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Chapter 1 Introduction

1.1 Finite Mixture Model

Let X1, ..., Xn denote a random sample of size n, Xi is a p-dimensional random vector

with density function f(xi). We suppose that the density f(xi) can be written in the

form

f(xi) =

g∑

j=1

πjfj(xi),

where the fj(xi) are densities and the πj′s ∈ [0, 1], j = 1, 2, ..., g < ∞,
∑g

j=1 πj = 1.

In such a case, we shall say that X1, ..., Xn have a finite mixture distribution and

that f(·) is a finite mixture density function. The parameters π′
js are called the

mixing weights and fj(·) are called the component densities of the mixture. Often,

fj(·) is taken to have the form g(·; θj), where g(·; θj) is a probability density function

governed by a parameter θj and θj ∈ Θ, a parameter space. In the model, the number

of components g is considered fixed. But in applications, the smallest possible value

of g with which f(xi) can be recovered is unknown and has to be inferred from the

available data. For example, the following three mixture models are equivalent, since

the second model has a third component which has weight zero while the last two

terms of the third model can be combined.

0.5N(0, 1) + 0.5N(1, 1)

0.5N(0, 1) + 0.5N(1, 1) + 0N(2, 1)

0.5N(0, 1) + 0.25N(1, 1) + 0.25N(1, 1)

Above N(µ, σ2) represents the density of the normal distribution with mean µ and

variance σ2.
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There are many applications of mixture models, Charnigo’s (2010a) paper proposed

using a normal mixture model to describe a birth weight distribution in which the

number of components is determined from the data using a model selection criterion

rather than fixed a priori. They found that a 4-component normal mixture model

reasonably describes the birth weight distribution for a population of white singleton

infants born to heavily smoking mothers. Another example is the semiparametric

mixture model which is characterized by a non-parametric mixing distribution Ω and

a structural parameter β common to all components. In Charnigo’s 2006 paper with

Pilla, they created a framework for consistent estimation of Ω, β and the order of the

model m. The order of a finite mixture model is the smallest number of components

with which the mixture density can be recovered. Or in the notation of Charnigo and

Pilla (2006), m is the order of the support set of Ω. Suppose we have

0.5N(0, 1) + 0.5N(1, 1).

We can express this in terms of Ω and β by defining Ω to be a discrete distribution

that places 0.5 of its mass on 0 and 0.5 of its mass on 1:

P (U = 0) = 0.5, P (U = 1) = 0.5

where U ∼ Ω.

0.5N(0, 1) + 0.5N(1, 1) =
∑

u∈sup(Ω)

P (U = u)N(u, 1)

Here, β is set to 1. They formulated a class of generalized exponential family (GEF)

models and established sufficient conditions for the identifiability of finite mixtures

formed from a GEF along with sufficient conditions for a nesting structure. They

found that consistent estimation of the order m is possible if one restricts the class of

mixing distributions and employs an information-theoretic approach. Charnigo and

Pilla (2006) also exhibited practical applications of mixture modeling, including the

2



analysis of sodium-lithium countertransport (SLC) data.

Statistical inference in mixture modeling is difficult. Regularity conditions are vio-

lated in the mixture problem which result in a loss of identifiability. For instance,

(1 − π)N(0, 1) + πN(µ, 1) = N(0, 1) for any µ if π = 0 or for any π if µ = 0. There

is not a unique π or a unique µ through which (1 − π)N(0, 1) + πN(µ, 1) reduced

to N(0, 1). The classical log likelihood ratio test statistic does not maintain usual

asymptotic structure for testing homogeneity against a mixture alternative. (Note,

homogeneity is defined as an order of 1 in a mixture model.) Hartigan (1985) showed

that the LRT goes to infinity in probability if the parameter space Θ is unbounded

for a normal mixture model. Under the assumption that Θ is bounded, Ghosh and

Sen (1985) pointed out if they reparameterize to set up Euclidean parameters in one

to one correspondence with the mixing distribution, then the problem becomes one

of lack of differentiability of the density with respect to these new parameters, at

points in the space of H0. They developed the asymptotic theory for LRT for testing

homogeneity by restricting the two mixing parameters to be separated.

Chen and Chen (2001) removed the separation condition of Ghosh and Sen (1985)

and stated the asymptotic null distribution of the LRT is the squared supremum

of a truncated Gaussian process on Θ and recommended a bootstrap procedure for

testing homogeneity. Chen and Chen, in collaboration with Kalbfleisch (2001), also

proposed a modified LRT which retains the power of the LRT and has a clear form

of asymptotic properties. The test is based on the following modified log-likelihood

function

ln(π, θ1, θ2) =

n∑

i=1

log{(1 − π)f(Xi, θ1) + πf(Xi, θ2)} + C log{4π(1 − π)}

where 0 ≤ π ≤ 1, θ1, θ2 ∈ Θ with θ1 ≤ θ2, C > 0 is a constant and is used to control

the level of modification. ln is often called a penalized likelihood function, referring

3



to the penalty term C log{4π(1 − π)} which is large when π is close to 0 or 1. The

penalty effectively eliminates the identifiability problem and yields a test statistic

whose asymptotic null distribution is the mixture of χ2
1 and χ2

0 with equal weights

under some regularity conditions, i.e.

0.5χ2
1 + 0.5χ2

0,

where χ2
0 is a degenerate distribution with all its mass at 0.

Chen, Chen and Kalbfleisch (2004) extended the modified likelihood approach to finite

normal mixture models with a common and unknown variance in the mixing compo-

nents and consider a test of the hypothesis of a homogeneous model versus a mixture

on two or more components. They found that the χ2
2 distribution is a stochastic lower

bound to the limiting null distribution of the likelihood ratio statistic, meanwhile, its

a stochastic upper bound to the limiting distribution of the modified likelihood ratio

statistic. But they suggested that in practice, a data analyst could conservatively

take critical values from a χ2
3 distribution.

Charnigo and Sun (2004) proposed another method for testing homogeneity, namely

the D-test. It’s based on the L2 distance between the fitted null and alternative

models and has closed-form expressions for mixture components from standard dis-

tributions. In other words, the D-test statistic can be expressed as a function of

π̂1, ..., π̂g, θ̂1, ..., θ̂g, θ̂0, where π̂1, ..., π̂g, θ̂1, ..., θ̂g are estimates of mixture model pa-

rameters under the alternative hypothesis with g components and θ̂0 is an estimator

of the (single) model parameter under the null hypothesis of homogeneity. Charnigo

and Sun (2004) showed that the D-test is consistent for a 2-component alternative

hypothesis when parameters are estimated by maximum likelihood and demonstrated

through simulations that the D-test had power comparable to that of the LRT and

MLRT. Charnigo and Sun (2010) later showed that the D-test are asymptotically

4



equivalent to three likelihood ratio-type tests for homogeneity, under maximum like-

lihood, Bayesian estimation framework and empirical Bayesian estimation framework

respectively. The second equivalence yields a simple limiting null distribution of the

D-test statistic, which involves an estimable constant C∗(θ0) such that ndnC∗(θ0)
−1

is distributed as 0.5χ2
0 + 0.5χ2

1. It also yields a simple limiting distribution under

contiguous local alternatives for the D-test statistic, which reveals that the D-test

is asymptotically locally most powerful. The third equivalence also yields a simple

limiting null distribution for D-test. Under the indicated empirical Bayesian estima-

tion framework, as n → ∞, ndn = A∗(α0){En(α0) − 2 log[2α0]} + op(1), where α0 is

the initial value for α in an iterative algorithm, En(α0) denotes the EM test statistic

based on one set of initial values that includes the initial value α0 ∈ (0, 0.5] for α (the

weight) of the second mixture component, and

A∗(α) :=
5

32π1/2σ0
for α < 0.5, A∗(0.5) :=

35

256π1/2σ0
.

Above, α is the smaller of π1 and p2 in a two component mixture, while σ0 can be

substituted by σ̂0 without disturbing the conclusions of this theorem or the following

corollary. When α0 = 0.5 the asymptotic null distribution of ndn{256/35}π1/2σ0 is

0.5χ2
0 + 0.5χ2

1.

Chen and Li (2009) proposed an EM-test to finite normal mixture models and showed

that the test provides satisfactory solution to three limitations of normal mixture

model: the likelihood function is unbounded, the Fisher information is infinite and

unidentifiability. The EM test does not require any constraints on the mean and the

variance parameters or compactness of the parameter space. They found in finite

normal mixture models, when the mixture components share the same variance, the

limiting null distribution of EM test is a simple function of the 0.5χ2
0 +0.5χ2

1 and the

χ2
1 distributions. In general normal mixture model, the limiting null distribution of

the EM-test is found to be the χ2
2. Li and Chen (2010) also designed an EM test for

5



testing the order of a finite mixture model, which is applicable to H0 : m = m0 versus

H1 : m > m0 for any general order m0. The null limiting distribution of the EM test

has the form of a mixture of χ2
0, χ

2
1, ..., χ

2
m0

distributions, where χ2
0 is a point mass at

0.

1.2 A Review of Contaminated Density Model

Consider X an observable random variable or vector. For known k ∈ N and compact

Θθ ⊂ R
k, let F := {fθ(x) : θ ∈ Θθ} be a known family of distributions. Assume X

has the density

f(x|θ, γ) := (1 − γ)f(x|θ0) + γf(x|θ),

where the θ ∈ Θθ and γ ∈ [0, 1] are unknown but fixed values and θ0 ∈ Θθ is known.

We refer to this density as a contaminated density model (Dai and Charnigo, 2008b).

The difference between a contaminated density model and a mixture model is that

θ0 would also be unknown in a mixture model. To avoid identifiability problem, a

mixed parameter ν = γ(θ− θ0) is introduced and we want to test the null hypothesis

H0 : ν = 0 against the complementary alternative hypothesis Ha : ν 6= 0.

Several approaches have been developed to make inference on contamination models.

Lemdani and Pons (1999) studied the asymptotic distribution of the LR statistic to

test whether the contamination of a known density by another density of the same

parametric family reduces to the known density itself. They found that under the null

hypothesis, assuming some regularity conditions hold, the likelihood ratio statistic of

the above test converges weakly to the supremum of a squared truncated Gaussian

process.

Dai and Charnigo (2008b) studied the asymptotic and finite-sample performance of

two different tests for contamination, namely a modified likelihood ratio test and

6



an empirical D-test. They showed that each test statistic has a limiting chi-square

distribution under the null hypothesis, while under the complementary alternative hy-

pothesis it has limiting noncentral chi-square distribution. Dai and Chainigo (2008a)

also showed these two tests can be used along with a gene filtration process to inves-

tigate whether a collection of p-values has arisen from the Uniform(0, 1) distribution

or whether the Uniform(0, 1) distribution contaminated by another Beta distribu-

tion is more appropriate.

1.3 Genetic Applications of Mixture or Contaminated Model

Contaminated density models are important and of practical use. In many cases,

the parameter θ0 can be treated as known if we have knowledge on the subject or we

have prior experience. It is well known that assuming independence of gene expression

levels across genes, the p-values of continuous exact test statistics from a microarray

experiment are distributed as Uniform(0, 1) under the omnibus null hypothesis of

no genome-wise alterations. An exact test is one in which the actual Type I error

probability is equal to the nominal Type I error probability at a finite sample size,

not just is the limit as n goes to infinity. When you have an exact test based on a

continuous test statistics,

P (p − values ≤ u|H0) = u

for all u ∈ (0, 1). This explains why p-values is distributed as a Uniform(0, 1) under

null hypothesis.

Parker and Rothenberg (1988) suggested that the distribution of p-values can be

fitted by a mixture of a uniform and one or more beta distributions

γ0B(1, 1) +

ν∑

i=1

γiB(αi, βi)

7



where γ0 is the probability that a randomly chosen test from the collection of tests

is for a gene for which there is no population difference in gene expression, and γi is

the probability that a randomly chosen test from the collection of tests is for a gene

from the ith component distribution for which there is a true population difference

in gene expression. ν is the number of contaminating components. γ0 +
∑ν

i=1 γi = 1

and γ0 and γi ∈ [0, 1].

Allison et al. (2002) adopted this idea and developed a method for modeling the dis-

tribution of p-values from microarray experiments when we suspect that there may

exist genome-wise alternations. Interestingly, the number of contaminating compo-

nents is ambiguous unless constraints are placed on the component parameters. For

example,

0.5B(1, 1) + 0.25B(2, 1) + 0.25B(1, 2)

is indistinguishable from B(1, 1).

Dai and Charnigo (2008a) showed how to test H0 : ν = 0 versus H1 : ν = 1 using a

modified likelihood ratio test and a D-test, and they proposed that if a collection of

p-values is believed to have arisen from the Uniform(0, 1) distribution, that collec-

tion can be removed from consideration and attention can be directed to a smaller

part of the genome. With fewer genes under consideration, investigators may be able

to achieve greater power on hypothesis tests while maintaining a desired Type I error

rate. If the Uniform(0, 1) distribution is contaminated by another Beta distribu-

tion, parameter estimates for the contamination model provide a frame of reference

for multiple comparisons. For example, if γ0 is estimated to be 0.5, then the multiple

comparisons adjustment may proceed as if the number of genes under consideration

were 0.5 times the number of genes actually present.
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Dai and Charnigo (2010) also proposed a new approach to analyzing microarray

data, which is to use a contaminated normal model (1 − γ)N(0, σ2) + γN(µ, σ2) to

describe the distribution of Z statistics or suitably transformed T statistics, where

γ ∈ [0, 1], µ ∈ R and σ2 ∈ (0,∞) are unknown but fixed. One may identify

2(1−Φ|Z1|), ..., 2(1−Φ|Zn|) with P1, ..., Pn which are p-values from microarray exper-

iment. They suggest researchers to analyze Z statistics using contaminated normal

model or convert the Z statistics to p-values to be analyzed using the contaminated

beta model with ν = 1. If investigator has T statistics, let Φ(·) denote the cumulative

distribution function for a standard normal random variable, and let Ψ(·) denote the

cumulative distribution function for a T random variable on appropriate degrees of

freedom. Since we can identify Φ−1(Ψ(T1)), ..., Φ
−1(Ψ(Tn)) with Z1, ..., Zn we may

assume without loss of generality that the investigator has Z statistics. They proved

that under the omnibus null hypothesis, the MLRT and D-test statistic for the con-

taminated normal model has a limiting chi-square distribution with one degree of

freedom.

In the simulation study, Dai and Charnigo (2010) suggest that contaminated normal

model yields more powerful omnibus tests than the contaminated beta model when

there is an asymmetry between overexpression and underexpression, or the ratio of

|µ| to σ in the contaminated normal model is not too large. Moreover, contaminated

normal model is preferred if one is more concerned about estimating the proportion

of differentially expressed genes and if there is an asymmetry between overexpression

and underexpression.

A limitation of the contaminated normal model is it does not detect differential ex-

pression when the distribution of Z statistics is non-normal but symmetric.
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Kendziorski and Newton (2003) proposed a general empirical Bayes modeling ap-

proach which allows for replicate expression profiles in multiple conditions. The

hierarchical mixture model accounts for differences among genes in their average ex-

pression levels, differential expression for a given gene among cell types, and measure-

ment fluctuations., Two distinct parameterizations are considered: a model based on

Gamma distributed measurements and one based on log-normally distributed mea-

surements. They also showed how the posterior odds of differential expression in one

version of the model is related to the ratio of the arithmetic mean to the geometric

mean of the two sample means.

Copyright c© Qian Fan 2014
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Chapter 2 Bilaterally Contaminated Normal Model without Nuisance

Parameter

2.1 Introduction

First, consider the situation where X1, ..., Xn are independent and identically dis-

tributed random variables such that

X1, ..., Xn ∼ (1 − γ1 − γ2)N(0, σ2) + γ1N(µ1, σ
2) + γ2N(µ2, σ

2) (2.1)

where γ1 ∈ [0, 1−γ2], γ2 ∈ [0, 1], µ1 ∈ [0,∞) and µ2 ∈ (−∞, 0] are unknown but fixed

and σ2 ∈ (0,∞) is known and hereafter assumed to be 1 without loss of generality.

We refer to this as the Bilaterally contaminated normal model without nuisance pa-

rameter (BCN-NP).

In the context of microarray data analysis, we might take Xi to be the following

quotient which represents a Z statistic:

Xi =
sample mean on patients gene i − sample mean on controls gene i√

sample variance on patients gene i
sample size patients

+ sample variance on controls gene i
sample size controls

If the sample size of patients or controls is small, so that the quotient is more appro-

priately viewed as a T statistic with degree of freedom ν for some ν > 0 rather than a

Z statistic, then Xi might be obtained by applying, in succession, the cdf of the T dis-

tribution on ν degrees of freedom followed by the inverse standard normal cdf. That

is, if we take a quantity Xi that is distributed Tν , then the evaluation of this quantity

at its cdf Ψν(Xi) is distributed Unif(0, 1) by the probability inverse transformation.

Then apply the inverse standard normal cdf to yield Φ−1(Ψν(Xi)) ∼ N(0, 1).

11



If γ1µ1 or γ2|µ2| = 0, the BCN-NP model reduces to the Unilaterally contami-

nated normal model (UCN-NP). UCN-NP is like the normal mixture model with

one contaminating component mentioned in Chapter 1. Consider the situation where

X1, ..., Xn are independent and identically distributed random variables such that

X1, ..., Xn ∼ (1 − γ)N(0, σ2) + γN(µ, σ2) (2.2)

where γ ∈ [0, 1], µ ∈ R, and σ2 = 1 without loss of generality.

This model can detect either underexpression or overexpression of genes among pa-

tients. In microarray data analysis comparing patients with a medical condition to

healthy controls, a positive µ indicates some genes have overexpression and a negative

µ indicates some genes have underexpression, while γ is the proportion of differential

expressed genes. If a gene comes from N(0, σ2), then this gene is neither overex-

pressed nor underexpressed among patients. Compared to UCN-NP model, BCN-NP

model can detect both underexpression and overexpression simultaneously and show

how much of each type of differential expression there is. In the BCN-NP model,

µ1 and µ2 correspond to overexpression and underexpression, respectively, while γ1

and γ2 are the proportions of overexpressed and underexpressed genes. This model

is handy when both kinds of gene expression are suspected to exist.

The contaminated beta model (CB) (Allison et al 2002; Dai and Charnigo 2008a) has

also been employed in microarray data analysis. The model is

P1, ..., Pn
i.i.d.∼ (1 − γ)Unif(0, 1) + γBeta(α, β) (2.3)

where γ ∈ [0, 1], α ∈ (0,∞), and β ∈ (0,∞). The CB model describes p-values rather

than test statistics as mentioned in Chapter 1. Since both gene underexpression and

overexpression produce small p-values(e.g.Pi = 2[1−Φ|Xi|]), the CB model can detect

both. However, CB model does not distinguish between them. The CB model has
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an advantage over the UCN-NP model in that it detects both differential expression

types simultaneously, but it does not have the advantage of BCN-NP model that

separates the two kinds of differential expression.

2.2 Omnibus Testing Procedure

To determine if both gene under- and over-expression exist, we are interested in

testing the two null hypotheses:

(a). Omnibus test:

H0 : N(0, 1) versus Ha : UCN-NP or BCN-NP (2.4)

(b). Unilateral test:

H0 : UCN-NP versus Ha : BCN-NP (2.5)

Above we are assuming σ2 = 1 without loss of generality.

In this section we study test (a). Test (b) will be studied in section 2.3.

Since the first six moments of the BCN-NP model will be useful for test (a) and/or

(b), we record them here:

m1 = µ1γ1 + µ2γ2 (2.6)

m2 = 1 + µ2
1γ1 + µ2

2γ2 (2.7)

m3 = (µ3
1 + 3µ1)γ1 + (µ3

2 + 3µ2)γ2 (2.8)

m4 = 3 + (µ4
1 + 6µ2

1)γ1 + (µ4
2 + 6µ2

2)γ2 (2.9)

m5 = (µ5
1 + 10µ3

1 + 15µ1)γ1 + (µ5
2 + 10µ3

2 + 15µ2)γ2 (2.10)

m6 = 15 + (µ6
1 + 15µ4

1 + 45µ2
1)γ1 + (µ6

2 + 15µ4
2 + 45µ2

2)γ2 (2.11)
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Limiting Null Distribution of the Test Statistic

We consider a method of moments approach for testing the null hypothesis a). If

this null hypothesis is true, γ1µ1 = γ2|µ2| = 0 and there’s no differential expression

and further data analysis is not required(e.g., to estimate proportions of differentially

expressed genes or to classify which genes are differentially expressed). We propose

using nm̂2 =
∑n

i=1 X2
i as a statistic for testing null hypothesis a) because m2 has

its minimal value(namely, 1) when the null hypothesis is true. Thus, small
∑n

i=1 X2
i

can warrant retention of the null hypothesis (a) while large
∑n

i=1 X2
i can warrant

rejection. Under null hypothesis (a), X1, X2, ..., Xn
i.i.d.∼ N(0, 1), then the statistic

∑n
i=1 X2

i ∼ χ2
n.

Theorem 2.2.1. For the statistic
∑n

i=1 X2
i , suppose that the null hypothesis a) is

true. Then, for any fixed α ∈ (0, 1) we have

P

(
n∑

i=1

X2
i > χ2

n,1−α

)
= α

for all n.

Proof. Immediate from the definition of the quantile function.

Unbiasedness of the Testing Procedure

Now we show that our test for (a) is unbiased, in that rejection of the null hypothesis

is more probable when the null hypothesis is false than when true.

Theorem 2.2.2. For any fixed α ∈ (0, 1), the statistic
∑n

i=1 X2
i satisfies

PHa

(
n∑

i=1

X2
i > χ2

n,1−α

)
≥ PH0

(
n∑

i=1

X2
i > χ2

n,1−α

)
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or equivalently,

PHa

(
n∑

i=1

X2
i ≤ χ2

n,1−α

)
≤ PH0

(
n∑

i=1

X2
i ≤ χ2

n,1−α

)
.

Fact For any fixed n, the χ2
n(ν) distribution, ν > 0, is stochastically greater than

the χ2
n(0) distribution, where ν represents the non-centrality parameter (Shaked and

Shanthikumar 2007). This fact will be useful for the proof of Theorem 2.2.2 below.

Proof. If Ha (a) is true, then

n∑

i=1

X2
i ∼

3n∑

i=1

piχ
2
n(νi),

where there exists at least one i such that both pi and νi are non-zero and p1, ..., p3n ≥

0 with
∑3n

i=1 pi = 1.

Example If n = 2, then there are nine summands with

p1 = (1 − γ1 − γ2)
2, ν1 = 0,

p2 = (1 − γ1 − γ2)γ1, ν2 = µ2
1,

p3 = (1 − γ1 − γ2)γ2, ν3 = µ2
2,

p4 = (1 − γ1 − γ2)γ1, ν4 = µ2
1,

p5 = γ2
1 , ν5 = 2µ2

1,

p6 = γ1γ2, ν6 = µ2
1 + µ2

2,

p7 = (1 − γ1 − γ2)γ2, ν7 = µ2
2,

p8 = γ1γ2, ν8 = µ2
1 + µ2

2,

p9 = γ2
2 , ν9 = 2µ2

2.

Indeed, we have X2
1 + X2

2 |Y1, Y2 ∼ χ2
1(Y

2
1 ) + χ2

2(Y
2
2 ) where Yi is 0 with probability

1 − γ1 − γ2, µ1 with probability γ1 and µ2 with probability γ2. Thus

X2
1 + X2

2 ∼ (1 − γ1 − γ2)
2[χ2

2(0)] + 2(1 − γ1 − γ2)γ1[χ
2
2(µ

2
1)]

+ 2(1 − γ1 − γ2)γ2[χ
2
2(µ

2
2)] + 2γ1γ2[χ

2
2(µ

2
1 + µ2

2)]

+ γ2
1 [χ

2
2(2µ

2
1)] + γ2

2 [χ
2
2(2µ

2
2)]

(2.12)
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So, continuing with the proof,

PHa(
n∑

i=1

X2
i ≤ χ2

n,1−α) =
3n∑

i=1

piP(χ2
n(νi) ≤ χ2

n,1−α)

≤
3n∑

i=1

piP(χ2
n(0) ≤ χ2

n,1−α) (2.13)

= P(χ2
n(0) ≤ χ2

n,1−α)
3n∑

i=1

pi

= P(χ2
n(0) ≤ χ2

n,1−α)

= PH0(
n∑

i=1

X2
i ≤ χ2

n,1−α),

where step (2.13) uses the fact about stochastic ordering.

Consistency of the Testing Procedure

If null hypothesis (a) is false, then either γ1µ1 6= 0 or γ2|µ2| 6= 0 or both. Under

alternative hypothesis (a), n m̂2=
∑n

i=1 X2
i follows a mixture of χ2

n central and non-

central distributions.

Theorem 2.2.3. For the statistic
∑n

i=1 X2
i , suppose the alternative hypothesis (a) in

the omnibus test is true. Then

1

n

n∑

i=1

X2
i

P−→ 1 + µ2
1γ1 + µ2

2γ2 > 1. (2.14)

Therefore, for any fixed α ∈ (0, 1) we have

lim
n→∞

P

(
n∑

i=1

X2
i > χ2

n,1−α

)
= 1.

Proof. Statement (2.14) is an immediate consequence of the weak law of large num-

bers.

On the other hand, the Central Limit Theorem yields

1

n
χ2

n,1−α −→ E[χ2
1] = 1 as n → ∞.
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As such,

lim
n→∞

PHa(
∑

X2
i > χ2

n,1−α) = lim
n→∞

PHa

(
1

n

∑
X2

i >
1

n
χ2

n,1−α

)
= 1 as n → ∞.

2.3 Unilateral Testing Procedure

The null hypothesis (b) can be tested using a test statistic whose numerator ap-

proximates M := m2
2 − 2m2 + 1 + 3m2

1 − m3m1 = γ1γ2µ1|µ2|(µ1 − µ2)
2. Under null

hypothesis (b), either γ1µ1 = 0 or γ2|µ2| = 0 and thus M = 0. If the null hypothesis

(b) is false, M is strictly positive, since γ1, γ2 ∈ (0, 1), µ1 ∈ (0,∞), µ2 ∈ (−∞, 0), so

we reject when we get a large test statistic. Define

m := (m1, m2, ..., m6)
T , m̂ := (m̂1, m̂2, ..., m̂6)

T , 0 := (0, 0, ..., 0)T ,

V(m) =




m2 − m2
1 m3 − m1m2 m4 − m1m3

m3 − m1m2 m4 − m2
2 m5 − m2m3

m4 − m1m3 m5 − m2m3 m6 − m2
3




. (2.15)

Let g(m) = m2
2 − 2m2 + 1 + 3m2

1 − m3m1 and h(m) = ∂g(m)
∂m

= (−m3 + 6m1, 2m2 −

2,−m1)
T .

By the multivariate Central Limit Theorem (Ferguson, 1996, p.26), as n → ∞
√

n(m̂ − m)
L−→ N(0, V (m)). (2.16)

By the multivariate Cramer Theorem (Ferguson, 1996, p.45),

√
n(g(m̂) − g(m))

L−→ N(0, h(m)T V (m)h(m)). (2.17)

Moreover, both h(m) and V (m) are continuous functions of the first six moments.

So by Continuous Mapping Theorem and Slutsky’s Theorem (Ferguson, 1996)

h(m̂)T V (m̂)h(m̂)
P−→ h(m)T V (m)h(m) as n → ∞, (2.18)
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Provided h(m)T V (m)h(m) 6= 0, which is true if null hypothesis (a) is false, this

yields

g(m̂) − g(m)√
h(m̂)T V (m̂)h(m̂)/n

L−→ N(0, 1) as n → ∞. (2.19)

Now define Zn := g(m̂)/
√

h(m̂)T V (m̂)h(m̂)/n, and zu denote the u quantile of

the standard normal distribution (e.g., z0.95 = 1.645), and ma be the vector of mo-

ments implied by (γ1, γ2, µ1, µ2)
T = (γ1,a, γ2,a, µ1,a, 0)T for fixed positive constants

γ1,a, γ2,a and µ1,a.

We propose to reject the unilateral null hypothesis (b) if Zn > z1−α. Under the uni-

lateral null hypothesis (b), g(m) = 0, Zn
L−→ N(0, 1). Obviously, limn→∞ P (Zn >

z1−α) = α, so this testing procedure is approximately level α.

Under the local alternative sequence (γ1, γ2, µ1, µ2) = (γ1,a, γ2,a, µ1,a,−τn−1/2) for a

fixed positive constant τ , g(m) > 0, then by symmetry of normal distribution,

limn→∞ P (Zn > z1−α) = limn→∞ P

(
Zn − g(m)√

H(cm)/n
> z1−α − g(m)√

H(cm)/n

)
(2.20)

= limn→∞ P

(
−Zn + g(m)√

H(cm)/n
≤ −z1−α + g(m)√

H(cm)/n

)

(2.21)

= limn→∞ P

(
−Zn +

γ1,a γ2,a µ1,a |− τ√
n
|(µ1,a+ τ√

n
)2√

H(cm)/n

≤ −z1−α +
γ1,a γ2,a µ1,a |− τ√

n
|(µ1,a+ τ√

n
)2√

H(cm)/n

)
(2.22)

= limn→∞ P

(
−Zn +

γ1,a γ2,a µ3
1,a τ√

H(cm)
≤ −z1−α +

γ1,a γ2,a µ3
1,a τ√

H(cm)

)

(2.23)

= Φ

(
−z1−α +

γ1,a γ2,a µ3
1,a τ√

H(ma)

)
(2.24)

where H(m) := h(m)T V (m)h(m). Thus, the procedure is asymptotically locally

unbiased.
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This procedure is also consistent under a fixed alternative, since

P (Zn > z1−α) = P

(
Zn − g(m)√

h(m̂)TV (m̂)h(m̂)/n
> z1−α − g(m)√

h(m̂)TV (m̂)h(m̂)/n

)
.

Noting that for any negative real number y we have P (z1−α − g(m)√
h(cm)T V (cm)h(cm)/n

<

y) → 1, we find for sufficiently large n,

P (Zn > z1−α) ≥ P (Zn − g(m)√
h(m̂)TV (m̂)h(m̂)/n

> y) +
1

y
. (2.25)

The right hand side of inequality (2.25) converges to
∫∞

y
f(t) dt+ 1

y
as n → ∞, where

f(·) is the pdf of standard normal distribution. We have

1 ≥ lim sup
n→∞

P (Zn > z1−α) ≥ lim inf
n→∞

P (Zn > z1−α) ≥
∫ ∞

y

f(t) dt +
1

y
(2.26)

for any negative real number y. Since the right hand side of inequality (2.26) converges

to 1 as y → −∞, we can conclude that limn→∞ P (Zn > z1−α) exists and equals 1.

Remark (2.24) is useful for approximate sample size calculations. For example,

suppose the local alternative sequence is (0.1, 0.1, 2,−τ n−1/2), from (2.6)-(2.11) and

the definition of g(m), V (m) and h(m), one can calculate m1 = 0.2, m2 = 1.4, m3 =

1.4, m4 = 7, m5 = 14.2, m6 = 63.4, h(ma) = (−0.2, 0.8,−0.2) and

V (ma) =




1.36 1.12 6.72

1.12 5.04 12.24

6.72 12.24 61.44




. (2.27)

So h(ma)
TV (ma)h(ma) = 2.

When |µ2| is small, if 80% power is required, the approximate sample size at level

0.05 is

h(ma)
TV (ma)h(ma)(z0.8 + z0.95)

2

γ2
1 γ2

2 µ6
1 µ2

2

=
1932

µ2
2

.

Analogues to (2.24) are also useful when local alternative sequences have γ1, γ2 or µ1

tending to 0. For example, when the sequence is (τ n−1/2, 0.1, 2,−1), the γ1,a γ2,a µ3
1,a τ

19



in (2.24) becomes γ2,a µ1,a |µ2,a| (µ1,a − µ2,a)
2 τ , and m1 = −0.1, m2 = 1.1, m3 =

−0.4, m4 = 3.7, m5 = −2.6, m6 = 21.1, h(ma) = (−0.2, 0.2, 0.1) and

V (ma) =




1.09 −0.29 3.66

−0.29 2.49 −2.16

3.66 −2.16 20.94




. (2.28)

So h(ma)
TV (ma)h(ma) = 0.143.

The approximate sample size is

h(ma)
TV (ma)h(ma)(z0.8 + z0.95)

2

γ2
1 γ2

2 µ2
1 µ2

2 (µ1 − µ2)4
=

0.27

γ2
1

for 80% power.

Similarly, when the sequence is (0.1, τ n−1/2, 2,−1) or (0.1, 0.1, τ n−1/2,−1), the ap-

proximate sample sizes are

h(ma)
TV (ma)h(ma)(z0.8 + z0.95)

2

γ2
1 γ2

2 µ2
1 µ2

2 (µ1 − µ2)4
=

3.81

γ2
2

and

h(ma)
TV (ma)h(ma)(z0.8 + z0.95)

2

γ2
1 γ2

2 µ2
1 µ6

2

=
8841

µ2
1

.

Remark One can do the test without the restriction that µ1 is nonnegative and

µ2 is nonpositive. Though the BCN-NP model assumes µ1 is nonnegative and µ2 is

nonpositive and the proofs above are based on this restriction, this restriction can

be lifted by making the rejection region two-sided. Explicitly, if we let µ1 and µ2

be arbitrary, we will reject the null hypothesis (b) when we observe |Zn| greater

than z1−α/2. In such case, we give the BCN-NP model another name, the doubly

contaminated normal (DCN) model.

2.4 Parameter Estimation Using Method of Moments

To estimate parameters for the BCN-NP model, we employ a reparameterization.

Since we assume µ1 to be nonnegative and µ2 to be nonpositive, we can rewrite µ1
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as µ and µ2 as −pµ, where µ ∈ [0,∞) and p ∈ [0,∞). The model becomes

X1, ..., Xn ∼ (1 − γ1 − γ2)N(0, 1) + γ1N(µ, 1) + γ2N(−pµ, 1). (2.29)

We will use the method of moments to estimate the parameters.

Define µ̂, p̂, γ̂1 and γ̂2 to satisfy the following equations:

ĝ1 := m̂1 = µ̂(γ̂1 − p̂γ̂2) (2.30)

ĝ2 := m̂2 − 1 = µ̂2(γ̂1 + p̂2γ̂2) (2.31)

ĝ3 := m̂3 − 3m̂1 = µ̂3(γ̂1 − p̂3γ̂2) (2.32)

ĝ4 := m̂4 − 6m̂2 + 3 = µ̂4(γ̂1 + p̂4γ̂2) (2.33)

Assuming µ̂ 6= 0, let q̂i := ĝi/µ̂. Then (2.30) through (2.33) yield the linear systems


q̂1

q̂2


 =




1 −p̂

1 p̂2







γ̂1

γ̂2


 (2.34)

and 


q̂3

q̂4


 =




1 −p̂3

1 p̂4






γ̂1

γ̂2


 . (2.35)

Assuming p̂ 6= 0, the two linear systems yield solutions for γ̂1 and γ̂2 given p̂ and µ̂,



γ̂1

γ̂2


 =




1 −p̂

1 p̂2




−1 


q̂1

q̂2


 =




(q̂2 + p̂q̂1)/(1 + p̂)

(q̂2 − q̂1)/(p̂ + p̂2)


 (2.36)

and 

γ̂1

γ̂2


 =




1 −p̂3

1 p̂4




−1 


q̂3

q̂4


 =




(q̂4 + p̂q̂3)/(1 + p̂)

(q̂4 − q̂3)/(p̂3 + p̂4)


 . (2.37)

Based on (2.36) and (2.37), we wish to equate

q̂2 + p̂q̂1 = q̂4 + p̂q̂3, (2.38)

and

p̂2(q̂2 − q̂1) = q̂4 − q̂3. (2.39)
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Solving for p̂ given µ̂ from (2.39) yields

p̂ =

√
q̂4 − q̂3

q̂2 − q̂1
. (2.40)

To find µ̂, substitute (2.40) into and multiply (2.39) by µ̂10, we obtain

(ĝ2µ̂
2 − ĝ4)

2(ĝ2 − ĝ1µ̂) = (ĝ3 − ĝ1µ̂
2)2(ĝ4 − ĝ3µ̂). (2.41)

Finally, this yields a quintic equation
∑5

j=0 ĥjµ̂
j = 0 where

ĥ0 := ĝ3
2ĝ4 − ĝ4

2ĝ2, (2.42)

ĥ1 := ĝ4
2ĝ1 − ĝ3

3 (2.43)

ĥ2 := 2ĝ4ĝ
2
2 − 2ĝ1ĝ3ĝ4 (2.44)

ĥ3 := 2ĝ1ĝ3
2 − 2ĝ1ĝ2ĝ4 (2.45)

ĥ4 := ĝ1
2ĝ4 − ĝ2

3 (2.46)

ĥ5 := ĝ1ĝ2
2 − ĝ1

2ĝ3. (2.47)

Then we can solve the quintic equation for µ̂ and evaluate p̂ and γ̂1, γ̂2.

However, one issue about this approach is the number of real roots of quintic equation.

If there is more than one real root, we will look at whether µ̂, p̂, γ̂1, γ̂2 belong to their

respective parameter spaces and reproduce the sample moments. First µ̂, p̂, γ̂1, γ̂2

should be real numbers. Then, µ̂, p̂ should be greater than zero and γ̂1, γ̂2, 1− γ̂1− γ̂2

should be between 0 and 1. Moreover, equations (2.30) through (2.33) must be sat-

isfied. These conditions typically yield at most one viable solution of the quintic

equation.

We would also like to construct confidence intervals for µ, p, γ1, γ2. If we can derive

22



a limiting distribution for

√
n







µ̂

p̂

γ̂1

γ̂2




−




µ

p

γ1

γ2







(2.48)

by Cramer Theorem, we can find 100(1−α)% confidence intervals for these parame-

ters.

Let g(m) = (µ, p, γ1, γ2)
T , and

A(m) :=
∂g(m)

∂m
=




∂µ
∂m1

∂µ
∂m2

∂µ
∂m3

∂µ
∂m4

∂p
∂m1

∂p
∂m2

∂p
∂m3

∂p
∂m4

∂γ1

∂m1

∂γ1

∂m2

∂γ1

∂m3

∂γ1

∂m4

∂γ2

∂m1

∂γ2

∂m2

∂γ2

∂m3

∂γ2

∂m4




. (2.49)

If we can find A(m), we can apply multivariate Cramer Theorem.

Define

B(θ) :=




∂m1

∂µ
∂m1

∂p
∂m1

∂γ1

∂m1

∂γ2

∂m2

∂µ
∂m2

∂p
∂m2

∂γ1

∂m2

∂γ2

∂m3

∂µ
∂m3

∂p
∂m3

∂γ1

∂m3

∂γ2

∂m4

∂µ
∂m4

∂p
∂m4

∂γ1

∂m4

∂γ2




. (2.50)

Define θ0 := (µ0, p0, γ1,0, γ2,0)
T , and m0 := (m1,0, m2,0, m3,0, m4,0)

T to be the “true”

parameter and moments respectively. By the Inverse Function Theorem, for θ =

(µ, p, γ1, γ2)
T , m = (m1, m2, m3, m4)

T , if B(θ0) has non-zero determinant, then there

exists a neighborhood D about θ0 such that the map h(θ) = m is invertible on D. The

inverse map g(m)=θ is differentiable. So A(m0) = B(θ0)
−1, where m0 = h(θ0).

Then by the multivariate Cramer Theorem, we have

√
n(θ̂ − θ0)

L−→ N(0, A(m0)V A(m0)
T ) = N(0, B(θ0)

−1V (B(θ0)
−1)T )
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where V is from section 2.3. The estimated elements of B(θ0)
−1V (B(θ0)

−1)T , can

be used to obtain 100(1−α)% confidence intervals. More specifically, let (ρ̂1, ρ̂2, ρ̂3, ρ̂4)
T

denote the estimated diagonal elements of B(θ0)
−1V (B(θ0)

−1)T , then the 95% con-

fidence intervals for µ, p, γ1, γ2 are µ̂±Z0.975

√
ρ̂1/n, p̂±Z0.975

√
ρ̂2/n, γ̂1±Z0.975

√
ρ̂3/n

and γ̂2 ± Z0.975

√
ρ̂4/n.

2.5 Simulation Study

To see if there is one and only one viable solution to the quintic equation in sec-

tion 2.4, some simulation study is needed. Let µ ∈ {1, 2, 4}, p ∈ {0.5, 1, 2}, γ1, γ2 ∈

{0.05, 0.1, 0.2} and sample size n ∈ {1000, 5000, 10000}. At each of the 243 combi-

nations of µ, p, γ1, γ2, n, 1000 data sets were generated. More specifically, to create

each data set, we randomly generate U1, ..., Un from Unif(0, 1). If Uj < γ1, then Xj

is simulated from N(µ, 1), if Uj > 1 − γ2, then Xj is simulated from N(−pµ, 1) and

if γ1 < Uj < 1 − γ2, then Xj is simulated from N(0, 1). Then viability of solutions

are tested as described in section 2.4. Partial results indicating the numbers of viable

solutions among 1000 data sets from various scenarios are given below:
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Table 2.1: Numbers of samples that produce 0, 1, 2, 3, 4, 5 viable roots

µ p γ1 γ2 n 0 1 2 3 4 5

1 0.5 0.05 0.05 1000 747 253 0 0 0 0

1 0.5 0.05 0.05 5000 547 452 1 0 0 0

1 0.5 0.05 0.05 10000 446 553 1 0 0 0

2 0.5 0.05 0.05 1000 251 749 0 0 0 0

2 0.5 0.05 0.05 5000 22 978 0 0 0 0

2 0.5 0.05 0.05 10000 1 999 0 0 0 0

4 0.5 0.05 0.05 1000 0 1000 0 0 0 0

4 0.5 0.05 0.05 5000 0 1000 0 0 0 0

4 0.5 0.05 0.05 10000 0 1000 0 0 0 0

...... ......

Table 2.2: Numbers of samples that have 0, 1, 2, 3, 4, 5 roots yielding non-real

parameter estimates

µ p γ1 γ2 n 0 1 2 3 4 5

1 0.5 0.05 0.05 1000 243 0 445 0 312 0

1 0.5 0.05 0.05 5000 422 0 357 0 221 0

1 0.5 0.05 0.05 10000 515 0 350 0 135 0

2 0.5 0.05 0.05 1000 790 0 205 0 5 0

2 0.5 0.05 0.05 5000 994 0 6 0 0 0

2 0.5 0.05 0.05 10000 1000 0 0 0 0 0

4 0.5 0.05 0.05 1000 1000 0 0 0 0 0

4 0.5 0.05 0.05 5000 1000 0 0 0 0 0

4 0.5 0.05 0.05 10000 1000 0 0 0 0 0

...... ......
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Table 2.3: Numbers of samples that have 0, 1, 2, 3, 4, 5 roots failing to satisfy

equations (2.30) through (2.33)

µ p γ1 γ2 n 0 1 2 3 4 5

1 0.5 0.05 0.05 1000 0 0 0 819 0 181

1 0.5 0.05 0.05 5000 0 0 2 818 0 180

1 0.5 0.05 0.05 10000 0 1 4 787 0 208

2 0.5 0.05 0.05 1000 0 0 1 815 0 184

2 0.5 0.05 0.05 5000 0 0 0 986 0 14

2 0.5 0.05 0.05 10000 0 0 0 999 0 1

4 0.5 0.05 0.05 1000 0 0 0 1000 0 0

4 0.5 0.05 0.05 5000 0 0 0 1000 0 0

4 0.5 0.05 0.05 10000 0 0 0 1000 0 0

...... ......

Table 2.4: Numbers of samples that have 0, 1, 2, 3, 4, 5 roots yielding real parameter

estimates ourside of their respective parameter spaces

µ p γ1 γ2 n 0 1 2 3 4 5

1 0.5 0.05 0.05 1000 0 0 91 179 218 512

1 0.5 0.05 0.05 5000 0 0 185 283 234 298

1 0.5 0.05 0.05 10000 0 0 236 369 183 212

2 0.5 0.05 0.05 1000 0 0 212 635 124 29

2 0.5 0.05 0.05 5000 0 0 13 975 12 0

2 0.5 0.05 0.05 10000 0 0 0 1000 0 0

4 0.5 0.05 0.05 1000 0 0 0 1000 0 0

4 0.5 0.05 0.05 5000 0 0 0 1000 0 0

4 0.5 0.05 0.05 10000 0 0 0 1000 0 0

...... ......
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Among 243 combinations of parameters and sample sizes, 184 had more than 950

out of 1000 samples that produced one and only one viable solution, while 199 had

more than 850 out of 1000 samples that produced one and only one viable solution.

So when the data were generated from BCN-NP model, there was often a unique

root to the quintic equation yielding real parameter estimates that belonged to their

respective parameter spaces and that satisfied equations (2.30) through (2.33).

Test statistics were also calculated for each sample. For omnibus test, the test statis-

tic n m̂2 was compared to χ2
n,0.95; we rejected the null hypothesis if the observed test

statistic was larger than χ2
n,0.95. For unilateral test, the test statistic Zn was com-

pared to z0.95; we rejected the null hypothesis if the observed Zn was greater than z0.95.

Among the 243 combinations, there were 240 where more than 800 out of 1000 sam-

ples rejected the omnibus null hypothesis and 217 where more than 800 out of 1000

samples rejected the unilateral null hypothesis, when in fact the samples followed a

BCN-NP model that could not be reduced to a UCN-NP model or to a single nor-

mal distribution. Generally, the omnibus test has more power than the unilateral test.

2.6 Application to Down’s Syndrome Microarray Data Set

In Mao’s 2005 paper, the microarray data of Down’s syndrome patients were analyzed

and they are available at http://www.partek.com/Tutorials. There are four patients

with Down’s syndrome and four healthy people as the controls. Four samples of cere-

bral tissue were taken from each patient and seven samples from four controls, two

from each of the first three and one from the last person. It is known that the Down’s

syndrome patient has an extra chromosome 21. So we specifically looked at 251 genes

available on chromosome 21, in addition to all of the genes on all chromosomes.
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We fit a linear mixed model on each of the genes. Let i = 1, ..., 8, j = 1, 2 index

subjects and samples, the model is

yij = β0 + β1xi + αi + εij

where yij denotes the expression level for subject i and sample j; xi is the indicator

for Down’s syndrome (1 for yes, 0 for no); β0 and β1 are the intercept and coefficient

for fixed effect; αi is a random effect for subject i, and εij is the error term for subject

i and sample j.

Coefficients and variance components were estimated by lme function in R. The Z

test statistics modeled with UCN and BCN models were transformed versions of

the T test statistics for β1 = 0 at each gene. For all the chromosomes, the fitted

UCN model had (γ̂, µ̂) = (0.49,−1.16), while fitted BCN model had (γ̂1, γ̂2, µ̂1, µ̂2) =

(0.75, 0.25,−0.96, 0.89). From Figure 2.1, the distribution is unimodal and moder-

ately skewed to the right. The BCN model may not show a bimodal shape, but it fits

the data better than UCN model on the test statistics between [-1, 1]. The unilateral

null hypothesis was rejected with Z=21.5.
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Figure 2.1: The fitted UCN and BCN models on all chromosomes.
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However, when we looked at chromosome 21, the results were noticeably different

from those obtained overall and at other individual chromosomes. To demonstrate,

we compared chromosome 21 with chromosome 10, which we took as representative of

the other individual chromosomes. Figures 2.2 and 2.3 are the fitted UCN and BCN

models on chromosomes 10 and 21. Apparently, chromosome 21 exhibits abnormal

pattern, the empirical distribution of transformed T test statistics was bimodal. The

fitted BCN model was obviously better than fitted UCN model at describing the em-

pirical distribution of transformed T test statistics.

For 783 available genes of chromosome 10, the Z test statistic as defined in Section

2.3 was 0.00, so we failed to reject the unilateral null hypothesis. The fitted UCN

model had (γ̂, µ̂) = (0.378,−1.2), while fitted BCN model gives (γ̂1, γ̂2, µ̂1, µ̂2) =

(0.34, 0.66, 0.74,−0.95). For 251 available genes of chromosome 21, the Z test statis-

tic is 5.84, so the unilateral null hypothesis was rejected. The fitted UCN model gives

(γ̂, µ̂) = (0.292, 2.41), while fitted BCN model gives (γ̂1, γ̂2, µ̂1, µ̂2) = (0.451, 0.549, 1.97,−1.04).

From Figure 2.3, we can see that it’s more appropriate to use normal distributions

with means 1.97 and -1.04 than standard normal distribution to describe the data.

On the other hand, even if γ̂1, γ̂2 seem large, the means -1.04 and 1.97 are not par-

ticularly large. Thus, the fitted BCN model should not be taken to imply that there

is meaningful differential expression on all genes of chromosome 21.
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Figure 2.2: The fitted UCN and BCN models on chromosome 10.
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Figure 2.3: The fitted UCN and BCN models on chromosome 21.

Some of the test statistics are really large. Among 251 genes on chromosome 21,

CXADR at chromosome location chr21q21.1, SOD1 at chr21q22.1/21q22.11, and

PRMT2 at chr21q22.3 have test statistics exceeding 3.5. These three genes are iden-

tified as abnormal genes in patients who have Down’s syndrome by Mao et al 2005,

Wilcock 2012 and Blehaut et al 2010, respectively. We also note that while no gene

on chromosome 21 had a test statistic below -3.5, gene CAPN5 on chromosome 11

did have a test statistic below -3.5; this was the only such gene.
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Our methodology is different from Mao’s in that Mao demonstrated dysregulation

based on an evaluation of differential expression across many cell types (cerebrum,

cerebellum, heart and astrocyte), while we focused on data obtained from cerebral

tissue. Moreover, Mao et al didn’t study the empirical distribution of test statistics,

but they sought to identify genes that met a particular statistical criterion for dys-

regulation.

The goal of fitting the BCN model is to identify the presence of both over- and under-

expression. For this purpose, BCN model recognized both types of differentially

expressed genes in chromosome 21. And the fact that several genes have meaningful

differential expression is confirmed by Figure 2.3.

Copyright c© Qian Fan 2014
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Chapter 3 Bilaterally Contaminated Normal Model with Nuisance

Parameter

3.1 Introduction

Since our previous work in Chapter 2 assumed a known within-component variance σ2,

in Chapter 3 we want to provide tests of contamination in the bilaterally contaminated

normal model when the within-component variance σ2 is unknown. The test for no

contamination versus any contamination becomes

H0 : N(0, σ2) versus

Ha : (1 − γ1 − γ2)N(0, σ2) + γ1N(µ1, σ
2) + γ2N(µ2, σ

2) 6= N(0, σ2)

where γ1 ∈ [0, 1 − γ2], γ2 ∈ [0, 1], µ1 ≥ 0, µ2 ≤ 0, and σ2 > 0 are unknown but

fixed parameters. A simple test based on moments is elusive. For example, consider

defining a test statistic T :=
3m̂2

2

m̂4
. This test statistic has a distribution that does not

depend on σ2 when H0 is true. In fact, the asymptotic distribution when H0 is true

is given by
√

n(T − 1)
L−→ N(0,

8

3
) (3.1)

Proof. This is by the multivariate Central Limit Theorem (Ferguson, 1996, p.26) that

under H0, as n → ∞,

√
n







m̂2

m̂4


−




σ2

3σ4





 L−→ N







0

0


 ,




2σ4 12σ6

12σ6 96σ8





 . (3.2)

Define g(m) = 3m2
2/m4, then g′(m) = (6m2/m4,−3m2

2/m
2
4) = (2/σ2,−1/3σ4).

By the multivariate Cramer Theorem (Ferguson, 1996, p.45),

√
n(g(m̂) − g(m))

L−→ N(0, g′(m)Σ g′(m)T ), (3.3)
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where Σ is the covariance matrix from (3.2). This gives us (3.1).

This suggests that we might reject H0 if |T − 1| is too large, for instance greater

than Z1−α
2

√
8

3n
, where α is the desired significance level. Unfortunately, such a

procedure is not consistent for all alternative hypotheses. Indeed,
3m̂2

2

m̂4
may con-

verge in probability to a number less than 1, to 1, or to a number greater than

1 under various alternative hypotheses. For example, when σ2 = 1, µ1 = 1, µ2 =

−2, γ1 = γ2 = 0.05, T converges in probability to 0.876 which is less than 1. If

σ2 = 1, µ1 = 2, µ2 = −2, γ1 = γ2 = 1/6, then T converges in probability to 1. But

when σ2 = 1, µ1 = 1, µ2 = −1, γ1 = γ2 = 0.3, T converges in probability to 1.067

which is larger than 1.

We therefore suggest to use a Union-Intersection test to solve the problem.

3.2 Omnibus Testing Procedure

The omnibus null hypothesis will be rejected when one of four conclusions is reached

based on the data: (a) m1 6= 0, (b) m4/3m2
2 6= 1, (c) m6/15m3

2 6= 1, (d) m3 6= 0.

The rationale for this is that at least one of these four conditions must hold when

the omnibus null hypothesis is false (see proposition (3.2.5)). We will show how to

achieve approximate significance level α for this Union-Intersection test, and we will

prove that this Union-Intersection test is consistent against all alternatives.

Proposition 3.2.1. If the omnibus null hypothesis is true, then Tn :=
√

nm̂1 con-

verges in law to N(0, σ2). Thus
√

n
σ̂2 m̂1 converges in law to N(0, 1).

Proof. By CLT,
√

n(m̂1 − 0)
L−→ N(0, V ar(X1)) under the omnibus null, where

V ar(X1) = σ2. Then apply Slutsky’s Theorem.
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Proposition 3.2.2. If the omnibus null hypothesis is true, then Un :=
√

n(m̂4/3m̂2
2−

1) converges in law to N(0, 8/3). Thus
√

3n
8

(m̂4/3m̂2
2−1) converges in law to N(0, 1).

Proof. By (3.1).

Proposition 3.2.3. If the omnibus null hypothesis is true, then Vn :=
√

n(m̂6/15m̂3
2−

1) converges in law to N(0, 136/5). Thus
√

5n
136

(m̂6/15m̂3
2 − 1) converges in law to

N(0, 1).

Proof. Similar to the proof of previous proposition.

Proposition 3.2.4. If the omnibus null hypothesis is true, then Wn :=
√

nm̂3 con-

verges in law to N(0, 15σ6). Thus
√

n
15σ̂6 m̂1 converges in law to N(0, 1).

Proof. By CLT,
√

n(m̂3 − 0)
L−→ N(0, V ar(X3

1 )) under the omnibus null, where

V ar(X3
1 ) = 15σ6. Then apply Slutsky’s Theorem.

Proposition 3.2.5. If the omnibus null hypothesis is false, then at least one of the

following conditions must hold: (a) m1 6= 0, (b) m4/3m2
2 6= 1, (c) m6/15m3

2 6= 1, (d)

m3 6= 0.

Proof. Now assume the omnibus null is false. First consider symmetric case, assume

µ1 = −µ2 = µ ≥ 0, γ1 = γ2 = γ, then the BCN+NP model can be written as

(1 − 2γ)N(0, σ2) + γN(µ, σ2) + γN(−µ, σ2).

The second, fourth and sixth moments become

m2 = σ2 + 2γµ2

m4 = 3σ4 + 2γ(6σ2µ2 + µ4)

m6 = 15σ6 + 2γ(45σ4µ2 + 15σ2µ4 + µ6)

Under this case, either m4/3m2
2 = 1 or m4/3m2

2 6= 1. If m4/3m2
2 = 1, an easy cal-

culation can show that γ = 1/6. Then if µ > 0, m6/15m3
2 6= 1. And if µ = 0, we
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contradict the assumption that Ha holds.

Next consider the case of asymmetry. In this case, we can consider m1 = 0 and

m1 6= 0. If m1 = 0, this means µ1γ1 + µ2γ2 = 0. Then m3 = γ2µ2(µ
2
2 − µ2

1). If

µ1 6= µ2, m3 6= 0. If µ1 = µ2, we contradict the assumption that Ha holds.

The above propositions yield the following theorem,

Theorem 3.2.6. Let α1, α2, α3, α4 ∈ (0, 1), and
∑4

i=1 αi = α ∈ (0, 1). Consider

a test that rejects the omnibus null hypothesis if at least one of the following four

conditions holds: (a) |Tn|/σ̂ > Z1−α1/2, (b)
√

3/8|Un| > Z1−α2/2, (c)
√

5/136|Vn| >

Z1−α3/2, (d) |Wn|/
√

15σ̂3 > Z1−α4/2. This test rejects a true omnibus null hypothesis

with probability less than or equal to α, as n → ∞, and rejects a false omnibus null

hypothesis with (approximate) probability greater than or equal to

Φ

[
max

(
−Z1−α1

2
+

√
n

σ2
|m1|, −Z1−α2

2
+

√
3n

8

∣∣∣∣
m4

3m2
2

− 1

∣∣∣∣ ,

−Z1−α3
2

+

√
5n

136

∣∣∣∣
m6

15m3
2

− 1

∣∣∣∣ , −Z1−α4
2

+

√
n

15σ6
|m3|

)]
,

where Φ denotes the standard normal cumulative distribution function. Hence, this

test procedure is consistent.

Proof. P ((a)
⋃

(b)
⋃

(c)
⋃

(d)) ≤ P ((a)) + P ((b)) + P ((c)) + P ((d)) → α1 + α2 +

α3 +α4 = α when the omnibus null hypothesis is true by Proposition (3.2.1) through
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(3.2.4) respectively. Now suppose the omnibus null hypothesis is false. We have

P

(√
5

136
|Vn| > Z1−α3

2

)
= P

(√
5

136
Vn > Z1−α3

2

)
+ P

(√
5

136
Vn < −Z1−α3

2

)

= P

(√
5n

136

(
m̂6

15m̂3
2

− 1

)
> Z1−α3

2

)
+ P

(√
5n

136

(
m̂6

15m̂3
2

− 1

)
< −Z1−α3

2

)

= P

(√
5n

136

(
m̂6

15m̂3
2

− m6

15m3
2

)
> Z1−α3

2
+

√
5n

136

(
1 − m6

15m3
2

))
+

P

(√
5n

136

(
m̂6

15m̂3
2

− m6

15m3
2

)
< −Z1−α3

2
+

√
5n

136

(
1 − m6

15m3
2

))

≈ 1 − Φ

(
Z1−α3

2
+

√
5n

136

(
1 − m6

15m3
2

))
+ Φ

(
−Z1−α3

2
+

√
5n

136

(
1 − m6

15m3
2

))

= Φ

(
−Z1−α3

2
−
√

5n

136

(
1 − m6

15m3
2

))
+ Φ

(
−Z1−α3

2
+

√
5n

136

(
1 − m6

15m3
2

))

This is approximately equal to Φ
(
−Z1−α3

2
−
√

5n
136

(
1 − m6

15m3
2

))
if m6

15m3
2

> 1 and to

Φ
(
−Z1−α3

2
+
√

5n
136

(
1 − m6

15m3
2

))
if m6

15m3
2

< 1. So P
(√

5
136

|Vn| > Z1−α3
2

)
≈ Φ

(
−Z1−α3

2
+

√
5n
136

∣∣∣ m6

15m3
2
− 1
∣∣∣
)
. Similarly, P

(
3
8
|Un| > Z1−α2

2

)
≈ Φ

(
−Z1−α2

2
+
√

3n
8

∣∣∣ m4

15m2
2
− 1
∣∣∣
)
.

Also,

P

( |Wn|√
15σ̂6

> Z1−α4
2

)
= P

(
Wn√
15σ̂6

> Z1−α4
2

)
+ P

(
Wn√
15σ̂6

< −Z1−α4
2

)

= P

(√
n

15σ̂6
m̂3 > Z1−α4

2

)
+ P

(√
n

15σ̂6
m̂3 < −Z1−α4

2

)

= P

(√
n

15σ̂6
(m̂3 − m3) > Z1−α4

2
−
√

n

15σ̂6
m3

)
+

P

(√
n

15σ̂6
(m̂3 − m3) < −Z1−α4

2
−
√

n

15σ̂6
m3

)

≈ 1 − Φ

(
Z1−α4

2
−
√

n

15σ6
m3

)
+ Φ

(
−Z1−α4

2
−
√

n

15σ6
m3

)

= Φ

(
−Z1−α4

2
+

√
n

15σ6
m3

)
+ Φ

(
−Z1−α4

2
−
√

n

15σ6
m3

)

This is approximately equal to Φ
(
−Z1−α4

2
+
√

n
15σ6 m3

)
if m3 > 0 and Φ

(
−Z1−α4

2
−
√

n
15σ6 m3

)

if m3 < 0. So P
(

|Wn|√
15σ̂6

> Z1−α4
2

)
≈ Φ

(
−Z1−α4

2
+
√

n
15σ6 |m3|

)
. Similarly, one can
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show that P
(

|Tn|√
σ̂2

> Z1−α1
2

)
≈ Φ

(
−Z1−α1

2
+
√

n
σ2 |m1|

)
.

Now since P ((a)
⋃

(b)
⋃

(c)
⋃

(d)) ≥ P ((a)), P ((b)), P ((c)) and P ((d)) respectively,

the probability of the union is greater than or equal to max P ((a)), P ((b)), P ((c)), P ((d)).

lim
n→∞

P ((a)
⋃

(b)
⋃

(c)
⋃

(d)) ≥ lim
n→∞

Φ

[
max

(
−Z1−α1

2
+

√
n

σ2
|m1|,

− Z1−α2
2

+

√
3n

8

∣∣∣∣
m4

3m2
2

− 1

∣∣∣∣ , −Z1−α3
2

+

√
5n

136

∣∣∣∣
m6

15m3
2

− 1

∣∣∣∣ ,

−Z1−α4
2

+

√
n

15σ6
|m3|

)]
= 1.

Hence the test is consistent.

3.3 Unilateral Testing Procedure

The test for unilateral contamination versus bilateral contamination with σ2 unknown

becomes

H0 : (1 − γ)N(0, σ2) + γN(µ, σ2) 6= N(0, σ2) versus

Ha : (1 − γ1 − γ2)N(0, σ2) + γ1N(µ1, σ
2) + γ2N(µ2, σ

2) 6= N(0, σ2)

and 6= (1 − γ)N(0, σ2) + γN(µ, σ2)

where γ1 ∈ [0, 1 − γ2], γ, γ2 ∈ [0, 1], µ, µ1 ≥ 0, µ2 ≤ 0, and σ2 > 0 are unknown but

fixed parameters. An easy test for this procedure is not available due to the complex-

ity of the unilateral null hypothesis. However, a moment based test, though complex,

is available. We will show this test rejects the unilateral null with probability asymp-

totically bounded above by α under H0 and with probability approaching 1 under Ha.

37



Lemma 3.3.1. Under the unilateral null and assuming γ < 2/3, we have

σ2 = m2 −
1

2

(
3m2

1 +
√

9m4
1 − 12m2

1m2 + 4m1m3

)
.

Proof. Assume the unilateral null is true, that is

(1 − γ)N(0, σ2) + γN(µ, σ2).

The first three moments become

m1 = µγ,

m2 = σ2 + γµ2,

m3 = γµ3 + 3γσ2µ.

Solving the equations for µ, σ2 and γ yields

µ =
1

2m1

(
3m2

1 +
√

9m4
1 − 12m2

1m2 + 4m1m3

)
,

σ2 = m2 − 0.5

(
3m2

1 +
√

9m4
1 − 12m2

1m2 + 4m1m3

)
,

γ = 2m2
1/

(
3m2

1 +
√

9m4
1 − 12m2

1m2 + 4m1m3

)
.

The assumption that γ < 2/3 leads to selection of the positive square root when

applying the quadratic formula.

Lemma 3.3.2. Under the unilateral null, assume γ < 2/3 and that the omnibus null

is false. Then
√

n(σ̂2 − σ2)
L−→ N(0, DΣDT ),

where D is the vector of partial derivatives of σ2 = m2−0.5
(
3m2

1 +
√

9m4
1 − 12m2

1m2 + 4m1m3

)

with respect to m1, m2, m3.

Proof. The third component of D =
−m1√

9m4
1 − 12m2

1m2 + 4m1m3

6= 0, since m1 =

µγ 6= 0 because the omnibus null is false. So Σ is positive definite implies DΣDT is
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positive. By the multivariate Central Limit Theorem, we have

√
n







m̂1

m̂2

m̂3




−




m1

m2

m3







L−→ N







0

0

0




, Σ




, (3.4)

where each component of matrix Σ is Σij = mi+j − mimj , i = 1, 2, 3, j = 1, 2, 3. By

multivariate Delta Method, the above result holds.

Proposition 3.3.3. Suppose unilateral null is true and omnibus null is false. If

|σ̂2 − σ2| ≤ δn for some positive δn, then with probability approaching 1 we have

(m̂2 − σ2)2 − 2δnm̂2 + 3m̂2
1σ

2 − 3m̂2
1δn − m̂1m̂3

≤ (m̂2 − σ̂2)2 + 3m̂2
1σ̂

2 − m̂1m̂3

≤ (m̂2 − σ2)2 + δ2
n + 2δnm̂2 + 3m̂2

1σ
2 + 3m̂2

1δn − m̂1m̂3.

Proof. We have (m̂2 − σ̂2)2 = (m̂2 − σ2)2 + (σ2 − σ̂2)2 + 2(m̂2 − σ2)(σ2 − σ̂2)

Under unilateral null with false omnibus null, m2 > σ2 +m2
1 > σ2, so by Weak Law of

Large Numbers m̂2
P−→ m2 > σ2 and P (m̂2 − σ2 > 0) → 1. So following statements

hold with probability approaching 1:

(m̂2 − σ2)2 − 2δn|m̂2 − σ2| ≤ (m̂2 − σ̂2)2 ≤ (m̂2 − σ2)2 + δ2
n + 2δn|m̂2 − σ2|

(m̂2 − σ2)2 − 2δnm̂2 + 2δnσ2 ≤ (m̂2 − σ̂2)2 ≤ (m̂2 − σ2)2 + δ2
n + 2δnm̂2 − 2δnσ2

(m̂2 − σ2)2 − 2δnm̂2 ≤ (m̂2 − σ̂2)2 ≤ (m̂2 − σ2)2 + δ2
n + 2δnm̂2 (3.5)

And

3m̂2
1(σ

2 − δn) − m̂1m̂3 ≤ 3m̂2
1σ̂

2 − m̂1m̂3 ≤ 3m̂2
1(σ

2 + δn) − m̂1m̂3 (3.6)

Thus the desired result holds by addition of (3.5) and (3.6).
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Now define m = (m1, m2, m3), m̂ = (m̂1, m̂2, m̂3), h(m, σ2) := (m2−σ2)2 +3m2
1σ

2−

m1m3.

Proposition 3.3.4. Suppose unilateral null is true and omnibus null is false. Then

h(m, σ2) = 0 and thus P

(
h(m̂, σ2) > Z1−α

√
D̂hΣ̂D̂T

h

n

)
→ 1 − Φ(Z1−α) = α, where

D̂h = ∂
∂m̂

h(m̂, σ2) = (6m̂1σ
2, 2m̂2 − 2σ2,−m̂1).

Proof. Note that Dh = (6m1σ
2, 2m2 − 2σ2,−m1) 6= 0 since m1 6= 0 when unilateral

null is true and omnibus null is false.

By multivariate Delta Method,

√
n(h(m̂, σ2) − h(m, σ2))

d−→ N(0, DhΣDT
h ).

Thus by definition of convergence in distribution,

P

(√
n

DhΣDT
h

(h(m̂, σ2) − h(m, σ2)) > Z1−α

)
→ 1 − Φ(Z1−α)

.

We have (m̂1, m̂2, m̂3)
T P−→ (m1, m2, m3)

T by the Weak Law of Large Numbers. Then

by Slutsky’s Theorem and Continuous Mapping Theorem, D̂h
P−→ Dh and

P

(√
n

D̂hΣ̂D̂T
h

(h(m̂, σ2) − h(m, σ2)) > Z1−α

)
→ 1 − Φ(Z1−α).

Thus,

P



h(m̂, σ2) > h(m, σ2) + Z1−α

√
D̂hΣ̂D̂T

h

n



→ 1 − Φ(Z1−α). (3.7)

Under unilateral null, h(m, σ2) = µ1|µ2|γ1γ2(µ1 − µ2)
2 = 0, then the desired result

holds.

Theorem 3.3.5. Let δn be chosen so that P (|σ̂2−σ2| ≤ δn) → 1. Consider the testing

procedure defined by rejecting the null hypothesis when h(m̂, σ̂2) > Z1−α

√
D̂hΣ̂D̂T

h

n
+

2m̂2δn + 3m̂1δn + δ2
n. Type I error probability asymptotically bounded above by α for

any fixed µ1, µ2, γ1, γ2, such that µ1µ2γ1γ2 = 0 with µ1γ1 6= 0 or µ2γ2 6= 0.
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Proof. By (3.3.3), h(m̂, σ̂2) ≤ h(m̂, σ2) + 2m̂2δn + 3m̂1δn + δ2
n given P (|σ̂2 − σ2| ≤

δn) → 1. If in addition assume h(m̂, σ2) ≤ Z1−α

√
D̂hΣ̂D̂T

h

n
, we have h(m̂, σ̂2) ≤

Z1−α

√
D̂hΣ̂D̂T

h

n
+ 2m̂2δn + 3m̂1δn + δ2

n. Thus

P



h(m̂, σ̂2) > Z1−α

√
D̂hΣ̂D̂T

h

n
+ 2m̂2δn + 3m̂1δn + δ2

n





≤ P



|σ̂2 − σ2| > δn or h(m̂, σ2) > Z1−α

√
D̂hΣ̂D̂T

h

n





≤ P
(
|σ̂2 − σ2| > δn

)
+ P



h(m̂, σ2) > Z1−α

√
D̂hΣ̂D̂T

h

n





→ α

by assumption and Proposition (3.3.4).

Corollary 3.3.6. Let δn ∝ n−1/2+ε for arbitrary ε ∈ (0, 1/2). Then for fixed µ1, µ2,

γ1, γ2, σ2, Type I error probability of testing procedure converges to α.

Proof. If δn ∝ n−1/2+ε, then by Lemma (3.3.2). P (|σ̂2 − σ2| ≤ δn) → 1. Apply

Theorem (3.3.5)

Proposition 3.3.7. Suppose the unilateral null hypothesis is false, then

√
n(h(m̂, σ2) − h(m, σ2))

L−→ N(0, DhΣDT
h ),

where Σ is defined in (3.4), Dh is the vector of partial derivatives of h(m, σ2) =

(m2 − σ2)2 + 3m2
1σ

2 − m1m3 = µ1|µ2|γ1γ2(µ1 − µ2)
2 with respect to m.

Proof. Under bilateral alternative hypothesis, h(m, σ2) = µ1|µ2|γ1γ2(µ1 − µ2)
2 > 0.

And since the second component of Dh is 2(m2 −σ2) = 2(µ2
1γ1 −µ2

2γ2) > 0, Dh 6= 0.

On the other hand, h(m̂, σ2) = (m̂2 − σ2)2 + 3m̂2
1σ

2 − m̂1m̂3, then by multivariate

Delta method,
√

n(h(m̂, σ2) − h(m, σ2))
L−→ N(0, DhΣDT

h ).
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Proposition 3.3.8. Suppose the unilateral null hypothesis is false, then

P



h(m̂, σ2) > h(m, σ2) + Zα

√
D̂hΣ̂D̂T

h

n



→ 1 − Φ(Z1−α) = α,

where D̂h = ∂
∂m̂

h(m̂, σ2) = (6m̂1σ
2, 2m̂2 − 2σ2,−m̂1).

Proof. Note that Dh = (6m1σ
2, 2m2 − 2σ2,−m1) 6= 0, since m2 6= σ2 under the

bilateral alternative. Then the result follows from essentially the same argument

used to establish (3.7).

Theorem 3.3.9. Let fixed δn > 0 be chosen so that P (|σ̂2 − σ2| ≤ δn) → 1, P (|m̂2
1 −

m2
1| ≤ δn) → 1 and P (|m̂2−m2| ≤ δn) → 1 as n → ∞. Consider the testing procedure

defined by rejecting the unilateral null hypothesis when h(m̂, σ̂2) > 2m̂2δn + 3m̂2
1δn +

δ2
n + Z1−α

√
D̂hΣ̂D̂T

h

n
. The power of this test has an approximate lower bound of

1−Φ

(
Z1−α +

√
n

DhΣDT
h

(
4m2δn + 6m2

1δn + 11δ2
n − µ1|µ2|γ1γ2(µ1 − µ2)

2
)
)

. More-

over, this test is consistent whenever 4m2δn + 6m2
1δn + 11δ2

n < h(m, σ2).

Proof. By Proposition (3.3.3),

P



h(m̂, σ̂2) > 2m̂2δn + 3m̂2
1δn + δ2

n + Z1−α

√
D̂hΣ̂D̂T

h

n





≤ P



h(m̂, σ2) − 2m̂2δn − 3m̂2
1δn > 2m̂2δn + 3m̂2

1δn + δ2
n + Z1−α

√
D̂hΣ̂D̂T

h

n



−

P (|σ̂2 − σ2| > δn)
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≤ P



h(m̂, σ2) > 4m2δn + 6m2
1δn + 11δ2

n + Z1−α

√
D̂hΣ̂D̂T

h

n



−

P (|σ̂2 − σ2| > δn) − P (|m̂2
1 − m2

1| > δn) − P (|m̂2 − m2| > δn)

= P



√
n
(
h
(
m̂, σ2

)
− h

(
m, σ2

))
>

√
n



4m2δn + 6m2
1δn + 11δ2

n + Z1−α

√
D̂hΣ̂D̂T

h

n
−

h
(
m, σ2

)
))

− P (|σ̂2 − σ2| > δn) − P (|m̂2
1 − m2

1| > δn) − P (|m̂2 − m2| > δn)

≈ 1 − Φ

(
Z1−α +

√
n

DhΣDT
h

(
4m2δn + 6m2

1δn + 11δ2
n − µ1|µ2|γ1γ2(µ1 − µ2)

2
))

The above term converges to 1 if 4m2δn + 6m2
1δn + 11δ2

n < µ1|µ2|γ1γ2(µ1 − µ2)
2.

Corollary 3.3.10. Suppose δn → 0 with P (|σ̂2 − σ2| ≤ δn) → 1, P (|m̂2
1 − m2

1| ≤

δn) → 1 and P (|m̂2 − m2| ≤ δn) → 1, as n → ∞, then the test in Theorem (3.3.9) is

consistent against any fixed alternative.

Proof. For any fixed alternative, we may find fixed δ∗ > 0 such that 4m2δ
∗ +6m2

1δ
∗ +

11δ∗2 < h(m, σ2). For large enough n, δn < δ∗ since δn → 0. Thus P (h(m̂, σ2) >

4m2δn + 6m2
1δn + 11δ2

n + Z1−α

√
D̂hΣ̂D̂T

h

n
) ≥ P (h(m̂, σ2) > 4m2δ

∗ + 6m2
1δ

∗ + 11δ∗2 +

Z1−α

√
D̂hΣ̂D̂T

h

n
) → 1 by Theorem (3.3.9). Hence the test is consistent against the

fixed alternative.

As proved in the previous theorems, the testing procedure for omnibus null hypoth-

esis against bilateral alternative hypothesis and the testing procedure for unilateral

null hypothesis against bilateral alternative hypothesis are both consistent. The bi-

laterally contaminated normal model with nuisance parameter is more flexible than

the bilaterally contaminated normal model without nuisance parameter in its ability

to fit real data sets, particularly in the presence of multimodality. However, as we

have seen, this flexibility comes at the price of more complicated testing procedures.

A simulation study can help us examine the performance of the testing procedure,
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when BCN+NP model is correctly specified or an approximation to reality unless the

omnibus null is true.

3.4 Simulation study

To verify empirically that our testing procedure for the omnibus null is consistent,

i.e., the power of this test converges to 1 under Ha, a simulation study is done. This

simulation study will also show the power for finite samples.

We take number of repeated samples n=100 and 1000, degree of freedom to be

5, 10, 50, 100, respectively. µ1, µ2 ∈ {−2,−1, 0, 1, 2}, γ1, γ2 ∈ {0.1, 0.2} and

(α1, α2, α3, α4) = (0.0125, 0.0125, 0.0125, 0.0125), (0.005, 0.02, 0.02, 0.005), (0.02, 0.005, 0.005, 0.02),

respectively. At each of the combinations, 1000 data sets were generated. Partial re-

sults are given in Table 3.1 - Table 3.6. Table 3.1 - Table 3.3 are simulated under the

case where the population follows normal model or BCN+NP model.

Table 3.4 - Table 3.6 are simulated under the case where the population follows sim-

ple T distribution or T mixture model with nuisance parameter, then the data are

transformed into quantities with normal null distribution as in microarray data anal-

ysis. More specifically, we define the bilaterally contaminated T model with nuisance

parameter (BCT+NP) by the pdf

(1 − γ1 − γ2)σ
−1fν(t/σ) + γ1σ

−1fν((t − µ1)/σ) + γ2σ
−1fν((t − µ2)/σ),

where fν denotes the T pdf on ν degree of freedom and Fν denotes the corresponding

cdf. This reduces to fν(t/σ) when γ1|µ1| + γ2|µ2| = 0. Data arising from this model

can be transformed by Z := Φ−1Fν(T ), where Φ is the standard normal cdf. The
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transformed data are then analyzed as if they had arise from the BCN+NP model,

which is an approximation to reality.

Table 3.1: Type I Error When Population Follows Normal Distribution (Omnibus

Null) and Power When Population Follows BCN+NP Model (Omnibus Alternative)

(µ1, µ2, γ1, γ2)
a n=100 n=1000

(0,0,0,0) b 0.038 0.038

(1, -1, 0.1, 0.1) 0.050 0.054

(1, -1, 0.2, 0.2) 0.021 0.033

(2, -2, 0.1, 0.1) 0.092 0.521

(2, -2, 0.2, 0.2) 0.015 0.046

(1, 0, 0.2, 0.1) 0.291 1.000

(0, -1, 0.2, 0.1) 0.091 0.780

(2, 0, 0.2, 0.1) 0.845 1.000

(0, -2, 0.2, 0.1) 0.408 1.000

(1, -1, 0.2, 0.1) 0.096 0.657

(1, -2, 0.1, 0.1) 0.170 0.979

(2, -2, 0.2, 0.1) 0.137 0.975

(2, -1, 0.2, 0.2) 0.256 1.000

aα1 = α2 = α3 = α4 = 0.0125
bType I Error

To illustrate use of Table 3.1, we consider two examples. For example, when n=100

there is approximately a 3.8% Type I error probability associated with the Union-

Intersection test of the omnibus null hypothesis when (α1, α2, α3, α4) = (0.0125,

0.0125, 0.0125, 0.0125). When n=100 there is approximately 29.1% power against

the specific alternative (µ1, µ2, γ1, γ2)=(1, 0, 0.2, 0.1).
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Table 3.2: Type I Error When Population Follows Normal Distribution (Omnibus

Null) and Power When Population Follows BCN+NP Model (Omnibus Alternative)

(µ1, µ2, γ1, γ2)
a n=100 n=1000

(0,0,0,0) b 0.037 0.046

(1, -1, 0.1, 0.1) 0.038 0.054

(1, -1, 0.2, 0.2) 0.037 0.042

(2, -2, 0.1, 0.1) 0.079 0.384

(2, -2, 0.2, 0.2) 0.029 0.039

(1, 0, 0.2, 0.1) 0.353 1.000

(0, -1, 0.2, 0.1) 0.101 0.854

(2, 0, 0.2, 0.1) 0.902 1.000

(0, -2, 0.2, 0.1) 0.443 1.000

(1, -1, 0.2, 0.1) 0.102 0.720

(1, -2, 0.1, 0.1) 0.182 0.988

(2, -2, 0.2, 0.1) 0.191 0.978

(2, -1, 0.2, 0.2) 0.275 1.000

aα1 = α4 = 0.02, α2 = α3 = 0.005
bType I Error

To illustrate use of Table 3.2, we consider two examples. For example, when n=100

there is approximately a 3.7% Type I error probability associated with the Union-

Intersection test of the omnibus null hypothesis when (α1, α2, α3, α4) = (0.02, 0.005,

0.005, 0.02). When n=100 there is approximately 35.3% power against the specific

alternative (µ1, µ2, γ1, γ2)=(1, 0, 0.2, 0.1).
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Table 3.3: Type I Error When Population Follows Normal Distribution (Omnibus

Null) and Power When Population Follows BCN+NP Model (Omnibus Alternative)

(µ1, µ2, γ1, γ2)
a n=100 n=1000

(0,0,0,0) b 0.032 0.038

(1, -1, 0.1, 0.1) 0.033 0.056

(1, -1, 0.2, 0.2) 0.024 0.024

(2, -2, 0.1, 0.1) 0.080 0.507

(2, -2, 0.2, 0.2) 0.002 0.055

(1, 0, 0.2, 0.1) 0.197 1.000

(0, -1, 0.2, 0.1) 0.073 0.661

(2, 0, 0.2, 0.1) 0.730 1.000

(0, -2, 0.2, 0.1) 0.319 1.000

(1, -1, 0.2, 0.1) 0.045 0.541

(1, -2, 0.1, 0.1) 0.138 0.958

(2, -2, 0.2, 0.1) 0.088 0.946

(2, -1, 0.2, 0.2) 0.135 0.999

aα1 = α4 = 0.005, α2 = α3 = 0.02
bType I Error

To illustrate use of Table 3.3, we consider two examples. For example, when n=100

there is approximately a 3.2% Type I error probability associated with the Union-

Intersection test of the omnibus null hypothesis when (α1, α2, α3, α4) = (0.005, 0.02,

0.02, 0.005). When n=100 there is approximately 19.7% power against the specific

alternative (µ1, µ2, γ1, γ2)=(1, 0, 0.2, 0.1).
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Table 3.4: Type I Error When Population Follows T Distribution and Power When

Population Follows BCT+NP Model with Data Transformed to have Normal Null

Distribution

n=100 n=1000

(µ1, µ2, γ1, γ2)
a df=5 10 50 100 df=5 10 50 100

(0,0,0,0) b 0.027 0.030 0.026 0.039 0.038 0.037 0.045 0.051

(1, -1, 0.1, 0.1) 0.014 0.017 0.033 0.035 0.077 0.037 0.038 0.049

(1, -1, 0.2, 0.2) 0.022 0.012 0.016 0.019 0.528 0.236 0.030 0.024

(2, -2, 0.1, 0.1) 0.010 0.010 0.042 0.037 0.663 0.058 0.110 0.264

(2, -2, 0.2, 0.2) 0.014 0.013 0.015 0.010 1.000 1.000 0.319 0.132

(1, 0, 0.2, 0.1) 0.182 0.233 0.248 0.283 0.992 0.997 1.000 1.000

(0, -1, 0.2, 0.1) 0.060 0.078 0.088 0.091 0.560 0.592 0.725 0.740

(2, 0, 0.2, 0.1) 0.528 0.628 0.803 0.820 1.000 1.000 1.000 1.000

(0, -2, 0.2, 0.1) 0.143 0.197 0.341 0.403 0.979 0.996 1.000 1.000

(1, -1, 0.2, 0.1) 0.046 0.050 0.065 0.077 0.554 0.601 0.614 0.621

(1, -2, 0.1, 0.1) 0.026 0.049 0.103 0.140 0.539 0.686 0.934 0.955

(2, -2, 0.2, 0.1) 0.092 0.106 0.137 0.127 0.998 0.985 0.971 0.966

(2, -1, 0.2, 0.2) 0.089 0.096 0.172 0.203 0.999 0.998 0.999 1.000

aα1 = α2 = α3 = α4 = 0.0125
bType I Error

To illustrate use of Table 3.4, consider two examples. For example, when n=100

there is approximately 3.9% Type I error probability associated with applying the

Union-Intersection test of the omnibus null hypothesis to transformed T statistics

arising from an uncontaminated T distribution on 100 degrees of freedom when

(α1, α2, α3, α4) = (0.0125, 0.0125, 0.0125, 0.0125). When n=100 there is approxi-

mately 28.3% power associated with applying the Union-Intersection test of the om-

nibus null hypothesis to transformed T statistics arising from the BCT+NP model
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on 100 degrees of freedom when (α1, α2, α3, α4) = (0.0125, 0.0125, 0.0125, 0.0125)

and (µ1, µ2, γ1, γ2)=(1, 0, 0.2, 0.1).

Table 3.5: Type I Error When Population Follows T Distribution and Power When

Population Follows BCT+NP Model with Data Transformed to have Normal Null

Distribution

n=100 n=1000

(µ1, µ2, γ1, γ2)
a df=5 10 50 100 df=5 10 50 100

(0,0,0,0) b 0.038 0.038 0.055 0.034 0.045 0.045 0.044 0.048

(1, -1, 0.1, 0.1) 0.028 0.023 0.042 0.038 0.045 0.038 0.032 0.039

(1, -1, 0.2, 0.2) 0.026 0.017 0.024 0.028 0.330 0.136 0.043 0.036

(2, -2, 0.1, 0.1) 0.030 0.028 0.039 0.056 0.447 0.037 0.086 0.207

(2, -2, 0.2, 0.2) 0.032 0.025 0.027 0.022 1.000 0.997 0.165 0.063

(1, 0, 0.2, 0.1) 0.250 0.289 0.321 0.343 0.990 0.999 1.000 1.000

(0, -1, 0.2, 0.1) 0.067 0.084 0.116 0.106 0.585 0.707 0.792 0.810

(2, 0, 0.2, 0.1) 0.592 0.734 0.845 0.864 1.000 1.000 1.000 1.000

(0, -2, 0.2, 0.1) 0.177 0.269 0.406 0.044 0.986 0.999 1.000 1.000

(1, -1, 0.2, 0.1) 0.049 0.059 0.096 0.106 0.588 0.629 0.669 0.687

(1, -2, 0.1, 0.1) 0.054 0.076 0.141 0.152 0.539 0.733 0.955 0.966

(2, -2, 0.2, 0.1) 0.136 0.151 0.173 0.183 0.999 0.978 0.987 0.980

(2, -1, 0.2, 0.2) 0.119 0.157 0.243 0.276 0.998 0.993 0.999 1.000

aα1 = α4 = 0.02, α2 = α3 = 0.005
bType I Error

To illustrate use of Table 3.5, consider two examples. For example, when n=100

there is approximately 3.4% Type I error probability associated with applying the

Union-Intersection test of the omnibus null hypothesis to transformed T statistics

arising from an uncontaminated T distribution on 100 degrees of freedom when
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(α1, α2, α3, α4) = (0.02, 0.005, 0.005, 0.02). When n=100 there is approximately

34.3% power associated with applying the Union-Intersection test of the omnibus null

hypothesis to transformed T statistics arising from the BCT+NP model on 100 de-

grees of freedom when (α1, α2, α3, α4) = (0.02, 0.005, 0.005, 0.02) and (µ1, µ2, γ1, γ2)=(1,

0, 0.2, 0.1).

Table 3.6: Type I Error When Population Follows T Distribution and Power When

Population Follows BCT+NP Model with Data Transformed to have Normal Null

Distribution

n=100 n=1000

(µ1, µ2, γ1, γ2)
a df=5 10 50 100 df=5 10 50 100

(0,0,0,0) b 0.029 0.034 0.020 0.034 0.034 0.044 0.027 0.029

(1, -1, 0.1, 0.1) 0.011 0.020 0.028 0.035 0.116 0.046 0.019 0.040

(1, -1, 0.2, 0.2) 0.010 0.012 0.012 0.014 0.636 0.294 0.019 0.029

(2, -2, 0.1, 0.1) 0.003 0.002 0.034 0.041 0.745 0.084 0.122 0.291

(2, -2, 0.2, 0.2) 0.019 0.006 0.002 0.009 1.000 1.000 0.464 0.212

(1, 0, 0.2, 0.1) 0.110 0.141 0.157 0.186 0.979 0.992 0.998 1.000

(0, -1, 0.2, 0.1) 0.031 0.038 0.064 0.048 0.392 0.496 0.635 0.635

(2, 0, 0.2, 0.1) 0.426 0.519 0.649 0.669 1.000 1.000 1.000 1.000

(0, -2, 0.2, 0.1) 0.088 0.110 0.233 0.254 0.954 0.995 1.000 1.000

(1, -1, 0.2, 0.1) 0.025 0.032 0.038 0.053 0.524 0.491 0.486 0.517

(1, -2, 0.1, 0.1) 0.019 0.033 0.069 0.109 0.479 0.558 0.900 0.925

(2, -2, 0.2, 0.1) 0.048 0.056 0.074 0.079 1.000 0.983 0.925 0.944

(2, -1, 0.2, 0.2) 0.041 0.060 0.106 0.087 0.999 0.992 0.999 0.999

aα1 = α4 = 0.005, α2 = α3 = 0.02
bType I Error

To illustrate use of Table 3.6, consider two examples. For example, when n=100

50



there is approximately 3.4% Type I error probability associated with applying the

Union-Intersection test of the omnibus null hypothesis to transformed T statistics

arising from an uncontaminated T distribution on 100 degrees of freedom when

(α1, α2, α3, α4) = (0.005, 0.02, 0.02, 0.005). When n=100 there is approximately

18.6% power associated with applying the Union-Intersection test of the omnibus null

hypothesis to transformed T statistics arising from the BCT+NP model on 100 de-

grees of freedom when (α1, α2, α3, α4) = (0.005, 0.02, 0.02, 0.005) and (µ1, µ2, γ1, γ2)=(1,

0, 0.2, 0.1).

As shown in Tables 3.1 - 3.3, under normal distribution, the Type I error probabil-

ity is approximately 0.038 for both sample size 100 and 1000 when (α1, α2, α3, α4)

= (0.0125, 0.0125, 0.0125, 0.0125). If (α1, α2, α3, α4) = (0.02, 0.005, 0.005, 0.02)

or (α1, α2, α3, α4) = (0.005, 0.02, 0.02, 0.005), the Type I error probability when

sample size is 1000 (4.6% and 3.8%) is closer to 5% than when sample size is 100

(3.7% and 3.2%). Overall, the power with sample size 1000 is larger than sample

size 100. The power under unilateral normal contamination is close to 1 when the

sample size is 1000. If the sample size is relatively small, say 100, the unilateral

test behaves better when the mean of normal contamination is large (±2) than when

it’s small (±1) and when the weight of normal contamination is large (0.2) than

when it’s small (0.1). The power under asymmetric bilateral normal contamination

is fairly close to 1 when sample size is 1000. Also, the test does better when the

the means of normal contaminations are different in absolute value than when the

weights of normal contaminations are different. Under the symmetric bilateral nor-

mal contamination, the power is relatively low except (52.1%, 38.4%, 50.7%) when

sample size is 1000 and the distribution has large means and small proportions, i.e.

(µ1, µ2, γ1, γ2) = (2,−2, 0.1, 0.1), regardless of the weights of α’s.
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Under T distribution with transformation(Tables 3.4-3.6), the Type I error probabili-

ties are closer to 5% when sample size is 1000, and never much above 5%. The power

overall is larger for bigger sample size. When sample size is 1000, the power under

unilateral T contamination is not as good when the mean is close to 0 and proportion

is small (µ1 = −1, γ1 = 0.1), otherwise the power is close to 1. When sample size is

100, the power under unilateral T contamination is also larger if mean or proportion

is large, but overall the power is still not as good when sample size is small. In both

cases, the power seems to increase as the degrees of freedom increase from 5 to 100

regardless of the weights of α’s. Under asymmetric bilateral T contamination with

transformation, the power also increases as the degrees of freedom increase, but is

smaller if either both means are close to 0 or both proportions are small. When

sample size is 100, the power is fairly small, especially when (α1, α2, α3, α4) = (0.005,

0.02, 0.02, 0.005). The test with (α1, α2, α3, α4) = (0.02, 0.005, 0.005, 0.02) does the

best of the three. When sample size is 1000, the power is larger but still not as good

if the means are both close to 0 or the proportions are both small (0.1). When the

means are both away from 0 or the proportions are both large (0.2), the power is

close to 1. Under the symmetric bilateral T contamination, the power has no clear

pattern but is fairly small when sample size is 100. When sample size is 1000, the

power seems to decrease as degrees of freedom increase. Also, if both means are close

to 0 and proportions are small, the power is much smaller than in the other cases.

The test with (α1, α2, α3, α4) = (0.005, 0.02, 0.02, 0.005) does the best and the test

with (α1, α2, α3, α4) = (0.02, 0.005, 0.005, 0.02) does the worst.

3.5 Application to Down’s Syndrome Microarray Data Set

Down’s syndrome is a genetic disorder caused by the presence of an extra piece of chro-

mosome 21[44]. Down’s syndrome is widely studied and is used to illustrate methods
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for genetic data analysis[44]. To investigate the performance of BCT+NP model, we

apply it to the Down’s syndrome data set which is available via http://www.partek.com/Tutorials.

We take the gene information from four samples of cerebral tissue corresponding to

Down’s syndrome patients and seven samples corresponding to four control subjects.

Linear mixed model is applied to the genes of patients and controls and T statis-

tics are derived. Then the T statistics are transformed to Z statistics by the method

mentioned in Section 1.3. To find a viable solution to the parameter estimating equa-

tions using method of moments, we used optim function in R. We try to minimize

the quantity fn =
∑5

i=1(gi(γ̂1, µ̂1, γ̂2, µ̂2, σ̂
2) − m̂i)

2. If we can optimize this function

such that its value is close to zero with no condition such as numerical convergence

is violated, we have found a viable solution to the parameter estimating equations.

Among several trials on the complete data set using different starting values for

the parameter estimates, the best result we got is fn = 1.67 × 10−8 which is re-

ally close to zero. 1000 combinations of starting values are created. The starting

value for µ1 is randomly generated from Unif(0, 3) and for µ2 is randomly gen-

erated from Unif(−3, 0), while γ1 and γ2 are generated from Unif(0, 1) subject

to γ1 + γ2 < 1. The lower bound for (µ1, γ1, µ2, γ2, σ
2) is (0,0,-3,0,.1) while the

upper bound is (3,1,0,1,1). R function optim is used and the optimizing method

is L-Broyden-Fletcher-Goldfarb-Shanno-B which handles simple box constraints on

variables. The final parameter estimates for (µ1, γ1, µ2, γ2, σ
2), corresponding to the

fn = 1.67 × 10−8 identified above, are (1.596, 0.148, -1.530, 0.479,0.232).

Table 3.7 illustrates the optimal results for each individual chromosome. The same

starting values, lower, upper bounds and optimizing method are used. As shown

in the table, most chromosomes are well optimized in the sense of minimizing the
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non-negative function fn around 1.00E-08. Only Chromosome 13, 21 and Y have fn

above 0.0001, and among them Chromosome 21 has largest fn value. Estimates of µ1

and µ2 are around 1.4 and -1.4 with estiamtes of γ1 around 0.18 and γ2 around 0.5 for

most chromosomes. For Chromosome 21, both µ1 and µ2 estimates are extreme com-

pared to other chromosomes. Estimate for µ1 is 2.256 with estimated γ1 = 0.382 and

estimated µ2 is -1.134 with estimated γ2 = 0.517, which means Chromosome 21 has a

moderate weight on a large mean on the over-expression side and a heavy weight on

the under-expression side. This indicates Chromosome 21 has unusually pronounced

over-expression which maybe attributable to the relationship of Chromosome 21 with

the Down’s syndrome.

The p-values for the Omnibus test of N(0, σ2) against UCN+NP/BCN+NP are all

very small. This is because a simple normal model barely fits the data. The p-

values for UCN+NP against BCN+NP are generated by first finding the value delta

for each chromosome via simulation study, then plug in the delta values into an R

function to obtain p-values. For detailed R code, refer to Appendix A3. The p-

values are mostly significant at 0.01. Only Chromosomes 19 and 22 do not have

p-values that are significant. Notice that Chromosome 19 has a relatively small

proportion of over-expression and large proportion of under-expression. This makes

it harder to detect the over-expression. As for Chromosome 22, the estimated µ1 is

relatively small with a moderate proportion, this also makes over-expression harder to

detect. Chromosome Y is sort of an exception, the fn function is not well optimized,

so the parameter estimates may not be accurate. This may be due to the small

sample size (41 valid genes) of genes on Chromosome Y. The parameter estimates of

unknown category behave strangely, this may be because the fn function is very flat

around the maximizer. Since the unknown category contains genes from a variety of

chromosomes, it’s not readily interpretable.
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Table 3.7: Parameter Estimates and P-values for Each Individual Chromosome

Chromosome fn
1 µ̂1 γ̂1 µ̂2 γ̂2 σ̂2 p-value 2 p-value 3

unknown 7.75E-08 1.411 0.035 -1.412 0.831 0.282 < 0.0001 0.0002

1 3.10E-08 1.563 0.154 -1.548 0.466 0.221 < 0.0001 < 0.0001

2 1.63E-08 1.534 0.201 -1.533 0.435 0.229 < 0.0001 < 0.0001

3 2.33E-07 1.722 0.177 -1.640 0.392 0.107 < 0.0001 0.0011

4 1.39E-08 1.384 0.222 -1.403 0.472 0.351 < 0.0001 0.0006

5 3.66E-09 1.583 0.181 -1.526 0.410 0.229 < 0.0001 0.0016

6 7.37E-08 1.453 0.155 -1.439 0.546 0.272 < 0.0001 0.0001

7 3.53E-08 1.260 0.209 -1.403 0.506 0.347 < 0.0001 < 0.0001

8 4.18E-09 1.553 0.192 -1.506 0.429 0.250 < 0.0001 0.0033

9 1.03E-09 1.136 0.232 -1.269 0.554 0.400 < 0.0001 < 0.0001

10 5.80E-09 1.584 0.168 -1.591 0.405 0.216 < 0.0001 < 0.0001

11 8.33E-09 1.212 0.203 -1.370 0.549 0.353 < 0.0001 < 0.0001

12 3.19E-08 1.380 0.179 -1.422 0.503 0.268 < 0.0001 < 0.0001

13 6.75E-04 0.978 0.379 -1.185 0.521 0.489 0.0004 0.0013

14 1.23E-09 1.415 0.198 -1.541 0.474 0.230 < 0.0001 < 0.0001

15 3.50E-09 1.568 0.200 -1.517 0.438 0.225 < 0.0001 0.0065

16 2.01E-08 1.435 0.156 -1.485 0.493 0.248 < 0.0001 < 0.0001

17 6.59E-08 1.487 0.140 -1.497 0.520 0.257 < 0.0001 < 0.0001

18 1.25E-08 1.472 0.189 -1.493 0.397 0.229 < 0.0001 0.0029

19 4.47E-08 1.312 0.126 -1.444 0.601 0.294 < 0.0001 0.1992

20 3.58E-08 1.662 0.144 -1.600 0.401 0.169 < 0.0001 0.0001

21 3.88E-03 2.256 0.382 -1.134 0.517 0.557 0.0039 < 0.0001

22 6.20E-05 0.873 0.224 -1.308 0.676 0.422 < 0.0001 0.1434

X 9.61E-09 1.255 0.212 -1.436 0.535 0.332 < 0.0001 < 0.0001

Y 1.91E-03 0.000 0.041 -1.442 0.743 0.162 < 0.0001 0.0085

1. fn =
∑5

i=1(gi(γ̂1, µ̂1, γ̂2, µ̂2, σ̂
2) − m̂i)

2. 2. P-values for Omnibus test. 3. P-values

for Unilateral test.55
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Chapter 4 Hierarchical Normal Mixture Model

4.1 Introduction

Hierarchical models (also called multilevel models) can be used for many fields of

study. In sociology and biology, for example, hierarchical models can describe many

different associations among variables at different levels through a hierarchical struc-

ture (see Snijders and Bosker 1999, Raudenbush and Bryk 2002). A common case in

sociological studies based on demographic surveys is that the populations are usually

clustered by geographical areas. The correlation among observations due to cluster-

ing can be modeled mathematically using multiple levels of the hierarchy. In such a

scenario, a single level model cannot account for the effect of clustering and possibly

is not appropriate.

In this Chapter, the idea of hierarchical modeling is incorporated into a normal mix-

ture model. This model is somewhat different from the BCN+NP model considered

earlier and has the following structure:

Y |X = x, M = m ∼ N(am + bmx, τ 2)

X|M = m ∼ N(µm, σ2)

where am, bm are intercept and slope of regressed mean and τ 2 is the variance at the

higher level, given that M = m. Note that M is the categorical variable identifying

which mixture component (X, Y ) belongs to. µm is the mean of X in the mth com-

ponent and σ2 is the variance, presumed common across components. I call this kind

of multilevel model the hierarchical normal mixture model with nuisance parameters

(HNM+NP).
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As noted above, the HNM+NP model is rather different from the BCN+NP model,

not only because of the multiple levels but also because the number of components is

not limited to three (and, indeed, may be unknown a priori). Moreover, we no longer

assume that there is a primary component whose mean is known.

This chapter will describe how to approximate the maximum likelihood estimates

of parameters in HNM+NP model through EM-algorithm. New criteria other than

AIC, BIC for choosing the number of components will be introduced, followed by

some simulation study. Finally the model will be applied to a birthweight data set

to study the relation between children’s birthweight and mortality.

4.2 Parameter Estimation Using the EM Algorithm

The EM algorithm is widely used for approximating maximum likelihood estimates

of parameters from a mixture model (see Dempster, Laird and Rubin 1977, Redner

and Walker 1984, Bilmes 1998). For the HNM+NP model, we can also apply the EM

algorithm to find parameter estimates. Let i ∈ {1, 2, ..., n} be the indices for subjects,

K be the presumed total number of components, πm ≥ 0 be the probability of a

subject belonging to component m with the constraint that
∑K

m=1 πm = 1 and Mi be

the indicator for which component subject i belongs to. Let θm = (µm, σ2, am, bm, τ 2)

denote the vector of mth component parameters that we want to estimate. Then the

contribution to the “complete data” likelihood function from component m is

L(θm|x, y) = f(y|x, am, bm, τ 2)f(x|µm, σ2)

=
n∏

i=1

{
I{Mi=m}

πm

2πστ
exp

[
−1

2

(
(xi − µm)2

σ2
+

(yi − am − bmxi)
2

τ 2

)]}

where Mi is not observed in practice. So we replace I{Mi=m} by its conditional expec-

tation.
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Using Bayes’ Theorem, we find that

E[I{Mi=m}|xi, yi] = P [Mi = m|xi, yi] (4.1)

=
fX,Y |M(xi, yi|Mi = m)P [Mi = m]

∑K
m′=1 fX,Y |M(xi, yi|Mi = m′)P [Mi = m′]

(4.2)

=
πmfX,Y |θm(xi, yi|θm)

∑K
m′=1 πm′fX,Y |θm′ (xi, yi|θm′)

. (4.3)

Define wim := E[I{Mi=m}|xi, yi], then the complete data log likelihood function is

approximated by

l(θ) =

n∑

i=1

K∑

m=1

{
wim ∗ log

(
πm

2πστ
exp

[
−1

2

(
(xi − µm)2

σ2
+

(yi − am − bmxi)
2

τ 2

)])}

(4.4)

=

n∑

i=1

K∑

m=1

{
wim

[
log(πm) − log(2πστ) − 1

2

(
(xi − µm)2

σ2
+

(yi − am − bmxi)
2

τ 2

)]}

(4.5)

=

n∑

i=1

K∑

m=1

{
wim

[
log(πm) − log(στ) − 1

2

(
(xi − µm)2

σ2
+

(yi − am − bmxi)
2

τ 2

)]}
+ C,

(4.6)

where θ = (θ1, ..., θK) and C is free of θ.

Then the function

Q(θ, θ(t)) := E[l(θ)|x, y, θ(t)]

=

n∑

i=1

K∑

m=1

w
(t)
im

[
log(πm) − log(στ) − 1

2

(
(xi − µm)2

σ2
+

(yi − am − bmxi)
2

τ 2

)]
+ C

represents the evaluation of the aforementioned approximation when wim is evaluated

at θ(t). We denote this by w
(t)
im with the interpretation that θ(t) represents the latest

estimate of θ after t iterations of the EM algorithm.

After differentiation with respect to each component of θ, the updating equations to

produce new estimates of θ after t + 1 iterations are
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π(t+1)
m =

∑
i w

(t)
im

n

µ(t+1)
m =

∑
i w

(t)
imxi∑

i w
(t)
im

σ(t+1)
m =

√√√√
∑

i w
(t)
im(xi − µ

(t+1)
m )2

∑
i w

(t)
im

τ (t+1)
m =

√√√√
∑

i w
(t)
im(yi − a

(t+1)
m − b

(t+1)
m xi)2

∑
i w

(t)
im




a
(t+1)
m

b
(t+1)
m


 =



∑

i w
(t)
im

∑
i w

(t)
imxi

∑
i w

(t)
imxi

∑
i w

(t)
imx2

i




−1 

∑

i w
(t)
imyi

∑
i w

(t)
imxiyi




Let v1 = 1
n

∑
i w

(t)
i1 , v2 = 1

n

∑
i w

(t)
i2 , etc. Then the pooled variance

(σ̂2)(t+1) =
∑

m

vm(σ̂2
m)(t+1)

=
1

n

∑

m

(∑
i w

(t)
im

)∑
i w

(t)
im(xi − µ

(t+1)
m )2

∑
i w

(t)
im

=
1

n

n∑

i=1

K∑

m=1

w
(t)
im(xi − µ(t+1)

m )2

Similarly,

(τ̂ 2)(t+1) =
1

n

n∑

i=1

K∑

m=1

w
(t)
im(yi − a(t+1)

m − b(t+1)
m xi)

2

The correlation between X and Y can be obtained as follows,

E[XY |M = m] =

∫

R

∫

R

xyf(x, y|m)dxdy · I(M=m)

=

∫

R

x√
2πσm

exp

(
−(x − µm)2

2σ2
m

)∫

R

y√
2πτm

exp

(
−(y − am − bmx)2

2τ 2
m

)
dydx · I(M=m

=

∫

R

x√
2πσm

exp

(
−(x − µm)2

2σ2
m

)
(am + bmx)dx · I(M=m)

=

∫

R

xam√
2πσm

exp

(
−(x − µm)2

2σ2
m

)
dx · I(M=m)

+

∫

R

x2bm√
2πσm

exp

(
−(x − µm)2

2σ2
m

)
dx · I(M=m)

= amµm + bm(σ2
m + µ2

m)
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ρX,Y |M = Corr(X, Y |M = m) =
E[(X − µX)(Y − µY )|M = m]

σX|MσY |M

=
E[XY |M = m] − µX|MµY |M

σX|MσY |M

=
amµm + bm(σ2

m + µ2
m) − µm(am + bmµm)

σmσY |M

=
bmσm

σY |M

σY |M = V ar[Y |M ] = E[V ar[Y |X, M ]] + V ar[E[Y |X, M ]]

= τ 2
m + V ar[am + bmX|M ]

= τ 2
m + b2

mV ar[X|M ]

= τ 2
m + b2

mσ2
m

ρX,Y |M =
bmσm√

τ 2
m + b2

mσ2
m

4.3 Singular Bayesian Information Criterion

Many papers in the statistical literature discussed methods of model selection. Two

well-known approaches are the information-theoretic selection based on Kullback-

leibler (K-L) information loss and Bayesian model selection based on Bayes factors

(Burnham, Anderson 2004). Akaike Information Criteria (AIC) represents the first

approach and Bayesian Information Criteria (BIC) of Schwarz (1978) represents the

second approach.

However, due to the singularity problem in mixture models, neither AIC nor BIC

may be an appropriate criterion. AIC doesn’t put enough penalty on the number of

parameters, thereby tending to overestimate the number of mixing components. On

the other hand, the determinants of Fisher-information matrices for mixture models
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may be singular and thus non-invertible.

Although BIC is known to be consistent in some singular settings, the technical ar-

guments in its Bayesian-inspired derivation do not apply (Keribin 2000, Drton and

Martyn 2013).

Drton proposed a new information criterion for singular models called the singular

Bayesian information criterion (sBIC). This criterion conquers the difficulty that

the determinants of Fisher-information matrices for mixture models may be singular.

Drton also showed that sBIC is consistent.

Suppose Yn = (Yn1, ..., Ynn) is a sample of n iid observations and {Mi, i ∈ I} is

a finite set of candidate models. For each model Mi, P (Mi) is the positive prior

probability and P (πi|Mi) is prior distribution for data-generating distribution πi ∈

Mi. P (Yn|πi, Mi) is the likelihood of Yn under data-generating distribution πi from

model Mi. The marginal likelihood of Mi is

L(Mi) := P (Yn|Mi) =

∫

Mi

P (Yn|πi, Mi)dP (πi|Mi).

The posterior model probability is

P (Mi|Yn) ∝ P (Mi)L(Mi).

By Schwarz’s theorem (Schwarz 1978), the Bayesian information criterion for model

Mi is

BIC(Mi) = log P (Yn|π̂i, Mi) −
di

2
log(n),

where π̂i is the data-generating distribution as estimated by maximum likelihood.

However, this is generally not valid in singular models.
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Before proceeding to the derivation of sBIC, it is necessary to introduce the learning

coefficient and multiplicity. Suppose K(w) is the K-L divergence,

K(w) =

∫
f(x) log

f(x)

g(x|w)
dx,

where f(x) is the true probability density function and g(x|w) is a learning machine.

A learning machine refers to the statistical model of interest. Then the zeta function

is defined as

ζ(z) =

∫
K(w)zp(w)dw,

where p(w) is an a priori probability density function. Watanabe (2009) states that

−λ and m are the largest pole of the zeta function ζ(z) and its order, then the posi-

tive λ is called a learning coefficient and m is called a multiplicity. In Conway’s 1973

book, he defined pole and its order. If z = a is an isolated singularity of f , then a

is a pole of f if limz→a |f(z)| = ∞. If f has a pole at z = a and m is the smallest

positive integer such that f(z)(z − a)m has a removable singularity at z = a, then f

has a pole of order m at z = a.

Watanabe (2009 Theorem 6.7) proved that for most singular models,

log L(Mi) = log P (Yn|π0, Mi) − λi(π0) log(n) + [mi(π0) − 1] log log(n) + Op(1),

where π0 is the true data-generating distribution, λi(π0) is the learning coefficient

and mi(π0) is its multiplicity.

If the sequence of likelihood ratios P (Yn|π̂i, Mi)/P (Yn|π0, Mi) is bounded in proba-

bility, then we also have that

log L(Mi) = log P (Yn|π̂i, Mi) − λi(π0) log(n) + [mi(π0) − 1] log log(n) + Op(1).

where λi(π0) ∈ (0, di/2] is learning coefficient and mi(π0) ∈ {1, ..., di} is multiplicity.
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Drton (2009) showed that the likelihood ratios for singular submodels of exponential

families will converge in distribution and are thus bounded in probability. Azäıs et

al (2006 2009) proved that for more complicated models like mixture models, likeli-

hood ratios converge in distribution under compactness assumptions on the parameter

space.

Let Mi be the candidate model, then the singular Bayesian information criterion for

model Mi is

sBIC(Mi) = log L′(Mi),

where L′(Mi) : i ∈ I is the unique solution to an equation system which involves the

learning coefficients of singular models. Watanabe also proved if a model maximizes

sBIC, then the probability that this model is a true model of minimal Bayes com-

plexity (and thus also a smallest true model) tends to 1 as n → ∞ under some mild

assumptions.

If true data-generating distribution π0 is known, the marginal likelihood becomes

L′
π0

(Mi) := P (Yn|π̂i, Mi)n
−λi(π0)(log n)mi(π0)−1.

However, if the data-generating distribution is unknown, Drton (2013) proposes to

assign a probability distribution Qi to the distributions in model Mi. He then elim-

inates the unknown distribution π0 by marginalization and computes the approxi-

mated marginal likelihood

L′
Qi

(Mi) :=

∫

Mi

L′
π0

(Mi)dQi(π0).

In regular case,

L′
Qi

(Mi) = eBIC(Mi)
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with λi = di/2, mi = 1 for all probability measures Qi on Mi. In singular case, Drton

advocates the use of the posterior distribution

Qi(π0) := P (π0|{M : M ⊆ Mi}, Yn) =

∑
j�i P (π0|Mj, Yn)P (Mj|Yn)∑

j�i P (Mj|Yn)

obtained by conditioning on the family of all submodels of Mi.

Suppose the random probability measure π0 in Mj ⊆ Mi is distributed according to

the posterior distribution P (π0|Mi, Yn). Then it holds that both λi(π0) and mi(π0)

are almost surely constant under some conditions. For j � i, let λij and mij denote

these constants and define

L′
ij := P (Yn|π̂i, Mi)n

−λij (log n)mij−1 > 0,

which can be evaluated in statistical practice. Let L′(Mi) := L′
Qi

(Mi) when Qi is

chosen as Qi(π0), we have

L′(Mi) =

∑
j�i L

′
ijL(Mj)P (Mj)∑

j�i L(Mj)P (Mj)

Replacing L(Mj) by L′(Mj),

L′′(Mi) =

∑
j�i L

′
ijL

′(Mj)P (Mj)∑
j�i L

′(Mj)P (Mj)

where L′′(Mi) is just another notation for approximated marginal likelihood to avoid

confusion. Drton (2013) showed the equation system above has a unique solution

with all unknowns L′′(Mi) > 0. If i is a minimal element of I, then j � i implies

j = i and the equation has the unique positive solution

L′′(Mi) = L′
ii > 0,

which coincides with the exponential of the usual BIC for model Mi.
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Otherwise, if i is not a minimal element of I and thus there exists j ≺ i, then

L′(Mi) =
1

2

(
−bi +

√
b2
i + 4ci

)

with

bi = −L′
ii +

∑

j≺i

L′(Mj)
P (Mj)

P (Mi)
,

ci =
∑

j≺i

L′
ijL

′(Mj)
P (Mj)

P (Mi)
.

Hence, for i ∈ I, L′(Mi) can be derived recursively. Then the singular Bayesian

information criterion for model Mi is

sBIC(Mi) = log L′(Mi) = log P (Yn|π̂i, Mi) − penalty(Mi),

where penalty(Mi) ≤ dim(Mi)/2 · log(n). Hence, penalty(Mi) is milder than that of

BIC.

To calculate sBIC for HNM+NP model, we need to find the learning coefficient and

multiplicity. Suppose i is the number of normal mixture components in the learning

machine (Watanabe 2009) and j is the number of normal mixture components of the

true distribution. By Watanabe (2009 Section 7.3), the dimension of the parameter

space is 2i for the lower level (the counts for µm, γm and σ2 are i, i − 1, 1) and for

the higher level is 2i + 1 (the counts for am, bm and τ 2 are i, i, 1). The number of free

parameters in total is 3(i−j) (the free parameters come from am, bm, γm). The degree

of freedom is the difference of total dimension of parameter space minus number of

free parameters, which is 3j + i + 1. Hence we have

λij ≤ 0.5(3j + i + 1)

by Watanabe.
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4.4 Consistency of sBIC

In Drton’s paper (2013), he proved the consistency of sBIC under some assumptions.

In order to show that sBIC is consistent when applied to HNM+NP model, we need

to verify that HNM+NP model meets the following assumptions:

1. The sequence of likelihood ratios of any two true models is bounded in probability

as n → ∞,

2. For a true model Mi and a false model Mk, there exists a positive constant εik > 0,

such that the probability of the sequence of likelihood ratios for false model vs true

model is ≤ e−εikn tends to 1 as n → ∞,

3. For any two true models Mi and Mk and any of their corresponding true sub-

models Mj and Ml, the Bayes complexity should be monotonically increasing, i.e.,

(λij, mij) < (λkl, mkl) if i ≺ k and j ≺ l.

There’s another assumption which is not used for proving consistency but is useful

to investigate the Bayesian behavior of sBIC. It says, for a true model Mi, its Bayes

complexity should be nondecreasing in true submodels, i.e., if j � k index two true

submodels of Mi, then (λij, mij) < (λik, mik).

Before showing HNM+NP model satisfies all aforementioned assumptions, it’s neces-

sary to state some definitions. First, a model Mi is a true model if the data-generating

distribution π0 ∈ Mi. Otherwise, Mi is called a false model. A true model is called

the smallest true model if all its strict submodels are false. Moreover, when compar-

ing the Bayes complexity of two true models, the operator ’<’ is the lexicographic

order on R
2. So (a, b) ≤ (c, d) means either a < c or a = c and b ≤ d.

To show assumption 1, suppose Mf and Mg are two true models. Mh is the smallest
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true model. Define the quantity

λab = log
P (Yn|π̂a, Ma)

P (Yn|π̂b, Mb)
.

Then Dacunha-Castelle and Gassiat (1999) showed that the likelihood ratio test

statistic

λfh
L−→ 1

2
sup
d∈D

(ξd)
2 · 1ξd≥0,

where ξd is a Gaussian process indexed by d ∈ D, which is assumed compact. This

implies λfh is also bounded in probability. Since f is just an arbitrary index for any

true model, the above result is also true for Mg. That is,

λgh
L−→ 1

2
sup
d∈D

(ξ′d)
2 · 1ξ′d≥0.

Thus we have λfg = log
P (Yn|π̂f , Mf)

P (Yn|π̂g, Mg)
is also bounded in probability.

Assumption 2 is more complex than assumption 1. Suppose Mf is a false model, Mt

is a true model and Mh is the smallest true model. The quantity

λfh = log
P (Yn|π̂f , Mf )

P (Yn|π̂h, Mh)

=

n∑

i=1

log fMf
(Yi|π̂f) −

n∑

i=1

log fMt(Yi|π̂t)

Since π̂h
a.s.−→ πh and there exists πf such that π̂f

a.s.−→ πf , then assuming compact

parameter spaces

1

n

n∑

i=1

log fMf
(Yi|π̂f)

a.s.−→ E log fMf
(Yi|πf),

by strong law of large number and likewise

1

n

n∑

i=1

log fMh
(Yi|π̂h)

a.s.−→ E log fMh
(Yi|πh).
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Then by Slutsky’s theorem and Jensen’s inequality,

1

n

n∑

i=1

log fMf
(Yi|π̂f ) −

1

n

n∑

i=1

log fMh
(Yi|π̂h)

a.s.−→ E log fMf
(Yi|πf) − E log fMh

(Yi|πh)

=

∫
log

fMf
(Yi|πf)

fMh
(Yi|πh)

fMh
(Yi|πh)dy

< log

∫
fMf

(Yi|πf)

fMh
(Yi|πh)

fMh
(Yi|πh)dy

= log(1) = 0

Define δ by 1
n

∑n
i=1 log fMf

(Yi|π̂f ) − 1
n

∑n
i=1 log fMh

(Yi|π̂h)
a.s.−→ −2δ, then for suf-

ficiently large n (possibly depending on the underlying element of the probability

space)
n∑

i=1

log fMf
(Yi|π̂f) −

n∑

i=1

log fMh
(Yi|π̂h) ≤ −n · δ.

Taking exponential of both sides we have the probability of

P (Yn|π̂f , Mf )

P (Yn|π̂h, Mh)
≤ e−n·δ

tends to 1 as n → ∞.

Moreover, Mh is the smallest true model, we have the proportion

P (Yn|π̂h, Mh)

P (Yn|π̂t, Mt)
≤ 1,

Thus we have

P (Yn|π̂f , Mf)

P (Yn|π̂t, Mt)
=

P (Yn|π̂f , Mf )

P (Yn|π̂h, Mh)
· P (Yn|π̂h, Mh)

P (Yn|π̂t, Mt)
≤ e−n·δ

Assumption 3 is pretty straight forward. For the HNM+NP model, the learning co-

efficient λij = 1
2
(3j + i + 1) which is larger than λkl if i ≺ k and j � l.
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By Drton (2013) Theorem 4.1, if assumption 1-3 are satisfied and suppose Mî is

chosen by maximizing sBIC, i.e.,

î = arg max
i∈I

sBIC(Mi).

Then the probability that Mî is a true model of minimal Bayes complexity tends to

1 as n → ∞ and thus sBIC applied to HNM+NP is consistent.

4.5 Simulation Study

We generate data that follow a two-level hierarchical normal mixture distribution.

The lower level of the data Xi is generated from an M component normal mixture

model with mean µm in component m and variance σ2. The higher level of the data

Yi, given Xi = xi and membership in component m, is generated from a normal model

with mean am + bmxi and variance τ 2. We take sample sizes n = 1000, number of

components M ∈ {2, 3, 4, 5} and allow M = 1 just for comparison purpose. Other

parameters are as shown in Table 4.1. For each combination of M and n, we generate

50 data sets and record the number of times that 2, 3, 4 and 5 component models

were selected respectively by AIC, BIC and sBIC.

One thing worth mentioning is, due to the limit of R software, the algorithm for

calculating sBIC showed in Section 4.3 is not practically feasible when sample size is

large (e.g. n ≥ 500). Thus we apply Lemma 4.1 in Drton’ paper (2013) which states

under assumption 2, if Mi is a smallest true model, then

sBIC(Mi) = log(L′
ii) + op(1).

Applying this lemma, we have approximated sBIC(Mi) ≈ log(L′
ii) and avoided calcu-

lating the likelihood which is a product of n floating point numbers. This lemma is

also used when fitting HNM+NP model to the Vital Statistics Natality Birth Data.
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Table 4.1: Parameter Combinations of HNM+NP Model for Simulation Study

M 2 3 4 5 M 2 3 4 5

π1 0.4 0.2 0.2 0.1 a1 -2 -2 -2 -2

π2 0.6 0.5 0.3 0.2 a2 2 1 -1 -1

π3 - 0.3 0.3 0.3 a3 - 2 1 0

π4 - - 0.2 0.2 a4 - - 2 1

π5 - - - 0.2 a5 - - - 2

µ1 -2 -2 -2 -2 b1 -2 -2 -2 -2

µ2 2 -1 -1 -1 b2 2 1 -1 -1

µ3 - 2 1 0 b3 - 2 1 0

µ4 - - 3 1 b4 - - 2 1

µ5 - - - 2 b5 - - - 2

σ2 1 1 1 1 τ 2 2 2 2 2

The results from simulation study are shown in Table 4.2. When the samples are

generated from a two component normal mixture population (M=2), all three criteria

agreed to choose two component normal mixture model correctly. When M=2, the

two modes may be easy to distinguish and all the criteria can choose the right model.

There exists some disagreement when M=3, around 40% of the samples choose three

component model correctly, 60% of the samples choose two component model. None

of the criteria do a good job when the population comes from a 4 or 5 component

normal mixture. Since the modes could be very close to each other, it’s even harder

to detect them, not even in favor of the 3 component model.
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Table 4.2: Number of Components Chosen by AIC, BIC and sBIC, out of 50 samples

of size 1000

M=2 M=3 M=4 M=5

Criterion 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

AIC 50 0 0 0 30 20 0 0 50 0 0 0 50 0 0 0

BIC 50 0 0 0 31 19 0 0 50 0 0 0 50 0 0 0

sBIC 50 0 0 0 30 20 0 0 50 0 0 0 50 0 0 0

The unsatisfying results may be due to the modest differences between component

means, also can be the inadequate sample size relative to model complexity. Our

focus of the HNM+NP model is on how Y is linearly related to X, more specifically,

is the mean of Y positively or negatively related to X within each component. We will

see that in the next section where we applied HNM+NP model to the Birth Weight

data set.

4.6 Application to Vital Statistics Natality Birth Data Set

In this section, the HNM+NP model will be applied to the NCHS’s Vital Statistics

Natality Birth Data from 2011. Natality Data from the National Vital Statistics Sys-

tem of the National Center for Health Statistics provide demographic and health data

for births occurring during the indicated calendar year. The data can be downloaded

from this link:

http://www.nber.org/data/vital-statistics-natality-data.html.

Our interest is to investigate the relationship between birth weight (in grams) of

infants and the estimated obstetric gestation (in weeks). The birth weight ranges

from 227 to 8165 grams. A 9999 indicates unknown birth weight. Meanwhile, the

estimated obstetric gestation ranges from 17 to 47 weeks and a 99 means unknown
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or not stated. The missing or unknown data are removed. We will randomly draw

subsets of sizes 100, 500, 2500, 5000. We will fit 2,3,4 and 5 component HNM+NP

models via EM algorithm and use AIC, BIC and sBIC to estimate the “true” number

of components. Looking at the multiple sample sizes will allow us to assess sensitivity

of the results to n, and examining multiple subsets at a given n will allow us to assess

reproducibility. Considering the nature of the two variables, we will use estimated

obstetric gestation to fit the lower level and birth weight to fit the higher level, since

“predicting” birth weight from obstetric gestation seems more reasonable than “pre-

dicting” obstetric gestation from birth weight. Ten samples of each sample size are

randomly selected and the number of components chosen by AIC, BIC and sBIC are

listed in Table 4.3.

Table 4.3: Numbers of Samples that Choose 2-, 3-, 4-, 5-Component Models

AIC BIC sBIC

Sample Size 2 3 4 5 2 3 4 5 2 3 4 5

n=100 5 4 0 1 6 4 0 0 5 4 0 1

n=500 5 3 2 0 5 3 2 0 5 3 2 0

n=2500 3 1 5 1 3 1 5 1 3 1 5 1

n=5000 2 2 4 2 2 2 4 2 2 2 4 2

Table 4.3 consists of model selection results of 10 samples for each sample size, 40

samples in total. When sample size is in {100, 500}, AIC, BIC and SBIC all tend to

suggest a 2-component hierarchical normal mixture model. This is a very common

phenomenon in mixture modeling that a 2- or 3-component model is preferred when

the sample size is not sufficiently large. The same thing happens here for hierarchical

normal mixture model. When n is small, the data has less variability that is clearly

ascribed to heterogeneity and is not as a good representation of the population as
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large n when the population has complexity larger than 3. When the sample size

rises to 2500 and 5000, the AIC, BIC and sBIC tend to choose a 4-component hier-

archical normal mixture model more consistently. For the infant birth weight data,

it makes more sense that the birth weights follow a 4-component HNM model than

a 2-component HNM model. The 4-component model will group infants into more

detailed gestational age and birth weight clusters and thus have a better description

of the joint distribution of gestational age and birth weight.

Note that the results might be different if we allow heteroscedasticity (i.e. σ and

τ vary by mixture component). Also, gestation ages and birthweights have been

rounded, so that sample of size 100 displays digit preference.

We now present more detailed results from one additional generated random sample

for n=100, 500, 2500, 5000. The parameter estimates for each sample size are listed

in Table 4.4. Each block of the table represents different sample sizes. Since all the

criteria agreed on the number of components (4,2,3 and 4 for n=100,500,2500,5000

respectively), the table only contains one set of parameter estimates for each sample

size with the chosen number of components. It’s surprising that when sample size is

100, the criteria all choose a 4 component HNM+NP model. Number 2,3,4 compo-

nents actually has very similar means but a very different a value. The reason that a

4 component model was chosen could be the small size of the sample which leads to

a unreliable result. It makes more sense that a 2 component HNM+NP model was

chosen when n=500, and a 3 component model was chosen when n=2500, while a 4

component model was chosen when n=5000. Most of the birth weights are positively

related to obstetric gestation, except the 4th component of the model when n=5000.

The scatter plots and contour plots of the fitted densities are shown in Figure 4.1.

74



Notice that ρ is the correlation between X and Y calculated in Section 4.2.

ρX,Y |M =
bmσm√

τ 2
m + b2

mσ2
m

.
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Table 4.4: Parameter Estimates for Models Chosen by AIC, BIC and sBIC

Components m

n Parameter m =1 m =2 m =3 m =4

n=100 µ 28.99998 39.04201 38.7438 37.90619

a -2142.667 -3839.172 -2375.976 -618.3162

b 111.8333 176.212 152.952 121.1196

τ2 40379.93 40379.93 40379.93 40379.93

σ2 1.568323 1.568323 1.568323 1.568323

π 0.0199999 0.4304674 0.4214359 0.1280968

ρ 0.5717858 0.739383 0.6899711 0.6024646

n=500 µ 29.99576 38.89025

a -3665.623 -2936.28

b 176.5592 161.011

τ2 205661.8 205661.8

σ2 1.896348 1.896348

π 0.03488106 0.9651189

ρ 0.4725081 0.4392326

n=2500 µ 24.88911 34.5392 38.95195

a -1751.01 -3534.945 -2483.193

b 103.15 168.4195 149.8614

τ2 180511.9 180511.9 180511.9

σ2 1.409501 1.409501 1.409501

π 0.005932702 0.05078797 0.9432793

ρ 0.276961 0.425822 0.3862633

n=5000 µ 27.07182 34.50198 38.886 39.39033

a -2047.432 -2607.702 -2850.295 9801.834

b 112.6555 144.2196 158.9236 -145.9206

τ2 166660.4 166660.4 166660.4 166660.4

σ2 1.432124 1.432124 1.432124 1.432124

π 0.008422917 0.05575579 0.8911222 0.04469912

ρ 0.3135809 0.3893958 0.4222906 -0.3932817
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Figure 4.1: The Contour Plots of Fitted Density for Birth Weight Data
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Chapter 5 A New Singular Information Criterion for HNM+NP Model

5.1 Motivation

In the literature of mixture modeling, one challenging and crucial topic is to deter-

mine the mixture complexity. A lot of methods have been used or developed in the

past, like the AIC and BIC. In Section 4.3, we already discussed the problems AIC

and BIC have when applied to choosing the number of mixture components. We also

implemented a new information criterion for singular models by Drton (2013). In

this Chapter we will develop a new data dependent information criterion inspired by

Pilla and Charnigo’s FLIC (2006). It is expected to work as least as good as sBIC,

hopefully perform even better on estimating the complexity of HNM+NP model.

In this chapter, we will first define the new criterion. Then we will show the de-

velopment of the criterion followed by the proof of its asymptotic properties. Some

simulations will be done to see how well the criterion works. We will also compare

this new criterion with AIC, BIC and sBIC by applying it to the birth weight data.

5.2 Multivariate Analysis of Variance - MANOVA

Before we construct the new criterion, we want to first review the multivariate analysis

of variance - MANOVA. The new criterion will depend on a term that is inspired by

MANOVA. MANOVA is a generalization of ANOVA when there is more than one

dependent variable (Tabachnick and Fidell, 2001). Let Yiuj represent the observation

from ith outcome measurement of uth subject in jth group, i = 1, ..., p, u = 1, ..., nj

and j = 1, ..., J . We want to decompose Total SSCP Matrix into Between SSCP and

Within SSCP. SSCP stands for sum of squares and cross products. Use T , W , B to
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represent each and suppose for illustration p=2, then

T := W + B.

The sum of squares within groups can be calculated as follows:

W =

J∑

j=1

Wj,

Wj =




SSj11 SSj12

SSj21 SSj22


 ,

where

SSj11 =

nj∑

u=1

(Y1uj − Ȳ1·j)
2

SSj22 =

nj∑

u=1

(Y2uj − Ȳ2·j)
2

SSj12 = SSj21 =

nj∑

u=1

(Y1uj − Ȳ1·j)(Y2uj − Ȳ2·j).

Notice here if we divide Wj by nj − 1, one can get

Wj

nj − 1
=




ˆV arj(Y1) ˆCovj(Y1, Y2)

ˆCovj(Y1, Y2) ˆV arj(Y2)


 .

Thus

W =
J∑

j=1

Wj =
J∑

j=1




SSj11 SSj12

SSj21 SSj22


 .

The sum of squares between groups can be calculated as follows:

B =




b11 b12

b21 b22




where bij represents the sum of squares or cross products in the univariate case,

b11 =

J∑

j=1

nj(Ȳ1·j − ¯̄Y1··)
2
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b22 =

J∑

j=1

nj(Ȳ2·j − ¯̄Y2··)
2

b12 = b21 =
J∑

j=1

nj(Ȳ1·j − ¯̄Y1··)(Ȳ2·j − ¯̄Y2··).

So the total SSCP matrix can be written as

T = W+B =

J∑

j=1




SSj11 SSj12

SSj21 SSj22


+




b11 b12

b21 b22


 =



∑J

j=1 SSj11 + b11

∑J
j=1 SSj12 + b12

∑J
j=1 SSj21 + b21

∑J
j=1 SSj22 + b22


 .

5.3 Singular Flexible Information Criterion

We now know how to derive the between and within group variability for MANOVA.

We draw an analogy in the mixture content. More specifically we consider W to be

characterized by mixture component membership. Replace Y1 with X, the obstetric

gestation, and Y2 with Y , the birth weight of new born infants, then the quantities

listed below are analogous to those from MANOVA, with N representing the total

sample size:

SSj11 = Nπ̂j σ̂
2
j

SSj22 = Nπ̂j τ̂
2
j

SSj12 = SSj21 = Nπ̂j σ̂j τ̂j

b11 = N

J∑

j=1

π̂j(µ̂j − X̄)2

b22 = N
J∑

j=1

π̂j(âj + b̂jµ̂j − Ȳ )2

b12 = b21 = N

J∑

j=1

π̂j(µ̂j − X̄)(âj + b̂jµ̂j − Ȳ )

Note that Nπ̂j = n̂j, the estimated number of persons in component j.
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Then the within and between-component SSCP matrix becomes,

W =



∑J

j=1 SSj11

∑J
j=1 SSj12

∑J
j=1 SSj21

∑J
j=1 SSj22


 = N



∑J

j=1 π̂j σ̂
2
j

∑J
j=1 π̂j σ̂j τ̂j

∑J
j=1 π̂j σ̂j τ̂j

∑J
j=1 π̂j τ̂

2
j




B = N




∑J
j=1 π̂j(µ̂j − X̄)2

∑J
j=1 π̂j(µ̂j − X̄)(âj + b̂jµ̂j − Ȳ )

∑J
j=1 π̂j(µ̂j − X̄)(âj + b̂jµ̂j − Ȳ )

∑J
j=1 π̂j(âj + b̂jµ̂j − Ȳ )2




T = N




∑J
j=1 π̂j(σ̂

2
j + (µ̂j − X̄)2)

∑J
j=1 π̂j(σ̂j τ̂j + (µ̂j − X̄)(âj + b̂jµ̂j − Ȳ ))

∑J
j=1 π̂j(σ̂j τ̂j + (µ̂j − X̄)(âj + b̂jµ̂j − Ȳ ))

∑J
j=1 π̂j(τ̂

2
j + (âj + b̂jµ̂j − Ȳ )2)




The determinants can be calculated accordingly,

|W | = N2(

J∑

j=1

π̂j σ̂
2
j )(

J∑

j=1

π̂j τ̂
2
j ) − N2(

J∑

j=1

π̂j σ̂j τ̂j)
2

|B| = N2(
J∑

j=1

π̂j(µ̂j−X̄)2)(
J∑

j=1

π̂j(âj+b̂jµ̂j−Ȳ )2)−N2(
J∑

j=1

π̂j(µ̂j−X̄)(âj+b̂jµ̂j−Ȳ ))2

|T | =N2(

J∑

j=1

π̂j(σ̂
2
j + (µ̂j − X̄)2))(

J∑

j=1

π̂j(τ̂
2
j + (âj + b̂jµ̂j − Ȳ )2))

− N2(

J∑

j=1

π̂j(σ̂j τ̂j + (µ̂j − X̄)(âj + b̂jµ̂j − Ȳ )))2

then define the fraction of within-component to total variability of the HNM+NP

model, averaged over candidate models, to be

Λ(X, Y ) :=
1

M

M∑

j=1

|Wj|
|Tj|

≥ 1

M
,

where Wj is the within variability assuming a j-component model and
|Wj |
|Tj | is always

less than or equal to 1 and M is the largest model complexity under consideration.
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To see this, suppose we have two matrices

A =

∣∣∣∣∣∣∣

a1 a

a a2

∣∣∣∣∣∣∣
, B =

∣∣∣∣∣∣∣

b1 b

b b2

∣∣∣∣∣∣∣
,

and det(A) = a1a2 − a2, det(B) = b1b2 − b2. By the property of determinants, the

determinant of A + B is

det(A + B) =

∣∣∣∣∣∣∣

a1 + b1 a + b

a + b a2 + b2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

a1 + b1 a + b

a a2

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

a1 + b1 a + b

b b2

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

a1 a

a a2

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

b1 b

a a2

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

a1 a

b b2

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

b1 b

b b2

∣∣∣∣∣∣∣

= det(A) + b1a2 + a1b2 − 2ab + det(B).

If view matrix A as Wj and B as Bj , then

b1a2 + a1b2 − 2ab = π̂2
j σ̂

2
j (âj + b̂jµ̂j − Ȳ )2 + π̂2

j τ̂
2
j (µ̂j − X̄)2

− 2π̂2
j σ̂j τ̂j(µ̂j − X̄)(âj + b̂jµ̂j − Ȳ )

= π̂2
j [σ̂j(âj + b̂jµ̂j − Ȳ ) − τ̂j(µ̂j − X̄)]2

≥ 0.

So |Tj| = |Wj + Bj | ≥ |Wj| + |Bj | and
|Wj |
|Tj | ≤ 1. Further, note Λ(X, Y ) ≥ 1

M
. The

larger Λ(X, Y ) is, the less heterogeneous the components are.

In Pilla and Charnigo (2006), they defined a bivariate ratio function, which is

g(n, γ) :=
Φ[(log(n))γ] − Φ(1)

1 − Φ(1)
,

this function is defined for n > exp(1) and γ between M−1 and 1. Here Φ(·) is the

cumulative distribution function of standard normal distribution. This g(n, γ) has

some useful properties that can be used to develop the new information criterion.
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Firstly, g(n, γ) will increase as n or γ increases. Secondly, g(n, γ) goes to 1 as n goes

to infinity. Here, we can use this function as well.

Now define the penalty term

f(n, X, Y ) = log(n)g[n,Λ(X,Y )].

The singular flexible information criterion (SFIC) can be defined as

SFICj(X, Y ) := l̂(Mj) − λj(π0) log(n)g[n,Λ(X,Y )] + [m(π0) − 1](log log(n))g[n,Λ(X,Y )].

In the HNM+NP model, the multiplicity is anticipated to be 1, so the latter term

disappears and SFIC becomes

SFICj(X, Y ) := l̂(Mj) − λj(π0) log(n)g[n,Λ(X,Y )],

where l̂(Mj) is the maximized log likelihood function and Mj is drawn from a set

of probability distributions with order j. The larger SFIC is, the better the model

achieves balance between parsimony and fitting the sample data.

Notice that SFIC has the following properties,

1. The ratio of the penalty term f(n, X, Y ) to log(n) converges to 1 almost surely

as n goes to infinity.

2. For finite n, if B and W suggest little heterogeneity, Λ(X, Y ) is large and

thus f(n, X, Y ) is approximately close to log(n). In such case, the SFIC be-

comes close to “l̂(Mj)− λj(π0) log(n)”, which is the sBIC for HNM+NP model

introduced in Chapter 4.

3. For finite n, if B and W suggest considerable heterogeneity, Λ(X, Y ) is small

and thus f(n, X, Y ) is approximately close to 1. In such case, the SFIC reduces

close to “l̂(Mj) − λj(π0)”, which the penalty is λj(π0).

83



So the SFIC has a milder penalty than the sBIC when there is little heterogeneity

between components.

(2) and (3) are easy to see. To show (1), we have

1 ≥ f(n, X, Y )

log(n)
= log(n)g[n,Λ(X,Y )]−1

= exp[(g[n, Λ(X, Y )] − 1) log log(n)].

For a fixed value of Λ(X, Y ), call it Λ∗ > 0, the rate of function g[n, Λ∗] − 1 going to

zero depends on the rate of log(n)Λ∗
going to infinity. Notice that

0 ≥ g[n, Λ∗] − 1 =
Φ(log(n)Λ∗

) − Φ(1)

1 − Φ(1)
− 1 =

Φ(log(n)Λ∗
) − 1

1 − Φ(1)

≥ −exp−(log(n)2Λ
∗
/2)

1 − Φ(1)
→ 0 as n → ∞.

Thus, g[n, Λ∗] − 1 goes to zero faster than log log(n) going to infinity, thus

exp[(g[n, Λ∗] − 1) log log(n)] → 1 as n → ∞.

Since Λ(X, Y ) ≥ Λ∗ :=
1

M
,

f(n, X, Y )

log n
→ 1 a.s. as n → ∞.

5.4 Consistency of SFIC

To prove consistency, we can adapt Theorem 4.1 from Drton (2013). We already

proved in Chapter 4 that the HNM+NP model satisfies assumptions (1)-(3), which

are also assumptions (A1)-(A3) from Drton’s paper. Since we only consider a finite set

of models I, the desired conclusion will follow from pairwise comparisons of competing

models.

Theorem 5.4.1. (Consistency). Let Mı̂ be the best model selected by SFIC, in other

words,

ı̂ = arg max
i∈I

SFIC(Mi).
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Under assumptions (1)-(3) in Chapter 4,

P (Mı̂ is a true model) → 1 as n → ∞.

Since the SFIC and sBIC have the same form of Bayes complexity for model Mj ,

which is (λj(π0), mj(π0)), SFIC also satisfies that (1) asymptotically, the SFIC of

a true model is larger than a false model, and (2) the SFIC of a true model Mj is

maximized only when the Bayes complexity of that model is minimized among all

true models. We establish these facts in our next two propositions.

Proposition 5.4.2. Under assumption (2), the probability that SFIC(Mt) > SFIC(Mf)

goes to 1 as n → ∞, if Mt is a true model and Mf is a false model.

Proof. Since SFIC and sBIC differ in the penalty term, we can adapt the proof of

Drton’s Proposition 4.1 and conclude that

L′(Mf ) = op(L
′(Mt)),

L′(Mf )

L′(Mt)

P→ 0,

and hence

exp(sBICf )

exp(sBICt)

P→ 0.

By property 1 of SFIC,
Penalty SFICj

Penalty sBICj

P→ 1,

and hence
l̂(Mj) − log Penalty SFICj

l̂(Mj) − log Penalty sBICj

P→ 1,

where l̂(Mj) is the log likelihood function of HNM+NP model Mj. That is to say,

SFICj

sBICj

P→ 1.

We now claim that,

log(n)g[n,Λ(X,Y )] − log(n)
P−→ 0 as n → ∞.
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Then we will have

exp(SFICj)

exp(sBICj)
= exp{λj[log(n)g[n,Λ(X,Y )] − log(n)]} P−→ 1,

and then

exp(SFICf)

exp(SFICt)
=

exp(sBICf)

exp(sBICt)
· exp(SFICf )

exp(sBICf)
· exp(sBICt)

exp(SFICt)

P−→ 0.

Therefore,

P [exp(SFICf) > exp(SFICt)] → 0,

P [SFICf > SFICt] → 0.

To see that the claim is true, notice that

1 − Φ(t) < exp(−t2

2
),

Φ(log(n)γ) > 1 − exp(−(log(n)γ)2

2
),

and

g[n, 1/M ] >
1 − exp(− (log(n)1/M )2

2
) − Φ(1)

1 − Φ(1)
= 1 − exp(− log(n)2/M

2
)

1 − Φ(1)
,

Let cn := log(n), then as n → ∞, cn → ∞. Therefore

log(n)g[n,1/M ] − log(n) = c
1− exp(−c

2/M
n /2)

1−Φ(1)
n − cn = cn(c−C exp(−c

2/M
n /2)

n − 1),

for some positive constant C. Then notice

c−C exp(−c
2/M
n /2)

n = exp(−C exp(−c2/M
n /2) log(cn)) = exp

(
− log(cn)

C exp(c
2/M
n /2)

)
,

then using Taylor’s expansion gives us

exp

(
− log(cn)

C exp(c
2/M
n /2)

)
= 1 +

(
− log(cn)

C exp(c
2/M
n /2)

)
+ O




(

log(cn)

C exp(c
2/M
n /2)

)2


 ,

cn

[
exp

(
log(cn)

C exp(c
2/M
n /2)

)
− 1

]
= cn



− log(cn)

C exp(c
2/M
n /2)

+ O




(

log(cn)

C exp(c
2/M
n /2)

)2
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= − cn log(cn)

C exp(c
2/M
n /2)

+ cnO




(

log(cn)

C exp(c
2/M
n /2)

)2


→ 0 as n → ∞.

Finally, since Λ(X, Y ) ≥ 1/M , the same condition holds in probability when Λ(X, Y )

replace 1/M . This completes the proof that P (SFIC(Mt) > SFIC(Mf )) goes to 1 as

n → ∞.

Proposition 5.4.3. Suppose Ms is a true model, that is, the data-generating dis-

tribution π0 is in Ms, but Ms does not minimize Bayes complexity. Then assuming

(1)-(3) are satisfied, the probability that a true model Mt that minimizes the Bayes

complexity satisfies SFIC(Mt) > SFIC(Ms) goes to 1 as n → ∞.

Proof. Again, we can adapt Drton’s Proposition 4.2 and the proof of the previous

Proposition 5.4.2 to conclude there exists a true model Mt such that

P (SFIC(Mt) > SFIC(Ms)) → 1 as n → ∞.

5.5 Simulation Study

To see how the SFIC performs, we can conduct a simulation study. Similar to Section

4.5, 10 samples of size n = 2500 from four HNM+NP models will be randomly

generated, each with 2,3,4 or 5 components, respectively. AIC, BIC, sBIC and SFIC

will be calculated to do model selection. The parameters used for generating the

random samples are listed in Table 5.1. The R code to generate this simulation study

can be found in appendix.
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Table 5.1: Parameter Combinations of HNM+NP Models for Simulation Study

M 2 3 4 5 M 2 3 4 5

π1 0.4 0.2 0.2 0.1 a1 -2 -2 -2 -2

π2 0.6 0.5 0.3 0.2 a2 2 1 -1 -1

π3 - 0.3 0.3 0.3 a3 - 2 1 0

π4 - - 0.2 0.2 a4 - - 2 1

π5 - - - 0.2 a5 - - - 2

µ1 -2 -2 -2 -2 b1 -2 -2 -2 -2

µ2 2 -1 -1 -1 b2 2 1 -1 -1

µ3 - 2 1 0 b3 - 2 1 0

µ4 - - 3 1 b4 - - 2 1

µ5 - - - 2 b5 - - - 2

σ2 1 1 1 1 τ 2 2 2 2 2

Table 5.2 shows the results from simulation. When the true distribution is a 2 com-

ponent normal mixture distribution, all criteria correctly choose the right number

of components. Compare to the results from Section 4.5, this time all information

criteria usually choose the right model when the true distribution is a 3 component

normal mixture. In Section 4.5, all information criteria fail to correctly choose the 3

component normal mixture distribution, while this time 70% of the samples are cor-

rectly identified. This may be because the sample size increases from 1000 to 2500.

As the sample size increases, the performance of all information criteria (except AIC,

possibly) may improve.
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Table 5.2: Number of Components Chosen by AIC, BIC, sBIC and SFIC, out of 10

samples of size 2500, from HNM+NP models in Table 5.1

M=2 M=3 M=4 M=5

Criterion 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

AIC 10 0 0 0 3 7 0 0 10 0 0 0 10 0 0 0

BIC 10 0 0 0 3 7 0 0 10 0 0 0 10 0 0 0

sBIC 10 0 0 0 3 7 0 0 10 0 0 0 10 0 0 0

SFIC 10 0 0 0 3 7 0 0 10 0 0 0 10 0 0 0

However, when the true distribution is a 4 or 5 component normal mixture, all criteria

fail to choose the right number of components. Instead, they choose the 2 compo-

nent normal mixture model. This may be due to the small differences between the

component means when there are more than 3 components. When the component

means occupy the same range but there are more components, the differences may

be too small to identify and there may not be enough ”power” to detect additional

components. However, as the sample size goes up, the performance of information

criteria (except AIC, possibly) should improve.

From the simulation results, we can say that SFIC does as good as the other infor-

mation criteria.

5.6 Application to Vital Statistics Natality Birth Data Set

In Section 4.6, the HNM+NP model has been applied to the NCHS’s Vital Statistics

Natality Birth Data from 2011 to see the performance of sBIC compared to AIC and

BIC. In this section, sFIC will be added and compare to the other three criteria.

Detailed description of the data set can be found in Section 4.6.
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Again, multiple sample sizes will be used (i.e. n ∈ {100, 500, 2500, 5000}). Within

each sample size, 10 samples will be randomly drawn and each sample will be fitted

to 2,3,4 and 5 component HNM+NP model via EM algorithm and AIC, BIC, sBIC,

SFIC will be calculated, respectively. The obstetric gestation will be treated as the

lower level and birth weight will be treated as the higher level since gestation might

more reasonably be used to predict birth weight than vice versa. The number of

components chosen by AIC, BIC, sBIC and SFIC are listed in Table 5.3.

Table 5.3: Numbers of Samples that Choose 2,3,4,5 Component Models

AIC BIC sBIC SFIC

Sample Size 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

n=100 3 4 2 1 4 5 1 0 3 5 2 0 3 3 2 2

n=500 5 4 1 0 5 4 1 0 5 4 1 0 4 5 1 0

n=2500 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3

n=5000 0 5 3 2 0 5 3 2 0 5 3 2 0 5 3 2

Table 5.3 displays the the results of each criterion applied to 10 random samples of

the indicated size. When sample size is as small as 100, AIC, BIC and sBIC favor

a 3- component model while SFIC has equal preference for both 2- and 3- compo-

nent models. In this case, SFIC tends to choose more components than the others,

weakening its preference for a 3-component model toward 4- and 5- component mod-

els. When the sample size increases to 500, the performances of all four criteria are

similar. AIC, BIC, sBIC slightly favor a 2- component model, while SFIC slightly

favor a 3- component model. Again, SFIC seems to be more likely to select more

complicated models.

As the sample size increases to 2500, the behavior of all criteria tend to be more

similar. They all result in the same number of components selected for each sam-
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ple. Although 3-, 4- and 5- component models are more likely to be selected, the 10

samples are selected randomly and are a relatively small sub-sample compared to the

population; we could have more variation among selected models if we investigated

more samples. As for n=5000, models with more components are more likely to be

chosen. None of the samples had selected a 2-component model by any criterion this

time. Half of samples resulted in a 3-component model and some of the samples

resulted in a 4- or 5- component model.

For small samples, AIC and SFIC tend to select a more complicated model than BIC

and sBIC. As sample size increases, the resulting model may be a more complicated

one as well. In either case, the outcomes are consistent with the our expectation

based on the nature of the criteria and related theory.

5.7 Discussion

There have been a great number of studies on utilizing normal mixture models to

clustering. McLachlan and Basford (1988) introduced a method to apply mixture

models as a tool to do classification. These methods assume the true distribution

of the population is a mixture distribution and each cluster is one mixture compo-

nent. There are also R packages that can perform such tasks, for example, the MCLUST

package by Fraley (2006), the mixtools package by Benaglia, Tatiana, et al. (2009).

Currently, the BCN+NP model has been demonstrated on DNA microarray data sets.

The model classifies the genes into three categories: no-, under- and over- differential

expression.

However, the BCN+NP model has a limitation, the data may come from a 4 or more

component normal mixture distribution or not a finite normal mixture at all! If this

model can be extended to accommodate more components, it should have more flex-
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ibility on fitting the data. EM algorithm is suggested to estimate the parameters.

The AIC, BIC, sBIC and SFIC can be used for model selection. Each criterion has

its own advantages. The AIC has a penalty term depending on the number of pa-

rameters in the model, which can avoid underfitting. However, it’s also well-known

that the AIC is not a consistent estimator of the number of parameters of the correct

model. On the other hand, the BIC is asymptotically consistent as an estimator, but

it tends to choose a simpler model compared to the AIC which possibly causes un-

derfitting of the model. The sBIC is an improved version of the BIC which accounts

for singularity of the underlying model. In the case where singularity may exist, the

sBIC is preferable. The SFIC is not only proved to be asymptotically consistent and

accommodates singularity in the underlying model, it also has a data-driven penalty

which makes it flexible for considering the sample size and taking into account the

structure of the data. Data appearing more heterogeneous may yield a lighter penalty.

The other limitation of this study is the nuisance variance is assumed to be ho-

moscedastic. When the unknown within-component variances are allowed to be het-

eroscedastic, convergence of the EM algorithm may become a problem, due to the

large number of parameters that need to be estimated and the possible non-uniqueness

of local extreme of the likelihood (Karlis and Xekalaki, 2003). Besides, heteroscedastic

within-component variances may necessitate different hypothesis testing procedures

for homogeneity or for two components versus more than two components. There

is also the possibility of singularities (Chen and Gupta, 2010) in the likelihood de-

pending on the parameter space, which will cause failure of the algorithm. More

sophisticated methods can be employed or developed to handle unequal variances

when naive application of the EM algorithm fails.
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It is also of interest to investigate other probabilistic mixture models with or without

hierarchical structures. In the Vital Statistics Natality Birth Data, the birth weight

and obstetric gestation are always positive, so a hierarchical gamma or log-normal

mixture model could be more appropriate. Wang, Yau and Lee (2002) applied a two-

component hierarchical Poisson mixture regression model (HPMM) to the statewide

obstetrical delivery data. They analyzed the inpatient length of stay (LOS) using the

HPMM approach. Heydari and Amador-Jimenez (2012) compared Poisson, hierar-

chical Poisson-Gamma and hierarchical Poisson-Lognormal mixture models that have

been implemented to estimate expected accident frequencies and identify hazardous

sites which is a major concern of departments of transportation. Charnigo, Zhou

and Dai (2013) developed a contaminated Chi-square mixture model that has been

applied to DNA microarray data analysis. This model accommodates comparisons

among three or more groups that yield strictly positive test statistics as in ANOVA.

They investigated the genes that were related to aging and cognition. They also incor-

porated the procedure into a gene filtration process. These may be useful alternatives

of our present model.

Copyright c© Qian Fan 2014
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A1

R code for simulation study in Section 2.5 (to count the number of

samples that produce one and only one viable solution, displayed in

Tables 2.1 - 2.4):

ViableSolutionsMoments<-function(m1,m2,m3,m4)

{

# Define the adjusted moments:

r1 <- m1

r2 <- m2-1

r3 <- m3-3*m1

r4 <- m4-6*m2+3

# Calculate coefficients of quintic equation for \mu:

a0 <- r3^2*r4 - r4^2*r2

a1 <- -r3^3 + r4^2*r1

a2 <- -2*r1*r3*r4+ 2*r4*r2^2

a3 <- 2*r1*r3^2 - 2*r4*r1*r2

a4 <- r1^2*r4-r2^3

a5 <- -r1^2*r3 + r2^2*r1

# Find roots of quintic equation for \mu:

muroot <- polyroot(c(a0,a1,a2,a3,a4,a5))

# Find implied solutions for p, \gamma_1, \gamma_2:

# q0 <- r0

q1 <- r1/muroot

q2 <- r2/muroot^2

q3 <- r3/muroot^3
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q4 <- r4/muroot^4

#proot <- (q2-q4)/(q3-q1)

proot <- sqrt((q4-q3)/(q2-q1))

gamma1root <- (q2+proot*q1)/(1+proot)

gamma2root <- (q2-q1)/(proot+proot^2)

# Ascertain number of viable solutions to method of moments equations:

Viable<-

(Im(gamma1root)<1e-04)*(Im(gamma2root)<1e-04)*(Re(gamma1root)>0)*

(Re(gamma2root)>0)*(Re(1-gamma1root-gamma2root)>0)*(Im(proot)<1e-04)*

(Re(proot)>0)*(Im(muroot)<1e-04)*(Re(muroot)>0)*( abs( r1 - muroot*

(gamma1root-proot*gamma2root) ) < 1e-04)*( abs( r2 - muroot^2*

(gamma1root+proot^2*gamma2root) ) < 1e-04)*( abs( r3 - muroot^3*

(gamma1root-proot^3*gamma2root) ) < 1e-04)*( abs( r4 - muroot^4*

(gamma1root+proot^4*gamma2root) ) < 1e-04)

return(list(Viable=Viable,gamma1root=gamma1root,gamma2root=

gamma2root,muroot=muroot,proot=proot,r1=r1,r2=r2,r3=r3,r4=r4))

}

SimulationStudy <- function( mu,p,gamma1,gamma2,samplesize,repetitions )

{

Viability<-matrix(NA,repetitions,5)

MuRoot<-matrix(NA,repetitions,5)

PRoot <-matrix(NA,repetitions,5)

Gamma1Root<-matrix(NA,repetitions,5)

Gamma2Root<-matrix(NA,repetitions,5)

R1<-rep(NA,repetitions)
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R2<-rep(NA,repetitions)

R3<-rep(NA,repetitions)

R4<-rep(NA,repetitions)

ViolationNonreal<- matrix(NA,repetitions,5)

ViolationMoments<- matrix(NA,repetitions,5)

ViolationRanges<- matrix(NA,repetitions,5)

for (k in 1:repetitions)

{

comp <- runif(samplesize)

dep <- rnorm(samplesize)

obs <- (comp < gamma1)*(dep+mu)+(comp > 1-gamma2)*(dep-p*mu)+

(comp < 1-gamma2)*(comp > gamma1)*dep

m1<- mean(obs)

m2<- mean(obs^2)

m3<- mean(obs^3)

m4<- mean(obs^4)

Object <- ViableSolutionsMoments(m1,m2,m3,m4)

Viability[k,]<-Object$Viable

MuRoot[k,]<-Object$muroot

PRoot[k,]<-Object$proot

Gamma1Root[k,]<-Object$gamma1root

Gamma2Root[k,]<-Object$gamma2root

R1[k]<-Object$r1

R2[k]<-Object$r2

R3[k]<-Object$r3

R4[k]<-Object$r4

ViolationNonreal[k,]<- pmax(abs(Im(Gamma1Root[k,]))>1e-04,

abs(Im(Gamma2Root[k,]))>1e-04,abs(Im(PRoot[k,]))>1e-04,

abs(Im(MuRoot[k,]))>1e-04)

ViolationMoments[k,]<- pmax(abs(R1[k]-MuRoot[k,]*Gamma1Root[k,]+

PRoot[k,]*MuRoot[k,]*Gamma2Root[k,])>1e-04,

abs(R2[k]-MuRoot[k,]^2*Gamma1Root[k,]-PRoot[k,]^2*MuRoot[k,]^2*

Gamma2Root[k,])>1e-04,
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abs(R3[k]-MuRoot[k,]^3*Gamma1Root[k,]+PRoot[k,]^3*MuRoot[k,]^3*

Gamma2Root[k,])>1e-04,

abs(R4[k]-MuRoot[k,]^4*Gamma1Root[k,]-PRoot[k,]^4*MuRoot[k,]^4*

Gamma2Root[k,])>1e-04)

ViolationRanges[k,]<- pmax( Re(Gamma1Root[k,])<0, Re(Gamma2Root[k,])<0,

Re(Gamma1Root[k,]+Gamma2Root[k,])>1, Re(MuRoot[k,])<0, Re(PRoot[k,])<0 )

}

############

ViaRowSum=apply(Viability,1,sum)

Viability=cbind(Viability,ViaRowSum)

ViaColSum=apply(Viability,2,sum)

NumRep=c(1000,1000,1000,1000,1000,5000)

ViaColAvg=ViaColSum/NumRep

Viability=rbind(Viability,ViaColSum,ViaColAvg)

NonrealRowSum=apply(ViolationNonreal,1,sum)

ViolationNonreal=cbind(ViolationNonreal,NonrealRowSum)

NonrealColSum=apply(ViolationNonreal,2,sum)

NumRep=c(1000,1000,1000,1000,1000,5000)

NonrealColAvg=NonrealColSum/NumRep

ViolationNonreal=rbind(ViolationNonreal,NonrealColSum,NonrealColAvg)

MomentsRowSum=apply(ViolationMoments,1,sum)

ViolationMoments=cbind(ViolationMoments,MomentsRowSum)

MomentsColSum=apply(ViolationMoments,2,sum)

NumRep=c(1000,1000,1000,1000,1000,5000)

MomentsColAvg=MomentsColSum/NumRep

ViolationMoments=rbind(ViolationMoments,MomentsColSum,MomentsColAvg)

RangesRowSum=apply(ViolationRanges,1,sum)

ViolationRanges=cbind(ViolationRanges,RangesRowSum)

RangesColSum=apply(ViolationRanges,2,sum)

NumRep=c(1000,1000,1000,1000,1000,5000)
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RangesColAvg=RangesColSum/NumRep

ViolationRanges=rbind(ViolationRanges,RangesColSum,RangesColAvg)

############

return(list(Viability=Viability,MuRoot=MuRoot,PRoot=PRoot,Gamma1Root=

Gamma1Root,Gamma2Root=Gamma2Root,R1=R1,R2=R2,R3=R3,R4=R4,

ViolationNonreal=ViolationNonreal,ViolationMoments=ViolationMoments,

ViolationRanges=ViolationRanges)

)}

A2

R code for simulation study in Section 3.4 (to estimate type I

error probability and power under different parameter combinations,

displayed in Tables 3.1 - 3.6):

BCNwNP.simul.T=function(nsize, nrepeat, t.df, mu1, mu2, g1, g2,

alpha1, alpha2, alpha3, alpha4){

resultn=resulta=matrix(NA, 1, nrepeat)

m1n=m2n=m3n=m4n=m5n=m6n=matrix(NA, 1, nsize)

m1a=m2a=m3a=m4a=m5a=m6a=matrix(NA, 1, nsize)

Tn=Un=Vn=Wn=matrix(NA, 1, nsize)

Ta=Ua=Va=Wa=matrix(NA, 1, nsize)

for (i in 1:nrepeat){

comp=runif(nsize)

tstat=rt(nsize, t.df)

zstatn=qnorm(pt(tstat, t.df))

gen=(comp < g1)*(tstat+mu1)+(comp > 1-g2)*(tstat+mu2)+(comp < 1-g2)*

(comp > g1)*tstat

zstata=qnorm(pt(gen, t.df))
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m1n[i] = mean(zstatn)

m2n[i] = mean(zstatn^2)

m3n[i] = mean(zstatn^3)

m4n[i] = mean(zstatn^4)

m5n[i] = mean(zstatn^5)

m6n[i] = mean(zstatn^6)

m1a[i] = mean(zstata)

m2a[i] = mean(zstata^2)

m3a[i] = mean(zstata^3)

m4a[i] = mean(zstata^4)

m5a[i] = mean(zstata^5)

m6a[i] = mean(zstata^6)

Tn[i] = sqrt(nsize/m2n[i])*m1n[i]

Un[i] = sqrt(3*nsize/8)*(m4n[i]/(3*m2n[i]^2)-1)

Vn[i] = sqrt(5*nsize/136)*(m6n[i]/(15*m2n[i]^3)-1)

Wn[i] = sqrt(nsize/(15*m2n[i]^3))*m3n[i]

Ta[i] = sqrt(nsize/m2a[i])*m1a[i]

Ua[i] = sqrt(3*nsize/8)*(m4a[i]/(3*m2a[i]^2)-1)

Va[i] = sqrt(5*nsize/136)*(m6a[i]/(15*m2a[i]^3)-1)

Wa[i] = sqrt(nsize/(15*m2a[i]^3))*m3a[i]

resultn[i]=(abs(Tn[i])<qnorm(1-alpha1/2))*(abs(Un[i])<qnorm(1-alpha2/2))*

(abs(Vn[i])<qnorm(1-alpha3/2))*(abs(Wn[i])<qnorm(1-alpha4/2))

resulta[i]=(abs(Ta[i])<qnorm(1-alpha1/2))*(abs(Ua[i])<qnorm(1-alpha2/2))*

(abs(Va[i])<qnorm(1-alpha3/2))*(abs(Wa[i])<qnorm(1-alpha4/2))

#1 not reject, 0 reject

}

type1err=1-sum(resultn)/nrepeat

power=1-sum(resulta)/nrepeat

return(list(type1err,power))

}
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BCNwNP.simul.Z=function(nsize, nrepeat, t.df, mu1, mu2, g1, g2,

alpha1, alpha2, alpha3, alpha4){

resultn=resulta=matrix(NA, 1, nrepeat)

m1n=m2n=m3n=m4n=m5n=m6n=matrix(NA, 1, nsize)

m1a=m2a=m3a=m4a=m5a=m6a=matrix(NA, 1, nsize)

Tn=Un=Vn=Wn=matrix(NA, 1, nsize)

Ta=Ua=Va=Wa=matrix(NA, 1, nsize)

for (i in 1:nrepeat){

comp=runif(nsize)

zstatn=rnorm(nsize)

zstata=(comp < g1)*(zstatn+mu1)+(comp > 1-g2)*(zstatn+mu2)+

(comp < 1-g2)*(comp > g1)*zstatn

m1n[i] = mean(zstatn)

m2n[i] = mean(zstatn^2)

m3n[i] = mean(zstatn^3)

m4n[i] = mean(zstatn^4)

m5n[i] = mean(zstatn^5)

m6n[i] = mean(zstatn^6)

m1a[i] = mean(zstata)

m2a[i] = mean(zstata^2)

m3a[i] = mean(zstata^3)

m4a[i] = mean(zstata^4)

m5a[i] = mean(zstata^5)

m6a[i] = mean(zstata^6)

Tn[i] = sqrt(nsize/m2n[i])*m1n[i]
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Un[i] = sqrt(3*nsize/8)*(m4n[i]/(3*m2n[i]^2)-1)

Vn[i] = sqrt(5*nsize/136)*(m6n[i]/(15*m2n[i]^3)-1)

Wn[i] = sqrt(nsize/(15*m2n[i]^3))*m3n[i]

Ta[i] = sqrt(nsize/m2a[i])*m1a[i]

Ua[i] = sqrt(3*nsize/8)*(m4a[i]/(3*m2a[i]^2)-1)

Va[i] = sqrt(5*nsize/136)*(m6a[i]/(15*m2a[i]^3)-1)

Wa[i] = sqrt(nsize/(15*m2a[i]^3))*m3a[i]

resultn[i]=(abs(Tn[i])<qnorm(1-alpha1/2))*(abs(Un[i])<qnorm(1-alpha2/2))*

(abs(Vn[i])<qnorm(1-alpha3/2))*(abs(Wn[i])<qnorm(1-alpha4/2))

resulta[i]=(abs(Ta[i])<qnorm(1-alpha1/2))*(abs(Ua[i])<qnorm(1-alpha2/2))*

(abs(Va[i])<qnorm(1-alpha3/2))*(abs(Wa[i])<qnorm(1-alpha4/2))

#1 not reject, 0 reject

}

type1err=1-sum(resultn)/nrepeat

power=1-sum(resulta)/nrepeat

return(list(type1err,power))

}

A3

R code for parameter estimation of Down’s syndrome data set in Section 3.5

(Table 3.7):

install.packages("lattice",lib="C://Users//FAN//Dropbox//R//Rlib")

library(lattice,lib.loc="C://Users//FAN//Dropbox//R//Rlib")

install.packages("nlme",lib="C://Users//FAN//Dropbox//R//Rlib")

library(nlme,lib.loc="C://Users//FAN//Dropbox//R//Rlib")

############ apply to down syndrome data

############### function for calculating Z statistics

mixedDown <- function(y){

x<- c(1,1,1,1,0,0,0,0,0,0,0)
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Subject<- c(1,2,3,4,5,5,6,6,7,7,8)

Object1 <- lme( y ~ x, random = ~1 | Subject)

Tstat <- Object1$coef$fixed[2]/sqrt(Object1$varFix[2,2])

Zstat <- qnorm(pt(Tstat,6))

Zstat}

OptimChrom=function(data, startval, lower, upper){

############ calculate m1-m5

data=as.matrix(data[,c(9,10,11,12,20,21,22,23,24,25,26)])

temp=rep(NA,nrow(data))

for (i in 1:nrow(data)){

temp[i]=try(mixedDown(data[i,]))}

Down.Zstat=na.omit(as.numeric(temp))

m1=mean(Down.Zstat)

m2=mean(Down.Zstat^2)

m3=mean(Down.Zstat^3)

m4=mean(Down.Zstat^4)

m5=mean(Down.Zstat^5)

############### equation system

fn2=function(p){

f=(p[1]*p[2]+p[3]*p[4]-m1)^2+

(p[5]+p[1]^2*p[2]+p[3]^2*p[4]-m2)^2+

((p[1]^3+3*p[5]*p[1])*p[2]+(p[3]^3+3*p[5]*p[3])*p[4]-m3)^2+

(3*p[5]^2+(p[1]^4+6*p[5]*p[1]^2)*p[2]+(p[3]^4+6*p[5]*p[3]^2)*p[4]-m4)^2+

((p[1]^5+10*p[1]^3*p[5]+15*p[1]*p[5]^2)*p[2]+(p[3]^5+10*p[3]^3*p[5]+

15*p[3]*p[5]^2)*p[4]-m5)^2+max(0,(p[2]+p[4]-0.9))

f

}

############## results

resultmat1=matrix(NA,nrow=nrow(startval),ncol=12)

for (i in 1:nrow(startval)){
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temp=optim(startval[i,], lower=lower, upper=upper,

fn2, hessian=TRUE,method="L-BFGS-B")

resultmat1[i,1]=temp$value

resultmat1[i,2:6]=temp$par

resultmat1[i,7:11]=round(eigen(temp$hessian)$values,4)

resultmat1[i,12]=temp$convergence

}

result1=resultmat1[order(resultmat1[,1]),]

###outcome

result=result1[1:20,]

return(result1)

}

############randomly generate starting value

mu1=runif(1000,0,3)

mu2=runif(1000,-3,0)

g1=runif(1000,0,1)

g2=runif(1000,0,1)

var=runif(1000,.1,1)

startv=cbind(mu1,g1,mu2,g2,var)

startval=startv[which(startv[,2]+startv[,4]<1),]

lower=c(0,0,-3,0,.1)

upper=c(3,1,0,1,1)

chrom0<-which(DownData[,29]==0); chromosome0<-DownData[chrom0,];

Down1<-OptimChrom(chromosome0,startval,lower,upper)

......

chromy<-which(DownData[,29]=="y"); chromosomey<-DownData[chromy,];

Down25<-OptimChrom(chromosomey,startval,lower,upper)

############# p-value for Omnibus test ############

Omnibus.pvalue=function(data){

data=as.matrix(data[,c(9,10,11,12,20,21,22,23,24,25,26)])
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temp=rep(NA,nrow(data))

for (i in 1:nrow(data)){

temp[i]=try(mixedDown(data[i,]))}

Down.Zstat=na.omit(as.numeric(temp))

n=length(Down.Zstat)

rho1=0.25

rho2=0.25

rho3=0.25

rho4=1-rho1-rho2-rho3

m1=mean(Down.Zstat)

m2=mean(Down.Zstat^2)

m3=mean(Down.Zstat^3)

m4=mean(Down.Zstat^4)

m5=mean(Down.Zstat^5)

m6=mean(Down.Zstat^6)

var=var(Down.Zstat)

T = sqrt(n/var)*m1

U = sqrt(3*n/8)*(m4/(3*m2^2)-1)

V = sqrt(5*n/136)*(m6/(15*m2^3)-1)

W = sqrt(n/(15*var^3))*m3

p1=2*(1-pnorm(abs(T)))

p2=2*(1-pnorm(abs(U)))

p3=2*(1-pnorm(abs(V)))

p4=2*(1-pnorm(abs(W)))

pvalue=min(1,p1/rho1,p2/rho2,p3/rho3,p4/rho4)

return(pvalue)

}
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chrom0<-which(DownData[,29]==0);chromosome0<-DownData[chrom0,];

Down1<-Omnibus.pvalue(chromosome0)

......

chromy<-which(DownData[,29]=="y");chromosomey<-DownData[chromy,];

Down25<-Omnibus.pvalue(chromosomey)

############# Find MLE for BCN+NP model ############

shortCNNPfitMLE<-function(DATA,init1,init2,init3,useinit,n.repeat)

{

data=as.matrix(DATA[,c(9,10,11,12,20,21,22,23,24,25,26)])

temp=rep(NA,nrow(data))

for (i in 1:nrow(data)){

temp[i]=try(mixedDown(data[i,]))}

Down.Zstat=na.omit(as.numeric(temp))

DATA=Down.Zstat

n.size<-length(DATA)

n.repeat<-1

mu0<-0

sigma0<-var(DATA)

M<- 100

MM<- 100

tol<- 1e-5

nominal<- 0.05

C<- 0

K<- 10000

data<-matrix(DATA,nrow=n.size)

converge<-rep("Fail",n.repeat)

A<-D0<-lambda<-fail0<-fail3<-rep(0,n.repeat)

estimate<-matrix(ncol=n.repeat,nrow=3)

hat.sigma<-hat.alpha<-hat.mu<-matrix(ncol=n.repeat,nrow=K)

d<-hat.mu0<-hat.sigma0<-rep(0,n.repeat)

d.p<-d.mu<-d.sigma<-matrix(ncol=n.repeat,nrow=3)
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###power.0<-power.3<-99

j<-1

hat.mu[1,j]<- 2*mean(DATA)

hat.alpha[1,j]<- 0.50

hat.sigma[1,j]<- 1

hat.mu0[j]<-0

hat.sigma0[j]<-mean((data[,j]-hat.mu0[j])^2)

if (useinit == 1)

{

hat.mu[1,j]<- init1

hat.alpha[1,j]<- init2

hat.sigma[1,j]<- init3

}

for (k in 2:K)

{

A<-hat.alpha[k-1,j]*(2*pi*hat.sigma[k-1,j])^(-0.5)*

exp(-(data[,j]-hat.mu[k-1,j])^2/(2*hat.sigma[k-1,j]))/

((1-hat.alpha[k-1,j])*(2*pi*hat.sigma[k-1,j])^(-0.5)*

exp(-(data[,j]-mu0)^2/(2*hat.sigma[k-1,j]))

+hat.alpha[k-1,j]*(2*pi*hat.sigma[k-1,j])^(-0.5)*

exp(-(data[,j]-hat.mu[k-1,j])^2/(2*hat.sigma[k-1,j])))

hat.alpha[k,j]<-( sum(A)+C ) / ( length(A) + 2*C )

hat.mu[k,j]<-sum(A*data[,j])/sum(A)

hat.sigma[k,j]<-mean((data[,j]-hat.mu[k,j])^2*A+(data[,j]-mu0)^2*(1-A))

if (hat.alpha[k,j]=="NaN" | hat.mu[k,j]=="NaN" | hat.sigma[k,j]=="NaN")

###if (is.nan(hat.alpha[k,j])==TRUE | is.nan(hat.mu[k,j])==TRUE

| is.nan(hat.sigma[k,j])==TRUE)

{

converge[j]<-"NaN"

break

}

if (

sum(log(

((1-hat.alpha[k,j])*(2*pi*hat.sigma[k,j])^(-0.5)*
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exp(-(data[,j]-mu0)^2/(2*hat.sigma[k,j]))+

hat.alpha[k,j]*(2*pi*hat.sigma[k,j])^(-0.5)*

exp(-(data[,j]-hat.mu[k,j])^2/(2*hat.sigma[k,j])))))-

sum(log(((1-hat.alpha[k-1,j])*(2*pi*hat.sigma[k-1,j])^(-0.5)*

exp(-(data[,j]-mu0)^2/(2*hat.sigma[k-1,j]))+

hat.alpha[k-1,j]*(2*pi*hat.sigma[k-1,j])^(-0.5)*

exp(-(data[,j]-hat.mu[k-1,j])^2/(2*hat.sigma[k-1,j])))))+

C*log(4*(1-hat.alpha[k,j])* hat.alpha[k,j])-

C*log(4*(1-hat.alpha[k-1,j])* hat.alpha[k-1,j] ) < tol)

{

converge[j]<-"Conv."

estimate[,j]<-c(hat.alpha[k,j],hat.mu[k,j],hat.sigma[k,j])

break

}

}

if (converge[j]=="NaN" )

{estimate[,j]<-estimate[,j-1]}

if (converge[j]=="Fail")

{estimate[,j]<-c(hat.alpha[K,j],hat.mu[K,j],hat.sigma[K,j])}

d.p[1,j]<-(-1)

d.p[2,j]<-(1-estimate[1,j])

d.p[3,j]<-estimate[1,j]

d.mu[1,j]<-mu0

d.mu[2,j]<-mu0

d.mu[3,j]<-estimate[2,j]

d.sigma[1,j]<-hat.sigma0[j]

d.sigma[2,j]<-estimate[3,j]

d.sigma[3,j]<-estimate[3,j]

for (l in 1:3)

{

for (m in 1:3)

{

d[j]<-(d[j]+d.p[l,j]*d.p[m,j]*(2*pi*(d.sigma[l,j]+d.sigma[m,j]))^(-0.5)*

exp(-(d.mu[l,j]-d.mu[m,j])^2/(2*(d.sigma[l,j]+d.sigma[m,j]))))
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}

}

D0[j]<-(4*sqrt(pi*hat.sigma0[j]))* d[j]*n.size

lambda[j]<-2*sum(log( (d.p[2,j]*(2*pi*d.sigma[2,j])^(-0.5)*

exp(-(data[,j]-d.mu[2,j])^2/(2*d.sigma[2,j]))+ d.p[3,j]*(2*pi*d.sigma[3,j])^(-0.5)*

exp(-(data[,j]-d.mu[3,j])^2/(2*d.sigma[3,j])) )/

((2*pi*d.sigma[1,j])^(-0.5)*exp(-(data[,j]-d.mu[1,j])^2/(2*d.sigma[1,j])))))+

2*C*log(4*d.p[2,j]*d.p[3,j])

D0<-D0[j]

lambda<-lambda[j]

hatalpha<-d.p[3,j]

hatmu<-d.mu[3,j]

hatsigma<-d.sigma[3,j]

hatsigma0<-hat.sigma0[j]

modlik<-sum(log(

((1-hatalpha)*(2*pi*hatsigma)^(-0.5)*exp(-(data[,j]-mu0)^2/(2*hatsigma))+

hatalpha*(2*pi*hatsigma)^(-0.5)*exp(-(data[,j]-hatmu)^2/(2*hatsigma)))))+

C*log(4* 1-hatalpha * hatalpha)

return(list(hatalpha=hatalpha,hatmu=hatmu,hatsigma=hatsigma))

}

chrom0<-which(DownData[,29]==0);chromosome0<-DownData[chrom0,];

Down1<-shortCNNPfitMLE(chromosome0,0,0.5,1,0)

......

chromy<-which(DownData[,29]=="y");chromosomey<-DownData[chromy,];

Down25<-shortCNNPfitMLE(chromosomey,0,0.5,1,0)

############ Simulation study to find delta #############

Delta.Explore=function(data,alpha,mu,variance,delta){

nsize=nrow(data)

nrepeat=1000

result=rep(NA,nrepeat)

for (i in 1:nrepeat){
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comp=runif(nsize)

zstat=qnorm(comp,0,sqrt(var))

gen=(comp < alpha)*zstat+(comp > alpha)*(zstat+mu)

m1=mean(gen)

m2=mean(gen^2)

m3=mean(gen^3)

m4=mean(gen^4)

m5=mean(gen^5)

m6=mean(gen^6)

sgm=rbind(c(m2-m1^2,m3-m1*m2,m4-m1*m3),

c(m3-m1*m2,m4-m2^2,m5-m2*m3),

c(m4-m1*m3,m5-m2*m3,m6-m3^2))

dh=c(6*m1*variance, 2*m2-2*variance, -m1)

crival=2*m2*delta+3*m1^2*delta+delta^2+qnorm(0.95)*sqrt(dh%*%sgm%*%dh/nsize)

hstat=(m2-variance)^2+3*m1^2*variance-m1*m3

result[i]=hstat>crival # 1=reject null

}

return(sum(result))

}

############# p-value for Unilateral test #############

Pvalue.Unilateral=function(DATA,delta){

data=as.matrix(DATA[,c(9,10,11,12,20,21,22,23,24,25,26)])

temp=rep(NA,nrow(data))

for (i in 1:nrow(data)){

temp[i]=try(mixedDown(data[i,]))}

Zstat=na.omit(as.numeric(temp))

n=length(Zstat)

m1=mean(Zstat)

m2=mean(Zstat^2)

m3=mean(Zstat^3)

m4=mean(Zstat^4)
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m5=mean(Zstat^5)

m6=mean(Zstat^6)

simvar=var(Zstat)

sgm=rbind(c(m2-m1^2,m3-m1*m2,m4-m1*m3),

c(m3-m1*m2,m4-m2^2,m5-m2*m3),

c(m4-m1*m3,m5-m2*m3,m6-m3^2))

dh=c(6*m1*simvar, 2*m2-2*simvar, -m1)

penalty=2*m2*delta+3*m1^2*delta+delta^2

hstat=(m2-simvar)^2+3*m1^2*simvar-m1*m3

temp= (hstat-penalty)/sqrt(dh%*%sgm%*%dh/n)

pvalue=1-pnorm(abs(temp))

return(pvalue)

}

p0=Pvalue.Unilateral(chromosome0,0.15)

......

py=Pvalue.Unilateral(chromosomey,0.15)

A4

R code of simulation studies for hierarchical model.

########## random sample from HNMNP ##########

rHNMNP=function(n,mu,a,b,tau2,sigma2,p){

ii=findInterval(runif(n),cumsum(p))+1

x=rnorm(n,mu[ii],sqrt(sigma2[ii]))

y=rnorm(n,a[ii]+b[ii]*x,sqrt(tau2[ii]))

return(list(x=x,y=y,index=ii))

}

########## get the log likelihood density of HNMNP model ##########

HNMNP.llk=function(mu,a,b,tau2,sigma2,p, x, y){

n=length(x)

m=length(mu)
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#calculate complete data loglik function

Wt=lt=llt=matrix(NA,n,m)

for (i in 1:n){

for (j in 1:m){

pt=p[j]

at=a[j]

bt=b[j]

mt=mu[j]

tt=tau2[j]

st=sigma2[j]

xt=x[i]

yt=y[i]

Wt[i,j]=pt*exp(-0.5*((xt-mt)^2/st+(yt-at-bt*xt)^2/tt))/(2*pi*sqrt(st*tt))

}}

llt=log(Wt)

if (m==1) {

llk=sum(llt)

W=rep(1,length(llk))} else {W=apply(Wt,1, function(x) x/sum(x))

llk=sum(t(W)*llt)}

return(list(W=W,loglik=llk))

}

########## get the estimates using EM algorithm ##########

HNMNP.EM=function(mu0,a0,b0,tau20,sigma20,p0,x,y){

n=length(x)

m=length(mu0)

differ=1

while(differ>0.0001){

tempw=HNMNP.llk(mu0,a0,b0,tau20,sigma20,p0,x,y)$W
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w=t(tempw)

#update variables

newmu=newa=newb=newtau2=newsig2=newp=rep(NA,m)

for (j in 1:m){

wt=w[,j]

newp[j]=sum(wt)/n

newmu[j]=sum(wt*x)/sum(wt)

tempmat=matrix(c(sum(wt), sum(wt*x), sum(wt*x), sum(wt*x^2)),2,2)

temp=solve(tempmat)%*%rbind(sum(wt*y), sum(wt*x*y))

newa[j]=temp[1,]

newb[j]=temp[2,]

newsig2[j]=sum(wt*(x-newmu[j])^2)/sum(wt)

newtau2[j]=sum(wt*(y-newa[j]-x*newb[j])^2)/sum(wt)

}

newsig2=rep(sum(newp*newsig2),m)

newtau2=rep(sum(newp*newtau2),m)

#update results

newllk=HNMNP.llk(newmu,newa,newb,newtau2,newsig2,newp, x, y)$loglik

oldllk=HNMNP.llk(mu0,a0,b0,tau20,sigma20,p0, x, y)$loglik

differ=abs(newllk-oldllk)

a0=newa

b0=newb

tau20=newtau2

mu0=newmu

sigma20=newsig2

p0=newp

}#end of while loop

llk=HNMNP.llk(newmu,newa,newb,newtau2,newsig2,newp,x,y)$loglik

return(list(a=newa,b=newb,tau2=newtau2,mu=newmu,sigma2=newsig2,p=newp,loglik=llk))
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}

########## get the learning coefficient for one HNMNP model ##########

sBIC.learncoef=function(maxm, nullm){

upperbound=0.5*(3*nullm+maxm+1)

return(upperbound)

}

########## get the log likelihood function vector ##########

HNMNP.llk.vec=function(maxm, x, y){

llkvec=lambdavec=muvec=avec=bvec=tau2vec=sig2vec=pvec=rep(NA, maxm)

ab=as.vector(glm(y~x)$coef)

mu5=fivenum(x)

varx=var(x)

vary=var(y)

n=length(x)

for (i in 1:maxm){

mu=seq(mu5[2], mu5[4], length.out=i)

a=rep(ab[1],i)

b=rep(ab[2],i)

tau2=rep(vary,i)

sigma2= rep(varx,i)

p=rep(1/i,i)

temp=HNMNP.EM(mu, a , b , tau2 , sigma2, p , x , y)

llkvec[i]=temp$loglik

wdet=n^2*sum(temp$p*temp$sigma2)*sum(temp$p*temp$tau2)-

n^2*(sum(temp$p*sqrt(temp$tau2*temp$sigma2)))^2

tdet=n^2*sum(temp$p*(temp$sigma2+(temp$mu-mean(x))^2))*

sum(temp$p*(temp$tau2+(temp$a+temp$b*temp$mu-mean(y))^2)

)-n^2*sum(temp$p*(sqrt(temp$tau2*temp$sigma2)+

(temp$mu-mean(x))*(temp$a+temp$b*temp$mu-mean(y)))

)^2
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lambdavec[i]=wdet/tdet

}

lambda=mean(lambdavec)

return(list(llkvec=llkvec,lambda=lambda))

}

########## get the information criteria ##########

IC.func=function(maxm, minm, mult, x, y, loglikvec,lambda){

learnmat=rep(NA,maxm)

n=length(y)

for (j in minm:maxm){

learnmat[j]=sBIC.learncoef(maxm, j)

}

sBIC=loglikvec-learnmat*log(n)

AIC=-2* loglikvec[minm:maxm]+2*(4*seq(minm,maxm,1) +2-1)

BIC=-2* loglikvec[minm:maxm]+(4*seq(minm,maxm,1) +2-1)*log(n)

SFIC=loglikvec-learnmat*log(n)^((pnorm(log(n)^(lambda))-

pnorm(1))/(1-pnorm(1)))

return(list(AIC=AIC, BIC=BIC, sBIC=sBIC,SFIC=SFIC))

}

Copyright c© Qian Fan, 2014.

115



Bibliography

[1] Allison, B. D., Gadbury, G. L., Heo, M. A mixture model approach for the analysis

of microarray gene expression data. ELSEVIER, Computational Statistics and

Data Analysis 39 (2002) 1-20.
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