (lamfun(0, wu, wv, sumwu, sumwv, indic4mu,

indic4nu,indicmat) == 0)

lam0 <- 0 else

{if (lamfun(0, wu, wv, sumwu, sumwv, indic4mu,

indic4nu,indicmat) > 0)

{lo <- 0

up <- dd

while (lamfun(up, wu, wv, sumwu, sumwv, indic4mu,

indic4nu,indicmat) > 0)

{up <- up + dd} } else

{up <- 0

lo <- -dd

while (lamfun(lo, wu, wv, sumwu, sumwv, indic4mu,

indic4nu,indicmat) < 0)

{lo <- lo - dd}}}

#Find lam using uniroot.

lam <- uniroot(lamfun, lower = lo, upper = up,

tol = 1e-09, wu=wu, wv=wv, sumwu=sumwu, sumwv=sumwv,

indic4mu=indic4mu, indic4nu=indic4nu, indicmat=indicmat)$root
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#Calculate updated mu1,nu1 using the lagrangian lam.

mu1 <- wu/(sumwu + lam * nu0 %*% t(indicmat))

nu1 <- wv/(sumwv + lam * mu0 %*% indicmat)

#List the original data & weights plus the p_i ,lam0, and mean.

list(u=u, wu=wu, jumpu=mu1, v=v, wv=wv, jumpv=nu1, lam=lam, mean)

}
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Annotated code for el2.test.wtm

el2.test.wtm <- function (wxd1new, wyd1new, muvec, nuvec, Hu, Hmu,

Hnu, p, maxit=10) {

#Initialize vectors and scalars

lam <- rep(0,p)

nx1 <- length(muvec)

ny1 <- length(nuvec)

swxd1 <- sum(wxd1new)

swyd1 <- sum(wyd1new)

constmat <- matrix(NA, nrow=maxit, ncol=p)

for (r in 1:maxit) {

#Calculate muvec1

muvec1 <- rep(NA, nx1)

for (k in 1:nx1) {

muvec1[k] <- wxd1new[k] / abs(swxd1 + lam %*%

Hmu[,((k-1)*ny1+1):(k*ny1)] %*% nuvec)

}

#Calculate nuvec1

nuvec1 <- rep(NA, ny1)

for (k in 1:ny1) {

nuvec1[k] <- wyd1new[k] / abs(swyd1 + lam %*%

Hnu[,((k-1)*nx1+1):(k*nx1)] %*% muvec)

}

#Calculate constraint vector
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constraint <- rep(NA, p)

for (k in 1:p) {

constraint[k] <- muvec1 %*% Hu[,((k-1)*ny1+1):(k*ny1)] %*% nuvec1

}

#Calculate constraintp matrix (derivative of constraint vector wrt

#lam)

constraintp <- matrix(0, nrow=p, ncol=p) for (b in 1:p) {

for (k in 1:p) {

Hb <- Hu[, ((b-1)*ny1+1):(b*ny1)]

Hk <- Hu[, ((k-1)*ny1+1):(k*ny1)]

fact1 <- as.vector((Hk%*%nuvec)*(muvec1^2)/wxd1new)

fact2 <- as.vector((muvec%*%Hk)*(nuvec1^2)/wyd1new)

for (i in 1:nx1) {

for (j in 1:ny1) {

constraintp[k,b] <- constraintp[k,b] -

Hb[i,j] * (nuvec1[j]*fact1[i] +

muvec1[i]*fact2[j]) } } } }

constmat[r,] <- constraint

#Run Newton-Raphson routine

lam1 <- lam - constraint %*% solve(constraintp)

lam <- lam1 }

list(constmat=constmat, lam=lam1, muvec1=muvec1,

nuvec1=nuvec1) }
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Code for myWKM

myWKM<-function (x, d, zc = rep(1, length(d)), w = rep(1,

length(d))) {

if (any((d != 0) & (d != 1)))

stop("d must be 0(right-censored) or 1(uncensored)")

temp <- myWdataclean3(x, d, zc, w)

dd <- temp$dd

ww <- temp$weight

dd[length(dd)] <- 1

allrisk <- rev(cumsum(rev(ww)))

survP <- cumprod(1 - (dd * ww)/allrisk)

jumps <- -diff(c(1, survP))

logel <- sum(ww[dd == 1] * log(jumps[dd == 1])) + sum(ww[dd ==

0] * log(survP[dd == 0]))

list(times = temp$value, jump = jumps, surv = survP, logel = logel,

weight=ww)

}
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Code for myWCY

myWCY <- function (x, d, zc = rep(1, length(d)), wt = rep(1,

length(d)), maxit = 25, error = 1e-09) {

xvec <- as.vector(x)

nn <- length(xvec)

if (nn <= 1)

stop("Need more observations")

if (length(d) != nn)

stop("length of x and d must agree")

if (any((d != 0) & (d != 1) & (d != 2)))

stop("d must be 0(right-censored) or 1(uncensored)

or 2(left-censored)")

if (!is.numeric(xvec))

stop("x must be numeric")

temp <- myWdataclean3(z = xvec, d = d, zc = zc, wt = wt)

x <- temp$value

d <- temp$dd

w <- temp$weight

INDEX10 <- which(d != 2)

d[INDEX10[length(INDEX10)]] <- 1

INDEX12 <- which(d != 0)

d[INDEX12[1]] <- 1

xd1 <- x[d == 1]

if (length(xd1) <= 1)

stop("need more distinct uncensored obs.")

xd0 <- x[d == 0]
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xd2 <- x[d == 2]

wd1 <- w[d == 1]

wd0 <- w[d == 0]

wd2 <- w[d == 2]

m <- length(xd0)

mleft <- length(xd2)

if ((m > 0) && (mleft > 0)) {

pnew <- wd1/sum(wd1)

n <- length(pnew)

k <- rep(NA, m)

for (i in 1:m) {

k[i] <- 1 + n - sum(xd1 > xd0[i])

}

kk <- rep(NA, mleft)

for (j in 1:mleft) {

kk[j] <- sum(xd1 < xd2[j])

}

num <- 1

while (num < maxit) {

wd1new <- wd1

sur <- rev(cumsum(rev(pnew)))

cdf <- 1 - c(sur[-1], 0)

for (i in 1:m) {

wd1new[k[i]:n] <- wd1new[k[i]:n] + wd0[i]

* pnew[k[i]:n]/sur[k[i]]

}

for (j in 1:mleft) {
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wd1new[1:kk[j]] <- wd1new[1:kk[j]] + wd2[j] *

pnew[1:kk[j]]/cdf[kk[j]]

}

pnew <- wd1new/sum(wd1new)

num <- num + 1

}

sur <- rev(cumsum(rev(pnew)))

cdf <- 1 - c(sur[-1], 0)

logel <- sum(wd1 * log(pnew)) + sum(wd0 * log(sur[k])) +

sum(wd2 * log(cdf[kk]))

}

return(list(logEL = logel, time = xd1, jump = pnew, surv = 1 -

cdf, prob = cdf, xd1 = xd1, xd0 = xd0, xd2 = xd2, wd1 = wd1,

wd0 = wd0, xd2 = wd2))

}
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Annotated code for myWdataclean2

myWdataclean2<-function (z, d, wt = rep(1, length(z))) {

#sort z,d,wt (ascending) wrt z, using -d to order ties

niceorder <- order(z, -d)

sortedz <- z[niceorder]

sortedd <- d[niceorder]

sortedw <- wt[niceorder]

#store length of sortedd in n

n <- length(sortedd)

#y1 checks for jumps in sortedz using offsets of sortedz

y1 <- sortedz[-1] != sortedz[-n]

#y2 checks for "jumps" in sortedd

y2 <- sortedd[-1] != sortedd[-n]

#y checks for jumps (in sortedz or sortedd) using y1 and y2

y <- y1 | y2

#ind stores jump indices (final index will be n)

ind <- c(which(y | is.na(y)), n)

#csum is cumulative sum of the weights

csumw <- cumsum(sortedw)

#value contains the (unique) obs in sortedz

#dd contains the status of obs in sortedz

#weight has the weights of the obs in sortedz

list(value = sortedz[ind], dd = sortedd[ind],

weight = diff(c(0,csumw[ind])))

}
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Annotated code for myWdataclean3

myWdataclean3<-function (z, d, zc = rep(1, length(z)), wt = rep(1,

length(z))) {

#sort z,d,wt (ascending) wrt z, using -d to order ties

niceorder <- order(z, -d)

sortedz <- z[niceorder]

sortedd <- d[niceorder]

sortedw <- wt[niceorder]

sortedzc <- zc[niceorder]

#store length of sortedd in n

n <- length(sortedd)

#y1 checks for jumps in sortedz using offsets of sortedz

y1 <- sortedz[-1] != sortedz[-n]

#y2 checks for "jumps" in sortedd

y2 <- sortedd[-1] != sortedd[-n]

#y3 checks for "jumps" in sortedzc

y3 <- sortedzc[-1] != sortedzc[-n]

#y checks for jumps (in sortedz or sortedd or sortedzc) using

#y1,y2,y3

y <- y1 | y2 | y3

#ind stores jump indices (final index will be n)

ind <- c(which(y | is.na(y)), n)

#csum is cumulative sum of the weights

csumw <- cumsum(sortedw)

#value contains the (unique) obs in sortedz

#dd contains the status of obs in sortedz
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#weight has the weights of the obs in sortedz

list(value = sortedz[ind], dd = sortedd[ind], weight = diff(c(0,

csumw[ind])))

}

Copyright c© William H. Barton, 2010.
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Appendix B: Simulation Code

The annotated code used to generate the probability plots in Figures 3.1 to 3.6 and

the change-point simulation in section 5.1 is listed below.

In Figures 3.1 to 3.4 we generate 5000 sets of (x,y) pairs, where x and y have the

same Weibull distribution and x and y both have length 50. For each (x,y) pair we

also calculate the corresponding value of −2ELLR using el.cen.EMs. We then plot

−2ELLR against the corresponding 5000 quantiles of the χ2
(1) distribution.

In all cases the hypothesis is that P (x ≥ y) = 0.5, which is of course true since x

and y have the same distribution. We therefore expect that −2ELLR based on Ho

will asymptotically follow a χ2
(1) distribution, as surmised in Chapter 3. This is seen

to be true in all four plots since all four plots closely follow the 45-degree straight line

(except for the extreme-right tail). As noted in chapter 3, this (informally) validates

the use of the χ2
(1) distribution to calculate an approximate p-value for Ho.

In Figure 3.5 we generate 5000 sets of (x,y) pairs, where x and y have Weibull

distributions with different means and x and y both have length 50. For each (x,y)

pair we also calculate the corresponding value of −2ELLR using el.cen.EMs. We

then plot −2ELLR against the corresponding 5000 quantiles of the χ2
(1) distribution.

In this case the hypothesis is that E(X − Y ) = 0 which is not true. We therefore

do not expect that −2ELLR based on Ho will asymptotically follow a χ2
(1) distri-

bution. And in fact −2ELLR does not follow a χ2
(1) distribution since it deviates

significantly from the 45-degree straight line.
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In Figure 3.6 we plot the same 5000 values of −2LLR from Figure 3.5 against

the corresponding 5000 quantiles of the χ2
(df=1,ncp=0.85) distribution, where ncp=0.85

is a non-centrality parameter found by trial and error. The plot follows the 45-degree

straight line up to a quantile of about 7.5. which corresponds to a percentile of 96.5.

This suggests that −2LLR follows a non-central χ2
(1) distribution when Ho is false

and the alternate hypothesis is true.
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R-Code for Uncensored Probability Plot, Fig. 3.1

#Produce a Probability Plot, Uncensored Data

N=50

M=1

#Calculate chisq(1) quantiles for sample of N

orderx=qchisq(1:N/(N+1),1)

#Calculate N values of -2LLR

mymatrixu2=matrix(0,nrow=M,ncol=N)

dx=rep(1,50)

dy=rep(1,50)

for (i in 1:M){

for (j in 1:N) {

dummy=round(rweibull(100,shape=0.8662,scale=985.9))

x=dummy[1:50]

y=dummy[51:100]

dummy2=el2.cen.EMs(x=x,dx=dx,y=y,dy=dy)

mymatrixu2[i,j]=dummy2$"-2LLR" } }

for (i in 1:M) {

mymatrixu2[i,]=sort(mymatrixu2[i,])}

ordery=apply(mymatrixu2,2,mean)

#Plot -2LLR values vs chisq(1) values

plot(orderx,ordery,xlab="Chisq(1) Quantiles", ylab="Sorted

-2LLR Values", main="Probability Plot for 5000
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Uncensored Data Sets")

abline(0,1)
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R-Code for Right-Censored Probability Plot, Fig. 3.2

simulatr=function(nx=50, ny=50, weib=T, expon=T,

shape=0.8662, scale=985.9, mu=6.6, sigma2=1) {

#The simulatr function simulates a two-sample data set from a

#survival study. Both samples have the same Weibull(shape,scale)

#distribution (or alternatively the same lognormal(mu,sigma^2)

#distribution). Both are right-censored.

#The default settings give an avg censoring rate of about 23%.

#nx is the number of data in the x-sample

#ny is the number of data in the y-sample

#weib is indicator whether to use Weibull to generate durations

#shape is the Weibull shape parameter

#scale is the Weibull scale parameter

#mu is the mean of the log of the durations

#sigma2 is the variance of the log of the durations

#Distributions are parameterized as follows:

#Weibull cdf F(t) = 1 - exp(-(t/scale)^shape)

#Lognormal pdf f(t)=(1/(x*sqrt(2*pi*sigma2))*

#exp(-(log(t)-mu)^2/(2*sigma2))

#For reference, calculate the true population mean

if (weib==T) {truemean=scale*gamma((shape+1)/shape)

} else {truemean= exp(mu+0.5*sigma2)}
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#Generate nx+ny random Weibull(shape,scale) data (or

#lognormal(mu,sigma2) data if weib=F).

n=nx+ny

if (weib==T) {mydata=round(rweibull(n,shape,scale))

} else {mydata=round(rlnorm(n,meanlog=mu,sdlog=sigma2^0.5))}

#myend is the length of the study

myend=2000

#We allow subjects to enter the study up to the half-way point

#Calculate cutoff (which is the last day to enter the study).

cutoff=round(0.5*myend)

#Weight contains probabilities associated with entering on each day

#Use an exponential weight if expon=T

if (expon==T) {weight= exp(-(1:cutoff)/cutoff)

#Otherwise use the same weight for all days

} else {weight=rep(1,cutoff)}

#days contains the allowable entry days

days=1:cutoff

#Generate nx+ny random times of entry into study.

#The entry-day weights are exponential if expon=T.

#The entry-day weights are uniform if expon=F.

entry=sample(days, size=n, prob=weight, replace=T)
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#Generate nx+ny random Weibull(shape,scale) durations (or

#lognormal(mu,sigma2) durations if weib=F)

if (weib==T) {dur=round(rweibull(n,shape,scale))

} else {dur=round(rlnorm(n,meanlog=mu,sdlog=sigma2^0.5))}

#Add the entry times to the Weibull durations to get event-dates

#An event date is the date when 1) the subject dies or 2) the

#subject is censored by exceeding the end of the study before dying

date=entry+dur

#Generate status vectors with ones where date <=myend,

#and with zeros where date > myend

status = as.numeric(date <= myend)

#Wherever the status is zero, replace the date with myend

date[which(status==0)]=myend

#Recalculate the durations

dur=date-entry

#Define the x and y durations and status

durx=dur[1:nx]

statusx=status[1:nx]

dury=dur[(nx+1):(n)]

statusy=status[(nx+1):(n)]

#Order the status and durations according to ascending durations
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ordx=order(durx)

statusx=status[ordx]

durx=durx[ordx]

ordy=order(dury)

statusy=status[ordy]

dury=dury[ordy]

#List durx, statusx, dury, statusy, truemean

list("durx"=durx, "statusx"=statusx, "dury"=dury,

"statusy"=statusy, "truemean"=truemean)

}

#Produce a Probability Plot, Right-Censored Data

N=5000

M=1

#Calculate chisq(1) quantiles for sample of N

orderx=qchisq(1:N/(N+1),1)

#Calculate N values of -2LLR

mymatrixr=matrix(0,nrow=M,ncol=N)

for (i in 1:M) {

for (j in 1:N) {

dummy=simulatr(nx=50,ny=50)

x=dummy$durx

y=dummy$dury

dx=dummy$statusx
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dy=dummy$statusy

dummy2=el2.cen.EMs(x=x,dx=dx,y=y,dy=dy)

mymatrixr[i,j]=dummy2$"-2LLR" } }

for (i in 1:M) {

mymatrixr[i,]=sort(mymatrixr[i,]) }

ordery=apply(mymatrixr,2,mean)

#Plot -2LLR values vs chisq(1) values

plot(orderx,ordery,xlab="Chisq(1) Quantiles", ylab="Sorted

-2LLR Values", main="Probability Plot for 5000

Right-Censored Data Sets")

abline(0,1)
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R-Code for Left-Censored Probability Plot, Fig. 3.3

simulatl=function(nx=50, ny=50, weib=T, expon=T,

shape=0.8662, scale=985.9, mu=6.6, sigma2=1) {

#The simulatl function simulates a two-sample data set from a

#survival study. Both samples have the same Weibull(shape,scale)

#distribution (or alternatively the same lognormal(mu,sigma^2)

#distribution). Both samples are left-censored.

#The default settings give an avg censoring rate of about 18%.

#The protocol of the study is as follows. Two groups of children

#are admitted into a study to record at what age they experience

#a certain event. Their ages are measured in days. Children

#can enter the study until a specified cutoff date. The child’s age

#at entry into the study must fall within a specified range. The

#children are monitored daily for certain characteristics as they

#age. The children all remain in the study until they experience the

#event, that is, no child is "right-censored." However some children

#on their first day in the study are found to have experienced the event

#at some unknown earlier age. These children who have already

#experienced the event when they are admitted are "left-censored."

#nx is the number of data in the x-sample

#ny is the number of data in the y-sample

#weib is indicator whether to use Weibull to generate durations

#shape is the Weibull shape parameter

#scale is the Weibull scale parameter
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#mu is the mean of the log of the durations

#sigma2 is the variance of the log of the durations

#Distributions are parameterized as follows:

#Weibull cdf F(t) = 1 - exp(-(t/scale)^shape)

#Lognormal pdf f(t)=(1/(x*sqrt(2*pi*sigma2))*

#exp(-(log(t)-mu)^2/(2*sigma2))

#For reference, calculate the true population mean

if (weib==T) {truemean=scale*gamma((shape+1)/shape)

} else {truemean= exp(mu+0.5*sigma2)}

#We allow subjects to enter the study on days 1-600

cutoff=600

#Weight contains probabilities associated with entering on each day

#Use an exponential weight if expon=T

#Otherwise use the same weight for all days

if (expon==T) {weight=exp(-(1:cutoff)/cutoff)

} else {weight=rep(1,cutoff)}

#days contains the allowable entry days

days=1:cutoff

#Generate nx+ny random days of entry into study.

#The entry-day weights are exponential if expon=T.

#The entry-day weights are uniform if expon=F.
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n=nx+ny

entryday=sample(days, size=n, prob=weight, replace=T)

#Assign random entry ages to each subject.

#We allow subjects to enter the study at ages 100-200.

entryage=sample(100:200, 100, replace=T)

#Generate nx+ny random Weibull(shape,scale) ages (or

#lognormal(mu,sigma2) ages if weib=F).

#These ages are the ages at which the children

#experience the event.

if (weib==T) {eventage=round(rweibull(n,shape,scale))

} else {eventage=round(rlnorm(n,meanlog=mu,sdlog=sigma2^0.5))}

#Define the observed event-age at which the event occurs.

obsage=eventage

indexleft=which(eventage<entryage)

obsage[indexleft]=entryage[indexleft]

#Define the status

status=rep(1,n)

status[indexleft]=2

#Define the x and y observed ages and status

obsagex=obsage[1:nx]

statusx=status[1:nx]

obsagey=obsage[(nx+1):(nx+ny)]
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statusy=status[(nx+1):(nx+ny)]

#Order the status and durations according to ascending durations

ordx=order(obsagex)

statusx=status[ordx]

obsagex=obsagex[ordx]

ordy=order(obsagey)

statusy=status[ordy]

obsagey=obsagey[ordy]

#List obsagex, statusx, obsagey, statusy, truemean

list("obsagex"=obsagex, "statusx"=statusx, "obsagey"=obsagey,

"statusy"=statusy, "truemean"=truemean)

}

#Produce a Probability Plot, Left-Censored Data

N=5000

M=1

#Calculate chisq(1) quantiles for sample of N

orderx=qchisq(1:N/(N+1),1)

#Calculate N values of -2LLR

mymatrixl=matrix(0,nrow=M,ncol=N)

for (i in 1:M) {

for (j in 1:N) {

dummy=simulatl(nx=50,ny=50)
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x=dummy$obsagex

y=dummy$obsagey

dx=dummy$statusx

dy=dummy$statusy

dummy2=el2.cen.EMs(x=x,dx=dx,y=y,dy=dy)

mymatrixl[i,j]=dummy2$"-2LLR" } }

for (i in 1:M) {

mymatrixl[i,]=sort(mymatrixl[i,]) }

ordery=apply(mymatrixl,2,mean)

#Plot -2LLR values vs chisq(1) values

plot(orderx,ordery,xlab="Chisq(1) Quantiles", ylab="Sorted

-2LLR Values", main="Probability Plot for 5000

Left-Censored Data Sets")

abline(0,1)
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R-Code for Doubly-Censored Probability Plot, Fig. 3.4

simulatd=function(nx=50, ny=50, weib=T, expon=T,

shape=0.8662, scale=985.9, mu=6.6, sigma2=1) {

#The simulatd function simulates a two-sample data set from a

#survival study. Both samples have the same Weibull(shape,scale)

#distribution (or alternatively the same lognormal(mu,sigma^2)

#distribution). Both samples are doubly-censored.

#The default settings give an avg censoring rate of about 26%.

#The protocol of the study is as follows. Two groups of children

#are admitted into a study to record at what age they experience

#a certain event. Their ages are measured in days. Children

#can enter the study until a specified cutoff date. The child’s age

#at entry into the study must fall within a specified range. The

#children are monitored daily for certain characteristics as they

#age. The children all remain in the study until they experience

#the event or until the study ends. Any child who has not

#experienced the event by the end of the study is "right-censored."

#Some children on their first day in the study are found to have

#experienced the event at some unknown earlier age. These children

#who have already experienced the event when they are admitted are

#"left-censored."

#nx is the number of data in the x-sample

#ny is the number of data in the y-sample

#weib is indicator whether to use Weibull to generate event-ages
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#shape is the Weibull shape parameter

#scale is the Weibull scale parameter

#mu is the mean of the log of the event-ages

#sigma2 is the variance of the log of the event-ages

#Distributions are parameterized as follows:

#Weibull cdf F(t) = 1 - exp(-(t/scale)^shape)

#Lognormal pdf f(t)=(1/(x*sqrt(2*pi*sigma2))*

#exp(-(log(t)-mu)^2/(2*sigma2))

#For reference, calculate the true population mean

if (weib==T) {truemean=scale*gamma((shape+1)/shape)

} else {truemean= exp(mu+0.5*sigma2)}

#end is the length of the study

myend=2500

#We allow subjects to enter the study on days 1-250

cutoff=250

#Weight contains probabilities associated with entering on each day

#Use an exponential weight if expon=T

#Otherwise use the same weight for all days

if (expon==T) {weight= exp(-(1:cutoff)/cutoff)

} else {weight=rep(1,cutoff)}
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#days contains the allowable entry days

days=1:cutoff

#Generate random times of entry into study to the subjects.

#The entry-day generation is exponential if expon=T.

#The entry-day generation is uniform if expon=F.

n=nx+ny

entryday=sample(days, size=n, prob=weight, replace=T)

#Assign random entry ages to the subjects.

#We allow subjects to enter the study at ages 10-250.

entryage=sample(10:250, 100, replace=T)

#Generate nx+ny random Weibull(shape,scale) ages (or

#lognormal(mu,sigma2) ages if weib=F).

#These ages are the ages at which the children

#experience the event.

if (weib==T) {eventage=round(rweibull(n,shape,scale))

} else {eventage=round(rlnorm(n,meanlog=mu,sdlog=sigma2^0.5))}

#obsage is the age at which the event is observed.

obsage=eventage

indexleft=which(eventage<entryage)

obsage[indexleft]=entryage[indexleft]

endage=entryage+(myend-entryday)

indexrt=which(endage<eventage)

obsage[indexrt]=endage[indexrt]
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#Define the status

status=rep(1,n)

status[indexleft]=2

status[indexrt]=0

#Define the x and y observed ages and status

obsagex=obsage[1:nx]

statusx=status[1:nx]

obsagey=obsage[(nx+1):(nx+ny)]

statusy=status[(nx+1):(nx+ny)]

#Order the status and durations according to ascending durations

ordx=order(obsagex)

statusx=statusx[ordx]

obsagex=obsagex[ordx]

ordy=order(obsagey)

statusy=statusy[ordy]

obsagey=obsagey[ordy]

#List obsagex, statusx, obsagey, statusy, truemean

list("obsagex"=obsagex, "statusx"=statusx, "obsagey"=obsagey,

"statusy"=statusy, "truemean"=truemean)

}

#Produce a Probability Plot, Doubly-Censored Data

N=5000
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M=1

#Calculate chisq(1) quantiles for sample of N

orderx=qchisq(1:N/(N+1),1)

#Calculate N values of -2LLR

mymatrixd=matrix(0,nrow=M,ncol=N)

for (i in 1:M) {

for (j in 1:N) {

dummy=simulatd(nx=50,ny=50)

x=dummy$obsagex

y=dummy$obsagey

dx=dummy$statusx

dy=dummy$statusy

dummy2=el2.cen.EMs(x=x,dx=dx,y=y,dy=dy)

mymatrixd[i,j]=dummy2$"-2LLR" } }

for (i in 1:M) {

mymatrixd[i,]=sort(mymatrixd[i,]) }

ordery=apply(mymatrixd,2,mean)

#Plot -2LLR values vs chisq(1) values

plot(orderx,ordery,xlab="Chisq(1) Quantiles", ylab="Sorted

-2LLR Values", main="Probability Plot for 5000

Doubly-Censored Data Sets")

abline(0,1)
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R-Code for Right-Censored Probability Plot

with Unequal Means, Figs. 3.5 and 3.6

simulatr.unequal=function(nx=50, ny=50, expon=T,

shape=c(0.8662,0.9709), scale=c(985.9,1200)) {

#The simulatr.unequal function simulates a two-sample data

#set from a survival study. Both samples have a

#Weibull(shape,scale) distribution. Both are right-censored.

#Mean of X is 1060.3, mean of Y is 1215.7

#nx is the number of data in the x-sample

#ny is the number of data in the y-sample

#shape is the Weibull shape parameter

#scale is the Weibull scale parameter

#Weibull distribution is parameterized as follows:

#Weibull cdf F(t) = 1 - exp(-(t/scale)^shape)

#For reference, calculate the true population mean

truemean=scale*gamma((shape+1)/shape)

#myend is the length of the study myend=2000

#We allow subjects to enter the study up to the half-way point

#Calculate cutoff (which is the last day to enter the study).

cutoff=round(0.5*myend)
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#Weight contains probabilities associated with entering on each day

#Use an exponential weight if expon=T

if (expon==T) {weight= exp(-(1:cutoff)/cutoff)

#Otherwise use the same weight for all days

} else {weight=rep(1,cutoff)}

#days contains the allowable entry days days=1:cutoff

#Generate nx+ny random times of entry into study.

#The entry-day weights are exponential if expon=T.

#The entry-day weights are uniform if expon=F.

entry=sample(days, size=n, prob=weight, replace=T)

#Generate nx+ny random Weibull(shape,scale) durations

mydurx=round(rweibull(nx,shape[1],scale[1]))

mydury=round(rweibull(ny,shape[2],scale[2]))

dur=c(mydurx,mydury)

#Add the entry times to the Weibull durations to get event-dates

#An event date is the date when 1) the subject dies or 2) the

#subject is censored by exceeding the end of the study before dying

date=entry+dur

#Generate status vectors with ones where date <=myend,

#and with zeros where date > myend

status = as.numeric(date <= myend)
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#Wherever the status is zero, replace the date with myend

date[which(status==0)]=myend

#Recalculate the durations

dur=date-entry

#Define the x and y durations and status

durx=dur[1:nx]

statusx=status[1:nx]

dury=dur[(nx+1):(nx+ny)]

statusy=status[(nx+1):(nx+ny)]

#Order the status and durations according to ascending durations

ordx=order(durx)

statusx=status[ordx]

durx=durx[ordx]

ordy=order(dury)

statusy=status[ordy]

dury=dury[ordy]

#List durx, statusx, dury, statusy, truemean

list("durx"=durx, "statusx"=statusx, "dury"=dury, "statusy"=statusy,

"truemean"=truemean) }

#Produce a Probability Plot, Right-Censored Data

#with Unequal Means

N=5000
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M=1

#Calculate chisq(1) quantiles for sample of N

orderx=qchisq(1:N/(N+1),1)

#Calculate N values of -2LLR

mymatrixr=matrix(0,nrow=M,ncol=N)

for(i in 1:M) {

for (j in 1:N) {

dummy=simulatr.unequal(nx=50,ny=50)

x=dummy$durx

y=dummy$dury

dx=dummy$statusx

dy=dummy$statusy

dummy2=el2.cen.EMs(x=x,dx=dx,y=y,dy=dy,fun=function(x,y){x-y},mean=0)

mymatrixr[i,j]=dummy2$"-2LLR" } }

for (i in 1:M) {

mymatrixr[i,]=sort(mymatrixr[i,]) }

ordery=apply(mymatrixr,2,mean)

#Plot -2LLR values vs chisq(1) values, Figure 3.5

plot(orderx,ordery,xlab="Chisq(df=1) Quantiles",

ylab="Sorted -2LLR Values",

main="Probability Plot for 5000 Right-Censored Data Sets")

abline(0,1)
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#Plot -2LLR values vs chisq(df=1, ncp=0.85) values, Figure 3.6

plot(orderx,ordery,xlab="Chisq(df=1, ncp=0.85) Quantiles",

ylab="Sorted -2LLR Values",

main="Probability Plot for 5000 Right-Censored Data Sets")

abline(0,1)
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R-Code for Change-Point Analysis in 5.1

#Set.seed is used to reproduce example results

set.seed(1234)

#Generate 30 X-data using mean 0, stdev 1

x=rnorm(30,0,1)

#Generate 30 Y-data using mean 1, stdev 1

y=rnorm(30,1,1)

#Initialize 30 X-status values as uncensored

dx=rep(1,30)

#Initialize 30 Y-status values as uncensored

dy=rep(1,30)

#Randomly choose 4 of X-data

censx=sample(1:30,4)

#Randomly choose 4 of Y-data

censy=sample(1:30,4)

#Censor the 4 chosen X-data

dx[censx]=0

#Censor the 4 chosen Y-data

dy[censy]=0

#Concatenate X and Y data

data=c(x,y)

#Concatenate X and Y status

status=c(dx,dy)

#We know points 1-28 must be from X

#We know points 33-60 must be from Y

#So we can estimate the diff in means from

#them using the Kaplan_Meier estimator
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dummy1=myWKM(data[1:28],status[1:28])

meanx=sum(dummy1$times*dummy1$jump)

dummy2=myWKM(data[33:60],status[33:60])

meany=sum(dummy2$times*dummy2$jump)

estdiff=meany-meanx

#Plot the control chart

plot(1:n,c(x,y),xlab="Time Points",

ylab="Values", main="Control Chart")

#Initialize the p-value and NPMLE vectors

myvec=rep(0,5)

mynpmle=rep(0,5)

#Run loop using five possible last-X values of 28-32

for(j in 28:32) {

#Extract 10 values X[j-9]...X[j]

xvec=data[(j-9):j]

#Extract 10 values Y[(j+1)]...Y[j+10]

yvec=data[(j+1):(j+10)]

#Set corresponding X status values

statx=status[(j-9):j]

#Set corresponding Y status values

staty=status[(j+1):(j+10)]

#Check p-value for Ho: mean(y)-mean(X)=estdiff

dummy=el2.cen.EMs(xvec,statx,yvec,staty,

fun=function(x,y){y-x},mean=estdiff)

#Record p-value and NPMLE

myvec[j-27]=dummy$Pval

mynpmle[j-27]=dummy$funNPMLE
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}

#List estimated p-values and NPMLEs

myvec

mynpmle
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