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ABSTRACT OF DISSERTATION

The State of Lexicodes and Ferrers Diagram Rank-Metric Codes

In coding theory we wish to find as many codewords as possible, while simultane-
ously maintaining high distance between codewords to ease the detection and correc-
tion of errors. For linear codes, this translates to finding high-dimensional subspaces
of a given metric space, where the induced distance between vectors stays above a
specified minimum. In this work I describe the recent advances of this problem in
the contexts of lexicodes and Ferrers diagram rank-metric codes.

In the first chapter, we study lexicodes. For a ring R, we describe a lexicographic
ordering of the left R-module Rn. With this ordering we set up a greedy algorithm
which sequentially selects vectors for which all linear combinations satisfy a given
property. The resulting output is called a lexicode. This process was discussed
earlier in the literature for fields and chain rings. We describe a generalization of the
algorithm to finite principal ideal rings.

In the second chapter, we investigate Ferrers diagram rank-metric codes, which
play a role in the construction of subspace codes. A well-known upper bound for
dimension of these codes is conjectured to be sharp. We describe several solved cases
of the conjecture, and further contribute new ones. In addition, probabilities for
maximal Ferrers diagram codes and MRD codes are investigated in a new light. It
is shown that for growing field size, the limiting probability depends highly on the
Ferrers diagram.
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Chapter 1 Lexicodes over Finite Principal Ideal Rings

This chapter is a faithful reproduction of [1]. It reflects the first of the two major
projects represented in this dissertation.

Lexicodes, or lexicographic codes, were first introduced by Levenstein [34] in 1960
with the goal to construct binary codes with a desired minimal Hamming distance.
They are obtained by ordering all binary vectors lexicographically and applying a
greedy algorithm that selects the vectors that have at least the desired Hamming
distance from all previously selected vectors. Interestingly, the resulting codes turn
out to be linear. Later in 1986, Conway/Sloane [10] generalized the idea to codes
over fields of characteristic 2. Focusing primarily on codewords realized as winning
positions in game theory, they showed that the resulting lexicodes are always additive,
and they are linear if the field size is 22k for some k ≥ 0. Many well-known codes,
such as the Hamming codes and the extended binary Golay code, turn out to be
lexicodes; for a brief overview see [10].

In all the above cases the vectors of the search space Fn are ordered by suitably
interpreting them as binary representation of integers. In 1993, Brualdi/Pless [6]
generalized the theory to using arbitrary ordered bases of Fn2 and ordering the space
by using the lexicographic ordering on the coefficient vectors. Among other things,
they proved that the resulting codes are again linear.

In 1997 this result has been further generalized by Van Zanten [52] by allowing
other selection criteria instead of the Hamming distance. More precisely, Van Zan-
ten presented the following simple algorithm for constructing codes satisfying some
property P over the lexicographically ordered space Fn2 :

Denote the vectors selected so far by C.

Select the next vector x in the list Fn2 such that P [x+ y] holds true for all y ∈ C.

Update C to C ∪ {x}.

As in the earlier cases where the property P was a desired minimum Hamming weight,
it turns out that the resulting code is linear [52]. The result is generalized to codes
over fields of characteristic 2 and, again, linearity is established if the field is of size
22k for some k and the field elements are ordered suitably.

In 2005, a shift in the construction of lexicodes occurred by imposing linearity
of the code via an adjustment of the greedy algorithm. In [53] Van Zanten/Suparta
considered the search space Fn for general fields F and ordered it into level sets based
on an ordered basis along with some fixed, yet arbitrary, ordering of the field elements.
Choosing a selection property P on Fn that is invariant under scalar multiplication,
they set up the following greedy algorithm:

Denote the vectors selected so far by C.

In the next level set, find the first vector x such that P [x+ y] is true for all y ∈ C.

Update C to C + Fx.
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The resulting lexicode is clearly linear. However, in this variant it is not a priori
clear whether all added vectors αx + y, α ∈ F, y ∈ C, satisfy the selection property.
Fortunately, this is indeed the case as established in [53]. Another interesting feature
of the algorithm is that each level set is searched only once: if the search is successful
the algorithm moves on to the next level set after its update. It is proved in [53]
that the algorithm is nevertheless exhaustive in that it does not miss any admissible
vectors.

In 2014, Guenda et al. [24] generalize the results from [53] to codes over commu-
tative chain rings R. In that case, the selection property for Rn has to be invariant
under multiplication by units. Moreover, the test for P [x+ y] in the above algorithm
needs to be replaced by P [γjx + y] for all j, where γ is a generator of the maximal
ideal.

In this paper we revisit the results of [24] and extend them to codes over, possibly
noncommutative, finite principal ideal rings. In this case a code (of length n) is a
left submodule of Rn. As in [24] we consider selection properties that are invariant
under multiplication by units. Only this guarantees meaningful results of the greedy
algorithm. The algorithm is essentially as the above one with F replaced by R in
the update, and with P [x+ y] replaced by P [γx+ y], where γ runs through a set of
generators of the nonzero left ideals of R. While these are the obvious generaliza-
tions of the chain ring case, special attention needs to be paid to the ordering of the
space Rn. Again it is based on an ordered basis along with an ordering of the ring
elements. However, the latter one needs to be chosen with care for the greedy algo-
rithm to produce good results. More precisely, the ordering of the ring has to respect
containment of (nonzero) left ideals, see Definition 1.2.1. Only then it is guaranteed
that the algorithm is exhaustive and the resulting codes are maximal within the set
of all codes satisfying the given property. The exhaustiveness is nontrivial and proven
with the aid of the stable range property of finite principal ideal rings. Even though
the same stipulations on the ordering of the ring also apply to chain rings, this has
not been addressed explicitly in [24]. This may be due to the fact that many chain
rings, such as Zpr := Z/prZ for any prime p and other small chain rings, come with
a ‘natural’ order, which seems to have been tacitly assumed in [24]. These orderings
do indeed respect containments of ideals.

An interesting role is played by the value of the selection property for the zero
vector. It is not hard to see that the lexicode is free if the zero vector does not
satisfy the selection property. However, even though we may easily toggle the value
of the property for the zero vector between true and false, the outcome of the greedy
algorithm may fundamentally change. This is illustrated by various examples in
Section 1.4. In addition, the lexicode heavily depends on the ordering of the ring
elements (even if the ordering respects ideal containment). This is also true in the
field case where even the dimension of the lexicode may depend on the ordering. In
Section 1.4 we present an abundance of examples illustrating the various features of
the algorithm and, in particular, the dependence of the lexicode on the ordering.

The paper is organized as follows. In the next section we recall crucial properties
of finite principal ideal rings and discuss various weight functions as well as other
properties that may serve as selection criteria for a greedy algorithm. In Section 1.2

2



we introduce respectful orderings on R and establish their existence. We use such an
ordering along with an ordered basis of the left R-module Rn to order the module
lexicographically. Section 1.3 is devoted to the greedy algorithm and its properties.
Finally, in Section 1.4 we present examples illustrating the various features of the
algorithm and the dependence of the lexicode on the ordering.

1.1 Stable Range, Weights, and Multiplicative Properties

We begin with some basic ring-theoretic properties that will be needed later on. Let R
denote any (non-commutative) ring with identity. We use the notation R∗ for the
group of units of R.

The ring R is said to have (left) stable range 1 if for any p, q ∈ R the identity
Rp + Rq = R implies the existence of some t ∈ R such that tp + q ∈ R∗; see [33,
(20.10)]. Right stable range 1 is defined similarly. In [32, Thm. 1.8] Lam shows that
left and right stable range 1 are actually equivalent properties. We have the following
characterization of rings with stable range 1.

Theorem 1.1.1 ([32, Thm. 1.9] or [8, Thm. 2.9]). The ring R has stable range 1 if
and only if for all p, q, d ∈ R satisfying Rp+Rq = Rd there exists t ∈ R and u ∈ R∗
such that tp+ q = ud.

Since semilocal rings have stable range 1 by Bass’ Theorem we immediately have

Theorem 1.1.2 (Bass’ Theorem, [33, (20.9)]). Every finite ring has stable range 1.

In this paper we focus on finite principal left ideal rings. Recall that a ring is
called a principal left ideal ring if every left ideal is principal. In [39, p. 364] Nechaev
showed that every finite principal left ideal ring is a principal ideal ring (that is, each
left ideal and each right ideal is principal). Hence from now on we will call such a
ring a principal ideal ring, but will work with the left ideals later on. One may notice
that finite principal ideal rings are Frobenius rings because they have a principal
(left) socle, see [27, Thm. 1]. A special case of finite principal ideal rings are finite
chain rings. A finite left chain ring is a finite ring wherein the left ideals are linearly
ordered with respect to inclusion. A left chain ring is also a right chain ring and
therefore we call these rings simply chain rings. Furthermore, a chain ring R can be
characterized as a local ring whose maximal ideal is principal and generated by some
nilpotent element γ ∈ R. If e is the nilpotency index of γ then the ideals of R are
given by the chain R = (1) ) (γ) ) (γ2) ) . . . ) (γe−1) ) (γe) = (0). For all this,
see, for instance, [39] by Nechaev or [29, Thm. 2.1] by Honold/Landjev.

We now turn to codes over R. The following definition is standard. Throughout,
all modules are left R-modules.

Definition 1.1.3. Let n ∈ N. A code of length n over the alphabet R is a left
submodule of Rn.

Bass’ Theorem leads to a well-known and extremely useful consequence.

3



Proposition 1.1.4 ([55, Prop. 5.1]). Let R be any finite ring and M a left R-module.
Let a, b ∈M be such that Ra = Rb. Then ua = b for some u ∈ R∗.

Note that if R has stable range 1, then Proposition 1.1.4 follows immediately for
the module M = R since R0 + Rb = Ra implies b = ua for some u ∈ R∗ thanks
to Theorem 1.1.1. In fact, [32, Theorem 1.9(3)] shows that for the case M = R the
property in Proposition 1.1.4 characterizes stable range 1.

The next corollary follows trivially.

Corollary 1.1.5. Let R and M be as in Proposition 1.1.4. Then the group R∗ acts
naturally on M by (u, a) 7→ ua. The orbits of this group action are exactly the sets
of generators for the distinct cyclic left submodules of M . In particular, the orbits of
the action of R∗ on R are the sets of generators for the distinct principal left ideals
of R.

The following simple property will be crucial later on. It is immediate from the fact
that every finite principal ideal ring R is Frobenius, thus self-injective and therefore
every free R-module of finite rank is injective, hence splits.

Theorem 1.1.6. Let R be a finite principal ideal ring and let N,M be free left R-
modules of finite rank such that M is a submodule of N . Then M is a direct summand
of N , that is, there is a submodule P of N such that M ⊕ P = N .

We now turn to various coding-theoretic weight functions. Let R be any finite
ring. A map w : R −→ R satisfying w(0) = 0 is called a weight function on R. Any
such weight w has a natural extension to vectors (x1, . . . , xn) ∈ Rn via the rule

w(x1, . . . , xn) =
n∑
i=1

w(xi). (1.1)

Here are some special instances of weight functions.

Definition 1.1.7. Let R be a ring.

(a) The Hamming weight wtH on R is defined by the rule wtH(0) = 0 and wtH(x) =
1 for all x ∈ R \ {0}.

(b) Let R = Mk(F), the ring of k× k-matrices over the finite field F. We define the
rank weight of X ∈ R as the rank of X, denoted by rk(X). For a vector x =
(X1, . . . , Xn) ∈ Mk(Fq)n we define the rank sum as in (1.1) via rankSum(x) =∑n

i=1 rk(Xi).

(c) On any finite ring R set wtU(a) = 1 if a ∈ R∗ and wtU(a) = 0 otherwise. Then
wtU(x1, . . . , xn) counts the number of units in the vector (x1, . . . , xn).

(d) On R = Zm := Z/mZ the Lee weight is defined as wtL(x) = min(x,m− x) and
the Euclidean weight is defined as wtE(x) = min(x,m− x)2.

4



In addition to the above, the homogeneous weight plays a prominent role in
ring-linear coding. The following definition is taken from [23, Definition 1.2] by
Greferath/Schmidt. In the same paper the authors also establish existence and
uniqueness of the homogeneous weight for all finite rings.

Definition 1.1.8. Let R be a finite ring. A function ω : R → R is called the (nor-
malized left) homogeneous weight if ω(0) = 0 and it satisfies the following properties.

(i) If Ra = Rb for a, b ∈ R, then ω(a) = ω(b).

(ii) For every a ∈ R we have
∑

x∈Ra ω(x) = |Ra|.

Example 1.1.9. On Z2 and Z3 the Hamming weight and Lee weight agree, and the
homogeneous weight agrees with these up to a factor 2 and 1.5, respectively. On Z4,
the normalized homogeneous weight agrees with the Lee weight and is given by the
values ω(0) = 0, ω(1) = ω(3) = 1, ω(2) = 2. For m > 4, the Hamming weight, Lee
weight, and homogeneous weight on Zm are mutually distinct.

In the next sections we will discuss a greedy algorithm that results in codes having
a pre-specified property. The property serves as the selection criterion in the algo-
rithm. We will also need the property to be invariant (called multiplicative in [24])
in the following sense.

Definition 1.1.10. Let R be a ring. A boolean function P : Rn −→ {true, false} is
called a property on Rn. We call P left invariant if P [x] = P [ux] for all u ∈ R∗.

For the purpose of this paper it will be beneficial to describe a property in set-
theoretic form by specifying the set containing all elements having the given property.

Remark 1.1.11. From now on we identify a property P : Rn −→ {true, false} with
the property set T := {x ∈ Rn | P [x] = true}, which collects all elements satisfying
the given property. Then P is left invariant if and only if T is invariant under left
multiplication by R∗. In other words, P is left invariant if and only if T is the union
of R∗-orbits, where the latter are the orbits of the left natural group action of R∗

on Rn. From now on, we will simply call the set T a property.

Many selection properties may be desirable in order to construct codes. The
following are some commonly desired properties.

Example 1.1.12. (a) Let w be any of the weights introduced in Definition 1.1.7(a)
– (c), Definition 1.1.8 or the Lee or Euclidean weight on Z4 (see 1.1.7(d)). Extend w
to Rn as in (1.1). In all these cases w(ux) = w(x) for x ∈ Rn and u ∈ R∗. Therefore
the property T = {x ∈ Rn | w(x) ≥ δ} is left invariant for any δ ∈ R. The same
is true for the property T = {x ∈ Rn | w(x) ∈ S}, where S is a pre-specified set of
admissible weight values (such as even weights). In particular, T = {x ∈ Mk(F)n |
rankSum(x) ≥ δ} is an invariant property on Mk(F)n for any δ > 0.

(b) Let R be any commutative ring and denote by x · y :=
∑n

i=1 xiyi the standard
dot product on Rn. Then the property T = {x ∈ Rn | x · x = 0} is invariant because

5



for any u ∈ R∗ we have (ux) · (ux) = u2(x · x). The same property is in general not
invariant if R is not commutative (as one easily verifies for the matrix ring M2(F2)).

(c) Let I ⊆ R be a left ideal of R. On Rn define T = {x ∈ Rn | ∑n
i=1 xi ∈ I}.

Then T is left invariant.

Of course, there are plenty of other invariant properties over finite rings. For
example, the sum of the entries being a unit is an invariant property. However,
this property is not useful for our purposes. Indeed, we will aim at constructing
linear codes with a desired property, and thus in order to obtain non-trivial codes
we need the property to be reasonably conserved upon multiplication by arbitrary
ring elements. Similarly, the property that the sum of the entries is a zero divisor
(even though preserved by multiplication with any ring element) will often not lead
to codes with more than one generator as this property is scarcely preserved under
addition.

One particular property can, for many rings, be used to construct self-orthogonal
codes. Let us summarize the necessary information about self-orthogonal codes.

Remark 1.1.13. Let R be a commutative ring. On Rn consider the (invariant)
property T = {x ∈ Rn | x · x = 0}, where x · y denotes the standard dot product,
see Example 1.1.12(b). If the characteristic of R is odd then a linear code C ⊆ Rn

satisfies
x · x = 0 for all x ∈ C =⇒ x · y = 0 for all x, y ∈ C.

This follows immediately from 0 = (x+ y) · (x+ y) = x · x+ 2(x · y) + y · y = 2(x · y),
and since 2 is not a zero divisor, we obtain the desired result. Recall that the dual
code of C ⊆ Rn is defined as C⊥ := {y ∈ Rn | y · x = 0 for all x ∈ C} and that C is
self-orthogonal (resp. self-dual) if C ⊆ C⊥ (resp. C = C⊥). The above shows that if
the characteristic of R is odd, then

C ⊆ T ⇐⇒ C ⊆ C⊥.

Self-orthogonality is thus characterized by a suitable property for the individual el-
ements of the code (instead of pairs of elements). Finally, we remark that if R is
a finite principal ideal ring, and thus in particular a Frobenius ring, and C ⊆ Rn a
code, then |C| · |C⊥| = |Rn|; see [28, Cor. 5].

Note that the logical operators AND and OR of properties as boolean functions
simply amount to intersection and union of the associated property sets, respectively.
Since the intersection and union of unions of R∗-orbits is again a union of R∗-orbits,
we conclude that the family of left invariant properties is closed under AND and
OR .

This allows us to address whether or not the zero vector has the specified property,
which will play an interesting role in Section 1.3. Most standard properties are not
satisfied by the zero vector; for instance T = {x ∈ Rn | wtH(x) ≥ δ}, where δ > 0.
By the above we can easily add or delete 0 from any invariant property T without
compromising invariance because the properties {0} and Rn \ {0} are both invariant
themselves. Hence we have
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Corollary 1.1.14. For any left invariant property T on Rn the properties T ∪ {0}
and T \ {0} are left invariant.

Note that moving from T to the property T ∪ {0} forces 0 to assume the given
property, whereas moving to the property T \ {0} strips 0 of the given property.

1.2 Orderings of R and Rn

For the remainder of this paper, R denotes a (noncommutative) finite principal ideal
ring. Furthermore, Rn is always considered as a free left R-module in the natural way.
We use R{v1, . . . , vk} to denote the submodule generated by the vectors v1, . . . , vk ∈
Rn.

For the greedy algorithm in the next section we need a total order on the vectors
in Rn. This will be achieved by picking an ordered basis of Rn and fixing an order
on the scalars in R. The latter needs to have a specific property for the algorithm to
work properly.

Definition 1.2.1. A total order < on R is called respectful if for all x, y ∈ R \ {0} it
satisfies

Rx ) Ry =⇒ there exists some α ∈ R∗ such that αx < uy for all u ∈ R∗.

In combination with Proposition 1.1.4 this tells us that in a respectful ordering
for every nonzero x ∈ R there is some generator of Rx that comes before all nonzero
elements of Rx that are not generators. In particular, the smallest nonzero element
in a respectfully ordered ring is a unit. The zero element may appear at any position
in a respectful order. Note that any total order of a finite field is respectful.

Theorem 1.2.2. Every finite principal ideal ring has a respectful ordering.

Proof. Consider the poset of R∗-orbits with the partial order

R∗y ≤ R∗x :⇐⇒ y = rx for some r ∈ R. (1.2)

Choose a linear extension L of this poset (for existence, see [48, p. 110]). Then by
definition R∗y ≤ R∗x implies R∗y ≤L R∗x. On each R∗-orbit choose a total order.
Moreover, for x, y such that R∗x 6= R∗y define x < y ⇐⇒ R∗x >L R

∗y. This results
in a total order on R with the additional property R∗y <L R

∗x ⇐⇒ x < uy for all
u ∈ R∗, and therefore

Rx ) Ry =⇒ y = rx for some r ∈ R =⇒ R∗y <L R
∗x =⇒ x < uy for all u ∈ R∗.

Hence the total order is respectful.

Note that (1.2) simply means R∗y ≤ R∗x :⇐⇒ Ry ⊆ Rx. Hence, thanks to
Corollary 1.1.5, we have an order isomorphism between the poset of R∗-orbits and
the poset of left ideals, and we may consider the linear extension as an extension of
the poset of left ideals (with inclusion).
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In the proof of Theorem 1.2.2 we actually proved the existence of an ordering
satisfying a stronger property than respectfulness. Instead of showing the existence
of some unit α ∈ R∗ such that αx < uy for all u ∈ R∗, we actually showed that we
may pick α = 1. This is always the case for orderings that “respect a linear extension
of the poset of left ideals”. For general respectful orderings, other values of α may
be necessary. Note also that the construction in the proof leads to x < 0 for all
x ∈ R \ {0}. Again, respectfulness alone does not demand this property.

Example 1.2.3. (a) Consider the ring Z12 . Then L : (0) < (6) < (4) < (3) <
(2) < (1) = Z12 is a linear extension of the poset of ideals, and 1 < 5 < 7 < 11 <
2 < 10 < 3 < 9 < 4 < 8 < 6 < 0 is an ordering of Z12 that respects L. Note that
R∗ = {1, 5, 7, 11}, R∗2 = {2, 10}, R∗3 = {3, 9}, R∗4 = {4, 8}, and R∗6 = {6}. Thus
as in the above proof we have an order on the set of R∗-orbits as well as an order
within each R∗-orbit itself.

(b) On any integer residue ring Zm, the natural order 0 < 1 < . . . < m − 1 is
respectful. This follows from the fact that the poset of ideals is anti-isomorphic to
the poset of positive divisors of m. However, if Zm is not a field then this order does
not respect any linear extension because (m − 1) = (−1) = Zm ) I for any proper
ideal I, but m− 1 > a for all a ∈ {0, . . . ,m− 2} in the natural order.

(c) Consider the ring R = M2(F2). Then the total order

R∗
(

0 0
0 0

)
<L R

∗
(

0 1
0 0

)
<L R

∗
(

1 0
0 0

)
<L R

∗
(

1 1
0 0

)
<L R

∗
(

1 0
0 1

)
is a linear extension of (1.2). Fixing a total order within each R∗-orbit, we obtain a
respectful ordering on R. As in the above proof this would make the zero matrix the
largest element. However, since respectfulness itself does not make any assumption on
the zero element, we may actually move the zero matrix to anywhere in the ordering.
The most natural choice is for the zero matrix to be the smallest element. In this
case the above leads, for instance, to the ordering

(
0 0
0 0

)
<

(
1 0
0 1

)
<

(
0 1
1 0

)
<

(
0 1
1 1

)
<

(
1 0
1 1

)
<

(
1 1
0 1

)
<

(
1 1
1 0

)
<

(
1 1
0 0

)
<

(
0 0
1 1

)
<

(
1 1
1 1

)
<

(
1 0
0 0

)
<

(
0 0
1 0

)
<

(
1 0
1 0

)
<

(
0 1
0 0

)
<

(
0 0
0 1

)
<

(
0 1
0 1

)
.

(d) A total order on a finite chain ring R with ideals R = (1) ) (γ) ) . . . )
(γe−1) ) (γe) = (0) is respectful if and only if the following is satisfied: for any
0 ≤ i < j ≤ e− 1 there is some α ∈ R∗ such that αγi < uγj for all u ∈ R∗.

We now define a lexicographic ordering on Rn. It is based on a total order of R
together with an ordered basis of Rn. The total order need not be respectful. The
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latter will only be necessary in the next section for the greedy algorithm to produce
desirable results. For the following definition, <lex denotes the lexicographic ordering
on Rn induced by the total ordering < on R.

Definition 1.2.4. Let R be a finite principal ideal ring with a total order <. Fix
an ordered basis B = {b1, . . . , bn} of the free left R-module Rn. Let V0 = {0} and
for 1 ≤ i ≤ n let Vi = R{b1, . . . , bi} be the submodule of Rn generated by the first i
vectors in B. Thus Vi = Rbi + Vi−1. We define the following lexicographic ordering
on Rn and denote it also by <:
for x ∈ Vl \ Vl−1 and y ∈ Vm \ Vm−1 set

x < y :⇐⇒
[
l < m or (l = m and (xn, . . . , x1) <lex (yn, . . . , y1))

]
, (1.3)

where (x1, . . . , xn), (y1, . . . , yn) are the coefficient vectors of x and y with respect to
the chosen basis B, that is x =

∑n
j=1 xjbj, y =

∑n
j=1 yjbj ∈ Rn. We call Vi \ Vi−1 the

i-th level set of the ordered space Rn.

In the case where 0 is the least element of the ordered ring R, the lexicographic
ordering above simplifies to x < y ⇐⇒ (xn, . . . , x1) <lex (yn, . . . , y1).

The lexicographic ordering on Rn induces the ordering of levels

{0} = V0 < V1 \ V0 < V2 \ V1 < . . . < Vn \ Vn−1, (1.4)

and where each level set is ordered according to (1.3). Thus the ordering on R only
dictates the ordering within each level set, but not the ordering between the levels.
The latter is dictated by the chosen ordered basis B.

Example 1.2.5. Consider the ring Z4 equipped with the ordering 1 < 3 < 2 < 0,
which respects the chain of ideals (1) ) (2) ) (0). Let B = {100, 010, 001} be the
standard basis for Z3

4. Then the lexicographic ordering from Definition 1.2.4 is given
by (1.4) and the internal ordering of the level sets:

V0 = {000},
V1 \ V0 ={100 < 300 < 200},
V2 \ V1 ={110 < 310 < 210 < 010 < 130 < 330

< 230 < 030 < 120 < 320 < 220 < 020},
V3 \ V2 ={111 < 311 < 211 < 011 < 131 < . . . < 002}.

Notice that the zero element acts here in two different ways: it “naturally” sorts the
levels Vi \ Vi−1, but dictates an unusual sorting within each level.

1.3 The Greedy Algorithm

We now introduce a greedy algorithm that produces codes over a given finite principal
ideal ring such that all (nonzero) codewords have a given pre-specified property. The
algorithm generalizes the ones presented by Van Zanten and Suparta in [53] for codes
over finite fields and by Guenda et al. in [24] for codes over finite chain rings.
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Throughout, let R be a finite principal ideal ring. Moreover, let Γ be a fixed set of
generators of the nonzero left ideals in R. In other words, Γ is a set of orbit represen-
tatives of the nonzero R∗-orbits of R (see Corollary 1.1.5). The following algorithm
itself does not need the respectfulness of the ordering on R, but the properties of the
resulting codes heavily rely on it. Thus we restrict ourselves to respectful orderings
on R.

Algorithm 1.3.1. Fix a respectful ordering < on R and an ordered basis B of Rn.
Consider the resulting lexicographic ordering on the left R-module Rn as in Definition
1.2.4. Let T be a left invariant property on Rn.

1. Put C0 = {0}. Set i = 1.

2. Search for the first (smallest) vector ai ∈ Vi \ Vi−1 such that

{γai + c | γ ∈ Γ, c ∈ Ci−1} ⊆ T .

3. • If such ai exists, let Ci := {rai + c | r ∈ R, c ∈ Ci−1} = Rai + Ci−1.
• If no such ai exists, let Ci := Ci−1.

4. • If i < n, set i := i+ 1 and return to Step 2.
• If i = n, stop and output Cn.

We call Cn a lexicode (or lexicographic code) with respect to the given ordering, basis,
and property T and denote it by C(<,B, T ).

The generated codes Ci clearly depend on the chosen basis B, which determines
the level sets Vi \Vi−1, as well as on the ordering on R, which determines the ordering
within the level sets. Examples of this dependence will be provided in Section 1.4.

We wish to point out that we explicitly allow invariant properties T for which
0 6∈ T . While this may seem odd because we aim at constructing linear codes, this
does indeed lead to interesting outcomes – as we will show later. Note that the
algorithm always adds the zero vector to the code.

The definition of Γ and Proposition 1.1.4 immediately imply

Remark 1.3.2. Let T be a left invariant property on Rn, and C a left submodule
of Rn such that C \ {0} ⊆ T . Let x ∈ Rn. Then

{γx+ c | γ ∈ Γ, c ∈ C} ⊆ T ⇐⇒ {rx+ c | r ∈ R \ {0}, c ∈ C} ⊆ T .
As a consequence, the resulting sets Ci do not depend on the choice of the gen-

erator set Γ. The use of Γ in the algorithm merely serves to reduce the number of
tests in the selection step (Step 2.). If R is a finite field, we may choose Γ = {1},
and the algorithm reduces to Algorithm A in [53] by Van Zanten and Suparta. If R
is a finite chain ring with ideal chain R = (1) ) (γ) ) . . . ) (γe−1) ) (γe) = (0), we
may choose Γ = {1, γ, γ2, . . . , γe−1}, and the algorithm equals Algorithm A in [24] by
Guenda et al. The above remark fails in general if T is not left invariant; see also
Example 1.4.2(a) later in this paper.

The next theorem generalizes [52, Theorem 2.2] for lexicodes over F2, [53, Theorem
2.2] for lexicodes over Fq, and [24, Theorem 4] for lexicodes over finite chain rings.
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Theorem 1.3.3. Consider Algorithm 1.3.1. Then for each i the set Ci is a code,
i.e., a submodule of Rn, and Ci \ {0} ⊆ T .

Proof. Left linearity of each Ci is clear. The second statement is clearly true for
C0. Suppose now that Ci−1 \ {0} ⊆ T . If Ci = Ci−1, then there is nothing to
prove. Else let ai be the selected vector from Vi \ Vi−1. Then by Remark 1.3.2
{rai + c | r ∈ R \ {0}, c ∈ Ci−1} ⊆ T . Since Ci = Rai + Ci−1, this establishes the
desired result.

Note that in Step 2 of Algorithm 1.3.1 we only select one (if any) vector ai in
the level Vi \ Vi−1, update Ci−1 to Ci := Rai + Ci−1, and then move on to the next
level Vi+1 \ Vi. The next theorem justifies abandoning the search through the rest of
Vi \ Vi−1. Indeed, as we will see, the respectfulness of the ordering on R guarantees
that any vector x ∈ Vi \ Vi−1 such that {γx+ c | γ ∈ Γ, c ∈ Ci} ⊆ T is already in Ci.
Therefore this theorem generalizes the result of [53, Theorem 2.1] for lexicodes over
Fq, and the result of [24, Lemma 3] for lexicodes over finite chain rings.

Theorem 1.3.4. Consider Algorithm 1.3.1 and the resulting nested codes C0 ⊆ . . . ⊆
Cn. Let x ∈ Vi \ Vi−1 be such that {γx+ c | γ ∈ Γ, c ∈ Ci} ⊆ T . Then x ∈ Ci.
Proof. We induct on i. For the base case, the statement is trivially true because
V0 = {0} = C0.

Let 1 ≤ i ≤ n and assume the statement holds for all indices less than i. Let
x ∈ Vi \ Vi−1 be such that {γx+ c | γ ∈ Γ, c ∈ Ci} ⊆ T . Then there must have been
some selected vector ai ∈ Vi \ Vi−1. Thus Ci = Rai + Ci−1. Setting R̂ := R \ {0} we
have R̂x+Ci ⊆ T and hence R̂x+Rai +Ci−1 ⊆ T . Note that Vi/Vi−1 is isomorphic
to R via the map ρ(

∑i
l=1 rlbl + Vi−1) = ri. Since R is a principal ideal ring, we

conclude that ρ(Rx+Rai + Vi−1) = Rd for some d ∈ R, and therefore

Rx+Rai ⊆ Rdbi + Vi−1. (1.5)

Clearly, d 6= 0. We show next that Rdbi + Vi−1 ⊆ Rai + Vi−1. Write ai = pbi +w and
x = qbi+w′, where p, q ∈ R\{0} and w,w′ ∈ Vi−1. Then ρ(rai+sx+Vi−1) = rp+sq
for all r, s ∈ R, and therefore Rd = Rp + Rq. Hence there exist a, b ∈ R such that
ap+bq = d and by Theorem 1.1.1 we may even assume that b is a unit. Then R̂b = R̂
and therefore y := aai + bx satisfies

R̂y + Ci−1 ⊆ R̂bx+Rai + Ci−1 = R̂x+Rai + Ci−1 ⊆ T . (1.6)

This shows that y satisfies the selection criterion of the algorithm. Let us now relate y
to the actually selected vector ai. From Rd = Rp + Rq we obtain Rp ⊆ Rd. If
Rp ( Rd, then respectfulness implies p > αd for some α ∈ R∗. Thus ai > αy.
But then (1.6) tells us that αy would have been selected in the algorithm, and this
contradicts the selection of ai. Hence Rp = Rd and thus Rq ⊆ Rp. This in turn
implies x ∈ Rai + Vi−1, say x = βai + v for some β ∈ R and v ∈ Vi−1. As a
consequence,

R̂v + Ci−1 = R̂(x− βai) + Ci−1 ⊆ R̂x+Rai + Ci−1 ⊆ T ,
and by induction v ∈ Ci−1. Hence x = βai + v ∈ Ci, as desired.
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In the above proof we obtained Rp = Rd and thus Rq ⊆ Rp. Showing this
containment was the sole purpose of introducing the vector y. For the case of finite
chain rings, all left ideals are comparable and the containment Rq ⊆ Rp follows
immediately from the respectful ordering, so the proof becomes greatly simplified.

As the proof above suggests, the existence of β ∈ R \ {0} and v ∈ Vi−1 such that
x = βai + v is not trivial over rings (it is clearly always the case over fields). Only
the respectfulness of the ordering on R guarantees this step for principal ideal rings,
and in Example 1.4.1(b) we show that the above theorem is indeed not true if the
ordering of R is not respectful. For this reason our proof completes the one given in
[24, Lemma 3], where this detail seems to have been overlooked since no specifics on
the ordering of the ring elements are given. It seems, however, that only respectful
orderings were used in the examples in [24].

In Example 1.4.2 we show that the previous theorem also fails if either the prop-
erty T is not left invariant or the ring is not a principal ideal ring.

The examples in the next section suggest that the use of a respectful ordering
in Algorithm 1.3.1 produces large codes. As we show next, these codes are in fact
maximal if 0 ∈ T . The maximality in the sense of the following theorem is not true
if 0 6∈ T ; see Example 1.4.5. But we do obtain a certain analogy for the case where
0 6∈ T , as we will show below. Recall from Corollary 1.1.14 that we may toggle
between 0 ∈ T and 0 6∈ T as desired. For instance, we may toggle between the
property T = {x ∈ Rn | wtH(x) ≥ δ} and T ′ = {x ∈ Rn | wtH(x) ≥ δ or x = 0}.

Theorem 1.3.5. Let < and B be as in Algorithm 1.3.1 and let T be a left invariant
property such that 0 ∈ T . Then the lexicode C(<,B, T ) is maximal (with respect to
inclusion) in the poset of all codes contained in T .

Proof. Recall the codes Ci from Algorithm 1.3.1. Suppose contrarily that there is
some linear code C satisfying T such that Cn ( C ⊆ Rn. Let x ∈ C \ Cn. Then
{γx+c | γ ∈ Γ, c ∈ Cn} ⊆ T by assumption (here 0 ∈ T is crucial because γx+c may
be zero). Since x lies in Vi\Vi−1 for some i = 1, . . . , n and {γx+c | γ ∈ Γ, c ∈ Ci} ⊆ T ,
Theorem 1.3.4 implies that x ∈ Ci ⊆ Cn, a contradiction.

We now turn to the case where 0 6∈ T .

Theorem 1.3.6. Let < and B be as in Algorithm 1.3.1 and let T be a left invariant
property such that 0 6∈ T . Then each code Ci generated by Algorithm 1.3.1 is free,
and the selected vectors form a basis for Ci.

Proof. Let aj1 < . . . < ajk be the vectors selected by Algorithm 1.3.1 to generate Ci.
Suppose that the vectors are linearly dependent, say

∑t
l=1 λlajl = 0 for some scalars

λl ∈ R with λt 6= 0. Note that aj1 < . . . < ajt generate some Ci′ and aj1 < . . . < ajt−1

are in Ci′−1. Remark 1.3.2 tells us that {rajt + c | r ∈ R \ {0}, c ∈ Ci′−1} ⊆ T .
In particular λtajt +

∑t−1
l=1 λlajl ∈ T , contradicting 0 6∈ T . Therefore the vectors

aj1 , . . . , ajk form a linearly independent set. Since by construction Ci is generated by
these vectors, we obtain the desired result.

We now obtain the analogue of Theorem 1.3.5.
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Theorem 1.3.7. If < is a respectful ordering of R and T is a left invariant property
where 0 6∈ T , then the code C := C(<,B, T ) generated by Algorithm 1.3.1 is maximal
(with respect to inclusion) in the poset {C ⊆ Rn | C is free and C \ {0} ⊆ T }.
Proof. By Theorems 1.3.6 and 1.3.3, the module C is free with basis {aj1 , . . . , ajk},
and C \ {0} ⊆ T . Suppose contrarily that there is some free linear code C̃ such that
C̃ \ {0} ⊆ T and C ( C̃ ⊆ Rn. By Theorem 1.1.6 there exists a submodule C ′ such
that C ⊕ C ′ = C̃. Hence there exists some x ∈ C̃ \ C such that {aj1 , . . . , ajk , x}
is linearly independent. Thus rx + c 6= 0 for all r ∈ R \ {0}, c ∈ C and thus
{rx + c | r ∈ R \ {0}, c ∈ C} ⊆ T . Let i ∈ {1, . . . , n} such that x ∈ Vi \ Vi−1. Then
Theorem 1.3.4 tells us that x ∈ Ci, contradicting that x 6∈ C.

In Examples 1.4.5 and 1.4.7 we illustrate the different outcomes of the algorithm
when we add or subtract the zero vector from the property set T (i.e., in the sense of
Remark 1.1.11, if we toggle P [0] between true and false). In general, but not always,
if 0 6∈ T one obtains a significantly smaller code. More importantly, even though
switching to the property T ∪{0} simply widens the selection criterion, the algorithm
does not always produce a lexicode that contains the lexicode for the property T .

The following result shows that with a suitable choice of the lexicographic ordering
on Rn every free code satisfying an invariant property can be obtained as a ‘partial
lexicode’, that is, a code obtained when stopping the algorithm after a certain number
of rounds. In combination with the previous theorems this result may be used to test
whether a given code is maximal among all codes satisfying the property or, if not,
extend it to a maximal code.

Theorem 1.3.8. Any free linear code C ⊆ Rn satisfying the invariant property T for
all nonzero x ∈ C is a subcode of a lexicode C(<,B, T ) for some suitable respectful
ordering < on R and a suitable basis B of Rn.

Proof. Since C is free, it has some basis {b1, . . . , bk}. By Theorem 1.1.6, we can
extend this to a basis B = {b1, . . . , bn} of Rn. Choose a respectful ordering on R
starting with 0 < 1 < . . . . Running Algorithm 1.3.1 with this basis B and respectful
ordering, the first vector in the level set Vi \ Vi−1 is bi. Note that rbi + c 6= 0 for all
r ∈ R\{0}, c ∈ Vi−1. Thus, {rbi+c | r ∈ R\{0}, c ∈ Vi−1} ⊆ T for i < k (regardless
of whether or not 0 ∈ T ), and the algorithm selects ai = bi for every i = 1, . . . , k.
Then C = Ck ⊆ C(<,B, T ).

We strongly believe that Theorem 1.3.8 is true for general (i.e., non-free) codes.
However, an abundance of examples shows that only a very judicious choice of basis
of Rn leads to a lexicode containing the given code (but the given code is not neces-
sarily a ‘partial lexicode’ !). Unfortunately, we are not able to provide a description
of such a basis and a proof of its existence.

1.4 Examples of Lexicodes

We start with an example showing that the respectfulness of the ordering is necessary
for Theorem 1.3.4 to be true, even over a finite chain ring.
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Example 1.4.1. (a) Consider Z4
4 with standard basis B = {1000, 0100, 0010, 0001}

and the property T = {x | x · x = 0}. Using the natural, thus respectful, ordering
0 < 1 < 2 < 3, the selected vectors are a1 = 2000, a2 = 0200, a3 = 0020, and
a4 = 1111. The resulting lexicode C4 = R{a1, a2, a3, a4} has cardinality 32 and is
clearly not free.

(b) Consider now the non-respectful ordering 0 < 2 < 1 < 3 on Z4. Using the same
basis of Z4

4 and the same property as in (a), the algorithm generates the lexicode C4 =
R{a1, a2, a3, a4} of size 16 with selected vectors a1 = 2000, a2 = 0200, a3 = 0020, and
a4 = 0002. Observe that this code is strictly contained in the one from (a). The
vector x = 1111 ∈ V4 \ V3 satisfies {γx+ c | γ ∈ Γ = {1, 2}, c ∈ C3} ⊆ T , where C3 is
the code from the previous iteration of the algorithm. But x is not in C4. This is due
to the fact that x cannot be written in the form x = βa4 + v for any β ∈ R, v ∈ V3;
see proof of Theorem 1.3.4. In other words, the vector 0002 was selected instead
of 1111 (or some other vector with a unit in the last entry), which would not have
happened with a respectful ordering.

The following examples show that Theorem 1.3.4 is not true in general if either
the property is not left invariant or the ring is not a principal ideal ring.

Example 1.4.2. (a) Consider the field R = Z3 = {0, 1, 2} with the natural order
0 < 1 < 2, which is respectful. Let T = {2}. Then T is not invariant because
2·2 6∈ T . In R1 with standard basis e1 = 1 the lexicode resulting from Algorithm 1.3.1
is C = Z3. It does not satisfy Theorem 1.3.3. Note that due to the non-invariance
of T even Remark 1.3.2 is not true.

(b) Consider the ring R := F2[x, y]/(x2, xy, y2) = {0, x, y, x+y, 1, 1+x, 1+y, 1+x+
y}. Note that the last 4 elements are the units of R. The ring has 4 non-trivial ideals
given by (x), (y), (x+ y), (x, y). The first three are principal and have cardinality 2,
the last one is not principal and has cardinality 4. Based on this and Definition 1.1.8
the homogeneous weight on R turns out to be

ω(0) = 0, ω(x) = ω(y) = ω(x+ y) = 2, ω(u) =
1

2
for all u ∈ R∗.

In R1 consider the invariant property T = {x | ω(x) ≥ 2 or x = 0}. Moreover,
consider any ordering of the ring elements1 and the standard basis e1 = 1. Then
Algorithm 1.3.1 results in the lexicode C = C1 = (w) = {0, w}, where w is the first
nonunit element in the ordering of R. As a consequence, Theorem 1.3.4 is not satisfied
for i = 1 because every element in {0, x, y, x+ y} satisfies the property. For the same
reason, Theorem 1.3.5 is not satisfied. All of this shows that for non-principal ideal
rings, the search in Step 2. of Algorithm 1.3.1 should continue through each entire
level Vi \ Vi−1.

1Note that the definition of respectfulness for an ordering is based on principal left ideals. If
we simply ignore the non-principal ideal (x, y) and follow Definition 1.2.1, then any ordering of the
form 0 < 1 < “rest” may be called respectful. However, this case is not useful in the endeavors to
come.
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The next example illustrates that different respectful orderings may generate dif-
ferent codes. Part (b) shows that, for codes over fields, even the dimension of the
resulting code depends on the choice of the respectful ordering.

Example 1.4.3. (a) Consider the reverse standard basis B = {001, 010, 100} for
Z3

4 and the selection property T = {x | wtL(x) ≥ 2}, where wtL is the Lee weight;
see Definition 1.1.7(d). Note that 0 6∈ T . Since Z∗4 = {1, 3}, a total ordering <
on Z4 is respectful iff 1 < 2 or 3 < 2. We obtain the following cases: (i) Using
any of the respectful orderings r1 < 0 < r2 < r3, where r1 ∈ Z∗4, we obtain the
lexicode C = Z4{011, 103} (the two given vectors are not necessarily the vectors ai
selected by the algorithm). (ii) With any of the respectful orderings r1 < r2 < r3 <
r4, where {r1, r2} = Z∗4, we obtain the lexicode C = Z4{011, 102}. (iii) With any
other respectful ordering we obtain the lexicode C = Z4{011, 101}. In each case the
resulting lexicode has cardinality 16.

(b) Consider the field F = F7 and in F3 define the codes C = F{100, 010}, D =
F{001}. Let T = C ∪D. Note that T is invariant and 0 ∈ T . Fix the ordered basis
B = {113, 331, 100} of F3. (i) Using the respectful ordering 0 < 1 < 2 < 3 < 4 < 5 <
6 the algorithm returns a2 = 1(331)+2(113) = 550, thus C2 = F{550}, and a3 = 100.
Hence C(<,B, T ) = C. (ii) Using the respectful ordering 0 < 1 < 4 < 3 < 2 < 5 < 6
the algorithm returns a2 = 1(331) + 4(113) = 006, thus C2 = F{001}, and there is no
return for a3. Thus C(<,B, T ) = D.

Of course, the output of the algorithm also depends on the choice of the basis B.
Again, even the dimension of the lexicode (e.g., for field alphabets) depends on B.
The choice of basis may also decide on whether the lexicode is free or not.

Example 1.4.4. (a) Let F be any finite field. Consider the codes C = F{100, 010}
and D = F{001} in F3. Let T = C ∪D. Fix any total ordering < on F. Using the
basis B = {100, 010, 001}, the algorithm returns the code C, whereas with the basis
B′ = {001, 010, 100} it returns D.

(b) Consider the codes C = Z4{200, 020}, D = Z4{001} in the module Z3
4. Using

the same property as in (a) and the standard basis of Z3
4, the algorithm returns the

non-free code C, whereas with the reverse standard basis it returns the free code D.

We now illustrate the result of the greedy algorithm when toggling between 0 ∈ T
and 0 6∈ T .

Example 1.4.5. Consider any respectful ordering on Z4 and the module Z3
4 with

the standard basis. Let T = {x | wtL(x) ≥ 6}, where wtL is again the Lee weight.
Clearly, T is invariant, and actually T = {222}. But since 2 ·222 = 000 and 000 6∈ T ,
Algorithm 1.3.1 returns the zero code. If we toggle T to T ∪{000}, then 222 is selected
and we obtain the non-free code {000, 222}. All of this shows that Theorem 1.3.5
fails if 0 6∈ T .

Example 1.4.6. We consider the exact situation of Example 1.4.1(a) with the only
difference that we toggle T to T \ {0}. Thus T = {x | x · x = 0 and x 6= 0}. Using
the same respectful ordering and the same basis, Algorithm 1.3.1 returns the code
C = Z4{1111}. It is a free subcode of the lexicode returned in Example 1.4.1(a).
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Example 1.4.7. Consider R := Z10 with the natural, thus respectful, ordering 0 <
1 < . . . < 9. By Definition 1.1.8 the homogeneous weight on R is given by

ω(0) = 0, ω(5) = 2, ω(u) =
3

4
for u ∈ {1, 3, 7, 9}, ω(r) =

5

4
for r ∈ {2, 4, 6, 8}.

(a) Consider now the invariant property T = {x | ω(x) ≥ 2} on the module R3,
where the homogeneous weight is extended to vectors as in (1.1). Thus 0 6∈ T . Using
the ordered basis B = {001, 010, 100} of R3, Algorithm 1.3.1 returns C1 = {0}, C2 =
C3 = R{012}. Hence C3 = C(<,B, T ) is indeed a free code with basis {012} and
cardinality 10.

(b) With the same data as in (a), but where we switch to the property set T ∪{0},
the algorithm returns C ′ := C3 = R{005, 021, 201}. The code C ′ is not free and has
cardinality 50. A minimal generating set is given by {201, 820}. One should note
that the code C from (a), which is free, is not a subcode of C ′. In fact, C ∩C ′ = {0},
though all we did is switch from the property T to T ∪ {0}.

Let us now turn to the construction of self-orthogonal codes. Recall from Re-
mark 1.1.13 that over a commutative ring with odd characteristic we achieve self-
orthogonality using the (invariant) property T = {x | x · x = 0}. Obviously 0 ∈ T .
In (c) of the following example we provide a case where the property T \{0} produces
a free code of the same size as the lexicode for the property T . The fact that we
obtain in both cases lexicodes of the same size is remarkable because, more often
than not, codes generated with T \ {0} are much smaller than their counterparts
with T ∪ {0}.

Example 1.4.8. For all examples we consider the property T = {x | x · x = 0}.
(a) On F4

5 consider the reverse standard basis B = {e4, e3, e2, e1} and fix the
natural ordering 0 < 1 < 2 < 3 < 4 on F5. Then Algorithm 1.3.1 returns C1 =
{0}, C2 = C3 = F5{0012} and C := C(<,B, T ) = C4 = F5{0012, 1200}, which
by Theorem 1.3.3 and Remark 1.1.13 is self-orthogonal, that is, C ⊆ C⊥. Since
dim(C) = 2 we conclude that C = C⊥, that is, C is self-dual. This also shows
that C is not a proper subcode of a code satisfying property T (thus illustrating
Theorem 1.3.5).

(b) In the same way we obtain in F4
7 (using the natural ordering and the reverse

standard basis) the self-dual code C = F7{0123, 1035}.
(c) Over the ring Z9 with the natural ordering and the reverse standard basis of

Z4
9 we obtain the lexicode C := C(<,B, T ) = Z9{0003, 0030, 0300, 3000}, which is

not free and has 81 elements. If we switch to the property T \{0}, we obtain the free
lexicode C ′ := Z9{0114, 1048} of cardinality 81. From the identity |C| · |C⊥| = 94

(see Remark 1.1.13) we conclude that both codes are actually self-dual and thus
maximally self-orthogonal.

Over rings with even characteristic, Remark 1.1.13 is no longer sufficient, and
self-orthogonality cannot be described by an invariant property. However, over the
alphabet Z4 it is known that if C ⊆ Zn4 is a code such that the Euclidean weight of
each codeword x ∈ C satisfies wtE(x) ≡ 0 mod 8 then C is self-orthogonal; see [30,
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Thm. 12.2.4]. Clearly, the greedy algorithm allows us to construct such triply-even
codes (that is, the Euclidean weight of each codeword is divisible by 8) by using the
property T = {x ∈ Zn4 | wtE(x) ≡ 0 mod 8}, and it arises the question as to when this
code is maximal within the class of all self-orthogonal codes. Using the standard form
for generator matrices of codes over Z4 and the resulting standard form for the dual
code, see [30, pp. 469], it is not hard to see that every self-orthogonal code over Z4 is
contained in a self-dual code. This implies that the greedy algorithm for the above
property T produces a triply-even self-orthogonal code which is maximal within the
class of all self-orthogonal codes if and only if it is self-dual. In this context recall
that triply-even self-dual codes exist only if the length n is divisible by 8; see [30,
Cor. 12.5.5].

Example 1.4.9. Consider Z5
4 with the property T = {x | wtE(x) ≡ 0 mod 8} and

the reverse standard basis B = {e5, . . . , e1}. Using the natural ordering 0 < 1 < 2 < 3
on Z4 we obtain the triply-even lexicode

C(<,B, T ) = Z4{00022, 00202, 02002, 20002},

which has cardinality 16. It is clearly contained in the self-dual code

C = Z4{00002, 00020, 00200, 02000, 20000},

which is not triply-even. Many more examples of self-orthogonal lexicodes over Z4,
including triply-even self-dual codes of length 8, are given in [24, Table 2].

We briefly touch upon a selection property that arises in the context of DNA
codes.

Example 1.4.10. Consider Z4
4 with the invariant property T = {x | wtU(x) ≤ 2};

see Definition 1.1.7(c). Using the natural ordering < on Z4 and the reverse standard
basis B on Z4

4, one obtains the lexicode C(<,B, T ) = Z4{0001, 0010, 0200, 2000},
which has cardinality 64. This idea could prove useful in constructing DNA codes
with bounded GC-content, as discussed in [5], by suitably identifying the elements
of Z4 with the 4 nucleotides A,G, T, C. However, we wish to add that codes with
constant GC-content appear to be more useful for DNA computing as they guarantee
a uniform hybridization process [37]. These codes are clearly nonlinear and thus do
not fall in the realm of this paper.

We close this analysis with an example over a noncommutative ring.

Example 1.4.11. Let R = M2(F2) be respectfully ordered as in Example 1.2.3(c).
Consider R3 with the reverse standard basis B = {e3, e2, e1}, thus

e1 = (I2, 0, 0), e2 = (0, I2, 0), e3 = (0, 0, I2).

We use the selection property T = {x | rankSum(x) ≥ 2}, see Example 1.1.7(b).
Then Algorithm 1.3.1 produces the lexicode C(<,B, T ) = R{(0, I2, I2), (I2, 0, I2)},
which is free of dimension 2 (as it has to be according to Theorem 1.3.6), thus
cardinality 256.

17



Copyright c© Jared E. Antrobus, 2019.

18



Chapter 2 Ferrers Diagram Rank-Metric Codes

This chapter is a reproduction of [2], with added detail in some areas. It reflects the
second of the two major projects represented in this dissertation.

For random linear network coding, see [9] by Chou et al. and [26] by Ho et al., the
natural coding-theoretical objects are subspace codes. This observation by Koetter
et al. [31, 47] has led to extensive research efforts for constructions and decoding of
subspace codes [4, 13, 14, 17, 19, 20, 21, 22, 25, 36, 41, 46, 47, 50, 54].

One way to construct good subspace codes utilizes rank-metric codes. These are
subspaces (or subsets) of some matrix space Fm×nq endowed with the rank metric
drk(A,B) = rk(A−B). This naturally leads to the task of constructing large rank-
metric codes with a given rank distance, and many of the above mentioned articles
contribute to this question. Already in the 70’s, Delsarte [12] and independently in
the 80’s Gabidulin [15] show that the maximum dimension of an m× n-rank-metric
code with rank distance δ is given by m(n − δ + 1) if n ≤ m. Codes attaining
this bound are called MRD codes (maximum rank-distance codes), and both authors
provide a construction of such codes. These MRD codes, now known as Gabidulin
codes, are constructed within the Fq-vector space Fnqm , which is naturally isometric
to (Fm×nq , drk). They are not just Fq-linear but even Fqm-linear. More recently, a
lot of attention has been paid to the existence and construction of MRD codes that
are not equivalent to Gabidulin codes and not necessarily Fqm-linear. Most notably,
in [44] Sheekey presents a construction of MRD-codes that are not equivalent to
Gabidulin codes. Further contributions have been made by de la Cruz et al. [11] and
Trombetti/Zhou [51].

A very straightforward construction of good subspace codes with the aid of rank-
metric codes is the lifting construction [31]: to each matrix M in the given rank-metric
code one associates the row space of the matrix (I |M), where I is the identity matrix
of suitable size. While this simple construction leads to subspace codes with good
distance, it usually does not produce large codes. A remedy has been introduced
by Etzion/Silberstein [14]: obviously a matrix of the form (I | M) ∈ Fm×(m+n) is in
reduced row echelon form (RREF) with pivot indices 1, . . . ,m. This observation has
led to the multilevel construction, where for each level a rank-metric code in Fm×n
is used to construct a subspace code in Fm+n with all representing m × (m + n)-
matrices being in RREF with a fixed set of general pivot indices. For this to work
out properly, the matrices in the given rank-metric code have to be supported by the
Ferrers diagram associated with the list of pivot indices; see [14] and Remark 2.1.5
later in this paper. As a result, the multilevel construction leads to the task of
constructing large Ferrers diagram codes with a given rank distance. In [14] the
authors provide an upper bound for the dimension of a rank-metric code supported
by a given Ferrers diagram F and with a given rank distance δ. In this paper, codes
attaining this bound will be called maximal [F ; δ]-codes. To this day, it is not clear
whether maximal [F ; δ]-codes exist for all pairs (F ; δ) and all finite fields. Several
cases have been settled by Etzion et al. [13, 14] and Gorla/Ravagnani [22] and, more
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recently, by Liu et al. [35] and Zhang/Ge [56], but the general case remains widely
open. In [3] Ballico studies the existence of maximal [F ; δ]-codes over number fields.

In this paper we survey some of these results and extend them to further classes
of pairs (F ; δ). In particular, we provide a family of pairs (F ; δ) for which maximal
[F ; δ]-codes can be realized for any finite field Fq as subfield subcodes of Gabidulin
codes (or other Fqm-linear MRD codes). Since Gabidulin codes can be efficiently
decoded, the same is true for such subfield subcodes. We also illustrate that for
general pairs (F ; δ) such a subfield subcode construction is not possible. This is due
to the non-existence of invariant subspaces in those cases. Furthermore, we present
constructions for the special case where F is the n × n-upper triangle and the rank
is n − 1. In this case the dimension of a maximal [F ;n − 1]-code is just 3, and
despite the simplicity of the situation no construction of maximal [F ;n − 1]-codes
over arbitrary finite fields was known before.

Finally, we turn to the proportion of maximal [F ; δ]-codes within the space of
all N -dimensional codes in Fm×nq with shape F , and where N is the dimension of a
maximal [F ; δ]-code. Special attention will be paid to the limiting proportion as q
tends to infinity. If this limit is 1, we call maximal [F ; δ]-codes generic. We will see
that [F ; δ]-codes are generic if and only if there exists an N -dimensional [F ; δ]-code
over any algebraically closed field of positive characteristic. This will tell us that
genericity depends highly on the shape F ; in particular MRD codes are not generic
(which has also recently been observed by Byrne/Ravagnani [7]). The latter contrasts
recent results in [40] by Neri et al., who showed that MRD codes are generic if one
restricts oneself to Fqm-linear rank-metric codes. Finally, for several nongeneric cases
we provide upper bounds on the proportion. Among other things we will see that the
limiting proportion of [m × n; δ]-MRD codes is upper bounded by (1/e)(δ−1)(n−δ+1)

as q, m → ∞, with equality if n = δ = 2 (improving upon bounds in [7]). This
is derived from the fact [49] that the proportion of matrices in Fm×mq with empty
spectrum is asymptotic to 1/e as q,m → ∞. It remains an open question whether
there exist parameters (m,n, δ) for which the limiting proportion of [m× n; δ]-MRD
codes is zero.

2.1 Background and Preliminary Results

Throughout, let q be a prime power and Fq be a finite field of order q. For any m ∈ N
consider the field extension Fqm over Fq. Let B = (x1, . . . , xm) be an ordered basis of
Fqm as an Fq-vector space. Then we have the coordinate map

φB : Fqm −→ Fmq , a :=
m∑
i=1

αixi 7−→

α1
...
αm

 =: [a]B

We also write [a]B for φB(a). The isomorphism φB extends to the isomorphism

φB : Fnqm −→ Fm×nq , (a1, . . . , an) 7−→
(
[a1]B, . . . , [an]B

)
. (2.1)

20



On the vector space Fm×nq we define the rank metric as drk(A,B) := rk(A − B).
It is well-known that this is indeed a metric. (See Appendix A for a proof.) Fur-
thermore, on the Fq-vector space Fnqm we define the rank weight as rk(a1, . . . , an) =
dimFq 〈a1, . . . , an〉, where throughout this paper the notation 〈 〉 stands for the Fq-
subspace generated by the indicated elements. The rank weight induces the rank
metric on Fnqm in the obvious way. It is clear that φB is an isometry (i.e., a metric-
preserving isomorphism) between Fnqm and Fm×nq .

Definition 2.1.1. An Fq-subspace of Fm×nq or Fnqm is called a rank-metric code. The
(minimal) rank distance of the rank-metric code C is defined as drk(C) := min{rk(z) |
z ∈ C\{0}}. An [m × n, k; δ]q-code is a rank-metric code in Fm×nq or Fnqm of Fq-
dimension k and rank distance δ. The same terminology will be used for F-subspaces
of Fm×n for an infinite field F.

Note that in general a rank-metric code in Fnqm is only required to be Fq-linear
and not necessarily Fqm-linear.

A well-studied class of rank-metric codes are those attaining the maximum possi-
ble dimension for a given size m×n and rank distance δ. In the case where n ≤ m, the
Singleton bound (see Appendix A) tells us that the dimension k of an [m× n, k; δ]q-
code is at most m(n− δ + 1), and codes attaining this bound are called MRD codes
(maximum rank distance codes), denoted as [m × n; δ]-MRD codes. An MRD code
in Fnqm may even be an Fqm-linear subspace, in which case we call it an Fqm-linear
[m× n; δ]-MRD code.

We now turn to matrices supported by Ferrers diagrams. Throughout, for any
n ∈ N let [n] denote the set {1, . . . , n}.

Definition 2.1.2. A m × n-Ferrers diagram F is a subset of [m] × [n] with the
following properties:

(i) if (i, j) ∈ F and j < n, then (i, j + 1) ∈ F (right aligned),

(ii) if (i, j) ∈ F and i > 1, then (i− 1, j) ∈ F (top aligned).

For j = 1, . . . , n let cj = |{(i, j) | 1 ≤ i ≤ m, (i, j) ∈ F}|, i.e., cj is the number of
dots in the j-th column (see Figure 2.1). We may identify the Ferrers diagram F
with the tuple [c1, . . . , cn]. The tuple satisfies c1 ≤ c2 ≤ . . . ≤ cn.

Note that we allow c1 = 0 and cn < m. Thus the size m × n of F is not fixed
by the tuple [c1, . . . , cn]. However, for each Ferrers diagram the natural choices of
m and n are the number of nonempty rows and columns, respectively. Removing
empty rows and columns leads to the case where c1 > 0 and cn = m. This is further
discussed in the paragraph after Definition 2.1.11.

Example 2.1.3. The Ferrers diagram F = [c1, . . . , cn] can be visualized as an array
of top-aligned and right-aligned dots where the j-th column has cj dots. Just like for
matrices we index the rows from top to bottom and the columns from left to right.
For instance, F = [1, 2, 4, 4, 5] is given by
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Figure 2.1: F = [1, 2, 4, 4, 5]

For the rest of this section, let F denote an arbitrary, possible infinite field (unless
specified otherwise).

Definition 2.1.4. (a) The support of a matrix M = (mij) ∈ Fm×n is defined as
the set supp(M) := {(i, j) | mij 6= 0}. For a given m× n-Ferrers diagram F we
say that M has shape F if supp(M) ⊆ F . The subspace of Fm×n of all matrices
with shape F is denoted by F[F ].

(b) Let C ⊆ Fm×n be a rank-metric code and let F be an m × n-Ferrers diagram.
If C ⊆ F[F ], that is, every matrix in C has shape F , then C is called a Ferrers
diagram code of shape F . An [m × n, k; δ]-code in F[F ] is called an [F , k; δ]-
code, or an [F ; δ]-code if the dimension is not specified. If F = Fq, we also use
the notation [F , k; δ]q-code and [F ; δ]q-code.

For the Ferrers diagram F = [m, . . . ,m] an [F , k; δ]q-code is thus an [m×n, k; δ]q-
code. Note that it does not make sense to talk about [F , k; δ]q-codes in Fnqm because
the shape of the corresponding matrices in Fm×nq depends on the chosen basis B for
the isomorphism in (2.1). We will make use of this fact later in Section 2.2.

Remark 2.1.5. Let us briefly relate Ferrers diagram codes to subspaces codes. All
m×n-matrices with the same Ferrers diagram shape F can be extended tom×(m+n)-
matrices in reduced row echelon form (RREF) with the same pivot indices by inserting
standard basis vectors. For instance, matrices with shape F as in Figure 2.1 lead to
RREF’s of the form 

1 • 0 • 0 0 • • 0 •
0 0 1 • 0 0 • • 0 •
0 0 0 0 1 0 • • 0 •
0 0 0 0 0 1 • • 0 •
0 0 0 0 0 0 0 0 1 •

 .

Precisely, let F = [c1, . . . , cn] and set ti = |{j | cj ≤ i}| for i = 1, . . . ,m−1 and t0 = 0.
Then the pivot indices of the resulting m× (m+n)-matrix in RREF are at positions
t0 + 1, t1 + 2, t2 + 3, . . . , tm−1 + m. In this way Ferrers diagram codes give rise to
subspace codes via the row spaces of the resulting matrices in RREF. The multilevel
construction by Etzion/Silberstein [14] tells us how to combine various Ferrers shapes
to ensure the quality of the subspace code. Not surprisingly, the rank distance of the
Ferrers diagram codes plays a crucial role.

The above discussion leads to the question as to what the maximum possible
dimension k of an [F , k; δ]-code is. In [14] Etzion/Silberstein present an upper bound
on the dimension via a simple counting argument. We need the following notation.
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Definition 2.1.6. Let F = [c1, . . . , cn] be an m × n-Ferrers diagram and let δ ∈ N.
For j = 0, . . . , δ − 1 define

νj := νj(F ; δ) =

{
number of dots in F after removing the
top j rows and rightmost δ − 1− j columns

}
=

n−δ+1+j∑
t=1

max{ct − j, 0}.

Furthermore, set νmin := νmin(F ; δ) = min{ν0, . . . , νδ−1}.

Note that νmin = 0 whenever δ > min{m,n}. Moreover, νmin = 0⇐⇒ cn−δ+1+j ≤
j for some j ∈ {0, . . . , δ − 1}. A simple Linear Algebra argument establishes the
following upper bound on [F ; δ]q-codes.

Theorem 2.1.7 ([14, Thm. 1]). Let C ⊆ Fm×n be an [F ; δ]-code. Then

dim(C) ≤ νmin(F ; δ).

Proof. Contrarily assume that there exists an [F , νi + 1, δ] code C for some i ∈
{0, . . . , δ − 1}. Let B = {B1, . . . , Bνi+1} be linearly independent in C. Let Ai be
the set obtained from F by deleting the topmost i rows and the rightmost δ − i− 1
columns, hence |Ai| = νi. Since |B| = νi + 1, there exists a nontrivial linear combi-
nation Y =

∑νi+1
j=1 αjBj in which the νi entries of Ai are all zeros. We know Y 6= 0

because B is linearly independent. The top i rows of Y contribute at most rank
i, and the right δ − 1 − i columns contribute at most rank δ − 1 − i. So we have
rk(Y ) ≤ δ − 1, a contradiction to C having minimum rank-distance δ.

This gives rise to the following definition.

Definition 2.1.8. An [F ; δ]-code C ⊆ Fm×n is called maximal if dim(C) = νmin(F ; δ).

In the same paper [14], Etzion/Silberstein formulate the following conjecture for
Ferrers diagram codes over finite fields.

Conjecture 2.1.9. For every m × n-Ferrers diagram F , every 1 ≤ δ ≤ min{m,n}
and every finite field Fq there exists a maximal [F ; δ]q-code.

The conjecture is certainly true for any F and δ = 1: set C = {Eij | (i, j) ∈ F},
where Eij ∈ Fm×nq denotes the standard basis matrix with a one in position (i, j)
and zeros elsewhere (this is even true for arbitrary fields). Conjecture 2.1.9 has been
proven for several cases of (F ; δ) but may still be considered as widely open. We will
revisit some of the established cases later in the paper and settle the conjecture for
further cases. For algebraically closed fields the conjecture is not true in general. In
Section 2.5 we will discuss this more closely and relate the existence of a maximal
[F ; δ]-code over Fq with genericity over large finite fields.

Let us return to Conjecture 2.1.9 for finite fields. The simplest case for δ ≥ 2 is
the case where F = [m, . . . ,m], that is, F is the full rectangle and does not put any
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restrictions on the matrices. If without loss of generality n ≤ m, then νmin(F ; δ) =
m(n − δ + 1), recovering the Singleton bound. In other words, a maximal [F ; δ]-
code is an [m×n; δ]-MRD code. The existence of such codes has been established by
Delsarte [12] and later recovered by Gabidulin [15]. We recall Gabidulin’s construction
here, but the two are essentially the same.

Theorem 2.1.10 ([12, Thm. 5.4 and 6.3], [15, Thm. 6/7]). Let m ≥ n, δ ∈ [n], and
let g1, . . . , gn ∈ Fqm be linearly independent over Fq. Set ` = n− δ + 1 and

M := M(g1, . . . , gn; `) =


g1 · · · gn
gq1 · · · gqn
...

...

gq
`−1

1 · · · gq
`−1

n

 ∈ F`×nqm .

Then the row space rowsp(M) := {uM | u ∈ F`qm} ⊆ Fnqm is called a Gabidulin code.
It is an Fqm-linear [m× n; δ]q-MRD code.

Note that C has dimension ` over Fqm (since M has full row rank), and thus its
Fq-dimension is m` = m(n − δ + 1), as desired. One may check Appendix A for a
more detailed proof.

The remainder of this section is devoted to a few simple facts that turn out to
be quite useful. The simple properties given below in Remarks 2.1.12 and 2.1.14
have already been used in the literature (for instance in the proof of [13, Thm. 7]),
but it seems nonetheless beneficial to formally introduce the according notions. The
terminology in Definition 2.1.11(b) below will be particularly convenient. It is a
generalization of [45] where the same notion is used for a more specific case. The
relevance of pending dots is, of course, that if Conjecture 2.1.9 is true, then these
dots are not necessary for the existence of maximal [F ; δ]q-codes.

Definition 2.1.11. (a) Let Fi be mi × n-Ferrers diagrams with the same number
of columns. F1 ⊆ F2 simply means set-theoretic inclusion, thus (i, j) ∈ F1

implies (i, j) ∈ F2.

(b) Let δ ∈ [n] and F2 be an m2 × n-Ferrers diagram. If there exists an m1 × n-
Ferrers diagram F1 ( F2 such that νmin(F1; δ) = νmin(F2; δ), then the dots in
F2 \ F1 are called pending dots of F2 with respect to δ.

Note that comparing two Ferrers diagrams as sets only makes sense in the con-
text where both have the same number of columns. The diagrams [1, 2, 3, 4] and
[0, 1, 2, 3, 4] are certainly the same, but as sets of points they look very different. Re-
call that Definition 2.1.2 includes m×n-Ferrers diagrams F = [c1, . . . , cn] with c1 = 0
and cn < m. This allows us to pad a diagram with empty rows and columns to make
it a desired size for the purpose of comparison. In the same way we may delete empty
rows or columns in order to obtain a Ferrers diagram where the first column and last
row are non-empty.
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Remark 2.1.12. Let F1 ⊆ F2 be mi × n-Ferrers diagrams such that νmin(F1; δ) =
νmin(F2; δ). Then the existence of a maximal [F1; δ]-code implies the existence of
a maximal [F2; δ]-code over the same field. This is clear because each matrix with
shape F1 also has shape F2.

Example 2.1.13. (a) Consider the Ferrers diagram F = [1, 2, 4, 4, 5] shown in
Figure 2.1. Then F does not have any pending dots with respect to δ = 2 or
δ = 3, but the dot at position (4, 3) is pending with respect to δ = 4.

(b) For F = [1, 3, 3, 4, 5] and δ = 4 the dots at positions (1, 1) and (2, 3) are
both pending as individual dots, that is, removing either one of them does not
decrease νmin(F ; δ) = 4. However, removing both of them will decrease it to 3.

(c) In [13, Ex. 5] the authors present a construction for a maximal [F ; 3]q-code
where F = [2, 4, 4, 6, 8] for fields Fq with q ≥ 4. However, the bottom 4 dots are
pending and removing them leads to the Ferrers diagram F ′ = [2, 4, 4, 5, 5], for
which the authors present a construction of maximal [F ′; 3]q-codes for arbitrary
fields in [13, Thm. 2]. Thus, not only does the latter construction work for all
finite fields, it also does not need the positions of the pending dots. We will
revisit [13, Thm. 2] in Theorem 2.2.1.

Remark 2.1.14. Let δ ∈ [n] and F ′, F be m×n-Ferrers diagrams such that F ′ ( F
and |F \ F ′| = 1 (that is, F ′ is obtained from F by removing one dot). Suppose
νmin(F ′; δ) = νmin(F ; δ) − 1. Then the existence of a maximal [F ; δ]-code over the
field F implies the existence of a maximal [F ′; δ]-code over F. Indeed, let C be
an [F , k; δ]-code, where k = νmin(F ; δ). Let {(i, j)} = F \ F ′. We can clearly
choose a basis {A1, . . . , Ak} of C such that (As)i,j = 0 for all 1 ≤ s ≤ k − 1. Then
{A1, . . . , Ak−1} is a basis of a maximal [F ′; δ]-code.

This reduction technique is certainly not a new result, and is fairly obvious. Nev-
ertheless, we include the following simple example to illustrate its power.

Example 2.1.15. Let δ = 3. Figure 2.2 shows all 4 × 4-Ferrers diagrams for which
Conjecture 2.1.9 can be confirmed via reduction described in Remark 2.1.14 starting
with a [4× 4; 3]-MRD code. The number in the bottom right corner is νmin(F ; 3) for
the given Ferrers diagram F . Later in this paper we will establish Conjecture 2.1.9 for
n× n-upper triangular matrices with δ = 3 (see Corollary 2.2.10). Figure 2.3 shows
all 4× 4-Ferrers diagrams for which Conjecture 2.1.9 can be confirmed via reduction
as in Remark 2.1.14 starting from the upper triangular shape.

The only 4×4-Ferrers diagram with positive νmin not appearing in these charts is
F = [1, 3, 3, 4]. This case has been dealt with by Etzion et al. [13, Ex. 7] by making
use of a suitable extension of a Gabidulin code. We present a simple alternative
construction.
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Figure 2.2: Reduction for 4× 4-diagrams with δ = 3 starting from F = [4, 4, 4, 4].
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Figure 2.3: Reduction for 4× 4-diagrams with δ = 3 starting from F = [1, 2, 3, 4].

Example 2.1.16. Let δ = 3 and consider the 4 × 4-Ferrers diagram F = [1, 3, 3, 4]
shown in Figure 2.4. Then νmin = 4. In order to construct a maximal [F ; 3]q-code
over any finite field F = Fq, we start with a [3× 3; 3]-MRD code, hence its dimension
is 3.

•
•
•
•
•
•
•
•
•
••

Figure 2.4: F = [1, 3, 3, 4]

We may choose a basis B1, B2, B3 of this code in the form

B1 =

1 a
(1)
12 a

(1)
13

0 a
(1)
22 a

(1)
23

0 a
(1)
32 a

(1)
33

 , B2 =

0 a
(2)
12 a

(2)
13

1 a
(2)
22 a

(2)
23

0 a
(2)
32 a

(2)
33

 , B3 =

0 a
(3)
12 a

(3)
13

0 a
(3)
22 a

(3)
23

1 a
(3)
32 a

(3)
33
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(see also Example 2.1.17(a) below). Hence the general linear combination is

B(λ) := λ1B1 + λ2B2 + λ3B3 =

λ1 p12 p13
λ2 p22 p23
λ3 p32 p33

 , where pij =
3∑
`=1

a
(`)
ij λ`.

Rank distance 3 guarantees that (a
(1)
22 , a

(1)
32 ) 6= (0, 0). We assume without loss of

generality that a
(1)
22 6= 0. Define now A1, . . . , A4 ∈ F4×4 such that their general linear

combination has the form

A(λ) =
4∑
`=1

λ`A` =


λ4 λ1 p12 p13
0 λ2 p22 p23
0 λ3 p32 + λ4 p33
0 0 0 λ4

 .

It remains to show that rk(A(λ)) ≥ 3 for all λ = (λ1, . . . , λ4) 6= 0. This is clear if
λ4 = 0. Thus let λ4 6= 0. In this case

rkA(λ) ≥ 3⇐⇒ rk

(
λ2 p22
λ3 p32 + λ4

)
≥ 1.

The right hand side is clearly true if (λ2, λ3) 6= (0, 0). In the case where (λ2, λ3) =

(0, 0), the matrix on the right hand side has second column (a
(1)
22 λ1, a

(1)
32 λ1 + λ4)

ᵀ,

and the assumption a
(1)
22 6= 0 along with (λ1, λ4) 6= (0, 0) guarantees that this vector

is nonzero. All of this establishes the existence of optimal [F ; 3]q-codes over any
field Fq. We will return to this particular Ferrers diagram F in Example 2.3.3 and
Corollary 2.6.9/Example 2.6.10. In the former we will show that a maximal [F ; 3]q-
code cannot be found as an Fq-linear subspace of an Fq4-linear [4× 4; 3]-MRD code.
In the latter we will discuss the probability that a random choice of 4 matrices with
shape F generate a maximal [F ; 3]q-code.

We close the section with a well-known example utilizing companion matrices.
Part (b) and (c) below are simple instances of the aforementioned reduction methods.

Example 2.1.17. (a) Consider the case m = n = δ, thus ` = 1. Let B =
(1, α, . . . , αm−1) be a basis of Fqm over Fq, and consider the matrix M =
(1, α, . . . , αm−1) ∈ F1×m

qm . Let f =
∑m

i=0 fix
i ∈ Fq[x] be the monic minimal

polynomial of α over Fq (thus fm = 1). Then the matrix code φB(rowsp(M)) ⊆
Fm×mq is the m-dimensional code given by

φB(rowsp(M)) = 〈I, C, . . . , Cm−1〉, where C =


0 0 · · · 0 −f0
1 0 · · · 0 −f1
0 1 · · · 0 −f2

. . .
...

0 0 · · · 1 −fm−1

 ,
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that is, C is the companion matrix of f . For any i ∈ [m] the code C =
〈I, C, . . . , Ci−1〉 is a maximal [F ;m]q-code for the m × m-Ferrers diagram
F = [i, i+ 1, . . . ,m, . . . ,m] (thus ct = min{i− 1 + t,m} and the last i columns
have m dots).

(b) The previous code can be used to cover further Ferrers diagrams. Choose t ≤
i − 1 and delete the t rightmost columns of all matrices in C. This yields an
m × n-Ferrers diagram code C̃ with shape F̃ = [i, i + 1, . . . ,m, . . . ,m], where
n = m−t (and the rightmost i−t columns have m dots). The code C̃ clearly has
dimension i and thus is a maximal [F̃ ;n]q-code because νmin(F̃ ;n) ≤ ν0(F̃ ;n) =
i.

(c) We can go even further. Consider an m × n-Ferrers diagram F = [c1, . . . , cn]
where cj ≥ c1+j−1 for j = 2, . . . , n (hence c1 ≤ m−n+1). Then νmin(F ;n) =
c1 and this remains true even after removing the dots at positions (i, j) with
i > c1 + j− 1, i.e., these dots are pending. Removing them leads to the Ferrers
diagram F̃ as in (b) with i = c1. Hence there exists a maximal [F ;n]q-code.

2.2 Maximal Ferrers Diagram Codes as Subspaces of MRD Codes

In this section we present a class of pairs (F ; δ) for which maximal [F ; δ]q-codes can
be found as Fq-subspaces of some (in fact any) Fqm-linear MRD code with the same
rank distance.

We start with two well-known results (Theorem 2.2.1 and Corollary 2.2.3) and
their proofs, which will help to generalize them. For the rest of the paper we fix
n ≤ m, and throughout this section we assume 2 ≤ δ ≤ n (as the existence of
maximal [F ; 1]-codes is trivial).

Recall the isomorphism φB : Fnqm −→ Fm×nq from (2.1) based on a chosen ordered
basis B of Fqm over Fq. For the following result note that every Fqm-linear MRD code
in Fnqm has a systematic generator matrix. This is a consequence of [15, Thm. 2].

Theorem 2.2.1 ([14, Thm. 2], [16, Sec. 2.5], [22, Cor. 19]). Let F = [c1, . . . , cn] be
an m× n-Ferrers diagram such that cj = m for all j = n− δ + 2, . . . , n (that is, the
last δ − 1 columns of F have the maximum number of m dots). Set ` = n − δ + 1
and let G = (I` | A) ∈ F`×nqm be a generator matrix of an Fqm-linear [m × n; δ]-MRD
code (for instance, a Gabidulin code). Let B = (x1, . . . , xm) be an ordered basis of
Fqm over Fq. Then the subspace

C =
{
φB
(
(u1, . . . , u`)G

)
| ut ∈ 〈x1, . . . , xct〉 for t = 1, . . . , `

}
⊆ Fm×nq

is a maximal [F ; δ]q-code. Furthermore, νmin(F ; δ) = ν0 =
∑`

t=1 ct.

Proof. Note that C is clearly an Fq-vector space. Next, let (u1, . . . , u`) ∈ F`qm be such
that ut ∈ Vt := 〈x1, . . . , xct〉. Set (u1, . . . , u`)A = (v1, . . . , vn−`). Then

φB
(
(u1, . . . , u`)G

)
=
(
[u1]B, . . . , [u`]B, [v1]B, . . . , [vn−`]B

)
=: M.
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By choice of ut, it follows that the matrixM has indeed shape F . Here it is crucial that
the last δ−1 columns of F are full and therefore do not impose any restrictions on the
coordinate vectors of v1, . . . , vn−`. Clearly, drk(C) =: δ′ ≥ δ because C is a subspace of
an MRD code of distance δ. Finally, dimFq(C) =

∑`
t=1 dimVt =

∑`
t=1 ct = ν0(F ; δ) ≥

ν0(F ; δ′) ≥ νmin(F ; δ′), where the first inequality is strict iff δ′ > δ. Now the upper
bound in Theorem 2.1.7 implies δ′ = δ and dimFq(C) = ν0(F ; δ) = νmin(F ; δ).

One may note that, once νmin(F ; δ) = ν0 =
∑`

t=1 ct is established, the result
above also follows from the reduction process described in Remark 2.1.14. Indeed,
for F̂ = [m]× [n] we have νmin(F̂ ; δ) = m(n− δ + 1) and, since ct = m for t > `, we
conclude νmin(F ; δ) = νmin(F̂ ; δ) − |F̂ \ F|. This has already been observed in [14,
Rem. 6] and [22, Cor. 19].

Since we may always reduce to the case where cn = m by removing empty rows,
the next result follows immediately.

Corollary 2.2.2. Let δ = 2. Then Conjecture 2.1.9 holds true for all Ferrers dia-
grams F and fields Fq.

The next result bears similarity to Theorem 2.2.1, but arrives at the same con-
clusion with a weaker assumption thanks to the consideration of pending dots.

Corollary 2.2.3 ([13, Thm. 3] and [22, Thm. 23]). Let F = [c1, . . . , cn] be an m×n-
Ferrers diagram such that cj ≥ n for all j = n − δ + 2, . . . , n (that is, the last
δ − 1 columns have at least n dots). Then there exists a maximal [F ; δ]q-code. More
precisely, all dots at positions (i, j) with i > m̂ = max{cn−δ+1, n} are pending, and
there exists a maximal [F̂ ; δ]q-code where F̂ = [ĉ1, . . . , ĉn] with ĉt = min{ct, m̂}.

Proof. Set ` = n − δ + 1. We show first that νmin(F ; δ) = ν0 =
∑`

t=1 ct. Using
Definition 2.1.6 we compute for any j = 1, . . . , δ − 1

νj =

`+j∑
t=1

max{ct − j, 0} ≥
∑̀
t=1

(ct − j) +

`+j∑
t=`+1

(n− j) ≥ ν0 + j(n− j − `) ≥ ν0.

Let now m̂ = max{c`, n} and consider the m̂ × n-Ferrers diagram F̂ = [ĉ1, . . . , ĉn],
where

ĉt = min{ct, m̂} =

{
ct, for t = 1, . . . , `,
m̂, for t = `+ 1, . . . , n.

Then the Ferrers diagram F̂ satisfies the assumptions of Theorem 2.2.1. Thus there
exists a maximal [F̂ ; δ]q-code and its dimension is given by νmin(F̂ ; δ) =

∑`
t=1 ĉt =∑`

t=1 ct = νmin(F ; δ). Since F̂ ⊆ F Remark 2.1.12 concludes the proof.

In [13, Thm. 8], Etzion et al. take the above idea further, tackling the case where
the rightmost δ− 1 columns contain at least n− 1 dots, assuming other criteria were
also met. More recently Liu et al. [35, Thm. 3.13] generalize the argument to handle
n− r dots, again requiring further restrictions on the shape. In particular, the first r
columns combined may have no more than m− n+ r dots.
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In Theorem 2.2.1 we could choose any ordered basis B to obtain the desired
maximal [F ; δ]q-code as a subfield subcode. In Theorem 2.2.6 below we will prove a
generalization of Theorem 2.2.1 for which we will have to make a judicious choice of
basis. The construction and assumptions differ from [35, Thm. 3.13]. We first need
the following lemmas.

Lemma 2.2.4. Let V be an m-dimensional vector space and V1, . . . , Vt be subspaces
of V with dimVj ≥ dj. Then dim

( ⋂t
j=1 Vj

)
≥∑t

j=1 dj − (t− 1)m.

Proof. We induct on the number of subspaces. Clearly the statement holds for t = 1.
Assume the statement holds for t− 1 subspaces. Then

dim
( ⋂t

j=1 Vj
)

= dim
(
Vt ∩

⋂t−1
j=1Vj

)
= dimVt + dim

( ⋂t−1
j=1 Vj

)
− dim

(
Vt +

⋂t−1
j=1Vj

)︸ ︷︷ ︸
≤m

≥ dt +
t−1∑
j=1

dj − (t− 2)m−m =
t∑

j=1

dj − (t− 1)m.

Lemma 2.2.5. Let G = (I` | A) ∈ F`×nqm be the generator matrix of an Fqm-
linear MRD code (thus, its rank distance is n − ` + 1). Let A = (aij). Then
rk(1, a1j, . . . , a`j) = ` + 1 for all j = 1, . . . , n − `, i.e., the entries of this vector
are linearly independent over Fq. In particular, aij 6∈ Fq for all (i, j).

Proof. Consider without loss of generality j = 1. Let λ0 +
∑`

i=1 λiai1 = 0 for some
λi ∈ Fq. Then (λ1, . . . , λ`)G = (λ1, . . . , λ`,−λ0, b1, . . . , bn−`−1) for some bi ∈ Fqm .
Since all λi are in Fq, this vector has rank at most n − `, whereas the code has
distance n− `+ 1. Thus the vector is zero and hence λi = 0 for all i, as desired.

Now we are ready to establish the following result.

Theorem 2.2.6. Let F = [c1, . . . , cn] be an m × n-Ferrers diagram. Let 2 ≤ δ ≤ n
and ` = n− δ + 1. Set ε =

∑n
t=`+1(m− ct), that is, ε is the number of dots missing

in the rightmost δ − 1 columns of F . Suppose

ct ≤ c`+1 − ε(`+ 1− t) for t = 1, . . . , `. (2.2)

Let G = (I` | A) ∈ F`×nqm be the generator matrix of an Fqm-linear [m × n; δ]-MRD
code. Then there exists an ordered basis B = (x1, . . . , xm) of Fqm over Fq such that
the subspace

C =
{
φB
(
(u1, . . . , u`)G

)
| ut ∈ 〈x1, . . . , xct〉 for t = 1, . . . , `

}
(2.3)

is a maximal [F ; δ]q-code. In this case νmin(F ; δ) = ν0 =
∑`

t=1 ct.

Theorem 2.2.1 is the special case where ε = 0. In this case the inequalities (2.2)
are vacuous.
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Proof. For any u = (u1, . . . , u`) ∈ F`qm we have

uG = (u1, . . . , u`, v1, . . . , vn−`), where (v1, . . . , vn−`) = uA. (2.4)

As in the proof of Theorem 2.2.1, for any fixed basis B, we may choose u1, . . . , u`
such that the first ` columns of the matrix φB(uG) adhere to the desired shape F .
However, now we also have to accommodate the last n − ` columns. We show that
for a specific choice of basis B this can indeed be achieved.

Let A = (aij)
j∈[n−`]
i∈[`] . Then aij 6∈ Fq for all i, j thanks to Lemma 2.2.5. In particu-

lar, aij 6= 0. Consider any chain of subspaces

V1 ( V2 ( . . . ( Vm = Fqm ,

such that dimVi = i. For t ∈ [`] set Wt =
⋂n−`
j=1 Vc`+ja

−1
tj . Since dim(Vc`+ja

−1
tj ) = c`+j,

Lemma 2.2.4 implies that

dim(Wt) ≥
n−∑̀
j=1

c`+j − (n− `− 1)m = m− ε for all t ∈ [`].

Consider the chain of subspaces

Vc`+1
∩
⋂̀
j=1

Wj ⊆ Vc`+1
∩
⋂̀
j=2

Wj ⊆ . . . ⊆ Vc`+1
∩W` ⊆ Vc`+1

⊆ Fqm .

By Lemma 2.2.4 and (2.2) we have for t ∈ [`]

dim

(
Vc`+1

∩
⋂̀
j=t

Wj

)
≥ c`+1 +

∑̀
j=t

dim(Wj)− (`− t+ 1)m

≥ c`+1 + (`− t+ 1)(m− ε)− (`− t+ 1)m

= c`+1 − (`− t+ 1)ε

≥ ct.

This allows us to choose an ordered basis B = (x1, . . . , xm) of Fqm such that

x1, . . . , xct ∈ Vc`+1
∩
⋂̀
j=t

Wj for t ∈ [`].

Now we can prove that the code C in (2.3) has shape F . Consider uG as in (2.4), and
where ut ∈ 〈x1, . . . , xct〉. Then the first ` columns of φB(uG) conform to the shape
of F . Moreover,

utatj ∈ 〈x1, . . . , xct〉atj ⊆ Wtatj ⊆ Vc`+j for t ∈ [`] and j ∈ [n− `].

Thus vj =
∑`

t=1 utatj ∈ Vc`+j for j ∈ [n− `] and all of this shows that φB(uG) indeed

has shape F . Finally,
∑`

t=1 dim 〈x1, . . . , xct〉 =
∑`

t=1 ct = ν0(F ; δ) ≥ νmin(F ; δ′),
where δ′ ≥ δ is the rank distance of C. As in the proof of Theorem 2.2.1 we conclude
that δ′ = δ and the code C in (2.3) is a maximal [F ; δ]q-code.
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The inequalities (2.2) can be regarded as a staircase condition: the first ` columns
must not have any dots below the staircase which starts at the last dot in column `+1
and goes left and upward with step size ε; see the next example. In fact, Inequal-
ity (2.2) is trivially true for t > ` and thus no column reaches below the staircase.

We wish to point out that in [56, Thm. 3.2 and 3.6] Zhang/Ge establish the
existence of further cases of maximal [F ; δ]q-codes by imposing a rapid increase of the
column indices. The conditions are very different from ours and imply the existence
of a tower of subfields of Fqm . As the examples in [56] show, in most cases a large
number of pending dots is used for the constructions.

Example 2.2.7. Consider F = [1, 3, 5, 7, 7, 8, 8, 8] and δ = 6. Then ` = 3 and ε = 2.
The staircase condition (2.2) is indeed satisfied as can also be seen by Figure 2.5.
Hence maximal [F ; 6]q-codes exist over every field Fq. Note that the three dots in the
bottom row are pending in the sense of Definition 2.1.11. However, deleting them
leads to a Ferrers diagram with fewer rows than columns. Swapping rows and columns
accordingly yields the 8 × 7- Ferrers diagram F̃ = [5, 5, 6, 6, 7, 7, 8]. No previous
construction provides us with a maximal [F̃ ; 6]q-code and thus Remark 2.1.12 cannot
be utilized for the given pair (F ; 6).
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Figure 2.5: Staircase Condition as in Theorem 2.2.6

Remark 2.2.8. A particularly nice case of Theorem 2.2.6 arises when the last δ − 2
columns of F are full (i.e., have m dots). In this case ε = m − c`+1 and (2.2) reads
as ct ≤ m− (m− c`+1)(`+ 2− t) for t ∈ [`].

Example 2.2.9. Consider the 6 × 6-Ferrers diagram F = [1, 2, 4, 5, 6, 6], shown in
Figure 2.6, and let δ = 4, hence ` = n − δ + 1 = 3. Then ε = 1 and we are
in the situation of Remark 2.2.8. The conditions ct ≤ m − (m − c4)(` + 2 − t) =
6 − (6 − 5)(5 − t) = 1 + t for t = 1, . . . , ` are indeed satisfied and thus maximal
[F ; 4]q-codes exist over every field Fq. An analogous comment as in Example 2.2.7
applies to the two pending dots in the last row.

The following is immediate with Remark 2.2.8.

Corollary 2.2.10. Conjecture 2.1.9 holds true for n × n-upper triangular matrices
with δ = 3.

We also obtain an analogue to Corollary 2.2.3. It arises as a generalization of the
situation discussed in Remark 2.2.8.
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Figure 2.6: Staircase Condition as in Remark 2.2.8

Corollary 2.2.11. Let ` = n−δ+1 and F = [c1, . . . , cn] be an m×n-Ferrers diagram
such that ct ≥ n for all t = `+ 2, . . . , n (that is, the last δ − 2 columns of F have at
least n dots) and such that

ct ≤ n− (n− c`+1)(`+ 2− t) for t ∈ [`].

Then all dots at positions (i, j) where i > max{c`+1, n} are pending and there exists
a maximal [F ; δ]q-code for any field Fq.

Proof. If c`+1 ≥ n, the result is in Corollary 2.2.3. Thus let us assume c`+1 < n. Set

ĉt = min{ct, n} =

{
ct, if t ≤ `+ 1,
n, if t ≥ `+ 2,

and let F̂ = [ĉ1, . . . , ĉn]. Then F̂ is an n× n-Ferrers diagram satisfying the staircase
condition of Remark 2.2.8. In particular, νmin(F̂ ; δ) = ν0(F̂ ; δ). Moreover, F̂ ⊆
F and ν0(F̂ ; δ) =

∑`
t=1 ĉt = ν0(F ; δ). Thus νj(F ; δ) ≥ νj(F̂ ; δ) ≥ νmin(F̂ ; δ) =

ν0(F̂ ; δ) = ν0(F ; δ) for all j ∈ {1, . . . , δ−1}. This tells us that a maximal [F̂ ; δ]q-code
is also a maximal [F ; δ]q-code and the existence of the former has been established in
Theorem 2.2.6 and Remark 2.2.8.

Example 2.2.12. Let δ = 5 and F = [3, 4, 5, 6, 6, 7]. Then the last δ−2 = 3 columns
have at least n = 6 dots and the staircase condition from Corollary 2.2.11 is satisfied.
Hence there exists a maximal [F ; 5]q-code over any field Fq, and the bottom dot is
pending.
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Figure 2.7: Staircase Condition as in Corollary 2.2.11

We close this section with a few instances where a maximum [F ; δ]q-code can be
realized as an Fq-subspace of an Fqm-linear [m × n; δ]-MRD code even though none
of the staircase conditions are satisfied. We need the following lemma.
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Lemma 2.2.13. Given m ≥ n ≥ δ. Set ` = n− δ + 1. Furthermore, let a1, . . . , a` ∈
Fqm be such that rk(1, a1, . . . , a`) = `+1. Then there exists a matrix A ∈ F`×(n−`)qm such
that its first column is given by (a1, . . . , a`)

ᵀ and C = rowsp(I` | A) is an Fqm-linear
[m× n; δ]-MRD code.

Proof. Let G′ = (I | B) ∈ F`×nqm generate an MRD code, and denote the first column
of B by (b1, . . . , b`)

ᵀ. Then rk(1, b1, . . . , b`) = ` + 1 thanks to Lemma 2.2.5. Hence
there exists an Fq-isomorphism φ : Fqm −→ Fqm such that φ(bi) = ai for i = 1, . . . , `
and φ(1) = 1. Set G = φ(G′), where we apply φ entrywise to the matrix. Then G is
of the form G = (I | A), where the first column of A is as desired. Furthermore, G
generates an MRD code. This follows from the Fq-linearity of φ along with the MRD
criterion given in [15, Thm. 2], which says that a matrix G ∈ F`×nqm generates an MRD
code iff for every U ∈ GLn(Fq) each maximal minor of GU is nonzero.

Example 2.2.14. Let F = [2, 2, 4, 4] and let δ = 4. Thus νmin = 2. Choose an
Fq4-linear [4 × 4; 4]-MRD code generated by G = (1, β, β′, β′′) ∈ F1×4

q4 . Suppose
B = (x1, x2, x3, x4) is a basis such that {φB(uG) | u ∈ 〈x1, x2〉} has shape F . The
shape implies 〈x1, x2〉β ⊆ 〈x1, x2〉. From this one easily derives 〈1, β〉 = 〈1, x−11 x2〉
as well as βx−11 x2 ∈ 〈1, x−11 x2〉. In other words, β2 ∈ 〈1, β〉. Such an element
clearly exists and any basis of the form B = (1, β, x3, x4) leads to the desired Ferrers
diagram code. All of this shows that the MRD code generated by (1, β, β′, β′′) admits
a maximal [F ; 4]-code iff β has degree 2. We conclude that some, but not every, Fq4-
linear [4× 4; 4]-MRD code contains, for a suitable basis B, a maximal [F ; 4]q-code.

The following result provides us with maximal Ferrers diagram codes for certain
diagrams with at most 3 distinct column indices. The construction bears some re-
semblance to [56, Thm. 3.2]. However, while the latter requires pending dots for
many Ferrers diagrams this is not the case for our construction. Such an example,
not covered by any of the constructions in [56] and not having any pending dots, will
be presented below in Example 2.2.16.

Proposition 2.2.15. Let 3 ≤ δ ≤ n ≤ m and put ` = n − δ + 1. Let b ∈ N be a
common divisor of m and `+ 1. Then there exists a maximal [F ; δ]q-code, where

F = [b, . . . , b︸ ︷︷ ︸
`−b+1

, `+ 1, . . . , `+ 1︸ ︷︷ ︸
b

,m, . . . ,m︸ ︷︷ ︸
δ−2

].

Proof. Let α ∈ Fqm be a primitive element, and put β = α(qm−1)/(qb−1). Define the
Fq-subspace

V =
〈
αiβj

∣∣∣ 0 ≤ i <
`+ 1

b
, 0 ≤ j < b

〉
Fq
⊂ Fqm .

Using that b ≤ m/2, one easily verifies that s := (` + 1)/b − 1 < (qm − 1)/(qb − 1),
and therefore the described generators form a basis of V . Thus dimFq(V ) = ` + 1.
Let B be a basis of Fqm , whose first ` + 1 elements are the given basis of V in the
order

1, β, . . . , βb−1 |α, αβ, . . . , αβb−1 |α2, α2β, . . . , α2βb−1 | . . . |αs, αsβ, . . . , αsβb−1. (2.5)
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Note that Fq[β] = Fqb , and thus βb is an Fq-linear combination of 1, . . . , βb−1. This
in turn implies that V is β-invariant. By Lemma 2.2.13 there exists a matrix G =
(I` | A) ∈ F`×nqm generating an Fqm-linear MRD code, and where the first column of A
is given by the transpose of

(α, αβ, . . . , αβb−1 |α2, α2β, . . . , α2βb−1 | . . . |αs, αsβ, . . . , αsβb−1 | β, . . . , βb−1). (2.6)

Put

C = φB
{

(u1, . . . , u`)G
∣∣u1, . . . , u`−b+1 ∈

〈
1, β, . . . , βb−1

〉
and u`−b+2, . . . , u` ∈ V

}
.

Then dim(C) = b(`− b+ 1) + (`+ 1)(b−1) = ν0(F ; δ) and C has rank distance δ′ ≥ δ.
It remains to see that C is supported on F . This is clearly the case for the first `
coordinates of any codeword (u1, . . . , u`)G thanks to the choice of B and (2.5), and it
is trivially true for the last δ − 2 coordinates. The (`+ 1)-st coordinate is the scalar
product of (u1, . . . , u`) and the vector in (2.6). By the β-invariance of V this product
is in V , and thus its coordinate vector has zero entries in the last m− `− 1 positions
due to the choice of the basis B. Thus C is an [F ; δ′]q-code of dimension ν0(F ; δ). As
in the proof of Theorem 2.2.1 this yields the desired result.

Let us briefly revisit Example 2.2.14. Then F is as in the last proposition (` =
1, b = 2, and s = 0), and the case where the entry β of G has degree 2 is the situation
from the previous proof.

We conclude this section with an example, which has been mentioned explicitly in
[13, Sec. VIII] as an open case, and can now be settled thanks to Proposition 2.2.15.

Example 2.2.16. Let m = n = 6 and δ = 4. Hence ` = n−δ+1 = 3. Choosing b = 2
leads to the Ferrers diagram F = [2, 2, 4, 4, 6, 6]. In this case νmin(F ; δ) = 8 = νj for
all j = 0, . . . , 3. Thus F has no pending dots w.r.t. δ. The matrix G of the previous
proof takes the form

G =

1 0 0 α b1 c1
0 1 0 αβ b2 c2
0 0 1 β b3 c3

 ∈ F3×6
q6 ,

where α is a primitive element of Fq6 and β := α(q6−1)/(q2−1). The desired maximal
[F ; 4]q-code is given by

C :=
{
φB
(
(u1, u2, u3)G

) ∣∣u1, u2 ∈ 〈1, β〉, u3 ∈ 〈1, β, α, αβ〉}, (2.7)

which is indeed 8-dimensional. It is worth mentioning that maximal [F ; 4]q-codes
are extremely scarce. Indeed, using SageMath and testing 100,000,000 tuples of 8
random matrices of shape F over F2 did not lead to a single maximal [F ; 4]2-code.
In Section 2.5 we will discuss more generally the probability that a random selection
of νmin(F ; δ) matrices in Fq[F ] generates a maximal [F ; δ]q-code.
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2.3 Ferrers Diagram Codes not Obtainable from MRD Codes

In Example 2.2.14 we illustrated that for certain pairs (F ; δ) a maximal [F ; δ]q-code
can be realized as an Fq-linear subspace of a suitably chosen Fqm-linear MRD code.
We now present pairs (F ; δ) that do not allow the realization of a maximal [F ; δ]q-
code as a subfield subcode of any Fqm-linear MRD code. In order to do so we need
the following simple lemma.

Lemma 2.3.1. Let a ∈ Fqm \ Fq and suppose there is an Fq-subspace V of Fqm that
is invariant under multiplication by a. Then gcd(dimFqV,m) > 1.

Proof. Let the subfield Fq[a] have order qr. Then r > 1 and r | m. By assumption V
is an Fq[a]-subspace of Fqm . Hence dimFq V = tr, where t := dimFq [a] V . This proves
the statement.

Corollary 2.3.2. Let F = [c1, . . . , cn] be an m× n-Ferrers diagram and 2 ≤ δ ≤ n.
Set ` = n− δ + 1. Suppose

c` = c`+1 < m and gcd(c`,m) = 1.

If νmin(F ; δ) = ν0(F ; δ) =
∑`

t=1 ct, then a maximal [F ; δ]q-code does not exist as an
Fq-subspace of an Fqm-linear [m× n; δ]-MRD code.

Note that in the situation of this corollary, the step size ε =
∑n

t=`+1(m− ct) from
Theorem 2.2.6 is positive and the staircase condition (2.2) is not satisfied.

Proof. Suppose by contradiction that G = (I` | A) ∈ F`×nqm generates an MRD
code that contains a maximal [F ; δ]-code. This means, there exists a basis B =
(x1, . . . , xm) of Fqm such that

φB
(
(u1, . . . , u`)G

)
has shape F for all ut ∈ 〈x1, . . . , xct〉, t ∈ [`].

Set V := 〈x1, . . . , xc`〉. Then ut ∈ V for all t ∈ [`]. Let uA = (v1, . . . , vn−`). Then

v1 =
∑`

t=1 utat, where (a1, . . . , a`)
ᵀ is the first column of A, and c` = c`+1 implies

v1 ∈ V . Since this has to be true for all choices of u1, . . . , u`, we obtain in particular
that u`a` ∈ V for all u` ∈ V and conclude that V is a`-invariant. By Lemma 2.2.5
the element a` is not in Fq, and thus Lemma 2.3.1 leads to a contradiction to the
given coprimeness of c` and m.

Now we are ready to present some examples.

Example 2.3.3. For F = [1, 3, 3, 4] and δ = 3 we have ` = 2 and c2 = c3 = 3.
Thus, by Corollary 2.3.2 a maximal [F ; 3]q-code is not realizable as an Fq-subspace
of an Fq4-linear [4 × 4; 3]-MRD code. As we saw in Example 2.1.16, such codes can
nevertheless easily be constructed in an ad-hoc manner. In Example 2.6.10 we will
return to this Ferrers diagram and discuss the probability that 4 randomly chosen
matrices in Fq[F ] generate a maximal [F ; δ]q-code.
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Example 2.3.4. Let F be the 5 × 5-Ferrers diagram F = [1, 3, 4, 4, 5] and δ = 3.
Then ` = 3 and νmin(F ; δ) = c1 + c2 + c3 = 8, c3 = c4 = 4, gcd(c3,m) = 1 (and F
has no pending dots w.r.t. δ = 3). Again, Corollary 2.3.2 implies that a maximal
[F ; 3]-code cannot be obtained as an Fq-subspace of an Fq5-linear[5×5; 3]-MRD code.
In this case a maximal [F ; δ]q-code can be obtained by [13, Construction 2, Thm. 8].
The assumptions of [13, Thm. 8] are indeed met: (1) the last δ − 1 columns have
at least n − 1 dots, (2) the first n − δ + 1 columns have at most n − 1 dots1, (3)
m ≥ n− 1 + c1.

Example 2.3.5. Consider the 5×5-Ferrers diagram F = [2, 2, 5, 5, 5] with δ = 5 and
` = n − δ + 1 = 1. Hence c` = c`+1 = 2 and νmin(F ; 5) = c1 = 2. Thus, as above, a
maximal [F ; 5]-code cannot be realized as an Fq-subspace of an Fq5-linear [5 × 5; 5]-
MRD code. However, such a code can easily be obtained as follows. First of all, F has
a pending dot at (5, 3). Removing that dot leads to a Ferrers diagram covered by [13,
Thm. 9]. The simple proof shows how to construct the desired maximal [F ; 5]q-code
over any field Fq.

2.4 The Upper Triangular Shape and Distance n− 1

In this short section we establish the existence of maximal n × n-Ferrers diagram
codes of upper triangular shape with rank distance n− 1 in two different ways. The
first one is by induction on n and a pure existence result. The second one is an
explicit construction based on an irreducible polynomial. We leave it as an open
problem whether either construction can be generalized to upper triangular matrices
with rank distance δ < n− 1.

We start with the recursive construction for which the following lemma is crucial.
We denote the column space of a matrix M by colsp(M).

Lemma 2.4.1. Let F = Fq and A,B ∈ Fn×n be such that colsp(B) * colsp(A). Then
there exist vectors v, w ∈ Fn such that for all (λ, µ) ∈ F2 \ {(0, 0)}

rk(λA+ µB) ≤ n− 1 =⇒ λv + µw 6∈ colsp(λA+ µB).

Proof. Choose v ∈ colsp(B) \ colsp(A). It suffices to show the existence of a vector
w ∈ Fn such that λv + w 6∈ colsp(λA+B) whenever rk(λA+B) ≤ n− 1.

To this end, set Mλ := λA + B and define M = {λ ∈ F | rk(Mλ) ≤ n − 1}.
Moreover, for each λ ∈M define the affine map

fλ : Fn −→ Fn, x 7−→Mλx− λv.

Then for any z ∈ Fn we have z ∈ im(fλ) ⇐⇒ λv + z ∈ colsp(Mλ). Hence we need
to show the existence of a vector w ∈ Fn \ J , where J =

⋃
λ∈M im(fλ). Note that

|M| ≤ q and |im(fλ)| ≤ qn−1 for all λ ∈ M. Thus |J | ≤ qn. Clearly, if |M| < q we
have |J | < qn, as desired. Hence let M = Fq. In this case the union is not disjoint

1This assumption is not explicitly mentioned in [13, Construction 2, Thm. 8] but is in fact
necessary; see also the paragraph after the proof of Thm. 8 in [13].
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because by choice of v we have v = Bx for some x ∈ Fn and thus v = f0(x) = f−1(0).
Thus, again |J | < qn.

Now we can establish the existence of maximal [F ;n−1]q-codes for the n×n-upper
triangle F .

Theorem 2.4.2. Let F = [1, 2, . . . , n], thus Fq[F ] is the space of upper triangular
matrices over Fq. Let δ = n − 1, hence νmin(F ;n − 1) = 3. Then for every q
there exists a maximal [F ;n − 1]q-code. Thus, Conjecture 2.1.9 is true for the pair
(F ;n− 1).

Proof. We induct on n. For n = 2 the statement is trivially true since the matrices

A =

(
1 0
0 0

)
, B =

(
0 0
0 1

)
, and C =

(
0 1
0 0

)
generate a 3-dimensional code over any field, and the minimum prescribed distance
is only 1 = n− 1.

Suppose now the statement is true for size n and that A,B,C generate a maximal
[F ;n− 1]q-code in Fn×n. Assume colsp(B) * colsp(A).

By Lemma 2.4.1 there exist v, w ∈ Fn such that λv + µw /∈ colsp(λA + µB)
whenever rk(λA+ µB) = n− 1. Define the (upper triangular) matrices

Â =

(
A v
0 0

)
, Ĉ =

(
B w
0 0

)
, B̂ =

(
C 0
0 1

)
∈ F(n+1)×(n+1).

Consider a general linear combination

Ω := λÂ+ µĈ + νB̂ =

(
λA+ µB + νC λv + µw

0 ν

)
.

If ν 6= 0 then clearly rk(Ω) ≥ n, while for ν = 0 the choice of v, w also guarantees that

rk(Ω) = n. This shows that Â, B̂, Ĉ generate a maximal [F̂ , n]q-code in F(n+1)×(n+1),

where F̂ = [1, 2, . . . , n+1]. Finally note that colsp(B̂) * colsp(Â), and we may apply
the induction step again to this triple of matrices.

We conclude this section with an explicit construction, this time not relying on
recursion.

Construction 2.4.3. Let

A =


0

1
. . .

1

 and B =


0 1

. . . . . .
. . . 1

0


be n × n matrices. Choose elements c, d ∈ Fq such that y2 + dy − c ∈ Fq[y] is
irreducible.
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Case i: If n is even, put

C =



1 d −1

0 0 1

c d −1

0
. . .

. . . −1

0 0 1

c d

0


.

Case ii: If n is odd, put

C =



1 d −1

0 0 1

c d −1

0
. . .

. . . −1

0 0 1

c d −1

0 0
c



.

We define the code C = 〈A,B,C〉Fq .

Theorem 2.4.4. The output code C in Construction 2.4.3 is a maximal [F ;n − 1]q
code, where F = [1, 2, . . . , n] is the n× n upper triangular Ferrers diagram.

Proof. Clearly rk(xA+ yB) ≥ n− 1 if (x, y) 6= (0, 0) ∈ F2
q. It remains to consider the

rank of Ω := xA+ yB + C.
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Case i: Assume n is even. If x = 0, then

Ω =



1 y + d −1

0 y 1

c y + d −1

0
. . .

. . . −1

0 y 1

c y + d

0



.

Each copy of

(
y 1
c y + d

)
contributes 2 rank because of our choice of c and d.

The top row contributes 1 more, so rk(Ω) = n− 1.

Now suppose x 6= 0. We then have

Ω =



1 y + d −1

x y 1

x+ c y + d −1

x
. . .

. . . −1

x y 1

x+ c y + d

x



.

If x 6= −c, then the main diagonal guarantees rk(Ω) = n. If x = −c, we have

Ω =



1 y + d −1

−c y 1

0 y + d −1

−c . . .

. . . y + d −1

−c y 1

0 y + d

−c



.
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Each copy of

(
y + d −1
−c y

)
contributes 2 rank, again because of our choice of c

and d. Since −c 6= 0, the rightmost column contributes 1 more, so rk(Ω) = n−1.

Case ii: Assume n is odd. If x = 0, then

Ω =



1 y + d −1

0 y 1

c y + d −1

0
. . .

. . . −1

0 y 1

c y + d −1

0 y

c



.

Each copy of

(
y 1
c y + d

)
contributes 2 rank. Since c 6= 0, the top and bottom

rows each contribute 1 more. Thus rk(Ω) = n− 1.

Now suppose x 6= 0. We then have

Ω =



1 y + d −1

x y 1

x+ c y + d −1

x
. . .

. . . −1

x y 1

x+ c y + d −1

x y

x+ c



.
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If x 6= −c, then again rk(Ω) = n. If x = −c, we have

Ω =



1 y + d −1

−c y 1

0 y + d −1

−c . . .

. . . y + d −1

−c y 1

0 y + d −1

−c y

0



.

Each copy of

(
y + d −1
−c y

)
contributes 2 rank. We conclude that rk(Ω) = n−1.

It is particularly interesting that this construction utilizes none of the dots in the
top right corner of F . Naturally, one wonders if either of the constructions in this
section can be generalized to other rank distances. However, such a generalization is
not immediately apparent because with δ = n − 2 we already need six matrices to
generate a maximal code.

2.5 On the Genericity of Maximal Ferrers Diagram Codes

In this section we study the likelihood that a randomly chosen Ferrers diagram code
of a given dimension has maximum rank. It will turn out that the answer depends
highly on the choice of the Ferrers diagram. Special attention will be paid to MRD
codes.

For MRD codes the question has also been studied in [40] by Neri et al. (focussing
on Fqm-linear MRD codes) and in [7] by Byrne/Ravagnani. We will give more details
and compare our results to those as we go along.

As before we assume throughout that n ≤ m and δ ∈ [n]. We cast the following
definition.

Definition 2.5.1. Let F be an m × n-Ferrers diagram and δ ∈ [n]. Set N =
νmin(F ; δ). Then N ≤ |F| = dimFq[F ]. Consider the spaces

Tq = {C ⊆ Fq[F ] | dim(C) = N} and T̂q = {C ∈ Tq | drk(C) = δ},

thus T̂q is the set of maximal [F ; δ]q-codes. Then the fraction |T̂q|/|Tq| is called the
proportion of maximal [F ; δ]-codes (within the space of all N -dimensional subspaces
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of Fq[F ]). We say that maximal [F ; δ]-codes are generic if

lim
q→∞

|T̂q|
|Tq|

= 1.

Of course, investigating genericity does not address the existence of maximal
[F ; δ]-codes over any given finite field. Note also that maximal [F ; 1]-codes are triv-
ially generic.

It will occasionally be useful for us to express genericity in terms of the probability
that randomly chosen matrices generate a maximal [F ; δ]-code. In order to do so,
we need to fix the probability distribution on Fm×nq such that all entries of a matrix
A = (aij) ∈ Fm×nq are independent and uniformly distributed. Thus, for all (i, j) and
all α ∈ Fq:

Prob (aij = α) = q−1.

For a matrix with shape F , the above applies to all entries inside F whereas all other
entries are zero with probability 1. We say that A1, . . . , AN ∈ Fq[F ] are randomly
chosen matrices if they are chosen independently and randomly according to the
above distribution. We will frequently, and without specific mention, make use of the
well-known identity ∣∣{M ∈ Fa×bq

∣∣ rkM = b
}∣∣ =

b−1∏
i=0

(qa − qi).

Proposition 2.5.2. Fix a pair (F ; δ) and let N = νmin(F ; δ). Define

Pq := Prob
(
〈A1, . . . , AN〉 is an [F , N ; δ]q-code

)
for randomly chosen matrices A1, . . . , AN ∈ Fq[F ]. Then

|T̂q|
|Tq|

= Pq ·
q|F|N∏N−1

i=0 (q|F| − qi)
. (2.8)

As a consequence, limq→∞ |T̂q|/|Tq| = limq→∞ Pq and maximal [F ; δ]-codes are generic
in the sense of Definition 2.5.1 iff limq→∞ Pq = 1.

Proof. In addition to the sets Tq and T̂q from Definition 2.5.1 define

Wq = {(A1, . . . , AN) ∈ Fq[F ]N | dim 〈A1, . . . , AN〉 = N},
Ŵq = {(A1, . . . , AN) ∈ Wq | drk〈A1, . . . , AN〉 = δ}.

}
(2.9)

Due to the uniform probability, the probability Pq is given by Pq = |Ŵq|/q|F|N .

Furthermore, each code C in Tq has α :=
∏N−1

i=0 (qN − qi) ordered bases. In other

words, |Tq|α = |Wq| and |T̂q|α = |Ŵq| which in turn implies

|T̂q|
|Tq|

=
|Ŵq|
|Wq|

= Pq
q|F|N

|Wq|
. (2.10)

Using |Wq| =
∏N−1

i=0 (q|F| − qi), one arrives at (2.8). The final statements follow from
the fact that the rightmost fraction approaches 1 as q →∞.
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In the next section we will show that Fq-linear [m × n; δ]-MRD codes are not
generic (unless n = 1) and will give an upper bound for the asymptotic probability.
This result in stark contrast to the results in [40] by Neri et al., where Fqm-linear rank-
metric codes in Fnqm are considered. The authors show that Fqm-linear MRD codes
are generic within the class of all Fqm-linear rank-metric codes. Let us illustrate the
difference of the two settings for [m× n;n]-MRD codes. In this case, the Fqm-linear
case amounts to the question whether a randomly chosen matrix of the form

G = (g1, . . . , gn) ∈ F1×n
qm

generates an MRD code. This is obviously equivalent to the question of whether
g1, . . . , gn are linearly independent over Fq. The probability for this is (

∏n−1
i=0 (qm −

qi))/(qmn) and tends to 1 as q →∞. In the matrix version the same reads as follows.
Let C ∈ Fm×mq be the companion matrix of a primitive polynomial. The above
asks for the probability that for a randomly chosen matrix A ∈ Fm×nq the matrices
A,CA, . . . , Cm−1A span an [m×n;n]-MRD code. But the latter is simply equivalent
to A having rank n, which again results in the above given probability.

On the other hand, in the space of all Fq-linear rank-metric codes we have to
study the probability that randomly chosen matrices A1, . . . , Am ∈ Fm×nq generate
an [m× n;n]-MRD code, which means that for all (λ1, . . . , λm) ∈ Fmq \ 0 the matrix∑m

i=1 λiAi has full rank. As one may expect, this property is not generic. We will
indeed show this later in Corollary 2.5.13, and in the next section we will provide
upper bounds on the probability.

In [7] Byrne/Ravagnani use a combinatorial approach to obtain estimates for
the proportion of Fq- and Fqm-linear MRD codes. In [7, Cor. 5.5] they also derive
the genericity of Fqm-linear MRD codes, and in [7, Cor. 6.2] they show that the
asymptotic proportion of Fq-linear MRD codes is at most 1/2. In Theorem 2.6.6 we
will significantly improve upon this upper bound. It should be mentioned, however,
that their approach is far more general and also leads to genericity results of other
classes of codes.

We now turn to investigating genericity for general pairs (F ; δ). We show first
that genericity is equivalent to the existence of a maximal [F ; δ]-code over an alge-
braically closed field. To do so, we consider the algebraic closure F of Fq. Recall that
Definition 2.1.4 – Theorem 2.1.7 make sense and are valid for matrices over infinite
fields as well. Similarly, Definition 2.1.8 and Remarks 2.1.12 and 2.1.14 are valid over
any field. We will also need the following result.

Lemma 2.5.3 (Schwartz-Zippel Lemma [43, 57]). Let F be any field and fix a nonzero
polynomial f ∈ F[x1, . . . , xn] of total degree d. Let S be a finite subset of F and
s1, . . . , sn be independently and uniformly selected from S. Then

Prob
(
f(s1, . . . , sn) = 0

)
≤ d

|S| .

Now we are ready to state and prove the following.
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Theorem 2.5.4. Fix a prime power q and let F be the algebraic closure of F := Fq.
Consider an m × n Ferrers diagram F and some δ ∈ [n] such that νmin(F ; δ) > 0.
Let N ≤ νmin(F ; δ). The following are equivalent.

(i) There exist A1, . . . , AN ∈ F[F ] such that 〈A1, . . . , AN〉 is an [F , N ; δ]-code.

(ii) The set
{

(A1, . . . , AN) ∈ F[F ]N
∣∣ 〈A1, . . . , AN〉 is an [F , N ; δ]-code

}
is a

nonempty Zariski-open set in FNt, where t = |F| is the number of dots in F .

(iii) Let Pqr,N = Prob
(
〈A1, . . . , AN〉 is an [F , N ; δ]qr-code

)
, where

A1, . . . , AN ∈ Fqr [F ] are randomly chosen. Then limr→∞ Pqr,N = 1.

As a consequence, maximal [F ; δ]-codes are generic iff there exists a maximal [F ; δ]-
code over any algebraically closed field of positive characteristic.

One should note that for the equivalence a fixed ‘base field’ Fq is considered, along
with its field extensions and algebraic closure. Only for the consequence, we need to
consider all finite fields due to the definition of genericity.

We believe that the existence of maximal [F ; δ]-codes over an algebraically closed
field does not depend on its characteristic but are not able to provide a proof at this
point. Later in Theorem 2.5.8 we will encounter an instance where the existence only
depends on the combinatorics of (F ; δ), and not on the choice of algebraically closed
field.

Proof. All three statements imply that the matrices A1, . . . , AN are linearly inde-
pendent, thus we have to focus on the rank of their nontrivial linear combinations.
(ii) ⇒ (i) is clear and so is (iii) ⇒(i) because Fqr [F ] ⊆ F[F ] for all r ∈ N.

For (i) ⇒ (ii) we introduce indeterminates x1,1, . . . , x1,t, . . . , xN,1, . . . , xN,t over F
(hence they are also indeterminates over every subfield Fqr of F). Define Ai ∈
F[xi,1, . . . , xi,t]

m×n as the matrix with shape F so that the indeterminates are the
entries of Ai at the positions in F (in some order). For ` = 1, . . . , N and further
indeterminates y1, . . . , yN set

A(`)(y) =
N∑
i=1
i 6=`

yiAi + A`.

In the polynomial ring R = F[y1, . . . , yN , x1,1, . . . , xN,t] consider the ideal I(`) gen-

erated by the δ × δ-minors of A(`)(y). Define the elimination ideals I
(`)
0 = I(`) ∩

F[x1,1, . . . , xN,t] and let I0 = I
(1)
0 · . . . · I(N)

0 . Then

V(I0) :=
{
a = (a1,1, . . . , aN,t) ∈ FNt

∣∣∣ f(a) = 0 for all f ∈ I0
}
⊆ FNt

is the variety of I0 over F. Thus V(I0) =
⋃N
`=1 V

(
I
(`)
0

)
and

I0 6= {0} ⇐⇒ V(I0) ( FNt ⇐⇒ there exists (a1,1, . . . , aN,t) ∈ FNt \
N⋃
`=1

V
(
I
(`)
0

)
.
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The right hand side implies that for the given tuple (a1,1, . . . , aN,t) and for all `
and all λ1, . . . , λN ∈ F with λ` = 1 there exists a polynomial f ∈ I(`) such that
f(λ1, . . . , λN , , a1,1, . . . , aN,t) 6= 0. This in turn means that for the according matrices

A1, . . . , AN ∈ F[F ], every nontrivial linear combination
∑N

`=1 λ`A` has at least one
nonzero δ × δ-minor. In other words, drk(〈A1, . . . , AN〉) ≥ δ. Even more, every

point (a1,1, . . . , aN,t) in the Zariski-open set Z := FNt \ V(I0) leads to such a tuple of
matrices. Since (i) guarantees that the set Z is nonempty, the implication (i) ⇒ (ii)
follows.

For (i) ⇒ (iii) we consider again the ideal I0. As in the previous part, the as-
sumption implies I0 6= {0}. Fix any nonzero polynomial f in I0. Thus f is in
F[x1,1, . . . , xN,t] ⊆ F[x1,1, . . . , xN,t]. Let A1, . . . , AN ∈ Fqr [F ] be randomly chosen ma-
trices and denote their entries at the positions in F by a1,1, . . . , aN,t. The Schwartz-
Zippel Lemma 2.5.3 tells us that

Prob
(
f(a1,1, . . . , aN,t) 6= 0

)
≥ 1− deg(f)

qr
.

Since f does not depend on r, we obtain limr→∞(1 − deg(f)/qr) = 1. Finally,
f(a1,1, . . . , aN,t) 6= 0 implies drk(〈A1, . . . , AN〉) ≥ δ, and hence we arrive at (iii).

The rest of the theorem is clear from the definition of genericity and the fact that
all finite fields with the same characteristic have the same algebraic closure (up to
isomorphism).

The theorem provides us with plenty of pairs (F ; δ) for which maximal [F ; δ]-
codes are not generic. The simplest case is arguably when F = [n, . . . , n] is the
full n × n-Ferrers diagram and δ = n. In this case Theorem 2.5.4(i) is not even
satisfied for N = 2 because for every pair of matrices A, B in GLn(F) the polynomial
det(A + yB) ∈ F[y] has a root in F. Thus, the theorem tells us that [n × n;n]-
MRD codes are not generic. In the next section we will present upper bounds on
the probability Prob

(
〈A1, . . . , Aνmin(F ;δ〉 is a maximal [F ; δ]q-code

)
for various pairs

(F ; δ) including MRD codes.
We now continue to identify a class of pairs (F ; δ) for which maximal [F ; δ]-codes

are generic. This class appeared already in [13, 22] because it allows the construction
of maximal Ferrers diagram codes with the aid of MDS block codes. We follow the line
of reasoning in [22, Thm. 32, Cor. 33]. In particular we need the notion of diagonals
in a Ferrers diagram.

Definition 2.5.5. Consider the set [m]× [n]. For r ∈ [m] define the r-th diagonal as

Dr = {(i, j) | j − i = n− r} = {(i, i+ n− r) | i = max{1, r + 1− n}, . . . , r}.

Thus

D1 = {(1, n)}, D2 = {(1, n− 1), (2, n)}, . . . , Dn = {(1, 1), (2, 2), . . . , (n, n)},
Dn+1 = {(2, 1), (3, 2), . . . , (n+ 1, n)}, . . . , Dm = {(m+ 1− n, 1), . . . , (m,n)}.

and |Dr| = min{r, n}.
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Later we will intersect these diagonals with a given Ferrers diagram. For the
5 × 4-Ferrers diagram F in Figure 2.8 we have |Dr ∩ F| = r for r = 1, . . . , 4 and
|D5 ∩ F| = 2.

D1

D2

D3

D4

D5
•
•
• •
••••
••••

Figure 2.8: The diagonals of a Ferrers diagram

In order to cite known results conveniently, we cast the following definition. The
terminology will become clear later.

Definition 2.5.6. Given an m × n-Ferrers diagram F and δ ∈ [n], we call (F ; δ)
MDS-constructible if

νmin(F ; δ) =
m∑
i=1

max{|Di ∩ F| − δ + 1, 0}.

Note that only the diagonals of length at least δ contribute to the above sum, and
therefore

∑m
i=1 max{|Di∩F|−δ+1, 0} =

∑m
i=δ max{|Di∩F|−δ+1, 0}. We will see

in Theorem 2.5.8 below that this sum is at most νmin(F ; δ) for all (F ; δ). The same
theorem will show that if (F ; δ) is MDS-constructible, then maximal [F ; δ]-codes are
generic.

Example 2.5.7. (a) Let a ∈ N0 and F = [a + 1, a + 2, . . . , a + n] (hence F is an
n×n-upper triangular shape with an a×n-rectangle on top). Let δ ∈ [n]. Then
for i = δ, . . . , a+ n we have |Di ∩ F| − δ + 1 = min{i, n} − δ + 1. Thus

m∑
i=1

max{|Di ∩ F| − δ + 1, 0} =
n∑
i=δ

(i− δ + 1) + a(n− δ + 1)

=
(n− δ + 1)(n− δ + 2)

2
+ a(n− δ + 1).

On the other hand, it is easy to see that νmin(F ; δ) = ν0 and

ν0 =
n−δ+1+a∑
t=a+1

t =
(n− δ + a+ 1)(n− δ + a+ 2)− a(a+ 1)

2
,

which equals
∑m

i=1 max{|Di∩F|− δ+ 1, 0}. Thus (F ; δ) is MDS-constructible.

(b) Let F be the full rectangle, thus F = [m] × [n], and let δ ∈ [n]. Then νmin =
m(n− δ + 1) and

m∑
i=δ

max{|Di ∩ F| − δ + 1, 0} =
n∑
i=δ

(i− δ + 1) +
m∑

i=n+1

(n− δ + 1)

= (n− δ + 1)
2m− n− δ + 2

2
.
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From this one obtains that (F ; δ) is not MDS-constructible for any δ unless
n = δ = 1.

(c) Consider δ = 3 and F = [1, 2, 2, 4, 7]. Then νmin = 5 and (F ; 3) is MDS-
constructible. This is shown in the left diagram of Figure 2.9. We show all
diagonals Di for which |Di ∩ F| ≥ δ. On the other hand, for δ = 4 and
F ′ = [2, 2, 4, 4, 6] we have νmin = 4, and (F ′; 4) is not MDS-constructible. The
diagram is shown on the right hand side of Figure 2.9.

D3

D4

D5

•
•
•
• •
• •
••••
•••••

D4

D5•
•

• • •
• • •
•••••
•••••

Figure 2.9: (F ; 3) is MDS-constructible and (F ′; 4) is not MDS-constructible

Now we can formulate a particular construction of maximum [F ; δ]-codes over
sufficiently large finite fields. It appears in [22, Thm. 32] but actually goes already
back to [42, p. 329]. We include the case of algebraically closed fields and present the
proof in Appendix B. The construction is based on placing the codewords of suitable
MDS-block codes on the diagonals, thus our terminology MDS-constructible.

Theorem 2.5.8. Consider an m× n-Ferrers diagram F and δ ∈ [n]. Then one can
construct an [F ; δ]-code of dimension at least

∑m
i=δ max{|Di∩F|− δ+1, 0} over any

field of size at least max{|Di∩F|−1 | i = δ, . . . ,m} (including infinite fields). Hence

νmin(F ; δ) ≥
m∑
i=δ

max{|Di ∩ F| − δ + 1, 0}.

As a consequence, if (F ; δ) is MDS-constructible there exists a maximal [F ; δ]-code
over any algebraically closed field and thus maximal [F ; δ]-codes are generic.

Example 2.5.9. (a) For the pairs (F ; δ) discussed in Example 2.5.7(a) and (c),
[F ; δ]-codes are generic.

(b) Consider F = [1, 3, 3, 4] and δ = 3; see Example 2.1.16. Then (F ; 3) is not MDS-
constructible, and in Corollary 2.6.9 we will see that maximal [F ; 3]-codes are
not generic.

We now turn to the special case where δ = n. We make use of another result by
Gorla/Ravagnani [22].

Theorem 2.5.10 ([22, Thm. 16]). Let F be an algebraically closed field and F =
[c1, . . . , cn]. Set

c := min{ct − t+ 1 | t = 1, . . . , n}.
Then the maximum possible dimension of an [F ;n]-code over F is max{c, 0}. Thanks
to Theorem 2.1.7 we thus have c ≤ νmin(F ;n).
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Thus, by Theorem 2.1.7 maximal [F ;n]-codes over F exist iff c = νmin(F ;n). This
occurs only in exceptional cases. Part (a) of the next theorem deals with the case
that νmin(F ;n) is attained by νj(F ;n) for some j > 0 (and possibly also by ν0(F ;n)).
In this case there exists a maximal [F ;n]-code over F exactly in the trivial case where
νmin(F ;n) = 1. Part (b) concerns the case where νmin(F ;n) is attained exclusively
by ν0(F ;n) and thus equals c1. In this case there exists a maximal [F ;n]-code over F
iff the Ferrers diagram extends to or below the diagonal that starts at position (c1, 1),
which is Dn+c1−1.

Theorem 2.5.11. Let F be an algebraically closed field and F = [c1, . . . , cn]. Then

νmin(F ;n) = 0⇐⇒ ct < t for some t ∈ [n].

Suppose ct ≥ t for all t ∈ [n].

(a) Suppose νmin(F ;n) = νj(F ;n) for some j > 0. Then the following are equiva-
lent.

(i) (F ;n) is MDS-constructible.

(ii) There exists a maximal [F ;n]-code over F.

(iii) νmin(F ;n) = 1.

(iv) There exists s ∈ [n] such that cs = s and ct ≤ s − 1 for t = 1, . . . , s − 1
(thus cs−1 = s− 1).

Moreover, (iv) implies νmin(F ;n) = νs−1(F ;n). Finally, if m > n and ct ≥
m− n+ t for all t, then (F ;n) is not MDS-constructible.

(b) Suppose νmin(F ;n) = ν0(F ;n) < νj(F ;n) for all j > 0. Then the following are
equivalent.

(i) (F ;n) is MDS-constructible.

(ii) There exists a maximal [F ;n]-code over F.

(iii) c1 = min{ct − t+ 1 | t = 1, . . . , n} (and thus c1 ≤ m− n+ 1).

Proof. The equivalence is immediate with Definition 2.1.6 applied to δ = n. Let now
ct ≥ t for all t. Hence c > 0 for c as in Theorem 2.5.10.

(a) The implication (i) ⇒ (ii) is in Theorem 2.5.8 and (iii) ⇒ (ii) is trivial.
(iv) ⇒ (iii) follows from

νs−1(F ;n) =
s∑
t=1

max{ct − s+ 1, 0} =
s−1∑
t=1

max{ct − s+ 1, 0}+ cs − s+ 1 = 1

along with νmin(F ;n) ≥ 1. In particular, νmin(F ;n) = νs−1(F ;n).
In order to show (ii) ⇒ (iv) let r be such that cr − r + 1 = min{ct − t + 1 | t =

1, . . . , n}. Theorem 2.5.10 tells us that the maximum dimension of an [F ;n]-code
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over F is given by cr − r + 1. Note that (ii) means that νmin(F ;n) = cr − r + 1.
Let j > 0 such that νmin(F ;n) = νj(F ;n). Then

cr−r+1 = νj(F ;n) =

j∑
t=1

max{ct−j, 0}+cj+1−j ≥ cj+1−j = cj+1−(j+1)+1 ≥ cr−r+1.

Thus we have equality everywhere. In particular, the second inequality yields cj+1 −
(j + 1) = cr − r. The first inequality implies that

∑j
t=1 max{ct−j, 0} = 0, which in

turn means that ct ≤ j for t ∈ [j]. Since j > 0 this is not a vacuous statement and
thus cj ≤ j for some j. Now the definition of r yields cr − r ≤ cj − j ≤ 0. Thus
cr = r and cj = j as well as cj+1 = j + 1, and (iv) follows for s = j + 1.

It remains to show that (ii) implies (i). Consider the diagonal Dn = {(t, t) |
t = 1, . . . , n}. The assumption ct ≥ t for all t shows that the dots at (ct, t) are
all on or below this diagonal. Therefore, |Dn ∩ F| = |Dn| = n. As a consequence,∑m

i=n max{|Di ∩ F| − n + 1, 0} ≥ 1 = νmin(F ;n). Hence Theorem 2.5.8 implies
equality, as desired.

Finally, the consequence for m > n follows from the contradiction

1 = νmin(F ;n) = min{ct − t+ 1 | t = 1, . . . , n} ≥ m− n+ 1 ≥ 2.

(b) Again, (i) ⇒ (ii) is in Theorem 2.5.8. For (ii) ⇒ (iii) we note that ν0 =
c1. Hence there exists a c1-dimensional [F ;n]-code over F and Theorem 2.5.10
implies (iii). It remains to show (iii) ⇒ (i). Consider the diagonal Dn+c1−1 =
{(c1 + t− 1, t) | t = 1, . . . , n}. It contains the dot of F at (c1, 1). Furthermore, since
ct ≥ c1+t−1 for all t, the dots of F at positions (ct, t) are on or below Dn+c1−1 for all t.
Thus |Dn+c1−1 ∩F| = n. Thanks to the top-alignedness of F we obtain |Di ∩F| = n
for all i = n, . . . , n+ c1 − 1. This shows that

∑m
i=n max{|Di ∩ F| − n+ 1, 0} ≥ c1 =

νmin(F ;n). Hence (F ;n) is MDS-constructible.

The previous result generalizes the scenario used in the proof of [22, Prop. 17].
Here is a case different from that scenario.

Example 2.5.12. Let F = [4, 4, 6, 6] and δ = 4. Then νmin(F ; 4) = 4 = c1 < νj(F ; 4)
for j = 1, 2, 3. Furthermore, c1 6≤ m − n + 1, and therefore there exists no maximal
[F ; 4]-code over F by Theorem 2.5.11(b). As a consequence, maximal [F ; 4]-codes
are not generic, which means that the probability of the event “4 randomly chosen
matrices of shape F generate a maximal [F ; 4]q-code” is bounded away from 1 (for
growing q). We can be more precise. If A1, . . . , A4 ∈ Fq[F ] generate a maximal [F ; 4]q-
code, then their submatrices consisting of the first 4 rows and first 2 columns generate
a [4 × 2; 2]q-MRD code. In Proposition 2.6.3 we will see that this happens with a
probability less than 0.375. Thus the latter is an upper bound for the probability of
maximal [F ; 4]q-codes.

It is worth noting that in both parts of Theorem 2.5.11 the existence of a max-
imal [F ;n]-code over some algebraically closed field implies the existence of a max-
imal [F ;n]-code over any finite field Fq. This is obvious in the situation of Theo-
rem 2.5.11(a) because νmin = 1, and for the case in 2.5.11(b) the existence of maximal
[F ;n]-codes has been established in Example 2.1.17(c).
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We summarize the previous results.

Corollary 2.5.13. Let F = [c1, . . . , cn] be an m× n-Ferrers diagram. Then

maximal [F ;n]-codes are generic⇐⇒ (F ;n) is MDS-constructible.

In particular, maximal [m × n;n]-MRD codes are not generic whenever n > 1 (see
also Example 2.5.7(b)). Moreover, if (F ;n) is MDS-constructible then νmin(F ;n) = 1
or νmin(F ;n) = ν0(F ;n) = c1 < νj(F ;n) for all j > 0.

We strongly believe that the equivalence is true for any rank 2 ≤ δ ≤ n and note
that “⇐” has already been established in Theorem 2.5.8. The case of general rank δ
is much more interesting than δ = n as it allows for more MDS-constructible pairs
(F ; δ); see the left Ferrers diagram in Figure 2.9.

We conclude this section with the following observation. In [13, Thm. 7] Etzion et
al. provide in essence the same construction of maximal [F ; δ]-codes over sufficiently
large fields as in Theorem 2.5.8. However, their assumption is, on first sight, different
from (F ; δ) being MDS-constructible. In Appendix B we show that these assumptions
are actually equivalent.

2.6 Probabilities for Nongeneric Ferrers Diagram Codes

In this section we focus on the non-generic case and provide some upper bounds on
the proportion of maximal [F ; δ]q-codes. In particular, in Theorem 2.6.6 we provide
an upper bound for the proportion of MRD codes, which is exact for [m × 2; 2]q-
MRD codes; see Corollary 2.6.5. These two results improve on [7, Cor. 6.2], where
Byrne/Ravagnani show that the asymptotic proportion is upper bounded by 1/2.

The main tool in our considerations is the following result about spectrum-free
matrices.

Theorem 2.6.1. The spectrum of a matrix A ∈ Fn×nq is defined as σ(A) = {λ ∈ Fq |
λ is an eigenvalue of A}. We call A spectrum-free if σ(A) = ∅. Set

sn(q) = |{A ∈ Fn×nq | σ(A) = ∅}|.

Set γn(q) = |GLn(Fq)| =
∏n−1

j=0 (qn − qj) and a0(q) = 1 and aj(q) = (−1)j
∏j

`=1
1

q`−1
for j ≥ 1. Then the generating function of sn(q)/γn(q) satisfies

1 +
∞∑
n=1

sn(q)

γn(q)
un =

1

1− u
∏
r≥1

(
1− u

qr

)q−1
(2.11)

and

sn(q) = γn(q)

( n∑
j=0

∑
i1,...,iq−1∈N0:
i1+...+iq−1=j

ai1(q) · . . . · aiq−1(q)

)
. (2.12)
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Furthermore, the proportion of spectrum-free matrices in Fn×nq behaves as follows:

lim
n→∞

sn(q)

qn2 =
∏
r≥1

(
1− 1

qr

)q
= lim

n→∞

(
γn(q)

qn2

)q
and lim

q→∞

sn(q)

qn2 =
n∑
j=0

(−1)j

j!
.

(2.13)

One may note that the expression for aj(q) can be rewritten as aj(q) = 1/(q; q)j,
where (q; q)j is the q-Pochhammer symbol.

Proof. The main parts of the statements above are in [49] and [38]: Identity (2.11)
is given in [38, p. 7] and (2.12) appears in [49, p. 176]. As for the limits in (2.13),

note that (2.11) leads to limn→∞
sn(q)
γn(q)

=
∏

r≥1

(
1 − 1

qr

)q−1
(see also [38, p. 8]). On

the other hand, clearly γn(q)

qn2
=
∏n

r=1

(
1− 1

qr

)
. Taking the limit for n → ∞ leads to

the first parts of (2.13).

It remains to determine limq→∞
sn(q)

qn2
. Note first that

lim
q→∞

sn(q)

qn2 = lim
q→∞

sn(q)

γn(q)
= lim

q→∞

n∑
j=0

bj(q), where bj(q) =
∑

i1+...+iq−1=j

ai1(q) · · · aiq−1(q).

Hence it suffices to consider limq→∞ bj(q). To do so, we need the type of the weak
compositions involved in the definition of bj(q). We say that a weak composition
i1 + . . .+ iq−1 = j is of type (t1, . . . , tj) if tk = |{l ∈ [q− 1] : il = k}| for k ∈ [j]. Then

the number of weak compositions of j of type (t1, . . . , tj) is given by
∏t1+...+tj
i=1 (q−i)
t1!·...·tj ! ,

and thus
bj(q) =

∑
t`∈N0: t1+2t2+...+jtj=j

c(t1, . . . , tj; q),

where

c(t1, . . . , tj; q) :=

t1+...+tj∏
i=1

(q − i)

t1! · . . . · tj!
·
j∏

k=1

(ak(q))
tk =

t1+...+tj∏
i=1

(q − i)

t1! · . . . · tj!
·
j∏

k=1

(
(−1)k∏k

i=1(q
i − 1)

)tk

.

As a polynomial in q, the degree of the numerator of c(t1, . . . , tj; q) is t1 + . . . + tj,
and the degree of the denominator is

∑j
k=1 tk

(
k+1
2

)
. Notice that

j∑
k=1

tk

(
k + 1

2

)
≥

j∑
k=1

tk · k = j ≥ t1 + . . .+ tj

with equality in both steps if and only if t1 = j and t2 = . . . = tj = 0. Therefore

lim
q→∞

bj(q) = lim
q→∞

c(j, 0, . . . , 0; q) = lim
q→∞

∏j
i=1(q − i)
j!

·
( −1

q − 1

)j
=

(−1)j

j!
.

All of this shows that limq→∞
sn(q)

qn2
= limq→∞

∑n
j=0 bj(q) =

∑n
j=0

(−1)j
j!
.
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Let us have a closer look at the limit in (2.13).

Remark 2.6.2. (a) The infinite product π(q) :=
∏

r≥1

(
1− 1

qr

)q
takes, for instance,

the following approximate values:

q 2 3 5 31 179

π(q) 0.0833986 0.175735 0.254108 0.349996 0.364794

It is not hard to show that

lim
q→∞

(1− 1/qr)q =

{
1/e, if r = 1,
1, if r > 1,

and thus limq→∞ π(q) = 1/e ≈ 0.36788.

(b) By (2.13) we may approximate sn(q)

qn
2 by

(γn(q)
qn

2

)q
. This is already a very good

approximation for small values of n (for instance,
∣∣∣(γn(q)

qn2

)q
− sn(q)

qn2

∣∣∣ ≤ 0.000081

for n = 7 and q = 3). Since sn(q)

qn2
is the fraction of spectrum-free matrices

and
(
γn(q)

qn2

)q
the fraction of q-tuples of invertible matrices within (Fn×nq )q, the

approximation may be interpreted as follows: for any randomly chosen matrices
A and A1, . . . , Aq ∈ Fn×nq ,

Prob (λI−A is nonsingular for all λ ∈ Fq) ≈ Prob (A1, . . . , Aq are nonsingular).

That is, the q dependent matrices λI − A, λ ∈ Fq, behave just like q indepen-
dently chosen matrices A1, . . . , Aq (with respect to nonsingularity). However,
computer experiments show that for two randomly chosen matrices A,B ∈ Fn×n
the probability that all q2 + q+ 1 dependent matrices λI +αA+βB, where the
first nonzero coefficient is normalized to 1, are nonsingular is much larger than(
γn(q)

qn2

)q2+q+1

.

We turn now to MRD codes. We start with the case of [m × 2; 2]-MRD codes.
In this case νmin = ν0 = m < ν1 and therefore Theorem 2.5.11(b) tells us that
there exists no [m × 2; 2]-MRD code over an algebraically closed field (which can
also be seen from the proof below as there are no spectrum-free matrices over an
algebraically closed field). Thus [m × 2; 2]-MRD codes are not generic. In order
to present an interval for the according probability, we will first consider normalized
matrices in the sense described next, and thereafter relate the result to the proportion
of MRD codes in the sense of Definition 2.5.1. Interestingly enough, we will see below
that even though there are no MRD codes over the algebraic closure, the probability
does not approach zero for growing field size.

Proposition 2.6.3. Let F = Fq and

A1 =


1 a11
0 a12
...

...
0 a1m

 , A2 =


0 a21
1 a22
...

...
0 a2m

 , . . . , Am =


0 am1
0 am2
...

...
1 amm

 ∈ Fm×2,
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where a11, . . . , a
m
m are randomly chosen field elements. Set C = 〈A1, . . . , Am〉. Then

Prob
(
C is an [m× 2; 2]-MRD code

)
=
sm(q)

qm2 .

As a consequence, as q → ∞ the probability approaches
∑m

j=0
(−1)j
j!

, which is in the

interval [0.333, 0.375] for all m ≥ 3.

Proof. Recall that an [m × 2; 2]-MRD code has dimension m. Clearly, the code C
given in the proposition has dimension m and therefore we only have to discuss the
rank distance. A general linear combination of the given matrices has the form

A(λ) :=
m∑
α=1

λαAα =

λ1
∑m

α=1 a
α
1λα

...
...

λm
∑m

α=1 a
α
mλα

 .

Thus A(λ) = (λ |Mλ), where λ = (λ1, . . . , λm)ᵀ and

M =

a11 · · · am1
...

...
a1m · · · amm

 ∈ Fm×m. (2.14)

As a consequence,

rk(A(λ)) = 2 for all λ ∈ Fm \ 0⇐⇒ σ(M) = ∅.

Now the result follows from the definition of sm(q) in Theorem 2.6.1 and from (2.13).

In order to relate the above probability, based on a sample space of normalized
matrices, to the proportion of MRD codes as in Definition 2.5.1, we need the following
lemma. A general version for arbitrary pairs (F ; δ) can be derived as well, but is not
needed for the rest of this paper.

Lemma 2.6.4. Consider F = [m]× [n] and δ = n, thus ` = 1 and N = νmin(F ; δ) =

m. Recall the spaces Wq and Ŵq from (2.9). Denote by A
(1)
i the first column of the

matrix Ai and define

Vq = {(A1, . . . , Am) ∈ (Fm×nq )m | (A(1)
1 , . . . , A(1)

m ) = Im} ⊆ Wq,

V̂q = {(A1, . . . , Am) ∈ Vq | drk〈A1, . . . , Am〉 = n} = Ŵq ∩ Vq.

Then the proportion of [m×n;n]-MRD codes in the space of all m-dimensional (m×
n)-rank-metric codes is given by

|T̂q|
|Tq|

=
|Ŵq|
|Wq|

=
|V̂q|
|Vq|

∏m−1
i=0 (qmn − qi+m(n−1))∏m−1

i=0 (qmn − qi)
, (2.15)

and thus limq→∞ |T̂q|/|Tq| = limq→∞ |V̂q|/|Vq|.
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Proof. The stated identity for the limits is clear because the rightmost factor in (2.15)
approaches 1 as q →∞. The first identity in (2.15) is already in (2.10), and thus we
need to establish the second identity. Reading each matrix Ai columnwise as a vector
in Fmn, we may identify (Fm×nq )m with Fmn×mq . Then

Wq = {M ∈ Fmn×mq | rk(M) = m} and Vq = {(Im | B)ᵀ | B ∈ Fm×m(n−1)
q }.

Notice also that, thanks to δ = n, the first columns of any tuple (A1, . . . , Am) in Ŵq

are linearly independent. Thus Ŵq ⊆ {(B1 | B2)
ᵀ | B1 ∈ GLm(Fq), B2 ∈ Fm×m(n−1)

q }.
This shows that |Ŵq| = |V̂q|γm(q), where γm(q) = |GLm(Fq)|. Furthermore, |Vq| =
qm

2(n−1) and |Wq| =
∏m−1

i=0 (qmn − qi). Using that γm(q) =
∏m−1

i=0 (qm − qi), we arrive
at

|Ŵq|
|Wq|

=
|V̂q|
|Vq|
· γm(q)qm

2(n−1)∏m−1
i=0 (qmn − qi)

=
|V̂q|
|Vq|
·
∏m−1

i=0 (qmn − qi+m(n−1))∏m−1
i=0 (qmn − qi)

.

In the case where δ = n = 2, the probability determined in Proposition 2.6.3 is
the fraction |V̂q|/|Vq|, and thus (2.15) leads to the following proportion.

Corollary 2.6.5. The proportion of [m × 2; 2]q-MRD codes within the space of all
m-dimensional rank-metric codes in Fm×2q is given by

sm(q)

qm2 ·
∏m−1

i=0 (q2m − qi+m)∏m−1
i=0 (q2m − qi)

,

and converges to
∑m

j=0
(−1)j
j!

as q →∞.

For more general cases we obtain more conditions for the rank distance. Since
these conditions are not independent events on the random entries, we can only
provide upper bounds on the probability by restricting to a subset of independent
events.

Theorem 2.6.6. Let F = Fq, δ ∈ [n], and ` = n − δ + 1. For (α, β) ∈ [m] × [`] let

Bα,β =
(
a
(α,β)
i,j

)
∈ Fm×(n−`) be randomly chosen matrices and set

Aα,β =
(

0 | · · · | 0 | eα | 0 | · · · | 0︸ ︷︷ ︸
` columns

| Bα,β

)
∈ Fm×n,

where eα, the α-th standard basis vector in Fm, is in the β-th column. Then the
rank-metric code C =

〈
Aα,β | (α, β) ∈ [m]× [`]

〉
satisfies

Prob
(
C is an [m× n; δ]-MRD code

)
≤
(sm(q)

qm2

)(δ−1)`
.

Proof. Note that by construction the matrices A1,1, . . . , Am,` are linearly independent
and thus dim C = m` = m(n − δ + 1), as desired. Hence it remains to discuss the
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rank distance. In order to do so, we consider, for all fixed β, linear combinations of
the form

∑m
α=1 λαAα,β. For (β, j) ∈ [`]× [δ − 1] define

Mβ,j =

a
(1,β)
1,j · · · a

(m,β)
1,j

...
...

a
(1,β)
m,j · · · a

(m,β)
m,j

 ∈ Fm×m. (2.16)

Thus Mβ,j consists of the j-th columns of B1,β, . . . , Bm,β. Let us now consider the
linear combination

∑m
α=1 λαAα,β. After deleting the `− 1 zero columns, this matrix

has the form (
λ |Mβ,1λ | . . . |Mβ,n−`λ

)
, where λ = (λ1, . . . , λm)ᵀ. (2.17)

As a consequence, rk
(∑m

α=1 λαAα,β
)

= δ implies that λ is not an eigenvector of any
Mβ,j. Since this has to be true for all λ ∈ Fm \ 0, we conclude that σ(Mβ,j) = ∅ for
all j = 1, . . . , δ − 1. All of this shows that if drk(C) = δ, then σ(Mβ,j) = ∅ for all
(β, j) ∈ [`]× [δ − 1]. Since the `(δ − 1) matrices Mβ,j are independently chosen, the
probability of the latter is (sm(q)/qm

2
)(δ−1)`, as desired.

Note that in the above proof we ignore an abundance of further conditions on
the data a

(α,β)
i,j and therefore the probability is in fact much smaller than the given

upper bound. However, these additional conditions are not independent and therefore
difficult to quantify.

Let us have a closer look at the case where δ = n, thus ` = 1. In this case the
above proof tells us the following.

Corollary 2.6.7. Consider the situation of Theorem 2.6.6 with δ = n, thus ` = 1.
Then

C is an [m× n;n]q-MRD code

⇐⇒ σ
( n−1∑
j=1

µjM1,j

)
= ∅ for all (µ1, . . . , µn−1) ∈ Fn−1q \ 0.

Proof. Since δ = n, the code C is given by {∑m
α=1 λαAα,1 | λα ∈ Fq}, and for any

λ = (λ1, . . . , λm) ∈ Fmq \0 the matrixA(λ) :=
∑m

α=1 λαAα,1 equals the matrix in (2.17).

We thus obtain rkA(λ) = n iff µ0λ 6=
∑n−1

j=1 µjM1,jλ for all (µ0, . . . , µn−1) ∈ Fnq \ 0.
This leads to the desired equivalence.

Example 2.6.8. For [4 × 3; 3]q-MRD codes we conducted computer experiments
consisting of 10 million trials, each of which generated 2 random 4 × 4 matrices
over Fq, serving as M1,1 and M1,2 in the proof of Corollary 2.6.7. In each trial, we
checked if all nontrivial linear combinations of these two matrices were spectrum-
free – or equivalently, if the associated matrices A1, . . . , A4 ∈ F4×3

q generated MRD
codes. Table 2.1 presents, for various values of q, the estimated relative frequencies of
spectrum-free subspaces 〈M1,1,M1,2〉. In other words, this estimates the proportion
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Table 2.1: Estimated proportions for [4× 3; 3]q-MRD codes

q 2 3 5 7 11

Upper Bound 0.008 0.0313 0.065 0.083 0.102

|V̂q|/|Vq| 0.0005357 0.0000689 0.0001913 0.00028 0.0003732
Proportion

of MRD codes
0.000165 0.000039 0.000146 0.000234 0.000336

|V̂q|/|Vq| from Lemma 2.6.4. Next, (2.15) tells us that multiplying these proportions
by
∏3

i=0(q
12− qi+8)/(q12− qi) gives us the proportion of MRD codes inside the space

of all 4-dimensional rank-metric codes in F4×3
q . We also compare our findings with

the upper bound given in Theorem 2.6.6. The frequency for q = 2 was performed by
exhaustive search, instead of by random experiment.

We wish to point out that our results do not preclude the existence of parameter
sets (m,n, δ) for which the proportion of [m × n; δ]q-MRD codes approaches 0 as
q → ∞. In such a case, the non-MRD codes would be generic (and the MRD codes
would be sparse in the language of [7]). Indeed, [3 × 3; 3]-MRD codes are sparse as
has been recently shown in [18].

We conclude this paper with, once again, the Ferrers diagram F = [1, 3, 3, 4] and
δ = 3.

Corollary 2.6.9. Let F = Fq. Consider the 4 × 4-Ferrers diagram F = [1, 3, 3, 4]
and let δ = 3. Let

A1 =


1 0 a113 a114
0 0 a123 a124
0 0 a133 a134
0 0 0 a144

 , A2 =


0 1 a213 a214
0 0 a223 a224
0 0 a233 a234
0 0 0 a244

 ,

A3 =


0 0 a313 a314
0 1 a323 a324
0 0 a333 a334
0 0 0 a344

 , A4 =


0 0 a413 a414
0 0 a423 a424
0 1 a433 a434
0 0 0 a444


be randomly chosen in Fq[F ]. Then

Prob (〈A1, . . . , A4〉 is a maximal [F ; 3]q-code) ≤ s3(q)

q9

4∏
i=2

(
1− 1

qi

)
q7 − 2q4 + q

q7
.

The right hand side tends to 1/3 as q →∞.

Proof. Consider a linear combination λ2A2 + λ3A3 + λ4A4. If this matrix has rank 3
for all (λ2, λ3, λ4) 6= 0, then the submatrices1 a213

0 a223
0 a233

 ,

0 a313
1 a323
0 a333

 ,

0 a413
0 a423
1 a433
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generate a [3×2; 2]-MRD code. The probability for this is given by s3(q)/q
9 according

to Proposition 2.6.3. Furthermore, the last columns of A2, A3, A4 have to be linearly
independent, and the according probability is q−12

∏2
i=0(q

4 − qi) =
∏4

i=2(1 − q−i).
Finally, the last two columns of A1 have to be linearly independent, which has a
probability of

(q3 − 1)
(
(q − 1)q3 + (q3 − q)

)
q7

=
q7 − 2q4 + q

q7
.

Since the events are independent, we obtain the stated upper bound.

The probability Pq := Prob (〈A1, . . . , A4〉 is a maximal [F ; 3]q-code) can be re-
lated to the proportion of maximal [F ; 3]q-codes in the sense of Definition 2.5.1. In-

deed, similarly to Lemma 2.6.4, one obtains |T̂q|/|Tq| = Pq
∏3

i=0(q
11−qi+7)/(q11−qi).

Example 2.6.10. Consider the scenario of the last corollary for q = 2 and q = 3.
Then the upper bound for the probability is given by

Prob (〈A1, . . . , A4〉 is a maximal [F ; 3]2-code) ≤ 0.044,

Prob (〈A1, . . . , A4〉 is a maximal [F ; 3]3-code) ≤ 0.1376.

These estimates clearly leave out crucial conditions and therefore the true probabil-
ities are much smaller. Indeed, using SageMath and testing 1,000,000 quadruples of
random matrices of the above form shows that the probability is about 0.00042 for
q = 2 and about 0.0041 for q = 3. For larger q the actual probability appears to
be around 0.03. Yet, as we have seen in Example 2.1.16, it is not hard to construct
maximal [F ; 3]q-codes over any field Fq.

2.7 Open Problems

We presented constructions of maximal [F ; δ]q-codes for various classes of pairs (F ; δ),
but the general Conjecture 2.1.9 remains wide open. The difficulty of the problem may
in part be due to its highly ‘noncanonical’ nature in the sense that solutions, for most
pairs (F ; δ), depend on the choice of basis. This is also evidenced by the genericity
results of the last two sections leading to very different situations depending on the
pair (F ; δ). While we do not entirely exclude the existence of a universal approach to
the construction of maximal Ferrers diagram codes, we believe that further methods
tailored to specific types of pairs (F ; δ) are necessary to settle the conjecture. We list
some specific questions that arise from our considerations.

(a) Can one classify pairs (F ; δ) according to the approachability of the construction
problem? A first step would be the generalization of Corollary 2.5.13 to general
rank δ ≥ 2, which would then tell us that maximal [F ; δ]-codes are generic if
and only if (F ; δ) is MDS-constructible.

(b) The proofs of Theorems 2.2.1 and 2.2.6 leave some freedom in the choice of the
basis B. Can a suitable choice provide us with more specific maximal Ferrers
diagram codes that can be exploited further, for instance, as in Example 2.1.16?
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(c) Can one characterize the pairs (F ; δ) for which maximal [F ; δ]-codes can be
realized as subfield subcodes of Fqm-linear MRD codes with the same rank
distance?

(d) Can maximal [F ; δ]q-codes be realized as subcodes of Fq-linear MRD codes, for
instance those presented in [11, 44, 51]? The simplest case may be m = n = δ.
In this case MRD codes are known as spreadsets in finite geometry and well
studied.

(e) Can the constructions in Section 2.4 be generalized to other highly regular
Ferrers shapes and other ranks?

(f) In [18] it has been shown that the asymptotic proportion of [3 × 3; 3]-MRD
codes approaches 0 as q →∞. Can one characterize parameter sets (m,n, δ) for
which MRD codes are sparse? Are there pairs (F ; δ) for which the asymptotic
proportion of maximal [F ; δ]-codes approaches 0?

2.8 Classification of Solved Cases

We attempt to classify all (F ; δ) pairs for which there exists a known maximal [F ; δ]q
code over any finite field Fq. There are an abundance of results related to this subject,
so we try here to identify the (F ; δ) pairs which are still under question.

Omitted Information

Throughout, we let F be an m × n Ferrers diagram, and assume m ≥ n. The case
where n > m is covered by symmetry. We say F = [c1, . . . , cn], where ct denotes the
number of dots in column t of F . In all cases we assume c1 ≥ 1 and cn = m.

The m× n Ferrers diagrams are in bijection with integer lattice paths from (0, 0)
to (m,n), consisting of m east steps and n north steps. Exactly n of these m+n steps
must be north steps, so there are

(
m+n
n

)
such Ferrers diagrams. However, these include

cases where the first row and rightmost column are not full. With the restrictions that
c1 ≥ 1 and cn = m, we instead consider the number of (m− 1)× (n− 1) bottom-left
subdiagrams. The count then becomes

(
m+n−2
n−1

)
. For large m and n, this number rises

quickly. We attempt to reduce this to a more manageable quantity by eliminating
some large classes of solved cases.

• We omit pairs (F ; 1), since these are trivially solved. The vector space F[F ] is
a maximal [F ; 1] code over any field F .

• We omit pairs (F ; 2), since these are solved by [13, Theorem 2].

Hence we may restrict to cases where m ≥ n ≥ δ ≥ 3.

• We omit (F ; δ) whenever νmin(F ; δ) = 0, since these are vacuous cases.

• We omit (F ; δ) pairs for which νmin(F ; δ) = 1, since these cases are trivially
solved by a single rank δ matrix with shape F .
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The next two omissions will cut down significantly on uninteresting cases.

• If F is an m× n diagram and νmin(F ; δ) = m(n− δ + 1)− (mn− |F|), then a
maximal [F ; δ]q code can be obtained by restricting an [m× n; δ]q MRD code.
We omit these cases.

• In lieu of [13, Theorem 3], we omit all (F ; δ) pairs such that F is an m × n
Ferrers diagram and the rightmost δ−1 columns of F each have at least n dots.

The next omission removes some unsolved cases from the list, whenever a smaller
diagram ought to be considered instead. This has been done to cut down significantly
on the size of the catalog.

• If F has pending dots with respect to δ, then a smaller diagram may be con-
sidered instead, and we omit the pair (F ; δ).

Catalog of (F ; δ) pairs

We sort first by m, n, and δ respectfully in ascending order, then by [c1, . . . , cn] in
lexicographic order. High-priority (F ; δ) pairs, including those which would imply
solutions to others via reduction as in Remark 2.1.14, are marked by ?. Pairs whose
solutions would be implied by a high-priority pair are considered to be low-priority,
and are marked by –.

If the diagram you are looking for is not listed, first remove any pending dots. A
smaller diagram (or the transpose of one) may be listed.

Table 2.2: 4× 3 diagrams, δ = 3

F δ νmin Solution (if known)

[2, 2, 4] 3 2 Combine [2 × 2; 2]q and [2 × 1; 1]q MRD codes via
the construction in [13, Theorem 9].

Table 2.3: 4× 4 diagrams, δ = 3

F δ νmin Solution (if known)

[1, 2, 3, 4] 3 3 Staircase theorem. See Corollary 2.2.10.

[1, 3, 3, 4] 3 4 See [13, Example 7] and Example 2.1.16.
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Table 2.4: 4× 4 diagrams, δ = 4

F δ νmin Solution (if known)

[2, 2, 4, 4] 4 2 Combine two [2 × 2; 2]q MRD codes via the con-
struction in [13, Theorem 9].

Table 2.5: 5× 4 diagrams, δ = 3

F δ νmin Solution (if known)

[2, 2, 2, 5] 3 3 Combine [2 × 3; 2]q and [3 × 1; 1]q MRD codes via
the construction in [13, Theorem 9].

[2, 2, 3, 5] 3 4 –

[2, 3, 3, 5] 3 5 –

[3, 3, 3, 5] 3 6 ?

Table 2.6: 5× 4 diagrams, δ = 4

F δ νmin Solution (if known)

[2, 3, 3, 5] 4 2 Combine a [[2, 3, 3]; 3]q code and a [2× 1; 1]q MRD
code via the construction in [13, Theorem 9].

[3, 3, 4, 5] 4 3 ?

Table 2.7: 5× 5 diagrams, δ = 3

F δ νmin Solution (if known)

[1, 2, 2, 4, 5] 3 5 Reduce from [1, 2, 3, 4, 5].

[1, 2, 3, 4, 5] 3 6 Staircase theorem. See Corollary 2.2.10.

[1, 2, 4, 4, 5] 3 7 Reduce from [1, 4, 4, 4, 5].

[1, 3, 3, 4, 5] 3 7 Reduce from [1, 4, 4, 4, 5].

[1, 3, 4, 4, 5] 3 8 Reduce from [1, 4, 4, 4, 5].

[1, 4, 4, 4, 5] 3 9 The rightmost δ − 1 columns have at least n − 1
dots and m − n + 1 ≥ c1. See [13, Construction 2
and Theorem 8].
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Table 2.8: 5× 5 diagrams, δ = 4

F δ νmin Solution (if known)

[1, 1, 3, 3, 5] 4 2 Combine [1× 2; 1]q, [2× 2; 2]q, and [2× 1; 1]q MRD
codes via the construction in [13, Theorem 9].

[1, 2, 3, 4, 5] 4 3 Recursive construction. See Theorem 2.4.2.

[1, 3, 3, 5, 5] 4 4 ?

[1, 3, 4, 4, 5] 4 4 Reduce from [1, 4, 4, 4, 5].

[1, 4, 4, 4, 5] 4 5 The rightmost δ − 1 columns have at least n − 1
dots and m − n + 1 ≥ c1. See [13, Construction 2
and Theorem 8].

[2, 2, 2, 5, 5] 4 3 Combine [2 × 3; 2]q and [3 × 2; 2]q MRD codes via
the construction in [13, Theorem 9].

[2, 2, 3, 5, 5] 4 4 ?

[2, 2, 4, 4, 5] 4 4 ?

[2, 3, 4, 5, 5] 4 5 –

[2, 4, 4, 5, 5] 4 6 ?

Table 2.9: 5× 5 diagrams, δ = 5

F δ νmin Solution (if known)

[2, 2, 4, 5, 5] 5 2 Combine a [2 × 2; 2]q MRD code and a maximal
[[2, 3, 3]; 3]q code via the construction in [13, Theo-
rem 9].

[2, 3, 3, 5, 5] 5 2 Combine a maximal [[2, 3, 3]; 3]q code and a [2 ×
2; 2]q MRD code via the construction in [13, Theo-
rem 9].

[3, 3, 5, 5, 5] 5 3 ?

Table 2.10: 6× 4 diagrams, δ = 4

F δ νmin Solution (if known)

[3, 3, 3, 6] 4 3 Combine [3 × 3; 3]q and [3 × 1; 1]q MRD codes via
the construction in [13, Theorem 9].
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Table 2.11: 6× 5 diagrams, δ = 3

F δ νmin Solution (if known)

[2, 2, 2, 2, 6] 3 4 Combine [2 × 4; 2]q and [4 × 1; 1]q MRD codes via
the construction in [13, Theorem 9].

[2, 2, 2, 3, 6] 3 5 –

[2, 2, 2, 4, 6] 3 6 –

[2, 2, 3, 3, 6] 3 6 –

[2, 2, 3, 4, 6] 3 7 –

[2, 2, 4, 4, 6] 3 8 See Proposition 2.2.15.

[2, 3, 3, 3, 6] 3 7 –

[2, 3, 3, 4, 6] 3 8 –

[2, 3, 4, 4, 6] 3 9 –

[2, 4, 4, 4, 6] 3 10 –

[3, 3, 3, 3, 6] 3 8 –

[3, 3, 3, 4, 6] 3 9 –

[3, 3, 4, 4, 6] 3 10 –

[3, 4, 4, 4, 6] 3 11 –

[4, 4, 4, 4, 6] 3 12 ?

Table 2.12: 6× 5 diagrams, δ = 4

F δ νmin Solution (if known)

[1, 3, 3, 4, 6] 4 4 ?

[2, 3, 3, 5, 6] 4 5 ?

[2, 3, 4, 4, 6] 4 5 –

[2, 4, 4, 4, 6] 4 6 ?

[3, 3, 3, 6, 6] 4 6 See Proposition 2.2.15.

[3, 3, 4, 5, 6] 4 6 –

[3, 4, 4, 5, 6] 4 7 –

[4, 4, 4, 4, 6] 4 7 –

[4, 4, 4, 5, 6] 4 8 ?
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Table 2.13: 6× 5 diagrams, δ = 5

F δ νmin Solution (if known)

[2, 2, 4, 4, 6] 5 2 Combine two [2×2; 2]q MRD codes and a [2×1; 1]q
MRD code via the construction in [13, Theorem 9].

[3, 3, 3, 6, 6] 5 3 Combine [3 × 3; 3]q and [3 × 2; 2]q MRD codes via
the construction in [13, Theorem 9].

[3, 3, 4, 5, 6] 5 3 ?

[4, 4, 4, 6, 6] 5 4 ?

[4, 4, 5, 5, 6] 5 4 ?

Table 2.14: 6× 6 diagrams, δ = 3

F δ νmin Solution (if known)

[1, 2, 2, 2, 5, 6] 3 7 Reduce from [1, 5, 5, 5, 5, 6].

[1, 2, 2, 3, 5, 6] 3 8 Reduce from [1, 5, 5, 5, 5, 6].

[1, 2, 2, 4, 5, 6] 3 9 Reduce from [1, 5, 5, 5, 5, 6].

[1, 2, 2, 5, 5, 6] 3 10 Reduce from [1, 5, 5, 5, 5, 6].

[1, 2, 3, 3, 5, 6] 3 9 Reduce from [1, 5, 5, 5, 5, 6].

[1, 2, 3, 4, 5, 6] 3 10 Reduce from [1, 5, 5, 5, 5, 6]. Alternatively, see the
staircase theorem in Theorem 2.2.6.

[1, 2, 3, 5, 5, 6] 3 11 Reduce from [1, 5, 5, 5, 5, 6].

[1, 2, 4, 4, 5, 6] 3 11 Reduce from [1, 5, 5, 5, 5, 6].

[1, 2, 4, 5, 5, 6] 3 12 Reduce from [1, 5, 5, 5, 5, 6].

[1, 2, 5, 5, 5, 6] 3 13 Reduce from [1, 5, 5, 5, 5, 6].

[1, 3, 3, 3, 5, 6] 3 10 Reduce from [1, 5, 5, 5, 5, 6].

[1, 3, 3, 4, 5, 6] 3 11 Reduce from [1, 5, 5, 5, 5, 6].

[1, 3, 3, 5, 5, 6] 3 12 Reduce from [1, 5, 5, 5, 5, 6].

[1, 3, 4, 4, 5, 6] 3 12 Reduce from [1, 5, 5, 5, 5, 6].

[1, 3, 4, 5, 5, 6] 3 13 Reduce from [1, 5, 5, 5, 5, 6].

[1, 3, 5, 5, 5, 6] 3 14 Reduce from [1, 5, 5, 5, 5, 6].

[1, 4, 4, 4, 5, 6] 3 13 Reduce from [1, 5, 5, 5, 5, 6].

[1, 4, 4, 5, 5, 6] 3 14 Reduce from [1, 5, 5, 5, 5, 6].
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Table 2.14: 6× 6 diagrams, δ = 3

F δ νmin Solution (if known)

[1, 4, 5, 5, 5, 6] 3 15 Reduce from [1, 5, 5, 5, 5, 6].

[1, 5, 5, 5, 5, 6] 3 16 The rightmost δ − 1 columns have at least n − 1
dots and m − n + 1 ≥ c1. See [13, Construction 2
and Theorem 8].

Table 2.15: 6× 6 diagrams, δ = 4

F δ νmin Solution (if known)

[1, 1, 3, 4, 4, 6] 4 5 –

[1, 1, 4, 4, 4, 6] 4 6 ?

[1, 2, 3, 4, 5, 6] 4 6 –

[1, 2, 4, 4, 5, 6] 4 7 ?

[1, 3, 3, 4, 6, 6] 4 7 –

[1, 3, 3, 5, 5, 6] 4 7 Reduce from [1, 5, 5, 5, 5, 6].

[1, 3, 4, 4, 6, 6] 4 8 –

[1, 3, 4, 5, 5, 6] 4 8 Reduce from [1, 5, 5, 5, 5, 6].

[1, 3, 5, 5, 5, 6] 4 9 Reduce from [1, 5, 5, 5, 5, 6].

[1, 4, 4, 4, 6, 6] 4 9 ?

[1, 4, 4, 5, 5, 6] 4 9 Reduce from [1, 5, 5, 5, 5, 6].

[1, 4, 5, 5, 5, 6] 4 10 Reduce from [1, 5, 5, 5, 5, 6].

[1, 5, 5, 5, 5, 6] 4 11 The rightmost δ − 1 columns have at least n − 1
dots and m − n + 1 ≥ c1. See [13, Construction 2
and Theorem 8].

[2, 2, 2, 2, 6, 6] 4 4 Combine [2 × 4; 2]q and [4 × 2; 2]q MRD codes via
the construction in [13, Theorem 9].

[2, 2, 2, 3, 6, 6] 4 5 Reduce from [2, 2, 4, 4, 6, 6].

[2, 2, 2, 4, 6, 6] 4 6 Reduce from [2, 2, 4, 4, 6, 6].

[2, 2, 3, 3, 6, 6] 4 6 Reduce from [2, 2, 4, 4, 6, 6].

[2, 2, 3, 4, 6, 6] 4 7 Reduce from [2, 2, 4, 4, 6, 6].

[2, 2, 3, 5, 5, 6] 4 7 –

[2, 2, 4, 4, 6, 6] 4 8 See Example 2.2.16 or Proposition 2.2.15.
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Table 2.15: 6× 6 diagrams, δ = 4

F δ νmin Solution (if known)

[2, 2, 4, 5, 5, 6] 4 8 –

[2, 2, 5, 5, 5, 6] 4 9 ?

[2, 3, 3, 5, 6, 6] 4 8 –

[2, 3, 4, 5, 6, 6] 4 9 –

[2, 3, 5, 5, 6, 6] 4 10 –

[2, 4, 4, 5, 6, 6] 4 10 –

[2, 4, 5, 5, 6, 6] 4 11 –

[2, 5, 5, 5, 6, 6] 4 12 ?

Table 2.16: 6× 6 diagrams, δ = 5

F δ νmin Solution (if known)

[1, 1, 3, 4, 4, 6] 5 2 Combine a [1 × 2; 1]q MRD code, a maximal
[[2, 3, 3]; 3]q code, and a [2 × 1; 1]q MRD code via
the construction in [13, Theorem 9].

[1, 2, 3, 4, 5, 6] 5 3 Staircase theorem. See Theorem 2.2.6.

[1, 3, 3, 4, 6, 6] 5 4 ?

[1, 3, 3, 5, 5, 6] 5 4 ?

[1, 4, 4, 5, 6, 6] 5 5 ?

[1, 4, 5, 5, 5, 6] 5 5 Reduce from [1, 5, 5, 5, 5, 6].

[1, 5, 5, 5, 5, 6] 5 6 The rightmost δ − 1 columns have at least n − 1
dots and m − n + 1 ≥ c1. See [13, Construction 2
and Theorem 8].

[2, 2, 3, 5, 5, 6] 5 4 ?

[2, 2, 4, 4, 6, 6] 5 4 ?

[2, 3, 3, 5, 6, 6] 5 5 ?

[2, 3, 5, 5, 5, 6] 5 5 ?

[2, 4, 4, 6, 6, 6] 5 6 ?

[2, 4, 5, 5, 6, 6] 5 6 –

[2, 5, 5, 5, 6, 6] 5 7 ?

[3, 3, 3, 6, 6, 6] 5 6 See Proposition 2.2.15.
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Table 2.16: 6× 6 diagrams, δ = 5

F δ νmin Solution (if known)

[3, 3, 5, 5, 6, 6] 5 6 ?

[3, 4, 5, 6, 6, 6] 5 7 –

[3, 5, 5, 6, 6, 6] 5 8 ?

Table 2.17: 6× 6 diagrams, δ = 6

F δ νmin Solution (if known)

[2, 2, 4, 4, 6, 6] 6 2 Combine three [2 × 2; 2]q MRD codes via the con-
struction in [13, Theorem 9].

[2, 3, 3, 5, 6, 6] 6 2 ?

[3, 3, 3, 6, 6, 6] 6 3 Combine two [3 × 3; 3]q MRD codes via the con-
struction in [13, Theorem 9].

[4, 4, 6, 6, 6, 6] 6 4 ?

Copyright c© Jared E. Antrobus, 2019.
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Appendices

Appendix A: Rank Distance and Gabidulin Codes

Proposition. The rank distance drk(A,B) = rk(A−B) is a metric.

Proof. For A,B,C ∈ Fm×nq , drk(A,B) is clearly nonnegative, is zero if and only if
A = B, and drk(A,B) = drk(B,A). Furthermore, the triangle inequality

rk(A−B) ≤ rk(A−B | B − C)

= rk(A− C | B − C)

≤ rk(A− C) + rk(B − C)

is satisfied.

Proposition (Rank-Metric Singleton Bound). Let C ⊆ Fm×nq be a (not necessarily
linear) rank-metric code with drk(C) = δ. Then

|C| ≤ min{qn(m−δ+1), qm(n−δ+1)}.

Proof. Without loss of generality, assume n ≤ m. Then m(n− δ+ 1) ≤ n(m− δ+ 1).
We have drk(M,N) ≥ δ for all M,N ∈ C, M 6= N , hence M − N has at

least δ nonzero columns. Using the Fq-isomorphism φ−1B : Fm×nq → Fnqm , we have

φ−1B (C) ⊆ Fnqm . Then φ−1B (M − N) has at least δ nonzero entries, hence in Fnqm we

have dHam(φ−1B (M), φ−1(N)) ≥ δ. Then

|C| ≤ (qm)n−d+1

by [30, Theorem 2.4.1].

Proposition. If C is a Gabidulin code, then φB(C) is an MRD code.

Proof. Let n ≤ m and let C ⊆ Fnqm be a Gabidulin code with dimFqm (C) = `. Then
C = rowsp(G), where

G =


g1 . . . gn
gq

1

1 . . . gq
1

n
...

...

gq
`−1

1 . . . gq
`−1

n

 ∈ F`×nqm

and g1, . . . , gn ∈ Fqm are linearly independent. Let f = (f0, . . . , f`−1) ∈ F`qm . We
want to show that φB(fG) has rank at least n− `+ 1. Put

f̂ = f0x+ f1x
q + f2x

q2 + . . .+ f`−1x
q`−1

.

Then
fG =

[
f̂(g1) . . . f̂(gn)

]
.
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By Frobenius, f̂ : 〈g1, . . . , gn〉Fq → Fqm is an Fq-linear map. But f̂ has at most q`−1

roots, hence dimFq(ker f̂) ≤ `− 1. We then have

rk(φB(fG)) = dimFq

〈
f̂(g1), . . . , f̂(gn)

〉
Fq

= dimFq(imf̂) ≥ n− `+ 1,

where the inequality follows from rank-nullity. We conclude that δ := drk(φB(C)) ≥
n − ` + 1. The Singleton bound gives the reverse inequality, so ` = n − δ + 1, and
dimFq φB(C) = m(n− δ + 1).

The above proof also demonstrates that G has rank `, since for nonzero f ∈ F`qm
we have rk(φB(fG)) > 0.

Appendix B: MDS-Constructibility

Proof of Theorem 2.5.8. Let F be a field with at least max{|Di ∩ F| − 1 | i =
δ, . . . ,m} elements. We follow the construction in [22, Thm. 32]. Let I := {i :
|Di ∩ F| − δ + 1 > 0} = {i1, . . . , iz}. For all i ∈ I set ni := |Di ∩ F| and choose
a matrix Gi ∈ F (ni−δ+1)×ni such that every full size minor is nonzero. For finite
fields this simply means that Gi is the generator matrix of an MDS code and thus
exists due to our condition on the field size. If F is infinite such matrices also exist:
consider the entries as distinct indeterminates over F . Then the full-size minors are
distinct nonzero polynomials, and choosing a point outside the variety (over F ) of
these minors, provides the entries of the desired matrix. Now we have wtH(uGi) ≥ δ
for all u ∈ F ni−δ+1 \{0}, where wtH(v) = |{j | vj 6= 0}| denotes the Hamming weight,
just like for vectors over finite fields. For (vi1 , . . . , viz) ∈ rowsp(Gi1)× . . .×rowsp(Giz)
define A := A(vi1 , . . . , viz) ∈ Fm×n as the matrix with the vector vij at the positions
of Dij ∩ F (which has indeed cardinality nij) and set all other entries equal to zero.
Define

C = {A(vi1 , . . . , viz) | (vi1 , . . . , viz) ∈ rowsp(Gi1)× . . .× rowsp(Giz)}.

By construction C ⊆ F [F ] (note that we do not make use of dots of F outside the
specified diagonals). Furthermore, dim C =

∑
i∈I(ni− δ+ 1) =

∑m
i=δ max{|Di ∩F|−

δ + 1, 0}. Finally, drk(C) = δ, which can be seen as follows. Choose any nonzero
matrix A ∈ C. Let t ∈ I be maximal such that the t-th diagonal of A is nonzero. By
construction this diagonal contains at least δ nonzero entries and therefore rk(A) ≥ δ.
The rest is obvious or follows from Theorem 2.5.4. �

In the rest of this appendix we show that the assumption used in [13, Thm. 7] for
the construction of maximal [F ; δ]-codes over sufficiently large fields is equivalent to
(F ; δ) being MDS-constructible. We need the following notions. Let α ∈ {0, . . . , δ−1}
be such that νmin(F ; δ) = να(F ; δ). Denote by F(α) the Ferrers diagram obtained by
deleting the first α rows and last δ−1−α columns from F . Thus νmin(F ; δ) = |F(α)|.
We call the diagonal Ds an MDS diagonal of (F ; δ) w.r.t. α if it satisfies:

(a) |Ds ∩ (F \F(α))| = δ− 1. In other words, Ds has α dots in the first α rows and
δ − 1− α dots in the last δ − 1− α columns of F .
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(b) There are no dots in F(α) below the diagonal Ds and there is at least one dot
in F(α) on Ds.

It is shown in [13, Thm. 7] that if (F ; δ) has an MDS diagonal, then maximal [F ; δ]-
codes over sufficiently large fields can be constructed with the aid of MDS codes
(similarly to the construction in Theorem 2.5.8). In fact we have

Proposition. Given any pair (F ; δ). Then

(F ; δ) has an MDS diagonal⇐⇒ (F ; δ) is MDS-constructible.

Proof. Consider Figure B1 in which we indicate the row indexed by α and the column
indexed by n − δ + 2 + α. Thus the lower left corner contains the Ferrers diagram
F(α).

Dδ

α •

n−δ+2+α

Figure B1: MDS diagonal vs. MDS-constructible

The upper right dot in F(α) is at position (α + 1, n − δ + 1 + α) and thus on
the diagonal Dδ. Therefore the only diagonals potentially intersecting with F(α)

are Ds where s ≥ δ. These are also the only diagonals that may contribute to∑m
i=δ max{|Di ∩ F| − δ + 1, 0}. We compute

(F ; δ) is MDS-constructible⇐⇒ |F(α)| =
m∑
s=δ

max{|Ds ∩ F| − δ + 1, 0}

⇐⇒ |Ds ∩ F| = δ − 1 + |Ds ∩ F(α)| for all s such that Ds ∩ F(α) 6= ∅
⇐⇒ Ds has δ − 1 dots outside F(α) for all s such that Ds ∩ F(α) 6= ∅
⇐⇒ Ds̃ is an MDS diagonal, where s̃ is maximal such that Ds̃ ∩ F(α) 6= ∅.
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