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ABSTRACT OF DISSERTATION

Boundary Layers in Periodic Homogenization

The boundary layer problems in periodic homogenization arise naturally from the
quantitative analysis of convergence rates. Formally they are second-order linear
elliptic systems with periodically oscillating coefficient matrix, subject to periodi-
cally oscillating Dirichelt or Neumann boundary data. In this dissertation, for either
Dirichlet problem or Neumann problem, we establish the homogenization results and
obtain the nearly sharp convergence rates, provided the domain is strictly convex.
Also, we show that the homogenized boundary data is in W 1,p for any p ∈ (1,∞),
which implies the Cα-Hölder continuity for any α ∈ (0, 1).
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Chapter 1 Introduction

1.1 Motivation in homogenization

During the last four decades, the theory of homogenization, or averaging of partial
differential equations with rapidly oscillating coefficients, has been studied exten-
sively. This theory has many important applications in various physical problems
in composite or heterogeneous materials. Mathematically, the characteristics of a
microscopically self-similar heterogeneous material are usually described by rescaled
functions in the form of A(x/ε), where x is the spatial variable and ε > 0 is a small
scalar parameter that represents the scale of the microstructure in the material. The
unrescaled function A(y), with the typical microscopically self-similar structures in
practice, may be periodic, almost-periodic or a realization of a stationary ergodic ran-
dom field. For example, in the heat conductivity problem, we use a matrix A(ε−1x)
to describe the thermal conductivity tensor of a material. Then at equilibrium, the
temperature distribution in a material body Ω satisfies the following elliptic partial
differential equation with a Dirichlet boundary condition{

−div(A(x/ε)∇uε) = F in Ω,

uε = f on ∂Ω,
(1.1.1)

where uε, depending implicitly in ε, represents the temperature field in Ω. In practice,
computing the solution of the equation (1.1.1) numerically with rapidly oscillating co-
efficients A(x/ε) is a difficult task if ε is tiny. However, if we view the problem from a
macroscopic (or mesoscopic) scale, the heterogeneous microstructure will be invisible
and the material, as well as the solution of the involved PDE, will exhibit some sort
of averaging or homogeneous properties. Of course, the self-similar structure, such
as periodicity or stationary randomness, will play an essential role in the averaging
process. This is exactly the core principle behind the homogenization theory, whose
goal is to represent or approximate a complex, heterogeneous material by a simple,
homogeneous one.

In this dissertation, we study the periodic homogenization of linear elliptic equa-
tions and systems, which means we assume that the coefficients involved in the PDEs
are periodic and can be measured precisely in a single microscopic periodic cell (at a
one-time cost). To explain the classical theory of homogenization, we take the mod-
eling equation (1.1.1) for example. Let ε vary in (0, 1). The elliptic equation (1.1.1)
generates a sequence of weak solutions {uε : 0 < ε < 1} which lie in the Sobolev space
H1(Ω). The H1 norms of these solutions are uniformly bounded, independent of ε.
The first question in homogenization is the asymptotic behavior of the solutions uε
as ε approaching zero. The answer to this classical question composes of two parts:
(1) as ε → 0, the entire sequence of solutions {uε} converges weakly to a function
u0 in H1(Ω) and strongly in L2(Ω); (2) The limit function u0 satisfies the so-called
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homogenized equation {
−div(Â∇u0) = F in Ω,

u0 = f on ∂Ω,
(1.1.2)

where Â is a constant matrix called homogenized or effective coefficient matrix. In
terms of the above property, we will say the equation (1.1.1) homogenizes to (1.1.2).

Theoretically, Â depends only on the original coefficient matrix A(y) and can be
computed by solving a periodic cell problem at a one-time cost (the explicit formula

of Â may be found in Chapter 2). The above classical homogenization result provides
an effective way to find a good approximation of uε if the microscopic scale ε is
relatively small compared to the scale of material body Ω. In other words, to solve
(1.1.1), we do not compute uε directly as the computation could be very costly.
Instead, we compute u0, the solution of (1.1.2), which is supposed to be much easier
to solve numerically since the coefficients are constant; while the classical (qualitative)
homogenization theory assures that the error |uε − u0| is small in the sense of L2.

Recently, people are more interested in quantitative estimates in homogenization.
One of the central questions in quantitative homogenization is the convergence rate
or the quantitative two-scale asymptotic expansion. It has been well-known that the
solution uε of (1.1.1) has a formal two-scale expansion as follows

uε(x) = u0(x) + εχ(x/ε) · ∇u0(x) + ε2Υ (x/ε) · ∇2u0(x) + · · · (1.1.3)

where u0 is the homogenized solution in (1.1.1), and χ(y) and Υ (y) are the (first-
order) corrector and second-order corrector. We point out that these correctors are
also periodic matrix-valued functions that depends only on the coefficient matrix
A and may be computed by solving certain periodic cell problems. Now a natural
question is that in what sense the asymptotic expansion (1.1.3) may hold rigorously.
For example, in view of (1.1.3), one may expect to have the following

uε = u0 +O(ε) in L2(Ω). (1.1.4)

The precise meaning of (1.1.4) is that there exists a positive constant C, independent
of ε, so that ‖uε − u0‖L2(Ω) ≤ Cε. In fact, this sharp estimate has been established
in many literatures in various settings. On the other hand, to derive an expansion in
H1(Ω), one has to take the next term in (1.1.3) into consideration. Actually, we have
the following sharp estimate

uε(x) = u0(x) + εχ(x/ε) · ∇u0(x) +O(
√
ε) in H1(Ω). (1.1.5)

This result is unexpected since, intuitively, (1.1.3) suggests that we should have O(ε)
error in (1.1.5), instead of O(

√
ε). This phenomenon, caused by the boundary layer

effect, can be fixed by subtracting an additional term that corrects the boundary
discrepancy. Indeed, if vDε is the solution of{

−div(A(x/ε)∇vDε ) = 0 in Ω,

vDε = −χ(x/ε) · ∇u0(x) on ∂Ω,
(1.1.6)

2



where the supscript D indicates this is a boundary layer in the Dirichlet problem,
then we can recover the O(ε) rate in H1(Ω)

uε(x) = u0(x) + εχ(x/ε) · ∇u0(x) + +εvDε +O(ε) in H1(Ω). (1.1.7)

See Theorem 2.2 for more details.
Similar phenomenon also takes place in the Neumann problem. To this end, let

us consider the heat conductivity problem with a Neumann boundary condition
−div(A(x/ε)∇uε) = F in Ω,

∂uε
∂νε

= g on ∂Ω,
(1.1.8)

where ∂uε
∂νε

= n · A(x/ε)∇uε is the conormal derivative, and n denotes the unit out-
ward normal. For the solvability of Neumann problems, we require the so-called
compatibility condition, namely,

´
Ω
F +

´
∂Ω
g = 0. Moreover, for the uniqueness of

the solution uε of (1.1.8), we will always assume
´

Ω
uε = 0. Now, in the same sense

as the Dirichlet problem, (1.1.8) homogenizes to−div(Â∇u0) = F in Ω,

∂u0

∂ν0

= g on ∂Ω,
(1.1.9)

where ∂u0
∂ν0

= n · Â∇u0 is the conormal derivative associated with Â. Again, here we

assume
´

Ω
u0 = 0.

For the quantitative estimate of the Neumann problem, we still have the sharp
estimates (1.1.4) and (1.1.5) as expected. Furthermore, we also have the recovered
O(ε) rate in H1(Ω)

uε(x) = u0(x) + εχ(x/ε) · ∇u0(x) + +εvNε +O(ε) in H1(Ω), (1.1.10)

where vNε is a boundary layer term in the Neumann problem given by the following
equation

−div(A(x/ε)∇vNε ) = 0 in Ω,

∂vNε
∂νε

=
1

2

(
nk

∂

∂xi
− ni

∂

∂xk

)(
φkij(x/ε)

∂u0

∂xj

)
on ∂Ω,

(1.1.11)

where n = (n1, n2, · · · , nd) is the unit outward normal. We would like to say a few
words about the equation (1.1.11). In the boundary condition of (1.1.11), the Ein-
stein’s summation convention is used (and will be used throughout this dissertation),
i.e., all the repeated indices are summed (here i, j, k are all summed from 1 to d with
d being the dimension). The functions φkij(y) are periodic functions determined only
by A. Most importantly, for each i and k, nk

∂
∂xi
− ni ∂

∂xk
is a tangential derivative on

∂Ω that allows the integration by parts on ∂Ω. This special structure is critical in
our analysis for Neumann problem.

3



Finally, we mention briefly the higher-order convergence rates in H1. For either
Dirichlet or Neumann problem, one may show that in H1(Ω)

uε(x) = u0(x) + εχ(x/ε) · ∇u0(x) + +εṽXε + ε2Υ (x/ε) · ∇2u0(x) +O(ε2), (1.1.12)

where ṽXε is the boundary layer term for either Dirichlet or Neumann problem with
similar structure as (1.1.6) or (1.1.11). However, the equation for ṽXε is much more
complicated and the details will be carried out in Chapter 3.

Now, we are in a position to explain the motivation of this dissertation. First
of all, we note that the function vXε (or ṽXε ), where X = D or N , depends implic-
itly on ε through both the oscillating coefficient matrix and the oscillating boundary
condition. And it is not hard to see ‖vXε ‖H1(Ω) ' O(ε−

1
2 ) which blows up as ε → 0.

Now a natural and fundamental question in homogenization is what happens to vXε
as ε approaching zero. Precisely, we would like to ask: does vXε converge in L2(Ω)?
With what hypothesis? If so, what is the (sharp) rate and what can we say about
the homogenized equation? The purpose of this dissertation is to give a comprehen-
sive study on these questions and eventually provide a better understanding of the
boundary layer phenomenon in periodic homogenization.

1.2 Statement of main results

This dissertation reorganize and present our recent work contained mainly in [38, 37,
42] where we studied the homogenization and boundary layers for elliptic systems
with oscillating Dirichlet or Neumann boundary data. We start by introducing a
family of elliptic operators in divergence form with a small scale parameter ε > 0

Lε = −div(A(x/ε)∇) = − ∂

∂xi

(
aαβij (x/ε)

∂

∂xj

)
. (1.2.1)

We assume that the coefficient matrix A = A(y) =
(
aαβij
)
, with 1 ≤ i, j ≤ d and

1 ≤ α, β ≤ m, satisfies the following standard assumptions

• Ellipticity: there exists µ > 0 such that

µ|ξ|2 ≤ aαβij ξ
α
i ξ

β
j ≤ µ−1|ξ|2 for any ξ = (ξαi ) ∈ Rm×d; (1.2.2)

• Periodicity: A is 1-periodic, that is

A(y + z) = A(y) for any y ∈ Rd and z ∈ Zd; (1.2.3)

• Smoothness:

aαβij ∈ C∞(Td) for 1 ≤ α, β ≤ m and 1 ≤ i, j ≤ d. (1.2.4)

Now, we consider the Neumann problem with both the zero-order and the first-
order oscillating data

Lε(uε) = 0 in Ω,

∂uε
∂νε

= Tij · ∇x

{
gij(x, x/ε)

}
+ g0(x, x/ε)− γε on ∂Ω,

(1.2.5)
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where Tij = (niej−njei) is a tangential vector field on ∂Ω, and γε = 1
|∂Ω|

´
∂Ω
g0(x, x/ε) dσ

is a constant so that the compatibility condition for (1.2.5) is satisfied. This system
arises when we construct the boundary layer term ṽNε in (1.1.12), and treats (1.1.11)
as a special scalar case with g0 = 0.

Throughout this dissertation, unless otherwise stated, we assume that Ω ⊂ Rd is
a bounded, smooth, and strictly convex domain in the sense that all the principle
curvatures are strictly positive, and that g(x, y) = {g0(x, y), gij(x, y)} are smooth in
(x, y) ∈ ∂Ω× Rd and 1-periodic in y, namely

g(x, y + z) = g(x, y) for any x ∈ ∂Ω, y ∈ Rd and z ∈ Zd. (1.2.6)

The key reason that we require the strict convexity on the domain is because any
periodic functions in Rd are somehow equidistributed on the strictly convex bound-
ary (a (d − 1)-dimensional surface), regardless of translations, rotations and scales.
Although the geometry and regularity assumption on the domain might be weakened,
the above equidistribution property seems to be a natural prerequisite for homoge-
nization to take place, even in the case with constant coefficients. Precisely, under
the above conditions, we are able to show that as ε→ 0, the unique solution of (1.2.5)
with

´
Ω
uε = 0 converges strongly in L2(Ω) to u0, where u0 is a solution of

L0(u0) = 0 in Ω,

∂u0

∂ν0

= Tij · ∇xgij + 〈g0〉 − γ0 on ∂Ω.
(1.2.7)

The operator L0 is given by L0 = −div(Â∇), with Â being the usual homogenized
matrix of A, and

〈g0〉(x) =

 
Td
g0(x, y) dy and γ0 =

 
∂Ω

〈g0〉 dσ. (1.2.8)

The formulation for function {gij} in (1.2.7) on ∂Ω is much more involved and will
be given explicitly in Chapter 3. Nevertheless, it is good to point out here that,
unlike (1.2.8), gij(x) is not simply the trivial average of gij(x, ·), but a complicated
combination relying on A, {gij(x, ·) : 1 ≤ i, j ≤ d}, and the outward normal n(x) to
∂Ω.

In the following, we state our main results for the Neumann problem (1.2.5),
including a convergence rate in L2, which is optimal (up to an arbitrarily small
exponent) for d ≥ 3, and the W 1,p regularity estimate of the homogenized boundary
data gij for any p ∈ (1,∞).

Theorem 1.1. Let Ω be a bounded smooth, strictly convex domain in Rd, d ≥ 3.
Assume that A(y) satisfies (1.2.2)-(1.2.4), and that g0(x, y) and gij(x, y) are smooth
and satisfy conditions (1.2.6). Let uε and u0 be the solutions of (1.2.5) and (1.2.7),
respectively, with

´
Ω
uε =

´
Ω
u0 = 0. Then for any σ ∈ (0, 1/2) and ε ∈ (0, 1),

‖uε − u0‖L2(Ω) ≤ Cσ ε
1
2
−σ, (1.2.9)

5



where Cσ depends only on d, m, σ, A, Ω, and g = {g0, gij}. Furthermore, the function
g = {gij} in (1.2.7) satisfies

‖g‖W 1,q(∂Ω) ≤ Cq sup
y∈Td
‖g(·, y)‖C1(∂Ω) for any q <∞, (1.2.10)

where Cq depends only on d, m, µ, q and ‖A‖Ck(Td) for some k = k(d) ≥ 1.

In recent years, there has been considerable interest in the homogenization of
boundary value problems with oscillating boundary data [20, 21, 29, 3, 25, 4, 15, 13,
17, 5, 7] (also see related earlier work in [31, 32, 27, 28, 6]. In the case of Dirichlet
problem (a general form of (1.1.6)),{

Lε(uε) = 0 in Ω,

uε = f(x, x/ε) on ∂Ω,
(1.2.11)

where

f(x, y + z) = f(x, y) for any x ∈ ∂Ω, y ∈ Rd and z ∈ Zd, (1.2.12)

major progress was made in [21] and later in [7]. Let uε be the solution of (1.2.11).
Under the assumption that Ω is smooth and strictly convex in Rd, d ≥ 2, it was
proved in [21] that

‖uε − u0‖L2(Ω) ≤ C ε
(d−1)
3d+5

−σ

for any σ ∈ (0, 1), where u0 is the solution of the homogenized problem,{
L0(u0) = 0 in Ω,

u0 = f on ∂Ω,
(1.2.13)

and the homogenized data f at x depends on f(x, ·), A, and n(x). A sharper rate of
convergence in L2 was obtained recently in [7] for the Dirichlet problem (1.2.11), with

O(ε
1
2
−) for d ≥ 4, O(ε

1
3
−) for d = 3, and O(ε

1
6
−) for d = 2. As demonstrated in [5]

in the case of elliptic equations with constant coefficients, the optimal rate would be
O(ε

1
2 ) for d ≥ 3 (up to a factor of ln ε in the case of d = 3), and O(ε

1
4 ) for d = 2. Thus

the convergence rates obtained in [7] for the Dirichlet problem are optimal for d ≥ 4,
up to an arbitrarily small exponent. In [38], we established the optimal convergence
rates for both the Neumann and Dirichlet problems in any dimensions.

Regarding the regularity of the homogenized boundary data, under the same
assumptions, it was proved in [21] that ∇tanf ∈ Lp,∞(∂Ω) with p = d−1

2
. The result

was improved in [7] to ∇tanf ∈ Lp,∞(∂Ω) with p = 2(d−1)
3

if d ≥ 3, and to f ∈
W 1,p(∂Ω) for any p < 2

3
if d = 2. Further improvement was made in [38], where

we proved that f, g ∈ W 1,p(∂Ω) for any p < d − 1. The regularity estimates were
finally improved to f, g ∈ W 1,p(∂Ω) for any p < ∞ in our recent paper [37]. In
particular, this implies that f and g are Cσ-Hölder continuous for any σ ∈ (0, 1).
However, whether these regularity estimates are optimal remains an interesting and
challenging problem. We summarize the results for Dirichlet problems as follows.
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Theorem 1.2. Let Ω be a bounded smooth, strictly convex domain in Rd, d ≥ 2.
Assume that A(y) satisfies (1.2.2)-(1.2.4), and that f(x, y) is smooth and satisfies
(1.2.12). Let uε and u0 are solutions of Dirichlet problems (1.2.11) and (1.2.13),
respectively. Then for any σ ∈ (0, 1/2) and ε ∈ (0, 1),

‖uε − u0‖L2(Ω) ≤ Cσ

{
ε

1
2
−σ if d ≥ 3,

ε
1
4
−σ if d = 2,

(1.2.14)

where Cσ depends only on d, m, σ, A, Ω and f . Furthermore, for any d ≥ 2,

‖f‖W 1,q(∂Ω) ≤ Cq sup
y∈Td
‖f(·, y)‖C1(∂Ω) for any q <∞, (1.2.15)

where f be the homogenized data in (1.2.13) and Cq depends only on d, m, µ, q and
‖A‖Ck(Td) for some k = k(d) ≥ 1.

We remark that Theorem 1.1 and 1.2 may be applied to establish the higher-order
convergence rates. Indeed, one can prove, for either Neumann or Dirichlet problems,

uε = u0 + εχ(x/ε)∇u0 + εvbl +O(ε
3
2
−), (1.2.16)

where vbl is the solution of some homogenized system independent of ε; see §3.8. The
estimate (1.2.16) can be further used to study the first-order expansions of eigenvalues
or eigenfunctions (eigenspaces). The exploitation in this direction may be found in
[41, 30] and will not be included in this dissertation.

The organization of the dissertation is as follows: The preliminaries, including
correctors, uniform Lipschitz estimates and the Diophantine condition, are given in
Chapter 2. The proofs for Theorem 1.1 and 1.2 are very long and will be carried
out across Chapter 3, 4 and 5. Particularly, in Chapter 3 and 4, we prove the
convergence rates in Theorem 1.1 for Neumann problems and in Theorem 1.2 for
Dirichlet problems, respectively. In Chapter 5, we establish the W 1,p estimates of the
homogenized boundary data for both theorems.

1.3 Notations

Most of the notations in this dissertation are standard. Some symbols are used with
different meanings in the context. For example, we use δ(x) to denote the distance
from x to the underlying boundary, use δy(x) to denote the Dirac function, use δαβ or
δij to denote the Kronecker delta function (identity matrix), and so on. Fortunately,
these symbols are used locally and could be interpreted without ambiguity in the
context. In the following, we list some frequently used global notations.

d spatial dimension
m dimension of the solution vector, or the number of equations in

the system
Lε −div(A(x/ε)∇), oscillating elliptic operator with ε > 0

L0 −div(Â∇), homogenized elliptic operator
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Â homogenized (effective) coefficient matrix
∂/∂νε, ∂/∂ν0 conormal derivatives
µ ellipticity constant
i, j, k, · · · subscripts, 1 ≤ i, j, k, · · · ≤ d
α, β, γ, · · · superscripts, 1 ≤ α, β, γ, · · · ≤ m
1-periodic a function f is 1-periodic if f(x + z) = f(x) for all x ∈ Rd and

z ∈ Zd
Td d-dimensional torus; we will identity a 1-periodic function in Rd

as a function defined on Td; see (1.2.4) for example
Sd−1 unit sphere in Rd with the usual topology
χ (first-order) corrector
Υ second-order corrector
Φε Dirichlet corrector
Ψε Neumann corrector
PΩ,ε, PΩ Poison kernels in Ω
Nε, N0 Neumann functions
eβ, ej standard Cartesian coordinate vectors in Rm and Rd

P β
j (x) an affine function xje

β

Tij a tangential vector in the form of niej − njei on ∂Ω, where
n = (n1, n2, · · · , nd) is the unit outward normal vector

R+ [0,∞)
Hd
n(s) a half-space {x ∈ Rd : x · n < −s}

I − n⊗ n the projection operator onto the orthogonal space of n
κ = κ(n) the Diophantine constant of n ∈ Sd−1

Lp,∞ weak Lp space
Hk,W k,p Sobolev spacesffl
E

|E|−1
´
E

, i.e., average integral over E
〈f〉

ffl
Td f , i.e., the average of a 1-periodic function f

O(εt−) of order εt−σ for any σ > 0

f, g homogenized boundary data for Dirichlet and Neumann prob-
lems

C, c, · · · generic constants independent of ε or κ

Copyright c© Jinping Zhuge, 2019.
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Chapter 2 Preliminaries

In this chapter, we introduce the definitions of correctors, flux correctors and the
homogenized operators. To demonstrate the general approach for the quantitative
periodic homogenization, we prove a sharp O(ε) convergence rate in H1 involving the
boundary layers, as claimed in the introduction. We also introduce the (full-scale)
uniform Lipschitz estimates in half-spaces which will be used in an essential way in
the following chapters. Finally, we introduce the Diophantine condition which is a
key ingredient that quantifies the geometry (strict convexity) of the boundary.

2.1 Correctors and homogenized operators

The correctors, arising from the two-scale asymptotic expansion, play a crucial role
in homogenization theory [11, 22, 36]. The precise definition is given as follows. For
1 ≤ j ≤ d and 1 ≤ β ≤ m, let χ = (χβj ) = (χ1β

j , χ
2β
j , · · · , χ

mβ
j ) denote the correctors

for Lε, which are 1-periodic functions satisfying the system
L1

(
χβj + P β

j

)
= 0 in Rd,

χβj is 1-periodic and

ˆ
Td
χβj = 0,

(2.1.1)

where P β
j (x) = xje

β and eβ = (0, · · · , 1, · · · , 0) is the βth coordinate vector. In-

tuitively, the periodic corrector χβj is the correction to a linear function P β
j so that

χβj + P β
j is an “almost linear” solution in the entire space Rd.

With correctors, the homogenized operator may be given by L0 = −div(Â∇),

where the homogenized coefficient matrix Â = (âαβij ) is defined by

Â =

ˆ
Td
A(I +∇χ), or precisely âαβij =

ˆ
Td

{
aαβij + aαγik

∂

∂yk
(χγβj )

}
.

It can be shown that Â also satisfies the ellipticity condition (1.2.2), possibly with a
different ellipticity constant.

We also introduce the adjoint operator L∗ε = −div(A∗(x/ε)∇), where A∗ = (a∗αβij )

with a∗αβij = aβαji . Note that A∗ also satisfies our standard assumptions (1.2.2) -

(1.2.4). Then, we may similarly define the adjoint correctors χ∗ = (χ∗βj ) and the

adjoint homogenized operator L∗0 = −div(Â∗∇). Observe that the correctors and the
homogenized operators defined above depend only on the original coefficient matrix
A.

Another concept we need to use in studying the convergence rate is the flux
corrector. The flux corrector is a matrix B(y) = (bαβij ) defined by

bαβij (y) = aαβij (y) + aαγik (y)
∂

∂yk

(
χγβj (y)

)
− âαβij , (2.1.2)
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where the repeated index k is summed from 1 to d and γ from 1 to m. Observe
that B(y) is 1-periodic and smooth under our setting. Moreover, it follows from the
definition of χβj and âαβij that

∂

∂yi

(
bαβij

)
= 0 and

ˆ
Td
bαβij = 0. (2.1.3)

Lemma 2.1. There exist φαβkij ∈ H1(Td), where 1 ≤ i, j, k ≤ d and 1 ≤ α, β ≤ m,
such that

bαβij =
∂

∂yk

(
φαβkij

)
and φαβkij = −φαβikj. (2.1.4)

If χ = (χβj ) is Hölder continuous, then φαβkij ∈ L∞(Td).

The proof of the above lemma may be found in, for example, [36, Proposition
3.1.1]. In our setting, since χ is smooth, we may even show that φ = (φαβkij) is smooth.

2.2 Convergence rates

In this section, we will prove the convergence results (1.1.7) and (1.1.10) claimed in
the introduction. These results show that the asymptotic analysis of the boundary
layer terms is a natural and crucial question in periodic homogenization. We will
state and prove these results separately for Dirichlet problem and Neumann problem.

Theorem 2.2. Let uε be the weak solution of{
Lε(uε) = F in Ω,

uε = f on ∂Ω,
(2.2.1)

and u0 be the weak solution of the homogenized system{
L0(u0) = F in Ω,

u0 = f on ∂Ω.
(2.2.2)

Then
‖uε − u0 − εχ(·/ε)∇u0 − εvDε ‖H1(Ω) ≤ Cε‖∇2u0‖L2(Ω), (2.2.3)

where vDε is the weak solution of
Lε(vDε ) = 0 in Ω,

vDε = −χ·βj (x/ε)
∂uβ0
∂xj

on ∂Ω.
(2.2.4)

Proof. The proof is quite standard in periodic homogenization by considering the
first-order approximation in the asymptotic expansion. Let

wβε (x) = uβε (x)− uβ0 (x)− εχβγk (x/ε)
∂uγ0(x)

∂xk
. (2.2.5)
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Then, we derive the system for wε

Lε(wε) = Lε(uε)− Lε(u0)− Lε(εχ(x/ε)∇u0). (2.2.6)

Using the system (2.2.16) and (2.2.17), we have

Lε(uε) = F = L0(u0). (2.2.7)

Also, by a direct calculation, we have

(
Lε(εχ(x/ε)∇u0)

)α
= − ∂

∂xi

(
aαγik (x/ε)

∂χγβj
∂xk

(x/ε)
∂uβ0 (x)

∂xj

)
− ε ∂

∂xi

(
aαγik (x/ε)χγβj (x/ε)

∂2uβ0 (x)

∂xk∂xj

)
.

(2.2.8)

Substituting (2.2.7) and (2.2.8) into (2.2.6) and by a careful calculation, we obtain

(
Lε(wε)

)α
=

∂

∂xi

[(
aαβij (x/ε) + aαγik (x/ε)

∂χγβj
∂xk

(x/ε)− âαβij
)∂uβ0 (x)

∂xj

]
+ ε

∂

∂xi

(
aαγik (x/ε)χγβj (x/ε)

∂2uβ0 (x)

∂xk∂xj

)
=

∂

∂xi

[ ∂

∂xk

(
εφαβkij(x/ε)

)∂uβ0 (x)

∂xj

]
+ ε

∂

∂xi

(
aαγik (x/ε)χγβj (x/ε)

∂2uβ0 (x)

∂xk∂xj

)
,

(2.2.9)

where we also used (2.1.4) in the last equality. Observe that

∂

∂xi

[ ∂

∂xk

(
εφαβkij(x/ε)

)∂uβ0 (x)

∂xj

]
=

∂2

∂xi∂xk

[
εφαβkij(x/ε)

∂uβ0 (x)

∂xj

]
+

∂

∂xi

[
εφαβkij(x/ε)

∂2uβ0 (x)

∂xk∂xj

]
.

(2.2.10)

Now, the key observation here is that the anti-symmetry of φ in (2.1.4) with respect
to indices i and k implies that the first term on the right-hand side of (2.2.10) vanishes
in the sense of distribution. As a consequence, we obtain(
Lε(wε)

)α
= ε

∂

∂xi

[
φαβkij(x/ε)

∂2uβ0 (x)

∂xk∂xj

]
+ ε

∂

∂xi

[
aαγik (x/ε)χγβj (x/ε)

∂2uβ0 (x)

∂xk∂xj

]
. (2.2.11)

Set

Fα
ε,j(x) = φαβkij(x/ε)

∂2uβ0 (x)

∂xk∂xj
+ aαγik (x/ε)χγβj (x/ε)

∂2uβ0 (x)

∂xk∂xj
. (2.2.12)
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Since χ and φ are both bounded, one sees that ‖Fα
ε,j‖L2(Ω) ≤ C‖∇2u0‖L2(Ω), where C

depends only on A. It follows that wε satisfies
Lε(wε) = εdiv(Fε) in Ω,

wε = −εχ·βj (x/ε)
∂uβ0
∂xj

on ∂Ω.
(2.2.13)

Finally, let vDε be the solution of (2.2.4). Then{
Lε(wε − εvDε ) = εdiv(Fε) in Ω,

wε − εvDε = 0 on ∂Ω.
(2.2.14)

A standard energy estimate gives

‖wε − εvDε ‖H1(Ω) ≤ Cε‖∇2u0‖L2(Ω), (2.2.15)

which implies the desired estimate.

Theorem 2.3. Let uε and u0 be the weak solution of
Lε(uε) = F in Ω,

∂uε
∂νε

= g on ∂Ω,
(2.2.16)

and u0 be the weak solution of the homogenized equation
L0(u0) = F in Ω,

∂u0

∂ν0

= g on ∂Ω.
(2.2.17)

Then
‖uε − u0 − εχ(·/ε)∇u0 − εvNε ‖H1(Ω) ≤ Cε‖∇2u0‖L∞(Ω), (2.2.18)

where vNε is the solution of
Lε(vNε ) = 0 in Ω,

∂vNε
∂νε

=
1

2

(
nk

∂

∂xi
− ni

∂

∂xk

)(
φ·βkij(x/ε)

∂uβ0
∂xj

)
on ∂Ω,

(2.2.19)

and n = (n1, n2, · · · , nd) is the unit outward normal.

Proof. The proof for Neumann problem is similar as Dirichlet problem, while the
Neumann boundary condition needs to be handled more carefully. Let wε be defined
as (2.2.5). It follows from the same argument that wε satisfies

Lε(wε) = εdiv(Fε) in Ω,

∂wε
∂νε

=
∂

∂νε

(
uε − u0 − εχ(x/ε)∇u0

)
on ∂Ω,

(2.2.20)

12



where Fε is the same as (2.2.12).
Now, we need to analyze the boundary condition of wε. Note that

∂uε
∂νε

= g =
∂u0

∂ν0

on ∂Ω. (2.2.21)

Then, by a careful calculation as in (2.2.9),(∂wε
∂νε

)α
= niâ

αβ
ij

∂uβ0
∂xj
− niâαβij (x/ε)

∂uβ0
∂xj
− niaαγik (x/ε)

∂

∂xk

(
εχγβj (x/ε)

∂uβ0
∂xj

)
= −ni

∂

∂xk

(
εφαβkij(x/ε)

∂uβ0
∂xj

)
− εniaαγik (x/ε)χγβj (x/ε)

∂2uβ0
∂xk∂xj

.

(2.2.22)

Using the anti-symmetry of φ in (2.1.4), we observe that

−ni
∂

∂xk

(
εφαβkij(x/ε)

∂uβ0
∂xj

)
=

1

2

(
nk

∂

∂xi
− ni

∂

∂xk

)(
εφαβkij(x/ε)

∂uβ0
∂xj

)
. (2.2.23)

Hence, (∂wε
∂νε

)α
=
ε

2

(
nk

∂

∂xi
− ni

∂

∂xk

)(
φαβkij(x/ε)

∂uβ0
∂xj

)
− εniaαγik (x/ε)χγβj (x/ε)

∂2uβ0
∂xk∂xj

.

(2.2.24)

Now, let vNε be the solution of (2.2.19). Note that the compatibility condition is
satisfied automatically for the Neumann problem (2.2.19) due to an integration by
parts on the boundary; see Lemma 3.1. As a result, wε − εvNε satisfies

Lε(wε − εvNε ) = εdiv(Fε) in Ω,

∂

∂νε
(wε − εvNε ) = −εniaαγik (x/ε)χγβj (x/ε)

∂2uβ0
∂xk∂xj

on ∂Ω.
(2.2.25)

Finally, a standard energy estimate gives

‖wε − εvNε ‖H1(Ω) ≤ Cε‖∇2u0‖L∞(Ω), (2.2.26)

which implies the desired estimate.

2.3 Uniform Lipschitz estimates

In periodic homogenization, Lipschitz estimates (uniform in ε) are the optimal regu-
larity for the solutions of general elliptic equations in divergence form. Historically,
the interior and boundary Lipschitz estimates with Dirichlet condition was first proved
by M. Avellaneda and F. Lin in [9] by using the compactness method. The boundary
Lipschitz estimate with Neumann condition was proved by C. Kenig, F. Lin, and
Z. Shen in [24], under the additional symmetry condition A∗ = A. The symmetry
condition was later removed by S. Armstrong and Z. Shen in [8]. In this section we
state these Lipschitz estimates (with flat boundaries) which will be crucial for us.
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Theorem 2.4 (Interior Lipschitz estimate). Suppose that A = A(y) satisfies the
ellipticity and periodicity conditions (1.2.2)-(1.2.3). Also assume that A satisfies the
Hölder continuity condition:

|A(x)− A(y)| ≤ τ |x− y|σ, (2.3.1)

for some σ ∈ (0, 1) and τ ≥ 0. Let uε ∈ H1(B(x0, r);Rm) be a weak solution of

Lε(uε) = F in B(x0, r), where F ∈ Lp(B(x0, r);Rm) (2.3.2)

for some p > d. Then

‖∇uε‖L∞(B(x0,r/2)) ≤ Cp

{( 
B(x0,r)

|∇uε|2
)1/2

+ r

( 
B(x0,r)

|F |p
)1/p

}
, (2.3.3)

where Cp depends only on d, m, p, λ, σ and τ .

Theorem 2.4 was proved by M. Avellaneda and F. Lin in [9].

Theorem 2.5 (Lipschitz estimate with Dirichlet condition). Suppose that A satisfies
the same conditions as in Theorem 2.4. Let Ω = Hd

n(s) for some n ∈ Sd−1 and s ∈ R.
Given x0 ∈ ∂Ω and r > 0, let uε be a weak solution to{

Lε(uε) = F in B(x0, r) ∩ Ω,

uε = f on B(x0, r) ∩ ∂Ω.

Then

‖∇u‖L∞(Ω∩B(x0,r/2)) ≤ Cp

{( 
B(x0,r)∩Ω

|∇uε|2
)1/2

+ r

( 
B(x0,r)∩Ω

|F |p
)1/p

+ ‖∇tanf‖L∞(B(x0,r)∩∂Ω) + rσ‖∇tanf‖C0,σ(B(x0,r)∩∂Ω)

}
,

(2.3.4)
where Cp depends only on d, m, p, λ, σ and τ .

Proof. Notice that a half-space Hd
n(s) is invariant under rescaling (or translation,

rotation). Thus, by rescaling, we may assume r = 1. In this case the estimate (2.3.4)
follows from the boundary Lipschitz estimate with Dirichlet boundary condition,
proved in [9] for a general C1,α domain. The fact that Ω has a flat boundary is
essential here. For otherwise the constant Cp in (2.3.4) will depend on r, if r is
large.

Theorem 2.6 (Lipschitz estimate with Neumann condition). Let A and Ω be the
same as in Theorem 2.5. Given x0 ∈ ∂Ω and r > 0, let uε be a weak solution to

Lε(uε) = F in B(x0, r) ∩ Ω,

∂uε
∂νε

= g on B(x0, r) ∩ ∂Ω.
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Then

‖∇u‖L∞(Ω∩B(x0,r/2)) ≤ Cp

{( 
B(x0,r)∩Ω

|∇uε|2
)1/2

+ r

( 
B(x0,r)∩Ω

|F |p
)1/p

+ ‖g‖L∞(B(x0,r)∩∂Ω) + rσ‖g‖C0,σ(B(x0,r)∩∂Ω)

}
,

(2.3.5)

where Cp depends only on d, m, p, λ, σ and τ .

Proof. By rescaling we may assume that r = 1. In this case the estimate (2.3.5)
follows from the boundary Lipschitz estimate with Neumann boundary condition,
proved in [24, 8]. As in the case of the Dirichlet condition, the fact that Ω = Hd

n(s)
has a flat boundary is essential for r > 1.

Remark 2.7. As we have pointed out, the flatness of the boundary in the last two
theorems is crucial for the estimates to hold for large r > 0. However, if we restrict
ourself to 0 < r < 1, then the above Lipschitz estimates hold as long as the boundary
is C1,α.

2.4 Diophantine condition

The Diophantine condition was first introduced in [20] (also used in [21, 7]) to study
the boundary layer problem in polygonal convex domains. We give a precise definition
as follows.

Definition 2.8. We say a unit vector n ∈ Sd−1 satisfies the Diophantine condition, if
there exists some κ = κ(n) > 0 so that

|(I − n⊗ n)ξ| ≥ κ|ξ|−2 for any ξ ∈ Zd \ {0}, (2.4.1)

where n⊗n = (ninj)d×d. The largest possible number κ will be called the Diophantine
constant of n.

Observe that (I − n ⊗ n)ξ = ξ − (ξ · n)n is the projection vector of ξ onto the
orthogonal plane of n. Intuitively, the Diophantine constant κ, arising from the
number theory, quantifies the irrationality of a unit vector. Clearly, if n is rational
(i.e., n ∈ RZd), then κ(n) = 0. We may also construct irrational directions whose
Diophantine constants are zero by using Liouville numbers which are supposed to be
arbitrarily close to rational numbers. Nonetheless, in the following lemma, we show
that almost all the unit vectors satisfy the Diophantine condition with κ > 0.

Lemma 2.9. Let Ω be a strictly convex C2 domain. Then

1

κ(n(x))
∈ Ld−1,∞(∂Ω, dσ). (2.4.2)
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Proof. A key observation for the strictly convex domains is that for any ω ∈ Sd−1,

σ({x ∈ ∂Ω : |(I − ω ⊗ ω)n(x)| ≤ t}) ≤ Ctd−1, (2.4.3)

if t < 1. This geometric property can be easily seen if Ω = B1, while the general case
may follows by writing the boundary as a local graph (see [42]).

Now, let t ∈ (0, 1) and note that

{x ∈ ∂Ω : κ(n(x))−1 > t−1} ⊂ St :=
⋃

ξ∈Zd\{0}

{x ∈ ∂Ω : |(I − n(x)⊗ n(x)ξ| < t|ξ|−2}.

Using (2.4.3) and the fact |(I − ω ⊗ ω)n(x)| = |(I − n(x)⊗ n(x))ω|, we have

σ({x ∈ ∂Ω : |(I − n(x)⊗ n(x))ξ| < t|ξ|−2})
= σ({x ∈ ∂Ω : |(I − n(x)⊗ n(x))ω| < t|ξ|−3, ω = |ξ|−1ξ})
= σ({x ∈ ∂Ω : |(I − ω ⊗ ω)n(x)| < t|ξ|−3, ω = |ξ|−1ξ})
≤ Ctd−1|ξ|−3(d−1).

Since 3(d− 1) > d for d ≥ 2, it follows

σ({x ∈ ∂Ω : κ(n(x))−1 > t−1}) ≤ σ(St) ≤
∑

ξ∈Zd\{0}

Ctd−1|ξ|−3(d−1) ≤ Ctd−1,

for any 0 < t < 1. This implies our desire result (2.4.2).

The property (2.4.2) will be used in an essential way throughout this dissertation
and this is exactly the only property that we need from the strict convexity of the
domains. We also emphasize that all the constants C in this dissertation will be
independent of κ. In other words, if a constant depends on κ, it will be specified
explicitly.

Next, we will show a quantitative equidistribution property of a periodic function
restricted on a hyperplane. Let n ∈ Sd−1 with κ = κ(n) > 0. Let M be a d × d
orthogonal matrix so that its last column is n, namely, Med = n. Write M = (N, n)
where N is a d× (d− 1) matrix. Now, observe that

I = MMT = NNT + n⊗ n.

This yields |(I−n⊗n)ξ| = |NNT ξ| = |NT ξ|. Thus, the Diophantine condition (2.4.1)
is equivalent to

|NT ξ| ≥ κ|ξ|−2 for any ξ ∈ Zd \ {0}. (2.4.4)

The following lemma is an analog of [7, Proposition 2.1].

Lemma 2.10 (Quantitative equidistribution). Let n ∈ Sd−1 with κ = κ(n) > 0 and
∂Hd

n(0) = {x : x · n = 0}. Assume f ∈ C∞(Td) (i.e., f is a smooth 1-periodic
function) and ϕ ∈ C∞(∂Hd

n(0)). Then, for any ` ≥ 0,∣∣∣∣ˆ
∂Hdn(0)

f(x/ε)ϕ(x)dσ − 〈f〉
ˆ
∂Hdn(0)

ϕ(x)dσ

∣∣∣∣
≤
( ε

2πκ

)` ˆ
∂Hdn(0)

|∇`
tanϕ(x)|dσ

∑
06=ξ∈Zd

|f̂(ξ)||ξ|2`,
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where ∇tan is the full tangential gradient on ∂Hd
n(0).

Proof. First of all, we may use a change of variables to convert the integral on ∂Hd
n(0)

to an integral on Rd−1. Precisely, let M the d× d orthogonal matrix given above and
x = My = Ny′ with y = (y′, 0). Then

ˆ
∂Hdn(0)

f(x/ε)ϕ(x)dσ =

ˆ
Rd−1

f(Ny′/ε)ϕ(Ny′)dy′

= 〈f〉
ˆ
Rd−1

ϕ(Ny′)dy′ +
∑

06=ξ∈Zd

ˆ
Rd−1

f̂(ξ)e2πiξ·Ny′/εϕ(Ny′)dy′,

(2.4.5)

where we have used the Fourier series expansion of f in the second identity and f̂(ξ)

is the Fourier coefficient. Note that 〈f〉 = f̂(0).
Now, fix ξ 6= 0. Using (2.4.4) and the integration by parts, we have∣∣∣∣ˆ
Rd−1

f̂(ξ)e2πiξ·Ny′/εϕ(Ny′)dy′
∣∣∣∣ =

∣∣∣∣ˆ
Rd−1

f̂(ξ)e2πiε−1NT ξ·y′ϕ(Ny′)dy′
∣∣∣∣

=

∣∣∣∣ˆ
Rd−1

f̂(ξ)e2πiε−1NT ξ·y′

(2πiε−1|NT ξ|)`
( NT ξ

|NT ξ|
· ∇
)`

(ϕ(Ny′))dy′
∣∣∣∣

≤
ˆ
Rd−1

|f̂(ξ)||ξ|2`
( ε

2πκ

)`
|∇`(ϕ(Ny′))|dy′.

Combing this with (2.4.5), we obtain∣∣∣∣ ˆ
∂Hdn(0)

f(x/ε)ϕ(x)dσ − 〈f〉
ˆ
Rd−1

ϕ(Ny′)dy′
∣∣∣∣

≤
( ε

2πκ

)` ˆ
Rd−1

|(NT∇)`ϕ(Ny′)|dy′
∑

06=ξ∈Zd
|f̂(ξ)||ξ|2`.

This yields the desired estimate by changing variables back to x.

Copyright c© Jinping Zhuge, 2019.
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Chapter 3 Neumann problems

In this chapter, we study the Neumann problem (1.2.5) and obtain the O(ε
1
2 ) con-

vergence rate for d ≥ 3. In the case of the Neumann problem with only zero-order
oscillating data g0(x, x/ε)−γε, i.e., gij(x, y) = 0, the homogenization of (1.2.5) is well
understood, mostly due to the fact that the Neumann function Nε(x, y) for Lε in Ω
converges pointwise to N0(x, y), the Neumann function for the homogenized operator
L0 in Ω. In fact, it was proved in [25] that if Ω is a bounded C1,1 domain in Rd and
d ≥ 3, then

|Nε(x, y)−N0(x, y)| ≤
C ε ln

[
ε−1|x− y|+ 2

]
|x− y|d−1

, (3.0.1)

for any x, y ∈ Ω. This effectively reduces the problem to the case of operators with
constant coefficients, which may be handled by the method of oscillatory integrals
[3, 5]. Thus the real challenge for the Neumann problem starts with the first-order
oscillating boundary data that includes terms in the form of ε−1g(x, x/ε). As we will
show in the last section of this chapter, in the study of the higher-order convergence
of solutions to the Neumann problems for Lε with non-oscillating boundary data, one
is forced to deal with a Neumann problem in the form of (1.2.5).

3.1 Neumann functions and Neumann correctors

Under the conditions (1.2.2)-(1.2.3) and A ∈ Cσ(Td) for some σ ∈ (0, 1), one may
construct an m×m matrix of Neumann functions Nε(x, y) = (Nαβ

ε (x, y)) in a bounded
C1,α domain Ω, such that

Lε
{
Nε(·, y)

}
= δy(x)I in Ω,

∂

∂νε

{
Nε(·, y)

}
= −|∂Ω|−1I on ∂Ω,

ˆ
∂Ω

Nε(x, y) dσ(x) = 0,

(3.1.1)

where I = Im×m and the operator Lε acts on each column of Nε(·, y). Let uε ∈
H1(Ω;Rm) be a solution to Lε(uε) = F in Ω with ∂uε

∂νε
= h on ∂Ω, then

uε(x)−
 
∂Ω

uε =

ˆ
Ω

Nε(x, y)F (y) dy +

ˆ
∂Ω

Nε(x, y)h(y) dσ(y) (3.1.2)

for any x ∈ Ω. If d ≥ 3, the Neumann functions satisfy the following estimates,

|Nε(x, y)| ≤ C |x− y|2−d

|∇xNε(x, y)|+ |∇yNε(x, y)| ≤ C|x− y|1−d,
|∇x∇yNε(x, y)| ≤ C|x− y|−d,

(3.1.3)
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for any x, y ∈ Ω. This was proved in [24], using boundary Lipschitz estimates with
Neumann conditions, which require the additional assumption A∗ = A. This ad-
ditional assumption for the boundary Lipschitz estimates was removed later in [8].
As a result, the estimates in (3.1.3) hold if A satisfies (1.2.2)-(1.2.3) and is Hölder
continuous. Note that if x, y, z ∈ Ω and |x− z| ≤ (1/2)|x− y|, it follows from (3.1.3)
that

|Nε(x, y)−Nε(z, y)| ≤ C|x− z|
|x− y|d−1

,

|∇y

{
Nε(x, y)−Nε(z, y)

}
| ≤ C|x− z|
|x− y|d

.

(3.1.4)

To study the boundary regularity for solutions of Neumann problems, the matrix
of Neumann correctors Ψβ

ε,j =
(
Ψαβ
ε,j

)
for Lε in Ω, defined by

Lε
(
Ψβ
ε,j

)
= 0 in Ω,

∂

∂νε

(
Ψβ
ε,j

)
=

∂

∂ν0

(
P β
j

)
on ∂Ω,

(3.1.5)

was introduced in [24], where ∂u/∂ν0 denotes the conormal derivative associated with
L0. One of the main estimates in [24] is the following Lipschitz estimate for Ψβ

ε,j,

‖∇Ψβ
ε,j‖L∞(Ω) ≤ C. (3.1.6)

Let N0(x, y) denote the matrix of Neumann functions for L0 in Ω. It was proved
in [25] that if Ω is C1,1,

|Nε(x, y)−N0(x, y)| ≤
Cε ln

[
ε−1|x− y|+ 2

]
|x− y|d−1

(3.1.7)

for any x, y ∈ Ω, and that if Ω is C2,α for some α ∈ (0, 1),∣∣∣ ∂
∂yi

{
Nγα
ε (x, y)

}
− ∂

∂yi

{
Ψ∗αβε,j (y)

}
· ∂
∂yj

{
Nγβ

0 (x, y)
}∣∣∣ ≤ Cσ ε

1−σ

|x− y|d−σ
(3.1.8)

for any x, y ∈ Ω and σ ∈ (0, 1). The functions (Ψ∗αβε,j ) in (3.1.8) are the Neumann
correctors, defined as in (3.1.5), for the adjoint operator L∗ε in Ω. We remark that
these estimates as well as (3.1.6) were proved in [24] under the additional assumption
A∗ = A. As in the case of (3.1.3), with the results in [8], they continue to hold
without this assumption.

The estimates (3.1.7) and (3.1.8) mark the starting point of our investigation of
the Neumann problem (1.2.5) with oscillating data. Indeed, let uε be the solution of
(1.2.5) with

´
∂Ω
uε = 0. It follows by (3.1.2) that

uε(x) =

ˆ
∂Ω

Nε(x, y)(Tij(y) · ∇y)
{
gij(y, y/ε)

}
dσ(y)

+

ˆ
∂Ω

Nε(x, y)g0(y, y/ε) dσ(y),

(3.1.9)

where Tij = niej − njei, n = (n1, · · · , nd) is the outward normal to ∂Ω, and ei =
(0, . . . , 1, . . . , 0) with 1 in the ith position.
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Lemma 3.1. Let Ω be a bounded Lipschitz domain in Rd. Then, for u, v ∈ C1(∂Ω),

ˆ
∂Ω

((niej − njei) · ∇u) v dσ = −
ˆ
∂Ω

u ((niej − njei) · ∇v) dσ. (3.1.10)

Proof. Let u, v be extended as functions in Ω. Then, by the divergence theorem, we
have ˆ

∂Ω

((niej − njei) · ∇u) v dσ =

ˆ
Ω

∂

∂xi

( ∂

∂xj
u v
)
− ∂

∂xj

( ∂

∂xi
u v
)
dx

=

ˆ
Ω

∂u

∂xj

∂v

∂xi
− ∂u

∂xi

∂v

∂xj
dx.

(3.1.11)

Similarly, the RHS of (3.1.10) gives the same result which completes the proof.

It follows from (3.1.9) and (3.1.10) that

uε(x) = −
ˆ
∂Ω

(
Tij(y) · ∇y

)
Nε(x, y) · gij(y, y/ε) dσ(y)

+

ˆ
∂Ω

Nε(x, y)g0(y, y/ε) dσ(y).

(3.1.12)

In view of (3.1.3) this implies that

|uε(x)| ≤ C ‖g‖∞
ˆ
∂Ω

dσ(y)

|x− y|d−1
+ C ‖g‖∞

ˆ
∂Ω

dσ(y)

|x− y|d−2

≤ C ‖g‖∞
{

1 + | ln δ(x)|
}
,

(3.1.13)

where g = {gij, g0} and δ(x) = dist(x, ∂Ω).

Remark 3.2. It follows from (3.1.13) that for any 1 < q <∞,

‖uε‖Lq(Ω) ≤ Cq ‖g‖∞,

where Cq depends on q, A and Ω. By interpolation, this, together with (1.2.9), implies
that

‖uε − u0‖Lq(Ω) ≤ Cq,σ ε
1
q
−σ (3.1.14)

for any 2 < q <∞ and σ ∈ (0, 1
q
). Moreover, if A∗ = A, it follows from [23] that

‖uε‖H1/2(Ω) +

(ˆ
Ω

|∇uε(x)|2 δ(x) dx

)1/2

≤ C‖g‖L2(∂Ω). (3.1.15)

Thus, by interpolation, we may deduce from (1.2.9) and (3.1.15) that

‖uε − u0‖Hα(Ω) ≤ Cα,σε
1
2
−α−σ (3.1.16)

for any α ∈ (0, 1/2) and σ ∈ (0, (1/2)− α).
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Using (3.1.7) and (3.1.8), we obtain

uγε (x) = −
ˆ
∂Ω

(
Tij(y) · ∇y

)
Ψ∗αβε,k (y) · ∂

∂yk

{
Nγβ

0 (x, y)
}
· gαij(y, y/ε) dσ(y)

+

ˆ
∂Ω

Nγα
0 (x, y)gα0 (y, y/ε) dσ(y) +Rγ

ε (x),

(3.1.17)

where the remainder Rε satisfies

|Rε(x)| ≤Cε1−σ‖g‖∞
ˆ
∂Ω

dσ(y)

|x− y|d−σ

+ Cε‖g‖∞
ˆ
∂Ω

ln[ε−1|x− y|+ 2]

|x− y|d−1
dσ(y).

(3.1.18)

Lemma 3.3. Let Ω be a bounded C2,α domain for some α ∈ (0, 1). Then the function
Rε, given by (3.1.17), satisfies

‖Rε‖Lq(Ω) ≤ C ε
1
q (1 + | ln ε|)‖g‖∞, (3.1.19)

for any 1 < q <∞, where C depends only on q, A and Ω.

Proof. Let x ∈ Ω. If δ(x) = dist(x, ∂Ω) ≥ ε, we may use (3.1.18) to show that

|Rε(x)| ≤ Cσ

(
ε

δ(x)

)1−σ

‖g‖∞ (3.1.20)

for any σ ∈ (0, 1). If δ(x) ≤ ε, the estimates in (3.1.3), as in (3.1.13), lead to

|Rε(x)| ≤ C ‖g‖∞(1 + | ln δ(x)|). (3.1.21)

It is not hard to verify that (3.1.19) follows from (3.1.20) and (3.1.21).

As ε→ 0, the second term in the RHS of (3.1.17) converges to

wγ0 (x) =

ˆ
∂Ω

Nγα
0 (x, y)〈gα0 〉(y) dσ(y), (3.1.22)

where

〈g0〉(y) =

 
Td
g0(y, z) dz. (3.1.23)

More precisely, the following results on the convergence rate were obtained in [5].

Lemma 3.4. Let wε denote the second term in the RHS of (3.1.17). Assume that Ω
is a bounded smooth, uniformly convex domain in Rd. Then, for any 1 ≤ q <∞,

‖wε − w0‖Lq(Ω) ≤ Cq


ε

1
q if d=3,

ε
3
2q if d=4,

ε
2
q (1 + | ln ε|)

1
q if d ≥ 5,

(3.1.24)

where w0 is given by (3.1.22).
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Much of the rest of paper is devoted to the study of the first term in the RHS of
(3.1.17). To this end we first replace the function Ψ∗αβε,k by

ψ∗αβε,k (x) = Ψ∗αβε,k (x)− Pαβ
k (x)− εχ∗αβk (x/ε), (3.1.25)

where (χ∗αβk (y)) denotes the matrix of correctors for L∗ε in Rd. Note that

L∗ε(ψ
∗β
ε,k) = 0 in Ω, (3.1.26)

where ψ∗βε,k = (ψ∗1βε,k , . . . , ψ
∗mβ
ε,k ).

We end this section with some observations on its conormal derivatives.

Lemma 3.5. Let ψ∗αβε,k be defined by (3.1.25). Then(
∂

∂ν∗ε

{
ψ∗βε,k

})α
(x) = −ni(x)b∗αβik (x/ε) for x ∈ ∂Ω, (3.1.27)

where

b∗αβik (y) = a∗αβik (y) + a∗αγij (y)
∂

∂yj

(
χ∗γβk

)
− â∗αβik (3.1.28)

and Â∗ = (â∗αβij ) = (Â)∗ is the homogenized matrix of A∗.

Proof. By the definitions (3.1.25) and (3.1.5),(
∂

∂ν∗ε

{
ψ∗βε,k

})α
(x)

= nia
∗αγ
ij (x/ε)

∂

∂xj
ψ∗γβε,k

= nia
∗αγ
ij (x/ε)

∂

∂xj

(
Ψ∗γβε,k (x)− P γβ

k (x)− εχ∗γβk (x/ε)
)

= niâ
∗αγ
ij

∂

∂xj
P γβ
k (x)− nia∗αγij (x/ε)

∂

∂xj
P γβ
k (x)− nia∗αγij (x/ε)

∂χ∗γβk

∂xj
(x/ε)

= ni

(
â∗αβik − a

∗αβ
ik (x/ε)− a∗αγij (x/ε)

∂χ∗γβk

∂xj
(x/ε)

)
.

This proves the lemma.

Note that by the definitions of correctors χ∗αβk and of the homogenized matrix Â∗,

∂

∂yi

{
b∗αβik

}
= 0 and

ˆ
Td
b∗αβik = 0. (3.1.29)

Similar as Lemma 2.1, this implies that there are 1-periodic functions fαβ`ik with mean
value zero such that

b∗αβik =
∂

∂y`

{
fαβ`ik
}

and fαβ`ik = −fαβi`k . (3.1.30)
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As a result (see the proof of Theorem 2.3), we obtain

ni(x)b∗αβik (x/ε) =
1

2
(niej − njei) · ∇x

{
εfαβjik(x/ε)

}
. (3.1.31)

This shows that ε−1ψ∗βε,k is a solutions of the Neumann problem (1.2.5) with gij(x, y)

= (1/2)fβjik(y) and g0 = 0.

3.2 Neumann problems in half-spaces

For n ∈ Sd−1 and a ∈ R, let

Hd
n(a) =

{
x ∈ Rd : x · n < −a

}
(3.2.1)

denote a half-space with outward unit normal n. Consider the Neumann problem{
div(A∇u) = 0 in Hd

n(a),

n · A∇u = T · ∇g on ∂Hd
n(a),

(3.2.2)

where T ∈ Rd, |T | ≤ 1 and T · n = 0. We will assume that g ∈ C∞(Td) with mean
value zero and n satisfies the Diophantine condition (2.4.1) with constant κ = κ(n) >
0. Let M be a d × d orthogonal matrix such that Med = −n. Note that the last
column of M is −n. Let N denote the d× (d− 1) matrix of the first d− 1 columns
of M . Since MMT = I, we see that

NNT + n⊗ n = I, (3.2.3)

where MT denotes the transpose of M .
To study the solvability of the half-space problem (3.2.2), one first notices the

boundary data T · ∇g(θ) and the coefficient matrix A are both quasi-periodic on
∂Hd

n(a). Recall that a quasi-periodic function is defined by restricting a periodic
function in a lower dimensional hyperplane. Then, it is natural to expect that the
solution of (3.2.2) also possesses the same quasi-periodic structure along every hy-
perplane parallel to the boundary ∂Hd

n(a). While in the direction of n, the solution
will decay in some sense. As a result, we may assume by intuition that the solution
of (3.2.2) is given by

u(x) = V ((I − n⊗ n)x,−x · n) = V (x− (x · n)n,−x · n), (3.2.4)

where V = V (θ, t) is a function of (θ, t) ∈ Td × [a,∞), 1-periodic in θ. Note that

∇xu =
(
I − n⊗ n,−n

)(∇θ

∂t

)
= M

(
NT∇θ

∂t

)
V, (3.2.5)

where we have used (3.2.3). It follows from (3.2.2) and (3.2.5) that V is a solution of
(
NT∇θ

∂t

)
·B
(
NT∇θ

∂t

)
V = 0 in Td × (a,∞),

−ed+1 ·B
(
NT∇θ

∂t

)
V = T · ∇θg̃ on Td × {a},

(3.2.6)
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where
B = B(θ, t) = MTA(θ − tn)M, (3.2.7)

g̃(θ, t) = g(θ − tn), and we have used the assumption that T · n = 0 to obtain
T · ∇xg = T · ∇θg̃. Observe that if V 0 is a solution of (3.2.6) with a = 0 and

V a(θ, t) = V 0(θ − an, t− a) for a ∈ R,

then V a is a solution of (3.2.6). This follows from the fact that

B(θ − an, t− a) = B(θ, t) and g̃(θ − an, t− a) = g̃(θ, t).

As a result, it suffices to study the boundary value problem (3.2.6) for a = 0. To this
end, we shall consider the Neumann problem
−
(
NT∇θ

∂t

)
·B
(
NT∇θ

∂t

)
V − λ∆θV =

(
NT∇θ

∂t

)
G in Td × R+,

−ed+1 ·B
(
NT∇θ

∂t

)
V = T · ∇θg + ed+1 ·G on Td × {0},

(3.2.8)

where λ > 0 and the term −λ∆θV is added to regularize the system.
Let

H =

{
f ∈ H1

loc(Td × R+) :

ˆ ∞
0

ˆ
Td

(
|∇θf |2 + |∂tf |2

)
<∞

}
. (3.2.9)

We call V ∈ H a weak solution of (3.2.8) with g ∈ H1(Td) and G ∈ L2(Td × R+), if

ˆ ∞
0

ˆ
Td

{
B

(
NT∇θ

∂t

)
V ·
(
NT∇θ

∂t

)
W + λ

(
∇θ

0

)
V ·
(
∇θ

0

)
W

}
dθdt

= −
ˆ
Td

(T · ∇θg) ·W (θ, 0) dθ −
ˆ ∞

0

ˆ
Td
G ·
(
NT∇θ

∂t

)
W dθdt

(3.2.10)

for any W ∈ H.

Proposition 3.6. Let g ∈ H1(Td) and G ∈ L2(Td × R+). Then the boundary value
problem (3.2.8) has a solution, unique up to a constant, in H. Moreover, the solution
V satisfies

ˆ ∞
0

ˆ
Td

(
|NT∇θV |2 + |∂tV |2

)
≤ C

{
‖g‖2

H1(Td) + ‖G‖2
L2(Td×R+)

}
, (3.2.11)

λ

ˆ ∞
0

ˆ
Td
|∇θV |2 ≤ C

{
‖g‖2

H1(Td) + ‖G‖2
L2(Td×R+)

}
, (3.2.12)

where C depends only on d, m and µ.
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Proof. This follows readily from the Lax-Milgram theorem. One only needs to observe
that ∣∣∣ ˆ

Td
(T · ∇θg) ·W (θ, 0) dθ

∣∣∣
≤ C‖g‖H1(Td)

(ˆ 1

0

ˆ
Td

(
|NT∇θW |2 + |∂tW |2

))1/2 (3.2.13)

for any W ∈ H. Indeed, write

ˆ
Td

(T · ∇θg) ·W (θ, 0) dθ =

ˆ 1

0

ˆ
Td

(T · ∇θg) · (W (θ, 0)−W (θ, t)) dθdt

+

ˆ 1

0

ˆ
Td

(T · ∇θg) ·W (θ, t) dθdt.

(3.2.14)

It is easy to see that the first term in the RHS of (3.2.14) is bounded by

C‖∇θg‖L2(Td)

(ˆ 1

0

‖∂tW‖2
L2(Td) dt

)1/2

.

To handle the second term in the RHS of (3.2.14), we use

ˆ 1

0

ˆ
Td

(T · ∇θg) ·W (θ, t) dθdt = −
ˆ 1

0

ˆ
Td
g · (T · ∇θW )(θ, t) dθdt

and
T · ∇θW = T ·NNT∇θW

to bound it by

C‖g‖L2(Td)

(ˆ 1

0

‖NT∇θW‖2
L2(Td) dt

)1/2

.

The estimate (3.2.13) now follows.

Proposition 3.7. Let g ∈ Hk(Td) and G ∈ L2(R+, H
k−1(Td)) for some k ≥ 1. Then

the solution of (3.2.8), given by Proposition 3.6, satisfies

ˆ ∞
0

(
‖NT∇θV ‖2

Hk−1(Td) + ‖∂tV ‖2
Hk−1(Td) + λ‖V ‖2

Hk(Td)

)
dt

≤ Ck

{
‖g‖2

Hk(Td) +

ˆ ∞
0

‖G‖2
Hk−1(Td)

}
dt,

(3.2.15)

where Ck depends on d, m, k, µ and ‖A‖Ck−1(Td).

Proof. The proof is standard. The case k = 1 is given in Proposition 3.6. To prove
the estimate for k = 2, one applies the estimate for k = 1 to the quotient of difference
{V (θ + sej, t)− V (θ, t)} s−1 and lets s→ 0. The general case follows similarly by an
induction argument on k.
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Proposition 3.8. Let g ∈ Hk+`−1(Td) for some k, ` ≥ 1. Suppose that

∂αt G ∈ L2(R+, H
k+`−2−α(Td)) for 0 ≤ α ≤ `− 1.

Then the solution of (3.2.8), given by Proposition 3.6, satisfies

ˆ ∞
0

‖∂`tV ‖2
Hk−1(Td) dt

≤ C

{
‖g‖2

Hk+`−1(Td) +
∑

0≤α≤`−1

ˆ ∞
0

‖∂αt G‖2
Hk+`−2−α(Td)

}
dt,

(3.2.16)

where C depends on d, m, k, `, µ and ‖A‖Ck+`−2(Td).

Proof. The case ` = 1 is contained in Proposition 3.7. To see the case ` = 2, we
observe that the second-order equation in (3.2.8) allows us to obtain

∂2
t V = a linear combination of

∇θ(N
T∇θ)V,N

T∇θV, ∂t∇θV, ∂tV,∇θG, λ∆θV, ∂tG
(3.2.17)

with smooth coefficients. It follows that

‖∂2
t V ‖Hk−1(Td) ≤ C

{
‖NT∇θV ‖Hk(Td) + ‖∂tV ‖Hk(Td) + ‖G‖Hk(Td)

+ ‖∂tG‖Hk−1(Td) + λ‖V ‖Hk+1(Td)

}
.

This, together with the estimate (3.2.15), gives (3.2.16) for ` = 2. The general case
follows by differentiating (3.2.17) in t and using an induction argument on `.

Proposition 3.9. Suppose that n satisfies the Diophantine condition (2.4.1) with
constant κ > 0. Let V be the solution of (3.2.8), given by Proposition 3.6. Let

Ṽ (θ, t) = V (θ, t)−
 
Td
V (·, t).

Then ˆ ∞
0

κ2‖Ṽ ‖2
Hk(Td)dt ≤ C

{
‖g‖2

Hk+3(Td) +

ˆ ∞
0

‖G‖2
Hk+2(Td) dt

}
, (3.2.18)

where C depends on d and k .

Proof. Recall (2.4.4) gives |NT ξ| ≥ κ|ξ|−2 for any ξ ∈ Zd \ {0}. This implies that

‖NT∇θV ‖Hk+2(Td) ≥ Cκ‖Ṽ ‖Hk(Td), (3.2.19)
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which, together with (3.2.15), gives the estimate (3.2.18). To see (3.2.19), we use the
Parseval’s identity to obtain

‖NT∇θV ‖2
Hk+2(Td) =

∑
ξ∈Zd

(1 + |ξ2|)k+2|NT ξV̂ (ξ)|2

≥
∑

06=ξ∈Zd

κ2(1 + |ξ|2)k+2

|ξ|4
|V̂ (ξ)|2

≥ Cκ2
∑

06=ξ∈Zd
(1 + |ξ|2)k|V̂ (ξ)|2

= Cκ2‖Ṽ ‖2
Hk(Td).

(3.2.20)

This completes the proof of (3.2.19).

Remark 3.10. Suppose that g ∈ C∞(Td), G ∈ C∞(Td×R+) and ∂kt ∂
α
θG ∈ L2(Td×R+)

for any k and α. For λ > 0, let Vλ be the solution of (3.2.8), given by Proposition
3.6. By subtracting a constant we may assume that

´
Td Vλ(θ, 0)dθ = 0 and thus

Vλ(θ, t) = Ṽλ(θ, t) +

ˆ t

0

ˆ
Td
∂sVλ(θ, s)dθds.

It follows from Propositions 3.8 and 3.9 that the L2(Td × (0, L)) norm of ∂kt ∂
α
θ Vλ is

uniformly bounded in λ, for any k, α and L ≥ 1. Hence, by Sobolev imbedding, the
Ck(Td × (0, L)) norm of Vλ is uniformly bounded in λ, for any k ≥ 0 and L ≥ 1.
By a simple limiting argument this allows us to show that the Neumann problem
(3.2.8) with λ = 0 has a solution V , unique up to a constant, in C∞(Td × [0,∞)).
Furthermore, by passing to the limit, estimates (3.2.11), (3.2.15), (3.2.16) and (3.2.18)
continue to hold for this solution.

Proposition 3.11. Suppose that n satisfies the Diophantine condition (2.4.1) with
constant κ > 0. Let V be the solution of (3.2.8) with λ = 0, g ∈ C∞(Td) and G = 0,
given by Remark 3.10. Then there exists a constant V∞ such that for any ` ≥ 1,

|∂αθ (V − V∞)(θ, t)| ≤ Cα,`
κ(1 + κt)`

, (3.2.21)

for any α = (α1, . . . , αd). Moreover, we have

|NT∇θ(∂
α
θ V )(θ, t)|+ |∂kt ∂αθ V (θ, t)| ≤ Cα,`,k

(1 + κt)`
, (3.2.22)

where k ≥ 1.

Proof. It follows from Propositions 3.7 and 3.8 by Sobolev imbedding that

|NT∇θ(∂
α
θ V )(θ, t)|+ |∂kt ∂αθ V (θ, t)| ≤ Cα,k

for any α = (α1, . . . , αd) and k ≥ 1. Next we note that the decay estimate in (3.2.22)
follows by the exact argument as in the case of Dirichlet boundary conditions, given
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in [21, Proposition 2.6] (the proof does not use the boundary condition at t = 0). For
the readers’ convenience, we will present their proof here. Let

F (s) =

ˆ ∞
s

ˆ
Td

(
|NT∇θ(∂

α
θ V )|2 + |∂kt ∂αθ V |2

)
dθdt.

We would like to show

F (s) ≤ C`
(κs)`

for any ` ≥ 1.

To this end, let s > 0 and

W (θ, t) = V (θ, t)−
ˆ
Td
V (θ, s)dθ.

Note that for t > s, W satisfies

−
(
NT∇θ

∂t

)
·B
(
NT∇θ

∂t

)
W = 0.

Multiplying the above system by W and integrating over Td × [s,∞), we obtainˆ ∞
s

ˆ
Td
B

(
NT∇θ

∂t

)
W ·

(
NT∇θ

∂t

)
Wdθdt

=

ˆ
Td

[(
0d−1

−1

)
·B(θ, s)

(
NT∇θ

∂t

)
W (θ, s)

]
W (θ, s)dθ.

(3.2.23)

Note that ∇θW = ∇θV and ∂tW = ∂tV . Then (3.2.23) implies

F (s) ≤ C(−F ′(s))1/2

(ˆ
Td
|W (θ, s)|2dθ

)1/2

. (3.2.24)

To estimate the integral in (3.2.24), we need to use the equivalent Diophantine con-
dition (2.4.4). Precisely,ˆ

Td
|W (θ, s)|2dθ =

∑
06=ξ∈Zd

|Ŵ (ξ, s)|2

≤
( ∑

06=ξ∈Zd
|NT ξ|2|Ŵ (ξ, s)|2

)1/p( ∑
06=ξ∈Zd

|Ŵ (ξ, s)|2

|NT ξ|2p′/p

)1/p′

≤ κ−2/p

( ˆ
Td
|NT∇θW (θ, s)|2

)1/p( ∑
06=ξ∈Zd

|ξ|4p′/p|Ŵ (ξ, s)|2
)1/p′

≤ κ−2/p(−F ′(s))1/p‖W (·, s)‖2/p′

H2/(p−1)(Td)
,

where p > 1 and 1/p+ 1/p′ = 1. Now using a simple observation

|W (θ, s)|2 =

ˆ ∞
s

W (θ, t) · ∂tW (θ, t)dt

≤
( ˆ ∞

s

|W (θ, t)|2dt
)1/2( ˆ ∞

s

|∂tW (θ, t)|2dt
)1/2

,
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and (3.2.15), (3.2.18), we have

‖W (·, s)‖H`(Td) ≤ Cκ1/2,

for any ` ≥ 0. It follows that

ˆ
Td
|W (θ, s)|2dθ ≤ Cκ−2/p−1/p′(−F ′(s))1/p = Cκ−1−1/p(−F ′(s))1/p.

Substituting this into (3.2.24), we obtain

F (s) ≤ C
(−F ′(s)

κ

) 1
2

+ 1
2p
, (3.2.25)

for any p ∈ (1,∞). This gives

F (s) ≤ Cp(κs)
− p+1
p−1 ,

which shows that F (s) may decay faster than any power of s as s→∞. This proves
(3.2) as desired.

Next, by differentiating (3.2.8) in θ and t, and using a similar argument, we may
show by induction that

Fα,k(s) =

ˆ ∞
s

ˆ
Td

(
|NT∇θ(∂

α
θ V )|2 + |∂kt ∂αθ V |2

)
dθdt.

decay faster than any power of s. More precisely, assuming the estimate holds for all
|α|+ k < N . Then if |α|+ k = N , for any ` > p+1

p−1
,

Fα,k(s) ≤ Cp

[(−F ′(s)
κ

) 1
2

+ 1
2p

+ (κs)−`
]
.

Hence, we get

Fα,k(s) + (κs)−
p+1
p−1 ≤ Cp

(−F ′(s)
κ

+ (κs)−
2p
p−1

) 1
2

+ 1
2p
. (3.2.26)

Set Gα,k(s) = Fα,k(s) + (κs)−
p+1
p−1 . Then, (3.2.26) implies

Gα,k(s) ≤ C
(−G′α,k(s)

κ

) 1
2

+ 1
2p
, (3.2.27)

which, as before, yields the desired decay estimate of Fα,k(s). Now, by the Sobolev
imbedding theorem, we establish

|NT∇θ(∂
α
θ V )(θ, t)|+ |∂kt ∂αθ V (θ, t)| ≤ Cα,`,k

(κt)`
,

which implies (3.2.22).
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Finally, to show the existence of the constant limit at infinity, we note that (3.2.22)
implies that

lim
t→∞
|∇θV (θ, t)| = 0 (3.2.28)

uniformly in θ ∈ Td. On the other hand,

|V (·, s+ h)− V (·, s)| =
ˆ s+h

s

|∂tV (·, t)|dt ≤
ˆ s+h

s

C

(1 + κt)2
dt ≤ C

κs
.

Thus, V (·, t) is a Cauchy function and admits a unique limit as t → ∞. Moreover,
(3.2.28) implies that the limit is independent of θ. This shows the existence of V∞ :=
limt→∞ V (·, t). As a consequence,

|∂αθ (V − V∞)(θ, t)| ≤
ˆ ∞
t

|∂t∂αθ V (θ, s)| ds ≤ C

ˆ ∞
t

ds

(1 + κs)`+2

≤ C

(1 + κt)`

ˆ ∞
t

ds

(1 + κs)2

≤ C

κ(1 + κt)`
,

(3.2.29)

where we have used (3.2.22) for the second inequality.

We now state and prove the main result of this section.

Theorem 3.12. Let n ∈ Sd−1 and a ∈ R, where d ≥ 2. Let T ∈ Rd such that |T | ≤ 1
and T · n = 0. Suppose that n ∈ Sd−1 satisfies the Diophantine condition (2.4.1)
with constant κ > 0. Then for any g ∈ C∞(Td), the Neumann problem (3.2.2) has a
smooth solution u satisfying

|u(x)| ≤ C

κ(1 + κ|x · n+ a|)`
,

|∂αxu(x)| ≤ C

(1 + κ|x · n+ a|)`
,

(3.2.30)

for any |α| ≥ 1 and ` ≥ 1. The constant C depends at most on d, m, µ, α, ` as well
as the Ck(Td) norms of A and g for some k = k(d, α, `).

Proof. Let V be the solution of (3.2.8) with λ = 0, g ∈ C∞(Td) and G = 0, given by
Remark 3.10. Let

u(x) = V (x− (x · n+ a)n,−(x · n+ a))− V∞.

Then u is a solution of the Neumann problem (3.2.2). The first inequality in (3.2.30)
follows directly from (3.2.21). To see the second inequality, one uses (3.2.5) and
(3.2.22).
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3.3 Refined estimates in half-spaces

Throughout this section we fix n ∈ Sd−1 and a ∈ R. We assume that n ∈ Sd−1

satisfies the Diophantine condition (2.4.1) with constant κ > 0. However, we will be
only interested in estimates that are independent of κ.

Our first result plays the same role as the maximum principle in the case of
Dirichlet problem.

Theorem 3.13. Let T ∈ Rd such that |T | ≤ 1 and T · n = 0. Then for any
g ∈ C∞(Td), the solution u of Neumann problem (3.2.2), given by Theorem 3.12,
satisfies

|∇u(x)| ≤ C ‖g‖∞
|x · n+ a|

, (3.3.1)

for any x ∈ Hd
n(a), where C depends only on d, m and µ as well as some Hölder

norm of A.

Proof. By translation we may assume that a = 0. We choose a bounded smooth
domain D such that

B(0, 1) ∩Hd
n(0) ⊂ D ⊂ B(0, 2) ∩Hd

n(0),

B(0, 1) ∩ ∂Hd
n(0) = ∂D ∩ ∂Hd

n(0).

Let vε(x) = εu(x/ε). Since Lε(vε) = 0 in D,

vε(x)− vε(z) =

ˆ
∂D

{
Nε(x, y)−Nε(z, y)

}∂vε
∂νε

(y) dσ(y)

for any x, z ∈ D, where Nε(x, y) denotes the matrix of Neumann functions for Lε in
D. By a change of variables it follows that

u(x)− u(z) = εd−2

ˆ
∂D1/ε

{
Nε(εx, εy)−Nε(εz, εy)

}
n(εy) · A(y)∇u(y) dσ(y),

where D1/ε =
{
ε−1y : y ∈ D

}
.

Fix x, z ∈ Hd
n(0) such that |x − z| < (1/2)|x · n| = (1/2)dist(x, ∂Hd

n(0)). Choose
ηε ∈ C1

0(B(0, ε−1)) such that 0 ≤ ηε ≤ 1, ηε = 1 on B(0, ε−1 − 1) and |∇ηε| ≤ 1,
where ε < 1/10. Let u(x)− u(z) = I1 + I2, where

I1 = εd−2

ˆ
∂D1/ε

ηε(y)
{
Nε(εx, εy)−Nε(εz, εy)

}
n(εy) · A(y)∇u(y) dσ(y)

= εd−2

ˆ
∂D1/ε

ηε(y)
{
Nε(εx, εy)−Nε(εz, εy)

}
T · ∇g(y) dσ(y)

= −εd−2

ˆ
B(0,ε−1)∩∂Hdn(0)

T · ∇y

{
ηε(y)(Nε(εx, εy)−Nε(εz, εy))

}
g(y) dσ(y),
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where we have used the Neumann condition for u as well as an integration by parts
on the boundary. We now apply the estimates in (3.1.4). This gives

|I1| ≤ C|x− z|‖g‖∞
ˆ
∂Hdn(0)

dσ(y)

|x− y|d
+ C|x− z|‖g‖∞

ˆ
1
ε
−1≤|y|≤ 1

ε

dσ(y)

|x− y|d−1

≤ C0‖g‖∞ + Cε‖g‖∞|x− z|,

if ε, which may depend on |x|, is sufficiently small. We point out that the constant
C0 in the estimate above depends only on d, m, µ and some Hölder norm of A.

Next, to handle I2, we use the estimate

|∇u(y)| ≤ C

(1 + κ|y · n|)2

from (3.2.30). This, together with (3.1.4), leads to

|I2| = εd−2
∣∣∣ ˆ

∂D1/ε

(1− ηε(y))
{
Nε(εx, εy)−Nε(εz, εy)

}
n(εy) · A(y)∇u(y) dσ(y)

∣∣∣
≤ Cx,z

ˆ
∂D1/ε∩Hdn(0)

dσ(y)

|x− y|d−1(1 + κ|y · n|)2
+ Cx,z

ˆ
1
ε
−1≤|y|≤ 1

ε

dσ(y)

|x− y|d−1

≤ Cx,zε
d−1

ˆ
∂D1/ε∩Hdn(0)

dσ(y)

(1 + κ|y · n|)2
+ Cx,zε,

which shows that I2 → 0, as ε → 0. As a result, we have proved that for any
x, z ∈ Hd

n(0) with |x− z| ≤ dist(x, ∂Hd
n(0)),

|u(x)− u(z)| = lim
ε→0
|I1 + I2| ≤ C0‖g‖∞.

Since L1(u) = 0 in Hd
n(0), by the interior Lipschitz estimates [9] for L1, we obtain

|∇u(x)| ≤ C0‖g‖∞
|x · n|

,

which completes the proof.

Let Ω = Hd
n(a) and L = − div(A(x)∇) . In the rest of this section we consider

the Dirichlet problem, {
L(u) = div(f) + h in Ω,

u = 0 on ∂Ω,
(3.3.2)

and the Neumann problem,L(u) = div(f) in Ω,

∂u

∂ν
= −n · f on ∂Ω,

(3.3.3)
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where A is assumed to satisfy the ellipticity condition (1.2.2) and A ∈ Cσ(Td) for
some σ ∈ (0, 1). We shall be interested in the weighted L2 estimate,ˆ

Ω

|∇u(x)|2
[
δ(x)

]α
dx

≤ C

ˆ
Ω

|f(x)|2
[
δ(x)

]α
dx+ C

ˆ
Ω

|h(x)|2
[
δ(x)

]α+2
dx,

(3.3.4)

where −1 < α < 0 and

δ(x) = dist(x, ∂Ω) = |a+ (x · n)|. (3.3.5)

We start with some observations on the weight ω(x) =
[
δ(x)

]α
.

Lemma 3.14. Let ω(x) =
[
δ(x)

]α
, where −1 < α < 0 and δ(x) is defined by (3.3.5).

Then ω(x) is an A1 weight, i.e., for any ball B ⊂ Rd, 
B

ω ≤ C inf
B
ω, (3.3.6)

where C depends only on d and α. Moreover, w satisfies the reverse Hölder’s inequal-
ity, ( 

B

ωp dx

)1/p

≤ C

 
B

ω dx, (3.3.7)

where 1 < p <∞ and αp > −1.

Proof. This is more or less well known and may be verified directly by reducing the
problem to the case Ω = Rd

+ and δ(x) = |xd|.

It follows from (3.3.7) by Hölder’s inequality that if E ⊂ B, then

ω(E)

ω(B)
≤ C

(
|E|
|B|

)1− 1
p

, (3.3.8)

where ω(E) =
´
E
ω dx. Since (3.3.8) implies that ω satisfies the doubling condition,

ω(2B) ≤ Cω(B), it is easy to see that (3.3.8) also holds if one replaces ball B by
cube Q. In fact, if ω is an Ap weight in Rd, i.e.,

 
B

ω ·
( 

B

ω−
1
p−1

)p−1

≤ C, (3.3.9)

then there exist some σ > 0 and C > 0 such that

ω(E)

ω(Q)
≤ C

(
|E|
|Q|

)σ
for any E ⊂ Q. (3.3.10)

Functions satisfying (3.3.10) are called A∞ weights. In the following we will also need
the well known fact that if ω is an Ap weight for some 1 < p <∞, then

ˆ
Rd
|M(f)|p ω dx ≤ C

ˆ
Rd
|f |p ω dx, (3.3.11)
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whereM(f) denotes the Hardy-Littlewood maximal function of f . This is the defin-
ing property of the Ap weights. Note that if ω is A1, then ω is Ap for any p > 1. We
refer the reader to [40] for the theory of weights in harmonic analysis.

Theorem 3.15. Let ω be an A1 weight in Rd. Let u ∈ H1
loc(Ω) be a weak solution of

Dirichlet problem (3.3.2) with h = 0. Assume that

ω(B(x0, R) ∩ Ω)

 
B(x0,R)∩Ω

|∇u|2 → 0 as R→∞, (3.3.12)

for some x0 ∈ ∂Ω. Then ˆ
Ω

|∇u|2 ω dx ≤ C

ˆ
Ω

|f |2 ω dx, (3.3.13)

where C depends only on d, m, µ, ‖A‖Cσ(Td), and the constant in (3.3.6).

Proof. This is essentially proved in [34] by a real-variable method, originated in [12].
We provide a proof here for the reader’s convenience. By translation we may assume
that a = 0. We will also assume that n = −ed and thus Ω = Rd

+ for simplicity of
exposition. We point out that the periodicity of the coefficient matrix is not used
particularly in the proof, only the estimates in Theorem 2.6.

Fix 1 < p < 2. Let ρ ∈ (0, 1) be a small constant to be determined and A = ρ−σ/2,
where σ is given in (3.3.10). Let

ΩR = (−R,R)× · · · × (−R,R)× (0, 2R) ⊂ Rd
+.

We fix R > 1 and consider the set

E(λ) =
{
x ∈ ΩR :MR(|∇u|p)(x) > λ

}
, (3.3.14)

where MR(F ) is a localized Hardy-Littlewood maximal function of F , defined by

MR(F )(x) = sup
x∈Q⊂Ω2R

 
Q

|F |.

Let

λ0 =
C0

|Ω2R|

ˆ
Ω2R

|∇u|p, (3.3.15)

where C0 is a large constant depending on d. For each λ > λ0, we perform a Calderón-
Zygmund decomposition to E(Aλ) ⊂ ΩR. This produces a sequence of disjoint dyadic
subcubes {Qk} of ΩR such that

|E(Aλ) \ ∪kQk| = 0,

|E(Aλ) ∩Qk| > ρ|Qk|, |E(Aλ) ∩Q∗k| ≤ ρ|Q∗k|,
(3.3.16)

where Q∗k denotes the dyadic parent of Qk, i.e., Qk is obtained by bisecting Q∗k once.
We claim that it is possible to choose ρ, γ ∈ (0, 1) so that

if
{
x ∈ Q∗k :MR(|f |p)(x) ≤ γλ

}
6= ∅, then Q∗k ⊂ E(λ). (3.3.17)
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The claim is proved by contraction. Suppose that there exists some x0 such that
x0 ∈ Q∗k \ E(λ). Then, if a cube Q contains Q∗k and Q ⊂ Ω2R,

 
Q

|f |p ≤ γλ and

 
Q

|∇u|p ≤ λ. (3.3.18)

This implies that for any x ∈ Qk,

MR(|∇u|p)(x) ≤ max(M2Q∗k
(|∇u|p)(x), 5dλ), (3.3.19)

where

M2Q∗k
(|F |)(x) = sup

x∈Q⊂2Q∗k∩Ω

 
Q

|F |.

We now write u = v + w, where v is a function such that

L(v) = div(f) in Ω ∩ 5Q∗k and v = 0 on ∂Ω ∩ 5Q∗k, (3.3.20)

ˆ
Ω∩4Q∗k

|∇v|p ≤ C

ˆ
Ω∩5Q∗k

|f |p, (3.3.21)

and C depends only on d, m, p, µ and ‖A‖Cσ(Td). The existence of such v follows
from the boundary W 1,p estimates for Lε [9, 10]. Note that if A > 5d,

|Qk ∩ E(Aλ)| ≤ |
{
x ∈ Qk :M2Q∗k

(|∇u|p)(x) > Aλ
}
|

≤ |
{
x ∈ Qk :M2Q∗k

(|∇v|p)(x) > (1/4)Aλ
}
|

+ |
{
x ∈ Qk :M2Q∗k

(|∇w|p)(x) > (1/4)Aλ
}
|.

(3.3.22)

For the first term in the RHS of (3.3.22), we use the fact that the operator M is
bounded from L1 to weak-L1. This, together with (3.3.21) and (3.3.18), shows that
the term is dominated by

C

Aλ

ˆ
Ω∩5Q∗k

|f |p ≤ CγA−1|Qk|,

where C depends only on d, m, µ and ‖A‖Cσ(Td). Since L(w) = 0 in Ω ∩ 5Q∗k and
w = 0 on ∂Ω ∩ 5Q∗k, in view of Theorem 2.6, we obtain

‖∇w‖L∞(Ω∩2Q∗k) ≤ C

 
Ω∩4Q∗k

|∇w|

≤ C

( 
Ω∩4Q∗k

|∇u|p
)1/p

+ C

( 
Ω∩4Q∗k

|∇v|p
)1/p

≤ Cλ1/p + C

( 
Ω∩5Q∗k

|f |p
)1/p

≤ Cλ1/p,
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where we have also used estimates (3.3.18) and (3.3.21). It follows that the second
term in the RHS of (3.3.22) is zero, if A is large. As a result, we have proved that

|Qk ∩ E(Aλ)| ≤ CγA−1|Qk| = Cγρσ|Qk|,

if ρ ∈ (0, 1) is sufficiently small. By choosing γ ∈ (0, 1) so small that Cγρσ < ρ, we
obtain |Qk∩E(Aλ)| < ρ|Qk|, which is in contradiction with (3.3.16). This proves the
claim (3.3.17). We should point out that the choices of ρ and γ are uniform for all
λ > λ0.

To proceed, we use (3.3.10) and (3.3.16) to obtain

ω(E(Aλ) ∩Qk) ≤ Cρσω(Qk). (3.3.23)

This, together with (3.3.17), leads to

ω(E(Aλ)) ≤ ω
(
E(Aλ) ∩

{
x ∈ ΩR :MR(|f |p)(x) ≤ γλ

})
+ ω

{
x ∈ ΩR :MR(|f |p)(x) > γλ

}
≤
∑
k

ω
{
x ∈ E(Aλ) ∩Qk : MR(|f |p)(x) ≤ γλ

}
+ ω

{
x ∈ ΩR :MR(|f |p)(x) > γλ

}
≤ Cρσ

∑
k

ω(Qk) + ω
{
x ∈ ΩR :MR(|f |p)(x) > γλ

}
,

(3.3.24)

for any λ > λ0, where the last sum is taken only over those Qk’s such that {x ∈ Qk :
MR(|f |p)(x) ≤ γλ} 6= ∅. By the claim (3.3.17) this gives

ω(E(Aλ)) ≤ Cρσω(E(λ)) + ω
{
x ∈ ΩR :MR(|f |p)(x) > γλ

}
(3.3.25)

for any λ > λ0.
Finally, we multiply both sides of (3.3.25) by λt with t = 2

p
− 1 ∈ (0, 1), and

integrate the resulting inequality in λ over the interval (λ0,Λ) to obtain

A−1−t
ˆ AΛ

Aλ0

λtω(E(λ)) dλ

≤ Cρσ
ˆ Λ

λ0

λtω(E(λ)) dλ+ Cγ

ˆ
ΩR

{
M2R(|f |p)

} 2
p
ω dx.

Since CA1+tρσ = Cρ−
σ
2

(1+t)ρσ < (1/2) if ρ > 0 is small, this gives
ˆ Λ

0

λtω(E(λ)) dλ ≤ C

ˆ Aλ0

0

λtω(E(λ)) dλ+ C

ˆ
Ω2R

|f |2ω dx,

where we have used the weighted norm inequality (3.3.11) as well as the fact that
2/p > 1. By letting Λ→∞ we obtainˆ

ΩR

|∇u|2ω dx ≤ Cλ
2
p

0 ω(ΩR) + C

ˆ
Ω2R

|f |2ω dx

=
C ω(ΩR)

|Ω2R|

ˆ
Ω2R

|∇u|2 dx+ C

ˆ
Ω2R

|f |2ω dx,
(3.3.26)
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where we have used the fact |F | ≤ M(F ). We complete the proof by letting R→∞
in (3.3.26) and using the assumption (3.3.12).

The next theorem treats the Neumann problem (3.3.3).

Theorem 3.16. Let ω be an A1 weight in Rd. Let u ∈ H1
loc(Ω) be a weak solution of

the Neumann problem(3.3.3). Assume that u satisfies the condition (3.3.12). Then
the estimate (3.3.13) holds with constant C depending only on d, m, µ, ‖A‖Cσ(Td),
and the constant in (3.3.6).

Proof. The proof is similar to that of Theorem 3.15. The only difference is that in
the place of (3.3.20), we need to find a function v such that,L(v) = div(fϕ) in Ω ∩ 5Q∗k,

∂v

∂ν
= n · (ϕf) on ∂Ω ∩ 5Q∗k,

(3.3.27)

where ϕ ∈ C∞0 (5Q∗k), 0 ≤ ϕ ≤ 1, and ϕ = 1 on 4Q∗k. The existence of functions
satisfying (3.3.27) and the estimate (3.3.21) follows from the boundary W 1,p estimates
for Lε with Neumann conditions [24, 8]. We omit the details and refer the reader to
[19] for related W 1,p estimates for Neumann problems.

Finally, we go back to the case where ω(x) =
[
δ(x)

]α
.

Theorem 3.17. Let −1 < α < 0, Ω = Hd
n(a) and δ(x) be given by (3.3.5). Let

u ∈ H1
loc(Ω) be a weak solution of (3.3.2) in Ω. Assume that

Rα

ˆ
B(x0,R)∩Ω

|∇u|2 → 0 as R→∞, (3.3.28)

for some x0 ∈ ∂Ω. Then estimate (3.3.4) holds with a constant C depending only on
d, m, µ, α and ‖A‖Cσ(Td).

Proof. By translation we may assume that a = 0. Recall that ω(x) =
[
δ(x)

]α
is an

A1 weight for −1 < α < 0. Also observe that in this case the assumption (3.3.12) is
reduced to (3.3.28). We may assume that

ˆ
Ω

|h(x)|2
[
δ(x)

]α+2
dx =

ˆ
∂Hdn(0)

{ˆ ∞
0

|h(x′ − tn)|2tα+2dt

}
dσ(x′) <∞.

For otherwise there is nothing to prove. It follows that for a.e. x′ ∈ ∂Hd
n(0),

ˆ ∞
s

|h(x′ − tn)|dt ≤
(ˆ ∞

s

|h(x′ − tn)|2tα+2dt

)1/2(ˆ ∞
s

t−α−2dt

)1/2

<∞,

if s > 0. This allows us to write

h = div(H),
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where H = (H1, . . . , Hd) and

Hi(x) = ni

ˆ ∞
0

h(x− tn) dt.

As a result, we obtain L(u) = div(f +H) in Ω. It follows by Theorem 3.15 thatˆ
Ω

|∇u|2ω dx ≤ C

ˆ
Ω

|f |2ω dx+ C

ˆ
Ω

|H|2ω dx. (3.3.29)

Finally, we observe that for x′ ∈ ∂Hd
n(0),ˆ ∞

0

|H(x′ − tn)|2tα dt ≤
ˆ ∞

0

∣∣∣ ˆ ∞
0

|h(x′ − tn− sn)| ds
∣∣∣2tα dt

≤
ˆ ∞

0

∣∣∣ ˆ ∞
t

|h(x′ − sn)| ds
∣∣∣2tα dt

≤ 4

(α + 1)2

ˆ ∞
0

|h(x′ − tn)|2tα+2 dt,

where α > −1 and a Hardy inequality was used for the last step [39, p.272]. By
integrating above inequalities in x′ over ∂Hd

n(0), we obtainˆ
Ω

|H(x)|2
[
δ(x)

]α
dx ≤ C

ˆ
Ω

|h(x)|2
[
δ(x)

]α+2
dx.

This, together with (3.3.29), gives the weighted estimate (3.3.4).

The next theorem establishes (3.3.4) for the Neumann problem (3.3.3).

Theorem 3.18. Let −1 < α < 0, Ω = Hd
n(a) and δ(x) be given by (3.3.5). Let

u ∈ H1
loc(Ω) be a weak solution of Neumann problem (3.3.3) in Ω. Suppose that u

satisfies the condition (3.3.28) for some x0 ∈ ∂Ω. Thenˆ
Ω

|∇u(x)|2
[
δ(x)

]α
dx ≤ C

ˆ
Ω

|f(x)|2
[
δ(x)

]α
dx, (3.3.30)

where C depending only on d, m, µ, α and ‖A‖Cσ(Td).

Proof. This follows directly from Theorem 3.16.

Remark 3.19. Let Ω = Hd
n(a). Let u ∈ H1

loc(Ω) be a solution of −div(A(x)∇u) =
div(f) in Ω, with either Dirichlet condition u = 0 or Neumann condition ∂u

∂ν
= −n · f

on ∂Ω. Let

ΩR =
{
x ∈ Ω : |x− (a+ x · n)n| ≤ R and |a+ x · n| ≤ 2R

}
. (3.3.31)

It follows from (3.3.26) that for R ≥ 1ˆ
ΩR

|∇u|2
[
δ(x)

]α
dx ≤ CRα

ˆ
Ω2R

|∇u|2 dx+ C

ˆ
Ω2R

|f |2
[
δ(x)

]α
dx, (3.3.32)

where −1 < α < 0 and C depends only on d, m, µ, α, and some Hölder norm of A.
This will be used in §3.5.

Remark 3.20. The weighted estimates in Theorems 3.17 and 3.18 also hold for the
range 0 < α < 1, which is not used in the paper. This may be proved by a duality
argument.
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3.4 Approximation of Neumann correctors

Throughout this section we assume that Ω is a bounded smooth, strictly convex
domain in Rd, d ≥ 3, and that A is smooth and satisfies (1.2.2)-(1.2.3). For g ∈
C∞(Td;Rm), consider the Neumann problem

Lε(uε) = 0 in Ω,

∂uε
∂νε

= T (x) · ∇g(x/ε) on ∂Ω,
(3.4.1)

where T (x) = Tij(x) = ni(x)ej − nj(x)ei for some 1 ≤ i, j ≤ d is a tangential
vector field on ∂Ω, and n(x) = (n1(x), . . . , nd(x)) denotes the outward normal to
∂Ω at x ∈ ∂Ω. Fix x0 ∈ ∂Ω. Assume that n = n(x0) satisfies the Diophantine
condition (2.4.1) with constant κ > 0 (all constants C will be independent of κ).
To approximate uε in a neighborhood of x0, we solve the Neumann problem in a
half-space 

Lε(vε) = 0 in Hd
n(a),

∂vε
∂νε

= T (x0) · ∇g(x/ε) on ∂Hd
n(a),

(3.4.2)

where a = −x0 · n and ∂Hd
n(a) is the tangent plane of ∂Ω at x0. Note that if

vε(x) = εw(x/ε), then w is a solution of
L1(w) = 0 in Hd

n(aε−1),

∂w

∂ν1

= T (x0) · ∇g(x) on ∂Hd
n(aε−1).

(3.4.3)

It then follows by Theorem 3.12 that (3.4.2) has a bounded smooth solution vε sat-
isfying

‖∂αx vε‖∞ ≤ Cα ε
1−|α| for any |α| ≥ 1. (3.4.4)

In particular, ‖∇vε‖∞ ≤ C. In view of Theorem 3.13, we also obtain the estimate

|∇vε(x)| ≤ C ε

|x · n+ a|
. (3.4.5)

The goal of this section is prove the following.

Theorem 3.21. Let uε be a solution of (3.4.1) and vε a solution of (3.4.2), con-
structed above. Let ε ≤ r ≤

√
ε. Then, for any σ ∈ (0, 1),

‖∇(uε − vε)‖L∞(B(x0,r)∩Ω) ≤ C
√
ε
{

1 + | ln ε|
}

+ Cε−1−σr2+σ, (3.4.6)

where C depends on d, m, µ, σ, Ω, ‖A‖Ck(Td) and ‖g‖Ck(Td) for some k = k(d) > 1.

Let Nε(x, y) denote the matrix of Neumann functions for the operator Lε in Ω.
Since Ω ⊂ Hd

n(a) and Lε(uε − vε) = 0 in Ω, we obtain the representation,

uε(x)− vε(x)−
{
uε(z)− vε(z)

}
=

ˆ
∂Ω

{
Nε(x, y)−Nε(z, y)

}{∂uε
∂νε
− ∂vε
∂νε

}
dσ(y)

(3.4.7)
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for any x, z ∈ Ω. Fix a cut-off function η = ηε ∈ C∞0 (B(x0, 5
√
ε)) such that 0 ≤ η ≤ 1,

η = 1 in B(x0, 4
√
ε) and |∇η| ≤ Cε−1/2. Let

I(x, z) =

ˆ
∂Ω

η(y)
{
Nε(x, y)−Nε(z, y)

}{∂uε
∂νε
− ∂vε
∂νε

}
dσ(y), (3.4.8)

J(x, z) =

ˆ
∂Ω

(1− η(y))
{
Nε(x, y)−Nε(z, y)

}{∂uε
∂νε
− ∂vε
∂νε

}
dσ(y). (3.4.9)

We begin with the estimate of I(x, z) in (3.4.8). Here it is essential to take
advantage of the fact that the Neumann data of vε agrees with the Neumann data
of uε at x0. Furthermore, to fully utilize the decay estimates for the derivatives of
Neumann functions, we need to transfer the derivative from ∂(uε − vε)/∂νε to the
Neumann functions.

For x ∈ Hd
n(a), we use

x̂ = x− ((x− x0) · n))n ∈ ∂Hd
n(a) (3.4.10)

to denote its projection onto the tangent plane of ∂Ω at x0. Observe that if x ∈ ∂Ω,
then |x− x̂| ≤ C|x− x0|2.

Lemma 3.22. Suppose that x ∈ ∂Ω and |x− x0| ≤ c0. Then

n(x) · Aε(x)∇vε(x)− n(x0) · Aε(x̂)∇vε(x̂)

= Ti`(x) · ∇x

{ˆ 1

0

aεij(x)
∂vε
∂xj

(
sx+ (1− s)x̂

)
ds ((x− x0) · n)n`

}
+R(x),

(3.4.11)

where Ti`(x) = ni(x)e` − n`(x)ei, n = n(x0) = (n1, . . . , nd), and

|R(x)| ≤ C
{
|x− x0|+ ε−1|x− x0|3

}
. (3.4.12)

Proof. In view of (3.4.4) we have ‖∇vε‖∞ ≤ C and ‖∇2vε‖∞ ≤ Cε−1. It follows that

n(x) · Aε(x)∇vε(x)− n(x0) · Aε(x̂)∇vε(x̂)

= n(x0) · Aε(x)∇vε(x)− n(x0) · Aε(x̂)∇vε(x̂) +O(|x− x0|)

= ni(x0)

ˆ 1

0

∂

∂s

{
aεij
∂vε
∂xj

(
sx+ (1− s)x̂

)}
ds+O(|x− x0|)

= ni(x0)

ˆ 1

0

∂

∂x`

(
aεij
∂vε
∂xj

)(
sx+ (1− s)x̂

)
((x− x0) · n)n`(x0) ds+O(|x− x0|)

=

ˆ 1

0

(
ni(x0)

∂

∂x`
− n`(x0)

∂

∂xi

)(
aεij
∂vε
∂xj

)(
sx+ (1− s)x̂

)
((x− x0) · n)n`(x0) ds

+O(|x− x0|),

where we have used the equation Lε(vε) = 0 in the last step. Using the observation
that (

ni(x0)
∂

∂x`
− n`(x0)

∂

∂xi

)(
F (sx+ (1− s)x̂)

)
=

(
ni(x0)

∂

∂x`
− n`(x0)

∂

∂xi

)
F (sx+ (1− s)x̂),
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we then obtain

n(x) · Aε(x)∇vε(x)− n(x0) · Aε(x̂)∇vε(x̂) =(
ni(x0)

∂

∂x`
− n`(x0)

∂

∂xi

)(ˆ 1

0

(
aεij
∂vε
∂xj

)(
sx+ (1− s)x̂

)
((x− x0) · n)n`(x0) ds

)
+O(|x− x0|)

= O(|x− x0|) +O(ε−1|x− x0|3)+(
ni(x)

∂

∂x`
− n`(x)

∂

∂xi

)(ˆ 1

0

(
aεij
∂vε
∂xj

)(
sx+ (1− s)x̂

)
((x− x0) · n)n`(x0) ds

)
,

where we have used the fact that |(x − x0) · n| ≤ C|x − x0|2 as well as the estimate
|∇(Aε∇vε)| ≤ Cε−1 for the last step.

Lemma 3.22 allows us to carry out an integration by parts on the boundary for
I(x, z).

Lemma 3.23. Let I(x, z) be given by (3.4.8). Suppose that x, z ∈ B(x0, 3r) ∩ Ω for
some ε ≤ r ≤

√
ε and |x− z| ≤ (1/2)δ(x), where δ(x) = dist(x, ∂Ω). Then

|I(x, z)| ≤ C r
√
ε. (3.4.13)

Proof. Let y ∈ ∂Ω and |y− x0| ≤ 5
√
ε. Using the Neumann conditions for uε, vε and

Lemma 3.22, we see that

∂uε
∂νε

(y)− ∂vε
∂νε

(y)

= T (y) · ∇g(y/ε)− T (x0) · ∇g(ŷ/ε) + n(x0) · Aε(ŷ)∇vε(ŷ)− n(y) · Aε(y)∇vε(y)

= T (y) · ∇y

{
εg(y/ε)− εg(ŷ/ε)

}
− Ti`(y) · ∇y

{
fi`(y)

}
+O(|y − x0|),

where

fi`(y) =

ˆ 1

0

aεij(y)
∂vε
∂yj

(
sy + (1− s)ŷ

)
ds ((y − x0) · n)n`

is given by Lemma 3.22. We have also used the observation,

T (x0) · ∇y

{
εg(ŷ/ε)

}
= T (x0) · ∇g(ŷ/ε),

in the computation above. This, together with (3.1.10), gives

I(x, z) = I1 + I2 + I3,

where

I1 = −
ˆ
∂Ω

T (y) · ∇y

{
η(y)

(
Nεx, y)−Nε(z, y)

)}{
εg(y/ε)− εg(ŷ/ε)

}
dσ(y),

I2 =

ˆ
∂Ω

Ti`(y) · ∇y

{
η(y)

(
Nεx, y)−Nε(z, y)

)}
fi`(y) dσ(y),

|I3| ≤ C

ˆ
∂Ω

|η(y)||Nε(x, y)−Nε(z, y)||y − x0| dσ(y).
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Since |x− z| ≤ (1/2)δ(x) ≤ (1/2)|y − x| for any y ∈ ∂Ω, by (3.1.4), we obtain

|I1| ≤ C

ˆ
∂Ω

|∇y

{
η(y)

(
Nε(x, y)−Nε(z, y)

)}
||y − x0|2 dσ(y)

≤ C
√
εδ(x)

ˆ
4
√
ε≤|y−x0|≤5

√
ε

dσ(y)

|y − x|d−1
+ C δ(x)

ˆ
|y−x0|≤C

√
ε

|y − x0|2

|y − x|d
dσ(y),

(3.4.14)
where we have used the fact |y− ŷ| ≤ C|y− x0|2 and |∇η(y)| ≤ Cε−1/2. For the first
term in the RHS of (3.4.14), we note that if |y − x0| ≥ 4

√
ε, then

|y − x| ≥ |y − x0| − |x− x0| ≥ 4
√
ε− 3r ≥

√
ε.

For the second term, we use |y − x0| ≤ |y − x|+ r. This leads to

|I1| ≤ C
√
ε δ(x) + Cδ(x)

ˆ
|y−x0|≤C

√
ε

dσ(y)

|y − x|d−2
+ Cr2δ(x)

ˆ
∂Ω

dσ(y)

|y − x|d

≤ C
√
ε δ(x) + Cr2

≤ Cr
√
ε.

Since |fi`| ≤ C|y − x0|2, the estimate of I2 is the exactly same as that of I1.
Finally, to handle I3, we use (3.1.4) as well as |y−x0| ≤ |y−x|+r again to obtain

|I3| ≤ C

ˆ
|y−x0|≤C

√
ε

|x− z|
|y − x|d−1

{
|y − x|+ r

}
dσ(y)

≤ C r
√
ε.

This completes the proof.

To estimate J(x, z) in (3.4.9), we split it as J(x, z) = J1 − J2, where

J1(x, z) =

ˆ
∂Ω

(1− η(y))
{
Nε(x, y)−Nε(z, y)

}∂uε
∂νε

dσ(y),

J2(x, z) =

ˆ
∂Ω

(1− η(y))
{
Nε(x, y)−Nε(z, y)

}∂vε
∂νε

dσ(y).

(3.4.15)

Lemma 3.24. Let J1(x, z) be given by (3.4.15). Suppose that x, z ∈ B(x0, 3r) ∩ Ω
for some ε ≤ r ≤

√
ε and |x− z| ≤ (1/2)δ(x), where δ(x) = dist(x, ∂Ω). Then

|J1(x, z)| ≤ C r
√
ε. (3.4.16)

Proof. Using the Neumann condition for uε and (3.1.10), we see that

J1(x, z) = −
ˆ
∂Ω

T · ∇y

{
(1− η(y))

(
Nε(x, y)−Nε(z, y)

)}
εg(y/ε) dσ(y).

It follows that

|J1(x, z)| ≤ Cε‖g‖∞
ˆ
∂Ω

|∇y

{
(1− η(y))

(
Nε(x, y)−Nε(z, y)

)}
| dσ(y)

≤ C
√
ε|x− z|+ Cε|x− z|

ˆ
|y−x0|≥5

√
ε

dσ(y)

|x− y|d

≤ C r
√
ε,

where we have used (3.1.4) for the second inequality.
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It remains to estimate J2(x, z).

Lemma 3.25. Let J2(x, z) be given by (3.4.15). Suppose that x, z ∈ B(x0, 3r) ∩ Ω
for some ε ≤ r ≤

√
ε and |x− z| ≤ (1/2)δ(x), where δ(x) = dist(x, ∂Ω). Then

|J2(x, z)| ≤ C r
√
ε
{

1 + | ln ε|
}
. (3.4.17)

Proof. It follows by the divergence theorem that

J2(x, z) = −
ˆ

Ω

(1− η(y))∇y

{
Nε(x, y)−Nε(z, y)

}
· A(y/ε)∇vε(y) dy

−
ˆ

Ω

{
Nε(x, y)−Nε(z, y)

}
∇y(1− η(y)) · A(y/ε)∇vε(y) dy

=

ˆ
Ω

A∗(y/ε)∇y

{
Nε(x, y)−Nε(z, y)

}
· ∇y(1− η(y)) (vε(y)− E) dy

−
ˆ

Ω

{
Nε(x, y)−Nε(z, y)

}
∇y(1− η(y)) · A(y/ε)∇vε(y) dy,

where E ∈ Rm is a constant to be chosen. Here we have used Lε(vε) = 0 in Ω for the
first equality and

L∗ε
{
Nε(x, ·)−Nε(z, ·)

}
= 0 in Ω \B(x0, 3

√
ε),

∂

∂ν∗ε

{
Nε(x, ·)−Nε(z, ·)

}
= 0 on ∂Ω

for the second. As before, we apply the estimates in (3.1.4) to obtain

|J2(x, z)| ≤ C|x− z|
(
√
ε)d+1

ˆ
B(x0,5

√
ε)∩Hdn(a)

|vε − E|+
C|x− z|

(
√
ε)d

ˆ
B(x0,5

√
ε)∩Hdn(a)

|∇vε|

≤ Cr

(
√
ε)d

ˆ
B(x0,5

√
ε)∩Hdn(a)

|∇vε|,

(3.4.18)
where we have chosen E to be the average of vε over B(x0, 5

√
ε) ∩Hd

n(a) and used a
Poincaré type inequality for the last step.

Finally, to estimate the integral in the RHS of (3.4.18), we split the region
B(x0, 5

√
ε) ∩Hd

n(a) into two parts. If |x · n+ a| ≤ ε, we use the estimate
‖∇vε‖∞ ≤ C. If |x · n + a| ≥ ε, we apply the refined estimate (3.4.5). This yields
that

|J2(x, z)| ≤ Cr
√
ε
{

1 + | ln ε|
}
,

which completes the proof.

We are now ready to give the proof of Theorem 3.21.

Proof of Theorem 3.21. Let ε ≤ r ≤
√
ε. In view of Lemmas 3.23, 3.24 and 3.25,

we have proved that if x, z ∈ Ω ∩ B(x0, 3r) and |x − z| < (1/2)δ(x), where δ(x) =
dist(x, ∂Ω), then

|uε(x)− vε(x)− {uε(z)− vε(z)}| ≤ Cr
√
ε
{

1 + | ln ε|
}
. (3.4.19)
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Since Lε(uε − vε) = 0 in Ω, by the interior Lipschitz estimate for Lε [9], it follows
that for any x ∈ B(x0, 2r),

|∇uε(x)−∇vε(x)| ≤ Cr
√
ε
{

1 + | ln ε|
}[
δ(x)

]−1
. (3.4.20)

Thus, if 0 < p < 1,( 
B(x0,2r)∩Ω

|∇(uε − vε)|p
)1/p

≤ C
√
ε
{

1 + | ln ε|
}
. (3.4.21)

Next, we estimate the Cσ(B(x0, 2r) ∩ ∂Ω) norm of

F (y) =
∂uε
∂νε
− ∂vε
∂νε

.

As in the proof of Lemma 3.23, we write

F (y) =
{
T (y) · ∇g(y/ε)− T (x0) · ∇g(ŷ/ε)

}
+
{
n(x0) · A(ŷ/ε)∇w(ŷ/ε)− n(y) · A(y/ε)∇w(y/ε)

}
= F1(y) + F2(y),

where we have used the fact vε(x) = εw(x/ε) and w is a solution of (3.4.3). Using
|y − ŷ| ≤ C|y − x0|2 and ‖∇w‖∞ + ‖∇2w‖∞ ≤ C, it is easy to see that if y ∈
B(x0, 2r) ∩ ∂Ω,

|F1(y)|+ |F2(y)| ≤ C|y − x0|+ Cε−1|y − x0|2 ≤ C ε−1r2, (3.4.22)

where we also used the assumption ε ≤ r for the last step. By extending n(y)
smoothly to a neighborhood of ∂Ω, we may assume that F (y) is defined in
B(x0, c0) ∩Hd

n. A computation shows that

|∇yF (y)| ≤ C
{

1 + ε−1|y − x0|+ ε−2|y − x0|2
}
≤ Cε−2r2, (3.4.23)

where we have used the estimate ‖∇3w‖∞ ≤ C. By interpolation it follows from
(3.4.22) and (3.4.23) that

‖F‖C0,σ(B(x0,2r)∩∂Ω) ≤ C (ε−1r2)1−σ(ε−2r2)σ = C ε−1−σr2 (3.4.24)

for any σ ∈ (0, 1).
Finally, since Lε(uε − vε) = 0 in Ω ∩ B(x0, 2r), we apply the boundary Lipschitz

estimate for solutions with Neumann data [24, 8] to obtain

‖∇(uε − vε)‖L∞(Ω∩B(x0,r)) ≤

C

( 
B(x0,2r)∩Ω

|∇(uε − vε)|p
)1/p

+ C‖F‖L∞(B(x0,2r)∩∂Ω) + Crσ‖F‖C0,σ(B(x0,2r)∩∂Ω)

≤ C
√
ε
{

1 + | ln ε|
}

+ Cε−1r2 + Cε−1−σr2+σ

≤ C
√
ε
{

1 + | ln ε|
}

+ Cε−1−σr2+σ.

This completes the proof.
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Recall that the function ψ∗βε,k = (ψ∗1βε,k (y), . . . , ψ∗mβε,k (y) in (3.1.25) is a solution of
the Neumann problem

L∗ε(ψ
∗β
ε,k) = 0 in Ω,

∂

∂ν∗ε

{
ψ∗βε,k

}
= −1

2
(ni(x)e` − n`(x)ei) · ∇fβ`ik(x/ε) on ∂Ω,

(3.4.25)

where the 1-periodic functions fβ`ik ∈ C∞(Td;Rm) are given by (3.1.30). For each
x0 ∈ ∂Ω fixed and satisfying (2.4.1), in view of Theorem 3.21, we may approximate
this function in a small neighborhood of x0 by a solution of

L∗ε(φ
∗β,x0
ε,k ) = 0 in Hd

n(a),

∂

∂ν∗ε

{
φ∗β,x0ε,k

}
= −1

2
(nie` − n`ei) · ∇fβ`ik(x/ε) on ∂Hd

n(a),
(3.4.26)

where n = n(x0) and Hd
n(a) is the tangent plane of ∂Ω at x0. Recall that by a change

of variables, a solution of (3.4.26) is given by

φαβ,x0ε,k (x) = εV ∗αβ,nk

(
x− (x · n+ a)n

ε
,−x · n+ a

ε

)
, (3.4.27)

where V ∗ = V ∗β,nk (θ, t) = (V ∗1β,nk (θ, t), . . . , V ∗mβ,nk (θ, t)) is the smooth solution of
(
NT∇θ

∂t

)
·MTA∗(θ − tn)M

(
NT∇θ

∂t

)
V ∗ = 0 in Td × R+,

− ed+1 ·MTA∗(θ)M

(
NT∇θ

∂t

)
V ∗ = −1

2
(nie` − n`ei) · ∇θf

β
lik on Td × {0},

(3.4.28)
given by Remark 3.10. As a result, we may deduce the following from Theorem 3.21.

Theorem 3.26. Let ε ≤ r ≤
√
ε and σ ∈ (0, 1/2). Then for any x ∈ B(x0, r) ∩ Ω,∣∣∣∇(Ψ∗αβε,k (x)− Pαβ

k (x)− εχ∗αβk

(x
ε

)
− εV ∗αβ,nk

(
x− (x · n+ a)n

ε
,−x · n+ a

ε

)) ∣∣∣
≤ C
√
ε
{

1 + | ln ε|
}

+ Cε−1−σr2+σ,
(3.4.29)

where C depends only on d, m, σ, µ, Ω and ‖A‖Ck(Td) for some k = k(d) > 1.

3.5 Estimates of the homogenized data

Observe that by (3.4.27),

Tij(x0) · ∇xφ
∗αβ,x0
ε,k (x) = T (x0) · (I − n⊗ n,−n)

(
∇θ

∂t

)
V ∗αβ,nk

(x
ε
, 0
)

= Tij(x0) · ∇θV
∗αβ,n
k

(x
ε
, 0
)
,

(3.5.1)
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where x ∈ ∂Hd
n(a) and we have used the fact Tij(x0) · n(x0) = 0. For x ∈ ∂Ω, define

g̃βk (x) = Tij(x) ·
〈
∇θ(V

∗αβ,n
k + χ∗αβk )(·, 0)gαij(x, ·)

〉
+ (Tij · ∇x)xk〈gβij(x, ·)〉

= Tij(x) ·
ˆ
Td

(I − n⊗ n)∇θ(V
∗αβ,n
k + χ∗αβk )(θ, 0)gαij(x, θ) dθ

+ (niδjk − njδik)
ˆ
Td
gβij(x, θ)dθ

= Tij(x) ·
ˆ
Td

(
ekδ

αβ +∇θχ
∗αβ
k (θ) +∇θV

∗αβ
k (θ, 0)

)
gαij(x, θ) dθ,

(3.5.2)

where n = n(x). Using the estimate ‖(I − n⊗ n)∇θV
∗‖ ≤ C in Proposition 3.11, we

obtain ‖g̃‖∞ ≤ C‖g‖∞.
Let

vγε (x) = −
ˆ
∂Ω

(
Tij(y) · ∇y

)
Ψ∗αβε,k (y) · ∂

∂yk

{
Nγβ

0 (x, y)
}
· gαij(y, y/ε) dσ(y) (3.5.3)

be the first term in the RHS of (3.1.17). In the next section we will show that as
ε→ 0,

vγε (x)→ vγ0 (x) = −
ˆ
∂Ω

∂

∂yk

{
Nγβ

0 (x, y)
}
g̃βk (y) dσ(y). (3.5.4)

Fix 1 ≤ γ ≤ m and 1 ≤ k ≤ d. Using

ninj â
∗αβ
ij

∂

∂yk

{
Nγβ

0 (x, y)
}

= niâ
∗αβ
ij

(
(njek − nkej) · ∇y

)
Nγβ

0 (x, y) + nk

(
∂

∂ν∗0(y)

{
Nγ

0 (x, y)
})α

,

(3.5.5)

where Nγ
0 (x, y) = (Nγ1

0 (x, y), · · · , Nγm
0 (x, y)), we may write

∂

∂yk

{
Nγβ

0 (x, y)
}

= h∗βαniâ
∗αt
ij

(
(njek − nkej) · ∇y

)
Nγt

0 (x, y)− h∗βγnk|∂Ω|−1, (3.5.6)

where h∗(y) = (h∗αβ(y)) is the inverse of the m ×m matrix (â∗αβij ninj) and we have
used the fact that the conormal derivative of the matrix of Neumann functions is
−|∂Ω|−1Im×m. It follows that

vγ0 (x) =−
ˆ
∂Ω

[
(njek − nkej) · ∇y

]
Nγt

0 (x, y) · h∗βαniâ∗αtij g̃
β
k (y) dσ(y)

+

 
∂Ω

h∗βγnk(y)g̃βk (y) dσ(y)

=

ˆ
∂Ω

Nγt
0 (x, y)

[
(njek − nkej) · ∇y

](
niâ

tα
ji h

αβ g̃βk (y)
)
dσ(y) + constant,

(3.5.7)
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where h = (h∗)∗ = (hαβ) is the inverse of the matrix (âαβij ninj). This shows that v0 is
a solution of the following Neumann problem,

L0(v0) = 0 in Ω,(
∂v0

∂ν0

)γ
=
(
Tjk · ∇

)(
niâ

γα
ji h

αβ g̃βk (y)
)

on ∂Ω.
(3.5.8)

Thus the homogenized data gγjk in (1.2.7) is given by

gγjk = niâ
γα
ji h

αβ g̃βk

= niâ
γα
ji h

αβT`r ·
ˆ
Td

(
ekδ

νβ +∇θχ
∗νβ
k (θ) +∇θV

∗νβ
k (θ, 0)

)
gν`r(x, θ) dθ,

(3.5.9)

where (hαβ) is the inverse of the matrix (âαβij ninj).
The rest of this section is devoted to the proof of the following.

Theorem 3.27. Let x, y ∈ ∂Ω and |x− y| ≤ c0. Suppose that n(x) and n(y) satisfy
the Diophantine condition (2.4.1) with constants κ(x) and κ(y), respectively. Let
g = (gβk) be defined by (3.5.9). Then, for any σ ∈ (0, 1),

|g(x)− g(y)| ≤ Cσ|x− y|
κ1+σ

sup
z∈Td
‖g(·, z)‖C1(∂Ω), (3.5.10)

where κ = max(κ(x), κ(y)) and Cσ depends only on d, m, σ, µ, and ‖A‖Ck(Td) for
some k = k(d) > 1.

Remark 3.28. The estimate in (3.5.10) is not optimal. In Chapter 4, we will use a
more delicate argument to improve the estimate to

|g(x)− g(y)| ≤ Cσ|x− y|
κσ

sup
z∈Td
‖g(·, z)‖C1(∂Ω).

Nevertheless, (3.5.10) is sufficient for us to establish the nearly optimal convergence
rates for all d ≥ 3.

Assume that n, ñ ∈ Sn−1 satisfy the condition (2.4.1). Choose two orthogonal
matrices Mn, Mñ such that Mn(ed) = −n, Mñed = −ñ and |Mn −Mñ| ≤ C|n − ñ|.
Let Nn and Nñ denote the d× (d− 1) matrices of the first d− 1 columns of Mn and
Mñ, respectively. Let V ∗n (θ, t) and V ∗ñ (θ, t) be the corresponding solutions of (3.4.28).
We will show thatˆ

Td
|NT

n∇θ

(
V ∗n (θ, 0)− V ∗ñ (θ, 0)

)
| dθ ≤ Cσ|n− ñ|

κ1+σ
, (3.5.11)

where κ > 0 is the constant in the Diophantine condition (2.4.1) for ñ. Using NnN
T
n =

I − n ⊗ n, NñN
T
ñ = I − ñ ⊗ ñ, and the estimate |∇θV

∗
ñ | ≤ Cκ−1 from Proposition

3.11, it is not hard to see that (3.5.10) follows from (3.5.11). Furthermore, let

W (θ, t) = V ∗n (θ, t)− V ∗ñ (θ, t). (3.5.12)
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Since
ˆ
Td
|NT

n∇θW (θ, 0)| dθ ≤
ˆ 1

0

ˆ
Td
|NT

n∇θW | dθdt+

ˆ 1

0

ˆ
Td
|NT

n∇θ∂tW | dθdt,

it suffices to show that
ˆ 1

0

ˆ
Td

{
|NT

n∇θW |2 + |∇θ∂tW |2
}
dθdt ≤ Cσ|n− ñ|2

κ2+σ
, (3.5.13)

for any σ ∈ (0, 1).
Let

B∗n(θ, t) = MT
n A
∗(θ − tn)Mn and B∗ñ(θ, t) = MT

ñ A
∗(θ − tñ)Mñ.

To prove (3.5.13), as in the case of Dirichlet condition [21, 7], we first note that W is
a solution of the Neumann problem,

−
(
NT
n∇θ

∂t

)
·B∗n

(
NT
n∇θ

∂t

)
W =

(
NT
n∇θ

∂t

)
G+H in Td × R+,

− ed+1 ·B∗n
(
NT
n∇θ

∂t

)
W = h+ ed+1 ·G on Td × {0},

(3.5.14)

where G = G1 +G2 , H, and h are given by

G1 = B∗n

(
(Nn −Nñ)T∇θ

0

)
V ∗ñ ,

G2 =
(
B∗n −B∗ñ

)(NT
ñ∇θ

∂t

)
V ∗ñ ,

H =

(
(Nn −Nñ)T∇θ

0

)
B∗ñ

(
NT
ñ∇θ

∂t

)
V ∗ñ ,

h = −1

2

[
(ni − ñi)e` − (n` − ñ`)ei

]
· ∇θfi`.

(3.5.15)

Note that |∂kt ∂αθ (B∗n − B∗ñ)| ≤ C(1 + t)|n− ñ|. This, together with Proposition 3.11,
gives

|∂kt ∂αθG1(θ, t)| ≤ C|n− ñ|
κ(1 + κt)`

, (3.5.16)

|∂kt ∂αθG2(θ, t)| ≤ C(t+ 1)|n− ñ|
(1 + κt)`

, (3.5.17)

|∂kt ∂αθH(θ, t)| ≤ C|n− ñ|
(1 + κt)`

, (3.5.18)

for any α, k, `, where C depends on d, m, α, k, ` and A.
To deal with the growth factor t+ 1 in (3.5.17) as well as the term H, we rely on

the following weighted estimates.
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Lemma 3.29. Suppose that n ∈ Sn−1 satisfies the Diophantine condition (2.4.1). Let
U be a smooth solution of

−
(
NT
n∇θ

∂t

)
·B∗n

(
NT
n∇θ

∂t

)
U =

(
NT
n∇θ

∂t

)
F in Td × R+,

− ed+1 ·B∗n
(
NT
n∇θ

∂t

)
U = ed+1 · F on Td × {0}.

(3.5.19)

Assume that

sup
t>0

{
(1 + t)‖∇θ,tU(·, t)‖L∞(Td) + (1 + t)‖F (·, t)‖L∞(Td)

}
<∞. (3.5.20)

Then, for any −1 < α < 0,
ˆ ∞

0

ˆ
Td

{
|NT

n∇θU |2 + |∂tU |2
}
tα dθdt ≤ Cα

ˆ ∞
0

ˆ
Td
|F |2 tα dθdt, (3.5.21)

where Cα depends only on d, m, µ, α as well as some Hölder norm of A.

Proof. We will reduce the weighted estimate (3.5.21) to the analogous estimates we
proved in §3.3 in a half-space. Let

u(x) = U(x− (x · n)n,−x · n) and f(x) = F (x− (x · n)n,−x · n).

Then u is a solution of the Neumann problem,{
−div(A(x)∇u) = div(f) in Hd

n(0),

n · A(x)∇u = −n · f on ∂Hd
n(0).

(3.5.22)

It follows from the estimate (3.3.32) that

1

Rd−1

ˆ
ΩR

|NT
n∇θU(x− (x · n)n,−x · n)|2 |x · n|α dx

+
1

Rd−1

ˆ
ΩR

|∂tU(x− (x · n)n,−x · n)|2 |x · n|α dx

≤ CRα+1−d
ˆ

Ω2R

|∇u|2 dx+
C

Rd−1

ˆ
Ω2R

|F (x− (x · n)n,−x · n)|2 |x · n|α dx,

(3.5.23)
where

ΩR =
{
x ∈ Hd

n(0) : |x− (x · n)n| ≤ R and |x · n| ≤ 2R
}
.

Next, we compute the limit for each term in (3.5.23), as R → ∞. In view of
(3.5.20) it is clear that the first term in the RHS of (3.5.23) goes to zero. For the
second term in the RHS of (3.5.23), we write it as

C

ˆ 2R

0

tα

{
1

Rd−1

ˆ
x·n=t
|x+tn|<R

|F (x+ tn, t)|2 dσ(x)

}
dt. (3.5.24)
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Since F (θ, t) is 1-periodic in θ and n satisfies the Diophantine condition,

1

Rd−1

ˆ
x·n=t
|x+tn|<R

|F (x+ tn, t)|2 dσ(x)→ Cd

ˆ
Td
|F (θ, t)|2 dθ (3.5.25)

for each t > 0, as R → ∞. With the assumption (3.5.20) at our disposal, we apply
the Dominated Convergence Theorem to deduce that the last integral in (3.5.23)
converges to

Cd

ˆ ∞
0

ˆ
Td
|F (θ, t)|2 tα dθdt.

A similar argument also shows that the LHS of (3.5.23) converges to

Cd

ˆ ∞
0

ˆ
Td

{
|NT

n∇θU |2 + |∂tU |2
}
tα dθdt.

As a result, we have proved the estimate (3.5.21).

Remark 3.30. The same argument as in the proof of Lemma 3.29 also gives a weighted
estimate for Dirichlet problem. More precisely, suppose that n ∈ Sn−1 satisfies the
Diophantine condition (2.4.1). Let U be a smooth solution of−

(
NT
n∇θ

∂t

)
·B∗n

(
NT
n∇θ

∂t

)
U =

(
NT
n∇θ

∂t

)
F +H in Td × R+,

U = 0 on Td × {0}.
(3.5.26)

Assume that

sup
t>0

(1 + t)
{
‖∇θ,tU(·, t)‖L∞(Td) + ‖F (·, t)‖L∞(Td) + (1 + t)‖H(·, t)‖L∞(Td)

}
<∞.

Then, for any −1 < α < 0,

ˆ ∞
0

ˆ
Td

{
|NT

n∇θU |2 + |∂tU |2
}
tα dθdt

≤ Cα

ˆ ∞
0

ˆ
Td

{
|F |2 + |H|2t2

}
tα dθdt,

(3.5.27)

where Cα depends only on d, m, µ, α as well as some Hölder norm of A. This weighted
estimate will also be used in the next chapter to establish the regularity estimate of
the homogenized boundary data for the Dirichlet problem.

Lemma 3.31. Suppose that n ∈ Sn−1 satisfies the Diophantine condition (2.4.1). Let
U be a smooth solution of

−
(
NT
n∇θ

∂t

)
·B∗n

(
NT
n∇θ

∂t

)
U = 0 in Td × R+,

− ed+1 ·B∗n
(
NT
n∇θ

∂t

)
U = h on Td × {0}.

(3.5.28)
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Assume that
sup
t>0

(1 + t)‖∇θ,tU(·, t)‖L∞(Td) <∞. (3.5.29)

Then ˆ 1

0

ˆ
Td

{
|NT

n∇θU |2 + |∂tU |2
}
dθdt ≤ C ‖h‖2

L2(Td). (3.5.30)

Proof. Let u(x) = U(x− (x · n)n,−x · n). Note that u is a solution of the Neumann
problem, −div(A(x)∇u) = 0 in Hd

n(0) and n ·A(x)∇u = h on ∂Hd
n(0). Let uε(x) =

εu(x/ε) and D be the same bounded smooth domain as in the proof of Theorem 3.13.
Since Lε(uε) = 0 in D, it follows that

ˆ
D(ε)

|∇uε|2 dx ≤ C ε

ˆ
∂D

∣∣∣∂uε
∂νε

∣∣∣2 dσ, (3.5.31)

where D(ε) = {x ∈ D : dist(x, ∂D) < ε}. We remark that if D is a Lipschitz domain
and A∗ = A, the large-scale Rellich estimate (3.5.31) was proved in [26] by Rellich
identities. If D is smooth, the symmetry condition is not needed. This may be proved
by using the O(

√
ε) convergence rate in H1(D), as in [35].

By a change of variables and using the assumption (3.5.29), one may deduce from
(3.5.31) that

ˆ
x∈B(0,R)∩Hdn(0)

0<|x·n|<1

|∇u|2 dx ≤ C

ˆ
B(0,2R)∩∂Hdn(0)

|h|2 dσ + o(Rd−1), (3.5.32)

as R → ∞. We now divide both sides of (3.5.32) by Rd−1 and then let R → ∞. As
in the proof of Lemma 3.29, this leads to the desired inequality (3.5.30).

We are now in a position to give the proof of Theorem 3.27.

Proof of Theorem 3.27. Recall that it suffices to prove (3.5.13) with W given by
(3.5.12). To do this we split W as W = W1 + W2 + W3, where W1 is a solution
of (3.5.14) with G = 0 and H = 0, W2 a solution with H = 0 and h = 0, and W3 a
solution with G = 0 and h = 0. In view of Proposition 3.11, we may require that

sup
t>0

(1 + t)`‖∇θ,tWi(·, t)‖L∞(Td) <∞

for i = 1, 2, 3, and for any ` ≥ 1.
To estimate W1, we use Lemma 3.31 to obtain

ˆ 1

0

ˆ
Td

{
|NT

n∇θW1|2 + |∂tW1|2
}
dθdt ≤ C ‖h‖2

L2(Td) ≤ C|n− ñ|2. (3.5.33)
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To handle W2, we use the weighted estimates in Lemma 3.29 with α = σ − 1. This,
together with estimates (3.5.16)-(3.5.18), leads to

ˆ 1

0

ˆ
Td

{
|NT

n∇θW2|2 + |∂tW2|2
}
dθdt

≤ C

ˆ ∞
0

ˆ
Td
|G|2 tσ−1 dθdt

≤ C

ˆ ∞
0

{
(t+ 1)2|n− ñ|2

(1 + κt)4
+
|n− ñ|2

κ2(1 + κt)4

}
tσ−1 dt

≤ C|n− ñ|2

κ2+σ
.

(3.5.34)

Next, we note that by writing H(θ, t) = ∂tH̃(θ, t), where

H̃(θ, t) = −
ˆ ∞
t

H(θ, s)ds,

we may reduce the estimate of W3 to the previous two cases. Indeed, we split W3 as
W31 + W32, where W31 is a solution of (3.5.14) with G = 0, H = 0, h = ed · H̃(θ, 0),

and W32 a solution of (3.5.14) with G = (0, H̃), H = 0, and h = 0. Observe that by
(3.5.18),

‖H̃(·, 0)‖2
L2(Td) ≤

C|n− ñ|2

κ2

|∂kt ∂αθ H̃(θ, t)| ≤ C|n− ñ|
κ(1 + κt)`

,

for any α, k and `. As in the cases of W1 and W2, by Lemmas 3.29 and 3.31, we
obtain ˆ 1

0

ˆ
Td

{
|NT

n∇θW3|2 + |∂tW3|2
}
dθdt ≤ C|n− ñ|2

κ2+σ
.

Consequently, we have proved that

ˆ 1

0

ˆ
Td

{
|NT

n∇θW |2 + |∂tW |2
}
dθdt ≤ C|n− ñ|2

κ2+σ
. (3.5.35)

Finally, we note that by differentiating the system (3.5.14), the function ∂αW
(with |α| = 1) is a smooth solution to a Neumann problem of same type as W . In
particular, let Nn,k denote the kth column of Nn, and define the kth component of
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NT
n∇θ by ∇k = NT

n,k · ∇θ, where 1 ≤ k ≤ d− 1. We apply ∇k to (5.3.21) and obtain

−
(
NT
n∇θ

∂t

)
·B∗n

(
NT
n∇θ

∂t

)
∇kW =

(
NT
n∇θ

∂t

)
· ∇kG+∇kH

+

(
NT
n∇θ

∂t

)
· ∇kB

∗
n

(
NT
n∇θ

∂t

)
W

in Td × R+,

−ed+1 ·B∗n
(
NT
n∇θ

∂t

)
∇kW = ed+1 · ∇kG+∇kh

+ ed+1 · ∇kB
∗
n

(
NT
n∇θ

∂t

)
W

on Td × {0}.

(3.5.36)

Let η(t) be a cut-off function such that η(t) = 1 for t ∈ [0, 1], η(t) = 0 for t ∈ [2,∞),
0 ≤ η(t) ≤ 1 and |∇η| ≤ C. Now by integrating (3.5.36) against ∇k(Wη2), we derive
from integration by parts that

ˆ 1

0

ˆ
Td

(
|NT

n∇θ∇kW |2 + |∂t∇kW |2
)
dθdt

≤ C

ˆ 2

0

ˆ
Td

(
|∇kG|2 + |∇kH|2 + |NT

n∇θW |2 + |∂tW |2
)
dθdt+ C‖h‖2

H1(Td)

≤ C|n− ñ|2

κ2+σ
,

where we have used the fact |∇kW | ≤ |∇T
n∇θW |. Consequently,

ˆ 1

0

ˆ
Td

(
|NT

n∇θ ⊗NT
n∇θW |2 + |∂tNT

n∇θW |2
)
dθdt ≤ C|n− ñ|2

κ2+σ
,

which finishes the proof of (3.5.13).

3.6 A partition of unity

For x ∈ ∂Ω, recall that

κ(x) = sup
{
κ ∈ [0, 1] : the Diophantine condition (2.4.1) holds

for n(x) with constant κ
}
.

(3.6.1)

Lemma 2.9 shows that 1/κ(x) belongs to the space Ld−1,∞(∂Ω). This means that
there exists C > 0 such that

|
{
x ∈ ∂Ω :

[
κ(x)

]−1
> λ

}
| ≤ C λ1−d for any λ > 0. (3.6.2)

53



Proposition 3.32. Let 0 < q < d− 1. Then for any x ∈ ∂Ω and 0 < r < diam(Ω),( 
B(x,r)∩∂Ω

(
κ(y)

)−q
dσ(y)

)1/q

≤ C

r
, (3.6.3)

where C depends only on d, q and Ω.

Proof. Note that

ˆ
B(x,r)∩∂Ω

(
κ(y)

)−q
dσ(y) = q

ˆ ∞
0

λq−1|
{
x ∈ B(x, r) ∩ ∂Ω :

[
κ(x)

]−1
> λ

}
| dλ

≤ C

ˆ Λ

0

λq−1 · rd−1 dλ+ C

ˆ ∞
Λ

λq−d dσ

≤ Crd−1 · Λq + CΛq−d+1,

where we have used (3.6.2) for the first inequality. The proof is finished by optimizing
Λ with Λ = r−1.

In this section we construct a partition of unity for ∂Ω, which is adapted to
the function κ(x). We mention that a similar partition of unity, which plays an
important role in the analysis of the oscillating Dirichlet problem, was given in [7].
Here we provide a more direct Lp-based approach.

We first describe such construction in the flat space.

Lemma 3.33. Let Q0 be a cube in Rd−1 and F ∈ Lp(12Q0) for some p > d− 1. Let
τ > 0 be a number such that(ˆ

12Q0

|F |p
)1/p

>
τ[

`(Q0)
]1− d−1

p

, (3.6.4)

where `(Q0) denotes the side length of Q0. Then there exists a finite sequence {Qj}
of dyadic sub-cubes of Q0 such that the interiors of Qj’s are mutually disjoint,

Q0 = ∪Qj, (3.6.5)

(ˆ
12Qj

|F |p
)1/p

≤ τ[
`(Qj)

]1− d−1
p

, (3.6.6)

(ˆ
12Q+

j

|F |p
)1/p

>
τ[

`(Q+
j )
]1− d−1

p

, (3.6.7)

where Q+
j denotes the dyadic parent of Qj, i.e., Qj is obtained by bisecting Q+

j once.
Moreover, if 4Qj ∩ 4Qk 6= ∅, then

(1/2)`(Qk) ≤ `(Qj) ≤ 2`(Qk). (3.6.8)
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Proof. The lemma is proved by using a stoping time argument (Calderón-Zygmund
decomposition). We begin by bisecting the sides of Q0 and obtaining 2d−1 dyadic
sub-cubes {Q′}. If a cube Q′ satisfies(ˆ

Q′
|F |p

)1/p

≤ τ[
`(Q′)

]1− d−1
p

(3.6.9)

we stop and collect the cube. Otherwise, we repeat the same procedure on Q′. Since
the RHS of (3.6.9) goes to ∞ as `(Q′) → 0, the procedure is stopped in a finite
time. As a result, we obtain a finite number of sub-cubes with mutually disjoint
interiors satisfying (3.6.5)-(3.6.7). We point out this decomposition was performed
in the whole space in [33] in the study of negative eigenvalues for the Pauli operator.
The inequalities in (3.6.8) were proved in [33] by adapting an argument found in [14].
The same argument works equally well in the setting of a finite cube Q0. We omit
the details.

Remark 3.34. Note that the condition for selecting cubes {Qj} in the above lemma
is equivalent to ( 

12Qj

|F |p
)1/p

' τ

`(Qj)
. (3.6.10)

In particular, we may let p → ∞ in the above condition and replace the LHS by
‖F‖L∞(12Qj). So (3.6.10) can be roughly interpreted as follows: around a point in
Q0 with F being relatively large, the decomposition will be finer with relative small
cubes; while if F is relatively small over a particular region, then we need to enlarge
these cubes so that we may still expect relatively large F at some points in the
enlarged cubes.

Fix x0 ∈ ∂Ω. Let c0 > 0 be sufficiently small so that B(x0, 10c0

√
d) ∩ ∂Ω is given

by the graph of a smooth function in a coordinate system, obtained from the standard
system through rotation and translation. Let Hd

n(a) denote the tangent plane for ∂Ω
at x0, where n = n(x0) and a = x0 · n. For x ∈ B(x0, 5c0

√
d) ∩ ∂Ω, let

P (x;x0) = x− ((x− x0) · n)n (3.6.11)

denote its projection to Hd
n(a). The projection P is one-to-one in B(x0, 10c0

√
d)∩∂Ω.

To construct a partition of unity for B(x0, c0) ∩ ∂Ω, adapted to the function κ(x),
we use the inverse map P−1 to lift a partition on the tangent plane, given in Lemma
3.33, to ∂Ω. More precisely, fix a cube Q0 on the tangent plane Hd

n(a) such that

B(x0, 5c0

√
d) ∩ ∂Ω ⊂ P−1(Q0) ⊂ B(x,10c0

√
d) ∩ ∂Ω.

We apply Lemma 3.33 to Q0 with the bounded function F (x) = κ(P−1(x)) and some
p > d − 1. For each 0 < τ < c1, this generates a finite sequence of sub-cubes {Qj}
with the properties (3.6.5)-(3.6.8).
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Let xj denote the center of Qj and rj the side length. Let x̃j = P−1(xj) and

Q̃j = P−1(Qj). We will use the notation tQ̃j = P−1(tQj) for t > 0 and call Q̃j a
cube on ∂Ω. Then

Q̃0 = P−1(Q0) = ∪Nj=1Q̃j.

For each Q̃j with j ≥ 1, we choose ηj ∈ C∞0 (Rd) such that 0 ≤ ηj ≤ 1, ηj = 1

on Q̃j, ηj = 0 on ∂Ω \ 2Q̃j, and |∇ηj| ≤ Cr−1
j . Note that by the property (3.6.8),

1 ≤
∑

j ηj ≤ C0 on Q̃0, where C0 is a constant depending only on d and Ω. Let

ϕj(x) =
ηj(x)∑N
k=1 ηk(x)

.

Then
N∑
j=1

ϕj(x) = 1 for any x ∈ Q̃0.

Observe that 0 ≤ ϕj ≤ 1, ϕj ≥ C−1
0 on Q̃j, ϕj = 0 on ∂Ω \ 2Q̃j, and |∇ϕj| ≤ Cr−1

j .
Furthermore, by the property (3.6.9), there are positive constants c1 and c2, depending
only on d, p and Ω, such that( 

12Q̃j

(κ(x))pdσ(x)

)1/p

≤ c1τ

rj
, (3.6.12)

( 
36Q̃j

(κ(x))p dσ(x)

)1/p

≥ c2τ

rj
. (3.6.13)

In particular, since κ ≤ 1, it follows from (3.6.13) that

rj ≥ c2 τ. (3.6.14)

Also, by (3.6.13), there exists some zj ∈ 36Q̃j such that

κ(zj) ≥
c2τ

rj
. (3.6.15)

Proposition 3.35. There exists a constant C, depending only on d, p and Ω, such
that

rj ≤ C
√
τ . (3.6.16)

Proof. By Hölder’s inequality,

1 ≤

( 
12Q̃j

κ−p
′
dσ

)1/p′ ( 
12Q̃j

κp dσ

)1/p

≤ C r−1
j

( 
12Q̃j

κp dσ

)1/p

,

(3.6.17)

where we have used Proposition 3.32 for the last step. Note that the condition
p > d − 1 is equivalent to p′ < d−1

d−2
, which is less or equal to d− 1 if d ≥ 3. In view

of (3.6.12) and (3.6.17) we obtain (3.6.16).
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Proposition 3.36. Let 0 ≤ α < d− 1. Then∑
j

rα+d−1
j ≤ Cα τ

α, (3.6.18)

where Cα depends only on d, p, α and Ω.

Proof. It follows from the first inequality in (3.6.17) and (3.6.12) that

rj ≤ Cτ

( 
12Q̃j

κ−p
′
dσ

)1/p′

. (3.6.19)

LetM∂Ω(f) denote the Hardy-Littlewood maximal function of f on ∂Ω, defined by

M(f)(x) = sup

{ 
B(x,r)∩∂Ω

|f | dσ : 0 < r < diam(Ω)

}
(3.6.20)

for x ∈ ∂Ω. By (3.6.19) we obtain

rαj ≤ Cτα

(
inf

x∈12Q̃j

M∂Ω(κ−p
′
)(x)

)α/p′

(3.6.21)

Hence, ∑
j

rα+d−1
j ≤ Cτα

∑
j

ˆ
Q̃j

[
M∂Ω(κ−p

′
)
]α/p′

≤ Cτα
ˆ
∂Ω

[
M∂Ω(κ−p

′
)
]α/p′

.

Finally, recall that p′ < d−1
d−2

and 0 ≤ α < d−1. Choose t > 1 so that p′ < tα < d−1.
Then ˆ

∂Ω

[
M∂Ω(κ−p

′
)
]α/p′

dσ ≤ C

(ˆ
∂Ω

[
M∂Ω(κ−p

′
)
]αt/p′

dσ

)1/t

≤ C

(ˆ
∂Ω

(κ−1)αtdσ

)1/t

<∞,

where we have used the fact that the operatorM∂Ω is bounded on Lq(∂Ω) for q > 1.
This completes the proof.

3.7 Proof of Theorem 1.1: convergence rate

With the estimates in §3.4,§3.5 and §3.6, the line of argument is similar to that in [7]
for the oscillating Dirichlet problem. Recall that

vγε (x) = −
ˆ
∂Ω

∂

∂yk

{
Nγβ

0 (x, y)
}
·
(
Tij(y) · ∇y

)
Ψ∗αβε,k (y) · gαij(y, y/ε) dσ(y)
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and

vγ0 (x) = −
ˆ
∂Ω

∂

∂yk

{
Nγβ

0 (x, y)
}
g̃βk (y) dσ(y), (3.7.1)

where the function g̃βk is given by (3.5.2). We will show that for any σ ∈ (0, 1),

ˆ
Ω

|vε − v0|2 dx ≤ Cσ ε
1−σ. (3.7.2)

This would imply that if uε and u0 are solutions of (1.2.5) and (1.2.7) respectively,
then there exists some constant E such that

‖uε − u0 − E‖L2(Ω) ≤ Cσ ε
1
2
−σ.

It then follows that

‖uε − u0 −
 

Ω

(uε − u0)‖L2(Ω) ≤ Cσ ε
1
2
−σ,

which gives (1.2.9) in the case
´

Ω
uε =

´
Ω
u0 = 0.

To prove (3.7.2) we first note that by using a partition of unity for ∂Ω, without loss
of generality, we may assume that there exists some x0 ∈ ∂Ω such that for any y ∈ Td,
supp(g(·, y)) ⊂ B(x0, c0), where c0 > 0 is sufficiently small so that B(x0, 10c0

√
d)∩∂Ω

is given by the graph of a smooth function in a coordinate system, obtained from the
standard system by rotation and translation. We construct another partition of unity
for B(x0, 5c0

√
d) ∩ ∂Ω, as described in Section 7, with

τ = ε1−σ, (3.7.3)

adapted to the function κ(x). Thus there exist a finite sequence {ϕj} of C∞0 func-

tions in Rd and a finite sequence {Q̃j} of “cubes” on ∂Ω, such that
∑

j ϕj = 1 on

B(x0, 5c0

√
d) ∩ ∂Ω.

Next, observe that by the estimate |∇yN0(x, y)|+ |∇yNε(x, y)| ≤ C|x− y|1−d,

|vε(x)|+ |v0(x)| ≤ C
{

1 + | ln δ(x)|
}
,

where δ(x) = dist(x, ∂Ω). This implies that∑
j

ˆ
B(x̃j ,Crj)∩Ω

|vε − v0|2 dx ≤ C
∑
j

ˆ
B(x̃j ,Crj)∩Ω

(
1 + | ln δ(x)|

)2
dx

≤ C
∑
j

rdj (1 + | ln rj|)2

≤ Cε1−σ(1 + | ln ε|)2,

(3.7.4)

where we have used Propositions 3.35 and 3.36 (see §3.6 for the definitions of x̃j and
rj). Also note that

| ∪j B(x̃j, Crj)| ≤ C
∑
j

rdj ≤ Cτ, (3.7.5)
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where we have used Proposition 3.36. To estimate the L2 norm of vε− v0 on the set

D = Dε = Ω \ ∪jB(x̃j, Crj), (3.7.6)

we introduce a function

Θt(x) =
∑
j

rd−1+t
j

|x− x̃j|d−1
, (3.7.7)

where 0 ≤ t < d− 1.

Lemma 3.37. Let Θt(x) be defined by (3.7.7). Then, if q ≥ 1 and 0 ≤ qt < d− 1,

ˆ
D

(Θt(x))q dx ≤ C τ qt. (3.7.8)

Proof. Observe that if x /∈ B(x̃j, Crj), then

rd−1
j

|x− x̃j|d−1
≤ C

ˆ
Q̃j

dσ(y)

|x− y|d−1
.

Hence, for x ∈ D,

Θt(x) ≤ C

ˆ
∂Ω

ft(y)

|x− y|d−1
dσ(y)

≤ C

(ˆ
∂Ω

|ft(y)|q

|x− y|d−1
dσ(y)

)1/q

(1 + | ln δ(x)|)1/q′ ,

where ft(y) =
∑

j r
t
jϕj(y), δ(x) = dist(x, ∂Ω), and we have used Hölder’s inequality

for the last step. It follows that
ˆ
D

|Θt(x)|q dx ≤ C

ˆ
∂Ω

|ft(y)|q dσ ≤ C
∑
j

rqtj r
d−1
j ≤ Cτ qt,

where have used Proposition 3.36.

As in the case of Dirichlet problem in [7], we split vε − v0 into several parts,

−
(
vγε (x)− vγ0 (x)

)
=
∑
j

ˆ
∂Ω

∂ykN
γβ
0 (x, y)

{(
Ti`(y) · ∇y

)
Ψ∗αβε,k (y) · gαi`(y, y/ε)− g̃

β
k (y)

}
ϕj(y) dσ(y)

= I1 + I2 + I3 + I4 + I5,
(3.7.9)

where I1, I2, . . . , I5 are defined below and handled separately. We will show that for
k = 1, 2, . . . , 5, ˆ

D

|Ik(x)|2 dx ≤ Cσ ε
1−4σ, (3.7.10)

which, together with (3.7.4), gives (3.7.2), as σ ∈ (0, 1/4) is arbitrary.
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Estimate of I1, where

I1 =
∑
j

ˆ
∂Ω

∂ykN
γβ
0 (x, y)

(
Ti`(y) · ∇y

)(
Ψ∗αβε,k − Φ

∗αβ,zj
ε,k

)
· gαi`(y, y/ε)ϕj(y) dσ(y),

Φ
∗αβ,zj
ε,k (y) = ykδ

αβ + εχ∗αβk (y/ε) + φ
∗αβ,zj
ε,k (y),

(3.7.11)
and zj is given in (3.6.15). Here we use Theorem 3.26 to obtain that for any ρ ∈
(0, 1/2), ∣∣∣∇(Ψ∗αβε,k − Φ

∗αβ,zj
ε,k

)∣∣∣ ≤ C
√
ε
{

1 + | ln ε|
}

+ Cε−1−ρr2+ρ
j , (3.7.12)

for y ∈ 2Q̃j. It follows from (3.7.12) that for x ∈ D,

|I1(x)| ≤ C
√
ε(1 + | ln ε|)

∑
j

rd−1
j

|x− x̃j|d−1
+ Cε−1−ρ

∑
j

r2+ρ+d−1
j

|x− x̃j|d−1
. (3.7.13)

We now use Lemma 3.37 to estimate the L2 norm of I1 on D. The first term in the
RHS of (3.7.13) is harmless. For the second term we use the fact rj ≤ C

√
τ to bound

it by

Cε−1−ρτ
1
2

+ρ
∑
j

r1−ρ+d−1
j

|x− x̃j|d−1
.

Since 2(1− ρ) < d− 1 for d ≥ 3, we obtain

ˆ
D

|I1(x)|2 dx ≤ Cε(1 + | ln ε|)2 + Cε−2−2ρτ 1+2ρτ 2(1−ρ)

≤ C ε1−4σ,

if ρ is sufficiently small.

Estimate of I2, where

I2 =
∑
j

ˆ
∂Ω

∂ykN
γβ
0 (x, y)

(
Tij(y) · ∇y

)(
Φ
∗αβ,zj
ε,k

)
· gαij(y, y/ε)ϕj(y) dσ(y)

−
∑
j

ˆ
∂Hdj

∂ykN
γβ
0 (x, P−1

j (y))
(
Ti`(P

−1
j (y)) · ∇y

)(
Φ
∗αβ,zj
ε,k (y)

)
· gαi`(y, y/ε)ϕj(y) dσ(y),

(3.7.14)

where ∂Hd
j denotes the tangent plane for ∂Ω at zj and P−1

j is the inverse of the

projection map from B(zj, Crj) ∩ ∂Ω to ∂Hd
j . Here we rely on the estimates

|∇2
yN0(x, y)| ≤ C|x− y|−d,

|∇2Φ
∗αβ,zj
ε,k | ≤ Cε−1,

(3.7.15)
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as well as the observation that |y − P−1
j (y)| ≤ Cr2

j for y ∈ B(x̃j, Crj) ∩ ∂Ω. It is not
hard to see that for x ∈ D,

|I2(x)| ≤ C ε−1
∑
j

r2+d−1
j

|x− x̃j|d−1
≤ Cε−1τ

1+ρ
2

∑
j

r1−ρ+d−1
j

|x− x̃j|d−1
, (3.7.16)

which, by Lemma 3.37, leads to (3.7.10) for k = 2.

Estimate of I3, where

I3 =
∑
j

ˆ
∂Hdj

∂ykN
γβ
0 (x, P−1

j (y))
(
Ti`(y) · ∇y

)(
Φ
∗αβ,zj
ε,k

)
· gαi`(y, y/ε)ϕj(y) dσ(y)

−
∑
j

ˆ
∂Hdj

∂ykN
γβ
0 (x, P−1

j (y))
(
Ti`(zj) · ∇y

)(
Φ
∗αβ,zj
ε,k

)
· gαi`(zj, y/ε)ϕj(y) dσ(y).

(3.7.17)
It is easy to see that for x ∈ D,

|I3(x)| ≤ C
∑
j

r1+d−1
j

|x− x̃j|d−1
≤ C τ

ρ
2

∑
j

r1−ρ+d−1
j

|x− x̃j|d−1
,

which may be handled by Lemma 3.37.

Estimate of I4, where

I4 =
∑
j

ˆ
∂Hdj

∂ykN
γβ
0 (x, P−1

j (y))
(
Ti`(zj) · ∇y

)(
Φ
∗αβ,zj
ε,k

)
· gαi`(zj, y/ε)ϕj(y) dσ(y)

−
∑
j

ˆ
∂Hdj

∂ykN
γβ
0 (x, P−1

j (y))g̃βk (zj)ϕj(y) dσ(y).

(3.7.18)
The estimate of I4 uses the fact that for each j, the function(

Ti`(zj) · ∇y

)(
Φ
∗αβ,zj
ε,k

)
· gαi`(zj, y/ε)

is of form U(y/ε), where U(x) is a smooth 1-periodic function whose mean value
is given by g̃βk (zj). Furthermore, the normal to the hyperplane ∂Hd

j is n(zj), which
satisfies the Diophantine condition (2.4.1) with constant

κ(zj) ≥
c τ

rj
.

It then follows from Lemma 2.10 that if x ∈ D,

|I4(x)| ≤ CN(τ−1ε)N
∑
j

rd−1
j

|x− x̃j|d−1
,

for any N ≥ 1. Since τ = ε1−σ, this implies thatˆ
D

|I4(x)|2 dx ≤ CNε
Nσ.
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Estimate of I5, where

I5 =
∑
j

ˆ
∂Hdj

∂ykN
γβ
0 (x, P−1

j (y))gβk(zj)ϕj(y) dσ(y)

−
∑
j

ˆ
∂Ω

∂ykN
γβ
0 (x, y)gβk(y)ϕj(y) dσ(y).

(3.7.19)

Finally, to estimate I5, we use the regularity estimate for g in Theorem 3.27 to
obtain

|g(y)− g(zj)| ≤
Crj[

κ(zj)
]1+ρ ≤

Cr2+ρ
j

τ 1+ρ
,

for any y ∈ B(x̃j, Crj) ∩ ∂Ω, where ρ ∈ (0, 1/2). It follows that for any x ∈ D,

|I5(x)| ≤ C
∑
j

rdj
|x− x̃j|d−1

+ Cτ−1−ρ
∑
j

r2+ρ+d−1
j

|x− x̃j|d−1

≤ C
∑
j

rdj
|x− x̃j|d−1

+ Cτ−
1
2

∑
j

r1−ρ+d−1
j

|x− x̃j|d−1
.

As before, by applying Lemma 3.37 and choosing ρ > 0 sufficiently small, we obtain
the desired estimate for I5. This completes the proof of (3.7.2) and therefore (1.2.9).

Remark 3.38. Let Θt(x) be defined by (3.7.7). It follows from the proof of Proposition
3.36 that for x ∈ D,

Θt(x) ≤ Cτ t
ˆ
∂Ω

[
M∂Ω(κ−q)

]t/q
(y)

|x− y|d−1
dσ(y),

where q = p′ < d−1
d−2

and t ≥ 0. Let uε and u0 be solutions of (1.2.5) and (1.2.7),
respectively. An inspection of our proof of Theorem 1.1 shows that for any σ ∈
(0, 1/2), there exists a neighborhood Ωε of ∂Ω in Ω such that

|Ωε| ≤ C ε1−σ, (3.7.20)

and for x ∈ Ω \ Ωε,

|uε(x)− u0(x)− E| ≤ Cε
1
2
−4σ

ˆ
∂Ω

[
M∂Ω(κ−q)

] 1−ρ
q (y)

|x− y|d−1
dσ(y), (3.7.21)

where 1 < q < d − 1, ρ = ρ(σ) > 0 is small, and E is a constant. The boundary
layer Ωε, which is given locally by the union of B(x̃j, Crj) ∩ Ω, depends only on the
function κ and Ω. Furthermore, if F (x) denotes the integral in (3.7.21), then

|F (x)| ≤ C(1 + | ln δ(x)|)1/s′

ˆ
∂Ω

[
M∂Ω(κ−q)

] s(1−ρ)
q (y)

|x− y|d−1
dσ(y)

1/s

,

62



where q < s(1 − ρ) < d − 1. Since κ−1 ∈ Ls(∂Ω) for any 1 < s < d − 1, M∂Ω(κ−q)
∈ Ls/q(∂Ω) for any q < s < d − 1. It follows that F ∈ Ls(Ω) for any q < s ≤ d − 1.
This, together with (3.7.21),

‖uε − u0 − E‖Ls(Ω\Ωε) ≤ C ε
1
2
−4σ for any 1 < s ≤ d− 1. (3.7.22)

Finally, assume that
´
ω
uε =

´
Ω
u0 = 0. Since ‖uε − u0‖L2(Ω) ≤ Cσ ε

1
2
−σ by

Theorem 1.1, it follows from (3.7.22) that |E| ≤ C ε
1
2
−4σ. As a result, estimates

(3.7.21) and (3.7.22) hold with E = 0.

3.8 Higher-order convergence

In this section we use Theorem 1.1 to establish a higher-order rate of convergence in
the two-scale expansion for the Neumann problem,

Lε(uε) = F in Ω,

∂uε
∂νε

= g on ∂Ω,
(3.8.1)

where F and g are smooth functions. Our goal is to prove the following.

Theorem 3.39. Suppose that A and Ω satisfy the same conditions as in Theorem
1.1. Let uε be the solution of (3.8.1) with

´
Ω
uε = 0, and u0 the solution of the

homogenized problem. Then there exists a function vbl, independent of ε, such that

‖uε − u0 − εχk(x/ε)
∂u0

∂xk
− εvbl‖L2(Ω) ≤ Cσε

3
2
−σ‖u0‖W 3,∞(Ω), (3.8.2)

for any σ ∈ (0, 1/2), where Cσ depends only on d, m, σ, A and Ω. Moreover, the
function vbl is a solution to the Neumann problem

L0(vbl) = F∗ in Ω,

∂vbl

∂ν0

= g∗ on ∂Ω,
(3.8.3)

where F∗ = −cki` ∂3u0
∂xk∂xi∂x`

for some constants cki`, and g∗ satisfies

‖g∗‖Lq(∂Ω) ≤ Cq‖u0‖W 2,∞(Ω), (3.8.4)

for any 1 < q < d− 1.

Proof. For simplicity of exposition we will drop the superscripts in this section. Let
(χk) be the (first-order) correctors, (bk`) be the flux correctors and (φkij) be the
1-periodic functions defined in Lemma 2.1. The second-order correctors (Υk`) with
1 ≤ k, ` ≤ d are defined by

− ∂

∂yi

{
aij
∂Υk`
∂yj

}
= bk` +

∂

∂yi

(
ai`χk

)
in Rd,

Υk` is 1-periodic and

ˆ
Td
Υk` = 0.

(3.8.5)
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Let

wε = uε − u0 − εχεk
∂u0

∂xk
− ε2χεk`

∂2u0

∂xk∂x`
, (3.8.6)

where we have used the notation f ε(x) = f(x/ε). A direct computation shows that

Lε(wε) =− ε
(
φεkijδj` − aεijχεkδj` − aεij

(∂Υk`
∂xj

)ε) ∂3u0

∂xi∂xk∂x`

+ ε2 ∂

∂xi

{
aεijΥ

ε
k`

∂3u0

∂xj∂xk∂x`

}
.

(3.8.7)

Let 
cki` = φkijδj` − aijχkδj` − aij

∂Υk`
∂xj

,

cki` =

 
Td
cki`.

(3.8.8)

Note that by the definition of Υk`,

∂

∂xi

(
cki`
)

= 0.

It follows that there exist 1-periodic functions fmki` with 1 ≤ m, k, i, ` ≤ d such that

cki` − cki` =
∂

∂ym

(
fmki`

)
and fmki` = −fikm`. (3.8.9)

This allows us to rewrite (3.8.7) as

Lε(wε) = −εcki`
∂3u0

∂xi∂xk∂x`
− ε

(
∂fmki`
∂xm

)ε
∂3u0

∂xi∂xk∂x`

+ ε2 ∂

∂xi

{
aεijΥ

ε
k`

∂3u0

∂xj∂xk∂x`

}
.

(3.8.10)

Next we compute the conormal derivative of wε. Again, a direct computation
gives

∂wε
∂νε

= −nibεij
∂u0

∂xj
− εniaεijχεk

∂2u0

∂xj∂xk
− εniaεij

(
∂Υk`
∂xj

)ε
∂2u0

∂xk∂x`

− ε2nia
ε
ijΥ

ε
k`

∂3u0

∂xj∂xk∂x`
.

(3.8.11)

Using (2.1.4) and (3.8.8), we further obtain

∂wε
∂νε

= −εni
∂

∂xk

(
φεkij

∂u0

∂xj

)
+ εnic

ε
ki`

∂2u0

∂xk∂x`
− ε2nia

ε
ijΥ

ε
k`

∂3u0

∂xj∂xk∂x`
(3.8.12)

In view of (3.8.10) and (3.8.12), we split wε −
ffl

Ω
wε as w

(1)
ε + w

(2)
ε + w

(3)
ε + w

(4)
ε ,

where 
Lε(w(1)

ε ) = 0 in Ω,

∂

∂νε

(
w(1)
ε

)
= −εni

∂

∂xk

(
φεkij

∂u0

∂xj

)
on ∂Ω,

(3.8.13)
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Lε(w(2)

ε ) = −εcki`
∂3u0

∂xi∂xk∂x`
in Ω,

∂

∂νε

(
w(2)
ε

)
= εnicki`

∂2u0

∂xk∂x`
on ∂Ω,

(3.8.14)


Lε(w(3)

ε ) = −ε
(
∂fmki`
∂xm

)ε
∂3u0

∂xi∂xk∂x`
in Ω,

∂

∂νε

(
w(3)
ε

)
= εni

(
cεki` − cki`

) ∂2u0

∂xk∂x`
on ∂Ω,

(3.8.15)

and 
Lε(w(4)

ε ) = ε2 ∂

∂xi

{
aεijΥ

ε
k`

∂3u0

∂xj∂xk∂x`

}
in Ω,

∂

∂νε

(
w(4)
ε

)
= −ε2nia

ε
ijΥ

ε
k`

∂3u0

∂xj∂xk∂x`
on ∂Ω.

(3.8.16)

We further require thatˆ
Ω

w(1)
ε =

ˆ
Ω

w(2)
ε =

ˆ
Ω

w(3)
ε =

ˆ
Ω

w(4)
ε = 0. (3.8.17)

To proceed, we first note that by Poincaré inequality, (3.8.17) and energy esti-
mates,

‖w(4)
ε ‖L2(Ω) ≤ C ‖∇w(4)

ε ‖L2(Ω) ≤ C ε2‖∇3u0‖L2(Ω). (3.8.18)

The solution w
(3)
ε may be handled in a similar manner. To see this we use the skew-

symmetry of fmki` in m and i to write the RHS of the equation as

−ε2 ∂

∂xm

(
f εmki`

∂3u0

∂xi∂xk∂x`

)
,

while the Neumann data for w
(3)
ε may be written as

ε2

2

(
ni

∂

∂xm
− nm

∂

∂xi

)(
f εmki`

∂2u0

∂xk∂x`

)
− ε2nif

ε
mki`

∂3u0

∂xk∂x`∂xm
.

As a result, we obtain

‖w(3)
ε ‖L2(Ω) ≤ C‖∇w(3)

ε ‖L2(Ω) ≤ C ε2
{
‖∇3u0‖L2(Ω) + ‖f ε∇2u0‖H 1

2 (∂Ω)

}
≤ Cε

3
2‖u0‖W 3,∞(Ω).

(3.8.19)

Next, we observe that w
(2)
ε may be dealt with by the classical homogenization

results for Lε. Indeed, let v
(2)
0 be the solution of

L0(v
(2)
0 ) = −cki`

∂3u0

∂xi∂xk∂x`
in Ω,

∂v
(2)
0

∂ν0

= nicki`
∂2u0

∂xk∂x`
on ∂Ω,

(3.8.20)
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with
´

Ω
v

(2)
0 = 0. It is well known that

‖w(2)
ε − εv

(2)
0 ‖L2(Ω) ≤ C ε2‖u0‖W 3,∞(Ω). (3.8.21)

It remains to estimate the solution w
(1)
ε , which will be handled by using Theorem

1.1. Observe that by the skew-symmetry of φkij in k and i, the Neumann data of w
(1)
ε

may be written as

−ε
2

(
Tik · ∇

)(
φεkij

∂u0

∂xj

)
, (3.8.22)

where Tik = niek − nkei. This allows us to apply Theorem 1.1 to deduce that

‖wε − εv(1)
0 ‖L2(Ω) ≤ Cσ ε

3
2
−σ‖u0‖W 2,∞(Ω), (3.8.23)

for any σ ∈ (0, 1/2), where v
(1)
0 is a solution of the Neumann problemL0(v
(1)
0 ) = 0 in Ω,

∂

∂ν0

(
v

(1)
0

)
= (Tij · ∇

)
(gij) in ∂Ω,

(3.8.24)

and gij ∈ W 1,q(∂Ω) for any 1 < q < d − 1. We remark that the explicit dependence
on the W 2,∞(Ω) norm of u0 in the RHS of (3.8.23) follows from the proof of Theorem
1.1. The key observation is that the fast variable y in the Neumann data (3.8.22) is
separated from the slow variable x.

Let vbl = v
(1)
0 + v

(2)
0 . In view of (3.8.18), (3.8.19), (3.8.21) and (3.8.23), we have

proved that

‖wε −
 

Ω

wε − εvbl‖L2(Ω) ≤ Cσ ε
3
2
−σ‖u0‖W 3,∞(Ω). (3.8.25)

Finally, we note that since
´

Ω
uε =

´
Ω
u0 = 0,∣∣∣ 

Ω

wε

∣∣∣ ≤ C ε
∣∣∣ ˆ

Ω

χk(x/ε)
∂u0

∂xk
dx
∣∣∣+ Cε2‖∇2u0‖∞

≤ C ε2‖u0‖W 2,∞(Ω),

where the last step follows from the fact that χk is periodic with mean value zero.
This, together with (3.8.25), yields the estimate (3.8.2) and thus completes the proof
of Theorem 3.39.

Copyright c© Jinping Zhuge, 2019.
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Chapter 4 Dirichlet problems

In this chapter, we study the boundary layer problems with oscillating Dirichlet
boundary conditions, {

Lε(uε) = 0 in Ω,

uε = f(x, x/ε) on ∂Ω.

This problem has been studied in [21, 7, 42]. For operators with constant coefficients,
the optimal convergence rates were shown in [5]. For oscillating coefficients, the
optimal convergence rates for lower dimensions were claimed in [38] without a concrete
proof. In this chapter, we will give a complete proof for the Dirichlet problem for
all dimensions in strictly convex domains, which is a reduced version of the proof in
[42] where we studied the Dirichlet problem in more general (non-convex) domains
of finite type.

4.1 Dirichlet correctors

We introduce the matrix of Dirichlet boundary correctors Φε = Φβ
ε,j = (Φ1β

ε,j,Φ
2β
ε,j, . . . ,Φ

mβ
ε,j )

associated with Lε in a bounded domain Ω. Indeed, for each 1 ≤ j ≤ d, 1 ≤ β ≤ m,
Φβ
ε,j is the solution of {

LεΦβ
ε,j(x) = 0 in Ω,

Φβ
ε,j(x) = P β

j (x) on ∂Ω.

Let Ω be a bounded C2,σ domain and σ ∈ (0, 1). The matrix of Poisson kernel
PΩ,ε : Ω× ∂Ω 7→ Rm×m, associated with Lε in Ω, is defined by

Pαβ
Ω,ε(x, y) = −n(y) · aζβ(y/ε)∇yG

αζ
Ω,ε(x, y),

where n(y) is the unit outer normal and GΩ,ε is the matrix of Green’s function asso-
ciated with Lε in Ω. The following uniform estimates in [9] will be useful,

|PΩ,ε(x, y)| ≤ C

|x− y|d−1
, (4.1.1)

and

|PΩ,ε(x, y)| ≤ Cdist(x, ∂Ω)

|x− y|d
. (4.1.2)

Let PΩ be the Poisson kernel associated with the homogenized operator L0 in Ω.
Clearly, PΩ possesses the same estimates (4.1.1) and (4.1.2).

Recall that the two-scale expansion of the Poisson kernel of Lε in Ω was established
in [25],

Pαβ
Ω,ε(x, y) = Pαζ

Ω (x, y)ωζβε (y) +Rαβ
ε (x, y) for x ∈ Ω, y ∈ ∂Ω, (4.1.3)
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where Rε is the remainder term satisfying

|Rε(x, y)| ≤ Cε ln(2 + ε−1|x− y|)
|x− y|d

.

The highly oscillating factor ωε(y) in (4.1.3) is given by

ωζβε (y) = hζν(y) · nk(y)n`(y)
∂

∂y`
Φ∗ρνε,k (y) · aρβij (y/ε)ni(y)nj(y), (4.1.4)

and h(y) is the inverse matrix of âij(y)ni(y)nj(y).
Let uε be the solution of (1.2.11). By Poisson integral formula, we have

uε(x) =

ˆ
∂Ω

PΩ,ε(x, y)f(y, y/ε)dσ(y).

Note that (4.1.2) implies the Agmon-type maximum principle ‖uε‖L∞(Ω) ≤ C‖f‖L∞(∂Ω×Td),
which we will often refer to. Define

ũε(x) =

ˆ
∂Ω

PΩ(x, y)ωε(y)f(y, y/ε)dσ(y).

Lemma 4.1. Let Ω be a bounded C2,σ domain and let (1.2.2), (1.2.3) and (1.2.4)
hold. Then

‖uε − ũε‖Lq ≤ Cε1/q(1 + | ln ε|)‖f‖L∞(∂Ω×Td).

for any 1 ≤ q <∞.

This follows readily from (4.1.3) and a similar proof can be found in [38, Lemma
2.3]. Thanks to Lemma 4.1, the estimate for ‖uε−u0‖L2(Ω) is reduced to ‖ũε−u0‖L2(Ω).

4.2 Dirichlet problems in half-spaces

For n ∈ Sd−1 and a ∈ R, let Hd
n(a) denote the half-space {x ∈ Rd : x · n < −a} (also

see (3.2.1)) with n being the unit outer normal to its boundary ∂Hd
n(a) = {x ∈ Rd :

x · n = −a}. Consider the Dirichlet problem{
−div(A∇u(x)) = 0 in Hd

n(a),

u(x) = f(x) on ∂Hd
n(a),

(4.2.1)

where A satisfies (1.2.2), (1.2.3) and (1.2.4), and f is smooth and 1-periodic. Instead
of solving (4.2.1) directly, we try to find a solution of (4.2.1) with a particular form,
i.e.,

u(x) = V a(x− (x · n)n,−x · n), (4.2.2)

where V a = V a(θ, t) is a function of (θ, t) ∈ Td × [a,∞). To identify the system
satisfied for V a, let M be a d× d orthogonal matrix whose last column is −n. Let N
denote the d× (d− 1) matrix of the first d− 1 columns of M . Since MMT = I, we
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see that NNT + n⊗ n = I. It follows from (4.2.1) and the previous settings that V a

must be a solution of−
(
NT∇θ

∂t

)
·B
(
NT∇θ

∂t

)
V = 0 in Td × (a,∞),

V = F on Td × {a},
(4.2.3)

where B(θ, t) = MTA(θ − tn)M and F (θ) = f(θ). Observe that if V a is a solution
of (4.2.3) with a ∈ R, then V a(θ, t) = V 0(θ − an, t − a), which reduces the problem
to the particular case a = 0.

Now we collect some important results concerning the lifted system (4.2.3) in the
following theorem.

Theorem 4.2. Let n ∈ Sd−1, a = 0 and F ∈ C∞(Td). Then
(i) The system (4.2.3) has a smooth solution V such that for all k, s ≥ 0,

ˆ ∞
0

‖NT∇θ∂
k
t V ‖2

Hs(Td) + ‖∂k+1
t V ‖2

Hs(Td)dt ≤ C,

where C depends only on d,m, k, s, A and F .
(ii) If n satisfies the Diophantine condition with constant κ > 0 and V is the

solution of (4.2.3) given in (i), then there exists a constant V∞ such that for all
α ∈ Nd, k ≥ 0 and s ≥ 0,

|NT∇θ∂
α
θ ∂

k
t V |+ |∂αθ ∂k+1

t V |+ κ|∂αθ ∂kt (V − V∞)| ≤ C

(1 + κt)s
,

where C depends only on d,m, k, α, s, A and F .
(iii) Let n satisfy the Diophantine condition with constant κ > 0 and ñ be any

other unit vector in Sd−1. Let V and Ṽ be the solutions of (4.2.3) corresponding to n

and ñ, respectively. Define W = V − Ṽ . Then for any 0 < σ < 1,

ˆ 1

0

ˆ
Td
|ÑT∇θW |2 + |∂tW |2dθdt ≤ C

|n− ñ|2

κ2+σ
.

where (Ñ ,−ñ) is an orthogonal matrix and C depends only on d,m, σ,A and F .

The proof is similar to the Neumann problem (3.2.8). Actually, (i) and (ii) are
more or less known and can be found in [20, 7, 29]. Statement (iii) was established
in [38] recently for Neumann problems by applying a weighted estimate. The proof
for Dirichlet problems is similar without any real difficulty by using the weighted
estimate in Theorem 3.17. But again, this estimate will be further improved in the
next chapter.

4.3 Approximation of Dirichlet correctors

From now on, we will assume that Ω is a smooth and strictly convex domain. In view
of (4.1.3), to study the oscillating behavior of ωε, the difficulty is to understand the
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behavior of ∇Φ∗ε near the boundary. This can be done by studying u∗βε,j = Φ∗βε,j(x) −
P β
j (x) − εχ∗βj (x/ε) for each 1 ≤ j ≤ d, 1 ≤ β ≤ m. Clearly, by the definitions of Φ∗ε

and χ∗, uβε,j satisfies {
L∗εu

∗β
ε,j(x) = 0 in Ω,

u∗βε,j(x) = −εχ∗βj (x/ε) on ∂Ω.
(4.3.1)

Let us consider the general case of (4.3.1){
Lεuε(x) = 0 in Ω,

uε(x) = fε(x) = εf(x/ε) on ∂Ω,
(4.3.2)

where f(y) is 1-periodic and smooth. Fix x0 ∈ ∂Ω. To find an approximation of uε
in a neighborhood of x0, we solve the Dirichlet problem in a half-space{

Lεvε(x) = 0 in Hd
n0

(a),

vε(x) = fε(x) on ∂Hd
n0

(a),
(4.3.3)

where a = −x0 · n0 and ∂Hd
n0

(a) is the tangent plane of ∂Ω at x0. Note that vε has a
form of vε(x) = εv1(x/ε), and v1 is the solution of{

L1v1(x) = 0 in Hd
n0

(a/ε),

v1(x) = f(x) on ∂Hd
n0

(a/ε),
(4.3.4)

The existence of the solution of (4.3.4) or (4.3.3) as well as its estimates have
been established via the half-space problem in Theorem 4.2 (i) and formula (4.2.2).
Define wε(x) = uε(x)− vε(x). Observe that by the definition of vε, wε is defined and
actually a solution of Lεwε(x) = 0 only in Ω. Now we prove the following.

Theorem 4.3. Let wε be constructed as above. Let ε ≤ r ≤
√
ε. Then for any

σ ∈ (0, 1),

‖∇wε‖L∞(B(x0,r)∩Ω) ≤ C
√
ε+ C

r2+σ

ε1+σ
, (4.3.5)

where C depends on d,m, µ, σ,Ω, A and f .

To prove the theorem, we require the following lemmas.

Lemma 4.4. Let uε be a solution of (4.3.2), then one has for any k ≥ 0,

‖∇kuε‖L∞(Ω) ≤ Cε1−k, (4.3.6)

where C is independent of ε.

Proof. For k = 0, we use the Agmon-type maximal principle to obtain

‖uε‖L∞(Ω) ≤ C‖fε‖L∞(∂Ω) ≤ Cε. (4.3.7)
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For k > 0, we apply a blow-up argument. Set uε(x) = εu1(x/ε). Then u1 is a solution
of {

L1u1(x) = 0 in Ωε,

u1(x) = f(x) on ∂Ωε,
(4.3.8)

where Ωε = {x : εx ∈ Ω}. Note that the Ck character of Ωε is controlled by that of
Ω. It follows from the local Schauder’s estimate that for any x ∈ Ωε,

‖∇ku1‖L∞(B(x,1)∩Ωε) ≤ C‖u1‖L∞(B(x,2)∩Ωε) + ‖f‖Ck,α(B(x,2)∩Ωε).

Since f is 1-periodic, then ‖f‖Ck,α(B(x,2)∩Ωε) ≤ C‖f‖Ck,α(Td). And by (4.3.7), ‖u1‖L∞(Ωε) ≤
C. It follows that

‖∇ku1‖L∞(Ωε) ≤ C,

for any k > 0, where C depends also on k. Changing variables back to uε, we obtain
the desired estimates (4.3.6).

Lemma 4.5. Let vε be constructed as above, then one has for k ∈ {0, 1, 2},

‖∇kvε‖L∞(Hdn0 (a)) ≤ Cε1−k, (4.3.9)

where C is independent of ε.

Proof. Let vε(x) = εv1(x/ε). Then v1 is the solution of (4.3.4), which can also be
given by the Poisson integral formula

v1(x) =

ˆ
∂Hdn0 (a/ε)

PH(x, y)f(y)dσ(y), (4.3.10)

where PH is the Poisson kernel of L1 in the half-space Hd
n0

(a/ε). A similar estimate
as (4.1.2) in half-spaces was established in [21], i.e.,

PH(x, y) ≤
Cdist(x, ∂Hd

n0
(a/ε))

|x− y|d
, for all x ∈ Hd

n0
(a/ε).

Then it follows from (4.3.10) that ‖v1‖L∞(Hdn0 (a/ε)) ≤ C‖f‖L∞(∂Hdn0 (a/ε)) (Agmon-type

maximal principle). Thus, ‖vε‖L∞(Hdn0 (a)) ≤ Cε as desired for k = 0. The estimates
for k > 0 follow similarly as Lemma 4.4 by the local Schauder’s estimates.

Proof of Theorem 4.3. The proof follows a line of [7]. Let y ∈ ∂Ω and |y − x0| ≤ r0

for some r0 depending only on Ω. We will use the following conventions: let ŷ denote
the projection of y on ∂Hd

n0
(a) such that y − ŷ is a multiple of n(x0). Since both

Ω is smooth and strictly convex near x0, it is easy to see that for all y satisfying
|y − x0| ≤ r0,

C−1|y − x0|2 ≤ |y − ŷ| ≤ C|y − x0|2. (4.3.11)

This also implies |y − x0| ≈ |ŷ − x0|. On the other hand, let n(y) and n̂ = n(x0)
denote the unit outer normal of ∂Ω and ∂Hd

n0
(a), respectively. Then

|n̂− n(y)| ≤ C|y − x0|. (4.3.12)
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To prove the estimate (4.3.5), note that wε is a solution of

Lεwε = 0 subject to certain Dirichlet boundary condition on ∂Ω.

Indeed, it follows from the uniform Lipschitz estimate in C1,α domains that

‖∇wε‖L∞(Br∩Ω) ≤ Cr−1‖wε‖L∞(B2r∩Ω)

+ C‖∇tanwε‖L∞(B2r∩∂Ω) + Crσ‖∇tanwε‖Cσ(B2r∩∂Ω).
(4.3.13)

Note that ∇tan can be written as (I−n⊗n)∇ (which can be viewed as the projection
of ∇ onto the tangent planes n⊥), where n is the unit outer normal of ∂Ω.

Estimate of ∇tanwε: Using the fact uε = fε(y) = εf(x/ε) on ∂Ω, we know

(I − n⊗ n)∇(uε − fε)(y) = 0 on ∂Ω. (4.3.14)

Similarly, taking advantage of the fact vε = fε on the hyperplane ∂Hd
n0

(a), we have

(I − n̂⊗ n̂)∇(vε − fε)(ŷ) = 0 on ∂Hd
n0

(a). (4.3.15)

Combining (4.3.14) and (4.3.15), we have

|∇tanwε(y)| = |(I − n⊗ n)∇(uε − vε)(y)|
≤ |(I − n⊗ n)∇(uε − vε)(y)− (I − n̂⊗ n̂)∇(uε − vε)(ŷ)|
≤ |n⊗ n− n̂⊗ n̂|‖∇(uε − vε)‖L∞(B2r∩Ω) + |y − ŷ|‖∇2(uε − vε)‖L∞(B2r∩Ω)

≤ Cr + Cε−1r2 ≤ Cε−1r2,

for r ≥ ε, where we have used the mean value theorem in the first inequality and
used Lemma 4.4 and 4.5 as well as (4.3.11) and (4.3.12) in the last inequality.

A similar argument also shows that ‖∇2
tanwε‖L∞(B2r∩∂Ω) ≤ Cε−2r2, which, by

interpolation, implies ‖∇tanwε‖Cσ(B2r∩∂Ω) ≤ Cε−1−σr2 for any 0 < σ < 1.
Estimate of wε(x): We first claim that

|wε(y)| ≤ C|y − x0|2 for all y ∈ ∂Ω ∩B(x0, r0). (4.3.16)

Actually, write agian wε = (uε − fε) − (vε − fε). Using the cancellation uε − fε = 0
on ∂Ω and mean value theorem, we have that for any y ∈ ∂Ω ∩Br0(x0)

|wε(y)| = |vε(y)− fε(y)|
≤ C|y − ŷ|‖∇(uε − fε)‖L∞(B2r∩Ω)

≤ C|y − x0|2,

where in the last inequality we have used Lemma 4.5 and (4.3.11).
Then we take advantage of the Poisson integral formula and split it into two parts,

wε(x) =

ˆ
∂Ω

PΩ,ε(x, y)wε(y)dσ(y)

=

ˆ
∂Ω∩{|y−x0|≤c

√
ε}
PΩ,ε(x, y)wε(y)dσ(y) +

ˆ
∂Ω∩{|y−x0|>c

√
ε}
PΩ,ε(x, y)wε(y)dσ(y)

(4.3.17)

72



where x ∈ Ω and PΩ,ε is the Poisson kernel of Lε in Ω. To estimate the first term on
the right-hand side of (4.3.17), we apply (4.1.2) and (4.3.16),∣∣∣∣∣
ˆ
∂Ω∩{|y−x0|≤c

√
ε}
PΩ,ε(x, y)wε(y)dσ(y)

∣∣∣∣∣
≤ C

ˆ
∂Ω∩{|y−x0|≤c

√
ε}

dist(x, ∂Ω)
|y − x0|2

|x− y|d
dσ(y)

≤ C

ˆ
∂Ω∩{|y−x0|≤c

√
ε}

dist(x, ∂Ω)
|x− x0|2

|x− y|d
dσ(y) + C

ˆ
∂Ω∩{|y−x0|≤c

√
ε}

dist(x, ∂Ω)

|x− y|d−2
dσ(y)

≤ C|x− x0|2 + Cdist(x, ∂Ω)
√
ε

≤ Cr2 + r
√
ε,

where we have used the observation |y − x0|2 ≤ 2|y − x|2 + 2|x− x0|2.
To bound the second term on the right-hand side of (4.3.17), we note that (4.3.6)

and (4.3.9) give ‖wε‖L∞(Ω) ≤ Cε. Then∣∣∣∣∣
ˆ
∂Ω∩{|y−x0|>c

√
ε}
PΩ,ε(x, y)wε(y)dσ(y)

∣∣∣∣∣ ≤ Cε

ˆ
∂Ω∩{|y−x0|>c

√
ε}

dist(x, ∂Ω)

|y − x|d
dσ(y)

≤ Cεdist(x, ∂Ω)(
√
ε)−1 ≤ Cr

√
ε.

It follows
|wε(x)| ≤ Cr2 + Cr

√
ε, for all x ∈ B(x0, 2r) ∩ Ω.

This, together with (4.3.13) and the estimates for ∇tanwε, proves (4.3.5).

For each fixed x0 ∈ ∂Ω, the system (4.3.3) associated with the adjoint operator
L∗ε and fε = −εχ∗βj (x/ε) has a solution v∗βε,j of form

v∗βε,j(x) = εV ∗βj

(
x− (x · n0 + a)n0

ε
,−x · n0 + a

ε

)
, for x · n0 ≤ −a, (4.3.18)

where a = −x0 · n0 and V ∗βj = V ∗βj (θ, t) is a solution of−
(
NT∇θ

∂t

)
·B∗

(
NT∇θ

∂t

)
V ∗βj = 0 in Td × (0,∞),

V ∗βj = −χ∗βj on Td × {0},

given by Theorem 4.2. Note that V ∗βj also depends on n0. Finally, we apply Theorem
4.3 to obtain the main theorem of this section as follows.

Theorem 4.6. Let ε ≤ r ≤
√
ε and σ ∈ (0, 1). Then for any x ∈ B(x0, r) ∩ Ω,∣∣∣∣∇(Φ∗βε,j(x)− P β

j (x)− εχ∗βj (x/ε)− v∗βε,j(x)

)∣∣∣∣ ≤ C
√
ε+ C

r2+σ

ε1+σ
, (4.3.19)

where C depends on d,m, µ, σ,Ω and A.
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4.4 Proof of Theorem 1.2: convergence rate

In this section, we will establish the sharp convergence rate for Dirichlet problem
(1.2.11). Due to Lemma 4.1, it is sufficient to estimate ‖ũε − u0‖L2(Ω), where ũε and
u0 are defined by

ũαε (x) =

ˆ
∂Ω

Pαζ
Ω (x, y)ωζβε (y)fβ(y, y/ε)dσ(y) (4.4.1)

and

uα0 (x) =

ˆ
∂Ω

Pαζ
Ω (x, y)f

ζ
(y)dσ(y). (4.4.2)

Now we need to find an explicit expression for the homogenized data f . Roughly
speaking, the homogenized data f in (4.4.2) should be the weak limit of ωε(y)f(y/ε)
as ε→ 0. By (4.1.4) and (4.3.19), for y ∈ B(x0, r) ∩ ∂Ω, one has

ωζβε (y)fβ(y/ε)

= hζν(y) · n`
∂

∂y`
[P ρν
k (y) + εχ∗ρνk (y/ε) + v∗ρν,x0ε,k (y)]nk · aρβij (y/ε)ninjf

β(y, y/ε)

+ Error terms.
(4.4.3)

Note that v∗,x0ε (y) is given in (4.3.18) which depends also on x0, and n = n(y) is the
unit outward normal at y. For a fixed y ∈ ∂Ω, in view of the quantitative ergodic
theorem [7, Proposition 2.1], we know that ωε(y)f(y/ε) converges to its average on
the tangent plane Hd

n(a) at y, where n = n(y). The only unclear term in (4.4.3) is
n · ∇v∗ν,x0ε,k . Actually, in view of (4.3.18), for z ∈ Hd

n(a), one has

n · ∇v∗ν,x0ε,k (z) = n · (1− n⊗ n,−n)

(
∇θ

∂t

)
V ∗ν,x0k

(z
ε
, 0
)

= −∂tV ∗ν,x0k

(z
ε
, 0
)
.

(4.4.4)

Note that V ∗,x0k (θ, t) is 1-periodic in θ. As a consequence, we can define the homoge-
nized boundary data as follows:

f
ζ
(y)

= hζν(y)

ˆ
Td

[δρν + n(y) · ∇χ∗ρν(θ) · n(y)− ∂tV ∗ρν,y(θ, 0) · n(y)]ni(y)nj(y)aρβij (θ)fβ(y, θ)dθ

(4.4.5)

Remark 4.7. If the coefficient matrix A = (aαβij ) is constant (or divergence free), then

χ∗ = 0 and hence V ∗ = 0 in (4.4.5). Also in this case, one has Â = A. By the
definition of h, this implies that hζνδρνninja

ρβ
ij = δζβ. As a result, (4.4.5) is reduced

to

f(y) =

ˆ
Td
f(y, θ)dθ.

This exactly coincides with the homogenized boundary data for Dirichlet problems
with constant coefficients.
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Theorem 4.8. Let x, y ∈ ∂Ω and |x− y| < r0. Suppose that n(x), n(y) satisfies the
Diophantine condition with constant κ(x) and κ(y) respectively. Let f be defined by
(4.4.5). Then for any σ ∈ (0, 1),

|f(x)− f(y)| ≤ C
|x− y|
κ1+σ

sup
z∈Td
‖f(·, z)‖C1(∂Ω).

where κ = max{κ(x), κ(y)} and C depends only on d,m, σ,Ω and A.

The above theorem may be proved by the similar argument as Theorem 3.27 by
using Theorem 4.2. Moreover, an improve estimate will be proved by using a more
delicate argument in the next chapter. At this point, however, the above estimate is
sufficient for us to establish the optimal convergence rate.

The rest of the proof is devoted to estimating ‖uε − u0‖L2(Ω). To begin with, we
perform a partition of unity on ∂Ω and restrict ourself on B(x0, r0) ∩ ∂Ω for some
x0 and r0 > 0 sufficiently small. So without any loss of generality, we may assume
supp(f(·, y)) ⊂ B(x0, r0) for any y ∈ Td. Then we construct the another partition
of unity on B(x0, r0) ∩ ∂Ω adapted to the Diophantine function κ(x), by exactly the
same method described in §3.7, with

τ = ε1−σ,

for some small constant σ > 0. Recall that, as in §3.6, there exist a finite sequence of
{ϕj} of C∞0 positive functions in Rd and a finite of sequence of surface cubes {Q̃j} on

∂Ω, such that
∑

j ϕj = 1 on B(x0, 2r0) ∩ ∂Ω. Note that ϕj is supported in 2Q̃j and

|∇kϕj| ≤ Cr−kj , where rj is the side length of Q̃j as before. Also, for each j, there

exists some zj ∈ 36Q̃j such that

κ(zj) ≥
cτ

rj
=
cε1−σ

rj
. (4.4.6)

Note that x̃j is the center of Q̃j. Let Γε denote a boundary layer

Γε = Ω ∩
(⋃

j

B(x̃j, Crj)

)
and Dε = Ω \ Γε. By Proposition 3.36,

|Γε| ≤
∑
j

|B(x̃j, Crj)| ≤ C
∑
j

rdj ≤ Cτ = Cε1−σ.

Thus for any q > 0, ˆ
Γε

|uε − u0|q ≤ Cε1−σ, (4.4.7)

where we have used the boundedness of uε and u0.
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To deal with the Lq norm of uε − u0 on Dε, we introduce a function as (3.7.7)

Θt(x) =
∑
j

rd−1+t
j

|x− x̃j|d−1
, (4.4.8)

where 0 ≤ t < d− 1. We mention that Lemma 3.37 for Θt(x) will play a key role and
be used repeatedly in the following context.

As in the Neumann problem, we split ũε − u0 into five parts

ũε(x)− u0(x) =

ˆ
∂Ω

PΩ(x, y)ωε(y)f(y, y/ε)dσ(y)−
ˆ
∂Ω

PΩ(x, y)f(y)dσ(y)

= I1 + I2 + I3 + I4 + I5,

where Ik, 1 ≤ k ≤ 5, will be defined below and handled separately. We point out in
advance that estimates for I3 and I4 essentially distinguish from the case of strictly
convex domains and need more careful calculations.

Let δ > 0 be an arbitrarily small exponent that might differ in each occurrence.
Estimate of I1: Let

I1 =

ˆ
∂Ω

Pαζ
Ω (x, y)ωζβε (y)fβ(y, y/ε)dσ(y)

−
∑
j

ˆ
∂Ω

ϕj(y)Pαζ
Ω (x, y)ω̃ζβ,zjε (y)fβ(y, y/ε)dσ(y),

where

ω̃ζβ,zjε (y) = hζν(y)n`(y)
∂

∂y`

[
P ρν
k (y)+εχ∗ρνk (y/ε)+v

∗ρν,zj
ε,k (y)

]
nk(y)aρβim(y/ε)ni(y)nm(y),

(4.4.9)
and zj’s are specially selected as in (4.4.6). Note that I1 comes from the error terms
in (4.4.3), which by (4.3.5) is bounded by

C
∑
j

ˆ
∂Ω

ϕj(y)|PΩ(x, y)|
(√

ε+
r2+σ
j

ε1+σ
∧ 1

)
dσ(y) = R1 +R2,

for any σ ∈ (0, 1). Observe that

R1 ≤ C
√
ε

ˆ
∂Ω

|PΩ(x, y)| ≤ C
√
ε. (4.4.10)

For R2, using |PΩ(x, y)| ≤ C|x−y|1−d and |x−y| ≈ |x−x̃j| for x ∈ Dε, y ∈ B(x̃j, Crj),
we have

R2 = C
∑
j

ˆ
∂Ω

ϕj(y)|PΩ(x, y)|
(
r2+σ
j

ε1+σ
∧ 1

)
dσ(y) ≤ Cε−1−σ

∑
j

r2+σ+d−1
j

|x− x̃j|d−1
(4.4.11)
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Now we estimate R2 by Lemma 3.37 in two separate cases. If 2(2 + σ) < d− 1, then
we apply Lemma 3.37 directly with q = 2 and obtainˆ

Dε

|R2(x)|2dx ≤ Cε−2(1+σ)τ 2(2+σ) ≤ Cε2−δ, (4.4.12)

where we have used τ = ε1−σ and chosen σ sufficiently small. Otherwise, we choose
suitable q < 2 such that q(2 + σ) = d− 1− σ < d− 1 and then apply Lemma 3.37ˆ

Dε

|R2(x)|qdx ≤ Cε−q(1+σ)τ q(2+σ) ≤ Cε
1
2

(d−1)−δ,

where again, σ is chosen sufficiently small. Clearly, (4.4.11) also implies |R2| ≤ C.
Thus, a simple interpolation leads toˆ

Dε

|R2(x)|2dx ≤ Cε
1
2

(d−1)−δ. (4.4.13)

Combining (4.4.10), (4.4.12) and (4.4.13), we obtainˆ
Dε

|I1(x)|2dx ≤ Cε1∧ 1
2

(d−1)−δ.

Estimate of I2: Set

I2 =
∑
j

ˆ
∂Ω

ϕj(y)Pαζ
Ω (x, y)ω̃ζβ,zjε (y)fβ(y, y/ε)dσ(y)

−
∑
j

ˆ
∂Hdj

ϕj(P
−1
j (y))Pαζ

Ω (x, P−1
j (y))ω̃ζβ,zjε (y)fβ(zj, y/ε)dσ(y)

(4.4.14)

where ∂Hd
j denotes the tangent plane for ∂Ω at zj and P−1

j is the inverse of the

projection map from B(zj, Crj) ∩ ∂Ω to ∂Hd
j . We clarify that in (4.4.9), n(y) is the

outer normal of y ∈ ∂Ω. But in the second term of (4.4.14), y needs to belong to ∂Hd
j

and hence we need to update n(y) = n(zj) for all y ∈ ∂Hd
j . This modification leads

to some harmless errors bounded by Crj ≤ Cr2
j/ε. Then, for the same reason as I2

in §3.7, we are able to bound I2 by

|I2| ≤ Cε−1
∑
j

r2+d−1
j

|x− x̃j|d−1
.

Similar as (4.4.11), we estimate this in two cases and obtainˆ
Dε

|I2(x)|2dx ≤ Cε2∧ 1
2

(d−1)−δ.

Estimate of I3: Set

I3 =
∑
j

ˆ
∂Hdj

ϕj(P
−1
j (y))Pαζ

Ω (x, P−1
j (y))ω̃ζβ,zjε (y)fβ(zj, y/ε)dσ(y)

−
∑
j

ˆ
∂Hdj

ϕj(P
−1
j (y))Pαζ

Ω (x, P−1
j (y))f

ζ
(zj)dσ(y),
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where f is defined in (4.4.5). To estimate I3, we apply the quantitative ergodic
theorem in [7]. As we have mention in the estimate of I2, the outer normal in

the definition of ω̃
ζβ,zj
ε (y) is constant on ∂Hd

j with Diophantine constant κ(zj), and

therefore ω̃
ζβ,zj
ε (y) is nothing but a slice of some 1-periodic function in Rd (see (4.4.4)).

Note that by (4.4.6), κ(zj) > cε1−σ/rj. Then it follows from Lemma 2.10 that for
any N > 0,

|I3| ≤ C
∑
j

(εrj
τ

)N ˆ
2Q̃j

|∇N(ϕj(y)PΩ(x, y))|dσ(y)

≤ C
∑
j

(εrj
τ

)N N∑
k=0

rd−1−N+k
j

|x− x̃j|d−1+k

≤ CεNσ
∑
j

rd−1
j

|x− x̃j|d−1
,

where we have used |∇kϕj| ≤ Cr−kj , |∇kPΩ(x, y)| ≤ C|x−y|1−d−k and rj ≤ C|x−x̃j| ≈
C|x− y| for all x ∈ Dε and y ∈ 2Q̃j. Now, applying Lemma 3.37 with t = 0, we have

ˆ
Dε

|I3|2 ≤ CεNσ.

This is a desired estimate if we choose N ≥ 1 large enough.
Estimate of I4: Set

I4 =
∑
j

ˆ
∂Hdj

ϕj(P
−1
j (y))Pαζ

Ω (x, P−1
j (y))f

ζ
(zj)dσ(y)

−
∑
j

ˆ
∂Hdj

ϕj(P
−1
j (y))Pαζ

Ω (x, P−1
j (y))f

ζ
(P−1

j (y))dσ(y).

The estimate for I4 essentially relies on the regularity of homogenized data f . Indeed,
by Proposition 4.8

|f(zj)− f(P−1
j (y))| ≤ C

(
rj

κ(zj)1+σ

)
≤ C

(
r

1+(1+σ)
j

τσ(1+σ)

)
,

where we also used |zj − P−1
j (y)| ≤ Crj. This leads to a bound for I4

|I4| ≤ Cτ−(1+σ)
∑
j

r
1+(1+σ)+d−1
j

|x− xj|d−1
.

Using Lemma 3.37 and a familiar argument as before, we are able to show

ˆ
Dε

|I4|2 ≤ Cε2∧ 1
2

(d−1)−δ.
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Estimate of I5: Finally, let

I5 =
∑
j

ˆ
∂Hdj

ϕj(P
−1
j (y))Pαζ

Ω (x, P−1
j (y))f

ζ
(P−1

j (y))dσ(y)

−
ˆ
∂Ω

PΩ(x, y)f(y)dσ(y).

A change of variables gives

|I5| ≤ C
∑
j

r1+d−1
j

|x− x̃j|d−1
.

Then by Lemma 3.37 and a familiar argument, we obtain

ˆ
Dε

|I5|2 ≤ Cε2∧(d−1)−δ.

Combining the estimates of Ik, we have shown that

ˆ
Dε

|ũε − u0|2 ≤ Cε1∧ 1
2

(d−1)−δ,

for arbitrarily small δ > 0. This, together with Lemma 4.1 and (4.4.7), ends the proof
of (1.2.14).

Copyright c© Jinping Zhuge, 2019.
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Chapter 5 Regularity of Homogenized Boundary Data

The main purpose of this chapter is to show the W 1,p estimate, with any p ∈ (1,∞),
of the homogenized boundary data f and g. This implies the C1−-Hölder conti-
nuity, due to the Sobolev embedding theorem. We mention several related work
regarding the continuity of homogenized boundary data. In [1], under the addi-
tional assumption that A is independent of some rational direction ν0, it was proved
that the homogenized Dirichlet data has a unique continuous extension to the set
{x ∈ ∂Ω : n(x) · ν0 6= 0}. The problem of Hölder continuity was also studied in
[13, 16] for second-order nonlinear elliptic equations of form F (D2uε, x/ε) = 0. In
particular, it was shown in [16] that if the homogenized operator F is either rotational
invariant or linear, then the homogenized Dirichlet data is C1/d−-Hölder continuous,
and that the homogenized data may be discontinuous in general. Note that the linear
elliptic equations in non-divergence form may be written in a divergence form with
div(A) = 0. In this case, the first-order correctors are trivial and therefore the ho-
mogenized data is smooth if Ω is smooth and satisfies some geometric conditions. In
the nonlinear setting of divergence form, the C1/d−-Hölder continuity and the possi-
ble discontinuity of the homogenized boundary data at rational directions have been
studied recently in [18]. The main result of this chapter, on the C1−-Hölder continu-
ity of the homogenized data for linear elliptic systems in divergence form, was first
proved in [37].

We point out that, unlike the optimal convergence rates, the assumption that Ω is
strictly convex is not essential for the regularity theory of the homogenized data. In
fact, the proof in this chapter goes through as long as one has [κ(n(x))]−1 ∈ Lq(∂Ω)
for some q > 0 (see (2.4.1) for the definition of κ). Consequently, the regularity results
of Theorems 1.1 and 1.2 continue to hold for the domains of finite type considered in
[42].

5.1 An introduction to the proofs

We briefly describe our main idea to (1.2.15) and (1.2.10), as well as some of the
key estimates in the proof. Our starting point for the proof of (1.2.15) for Dirichlet
problem is the formula for the homogenized data f discovered in (4.4.5). This formula
reduces the problem to the study of continuity of solutions Vn = Vn(θ, t) with respect
to n ∈ Sd−1 for the Dirichlet problem in a half-space,−

(
NT
n∇θ

∂t

)
·Bn

(
NT
n∇θ

∂t

)
Vn = 0 in Td × R+,

Vn(θ, 0) = φ(θ) on Td × {0},
(5.1.1)

where φ ∈ C∞(Td;Rm), Bn = Bn(θ, t) = MT
n A
∗(θ−tn)Mn, Mn is any d×d orthogonal

matrix whose last column is −n, and Nn is defined by Mn = (Nn,−n). Note that Mn

and Nn are not unique. However, as we have seen before, the solution Vn of (5.1.1)
is independent of the choice of Nn.
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We use Sd−1
R , Sd−1

I and Sd−1
D to represent the sets of rational, irrational and Dio-

phantine unit vectors (i.e., unit vectors satisfying the Diophantine condition (2.4.1)),
respectively. Note that Sd−1

D is a subset of Sd−1
I and has full surface measure of Sd−1.

Let n, ñ ∈ Sd−1
D . The key step in our proof is to show that for any σ ∈ (0, 1),(ˆ

Td

∣∣∂tVn(θ, 0)− ∂tVñ(θ, 0)
∣∣2 dθ)1/2

≤ Cσκ−σ|n− ñ|, (5.1.2)

where κ = max
{
κ(n),κ(ñ)

}
and Cσ depends only on d, m, σ, λ, ‖A‖Ck(Td) and

‖φ‖Ck(Td) for some k = k(d, σ) > 1. Observe that (5.1.2) shows that Vn is locally
Lipschitz in n near a point with a Diophantine normal. Then (1.2.15) follows from
(5.1.2) by using the representation formula (4.4.5), the fact [κ(n(x))]−1 ∈ Ld−1(∂Ω)
and an approximation argument.

To prove (5.1.2), besides the pointwise decay estimates (depending on κ(n)) es-
tablished in Theorem 4.2, one needs to fully take advantage of the fact that if

us(x) = Vn(x− (x · n)n− sn,−x · n− s), (5.1.3)

then us is a solution of the Dirichlet problem in a half-space,{
L∗1(us) = 0 in Hd

n(s),

us = φ on ∂Hd
n(s),

(5.1.4)

where L∗1 = L∗ε, the adjoint of Lε, with ε = 1. In (5.1.4), Hd
n(s) = Hd

n − sn and
Hd
n = {x ∈ Rd : x · n < 0} is the half-space whose boundary contains the origin

and with the outward normal n. This allows us to apply the maximal principle and
the large-scale boundary regularity estimates for the operator L∗1. The technique was
already used in [21, 7] to establish the boundedness of Vn. Here, among other things,
we apply the technique to establish the uniform boundedness of ∇θVn as well as some
uniform pointwise decay estimates for ∂tVn and NT

n∇θVn (independent of n). Then,
combining the energy and pointwise decay estimates, the uniform boundedness of Vn
or∇θVn, and a weighted estimate (see Remark 3.30), we adopt a delicate interpolation
argument to conclude (5.1.2).

We remark that the asymptotic behavior of the solution us of (5.1.4) as x·n→ −∞
is well understood thanks to [27, 6, 20, 21, 29, 2]. In particular, if n is irrational, it
was shown in [29] that there exists a constant vector µ∗(n, φ) ∈ Rm independent of s
such that

µ∗(n, φ) = lim
x·n→−∞

us(x), (5.1.5)

though the rate of convergence could be arbitrarily slow in general. On the other hand,
if n is rational [27, 6], the above limit depends on s and possesses an exponential rate
of convergence. The mapping µ : Sd−1

I × C∞(Td;Rm) 7→ Rm defined via (5.1.5), but
with L∗1 replaced by L1, is called the boundary layer tail (BLT) for Dirichlet problems
associated with L1. It follows from [21] that

f(x) = µ(n(x), f(x, ·)), if n(x) ∈ Sd−1
D . (5.1.6)
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Thus, by (1.2.15), ‖µ(·, φ)‖W 1,p(Sd−1) ≤ C‖φ‖L2(Td) for any 1 < p <∞. Consequently,
for any 0 < α < 1, µ(·, φ) extends to a Hölder continuous function of order α on Sd−1

and

|µ(n, φ)− µ(ñ, φ)| ≤ Cα|n− ñ|α‖φ‖L2(Td) for any n, ñ ∈ Sd−1, (5.1.7)

where Cα depends only on d, m, α and A.
Our approach to (1.2.10) for Neumann problems is similar to that used for (1.2.15).

The starting point is a formula for the homogenized data {gij} obtained in (3.5.9); also
see Theorem 5.11 for details. As in the case of Dirichlet problems, this formula reduces
the problem to the study of the continuity in n ∈ Sd−1 of solutions Un = Un(θ, t) to
the Neumann problem,

−
(
NT
n∇θ

∂t

)
·Bn

(
NT
n∇θ

∂t

)
Un = 0 in Td × R+,

−ed+1 ·Bn

(
NT
n∇θ

∂t

)
Un = Tn · ∇θφ on Td × {0},

(5.1.8)

where Tn ∈ Rd, |Tn| ≤ 1 and Tn · n = 0. Let n, ñ ∈ Sd−1
D . We will show in §5.2 that

for any σ ∈ (0, 1),(ˆ
Td

∣∣∇θUn(θ, 0)−∇θUñ(θ, 0)
∣∣2 dθ)1/2

≤ Cσκ−σ|n− ñ|, (5.1.9)

where κ = max
{
κ(n),κ(ñ)

}
and Cσ depends only on d, m, σ, λ, ‖A‖Ck(Td) and

‖φ‖Ck(Td) for some k = k(d, σ) > 1. Now (1.2.10) follows from (5.1.9), the fact
[κ(n(x))]−1 ∈ Ld−1(∂Ω), and the representation formula mentioned above. Finally,
we point out that the key estimates in the proof of (5.1.9) rely on the observation
that if us(x) = Un(x− (x ·n)n− sn,−x ·n− s), then us is a solution to the Neumann
problem, 

L∗1(us) = 0 in Hd
n(s),

∂us

∂ν∗1
= Tn · ∇xφ on ∂Hd

n(s),
(5.1.10)

We refer the reader to §5.2 for details.

5.2 Regularity for Dirichlet problems

As we have seen in the previous section, the central problem for the regularity of f
is to study the regularity of (5.1.4) with respect to n. However, the solvability of
the Dirichlet problem (5.1.4) is not obvious, since the domain Hd

n(s) is unbounded
and the boundary data does not decay. Nevertheless, by using Lipschitz estimates in
[9] and an approximation argument, one may establish the existence of the Poisson
kernel in a half-space and hence the solvability of (5.1.4) via the Poisson integral
formula.
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Theorem 5.1. Let Ω = Hd
n(s) for some n ∈ Sd−1 and s ∈ R. Then, for any

bounded continuous function φ in Rd, there exists a unique bounded function u in
C∞(Ω;Rm) ∩ C(Ω;Rm) such that{

L∗1(u) = 0 in Ω,

u = φ on ∂Ω.
(5.2.1)

Moreover, the solution may be represented by

u(x) =

ˆ
∂Ω

P ∗(x, y)φ(y) dσ(y), (5.2.2)

where the Poisson kernel P ∗ = P ∗(x, y) satisfies

|P ∗(x, y)| ≤ C min{δ(x), |x− y|}
|x− y|d

, (5.2.3)

|∇xP
∗(x, y)| ≤ C

|x− y|d
(5.2.4)

for any x ∈ Ω and y ∈ ∂Ω, δ(x) = dist(x, ∂Ω) = |s + x · n|, and C depends only on
d, m, λ, and some Hölder norm of A on Td.

Proof. The theorem was proved in [21, Proposition 2.5].

Remark 5.2. By the boundary Lipschitz estimates in Theorem 2.5 and the Cacciopoli
inequality, the uniqueness holds under the sublinear growth condition: |u(x)| ≤
C0(1 + δ(x))α for some C0 > 0 and α ∈ (0, 1). Also, it follows readily from (5.2.3)
that the Miranda-Agmon maximum principle,

‖u‖L∞(Ω) ≤ C‖φ‖L∞(∂Ω) (5.2.5)

holds, where C depends only on d, m, λ, and some Hölder norm of A on Td.
An alternative way to establish the solvability of (5.1.4) for periodic data φ is

to lift the problem to a (d + 1)-dimensional problem in the upper half-space. Fix
n ∈ Sd−1. Let M = (N,−n) be a d× d orthogonal matrix such that the last column
is −n and the first d− 1 column is a d× (d− 1) matrix N . Now we seek a solution
u of (5.1.4) in a particular form

us(x) = V (x− (x · n)n− sn,−x · n− s). (5.2.6)

It is not hard to see that V = V (θ, t) has to satisfy the following lifted degenerate
system, −

(
NT∇θ

∂t

)
·B
(
NT∇θ

∂t

)
V = 0 in Td × (0,∞),

V (θ, 0) = φ(θ) on Td × {0},
(5.2.7)
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where B(θ, t) = MTA∗(θ − tn)M . Note that MMT = I implies I = NNT + n ⊗ n.
It follows that

M

(
NT∇θ

∂t

)
= (I − n⊗ n)∇θ − n∂t. (5.2.8)

Thus, the solution V is independent of the choice of N .
The well-posedness of (5.2.7) was given by [21, Propositions 2.1 and 2.6].

Lemma 5.3. Let n ∈ Sd−1. Then, for any φ ∈ C∞(Td;Rm), the system (5.2.7) has
a smooth solution V = V (θ, t) satisfying(ˆ ∞

0

ˆ
Td

(
|NT∇θ∂

α
θ ∂

j
tV |2 + |∂αθ ∂

1+j
t V |2dθ

)
dt

)1/2

≤ C‖φ‖C|α|+j+1(Td), (5.2.9)

where |α|, j ≥ 0, and C depends only on d, m, |α|, j and A. Moreover, if n ∈ Sd−1
D

with Diophantine constant κ > 0, then there exists a constant V∞ such that for any
|α|, j, ` ≥ 0,

|NT∇θ∂
α
θ ∂

j
tV |+ |∂αθ ∂

1+j
t V |+ κ|∂αθ (V − V∞)| ≤

C`‖φ‖Ck(Td)

(1 + κt)`
, (5.2.10)

where k = k(|α|, j, `, d) and C` depends only on d, m, |α|, j, ` and A.

Remark 5.4. The solution of (5.1.4) given by Theorem 5.1 coincides with the solution
of (5.1.4) given by Lemma 5.3 via (5.2.6) for any n ∈ Sd−1. To see this, let w(x) =
us(x)− V (x− (x · n)n− sn,−x · n− s). Clearly, w satisfies{

L∗1w = 0 in Hd
n(s),

w = 0 on ∂Hd
n(s).

(5.2.11)

Since us is bounded and V satisfies

|V (θ, t)| =
∣∣∣∣ ˆ t

0

∂ρV (θ, ρ)dρ+ φ(θ)

∣∣∣∣
≤ ‖φ‖∞ + t1/2

( ˆ ∞
0

|∂ρV (θ, ρ)|2 dρ
)1/2

≤ ‖φ‖∞ + Ct1/2
(ˆ ∞

0

‖∂ρV (·, ρ)‖2
Hk(Td) dρ

)1/2

≤ ‖φ‖∞ + Ct1/2‖f‖Hk+2(Td),

for some k ≥ 1, we conclude that w is of sublinear growth as |x · n| → ∞. Thus, by
Remark 5.2, we obtain w ≡ 0.

Now we give an explicit expression for f(x) if n(x) ∈ Sd−1
D . For 1 ≤ k ≤ d and

1 ≤ β ≤ m, let V β
n,k = V β

n,k(θ, t) denote the solution of the following Dirichlet problem,−
(
NT∇θ

∂t

)
·Bn

(
NT∇θ

∂t

)
V β
n,k = 0 in Td × (0,∞),

V β
n,k = −χ∗βk on Td × {0},

(5.2.12)
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where χ∗βk are the correctors for L∗ε, Bn = MTA∗(θ − tn)M , and M = (N,−n) is an
orthogonal matrix.

Theorem 5.5. Let x ∈ ∂Ω. Suppose that n = n(x) ∈ Sd−1
D . Let Vn(θ, t) be the

solution of (5.2.12). Then

f
α
(x) =

ˆ
Td
hαβ
[
δγβ +

∂

∂θ`
χ∗γβk (θ)n`nk − ∂tV γβ

n,k(θ, 0) · nk
]
aγνij (θ)ninjf

ν(x, θ) dθ

(5.2.13)
for 1 ≤ α ≤ m, where h = (hαβ) denotes the inverse matrix of the m × m matrix
(â∗αβij ninj).

Proof. This was proved in [7] (also see [42]).

We now turn to the proof of (1.2.15). The key step is to prove the following.

Theorem 5.6. Fix σ ∈ (0, 1). Let x, y ∈ ∂Ω and |x − y| ≤ c0. Suppose that n(x),
n(y) ∈ Sd−1

D . Then

|f(x)− f(y)| ≤ Cσκ
−σ|x− y|

(ˆ
Td
‖f(·, y)‖2

C1(∂Ω) dy

)1/2

, (5.2.14)

where κ = max
{
κ(n(x)), κ(n(y))

}
and Cσ depends only on d, m, σ, λ, and ‖A‖Ck(Td)

for some k = k(d, σ) ≥ 1.

To prove Theorem 5.6, in view of the formula (5.2.13), we investigate the conti-
nuity in n of the solution to the Dirichlet problem (5.2.7).

Lemma 5.7. For φ ∈ C∞(Td;Rm), let V be the solution of (5.2.7), given by Lemma
5.3, with n ∈ Sd−1. Then

|NT∇θV |+ |∂tV | ≤
C‖φ‖C2(Td)

1 + t
, (5.2.15)

where C depends only on d, m and A. Moreover, for any |α|, j ≥ 0 and 0 < σ < 1,

|NT∇θ∂
α
θ ∂

j
tV |+ |∂αθ ∂

1+j
t V | ≤

Cσ‖φ‖Ck(Td)

(1 + t)1−σ , (5.2.16)

where k = k(|α|, j, σ, d) and Cσ depends only on d, m, |α|, j, σ and A.

Proof. Let us be given by (5.2.6). Then{
L∗1us = 0 in Hd

n(s),

us = φ on ∂Hd
n(s).

(5.2.17)

It follows from (5.2.6) that

V (θ, t) = u−θ·n(θ − tn) for all (θ, t) ∈ Td × R+, (5.2.18)
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and that us(x) is smooth in s and x for−x·n−s > 0. Thanks to the fact NT∇θ(θ·n) =
0, the last equality implies that{

NT∇θV (θ, t) = NT∇xu
−θ·n(θ − tn),

∂tV (θ, t) = −n · ∇xu
−θ·n(θ − tn).

(5.2.19)

As a result, estimates for NT∇θV and ∂tV may be reduced to the corresponding
estimates for us.

It follows from the representation of Poisson integral (5.2.2) and the pointwise
estimate (5.2.4) that

|∇us(x)| ≤ C‖φ‖∞
|s+ x · n|

. (5.2.20)

To deal with the case where |s + x · n| = dist(x, ∂Hd
n(s)) < 1, we first note that

‖us‖∞ ≤ C‖φ‖∞ by (5.2.5). Next, by the boundary Lipschitz estimate, we obtain
|∇us(x)| ≤ C‖φ‖C2(Td) if dist(x, ∂Hd

n(s)) < 1. This, together with (5.2.20) and
(5.2.19), proves (5.2.15).

Finally, we prove the inequality (5.2.16) by using interpolation and the Sobolev
embedding. Precisely, for any L > 0, it follows from (5.2.15), (5.2.9) and interpolation
that

‖NT∇θV ‖
Hr+ d2+1(Td×[L,L+1])

≤ C‖NT∇θV ‖1−σ
L2(Td×[L,L+1])

‖NT∇θV ‖σHk−1(Td×[L,L+1])

≤ C(1 + L)−(1−σ)‖φ‖Ck(Td),

where k = k(d, r, σ) ≥ 1 is sufficiently large. It follows from the Sobolev embedding
theorem that

sup
(θ,t)∈Td×[L,L+1]

|NT∇θ∂
α
θ ∂

j
tV (θ, t)| ≤ C‖NT∇θV ‖Hr+d/2+1(Td×[L,L+1])

≤
C‖φ‖Ck(Td)

(1 + L)1−σ ,

which readily implies

|NT∇θ∂
α
θ ∂

j
tV (θ, t)| ≤

C‖φ‖Ck(Td)

(1 + t)1−σ for any (θ, t) ∈ Td × R+, (5.2.21)

where |α|+j ≤ r. A similar argument gives the pointwise estimate for |∂αθ ∂
1+j
t V |.

Lemma 5.8. Let V be the solution of (5.2.7) with n ∈ Sd−1. Then

|V |+ |∇θV | ≤ C‖φ‖C2(Td), (5.2.22)

where C depends only on d, m and A. Moreover, if n ∈ Sd−1
D with Diophantine

constant κ = κ(n) > 0, then for any |α| ≥ 2 and 0 < σ < 1,

|∂αθ V | ≤ Cκ−σ‖φ‖Ck(Td), (5.2.23)

where k = k(d, |α|, σ) > 1 and C depends only on d, m, |α|, σ and A.
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Proof. Again, the desired estimates for V will be reduced to estimates for solutions
us of (5.2.17), where V and us are related by (5.2.18). First, since ‖us‖∞ ≤ C‖φ‖∞,
we obtain |V | ≤ C‖φ‖∞. Next, by comparing us and us

′
in the common domain, we

may deduce from the boundary Lipschitz estimate and the Miranda-Agmon maximal
principle (5.2.5) that

|us(x)− us′(x)| ≤ C|s− s′|‖φ‖C2(Td), (5.2.24)

if x · n < −max{s, s′}. Observe that, to prove the boundedness of ∇θV , it suffices
to prove the boundedness of n · ∇θV , as NT∇θV is bounded due to (5.2.15). To this
end, note that

|V (θ + rn, t)− V (θ, t)| = |u−θ·n−r(θ + rn− tn)− u−θ·n(θ − tn)|
≤ |u−θ·n−r(θ + rn− tn)− u−θ·n−r(θ − tn)|+ |u−θ·n−r(θ − tn)− u−θ·n(θ − tn)|
≤ |r|‖∇u−θ·n−r‖∞ + ‖u−θ·n−r − u−θ·n‖∞
≤ C|r|‖φ‖C2(Td),

where we have used (5.2.24) for the last step. Dividing by r on both sides and taking
the limit as r → 0, we obtain |n · ∇θV | ≤ C‖φ‖C2(Td). This finishes the proof of
(5.2.22).

Finally, to show (5.2.23), we use (5.2.22), (5.2.10) and an interpolation argument.
Precisely, let L > 0 and t ∈ [L,L+ 1],

sup
(θ,t)∈Td×[L,L+1]

|∂αθ V (θ, t)| ≤ C‖V ‖Hd/2+|α|+1(Td×[L,L+1])

≤ C‖V ‖1−σ
H1(Td×[L,L+1])

‖V ‖σHr(Td×[L,L+1])

≤ Cκ−σ‖φ‖Ck(Td),

where |α| ≥ 2 and r = r(d, α, σ), k = k(d, |α|, σ) are sufficiently large. The desired
estimate follows.

Now we are ready to prove Theorem 5.6.

Proof of Theorem 5.6. Step 1: Set-up and reduction.

Fix n1, n2 ∈ Sd−1
D . We may assume that δ = |n1 − n2| > 0 is sufficiently small.

Let N1 and N2 be the d × (d − 1) matrices such that both M1 = (N1,−n1) and
M2 = (N2,−n2) are orthogonal matrices. Recall that solution V1 (resp. V2) of
(5.2.7), associated with n1 (resp. n2), is independent of the choices of N1 (resp. N2).
So without loss of generality, we may assume |N1−N2| ≤ Cδ. To be precise, we write
down the systems for V1 and V2 as follows:−

(
NT

1 ∇θ

∂t

)
·B1

(
NT

1 ∇θ

∂t

)
V1 = 0 in Td × (0,∞),

V1 = φ on Td × {0},
(5.2.25)
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and −
(
NT

2 ∇θ

∂t

)
·B2

(
NT

2 ∇θ

∂t

)
V2 = 0 in Td × (0,∞),

V2 = φ on Td × {0},
(5.2.26)

where B`(θ, t) = MT
` A
∗(θ − tn`)M` for ` = 1, 2 and φ = −χ∗βk . In view of Theorem

5.5, to show (5.2.14), it suffices to prove thatˆ
Td
|∂tV1(θ, 0)− ∂tV2(θ, 0)|2 dθ ≤ Cκ−2σ|n1 − n2|2. (5.2.27)

Define W = V1 − V2. Observe thatˆ
Td
|∂tW (θ, 0)|2 dθ ≤ 2

ˆ 1

0

ˆ
Td
|∂tW (θ, t)|2 dθdt+2

ˆ 1

0

ˆ
Td
|∂2
tW (θ, t)|2 dθdt. (5.2.28)

Thus, the estimate (5.2.27) is further reduced to that for the two integrals in the RHS
of (5.2.28). We may assume that κ(n1) ≥ κ(n2) and thus κ = κ(n1).

Step 2: Estimate for ∂tW .

Note that W satisfies W (θ, 0) = 0 and

−
(
NT

2 ∇θ

∂t

)
·B2

(
NT

2 ∇θ

∂t

)
W

= −
(
NT

2 ∇θ

∂t

)
·B2

(
NT

2 ∇θ

∂t

)
V1

=

[(
NT

1 ∇θ

∂t

)
·B1

(
NT

1 ∇θ

∂t

)
−
(
NT

2 ∇θ

∂t

)
·B2

(
NT

2 ∇θ

∂t

)]
V1.

(5.2.29)

By using(
NT

1 ∇θ

∂t

)
·B1

(
NT

1 ∇θ

∂t

)
−
(
NT

2 ∇θ

∂t

)
·B2

(
NT

2 ∇θ

∂t

)
= −

(
NT

2 ∇θ

∂t

)
·B2

(
(NT

2 −NT
1 )∇θ

0

)
−
(
NT

2 ∇θ

∂t

)
· (B2 −B1)

(
NT

1 ∇θ

∂t

)
+

(
(NT

2 −NT
1 )∇θ

0

)
·B1

(
NT

1 ∇θ

∂t

)
,

the RHS of (5.2.29) can be written as(
NT

2 ∇θ

∂t

)
· (G1 +G2) +H, (5.2.30)

where

G1 = −B2

(
(NT

2 −NT
1 )∇θ

0

)
V1,

G2 = −(B2 −B1)

(
NT

1 ∇θ

∂t

)
V1,

H =

(
(NT

2 −NT
1 )∇θ

0

)
·B1

(
NT

1 ∇θ

∂t

)
V1.
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Therefore, the equation (5.2.29) is reduced to

−
(
NT

2 ∇θ

∂t

)
·B2

(
NT

2 ∇θ

∂t

)
W =

(
NT

2 ∇θ

∂t

)
·G+H, (5.2.31)

where G = G1 +G2.
Now, we are going to employ the weighted estimate established in §3.3. Precisely,

applying (3.5.27) in Remark 3.30 to the system (5.2.31), we obtain
ˆ ∞

0

ˆ
Td

(
|NT

2 ∇θW |2 + |∂tW |2
)
tσ−1 dθdt

≤ C

ˆ ∞
0

ˆ
Td

(
|G|2 + t2|H|2

)
tσ−1 dθdt.

(5.2.32)

Hence, it suffices to estimate the integrals involving G and H in (5.2.32).
Estimate for the integral with G1: By the estimates for |∇V1| in (5.2.22) and

(5.2.10), we have

|G1(θ, t)| ≤ Cδ|∇θV1(θ, t)| ≤ Cδ · 11−σ[κ−1(1 + κt)−`]σ (5.2.33)

for any 0 < σ < 1. It follows that
ˆ ∞

0

ˆ
Td
|G1|2tσ−1 dθdt ≤ Cδ2κ−2σ

ˆ ∞
0

dt

t1−σ(1 + κt)2`σ

≤ Cδ2κ−3σ

ˆ ∞
0

dt

t1−σ(1 + t)2`σ

≤ Cδ2κ−3σ,

where we can simply choose ` = 1 to ensure the convergence of the integral in the
right-hand side.

Estimate for the integral with G2: Note that an interpolation between (5.2.15)
and (5.2.10) implies

|NT
1 ∇θV1(θ, t)|+ |∂tV1(θ, t)| ≤ C(1 + t)σ−1(1 + κt)−`σ. (5.2.34)

Also note that |B1(θ, t)−B2(θ, t)| ≤ Ctδ. It follows that

ˆ ∞
0

ˆ
Td
|G2|2tσ−1 dθdt ≤ Cδ2

ˆ ∞
0

t1+σdt

(1 + t)2(1−σ)(1 + κt)2`σ

≤ Cδ2κ−3σ,

where we need to choose ` = 2.
Estimate for the integral with H: Observe that
ˆ ∞

0

ˆ
Td
|H|2t1+σ dθdt ≤ Cδ2

ˆ ∞
0

ˆ
Td

(
|NT

1 ∇θV1|2 + |∂tV1|2
)
t1+σ dθdt

+ Cδ2

ˆ ∞
0

ˆ
Td

(
|NT

1 ∇θ∇θV1|2 + |∂t∇θV1|2
)
t1+σ dθdt.
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The first term in the RHS is bounded by δ2κ−3σ by using (5.2.34). To handle the
second integral, we apply the interpolation theorem between (5.2.16) and (5.2.10) to
obtain

|NT
1 ∇θ∇θV1(θ, t)|+ |∂t∇θV1(θ, t)| ≤ C(1 + t)−(1−σ)2(1 + κt)−`σ. (5.2.35)

Thus, the second term is bounded by

Cδ2

ˆ ∞
0

t1+σ dt

(1 + t)2(1−2σ)(1 + κt)2`σ
≤ Cδ2κ−5σ, (5.2.36)

where we have chosen ` = 3.
By combining the estimates above with (5.2.32), we obtain

ˆ 1

0

ˆ
Td

(
|NT

2 ∇θW |2 + |∂tW |2
)
dθdt ≤ Cσδ

2κ−5σ. (5.2.37)

Step 3: Estimate for ∂2
tW .

Let N2j denote the jth column of N2 and define ∇2j = NT
2j ·∇θ for 1 ≤ j ≤ d− 1.

Note that ∇2j is the jth component of NT
2 ∇θ. Then we apply ∇2j to (5.2.31) and

obtain

−
(
NT

2 ∇θ

∂t

)
·B2

(
NT

2 ∇θ

∂t

)
∇2jW =

(
NT

2 ∇θ

∂t

)
· ∇2jG+∇2jH

+

(
NT

2 ∇θ

∂t

)
· ∇2jB2

(
NT

2 ∇θ

∂t

)
W,

(5.2.38)

on Td × R+ and ∇2jW = 0 on Td × {0}. Let η(t) be a cut-off function such that
η(t) = 1 for t ∈ [0, 1], η(t) = 0 for t ∈ [2,∞), 0 ≤ η(t) ≤ 1 and |∇η| ≤ C. Now
integrating (5.2.38) against η2∇2jW , we derive from integration by parts that

ˆ 1

0

ˆ
Td

(
|NT

2 ∇θ∇2jW |2 + |∂t∇2jW |2
)
dθdt

≤ C

ˆ 2

0

ˆ
Td

(
|∇2jG|2 + |∇2jH|2 + |NT

2 ∇θW |2 + |∂tW |2
)
dθdt

≤ Cκ−5σδ2,

where we have used the fact |∇2jW | ≤ |NT
2 ∇θW |. Consequently,

ˆ 1

0

ˆ
Td

(
|NT

2 ∇θ ⊗NT
2 ∇θW |2 + |∂tNT

2 ∇θW |2
)
dθdt ≤ Cκ−5σδ2. (5.2.39)

Now observe that by applying the product rule of differentiation,(
NT

2 ∇θ

∂t

)
·B2

(
NT

2 ∇θ

∂t

)
W

=

[(
NT

2 ∇θ

∂t

)
B2

]
·
(
NT

2 ∇θ

∂t

)
W +B2 :

[(
NT

2 ∇θ

∂t

)
⊗
(
NT

2 ∇θ

∂t

)]
W

=

[(
NT

2 ∇θ

∂t

)
B2

]
·
(
NT

2 ∇θ

∂t

)
W +B2 :

[
NT

2 ∇θ ⊗NT
2 ∇θ NT

2 ∇θ∂t
(NT

2 ∇θ∂t)
T 0

]
W + b2,dd∂

2
tW,
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where b2,dd = (bαβ2,dd)1≤α,β≤m is positive due to the strong ellipticity condition. This
gives

b2,dd∂
2
tW = −

[(
NT

2 ∇θ

∂t

)
B2

]
·
(
NT

2 ∇θ

∂t

)
W −B2 :

[
NT

2 ∇θ ⊗NT
2 ∇θ NT

2 ∇θ∂t
(NT

2 ∇θ∂t)
T 0

]
W

−
(
NT

2 ∇θ

∂t

)
·G−H.

Note that |(b2,dd)
−1| ≤ C. Thus, it follows from (5.2.37), (5.2.39) and the pointwise

estimates of G and H for t ∈ [0, 1] that

ˆ 1

0

ˆ
Td
|∂2
tW |2 dθdt ≤ Cδ2κ−5σ. (5.2.40)

This completes the proof of Theorem 5.6.

Proof of Theorem 1.2: Regularity estimate. Note that ∂Ω is locally differential home-
omorphic to Rd−1. Thus, in view of Theorem 5.6, it suffices to prove the following
claim: Let F ∈ L1(Rd−1;Rm) and G ∈ Lp(Rd−1) for some 1 < p < ∞. Suppose that
for a.e. x ∈ Rd−1,

|F (x)− F (y)| ≤ |x− y||G(x)|, for a.e. y ∈ Rd−1. (5.2.41)

Then (ˆ
Rd−1

|∇F |p
)1/p

≤ C

(ˆ
Rd−1

|G|p
)1/p

, (5.2.42)

where C depends only on d and p. Indeed, if the claim holds, then it follows from
Theorem 5.6 that(ˆ

∂Ω

|∇tanf |p
)1/p

≤ C

(ˆ
Td
‖f(·, y)‖2

C1(∂Ω)dy

)1/2(ˆ
∂Ω

[κ(n(x))]−σp dx

)1/p

(5.2.43)
for any 0 < σ < 1. Recall that [κ(n(x))]−1 ∈ Lq(∂Ω) for any q < d − 1 (see [?]).
Thus, for any p <∞, we choose σ ∈ (0, 1) so small that σp < d− 1. As a result, we
obtain (ˆ

∂Ω

|∇tanf |p
)1/p

≤ C

(ˆ
Td
‖f(·, y)‖2

C1(∂Ω)dy

)1/2

(5.2.44)

for any p < ∞. Note that f is bounded. We may conclude that f ∈ W 1,p(∂Ω;Rm)
and (1.2.15) holds.

It remains to prove the claim. Let ϕ ∈ C∞0 (B(0, 1)) and
´
Rd−1 ϕ = 1. Set ϕε(x) =

ε1−dϕ(x/ε). Define for any ε > 0,

Fε(x) =

ˆ
Rd−1

F (y)ϕε(x− y) dy. (5.2.45)
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Clearly, Fε is smooth and Fε → F in L1(Rd−1;Rm) as ε → 0. Moreover, for any
z ∈ B(x, ε),

∇Fε(x) =

ˆ
Rd−1

F (y)∇ϕε(x− y) dy

=

ˆ
Rd−1

(F (y)− F (z))∇ϕε(x− y) dy.

Using the assumption (5.2.41),

|∇Fε(x)| ≤
 
B(x,ε)

|G(z)|
ˆ
B(x,ε)

|y − z||∇ϕε(x− y)| dydz

≤ C

 
B(x,ε)

|G(z)| dz

≤ C

( 
B(x,ε)

|G(z)|p dz
)1/p

.

Thus, by Fubini’s Theorem, for any ε > 0(ˆ
Rd−1

|∇Fε(x)|p dx
)1/p

≤ C

(ˆ
Rd−1

|G(z)|p dz
)1/p

. (5.2.46)

Since ∇Fε → ∇F in the sense of distribution as ε→ 0, (5.2.42) follows from (5.2.46).

5.3 Regularity for Neumann problems

The approach for the Neumann problem is similar to the Dirichlet problem. We
recall the explicit formula for gij given in (3.5.9), which involves a family of Neumann
problems in the half-spaces:{

L∗1us = 0 in Hd
n(s),

n · A∗∇us = T · ∇φ on ∂Hd
n(s),

(5.3.1)

where T is a constant tangential vector, i.e., T ·n = 0, with |T | ≤ 1. We assume that
φ ∈ C∞(Td;Rm).

As far as we know, for arbitrary n ∈ Sd−1, the solvability of (5.3.1) is not clear.
But for n ∈ Sd−1

D , it was shown in §3.2 that (5.3.1) is solvable by lifting the problem
to a (d + 1)-dimensional system in the upper half-space, in a manner similar to the
case of Dirichlet condition. More precisely, we seek a solution in the form of

us(x) = U(x− (x · n+ s)n,−(x · n+ s)), (5.3.2)

where U is a solution of the Neumann problem:
−
(
NT∇θ

∂t

)
·B
(
NT∇θ

∂t

)
U = 0 in Td × R+,

−ed+1 ·B
(
NT∇θ

∂t

)
U = T · ∇θφ on Td × {0},

(5.3.3)
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with B(θ, t) = MTA∗(θ − tn)M and M = (N,−n) being an orthogonal matrix. The
solvability of (5.3.3) and related estimates contained in Proposition 3.7, 3.8 and 3.11
are addressed below.

Lemma 5.9. Suppose that n satisfies the Diophantine condition with constant κ > 0.
Then the Neumann problem (5.3.3) has a smooth solution U , and the solution is
unique, up to a constant under the condition that U ∈ L∞(Td×R+), ∇θU ∈ L2(Td×
R+) and ∂tU ∈ L2(Td × R+). Moreover, the solution satisfies

ˆ ∞
0

ˆ
Td

{
|NT∇θ∂

α
θ ∂

j
tU |2 + |∂αθ ∂

1+j
t U |2

}
dθdt ≤ C‖φ‖2

C|α|+j+1(Td), (5.3.4)

for any |α|, j ≥ 0, where C depends only on d, m, |α|, j, and A. Furthermore, there
exists a constant vector U∞ such that for any |α|, j, ` ≥ 0,

|NT∇θ∂
α
θ ∂

j
tU |+ |∂αθ ∂

1+j
t U |+ κ|∂αθ (U − U∞)| ≤

C`‖φ‖Ck(Td)

(1 + κt)`
, (5.3.5)

where k = k(|α|, j, `, d) and C` depends only on d, m, |α|, j, `, and A.

Remark 5.10. Lemma 5.9 gives the existence of solutions to (5.3.1) for s ∈ R and n ∈
Sd−1
D via (5.3.2). Moreover, by the (large-scale) uniform boundary Lispchitz estimates

for Neumann conditions in Theorem 5.4, the solution satisfying the sublinear growth
as x · n→ −∞ is unique up to a constant.

Recall that Sd−1
D has full surface measure of Sd−1. In the following, we reformulate

the expression for gij defined a.e. on Sd−1, as shown in §3.5.

Theorem 5.11. Let g = {gij}, where gij ∈ C∞(∂Ω×Td;Rm). Then, for any x ∈ ∂Ω
with n = n(x) ∈ Sd−1

D ,

gγjk(x) = niâ
αγ
ji h

αβT`r ·
ˆ
Td

[
ekδ

νβ +∇θχ
∗νβ
k (θ) +∇θU

νβ
n,k(θ, 0)

]
gν`r(x, θ) dθ, (5.3.6)

where (hαβ) denotes the inverse of the m × m matrix (â∗αβij ninj) and Uβ
n,k is the

solution of
−
(
NT∇θ

∂t

)
·Bn

(
NT∇θ

∂t

)
Uβ
n,k = 0 in Td × (0,∞),

−ed+1 ·Bn

(
NT∇θ

∂t

)
Uβ
n,k =

1

2
Tij · ∇θφ

β
ij,k on Td × {0},

(5.3.7)

where Tij = niej−njei, Bn(θ, t) = MTA∗(θ− tn)M , and φβij,k = (φ1β
ij,k, φ

2β
ij,k, · · · , φ

mβ
ij,k)

are the 1-periodic smooth functions satisfying

∂

∂θi

{
φαβij,k

}
= a∗αβjk + a∗αγj`

∂

∂θ`
χ∗γβk − â∗αβjk and φαβij,k = −φαβji,k. (5.3.8)

We point out that the functions φβij,k, which are completely determined by A, are

smooth as long as A is. The equations (5.3.8) for φβij,k will not be used in this paper.
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Theorem 5.12. Fix σ ∈ (0, 1). Let x, y ∈ ∂Ω and |x − y| ≤ c0. Suppose that n(x),
n(y) ∈ Sd−1

D . Then

|g(x)− g(y)| ≤ Cσκ
−σ|x− y|

(ˆ
Td
‖g(·, y)‖2

C1(∂Ω) dy

)1/2

, (5.3.9)

where κ = max
{
κ(n(x)), κ(n(y))

}
and Cσ depends only on d, m, σ, λ, and ‖A‖Ck(Td)

for some k = k(d, σ) ≥ 1.

To prove Theorem 5.12, the following two lemmas will be crucial.

Lemma 5.13. Let n ∈ Sd−1
D and U be a solution of (5.3.3) corresponding to n. Then

|NT∇θU |+ |∂tU | ≤
C‖φ‖Ck(Td)

1 + t
, (5.3.10)

where k > d/2 + 1 and C depends only on d,m and A. Moreover, for any 0 < σ < 1,

|NT∇θ∂
α
θ ∂

j
tU |+ |∂αθ ∂

1+j
t U | ≤

Cσ‖φ‖Ck(Td)

(1 + t)1−σ , (5.3.11)

where k = k(|α|, j, σ, d) and Cσ depends only on d, m, |α|, j, σ and A.

Proof. Let us be the solution of (5.3.1), given by (5.3.2). Then it follows from Theo-
rem 3.13 that

|∇us(x)| ≤ C‖φ‖∞
|x · n+ s|

for x · n+ s < 0. (5.3.12)

Observe that (5.3.2) is equivalent to U(θ, t) = u−θ·n(θ− tn) for any (θ, t) ∈ Td ×R+.
It follows that {

NT∇θU(θ, t) = NT∇xu
−θ·n(θ − tn),

∂tU(θ, t) = −n · ∇xu
−θ·n(θ − tn).

(5.3.13)

In view of (5.3.12) and (5.3.13) we obtain

|NT∇θU(θ, t)|+ |∂tU(θ, t)| ≤ C‖φ‖L∞
t

. (5.3.14)

This gives (5.3.10) for t ≥ 1/2. The case t ∈ [0, 1/2] follows from (5.3.4) and the
Sobolev embedding theorem in Td × [0, 1], which requires k > d/2 + 1.

Finally, the estimate (5.3.11) follows from (5.3.10), (5.3.4) and an interpolation
argument, as in the proof of Lemma 5.7.

Lemma 5.14. Let n ∈ Sd−1
D with Diophantine constant κ > 0 and U be a solution of

(5.3.3) corresponding to n. Then there exists a constant vector U∞ such that for any
0 < σ < 1 and |α| ≥ 0

|∂αθ (U − U∞)| ≤ Cσκ
−σ‖f‖Ck(Td). (5.3.15)

where k = k(α, σ, d) and Cσ depends only on d, m, α, σ, and A.
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Proof. We first observe that it suffices to show |U − U∞| ≤ Cσκ
−σ‖f‖Ck(Td) for any

0 < σ < 1. Then the case |α| > 0 follows from this and (5.3.5) by an interpolation
argument.

Note that |U − U∞| → 0 as t→∞. It follows from (5.3.5) and (5.3.10) that

|∂tU(θ, t)| ≤ C
‖f‖1−σ

Ck(Td)

(1 + t)1−σ ·
‖f‖σ

Ck(Td)

(1 + κt)σ`
. (5.3.16)

Hence,

sup
t>0
|(U − U∞)(θ, t)| ≤

ˆ ∞
0

|∂tU(θ, t)| dt

≤ C‖f‖Ck(Td)

ˆ ∞
0

dt

(1 + t)1−σ(1 + κt)σ`

≤ Cκ−σ‖f‖Ck(Td).

This completes the proof.

Proof of Theorem 5.12. Step 1: Set-up and reduction. Let n1 = (n1,1, · · · , n1,d),
n2 = (n2,1, · · · , n2,d) ∈ Sd−1

D and δ = |n1 − n2| > 0. Choose d × (d − 1) matrices
N1, N2 such that both M1 = (N1,−n1) and M2 = (N2,−n2) are orthogonal and
|N1 − N2| ≤ Cδ. Let U1, U2 be solutions of the systems in the form of (5.3.7)
associated with n1, n2, respectively, i.e.,

−
(
NT

1 ∇θ

∂t

)
·B1

(
NT

1 ∇θ

∂t

)
U1 = 0 in Td × (0,∞),

−ed+1 ·B1

(
NT

1 ∇θ

∂t

)
U1 = T1,ij · ∇θφij on Td × {0},

(5.3.17)

and 
−
(
NT

2 ∇θ

∂t

)
·B2

(
NT

2 ∇θ

∂t

)
U2 = 0 in Td × (0,∞),

−ed+1 ·B2

(
NT

2 ∇θ

∂t

)
U2 = T2,ij · ∇θφij on Td × {0},

(5.3.18)

where T`,ij = n`,iej − n`,jei are vectors orthogonal to n` and B`(θ, t) = MT
` A
∗(θ −

tn`)M` for ` = 1, 2.
Without loss of generality, we may assume that κ = κ(n1) ≥ κ(n2). In view of

the formula (5.3.6), we only need to show that

ˆ
Td
|T1,ij · ∇θU1(θ, 0)− T2,ij · ∇θU2(θ, 0)|2 dθ ≤ Cσκ

−2σ|n1 − n2|2 (5.3.19)
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for 1 ≤ i, j ≤ d. By the triangle inequality,ˆ
Td
|T1,ij · ∇θU1(θ, 0)− T2,ij · ∇θU2(θ, 0)|2 dθ

≤ 2

ˆ
Td
|(T1,ij − T2,ij) · ∇θU1(θ, 0)|2 dθ + 2

ˆ
Td
|T2,ij · ∇θ(U1(θ, 0)− U2(θ, 0))|2 dθ

≤ Cκ−2σδ2 + C

ˆ
Td
|NT

2 ∇θ(U1(θ, 0)− U2(θ, 0))|2 dθ,

where in the last inequality we have used (5.3.15) and the fact that the columns of
N2 span the subspace orthogonal to n2. Furthermore, we let W = U1 − U2 and note
thatˆ

Td
|NT

2 ∇θW (θ, 0)|2 dθ

≤ 2

ˆ 1

0

ˆ
Td
|NT

2 ∇θW (θ, t)|2 dθdt+ 2

ˆ 1

0

ˆ
Td
|NT

2 ∇θ∂tW (θ, t)|2 dθdt.
(5.3.20)

As a result, it suffices to estimate the two terms in the RHS of the above inequality.

Step 2: Estimate for NT
2 ∇θW .

The argument here is similar to that for Dirichlet problems, with Lemmas 5.9,
5.13 and 5.14 in our disposal. Note that W satisfies
−
(
NT

2 ∇θ

∂t

)
·B2

(
NT

2 ∇θ

∂t

)
W =

(
NT

2 ∇θ

∂t

)
·G+H in Td × R+,

−ed+1 ·B2

(
NT

2 ∇θ

∂t

)
W = ed+1 ·G+ (T1,ij − T2,ij) · ∇θφij on Td × {0},

(5.3.21)
where G = G1 +G2 and H are exactly the same as in (5.2.30) for Dirichlet problems.

Now, we will make use of Lemma 3.29 and 3.31 in an essential way. First, we split
W as W = W1 +W2 +W3, where
−
(
NT

2 ∇θ

∂t

)
·B2

(
NT

2 ∇θ

∂t

)
W1 = 0 in Td × R+,

−ed+1 ·B2

(
NT

2 ∇θ

∂t

)
W1 = (T1,ij − T2,ij) · ∇θφij on Td × {0},

(5.3.22)


−
(
NT

2 ∇θ

∂t

)
·B2

(
NT

2 ∇θ

∂t

)
W2 =

(
NT

2 ∇θ

∂t

)
·G in Td × R+,

−ed+1 ·B2

(
NT

2 ∇θ

∂t

)
W2 = ed+1 ·G on Td × {0},

(5.3.23)

and 
−
(
NT

2 ∇θ

∂t

)
·B2

(
NT

2 ∇θ

∂t

)
W3 = H in Td × R+,

−ed+1 ·B2

(
NT

2 ∇θ

∂t

)
W3 = 0 on Td × {0}.

(5.3.24)
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Estimate for W1. Since φij is smooth, we can show that (5.3.22) is solvable and
the solution W1 satisfies (3.5.29). Thus, by Lemma 3.31,

ˆ 2

0

ˆ
Td

(
|NT

2 ∇θW1|2 + |∂tW1|2
)
dθdt ≤ C

ˆ
Td
|T1,ij − T2,ij|2|∇θφij|2 dθdt

≤ Cδ2.

(5.3.25)

Estimate for W2. By Lemma 3.29, we have

ˆ ∞
0

ˆ
Td

(
|NT

2 ∇θW2|2 + |∂tW2|2
)
tσ−1 dθdt ≤ C

ˆ ∞
0

ˆ
Td
|G|2tσ−1 dθdt

≤ C
∑
k=1,2

ˆ ∞
0

ˆ
Td
|Gk|2tσ−1 dθdt.

Using (5.3.15) and (5.3.5), we obtain

|∇θU1| ≤ Cκ−σ(1−σ)[κ−1(1 + κt)−`]σ ≤ Cκ−2σ(1 + κt)−σ`. (5.3.26)

Hence,

ˆ ∞
0

ˆ
Td
|G1|2tσ−1 dθdt ≤ Cκ−4σδ2

ˆ ∞
0

(1 + κt)−2σ`tσ−1 dt

≤ Cκ−5σδ2.

Similarly, by (5.3.10) and (5.3.5), we have

|NT
1 ∇θU1|+ |∂tU1| ≤ C(1 + t)1−σ(1 + κt)−σ`. (5.3.27)

It follows thatˆ ∞
0

ˆ
Td
|G2|2tσ−1 dθdt ≤ Cδ2

ˆ ∞
0

t2(1 + t)2σ−2(1 + κt)−2σ`tσ−1 dt

≤ Cκ−3σδ2.

As a result, we may conclude that

ˆ ∞
0

ˆ
Td

(
|NT

2 ∇θW2|2 + |∂tW2|2
)
tσ−1 dθdt ≤ Cκ−5σδ2. (5.3.28)

Estimate for W3. The estimate for W3 can be reduced to the first two cases.
Let

H̃(θ, t) = −
ˆ ∞
t

H(θ, s)ds. (5.3.29)

Note that H̃ is bounded for all (θ, t) ∈ Td × R+. Write

H(θ, t) = ∂tH̃(θ, t) =

(
NT

2 ∇θ

∂t

)
·
(

0

H̃(θ, t)

)
. (5.3.30)
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Then, we can further decompose W3 into W3 = W31 +W32, where
−
(
NT

2 ∇θ

∂t

)
·B2

(
NT

2 ∇θ

∂t

)
W31 =

(
NT

2 ∇θ

∂t

)
·
(

0

H̃(θ, t)

)
in Td × R+,

−ed+1 ·B2

(
NT

2 ∇θ

∂t

)
W32 = ed+1 ·

(
0

H̃(θ, t)

)
on Td × {0},

(5.3.31)

and
−
(
NT

2 ∇θ

∂t

)
·B2

(
NT

2 ∇θ

∂t

)
W32 = 0 in Td × R+,

−ed+1 ·B2

(
NT

2 ∇θ

∂t

)
W32 = −ed+1 ·

(
0

H̃(θ, t)

)
on Td × {0}.

(5.3.32)

Now by applying Lemma 3.29 for W31, we obtain

ˆ ∞
0

ˆ
Td

(
|NT

2 ∇θW31|2 + |∂tW31|2
)
tσ−1 dθdt ≤ C

ˆ ∞
0

ˆ
Td
|H̃|2tσ−1 dθdt. (5.3.33)

It follows from Hardy’s inequality (see [39, p.272]) that

ˆ ∞
0

ˆ
Td
|H̃|2tσ−1 dθdt =

ˆ
Td

ˆ ∞
0

∣∣∣∣ ˆ ∞
t

H(θ, s)ds

∣∣∣∣2tσ−1 dtdθ

≤ 4

(1− σ)2

ˆ
Td

ˆ ∞
0

|H(θ, t)|2tσ−1+2 dtdθ.

Consequently,

ˆ ∞
0

ˆ
Td

(
|NT

2 ∇θW31|2 + |∂tW31|2
)
tσ−1 dθdt ≤ C

ˆ ∞
0

ˆ
Td
|H|2t1+σ dθdt.

For W32, using Lemma 3.31 and Hölder’s inequality, we have

ˆ 2

0

ˆ
Td

(
|NT

2 ∇θW32|2 + |∂tW32|2
)
dθdt

≤ C

ˆ
Td
|H̃(θ, 0)|2 dθ

≤ C

ˆ
Td

∣∣∣∣ ˆ ∞
0

|H(θ, t)|dt
∣∣∣∣2 dθ

≤ C

ˆ
Td

ˆ ∞
0

|H(θ, t)|2(1 + t)2−αdt

ˆ ∞
0

(1 + t)α−2 dtdθ

≤ C

ˆ ∞
0

ˆ
Td

(1 + t)2|H(θ, t)|2t−α dθdt.
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Therefore,

ˆ 2

0

ˆ
Td

(
|NT

2 ∇θW3|2 + |∂tW3|2
)
dθdt

≤ C

ˆ ∞
0

ˆ
Td

(1 + t)2|H|2tσ−1 dθdt

≤ Cδ2

ˆ ∞
0

(1 + t)2−2(σ−1)2(1 + κt)−2σ`tσ−1 dt

≤ Cκ−5σδ2,

where in the last inequality we have chosen ` ≥ 2.
Summing up the estimates for Wk, we arrive at

ˆ 2

0

ˆ
Td

(
|NT

2 ∇θW |2 + |∂tW |2
)
dθdt ≤ Cκ−5σδ2, (5.3.34)

which proves the first part of (5.3.20), as σ ∈ (0, 1) can be arbitrarily small.

Step 3: Estimate for NT
2 ∇θ∂tW .

The argument is similar to Step 3 in the proof of Theorem 5.6. Let N2k denote
the kth column of N2, and define the kth component of NT

2 ∇θ by ∇2k = NT
2k · ∇θ.

We apply ∇2k to (5.3.21) and obtain

−
(
NT

2 ∇θ

∂t

)
·B2

(
NT

2 ∇θ

∂t

)
∇2kW =

(
NT

2 ∇θ

∂t

)
· ∇2kG+∇2kH

+

(
NT

2 ∇θ

∂t

)
· ∇2kB2

(
NT

2 ∇θ

∂t

)
W

in Td × R+,

−ed+1 ·B2

(
NT

2 ∇θ

∂t

)
∇2kW = ed+1 · ∇2kG+∇2kh

+ ed+1 · ∇2kB2

(
NT

2 ∇θ

∂t

)
W

on Td × {0},

(5.3.35)

where h = (T1,ij − T2,ij) · ∇θfij. Let η(t) be a cut-off function such that η(t) = 1 for
t ∈ [0, 1], η(t) = 0 for t ∈ [2,∞), 0 ≤ η(t) ≤ 1 and |∇η| ≤ C. Now by integrating
(5.3.35) against ∇2k(Wη2), we derive from integration by parts that

ˆ 1

0

ˆ
Td

(
|NT

2 ∇θ∇2kW |2 + |∂t∇2kW |2
)
dθdt

≤ C

ˆ 2

0

ˆ
Td

(
|∇2kG|2 + |∇2kH|2 + |NT

2 ∇θW |2 + |∂tW |2
)
dθdt+ C‖h‖2

H1(Td)

≤ Cκ−5σδ2.
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Consequently,

ˆ 1

0

ˆ
Td

(
|NT

2 ∇θ ⊗NT
2 ∇θW |2 + |∂tNT

2 ∇θW |2
)
dθdt ≤ Cκ−5σδ2, (5.3.36)

which finishes the proof.

Proof of Theorem 1.1: Regularity estimate. With Theorem 5.12 at our disposal, the
proof of (1.2.10) is identical to that of Theorem 1.2.15.

Copyright c© Jinping Zhuge, 2019.
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