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ABSTRACT OF DISSERTATION

EMPIRICAL PROCESSES AND ROC CURVES WITH AN APPLICATION TO
LINEAR COMBINATIONS OF DIAGNOSTIC TESTS

The Receiver Operating Characteristic (ROC) curve is the plot of Sensitivity vs.
1- Specificity of a quantitative diagnostic test, for a wide range of cut-off points c.
The empirical ROC curve is probably the most used nonparametric estimator of the
ROC curve. The asymptotic properties of this estimator were first developed by Hsieh
and Turnbull (1996) based on strong approximations for quantile processes. Jensen
et al. (2000) provided a general method to obtain regional confidence bands for the
empirical ROC curve, based on its asymptotic distribution.

Since most biomarkers do not have high enough sensitivity and specificity to qual-
ify for good diagnostic test, a combination of biomarkers may result in a better diag-
nostic test than each one taken alone. Su and Liu (1993) proved that, if the panel of
biomarkers is multivariate normally distributed for both diseased and non-diseased
populations, then the linear combination, using Fisher’s linear discriminant coeffi-
cients, maximizes the area under the ROC curve of the newly formed diagnostic test,
called the generalized ROC curve. In this dissertation, we will derive the asymptotic
properties of the generalized empirical ROC curve, the nonparametric estimator of
the generalized ROC curve, by using the empirical processes theory as in van der
Vaart (1998). The pivotal result used in finding the asymptotic behavior of the pro-
posed nonparametric is the result on random functions which incorporate estimators
as developed by van der Vaart (1998). By using this powerful lemma we will be able
to decompose an equivalent process into a sum of two other processes, usually called
the brownian bridge and the drift term, via Donsker classes of functions. Using a uni-
form convergence rate result given by Pollard (1984), we derive the limiting process of
the drift term. Due to the independence of the random samples, the asymptotic dis-
tribution of the generalized empirical ROC process will be the sum of the asymptotic
distributions of the decomposed processes. For completeness, we will first re-derive
the asymptotic properties of the empirical ROC curve in the univariate case, using the
same technique described before. The methodology is used to combine biomarkers in
order to discriminate lung cancer patients from normals.

KEYWORDS: Diagnostic test, generalized ROC curve, Nonparametric Estimator,
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CHAPTER 1: INTRODUCTION

1.1 Overview of the ROC Curve

The Receiver Operating Characteristic (ROC) curve has its roots in statistical deci-

sion theory and practice of quality control. During the 1950s, the ROC methodology

was developed for signal detection experiments in radar. The fundamentals of this

methodology, as it was originally applied to signal detection, can be found in Green

and Swets (1966). Today, the ROC methodology is applied in a wide variety of scien-

tific areas such as psychology, economics, machine learning, biomedical sciences, and

many others (see Swets and Pickett [1982] for other examples). The ROC curve was

first introduced in the biomedical area by Lusted (1960) for medical imaging (radiol-

ogy) applications, but it became a much popular statistical tool after the publication

of Swets and Pickett’s (1982) text. Nowadays, in the omics era, when the discovery

of biomarkers is considered the key to personalized medicine, we have seen a huge

boom in ROC literature, that ranges from simple applications of the ROC curve to

new methodological developments. A search of the PubMed database for “biomarkers

and ROC curve” showed that there are slightly more than 2000 publications since the

year 2000. Two excellent reviews of ROC methodology applied in the biomedical area

are given by Zhou et al. (2002) and Pepe (2003).

In the context of biomedical applications, most often the signal event can be

replaced by the true status of a disease, diseased or non-diseased, and the “place” of

the observer is taken by a diagnostic test or biomarker used as a diagnostic tool (we
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will use them interchangeably). Let us assume that we know the exact classification

of the study subjects in either one of the two categories, a situation in which we say

that we have a gold-standard. Let D be a dichotomous variable which takes values 0

and 1 for the non-diseased and diseased subjects, respectively. We will assume that

the diagnostic test variable is continuous, and that larger values are more likely to

appear in the diseased population. Let Z be the random variable of the diagnostic

test values. Denote by X ∼ F and Y ∼ G the continuous random variables and

their cumulative distribution functions (cdf) of the test values for the non-diseased

and diseased subjects, respectively. By choosing a cut-off value c, a study subject

has a positive (negative) test if the values of the diagnostic test is greater than c

(less than or equal to c). Since we know exactly whether a subject is either diseased

or non-diseased, the result of the test can be classified as true positive (TP), false

positive (FP), true negative (TN), or false negative (FN). Thus, given N subjects and

any cut-off value c, we can construct the following 2x2 table.

Table 1.1: Classification of Diagnostic Test Results

Diagnostic Test/Disease Status Diseased Non-diseased Total

Positive Test TP FP TP + FP

Negative Test FN TN FN + TN

Total TP + FN FP + TN N

2



A test result is TP (FP) when a diseased subject is correctly (erroneously) classified as

diseased. Similarly, a test result is TN (FN) when a non-diseased subject is correctly

(erroneously) classified as non-diseased. Based on the above classification of a test

result let us introduce the following accuracy measures

TPF (c) = P (Z > c|D = 1) = P (Y > c) = 1−G(c) = G(c) (1.1)

FPF (c) = P (Z > c|D = 0) = P (X > c) = 1− F (c) = F (c) (1.2)

TNF (c) = P (Z 6 c|D = 0) = P (X 6 c) = F (c) (1.3)

FNF (c) = P (Z 6 c|D = 1) = P (Y 6 c) = G(c), (1.4)

where F and G are the survival functions. In the medical literature TPF and TNF are

also called Sensitivity and Specificity, respectively. Note that, for any given cut-off

value, among the four fractions exist the following relations

TPF (c) + FNF (c) = 1

TNF (c) + FPF (c) = 1.

Therefore, only two of the above four fractions, or “operating characteristics”, can be

really used to gain insights in how well the diagnostic test has done. Let us choose

Sensitivity(c)and Specificity(c). An ideal diagnostic test would be able to perfectly

discriminate between non-diseased and diseased subjects or, in other words, to have

sensitivity and specificity equal to 1. This is rarely the case in practice and, as a

3



matter of fact, the sensitivity increases from 0 to 1, while the specificity decreases

from 1 to 0 as the cut-off point varies from +∞ to −∞ (it practically only varies

on the range of the diagnostic test values). Therefore, by plotting sensitivity versus

1-specificity for all the possible cut-off points c, we obtain a visualization tool, namely

the ROC curve, that shows the trade-off, or interdependence, between the sensitivity

and specificity of a diagnostic test at each cut-off value. The ROC curve can also

be considered as a performance measure of the diagnostic test. An ROC curve close

to, but above the first diagonal of the unit square indicates that our diagnostic test

has slightly better chances to distinguish between diseased and non-diseased subjects

than flipping a coin. The figure below shows an example of a diagnostic test that

is better than the flip of a coin. Any point on the ROC curve is determined by its
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Figure 1.1: Example of an ROC Curve
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coordinates

ROC( · ) = {(1− Specificity(c), Sensitivity(c)), c ∈ R} .

Notice that if we denote 1-specificity by t and the sensitivity by ROC(t), then by

using the above formulae for the fractions we obtain

ROC( · ) =
{
(t, ROC(t)) =

(
t, 1−G

(
F−1(1− t)

))
, t ∈ [0, 1]

}
. (1.5)

From (1.5), we see that the ROC curve is completely determined by the quantity

G (F−1(p)) for p ∈ [0, 1].

It is worth noting a few properties of the ROC curve. Firstly, ROC curves are

invariant under monotone increasing transformations. If H is such a transformation,

then the ROC for X and Y is the same as the ROC for H(X) and H(Y ). This

property lead to the so called “binormal” assumption, in which the idea is to find the

transformation H so that H(X) and H(Y ) are both normally distributed (the binor-

mal model). Secondly, the ROC curve lies above the first diagonal of the unit square if

X is stochastically smaller than Y , (i.e., F (c) > G(c), ∀c). Thirdly, if the probability

density functions (pdf) f and g have monotone likelihood ratio L(c) = g(c)/f(c), then

the curve is concave. Next, we introduce the Area Under the Curve (AUC), which is

one of the most used summary indices of the ROC curve (for other indices see Pepe,

section 4.3, [2003]). It was shown by Bamber (1975) that AUC = P (X 6 Y ), mean-

ing that AUC is the probability that the test can correctly discriminate between a

5



diseased and a non-diseased from a random pair of subjects. However, since clinicians

are more interested in specific ranges of the ROC curve, an alternative measure is the

partial Area Under the Curve (pAUC) proposed by McClish (1989), Thompson and

Zucchini (1989), and Dodd and Pepe (2003).

Here, we consider a panel of biomarkers, or multivariate diagnostic tests. Note

that most biomarkers do not have high enough sensitivity and specificity to qualify

for good diagnostic tests alone. Therefore, by combining the information of each in-

dividual biomarker we may obtain a better diagnostic test than each one taken alone.

In the past years, there has been an increasing interest in constructing ROC curves

based on a combination of biomarkers. The challenge of this problem is given by the

fact that the natural ordering of the real numbers, which we used in constructing the

ROC curve, is lost when we move up to dimensions higher than two. One solution to

this problem, proposed by Baker (2000), was to create a new ordering relationship.

Another solution is to use a multivariate model or a transformation that constructs

a one-dimensional projection. Among the multivariate models used, we mention here

logistic regression and tree-based models. These models estimate the predicted prob-

ability of the disease, which, in turn, can be used as a diagnostic test to create an

ROC curve. On the other hand, Su and Liu (1993) proposed to create a new diag-

nostic test as a linear combination of biomarkers such that the AUC under the newly

created ROC curve, also called the generalized ROC curve, is maximized. Su and Liu

actually proved that, if the panel of biomarkers is multivariate normally distributed

for both diseased and non-diseased populations, then the linear combination, using

Fisher’s linear discriminant coefficients, maximizes the AUC. Also, it was pointed

6



out that, if the covariance matrices of the two multivariate normal distributions are

assumed proportional, then Fisher’s linear discriminant coefficients provide the high-

est sensitivity uniformly at any given specificity. Pepe and Thompson (2000) were

able to drop the normality assumption and obtain estimates of the coefficients, by

numerically maximizing the Mann-Whitney U-statistics, a nonparametric estimator

of AUC. Pepe et al. (2006) reconsidered the problem in the ROC-GLM framework

and looked at the AUC maximization as a special case of the maximum rank cor-

relation estimator described by Han (1987). Moreover, it was also shown through

simulations, that the AUC maximization approach is comparable with the logistic

likelihood maximization (i.e., logistic regression) when the logistic model holds, and

it is much better when the model does not hold. Other work on the generalized ROC

curve was done by Reiser and Faraggi (1997) who developed confidence intervals for

AUC using Wishart distributions, and Schisterman et al. (2004) who adjusted the

generalized ROC curve for covariates. Using the same argument as in the pAUC

case, Liu et al. (2005) proposed linear combinations of biomarkers that maximize the

sensitivity over a desired range of specificity, instead of AUC as in Su and Liu (1993).

1.2 Estimation of the ROC Curve

Recall that the ROC curve is practically determined by the quantity G (F−1(p)) where

p ∈ [0, 1]. Since in practice the cdf’s F and G are unknown, we need to estimate

them. Therefore, we randomly select a sample of n non-diseased subjects, also called

“controls”, and m diseased subjects, called “cases”. Moreover, based on Table 1.1 we

can calculate the fractions of correctly or incorrectly classified subjects, for every given

7



cut-off value c. The methods that are usually used for the estimation of the ROC

curve can be roughly classified as parametric, semiparametric, and nonparametric.

We will briefly describe them next, and provide some literature references.

The parametric estimation of the ROC curve consists in assuming that the diag-

nostic test variables X, Y have a known probability distribution which depends on

some unknown parameters. The most used model is the “binormal” model, in which

the diagnostic test variables are both normally distributed, X ∼ N(µND, σ2
ND) and

Y ∼ N(µD, σ2
D). Then, it is easy to show that TPF = ROC = Φ(a + bΦ−1(FPF ))

where a = (µD − µND)/σD and b = σND/σD. The parameters are usually estimated

using the maximum likelihood method (see, for example, Dorfman and Alf [1968]

and [1969]). Of course, as with any other parametric approach, the estimates can be

biased when the data does not follow the Gaussian distribution (see Goddard and

Hinberg [1990]).

The semiparametric methods are developed as a compromise solution between

parametric and nonparametric approaches. The most known semiparametric method

was presented in Section 1.1 as the binormal assumption, although it is also confus-

ingly called, by some authors, the binormal model. After the data transformation, the

parameter estimation can be done in several ways, of which we mention here Hsieh

and Turnbull (1996), Metz et al. (LABROC method) (1998), Zou and Hall (2000),

Pepe (ROC-GLM method)(2000, and section 5.5.2, [2003]). Discussions about how

realistic this approach is can be found in a series of papers by Hanley (1988) and

(1996), Metz et al. (1998), among others.

The nonparametric estimation of the ROC curve is appealing because it does not

8



impose any parametric model, with or without transformation, on the cdf’s F and

G. Therefore, F and G can be estimated either by using kernel (smoothing) meth-

ods or empirical methods. Estimation of the ROC curve using kernel based methods

was first introduced by Zou et al. (1997) and improved by Lloyd (1998) and Zhou

and Harezlak (2002). The empirical method consists in estimating F and G by their

empirical distribution functions (edf) Fn and Gm. Campbell (1994) presented the em-

pirical ROC curve, 1−Gm (F−1
n (1− t)) with t ∈ [0, 1], and its associated confidence

region, based on Kolmogorov-Smirnov statistics and bootstrapping. Hsieh and Turn-

bull (1996) obtained the asymptotic properties of the empirical ROC curve on any

interval [a, b] ⊂ (0, 1) using strong approximation results from Csörgő and Révész

(1981) and Csörgő (1983). Using the asymptotic properties derived by Hsieh and

Turnbull, Jensen et al. (2000) derived regional confidence bands for the smoothed

empirical ROC curve. Li et al. (1996) derived the asymptotic properties of the empir-

ical ROC curve under censoring, using empirical processes theory and the functional

delta method. By using the same methodology, Li et al. (1999) introduced a mixed

approach, in which one cdf is modelled parametrically and the other nonparametri-

cally, arguing that this approach will result in smaller asymptotic variance than in

the nonparametric case. Claeskens et al. (2003) used empirical likelihood to estimate

the ROC curve, and based on that they constructed confidence regions. Recently, Gu

and Ghoshal (2008a, 2008b, 2008c) proposed new estimation methods of the ROC

curve using nonparametric bayesian inference, specifically, bayesian rank-based par-

tial likelihood and bayesian bootstrapping. The asymptotic properties were based on

strong approximation theory. Based on this approach, they also constructed credible

9



confidence bounds.

1.3 Proposed Methods and Results

As we said before, developing multivariate diagnostic tests from large datasets, high-

throughput screening data from gene expression arrays or mass spectrometry tech-

nologies, has become a very interesting and challenging research subject. In this

dissertation, we will construct a multivariate diagnostic test as a linear combination

of univariate diagnostic tests, using the methodology proposed by Su and Liu (1993).

Again, we point out that the coefficients of the linear combination are determined

such the AUC under ROC curve of the newly formed diagnostic test is maximized.

The unknown coefficients of this transformation are estimated by their maximum like-

lihood estimators. There seems to be little research about the statistical properties of

the generalized empirical ROC curve, the nonparametric estimator of the generalized

ROC curve. Therefore, our main goal is to derive the asymptotic distribution of the

generalized empirical ROC curve. Note that, given that the asymptotic behavior of

the generalized empirical ROC curve is known, one can construct either pointwise or

regional confidence bands, as presented in Jensen et al. (2000).

Here, we will derive the asymptotic properties by using the empirical processes

theory as in van der Vaart (1998). Shortly, the major steps of this technique can be

described as follows. Firstly, we rewrite the generalized empirical ROC process in an

equivalent form using uniform edf’s. Secondly, we decompose this equivalent process

into a sum of two other processes, usually called the brownian bridge and the drift

term, using the powerful Lemma 19.24 (van der Vaart [1998]), via Donsker classes

10



of functions. Thirdly, we find the asymptotic distribution of each of the decomposed

processes. Due to the independence of the random samples, the asymptotic distri-

bution of the generalized empirical ROC process will be the sum of the asymptotic

distributions found previously. For completeness, we will first re-derive the asymp-

totic properties of the empirical ROC curve in the univariate case, using the major

steps described before.

1.4 Organization

This dissertation is organized as follows. In Chapter 2, we will introduce the basic

concepts from measure and probability theory and provide the main results from

empirical processes theory to be used later on. The pivotal results used to derive the

asymptotic distribution of the ROC processes are Lemma 19.24 from van der Vaart

(1998) and Theorem 37 from Pollard (1984). In Chapter 3, we will re-derive the

asymptotic distribution of the empirical ROC process using the empirical processes

approach and the functional delta method. The results are presented in Theorem 3.14

and Corollary 3.15. In Chapter 4, we will derive the main result of this dissertation,

namely the asymptotic distribution of the generalized empirical ROC process on the

interval [0, 1], by using the core technique introduced in the previous chapter. The

working assumption is that the biomarker panel is multivariate normally distributed

and the covariance matrices for the diseased and non-diseased are the same. The main

result is obtained in Theorem 4.55. In Chapter 5, we will apply the methodology to

a set of biomarkers used for discrimination between lung cancer and normal subjects

and present a simulation study. In Chapter 6, we will discuss the results and future

11



work.
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CHAPTER 2: PRELIMINARY TOOLS

2.1 Basic Definitions and Theory

For completeness, we will introduce notations, definitions and main results from em-

pirical process theory that we will be using in the subsequent chapters. In this section,

we will start with the basics from measure and probability theory and we will end

with some results concerning the generalized inverse function. All results from this

chapter will be stated without proof, but, for those interested in their proofs, we will

add in parenthesis the source of the result.

Definition 2.1. A metric is a map d : D× D 7→ [0,∞) with properties

1. d(x, y) = d(y, x);

2. d(x, z) 6 d(x, y) + d(y, z) (triangle inequality);

3. d(x, y) = 0 if and only if x = y.

Definition 2.2. A set D equipped with a metric d is called a metric space and is

denoted (D, d).

Definition 2.3. A subset of a metric space is dense if and only if its closure is the

whole space. A metric space is separable if and only if it has a countable dense subset.

Definition 2.4. A subset K of a metric space is compact if and only if it is closed

and every sequence in K has a converging subsequence. A subset K is totally bounded

if and only if for every ε > 0 it can be covered by finitely many balls of radius ε.
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Definition 2.5. A norm is a map ‖ · ‖ : D 7→ [0,∞) such that for every x, y ∈ D and

α ∈ R,

1. ‖x + y‖ 6 ‖x‖+ ‖y‖ (triangle inequality);

2. ‖αx‖ = |α| ‖x‖;

3. ‖x‖ = 0 if and only if x = 0.

Definition 2.6. A set D equipped with a norm is called a normed space.

Remark 2.7. If ‖ · ‖ is norm then d(x, y) = ‖x− y‖ is a metric.

Remark 2.8. A semimetric(seminorm) is map that satisfies only conditions 1 and 2

from Definition 2.1(Definition 2.5).

Remark 2.9. Here are some examples of normed spaces that we will work with later

on. Let −∞ 6 a < b 6 ∞ and S = {f : [a, b] 7→ R}. Depending on the type of

functions f , the set S will have different notations. C[a, b] is the set of all continuous

functions, D[a, b] is the set of all functions that are right continuous and whose left

limits exists everywhere in [a, b] and l∞[a, b] is the set of all bounded functions. We

will equip these spaces with the uniform norm defined as ‖f‖∞ = supx∈[a,b] |f(x)|.

When the limits a, b are not included, we will adjust the notation correspondingly.

Definition 2.10. Let Ω be a arbitrary set. A class U of subsets of Ω is called σ-field

if:

1. ∅, Ω ∈ U ;

2. if A ∈ U then its complement Ac ∈ U ;
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3. if A1, A2, . . . is a countable collection of sets in U then
⋃

i Ai ∈ U and
⋂

i Ai ∈ U .

Remark 2.11. A set Ω together with the σ-field U on it is called a measurable space.

Definition 2.12. The smallest σ-field that contains the open sets of a metric space

D is called a Borel σ-field.

Remark 2.13. We will denote by B(R) the Borel σ-field on the real line.

Definition 2.14. Let U be a σ-field of Ω. A function µ : U → R is called a measure

if:

1. 0 6 µ(A) 6 ∞, ∀A ∈ U ;

2. µ(∅) = 0;

3. if A1, A2, . . . is a countable collection of pairwise disjoint sets in U then

µ(
⋃

i Ai) =
∑

i µ(Ai).

Remark 2.15. A measure P for which P (Ω) = 1 is called a probability measure. The

space (Ω,U , P ) is called a probability space.

Let (Ω,U , P ) be a probability space and (D, d) be a metric space with D a σ-field

on it.

Definition 2.16. A map X : Ω → D is called a U/D-measurable map if for any

D ∈ D the set {ω ∈ Ω : X(ω) ∈ D} ∈ U .

Remark 2.17. If D is the Borel σ-field then X is called Borel-measurable.

Definition 2.18. A map X : Ω 7→ D is called a random element with values in D if

it is Borel-measurable.
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Remark 2.19. When D = R(Rk), X is called a random variable (vector). If D is a

space of functions like C[a, b], D[a, b] or l∞[a, b] then, X is called a random function.

Definition 2.20. A random element X : Ω → D is called tight if for every ε > 0

there exists a compact set K such that P (X /∈ K) < ε.

Definition 2.21. Let T be an arbitrary set. A collection X = {Xt : t ∈ T} of random

variables indexed by T and defined on the same probability space (Ω,U , P ) is called

a stochastic process.

Remark 2.22. For a fixed ω, the map t 7→ Xt(ω) is called a sample path. If, for

example, every sample path is a bounded function, then X can be viewed as a random

element with values in l∞(T ). A classical example of a stochastic process is the

empirical distribution function and we will talk more about it in a later section.

Definition 2.23. A stochastic process X = {Xt : t ∈ T} is called Gaussian if the

random vector (Xt1(ω), . . . , Xtk(ω)) is multivariate normal for ∀k ∈ N and ∀tk > 0.

Definition 2.24. Let X : Ω → D be a random element. The induced probability

measure PX : D→ R defined by

PX(D) = P
(
X−1(D)

)
= P (ω : X(ω) ∈ D) , ∀D ∈ D,

is called the probability distribution or simply distribution of X.

Remark 2.25. When there is no confusion, we will drop the subscript and, in order to

make a distinction between the two probabilities, we will denote by P the probability

measure and by P the induced probability distribution.
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Definition 2.26. A random element X : Ω → D is called separable if exists a

separable, measurable set D ∈ D with PX(D) = 1.

Definition 2.27. The distribution function of a random variable X, is the right

continuous function defined on R by

F (x) = PX((−∞, x]) = P (ω : X(ω) 6 x).

Definition 2.28. The expectation of a random variable X is the Lebesgue-Stieltjes

integral of X(ω) with respect to probability measure P .

Remark 2.29. Some common notations that we will use are: EX,
∫
Ω

X(ω)dP (ω)) or

∫
xdPX(x).

Definition 2.30. The pthquantile of a distribution function F is the quantity given

by

F−1(p) = inf
x∈R
{x : F (x) > p}, 0 < p < 1.

Let F−1 : (0, 1) 7→ R be the quantile function or generalized inverse function.

Next, we will state some very useful properties of the quantile function.

Lemma 2.31. (Lemma 1.1.4, Serfling, , p. 3), Let F be a distribution function. The

quantile function is non-decreasing and left continuous, and satisfies

1. F−1 ◦ F (x) 6 x, −∞ < x < ∞ and

2. F ◦ F−1(p) > p, 0 < p < 1. Hence

3. F (x) > p if and only if x > F−1(p).
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Corollary 2.32. For every p ∈ (0, 1) and x ∈ R, F ◦ F−1(p) ≡ p iff F is continuous

and F−1 ◦ F (x) ≡ x iff F is strictly increasing.

Remark 2.33. (Theorem 2.1.3 A, Remark (i), Serfling , p. 59), For any random sample

{Xi}i=1,n from distribution function F one can construct independent uniform [0, 1]

random variables such that

P
(
Xi = F−1(Ui)

)
= 1, i = 1, n. (2.1)

Lemma 2.34. (Theorem 1, Shorack and Wellner, 1986, p. 3), Let ξ ∼ Unif(0, 1).

Then, for a fixed distribution function F , the random variable, obtained by thequantile

transformation, X ≡ F−1(ξ) has distribution function F .

Lemma 2.35. Let X ∼ F . Then, the random variable U ≡ F (X), obtained by the

probability integral transformation, is uniformly distributed on [0, 1] if and only if F

is continuous.

Lemma 2.36. (Proposition 6, Shorack and Wellner, 1986, p. 9), If F has a positive

continuous density in the neighborhood of F−1(p) where p ∈ (0, 1), then (d/dp)F−1(p)

exists and equals 1/f(F−1(p)).

2.2 Stochastic Convergence in Metric Spaces

We will introduce now three modes of stochastic convergence in metric spaces and

state properties involving these modes of convergence. Also, we will introduce the

useful notations op(1), Op(1) and operations with them.
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Let (Ω,U , P ) be an arbitrary probability space and (D, d) a metric space with D

its Borel σ-field on it. Let Xn : Ωn 7→ D be a sequence of arbitrary maps defined

on probability spaces (Ωn,Un, Pn) and X : Ω 7→ D be a random element. Note that,

in the classical theory of stochastic convergence, Xn are required to be measurable,

condition that usually holds when D is a separable metric space (R for example).

This requirement fails when dealing with empirical processes (See [van der Vaart and

Wellner, 1996, p. 3] and [Bilingsley, 1968, pp. 150-152]) for such examples). There

were several attempts to solve this problem but none of those was totally satisfactory

until Hoffmann-Jørgensen developed a new concept of weak convergence based on

outer expectation.

Definition 2.37. Let X : Ω 7→ D an arbitrary map. The outer expectation of X with

respect to P is given by

E∗X = inf{EU : U : Ω 7→ R, measurable, U > X, EU exists}.

The outer probability of an arbitrary subset B ∈ Ω is given by

P ∗(B) = inf{P (A) : A ⊃ B, A ∈ U}.

Definition 2.38. The sequence Xn converges in probability to X, denoted Xn
P→ X,

if P ∗(d(Xn, X) > ε) → 0, as n →∞.

Definition 2.39. The sequence Xn converges almost surely to X, denoted Xn
a.s.→ X,

if there exists a sequence of measurable random variables ∆n such that d(Xn, X) 6 ∆n
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and ∆n → 0 almost sure as n →∞.

Definition 2.40. The sequence Xn converges weakly (or in distribution) to X, if

E∗f(Xn) → Ef(X), as n → ∞, for every bounded, continuous function f : D 7→ R.

We denote this type of convergence by Xn Ã X, as n →∞.

Lemma 2.41. Continuous mapping, (Theorem 1.3.6, van der Vaart and Wellner,

1996, p. 20), Let g : D 7→ E be continuous at every point of a set D0 ⊂ D. If Xn Ã X

and X takes its values in D0, then g(Xn) Ã g(X).

Lemma 2.42. Let Xn, Yn : Ωn 7→ D be some arbitrary maps and X be a random

element with values in D. If Xn Ã X and d(Xn, Yn)
P→ 0, then Yn Ã X.

Lemma 2.43. Slutsky’s Lemma, (Example 1.4.7, van der Vaart and Wellner,

1996, p. 32), Let Xn : Ωn 7→ D, Yn : Ωn 7→ E be some arbitrary maps such that

Xn Ã X and Yn Ã c with X separable and c a constant. Then, (Xn, Yn) Ã (X, c).

Lemma 2.44. (Lemma 18.13, van der Vaart, 1998, p. 261), Let D0 ⊂ D be arbitrary

metric spaces equipped with the same metric. If X and every Xn take their values in

D0, then Xn Ã X as maps in D0 if and only if Xn Ã X as maps in D.

Let {Xn}n∈N be a sequence of random variables. Then, the notation Xn = op(1)

means that Xn → 0 in probability. The notation Xn = Op(1) means that Xn is

bounded in probability or, equivalently, for every ε > 0 there exist Mε < ∞ and

Nε ∈ N such that P (|Xn| > Mε) < ε, ∀n > Nε. More generally, let {Xn} and

{Yn} be two sequences of random variables. By Xn = op(Yn) we will understand

Xn = YnRn where Rn = op(1). By Xn = Op(Yn) we will understand Xn = YnRn

where Rn = Op(1).
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Lemma 2.45. The following identities are true.

1. op(1) + op(1) = op(1);

2. op(1) + Op(1) = Op(1);

3. Op(1)op(1) = op(1);

4. (1 + op(1))−1 = Op(1);

5. op(Rn) = Rnop(1);

6. Op(Rn) = RnOp(1).

2.3 Empirical Processes

Now, We are able to talk about some important empirical processes results. First,

we will state some classical results regarding empirical distributions. Then, we will

introduce the Glivenko-Cantelli, Donsker, and Vapnik-Cervonenskis classes of func-

tions as a main tool in proving weak convergence of empirical processes. The uniform

version of Lemma 19.24 from van der Vaart (1998) that will be stated next, will play

a pivotal role in finding the asymptotic distribution of the ROC processes. We will

continue with the Hadamard differentiability and related results and we will end with

Theorem 37 from Pollard (1984).

Let (Ω,U , P) be an arbitrary probability space and (X ,A) a measurable space.

Let X1, . . . , Xn be a random sample from probability distribution P with values on

X . Notice that since we dropped the subscript X from the induced distribution, we
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denote the probability measure by P and the distribution of X by P . Let F be a

class of measurable functions f : X 7→ R.

Definition 2.46. Let A be an arbitrary set. Then the indicator function IA(x) is

defined as

IA(x) =





1, x ∈ A,

0, x ∈ Ac.

Definition 2.47. Let A ∈ A. Then the dirac measure, or (point mass) at the

observation, is defined as

δx(A) =





1, x ∈ A,

0, x ∈ Ac.

Definition 2.48. The empirical distribution is the discrete uniform measure on the

observations, Pn = n−1
∑n

i=1 δXi
.

Remark 2.49. The expectations under Pn and P are, respectively,

Pnf = n−1

n∑
i=1

f(Xi) and Pf =

∫
fdP.

For example, if f = I(−∞,t](x) then Pnf = Fn and Pf = F . As we said before Fn is

a stochastic process. Since every sample path is cadlag the stochastic process Fn can

be viewed as the random function Fn : Ω 7→ D[a, b], where [a, b] ⊆ R. Next, we will

state a few important results regarding empirical distributions.

Lemma 2.50. Bahadur’s Theorem, (Serfling, 1981, pp. 91-92), Let p ∈ (0, 1).
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Suppose F is twice differentiable at F−1(p), with F ′ (F−1(p)) = f (F−1(p)) > 0. Then,

F−1
n (p) = F−1(p) +

p− Fn (F−1(p))

f (F−1(p))
+ Rn, (2.2)

where with probability one

Rn = O
(
n−3/4(log n)3/4

)
, n →∞. (2.3)

Let R∗
n = supp∈(0,1) f (F−1(p)) |Rn(p)|.

Lemma 2.51. Kiefer’s Theorem, (Serfling, 1981, p. 101), With probability one

lim
n→∞

P

(
n3/4R∗

n

(log n)1/2
6 z

)
= 1− 2

∞∑
j=1

(−1)j+1e−2j2z4

, z > 0. (2.4)

Remark 2.52. Notice that (2.4) implies that R∗
n = Op

(
n−3/4(log n)1/2

)
, as n →∞.

Lemma 2.53. (Serfling, 1981, p.283), For p ∈ (0, 1), δ ∈ (0, 1/2)

sup
p∈(0,1)

∣∣∣∣∣
Fn(p)− F (p)

[p(1− p)]δ

∣∣∣∣∣ = Op

(
n−1/2

)
. (2.5)

Lemma 2.54. (Remark 1(i), Wellner, 1978, p.75), Let Un be the uniform empirical

distribution function. For all λ > 1

P

(
sup

p∈[0,1]

Un(t)

t
> λ

)
= P

(
sup

p∈[1/n,1]

t

U−1
n (t)

> λ

)
6 eλ−1. (2.6)

Proposition 2.55. (Serfling, 1981, p. 91), Let X1, X2, . . . , Xn be a random sample
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from a standard normal distribution. Let Xn:1 6 Xn:2 6 . . . 6 Xn:n be the order

statistics. Then

P

(
lim

n→∞
Xn:n

(2 log n)(1/2)
= 1

)
= 1. (2.7)

We will introduce next the “uniform” or “functional” extensions of the law of

large numbers and central limit theorem.

Definition 2.56. The class F is called P-Glivenko-Cantelli if

‖Pnf − Pf‖F = sup
f∈F

|Pnf − Pf | −→ 0, a.s.∗.

Theorem 2.57. Glivenko-Cantelli, If X1, X2, . . . are independently and identically

distributed random variables with distribution function F then ‖Fn − F‖∞ → 0 a.s.

Definition 2.58. The empirical process evaluated at f is defined as

Gnf =
√

n(Pnf − Pf).

Definition 2.59. The class F is called P-Donsker if the sequence of processes {Gnf :

f ∈ F} converges to GP , a tight limit process in the space l∞(F).

Remark 2.60. The limit process GP , also called a P-Brownian bridge, is a Gaussian

process with mean zero and covariance structure given by

EGP fGP g = Pfg − PfPg. (2.8)

If the functions f are of the form I(−∞,t](x) then the limit will be denoted by GF and
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called an F-Brownian bridge.

Lemma 2.61. (Theorem 2.10.1, van der Vaart and Wellner, 1996, p 190), If F is

Donsker and G ⊂ F , then G is Donsker.

Theorem 2.62. (Theorem 19.3, van der Vaart 1998, p. 266), If X1, X2, · · · are

i.i.d random variables with distribution function F , then the sequence of empirical

processes
√

n(Fn−F ) converges in distribution in the space D[−∞,∞] to a tight ran-

dom element GF whose marginal distributions are zero-mean normal with covariance

function

EGF (ti)GF (tj) = F (ti ∧ tj)− F (ti)F (tj). (2.9)

A class of functions can be Glivenko-Cantelli or Donsker depending on its “size”,

which can be measured in terms of entropy. The two entropy measures used are the

entropy with bracketing and the uniform entropy integral, of which, the later one will

be discussed in more detail . Using the entropy with bracketing the following lemma

can be shown.

Lemma 2.63. (Example 19.12, van der Vaart 1998, p. 273), Let w : (0, 1) 7→ R+ be a

fixed, continuous function. Let t 7→ Gw
n (t) =

√
n (Fn − F ) (t)w(F (t)) be the weighted

empirical process of a sample of real-values observations. If the weight function w is

monotone around 0 and 1 and satisfies
∫ 1

0
w2(s)ds < ∞, then the weighted empirical

process converges weakly in l∞(−∞,∞) to a tight Gaussian process.

Definition 2.64. The covering number N(ε,F , ‖ · ‖) is the minimal number of balls

{g : ‖g − f‖ < ε} of radius ε needed to cover the set F . The centers of the balls
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need not to belong to F , but they should have finite norms. The entropy (without

bracketing) is the logarithm of the covering number.

Definition 2.65. The uniform covering numbers (relative to Lr) are defined as

supQ N(ε ‖F‖Q,r ,F , Lr(Q)), where, F is a given envelope function, the supremum is

over all probability measures Q, with 0 < QF r < ∞, and ‖f‖Q,r = (
∫ |f |r)1/r. The

uniform entropy integral is defined as

J(δ,F , L2) =

∫ δ

0

√
log sup

Q
N(ε ‖F‖Q,r ,F , Lr(Q))dε.

Lemma 2.66. (Theorem 19.14, van der Vaart 1998, p. 274), Let F be suitably

measurable class of measurable functions with J(1,F , L2) < ∞. If P ∗F 2 < ∞, where

P ∗ is the outer probability, then F is P-Donsker.

Next, we will introduce the Vapnik-Cervonenkis (VC) classes of functions and

related results. These classes of functions are very important because it is shown

that, under certain conditions, they are Donsker classes.

Let C be a collection of subsets of a set X . We say that X picks out a certain

subset from {x1, . . . , xn} if this can be formed as a set of the form C ∩ {x1, . . . , xn}.

The collection C is said to shatter {x1, . . . , xn} if each of its 2n subsets can be picked

out.

Definition 2.67. The VC-index V (C) of the class C is the smallest n for which no

set of size n is shattered by C. The collection C is called a VC-class if its index is

finite.
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Definition 2.68. The subgraph of a function f : X 7→ R is the subset of X ×R given

by {(x, t) : t < f(x)}.

Definition 2.69. A collection F of measurable functions on a sample space is called

a VC-subgraph class if the collection of all subgraphs of the functions in F form a

VC-class of sets (in X × R).

Lemma 2.70. (Lemma 19.15, van der Vaart 1998, p. 275), There exists a universal

constant K such that for any VC-subgraph class F , any r > 1 and 0 < ε < 1,

sup
Q

N(ε ‖F‖Q,r ,F , Lr(Q)) 6 KV (F)(16e)V (F)(1/ε)r(V (F)−1).

Remark 2.71. Based on the upper bound obtained in Lemma 2.70, it can be shown

that J(1,F , L2) < ∞. Thus, according to Lemma 2.66, VC-subgraph classes are

Q-Donsker classes if they are “suitably measurable” and P ∗F 2 < ∞, where F is a

given envelope of the class of functions.

Lemma 2.72. (Example 19.17, van der Vaart 1998, p. 276), Let F be all linear

combinations of
∑

λifi of a given finite set of functions f1, . . . , fk on X . Then, F is

a VC-subgraph class and hence has a finite uniform entropy integral. Furthermore,

the same is true for the class of all sets {f > c} if f ranges over F and c over R.

Lemma 2.73. (Lemma 2.6.18, van der Vaart and Wellner, 1996, p. 147), Let F

and G be VC-subgraph classes on a set X and g : X 7→ R, ϕ : R 7→ R and ψ : Z 7→ X

fixed functions. Then,

1. F ∧ G = {f ∧ g : f ∈ F , g ∈ G} is VC-subgraph;
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2. F ∨ G is VC-subgraph;

3. {F > 0} = {{f > 0} : f ∈ F} is VC;

4. −F is VC;

5. F + g = {f + g : f ∈ F} is VC-subgraph;

6. F · g = {fg : f ∈ F} is VC-subgraph;

7. F ◦ ψ = {f(ψ) : f ∈ F} is VC-subgraph;

8. ϕ ◦ F is a VC-subgraph for monotone ϕ.

Lemma 2.74. (Theorem 2.10.6, van der Vaart and Wellner, 1996, p. 192), Let

F1, . . . ,Fk be Donsker classes with ‖P‖Fi
< ∞ for each i. Let ϕ : Rk 7→ R satisfy

|ϕ ◦ f(x)− ϕ ◦ g(x)|2 6
∑n

i=1(fi(x)−gi(x))2 for every f, g ∈ F1× . . .Fk and x. Then

the class ϕ◦ (F1, . . . ,Fk) is Donsker, provided ϕ◦ (f1, . . . , fk) is integrable for at least

one (f1, . . . , fk).

The following result from van der Vaart (1998) will be essential in finding the

asymptotic distribution of the ROC processes.

Lemma 2.75. (van der Vaart, 1998, p. 281), Let Θ be a normed space and Fδ =

{fθ,t(x) − fθ0,t(x) : ‖θ − θ0‖ 6 δ, θ, θ0 ∈ Θ, t ∈ R} be a P-Donsker class of functions

for some δ > 0. If

lim
θ→θ0

sup
t∈R

∫
(fθ,t(x)− fθ0,t(x))2dP (x) → 0, n →∞, (2.10)
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and

θ̂
P→ θ0, as n →∞, (2.11)

then

sup
t∈R

√
n(Pn − P )(fθ̂,t(X)− fθ0,t(X)) = op(1). (2.12)

Remark 2.76. Moreover, one can show that the conclusion of Lemma 2.75 holds with

respect to the product probability, when the Donsker class Fδ and the estimator θ̂

have different underlying probability spaces. The key result used in this proof is

Slutsky’s Lemma. Also, we should mention here that the integral Pfθ̂,t(X) uses a

notational abuse and it should be understood as follows

Pfθ̂,t(X) =

∫
fθ,t(x)dP (x)|θ=θ̂.

In the one dimensional case, the limit process of the ROC process will be obtained

by using the functional delta method, via the chain rule. We will actually use the

Hadamard differentiability of the operator G◦F−1, as shown in Reeds (1976), Fernholz

(1983), Beirlant and Deheuvels (1990), Dudley and Norvaisa (1999), or van der Vaart

and Wellner (1996).

Definition 2.77. Let D and E be normed spaces. A map ϕ : Dϕ ⊂ D 7→ E is called

Hadamard differentiable at θ ∈ Dϕ if there is a continuous linear map ϕ
′
θ : D 7→ E

such that
∥∥∥∥
ϕ(θ + tht)− ϕ(θ)

t
− ϕ

′
θ(h)

∥∥∥∥
E

→ 0, (2.13)
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as t ↓ 0, every ht 7→ h such that θ + tht ∈ Dϕ. If h ∈ D0 ⊂ D then ϕ is called

Hadamard differentiable tangentially to D0 and ϕ
′
θ is defined on D0.

Theorem 2.78. Chain rule, (Lemma 3.9.3, van der Vaart and Wellner, 1996, p.

373), If ϕ : Dϕ ⊂ D 7→ Eψ is Hadamard differentiable at θ ⊂ Dϕ tangentially to

D0 and ψ : Eψ 7→ F is Hadamard differentiable at ϕ(θ) tangentially to ϕ
′
θ(D0) then

ψ ◦ ϕ : Dϕ 7→ F is Hadamard differentiable at θ tangentially to D0 with derivative

ψ
′
ϕ(θ) ◦ ϕ

′
θ.

Theorem 2.79. Functional Delta Method, (Theorem 3.94, van der Vaart and

Wellner, 1996, p. 374), Let D, E be metrizable topological vector spaces. Let ϕ :

Dϕ ⊂ D 7→ E be Hadamard differentiable at θ tangentially to D0. Let Xn : Ωn 7→ Dϕ

be maps with rn (Xn − θ) Ã X for some sequence of constants rn → ∞ where X

is separable and takes its values in D0. Then rn (ϕ(Xn)− ϕ(θ)) Ã ϕ
′
θ(X). If ϕ

′
θ is

defined and continuous on the whole space D then the sequence rn (ϕ(Xn)− ϕ(θ)) −

ϕ
′
θ (rn (Xn − θ)) converges to zero in probability.

Lemma 2.80. (Lemma 3.9.23 (ii), van der Vaart and Wellner, 1996, p 386), Let

F have compact support [a, b] and be continuously differentiable on its support with

strictly positive derivative f. Then the inverse map A 7→ A−1 as a map D2 ⊂ D[a, b] 7→

l∞(0, 1) is Hadamard differentiable at F tangentially to C[a, b]. The derivative is given

by

ϕ
′
F (α) = −(α/f) ◦ F−1. (2.14)

Lemma 2.81. (Lemma 3.9.25, van der Vaart and Wellner, 1996, p 388), Let g :

(a, b) ⊂ R 7→ R be differentiable with uniformly continuous and bounded derivative
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and let Dϕ = {A ∈ l∞(X ) : a < A < b}. Then the map A 7→ g ◦ A is Hadamard

differentiable as a map Dϕ ⊂ l∞(X ) 7→ l∞(X ) at every A ∈ Dϕ. The derivative is

given by

ϕ
′
A(α) = g

′
(A(x))(α(x)). (2.15)

Finally, we will state Pollard’s Theorem.

Definition 2.82. Let T be a separable metric space and F = {f( · , t) : t ∈ T} be a

class indexed by T . The class F is called permissible if it can be indexed by a T in

such a way that

1. The function f( · , · ) is S ⊗B(T )-measurable as a function from S ⊗ T into the

real line;

2. T is an analytic subset of a compact metric space T (from which it inherits its

metric and borel σ-field).

Let xn and yn be two sequences. By xn À yn we mean xn/yn →∞.

Theorem 2.83. (Theorem 37, Pollard, 1984, p. 34), For each n, let Fn be a per-

missible class of functions whose covering numbers satisfy

sup
Q

N(ε,Fn, L1(Q)) 6 Aε−W for 0 < ε < 1, (2.16)

with constants A and W not depending on n. Let {αn} be a non-increasing sequence

of positive numbers for which nδ2
nα2

n À log n. If |f | 6 1 and (Pf 2)1/2 6 δn for each f
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in Fn then

sup
Fn

|Pnf − Pf | ¿ δ2
nαn almost surely. (2.17)

Copyright c© Costel Chirila 2008
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CHAPTER 3: ASYMPTOTIC DISTRIBUTION OF ROC PROCESS

3.1 Notation and Problem Set-up

Let (Ω1,U1, P) and (Ω2,U2, Q) be two probability spaces. Let X : Ω1 7→ R and

Y : Ω2 7→ R be two independent random variables that represent the diagnostic tests

of healthy and diseased subjects, respectively. Denote by P and F the probability

distribution and distribution function induced by X. Similarly, let Q and G denote the

probability distribution and distribution function induced by Y . Let X1, X2, . . . , Xn

and Y1, Y2, . . . , Ym be two mutually independent random samples from distributions

P and Q, respectively. Assume that n and m satisfy condition m/n → λ ∈ R+, as

n →∞.

Our goal in this chapter is to find the asymptotic properties of the nonparametric

estimator of ROC curve. Recall, from the first chapter, that this estimator is the

empirical ROC curve given by EROC(p) = 1−Gm(F−1
n (1− t)), where t ∈ (0, 1) and

Gm, Fn are the empirical distribution functions. Therefore, it will be sufficient to

focus our attention on the following empirical process

√
m

(
Gm(F−1

n (p))−G(F−1(p))
)
, p ∈ (0, 1). (3.1)

An equivalent form of the process in (3.1) is given by

√
m

(
m−1

m∑
j=1

I[Yj 6 F−1
n (p)]−G(F−1(p))

)
, p ∈ (0, 1), (3.2)
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where I[A] is the indicator function of the event A. The process introduced in (3.1)

will be called empirical ROC process or, shortly, EROC process. The step function

Gm(F−1
n (p, ω1), ω2) = m−1

∑m
j=1 I[Yj(ω2) 6 F−1

n (p, ω1)] will be called empirical ROC

curve.

Remark 3.1. Since this is a two sample problem the underlying and induced prob-

ability spaces of the random vector (X,Y ) are given by (Ω1 × Ω2,U1 ⊗ U2, P ⊗ Q)

and (R×R,B(R)⊗B(R), P ⊗Q), respectively. However, the notation can easily get

complicated if we would like to keep track of the right probability spaces. Hence,

whenever is possible, we will work with the marginals and, when deemed necessary,

we will provide further clarifications.

Now, we briefly describe how we will proceed to find the asymptotic distribution

of the empirical ROC process. First, by Remark 2.33 we will construct independent

uniformly [0, 1] distributed random variables {Ui}i=1,n and {Vj}j=1,m such that (2.1)

holds for both random samples. Let Un and Vm be the empirical distribution functions

of the corresponding random samples. Then, we will show that the EROC process

defined in (3.1) is equivalent, with probability one, to the process

√
m

(
G̃m(U−1

n (p))− G̃(p)
)

, p ∈ (0, 1), (3.3)

where G̃ = G◦F−1 and G̃m is the empirical distribution function of a random sample

{Zj}j=1,m with distribution function G̃. This construction will ease our future work

by avoiding some technical difficulties that appear in the general case and it will allow

us to find the asymptotic distribution on the interval (0, 1) by using the functional
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delta method. Note that Hsieh and Turnbull (1996) obtained the same result on

the interval [a, b] ⊂ (0, 1) using strong approximation theory. Second, starting from

the representation process in (3.3), we will construct a Donsker class of functions.

Then, by applying Lemma 2.75 to the previous class of functions, we will decompose

this process into a sum of two other processes. Third, we will find the asymptotic

distribution of each of the decomposed processes. Due to independence of the random

samples the asymptotic distribution of this process will be the sum of the asymptotic

distributions found before.

Lemma 3.2. Let F, G be any two distribution functions. Then,

(F ◦G)−1 = G−1 ◦ F−1 (3.4)

Proof. By definition, (F ◦G)−1(p) = inf {x : F (G(x)) > p}. But, by Lemma 2.31(3)

F (G(x)) > p iff G(x) > F−1(x). Hence, (F ◦ G)−1(p) = inf {x : G(x) > F−1(p)} =

G−1 ◦ F−1(p).

By Remark 2.33 we can construct the independent and identically Uniform(0,1)

distributed random variables Ui such that

P
(
Xi = F−1(Ui)

)
= 1, i = 1, n. (3.5)

Denote by U the uniform distribution on [0, 1] and let Un = n−1
∑

I[Ui 6 p] be

the empirical distribution function of random sample {Ui}i=1,n. Notice that since

U(p) = U−1(p) = p for any p ∈ [0, 1], we can conveniently use p instead U(p) or
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U−1(p) and vice versa.

Lemma 3.3. Let F be any distribution function. Then, there exists {Ui}i=1,n, a

random sample from Uniform(0,1) distribution, such that (3.5) holds and for any

x ∈ R

Fn(x) = Un(F (x)), a.s. (3.6)

Proof. By (3.5) we have

Fn(x) = n−1
∑

I[Xi 6 x] = n−1
∑

I[F−1(Ui) 6 x], a.s.

But, by Lemma 2.31(3) we have

n−1
∑

I[F−1(Ui) 6 x] = n−1
∑

I[Ui 6 F (x)] = Un(F (x)).

Lemma 3.4. Let F be any distribution function. Then, there exists {Ui}i=1,n, a

random sample from Uniform(0,1) distribution, such that (3.5) holds and for any

p ∈ (0, 1)

F−1
n (p) = F−1(U−1

n (p)), a.s. (3.7)

Proof. Follows immediately from Lemma 3.3 and Lemma 3.2

By analogy, we can construct the independent and identically Uniform(0,1) dis-
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tributed random variables Vj such that

Q
(
Yj = G−1(Vj)

)
= 1, j = 1,m. (3.8)

Similarly, if we let Vm(p) = m−1
∑

I[Vj 6 p], for p ∈ (0, 1) be the empirical distribu-

tion function of random sample {Vj}j=1,m we can prove that, for any y ∈ R,

Gm(y) = Vm(G(y)), a.s. (3.9)

Lemma 3.5. Let {Ui}i=1,n and {Vj}j=1,m be two mutually independent random sam-

ples from a Uniform(0,1) distribution that satisfy (3.5) and (3.8), respectively. If F

is strictly increasing and G any distribution function then, for any p ∈ (0, 1)

Gm(F−1
n (p)) = G̃m(U−1

n (p)), a.s, (3.10)

where G̃m is the empirical distribution function of a random sample with distribution

function G̃ = G ◦ F−1.

Proof. By (3.7) and (3.9) we have

Gm(F−1
n (p)) = Vm(G(F−1(U−1

n (p)))), a.s. (3.11)
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Notice that by definition and Lemma 2.31(3) we have

Vm(G(F−1(p))) = m−1
∑

I[Vj 6 G(F−1(p))] = m−1
∑

I[(G(F−1)−1(Vj) 6 p].

(3.12)

But, if we denote (G ◦F−1)−1(Vj) = Zj for j = 1,m then, by Lemma 2.34, {Zj}j=1,m

is a random sample from distribution function G̃ = G◦F−1. The proof is complete by

letting G̃m = Vm ◦G ◦ F−1. We should remark though, that the almost sure equality

refers to a set A1 ×A2 ∈ U1 ⊗U2 such that Pr(A1 ×A2) = P⊗Q(A1 ×A2) = 1.

Corollary 3.6. Let {Ui}i=1,n and {Vj}j=1,m be two mutually independent random

samples from a Uniform(0,1) distribution that satisfy (3.5) and (3.8), respectively. If

F is strictly increasing then, for any p ∈ (0, 1)

√
m

(
Gm(F−1

n (p))−G(F−1(p))
)

=
√

m
(
G̃m(U−1

n (p))− G̃(p)
)

, a.s. (3.13)

Proof. Immediate from Lemma 3.5.

3.2 Decomposition of the Equivalent Empirical ROC Process

As we said before, we will construct a Donsker class of functions and then, by applying

Lemma 2.75 to the previous class of functions, we will decompose this process into

a sum of two other processes. Let Q̃ be the probability distribution associated with

distribution function G̃. Let fp and fH,p be real functions defined on [0, 1] such that

fp(z) = I[z 6 p] and fH,p(z) = I[z 6 H−1(p)], where H is a distribution function on

[0, 1]. Let H be the class of all distribution functions H defined on [0, 1]. Construct
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the following classes of functions:

F0 = {fp : p ∈ (0, 1), }, (3.14)

and

F ′
= {fH,p : p ∈ (0, 1), H ∈ H}. (3.15)

Lemma 3.7. The class of measurable functions F ′
given in (3.15) is a Q̃-Donsker

class.

Proof. Notice that H−1(p) ∈ (0, 1), for all H ∈ H and any p ∈ (0, 1). Thus, F ′ ⊂ F0

where F0 is the class defined in (3.14). Since the collection of the segments (0, t], has

V (C) = 2 (see Example 19.16, van der Vaart, 1996, p. 276), then F0 is a VC-subgraph

class. Hence, F ′
is a VC-subgraph class, too. Let E ≡ 1 be an envelope of this class.

Since E is a bounded, square integrable and measurable envelope then, according to

Remark 2.71, F ′
is a Q̃-Donsker class of functions.

Let F be the following class of functions

F = {fH,p − fp : p ∈ (0, 1), H ∈ H}. (3.16)

Lemma 3.8. The class of measurable functions F given in (3.16) is a Q̃-Donsker

class.

Proof. Let F ′′
= −F ′

. By Lemma 2.73(4), F ′′
is a VC subgraph class. Notice that F ′′

has the same envelope E as F ′
. Thus, F ′′

is a Q̃-Donsker class. According to Lemma
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2.74, F ′
+ F ′′

= {I[z 6 H−1
1 (p1)]− I[z 6 H−1

2 (p2)], z ∈ [0, 1], p1, p2 ∈ (0, 1), H1, H2 ∈

H} is a Q̃-Donsker class. Since F ⊂ F ′
+ F ′′

, then, according to Lemma 2.61, F is

a Q̃-Donsker class of functions.

Lemma 3.9. Let F be the class of functions given in (3.16). Then, for any function

in F we have

sup
p∈(0,1)

∫
(fH,p(z)− fp(z))2dQ̃(z) = sup

p∈(0,1)

∣∣∣G̃(H−1(p))− G̃(p)
∣∣∣ . (3.17)

Proof. Let H be any distribution function in H, p be any fixed value in (0, 1). Notice

that the integrand on the left-hand side of (3.17) can take a value different from zero

only when the inequalities under the indicator functions are in opposite sense. Thus,

∫
(I[z 6 H−1(p)]− I[z 6 p])2dQ̃(z)

=

∫
I[z 6 H−1(p), z > p]dQ̃(z) +

∫
I[z > H−1(p), z 6 p]dQ̃(z)

=

∫
I[p < z 6 H−1(p)]dQ̃(z) +

∫
I[H−1(p) < z 6 p]dQ̃(z) (3.18)

Next, consider the following cases.

1. If p = H−1(p) then
∫

(fH,p(z)− fp(z))2dQ̃(z) = 0.

2. If p < H−1(p) then the second integral from (3.18) is zero and thus,

∫
(fH,p(z)− fp(z))2dQ̃(z) = Q̃(p < Z 6 H−1(p)) = G̃(H−1(p))− G̃(p)
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3. Similarly, if p > H−1(p) then,

∫
(fH,p(z)− fp(z))2dQ̃(z) = Q̃(H−1(p) < Z 6 p) = G̃(p)− G̃(H−1(p))

Therefore, for any H ∈ H and any p ∈ (0, 1) we obtain

∫
(fH,p(z)− fp(z))2dQ̃(z) =

∣∣∣G̃(H−1(p))− G̃(p)
∣∣∣ (3.19)

The conclusion follows by taking supremum in (3.19).

Lemma 3.10. Let G̃ be any continuous distribution function. Then, for any ε > 0

there exists δε > 0 such that if supt∈(0,1) |H(t)− t| < δε, where H ∈ H, we have

sup
p∈(0,1)

∣∣∣G̃(H−1(p))− G̃(p)
∣∣∣ < ε. (3.20)

Proof. Let ε be any given positive value. Let δ be a positive value and H ∈ H such

that the condition supt∈(0,1) |H(t)− t| < δ is satisfied or, equivalently,

−δ < H(t)− t < δ, (3.21)

for all t ∈ (0, 1). Next, we will show that we can find δ as a function of the given ε

such that, from (3.21), we get (3.20).

Let p be any point in (0, 1). Then,

H−1(p) = inf {t : H(t) > p} = inf {t : U(t) > p− (H(t)− t)} . (3.22)
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By plugging (3.21) into (3.22) we obtain the inequality

p− δ = U−1(p− δ) 6 H−1(p) 6 U−1(p + δ) = p + δ. (3.23)

Since G̃ is continuous, for any given ε > 0, there exists a finite partition 0 = p0 <

p1 < p2 < . . . < pk < pk+1 = 1 such that

G̃(pi)− G̃(pi−1) < ε/2, i = 1, k + 1. (3.24)

Notice, that (3.24) becomes G̃(p1) < ε/2 and 1− G̃(pk) < ε/2 for i = 1 and i = k +1,

respectively. Let 0 < δε < mini=1,k+1 {pi − pi−1}, where δ is a function of ε since

the finite partition is determined by ε. Since p ∈ (0, 1) there exists an i such that

pi−1 6 p 6 pi. Consider the following cases.

1. Let i = 2, k. Then, (3.23) becomes

pi−2 6 pi−1 − δ 6 H−1(p) 6 pi + δ 6 pi+1. (3.25)

Hence, by monotonicity of distribution functions, (3.25) and (3.24) we obtain

G̃(H−1(p))− G̃(p) 6 G̃(pi+1)− G̃(pi−1) < ε;

G̃(H−1(p))− G̃(p) > G̃(pi−2))− G̃(pi−1) > −ε.

Thus, supt∈(0,1) |H(t)− t| < δε implies that (3.20) is true for all p ∈ [p1, pk].
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2. For i = k + 1 by (3.25) we have pk−1 < H−1(p) 6 1. Then, by the same

arguments as in the first case we obtain

G̃(H−1(p))− G̃(p) 6 1− G̃(pk) < ε/2.

Therefore, (3.20) becomes true for all p ∈ [pk, 1).

3. The case i = 1 is analogous to the second case.

In conclusion, given ε > 0 we found δε < mini=1,k+1 {pi − pi−1} such that (3.20) is

true for all p ∈ (0, 1) or, equivalently,

sup
p∈(0,1)

∣∣∣G̃(H−1(p))− G̃(p)
∣∣∣ < ε. (3.26)

Hence, the lemma is proved.

Lemma 3.11. Let {Ui}i=1,n be a random sample from a Uniform(0,1) distribution

such that (3.5) holds and {Zj}j=1,m a random sample from distribution function G̃

constructed as in Lemma 3.5. If we assume that F is strictly increasing and G is

continuous then,

√
m

(
G̃m(U−1

n (p))− G̃(p)
)

=
√

m
(
G̃m(p)− G̃(p)

)
(3.27)

+
√

m
(
G̃(U−1

n (p))− G̃(p)
)

(3.28)

+op(1),
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where op(1) holds uniformly in p ∈ (0, 1).

Proof. Let F be the Q̃-Donsker class of functions introduced in Lemma 3.8, U be

the Unif(0, 1) distribution function and {fUn,p − fp}n∈N be a sequence of random

functions that takes its values in F . For some δ > 0, define

Fδ = {fH,p − fp ∈ F : p ∈ (0, 1), H ∈ H, ‖H − U‖∞ 6 δ} ,

to be a subclass of F . Then, Fδ is a Q̃-Donsker class by Lemma 2.61.

First, we will prove

sup
p∈(0,1)

√
m

∣∣∣(Q̃m − Q̃)(fUn,p − fp)
∣∣∣ = op(1), n,m →∞ (3.29)

or, equivalently, for any ε > 0

Pr

(
sup

p∈(0,1)

√
m

∣∣∣(Q̃m − Q̃)(fUn,p − fp)
∣∣∣ > ε

)
→ 0, n, m →∞,

where Pr should be understood as P⊗Q. Then,

Pr

(
sup

p∈(0,1)

√
m

∣∣∣(Q̃m − Q̃)(fUn,p − fp)
∣∣∣ > ε

)

6 Pr (‖Un − U‖∞ > δ) (3.30)

+Pr

(
sup

p∈(0,1)

√
m

∣∣∣(Q̃m − Q̃)(fUn,p − fp)
∣∣∣ > ε, ‖Un − U‖∞ 6 δ

)
. (3.31)

Now, we will show that the probability in (3.31) converges to 0 as n →∞, by applying

Lemma 2.75 to Q̃-Donsker class Fδ. Since G̃ = G ◦ F−1 is a continuous distribution
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function, we can set δ to be equal to δε constructed in Lemma 3.10 such that condition

(3.20) is satisfied. By (3.17) and the definition of a limit, from (3.20) we have

lim
H→U

sup
p∈(0,1)

∫
(fH,p(z)− fp(z))2dQ̃(z) → 0, n →∞. (3.32)

By Glivenko-Cantelli Theorem we have

‖Un − U‖∞
a.s.→ 0, (3.33)

and, thus, the sequence {fUn,p − fp}n∈N takes its values in Fδ, except for a finite

number of n’s. Now, from (3.32) and (3.33) we can conclude, after applying Lemma

2.75 to class Fδ that,

sup
p∈(0,1)

√
m

∣∣∣(Q̃m − Q̃)(fUn,p − fp)
∣∣∣ = op(1), n,m →∞

Noting that

Q̃mfUn,p = Q̃mI[Z 6 U−1
n (p)] = G̃m(U−1

n (p));

Q̃mfp = Q̃mI[Z 6 p] = G̃m(p);

Q̃fUn,p = Q̃I[Z 6 U−1
n (p)] = G̃(U−1

n (p));

Q̃fp = Q̃I[Z 6 p] = G̃(p),

the conclusion of the Lemma follows immediately by regrouping terms in (3.29).
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3.3 Asymptotic Distribution of the Component Processes

In this section we will find the asymptotic distribution of each of the decomposed

processes.

Lemma 3.12. Let {Zj}j=1,m be a random sample from distribution function G̃ con-

structed as in Lemma 3.5. Then, as m →∞,

√
m

(
G̃m − G̃

)
Ã GG̃, in D[0, 1]. (3.34)

The tight gaussian process, GG̃, has mean zero and covariance structure given by

EGG̃(pi)GG̃(pj) = G̃(pi ∧ pj)− G̃(pi)G̃(pj), (3.35)

where pi, pj ∈ [0, 1].

Proof. Let F0 be the class of functions given in (3.14). Then, F0 is a Q̃-Donsker class

since it is a uniformly bounded VC class. Hence, as m →∞, we have

√
m

(
Q̃m − Q̃

)
Ã GQ̃, in l∞(F0). (3.36)

But, since for all p ∈ [0, 1] we can naturally identify fp with p and, thus, l∞(F0) with

l∞[0, 1], then (3.36) is equivalent to

√
m

(
G̃m − G̃

)
Ã GG̃, in l∞[0, 1]. (3.37)

46



Since the stochastic processes GG̃ and
√

m
(
G̃m − G̃

)
take their values in D[0, 1],

then, according to Lemma 2.44, the weakly convergence in (3.37) is also true in

D[0, 1]. The covariance structure is obtained immediately by plugging Q̃ and fpi
, fpj

in (2.8).

Lemma 3.13. Let {Ui}i=1,n be a random sample from a Uniform(0,1) distribution

such that (3.5) holds and G̃ a distribution function constructed as in Lemma 3.5. If

we assume that F and G are differentiable distribution functions with strictly positive

derivatives f and g, respectively, such that g̃ = g(F−1)/f(F−1) is uniformly continu-

ous and bounded on (0, 1), and m/n → λ ∈ R+ as n →∞ then, as n,m →∞,

√
m

(
G̃(U−1

n )− G̃
)

Ã
√

λg̃GU , in D(0, 1), (3.38)

where GU is the standard Brownian bridge. The covariance structure of the limit

process is given by

E
√

λg̃(pi)GU(pi)
√

λg̃(pj)GU(pj) = λg̃(pi)g̃(pj)(pi ∧ pj − pipj), (3.39)

where pi, pj ∈ (0, 1).

Proof. We will apply the Functional Delta Method. First, by Example 21.6, van der

Vaart, 1996, p. 308, we have

√
n(U−1

n − U−1) Ã GU , in l∞(0, 1), (3.40)
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where GU is the standard Brownian bridge. Next, let ϕ : Dϕ ⊂ l∞(0, 1) 7→ l∞(0, 1)

be a map given by ϕ(A) = G̃ ◦A, where Dϕ = {A ∈ l∞(0, 1) : 0 < A < 1}. Since G̃ is

differentiable with uniformly continuous and bounded derivative g̃, then, by Lemma

2.81, the map ϕ is Hadamard differentiable at every A ∈ Dϕ with derivative given by

ϕ
′
A(α) = g̃(A)(α) and α ∈ l∞(0, 1). In particular, ϕ will be Hadamard differentiable

at every A ∈ Dϕ tangentially to C(0, 1). Hence, since U−1
n and U−1 takes their values

in Dϕ and GU is a tight gaussian process in C(0, 1), by applying Functional Delta

Method to (3.40), we have, as n,m →∞,

√
n

(
ϕ(U−1

n )− ϕ(U−1)
)

Ã ϕ
′
U−1(GU), in l∞(0, 1). (3.41)

By using m/n → λ ∈ R+, as n → ∞ and plugging the expressions of ϕ and ϕ
′

in

(3.41) we have, as n,m →∞,

√
m

(
G̃(U−1

n )− G̃
)

Ã
√

λg̃GU , in l∞(0, 1). (3.42)

Since the processes in (3.42) take their values in D(0, 1), (3.38) follows immediately.

The covariance structure in (3.39) is obtained by using the covariance of the standard

brownian bridge

EGU(pi)GU(pj) = pi ∧ pj − pipj, (3.43)

where pi, pj ∈ (0, 1).
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3.4 The Limit of the Empirical ROC Process

Theorem 3.14. Let {Ui}i=1,n be a random sample from a Uniform(0,1) distribu-

tion such that (3.5) holds and {Zj}j=1,m a random sample from distribution func-

tion G̃ constructed as in Lemma 3.5. If we assume that F and G are differen-

tiable distribution functions with strictly positive derivatives f and g, respectively,

such that g̃ = g(F−1)/f(F−1) is uniformly continuous and bounded on (0, 1), and

m/n → λ ∈ R+ as n →∞ then, as n,m →∞,

√
m

(
G̃m(U−1

n )− G̃
)

Ã GG̃ +
√

λg̃GU , in D(0, 1). (3.44)

The covariance structure of the limit process is given by

E(GG̃(pi) +
√

λg̃(pi)GU(pi))(GG̃(pj)−
√

λg̃(pj)GU(pj))

= (G̃(pi ∧ pj)− G̃(pi)G̃(pj)) + λg̃(pi)g̃(pj)(pi ∧ pj − pipj), (3.45)

where pi, pj ∈ (0, 1).

Proof. By Lemmas 3.11, 3.12, 3.13, independence of random samples {Ui}i=1,n and

{Zj}j=1,m and by Slutsky’s Lemma.

Corollary 3.15. Let {Xi}i=1,n and {Yj}j=1,m be mutually independent random sample

from distribution functions F and G, respectively. If we assume that F and G are

differentiable with strictly positive derivatives derivatives f and g, respectively, such

that g̃ = g(F−1)/f(F−1) is uniformly continuous and bounded on (0, 1), and m/n →
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λ ∈ R+ as n →∞ then, as n,m →∞,

√
m

(
Gm(F−1

n )−G(F−1)
)

Ã GG̃ +
√

λg̃GU , in D(0, 1). (3.46)

The covariance structure of the limit process is given by (3.45).

Proof. Immediate from definition of weak convergence, Corollary 3.6 and Theorem

3.14.

Copyright c© Costel Chirila 2008
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CHAPTER 4: ASYMPTOTIC DISTRIBUTION OF GENERALIZED

ROC PROCESS

4.1 Notation and Problem Set-up

Let (Ω1,U1, P) and (Ω2,U2, Q) be two probability spaces and X : Ω1 7→ Rk and

Y : Ω2 7→ Rk be two independent random vectors that represent the multiple di-

agnostic tests of healthy and diseased subjects, respectively. Denote by P and Q

the multivariate probability distributions induced by X and Y, respectively. Assume

X and Y are distributed multivariate normal with means µx and µy, and covari-

ance matrices Σx and Σy, respectively. Let X1,X2, . . . ,Xn and Y1,Y2, . . . ,Ym be

two mutually independent random samples from distributions P and Q, respectively.

The vectors Xi = (X1i, X2i, . . . , Xki)
′
, i = 1, n and Yj = (Y1j, Y2j, . . . , Ykj)

′
, j = 1,m

are the measurements of the ith and jth healthy and diseased subjects, respectively.

Assume that n and m satisfy condition m/n → λ ∈ R+, as n →∞.

Definition 4.1. (Su and Liu, 1993, p.1351) A vector a0 ∈ Rk is called the best linear

combination under the ROC criterion, if the Area Under the (ROC) Curve, generated

by a
′
0X and a

′
0Y is the largest among all linear combinations.

Lemma 4.2. (Theorem 3.1, Su and Liu, 1993, p. 1352) The coefficients for the best

linear combination are

a0 ∝ (Σx + Σy)−1(µy − µx). (4.1)

Without loss of generality assume that µx = 0 and denote µy = µ. Also, consider

the particular case of equal covariance matrices Σx = Σy = Σ. Let the best linear
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combination under ROC criterion be

a0 = Σ−1µ (4.2)

Su and Liu (1993) showed how to obtain an unbiased estimator of a0.

Lemma 4.3. (Theorem 4.1, Su and Liu, 1993, p. 1352) Let Σx = Σy = Σ and

S =
∑

i(Xi −X)(Xi −X)
′
+

∑
j(Yj −Y)(Yj −Y)

′
be the pooled sum of squares.

Then, T̂−1 = (n+m−k−3)S−1 is an unbiased estimate of Σ−1 and â0 = T̂−1(Y −X)

is an unbiased estimate of a0 = Σ−1(µy − µx).

Let â be an estimator of a0 such that the following condition is satisfied

√
n(â− a0) = Op(1), as n →∞. (4.3)

Notice, that an immediate consequence of (4.3) is

â− a0 = op(1), as n →∞. (4.4)

For any a ∈ Rk, by definition of multivariate normal distribution, the random

variable X = a
′
X is normally distributed with zero mean and variance a

′
Σa. Simi-

larly, for any a ∈ Rk, Y = a
′
Y is normally distributed with mean a

′
µ and variance

a
′
Σa. If we denote the distribution functions of the random variables X and Y by
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F ( · , a) and G( · , a), respectively, then, the following relations can be easily shown

F (x, a) = Φ

(
x√

a′Σa

)
, x ∈ R, (4.5)

G(y, a) = Φ

(
y − a

′
µ√

a′Σa

)
, y ∈ R, (4.6)

and,

G(F−1(p, a), a) = Φ

(
Φ−1(p)− a

′
µ√

a′Σa

)
, p ∈ (0, 1). (4.7)

Let Fn(x, a) = n−1
∑n

i=1 I[a
′
Xi 6 x] be the empirical distribution function of the

random sample {a′Xi}n
i=1 and F−1

n (p, a) be its pth quantile as in Definition 2.30.

Similarly, let Gm(y, a) = m−1
∑m

j=1 I[a
′
Yj 6 y] be the empirical distribution function

of the random sample {a′Yj}m
j=1. Our main goal is to find the asymptotic distribution

of the generalized empirical ROC process defined as

√
m

(
Gm

(
F−1

n (p, â) , â
)−G

(
F−1 (p, a0) , a0

))
, p ∈ (0, 1). (4.8)

Next, we will show that the process in (4.8) is equivalent to another process which

is easier to deal with. Notice that the empirical distribution function Fn can be

rewritten as

Fn(x, a)

= n−1

n∑
i=1

I

[
Φ

(
a
′
Xi√

a′Σa

)
6 Φ

(
x√

a′Σa

)]

= Un

(
Φ

(
x√
a′Σa

)
,b

)
, (4.9)
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where

b =
1√

a′Σa
a, ∀a ∈ Rk, (4.10)

and

Un(t,b) = n−1

n∑
i=1

I
[
Φ

(
b
′
Xi

)
6 t

]
, t ∈ (0, 1). (4.11)

Note that, for b defined by (4.10), Φ
(
b
′
X1

)
, . . . , Φ

(
b
′
Xn

)
are i.i.d Uniform[0,1]

random variables. For the fixed vector b0, obtained by using a0 in (4.10), the process

in (4.11) becomes the uniform empirical process and we will simply denote it by Un.

Furthermore, it can be shown that

F−1
n (t, a) =

√
a′ΣaΦ−1

(
U−1

n (t,b)
)
, t ∈ (0, 1). (4.12)

By analogy, we can rewrite the empirical distribution function Gm as

Gm(y, a)

= m−1

m∑
j=1

I

[
Φ

(
b
′
Yj

)
6 Φ

(
y√

a′Σa

)]

= G̃m

(
Φ

(
y√

a′Σa

)
,b

)
, (4.13)

where

G̃m(t,b) = m−1

m∑
j=1

I
[
Φ

(
b
′
Yj

)
6 t

]
, t ∈ (0, 1). (4.14)

Let us denote the distribution function of the random variable Φ
(
b
′
Y

)
by G̃( · ,b)

and notice that it is equal to Φ(Φ−1( · ) − b
′
µ). Then, by (4.7), (4.9), (4.12), and
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(4.13), the process in (4.8) can equivalently be rewritten as follows

√
m

(
G̃m

(
U−1

n

(
p, b̂

)
, b̂

)
− G̃ (p,b0)

)
, p ∈ (0, 1), (4.15)

where b̂ is obtained by using â in (4.10).

4.2 Decomposition of the Generalized Empirical ROC Process

In this section we will decompose the equivalent generalized empirical ROC process

in (4.15) using the same technique introduced in Chapter 3. But, before checking the

conditions of Lemma 2.75, we will derive some useful properties for b0 and b̂.

Proposition 4.4. Let a0 be defined by (4.2). Then,

b0 =
1√

µ′Σ−1µ
Σ−1µ, (4.16)

and

b0
′
µ =

√
µ′Σ−1µ > 0. (4.17)

Proof. The result follows immediately from (4.2) and (4.10).

Proposition 4.5. Let â be an estimator of a0 such that (4.3) holds. Then,

√
n(b̂− b0) = Op(1), as n →∞. (4.18)
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Proof. By simple algebraic manipulations, we have

√
n

(
b̂− b0

)
=
√

n

(
1√

â′Σâ
â− 1√

a
′
0Σa0

a0

)

=
√

n

(
1√

â′Σâ
− 1√

a
′
0Σa0

)
(â− a0)

+
√

n
1√

a
′
0Σa0

(â− a0)

+
√

n

(
1√

â′Σâ
− 1√

a
′
0Σa0

)
a0. (4.19)

Notice that

â
′
Σâ− a

′
0Σa0 = (â− a0)

′
Σ (â− a0) + 2 (â− a0)

′
Σa0.

Therefore, by (4.4)

â
′
Σâ− a

′
0Σa0 = op(1)O(1)op(1) + op(1)O(1) = op(1), as n →∞. (4.20)

Moreover, since â
′
Σâ is a consistent estimator of a

′
0Σa0 then

1√
â′Σâ

− 1√
a
′
0Σa0

= op(1), as n →∞. (4.21)

Notice that the first two terms are op(1) and Op(1), respectively, by using (4.3)

and (4.21). Thus, (4.18) is true if the last term is either op(1) or Op(1). Denote

√
â′Σâ

√
a
′
0Σa0(

√
a
′
0Σa0 +

√
â′Σâ) and 2(a

′
0Σa0)

3/2
by D̂ and D0, respectively, and

notice that D̂ is a consistent estimator of D0. Then, after some further algebraic
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manipulation, we obtain

√
n

(
1√

â′Σâ
− 1√

a
′
0Σa0

)
=
√

n
a
′
0Σa0 − â

′
Σâ

D̂

=
√

n(â− a0)
′
Σ(â− a0)

(
1

D0

− 1

D̂

)
−√n(â− a0)

′
Σ(â− a0)

1

D0

+2
√

n(â− a0)
′
Σa0

(
1

D0

− 1

D̂

)
− 2

√
n(â− a0)

′
Σa0

1

D0

. (4.22)

By using (4.3), (4.4), and the consistency of D̂ we obtain

√
n

(
1√

â′Σâ
− 1√

a
′
0Σa0

)

= Op(1)op(1)op(1) + Op(1)op(1)O(1) + Op(1)O(1)op(1) + Op(1)O(1)

= Op(1), as n →∞. (4.23)

The proof is complete since op(1) + Op(1) + Op(1) is Op(1).

Again, an immediate consequence of (4.18) is

b̂− b0 = op(1), as n →∞. (4.24)

The next proposition will be an important argument in the later proofs.

Proposition 4.6. Let â be an estimator of a0 such that (4.3) holds. Then

√
n(b̂− b0)

′
µ = op(1), as n →∞. (4.25)
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Proof. From (4.19), we have

√
n

(
â
′
µ√

â′Σâ
− a0

′
µ√

a
′
0Σa0

)

=
√

n

(
1√

â′Σâ
− 1√

a0
′Σa0

)
(â− a0)

′
µ

+
√

n
(â− a0)

′
µ√

a0
′Σa0

+
√

n

(
1√

â′Σâ
− 1√

a
′
0Σa0

)
a0

′
µ. (4.26)

By using (4.4) and (4.23), the first term on the right hand side of (4.26) is op(1).

Next, we will show that the sum of the last two terms on the right hand side of (4.26)

is op(1). By using (4.3), (4.4), the consistency of D̂ and the definition of D0 in (4.22),

the last term of (4.26) becomes

√
n

(
1√
â′Σâ

− 1√
a
′
0Σa0

)
a0

′
µ = op(1)−√n

(â− a0)
′
Σa0

(a0
′Σa0)

3/2
a0

′
µ. (4.27)

By using the definition of a0, the second term in the right hand side of (4.27) can be

further simplified as follows

√
n

(â− a0)
′
Σa0

(a
′
0Σa0)3/2

a0
′
µ =

√
n

(â− a0)
′
(ΣΣ−1µµ

′
Σ−1µ)

(µ′Σ−1ΣΣ−1µ)3/2
=
√

n
(â− a0)

′
µ√

a0
′Σa0

. (4.28)

Notice that (4.28) cancels out the second term on the right hand side of (4.26). Hence,

the result of the lemma will follow immediately.

In order to apply Lemma 2.75, we need to construct a Donsker class of functions

and show that the conditions (2.10) and (2.11) are satisfied. Let gp and gb,H,p be the
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following functions

gp : Rk −→ R, gp(y) = I
[
Φ

(
b0

′
y
)

6 p
]
, (4.29)

and

gb,H,p : Rk −→ R, gb,H,p(y) = I
[
Φ

(
b
′
y
)

6 H−1(p)
]
, (4.30)

where p ∈ (0, 1), b, b0 are defined by (4.10) and H ∈ H, the class of all distributions

functions defined on [0, 1]. Let G ′ and G be the following classes of functions

G ′ =
{
gb,H,p : b ∈ Rk, H ∈ H, p ∈ (0, 1)

}
. (4.31)

G =
{
gb,H,p − gp : b,b0 ∈ Rk, H ∈ H, p ∈ (0, 1)

}
. (4.32)

Lemma 4.7. The class of functions G ′ defined in (4.31) is a VC subgraph class.

Proof. Notice that we can write gb,H,p(y) = I[b1y1 + b2y2 + . . .+bkyk 6 Φ−1(H−1(p))].

Therefore, G ′ ⊆ {
I[b1y1 + b2y2 + . . . + bkyk 6 v],b = (b1, b2, . . . , bk)

′ ∈ Rk, v ∈ R}

since Φ−1(H−1(p)) = v ∈ R for all p ∈ (0, 1). The later class is a VC subgraph

class according to Lemma 2.72. Hence, G ′ is also a VC subgraph class.

Lemma 4.8. The class of functions G defined in (4.32) is a Q-Donsker class of

functions.

Proof. The proof is similar to that of Lemma 3.8 and is omitted.

Next, we will prove that condition (2.10) of Lemma 2.75 is satisfied. The steps of

the proof are similar to those in Lemma 3.10.
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Lemma 4.9. Let G be the class of functions defined in (4.32). For any ε > 0, there

exists δ1(ε) > 0, δ2(ε) > 0 such that if

‖b− b0‖ < δ1(ε), (4.33)

sup
t∈(0,1)

|H(t)− t| < δ2(ε), (4.34)

then, for n sufficiently large,

sup
p∈(0,1)

∫
(gb,H,p(y)− gp(y))2 dQ(y) < ε. (4.35)

Proof. Let ε > 0 be given. For any p ∈ (0, 1), by using properties of the indicator

function, the integral from (4.35) can be rewritten as follows

∫
(gb,H,p(y)− gp(y))2 dQ(y)

=

∫
I
[
Φ

(
b
′
y
)

6 H−1(p), Φ
(
b0

′
y
)

> p
]
dQ(y)

+

∫
I
[
Φ

(
b
′
y
)

> H−1(p), Φ
(
b0

′
y
)

6 p
]
dQ(y)

= Pr
(
Φ

(
b
′
Y

)
6 H−1(p), Φ

(
b0

′
Y

)
> p

)

+Pr
(
Φ

(
b
′
Y

)
> H−1(p), Φ

(
b0

′
Y

)
6 p

)
. (4.36)

Moreover, we proved in Lemma 3.10 that if (4.34) is true then, for any p ∈ (0, 1) we

have from (3.23)

∣∣H−1(p)− p
∣∣ 6 δ.
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Now, we will show that for some properly chosen values p1 and p2 in the interval (0, 1)

there exists δ1(ε) and δ2(ε) such that supremum of the integral in (4.35) can be made

arbitrarily small on each of the intervals (0, p1), [p1, p2], and (p2, 1). First, we choose

max
{
1/2, 2Φ

(
b
′
0µ/2

)− 1
}

< p2 < 1 such that

Φ
(
Φ−1 (2(1− p2)) + 2b0

′
µ
)

< ε/4, (4.37)

and p1 = 1− p2. Let M∗
ε be given by

M∗
ε = sup

p∈(0,1−p1/2)

φ
(
Φ−1(p)− b0

′
µ
)

φ (Φ−1(p))
, (4.38)

and notice that M∗
ε > 1. Also, there exists Mε > 1 such that

Pr (‖Y ‖ > Mε) = ε/4. (4.39)

Next, choose δ1(ε) and δ2(ε) as follows

δ1(ε) < min

{
b0

′
µ

‖µ‖ ,
1− p2

4MεM∗
ε

}
(4.40)

and

δ2(ε) <
1− p2

4M∗
ε

. (4.41)
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Notice that, since M∗
ε > 1, then actually

δ2(ε) <
1− p2

4
. (4.42)

Next, we will show some inequalities that will be used later in this proof. By using

triangle inequality, (4.33) and (4.40) we have

b
′
µ = b0

′
µ + (b− b0)

′
µ < b0

′
µ + δ1(ε) ‖µ‖ < 2b

′
0µ, (4.43)

and

b
′
µ = b0

′
µ− (b0 − b)

′
µ > b0

′
µ− δ1(ε) ‖µ‖ > 0. (4.44)

From the definition of p1, monotonicity of the cumulative and inverse distribution

functions, (4.17), and (4.37) we have

p1 = Φ
(
Φ−1(1− p2)

)
< Φ

(
Φ−1(2(1− p2)) + 2b0

′
µ
)

< ε/4. (4.45)

Finally, by simple manipulation of (3.23) and using (4.42), (4.45) we obtain

1−H−1(p2) < (1− p2) + δ2(ε) < 2(1− p2) = 2p1 < 2ε/4, (4.46)

and,

H−1(p1) < p1 + δ2(ε) < 2p1 < 2ε/4. (4.47)

Firstly, let p ∈ (0, p1). Then, by using the fact that the random variables b
′
Y and
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b0
′
Y are normally distributed with variance one and means b

′
µ and b

′
0µ, respectively,

(4.44), (4.17), monotonicity of the cumulative distribution function, (4.47), and (4.45)

we obtain

sup
p∈(0,p1)

Pr
(
Φ

(
b
′
Y

)
6 H−1(p), Φ

(
b0

′
Y

)
> p

)

+ sup
p∈(0,p1)

Pr
(
Φ

(
b
′
Y

)
> H−1(p), Φ

(
b0

′
Y

)
6 p

)

6 sup
p∈(0,p1)

Pr
(
Φ

(
b
′
Y

)
6 H−1(p)

)
+ sup

p∈(0,p1)

Pr
(
Φ

(
b0

′
Y

)
6 p

)

6 Φ
(
Φ−1(H−1(p1))− b

′
µ
)

+ Φ
(
Φ−1(p1)− b

′
0µ

)

6 H−1(p1) + p1 < 3ε/4. (4.48)

Secondly, let p ∈ (p2, 1). Then, by using the same arguments as in the previous case

plus the symmetry of the cumulative and inverse standard normal distribution and

inequalities (4.43), (4.44), 4.46, and (4.37) we obtain

sup
p∈(p2,1)

Pr
(
Φ

(
b
′
Y

)
6 H−1(p), Φ

(
b0

′
Y

)
> p

)

+ sup
p∈(p2,1)

Pr
(
Φ

(
b
′
Y

)
> H−1(p), Φ

(
b0

′
Y

)
6 p

)

6 1− Pr
[
Φ

(
b
′
0Y

)
6 p2

]
+ 1− Pr

(
Φ

(
b
′
Y

)
6 H−1(p2)

)

= Φ
(
Φ−1(1− p2) + b

′
0µ

)
+ Φ

(
Φ−1(1−H−1(p2)) + b

′
µ
)

< 2Φ
(
Φ−1(2(1− p2)) + 2b

′
0µ

)
< 2ε/4. (4.49)

Lastly, let p ∈ [p1, p2] and choose

η = δ1(ε)Mε. (4.50)
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Then,

Pr
(
Φ

(
b
′
Y

)
6 H−1(p), Φ

(
b0

′
Y

)
> p

)

= Pr
(
Φ

(
b
′
Y

)
6 H−1(p), Φ

(
b0

′
Y

)
> p,

∣∣∣Φ
(
b
′
Y

)
− Φ

(
b0

′
Y

)∣∣∣ 6 η
)

+Pr
(
Φ

(
b
′
Y

)
6 H−1(p), Φ

(
b0

′
Y

)
> p,

∣∣∣Φ
(
b
′
Y

)
− Φ

(
b0

′
Y

)∣∣∣ > η
)

6 Pr
(
p < Φ

(
b0

′
Y

)
6 H−1(p) + η

)
+ Pr

(∣∣∣Φ
(
b
′
Y

)
− Φ

(
b0

′
Y

)∣∣∣ > η
)

.

Similarly,

Pr
(
Φ

(
b
′
Y

)
> H−1(p), Φ

(
b0

′
Y

)
6 p

)

6 Pr
(
H−1(p)− η < Φ

(
b0

′
Y

)
6 p

)
+ Pr

(∣∣∣Φ
(
b
′
Y

)
− Φ

(
b0

′
Y

)∣∣∣ > η
)

.

Therefore,

∫
(gb,H,p(y)− gp(y))2 dQ(y)

6 Pr
(
p < Φ

(
b0

′
Y

)
6 H−1(p) + η

)

+Pr
(
H−1(p)− η < Φ

(
b0

′
Y

)
6 p

)

+2Pr
(∣∣∣Φ

(
b
′
Y

)
− Φ

(
b0

′
Y

)∣∣∣ > η
)

= Φ
(
Φ−1

(
H−1(p) + η

)− b0
′
µ
)
− Φ

(
Φ−1(p)− b0

′
µ
)

(4.51)

+Φ
(
Φ−1(p)− b0

′
µ
)
− Φ

(
Φ−1

(
H−1(p)− η

)− b0
′
µ
)

(4.52)

+2Pr
(∣∣∣Φ

(
b
′
Y

)
− Φ

(
b0

′
Y

)∣∣∣ > η
)

. (4.53)

For any p ∈ [p1, p2], by using (3.23), (4.50), (4.40), and (4.42), we obtain the following
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bound for H−1(p) + η

H−1(p) + η

< p2 + sup
p∈[p1,p2]

∣∣H−1(p)− p
∣∣ + δ1(ε)Mε

< p2 +
1− p2

4
+

1− p2

4Mε

Mε

< p2 +
1− p2

2
= 1− p1

2
. (4.54)

Therefore, by applying the first order Taylor expansion to (4.51) we obtain

Φ
(
Φ−1

(
H−1(p) + η

)− b0
′
µ
)
− Φ

(
Φ−1(p)− b0

′
µ
)

=
φ

(
Φ−1(p∗)− b

′
0µ

)

φ (Φ−1(p∗))

(
H−1(p) + η − p

)
, (4.55)

where p∗ is between p and H−1(p) + η, or, according to (4.54), p∗ is between p and

1− p1/2. Hence, by using (4.55), (3.23), (4.40), and (4.41) we obtain

sup
p∈[p1,p2]

Φ
(
Φ−1

(
H−1(p) + η

)− b0
′
µ
)
− Φ

(
Φ−1(p)− b0

′
µ
)

< M∗
ε (δ2(ε) + η)

< M∗
ε

(
1− p2

4 max {M∗
ε , 1} +

1− p2

4Mε max {M∗
ε , 1}

)

<
1− p2

2
< ε/4. (4.56)

65



Analogously,

sup
p∈[p1,p2]

Φ
(
Φ−1(p)− b0

′
µ
)
− Φ

(
Φ−1

(
H−1(p)− η

)− b0
′
µ
)

= sup
p∈[p1,p2]

φ
(
Φ−1(p∗∗)− b

′
0µ

)

φ (Φ−1(p∗∗))

(
p−H−1(p) + η

)

< M∗
ε (δ2(ε) + η)

<
1− p2

2
< ε/4, (4.57)

where, again it can be shown that p∗∗ is bounded above by 1− p1/2. Finally, notice

that by applying first order Taylor series expansion to (4.53), we obtain

∣∣∣Φ
(
b
′
Y

)
− Φ

(
b0

′
Y

)∣∣∣ < ‖b− b0‖ ‖Y‖ < δ1(ε) ‖Y‖ . (4.58)

Therefore, by using (4.58), and (4.50) we obtain

2Pr
(∣∣∣Φ

(
b
′
Y

)
− Φ

(
b0

′
Y

)∣∣∣ > η
)

< 2Pr (‖Y‖ > Mε) < 2ε/4. (4.59)

Thus, from (4.56), (4.57), and (4.59) we have

sup
p∈[p1,p2]

∫
(gb,H,p(y)− gp(y))2 dQ(y) < ε. (4.60)

Conclusion of the Lemma follows immediately from (4.48), (4.49), and (4.60).

Next, we will prove that condition (2.11) is satisfied by using Theorem 2.83 and

we start with the construction of an appropriate class of functions. Let fp and fb,p
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be the following functions

fp : Rk −→ R, fp(x) = I
[
Φ(b0

′
x) 6 p

]
, (4.61)

and

fb,p : Rk −→ R, fb,p(x) = I
[
Φ(b

′
x) 6 p

]
, (4.62)

where p ∈ (0, 1) and b, b0 are defined by (4.10). Let Fn be the following class of

functions

Fn =

{
fb,p − fp : ‖b− b0‖ 6 M√

n
, p ∈ (0, 1)

}
, (4.63)

where M ∈ R+.

Lemma 4.10. Let Fn be the class defined in (4.63) and f ∈ Fn be any function.

Then, there exists a constant C such that

Pf 2 6 Cn−1/2(log n)1/2, n > 2. (4.64)

Proof. First we write Pf 2 in a more convenient form, namely

Pf 2 =

∫
(fb,p(x)− fp(x))2 dP (x)

=

∫
I
[
b
′
x 6 Φ−1(p),b0

′
x > Φ−1(p)

]
dP (x)

+

∫
I
[
b
′
x > Φ−1(p),b0

′
x 6 Φ−1(p)

]
dP (x)

= Pr
(
b
′
X 6 Φ−1(p),b0

′
X > Φ−1(p)

)
(4.65)

+Pr
(
b
′
X > Φ−1(p),b0

′
X 6 Φ−1(p)

)
. (4.66)
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Then, by applying the same technique as in the last case considered in Lemma 4.9,

for any η > 0, we obtain

Pr
(
b
′
X 6 Φ−1(p),b0

′
X > Φ−1(p)

)

6
∣∣∣Φ

(
Φ−1(p) + η − b0

′
µ
)
− Φ

(
Φ−1(p)− b0

′
µ
)∣∣∣

+Pr
(∣∣∣(b− b0)

′
X

∣∣∣ > η
)

, (4.67)

and

Pr
(
b
′
X > Φ−1(p),b0

′
X 6 Φ−1(p)

)

6
∣∣∣Φ

(
Φ−1(p)− b0

′
µ
)
− Φ

(
Φ−1(p)− η − b0

′
µ
)∣∣∣

+Pr
(∣∣∣(b− b0)

′
X

∣∣∣ > η
)

, (4.68)

Note that, by applying Taylor expansion of first order on first right hand side terms

from (4.67) and (4.68), we obtain

∣∣∣Φ
(
Φ−1(p) + η − b0

′
µ
)
− Φ

(
Φ−1(p)− b0

′
µ
)∣∣∣

+
∣∣∣Φ

(
Φ−1(p)− b0

′
µ
)
− Φ

(
Φ−1(p)− η − b0

′
µ
)∣∣∣

6 2√
2π

η. (4.69)

By plugging (4.67), and (4.68) into (4.65) and (4.66), respectively, and by using (4.69)

we obtain

Pf 2 6 2√
2π

η + 2Pr
(∣∣∣(b− b0)

′
X > η

∣∣∣
)

(4.70)
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Furthermore, the probability in (4.70) can be majored by using the following equality

from Serfling, p.81

1− Φ
(
B(log n)1/2

)
6 1√

2πB(log n)1/2
n−1/2B2

, n > 1, (4.71)

where B > 1. Since Σ is positive definite and f is any function in the class Fn

defined by (4.63), then the standard deviation of the random variable (b−b0)
′
X can

be majored as follows:

√
(b− b0)

′Σ(b− b0) 6 M√
n
‖Σ‖1/2 . (4.72)

Let us choose

η = C0n
−1/2(log n)1/2, (4.73)

where the constant C0 satisfies

B =

(
C0

M ‖Σ‖1/2

)
> 1. (4.74)

Then, by (4.72),(4.71), and (4.74) we obtain for n > 2

Pr
(∣∣∣(b− b0)

′
X > η

∣∣∣
)

6 2

(
1− Φ

(
η

M√
n
‖Σ‖1/2

))
6 2√

2π
n−1/2(log n)1/2. (4.75)

Therefore, inequation (4.64) follows from (4.70) and (4.75) where constant C is equal

to 2(C0 + 2)/
√

2π.
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Lemma 4.11. The class of functions Fn defined in (4.63)is a permissible class of

functions.

Proof. We will show that Fn can be indexed by a set T , which satisfies conditions from

Definition 2.82. Let T =
{
b,b0 ∈ Rk : ‖b− b0‖ 6 M

}⊗ (0, 1), where M > 0, be an

index set equipped with the Lebesgue measure. It can be shown that T is a separable

metric space by considering the balls with centers belonging to Q. The Borel σ-field

is given by σ(S)⊗B(0, 1), where σ(S) is σ-field generated by all closed k-dimensional

spheres of radius M. Then, any function f ∈ Fn is B(Rk)/ (σ(S)⊗ B(0, 1)) measurable

since it is a difference of indicator functions which are measurable. Furthermore, T

is an analytic subset of the compact metric space T by using the fact that the σ-field

generated by all Lebesgue measurable subsets of T coincides with its analytic sets.

Lemma 4.12. Let Fn be the class of functions defined in (4.63). Then, for each n

and ε > 0, the uniform covering numbers of Fn satisfy

sup
Q

N (ε,Fn, L1(Q)) 6 Aε−W (4.76)

with constants A, and W , not depending on n.

Proof. Let F ′
and F ′′

be two classes of functions defined by

F ′
=

{
fb,p,b =

1√
a′Σa

a ∈ Rk, p ∈ (0, 1)

}

and

F ′′
= −F ′

,
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where fb,p is defined by (4.62). Since Fn ⊂ F ′
+ F ′′

then,

sup
Q

N (ε,Fn, L1(Q)) 6 sup
Q

N
(
ε,F ′

+ F ′′
, L1(Q)

)
.

Thus, it will be sufficient to show that

sup
Q

N
(
ε,F ′

+ F ′′
, L1(Q)

)
6 Aε−W . (4.77)

By using Lemma 2.72, F ′
is a VC class and thus, F ′′

is also a VC class by Lemma

2.73. Therefore, by taking r = 1 and the envelope function identical to 1 in Lemma

2.70 we obtain

sup
Q

N
(
ε/2,F ′

, L1(Q)
)

6 A
′
(ε/2)−W

′
, (4.78)

and

sup
Q

N
(
ε/2,F ′′

, L1(Q)
)

6 A
′′
(ε/2)−W

′′
, (4.79)

where A
′
, A

′′
, W

′
, and W

′′
are independent of n. By Definition 2.65, for any ε > 0

there exist finite sets of functions
{
g
′
i

}
and

{
g
′′
j

}
, not necessarily in F ′

, F ′′
, respec-

tively, such that inequalities (4.78) and (4.79) can be rewritten

sup
Q

min
{

i ∈ N : min
i

Q
∣∣∣f ′ − g

′
i

∣∣∣ 6 ε/2, f
′ ∈ F ′

}
6 A

′
ε−W

′
(4.80)

sup
Q

min

{
j ∈ N : min

j
Q

∣∣∣f ′′ − g
′′
j

∣∣∣ 6 ε/2, f
′′ ∈ F ′′

}
6 A

′′
ε−W

′′
(4.81)

Then, for the following set of functions g(i,j) = g
′
i + g

′′
j and for any f ∈ F ′

+ F ′′
, Q,
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and (i, j) we have

min
(i,j)

Q
∣∣f − g(i,j)

∣∣ 6 min
i

Q
∣∣∣f ′ − g

′
i

∣∣∣ + min
j

Q
∣∣∣f ′′ − g

′′
j

∣∣∣ 6 ε.

Thus, for any ε and any Q we can find a finite set of functions such that the union of

the L1(Q) balls of radius ε centered at f
′
+ f

′′
covers F ′

+ F ′′
and

sup
Q

N
(
ε,F ′

+ F ′′
, L1(Q)

)

6 sup
Q

N
(
ε,F ′

, L1(Q)
)
× sup

Q
N

(
ε,F ′′

, L1(Q)
)

6 (1/2)−W
′−W

′′
A
′
A
′′
ε−W

′−W
′′
.

The proof is now complete.

Lemma 4.13. Let Fn be the class of functions defined by (4.63) and b̂ defined by

(4.10) such that (4.18) is satisfied. Then,

sup
p∈(0,1)

∣∣∣Un(p, b̂)− Un(p)
∣∣∣ = op(n

−3/4 log n) as n →∞. (4.82)

Proof. We will equivalently show that ∀ε > 0, ∀δ > 0, ∃Nε,δ ∈ N∗ such that for all

n > Nε,δ we have

Pr

(
sup

p∈(0,1)

∣∣∣Un(p, b̂)− Un(p)
∣∣∣ > εn−3/4 log n

)
< δ. (4.83)

Let δ > 0. Then, from (4.18), there exists M ∈ (0,∞) and Nδ ∈ N∗ such that

Pr
(√

n
∥∥∥b̂− b0

∥∥∥ > M
)

< δ/2, ∀n > Nδ. (4.84)
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Next, we will apply Theorem 2.83 to the class of functions Fn. The class Fn is

permissible by Lemma 4.11 and its uniform covering numbers satisfy (2.16) by Lemma

4.12. Let αn = n−1/4(log n)1/2 be a non-increasing sequence of numbers for n > 7.

Let δ2
n = Cn−1/2(log n)1/2 where the constant C is equal to 2(C0 + 2)/

√
2π. Recall,

that xn À yn if xn/yn → ∞. Then, it can be easily verified that nδ2
nαn À log n.

According to Lemma 4.10, for any f ∈ Fn, which has |f | 6 1, we have (Pf 2)1/2 6
√

Cn−1/2(log n)1/2. Hence, by Theorem 2.83 we obtain

sup
f∈Fn

|Pnf − Pf | ¿ Cn−3/4 log n a.s,

which implies

sup
f∈Fn

|Pnf − Pf | = op

(
n−3/4 log n

)
. (4.85)

For any f ∈ Fn, by Remark 2.49 and (4.11), Pnf can be rewritten as

Pnf = Un(p, b̂)− Un(p). (4.86)

Similarly, for any f ∈ Fn, by Remark 2.49 and the fact that Φ(b0
′
X) has a Uniform

(0,1) distribution, Pf is

Pf = U(p)− U(p) = 0. (4.87)

Hence, (4.85) can be equivalently rewritten as
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∀ε > 0, ∀δ > 0, ∃Nε,δ ∈ N∗ such that for all n > Nε,δ we have

Pr

(
sup

p∈(0,1),‖b−b0‖6M/
√

n

|Un(p,b)− Un(p)| > εn−3/4 log n

)
< δ/2. (4.88)

The conclusion of the lemma follows immediately for n > max {Nδ, Nε,δ} by using

(4.88) and (4.84)

Pr

(
sup

p∈(0,1)

∣∣∣Un(p, b̂)− Un(p)
∣∣∣ > εn−3/4 log n

)

6 Pr


 sup

p∈(0,1),‖b̂−b0‖6M/
√

n

∣∣∣Un(p, b̂)− Un(p)
∣∣∣ > εn−3/4 log n




+Pr
(∥∥∥b̂− b0

∥∥∥ > M/
√

n
)

< δ.

Now, we are able to decompose the process given in (4.15) by using Lemma 2.75.

Lemma 4.14. Let {Xi}n
i=1 and {Yj}m

j=1 be random samples from multivariate normal

distributions with mean vectors 0 and µ,respectively, and the same covariance matrix

Σ. Let a0 be given by (4.2) and â an estimator of a0 satisfying (4.3). Let b0 and b̂

be defined by (4.10). Then, for m,n ∈ N such that m/n → λ ∈ R+

√
m

(
G̃m

(
U−1

n

(
p, b̂

)
, b̂

)
− G̃ (p,b0)

)
(4.89)

=
√

m
(
G̃m (p,b0)− G̃ (p,b0)

)
(4.90)

+
√

m
(
G̃

(
U−1

n

(
p, b̂

)
, b̂

)
− G̃ (p,b0)

)
(4.91)

+op(1), as n →∞,
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where op(1) holds uniformly in p ∈ (0, 1).

Proof. Let G be the Q-Donsker class defined in (4.32). Let δ1 > 0, δ2 > 0, and ‖ · ‖∞
be the uniform norm on (0, 1). Then, define

Gδ = {gb,H,p − gp ∈ G : ‖b− b0‖ 6 δ1, ‖H − U‖∞ 6 δ2} (4.92)

Then, Gδ is a Q-Donsker class by Lemma 2.61. Let
{

gb̂,Un( · ,b̂),p

}
be a sequence of

random functions that takes its values in G. We will prove next that for any ε > 0

Pr

(
sup

p∈(0,1)

∣∣∣(Qm −Q)
(
gb̂,Un( · ,b̂),p(Y)− gp(Y)

)∣∣∣ > ε

)
→ 0, as n,m →∞.

(4.93)

Let us denote the event supp∈(0,1)

∣∣∣(Qm −Q)
(
gb̂,Un( · ,b̂),p(Y)− gp(Y)

)∣∣∣ > ε by A.

Then, notice that Pr (A) can be majored by

Pr
(
A,

∥∥∥b̂− b0

∥∥∥ 6 δ1 ∩
∥∥∥Un

(
· , b̂

)
− U

∥∥∥
∞

6 δ2

)
(4.94)

+Pr
(∥∥∥b̂− b0

∥∥∥ > δ1 ∪
∥∥∥Un

(
· , b̂

)
− U

∥∥∥
∞

> δ2

)
. (4.95)

By triangle inequality, Lemma 4.13 and Glivenko-Cantelli Theorem we have

∥∥∥Un

(
· , b̂

)
− U

∥∥∥
∞

= op(1), as n →∞. (4.96)

Then, from (4.24) and (4.96) we have

(
b̂, Un

(
· , b̂

))
P→ (b0, U) , as n →∞. (4.97)
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Moreover, for any δ1, δ2 > 0, (4.24) and (4.96) also implies

Pr
(∥∥∥b̂− b0

∥∥∥ > δ1 ∪
∥∥∥Un

(
· , b̂

)
− U

∥∥∥
∞

> δ2

)
→ 0, as n →∞. (4.98)

From Lemma 4.9 we obtain

lim
b→b0,H→U

sup
p∈(0,1)

∫
(gb,H,p(y)− gp(y))2 dQ(y) → 0, as n,m →∞. (4.99)

Hence, by applying Lemma 2.75 to class of functions Gδ we obtain

Pr
(
A,

∥∥∥b̂− b0

∥∥∥ 6 δ1,
∥∥∥Un

(
· , b̂

)
− U

∥∥∥
∞

6 δ2

)
→ 0, as n,m →∞. (4.100)

Then, from (4.100) and (4.98) we obtain (4.93), which implies

√
m (Qm −Q)

(
gb̂,Un( · ,b̂),p(Y)− gp(Y)

)
= op(1), as n,m →∞, (4.101)

where op(1) is uniformly in p. The conclusion of the lemma follows immediately by

regrouping the following terms

QmI
[
Φ

(
b̂
′
Y

)
6 U−1

n

(
p, b̂

)]
= G̃m

(
U−1

n

(
p, b̂

)
, b̂

)
,

QmI
[
Φ

(
b0

′
Y

)
6 p

]
= G̃m (p,b0) ,

QI
[
Φ

(
b̂
′
Y

)
6 U−1

n

(
p, b̂

)]
= G̃

(
U−1

n

(
p, b̂

)
, b̂

)
, and

QI
[
Φ

(
b0

′
Y

)
6 p

]
= G̃ (p,b0) .
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4.3 Asymptotic Distribution of the Component Processes

Lemma 4.14 decomposed the equivalent generalized empirical process as the sum of

two empirical processes. In this section we will find the asymptotic distribution of

the empirical processes defined in (4.90) and (4.91). The following lemma gives us

the asymptotic distribution of the empirical process defined in (4.90).

Lemma 4.15. Let p ∈ (0, 1). Then, as m →∞,

√
m(G̃m(p,b0)− G̃(p,b0)) Ã GG̃(p), in D[0, 1]. (4.102)

Proof. The conclusion follows by applying, as in the univariate case, Theorem 2.62

to random variables W1, W2, ..., Wm, where Wj = b0
′
Yj.

Next, we will focus on the process defined in (4.91), also called the drift term.

But, before deriving its asymptotic distribution, we will prove a series of propositions

and lemmas that will be used later. Note, that for any p ∈ (0, 1) the process in (4.91)

can be equivalently written as

√
m

(
G̃

(
U−1

n

(
p, b̂

)
, b̂

)
− G̃ (p,b0)

)
=

√
m

(
Φ

(
Φ−1

(
U−1

n

(
p, b̂

))
− b̂

′
µ
)
− Φ

(
Φ−1

(
U−1

n

(
p, b̂

))
− b

′
0µ

))
(4.103)

+
√

m
(
Φ

(
Φ−1

(
U−1

n

(
p, b̂

))
− b

′
0µ

)
− Φ

(
Φ−1

(
U−1

n (p)
)− b

′
0µ

))
(4.104)

+
√

m
(
Φ

(
Φ−1

(
U−1

n (p)
)− b

′
0µ

)
− Φ

(
Φ−1 (p)− b

′
0µ

))
. (4.105)
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Next, we will show that the processes (4.103) and (4.104) are op(1), as n → ∞,

uniformly in p ∈ (0, 1). Finally, we will show that the process (4.105) can be uniformly

approximated as

√
m

(
Φ

(
Φ−1

(
U−1

n (p)
)− b

′
0µ

)
− Φ

(
Φ−1 (p)− b

′
0µ

))

=
√

m
φ

(
Φ−1(p)− b

′
0µ

)

φ (Φ−1(p))
(p− Un(p)) + op(1), (4.106)

where op(1) holds uniformly in p ∈ (0, 1). Therefore, the asymptotic distribution of

the drift term will be given by the process in (4.106).

Lemma 4.16. Let b̂ be defined by (4.10) such that (4.25) is satisfied. Then,

sup
x∈R

√
m

∣∣∣Φ
(
x− b̂

′
µ
)
− Φ

(
x− b

′
0µ

)∣∣∣ = op(1), as n →∞. (4.107)

Proof. By the first-order Taylor series approximation and the fact that the standard

normal density φ is bounded by 1, we have

sup
x∈R

√
m

∣∣∣Φ
(
x− b̂

′
µ
)
− Φ

(
x− b

′
0µ

)∣∣∣ <
√

m

∣∣∣∣
(
b̂− b0

)′
µ

∣∣∣∣ (4.108)

The conclusion follows immediately from (4.108) and (4.25).

Corollary 4.17. Let b̂ be defined by (4.10) such that (4.25) is satisfied. Then, the

process
√

m
(
Φ

(
Φ−1

(
U−1

n

(
p, b̂

))
− b̂

′
µ
)
− Φ

(
Φ−1

(
U−1

n

(
p, b̂

))
− b

′
0µ

))
is op(1),

as n →∞, uniformly in p ∈ (0, 1).

Proof. Let p ∈ (0, 1) and x = U−1
n

(
p, b̂

)
∈ R. Then, conclusion follows immediately
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from Lemma (4.16).

The proof for process (4.104) will start with the Taylor series expansion as in the

previous case.

Lemma 4.18. For every p ∈ (0, 1) there exists a point between U−1
n

(
p, b̂

)
and

U−1
n (p), denoted θn(p), such that

√
m

(
Φ

(
Φ−1

(
U−1

n

(
p, b̂

))
− b

′
0µ

)
− Φ

(
Φ−1

(
U−1

n (p)
)− b

′
0µ

))

=
√

m
φ

(
Φ−1(θn(p))− b

′
0µ

)

φ (Φ−1(θn(p)))

(
U−1

n

(
p, b̂

)
− U−1

n (p)
)

. (4.109)

Proof. The result follows immediately from the first-order Taylor series expansion of

the function Φ
(
Φ−1( · )− b

′
0µ

)
.

Remark 4.19. From now on, the fact that θn(p) is between U−1
n

(
p, b̂

)
and U−1

n (p)

will be denoted by

U−1
n

(
p, b̂

)
∧ U−1

n (p) < θn(p) < U−1
n

(
p, b̂

)
∨ U−1

n (p), (4.110)

where, recall, ∧ means minimum and ∨ means maximum.

Let Rφ : (0, 1) −→ R be defined as

Rφ(p) =
φ

(
Φ−1(p)− b

′
0µ

)

φ (Φ−1(p))
. (4.111)
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Let δ ∈ (0, 1/4) and qδ : [0, 1] −→ [0, 1] be defined as

qδ(p) = (1− p)δ. (4.112)

Finally, let q̃δ : (0, 1) −→ R be defined as

q̃δ(p) = qδ(p)Rφ(p). (4.113)

Note that for p ∈ (0, 1)

Rφ (θn(p))
(
U−1

n

(
p, b̂

)
− U−1

n (p)
)

= q̃δ (θn(p))
qδ(p)

qδ (θn(p))

U−1
n

(
p, b̂

)
− U−1

n (p)

qδ(p)
.

(4.114)

We will show next, by using different techniques, that the process (4.109) is op(1),

as n → ∞, uniformly in p ∈ (0, pn), p ∈ (pn, 1 − 1/n), and p ∈ (1 − 1/n, 1), where

pn is a properly chosen sequence converging to one. Therefore, by combining these

results, process (4.104) will be op(1), as n → ∞, uniformly in p ∈ (0, 1). First, we

will prove prove some useful properties of the above introduced functions.

Proposition 4.20. Let p0 ∈ (0, 1) and Rφ be defined by (4.111). Then, Rφ is uni-

formly continuous on [0, p0].

Proof. Notice that Rφ can be rewritten as

Rφ(p) = e
b
′
0µ

2

(
2Φ−1(p)−b

′
0µ

)
, p ∈ (0, 1).

80



Since b
′
0µ > 0, it can be easily shown that Rφ is monotonically increasing with

limp→0 Rφ(p) = 0 and limp→1 Rφ(p) = ∞. Therefore, for any p0 ∈ (0, 1), Rφ is

uniformly continuous on the interval [0, p0], since it is continuous on the same interval.

Proposition 4.21. Let q̃δ be defined by (4.113). Then, q̃δ is uniformly continuous

on [0, 1].

Proof. Notice, that q̃δ is continuous on (0, 1). We will show that q̃δ is continuous on

the compact interval [0, 1], and therefore uniformly continuous on [0, 1], by proving

that

lim
p→0

q̃δ(p) = lim
p→1

q̃δ(p) = 0. (4.115)

The limit of q̃δ for p converging to zero is immediate from Proposition 4.20 and

(4.112). Let p > 1/2 and let x > 0 be the unique value such that x = Φ−1(p). Then,

by simple algebraic manipulations we have

q̃δ(p) = (1− Φ(x))δ φ
(
x− b

′
0µ

)

φ(x)
=

(
1− Φ(x)

e−
b
′
0µ

δ
x

)
e−

(
b
′
0µ

)2

2 . (4.116)

Since b
′
0µ > 0, then by l’Hopital rule we have

lim
x→∞

(
1− Φ(x)

e−
b
′
0µ

δ
x

)
= lim

x→∞
φ(x)

b
′
0µ

δ
e−

b
′
0µ

δ
x

= 0. (4.117)

The proof is complete since by the change of variable the limit of q̃δ for p converging

to one is the same as the limit for x converging to infinity.
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Remark 4.22. By using (4.116), it can be shown that q̃δ is strictly decreasing for

p > Φ
(

b
′
0µ

δ

)
.

We can work next on the terms in the right hand side of equality (4.114). We

will prove that the first two terms are Op(1) and the third term is op(1), as n →∞,

uniformly in p ∈ (0, pn). We will start by proving lemmas that will help us to show

that the supremum for p ∈ (0, 1) of the absolute value of term
(
U−1

n

(
p, b̂

)
− U−1

n (p)
)

from (4.109) can be made op

(
n−3/4 log n

)
. For i = 1, n, let

Σ−1/2Xi = Zi = (Zi1, . . . , Zik)
′
. (4.118)

Notice that due to the independence of Xi and (4.118) then {Zij}i=1,n,j=1,k are inde-

pendent standard normal random variables.

Lemma 4.23. Let b ∈ Rk. Then, the following inequality is true for any n ∈ N+

sup
p∈(0,1)

∣∣U−1
n (p,b)− U−1

n (p)
∣∣ 6

√
k

2π
‖b− b0‖

∥∥Σ1/2
∥∥ max

i=1,n,j=1,k
|Zij| , (4.119)

where {Zij} are defined in (4.118).

Proof. For i = 1, n, denote Φ
(
b
′
Xi

)
and Φ

(
b0

′
Xi

)
by ζi and ξi, respectively. By

definition of an empirical quantile function, let ζn:i and ξn:i be the ith ordered ζi and

ξi value, respectively. Then, for i = 1, n we have

U−1
n (p,b) = ζn:i,

i− 1

n
< p 6 i

n
, (4.120)
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and

U−1
n (p) = ξn:i,

i− 1

n
< p 6 i

n
. (4.121)

Notice that it can be shown

max
i=1,n

|ζn:i − ξn:i| 6 max
i=1,n

|ζi − ξi| . (4.122)

From (4.118) we can easily obtain

max
i=1,n

‖Zi‖ 6
√

k max
i=1,n,j=1,k

|Zij| (4.123)

Then, for any n ∈ N+, by using (4.122), definitions of ζi and ξi, and first-order Taylor

series expansion, we have

sup
p∈(0,1)

∣∣U−1
n (p,b)− U−1

n (p)
∣∣

= max
i=1,n

sup
p∈( i−1

n
,6 i

n
]

∣∣U−1
n (p,b)− U−1

n (p)
∣∣

= max
i=1,n

|ζn:i − ξn:i|

6 1√
2π

max
i=1,n

∣∣∣(b− b0)
′
Xi

∣∣∣ . (4.124)

The conclusion of the lemma follows immediately by noticing that (b− b0)
′
Xi is

equal to (b− b0)
′
Σ1/2Σ−1/2Xi and by using triangle inequality and (4.123) in (4.124).
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For any p ∈ (0, 1) and any n ∈ N let ∆n(p) be defined as

∆n(p) = Un

(
U−1

n

(
p, b̂

))
− Un

(
U−1

n (p)
)− U−1

n

(
p, b̂

)
+ U−1

n (p) . (4.125)

Lemma 4.24. Let b̂ be defined by (4.10) such that (4.18) is satisfied. Then,

sup
p∈(0,1)

|∆n(p)| = op

(
n−3/4 (log n)3/4 βn

)
, as n →∞, (4.126)

where βn is any increasing sequence with n−1/4(log n)1/4βn non-increasing.

Proof. Let ε > 0 be given. We will prove that, for given ε > 0, there exists Nε ∈ N

such that for all n > Nε we have

Pr

(
n3/4 (log n)−3/4 βn sup

p∈(0,1)

|∆n(p)| > ε

)
< ε. (4.127)

Notice that maxi=1,n,j=1,k |Zij| = Op

(
(log n)1/2

)
, as n → ∞, by Proposition 2.55.

Therefore, by using this result and (4.18) we have

Tn =

√
n

(log n)1/2

√
k

2π

∥∥∥b̂− b0

∥∥∥
∥∥Σ1/2

∥∥ max
i=1,n,j=1,k

|Zij| = Op(1), as n →∞,

or, equivalently, for given ε > 0 there exists Nε and C0 such that

Pr (Tn > C0) < ε/2, ∀n > Nε (4.128)
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Hence, by rewriting (4.119) from Lemma 4.23 as

sup
p∈(0,1)

∣∣U−1
n (p,b)− U−1

n (p)
∣∣ 6 n−1/2(log n)1/2Tn

and, by using the same technique of splitting probabilities, we have

Pr

(
n3/4 (log n)−3/4 β−1

n sup
p∈(0,1)

|∆n(p)| > ε

)

6 Pr

(
n3/4 (log n)−3/4 β−1

n sup
p∈(0,1)

|∆n(p)| > ε, Tn 6 C0

)
(4.129)

+Pr (Tn > C0) . (4.130)

But,

Pr

(
n3/4 (log n)−3/4 β−1

n sup
p∈(0,1)

|∆n(p)| > ε, Tn 6 C0

)

= Pr

(
n3/4 (log n)−3/4 β−1

n sup
|s−t|6C0n−1/2(log n)1/2

|Un(t)− Un(s)− (t− s)| > ε

)
.

By using Theorem 2.83, we can show that the probability term of the right hand side

of the above equality can be made less than ε/2 for n sufficiently large. Let Fn be

the following class of functions

Fn =
{
I [s < U 6 t] : 0 < s 6 t < 1, |t− s| 6 C0n

−1/2(log n)1/2
}

, (4.131)

where U ∼ Unif(0, 1). It can be shown that Fn is a permissible class of functions

such that for any n and ε > 0, supQ N (ε,Fn, L1(Q)) 6 AεW , where A,W do not
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depend on n. The proofs are very similar to those of Lemmas 4.11 and 4.12 and

they will be omitted. Moreover, it can be easily seen that for any f ∈ Fn we have

|f | 6 1 and Pf 2 6 C0n
−1/2(log n)1/2. Hence, let δn and αn be two sequences such

that δ2
n = C0n

−1/2(log n)1/2 and αn = n−1/4(log n)1/4βn is a non-increasing sequence of

numbers with βn ↗∞. Notice that nδ2
nα

2
n ¿ log n. Therefore, by applying Theorem

2.83 to Fn we obtain

sup
f∈Fn

|Pnf − Pf | ¿ C0n
−3/4(log n)3/4βn, a.s,

which implies

sup
f∈Fn

|Pnf − Pf | = op

(
n−3/4(log n)3/4βn

)
.

But, since Pnf = Un(t)− Un(s) and Pf = t− s, then

sup
f∈Fn

|Pnf − Pf |

= sup
|t−s|6C0n−1/2(log n)1/2

|Un(t)− Un(s)− (t− s)|

= op

(
n−3/4(log n)3/4βn

)
,

or, equivalently,

Pr

(
n3/4(log n)−3/4β−1

n sup
|t−s|6C0n−1/2(log n)1/2

|Un(t)− Un(s)− (t− s)| > ε

)
< ε/2.

(4.132)

The conclusion of the lemma follows immediately from (4.128) and (4.132).
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Corollary 4.25. Let b̂ be defined by (4.10) such that (4.18) is satisfied. Then,

sup
p∈(0,1)

∣∣∣U−1
n

(
p, b̂

)
− U−1

n (p)
∣∣∣ = op

(
n−3/4 log n

)
, as n →∞. (4.133)

Proof. Let p ∈ (0, 1). Notice that

Un

(
U−1

n

(
p, b̂

)
, b̂

)
− Un

(
U−1

n (p)
)

(4.134)

= Un

(
U−1

n

(
p, b̂

)
, b̂

)
− Un

(
U−1

n

(
p, b̂

))
+ Un

(
U−1

n

(
p, b̂

))
− Un

(
U−1

n (p)
)
.

For ease of presentation will introduce some further notations. For any p ∈ (0, 1) and

any n ∈ N, let ∆n(p) be defined in (4.125), ∆
′
n(p), and ∆

′′
n(p) defined as follows

Un

(
p, b̂

)
− Un (p) = ∆

′
n(p), (4.135)

and

Fn

(
F−1

n (p)
)

= p + ∆
′′
n(p), (4.136)

where Fn is any empirical distribution function and ∆
′′
n(p) = O (n−1). By using

(4.136) in the left hand side of equality (4.134), and (4.125), (4.135) in the right hand

side of the same equality (4.134) we obtain, after some algebraic manipulations,

U−1
n

(
p, b̂

)
− U−1

n (p) = ∆n(p) + ∆
′
n

(
U−1

n

(
p, b̂

))
+ ∆

′′
n(p). (4.137)
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Also, notice that

∆
′′
n(p) = o

(
n−3/4 log n

)
(4.138)

The conclusion follows by taking supremum after p ∈ (0, 1) in (4.137), by noticing

that U−1
n

(
p, b̂

)
∈ (0, 1), by using (4.138), Lemma 4.24 with βn = (log n)1/4, Lemma

4.13, and by simple stochastic calculus.

Lemma 4.26. Let δ ∈ (0, 1/4). Then,

sup
(0,1−1/n]

√
n

∣∣∣∣∣∣
U−1

n

(
p, b̂

)
− U−1

n (p)

qδ(p)

∣∣∣∣∣∣
= op

(
nδ−1/4 log n

)
, as n →∞. (4.139)

Proof. For δ ∈ (0, 1/4), by monotonicity of qδ, supp∈(0,1−1/n) qδ(p) > n−δ, and Corol-

lary 4.25 we have

sup
(0,1−1/n]

√
n

∣∣∣∣∣∣
U−1

n

(
p, b̂

)
− U−1

n (p)

qδ(p)

∣∣∣∣∣∣

6 nδ−1/4 log n sup
(0,1−1/n]

∣∣∣U−1
n

(
p, b̂

)
− U−1

n (p)
∣∣∣

n−3/4 log n
= op(1), as n →∞.

We will now introduce two important lemmas that will be a very useful tools for

the next proofs.

Lemma 4.27. Let s > 1, τ > 0, 0 6 a < b 6 1 such that (1− a)/τ < 1, and F be a
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distribution function on [0, 1]. Then,

sup
p∈(a,b)

(1− p)s

1− F−1(p)
6 τ iff sup

p∈(a,b)

1− F
(
1− (1−p)s

τ

)

1− p
6 1. (4.140)

Proof. Notice that by using the following equivalence sup f(p) 6 t iff f(p) 6 t, ∀p we

have

sup
p∈(a,b)

(1− p)s

1− F−1(p)
6 τ iff

(1− p)s

1− F−1(p)
6 τ, ∀p ∈ (a, b), (4.141)

and

sup
p∈(a,b)

1− F
(
1− (1−p)s

τ

)

1− p
6 1 iff

1− F
(
1− (1−p)s

τ

)

1− p
6 1, ∀p ∈ (a, b). (4.142)

For any p, x ∈ (0, 1), by Lemma 2.31 we have

1− F (x) 6 1− p iff 1− x 6 1− F−1(p). (4.143)

Notice that x = 1 − (1−p)s

τ
∈ (0, 1) for any p ∈ (a, b) ⊆ (0, 1). Therefore, by using

(4.143), for any p ∈ (a, b) we have

(1− p)s

τ
6 1− F−1(p) iff

1− F
(
1− (1−p)s

τ

)

1− p
6 1. (4.144)

The conclusion follows immediately from (4.141), (4.142), and (4.144).
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Remark 4.28. If F is an empirical distribution function than (4.140) becomes

Pr

(
sup

p∈(a,b)

(1− p)s

1− F−1(p)
> τ

)
= Pr


 sup

p∈(a,b)

1− F
(
1− (1−p)s

τ

)

1− p
> 1


 . (4.145)

Lemma 4.29. Let c > 1. Then,

lim
x→0+

xc2

1− Φ (cΦ−1 (1− x))
−→ 0. (4.146)

Proof. If the limit exists, by using l’Hopital’s Rule, the fact that φ(ct)/φ(t) =

(
√

2πφ(t))c2−1, and Mill’s Ratio t(1− Φ(t)) < φ(t), ∀t > 0, we have

lim
x→0+

xc2

1− Φ (cΦ−1 (1− x))

= lim
x→0+

c2
(
xc2−1

)

cφ(cΦ1(1−x))
φ(Φ1(1−x))

= lim
x→0+

c
√

2π
c2

(
1− Φ (Φ−1 (1− x))

φ (Φ−1 (1− x))

)c2−1

< lim
x→0+

c
√

2π
c2

(
1

Φ−1 (1− x)

)c2−1

= 0.

Corollary 4.30. For x > 0, sufficiently close to zero, and c > 1, we have

1− Φ


Φ−1

(
1− xc2

)

c


 < x,
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which can be equivalently written as

1− Φ

(
Φ−1 (1− x)

c

)
< x1/c2 . (4.147)

Proof. The conclusion follows immediately from by simple manipulations of (4.146)

from Lema 4.29.

Lemma 4.31. Let δ ∈ (0, 1/4). Then,

sup
p∈(0,1)

qδ(p)

qδ (U−1
n (p))

= Op(1), as n →∞. (4.148)

Proof. Let ε > 0. We will show that for ε given there exists Mε ∈ (0,∞) such that

for n sufficiently large we have

Pr

(
sup

p∈(0,1)

1− p

1− U−1
n (p)

> Mε

)
< ε. (4.149)

By setting s = 1, τ > 1, a = 0, b = 1, and the uniform empirical distribution Un in

Remark (4.28), identity (4.145) becomes

Pr

(
sup

p∈(0,1)

(1− p)

1− U−1
n (p)

> τ

)
= Pr

(
sup

p∈(0,1)

1− Un

(
1− 1−p

τ

)
1−p
τ

> τ

)
. (4.150)

Note that by the symmetry and absolute continuity of the uniform distribution and

the definition of indicator function, we have

{Un(t), t ∈ [0, 1]} D
= {1− Un(1− t), t ∈ [0, 1]} (4.151)
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Hence, from (4.150) and (4.151) and by using change of variable t = (1 − p)/τ we

obtain

Pr

(
sup

p∈(0,1)

(1− p)

1− U−1
n (p)

> τ

)

= Pr

(
sup

p∈(0,1)

Un

(
1−p
τ

)
1−p
τ

> τ

)
6 Pr

(
sup

t∈(0,1/τ)

Un(t)

t
> τ

)
(4.152)

By choosing Mε > max{1, e/ε} then, from Lemma (2.54), the right hand side of

(4.152) can be made less than ε for n sufficiently large. Thus, the proof is complete.

Let pn be be a sequence converging to one defined by

pn = 1− n−3/4 log n. (4.153)

Lemma 4.32. Let b̂ defined by (4.10) such that (4.18) is satisfied, δ ∈ (0, 1/4), θn(p)

be defined by (4.110), and pn be defined by (4.153). Then,

sup
p∈(0,pn)

qδ(p)

qδ (θn(p))
= Op(1), as n →∞. (4.154)

Proof. Let ε > 0. By monotonicity of qδ and definition of θn(p) we have

sup
p∈(0,pn)

qδ(p)

qδ (θn(p))
6 sup

p∈(0,pn)

qδ(p)

qδ (U−1
n (p))

+ sup
p∈(0,pn)

qδ(p)

qδ

(
U−1

n

(
p, b̂

)) . (4.155)

Since the first term on the right hand side of inequality (4.155) is Op(1) as n → ∞

92



by Lemma 4.31, it will be sufficient to show that

sup
p∈(0,pn)

qδ(p)

qδ

(
U−1

n

(
p, b̂

)) = Op(1), as n →∞, (4.156)

or, equivalently, for ε given there exists Mε ∈ (0,∞) such that for n sufficiently large

we have

Pr


 sup

p∈(0,pn)

1− p

1− U−1
n

(
p, b̂

) > Mε


 < ε. (4.157)

Again, by setting s = 1, τ > 1, a = 0, b = pn, the uniform empirical distribution Un

in Remark (4.28), and identity (4.151) we have

Pr


 sup

p∈(0,pn)

1− p

1− U−1
n

(
p, b̂

) > τ




6 Pr

(
sup

p∈(0,pn)

Un

(
1−p
τ

)
1−p
τ

>
τ

2

)

+Pr


 sup

p∈(0,pn)

∣∣∣Un

(
1−p
τ

, b̂
)
− Un

(
1−p
τ

)∣∣∣
1−p
τ

>
τ

2




6 Pr

(
sup

t∈(1/nτ,1)

Un(t)

t
>

τ

2

)
(4.158)

+Pr


 sup

t∈(0,1)

∣∣∣Un

(
t, b̂

)
− Un (t)

∣∣∣
n−3/4 log n

>
1

2


 (4.159)

By choosing Mε > max{2, 2e/ε} then, from Lemma (2.54), probability in (4.158)

can be made less than ε/2 for n sufficiently large. By Lemma (4.13), probability in

(4.159) can also be made less than ε/2 for n sufficiently large. The conclusion of the

lemma follows immediately.
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We can now put together the previous results and have the following lemma.

Lemma 4.33. Let b̂ defined by (4.10) such that (4.18) is satisfied, θn(p) be defined

by (4.110), and pn be defined by (4.153) Then,

sup
p∈(0,pn)

√
m

∣∣∣Rφ (θn(p))
(
U−1

n

(
p, b̂

)
− U−1

n (p)
)∣∣∣ = op(1), as n →∞. (4.160)

Proof. Let δ ∈ (0, 1/4). Then from (4.114) we have

sup
p∈(0,pn)

√
m

∣∣∣Rφ (θn(p))
(
U−1

n

(
p, b̂

)
− U−1

n (p)
)∣∣∣

6 sup
p∈(0,1)

|q̃δ (θn(p))| (4.161)

· sup
p∈(0,pn)

∣∣∣∣
qδ(p)

qδ (θn(p))

∣∣∣∣ (4.162)

· sup
p∈(0,1/n]

√
m

∣∣∣∣∣∣
U−1

n

(
p, b̂

)
− U−1

n (p)

qδ(p)

∣∣∣∣∣∣
. (4.163)

Since q̃δ is uniformly continuous on (0, 1) by Proposition 4.21, then supremum in

(4.161) is Op(1), as n → ∞. Supremum in (4.162) is also Op(1), as n → ∞, by

Lemma 4.32. Finally, supremum in (4.163) is op(1), as n →∞, by Lemma 4.26. The

conclusion of the lemma follows from stochastic calculus.

Note that supremum in (4.162) could be proven to be Op(1), as n →∞, only for

p ∈ (0, pn). In order to show that (4.160) is true when p ∈ (pn, 1− 1/n), we will need

to write the process in (4.109) in a slightly different, but important, manner. Let

δ1, δ2 ∈ (0, 1/4) be such that δ2 = sδ1, where s > 1 is a proportionality factor, whose
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magnitude will be determined later. Then, note

Rφ (θn(p))
(
U−1

n

(
p, b̂

)
− U−1

n (p)
)

= q̃δ1 (θn(p))
qδ2(p)

qδ1 (θn(p))

U−1
n

(
p, b̂

)
− U−1

n (p)

qδ2(p)
.

(4.164)

Hence, by following the same steps and also using some of the results from the case

p ∈ (0, pn), all we need to show is that

sup
p∈(pn,1−1/n)

qδ2(p)

qδ1 (θn(p))
= Op(1), as n →∞. (4.165)

By using definitions of θn(p) and of function qδ we have

sup
p∈(pn,1−1/n)

qδ2(p)

qδ1 (θn(p))

= sup
p∈(pn,1−1/n)

(
(1− p)s

1− θn(p)

)δ1

6 sup
p∈(pn,1−1/n)

(
(1− p)s

1− U−1
n (p)

)δ1

+ sup
p∈(pn,1−1/n)


 (1− p)s

1− U−1
n

(
p, b̂

)



δ1

.

Notice that (4.165) is true if we prove that the supremums from the right hand side

of the above inequality are Op(1) as n →∞.

Lemma 4.34. Let pn be defined by (4.153) and s > 1. Then,

sup
p∈(pn,1−1/n)

(1− p)s

1− U−1
n (p)

= Op(1), as n →∞. (4.166)
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Proof. Let ε > 0 and Mε = max{1, e/ε} be given. Notice that

Pr

(
sup

p∈(pn,1−1/n)

(1− p)s

1− U−1
n (p)

> Mε

)
6 Pr

(
sup

p∈(pn,1−1/n)

(1− p)

1− U−1
n (p)

> Mε

)
.

Hence, the conclusion of the lemma follows immediately by using the same arguments

as in Lemma 4.31, so they will be omitted.

Proposition 4.35. Let s > 7. Then,

n


1− Φ


Φ−1

(
1− (

n−3/4 log n
)s−1

)

2





 −→ 0, as n →∞. (4.167)

Proof. The conclusion of the lemma follows immediately by using inequality (4.147)

with c = 2 and x = n−3/4 log n substituted into (4.147).

Lemma 4.36. Let b̂ be defined by (4.10), pn be defined by (4.153), and s > 7. Then,

sup
p∈(pn,1−1/n)

(1− p)s

1− U−1
n

(
p, b̂

) = Op(1), as n →∞. (4.168)

Proof. Let ε > 0 and Mε > 1 be given. Notice that by using Lemma (4.27), mono-

tonicity of Un

(
· , b̂

)
given in (4.11), and {Zi} defined in (4.118) we have the following
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sequence of inequalities

Pr


 sup

p∈(pn,1−1/n)

(1− p)s

1− U−1
n

(
p, b̂

) > Mε




6 Pr

(
n sup

p∈(pn,1−1/n)

(
1− Un

(
1− 1− p

Mε

(1− p)s−1, b̂

))
> 1

)

6 Pr
(
n

(
1− Un

(
1− (

n−3/4 log n
)s−1

, b̂
))

> 1
)

= Pr

(
n∑

i=1

I
[
b̂
′
Xi > Φ−1

(
1− (

n−3/4 log n
)s−1

)]
> 1

)

6 Pr


 sup

b∈Rk,b= a√
â
′
Σâ

n∑
i=1

I
[
b
′
Xi > Φ−1

(
1− (

n−3/4 log n
)s−1

)]
> 1




6 Pr

(
sup

c∈Rk,‖c‖=1

n∑
i=1

I
[
c
′
Zi > Φ−1

(
1− (

n−3/4 log n
)s−1

)]
> 1

)

6 Pr

(
n∑

i=1

sup
c∈Rk,‖c‖=1

I
[
c
′
Zi > Φ−1

(
1− (

n−3/4 log n
)s−1

)]
> 1

)
, (4.169)

where c = Σ1/2b. We will show next, by mathematical induction, that probability in

(4.169) can be made less than ε. Let k = 1. Then, for s > 7 and n sufficiently large,

by (4.167) we have

E

(
n∑

i=1

sup
|c|=1

I
[
c
′
Zi > Φ−1

(
1− (

n−3/4 log n
)s−1

)])

6
n∑

i=1

E
(
I
[
|Zi| > Φ−1

(
1− (

n−3/4 log n
)s−1

)])

6 2n


1− Φ


Φ−1

(
1− (

n−3/4 log n
)s−1

)

2





 = o(1).

Thus, we proved that
∑n

i=1 sup|c|=1 I
[
c
′
Zi > Φ−1

(
1− (

n−3/4 log n
)s−1

)]
converges

to zero in L1, which in turn, implies convergence to zero in probability . Therefore,
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probability in (4.169) can be made less than ε for n sufficiently large. Now, by using

induction, assume that probability in (4.169) is less than ε for 1, 2, . . . , k − 1 and

prove this is also true for k. Notice that for any c ∈ Rk such that ‖c‖ = 1 we have

√
c2
1 + . . . + c2

k−1 6 1, ∀k = 1, n. Therefore, by using triangle inequality and this fact

we have

sup
c∈Rk,‖c‖=1

I
[
c
′
Zi > Φ−1

(
1− (

n−3/4 log n
)s−1

)]

6 sup
c∈Rk,‖c‖=1

I
[
c1Zi1 + . . . + ck−1Zi(k−1) > Φ−1

(
1− (

n−3/4 log n
)s−1

)]

+ sup
c∈Rk,‖c‖=1

I
[
ckZik > Φ−1

(
1− (

n−3/4 log n
)s−1

)]

6 sup
c∈Rk,‖c‖=1

I


c1Zi1 + . . . + ck−1Zi(k−1)√

c2
1 + . . . + c2

k−1

> Φ−1
(
1− (

n−3/4 log n
)s−1

)



+ sup
c∈Rk,‖c‖=1

I

[
ckZik√

c2
k

> Φ−1
(
1− (

n−3/4 log n
)s−1

)]

6 sup
d∈Rk−1,‖d‖=1

I


d

′
Zi >

Φ−1
(
1− (

n−3/4 log n
)s−1

)

2




+ sup
e∈R,|e|=1

I


eZik >

Φ−1
(
1− (

n−3/4 log n
)s−1

)

2


 .
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Hence, by using the above inequalities and induction hypothesis, we have

Pr

(
n∑

i=1

sup
c∈Rk,‖c‖=1

I
[
c
′
Zi > Φ−1

(
1− (

n−3/4 log n
)s−1

)]
> 1

)

6 Pr




n∑
i=1

sup
d∈Rk−1,‖d‖=1

I


d

′
Zi >

Φ−1
(
1− (

n−3/4 log n
)s−1

)

2


 >

1

2




+Pr




n∑
i=1

sup
e∈R,|e|=1

I


eZik >

Φ−1
(
1− (

n−3/4 log n
)s−1

)

2


 >

1

2




6 ε.

Thus, lemma is proved.

Lemma 4.37. Let b̂ defined by (4.10) such that (4.18) is satisfied, θn(p) be defined

by (4.110), and pn be defined by (4.153). Then,

sup
p∈(pn,1−1/n)

√
m

∣∣∣Rφ (θn(p))
(
U−1

n

(
p, b̂

)
− U−1

n (p)
)∣∣∣ = op(1), as n →∞. (4.170)

Proof. Immediate by plugging in (4.164) the following results: uniform continuity of

q̃δ, Lemmas 4.34, 4.36, and 4.26.

Finally, we can focus on proving that the process (4.104) is op(1) uniformly on

p ∈ (1 − 1/n, 1) . Once again, for the interval (1 − 1/n, 1) we will have to write the

process (4.104) in other equivalent ways. First notice that we can also rewrite (4.104)
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as follows

√
m

(
Φ

(
Φ−1

(
U−1

n

(
p, b̂

))
− b

′
0µ

)
− Φ

(
Φ−1

(
U−1

n (p)
)− b

′
0µ

))

=
√

m
((

1− Φ
(
Φ−1

(
U−1

n

(
p, b̂

))
− b

′
0µ

))
−

(
1− Φ

(
Φ−1

(
U−1

n (p)
)− b

′
0µ

)))
.

(4.171)

Note that for p ∈ (1 − 1/n, 1), U−1
n (p) = Un:n, where Un:n is the maximum order

statistics from Unif(0, 1) random sample.

Lemma 4.38. Let Un:n be the maximum order statistics of a Unif(0, 1) random

sample. Then,

√
n

(
1− Φ

(
Φ−1 (Un:n)− b

′
0µ

))
= o(1) as n →∞. (4.172)

Proof. By Lemma 2.53, for Zn:n = Φ−1 (Un:n),

lim
n→∞

Zn:n

(2 log n)1/2
= 1, a.s.

Choose ε > 0 and c > 0, such that
√

2(1− ε)− c > 1 and, for n sufficiently large,

Zn:n

(2 log n)1/2
> 1− ε.

Note that for n sufficiently large we also have

c(log n)1/2 > b
′
0µ.
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Therefore, by using Mill’s Ratio we have

√
n

(
1− Φ

(
Zn:n − b

′
0µ

))

<
√

n
(
1− Φ

(√
2(1− ε)(log n)1/2 − b

′
0µ

))

6
√

n
(
1− Φ

((√
2(1− ε)− c

)
(log n)1/2

))

<
1√

2(1− ε)− c

(
n

log n
e−(

√
2(1−ε)−c)

2
log n

)1/2

= o(1).

Lemma 4.39. Let b̂ be defined by (4.10) such that (4.18) is satisfied. Then, as

n →∞,

sup
p∈(1−1/n,1)

√
m

(
Φ

(
Φ−1

(
U−1

n

(
p, b̂

))
− b

′
0µ

)
− Φ

(
Φ−1

(
U−1

n (p)
)− b

′
0µ

))
= op(1).

(4.173)

Proof. Note that process (4.104) can be re-written as in (4.171). First, suppose that

U−1
n

(
p, b̂

)
> U−1

n (p). Then, by monotonicity of functions Φ and Φ−1 and the fact

that b
′
0µ > 0, we obtain

√
m

(
1− Φ

(
Φ−1

(
U−1

n

(
p, b̂

))
− b

′
0µ

))
<
√

m
(
1− Φ

(
Φ−1

(
U−1

n (p)
)− b

′
0µ

))
.

(4.174)

Next, suppose U−1
n

(
p, b̂

)
6 U−1

n (p). Since θn(p) 6 U−1
n (p) then, by definition of qδ,

we have qδ(θn(p)) > qδ(U
−1
n (p)). Then, for δ < 1/4, by using the equivalent process
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(4.109), we obtain

∣∣∣√m
(
Φ

(
Φ−1

(
U−1

n

(
p, b̂

))
− b

′
0µ

)
− Φ

(
Φ−1

(
U−1

n (p)
)− b

′
0µ

))∣∣∣

6 q̃δ (θn(p))
1

qδ (U−1
n (p))

∣∣∣U−1
n (p, b̂)− U−1

n (p)
∣∣∣ .

Note that for p ∈ (1− 1/n, 1) we have

1

qδ (U−1
n (p))

=

(
1

1− U−1
n (p)

)δ

= nδ

(
1

n (1− Un:n)

)δ

.

Therefore,

sup
p∈(1−1/n,1)

√
m

∣∣∣
(
Φ

(
Φ−1

(
U−1

n

(
p, b̂

))
− b

′
0µ

)
− Φ

(
Φ−1

(
U−1

n (p)
)− b

′
0µ

))∣∣∣

6 max

{
2 sup

p∈(1−1/n,1)

√
m

(
1− Φ

(
Φ−1

(
U−1

n (p)
)− b

′
0µ

))
,

sup
p∈(1−1/n,1)

√
mq̃δ (θn(p))

(
1

n (1− Un:n)

)δ

nδ
∣∣∣U−1

n (p, b̂)− U−1
n (p)

∣∣∣
}

.

Since the first term in the above inequality is op(1) by Lemma 4.39, we only need

to show that the second term is also op(1). Choose M > 0. Note, that given a

random sample from Unif(0, 1), then the jth order statistics has a Beta(j, n − j +

1) distribution. Moreover, due to the symmetry of the beta distribution we have
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{Un:1(t), t ∈ [0, 1]} D
= {1− Un:n(t), t ∈ [0, 1]}. Therefore,

Pr

(
1

n (1− Un:n)
> M

)
= Pr

(
M−1

n
> Un:1

)

=
n∑

j=1

(
n

k

)(
M−1

n

)j (
1− M−1

n

)n−j

= 1−
(

1− M−1

n

)n

−→ 1− e−M−1

, as n →∞.

Hence, by choosing M large we can make Pr
(

1
n(1−Un:n)

> M
)

arbitrarily small. Fi-

nally, notice that by using Corollary 4.25 we have

sup
p∈(1−1/n,1)

n1/2+δ
∣∣∣U−1

n (p, b̂)− U−1
n (p)

∣∣∣ = op

(
n−1/4+δ log n

)
= op(1), as n →∞.

Therefore, by using Proposition 4.21 and the previous two results we have proved

sup
p∈(1−1/n,1)

√
mq̃δ (θn(p))

(
1

n (1− Un:n)

)δ

nδ
∣∣∣U−1

n (p, b̂)− U−1
n (p)

∣∣∣ = op(1),

as n →∞.

Lemma 4.40. Let b̂ defined by (4.10) such that (4.18) is satisfied. Then, as n →∞,

sup
p∈(0,1)

√
m

(
Φ

(
Φ−1

(
U−1

n

(
p, b̂

))
− b

′
0µ

)
− Φ

(
Φ−1

(
U−1

n (p)
)− b

′
0µ

))
= op(1).

(4.175)

Proof. Let pn be defined by (4.153) and θn(p) be defined by (4.110) such that the
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process (4.104) can be equivalently written as (4.109). Notice that

sup
p∈(0,1)

√
m

(
Φ

(
Φ−1

(
U−1

n

(
p, b̂

))
− b

′
0µ

)
− Φ

(
Φ−1

(
U−1

n (p)
)− b

′
0µ

))

6 max

{
sup

p∈(0,pn)

√
m

∣∣∣Rφ (θn(p))
(
U−1

n

(
p, b̂

)
− U−1

n (p)
)∣∣∣ ,

sup
p∈(pn,1−1/n)

√
m

∣∣∣Rφ (θn(p))
(
U−1

n

(
p, b̂

)
− U−1

n (p)
)∣∣∣ ,

sup
p∈(1−1/n,1)

√
m

∣∣∣
(
Φ

(
Φ−1

(
U−1

n

(
p, b̂

))
− b

′
0µ

)
− Φ

(
Φ−1

(
U−1

n (p)
)− b

′
0µ

))∣∣∣
}

.

The conclusion follows immediately by using Lemmas 4.33, 4.37, 4.39.

Next, we will focus on the process given in (4.105) and prove that it uniformly

approximated by the process in (4.106).

Lemma 4.41. For every p ∈ (0, 1), there exists θ̃n(p) such that

√
m

(
Φ

(
Φ−1

(
U−1

n (p)
)− b

′
0µ

)
− Φ

(
Φ−1 (p)− b

′
0µ

))

=
√

mRφ

(
θ̃n(p)

) (
U−1

n (p)− p
)
, (4.176)

where

U−1
n (p) ∧ p < θ̃n(p) < U−1

n (p) ∨ p. (4.177)

Proof. Immediate by applying the first-order Taylor series expansion to function

Φ
(
Φ−1( · )− b

′
0µ

)
.

Note that for any p ∈ (0, 1), by using Lemma 2.50 (Bahadur’s Theorem) for the

104



Uniform distribution, we have

√
m

(
Rφ

(
θ̃n(p)

) (
U−1

n (p)− p
)−Rφ (p) (p− Un (p))

)

=
√

m
(
Rφ

(
θ̃n(p)

)
−Rφ(p)

)
(p− Un(p)) (4.178)

+
√

mRφ

(
θ̃n(p)

)
Rn(p), (4.179)

where Rn is the remainder term introduced in (2.2). Therefore, by using Lemma 4.41

we will actually need to show that terms (4.178) and (4.179) are op(1) uniformly in

p ∈ (0, 1 − 1/n), as n → ∞. Similarly, we will show that we can choose p0 ∈ (0, 1)

such that the terms mentioned before are op(1) uniformly in (0, p0] and (p0, 1− 1/n),

as n →∞. Finally, we will combine these results. But first, we will prove other useful

lemmas.

Lemma 4.42. Let U1, . . . , Un be iid Unif(0,1) random variables. Then, almost surely

sup
p∈[0,1]

∣∣U−1
n (p)− p

∣∣ = o(1), as n →∞. (4.180)

Proof. We will prove that supp∈[0,1] |U−1
n (p)− p| = supp∈[0,1] |Un(p)− p|. This will be

sufficient to conclude the lemma since we know that the right hand side of previous

equality is o(1) by Glivenko-Cantelli theorem. Recall, that by the definition of an

empirical distribution we have

U−1
n (p) = Un:i,

i− 1

n
< p 6 i

n
(4.181)
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where Un:i is the ith order statistics and i = 1, n. For p = 0 define U−1
n (p) = Un:0 = 0.

Hence,

sup
p∈[0,1]

∣∣U−1
n (p)− p

∣∣ = max
i=1,n

sup
p∈( i−1

n
, i
n

]

|Un:i − p| = max
i=1,n

max

{∣∣∣∣Un:i − i− 1

n

∣∣∣∣ ,

∣∣∣∣Un:i − i

n

∣∣∣∣
}

.

(4.182)

On the other hand, Un can be equivalently rewritten as

Un(p) =
i

n
, Un:i 6 p < Unn:i+1 (4.183)

for i = 0, n. Therefore,

sup
p∈[0,1]

|Un(p)− p| = max
i=0,n

sup
p∈[Un:i,Un:i+1)

∣∣∣∣
i

n
− p

∣∣∣∣ = max
i=0,n

max

{∣∣∣∣
i

n
− Un:i

∣∣∣∣ ,

∣∣∣∣
i

n
− Un:i+1

∣∣∣∣
}

.

(4.184)

Since the sets for which we find the maximum in (4.182) and (4.184) are the same,

we conclude that the supremum are the same.

Lemma 4.43. Let θ̃n(p) be given by (4.177). Then,

sup
p∈(0,1)

∣∣∣θ̃n(p)− p
∣∣∣ = op(1), as n →∞. (4.185)

Proof. By using the definition of θ̃n(p) and triangle inequality we have

sup
p∈(0,1)

∣∣∣θ̃n(p)− p
∣∣∣ 6 sup

p∈(0,1)

∣∣∣U−1
n

(
p, b̂

)
− U−1

n (p)
∣∣∣ + 2 sup

p∈(0,1)

∣∣U−1
n (p)− p

∣∣ .

The conclusion is immediate from Corollary 4.25, Lemma 4.43, and stochastic calcu-
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lus.

Lemma 4.44. Let θ̃n(p) be given by (4.177) and p0 ∈ (0, 1). Then,

sup
p∈(0,p0]

∣∣∣Rφ

(
θ̃n(p)

)
−Rφ(p)

∣∣∣ = op(1), as n →∞. (4.186)

Proof. Let ε > 0 be given. By Proposition 4.20, Rφ is uniformly continuous on the

interval [0, p0]. Thus, ε given, there exists δ > 0, p0 + δ < 1, such that

∀p, p′ ∈ [0, p0] : sup
p∈[0,p0]

|p′ − p| < δ ⇒ sup
p∈[0,p0]

|Rφ (p′)−Rφ(p)| < ε. (4.187)

Notice that

Pr

(
sup

p∈[0,p0]

∣∣∣Rφ

(
θ̃n(p)

)
−Rφ(p)

∣∣∣ > ε

)

= Pr

(
sup

p∈[0,p0]

∣∣∣Rφ

(
θ̃n(p)

)
−Rφ(p)

∣∣∣ > ε, sup
p∈[0,p0]

|p̂− p| < δ

)

+Pr

(
sup

p∈[0,p0]

|p̂− p| > δ

)

6 Pr

(
sup

p,p′∈[0,p0+δ]

|Rφ (p′)−Rφ(p)| > ε, sup |p′ − p| < δ

)

+Pr

(
sup

p∈[0,p0]

∣∣∣θ̃n(p)− p
∣∣∣ > δ

)

The conclusion follows from (4.187) and Lemma 4.43.
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Lemma 4.45. Let δ ∈ (0, 1/4) and θ̃n(p) be given by (4.177). Then

sup
p∈(0,1)

qδ(p)

qδ

(
θ̃n(p)

) = Op(1), as n →∞. (4.188)

Proof. By using definition of θ̃n(p) and monotonicity of qδ, we have

sup
p∈(0,1)

qδ(p)

qδ

(
θ̃n(p)

) 6 sup
p∈(0,1)

qδ(p)

qδ (U−1
n (p))

+ 1. (4.189)

The conclusion follows immediately by applying Lemma 4.31.

Lemma 4.46. Let δ ∈ (0, 1/4) and Rn be the residual term, as given in (2.2), from

Bahadur’s theorem applied to Uniform distribution. Then,

sup
p∈(0,1−1/n]

√
n

∣∣∣∣
Rn(p)

qδ(p)

∣∣∣∣ = op(1), as n →∞. (4.190)

Proof. Let R∗
n = supp∈(0,1) |Rn(p)|. By using the monotonicity of qδ we have

sup
p∈(0,1−1/n]

√
n

∣∣∣∣
Rn(p)

qδ(p)

∣∣∣∣ 6 nδ−1/4(log n)1/2 R∗
n

n−3/4(log n)1/2
.

The conclusion follows immediately by using Remark 2.52, and stochastic calculus in

the above inequality.

Lemma 4.47. Let θ̃n(p) be given by (4.177). Then

sup
p∈(0,1−1/n)

√
m

∣∣∣
(
Rφ

(
θ̃n(p)

)
−Rφ(p)

)
(p− Un(p))

∣∣∣ = op(1), as n →∞. (4.191)
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Proof. Let ε > 0 and choose δ ∈ (0, 1/4). Notice that for any p0 ∈ (0, 1 − 1/n) and

n sufficiently large, we have

sup
p∈(0,1−1/n)

√
m

∣∣∣
(
Rφ

(
θ̃n(p)

)
−Rφ(p)

)
(p− Un(p))

∣∣∣

6 max

{
supp∈(0,p0)

√
m

∣∣∣
(
Rφ

(
θ̃n(p)

)
−Rφ(p)

)
(p− Un(p))

∣∣∣ , (4.192)

supp∈(p0,1−1/n)

√
mRφ

(
θ̃n(p)

)
|p− Un(p)| (4.193)

+ supp∈(p0,1−1/n)

√
mRφ (p) |p− Un(p)|

}
(4.194)

We will prove that all three terms are op(1) as n → ∞. Notice that for any choice

of p0 ∈ (0, 1 − 1/n) supremum in (4.192) is op(1), as n → ∞, by Lemma 4.44 and

boundness of the uniform empirical process.

Next, consider the process in (4.194). Note that for any any p0 > Φ
(

b
′
0µ

δ

)
and n

sufficiently large, by Remark 4.22 we have

sup
p∈(p0,1−1/n)

√
mRφ (p) |p− Un(p)| 6 q̃δ(p0)

√
m sup

p∈(0,1)

∣∣∣∣
p− Un(p)

qδ(p)

∣∣∣∣ . (4.195)

Therefore, we will only need to show that there exists p0 depending on both ε, δ such

that

Pr

(
q̃δ(p0)

√
m sup

p∈(0,1)

∣∣∣∣
p− Un(p)

qδ(p)

∣∣∣∣ > ε

)
< ε, as n →∞. (4.196)

By using Lemma 2.53 applied to the Uniform distribution, for ε, δ given, there exists
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M1 ∈ (0,∞), depending on both ε, δ, such that for n sufficiently large

Pr

(
sup

p∈(0,1)

√
n

∣∣∣∣
p− Un(p)

qδ(p)

∣∣∣∣ > M1

)
< ε/2. (4.197)

Let us choose p0 ∈ (0, 1) such that

p0 > Φ

(
b
′
0µ

δ

)
and q̃δ(p0) <

ε

M1

. (4.198)

Then, (4.196) is true by choosing p0 that satisfies (4.198), by using (4.197), and by

probability manipulations using the splitting probability technique.

For the process in (4.193) consider two cases. First suppose that U−1
n (p) > p, which

implies θ̃n(p) > p. For any p0 > Φ
(

b
′
0µ

δ

)
, since θ̃n(p) > p > p0, then, by Remark

4.22, we have

sup
p∈(p0,1−1/n)

q̃δ(θ̃n(p)) 6 q̃δ(p0). (4.199)

Thus, for n sufficiently large,

sup
p∈(p0,1−1/n)

√
mRφ

(
θ̃n(p)

)
|p− Un(p)|

6 q̃δ(p0) sup
p∈(0,1−1/n)

qδ(p)

qδ(θ̃n(p))

√
m sup

p∈(0,1)

∣∣∣∣
p− Un(p)

qδ(p)

∣∣∣∣ .

Therefore, it will be sufficient to show that there exists p0 depending on ε, δ such

that, as n →∞,

Pr

(
q̃δ(p0) sup

p∈(0,1−1/n)

qδ(p)

qδ(θ̃n(p))

√
m sup

p∈(0,1)

∣∣∣∣
p− Un(p)

qδ(p)

∣∣∣∣ > ε

)
< ε. (4.200)
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By (4.188), for ε, δ given, there exists M2 ∈ (0,∞), depending on both ε, δ, such that

for n sufficiently large

Pr


 sup

p∈(0,1−1/n)

qδ(p)

qδ

(
θ̃n(p)

) > M2


 < ε/2. (4.201)

Then, let us choose p0 ∈ (0, 1) such that

p0 > Φ

(
b
′
0µ

δ

)
and q̃δ(p0) <

ε

M1M2

. (4.202)

Hence, (4.200) is true by choosing p0 that satisfies (4.202), by using (4.201), (4.197),

and by probability manipulations using the splitting probability technique.

Secondly, suppose U−1
n (p) 6 p, which implies θ̃n(p) 6 p. Similarly, for any p0 >

Φ
(

b
′
0µ

δ

)
and n sufficiently large, by monotonicity of Rφ and of q̃δ for p > p0 we

obtain

sup
p∈(p0,1−1/n)

√
mRφ

(
θ̃n(p)

)
|p− Un(p)| 6 q̃δ(p0)

√
m sup

p∈(0,1)

∣∣∣∣
p− Un(p)

qδ(p)

∣∣∣∣ .

Thus, the proof will be identical to that of the process (4.194).

Therefore, by choosing p0 ∈ (0, 1) such that both (4.198) and (4.202) are satisfied,

then both terms in (4.193) and (4.194) are op(1) as n →∞. Thus, lemma is proved.
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Lemma 4.48. Let θ̃n(p) be given by (4.177). Then

sup
p∈(0,1−1/n)

√
mRφ

(
θ̃n(p)

)
|Rn(p)| = op(1), as n →∞. (4.203)

Proof. The proof is similar to the proof of previous lemma. However, we will be able

to use simple stochastic calculus instead of an ε-δ type of proof. Let δ ∈ (0, 1/4). For

any p0 ∈ (0, 1− 1/n) and n sufficiently large, we have

sup
p∈(0,1−1/n)

√
mRφ

(
θ̃n(p)

)
|Rn(p)|

6 max

{
supp∈(0,p0)

√
mRφ

(
θ̃n(p)

)
|Rn(p)| , (4.204)

supp∈(p0,1−1/n)

√
mRφ

(
θ̃n(p)

)
|Rn(p)|

}
(4.205)

Let R∗
n = supp∈(0,1) |Rn(p)|. Notice, that

sup
p∈(0,p0)

√
mRφ

(
θ̃n(p)

)
|Rn(p)| 6 Rφ(p0 + δ1)

√
mn−3/4(log n)1/2 R∗

n

n−3/4(log n)1/2
,

where δ1 is chosen such that sup
∣∣∣θ̃n(p)− p

∣∣∣ < δ1 and p0 + δ1 < 1. Therefore, supre-

mum in (4.204) is op(1), as n →∞, by using Proposition 4.20, Remark 2.52, and the

fact that the sequence in m,n is converging to zero, as n →∞. Thus, we only have

to prove that supremum in (4.205) is op(1) as n →∞.

We, again, distinguish the following two cases. First, suppose U−1
n (p) > p, which

implies θ̃n(p) > p. For any any p0 > Φ
(

b
′
0µ

δ

)
and n sufficiently large, by (4.199) we
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have

sup
p∈(p0,1−1/n)

√
mRφ

(
θ̃n(p)

)
|Rn(p)|

6 q̃δ(p0) sup
p∈(0,1)

qδ(p)

qδ(θ̃n(p))
sup

p∈(0,1−1/n]

√
m

∣∣∣∣
Rn(p)

qδ(p)

∣∣∣∣ . (4.206)

The right hand side of (4.206) is op(1) as n →∞ by Proposition 4.21, Lemmas 4.45

and 4.46, and stochastic calculus.

Secondly, suppose U−1
n (p) 6 p, which implies θ̃n(p) 6 p. For any p0 > Φ

(
b
′
0µ

δ

)
and n

sufficiently large, by using again Remark 4.22 we have

sup
p∈(p0,1−1/n)

√
mRφ

(
θ̃n(p)

)
|Rn(p)|

6 q̃δ(p0) sup
p∈(0,1−1/n]

√
m

∣∣∣∣
Rn(p)

qδ(p)

∣∣∣∣ . (4.207)

Then, the right hand side of (4.207) is op(1) as n →∞ by Proposition 4.21, Lemma

4.46, and stochastic calculus.

Therefore, by choosing p0 ∈ (0, 1) such that p0 > Φ
(

b
′
0µ

δ

)
, then both terms in (4.204)

and (4.205) are op(1) as n →∞. Hence, lemma is proved.

Lemma 4.49. Let θ̃n(p) be given by (4.177). Then

sup
p∈(0,1−1/n)

√
m

∣∣∣
(
Rφ

(
θ̃n(p)

) (
U−1

n (p)− p
)−Rφ (p) (p− Un (p))

)∣∣∣ = op(1), as n →∞.

Proof. Immediate from Lemmas 4.47 and 4.48.

Now, the only proof left is for the interval (1 − 1/n, 1). We will first introduce a
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lemma that is very similar to Lemma 4.38.

Lemma 4.50. Let p ∈ (1− 1/n, 1). Then, as n →∞,

sup
p∈(1−1/n,1)

√
n

(
1− Φ

(
Φ−1 (p)− b

′
0µ

))
= o(1). (4.208)

Proof. Since for p ∈ (1− 1/n, 1)

1− Φ
(
Φ−1 (p)− b

′
0µ

)
6 1− Φ

(
Φ−1

(
1− 1

n

)
− b

′
0µ

)
,

then, it suffices to show that

√
n

(
1− Φ

(
Φ−1

(
1− 1

n

)
− b

′
0µ

))
= o(1), as n →∞.

Let c >
√

2 and notice that for n sufficiently large

(
1− 1

c

)
Φ−1

(
1− 1

n

)
> b

′
0µ.

Therefore, by Lemma 4.29, as n →∞, we have

√
n

(
1− Φ

(
Φ−1

(
1− 1

n

)
− b

′
0µ

))

<
√

n

(
1− Φ

(
Φ−1

(
1− 1

n

)

c

))
< n( 1

2
− 1

c2
) = o(1).
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Lemma 4.51. Let p ∈ (1− 1/n, 1). Then, as n →∞,

sup
p∈(1−1/n,1)

√
m

∣∣∣Φ
(
Φ−1

(
U−1

n (p)
)− b

′
0µ

)
− Φ

(
Φ−1 (p)− b

′
0µ

)
−Rφ (p) (p− Un (p))

∣∣∣

= op(1).

Proof. By using triangle inequality and Remark 4.22, for n sufficiently large we have

sup
p∈(1−1/n,1)

√
m

∣∣∣Φ
(
Φ−1

(
U−1

n (p)
)− b

′
0µ

)
− Φ

(
Φ−1 (p)− b

′
0µ

)
−Rφ (p) (p− Un (p))

∣∣∣

6 sup
p∈(1−1/n,1)

√
m

∣∣∣Φ
(
Φ−1

(
U−1

n (p)
)− b

′
0µ

)∣∣∣

+ sup
p∈(1−1/n,1)

√
m

∣∣∣Φ
(
Φ−1 (p)− b

′
0µ

)∣∣∣

+ q̃δ

(
1− 1

n

)
sup

p∈(0,1)

√
m

∣∣∣∣
p− Un(p)

qδ(p)

∣∣∣∣

The conclusion of the lemma follows immediately by using Lemmas 4.38, 4.50, Propo-

sition 4.21, and Lemma 2.53 applied to the Uniform distribution.

We are now able to put together the result for the entire (0, 1) interval.

Lemma 4.52. Let p ∈ (0, 1). Then, as n →∞,

sup
p∈(0,1)

√
m

∣∣∣Φ
(
Φ−1

(
U−1

n (p)
)− b

′
0µ

)
− Φ

(
Φ−1 (p)− b

′
0µ

)
−Rφ (p) (p− Un (p))

∣∣∣

= op(1).

Proof. Let θ̃n(p) be given by (4.177) such that the process (4.105) can be equivalently
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written as (4.176). Notice that

sup
p∈(0,1)

√
m

∣∣∣Φ
(
Φ−1

(
U−1

n (p)
)− b

′
0µ

)
− Φ

(
Φ−1 (p)− b

′
0µ

)
−Rφ (p) (p− Un (p))

∣∣∣

6 max

{
sup

p∈(0,1−1/n)

√
m

∣∣∣
(
Rφ

(
θ̃n(p)

) (
U−1

n (p)− p
)−Rφ (p) (p− Un (p))

)∣∣∣ ,

sup
p∈(1−1/n,1)

√
m

∣∣∣Φ
(
Φ−1

(
U−1

n (p)
)− b

′
0µ

)
− Φ

(
Φ−1 (p)− b

′
0µ

)
−Rφ (p) (p− Un (p))

∣∣∣
}

.

The conclusion follows immediately by using Lemmas 4.49 and 4.51.

Lemma 4.53. Let Rφ be defined by (4.111), m/n → λ ∈ R+ as n → ∞, and

p ∈ [0, 1]. Then, as n → ∞, the process
√

mRφ(p) (p− Un(p)), defined to be zero if

p = 0 or p = 1, converges weakly in D[0, 1] to
√

λRφGU , a tight Gaussian process,

where Rφ(1)GU(1) is defined to be equal to 0, and with mean zero and covariance

function λRφ(s)Rφ(t) (s ∧ t− st), with s, t ∈ [0, 1), and 0 with s = 1 or t = 1.

Proof. Let qδ be the function defined by (4.112) where δ < 1/2. For any p ∈ (0, 1)

we have

√
mRφ(p) (p− Un(p)) =

√
mq̃δ(p)

(
p− Un(p)

qδ(p)

)
.

By defining the process
√

mp−Un(p)
qδ(p)

to be zero for p = 0 and p = 1 and by the fact

that limp→0 q̃δ(p) = limp→1 q̃δ(p) = 0, then the above equality is true for all p ∈ [0, 1].

Therefore, it is sufficient to show the weak convergence of the process
√

mq̃δ(p)p−Un(p)
qδ(p)

.

Notice that for δ < 1/2

∫ 1

0

1

(qδ(p))2 =
(1− p)1−2δ

1− 2δ
< ∞.
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Moreover, it can be easily seen that qδ is monotone around endpoints p = 0 and p = 1.

Thus, by using Lemma 2.63 we have,

√
mq̃δ(p)

p− Un(p)

qδ(p)
Ã
√

λRφ(p)GU(p) in D[0, 1], (4.209)

a tight Gaussian process with mean zero. It can be proved that the limiting process

has covariance function λRφ(s)Rφ(t) (s ∧ t− st), with s, t ∈ (0, 1). Next, we will show

that the covariance function, when we consider the endpoints p = 0 and p = 1, is

equal to zero. Since lims→0 Rφ(s) = 0, then the covariance function for 0 = s 6 t < 1,

given by lims→0 Rφ(s)Rφ(t)s(1− t), is equal to zero. By using (4.117), the covariance

function for 0 < s 6 t = 1, is also equal to zero:

lim
t→1

Rφ(s)Rφ(t)s(1− t)

= sRφ(s)e
− 1

2
(b
′
0µ)2 lim

t→1
eb

′
0µΦ−1(t)(1− t)

= sRφ(s)e
− 1

2
(b
′
0µ)2 lim

x→∞
eb

′
0µx(1− Φ(x)) = 0.

Using similar arguments as above, it can be easily shown that the variances of the

limiting process are zero at both endpoints, p = 0 and p = 1. Thus, the proof is

complete.

Lemma 4.54. Let b̂ defined by (4.10) such that (4.18) and (4.25) are satisfied,

G̃( · ,b) be equal to Φ(Φ−1( · ) − b
′
µ), Rφ be defined by (4.111), and m/n → λ ∈ R+

as n →∞. Define the drift process given by (4.91) to be zero at the endpoints p = 0
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and p = 1. Then, for Rφ(1)GU(1) defined to be equal to 0,

√
m

(
G̃

(
U−1

n

(
p, b̂

)
, b̂

)
− G̃ (p,b0)

)
Ã
√

λRφ(p)GU(p), in D[0, 1], (4.210)

as n →∞.

Proof. Recall that the drift process defined by (4.91) was decomposed as sum of three

other processes. The first process, defined by (4.103), is op(1) on interval (0, 1) by

Corollary 4.17. The second process, defined by (4.104), is also op(1) on interval (0, 1)

by Lemma 4.40. Finally, by using Lemmas 4.52, 4.53, and Slutsky’s Lemma, the

third process, defined by (4.105), converges weakly in D[0, 1] to the gaussian process

√
λRφGU with mean zero and covariance matrix given by λRφ(s)Rφ(t) (s ∧ t− st),

with s, t ∈ [0, 1), and 0 with s = 1 or t = 1. The conclusion follows immediately from

the previous stated results and Slutsky’s Lemma.

4.4 The Limit of the Generalized Empirical ROC Process

Theorem 4.55. Let {Xi}n
i=1 and {Yj}m

j=1 be mutually independent random samples

from multivariate normal distributions with mean vectors 0 and µ, respectively, and

the same covariance matrix Σ. Let a0 be given by (4.2) and â an estimator of a0

satisfying (4.3). Let G̃( · ,b) be equal to Φ(Φ−1( · )−b
′
µ), where b is given by (4.10),

and Rφ be defined by (4.111). Define the generalized empirical ROC process given by

(4.8) to be zero at the endpoints p = 0 and p = 1. Then, for Rφ(1)GU(1) defined to
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be equal to 0 and for m,n ∈ N such that m/n → λ ∈ R+, as n →∞,

√
m

(
Gm

(
F−1

n (p, â) , â
)−G

(
F−1 (p, a0) , a0

))
Ã GG̃(p) +

√
λRφ(p)GU(p), (4.211)

in D[0, 1]. The covariance structure of the limit process is given by

G̃(s ∧ t)− G̃(s)G̃(t) + λRφ(s)Rφ(t)(s ∧ t− st), (4.212)

where s, t ∈ [0, 1), and 0 with s = 1 or t = 1.

Proof. Let b0 and b̂ be defined by (4.10) with with b̂ satisfying (4.18) and (4.25).

Then, from Lemmas 4.14, 4.15, 4.54, independence of random samples {Xi}n
i=1 and

{Yj}m
j=1, Slutsky’s Lemma, Lemma 2.42, we have

√
m

(
G̃m

(
U−1

n

(
p, b̂

)
, b̂

)
− G̃ (p,b0)

)
Ã GG̃(p) +

√
λRφ(p)GU(p), (4.213)

in D[0, 1], as n → ∞. The conclusion of the theorem follows immedi-

ately since the generalized empirical ROC process was equivalently written as

√
m

(
G̃m

(
U−1

n

(
p, b̂

)
, b̂

)
− G̃ (p,b0)

)
.

Copyright c© Costel Chirila 2008
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CHAPTER 5: APPLICATION AND SIMULATION STUDY

5.1 Application

In this section we will apply our methodology to a lung cancer data provided by

Dr. Edward Hirschowitz, Department of Internal Medicine at University of Kentucky

Medical Center. There are 52 normal subjects and 51 subjects with lung cancer.

The biomarkers are proteins from cDNAT7 phage library using biopan enrichment

technique. Two candidate proteins, T7RL1002 and T7RL1004, were selected to create

a new biomarker as a linear combination. The data was log-transformed beforehand.
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Figure 5.1: Boxplots of T7RL1002, T7RL1004, and the new marker

In Figure 5.1 above, the new marker, constructed as linear combination of

T7RL1002 and T7RL1004 using Su and Liu method, seems to better discriminate,

between lung cancer and normal subjects, than the individual markers. Under the as-
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sumption of equal covariance matrices, the coefficients of the linear combination were

estimated by â0 = T̂−1(Y −X) = (−17.77, 18.49)
′
, where T̂−1 is the inverse of the

pooled variance as given in Lemma 4.3. Hence, the linear combination of T7RL1002

and T7RL1004 was given by â
′
0X and â

′
0X.

The comparison between the ROC curves for T7RL1002, T7RL1004 and the new

marker is presented in Figure 5.2 below. We can clearly see now, based on the ROC

plots below, that the newly constructed marker has a better sensitivity than the

individual markers, at all specificity points, except for a very small range of specificity

values close to one.
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Figure 5.2: ROC curves of T7RL1002, T7RL1004, and the generalized ROC curve
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5.2 Simulation Study

A simulation study was performed to estimate the coverage probabilities of the asymp-

totic pointwise confidence intervals at different specificity values. Since we are mostly

interested in large values of specificity, we have chosen to conduct the simulations

for the following set of values {0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95}.

The nominal confidence level chosen for all simulations was 95 per cent. The simula-

tions were performed using R software. The multivariate test values for non-diseased

and diseased subjects were randomly sampled from bivariate normal distributions

MV N
(
(0, 0)

′
, Σ

)
and MV N

(
(µ1, µ2)

′
, Σ

)
, respectively, using function mvrnorm

from package MASS in R. The diagonal of the covariance matrix Σ was set to 1 and the

covariance σ12 between biomarkers was chosen from the set {0.1, 0.5, 0.9}, which can

be interpreted as low, medium and high positive correlation levels. The following dis-

eased population mean vectors were used in simulations
{
(0.5, 0.5)

′
, (0.5, 1)

′
, (1, 1)

′}
.

Given that in practice, usually the cases are more difficult to obtain, we considered

the situations m/n ∈ {1, 0.5}, with n ∈ {20, 40, 100, 250}. The variance at each p

was determined using the covariance formula (4.212) from Theorem 4.55. Hence, the

95 per cent confidence interval at a specific value of p, where p ∈ (0, 1), was given by

Gm

(
F−1

n (p)
)± 1.96 ∗

√(
G̃(p)− G̃2(p)

)
+ λR2

φ(p)(p− p2)

√
m

,

where, recall, G̃(p) = Φ
(
Φ−1(p)− b

′
0µ

)
and Rφ(p) =

φ
(
Φ−1(p)−b

′
0µ

)

φ(Φ−1(p))
. Since b

′
0µ =

√
µ′Σ−1µ by (4.17), then we can estimate b

′
0µ by

√
(Y −X)′T̂−1(Y −X) where
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T̂−1 is calculated as in Lemma 4.3. The results of 10,000 simulations are presented

in Tables 5.1 and 5.2, below.

Table 5.1: Estimated Coverage Probabilities of the asymptotic confidence

intervals for m/n = 1

Specificity

(µ1, µ2) n σ12 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

(0.5,0.5) 20 0.1 91.69 91.46 91.64 91.79 92.22 93.09 93.89 93.85 93.46 93.05

0.5 91.56 91.79 92.10 92.01 92.64 93.45 94.37 94.68 94.20 92.29

0.9 91.56 91.75 92.06 92.25 92.71 93.51 94.01 93.02 93.69 91.68

40 0.1 93.02 93.48 93.39 93.49 93.75 93.79 94.29 95.15 94.71 93.82

0.5 93.13 93.31 93.29 93.43 93.77 94.26 95.07 94.81 94.74 93.56

0.9 93.38 93.40 93.21 93.73 94.09 94.15 95.35 94.66 94.82 93.49

100 0.1 94.27 94.68 94.59 94.32 94.78 94.94 94.85 94.75 94.46 94.48

0.5 94.29 94.65 94.43 94.39 94.84 94.70 95.06 94.61 94.41 94.19

0.9 94.36 94.63 94.42 94.13 94.79 94.94 94.53 94.76 94.38 94.32

250 0.1 94.27 94.46 94.56 95.02 94.76 95.10 94.89 95.39 95.37 95.63

0.5 94.48 94.44 94.76 95.24 94.98 95.28 94.89 95.29 95.20 95.60

0.9 94.42 94.36 94.75 95.02 94.99 94.66 94.77 95.35 95.24 95.32

(0.5,1) 20 0.1 91.70 91.36 91.50 91.60 91.78 91.92 92.02 92.62 93.29 94.95

0.5 92.05 91.63 91.74 91.97 91.91 91.82 92.51 93.00 93.71 93.98

0.9 92.32 91.69 91.51 91.69 91.58 91.65 91.84 92.40 93.09 94.98

40 0.1 93.35 93.04 92.98 93.03 93.25 92.75 93.69 93.94 94.36 94.65

0.5 93.40 93.03 92.84 92.89 92.84 93.03 93.45 94.09 94.30 94.33

0.9 93.23 93.11 92.94 92.45 92.66 92.56 92.64 93.20 93.81 95.03

100 0.1 94.25 94.37 94.19 94.37 94.57 94.42 94.42 94.17 94.17 94.38

0.5 94.56 94.39 94.27 94.28 94.52 94.45 94.34 93.86 94.52 94.45

0.9 94.32 94.27 94.08 94.04 94.12 93.96 94.01 93.98 94.73 94.41

250 0.1 94.71 94.66 94.44 94.99 94.97 95.33 94.90 95.46 95.21 95.60

0.5 94.73 95.19 94.96 95.20 95.06 94.88 94.95 94.98 95.12 95.54

0.9 94.80 94.60 94.64 94.58 94.71 94.93 94.33 94.28 94.94 95.35

(1,1) 20 0.1 91.93 90.95 91.12 90.87 90.93 91.10 91.55 91.91 92.46 94.96

Continued on next Page. . .
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Table 5.1: Estimated Coverage Probabilities of the asymptotic confidence

intervals for m/n = 1

Specificity

(µ1, µ2) n σ12 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.5 91.36 91.02 91.09 90.83 91.42 91.69 91.91 92.36 93.31 94.23

0.9 91.36 91.28 91.33 91.40 91.79 91.86 92.29 92.57 93.67 93.74

40 0.1 93.27 93.29 92.88 92.66 92.73 92.85 92.86 93.20 94.04 95.09

0.5 93.33 92.85 92.95 93.08 92.98 93.17 93.31 93.62 94.65 94.84

0.9 93.24 93.13 93.00 93.15 93.34 93.23 93.55 94.25 94.80 94.45

100 0.1 94.11 94.09 94.13 94.23 94.45 94.36 94.41 94.48 94.23 94.71

0.5 94.37 94.14 94.17 94.12 94.43 94.45 94.63 94.46 94.60 95.15

0.9 94.22 94.03 94.16 94.33 94.68 94.53 94.55 94.38 94.54 94.65

250 0.1 94.57 94.84 94.53 94.70 94.57 94.49 94.34 94.83 94.76 95.66

0.5 94.72 94.34 94.52 94.59 94.87 94.72 94.72 95.08 95.02 95.66

0.9 94.41 94.47 94.46 94.83 94.79 94.85 94.64 95.20 94.75 95.79

Table 5.2: Estimated Coverage Probabilities of the asymptotic confidence in-

tervals for m/n = 0.5

Specificity

(µ1, µ2) n σ12 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

(0.5,0.5) 20 0.1 90.41 90.48 91.29 91.22 91.40 92.16 92.50 93.06 93.09 93.80

0.5 90.20 90.70 91.11 91.32 91.69 92.87 91.26 94.56 93.95 92.80

0.9 90.13 90.58 90.97 91.19 92.32 92.48 92.95 94.35 94.60 92.14

40 0.1 92.95 92.80 92.87 93.04 93.37 93.66 94.33 92.25 94.33 93.98

0.5 92.62 92.35 92.80 93.13 93.38 93.67 94.12 94.79 93.79 93.87

0.9 92.74 93.03 93.25 93.34 94.12 94.47 94.69 94.01 95.07 93.84

100 0.1 93.63 93.33 94.23 93.85 94.38 94.71 94.75 94.99 94.95 94.86

0.5 93.73 93.58 94.30 93.83 95.05 94.30 94.36 95.27 94.99 94.33

0.9 93.89 93.54 94.46 94.07 95.07 94.78 95.13 95.00 94.93 94.49

250 0.1 94.56 94.45 94.23 94.64 94.35 95.51 95.17 95.35 95.43 95.39

0.5 94.02 94.33 94.37 94.78 94.87 94.93 94.96 94.97 95.13 95.37

Continued on next Page. . .
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Table 5.2: Estimated Coverage Probabilities of the asymptotic confidence in-

tervals for m/n = 0.5

Specificity

(µ1, µ2) n σ12 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.9 94.06 94.43 94.84 94.41 95.05 95.08 95.13 94.99 95.29 95.22

(0.5,1) 20 0.1 91.81 90.95 90.00 90.31 90.26 90.85 90.61 91.05 92.83 93.15

0.5 91.52 90.50 90.19 90.01 90.31 90.71 90.42 91.44 92.68 94.11

0.9 93.57 92.52 91.14 90.67 89.45 89.53 89.70 90.24 90.64 93.02

40 0.1 92.65 92.73 92.54 92.37 92.44 92.92 92.58 92.61 93.75 94.68

0.5 92.63 92.59 92.01 92.34 92.03 92.15 93.28 93.29 92.52 93.52

0.9 93.48 92.68 92.26 92.50 92.21 92.22 91.95 92.86 93.31 94.28

100 0.1 94.14 93.83 93.35 93.72 93.57 93.71 93.97 94.02 94.18 94.69

0.5 94.00 93.59 93.43 93.65 94.11 94.26 94.02 94.38 94.57 94.53

0.9 94.15 93.98 93.77 93.58 93.73 93.41 93.42 93.61 93.66 94.83

250 0.1 94.52 94.56 94.80 94.59 94.92 95.03 94.93 94.75 95.19 95.03

0.5 94.77 94.87 94.90 94.94 94.73 95.17 94.66 95.28 94.88 95.26

0.9 95.05 95.05 94.91 94.96 94.63 94.96 94.32 94.94 94.66 95.3

(1,1) 20 0.1 93.48 92.58 91.71 90.73 89.52 89.68 89.96 90.87 91.21 93.17

0.5 92.11 91.53 90.45 90.03 89.90 90.21 90.85 91.13 92.06 91.53

0.9 91.61 90.87 90.17 90.21 90.01 91.06 90.99 91.36 92.87 94.01

40 0.1 93.27 92.60 92.34 92.28 92.46 92.11 92.03 92.73 93.13 94.78

0.5 92.67 92.31 92.37 92.17 92.14 91.89 92.92 93.15 93.10 94.24

0.9 92.75 92.40 92.41 92.26 92.27 92.56 93.10 93.42 93.67 94.46

100 0.1 94.09 93.83 93.60 93.39 93.30 93.53 93.52 93.83 94.28 94.05

0.5 94.16 93.98 93.47 93.73 93.87 93.72 93.62 93.82 94.72 94.91

0.9 94.10 93.70 93.66 93.94 93.51 93.71 94.11 94.03 94.52 94.85

250 0.1 94.49 94.41 94.20 94.42 94.36 94.45 94.25 94.81 94.80 95.20

0.5 94.18 94.46 94.22 94.37 94.34 94.21 94.75 95.02 95.08 95.43

0.9 94.38 94.36 94.39 94.34 94.05 94.50 94.74 95.23 95.53 95.52

The estimated coverage probabilities, presented in Tables 5.1 and 5.2, were plot-

ted against the chosen specificity values, for all possible combinations and grouped
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together by ratio of diseased versus nondiseased samples.
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Figure 5.3: Estimated Coverage Probabilities for m/n = 1
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Figure 5.4: Estimated Coverage Probabilities for m/n = 0.5
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Within each plot, the lines have different types and colors, corresponding to a

different sample size. We also used symbols to distinguish the cases, with the lowest

sample size numbered 1 and the largest numbered 4. By comparing Figures 5.3 and

5.4, we can observe a slight drop in the coverage only for the lower sample sizes. In

other words, if the number of controls is large enough, 100 or more, the estimated

coverage varies almost identically around the nominal level, even when the ratio of

cases versus controls is 0.5. When the number of controls is either 20 or 40, the

coverage probability is underestimated, but it still has a reasonable coverage around

90 per cent. Finally, we notice that when the diseased and nondiseased populations are

not well separated, which corresponds to a low value of parameter b
′
0µ, the estimated

coverage probability drops for large specificity values.

Copyright c© Costel Chirila 2008
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CHAPTER 6: DISCUSSION AND FUTURE RESEARCH

In this dissertation we considered the ROC curve of a linear combination of diagnostic

tests. If both the diseased and non-diseased populations are multivariate normally dis-

tributed, then the linear combination, using Fisher’s linear discriminant coefficients,

maximizes the area under the generalized ROC curve.

In Chapter 4, we derived the asymptotic behavior of the nonparametric estima-

tor, the generalized empirical ROC curve, under the assumption of equal covariance

matrices and zero mean for the multivariate normal distribution of the non-diseased

population. The coefficients can be estimated by maximum likelihood, however our

general requirement was that the estimator is bounded in probability. Future re-

search will be focused on finding the asymptotic distribution of the nonparametric

estimator when relaxing one or more conditions. For example, the assumption of

equal covariance matrices is not a realistic once, and thus we would be interested

in finding the asymptotic distribution for the case of unequal covariance matrices.

Also, from a practical standpoint, the normality assumption is not always met. A

possible solution would be to consider a situation similar to the binormal assump-

tion, in which data becomes multivariate normal after a monotone transformation is

applied. An alternative solution is to consider the multivariate distribution coming

from an elliptical family. Finally, another research direction would be to determine

the asymptotic distribution of a linear combinations of biomarkers that maximize the

sensitivity over a desired range of specificity, as it was proposed by Liu et al. (2005).

In Chapter 5, we applied the methodology to a real dataset and created a new
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marker as a linear combination of two biomarkers that shows a better discrimination

between lung cancer patients and normal patients. In the end, we conducted a simu-

lation study for combinations of two biomarkers to determine the estimated coverage

probability of the asymptotic pointwise confidence intervals. The results showed a

good coverage for sample sizes of at least 100 controls. For lower sample size, the

coverage was underestimated with values around 90 per cent. Also, for lower sample

sizes we saw a drop in the coverage probability that may be explained by the discrete-

ness nature of the process. As a future work, we will consider constructing confidence

intervals using a smoothed empirical distribution Gm. We will also consider more

simulations to estimate the coverage probabilities when we have departure from the

normal distribution and equal covariance matrices assumption. Finally, we consider

developing regional confidence bands for the generalized empirical ROC curve.

Copyright c© Costel Chirila 2008

130



BIBLIOGRAPHY

[1] S. G. Baker. Identifying combinations of cancer markers for further study as

triggers of early intervention. Biometrics, 56(4):1082–1087, 2000.

[2] D. Bamber. The area above the ordinal dominance graph and the area below

the receiver operating characteristic graph. Journal of Mathematical Psychology,

12:387–415, 1975.

[3] J. Beirlant and P. Deheuvels. On the approximation of P-P and Q-Q plot pro-

cesses by brownian bridges. Statistics & Probability Letters, 9:241–251, 1990.

[4] P. Bilingsley. Convergence of Probability Measures. John Wiley & Sons, Inc.,

New York, 1968.

[5] G. Campbell. Advances in statistical methodology for the evaluation of diagnostic

and laboratory tests (Disc: P553-556). Statistics in Medicine, 13:499–508, 1994.

[6] G. Claeskens, B. Y. Jing, L. Peng, and W. Zhou. Empirical likelihood confidence

regions for comparison distributions and ROC curves. The Canadian Journal of

Statistics / La Revue Canadienne de Statistique, 31(2):173–190, 2003.
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