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ABSTRACT OF DISSERTATION

Boundary Layers in Periodic Homogenization

The boundary layer problems in periodic homogenization arise naturally from the
quantitative analysis of convergence rates. Formally they are second-order linear
elliptic systems with periodically oscillating coefficient matrix, subject to periodi-
cally oscillating Dirichelt or Neumann boundary data. In this dissertation, for either
Dirichlet problem or Neumann problem, we establish the homogenization results and
obtain the nearly sharp convergence rates, provided the domain is strictly convex.
Also, we show that the homogenized boundary data is in WP for any p € (1, 00),
which implies the C*-Hdlder continuity for any « € (0,1).
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Chapter 1 Introduction

1.1 Motivation in homogenization

During the last four decades, the theory of homogenization, or averaging of partial
differential equations with rapidly oscillating coefficients, has been studied exten-
sively. This theory has many important applications in various physical problems
in composite or heterogeneous materials. Mathematically, the characteristics of a
microscopically self-similar heterogeneous material are usually described by rescaled
functions in the form of A(x/e), where x is the spatial variable and € > 0 is a small
scalar parameter that represents the scale of the microstructure in the material. The
unrescaled function A(y), with the typical microscopically self-similar structures in
practice, may be periodic, almost-periodic or a realization of a stationary ergodic ran-
dom field. For example, in the heat conductivity problem, we use a matrix A(e~'z)
to describe the thermal conductivity tensor of a material. Then at equilibrium, the
temperature distribution in a material body () satisfies the following elliptic partial
differential equation with a Dirichlet boundary condition

{_div(A(x/e)Vua) =F  inQ (1.1.1)

U = f on 052,

where u,., depending implicitly in €, represents the temperature field in €2. In practice,
computing the solution of the equation (1.1.1)) numerically with rapidly oscillating co-
efficients A(x/¢) is a difficult task if € is tiny. However, if we view the problem from a
macroscopic (or mesoscopic) scale, the heterogeneous microstructure will be invisible
and the material, as well as the solution of the involved PDE, will exhibit some sort
of averaging or homogeneous properties. Of course, the self-similar structure, such
as periodicity or stationary randomness, will play an essential role in the averaging
process. This is exactly the core principle behind the homogenization theory, whose
goal is to represent or approximate a complex, heterogeneous material by a simple,
homogeneous one.

In this dissertation, we study the periodic homogenization of linear elliptic equa-
tions and systems, which means we assume that the coefficients involved in the PDEs
are periodic and can be measured precisely in a single microscopic periodic cell (at a
one-time cost). To explain the classical theory of homogenization, we take the mod-
eling equation for example. Let € vary in (0,1). The elliptic equation
generates a sequence of weak solutions {u. : 0 < ¢ < 1} which lie in the Sobolev space
H'(Q). The H' norms of these solutions are uniformly bounded, independent of .
The first question in homogenization is the asymptotic behavior of the solutions wu.
as € approaching zero. The answer to this classical question composes of two parts:
(1) as € — 0, the entire sequence of solutions {u.} converges weakly to a function
ug in H'(Q) and strongly in L?(Q); (2) The limit function ug satisfies the so-called



homogenized equation

(1.1.2)
ug = f on 052,

{—div(ﬁVuo) =F in Q,
where A is a constant matrix called homogenized or effective coefficient matrix. In
terms of the above property, we will say the equation homogenizes to (|1.1.2)).
Theoretically, A depends only on the original coefficient matrix A(y) and can be
computed by solving a periodic cell problem at a one-time cost (the explicit formula
of A may be found in Chapter 2). The above classical homogenization result provides
an effective way to find a good approximation of wu. if the microscopic scale ¢ is
relatively small compared to the scale of material body €2. In other words, to solve
(1.1.1), we do not compute u. directly as the computation could be very costly.
Instead, we compute ug, the solution of , which is supposed to be much easier
to solve numerically since the coefficients are constant; while the classical (qualitative)
homogenization theory assures that the error |u. — ug| is small in the sense of L2

Recently, people are more interested in quantitative estimates in homogenization.
One of the central questions in quantitative homogenization is the convergence rate
or the quantitative two-scale asymptotic expansion. It has been well-known that the
solution u, of has a formal two-scale expansion as follows

ue (1) = ug(z) + ex(x/e) - Vug(z) + 21 (x/e) - Viuo(x) + - - (1.1.3)
where wug is the homogenized solution in ([1.1.1]), and x(y) and 7 (y) are the (first-

order) corrector and second-order corrector. We point out that these correctors are
also periodic matrix-valued functions that depends only on the coefficient matrix
A and may be computed by solving certain periodic cell problems. Now a natural
question is that in what sense the asymptotic expansion may hold rigorously.
For example, in view of , one may expect to have the following

u. = up+O0(e)  in L*(9). (1.1.4)

The precise meaning of is that there exists a positive constant C', independent
of €, so that |lu. — ug||r2() < Ce. In fact, this sharp estimate has been established
in many literatures in various settings. On the other hand, to derive an expansion in
H'(2), one has to take the next term in into consideration. Actually, we have
the following sharp estimate

u. (1) = up(z) +ex(x/e) - Vug(z) + O(ve)  in H(Q). (1.1.5)

This result is unexpected since, intuitively, suggests that we should have O(¢)
error in , instead of O(y/¢). This phenomenon, caused by the boundary layer
effect, can be fixed by subtracting an additional term that corrects the boundary
discrepancy. Indeed, if v? is the solution of

)

{—div(A(x/e)VvD[z =0 in Q, 116)
v, = —x(z/e) - Vuo(x) on 052,



where the supscript D indicates this is a boundary layer in the Dirichlet problem,
then we can recover the O(g) rate in H'({2)

ue (1) = ug(z) + ex(x/e) - Vug(z) + +ev? + O(e) in H'(Q). (1.1.7)

See Theorem 2.2] for more details.
Similar phenomenon also takes place in the Neumann problem. To this end, let
us consider the heat conductivity problem with a Neumann boundary condition

—div(A(z/e)Vu.) = F in ),

Ou. 1.1.8
Ye _ g on 052, ( )

ov.

where ‘gﬁ; =n- A(x/e)Vu, is the conormal derivative, and n denotes the unit out-
ward normal. For the solvability of Neumann problems, we require the so-called
compatibility condition, namely, fQ F+ | a0 9 = 0. Moreover, for the uniqueness of
the solution u. of 1) we will always assume fQ u. = 0. Now, in the same sense
as the Dirichlet problem, ([1.1.8)) homogenizes to

—div(AVug) = F  in €,

0 1.1.9

o _ g on 0f), ( )
(9y0

where g—’;”g =n- A\VUQ is the conormal derivative associated with A. Again, here we

assume [, ug = 0.

For the quantitative estimate of the Neumann problem, we still have the sharp
estimates and as expected. Furthermore, we also have the recovered
O(e) rate in H'(Q)

u. (1) = uo(x) + ex(z/e) - Vuo(z) + +evl¥ 4+ O(e) in H'(9), (1.1.10)

where v

equation

is a boundary layer term in the Neumann problem given by the following

—div(A(z/e) VoY) =0 in
oY 1 0 0 Juyg
<nk oz, - lea—xk) <¢kij (17/5>a7) on 0f),

J

(1.1.11)

ov. 2

where n = (ny,ng, -+ ,ng) is the unit outward normal. We would like to say a few
words about the equation (L.1.11). In the boundary condition of (L.1.11), the Ein-
stein’s summation convention is used (and will be used throughout this dissertation),
i.e., all the repeated indices are summed (here 7, j, k are all summed from 1 to d with
d being the dimension). The functions ¢y;;(y) are periodic functions determined only
by A. Most importantly, for each ¢ and k, ”ka%i - ni% is a tangential derivative on
0f) that allows the integration by parts on 0€2. This special structure is critical in
our analysis for Neumann problem.



Finally, we mention briefly the higher-order convergence rates in H'. For either
Dirichlet or Neumann problem, one may show that in H'(£2)

us(z) = uo(z) +ex(z/e) - Vug(z) + +ev + 7 (x/¢) - Viuo(x) + O(e?), (1.1.12)

where 92 is the boundary layer term for either Dirichlet or Neumann problem with
similar structure as or . However, the equation for 9% is much more
complicated and the details will be carried out in Chapter 3.

Now, we are in a position to explain the motivation of this dissertation. First
of all, we note that the function vX (or %), where X = D or N, depends implic-
itly on € through both the oscillating coefficient matrix and the oscillating boundary
condition. And it is not hard to see |[v || 1) ~ O(e~2) which blows up as ¢ — 0.
Now a natural and fundamental question in homogenization is what happens to v
as € approaching zero. Precisely, we would like to ask: does vX converge in L*()?
With what hypothesis? If so, what is the (sharp) rate and what can we say about
the homogenized equation? The purpose of this dissertation is to give a comprehen-
sive study on these questions and eventually provide a better understanding of the
boundary layer phenomenon in periodic homogenization.

1.2 Statement of main results

This dissertation reorganize and present our recent work contained mainly in [38] 37,
42] where we studied the homogenization and boundary layers for elliptic systems
with oscillating Dirichlet or Neumann boundary data. We start by introducing a
family of elliptic operators in divergence form with a small scale parameter £ > 0

0

L. = —div(A(z/e)V) = — e <a§;ﬁ(x/5)a%). (1.2.1)

We assume that the coefficient matrix A = A(y) = (af‘jﬁ), with 1 < 4,7 < d and
1 < a, B < m, satisfies the following standard assumptions

e Ellipticity: there exists p > 0 such that
ple < aifere] < ptel? for any € = (€7) € R™ (1.2.2)
e Periodicity: A is 1-periodic, that is
Aly+2) = A(y) for any y € R? and 2 € Z¢; (1.2.3)

e Smoothness:

aff € C=(T%) forl<a,f<mand1<i,j<d (1.2.4)

Now, we consider the Neumann problem with both the zero-order and the first-
order oscillating data

Ee(ue) =0 in Q,
ou,

a_V:,—Tz]vz{gz](xax/g)}—i_gO(er/g)_76 on 09,

(1.2.5)



where T;; = (n;e;—nje;) is a tangential vector field on 012, and 7. = @ Joq 90(z, z/€) do
is a constant so that the compatibility condition for (1.2.5)) is satisfied. This system
arises when we construct the boundary layer term f}év, and treats
as a special scalar case with gy = 0.

Throughout this dissertation, unless otherwise stated, we assume that  C R? is
a bounded, smooth, and strictly convex domain in the sense that all the principle
curvatures are strictly positive, and that g(z,y) = {go(x,v), gi;(z,y)} are smooth in
(x,y) € 92 x R? and 1-periodic in y, namely

glz,y+2)=g(x,y) forany zc o,y cR?and z € Z%. (1.2.6)

The key reason that we require the strict convexity on the domain is because any
periodic functions in R? are somehow equidistributed on the strictly convex bound-
ary (a (d — 1)-dimensional surface), regardless of translations, rotations and scales.
Although the geometry and regularity assumption on the domain might be weakened,
the above equidistribution property seems to be a natural prerequisite for homoge-
nization to take place, even in the case with constant coefficients. Precisely, under
the above conditions, we are able to show that as ¢ — 0, the unique solution of
with fQ u. = 0 converges strongly in L*(Q) to ug, where ug is a solution of

Eo(Uo) =0 in Q,

0
O Ty V., + (90) =% on O
8V0

(1.2.7)

The operator L is given by Ly = —diV(A\V), with A being the usual homogenized
matrix of A, and

(a0)@) = £ s dy and 0= f (o) do (128

The formulation for function {g,;} in on 0f) is much more involved and will
be given explicitly in Chapter 3. Nevertheless, it is good to point out here that,
unlike , g;;() is not simply the trivial average of g;;(z,-), but a complicated
combination relying on A, {g;;(x,-) : 1 <14,j < d}, and the outward normal n(z) to
o).

In the following, we state our main results for the Neumann problem ({1.2.5)),
including a convergence rate in L? which is optimal (up to an arbitrarily small
exponent) for d > 3, and the WP regularity estimate of the homogenized boundary
data g,; for any p € (1,00).

Theorem 1.1. Let Q be a bounded smooth, strictly convexr domain in R?, d > 3.

Assume that A(y) satisfies (1.2.9)-(1.2.4)), and that go(x,y) and g;;(z,y) are smooth

and satisfy conditions (1.2.6]). Let u. and ug be the solutions of and ,
respectively, with [, u. = [,uo =0. Then for any o € (0,1/2) and € € (0,1),

l—O'
[ue — w2y < Coe277, (1.2.9)



where Cy depends only ond, m, o, A, Q, and g = {go, gij }. Furthermore, the function
g =1{9;;} in satisfies

[0 < Cy sup lg(9)leron)  for anyq <o, (12.10)
yeT

where Cy depends only on d, m, p, q and || Al|ck(gay for some k = k(d) > 1.

In recent years, there has been considerable interest in the homogenization of
boundary value problems with oscillating boundary data [20] 211, 29, [3| 25} [4], [15] 13,
17, B [7] (also see related earlier work in [31], [32] 27, 28|, [6]. In the case of Dirichlet

problem (a general form of ((1.1.6)),

Es(us) =0 n Q,
(1.2.11)
u: = f(z,z/e) on 052,
where
flz,y+2) = f(z,y) forany z € 00,y € R? and z € Z¢, (1.2.12)

major progress was made in [21] and later in [7]. Let u. be the solution of (1.2.11)).
Under the assumption that  is smooth and strictly convex in R%, d > 2, it was
proved in [21] that

(d—1)
e — uol|22(0) < C’S;Trlx%_"

for any o € (0, 1), where uy is the solution of the homogenized problem,

Lo(ug) =0  inQ,
o(u) =0 in (1.2.13)
up = f on 052,

and the homogenized data f at 2 depends on f(z,-), A, and n(z). A sharper rate of
convergence in L? was obtained recently in [7] for the Dirichlet problem , with
O(ez™) for d > 4, O(e37) for d = 3, and O(es~) for d = 2. As demonstrated in [3]
in the case of elliptic equations with constant coefficients, the optimal rate would be
O(e2) for d > 3 (up to a factor of In¢ in the case of d = 3), and O(e1) for d = 2. Thus
the convergence rates obtained in [7] for the Dirichlet problem are optimal for d > 4,
up to an arbitrarily small exponent. In [38], we established the optimal convergence
rates for both the Neumann and Dirichlet problems in any dimensions.

Regarding the regularity of the homogenized boundary data, under the same
assumptions, it was proved in [21] that Vi, f € LP>°(09) with p = 51, The result
was improved in [7] to Viwf € LP>°(0Q) with p = @ if d > 3, and to f €
Whe(99Q) for any p < 2 if d = 2. Further improvement was made in [38], where
we proved that f,g € W'P(9Q) for any p < d — 1. The regularity estimates were
finally improved to f,g € W'P(9€) for any p < oo in our recent paper [37]. In
particular, this implies that f and § are C°-Holder continuous for any o € (0,1).
However, whether these regularity estimates are optimal remains an interesting and
challenging problem. We summarize the results for Dirichlet problems as follows.



Theorem 1.2. Let Q be a bounded smooth, strictly convexr domain in RY, d > 2.

Assume that A(y) satisfies (1.2.9)- , and that f(x,y) is smooth and satisfies

. Let u. and uy are solutions of Dirichlet problems (1.2.11]) and ,
respectively. Then for any o € (0,1/2) and € € (0,1),

e ifd >3,

1
L
; (1.2.14)
L

|te — wol|z2(0) < Cs .
© ifd=2,

3

where C, depends only on d, m, o, A, Q and f. Furthermore, for any d > 2,

| Fllwraan) < Cy sup 1fCy)llero)  for any q < oo, (1.2.15)
yeT

where f be the homogenized data in and C, depends only on d, m, j, ¢ and
| Allck(ray for some k = k(d) > 1.

We remark that Theorem [[.1]and [I.2 may be applied to establish the higher-order

convergence rates. Indeed, one can prove, for either Neumann or Dirichlet problems,

u. = ug + ex(z/e)Vug + ev® + O(egf), (1.2.16)

where v” is the solution of some homogenized system independent of ¢; see . The
estimate ([1.2.16|) can be further used to study the first-order expansions of eigenvalues
or eigenfunctions (eigenspaces). The exploitation in this direction may be found in
[41), 30] and will not be included in this dissertation.

The organization of the dissertation is as follows: The preliminaries, including
correctors, uniform Lipschitz estimates and the Diophantine condition, are given in
Chapter 2. The proofs for Theorem and are very long and will be carried
out across Chapter 3, 4 and 5. Particularly, in Chapter 3 and 4, we prove the
convergence rates in Theorem for Neumann problems and in Theorem for
Dirichlet problems, respectively. In Chapter 5, we establish the W1? estimates of the
homogenized boundary data for both theorems.

1.3 Notations

Most of the notations in this dissertation are standard. Some symbols are used with
different meanings in the context. For example, we use d(x) to denote the distance
from z to the underlying boundary, use 6,(x) to denote the Dirac function, use 5% or
d;; to denote the Kronecker delta function (identity matrix), and so on. Fortunately,
these symbols are used locally and could be interpreted without ambiguity in the
context. In the following, we list some frequently used global notations.

d spatial dimension

m dimension of the solution vector, or the number of equations in
the system

L. —div(A(z/e)V), oscillating elliptic operator with € > 0

Ly —diV(A\V), homogenized elliptic operator

7
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A

0/, /0w,
L

i7j7 k7 e

«, B? 2R
1-periodic

Td

N€7N0

homogenized (effective) coefficient matrix

conormal derivatives

ellipticity constant

subscripts, 1 <14,7,k,--- < d

superscripts, 1 < a, 8,7, - <m

a function f is 1-periodic if f(z + 2) = f(z) for all z € R? and
2z €78

d-dimensional torus; we will identity a 1-periodic function in R¢
as a function defined on T?; see @ for example

unit sphere in R? with the usual topology

(first-order) corrector

second-order corrector

Dirichlet corrector

Neumann corrector

Poison kernels in §2

Neumann functions

standard Cartesian coordinate vectors in R™ and R?

an affine function z;e”

a tangential vector in the form of n;e; — nje; on 0f), where
n = (ny,ng, -+ ,ng) is the unit outward normal vector

[0,00)

a half-space {zx € RY: z-n < —s}

the projection operator onto the orthogonal space of n

the Diophantine constant of n € S !

weak LP space

Sobolev spaces

|[E|7! [, i.e., average integral over F

de f, i.e., the average of a 1-periodic function f

of order €77 for any o > 0

homogenized boundary data for Dirichlet and Neumann prob-
lems

generic constants independent of € or

Copyright®© Jinping Zhuge, 2019.



Chapter 2 Preliminaries

In this chapter, we introduce the definitions of correctors, flux correctors and the
homogenized operators. To demonstrate the general approach for the quantitative
periodic homogenization, we prove a sharp O(g) convergence rate in H'! involving the
boundary layers, as claimed in the introduction. We also introduce the (full-scale)
uniform Lipschitz estimates in half-spaces which will be used in an essential way in
the following chapters. Finally, we introduce the Diophantine condition which is a
key ingredient that quantifies the geometry (strict convexity) of the boundary.

2.1 Correctors and homogenized operators

The correctors, arising from the two-scale asymptotic expansion, play a crucial role
in homogenization theory [I1], 22, [36]. The precise definition is given as follows. For
1<j<dand 1< B8 <m,let y = (Xf) = (X;B,Xiﬁ, e ,X?ﬁ) denote the correctors
for L., which are 1-periodic functions satisfying the system

Li(x]+P’)=0 iR

2.1.1
Xf is 1-periodic and / Xf =0, ( )
Td
where P]/»B(a:) = x;¢’ and ¢/ = (0,---,1,---,0) is the Sth coordinate vector. In-

tuitively, the periodic corrector Xf is the correction to a linear function Pf so that

Xf + Pf is an “almost linear” solution in the entire space R¢.
With correctors, the homogenized operator may be given by £y = —div(AV),
where the homogenized coefficient matrix A = (Eif}ﬁ ) is defined by

A= /]I‘d A(I + V), or precisely Zif}ﬁ = /]I‘d {af}ﬁ +af‘kﬂyai%(x;7’8)}.
It can be shown that A also satisfies the ellipticity condition , possibly with a
different ellipticity constant.
We also introduce the adjoint operator £* = —div(A*(z/e)V), where A* = (a*”)
with @/*” = a?*. Note that A* also satisfies our standard assumptions -

©j 71
(1.2.4). Then, we may similarly define the adjoint correctors x* = (X;B ) and the
adjoint homogenized operator L = —div(A*V). Observe that the correctors and the
homogenized operators defined above depend only on the original coefficient matrix
A.

Another concept we need to use in studying the convergence rate is the flux
corrector. The flux corrector is a matrix B(y) = (bf‘jﬁ ) defined by

af _ ap «a B ~af3
bij (y) = a5 (y) + @ig(y)a—yk@(} (y)) — Ay, (2.1.2)



where the repeated index £ is summed from 1 to d and v from 1 to m. Observe
that B(y) is 1- periodlc and smooth under our setting. Moreover, it follows from the
definition of X] and @ a;; a? that

0 (108 _ op _
ayi(bl.j)_o and /Tdbij — 0. (2.1.3)

Lemma 2.1. There exist gbkw € HY(T?), where 1 < i,5,k < d and 1 < a,3 < m,
such that

If x = (Xf) is Holder continuous, then qbzg € L>=(T9).
The proof of the above lemma may be found in, for example, [36, Proposition

3.1.1]. In our setting, since x is smooth, we may even show that ¢ = (¢z£) is smooth.

2.2 Convergence rates

In this section, we will prove the convergence results and (| claimed in
the introduction. These results show that the asymptotlc analysm of the boundary
layer terms is a natural and crucial question in periodic homogenization. We will
state and prove these results separately for Dirichlet problem and Neumann problem.

Theorem 2.2. Let u. be the weak solution of

L.(u)=F in €,
(2.2.1)
u. = f on OS2,
and uy be the weak solution of the homogenized system
L =F n €2,
o{to) " (2.2.2)
ug = f on 0S.
Then
e — g — ex(-/€)Vug — ev?||m) < Cel|Vuol|r2(0) (2.2.3)
where vP is the weak solution of
ﬁa('vé)) =0 n Q7
o’ 2.2.4
vl = _Xf(x/g)(?ixj on 0S. ( )

Proof. The proof is quite standard in periodic homogenization by considering the
first-order approximation in the asymptotic expansion. Let

0u} ()

wl(w) = ul () — up(z) — ex (x/e) Dz, (2.2.5)

10



Then, we derive the system for w,

Lo(w.) = Leo(us) — L (ug) — Le(ex(z/e)Vuy). (2.2.6)
Using the system (2.2.16]) and (2.2.17)), we have

Also, by a direct calculation, we have

(Leex(z/o) V) = 2 4(@;@/5)8)‘ (/e )0“0< ))
Z 2J (2.2.8)
0‘9 (a?k”(x/s)xf(x/s)%).

Substituting (2.2.7) and (2.2.8) into (| and by a careful calculation, we obtain

— &

<£E(w£)>a = 8(11- [( P(x/e) + agy, (x/e)%x—;f(z/g) Alo;ﬁ> 81;(;:] )]

0 "8 2l (z)
"o (a5 @/ (/) axkaxj) 229)
or0 B oul (x) o
6?:1:Z [8xk (6%” ($/8)> Oz }
0 [ ay B ?up (z)
+eg (o @/ /o 550,
where we also used in the last equality. Observe that
0 [ ( ul (x)
ey (u/e) ) S|
Oz; L0z Oz (2.2.10)

= g o015/ 28 4 D [0y T

Now, the key observation here is that the anti-symmetry of ¢ in (2.1.4)) with respect
to indices ¢ and k implies that the first term on the right-hand side of (2.2.10]) vanishes
in the sense of distribution. As a consequence, we obtain

QUB T QU,'B T
(£ctw0)” = e [euitarn G2 + e [a /en o/ G- 2
Set "y o
F2i(x) = dppi(w/e )%6(2+ (/)X w(x/g)ﬁ (2.2.12)

11



Since x and ¢ are both bounded, one sees that || 2|22y < C|V?uql|£2(q), where C
depends only on A. It follows that w. satisfies

L.(w.;) = ediv(F;) in

B 2213
w, = —5xf(m/s)% on OS). ( )
J

Finally, let v” be the solution of (2.2.4). Then

L. (w, — evP) = ediv(F,) in Q,
s (2.2.14)
w, —ev, =0 on Of).
A standard energy estimate gives
Jwe — ev? || < Cel|[Vuo| 120, (2.2.15)
which implies the desired estimate. 0
Theorem 2.3. Let u. and ug be the weak solution of
L(u)=F in §,
O, 2.2.16
Ye _ g on 02, ( )
v,
and ug be the weak solution of the homogenized equation
£0(U0) =F m Q,
0 2.2.17
o _ g on 0f). ( )
81/0
Then
|ue — ug — ex(-/)Vug — vl || iy < Ce|| Vol (), (2.2.18)
where v is the solution of
Ea(vé\[) =0 i Q,
N 1, 9 &\ /.5 dug (2.2.19)
e _ = — =) (08 (x)e) L0 a9,
ov, 2 (nk 0x; " 8xk> <¢k”(x/€) 8:Cj> on
and n = (ny,ng, -+ ,ng) is the unit outward normal.

Proof. The proof for Neumann problem is similar as Dirichlet problem, while the
Neumann boundary condition needs to be handled more carefully. Let w. be defined
as ([2.2.5)). It follows from the same argument that w. satisfies

L.(w.) = ediv(Fy) in

ow. 0
ov. O,

(2.2.20)

(ue — uo — ex(z/e)Vuy) on 012,

12



where F. is the same as ([2.2.12)).

Now, we need to analyze the boundary condition of w,.. Note that

8Ua o 8U0
8y€ =g = 8_y0 on 39 (2221)

Then, by a careful calculation as in ,

(G ) = gy~ (o121 gy —maail 019 g (2071915,

P P P (2.2.22)
= —ni— (028 —0) _ 0
= —nig (01 5, %) — e (w0 /)5
Using the anti-symmetry of ¢ in , we observe that
8u0 1 0 0 8u§
oy (o115 ) = 5 (g, o) (i) 22
Hence,
Jw.\* € 0 8ug
<8ug> _§<nk8xi_ )(qﬁkw( /e )ag;)
(2.2.24)

O*ul
— enag, (x/€)x; (W@W-
J

Now, let v be the solution of (2.2.19)). Note that the compatibility condition is
satisfied automatically for the Neumann problem (2.2.19) due to an integration by
parts on the boundary; see Lemma . As a result, w. — ev! satisfies

L.(w, —ev)) = ediv(F,) in Q,
9 9247 2.2.95
o (we — evl) = —ensagy] (x/e)X] (x/s)wgoxj on 09. ( )
Finally, a standard energy estimate gives
|we — evl||mq) < Cel|Vuol (), (2.2.26)
which implies the desired estimate. O

2.3 Uniform Lipschitz estimates

In periodic homogenization, Lipschitz estimates (uniform in ¢) are the optimal regu-
larity for the solutions of general elliptic equations in divergence form. Historically,
the interior and boundary Lipschitz estimates with Dirichlet condition was first proved
by M. Avellaneda and F. Lin in [9] by using the compactness method. The boundary
Lipschitz estimate with Neumann condition was proved by C. Kenig, F. Lin, and
Z. Shen in [24], under the additional symmetry condition A* = A. The symmetry
condition was later removed by S. Armstrong and Z. Shen in [§]. In this section we
state these Lipschitz estimates (with flat boundaries) which will be crucial for us.

13



Theorem 2.4 (Interior Lipschitz estimate). Suppose that A = A(y) satisfies the

ellipticity and periodicity conditions -. Also assume that A satisfies the
Holder continuity condition:

[A(z) = A(y)| < 7lz -yl (2.3.1)
for some o € (0,1) and 7 > 0. Let u. € H (B(xo,7); R™) be a weak solution of
L.(u;) = F in B(xo,7), where F' € LP(B(xg,7); R™) (2.3.2)

for some p > d. Then

1/2 1/p
Hweummxo,r/g»scp{(][ vl er(f i) } 233)
B(zo,r) B(zo,r)

where C, depends only on d, m, p, X\, o and .
Theorem was proved by M. Avellaneda and F. Lin in [9].

Theorem 2.5 (Lipschitz estimate with Dirichlet condition). Suppose that A satisfies
the same conditions as in Theorem . Let Q = Hd(s) for somen € S and s € R.
Given xg € 02 and r > 0, let u. be a weak solution to

L(u)=F in B(xg,r)NQ,
u. = f on B(xzo, 1) N ON2.

Then

1/2 1/p
1Vl oo (@B (@o.r/2)) < C, Vu.|? +r |F|P
(QNB(zo,7/2)) P
B(zo,r)NQ B(zo,r)NQ

+ | Vian fll oo (B(zo.r)no0) + 77| VianS || co.e (Bwo.rno0) ¢
(2.3.4)

where C, depends only on d, m, p, X\, o and 7.

Proof. Notice that a half-space H¢(s) is invariant under rescaling (or translation,
rotation). Thus, by rescaling, we may assume r = 1. In this case the estimate
follows from the boundary Lipschitz estimate with Dirichlet boundary condition,
proved in [9] for a general C** domain. The fact that Q has a flat boundary is
essential here. For otherwise the constant C), in will depend on r, if r is
large. O]

Theorem 2.6 (Lipschitz estimate with Neumann condition). Let A and € be the
same as in Theorem[2.0. Given xo € 02 and r > 0, let u. be a weak solution to

Lo(u.)=F in B(xo,r) N,

Ou,
. g on B(xg,r) N oS

14



Then

1/2 1/p
||Vu||Loo(QmB(x07,,/2)) < Cp{ (f |Vu£|2) +7r <][ |F|p>
B(zo,r)NQ B(zo,r)NQ

(2.3.5)
+ |9l oo (B(zo,mn00) + TUHgHCO*U(B(xo,r)ﬂaQ)}7

where C, depends only on d, m, p, X\, o and 7.

Proof. By rescaling we may assume that r = 1. In this case the estimate
follows from the boundary Lipschitz estimate with Neumann boundary condition,
proved in [24, §]. As in the case of the Dirichlet condition, the fact that Q = H¢(s)
has a flat boundary is essential for r» > 1. [

Remark 2.7. As we have pointed out, the flatness of the boundary in the last two
theorems is crucial for the estimates to hold for large » > 0. However, if we restrict

ourself to 0 < r < 1, then the above Lipschitz estimates hold as long as the boundary
is C'h,

2.4 Diophantine condition

The Diophantine condition was first introduced in [20] (also used in [21] [7]) to study
the boundary layer problem in polygonal convex domains. We give a precise definition
as follows.

Definition 2.8. We say a unit vector n € S%! satisfies the Diophantine condition, if
there exists some k = k(n) > 0 so that

(I —n®@n)é| > kl¢]™?  for any € € 24\ {0}, (2.4.1)

where n®n = (n;n;)axq. The largest possible number x will be called the Diophantine
constant of n.

Observe that (I —n ®n){ = & — (£ - n)n is the projection vector of & onto the
orthogonal plane of n. Intuitively, the Diophantine constant s, arising from the
number theory, quantifies the irrationality of a unit vector. Clearly, if n is rational
(i.e., n € RZ%), then x(n) = 0. We may also construct irrational directions whose
Diophantine constants are zero by using Liouville numbers which are supposed to be
arbitrarily close to rational numbers. Nonetheless, in the following lemma, we show
that almost all the unit vectors satisfy the Diophantine condition with x > 0.

Lemma 2.9. Let Q be a strictly convex C* domain. Then

€ LT1°°(0Q, do). (2.4.2)

K(n(z))

15



Proof. A key observation for the strictly convex domains is that for any w € S¢1,
oc({r €00 : |(I —wew)n(z)| <t}) < Ct? (2.4.3)

if £ < 1. This geometric property can be easily seen if {2 = B;, while the general case
may follows by writing the boundary as a local graph (see [42]).
Now, let ¢ € (0,1) and note that

{r €00 :k(n(x) ' >t} CS; = U {z €09 :|(I —n(z)@n(x)E| < t|g| 2}
gezi\{o}
Using and the fact |(/ —w @ w)n(x)| = |(I —n(r) @ n(z))w|, we have

o({z €09 |(I —n(x) @n(x))¢| < tl¢]"*})
=o({z € 0Q: |(I = n(z) @ n(2)w| < tlg] ", w=¢7¢})
=o({z €0Q: (I —w@w)n(z)] < tlg|*,w =g 7'¢})
< Otd_1|£|_3(d_1).

Since 3(d — 1) > d for d > 2, it follows

o({x €0 k(n(x)) >t} <a(S) < > Ctg D < ot
gez\{0}
for any 0 < ¢ < 1. This implies our desire result (2.4.2)). O

The property will be used in an essential way throughout this dissertation
and this is exactly the only property that we need from the strict convexity of the
domains. We also emphasize that all the constants C' in this dissertation will be
independent of x. In other words, if a constant depends on k, it will be specified
explicitly.

Next, we will show a quantitative equidistribution property of a periodic function
restricted on a hyperplane. Let n € S with k = k(n) > 0. Let M be a d x d
orthogonal matrix so that its last column is n, namely, Me; = n. Write M = (N, n)
where N is a d X (d — 1) matrix. Now, observe that

I=MM"=NNT +nen.

This yields [(I—n®n)é| = [INNTE| = [NTE|. Thus, the Diophantine condition (2.4.1])
is equivalent to

INTE| > k|€|™2 for any € € Z4\ {0}. (2.4.4)
The following lemma is an analog of [7, Proposition 2.1].
Lemma 2.10 (Quantitative equidistribution). Let n € S*! with k = k(n) > 0 and
OHL(0) = {x : x-n = 0}. Assume f € C®(T?) (i.e., f is a smooth 1-periodic
function) and ¢ € C*°(9HZ(0)). Then, for any £ > 0,
| sle@ar =) [ o
oH (0)

OHL (0)

£

< (357) gy ITirlir 32 170N

0££€74
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where Vian is the full tangential gradient on OHZ(0).

Proof. First of all, we may use a change of variables to convert the integral on OH¢ (0)
to an integral on R, Precisely, let M the d x d orthogonal matrix given above and
r = My = Ny’ with y = (v/,0). Then

/ fa/e)ele)do = [ F(NY /)Ny )dy
OHd (0) Rd-1
—(f) / SNy + S / (&)™ Ny )y
Rdfl 0#£Ezd Rd—l
(2.4.5)

where we have used the Fourier series expansion of f in the second identity and f(&)

is the Fourier coefficient. Note that (f) = f(0).
Now, fix £ # 0. Using ([2.4.4) and the integration by parts, we have

F&)ePmENY 2 o(Ny' ) dy'

‘ Rad-1

N ‘/ F(€)e™e NI Ny Y dy
Rdfl

f(5)62m'5_1NT£~y’ NTf
/R (2mie=1[NT€])* \|[NT¢|

< [ RN (5m) IV VI

¢
V) (e(Ny))dy

Combing this with (2.4.5)), we obtain

‘ /69Hg(0) fz/e)p(x)do —(f) /Rd—l p(Ny')dy'

< (5=) [ I 9yeiy Y IR

27K
04£t€zd

This yields the desired estimate by changing variables back to x. O]

Copyright®© Jinping Zhuge, 2019.
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Chapter 3 Neumann problems

In this chapter, we study the Neumann problem and obtain the O(E%) con-
vergence rate for d > 3. In the case of the Neumann problem with only zero-order
oscillating data go(z, x/€) — ., i.e., g;;(z,y) = 0, the homogenization of is well
understood, mostly due to the fact that the Neumann function N.(z,y) for L. in Q
converges pointwise to Ny(z,y), the Neumann function for the homogenized operator
Ly in Q. In fact, it was proved in [25] that if  is a bounded C*! domain in R? and
d > 3, then

Celn[e7 |z —y| + 2]

|z —y|ot

IN=(z,y) — No(z,y)| < : (3.0.1)

for any x,y € €. This effectively reduces the problem to the case of operators with
constant coefficients, which may be handled by the method of oscillatory integrals
[3, 5]. Thus the real challenge for the Neumann problem starts with the first-order
oscillating boundary data that includes terms in the form of e 'g(x, z/¢). As we will
show in the last section of this chapter, in the study of the higher-order convergence
of solutions to the Neumann problems for £. with non-oscillating boundary data, one
is forced to deal with a Neumann problem in the form of .

3.1 Neumann functions and Neumann correctors

Under the conditions ([1.2.2)-(1.2.3) and A € C?(T¢) for some o € (0,1), one may

construct an m xm matrix of Neumann functions N.(z,y) = (N2 (z,y)) in a bounded
O domain €, such that

LAN(-y)} = 0y(x)] in €,

0 _

Ne(x,y)do(z) =0,
o0

where I = I, and the operator L. acts on each column of N.(-,y). Let u. €
H(;R™) be a solution to L.(u.) = F in Q with g—;‘z = h on 052, then

wio) - f w= [ NegF@d+ [ Nephtdo) (312
o0 Q o0
for any x € Q. If d > 3, the Neumann functions satisfy the following estimates,
[N(2,y)| < C'la -y~

\V.N.(z,y)| + |V, Ne(2,y)| < Clz —y|' ™4, (3.1.3)
|VacvyNe(:L‘7y)| < C|JZ - y|_d7
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for any x,y € Q. This was proved in [24], using boundary Lipschitz estimates with
Neumann conditions, which require the additional assumption A* = A. This ad-
ditional assumption for the boundary Lipschitz estimates was removed later in [8].
As a result, the estimates in hold if A satisfies — and is Holder
continuous. Note that if z,y, z € Q and |z — z| < (1/2)|z — y], it follows from
that

IN.(,y) — No(op)] < 2L
Igf|—y| | (3.1.4)
xr —Z
IV {N(2,y) — Ne(2,9)}| < Ty

To study the boundary regularity for solutions of Neumann problems, the matrix
of Neumann correctors \I/gj = (\Ifgf ) for L. in Q, defined by

L(T.) =0 in Q,
o o (3.1.5)
a—,/a(‘lffvj) = 5—%(5@) on 0,

was introduced in [24], where Ou /0y, denotes the conormal derivative associated with
Ly. One of the main estimates in [24] is the following Lipschitz estimate for o’

Ehj ’

qujf,jHL"o(Q) <C. (3.1.6)

Let Ny(x,y) denote the matrix of Neumann functions for £y in Q. It was proved
in [25] that if  is C11,

Celn [e7 !z — y| + 2]

- < 1.
|Ns(x7y) N()(I',y” — |x_y|d_1 (3 ]. 7)
for any z,y € Q, and that if Q is C%“ for some « € (0, 1),
0 0 0 C,el=e
— I Ny _ 2 B L2 N8 < o 1
‘ayl{ e ($7y)} ayl{ €, (y)} ayj{ 0 ("an)}‘ >~ ]az—y]d*" (3 8)

for any z,y € Q2 and o € (0,1). The functions (\P:iﬁ) in (3.1.8)) are the Neumann
correctors, defined as in (3.1.5)), for the adjoint operator £ in 2. We remark that
these estimates as well as were proved in [24] under the additional assumption
A* = A. As in the case of (3.1.3), with the results in [§], they continue to hold
without this assumption.

The estimates @ and mark the starting point of our investigation of

the Neumann problem “1.2.5) with oscillating data. Indeed, let u. be the solution of
(1.2.5) with faﬂ u. = 0. It follows by 1} that

u(z) = [ No(z,9)(Tis(y) - Viy){9i;(y,y/€) } do(y)
o9 (3.1.9)
| Ne(z,9)90(y, y/€) do(y),
Q
where T;; = nje; — nje;, n = (ny,--- ,ng) is the outward normal to 012, and e; =

(0,...,1,...,0) with 1 in the i** position.
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Lemma 3.1. Let Q be a bounded Lipschitz domain in R:. Then, for u,v € C1(99),

/m((niej —nje;) - Vu)vdo = —/ u ((n;e; — nje;) - Vo) do. (3.1.10)

o0N

Proof. Let u,v be extended as functions in Q. Then, by the divergence theorem, we

have
0 (0 d (0
/m((niej —nje;) - Vu)vdo = /Q oz, (8_3(;]1“)) — 8_%<8xzu v)d:c

_/8_u8v ou Ov
N o O0x; 0x;  Ox; Oz,

(3.1.11)

—dx.

Similarly, the RHS of (3.1.10)) gives the same result which completes the proof. ]

It follows from (3.1.9) and m that
uc(r) = — /BQ (T35 (y) - Vy)Ne(,y) - 9i5(y, y/e) do(y)

(3.1.12)
/. Ne(z,y)90(y, /<) do(y).
In view of (3.1.3) this implies that
do(y) do(y)
us(z gCgoo/ ——1-0900/ O
|u ()| 9l . |41 9]l oq | — )42 (3.1.13)

< Cllglloe{l + [Ind(z)[},

where g = {g;;, 90} and 6(z) = dist(z, 09).
Remark 3.2. Tt follows from (3.1.13]) that for any 1 < ¢ < oo,

el o) < G llgllos,

where C,, depends on ¢, A and €. By interpolation, this, together with (1.2.9)), implies
that )
||u5 - uOHLq(Q) S Cq,a 5570’ (3114)

for any 2 < ¢ < oo and o € (0, %) Moreover, if A* = A, it follows from [23] that

1/2
ve | /20y + </Q |V (z)]? §(x) dac) < C|\gllz209)- (3.1.15)
Thus, by interpolation, we may deduce from ((1.2.9) and (| m ) that
1—06—0'
e — uo|| g < Cape? (3.1.16)

for any o € (0,1/2) and o € (0, (1/2) — «).
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Using (3.1.7) and (3.1.8)), we obtain

o 0 o
ul(x) = —/ (Ti(v) - Vo) U2 (w) - 5 AN (2. 0)} - 655 (v, w/2) do(y)
9 Yk (3.1.17)
+ ) No“(x,9)96 (y,y/¢) do(y) + RY(x),
Q
where the remainder R, satisfies
Y do(y
|Ra(z)| <Ce! wm/ﬁ—fgj
o0 |2~y (3.1.18)

In[e |2 — y| + 2]
+Celgl [ PEE Y o).
o0 |z —yl

Lemma 3.3. Let Q be a bounded C** domain for some o € (0,1). Then the function

R., given by , satisfies
1
|RellLag) < Cea(l 4+ |Inel)| g, (3.1.19)
for any 1 < g < oo, where C' depends only on q, A and 2.
Proof. Let x € Q. If §(x) = dist(z, 02) > ¢, we may use (3.1.18)) to show that

l1-0o
€
Re(z)] < Co | oo 3.1.20
R@I<Co(505) Nl (3.1.20)
for any o € (0,1). If 6(z) < ¢, the estimates in (3.1.3), as in (3.1.13)), lead to
|R=(2)] < Clglloo(1 + [ d()]). (3.1.21)
It is not hard to verify that (3.1.19) follows from (3.1.20)) and (3.1.21)). O

As ¢ — 0, the second term in the RHS of (3.1.17)) converges to

wo(z) = [ Ng®(z,9){95)(y) do(y), (3.1.22)
onN

where
(90)(y) = ][d 90(y. 2) dz. (3.1.23)
T
More precisely, the following results on the convergence rate were obtained in [5].

Lemma 3.4. Let w. denote the second term in the RHS of . Assume that Q

is a bounded smooth, uniformly convex domain in R?. Then, for any 1 < q¢ < oo,

gq if d=3,
Jwe — wol|Lagoy < Cq { g2 if d=4, (3.1.24)
ei(l+|Inel)s  ifd>5,

where wy is given by .
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Much of the rest of paper is devoted to the study of the first term in the RHS of
3.1.17)). To this end we first replace the function \If:‘}‘f by

Vi (@) = U (x) — PP (x) — exi™(x/e), (3.1.25)
where (x;*”(y)) denotes the matrix of correctors for £* in R?. Note that

L:wh)=0 inQ, (3.1.26)

* *1 *
where ¢Ei = (wakﬁa s 71/}5,7;/8)

We end this section with some observations on its conormal derivatives.

Lemma 3.5. Let 1/1:3;5 be defined by (3.1.25]). Then

(81/* {Qﬂ ) (x) = —ni(:c)b*o‘ﬁ(x/e) for x € 09, (3.1.27)

where 5
i) = a2 ) a7 () - (0677 — (3.1.28)

J

and A* = (A;O‘B) = (/Al)* is the homogenized matrix of A*.

Proof. By the definitions (3.1.25)) and (3.1.5)),

(au*{w )a (@)

= na;; " (x/e) 57— s
ﬁxj ok
*Qu a * *
7%au’“175)5;;(wéﬁwx) P () — exi’(w /)
=n A*MiP'YB(x) —na;; ' (z/e) 0 PP (x) — nial® (z /) : (x/e)
Qg * T Ox; " T ox;

(35 = a2 fe) = o /) B )

This proves the lemma. O]

Note that by the definitions of correctors X}Zaﬁ and of the homogenized matrix ;1\*,

bl =0 d brh — 0. 3.1.29
G wd [ b (3.129

Similar as Lemma , this implies that there are 1-periodic functions fZ,f with mean
value zero such that

b*“ﬁ——{f&k and  fi) = —fir. (3.1.30)
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As a result (see the proof of Theorem [2.3]), we obtain

ni(z)bi” (z/2) = %(niej —nse;) - Vo{efin(z/e)}. (3.1.31)

This shows that z—:*lwzi is a solutions of the Neumann problem (1.2.5)) with g¢;;(x,y)
= (1/2)f5x(y) and go = 0.

3.2 Neumann problems in half-spaces

For n € S ! and a € R, let
Hi(a) = {zeR: 2 -n < —a} (3.2.1)
denote a half-space with outward unit normal n. Consider the Neumann problem

div(AVu) =0 in HY (a),
) (3.2.2)
n-AVu=1T-Vg on OH (a),

where T € R? |T| < 1 and T - n = 0. We will assume that g € C°°(T?) with mean
value zero and n satisfies the Diophantine condition (2.4.1)) with constant k = k(n) >
0. Let M be a d x d orthogonal matrix such that Me; = —n. Note that the last
column of M is —n. Let N denote the d x (d — 1) matrix of the first d — 1 columns
of M. Since MMT = I, we see that

NNT +n@n=1, (3.2.3)

where M7 denotes the transpose of M.

To study the solvability of the half-space problem , one first notices the
boundary data T - Vg(6) and the coefficient matrix A are both quasi-periodic on
OH(a). Recall that a quasi-periodic function is defined by restricting a periodic
function in a lower dimensional hyperplane. Then, it is natural to expect that the
solution of also possesses the same quasi-periodic structure along every hy-
perplane parallel to the boundary OH?(a). While in the direction of n, the solution
will decay in some sense. As a result, we may assume by intuition that the solution

of (3.2.2)) is given by

uwz)=V(I—-n@n)z,—z-n)=V(x— (- -n)n,—z-n), (3.2.4)
where V = V(0,t) is a function of (6,t) € T¢ x [a, o), 1-periodic in #. Note that
T
Vou = (1 —nen, —n) (V9> - M(N Vf’) v, (3.2.5)
O O
where we have used (3.2.3). It follows from ([3.2.2)) and ([3.2.5)) that V' is a solution of
T T
N Vi -BNVH V=0 in T¢ x (a, 00),
O O

(3.2.6)

T
—€qi1 - B(N879>V =T Vg on T¢ x {a},

23



where

B=DB(0,t)= MTA0 — tn)M, (3.2.7)

g(0,t) = g(0 — tn), and we have used the assumption that 7'-n = 0 to obtain
T-V.g=T-Vsg. Observe that if VV? is a solution of (3.2.6) with a = 0 and

Veo,t) =v°0—an,t —a) foracR,
then V* is a solution of (3.2.6)). This follows from the fact that
B0 —an,t —a) = B(#,t) and g(0 —an,t —a)=g(0,1).

As a result, it suffices to study the boundary value problem (3.2.6) for a = 0. To this
end, we shall consider the Neumann problem

T T T
— (Nav“’) : B(Nav9>\/ — MV = (Nav")G in T? x R,
' ' NTY ' (3.2.8)
—eqi1 -B( 5 G)V:T'Vgg+6d+1 -G on T x {0},
t
where A > 0 and the term —AAyV is added to regularize the system.
Let
— {f € H (T xRy) : / / (IVofP? +10.f17) < oo}. (3.2.9)
0o Jrd

We call V € H a weak solution of (3.2.8) with g € H*(T¢) and G € L?(T¢ x R,), if
T T
// NV@V-NV9W+AWV- Vo w L dgat
Td at 0
T
_ / (T - Vag) - W(6,0)do — / / (N W)Wd@dt
Td Td

for any W € H.

(3.2.10)

Proposition 3.6. Let g € HY(TY) and G € L*(T? x R,). Then the boundary value
problem has a solution, unique up to a constant, in H. Moreover, the solution
V' satisfies

| Lot «10vP) < sl + 161 s, . (3210

/\/ /w VoV |* < C{Ilgllfm(w) + ||G||§2(MR+)}, (3.2.12)
0

where C" depends only on d, m and .
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Proof. This follows readily from the Lax-Milgram theorem. One only needs to observe
that

‘/Td(T-Vgg)-W(@,O) )

1 1/2
< Clllles ([ [ (57w 4 v )

for any W € H. Indeed, write

(3.2.13)

/ (T - Vag) - W(0,0) d6 / 1 / (T Vag) - (W(6,0) — W (6, 1)) dbdt

L /01 /Td(T Vag) - W(0,t) dodt.

It is easy to see that the first term in the RHS of (3.2.14)) is bounded by

(3.2.14)

1 1/2
O aglizcon ([ 100V at)
0

To handle the second term in the RHS of (3.2.14)), we use

/Ol/Td(T-Veg)- W(0,t) dodt = //W W)(6,t) dodt

T -VoW =T -NNIV,W

and

to bound it by
1 1/2
C||g||L2(']1'd) (/ ||NTV9W||%2(T¢1) dt) .
0

The estimate ((3.2.13]) now follows. [

Proposition 3.7. Let g € H*(T%) and G € L*(R,, H*"*(T%)) for some k > 1. Then
the solution of , given by Proposition satisfies

| ISV sy + 10V sy + MV i)
0

<q {ngzwd) + [ NG } i,

where Cy depends on d, m, k, u and || Al|cr-1(a).

(3.2.15)

Proof. The proof is standard. The case k = 1 is given in Proposition To prove
the estimate for k£ = 2, one applies the estimate for £ = 1 to the quotient of difference
{V(0+ sej, t) —V(0,t)} s~! and lets s — 0. The general case follows similarly by an
induction argument on k. O
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Proposition 3.8. Let g € H***~Y(T%) for some k,{ > 1. Suppose that
0°G € LA*(Ry, HM"™=27(T4))  for 0<a <l —1.

Then the solution of , given by Proposition satisfies
e
JRNCAL T

. (3.2.16)
<C {Ilgllqul(w) + Z / ||83G||§1k+£2a(1rd)} dt,
0

0<a<i—1
where C depends on d, m, k, £, i and || Al|crre-2(gay.

Proof. The case ¢ = 1 is contained in Proposition [3.7, To see the case ¢ = 2, we
observe that the second-order equation in (3.2.8]) allows us to obtain

O?V = a linear combination of

. . (3.2.17)
Vo(NTV)V, NTV,V, 0,VoV,0,V, VoG, AV, 0,G

with smooth coefficients. It follows that
102V llpesry < CINTS 0V sy + 10V lrey + 16 ey

10 srms ey + MV ooy}

This, together with the estimate (3.2.15|), gives (3.2.16|) for ¢ = 2. The general case
follows by differentiating ([3.2.17)) in ¢ and using an induction argument on /. [

Proposition 3.9. Suppose that n satisfies the Diophantine condition with
constant k > 0. Let V' be the solution of , given by Proposition . Let

V(0.8) = V(6,1) —][ V(t).
Td
Then
| Rt < C{lalpsmn + [ NG gt} 3218)

where C' depends on d and k .
Proof. Recall (2.4.4)) gives INT¢| > k[€]|72 for any € € Z¢\ {0}. This implies that

INTV V|| grracray > Cr|| V|| pay, (3.2.19)
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which, together with (3.2.15)), gives the estimate (3.2.18)). To see (3.2.19)), we use the

Parseval’s identity to obtain

INTVoV | capay = D (14 €D NTEV (€2

cezd
H2(1+ |€2 k42

> ¥ S e

0£€€z (3.2.20)
>C0s Y (L P VE)F

0#£E€zd
= Cn2||V||qu(Td).
This completes the proof of (3.2.19)). O

Remark 3.10. Suppose that g € C*(T?), G € C*(T?xR, ) and 903G € L*(T*xR,)
for any k and a. For A > 0, let V) be the solution of (3.2.8]), given by Proposition
W. By subtracting a constant we may assume that [, VA(#,0)df = 0 and thus

t
Va(0,1) = Th(0,4) + / D.VA(D, 5)d0ds.

0 Jd
It follows from Propositions and [3.9| that the L?(T¢ x (0, L)) norm of F93Vy is
uniformly bounded in A, for any k&, a and L > 1. Hence, by Sobolev imbedding, the
C*(T? x (0, L)) norm of Vy is uniformly bounded in A, for any & > 0 and L > 1.
By a simple limiting argument this allows us to show that the Neumann problem
(3.2.8) with A\ = 0 has a solution V, unique up to a constant, in C°°(T? x [0, 00)).
Furthermore, by passing to the limit, estimates (3.2.11)), (3.2.15)), (3.2.16)) and (3.2.18)
continue to hold for this solution.

Proposition 3.11. Suppose that n satisfies the Diophantine condition with
constant k > 0. Let V be the solution of with A =0, g € C®(T?) and G =0,
giwen by Remark[3.10. Then there exists a constant Vy, such that for any ¢ > 1,

Ca,é

105 (V — Vo)(0,1)| < m, (3.2.21)
for any a = (o, ..., aq). Moreover, we have
o [} 004 )
INTV4(95V) (0, 8)| + |0FOgV (0,1)] < ﬁ (3.2.22)

where k > 1.

Proof. Tt follows from Propositions [3.7] and [3.8 by Sobolev imbedding that
INTV(95V)(0, 1) + |07 05V (8,)] < Ca

for any @ = (ay,...,aq) and k > 1. Next we note that the decay estimate in (3.2.22))

follows by the exact argument as in the case of Dirichlet boundary conditions, given
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in [21], Proposition 2.6] (the proof does not use the boundary condition at ¢t = 0). For
the readers’ convenience, we will present their proof here. Let

—/ /(|NTv9(agV)\2+yafagv12) dodt.
s Td

We would like to show
F(s) <

(rs)! for any ¢ > 1.
To this end, let s > 0 and
W(o,t) =V (0,t) —/ V(0,s)do.
Td
Note that for t > s, W satisfies
NTV, NTV, B
_< ) ).B( o)W =

Multiplying the above system by W and integrating over T¢ x [s, c0), we obtain

[ Lo Car - ("

0 T (3.2.23)
—/ [( - 1) -B(H,s)( 9>W(9,s)}W(0,s)d9.
e [\ —1 O
Note that VoW = V,V and 0;W = 0;V. Then implies
1/2
F(s) < C(—F’(s))1/2( \W(@,s)]2d9> : (3.2.24)
Td

To estimate the integral in (3.2.24]), we need to use the equivalent Diophantine con-
dition (2.4.4]). Precisely,

e, s)Pdo = > [W(E )

0#££€2d
. 1/p W ¢, )2 1/p
< D INTEPWE s)P > ‘7(’—2/|
|N 5‘ D' /p
0£4E€Z 0FgeL

1/p L L/p
sﬂ/p( |NTvew<e,s>|2) (Z |s|4p/p|w<f,s>|2)
Td

0#£Eezd
< KP(—F(s) P |W (-, 8) |28

H2/(p—1) Td)7
where p > 1 and 1/p+ 1/p’ = 1. Now using a simple observation

W, s)]? = /OO W(0,t) - 8,W (6, t)dt

< (/:O|W(0,t)|2dt) 1/2(/:0|atVV(0,t)|2dt)l/2,
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and (3.2.15)), (3.2.18)), we have

W, 9)llecray < O'2,

for any ¢ > 0. It follows that
W (6, 5)|2d0 < Cr=2/P= Y (—F'(s)V/P = Cr™1YP(—F'(s)) /7.
Td

Substituting this into (3.2.24]), we obtain

—F/(s)>§+zlp

R

F(s) < (J( : (3.2.25)

for any p € (1,00). This gives

pt1

F(s) < Gy(rs) r,

which shows that F'(s) may decay faster than any power of s as s — oo. This proves
(3.2) as desired.

Next, by differentiating in # and ¢, and using a similar argument, we may
show by induction that

Fao)= [ [ (INTVa(@V)P + 0k 05V ) doa.
s Td

decay faster than any power of s. More precisely, assuming the estimate holds for all

la] + k < N. Then if |a| + k = N, forany€>%>

Fon(s) < C, {(‘F /(S)) ™ <ms)—f]

K

Hence, we get

Fop(s) + (ks) 51 < Cp(_FHI(S> + (ns)m)2+2”. (3.2.26)

p+1

Set Gok(s) = Far(s) + (ks) »=1. Then, (3.2.26) implies

-G +2
“—’“(8)> , (3.2.27)

K

Gan(s) < 0(

which, as before, yields the desired decay estimate of F, x(s). Now, by the Sobolev
imbedding theorem, we establish

INTV4(05V)(0, 0)] + 107 05V (0, 8)] <

(st)!

which implies (3.2.22)).
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Finally, to show the existence of the constant limit at infinity, we note that (3.2.22))
implies that
tlim VoV (6,t)] =0 (3.2.28)
—00

uniformly in § € T¢. On the other hand,

C C

s+h s+h
: h) —V{( = L t)]dt < —dt < —.
[V(s+h) = V() A |@V0>|-—[ (L mtE " = s

Thus, V(-,t) is a Cauchy function and admits a unique limit as ¢ — oco. Moreover,
(3.2.28]) implies that the limit is independent of 8. This shows the existence of V, :=
limy o, V (-, ). As a consequence,

g =Vl < [ ooy slas<c [ 2
t

' 1+ ks)H+2
C < ds
< 2.2
~ (1 + kt)t /t (14 ks)? (3:2:29)
< ©
~ k(1 + kt)Y

where we have used (3.2.22) for the second inequality.

U

We now state and prove the main result of this section.

Theorem 3.12. Let n € S*! and a € R, where d > 2. Let T € R? such that |T| < 1
and T -n = 0. Suppose that n € S ! satisfies the Diophantine condition
with constant k > 0. Then for any g € C=(T?), the Neumann problem has a
smooth solution u satisfying

()] < c
~ k(14 klz-n+a))t’ (3.2.30)
00u(x)| < ¢

(1+ k|lz-n+al)t’

for any |a| > 1 and £ > 1. The constant C' depends at most on d, m, u, «, ¢ as well
as the C*(T?) norms of A and g for some k = k(d, o, £).

Proof. Let V be the solution of (3.2.8) with A =0, g € C*(T?) and G = 0, given by
Remark B.10 Let

uwz)=V(e—(z-n+an,—(x-n+a)) — V.

Then wu is a solution of the Neumann problem (3.2.2). The first inequality in (3.2.30))

follows directly from (3.2.21). To see the second inequality, one uses (3.2.5)) and
(3.2.22). 0
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3.3 Refined estimates in half-spaces

Throughout this section we fix n € S¥!' and a € R. We assume that n € S?!
satisfies the Diophantine condition with constant x > 0. However, we will be
only interested in estimates that are independent of k.

Our first result plays the same role as the maximum principle in the case of
Dirichlet problem.

Theorem 3.13. Let T € R? such that [T| < 1 and T -n = 0. Then for any

g € C=(T9), the solution u of Neumann problem , given by Theorem
satisfies
Cllgllo

< 3.1
Vu(z)| < P—— (3.3.1)

for any x € H4(a), where C' depends only on d, m and p as well as some Hélder
norm of A.

Proof. By translation we may assume that a = 0. We choose a bounded smooth
domain D such that

B(0,1) nH4(0) ¢ D c B(0,2) NH%(0),
B(0,1) N OH(0) = 9D N OH%(0).
Let ve(z) = eu(x/e). Since L.(v:) =0 in D,

ov,
ov,

o.() — v.(2) = /a Ny = N} 5 ) do(w)

for any z,z € D, where N (z,y) denotes the matrix of Neumann functions for £. in
D. By a change of variables it follows that

u(r) —u(z) = 5d_2/8 {N.(ex,ey) — N.(ez,ey) }n(ey) - A(y)Vu(y) do(y),
D /e

where Dy/. = {7 'y :y € D}.

Fix z,z € H?(0) such that |z — z| < (1/2)]z - n| = (1/2)dist(z, JHZ(0)). Choose
n. € C3(B(0,e71)) such that 0 < n. <1, 7. =1 on B(0,e7! —1) and |Vn.| < 1,
where ¢ < 1/10. Let u(z) — u(z) = I; + I2, where

JA / 1) { V(e ) — Na(ez,ey) Ynley) - Aly)Valy) doly)
aDl/e
= g2 /d 1e(Y) { Ne(ex, ey) — Ne(ez,ey) }T - Vg(y) do(y)
Dl/s

e T TR ) Nz ) o) do),
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where we have used the Neumann condition for u as well as an integration by parts
on the boundary. We now apply the estimates in (3.1.4]). This gives

do(y do(y
LD+l gl | W)

oigy|<t |z =yl

€

1] < Clo = llgll [

BH (0)
< Collgllee + Cellglloc|x — 2,
if €, which may depend on |z|, is sufficiently small. We point out that the constant

() in the estimate above depends only on d, m, p and some Holder norm of A.
Next, to handle I5, we use the estimate

v
(14 &ly - nl)?

from (3.2.30)). This, together with (3.1.4)), leads to

[Vu(y)| <

|IZ| — 8df2

/ (1-— ne(y)){Ne(&:x, ey) — Ne(ez, 8y)}n(6y) - A(y)Vu(y) do(y)
oD, .

cc. | OB g —
d 1

D, ).NHZ (0) |z =yl (1 + kly - nl)? <lyl<t |z — y|d-1
<C 6d_1 dU(y)
- oD, ,.md o) (1 + K|y - nl)?
1/e n

which shows that I, — 0, as ¢ — 0. As a result, we have proved that for any
x,z € H4(0) with |z — 2| < dist(x, 9H4(0)),

€

+ Cy 6,

u(@) — u(2)| = lim |1y + B| < Collgll

Since £;(u) = 0 in H<(0), by the interior Lipschitz estimates [9] for £;, we obtain

Collglloo

- nf

[Vu(z) <

which completes the proof. n

Let Q = Hi(a) and £ = — div(A(z)V) . In the rest of this section we consider
the Dirichlet problem,

L(u) =div(f) + h in Q,
3.3.2
{ u=">0 on 0f), ( )
and the Neumann problem,
L(u) = div(f) in Q,
ou (3.3.3)

—=-n-f on 0f),



where A is assumed to satisfy the ellipticity condition ((1.2.2) and A € C?(T9) for
some o € (0,1). We shall be interested in the weighted L? estimate,

/Q\Vu(x)|2[5(a:)]adx
<c / @) P[5()]% de + C / ()P [5(2)] " de,

where —1 < a < 0 and

(3.3.4)

d(z) = dist(x,00Q) = |a + (z - n)|. (3.3.5)
We start with some observations on the weight w(z) = [§(z)]".

Lemma 3.14. Let w(z) = [§(z)]", where —1 < a < 0 and §(z) is defined by (3.5.5).
Then w(z) is an Ay weight, i.e., for any ball B C R,

][ w < Cinfuw, (3.3.6)
B B

where C' depends only on d and a. Moreover, w satisfies the reverse Holder’s inequal-

iy,
1/p
(][ wP dx) < C][ wdz, (3.3.7)
B B

where 1 < p < oo and ap > —1.

Proof. This is more or less well known and may be verified directly by reducing the

problem to the case Q = R% and §(z) = |z4/. O
It follows from (3.3.7)) by Holder’s inequality that if £ C B, then
w(E) (|E| )
— < C | = , (3.3.8)
w(B) | B

where w(E) = |, pwdz. Since 1) implies that w satisfies the doubling condition,
w(2B) < Cw(B), it is easy to see that (3.3.8) also holds if one replaces ball B by
cube Q. In fact, if w is an A, weight in R?, i.e.,

]iuw (]iw—pily_l <, (3.3.9)

then there exist some o > 0 and C > 0 such that

@ @ ’ or an
w(Q)SC<|Q|) fi y ECQ. (3.3.10)

Functions satisfying (3.3.10)) are called A, weights. In the following we will also need
the well known fact that if w is an A, weight for some 1 < p < oo, then

IM(HIP wdz < C/ |fIP wdx, (3.3.11)
R4 R4
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where M( f) denotes the Hardy-Littlewood maximal function of f. This is the defin-
ing property of the A, weights. Note that if w is A;, then w is A, for any p > 1. We
refer the reader to [40] for the theory of weights in harmonic analysis.

Theorem 3.15. Let w be an Ay weight in RY. Let u € H} () be a weak solution of
Dirichlet problem with h = 0. Assume that

w(B(zo, R) N Q)][ Vul> -0 as R — oo, (3.3.12)
B(z,R)NQ

for some xy € ). Then

/|Vu|2wdx§0/ |f|? wdx, (3.3.13)
Q Q

where C' depends only on d, m, p, ||Allce(ray, and the constant in .

Proof. This is essentially proved in [34] by a real-variable method, originated in [12].
We provide a proof here for the reader’s convenience. By translation we may assume
that @ = 0. We will also assume that n = —ey4 and thus Q = R? for simplicity of
exposition. We point out that the periodicity of the coefficient matrix is not used
particularly in the proof, only the estimates in Theorem [2.6]

Fix 1 < p < 2. Let p € (0,1) be a small constant to be determined and A = p~7/2,

where ¢ is given in . Let
Qr=(-R,R) x -+ x (=R, R) x (0,2R) C RY.
We fix R > 1 and consider the set
E(\) = {z € Qp : Mp(|Vul’)(z) > A}, (3.3.14)
where Mg(F) is a localized Hardy-Littlewood maximal function of F, defined by
Mpg(F)(x) = sup ][ |F|.
2eQCr JQ

Let
Co

Q]

where () is a large constant depending on d. For each A > )y, we perform a Calderén-
Zygmund decomposition to E(AX) C Qg. This produces a sequence of disjoint dyadic
subcubes {Q} of Qg such that

|E(AX) \ UpQx| = 0,
|E(AN) N Qx| > p|Qxl,  [E(AN) N Q| < plQyl,

where @) denotes the dyadic parent of (), i.e., Q) is obtained by bisecting ()}, once.
We claim that it is possible to choose p,v € (0,1) so that

if {z€Q: Mg(|fIP)(z) <yA} #0, then Qf C E(N). (3.3.17)

Ao

(Vul?, (3.3.15)

Qor

(3.3.16)
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The claim is proved by contraction. Suppose that there exists some xy such that

zo € Q5 \ E(N). Then, if a cube @ contains @ and Q) C Qap,

][ lfIP <~yA and ][ VulP < A (3.3.18)
Q Q

This implies that for any x € Q,

Mz(|VulP)(z) < max(Mag: (|Vul?)(z), 570), (3.3.19)
where
Moy (F)w) = _suwp o |F]|.
TEQC2Q;NJQ

We now write u = v + w, where v is a function such that

L(w)= div(f) inQ2N>dQ; and v=0 ondQ2N5Q;, (3.3.20)

/ Vol < C PP, (3.3.21)
Qn4Q: Qn5Q:

and C' depends only on d, m, p, pr and [[Al|¢e(re). The existence of such v follows
from the boundary W estimates for £, [9, [10]. Note that if A > 5%

|Qr N E(AN)| < |{x € Qr : Mag: (|Vul?)(z) > A)\}|
<z € Qu s Mag: (|Vu[P)(x) > (1/4) AN} (3.3.22)
+{z € Qr : Mag; (IVwl)(z) > (1/4) AN},

For the first term in the RHS of (3.3.22)), we use the fact that the operator M is

bounded from L' to weak-L!. This, together with (3.3.21)) and (3.3.18)), shows that
the term is dominated by

o fIP < CryAT Q4]
vy A Qi

where C' depends only on d, m, p and ||Al|co(e). Since L(w) = 0 in QN 5Q; and
w =0 on 9N N5Q%, in view of Theorem we obtain

VWl @n2g;) < C [Vwl
0N4Q;

1/p 1/p
<C <][ |Vu|p> +C (7[ |Vv|p)
QN4QL Q4Q;
1/p
<ON/P 4O (7[ |f|p>
QN5Q;

< ONYP,
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where we have also used estimates (3.3.18]) and (3.3.21)). It follows that the second
term in the RHS of (3.3.22) is zero, if A is large. As a result, we have proved that

|Qr N E(AN)| < CyA™H Qx| = Cyp°|Qul,

if p € (0,1) is sufficiently small. By choosing v € (0,1) so small that Cvp? < p, we
obtain |Qx N E(AMN)| < p|Qy|, which is in contradiction with (3.3.16|). This proves the
claim (3.3.17)). We should point out that the choices of p and ~ are uniform for all
A > A

To proceed, we use and to obtain
W(E(AN) N Q) < Cpw(Qk). (3.3.23)
This, together with , leads to
W(B(AN) < w(B(AN) N {z € Qg s Ma(|fP)() < 1A})
+w{z € Qr : Mg(|f|P)(z) > A}
< Zw{m € E(AN) NQk: Mg(|fP)(z) < yA}
k

+w{z € Qp : Mg(|f")(z) > yA}
< Cp” Y w(@Qr) + w{z € Qp s Ma(IfIP)(x) > 77},

k

(3.3.24)

for any A > X\, where the last sum is taken only over those Q);’s such that {x € Qy :
MEg(|f1P)(x) < yA} # (0. By the claim (3.3.17)) this gives

w(E(AN)) < Cp’w(E(N)) + w{z € Qp : Mg(|f[")(z) > yA} (3.3.25)
for any A > ).

Finally, we multiply both sides of (3.3.25) by A' with ¢t = ]% —1 € (0,1), and
integrate the resulting inequality in A over the interval (A, A) to obtain

At / M (B d

Ao

<oy /f )\tw(E()\))d)\Jer/ {MQR(\flp)}iwdx.

Qg

Since CA™p? = Cp=20+p7 < (1/2) if p > 0 is small, this gives

/A Nuw(E(N) dA < C/AAO Nuw(E(N) dA + 0/ 2w da,

2R

where we have used the weighted norm inequality (3.3.11) as well as the fact that
2/p > 1. By letting A — oo we obtain

2
/ |Vul?wdr < CA w(Qg) + C |fPPwdx
o an (3.3.26)
/ |Vul? dz + C |f|Pwdz,
Qor

Qop

o CW(QR)
Qg

36



where we have used the fact |F| < M(F'). We complete the proof by letting R — oo
in (3.3.26]) and using the assumption (|3.3.12)). ]

The next theorem treats the Neumann problem ([3.3.3)).

Theorem 3.16. Let w be an Ay weight in RY. Let u € HL (Q) be a weak solution of

the Neumann problem(3.3.5). Assume that u satisfies the condition . Then
the estimate holds with constant C' depending only on d, m, p, || Allce(ray,

and the constant in .

Proof. The proof is similar to that of Theorem [3.15 The only difference is that in
the place of (3.3.20]), we need to find a function v such that,

L(v) =div(fp) in QN 5Q;,

.3.27
@:n-(gof) on 02 N 5Q);, (3.3.27)

where ¢ € C°(5Q5), 0 < ¢ < 1, and ¢ = 1 on 4Q);. The existence of functions

satisfying (3.3.27)) and the estimate (3.3.21]) follows from the boundary W1? estimates
for £. with Neumann conditions [24, [§8]. We omit the details and refer the reader to

[19] for related W7 estimates for Neumann problems. O
Finally, we go back to the case where w(z) = [d(z)]".

Theorem 3.17. Let —1 < a < 0, Q = Hé(a) and §(z) be given by . Let
u€e HE (Q) be a weak solution of in Q. Assume that

loc

R“/ |Vu|*> =0 as R — oo, (3.3.28)
B(.Z‘o,R)ﬂQ

for some xy € 0N). Then estimate holds with a constant C depending only on
d, m, i, @ and HAHC"('I[‘d)'

Proof. By translation we may assume that a = 0. Recall that w(z) = [§(z)]” is an
Ay weight for —1 < a < 0. Also observe that in this case the assumption (3.3.12) is
reduced to (3.3.28]). We may assume that

/Q () 2[0(x)] " da = /8 o { /0 h |h(2 — tn)|2t°‘+2dt} do(2') < .

For otherwise there is nothing to prove. It follows that for a.e. ' € 9H%(0),

/ |h(x'—tn)|dt§(/ |h(m’—tn)|2t°‘+2dt) (/ t—"‘—2dt) < 00,

if s > 0. This allows us to write

h =div(H),
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where H = (Hy, ..., Hy) and
H;(x) = n; /OO h(z — tn) dt.
As a result, we obtain £(u) = div(f + H(; in Q. It follows by Theorem that
KJVM%MISC14U?w¢w+0%ﬂﬂfw¢u (3.3.29)

Finally, we observe that for 2’ € 9H%(0),

o0 o0 [o.¢] 2
/|HW—mWﬁﬁ§/’/in—m—mWHﬂﬁ
0 0 0
o0 (o] 2
S/ ‘/ |h(x'—sn)|ds‘ t* dt
0 t

4 oo
< — h(z' —tn) 2> dt,
<o) I —m)
where @ > —1 and a Hardy inequality was used for the last step [39, p.272]. By
integrating above inequalities in 2’ over OH?(0), we obtain
‘/m m<o/m )" de.
This, together with (| , gives the weighted estimate (3.3.4)). [

The next theorem establishes | - ) for the Neumann problem (|3.3.3]).

Theorem 3.18. Let —1 < a < 0, Q = Hé(a) and §(z) be given by . Let
u € HL.(Q) be a weak solution of Neumann problem in Q0. Suppose that u
satisfies the condition for some xy € 02 Then

/HM@W@@WWxSC/U@W@@WWL (3.3.30)
0 0

where C' depending only on d, m, p, o and || Al|ce (ay.

Proof. This follows directly from Theorem [3.16 O
Remark 3.19. Let Q = Hé(a). Let u € H].(Q) be a solution of —div(A(x)Vu)

loc
div(f) in Q, with either Dirichlet condition u = 0 or Neumann condition g“ =-n

on 0f). Let
Qp={z€Q:|z—(a+z-n)n| < Rand |a+z-n| <2R}. (3.3.31)
It follows from (|3.3.26]) that for R > 1

/ (Vul? [§(z)]" do < C’Ra/ |Vul? dr + C’/ |f1? [6(2)] da, (3.3.32)
Qr Qor Qogr

where —1 < o < 0 and C depends only on d, m, u, o, and some Holder norm of A.
This will be used in §3.5)

Remark 3.20. The weighted estimates in Theorems and also hold for the
range 0 < a < 1, which is not used in the paper. This may be proved by a duality
argument.

~ |l
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3.4 Approximation of Neumann correctors

Throughout this section we assume that 2 is a bounded smooth, strictly convex

domain in R?, d > 3, and that A is smooth and satisfies (1.2.2)-(1.2.3). For g €
C>=(T%;R™), consider the Neumann problem

»Ce(ua) =0 in Q,
Oue 3.4.1
e _ T(x)-Vg(x/e) on 012, ( )
v,
where T'(z) = T;;(z) = ni(z)e; — n;j(z)e; for some 1 < 4,5 < d is a tangential
vector field on 09, and n(x) = (ni(z),...,nq(x)) denotes the outward normal to

02 at x € 0. Fix zy € 0. Assume that n = n(zy) satisfies the Diophantine
condition ([2.4.1)) with constant x > 0 (all constants C' will be independent of k).
To approximate u. in a neighborhood of xj, we solve the Neumann problem in a
half-space

ool =0 in H(a),

ng =T(z0) - Vg(z/e)  on IH}(a), (3.4.2)
where a = —x¢ - n and OH%(a) is the tangent plane of 9 at zy. Note that if
ve(x) = ew(x/e), then w is a solution of

Crlw) =0 in Hj(a=""),

g—;ﬂl =T(x0)-Vg(z)  on OHL(ac™"). (3.4.3)

It then follows by Theorem [3.12 that (3.4.2) has a bounded smooth solution v, sat-
isfying

10%0.]|oe < Cae'™lel for any |a| > 1. (3.4.4)
In particular, ||Vv.||o < C. In view of Theorem we also obtain the estimate
Ce
Vo, < —. 3.4.5
Voa)] < (345)

The goal of this section is prove the following.

Theorem 3.21. Let u. be a solution of and v. a solution of (3.4.9), con-
structed above. Let ¢ <r < \/e. Then, for any o € (0,1),

||V(u€ — /U€>HLOO(B(£EO’T)(']Q) < C\/g{l + |ln€|} + CE_I_UT2+G, (3.4.6)
where C' depends on d, m, j, o, Q, |[Al|ck(ray and ||g||cr(ray for some k = k(d) > 1.

Let N.(x,y) denote the matrix of Neumann functions for the operator L. in €.
Since Q C H4(a) and L.(u. — v.) = 0 in €, we obtain the representation,

u(z) — ve () — {UE(Z) - vg(z)}
— /aQ {N(e.y) = No(z. )} {gz - ZZ} do(y) (3:4.7)
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for any z, z € Q. Fix a cut-off function n = 7. € C§°(B(zo, 5v/2)) such that 0 <n < 1,
n =11in B(xg,4/€) and |Vn| < Ce™/2. Let

102 = [ o {Nen) - NG -G at, ey

Ju.  Ov,
J -/ - N.(z,y) — N(z, - do(y). 3.4.9
@)= [ = {en - N { G - SE b dot). (a9
We begin with the estimate of I(z,z) in (3.4.8). Here it is essential to take

advantage of the fact that the Neumann data of v. agrees with the Neumann data
of u. at zy. Furthermore, to fully utilize the decay estimates for the derivatives of
Neumann functions, we need to transfer the derivative from 0(u. — v.)/Jv. to the
Neumann functions.

For x € H4(a), we use

T=x—((z — ) -n))n € OH(a) (3.4.10)

to denote its projection onto the tangent plane of Q2 at xy. Observe that if x € 99,
then |z — Z| < Clz — x|

Lemma 3.22. Suppose that x € 0 and |z — xo| < ¢o. Then
n(z) - A*(x)Vou.(z) — n(zo) - A°(Z)Vu.(7)

! v 3.4.11

= Ty(x) -V, {/0 afj(x)g—x?(sx + (1= 5)Z) ds ((z — zo) - n)ng} + R(z), ( )
where Tiyp(z) = n;(z)ep — ne(x)e;, n = n(xg) = (n1,...,nq), and

|R(z)] < C{|z — 0| + |z — z0|*}. (3.4.12)

Proof. In view of (3.4.4)) we have || Vv, < C and [|[V?v.||o < Ce™!. Tt follows that
n(z) - A*(z)Vo.(x) — n(zg) - A%(Z)Vu.(7)
= n(zg) - A*(2)Vu.(z) — n(xg) - A(Z)Vv.(Z) + O(|x — x0|)

1
— m-(xo)/o % {afngj (sz+(1- s)f)} ds + O(|x — xo|)

= ny(wo) /01 a% <a§j g;) (52 + (1= 8)2) ((x — 20) - n)ne(wo) ds + O(|x — o))

— [ (ool = o) ) (4,52 ) (s (= 93) G = ) ) s
+ O(|z — o)),

where we have used the equation L.(v.) = 0 in the last step. Using the observation
that

(ni(xo)aiw — ng(ao) 61) (Plsw+ (1))

_ (”i(%)a%g — W(Q;O)ai) F(sz+ (1 —s)7),
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we then obtain

n(z) - A*(z)Vo.(x) — n(zg) - A°(Z)Vu.(Z) =

ni(xo)£ — ng(o) ai- 1 @, g;i (s + (1= 5)2) ((x — z0) - n)ny(zo) ds
l 7 0 J

+ O(|7 — o))
= O(|x — mo|) + O(e 7z — 20]*)+

(mtori =t ) ([ (4652 ) s+ (= 99 =) - s

where we have used the fact that |(x — zg) - n| < C|z — z0|* as well as the estimate
|V(A5V,.)| < Ce™! for the last step. O

Lemma [3.22] allows us to carry out an integration by parts on the boundary for
I(z,2).

Lemma 3.23. Let I(x, z) be given by (3.4.8). Suppose that x,z € B(xo,3r) NQ for
some e <r < /e and |x — z| < (1/2)0(z), where §(x) = dist(x,0). Then
[I(z,2)] < Crye. (3.4.13)

Proof. Let y € 0Q and |y — x| < 54/¢. Using the Neumann conditions for w,, v. and
Lemma (3.22] we see that

ou, v,
a0, (y) — 0. (%)

() - Voly/z) = T(wo) - Vg(G/2) +nlwo) - AG)Ve-(7) — nly) - A(y)Ver(y)
) Vo{eo(w/e) — c9(G/2)} — Tulw) - Vo Fuelw)} + Olly — o),

fuly) = /01 a;;(y) gz; (sy + (1= 5)7) ds ((y — @0) - n)ng
is given by Lemma [3.22] We have also used the observation,
T(ao) -V, {eg(d/2)} = T(ao) - Vo (G/2).
in the computation above. This, together with , gives
I(z,2) =1+ I, + I,

where
h== [ 1)V, {n0) (Ner.) = Neeo) Heolwre) = <ot/ doto)
L= [ Tul)- 9, {n) (V) = Note)) ) doto)

Li<c /8 N2, 3) ~ Nzl = 2ol do o).
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Since |z — z| < (1/2)d(z) < (1/2)|y — z| for any y € 99, by (3.1.4), we obtain
11 <€ |19, () (Vo) = Motz )y = aaf dor)

do(y) ly — zol”

ay/E<ly—ol<svE |Y y—zol<cye |y — x|
(3.4.14)

where we have used the fact |y — 7| < Cly — x0|? and |Vn(y)| < Ce~'/2. For the first
term in the RHS of (3.4.14)), we note that if |y — x| > 44/¢, then
ly — x| > |y — @o| — |v — x| > 4v/E — 3r > /e

For the second term, we use |y — x¢| < |y — x| + r. This leads to

|11] SC\/E5(I)+C(5(x)/ dg—(w+or25<x)/ do(y)

ly—z0|<Cv/E ly — x|¢=2 oo |y — z|?

< OVed(x) +Cr?
< Cry/e.

Since | fir| < Cly — xo|?, the estimate of I, is the exactly same as that of I;.
Finally, to handle I3, we use (3.1.4]) as well as |y — | < |y — 2|+ again to obtain

|z — 2|
o[ Ryl +r)doty
ly—z0|<Cve ‘y_x‘d 1{ }
< C'ryfe.
This completes the proof. n
To estimate J(z, z) in (3.4.9), we split it as J(x, z) = J; — Jo, where

ou
Jl(*ra Z) = (1_77(y)) Na(xay) —N,;(Z,y) Eda(y)7
/‘99 { }31’5 (3.4.15)

he2) = [ (=) Neta) - N} 5 dot)

Lemma 3.24. Let Jy(z,2) be given by . Suppose that x,z € B(xg,3r) N Q
for some e <r <./e and |z — z| < (1/2)§(x), where §(x) = dist(x,0). Then

|Ji(z,2)] < Cry/e. (3.4.16)
Proof. Using the Neumann condition for u. and (3.1.10)), we see that
Ji(z,2) = — /BQT : Vy{(l —n(y)) (Ne(z,y) — Ne(2,9)) }59(9/8) do(y).
It follows that
(. 2)] < Cellg]lae / 190 = ) (Nl ) — Nelz) o)

do(y)
ol 25vE [T — Y|?

< Cvelr — z| + Celx — 2|

< Crve,
where we have used (3.1.4)) for the second inequality. O
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It remains to estimate Jy(z, 2).

Lemma 3.25. Let Jy(z,2) be given by . Suppose that x,z € B(xy,3r) N
for some e <r < /e and |r — z| < (1/2)d(x), where §(x) = dist(x,0). Then

| Jo(z,2)] < Cry/e{l+ |Ine|}. (3.4.17)
Proof. Tt follows by the divergence theorem that
Tfa.2) == [ (1= 0(0)) 9, {Ne(o.9) = Moo - Alw/2) Vsl dy
— [ {Na) = Ntz )} 9= 0w) - AL/ V) dy
= [ A/ VAN.a) = Nt} - V(1 = 00) (00) ~ E) dy
- /Q {No(z,y) = No(2,9) }Vy (1 = n(y)) - A(y/e)Vv:(y) dy,

where £ € R™ is a constant to be chosen. Here we have used L.(v.) = 0 in Q for the
first equality and

L{N.(z,) = Ne(z,-)} =0 in Q\ B(zo,3Ve),

%{Na(x, )= N:(z,-)} =0 on 90

for the second. As before, we apply the estimates in (3.1.4]) to obtain

Clz — 2| Clz — 2|
e, 2)] < A oo B+ S0 [ Vo]
(\/g>d+1 B(z0,5v/€)NHE (a) (\/E>d B(z0,5v/2)NHE (a)
Cr /
< — V.|,
(V) J Bao5ve)He (a)
(3.4.18)

where we have chosen F to be the average of v. over B(xg,5y/2) NH4(a) and used a
Poincaré type inequality for the last step.

Finally, to estimate the integral in the RHS of , we split the region
B(rg,5y/2) NH4(a) into two parts. If |z - n + a| < e, we use the estimate
|Vue|low < C. If |z - n+al > e, we apply the refined estimate (3.4.5). This yields
that

a(2,2)| < Cry/e{1 + [Inel},
which completes the proof. n

We are now ready to give the proof of Theorem |3.21

Proof of Theorem[3.21. Let ¢ < r < /2. In view of Lemmas |3.23] [3.24] and [3.25|
we have proved that if x,z € QN B(zo,3r) and |z — z| < (1/2)0(z), where d(z) =
dist(x, 02), then

u(z) — ve(z) — {ue(z) — ve(2)}| < Cry/e{1+ |Inel}. (3.4.19)
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Since L.(us —v:) = 0 in Q, by the interior Lipschitz estimate for £. [9], it follows
that for any = € B(zg, 2r),

[Vu.(z) — V. (z)] < Cry/e{1+|Inel} [5(:10)}_1. (3.4.20)
Thus, if 0 < p < 1,

1/p
(][ |V (ue — v5)|p) < Cye{l+ |Inel}. (3.4.21)
B(z0,2r)NQ

Next, we estimate the C7(B(zo, 2r) N 02) norm of

du.  Ov,

Fly) = ov. Ov.

As in the proof of Lemma [3.23] we write
Fly) = {T(y) - Vg(y/2) = T(xo) - V(i/e) }
+ {n(@o) - A@/e)Vu(G/e) = n(y) - Aly/e)Vuly/e) |
) + Fa(y),

where we have used the fact v.(z) = ew(z/e) and w is a solution of (3.4.3)). Using
ly — 3] < Cly — 20]* and |[Vw|s + ||Vl < C, it is easy to see that if y €
B(.CL'(), 27") N 897

|F1(y)] + [ Fa(y)| < Cly — mo| + Ce My — x> < Cer?, (3.4.22)

= Fi(y

where we also used the assumption ¢ < r for the last step. By extending n(y)
smoothly to a neighborhood of 92, we may assume that F(y) is defined in
B(zg,co) NHE. A computation shows that

|V, F(y)| < C{l + 6_1|y — x| + 5_2|y — x0|2} < Ce %2, (3.4.23)

where we have used the estimate ||V3w|, < C. By interpolation it follows from

(13.4.22)) and (3.4.23)) that

||FHCO,O’(B($O,2T)OBQ) <(C (8_17’2)1_0(8_27”2) 08_1_07’2 (3424)

for any o € (0,1).
Finally, since L.(u. —v:) = 0 in Q N B(xo, 2r), we apply the boundary Lipschitz
estimate for solutions with Neumann data [24] 8] to obtain

|V (e = v:)|| oo (@nB(@0,r) <
1/p
c (][ V(. - vsw) Ol F |l (s oy + Cr | Fllooe tes amyron)
B(z0,2r)NQ

< OVe{l+|Ine|} + Celr? + Ce™' 77?0
< OVe{l+ |Inel} + Ce 777,

This completes the proof. n
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Recall that the function w:i = (wzlkﬁ(y), . ,w:?ﬁ(y) in (3.1.25) is a solution of
the Neumann problem

,C*(z/z x) =0 in Q,

D) = o) Vi) non, O

ov:

where the 1-periodic functions ka € C=(T4;R™) are given by (3.1.30). For each
zo € 0N fixed and satisfying (2.4.1)), in view of Theorem [3.21] we may approximate

this function in a small neighborhood of xy by a solution of
C*(cb*ﬁ ") =0 in HY (a),

{gb*ﬁ xo} = nl 0 — Mge;) - folk(x/s) on OHY (a), (3.4.26)

ovr

where n = n(z) and H¢(a) is the tangent plane of 9 at zy. Recall that by a change
of variables, a solution of (3.4.26|) is given by

¢?§,xo (.ﬁE) _ gvk*aﬂ,n ('I — (13 “n+ CL)’H’ _.I “n+ CL) 7 (3427>
’ g g

where V* = V20, 8) = (V'97(0,1), ..., V;™P™(0, 1)) is the smooth solution of
T T
N Ve - MTA*(0 — tn)M N Voye_yg in T x R,
3,5 at
NV,

— Cay - MTA*(H)M<
0y

1
)V* = _§(nz‘€tz — nyge;) - Vé)flfk on T x {0},

(3.4.28)
given by Remark As a result, we may deduce the following from Theorem [3.21]

Theorem 3.26. Let ¢ <r < ./c and o € (0,1/2). Then for any x € B(xo,r) N2,

*Oc,B o *a 3 xafB,n ,j(j‘—(xn+a)n r-n+a
o (10— o () - (22 22|
< C'\/E{l + |1n5|} + Qe oyt

(3.4.29)
where C' depends only on d, m, o, u, 2 and ||Al|cray for some k = k(d) > 1

3.5 Estimates of the homogenized data

Observe that by (3.4.27)),



where 2 € OHY (a) and we have used the fact T};(xo) - n(zo) = 0. For z € 99, define

G@) = Ty(@) - (Vo " + x5 (5 0)g5 (2. ) ) + (T - V(o)) @, )

= Tia) - [ (1= n@m) Vol 4 x7)(6.0)g . 0)

(3.5.2)
+ (nléjk — njélk) /d gg(l’, (9)6[9
T

— Ty (a) - /T (8 Vi (0) + V0,0 ) g (2,0) i,

where n = n(z). Using the estimate [[(I —n ®n)VaV*|| < C in Proposition we
obtain [|g]lsc < Cllgllo-
Let

() = — / () V)R aiyk{zva%, D)8 yy/e)doly)  (353)

be the first term in the RHS of (3.1.17). In the next section we will show that as
e — 0,

W(2) = 1](z) = - /a ) % Ny () Vi (y) dor (). (3.5.4)

Fix1<y<mand1<k<d. Using

rap O
nin;a ﬁa—%{Ngﬂ(x,y)}

ij
P a (3.5.5)
— . 5¥eb VB ¥
=na;; | (njer —nre;) - Vy | Ny (z,y) +n <*— N (z,y ) ,
j (( jCk k ]) y) 0 ( ) k 3V0(y){ 0( )}
where NJ (z,y) = (N (z,y),--- , NJ"(z,)), we may write
(3 2]

8 Sk * —
Gy LN )} = W (e = mees) - V) NG (9) = 009, (3.5.6)

where h*(y) = (h**?(y)) is the inverse of the m x m matrix (a;‘fﬁnmj) and we have
used the fact that the conormal derivative of the matrix of Neumann functions is

—10Q| ™ Iy Tt follows that
vg (1) = — /an [(njek — nge;) - Vy]Ngt(x, y) - h*ﬁanﬁfj’?‘t'gv,f(y) do(y)
+ ]g Wy, (y)gi (y) do(y)
0

= /asz Ny (z,y) [(njek — nge;) - Vy] (niaz-’fhaﬁjgv,f(yD do(y) + constant,
(3.5.7)
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where h = (h*)* = (h*?) is the inverse of the matrix (ag“f n;n;). This shows that vy is
a solution of the following Neumann problem,

Lo(vo) =0 in Q,
0 7 N 3.9.8
(a—vo) = (T - V) (ma]f‘ h’gy (y)> on 9. (355

]
Thus the homogenized data g, in (1.2.7) is given by
T = naaj; h*7g)
~yap af vp v *v3 v (3.5.9)
= n@fh Ty, | (eké + Vx5 (0) + VoV (6,0)) g% (x, 0) b,
T

where (h®?) is the inverse of the matrix (ZL\%-B nin;).
The rest of this section is devoted to the proof of the following.

Theorem 3.27. Let x,y € 0Q and |z — y| < ¢o. Suppose that n(x) and n(y) satisfy
the Diophantine condition (2.4.1]) with constants k(x) and k(y), respectively. Let
g= (§£) be defined by (13.5.9 . Then, for any o € (0,1),

— — CL'$ -y
o) — a1 < o s lg(- Dl (3.5.10)
K z€Td
where k = max(k(x), k(y)) and Cy depends only on d, m, o, p, and || Al|ckcray for
some k = k(d) > 1.

Remark 3.28. The estimate in (3.5.10) is not optimal. In Chapter 4, we will use a
more delicate argument to improve the estimate to

— — Ca|x — y|
9(z) = 9(y)| < ———sup [lg(-, 2) [ o0
K 2€Td
Nevertheless, (3.5.10]) is sufficient for us to establish the nearly optimal convergence
rates for all d > 3.

Assume that n,n € S ! satisfy the condition . Choose two orthogonal
matrices M,,, Mz such that M,(eq) = —n, Mzeq = —n and |M,, — Mz| < C|n — n].
Let N,, and N; denote the d x (d — 1) matrices of the first d — 1 columns of M,, and
M, respectively. Let V;¥(0,¢) and VZ (0, ) be the corresponding solutions of (3.4.28)).
We will show that

Cyln — n|

W|N§v9(v;(e,0)—v;(e,()))ydeg "KHU : (3.5.11)

where x > 0 is the constant in the Diophantine condition (2.4.1)) for 7. Using N,, NI =
I—n®n, NaNI =1 —n®n, and the estimate |VyVZ| < Ck~! from Proposition

m it is not hard to see that (3.5.10)) follows from (3.5.11)). Furthermore, let
Wi(a,t) =V>(0,t) — V>(0,t). (3.5.12)

47



Since

1 1
/|N§v9W(9,0)|d9g/ / |N§v9W|d9dt+/ / INI'V,0,W | dbdt,
Td 0 Td 0 Td

it suffices to show that

C,|n —nl?

1
T 2 2
< — 0.
/0 /Td{uvn VoW 2 + Vo0, W| }dedt e (3.5.13)

for any o € (0,1).
Let

Bi(0,t) = MFA*(0 —tn)M,, and Bi(0,t) = M A*(0 — tn)Ms.

To prove ([3.5.13)), as in the case of Dirichlet condition [21) [7], we first note that W is
a solution of the Neumann problem,

T T T
_ (Nnve) .B;;<N"V9)W: (N”V9>G+H in T x Ry,

o o o (3.5.14)
L (NIV,g d o
—eq+1 - B, ) W=h+eq1 -G on T* x {0},
where G = G + G5 , H, and h are given by
NAT
G - BZ((Nn évn) V@) v
T
6= (5 - 2) (V) oz
¢ (3.5.15)

_NT T
H _ (Nn Nn> VQ Bf Nn v@ V~*,
0 "\ O "

h=— [(nz - ﬁi)ee - (W - ﬁé)ei} - Vo fie-

1
2
Note that [0F95 (B — B2)| < C(1 +t)|n — n|. This, together with Proposition m,
gives

Cln —n]
k o <
10705 G1(0,1)| < R A (3.5.16)
C(t+1)|n —n|
F O < 5.1
10705 Go(0, )] < T (3.5.17)
Cln —n|
k aa < I R 5.

for any «, k, ¢, where C' depends on d, m, a, k, £ and A.
To deal with the growth factor t + 1 in (3.5.17]) as well as the term H, we rely on
the following weighted estimates.
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Lemma 3.29. Suppose that n € S"™1 satisfies the Diophantine condition . Let
U be a smooth solution of

T T T
_ (Nn V9> .BZ<NNV9)U = <N”V9)F in T x Ry,

O Oy O
NTY (3.5.19)
—ed+1~B:‘l( ”a 9>U:ed+1-F oanx{O}.
¢
Assume that
Stlig {(1 + t)”vg,tU(‘,t)HLoo(Td) + (1+ t)”F(',t)HLoo(Td)} < 0. (3.5.20)

Then, for any —1 < a < 0,

/ /{\vagUﬁﬂatUF}tadedtgGa/ /]F|2t°‘d9dt, (3.5.21)
0 Td 0 Td

where C, depends only on d, m, i, a as well as some Holder norm of A.

Proof. We will reduce the weighted estimate (3.5.21]) to the analogous estimates we
proved in in a half-space. Let

u(x) =U(x — (z-n)n,—z-n) and f(z)=F(x— (z-n)n,—x-n).
Then u is a solution of the Neumann problem,

{—div(A(x)Vu) = div(f) in HZ(O), (3.5.22)

n-Ax)Vu=—-n-f on 9HZ(0).
It follows from the estimate (3.3.32)) that

1
Rd*l

/ INI'VoU(x — (z-n)n, —x - n)|* |z - n|* dz
Qr

+

- / 0,U(x — (x-n)n, —z - n)|* |z - n|*dx
R On

< C’Ra+1_d/ |Vul? dz + f_l / |F(x — (z-n)n,—x-n)* |z - n|*dz,
Q2R R Q2R
(3.5.23)

where
Qr = {z € H}(0): |z — (z-n)n| < R and |z - n| < 2R}.

Next, we compute the limit for each term in (3.5.23)), as R — oco. In view of

(13.5.20)) it is clear that the first term in the RHS of (3.5.23|) goes to zero. For the
second term in the RHS of (3.5.23)), we write it as

2R N 1
C/O t {W/mt ]F(q:+tn,t)]2da(:c)}dt. (3.5.24)

|z+tn|<R
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Since F(6,t) is 1-periodic in 6 and n satisfies the Diophantine condition,

L/ t ]F(w+tn,t)]2da(a:)—>6’d/ |F(0,t)* do (3.5.25)
T-n= r]rd

d—1
R |z+tn|<R

for each t > 0, as R — oo. With the assumption (3.5.20)) at our disposal, we apply
the Dominated Convergence Theorem to deduce that the last integral in ([3.5.23])
converges to

(Jd/ |F(6,1)]* t* dOdt.
0 Td

A similar argument also shows that the LHS of (3.5.23|) converges to

Cd/ /{|N§VGU|2+\atU|2}tadedt.
0 Td

As a result, we have proved the estimate ([3.5.21]). O

Remark 3.30. The same argument as in the proof of Lemma|3.29 also gives a weighted

estimate for Dirichlet problem. More precisely, suppose that n € S*~! satisfies the
Diophantine condition (2.4.1). Let U be a smooth solution of

T T T
_(N%V9> ,B:(Nnave)(] _ (N%VG)F—|-H in T? x Ry,
t t t

U=0 on T x {0}.

(3.5.26)

Assume that

sup(1 + t){HVG,tU(',t)HLoo(Td) + 1 EC, Ol poocray + (1 + t)HH<'>t)”L°°(’J1‘d)} < 0.

t>0

Then, for any —1 < a < 0,

/ / {|NnTV9U|2 + |atU\2} t* dfdt
0 Td

gca/ /{|F|2+|H|2t2}t“d¢9dt,
0 Td

where C, depends only on d, m, u, a as well as some Holder norm of A. This weighted
estimate will also be used in the next chapter to establish the regularity estimate of
the homogenized boundary data for the Dirichlet problem.

(3.5.27)

Lemma 3.31. Suppose that n € S*~! satisfies the Diophantine condition . Let
U be a smooth solution of

T T
- (N%V9> . B’ (N%W)U =0 inT¢xRy,
' ' (3.5.28)

T
—eqy1 - B (N%V")U =h on T x {0}.
t
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Assume that

Stug(l +8)[[VouU (-, t)|| oo (ray < 00. (3.5.29)
>
Then )

/0 /T {INZWUF + |8tU|2}d0dt < C|hllZ2pay- (3.5.30)

Proof. Let u(xz) = U(x — (z - n)n,—x - n). Note that u is a solution of the Neumann
problem, —div(A(z)Vu) = 0 in H?(0) and n-A(z)Vu = h on 0H%(0). Let u.(z) =
eu(z/e) and D be the same bounded smooth domain as in the proof of Theorem [3.13]
Since L.(u:) = 0 in D, it follows that

/ ]Vu5|2dx§6’€/ ‘8%
D(e) op | OVe

where D(e) = {z € D : dist(z,0D) < €}. We remark that if D is a Lipschitz domain
and A* = A, the large-scale Rellich estimate was proved in [26] by Rellich
identities. If D is smooth, the symmetry condition is not needed. This may be proved
by using the O(,/2) convergence rate in H'(D), as in [35].

By a change of variables and using the assumption ([3.5.29)), one may deduce from

(3.5.31) that

2

do, (3.5.31)

2 2 d—1
AEB(O,R)mHg(O) Vul” dz < C/B 1] do + o(R™), (3.5.32)

o< ol (0,2R)NOHY (0)

as R — oo. We now divide both sides of (3.5.32) by R%~! and then let R — co. As
in the proof of Lemma this leads to the desired inequality (3.5.30)). m

We are now in a position to give the proof of Theorem [3.27]

Proof of Theorem [3.27. Recall that it suffices to prove (3.5.13) with W given by
(3.5.12). To do this we split W as W = W; 4+ Wy + W3, where W; is a solution
of with G = 0 and H = 0, W5 a solution with H = 0 and h = 0, and W3 a
solution with G = 0 and h = 0. In view of Proposition [3.11] we may require that

Su([))(]. + t)£||V97tWi(', t)HLOO(Td) < 0
t>

for e =1,2,3, and for any ¢ > 1.
To estimate W7, we use Lemma to obtain

1
/ / [INEVGWAP + 00V }dbdt < O [hl3agney < Cln— 7P, (35.38)
0 T
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To handle Wa, we use the weighted estimates in Lemma [3.29 with o = 0 — 1. This,
together with estimates (3.5.16))-(3.5.18)), leads to

1
/ / {|N§VGW212+|atW2|2}d9dt
0 Td

< 0/ G217~ dodt
0 Td
00 2 _~12 _ 2

<of {<t+1> n—af  _|n—7l }tg_ldt
0

(1+ kt)? k2(1 4+ kt)*

(3.5.34)

Cln —nl?

— /€2+U

Next, we note that by writing H(6,t) = 9,H(0,t), where

H(,t) = — /OO H (0, s)ds,

we may reduce the estimate of W3 to the previous two cases. Indeed, we split W3 as
W31 + Wi, where W3y is a solution of with G =0, H=0, h =eq- H(6,0),
and W3y a solution of with G = (0, H), H =0, and h = 0. Observe that by
E519).
Cln —nl?
12

~ n—n

ot .0 < S

for any «, k and ¢. As in the cases of Wi and W5, by Lemmas [3.29] and [3.31] we
obtain

1 0) 3y <

Cln —nl|?

1
T 2 9
/0 /]l‘d {an V9W3| -+ |atW3’ }d&dt S li2+a

Consequently, we have proved that

1 C _ ~]2
/0 /W {|NnTV9W|2 + |8tW|2} dfdt < % (3.5.35)

Finally, we note that by differentiating the system (3.5.14]), the function 0*“W
(with || = 1) is a smooth solution to a Neumann problem of same type as W. In
particular, let N, ; denote the kth column of N,, and define the kth component of
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NEVQ by Vi = Nrfk -V, where 1 < k < d—1. We apply V,, to (5.3.21]) and obtain

4 T T T

at 0t at
NTV, L (NTV,
+< 5, )-Van( 5, w
in T x Ry,

(3.5.36)
L (NIV,
—€d+1 - Bn at ka = €4+1 - VkG + th

T
+egsr - VB! (N nave) W
t

on T x {0}.

\

Let n(t) be a cut-off function such that n(t) =1 for t € [0, 1], n(t) = 0 for t € [2,00),
0 <n(t) <1and|Vn| < C. Now by integrating (3.5.36)) against V. (Wn?), we derive
from integration by parts that

1
/ / (’NZ;VQV]CWP + |8thW]2) dodt
0 Td

2
go/ / (IVkG? + [V H[? + [N VoW [* + [0,W]?) ddt + C||hl| 7 pay
0 Td

Cln —nl?

— KJQJrO'

)

where we have used the fact |V, W| < |[VIV,W/|. Consequently,

1 Cln —n|?
/ / (IN7'Vo © NIVOW [ + [N VoW ) dodt < =
0o Jrd
which finishes the proof of (3.5.13]). 0

3.6 A partition of unity

For x € 011, recall that

k(z) = sup {/-4; € [0, 1] : the Diophantine condition ([2.4.1]) holds
(3.6.1)
for n(x) with constant li}.

Lemma shows that 1/k(z) belongs to the space L471°°(9€2). This means that
there exists C' > 0 such that

[{z € 00 [H(:L‘)]_l > A < CAT? for any A > 0. (3.6.2)
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Proposition 3.32. Let 0 < g < d—1. Then for any x € 02 and 0 < r < diam({2),

(Jiw)mm (<) da(w) = = (3.6.3)

where C' depends only on d, q and Q.
Proof. Note that

/ (/{(y))fq do(y) = q/oo )\q_1|{$ € B(x,r)NoQ: [K(@]q > )\}| d\
B(z,r)NoN

0
A 0o
< 0/ et -rd‘ld)\JrC/ N~ do
0 A
< Crdt AT 4 CNTEL

where we have used ([3.6.2)) for the first inequality. The proof is finished by optimizing
A with A = 7L, O]

In this section we construct a partition of unity for 02, which is adapted to
the function x(x). We mention that a similar partition of unity, which plays an
important role in the analysis of the oscillating Dirichlet problem, was given in [7].
Here we provide a more direct LP-based approach.

We first describe such construction in the flat space.

Lemma 3.33. Let Qg be a cube in R and F € LP(12Qy) for some p > d — 1. Let
7 >0 be a number such that

(/on |F|p) N ~ W (3.6.4)

0

where €(Qo) denotes the side length of Qy. Then there exists a finite sequence {Q;}
of dyadic sub-cubes of QQy such that the interiors of ;s are mutually disjoint,

Qo = UQ)j, (3.6.5)

1/p
(/ ]F|p> <—0 (3.6.6)
120; Q)]

1/p
(/ |F|”> > (3.6.7)
12Q7 [g(@jr)} T

where Q;r denotes the dyadic parent of Q;, i.e., Q; is obtained by bisecting Q;“ once.
Moreover, if 4Q; N4Qk # 0, then

(1/2)0(Qr) < €(Qy) < 2L(Qx)- (3.6.8)
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Proof. The lemma is proved by using a stoping time argument (Calderén-Zygmund
decomposition). We begin by bisecting the sides of @y and obtaining 2?71 dyadic
sub-cubes {Q'}. If a cube Q' satisfies

(/ !F|p> " W (36)

we stop and collect the cube. Otherwise, we repeat the same procedure on ()’. Since
the RHS of goes to oo as £(Q') — 0, the procedure is stopped in a finite
time. As a result, we obtain a finite number of sub-cubes with mutually disjoint
interiors satisfying —. We point out this decomposition was performed
in the whole space in [33] in the study of negative eigenvalues for the Pauli operator.
The inequalities in were proved in [33] by adapting an argument found in [14].
The same argument works equally well in the setting of a finite cube Qg. We omit
the details. O

Remark 3.34. Note that the condition for selecting cubes {Q);} in the above lemma

is equivalent to
1/p
-
LU : (3.6.10)

In particular, we may let p — oo in the above condition and replace the LHS by
| F|| > (12q,)- So (3.6.10) can be roughly interpreted as follows: around a point in
Qo with F' being relatively large, the decomposition will be finer with relative small
cubes; while if I is relatively small over a particular region, then we need to enlarge
these cubes so that we may still expect relatively large F' at some points in the
enlarged cubes.

Fix 29 € 09. Let ¢y > 0 be sufficiently small so that B(zo, 10cov/d) NI is given
by the graph of a smooth function in a coordinate system, obtained from the standard
system through rotation and translation. Let H%(a) denote the tangent plane for 9
at x, where n = n(xg) and a = zy - n. For z € B(z, 5coV/d) N 09, let

P(z;z0) =2 — ((x — x9) - m)n (3.6.11)

denote its projection to H?(a). The projection P is one-to-one in B(zg, 10cv/d)NOSQ.
To construct a partition of unity for B(zo,co) N OS2, adapted to the function x(x),

we use the inverse map P~! to lift a partition on the tangent plane, given in Lemma
to 0. More precisely, fix a cube Qy on the tangent plane H%(a) such that

B(l‘o, 500\/C_Z) Nos) C P_I(Q0> C B(ZE’loco\/C_i) N Of.

We apply Lemma to Qo with the bounded function F(x) = k(P~!(x)) and some
p > d— 1. For each 0 < 7 < ¢y, this generates a finite sequence of sub-cubes {Q,}

with the properties (3.6.5))-(3.6.8)).
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Let z; denote the center of Q; and r; the side length. Let Z; = P~!(z;) and
@j = P71(Q;). We will use the notation t@j = P71(tQ;) for t > 0 and call Q]
cube on 0f). Then B B

Qo = P71 (Qo) = UL, Q;.
For each Q; with j > 1, we choose 7; € C“(Rd) such that 0 < n; < 1,7, = 1
on QJ, n; = 0 on 0N\ ZQJ, and |Vn;| < C’r . Note that by the property (3.6.8),
1< Z n; < Cp on Qo, where Cj is a constant depending only on d and €. Let

oy mi(@)
S arTe)
Then
N ~
Zgoj(x) =1 for any x € Qo.
j=1

Observe that 0 < ; <1, p; > Cy' on Q], w; =0 on 00\ QQJ, and |Vy;| < Cr’l
Furthermore, by the property (3.6.9 - ), there are positive constants ¢; and cs, dependmg
only on d, p and 2, such that

1/p
(é@(m(g@))pda(@) < C;—: (3.6.12)

1/p
(ﬁﬁé@@))p dcr(a:)) > Cj_j (3.6.13)

In particular, since k < 1, it follows from ([3.6.13)) that

r; > CaT. (3.6.14)
Also, by (3.6.13]), there exists some z; € 36@j such that
w(z) > 20 (3.6.15)
T

J

Proposition 3.35. There exists a constant C, depending only on d, p and €2, such
that

Proof. By Holder’s inequality,

1/p' 1/p
1< ][ k7 do ][ kP do
12Q; 12Q;
1/p
< CT;1 ][ kP do ,
12Q;

where we have used Proposition for the last step. Note that the condition
p > d — 1 is equivalent to p’ < %, which is less or equal to d — 1 if d > 3. In view
of (3.6.12)) and ({3.6.17)) we obtain (3.6.16)). O

(3.6.17)
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Proposition 3.36. Let 0 < a <d—1. Then

D ettt < o7, (3.6.18)
J

where C, depends only on d, p, o and 2.

Proof. 1t follows from the first inequality in (3.6.17)) and (3.6.12) that

1/p
r; <Ct (7[ - ﬁ_plda) . (3.6.19)
120,

Let Myq(f) denote the Hardy-Littlewood maximal function of f on 052, defined by

M(f)(x) =sup {]i( - |fldo:0<r< diam(Q)} (3.6.20)

for x € 0Q2. By (3.6.19)) we obtain

a/p
ry < Cr® < inf Mag(ﬂ_pl)(x)) (3.6.21)

$€12Qj

Hence,

ZT?Hrdfl < CTQZ/; |:M69</§7pl):| a/p’
j J

J
< OTO‘/ [Mag(/{_p’)] a/p’ |
9]

Finally, recall that p’ < % and 0 < o < d—1. Choose t > 1 so that p/ <ta <d—1.
Then

/8 ) [Mag(/{—p’)]a/ﬂ do < C ( /a Q [ Mo (K_p,)]at/p/ dg) 1

where we have used the fact that the operator Myg is bounded on L?(0f2) for ¢ > 1.
This completes the proof. O]

3.7 Proof of Theorem 1.1: convergence rate

With the estimates in §3.4,§3.5]and §3.6] the line of argument is similar to that in [7]
for the oscillating Dirichlet problem. Recall that

() = — / ) aiyk{zvg%y)} (Ty) - V) () - 62 (9,y/2) do(y)
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and

i@ =— [ ayk{W o) Y (9) do ), (3.7.1)

where the function ﬁ,f is given by . We will show that for any o € (0, 1),
/ v, — w2z < Oy 17 (3.7.2)
Q

This would imply that if u. and wug are solutions of ([1.2.5)) and (|1.2.7]) respectively,
then there exists some constant £ such that

HUE — Uy — E”LQ(Q) S Og 6%_0.

It then follows that

e — o — f (e — o) oy < C 377,
Q

which gives in the case [, u. = [,uo = 0.
-D

To prove (§ we first note that by using a partition of unity for 02, without loss
of generality, we may assume that there exists some zy € 92 such that for any y € T¢,
supp(g(-,y)) € B(xo, co), where ¢o > 0 is sufficiently small so that B(xo, 10¢ov/d) NI
is given by the graph of a smooth function in a coordinate system, obtained from the
standard system by rotation and translation. We construct another partition of unity
for B(zg, 5cov/d) N OQ, as described in Section 7, with

T=¢l", (3.7.3)

adapted to the function x(z). Thus there exist a finite sequence {p;} of C§° func-
tions in R? and a finite sequence {Q;} of “cubes” on 952, such that jpj=1on

B(l’o, 500\/3) N of).
Next, observe that by the estimate |V, No(z,y)| + |V, N:(z,y)| < Clz — y|* 74,

()] + vo(z)| < C{1 4+ |Iné(x)|},
where 6(x) = dist(z, 0€2). This implies that

—w|?dz < C / 1+15 d
Z /B@]cmm wol? da Z |In6(2))? da

B(z;,Cr;)N

< C’Z (1+|Inry|) (3.7.4)

< C’al 7(1+ |Inel)?,

where we have used Propositions and (see for the definitions of z; and
r;). Also note that

|U; B(@;,Cry)| <CY rf < Cr, (3.7.5)

J
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where we have used Proposition [3.36] To estimate the L? norm of v, — vy on the set

D = Da =0 \ UjB(fj, O’f‘j), (376)
we introduce a function
Ouz) =Y N (3.7.7)
xr) = T <~ 1 .
AL

where 0 <t <d—1.

Lemma 3.37. Let ©,(x) be defined by (3.7.7). Then, if¢>1 and 0 < gt <d —1,
/ (04(x))" dz < C 7. (3.7.8)
D

Proof. Observe that if z ¢ B(z;, Cr;), then

d—1
4 d
o )
|£L’—Z)3j| @j |l‘—y|
Hence, for x € D,
ft(y)
O,x) < C — 2 do
) < oo lv =yl ! )
q 1/q ,
<o [ O aw) 0+ maw),
o0 |$ - y|

where fi(y) = 32, rip;(y), 6(z) = dist(x,09), and we have used Holder’s inequality
for the last step. It follows that

[1edarar<c [ (nprds <oyt < o,
D o0 .
J

where have used Proposition |3.36 O

As in the case of Dirichlet problem in [7], we split v. — vy into several parts,
— (v2(z) — vy (x))

= Z/m 0y NG () {(Tw(y) V)V ) - g5y /) —'g,/j(y)} o3(y) do(y)
:Il+12+]3+f4—|—f57
(3.7.9)

where Iy, I5, ..., I5 are defined below and handled separately. We will show that for
k=1,2,...,5,

/ |In(z) P do < C, e ™47, (3.7.10)
D

which, together with (3.7.4)), gives (3.7.2)), as o € (0,1/4) is arbitrary.
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Estimate of I, where
h=3 [ NG ) () T (U5 = 92552) - g5 /2) ) ).

L ) =+ o fe) + 6250 (0).
(3.7.11)
and z; is given in (3.6.15). Here we use Theorem to obtain that for any p €

(0,1/2),

‘v( vrss @Z?Bzﬂ)‘ < CVE{l+|Ine|} + Ce™7rr?r, (3.7.12)

for y € 2éj. It follows from ((3.7.12)) that for z € D,

d 1 2+ ptd—1
| (2)] < CVE(l + |Inel) Z P +Oe—1—PZW. (3.7.13)

J

We now use Lemma to estimate the L? norm of I; on D. The first term in the
RHS of (3.7.13) is harmless. For the second term we use the fact r; < C'y/7 to bound

it by
1 ptd—1

o 2“2
g |o — T4t

Since 2(1 — p) < d — 1 for d > 3, we obtain

/ |I(z) > de < Ce(1+ |Ineg|)? 4 Ce= 2 2071H20720-0)
D
S 061_40

b

if p is sufficiently small.

Estimate of I, where

L=) /a . 0y N3 (2, 9) (T (y) - V) (277 - 0y, w/2) 5 () dor(y)

_ Z /8H¢ (%kNgﬁ(:c’ Pfl(y))(ﬂg(lt’]j(y)) v,) (q):;;ﬂ,zj (1)) (3.7.14)

-9y, y/€)p;(y) do(y),

where 8]HI§1 denotes the tangent plane for 00 at z; and Pj’1 is the inverse of the
projection map from B(z;, Cr;) N 0 to 6H§l. Here we rely on the estimates

IV2No(z,y)| < Clz —y|™,

3.7.15
|v2(1)*a5 V25 | < 06_1, ( )
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as well as the observation that |y — Pj_l(y)| < Cr3 for y € B(Z;,Cr;) N 9Q. Tt is not
hard to see that for x € D,

24d—1 1—p+d-1

_ T 14p T
|_[2< >| <C€ 1Zm <C€ 1T 2 Zh, (3716)

which, by Lemma leads to (3.7.10]) for k = 2.

Estimate of I3, where

=2 /8 NG P ) (Toely) - V) (O2577) - 96y 9/2)23(y) do ()

- Z /ch.l By N3 (2, P ) (Tal=y) - V) (R2577) - 65z, 9/€)e5(y) doy)-

(3.7.17)
It is easy to see that for x € D,

plrd—1 ploptd—1

| Is(x ‘<CZ|3€ 74 p<Cre Z|x_x|d 1

which may be handled by Lemma [3.37]

Estimate of I,, where

- Z /Hd 0y NG (2, P () (Tie(25) - V) (D257 - 95425, y/2)5(y) dor(y)

—Z Dy NG (2, P ()32 ()05 (y) dor(y).

oHY
(3.7.18)
The estimate of I, uses the fact that for each j, the function
*af3,z; o
(Tie(z;) - V) (@577 - gz, u/€)

is of form U(y/e), where U(x) is a smooth 1-periodic function whose mean value
is given by g, (z;). Furthermore, the normal to the hyperplane OHY is n(z;), which
satisfies the Diophantine condition (|2.4.1) with constant

cT
A
H(ZJ) =7

It then follows from Lemma that if z € D,

d—1
r¢
Li(z)| < Cy(r7 L)V —I
|4( )|— N( ) zj:’x_xj|d1
for any N > 1. Since 7 = ¢!, this implies that

/ |I,(z) | dz < Cne™7.
D
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Estimate of I5, where

%:Z%@@Wf@%%wﬁwmwwdw
(3.7.19)
_Z o NG (@, 9)57 (y)es(y) do(y).

Finally, to estimate I5, we use the regularity estimate for g in Theorem to

obtain ,
CT’j Cr g

J
] T

9(y) = 9(z;)| <

9

for any y € B(z;,Cr;) N OS2, where p € (0,1/2). It follows that for any x € D,

d 2+p+d 1
L)) <cY —2 —1c ”pEZ
=g PR
1—ptd—1

As before, by applying Lemma and choosing p > 0 sufficiently small, we obtain
the desired estimate for I5. This completes the proof of (3.7.2)) and therefore (1.2.9)).

Remark 3.38. Let ©(x) be defined by (3.7.7). It follows from the proof of Proposition
that for x € D,

o [ Moals] ()
oufa) < o7 [ =R W)

where ¢ = p/ < % and t > 0. Let u. and ug be solutions of lb and 1}

respectively. An inspection of our proof of Theorem shows that for any o €
(0,1/2), there exists a neighborhood €. of 99 in € such that

Q.| < Cete, (3.7.20)

and for z € Q\ Q,

[Moa (k)] = (y)

|z — y|d-t

() — uo(x) — B| < Ced= / do(y), (3.7.21)
o9
where 1 < g <d—1, p = p(o) > 0 is small, and F is a constant. The boundary

layer €., which is given locally by the union of B(z;, Cr;) N2, depends only on the
function x and ). Furthermore, if F'(x) denotes the integral in (3.7.21]), then

iy S(lq—p) 1/s
[Moa(k9)] (?J)dg(y) 7

|z — y|d-t

F(z)| < C(1+ |nd(z)) " AQ
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where ¢ < s(1 —p) < d—1. Since k™! € L¥(09) for any 1 < s < d — 1, Mpq(r™?)
€ L*/9(0R) for any ¢ < s < d — 1. It follows that F' € L*(Q) for any ¢ < s < d — 1.
This, together with (3.7.21)),

Ls@\Q.) < Cer™ foranyl<s<d-—1. (3.7.22)

|ue —ug — F

Finally, assume that [ w. = [,uo = 0. Since [luc — ugl/r2@) < Cs €277 by

Theorem , it follows from (3.7.22) that |E| < Ce2™%. As a result, estimates
(37721) and (3.7.22) hold with E = 0.

3.8 Higher-order convergence

In this section we use Theorem [I.1] to establish a higher-order rate of convergence in
the two-scale expansion for the Neumann problem,
L.(u;)=F in
0 3.8.1
Ye _ g on 0f), ( )
v,

where F' and g are smooth functions. Our goal is to prove the following.

Theorem 3.39. Suppose that A and ) satisfy the same conditions as in Theorem
. Let u. be the solution of with fQ u. = 0, and ug the solution of the

homogenized problem. Then there exists a function v, independent of €, such that

ou 3_,
e — uo — exp(z/e)s— — e’ || 2 () < Cre?|Juo|lwsne ), (3.8.2)

6xk
for any o € (0,1/2), where C, depends only on d, m, o, A and Q. Moreover, the

function v" is a solution to the Neumann problem
Lo(w™") = F, in §,
ZLVI: = s on 0%, (3:8.3)
where I, = —EW% for some constants ¢y, and g, satisfies
19+l ooy < Cylluollw2. (0, (3.84)

foranyl<g<d-—1.

Proof. For simplicity of exposition we will drop the superscripts in this section. Let
(xx) be the (first-order) correctors, (bys) be the flux correctors and (¢y;;) be the
1-periodic functions defined in Lemma The second-order correctors (15,) with
1 < k,¢ < d are defined by

0 o7, 0 :
"o {aijﬁ} = bge + 8—%(%1)(14) in RY,

T is 1-periodic and / Yo = 0.

Td

(3.8.5)
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Let
. ou . 0%
We = Ug — Uy — €Xka—x2 — €2Xkewaow, (386)

where we have used the notation f¢(x) = f(z/e). A direct computation shows that

0T ) a) Dug

Lo(w:)=— 5<¢kij6ﬂ — g Xi0je — aij( Oz 0x;07,0x,

3.8.7
+ &2 0 ° Ty Puq | |
_— a: - _— .
89@ ke axj(‘)xkﬁmg
Let or
Crit = PrijOje — QijXr0je — az’jﬁ;
J (3.8.8)
Crit = ][ Ckit-
Td
Note that by the definition of 1,
0
oz, (Ckie) = 0.
It follows that there exist 1-periodic functions f,.x;¢ with 1 < m,k, i, ¢ < d such that
0
Crit — Crit = W(fmkw) and  fokie = — fikme- (3.8.9)
This allows us to rewrite (3.8.7)) as
Low) =~ (V)"0
Ses M ;01,0 0T, 0x;0x,01, (3.8.10)

8 33u0
e (7 I
8131{ K M@xjaxk(?xg
Next we compute the conormal derivative of w.. Again, a direct computation
gives

dw, " dug eraf D?ug ndt M\~ 0ug
= —n;b;.— — en,;a;; — EN;Q;;
ov, Y Ox; ij Xk Oz j0xy, Y\ Ox; 0,0y
; (3.8.11)
2y aeye QU0
T M@xﬁxkaxe'
Using ([2.1.4) and (3.8.8]), we further obtain
ow. 0 Oy 0%uy ) Ay
=—eni5— | Py i —enial Y 3.8.12
ov, = oxy, < kij axj> ten P 0xy © Mty M(‘?xjﬁxkaxg ( )
In view of (3.8.10) and (3.8.12)), we split w. — f, w. as w + w® + w® 4w,
where
L. (wM)=0 in Q,
0 0 ou (3.8.13)
WY = o g 20 o0
ov, (wE ) 6n18xk ( kij &'vj) On o35
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83’&0

2N - _ 7. 0
‘CE (wa ) ECkp axzaxk_axg m iz,
2 (3.8.14)
0 (w(2)) = €n'5wﬂ on 02
6V€ € 1K axkaxe ,
N\ € 3
e (B T
5 " xafjo . (3.8.15)
. (wég)) = eni(Chie — Crie) D20y on 012,
and ) .
4y — -2 T Uo 0
L. (w)=¢ oz, { az; M—&L’J&Uk&cg} in Q,
0 PP (3.8.16)
9 @) = e 0
A AL L v on d

We further require that

/wén :/w§2> :/wg) :/wg) 0. (3.8.17)
Q Q Q Q

To proceed, we first note that by Poincaré inequality, (3.8.17) and energy esti-
mates,
||w§4) ||L2(Q) S O ||VUJ§4) ||L2(Q) S CEZHVSU()“LQ(Q). (3818)
The solution w” may be handled in a similar manner. To see this we use the skew-
symmetry of f,x¢ in m and ¢ to write the RHS of the equation as

20 (e Pu
0z \" " Ox00p01, )

3)

while the Neumann data for ws” may be written as

(0 0N (e Pu N p o Du
2 " 0%, " Ox; Mkl OOy i i 0x,02,0%,,

As a result, we obtain
2 3 2
Jwl lzzey < CIVu o) < O {1V ey + 1Vl oy o o
S 06§||u0’|w3,00(9).

Next, we observe that w§ ) may be dealt with by the classical homogenization

results for £.. Indeed, let UO ) be the solution of

Eo(v(()2)) ck,gﬂ in Q
0x;01,07, ’
@) (3.8.20)
Oy _ N;iCli —82u0 on 02
aV() - Wax;ﬁxe ’
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with [, o8 = 0. Tt is well known that

[w® — evl || 2y < C e2||ugllwse(a)- (3.8.21)

It remains to estimate the solution wél), which will be handled by using Theorem

. Observe that by the skew-symmetry of ¢;; in k£ and ¢, the Neumann data of ne

may be written as
—g (T : v) < ;ijg—;ﬂ , (3.8.22)
where T}, = n;er, — nge;. This allows us to apply Theorem to deduce that
Jwe — ev§” |2y < Co 227 |uollwaes ), (3.8.23)
for any o € (0,1/2), where v(()l) is a solution of the Neumann problem

Lo(vd) =0 in €,
0

5 (0)) = (T;-V)(@,) oL,

81/0 J

(3.8.24)

and g;; € Wha(9Q) for any 1 < g < d — 1. We remark that the explicit dependence
on the W2°°(Q) norm of ugy in the RHS of follows from the proof of Theorem
1.1} The key observation is that the fast variable y in the Neumann data (3.8.22)) is
separated from the slow variable x.

Let v? = o{"” + v{?. In view of (3.8.18), (3.8.19), (3.8.21) and (3.8.23), we have
proved that

2o
. — ][ we — 2™y < Co 3o loceay. (3.8.25)
Q

Finally, we note that since fQ Uy = fQ ug = 0,
£,
Q

where the last step follows from the fact that y; is periodic with mean value zero.
This, together with (3.8.25)), yields the estimate (3.8.2]) and thus completes the proof
of Theorem [3.39 ]

0
<Ce ‘ /ka(x/é)a—x dx‘ + C?|| Vo) so

S C€2HU0”Wz,oo(Q),

Copyright®© Jinping Zhuge, 2019.
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Chapter 4 Dirichlet problems

In this chapter, we study the boundary layer problems with oscillating Dirichlet
boundary conditions,

Ee(us) =0 n Q,
u:. = f(z,z/¢e) on Of).

This problem has been studied in [21], [7, [42]. For operators with constant coefficients,
the optimal convergence rates were shown in [5]. For oscillating coefficients, the
optimal convergence rates for lower dimensions were claimed in [38] without a concrete
proof. In this chapter, we will give a complete proof for the Dirichlet problem for
all dimensions in strictly convex domains, which is a reduced version of the proof in
[42] where we studied the Dirichlet problem in more general (non-convex) domains
of finite type.

4.1 Dirichlet correctors

We introduce the matrix of Dirichlet boundary correctors @, = q)fy = (@ig, @zg, ey @?f )

associated with £. in a bounded domain 2. Indeed, for each 1 < j < d,1 < 3 < m,
(IDE’BJ is the solution of

0 in €,
PP(x) on 9.

J

L.97 (z)
(I)?,j(x)

Let Q be a bounded C?? domain and ¢ € (0,1). The matrix of Poisson kernel
Po 0 Q2 x 00 — R™™ associated with L. in (2, is defined by

Py (a,y) = —nly) - a*(y/e)V,Ges.(x,y),

where n(y) is the unit outer normal and Gq . is the matrix of Green’s function asso-
ciated with £, in Q. The following uniform estimates in [9] will be useful,

C
Po.(z,y)| < ————, 4.1.1
Poew.)| < o (411)
and Cdist(z, 09)
1st(x,
|Poc(a,y)| < ——— 2 (4.12)

|z —y|?
Let Py be the Poisson kernel associated with the homogenized operator Ly in €.
Clearly, Py, possesses the same estimates (4.1.1)) and (4.1.2)).

Recall that the two-scale expansion of the Poisson kernel of L. in {2 was established
in [25],

Py (z,y) = PS(z,y)wtP(y) + RP(z,y)  for z € Q,y € 09, (4.1.3)
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where R, is the remainder term satisfying

Celn(2 + e Yz —9))

R.(z,y) <
Ro(2.y) e
The highly oscillating factor w.(y) in (4.1.3)) is given by
Bly) = B O gxpv B
we"(y) =h (y)'nk(y)nz(y)a—qu,k (y) - aiy (y/e)ni(y)n;(y), (4.1.4)

and h(y) is the inverse matrix of @;;(y)n;(y)n;(y).
Let u. be the solution of (1.2.11]). By Poisson integral formula, we have

ua(z) = / Po(2.9)f (4, y/)do(y).
o0

Note that (4.1.2) implies the Agmon-type maximum principle ||uc ||~ @) < C||f]| Lo (@0xT4),
which we will often refer to. Define

7(z) = /8  Pale. o) (. /<)o),

Lemma 4.1. Let Q be a bounded C*° domain and let (1.2.9), and
hold. Then

[ue = tcllza < Ce9(1 + [Ine)|[ f]| oo o2
for any 1 < q < o0.

This follows readily from (4.1.3) and a similar proof can be found in [38, Lemma
2.3]. Thanks to Lemmaf4.1] the estimate for ||u. —uo|| 2(q) is reduced to ||t —uol| £2(q)-

4.2 Dirichlet problems in half-spaces

For n € S°! and a € R, let H%(a) denote the half-space {z € R?: z-n < —a} (also
see (3.2.1))) with n being the unit outer normal to its boundary H%(a) = {z € R? :
x-n = —a}. Consider the Dirichlet problem

{—dW(AVu(x)) =0 in E; (a). (4.2.1)

u(x) = f(x) on OHY (a),

where A satisfies (1.2.2)), (1.2.3)) and ([1.2.4)), and f is smooth and 1-periodic. Instead
of solving (4.2.1)) directly, we try to find a solution of (4.2.1)) with a particular form,

ie.,

u(z) =V¥x — (x-n)n,—x - n), (4.2.2)
where V¢ = V7(0,t) is a function of (0,t) € T¢ x [a,00). To identify the system
satisfied for V¢, let M be a d x d orthogonal matrix whose last column is —n. Let N
denote the d x (d — 1) matrix of the first d — 1 columns of M. Since MM7T = I, we
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see that NNT +n®@n = I. It follows from (4.2.1)) and the previous settings that V¢
must be a solution of
T T
—(N v'9)-B(N V9)\/:0 in T¢ x (a,00),

) ) (4.2.3)

V=F on T¢ x {a},

where B(0,t) = MTA(0 — tn)M and F(0) = f(0). Observe that if V¢ is a solution
of with @ € R, then V¢(0,t) = V°(@ — an,t — a), which reduces the problem
to the particular case a = 0.

Now we collect some important results concerning the lifted system in the
following theorem.

Theorem 4.2. Letn € S™! a =0 and F € C*(T?). Then
(i) The system has a smooth solution V' such that for all k,s > 0,

IS0V )+ 1057V it < C.
where C depends only on d,m,k,s, A and F.

(i1) If n satisfies the Diophantine condition with constant k > 0 and V' is the
solution of given in (i), then there ezists a constant V., such that for all

ae€NLE>0ands>0,

C

INIVOOGOVI+ 10507V |+ KlOGOL(V = Vo)l < s

where C' depends only on d,m, k,a, s, A and F.

(111) Let n satisfy the Diophantine condition with constant k > 0 and n be any
other unit vector in ST, Let V and V be the solutions of corresponding to n
and n, respectively. Define W =V — V. Then forany 0 <o <1,

n —nf”
K2to ’

1
//|NTV9W|2+|6tW|2d9dt§C
0 Td

where (N, —n) is an orthogonal matriz and C depends only on d,m,o, A and F.

The proof is similar to the Neumann problem ([3.2.8). Actually, (i) and (i) are
more or less known and can be found in [20] [7, 29]. Statement (iii) was established
in [38] recently for Neumann problems by applying a weighted estimate. The proof
for Dirichlet problems is similar without any real difficulty by using the weighted
estimate in Theorem |3.17, But again, this estimate will be further improved in the
next chapter.

4.3 Approximation of Dirichlet correctors

From now on, we will assume that € is a smooth and strictly convex domain. In view
of (4.1.3), to study the oscillating behavior of w., the difficulty is to understand the
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behavior of V®I near the boundary. This can be done by studying u:[; = CID:ﬂ] (x) —
P]’B(a:) - EX;B(.I/&Z) for each 1 < j <d,1 < < m. Clearly, by the definitions of ®}

and x*, uf’j satisfies

EZUZ'@ () =0 in Q,
" y (4.3.1)
ui(z) = —ex; (z/e) on 0f).
Let us consider the general case of (4.3.1)
EE € =0 i gL
ue(®) " (4.3.2)
us(z) = fo(z) = ef(z/e) on 02,

where f(y) is 1-periodic and smooth. Fix xy € 9€2. To find an approximation of u.
in a neighborhood of x(, we solve the Dirichlet problem in a half-space

Lo (r)=0 in HY (a),
0 (4.3.3)
ve(z) = fo(2) on OHI}, (a),
where a = —x( - ng and 8Hﬁ0(a) is the tangent plane of 0 at xy. Note that v, has a
form of v.(z) = evy(x/e), and v; is the solution of
Livi(z) =0 in H? (a/e),
w(@) = fla)  on OHY (afe),

The existence of the solution of (4.3.4) or (4.3.3) as well as its estimates have
been established via the half-space problem in Theorem (i) and formula ([4.2.2).
Define w.(x) = u.(z) — v.(x). Observe that by the definition of v., w, is defined and
actually a solution of L.w.(x) = 0 only in Q2. Now we prove the following.

Theorem 4.3. Let w. be constructed as above. Let ¢ < r < /e. Then for any
o€ (0,1),
T2+U
[Vwe| Lo (Baoryne) < CVeE + 051?’ (4.3.5)
where C' depends on d,m, u,0,€, A and f.

To prove the theorem, we require the following lemmas.

Lemma 4.4. Let u. be a solution of , then one has for any k > 0,
|Ivkug||L00(Q) S C&l_k, (436)
where C' is independent of €.

Proof. For k =0, we use the Agmon-type maximal principle to obtain

[t L) < CllfellL= (o) < Ce. (4.3.7)
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For k > 0, we apply a blow-up argument. Set u.(z) = euy(z/e). Then v, is a solution
of

{Elul(x) =0 in °, (43.8)

ur(z) = f(x) on 0§,
where Q° = {x : ex € Q}. Note that the C* character of ¢ is controlled by that of

Q. It follows from the local Schauder’s estimate that for any = € Qf,

IV ur || oo (B yn0e) < Cllwa]l e (Ba2ynes) + |1l cka(Baonas)-

Since f is 1-periodic, then || f{|ck.a (g 2)n0s) < Ol fllcre(ray. And by (4.3.7)), [[u1]| Lo (@) <
C'. It follows that
HkaIHLoo(QE) S C,

for any k > 0, where C' depends also on k. Changing variables back to u., we obtain

the desired estimates (4.3.6]). O
Lemma 4.5. Let v. be constructed as above, then one has for k € {0,1,2},
||ka5||Loo(HgL0(a)) S Cé?l_k, (439)

where C' 1s independent of <.
Proof. Let v.(z) = evi(x/e). Then v; is the solution of (4.3.4), which can also be
given by the Poisson integral formula

w@ = [ eyl w)iol), (4310)

O (a/e)

where Py is the Poisson kernel of £; in the half-space HZ (a/e). A similar estimate
as (4.1.2)) in half-spaces was established in [21], i.e.,

Cdist(x, OHY (a/e))

P]HI x,y S
(=.9) |z — y|?

: for all 2 € H? (a/e).

Then it follows from (4.3.10) that ||v1||Loo(Hgo(a/E)) < C||f||Loo(8H;iLO(a/E)) (Agmon-type
maximal principle). Thus, ||vc||feeme @)) < Ce as desired for & = 0. The estimates
for k£ > 0 follow similarly as Lemma by the local Schauder’s estimates. ]

Proof of Theorem[{.3 The proof follows a line of [7]. Let y € 9Q and |y — xo| < 79
for some ry depending only on 2. We will use the following conventions: let 7 denote
the projection of y on 8]1-]1;3’;0(@) such that y — 7 is a multiple of n(zy). Since both
(2 is smooth and strictly convex near xg, it is easy to see that for all y satisfying
ly — wo| < 7o,

C7Hy — xo* < ly — 9l < Cly — o, (4.3.11)

This also implies |y — zg| = |y — xo|. On the other hand, let n(y) and n = n(xo)
denote the unit outer normal of 9Q and OH< , (@), respectively. Then

n—n(y)| < Cly — x| (4.3.12)
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To prove the estimate (4.3.5]), note that w, is a solution of
L.w. =0 subject to certain Dirichlet boundary condition on 0f).
Indeed, it follows from the uniform Lipschitz estimate in CY® domains that

IVwe || Lo (,n0) < O Hlwel| Lo (8,00

i (4.3.13)
+ CHVtanwEHLW(BQTﬂaﬂ) + Cr HvtanwEHC’”(BgrﬂaQ)-

Note that Vi, can be written as (I —n®n)V (which can be viewed as the projection
of V onto the tangent planes n'), where n is the unit outer normal of 9.
Estimate of V,,w.: Using the fact u. = f.(y) = ef(x/e) on 02, we know

(I —n®@n)V(u.— f)(y) =0 on 0f). (4.3.14)
Similarly, taking advantage of the fact v, = f. on the hyperplane OHZO(a), we have
(I-n®n)V(v.— f)(») =0  ondoH (a). (4.3.15)
Combining (4.3.14) and (4.3.15)), we have

[Vianwe(y)| = [(I = n @ n)V(ue —v:)(y)]
<|(I=n®@n)V(u —v)(y) — (I —n@n)V(u —v:)(y)|
<|n@n—n@n||V(u: —ve)llLean) + 1y = GV (ue = ve) |l (820
< Cr+ Ce 4?2 < Celr?,

for r > ¢, where we have used the mean value theorem in the first inequality and
used Lemma 4.4] and [4.5] as well as (4.3.11)) and (4.3.12)) in the last inequality.

A similar argument also shows that ||V, w:| LB, no0) < Ce ?r?, which, by
interpolation, implies || Vianwe || co(B,,n00) < Ce™'77r? for any 0 < o < 1.

Estimate of w.(x): We first claim that

lw.(y)| < Cly — zo|? for all y € 9Q N B(xo, 10). (4.3.16)

Actually, write agian w. = (u. — f.) — (v. — f.). Using the cancellation u. — f. =0
on 02 and mean value theorem, we have that for any y € 9Q N B, ()

[w-(y)| = [ve(y) — f-(v)]
< Cly = yllIV(ue = fo) |l (Barne)
S Cly - 'T0|27

where in the last inequality we have used Lemma and (4.3.11)).
Then we take advantage of the Poisson integral formula and split it into two parts,

w.(z) = /a Paclag)uln)doty)

Po(, y)w.(y)doly) + / Po(, ). (y)do (y)

/amﬂy—mswg} 00N {Jy—zo|>ev/E}
(4.3.17)
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where x € €2 and Pq . is the Poisson kernel of £, in €. To estimate the first term on

the right-hand side of (4.3.17)), we apply (4.1.2]) and (4.3.16)),

Poc(x, y)w.(y)do(y)

‘ /Bﬂﬂ{y—woﬁcﬁ}

. ly — 36’0|2
<C dist(z, 0Q)=———do(y)
0N {ly—zo|<ev/E) |z —y|

— x| dist(z, 002
< C/ dist(x,@Q)Mda(y) + C/ L’diz)da(y)
o0 (ly—zol<ev/E} [ =yl p0n(ly—rol<cye) [T =Yl
< Clz — mo|* + Cdist(x, 0Q) /2
< COr? 4+ 1rv/e,
where we have used the observation |y — xo|? < 2|y — z|* + 2|z — z0|?.

To bound the second term on the right-hand side of (4.3.17)), we note that (4.3.6)
and (4.3.9) give ||we||=(q) < Ce. Then

< Ce/ dist(z, 852)
oN{|y—zo|>c\/E} ly — x|
< Cedist(z,09)(ve) ' < Cry/e.

Po (@, y)w.(y)do(y) do(y)

/890{|y—:co|>cﬁ}

It follows
lw.(x)] < Cr? + Cry/e, for all z € B(xzg,2r) NS

This, together with (4.3.13)) and the estimates for Vi,,w,, proves (4.3.5)). m

For each fixed zy € 0L, the system (4.3.3) associated with the adjoint operator
L:and f. = —ngﬂ (x/¢) has a solution v} of form

U:€<x):svj*g(x—(x.no-l-a)no’_x-no-i-a)’ fOI"[L’-noS _a, (4.3.18)

’ € 5
where a = —xq - ng and Vj*ﬁ = vj*ﬁ(e, t) is a solution of
_( o, )B( 9, I/; =0 in T¢ x (0, c0),
*8 __ *3 d
Vit ==X on T x {0},

given by Theorem . Note that V;.*'B also depends on ng. Finally, we apply Theorem
[4.3] to obtain the main theorem of this section as follows.

Theorem 4.6. Let ¢ <r < /e and o € (0,1). Then for any x € B(x,7) N Q,

7j

’V(@Sg(x) — Pf(:):) — 5Xj5(m/€) - UE’B(:p)) ‘ <CvVe+ Cﬁ, (4.3.19)

where C depends on d,m, uu, 0, and A.

73



4.4 Proof of Theorem 1.2: convergence rate

In this section, we will establish the sharp convergence rate for Dirichlet problem
(1.2.11)). Due to Lemma it is sufficient to estimate ||u. — uol|12(q), where . and
ug are defined by

7 () = /a P e ) 0. 0/2) () (4.4.1)

and

ug () = / P T w)daty). (14.2)

Now we need to find an explicit expression for the homogenized data . Roughly
speaking, the homogenized data f in (4.4.2)) should be the weak limit of w,(y)f(y/¢)

as ¢ — 0. By (4.1.4) and (4.3.19)), for y € B(xg,r) N 0L, one has
W (y) P (y/e)
14 a 14 * oV * POV, T
= h(y) '”ea—w[P;f () + X3 (y/e) + 02 W)k - aly (y/e)nin; [ (y, y /)

+ Error terms.
(4.4.3)
Note that v (y) is given in (4.3.18)) which depends also on x¢, and n = n(y) is the
unit outward normal at y. For a fixed y € 02, in view of the quantitative ergodic
theorem [7, Proposition 2.1], we know that w.(y)f(y/e) converges to its average on
the tangent plane H¢(a) at y, where n = n(y). The only unclear term in (4.4.3)) is

n- Vv:f'k’xo. Actually, in view of (4.3.18)), for z € H%(a), one has

n-Voli*(z) =n-(1-n®@n,—n) (ge) Ve (E, O)
t

(4.4.4)

Note that V;"*(6,t) is 1-periodic in 6. As a consequence, we can define the homoge-
nized boundary data as follows:

7 ()
= h(y) /T 107+ nly) - Vx™(0) - nly) — 9V(6,0) - n(y)Ini(y)n;(y)aly (0)f° (y, 0)do
(4.4.5)

Remark 4.7. If the coefficient matrix A = (a%ﬁ ) is constant (or divergence free), then
x* = 0 and hence V* = 0 in (4.4.5). Also in this case, one has A = A. By the
definition of h, this implies that hc”é””ninjaff = 6%, As a result, 1) is reduced

to

70 = [, .00

This exactly coincides with the homogenized boundary data for Dirichlet problems
with constant coefficients.
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Theorem 4.8. Let z,y € 02 and |z — y| < ro. Suppose that n(z),n(y) satisfies the
Diophantine condition with constant k(x) and k(y) respectively. Let f be defined by

. Then for any o € (0,1),

o) - Tl < 2 sup 1.2 enomy

€Td
where k = max{k(z),k(y)} and C' depends only on d,m,o, and A.

The above theorem may be proved by the similar argument as Theorem by
using Theorem [£.2] Moreover, an improve estimate will be proved by using a more
delicate argument in the next chapter. At this point, however, the above estimate is
sufficient for us to establish the optimal convergence rate.

The rest of the proof is devoted to estimating ||u. — uo||z2(). To begin with, we
perform a partition of unity on 02 and restrict ourself on B(xg, 1) N OS2 for some
xo and rg > 0 sufficiently small. So without any loss of generality, we may assume
supp(f(-,y)) C B(zo, 7o) for any y € T¢. Then we construct the another partition
of unity on B(z, 1) N 02 adapted to the Diophantine function x(z), by exactly the
same method described in §3.7 with

for some small constant o > 0. Recall that, as in §3.6] there exist a finite sequence of
{p;} of Cg° positive functions in R? and a finite of sequence of surface cubes {Q;} on
0f), such that Zj ¢; = 1 on B(xg,2r) N OS2 Note that ¢; is supported in 2Q); and
|VEp;| < C’rj’k, where r; is the side length of ); as before. Also, for each j, there

exists some z; € 36@j such that

Note that z; is the center of éj. Let I'. denote a boundary layer
FE =QnN (U B(%j, C?‘j))
J
and D, = Q\ T.. By Proposition [3.36]

0. <Y B@E, 0r) <CY rd < Cr = 07
J J

Thus for any ¢ > 0,

lue — ul? < Ce' 7, (4.4.7)
I

where we have used the boundedness of u, and uyg.
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To deal with the L? norm of u. — ug on D,, we introduce a function as (3.7.7)
"

where 0 < t < d—1. We mention that Lemma for ©,(z) will play a key role and
be used repeatedly in the following context.
As in the Neumann problem, we split u, — ug into five parts

() ~ unle) = |

o0N
=L+ L+ 13+ 14+ I

Polar, y)w- (4) f (4, y/)do () — / Pala,9)F(y)do(y)

o0N

where [, 1 < k < 5, will be defined below and handled separately. We point out in
advance that estimates for I3 and I, essentially distinguish from the case of strictly
convex domains and need more careful calculations.
Let 0 > 0 be an arbitrarily small exponent that might differ in each occurrence.
Estimate of [;: Let

I = / P2 (2, 9w () £y, y/<)dor ()
o

=3 | P T )1 o),
where

~ 2z v a 1 * U *pV,24

B ) = W (el - [P )+ X2 02) 025 ) ) /) ),
(4.4.9)

and z;’s are specially selected as in (4.4.6). Note that I; comes from the error terms

in (4.4.3), which by (4.3.5) is bounded by

240
Ty

Y [ eratenl (VE+ Sz a1)doly) = Rit B

for any o € (0,1). Observe that
Ry <Cve | |Po(z,y)| < CVe. (4.4.10)
)

For Ry, using |Po(z,y)| < Clz—y|'"® and |z—y| ~ |z—7,| for x € D.,y € B(x;,Cr;),
we have

240 7ﬂ2'—&-cr—&-d—1

r
_ —1—0
R2 = C Ej /BQ ¢J(y)|PQ(I‘,y)| <€]l+a A\ 1) dO'(y) S 05 Ej W (4411)
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Now we estimate Rg by Lemma [3.37)in two separate cases. If 2(2+ o) < d — 1, then
we apply Lemma [3.37] directly with ¢ = 2 and obtain

|Ry()|?dx < Ce™20+0)72240) < 0273, (4.4.12)
D,

where we have used 7 = '~ and chosen o sufficiently small. Otherwise, we choose
suitable ¢ < 2 such that ¢(2+0) =d —1—0 < d—1 and then apply Lemma

|Ry(2)|%dz < Cem90+0)7a(2t0) < Cga(d=1)-0,
De

where again, o is chosen sufficiently small. Clearly, (4.4.11)) also implies |Ry| < C.
Thus, a simple interpolation leads to

|Ro(2)2dx < Ce2@1-9, (4.4.13)

De

Combining (4.4.10)), (4.4.12)) and (4.4.13), we obtain

/ 1 (z))2da < Cehald=1-9,
Estimate of I5: Set

B=Y / 3 (9) PSS (2, y) 295 () £ (y, /=) dor (1)

e (4.4.14)
o Z /aHd ‘:Oj(Pj_l(y))ch(x, Pj_l(y))@gﬂv% (y)fﬁ(zj, y/e)do(y)

where 6H§l denotes the tangent plane for 002 at z; and Pj_1 is the inverse of the
projection map from B(z;, Cr;) N 0Q to 8H§l. We clarify that in (4.4.9)), n(y) is the
outer normal of y € 9€2. But in the second term of (4.4.14)), y needs to belong to 8]1-]1;’
and hence we need to update n(y) = n(z;) for all y € JHY. This modification leads
to some harmless errors bounded by Cr; < C’rf /e. Then, for the same reason as I

in §3.7, we are able to bound I by

‘12| < Cgilz |

Similar as (4.4.11)), we estimate this in two cases and obtain

2+d 1

|Iy(2)[2de < Ce?ald=1D=9,

De
Estimate of I3: Set
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where f is defined in (4.4.5). To estimate I, we apply the quantitative ergodic
theorem in [7]. As we have mention in the estimate of I, the outer normal in

the definition of &2 (y) is constant on OHY with Diophantine constant (z;), and

therefore e (y) is nothing but a slice of some 1-periodic function in R? (see (4.4.4))).

Note that by (4.4.6), x(z;) > ce'=7/r;. Then it follows from Lemma that for
any N > 0,

|13|<OZ(73) o 19" ) Pate )ity

d1N+k

<CZ(€TJ) Z\x T|d-1+k
N02|x_x|d 1

where we have used |V¥p;| < Cr , | VEPo(z,y)| < Clz—y|' " and r; < Cla—7;| =
Clz —y| forallx € D, and y € 2Qj Now, applying Lemmag with ¢ = 0, we have

/ |]3|2 < CENU.

b

This is a desired estimate if we choose N > 1 large enough.
Estimate of I;: Set

= Z/ W) PSP ()T (2)do(y)
-2 / @i (P () Pac (e P ) T (P () do(y).

The estimate for I, essentially relies on the regularity of homogenized data f. Indeed,
by Proposition

7’1-+(1+U)
|7(Z]) - T(Pj_ ( ))‘ < C(W) < C( ;g(lJrU) ),

where we also used |z; — P, (y)] < Cr;. This leads to a bound for I

1+(140)+d—1

r.
L| < cr~(+9) <4
Hal < ; |z — x|
Using Lemma [3.37] and a familiar argument as before, we are able to show

/ |]4|2 < 052/\%@1—1)—5

€
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Estimate of I5: Finally, let

A change of variables gives

14+d—1

r
[ < C +.
5] < Z |z — z| !
j
Then by Lemma [3.37 and a familiar argument, we obtain

|I5|2 < C€2A(d71)76_
De

Combining the estimates of Ij, we have shown that

’ﬂs B u0|2 < C«gl/\%(dfl)f6

Y

De

for arbitrarily small 6 > 0. This, together with Lemma[d.1)and (4.4.7)), ends the proof
of (1.2.14]).

Copyright®© Jinping Zhuge, 2019.
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Chapter 5 Regularity of Homogenized Boundary Data

The main purpose of this chapter is to show the W? estimate, with any p € (1, 00),
of the homogenized boundary data f and g. This implies the C'~-Holder conti-
nuity, due to the Sobolev embedding theorem. We mention several related work
regarding the continuity of homogenized boundary data. In [I], under the addi-
tional assumption that A is independent of some rational direction vy, it was proved
that the homogenized Dirichlet data has a unique continuous extension to the set
{z € 0Q : n(x) - vy # 0}. The problem of Hdlder continuity was also studied in
[13, [16] for second-order nonlinear elliptic equations of form F(D?u.,z/¢) = 0. In
particular, it was shown in [I6] that if the homogenized operator F is either rotational
invariant or linear, then the homogenized Dirichlet data is C'/?~-Hélder continuous,
and that the homogenized data may be discontinuous in general. Note that the linear
elliptic equations in non-divergence form may be written in a divergence form with
div(A) = 0. In this case, the first-order correctors are trivial and therefore the ho-
mogenized data is smooth if €2 is smooth and satisfies some geometric conditions. In
the nonlinear setting of divergence form, the C'*/¢~-Hélder continuity and the possi-
ble discontinuity of the homogenized boundary data at rational directions have been
studied recently in [I8]. The main result of this chapter, on the C''~-Holder continu-
ity of the homogenized data for linear elliptic systems in divergence form, was first
proved in [37].

We point out that, unlike the optimal convergence rates, the assumption that €2 is
strictly convex is not essential for the regularity theory of the homogenized data. In
fact, the proof in this chapter goes through as long as one has [s(n(z))]~' € L1(0)
for some ¢ > 0 (see for the definition of »). Consequently, the regularity results
of Theorems and continue to hold for the domains of finite type considered in
[42].

5.1 An introduction to the proofs

We briefly describe our main idea to (1.2.15) and (1.2.10)), as well as some of the
key estimates in the proof. Our starting point for the proof of (1.2.15) for Dirichlet
4.4.5%.

problem is the formula for the homogenized data f discovered in . This formula
reduces the problem to the study of continuity of solutions V,, = V,,(0,t) with respect
to n € S?! for the Dirichlet problem in a half-space,

T T
— (N%VG) - B, (Nnav") V, =0 in T x R,
t t

Va(0,0) = ¢(0)  on T* x {0},
where ¢ € C®°(T4R™), B, = B,(0,t) = M A*(§—tn)M,,, M,, is any dx d orthogonal
matrix whose last column is —n, and N, is defined by M,, = (N,,, —n). Note that M,

and NN, are not unique. However, as we have seen before, the solution V,, of (5.1.1])
is independent of the choice of N,,.

(5.1.1)
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We use S5, S4! and S to represent the sets of rational, irrational and Dio-
phantine unit vectors (i.e., unit vectors satisfying the Diophantine condition (2.4.1)),
respectively. Note that S%_l is a subset of S?_l and has full surface measure of S* 1.

Let n,n € S5 . The key step in our proof is to show that for any o € (0, 1),

1/2
(/ |0,V,n(6,0) — 8,Vz(6,0)|° d@) < Oy ?|n —nl, (5.1.2)
Td

where 3 = max {3(n), »#(n)} and C, depends only on d, m, o, A, ||Al|crre) and
|¢||lcx(ray for some k = k(d, o) > 1. Observe that (5.1.2) shows that Vj, is locally
Lipschitz in n near a point with a Diophantine normal. Then follows from
by using the representation formula (4.4.5), the fact [s(n(z))]™* € LI~1(99)
and an approximation argument.

To prove (5.1.2)), besides the pointwise decay estimates (depending on x(n)) es-
tablished in Theorem [£.2], one needs to fully take advantage of the fact that if

u(z) = Vol — (z-n)n —sn,—x-n —s), (5.1.3)
then u* is a solution of the Dirichlet problem in a half-space,

* S : d

{mu )=0 in Hn<5>, (514

u'=¢  on JH(s),
where £; = L?, the adjoint of L., with ¢ = 1. In (5.1.4), Hl(s) = H? — sn and
He = {z € R?: x-n < 0} is the half-space whose boundary contains the origin
and with the outward normal n. This allows us to apply the maximal principle and
the large-scale boundary regularity estimates for the operator £3. The technique was
already used in [21], [7] to establish the boundedness of V;,. Here, among other things,
we apply the technique to establish the uniform boundedness of V,V,, as well as some
uniform pointwise decay estimates for 9;V,, and NI'V,V,, (independent of n). Then,
combining the energy and pointwise decay estimates, the uniform boundedness of V,,
or VgV, and a weighted estimate (see Remark, we adopt a delicate interpolation
argument to conclude (5.1.2)).

We remark that the asymptotic behavior of the solution u* of as r-n — —oo
is well understood thanks to [27, 6, 20 21, 29 2]. In particular, if n is irrational, it
was shown in [29] that there exists a constant vector u*(n, ¢) € R™ independent of s
such that

pn,¢)= lim u’(x), (5.1.5)

Tr-n——0o0

though the rate of convergence could be arbitrarily slow in general. On the other hand,
if n is rational [27, [6], the above limit depends on s and possesses an exponential rate
of convergence. The mapping u : S?_l x C®(T4R™) — R™ defined via 1) but
with £ replaced by Ly, is called the boundary layer tail (BLT') for Dirichlet problems
associated with £;. It follows from [21] that

f(@) = u(n(x), f(x,-), if n(x) € SdD_l. (5.1.6)



Thus, by (1.2.15)), [[u(-, @) |lwrrsi-1y < C|@[|L2(ray for any 1 < p < oo. Consequently,
for any 0 < a < 1, u(+, ¢) extends to a Hélder continuous function of order av on S4!
and

1(n, 6) — (7, ¢)| < Caln — 7*|| @) popay for any n, 71 € S, (5.1.7)

where C,, depends only on d, m, a and A.

Our approach to for Neumann problems is similar to that used for .
The starting point is a formula for the homogenized data {g;;} obtained in ; also
see Theorem [5.11]for details. As in the case of Dirichlet problems, this formula reduces
the problem to the study of the continuity in n € S¢! of solutions U, = U,(0,t) to
the Neumann problem,

T T
_(N%V9> -Bn(N%v9>Un:O in T¢ x Ry,
' ' (5.1.8)
NIV, d
—eqi1 -+ By 5 U, =T, Vo on T¢ x {0},
t

where T, € R% |T,,| < 1and T,,-n = 0. Let n,n € S‘é‘l. We will show in that
for any o € (0, 1),

1/2
< VU, (6,0) — VoUs(8,0)|” d@) < C,x |n —nl, (5.1.9)
Td

where 3 = max{%(n),%(ﬁ)} and C, depends only on d, m, o, A, ||Al|¢ke) and
|@llck(ray for some k& = k(d,o) > 1. Now (1.2.10) follows from , the fact
[s(n(z))]™t € L1(09Q), and the representation formula mentioned above. Finally,
we point out that the key estimates in the proof of rely on the observation
that if u*(x) = U, (x — (z-n)n —sn, —x-n—s), then u® is a solution to the Neumann
problem,

£i(u*) = 0 in HY(s),

0 1.V on OH(s),

- =
ov;

We refer the reader to for details.

(5.1.10)

5.2 Regularity for Dirichlet problems

As we have seen in the previous section, the central problem for the regularity of f
is to study the regularity of (5.1.4) with respect to n. However, the solvability of
the Dirichlet problem is not obvious, since the domain H¢(s) is unbounded
and the boundary data does not decay. Nevertheless, by using Lipschitz estimates in
[9] and an approximation argument, one may establish the existence of the Poisson
kernel in a half-space and hence the solvability of via the Poisson integral
formula.
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Theorem 5.1. Let Q = Hi(s) for some n € S*™! and s € R. Then, for any
bounded continuous function ¢ in R?, there exists a unique bounded function u in
C®(Q;R™) N C(Q;R™) such that

Li(u) =0 n €
1) s (5.2.1)
u=q on 0S2.
Moreover, the solution may be represented by
ua) = [P (o) doty), (522
Q
where the Poisson kernel P* = P*(x,y) satisfies
Cmin{d(x), |« — y[}
PH(z,y)| < : 5.2.3
1P (2,) e (523
V.P(z,y)| < —— 5.2.4
VoP (@)l € o (5.2

for any x € Q and y € 09, 0(x) = dist(z,0Q) = |s + = - n|, and C' depends only on
d, m, \, and some Hélder norm of A on T¢.

Proof. The theorem was proved in [21], Proposition 2.5]. O]

Remark 5.2. By the boundary Lipschitz estimates in Theorem [2.5[and the Cacciopoli
inequality, the uniqueness holds under the sublinear growth condition: |u(z)| <
Co(1 + 0(x))* for some Cp > 0 and a € (0,1). Also, it follows readily from ([5.2.3])
that the Miranda-Agmon maximum principle,

[ull oo (@) < Cll]Loe(o0) (5.2.5)

holds, where C' depends only on d, m, A, and some Holder norm of A on T<.

An alternative way to establish the solvability of for periodic data ¢ is
to lift the problem to a (d + 1)-dimensional problem in the upper half-space. Fix
n € ST Let M = (N, —n) be a d x d orthogonal matrix such that the last column
is —n and the first d — 1 column is a d X (d — 1) matrix N. Now we seek a solution

w of (5.1.4) in a particular form
u'(z) =V(z —(x-n)n—sn,—x-n—s). (5.2.6)
It is not hard to see that V' = V/(0,t) has to satisfy the following lifted degenerate

system,

O O
V(6,0) = ¢(0) on T x {0},

B (NTVQ) . B(NTVQ)V —0 in T x (0, 00), (5.2.7)
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where B(0,t) = MTA*(§ — tn)M. Note that MM?T = I implies [ = NNT + n @ n.
It follows that

T
M(N;H) — (I —n&n)Vs—nd. (5.2.8)
t

Thus, the solution V' is independent of the choice of N.
The well-posedness of (5.2.7) was given by [21], Propositions 2.1 and 2.6].

Lemma 5.3. Let n € S¥1. Then, for any ¢ € C°(T%R™), the system has
a smooth solution V- =V (0,t) satisfying

o . , 1/2
(/ /d (INTV, 0800V |2 + 9501V [2d6) dt) < Cllgllgotesiipn,  (5.2.9)
o Jr

where |a|, 7 >0, and C depends only on d, m, |a|, j and A. Moreover, if n € SH™*
with Diophantine constant k > 0, then there exists a constant V, such that for any
|a|7 j7 g Z 07

: : Cell¢ll o (e
T a a al+ « (T)
‘N Ve@e 8§V| + |89 8t 3V| + /£|89 (V — Voo)| < W, (5.2.10)
where k = k(|a|, 7,¢,d) and Cy depends only on d, m, ||, j, ¢ and A.

Remark 5.4. The solution of (5.1.4]) given by Theorem [5.1| coincides with the solution
of (5.1.4) given by Lemma [5.3| via (5.2.6) for any n € S*!. To see this, let w(x) =

u(x) = V(z — (z-n)n —sn,—x -n — s). Clearly, w satisfies

{qw =0 inH(s),

5.2.11
w=0  on JH(s). ( )

Since u® is bounded and V satisfies

V(6,1)] = \ / apvw,p)dpww)‘
() 1/2
< ||¢||oo+t1/2( / |apvw,p>|2dp)
0

oo 1/2
< 6l +Ct1/2< / 10,V (. 0) e dp)

0
< lloo + CE2N| || srrs2cray,

for some k > 1, we conclude that w is of sublinear growth as |z - n| — oo. Thus, by
Remark [5.2] we obtain w = 0.

Now we give an explicit expression for f(z) if n(z) € S4*. For 1 < k < d and
1 <8< m,let Vf = Vf . (6,1) denote the solution of the following Dirichlet problem,

Ty Ty
—(N 0) 'Bn(N Q)Vnﬂk:O in ']I‘dx(O, )
) o )V > (5.2.12)

ka = —XZ’B on T x {0},
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where X7 are the correctors for £*, B, = MTA*(0 — tn)M, and M = (N, —n) is an
orthogonal matrix.

Theorem 5.5. Let © € 0S). Suppose that n = n(x) € SL*. Let V,(0,t) be the

solution of . Then

Fix) = / heB [mM%X;W(e)wnk—atv,gf(e,O)-nk a} (O)nin; f*(x,0) do
Td l

(5.2.13)
for 1 < a < m, where h = (h*?) denotes the inverse matriz of the m x m matriz
(@ niny).

Proof. This was proved in [7] (also see [42]). O

We now turn to the proof of ({1.2.15)). The key step is to prove the following.

Theorem 5.6. Fiz 0 € (0,1). Let x,y € 02 and |z — y| < ¢o. Suppose that n(zx),
n(y) € Sy Then

. . 1/2
) - 700 < Gl ([ 16l ar) G219

where k = max {k(n(z)), k(n(y))} and C, depends only on d, m, o, X, and || Al|cx(ra)
for some k =k(d,o) > 1.

To prove Theorem , in view of the formula (5.2.13)), we investigate the conti-
nuity in n of the solution to the Dirichlet problem (}5.2.7)).

Lemma 5.7. For ¢ € C>(T% R™), let V be the solution of , given by Lemma
with n € S™'. Then

Cll¢llc2(re)

NT <
IN" VoV +|0V]| < 11

, (5.2.15)

where C' depends only on d, m and A. Moreover, for any |a|, j >0 and 0 < o0 < 1,

INTV 0000V | + 05017V | < % (5.2.16)
where k = k(|a|, j,0,d) and C, depends only on d, m, ||, j, o and A.
Proof. Let u® be given by (5.2.6)). Then
{Eius =0 m H’%f)’ (5.2.17)
u'=¢  on JH(s).
It follows from that
V(0,t) =u"(0 —tn) forall (6,t) € T? x Ry, (5.2.18)
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and that u®(x) is smooth in s and z for —x-n—s > 0. Thanks to the fact NV, (0-n) =
0, the last equality implies that

NIV, V(0,t) = NTV,u="(0 — tn),
{ oV (0,1) u " (0 —tn) (5.2.19)

OV (0,t) = —n - Vu "0 — tn).

As a result, estimates for NTV,V and 9,V may be reduced to the corresponding
estimates for u°.
It follows from the representation of Poisson integral (5.2.2)) and the pointwise

estimate (5.2.4)) that

Cll¢llo

IVt (z)| < P (5.2.20)

To deal with the case where |s + z - n| = dist(x,0Hl(s)) < 1, we first note that
|u]joo < Cll@]loc by (B-2.F)). Next, by the boundary Lipschitz estimate, we obtain
(Vs (z)] < C|l¢lle2(ray if dist(x,0H%(s)) < 1. This, together with and
BZ19), proves

Finally, we prove the inequality by using interpolation and the Sobolev

embedding. Precisely, for any L > 0, it follows from ([5.2.15)), (5.2.9) and interpolation
that

||NTV9V|| ) < O||NTv9V||1Lg(UTd><[L7L+1]) HNTV@VHilkfl(TdX[L,L+1])

< C(1+ L)Y ¢lloxray,

d
H™ 2T (Tdx[L,L+1]

where k = k(d,r,0) > 1 is sufficiently large. It follows from the Sobolev embedding
theorem that

sup |NTV98?8£V(9, t)] < C“NTVQVHHrde/2+l(Td><[L7L+1])
(0,t)ETex[L,L+1]

< Cli¢llorray
~ (14 L)’
which readily implies
To Aaai Cligllor(ray J
IN" V05 oV (0,t)] < for any (0,t) € T® x Ry, (5.2.21)

where |a|+j < r. A similar argument gives the pointwise estimate for |930, 7 V|. O
Lemma 5.8. Let V be the solution of with n € S¥1. Then
VI+1VeV] < Cllgllca(ra, (5.2.22)

where C' depends only on d, m and A. Moreover, if n € SdD_l with Diophantine
constant k = k(n) > 0, then for any |a| > 2 and 0 < o < 1,

105 V| < Cr™7| 9| e ey, (5.2.23)

where k = k(d, |a],0) > 1 and C' depends only on d, m, |a|, o and A.
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Proof. Again, the desired estimates for V' will be reduced to estimates for solutions

u® of (5.2.17)), where V' and u® are related by (5.2.18)). First, since ||[t®]|le0 < C||¢]c0s

we obtain |V| < C||¢||se. Next, by comparing u* and ©* in the common domain, we
may deduce from the boundary Lipschitz estimate and the Miranda-Agmon maximal

principle (5.2.5)) that
lu®(z) — u® ()| < Cls — '@l c2(ray, (5.2.24)

if z-n < —max{s,s'}. Observe that, to prove the boundedness of V4V, it suffices
to prove the boundedness of n- VoV, as N7V, V is bounded due to ((5.2.15)). To this
end, note that

V(O +rnt)—V(0,1)] =|u""O0+rn—tn) —u "0 —tn)|

< "0+ rn —tn) —u 'O — tn)| 4 [uT0 (O — tn) — w00 — tn)|
< IV [ = o

< Crll[¢llc2(ra,

where we have used (5.2.24]) for the last step. Dividing by r on both sides and taking
the limit as » — 0, we obtain |n - V4V| < C||¢[|c2(rey. This finishes the proof of

(.2.22).

Finally, to show ([5.2.23), we use (5.2.22), (5.2.10]) and an interpolation argument.
Precisely, let L > 0 and t € [L, L + 1],

sup 105V (6, 0)] < CIV| gasziei+r(raxL,L1))
(0,6)€T X [L,L+1]

< C||V||11T{_1C(TTdX[L7L+1}) ||V||%T(TdX[L,L+1])
< Cr™7[|@] o (ray,

where |a| > 2 and r = r(d, o, 0), k = k(d, |a|,0) are sufficiently large. The desired
estimate follows. O

Now we are ready to prove Theorem [5.6]
Proof of Theorem[5.6. Step 1: Set-up and reduction.

Fix ny,ny € S‘fj_l. We may assume that 6 = |n; — ny| > 0 is sufficiently small.
Let Ny and N, be the d x (d — 1) matrices such that both M; = (Ny, —n;) and
M, = (N, —ngy) are orthogonal matrices. Recall that solution Vi (resp. V3) of
(5-2.7), associated with ny (resp. ns), is independent of the choices of Ny (resp. Na).
So without loss of generality, we may assume | N3 — Ny| < C§. To be precise, we write
down the systems for V; and V5, as follows:

T T

O O (5.2.25)

Vi=¢  onT?x {0},
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N3 Vo NyVe\., _ . md
{( 5 >.B2( ) Vo=0 in T¢ x (0, 00), (5.2.26)

Vo=¢  onTx {0},

where By(6,t) = M A*(0 — tng) M, for £ = 1,2 and ¢ = —x;”. In view of Theorem
, to show ([5.2.14]), it suffices to prove that

10,V1(0,0) — 0,Va(0,0)> df < Cr™*|ny — nyl?. (5.2.27)
Td
Define W = V; — V5. Observe that
1 1
|O,W (0,0)>db < 2/ |(‘)tW(9,t)\2d9dt+2/ |02W (6,1)* dOdt. (5.2.28)
Td 0 Td 0 Td

Thus, the estimate ([5.2.27)) is further reduced to that for the two integrals in the RHS
of (5.2.28)). We may assume that x(n;) > k(n2) and thus x = k(ny).

Step 2: Estimate for 0,/
Note that W satisfies W (0,0) = 0 and

NIV, NIV,
() (v
= —(NZ’TVG) - By <N2TV")V1 (5.2.29)

(NI, NIV (NI, NIV,
(W) () - () 2 ()

By using
N{Vy\ B NV  (NyVp\ B NIV,
Oy "\ o O 2\ o,
_ [NV, (Ng = N{)Ve\  (NSVs _ NV,
B ( Oy ) .BZ< 0 Ot (B = By) Oy

o ((NE=NDVY p (NE90)
0 O

the RHS of (5.2.29) can be written as

NIV,
O

T AT
Gl — _B2 ((NQ Nl )VG)‘/I

S (g)v
o (5 2

> (Gi1+G2) + H, (5.2.30)

where
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Therefore, the equation (5.2.29) is reduced to

T T I
(N3 Vg B, N3 Vi W = Ny Vo G+ H, (5.2.31)
(9,5 87& at

where G = G1 + GQ.
Now, we are going to employ the weighted estimate established in §3.3] Precisely,

applying (3.5.27)) in Remark to the system ([5.2.31]), we obtain
/ / (IN VoW > + [0,W*) t°~ " dfdt
0o Jrd

gc/ /(|G|2+t2|H|2)t”‘1d9dt.
0 Td

Hence, it suffices to estimate the integrals involving G and H in ([5.2.32]).
Estimate for the integral with G;: By the estimates for |VV;]| in (5.2.22)) and

(5.2.10), we have
G1(0,1)] < C3|VaVi(0,)] < C5 -1 [~ (1 + Kt) ™" (5.2.33)

(5.2.32)

for any 0 < o < 1. It follows that

G 1Pt dpdt < C6? _2"/
/0 /Td’ i =OR D (1 1 Rty
dt

< C6* 3"/ _
— k 0 tl—o(l+t>2€a
< 052,€—30,

where we can simply choose ¢ = 1 to ensure the convergence of the integral in the
right-hand side.
Estimate for the integral with GGo: Note that an interpolation between (|5.2.15)

and (5.2.10]) implies
INTN VL0, 8)] + [0Vi(0,8)] < C(L+1)7 (1 + wt)~*. (5.2.34)

Also note that |By(0,t) — Ba(6,t)] < Cto. It follows that

o0 o0 titodt
G?f*wﬁ<cy/
/0 /Tﬂ 2 = o (14 10)20-9)(1 + kt)2e

< 062/{6730”

where we need to choose ¢ = 2.
Estimate for the integral with H: Observe that

/ /]H|2t1+"d9dt§052/ /(|N1TV9V1|2+|8t‘/1|2)t1+"d6’dt
0 Td 0 Td

+052/ / (INY VoVoVi|* + |0, VoVA|?) t'7 dbdt.
0 Td
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The first term in the RHS is bounded by 62573 by using ([5.2.34)). To handle the
second integral, we apply the interpolation theorem between ([5.2.16[) and ((5.2.10)) to
obtain

INEVgVoVi(8,1)] 410, VoVi (0, 1)] < C(1 4 )17 (1 4 kt) =%, (5.2.35)
Thus, the second term is bounded by

C? h 1o dt < C8%Kk75 5.2.36
o (L4 020200 (1 1 gt)2be = ks (5.2.36)

where we have chosen ¢ = 3.
By combining the estimates above with (5.2.32]), we obtain

1
/ / ([N VoW > + [0,W|?) dbdt < C,0°k. (5.2.37)
0 Td

Step 3: Estimate for 921V.

Let Ny; denote the jth column of N, and define Vy; = N3 - Vg for 1 < j <d—1.
Note that Vy; is the jth component of N V4. Then we apply Va; to (5.2.31) and
obtain

T T T
_ (M2 Vo) . g, (N2 Ve VoW = N2 Vo - Vo,;G + Vo H
o 0 o (5.2.38)

on T? x Ry and Vqo;W = 0 on T¢ x {0}. Let n(t) be a cut-off function such that
n(t) =1 for t € [0,1], n(t) = 0 for t € [2,00), 0 < n(t) < 1 and |Vny| < C. Now
integrating (5.2.38)) against 7*Va;W, we derive from integration by parts that

1
//(|N2TV9V23-W\2—|—@ngW]Q)det
0 Td

2

SC/ / (IVGI? + Vo, HI* + [Ny VoW |* + [0,W ) dbdt
0 Jrd

SC:‘Q_5U(52,

where we have used the fact |Vo;W| < [N VoW/|. Consequently,
1
/ / (|Ny Vo ® Ny VoW |* + |0,N, VoW |?) dddt < Cr™>76°. (5.2.39)
0 Jd

Now observe that by applying the product rule of differentiation,

NIV, NIV,

(o) 2

NIV, NIV, NIV _ NIV,
(Ve (T s (M) e (M)

T T I I 1
G L G D L N A e L
2
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where by 4q = (bggd)lga,ﬂgm is positive due to the strong ellipticity condition. This
gives

Uy NQTVQ . NQTVQ B ] N2Tv9®N2TVQ NQTV(,@
by aal2W — K A LT G A LU= I N s A e L

NIV,
()6

Note that |(bgqq) '] < C. Thus, it follows from (5.2.37), (5.2.39) and the pointwise
estimates of G and H for ¢ € [0, 1] that

1
/ |O2W |2 dOdt < C5*Kk™°. (5.2.40)
0 Td

This completes the proof of Theorem [5.6 O

Proof of Theorem[1.Z: Regularity estimate. Note that 9 is locally differential home-
omorphic to R, Thus, in view of Theorem , it suffices to prove the following
claim: Let F € L*(R41;R™) and G € LP(R?!) for some 1 < p < co. Suppose that
for a.e. x € R41,

|F(z) — F(y)| < |z —y||G(z)], for a.e. y € R4 (5.2.41)

1/p 1/p
( / |VF|p> <c < / \G|p) | (5.2.42)
Rd—l ]Rd—l

where C' depends only on d and p. Indeed, if the claim holds, then it follows from
Theorem [B.6] that

( 00 |vtan7|p)1/p =¢ (/w ||f<"y)||201<89>dy> " (/m [k(n(z))] """ dx) Hr

(5.2.43)
for any 0 < o < 1. Recall that [x(n(x))]"t € LY(0RQ) for any ¢ < d — 1 (see [?]).
Thus, for any p < 0o, we choose o € (0, 1) so small that op < d — 1. As a result, we

Then

obtain
o\ Ur 1/2
( \Vtanf!”) <C </ Hf(-,y)Hzcl(m)dy) (5.2.44)
o0 Td
for any p < co. Note that f is bounded. We may conclude that f € W» (0Q; R™)
and (|1.2.15]) holds.

It remains to prove the claim. Let ¢ € C3°(B(0,1)) and [p., ¢ = 1. Set p.(z) =
el=dp(z/¢). Define for any ¢ > 0,

Fo(z) = /Rdl F(y)pe(z —y) dy. (5.2.45)
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Clearly, F. is smooth and F. — F in L'(R?*}R™) as ¢ — 0. Moreover, for any
z € B(x,¢),

VE@) = [ F)Veude =)y
= [ (F) = FE)Verle =) dy.
Using the assumption (5.2.41)),
VE@ < 6)

|
B(xz,e) B(xz,e)

< C’][ |G(%)|dz
B(z,)

1/p
<C (][ |G’(z)]pdz> :
B(z.)

Thus, by Fubini’s Theorem, for any € > 0

(/R IVE. ()" dm) " <C (/R |G(z)|pdz) Up. (5.2.46)

Since VF. — VI in the sense of distribution as ¢ — 0, (5.2.42)) follows from ([5.2.46)).
O

ly — 2||V(z — y)| dyd=z

5.3 Regularity for Neumann problems

The approach for the Neumann problem is similar to the Dirichlet problem. We
recall the explicit formula for g;; given in (3.5.9), which involves a family of Neumann
problems in the half-spaces:

{ Liu* =0 in H(s), (5.3.1)

n-A*'Vu'=T-V¢  on OHY(s),

where T is a constant tangential vector, i.e., T-n = 0, with |T| < 1. We assume that
¢ € C°(T4R™).

As far as we know, for arbitrary n € S, the solvability of is not clear.
But for n € S5, it was shown in §3.2 that is solvable by lifting the problem
to a (d + 1)-dimensional system in the upper half-space, in a manner similar to the
case of Dirichlet condition. More precisely, we seek a solution in the form of

w(z)=U(x—(z-n+s)n,—(z-n+s)), (5.3.2)
where U is a solution of the Neumann problem:
T T
(N Ve (N Vely—g in T? x R,
Oy O

(5.3.3)

T
—€qi1 - B(Nav9> U=T- -Vyo on T¢ x {0},
t
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with B(0,t) = MTA*(0 — tn)M and M = (N, —n) being an orthogonal matrix. The
solvability of (5.3.3)) and related estimates contained in Proposition and

are addressed below.

Lemma 5.9. Suppose that n satisfies the Diophantine condition with constant k > 0.
Then the Neumann problem has a smooth solution U, and the solution is
unique, up to a constant under the condition that U € L>®(T? xR,), VU € L*(T? x
R,) and 8,U € L*(T¢ x R,). Moreover, the solution satisfies

/0 /w {\NTveaéj“@fUP + !838§+jU|2} dfdt < C||0l[E 11541 (ays (5.3.4)

for any |«|, j > 0, where C' depends only on d, m, |a|, j, and A. Furthermore, there
exists a constant vector Uy, such that for any |af, j, £ >0,

Collllcx e

T o 2 a al+j e
’N V9890§U|+\896t JU’+/€|89(U—UOO)|§(1+—W,

(5.3.5)

where k = k(|al, 7,¢,d) and Cy depends only on d, m, |a|, j, ¢, and A.

Remark 5.10. Lemma 5.9 gives the existence of solutions to (5.3.1)) for s € R and n €
SE via (5.3.2)). Moreover, by the (large-scale) uniform boundary Lispchitz estimates
for Neumann conditions in Theorem [5.4] the solution satisfying the sublinear growth
as r -n — —oo is unique up to a constant.

Recall that S4 ' has full surface measure of S~!. In the following, we reformulate
the expression for g;; defined a.e. on S4-! as shown in

Theorem 5.11. Let g = {g;;}, where g;; € C>°(9Q x T% R™). Then, for any x € O
with n = n(r) € S§7,

y}k(x) = nﬁ?‘?ho‘ﬂ Ty - /

Td

[eké”ﬁ + Voxi(0) + VU0, 0)] g (z,0)d0, (5.3.6)

where (h®?) denotes the inverse of the m x m matriz (&\:fﬁnmj) and Uﬁk is the
solution of

T T

—~ (Nav") - B, (Nav‘)> Ul =0 in T x (0, 00),
t t ’

NTY . (5.3.7)

—€dy1 - Bn( O, 0) va,k = §Tij : V9¢?j,k on T? x {0},

where Ty; = ne; —nje;, B,(0,t) = MTA*(0 —tn)M, and (ﬁw P = (qﬁm s qbw E L ome)

i,k
are the J—pem'odic smooth functions satisfying
*0118 a *aﬂ d o
{¢l] k + aﬂ A an wa [ Qsﬂ k- (5.3.8)

We point out that the functions gbg > which are completely determined by A, are

smooth as long as A is. The equations (5.3.8)) for ¢;Bjk will not be used in this paper.
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Theorem 5.12. Fiz o € (0,1). Let x,y € 9Q and |z — y| < ¢o. Suppose that n(z),
n(y) € SL*. Then

1/2
960 =) < Conle =l ([ loCnlomn) . (539
where k = max {/f(n(:v)), /{(n(y))} and Cy depends only ond, m, o, A, and || Al|c(ra)
for some k =k(d,o) > 1.
To prove Theorem |5.12} the following two lemmas will be crucial.
Lemma 5.13. Letn € SdD_l and U be a solution of corresponding to n. Then

C
INTYU| + |0,U] < m, (5.3.10)
1+t
where k > d/2+1 and C depends only on d,m and A. Moreover, for any 0 < o < 1,
. . C,
INTY 020U | + |0501 0| < Colldller ey (5.3.11)

(1+t)t—o’
where k = k(|a|, j,0,d) and C, depends only on d, m, |«|, j, o and A.
Proof. Let u® be the solution of (5.3.1]), given by (5.3.2]). Then it follows from Theo-
rem [3.13] that

Cl|8ll

|Vu'(x)| < Po——— for x-n+ s <0. (5.3.12)

Observe that (5.3.2) is equivalent to U(0,t) = u=?"(0 — tn) for any (6,t) € T? x R.
It follows that

NTVoU(0,t) = NT'V, u="(0 — tn),
0 (5.3.13)
U(0,t) = —n-V,u "0 —tn).
In view of (5.3.12) and ([5.3.13]) we obtain
C oo
INTV,U(9,t)] + |0,U(0,1)| < ”d)—t“L (5.3.14)

This gives (5.3.10) for ¢ > 1/2. The case t € [0,1/2] follows from (5.3.4) and the
Sobolev embedding theorem in T¢ x [0, 1], which requires k& > d/2 + 1.

Finally, the estimate (5.3.11]) follows from ([5.3.10)), (5.3.4) and an interpolation
argument, as in the proof of Lemma [5.7] O

Lemma 5.14. Let n € S5 with Diophantine constant k > 0 and U be a solution of
corresponding to n. Then there exists a constant vector Uy, such that for any
0<o<land|al>0

105(U — Us)| < Coti™ || fll ey, (5.3.15)

where k = k(«, 0,d) and C, depends only on d, m, «, o, and A.
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Proof. We first observe that it suffices to show |U — Us| < Cok™7|| f | cn(ray for any
0 < 0 < 1. Then the case |a| > 0 follows from this and (5.3.5)) by an interpolation

argument.
Note that |U — Uy| — 0 as t — oo. It follows from ((5.3.5)) and (5.3.10)) that

||f||16'7€C(TTd) ||f||gk('1rd)
0.U(0,1)] < C T 0 T tn) (5.3.16)
Hence,
sup [(U — U.0)(6,1)] g/ 0,U(0,1)) dt
>0 0
o dt
<
>~ CHf”Ck(Td)/O (1 +t)1_0(1 + /{t)o-g
< O™ fller(ray-
This completes the proof. O

Proof of Theorem[5.13. Step 1: Set-up and reduction. Let ny = (ny1, -+ ,n1.4),
ne = (Ng1, -+ ,Nog) € S?{l and 6 = |n; — ng| > 0. Choose d x (d — 1) matrices
N1, Ny such that both M; = (Ny, —n;) and My = (N,, —ns) are orthogonal and
[Ny — No| < C6§. Let Uy, Uy be solutions of the systems in the form of

associated with nq, ny, respectively, i.e.,

T T
_ (Nlav@> B, (Nlav9> U, =0 in T¢ x (0, c0),
t NTtV (5.3.17)
—€d+1 * Bl( 13t 9) Ur =Thj - Vooij on T x {0},
and
T T
_(N%V9> .BZ(N%V")UQZO in T¢ x (0, 00),
: t (5.3.18)

NIV
—€4+1 Bg( 2 9) U2 = T27ij . V@QSU on Td X {0},

where Ty;; = ngie; — ngje; are vectors orthogonal to n, and By(6,t) = M}FA*(6 —
th)M[ for ¢ = 1, 2.
Without loss of generality, we may assume that K = k(ny) > k(ng). In view of

the formula ([5.3.6)), we only need to show that

/ ’Tl,ij . VgUl(e, 0) — TQ’Z']' . V@UQ(@, O)‘Z d9 S Cglﬁ?72o’|n1 — n2\2 (5319)
Td
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for 1 <i,j < d. By the triangle inequality,

/ ’Tl,ij - VUi (0,0) — Ty VoUs (0, 0)|2 do
Td
< 2/ [(T1i5 — Toz) - VoUi(0,0)]* d + Q/d T2, - Vo(U1(6,0) — Us(6,0))[* d6
Td T

< O 4 C / INTo(UL (6, 0) — Us(8, 0))? db,
Td

where in the last inequality we have used (5.3.15]) and the fact that the columns of
N5 span the subspace orthogonal to n,. Furthermore, we let W = U; — Uy and note
that

/]NQTVQW(H,O)\QCZG

e 1 1 (5320)

SQ/ / |N2TV9W(9,t)I2d0dt+2/ / INIV40,W (6,1)| dfdt.
0 Td 0 Td

As a result, it suffices to estimate the two terms in the RHS of the above inequality.
Step 2: Estimate for N] V,WW.

The argument here is similar to that for Dirichlet problems, with Lemmas [5.9]
and in our disposal. Note that W satisfies

T T T
_ (N2 Ve . By, N Voy, _ (N2 Vo) gy in T x R,
0, 0, 0,
NT
—€d+1 BQ( Qatv9> W = €d+1 ° G + (Tl,ij — Tg’ij) . v0¢ij on Td X {O},

(5.3.21)
where G = G + G5 and H are exactly the same as in ((5.2.30)) for Dirichlet problems.
Now, we will make use of Lemma [3.29 and in an essential way. First, we split

W as W =Wy + Wy + W3, where

T T
- <N26V9) - By (N%W) W, =0 in T? x R,
t t
jpes (5.3.22)
—€dy1 - BQ( 28t 9) Wi = (T, — To5) - Vooij on T? x {0},
T T T
(N2 Vo) g (M Vely, = (N2 V) o iR,
Oy Oy Oy
Ao (5.3.23)
—€d41 " BQ( 28t 9) W2 = €441 G on Td X {0},
and
T T
_<N28V6) BQ(N%VG)W?):H in Td XR+,
' ' (5.3.24)

T
—€d41 BQ <N2870) W3 =0 on Td X {0}
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Estimate for ;. Since ¢;; is smooth, we can show that ((5.3.22) is solvable and
the solution W satisfies (3.5.29). Thus, by Lemma |3.31}

2
/ /d (N3 VoW1 |? + |0, W1 |?) dodt < C/d Ty i — Tois1* | Voois|* dodt
0 T T
< 06

(5.3.25)

Estimate for WW,. By Lemma [3.29, we have
/ / (N3 VeWa|? + |0 Wo|?) t77" dbdt < C/ |G|*t7 1 dOdt
0o Jrd 0o Jrd

<C) / |G |27t dbdt.

k=1270 JT¢

Using and , we obtain

(VoUi| < Ok~ k™1 4+ kt) ™7 < Ck™2(1 + kt) 7" (5.3.26)
Hence,

/ h / |G 27 dodt < Cr™17 6> / 00(1 + wt) T2 qt
0o Jrd 0
< CK™5962.
Similarly, by and (5.3.5)), we have
INIVoUL| + 0,0, < C(1+ )77 (1 4 wt) ™ (5.3.27)

It follows that

/OO ) |Gt~  dodt < C? /Oo P+ 0221+ wt) 27 dt

C < 05_3‘?(52.

As a result, we may conclude that

/ / (N3 VoWa|? + [0 Ws]?) t77" dbdt < Cr™"76°. (5.3.28)
0 Td

Estimate for W;5. The estimate for W3 can be reduced to the first two cases.
Let -
H0.0) = — / H(0, 5)ds. (5.3.20)
t

Note that H is bounded for all (4,t) € T x R,.. Write
~ NIV, 0
H =0oH = 2 | = . 3.
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Then, we can further decompose W3 into W3 = W3y + W3s, where

(NI, NIV, A AN o
( at ) Bg( at W31 = at H(@)t) in T® x R+’

NIV 0
—€d+1 BQ( 2825 9) W3y = eq41 - (PNI(Q,t)) on T x {0},
and
T T
(N2 Ve - By N, Vg Wiy =0 in T? x Ry,
O O

T 0
—€d41 - Bz( o, )W32 = —€d+1 (f[(@ t)) on T? x {0}

Now by applying Lemma for W31, we obtain

/ / (N3 VoWs1 | + |0, Wa1|?) t77 ! dbdt < C/ |H|*t " dd.
0 Td 0 Td

It follows from Hardy’s inequality (see [39, p.272]) that

00 00 00 2
/ F 27 dpdt — / / / H(0, 5)ds
0 Td Td JO t

to~ L dtdp

< ﬁ/@/g |H(0,t)|*t° 2 dtdo.

/ / (N3 VoWai|> + |0, W) t7~ ! dbdt < 0/ |H|*t"+ dodt.
0 Td 0 Td

Consequently,

For Wj3,, using Lemma and Holder’s inequality, we have

2
/ / (| N3 VeWsa|? + |0, Wao|*) dodt
0 Td

<C [ |H(6,0)do
Td

2

gc/ / |H(0,t)|dt| df
<C // (1 +¢)*" “dt/ (1+1)*"2dtdf
Td
< //1+t (H(0, )2t dbdt.
Td
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Therefore,
2
/ / (INIT,Waf? + |05 ]?) dodt
0o Jrd

< C’/ / (1+ )% H[*t° " dodt
0 Td

< / (140> (1 4 pt) 2o
0
S 05750(52,

where in the last inequality we have chosen ¢ > 2.
Summing up the estimates for Wy, we arrive at

2
/0 /Td (INg VoW > + [0,W |?) dbdt < Cr=76?, (5.3.34)

which proves the first part of ((5.3.20)), as o € (0,1) can be arbitrarily small.
Step 3: Estimate for NJ V,0,IV.

The argument is similar to Step 3 in the proof of Theorem [5.6 Let Ny, denote

the kth column of Ny, and define the kth component of N2TV9 by Vo, = Ng; - V.
We apply Vg to (5.3.21)) and obtain

( T T T
. <N2 V@) . 32 (NQ VG) Vsz _ <N2 V@) . Vsz + vzkH

O Oy O
T T
(M2 V) vy, (N2 Ve w
O O
in T? x Ry,

NIv
—€411 - Bz( 2@ 6) VoW = eg1 - VoG + Varh

NIv
+ €qy1 - V2k32( 2& 9) w

on T¢ x {0},

\

where h = (11,5 — T5.;) - Vo fi;- Let n(t) be a cut-off function such that n(t) = 1 for

t € [0,1], n(t) =0 for t € [2,00), 0 < n(t) <1 and |Vn| < C. Now by integrating

(5.3.35) against Vo, (Wn?), we derive from integration by parts that
1
/ / (|N2TV9V%W|2 + |8tV2kW|2) dodt
0 Jrd

2
< C/ / (IVG)? + [VarHI? 4 [Ng VoW |* + [8,W[?) ddt + C||hl| 71 (ay
0 Td

< Cr™5962.
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Consequently,

1
/ / (N3 Vo @ Ny VoW | + |0,Ny VoW |?) dbdt < Cr>76%, (5.3.36)
0 Td

which finishes the proof. 0

Proof of Theorem [I.1]: Regularity estimate. With Theorem [5.12] at our disposal, the
proof of (|1.2.10]) is identical to that of Theorem |1.2.15 O]

Copyright®© Jinping Zhuge, 2019.
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