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ABSTRACT OF DISSERTATION

STATISTICAL METHODS FOR ENVIRONMENTAL EXPOSURE DATA

SUBJECT TO DETECTION LIMITS

In this dissertation, we develop unified and efficient nonparametric statistical

methods for estimating and comparing environmental exposure distributions in pres-

ence of detection limits. In the first part, we propose a kernel-smoothed nonpara-

metric estimator for the exposure distribution without imposing any independence

assumption between the exposure level and detection limit. We show that the pro-

posed estimator is consistent and asymptotically normal. Simulation studies demon-

strate that the proposed estimator performs well in practical situations. A colon

cancer study is provided for illustration. In the second part, we develop a class of

test statistics to compare exposure distributions between two groups by using the

integrated weighted difference in the kernel-smoothed estimator proposed in the first

part. We study the conditions on the weight function such that the test statistics

are stable, i.e. the asymptotic variances are finite. Simulation studies demonstrate

that the proposed tests preserve type I errors regardless whether the distributions of

the detection limit in the two groups differ or not and are more efficient than current

methods in certain situations. A colon cancer study is provided for illustration. In

the third part, we extend the estimation and testing methods developed in the part

one and two to survey data by incorporating sampling weights. The results of sev-

eral simulation studies are reported to demonstrate the performance of the proposed



methods. The Jackknife method is utilized for the variance estimation to account for

complex sample designs.

KEYWORDS: detection limits; left-censored data; environmental exposure; kernel

smoothing; nonparametric estimator; integrated weighted difference; sampling

weight; jackknife
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Chapter 1 Introduction

1.1 Motivation

As researchers investigate the relationship between diseases and exposures to en-

vironmental chemicals such as trace elements, pesticides, and dioxins, they often find

concentrations that are lower than limits deemed reliable enough to report as numer-

ical values. A detection limit (DL) is “a threshold below which measured values are

not considered significantly different from a blank signal, at a specified level of prob-

ability” [1]. Therefore, the exposure level of a chemical for a sample is only reported

when its value is not less than the DL and otherwise is reported as a less than value

or non-detect. The DL may be a fixed number in some studies, but it can also vary

widely from sample to sample in other studies. For the latter, the DL may be associ-

ated with the exposure level, as observed in a colon cancer study in Kentucky[2]. The

data subject to DLs present challenges for data analysis and interpretation. In this

dissertation we focus on two important statistical problems encountered in the anal-

ysis of data from environmental epidemiologic studies: (a) estimation of the chemical

distribution in a specific group; and (b) comparison of distributions among groups.

For these two problems, ad hoc, parametric, and nonparametric methods have been

proposed. Ad hoc methods are ill-advised unless there are relatively few measure-

ments below DLs; and parametric methods can lead to markedly biased results when

the parametric model is misspecified [3, 4]. Nonparametric methods have received

increasing attention in recent years because of their robustness. However, current non-

parametric methods simply borrow the commonly used methods for right-censored

survival data, and do not take into account the following two unique characteristics

of environmental exposure data with DLs: (a) it is not meaningful to define the haz-

ard function for an exposure measurement; and (b) DL values are observable for all
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subjects including those whose actual exposure levels are detected. In addition, cur-

rent nonparametric methods do not allow for sampling weights, which are typically

present in survey data such as the National Health and Nutrition Examination Sur-

vey (NHANES). Due to these issues, current nonparametric methods may lead to the

following four problems for the analysis of environmental exposure data with DLs: (a)

lack of meaningful interpretation; (b) inefficient results; (c) inability to deal with the

situation that the exposure level and DL are associated; and (d) inability to handle

survey data with sampling weights. To address the aforementioned problems, we will

develop unified and efficient nonparametric estimation and testing methods that can

(a) deal with possible association between the exposure level and DL; (b) incorporate

sampling weights. We will utilize state-of-the-art methods for censored survival data

and tailor them to environmental exposure data with DLs. The proposed methods

will be applied to data from a colon cancer case-control study in Kentucky and the

NHANES data.

1.2 Colon Cancer Data

Kentucky has the nation’s highest colon cancer incidence rate [5]. Appalachian

Kentucky, which has a unique geology that contains high-quality bituminous coal

naturally rich in trace elements, has an even higher rate of colon cancer compared

to other regions of the state. A case-control study was conducted to explore the

association between environmental exposures to trace elements such as arsenic (As),

chromium (Cr) and nickel (Ni) and colon cancer and whether exposures to these

trace elements contribute to the elevated colon cancer rate in Appalachian Kentucky

[2, 6]. For this purpose, 274 colon cancer cases and 253 controls were selected from

23 contiguous rural counties in Kentucky (Appalachian region) and Jefferson County,

the largest, most urban county in Kentucky (non-Appalachian region). Among 247

subjects from the Appalachian region, 145 were cases and 102 were controls; among
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280 from the non-Appalachian region, 129 were cases and 151 were controls. Toe-

nail samples from these subjects were collected, and the concentrations of 12 trace

elements were measured as markers of long-term environmental exposures to these

trace elements. The DL varies from one subject to another for these trace element

concentrations as a function of the toenail mass. We found at least 6 trace elements

with significant association between the exposure level and DL in cases from the

Appalachian region.

1.3 National Health and Nutrition Examination Survey (NHANES) Data

The NHANES is a program of studies designed to assess the health and nutritional

status of adults and children in the United States. Starting in 1999, NHANES be-

came a continuous, ongoing annual survey of the noninstitutionalized civilian resident

population of the United States. About 12,000 persons per 2-year cycle were asked to

participate in NHANES. Response rates varied by year, but an average of 10,500 per-

sons out of the initial 12,000 agreed to complete a household interview. A four-stage

sampling design was used: (i) selection of Primary Sampling Units (PSUs), which

are counties or small groups of contiguous counties; (ii) selection of segments within

PSUs that constitute a block or group of blocks containing a cluster of households;

(iii) selection of specific households within segments; and (iV) selection of individuals

within a household. A weight was assigned to each respondent. Weighting took into

account several features of the survey: the differential probabilities of selection for the

individual domains; nonresponse to survey instruments; and differences between the

final sample and the total population[7]. Masked Variance Strata and Masked Vari-

ance Units or MVUs are used to protect the confidentiality of information provided

by survey participants and to reduce disclosure risks. The variance estimates that

are produced, using the Masked strata and MVUs, closely approximate the variances

that would have been estimated using the true sample design variance units that are

3



based on the actual survey sample strata and PSUs[8].

1.4 Current methods

Ad hoc methods, such as substituting the DL, DL/2, or DL/
√

2 for values below

the DL, are widely used in environmental science literatures for the analysis of the

data subject to DLs. However, these methods have no theoretic basis and are ill-

advised unless relatively few measures fall below DLs [3, 4]. Parametric models for

left-censored data, such as the Tobit model and the lognormal model, can be used

since the data subject to DLs can also be treated as left-censored data [1]. The

caution of using these methods is that the validity of the results depends on the

correct specification of the parametric model. Recently nonparametric methods have

received increasing attention because they do not require distributional assumptions,

and thus may be a safe choice for data analysis [1, 9, 10].

The nonparametric reverse Kaplan-Meier (RKM) estimator, which mimics the

Kaplan-Meier (KM) estimator for right-censored survival data with the scale reversed,

has been recommended for estimating the exposure distribution in presence of DLs

[9]. Let T̃ and D be random variables for the exposure level and DL, respectively. Let

T = max(T̃ , D) and δ = I(T̃ ≥ D), where δ indicates whether T is an exposure level

value or a DL value. For data subject to DL, we observe (T, δ,D) for each subject.

Suppose the data consist of n replicates {(Ti, δi, Di): i = 1, · · · , n}. We then define

two counting processes Ni(t) = I(Ti ≤ t, δi = 1) and Yi(t) = I(Ti ≤ t). The RKM

estimator can be written as

F̂RKM(t) =
∏
s>t

{
1−

∑n
j=1 dNj(s)∑n
j=1 Yj(s)

}
, t ≥ τn, (1.1)

where τn = mini=1,...,n{Ti}. In addition, when the smallest observation is uncensored,

F̂RKM(t) = 0 for t ∈ (0, τn). When the smallest observation is censored, F̂RKM(t)

is undefined for t ∈ (0, τn). Standard errors of RKM estimates are readily available
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using the greenwood formula[11, 12] that was developed for the KM estimator [13].The

RKM estimator requires the independence assumption between the exposure level and

DL.

Nonparametric methods outperform ad hoc and parametric methods for com-

paring exposure distributions[10]. Current nonparametric methods transform (flip)

data subject to DLs to right-censored and then apply the log-rank or Wilcoxon test

(4). However, these methods do not account for the unique characteristics of envi-

ronmental data compared to survival data and can cause several problems. First,

these methods lack epidemiological interpretation because they are constructed by

comparing hazard functions which are not meaningful quantities for environmental

data. Second, these tests are not efficient for detecting the absolute difference in

environmental exposure distributions. Third, the validity of these tests depends on

the assumption that distributions of the DL in two groups are identical[14, 15]

In survival analysis, the weighted Kaplan-Meier (WKM) statistics have been pro-

posed as alternatives to the log-rank or Wilcoxon test for comparing the absolute

difference in two survival distributions[16]. The WKM statistics consider the in-

tegrated weighted difference in Kaplan-Meier estimates for the two groups and are

defined as √
n1n2

n

∫ Tc

0

ŵ(t)[Ŝ1(t)− Ŝ2(t)]dt,

where Tc = sup{t : min(Ĉ1(t), Ĉ2(t))}, ni is the sample size in group i, n = n1+n2, Ĉi

is the Kaplan- Meier estimator of the censoring survival function in group i, Ŝi is the

Kaplan- Meier estimator of the survival function in group i, ŵ(·) is a random weight

function estimating a deterministic function w(·) and i = 1 or 2. The variability of

Ŝ1(t) − Ŝ2(t) tends to be large for t close to Tc. In this case, the WKM statistics

may have unstable results without using an appropriate weight function w(·). To

remedy instability of the WKM statistic, w(·) needs to downweigh the contribution

5



of Ŝ1(t) − Ŝ2(t) over larger t. Under the null hypothesis, the WKM statistics are

asymptotically normal when w(·) meets certain constraints. Small-sample simulation

studies showed that the WKM statistics may perform better than the log-rank or

Wilcoxon test under the crossing hazards alternative. However, the WKM statistics

are for right-censored survival data and have not been extended to data subject to

DLs.

1.5 Outline of the Dissertation

The remainder of this dissertation is organized as follows.

In chapter 2, we propose a kernel-smoothed nonparametric estimator for the expo-

sure distribution without imposing any independence assumption between the expo-

sure level and DL. We show that the proposed estimator is consistent and converges

weakly to a Gaussian process. The results of several simulation studies are reported

to demonstrate the performance of the estimator comparing to the RKM estimator

and the parametric estimator based on a lognormal exposure distribution. A colon

cancer study is provided for illustration.

In chapter 3, we develop a class of test statistics to compare exposure distributions

between two groups by using the integrated weighted difference in the proposed esti-

mators for the two groups. We study the condition of the weight function so that the

propsed test statistics arevasymptotically normal. The results of several simulation

studies are reported to demonstrate the performance of the test statistics. A colon

cancer study is provided for illustration.

In chapter 4, we extend the proposed estimator and test statistics to complex

survey data by incorporating sampling weights. The results of several simulation

studies are reported to demonstrate the performance of the proposed methods. The

Jackknife method is utilized for the variance estimation to account for complex sample

designs. The NHANES data is provided for illustration.
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In chapter 5, we implement the aforementioned methods to an R package ’krkm’.
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Chapter 2 Estimation of Exposure Distribution Adjusting for

Association between Exposure Level and Detection Limit

2.1 Introduction

2.2 Introduction

In environmental exposure studies, one fundamental question is to estimate dis-

tributions of environmental chemicals, such as trace elements and pesticides, in a

certain population. However, it is very common to observe a portion of exposure

measurements to fall below experimentally determined detection limits (DLs). A

detection limit (DL) is “a threshold below which measured values are not consid-

ered significantly different from a blank signal, at a specified level of probability” [1].

Therefore, the exposure level of a chemical for a sample is only reported when its

value is not less than the DL and otherwise is reported as a less than value or non-

detect. The DL itself can depend on the mass/volume of the analyzed sample and/or

on the mass/volume of adjustment factors such as lipid content. The laboratory may

report a common DL for all samples or different DLs for different samples. When the

latter occurs, it is mostly because the mass/volume of the obtained sample and/or

any adjustment factor differs for each individual, and the exposure level and DL may

be associated in this case. For example, in the colon cancer study measuring trace el-

ement accumulation in toenails [2], we observed a statistically significant association

between the exposure level and DL in Appalachian cancer cases for at least 6 trace

elements (Table 2.4). This may be because trace elements can cause adverse effects

on metabolism and therefore lead to slow growth rate of toenails [17]. As a result,

toenail samples obtained from individuals with high exposure to trace elements tend

to have low masses. In addition, a higher toenail mass results in a lower DL (i.e., a

8



better ability to detect low levels of metal accumulation). Therefore, the exposure

level and DL may be associated because both may be associated with the toenail

sample mass.

Ad hoc methods, such as substituting DL, DL/2, or DL/
√

2 for the value below

a DL, are widely used in environmental science literature to estimate the exposure

distribution for the data subject to DLs. However, these methods have no theoretical

basis and are ill-advised unless relatively few measures fall below DLs [3, 4]. To

appropriately account for values below DLs, parametric models for left-censored data,

such as the lognormal model [1], can be used since the data subject to DLs can also be

treated as left-censored data [1]. But these parametric methods can lead to markedly

biased results when the parametric form of the exposure distribution is misspecified

[1, 4]. Recently nonparametric methods have received increasing attention because

they do not require distributional assumptions, and thus may be a safer choice for data

analysis. The reverse Kaplan-Meier (RKM) estimator, which mimics the Kaplan-

Meier (KM) estimator for right-censored survival data with the scale reversed, has

been recommended [9]. Note that both the RKM estimator and the aforementioned

parametric methods require the independence assumption between the exposure level

and DL. To our knowledge, there are no appropriate statistical methods available to

deal with the case when the exposure level and DL are associated.

In this chapter, we utilize a two-step strategy and the kernel smoothing technique

to develop a nonparametric consistent estimator for the exposure distribution allowing

for the situation when the exposure level and DL are dependent. We first estimate

the conditional exposure distribution given the DL by adding kernel weights into the

RKM estimator and then obtain the average of the estimated conditional distribution

over all DL values in the sample to estimate the marginal exposure distribution.

The proposed method does not require any independence assumption between the

exposure level and DL and any distributional assumption about the exposure level.

9



In Section 2.3, we propose the estimator and show that it is consistent and converges

weakly to a Gaussian process. In Section 2.4, the results of several simulation studies

are reported to demonstrate the performance of the estimator comparing to the RKM

estimator and the parametric estimator assuming a lognormal exposure distribution.

In Section 2.5, a colon cancer study is provided for illustration. Finally, Section 2.6

contains discussions and some extensions.

2.3 Methods

Let T̃ and D be random variables for the exposure level and DL, respectively,

and F (·) be the cumulative distribution function (CDF) of the exposure level. Let

T = max(T̃ , D) and δ = I(T̃ ≥ D). Here δ indicates whether T is an exposure level

value or a DL value. For data subject to DL, only (T, δ,D) are observable for each

subject. Suppose the data consist of n replicates {(Ti, δi, Di): i = 1, · · · , n}. Note

that the method proposed below requires the DL to be known for each subject in the

data.

It is useful to adopt the counting process notation. Analogous to the observed

counting process and at-risk process for right censored survival data, we define two

counting processes, Ni(t) = I(Ti ≤ t, δi = 1) and Yi(t) = I(Ti ≤ t), for the data

subject to DLs. Then the RKM estimator can be rewritten as

F̂RKM(t) =
∏
s>t

{
1−

∑n
j=1 dNj(s)∑n
j=1 Yj(s)

}
, t ≥ τn, (2.1)

where τn = mini=1,...,n{Ti}. In addition, when the smallest observation is uncensored,

F̂RKM(t) = 0 for t ∈ (0, τn). When the smallest observation is censored, F̂RKM(t) is

undefined for t ∈ (0, τn). This estimator mimics the KM estimator for right-censored

survival data with the scale reversed. Similar to the independence assumption be-

tween the survival time and censoring time for the KM estimator, the RKM estimator

requires the independence assumption between the exposure level and DL and is not

10



a consistent estimator when this assumption is violated.

To develop a consistent estimator for the exposure distribution allowing for the

association between the exposure level and DL, we propose a two-step strategy based

on the statistical fact that F (t) = ED{F (t;D)}, where F (t; d) is the conditional CDF

of the exposure level given the DL, i.e. F (t; d) = Pr(T̃ ≤ t | D = d), and ED is the

expectation with respect to D. In the first step, we obtain a consistent estimator for

the conditional CDF of the exposure level, denoted by F̂ (t; d). In the second step, we

estimate F (t) by the average of estimated conditional CDF values over all DL values

in the sample, i.e. F̂ (t) = n−1
∑n

i=1 F̂ (t;Di). Specifically, we estimate the conditional

CDF by adding kernel weights into the RKM estimator in equation (2.1), i.e.

F̂ (t; d) =
∏
s>t

[
1−

∑n
j=1K{(Dj − d)/h}dNj(s)∑n
j=1K{(Dj − d)/h}Yj(s)

]
, t ≥ τn,

where K(·) is a kernel function, and h is a bandwidth such that nh → ∞ and

nh4 → 0 as n→∞. Similar to the RKM estimator, when the smallest observation is

uncensored, F̂ (t; d) = 0 and F̂ (t) = 0 for t ∈ (0, τn). When the smallest observation

is censored, F̂ (t; d) and F̂ (t) are undefined for t ∈ (0, τn). The above estimator for the

conditional CDF borrows the idea of the kernel conditional KM estimator which adds

kernel weights into the KM estimator to estimate the conditional survival function

for right-censored survival data [18]. In the following, the proposed estimator F̂ (t)

will be referred to as the KRKM estimator. Through the above two-step strategy,

in order for F̂ (t) to be a consistent estimator for the marginal CDF of the exposure

level, we only need the estimator for the conditional CDF given the DL to be a

consistent estimator. The latter only requires the conditional independence between

the exposure level and DL given the DL. Since it is true that the exposure level

and DL are independent given the DL, the KRKM estimator is consistent without

requiring any independence assumption between the exposure level and DL. We show

in Appendix A that
√
n{F̂ (t) − F (t)} converges weakly to a zero-mean Gaussian

11



process and is asymptotically equivalent to the process n−1/2
∑n

i=1 ξi(t), where

ξi(t) = F (t;Di)− F (t)− F (t;Di)

{
δiI(Ti ≥ t)

F (Ti;Di)
+ 1− 1

F (max(Ti, t);Di)

}
. (2.2)

The above theoretic result does not require the kernel function to have any special

shape. But numerically, because the kernel function appears in the denominator of

the proposed estimator, standard kernel functions, such as Gaussian kernel with fixed

standard deviation and Triangular kernel, can produce extremely small kernel weights

and thus cause unstable results. Therefore, to ensure computational stability, we

suggest using the following modified Silverman kernel [19], which is flatter and less

likely to produce extremely small kernel weights,

K(u) =
|1
2
e
−|u|√

2 sin( |u|√
2

+ π
4
)|∫∞

−∞ |
1
2
e
−|u|√

2 sin( |u|√
2

+ π
4
)|du

.

For the bandwidth, we suggest using σ̂n−1/3, where σ̂2 is the sample variance of

the DL. This choice satisfies the conditions that nh → ∞ and nh4 → 0 as n →

∞. Based on the formula in (2.2), the variance of the KRKM estimator can be

estimated by n−2
∑n

i=1 ξ̂
2
i (t), where ξ̂i(t) is obtained by replacing F (·;Di) and F (·)

by F̂ (·;Di) and F̂ (·). The log-log transformed 95% confidence intervals for F (t) can

then be calculated as that for the survival function in survival analysis. This will

be referred to as formula-based variance estimation method. Another approach to

estimate the variance is to use the bootstrap method. Similar log-log transformed 95%

confidence intervals can be obtained. This approach will be referred to as bootstrap-

based variance estimation method. The formula-based variance estimation method is

computationally faster than the bootstrap-based method, but may underestimate the

variance and thus yield poor coverage probabilities at the points below which there

are few observations, as shown in simulation studies of Section 2.4.

12



2.4 Simulation studies

To assess the performance of the proposed KRKM estimator under the situation

that the exposure level and DL are associated, we mimicked the cadmium (Cd) and

nickel (Ni) data in Appalachian cases from the colon cancer study in Section 4. We

generated the DL for each trace element based on their empirical distributions in

the data and the exposure level for each trace element from the lognormal regression

model: log(T̃ ) = µ + β log(D) + σε, where ε follows a standard normal distribution.

The parameters µ, β, σ are estimated based on the data for each trace element, which

are −3.05, 0.42, and 1.21 for Cd (setting 1) and 0.16, 0.34, and 1.62 for Ni (setting

2). The non-detect rate of the simulated data is 76% and 25% for the above two

settings, respectively. We compared the KRKM estimator, with both bootstrap-based

and formula-based variance estimation, to the RKM estimator and the parametric

estimator assuming a lognormal distribution for the exposure level. The latter two

estimators were obtained from NADA R package [20]. Table 2.1 summarizes the

results for the above three estimators of F (t) at t = 1st, 2nd and 3rd quartiles

based on 1000 replicates and 500 bootstraps for both settings. The proposed KRKM

estimator with the bootstrap-based variance estimation performs very well except

for t = 1st quartile in setting 1: the biases are small and the confidence intervals

have proper coverage probabilities. At t = 1st quartile in setting 1, the coverage

probability is lower than the nominal value due to the very high non-detect rate

of 76%. Compared to the bootstrap-based variance estimation, the formula-based

variance estimation for the KRKM estimator is computationally faster. But at the

points below which there are few observations, e.g. t = 1st and 2nd quartiles in

setting 1, the formula-based variance estimation tends to underestimate the variance

and thus yield poor coverage probabilities. In contrast to the KRKM estimator, the

RKM estimator has large biases and poor coverage probabilities, especially when the

sample size increases, due to its inability to account for the association between the

13



exposure level and DL. Likewise, the lognormal estimator also has large biases and

low coverage probabilities, resulting from not accounting for the association between

the exposure level and DL and possibly misspecified exposure distribution. To further

unravel the impact of not accounting for the association between the exposure level

and DL for the lognormal estimator, we considered additional simulations where

the DL for each trace element was generated from a lognormal distribution with

parameters estimated from the colon cancer data. Under this scenario, the marginal

distribution of the exposure level is guaranteed to follow a lognormal distribution so

that the parametric distribution is correctly specified for the lognormal estimator.

However, as shown in Table 2.2, the lognormal estimator still yields large biases and

poor coverage probabilities.

To compare the performance of the KRKM, RKM and lognormal estimators under

the situation that the exposure level and DL are independent, we adopted the above

set-up but set β = 0. The non-detect rate of the simulated data is 78% and 31% for

the two settings, respectively. Table 2.3 summarizes the results for the KRKM, RKM

and lognormal estimators of F (t) at t = 1st, 2nd and 3rd quartiles based on 1000

replicates and 500 bootstraps. For all the estimators, the biases are very small, the

variance estimators are accurate and the confidence intervals have proper coverage

probabilities. The KRKM estimator obtains comparable results as the RKM estima-

tor when the exposure level and DL are independent. The lognormal estimator yields

slightly smaller variances than the KRKM and RKM estimators, which is expected

since the exposure level and DL are independent and the exposure distribution is

lognormal under this set-up.

2.5 Example

Kentucky has the nation’s highest colon cancer incidence rate [5]. Appalachian

Kentucky, which has a unique geology that contains high-quality bituminous coal

14
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naturally rich in trace elements, has an even higher rate of colon cancer compared

to other regions of the state. A case-control study was conducted to explore the

association between environmental exposures to trace elements such as arsenic (As),

chromium (Cr) and nickel (Ni) and colon cancer and whether exposures to these

trace elements contribute to the elevated colon cancer rate in Appalachian Kentucky

[2, 6]. For this purpose, 274 colon cancer cases and 253 controls were selected from

23 contiguous rural counties in Kentucky (Appalachian region) and Jefferson County,

the largest, most urban county in Kentucky (non-Appalachian region). Among 247

subjects from the Appalachian region, 145 were cases and 102 were controls; among

280 from the non-Appalachian region, 129 were cases and 151 were controls. Toenail

samples from these subjects were collected, and the concentrations of 12 trace ele-

ments were measured as markers of long-term environmental exposures to these trace

elements. The DL varies from one subject to another for these trace element concen-

trations as a function of the toenail mass. For illustration purposes, we only focus

on the Appalachian region. The proportion below the DL is over 20% for most trace

elements and is as high as 79% and 83% for Cd in Appalachian cases and controls,

respectively (Table 2.4).

We first examine the independence assumption between the exposure level and

DL for each trace element using the following three methods. In the first method, we

fitted a lognormal accelerated failure time (AFT) model [21] with the left-censored

exposure level as the outcome and the log-transformed DL as a covariate. Under

this model, the independence assumption between the exposure level and DL was

examined by testing whether the coefficent is equal to 0 and the Pearson’s correlation

coefficient between the exposure level and DL (both log-transformed) was estimated

by β̂/

√
β̂2 + σ̂2/σ̂2

1, where β̂, σ̂ are the estimators of the coefficient and scale param-

eters in the lognormal AFT model and σ2
1 is the sample variance of log(D). In the

second method, the Pearson’s correlation coefficient between the exposure level and

18



DL (both log-transformed) and the corresponding p-value were calculated based on

the “clikcorr” R package, which assumes a bivariate normal distribution for the two

variables and uses a profile likelihood method [22]. In the third method, the nonpara-

metric Kendall’s tau correlation coefficient [23] and the corresponding p-value were

calculated based on the “cenken” function in the NADA R package [20]. The results

based on the above three methods are reported in Table 2.4. The results from the

first two parametric methods are very close for all trace elements except for Cd in

controls, where the non-detect rate is as high as 83%. For colon cancer cases, there

is a statistically significant association between the exposure level and DL for all 12

trace elements based on the two parametric methods. The nonparametric Kendall’s

tau method, which appears more conservative, identifies 6 trace elements with a sig-

nificant association between the exposure level and DL. For controls, there is only

one trace element showing a significant association between the exposure level and

DL based on the three methods.

We then use the trace element Ni to demonstrate our proposed KRKM estimator,

comparing to the RKM estimator and the parametric estimator. For cases, the Ni

level ranges from 0.02 to 624.4 and the DL ranges from 0.004 to 24.84; for controls,

the Ni level ranges from 0.04 to 39.37 and the DL ranges from 0.01 to 38.38. Table 2.4

shows that for Ni there is a signifcant association between the exposure level and DL

for cases but no signficant association for controls. We estimated the exposure dis-

tributions of Ni level for cases and controls, respectively. The lognormal distribution

was selected for the distributions of Ni for both cases and controls by the Akaike in-

formation criterion (AIC) [24] among a number of candidate distributions, including

normal, lognormal, Weibull and loglogistic. Figure 2.1 displays the CDF estimates for

colon cancer cases and controls based on the KRKM, RKM and lognormal estimators,

and Figure 2.2 displays the differences in CDF estimates between the KRKM esti-

mator and the latter two estimators along with 95% confidence limits. These figures
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Figure 2.1: CDF estimates of Ni exposure distribution for colon cancer cases and
controls in the Appalachian region based on the KRKM, RKM, and lognormal esti-
mators. Solid curves pertain to cases and dotted curves pertain to controls. The red
curves represent the KRKM estimator, the blue curves represent the RKM estimator,
and the green curves represent the lognormal estimator.
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show that for cancer casesthe RKM estimator significantly overestimates the CDF

for the Ni levels between 0.21 and 5.29 compared to the proposed KRKM estimator.

This may be because of the significant association between the exposure level and DL.

In contrast, there is no significant difference between the two estimators for controls,

which may be because of the insignificant association between the exposure level and

DL. As a result, the RKM estimator significantly underestimates the difference be-

tween the cases and controls compared to the KRKM estimator. Figures 2.1 and 2.2

also show remarkable difference between the lognormal and KRKM estimators for

cases, most likely due to the significant association between the exposure level and

DL. The difference between these two estimators is smaller for controls.
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Figure 2.2: Differences in CDF estimates between the RKM and KRKM estimators
(upper panel) and between the lognormal and KRKM estimators (lower panel). The
solid curves are for the point estimates of differences , and the dotted curves are the
corresponding 95% bootstrapped confidence limits (CLs). The black curves pertain
to the cases and the orange ones petain to the controls.
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2.6 Discussion

We have developed a consistent nonparametric estimator for the exposure distri-

bution without requiring any independence assumption between the exposure level

and DL. Our proposed estimator outperforms the RKM estimator and the paramet-

ric estimator when the exposure level and DL are associated because the latter two

estimators are not consistent in that situation. In the case of a common DL, our

estimator reduces to the RKM estimator; and in the case of varying DLs but the

exposure level and DL are independent, our estimator can obtain comparable results

as the RKM estimator. Thus, our estimator provides a unified nonparametric ap-

proach for estimating the exposure distribution regardless whether the exposure level

and DL are independent or not and whether the association between the exposure

level and DL are linear, curvilinear, or step function, etc. Therefore, the user does

not have to test whether the exposure level and DL are associated before using our

method, which is an advantage over the RKM method whose validity depends on the

test results.

We have utilized a two-step strategy and kernel smoothing technique along with

a special feature of data subject to DLs, i.e. the DL is observable for each subject,

to completely eliminate the independence assumption between the exposure level

and DL. In contrast, the consistent estimators developed based on similar two-step

strategies for the marginal survival function for right-censored survival data need

to find a set of covariates and require the independence assumption between the

censoring time and survival time conditional on those covariates [25, 26]. In our

approach, we take advantage of the data characteristic that the DL is observable

for each subject and utilize the DL as the conditioning covariate. As a statistical

fact, the independence assumption between the DL and exposure level given the DL

automatically holds. Therefore, our estimator is free of any independence assumption

between the exposure level and DL.
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In survival analysis, another approach dealing with dependent censoring for esti-

mating the survival function is the inverse probability of censoring weighting (IPCW)

KM estimator [27, 28]. This weighted version of the KM estimator assigns a weight,

inversely proportional to an estimate of the conditinal survival function of the cen-

soring time given a set of covariates, to each subject. Under the condition that

the censoring time and survival time are independent given that set of covariates,

the IPCW KM estimator is consistent. By borrowing this idea, one can construct

an IPCW RKM estimator for the exposure distribution by adding subject-specific

weights, proportional to each subject’s conditional CDF of the DL given a set of

covariates, in the RKM estimator. The consistency of this estimator requires that

the exposure level and DL are independent given that set of covariates. To obtain

an IPCW RKM estimator not requiring any independence assumption between the

exposure level and DL as the proposed KRKM estimator, we need to choose DL as

the covariate. However, the conditional CDF of the DL given DL can only take val-

ues 0 or 1 and thus cannot be used as an inverse weight. Therefore, the IPCW KM

estimator cannot be extended to the data subject to DLs without imposing certain

conditional independence assumptions between the exposure level and DL.

A key issue in our two-step strategy is how to estimate the conditional CDF

of the exposure level given the DL for the data subject to DL . To address this

issue, we have added kernel weights into the RKM estimator. The use of the kernel

technique assures our estimator is purely nonparametric and free of any distributional

assumption. Importantly, our estimator does not suffer the curse of dimensionality of

the kernel method because we only need to condition on a one-dimensional variable,

i.e. the DL, for estimating the conditional CDF. In addition, our estimator is robust to

the choice of bandwidth. Besides the bandwidth of σ̂n−1/3 presented in the paper, we

also conducted simulation studies using several other bandwidths including σ̂n−7/24,

σ̂n−2/5, and σ̂n−1/2, which yielded very similar results (data not shown). As an
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alternative to the kernel method, one can use a parametric AFT model with the

DL as a covariate to estimate the conditional CDF. Additional simulation studies

reveal that this alternative method performs well and has smaller variance than the

proposed estimator when the model is correctly specified but can lead biased results

when the model is misspecified (data not shown).

In this chapter, we highlight the critical need to account for the association be-

tween the exposure and DL and the consequences of ignoring it. This problem of

association between the exposure and DL may sometimes be alleviated by improving

the design of sample collection. For example, samples can be collected from multi-

ple toes or at multiple time points if time and resources allow. Such strategies can

increase the toenail mass, lowers the DL and thus possibly reduces the association.

However, the obtained toenail mass may still be low for some subjects due to slow

toenail growth or noncompliant toenail cutting. It is therefore difficult to eliminate

the association problem. In presence of varying DLs, appropriate statistical methods

should be used to deal with the possible association between the exposure level and

DL so that unbiased analysis results can be obtained.

There are at least two extensions of the proposed method. First, the proposed

KRKM estimator requires the data come from a simple random sample of the under-

lying population. One can extend the proposed estimator to survey data by incorpo-

rating sampling weights. Second, our estimator can serve as the building block for a

formal test to compare the exposure distributions between two groups by considering

the cumulative weighted difference in CDF estimates for the two groups, analogous

to the weighted KM statistics for right-censored data [16]. However, it will be more

complex than the latter because the proposed KRKM estimator is more complicated

than the KM estimator and does not have a martingale representation like the KM

estimator. Of further interest is to incorporate the adjustment of confounding factors

in the comparison between two groups. Current literature [29, 30] considered logistic
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regression models with exposure(s) and confounding factors as covariates and the

disease status as the outcome and used the maximum likelihood method to make in-

ferences. However, these methods require the independence assumption between the

exposure level and DL. One possible approach to account for the association between

the exposure level and DL is to use multiple imputation to impute exposure values

below DLs based on our kernel-smoothed conditional CDF given the DL. Since our

kernel-smoothed conditional CDF is undefined in (0, τn) when the smallest observa-

tion is censored, additional distributional assumptions are needed for that region in

order to perform the imputation under this situation.

APPENDIX A.

Weak convergence of
√
n{F̂ (t)− F (t)}

In this section, we prove the weak convergence of
√
n{F̂ (t) − F (t)} through

the modern empirical process theory. Let Pn and P denote the empirical mea-

sure and the distribution under the true model, respectively. For a measurable

function f and measure Q, the integral
∫
fdQ is abbreviated as Qf . Specifically,

Pnf(T, δ,D) = n−1
∑n

i=1 f(Ti, δi, Di), P{f(T, δ,D) is the expectation of f(T, δ,D),

and P{f(T, δ,D)|D} is the conditional expectation of f(T, δ,D) given D. We express

√
n{F̂ (t)− F (t)} as

√
n(Pn − P ){F (t;D)}+

√
nP{F̂ (t;D)− F (t;D)}+

√
n(Pn − P ){F̂ (t;D)− F (t;D)}.

(2.3)

To study the second term in (2.3), we define

R(t; d) =

∫ ∞
t

dF (u; d)

F (u; d)
.

By some algebras we obtain R(t; d) = − logF (t; d), which is analogous to the con-

ditional cumulative hazard function in survival analysis but with the conditional
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survival function replaced by the conditional CDF. We first study

R̂(t; d) =

∫ ∞
t

∑n
j=1K{(Dj − d)/h}dNj(s)∑n
j=1K{(Dj − d)/h}Yj(s)

.

Let N(t) = I(T ≤ t, δ = 1) and Y (t) = I(T ≤ t). We express R̂(t; d)−R(t; d) as

Pn

[
K{(D − d)/}δI(T ≥ t)

Pn[K{(D − d)/h}Y (u)] |u=T

]
− P

[
I(T̃ ≥ t)

P{Y (u) | D = d} |u=T̃

∣∣∣∣∣D = d

]

= (Pn − P )

[
K{(D − d)/h}δI(T ≥ t)

Pn(K{(D − d)/h}Y (u) |u=T )

]

− P
[
K{(D − d)/h}δI(T ≥ t)(Pn − P )(K{(D − d)/h}Y (u) |u=T )

P (K{(D − d)/h}Y (u) |u=T )Pn(K{(D − d)/h}Y (u) |u=T )

]

+

(
P

[
K{(D − d)/h}δI(T ≥ t)

P [K{(D − d)/h}Y (u) |u=T ]

]
− P

[
I(T̃ ≥ t)

P{Y (u) | D = d} |u=T̃

∣∣∣∣∣D = d

])

= (Pn − P )

[
K{(D − d)/h}δI(T ≥ t)

P (K{(D − d)/h}Y (u) |u=T )

]

− P
(
K{(D − d)/h}δI(T ≥ t)(Pn − P )[K{(D − d)/h}Y (u) |u=T ]

P 2[K{(D − d)/h}Y (u) |u=T ]

)

+

(
P

[
K{(D − d)/h}δI(T ≥ t)

P (K{(D − d)/h}Y (u) |u=T )

]
− P

[
I(T̃ ≥ t)

P{Y (u) | D = d} |u=T̃

∣∣∣∣∣D = d

])
+ op(n

−1/2).]

(2.4)

It’s straightforward to show that the first term on the right side of (2.4) is equal to

(Pn − P )

∫ ∞
t

[K{(D − d)/h}dN(u)]

P [K{(D − d)/h}Y (u)]
.

By Lemma 1 and some algebras, the second term on the right side of (2.4) is equal
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to

(Pn − P )

∫ ∞
t

K{(D − d)/h}Y (u)dR(u; d)

P [K{(D − d)/h}Y (u)]
+O(h2).

By Lemma 1 and the statistical fact that T̃ and D is independent given D, the third

term on the right side of (2.4) can be shown to be O(h2). Therefore, we obtain that

R̂(t; d)−R(t; d) is equal to

(Pn − P )

(
K{(D − d)/h}

∫ ∞
t

dN(u) + Y (u)dR(u; d)

P [K{(D − d)/h}Y (u)]

)
+O(h2) + op(n

−1/2).

By the condition that
√
nh2 = op(1), the Duhamel equation and Lemma 1, we obtain

that the second term on the right side of (2.3) is asymptotically equivalent to

√
n(Pn − P )

(
PD∗

[
−F (t; d)K{(D − d)/h}

∫ ∞
t

dN(u) + Y (u)dR(u; d)

P [K{(D − d)/h}Y (u)]

]∣∣∣∣
d=D∗

)

=
√
n(Pn − P )

[
−F (t;D)

∫ ∞
t

dN(u) + Y (u)dR(u;D)

P{Y (u) | D}

]
+ op(1),

where D∗ is a random variable with the same distribution as D, and PD∗ denotes

expectation only respective to D∗.

Similarly, we can verify that P{F̂ (t;D)−F (t;D)}2 −→p 0 uniformly for t ∈ [0,∞]

and that F̂ (t;D), F (t;D) belong to a P - Donsker class. It then follows that the third

term of (2.3) converges uniformly to zero in probability by Lemma 19.24 of[31].

Combining the aforementioned results, we conclude that
√
n(F̂ (t) − F (t)) is

asymptotically equivalent to the process

√
n(Pn − P )

{
F (t;D)− F (t;D)

∫ ∞
t

dN(u)− Y (u)d logF (u;D)

F (u;D)I(D ≤ u)

}

=n−1/2
n∑
i=1

[
F (t;Di)− F (t)− F (t;Di)

{
δiI(Ti ≥ t)

F (Ti;Di)
+ 1− 1

F (max(Ti, t);Di)

}]
.
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Lemma 1. Let fD(d) be the probability density function of D, then

P [h−1K{(D − d)/h}δI(T ≥ t)] = P{δI(T ≥ t) | D = d}fD(d) +O(h2)

P [h−1K{(D − d)/h}Y (u)] = P{Y (u) | D = d}fD(d) +O(h2)

Proof: We have

P [h−1K{(D − d)/h}δI(T ≥ t)] =

∫
h−1K{(x− d)/h}P [δI(T ≥ t) | D = x]fD(x)dx.

(2.5)

Let g(x) = P [δI(T ≥ t) | D = x]fD(x). Using a simple transformation s = (x− d)/h

and the Taylor expansion of g(d+ sh) at d, we obtain the right side of (2.5) is equal

to ∫
K(s)g(d)ds+

∫
sK(s)g

′
(d)ds+O(h2). (2.6)

Because
∫
K(s)ds = 1 and

∫
sK(s)ds = 0, we then obtain the first equation. Simi-

larly, we can obtain the second equation.
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Chapter 3 Comparison of Exposure Distributions Between Two Groups

3.1 Introduction

In environmental exposure studies, comparing two groups is a basic design: whether

the distributions of environmental chemicals, such as heavy metals and pesticides,

vary between treatment and control groups is of particular interest. However, it is

very common to observe a portion of exposure measurements to fall below experi-

mentally determined detection limits (DLs). A detection limit (DL) is “a threshold

below which measured values are not considered significantly different from a blank

signal, at a specified level of probability” [1]. Therefore, the exposure level of a

chemical for a sample is only reported when its value is not less than the DL and

otherwise is reported as a less than value or non-detect. Due to the this problem,

the standard two-sample t test fails and several methods have been developed in past

decades. When there is only one reported DL, Mann-Whitney test can be directly

applied to the data with DLs, i.e. all values below the DL are considered tied. It

will efficiently capture the information of the data, including the proportion of non-

detects[32]. Zhang et al. performed a large set of simulations comparing 14 methods

when exposure measurements below a common fixed DL[10]. In other cases, the lab-

oratory may report different DLs for different samples. Parametric methods, such as

the Tobit model [33], work for data with multiple DLs. The caution of these meth-

ods is that the validity of their results depends on choosing the correct distribution.

Nonparametric methods are widely used for DLs data since they do not require an

assumption that data follow a specific distribution. The log-rank test[34] and the

Peto-Peto modification of the Gehan-Wilcoxon test[14] are the most common two in

the right-censored survival data and can be applied to left-censored DLs data with

the scale reversed. The later one will be referred to as Peto-Peto test. In additional,
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the Peto-Peto test is the most appropriate test for left-censored log-normal data[1].

However, there are still several limitations for this approach. Firstly, the test statis-

tics based on these tests essentially estimate integrated weight difference in hazard

function. Left-censored DLs data lack meaningful environmental interpretation since

there is no concept corresponding to the hazard function. Secondly, though these

tests are sensitive to alternatives of ordered hazard function, they are not to alter-

natives of ordered CDFs[16], such as the absolute difference between CDFs. Thirdly,

the asymptotically efficiency of these tests depends on the assumption that the dis-

tributions of DLs in two groups are identical[14, 15]. If the distributions of DLs in

the two groups are heterogeneous, type I error rate is inflated. The heterogeneity

of DLs commonly occurs in environmental exposure studies. For example, in the

colon cancer study measuring heavy metal accumulation in toenails [2], DLs distri-

butions depended on cases and controls for 10 heavy metals(p ≤ 0.003). Therefore,

aforementioned tests are not appropriate in this case.

In previous work , we proposed a Kernel reverse Kaplan-Meier(KRKM) estimator

for the exposure distribution without imposing any independence assumption between

the exposure level and DL. In this chapter, we develop a class of test statistics to

compare exposure distributions between two groups by using the integrated weighted

difference in the KRKM estimator. In section 3.2, we propose the class of statis-

tics and study the condition of weight function to satisfy asymptotic normality. In

Section 3.3, the results of several simulation studies are reported to demonstrate the

performance of the test statistics. In Section 3.4, a colon cancer study is provided for

illustration. Finally, Section 3.5 contains discussions and some conclusions.
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3.2 Methods

Kernel reverse Kaplan-Meier (KRKM) estimator

Let T̃ and D be random variables for the exposure level and DL, respectively,

and F (·) be the cumulative distribution function (CDF) of the exposure level. Let

T = max(T̃ , D) and δ = I(T̃ ≥ D). Here δ indicates whether T is an exposure level

value or a DL value. For data subject to DL, only (T, δ,D) are observable for each

subject. Suppose the data consist of n replicates {(Ti, δi, Di): i = 1, · · · , n}. It is

useful to adopt the counting process notation. Analogous to the observed counting

process and at-risk process for right censored survival data, we define two counting

processes, Ni(t) = I(Ti ≤ t, δi = 1) and Yi(t) = I(Ti ≤ t), for the data subject to

DLs.

In the previous chapter, we utilized a two-step strategy and the kernel smoothing

technique to develop a nonparametric consistent estimator for the exposure distribu-

tion. In the first step, we obtained a consistent estimator for the conditional CDF of

the exposure level,denoted by F̂ (t; d),i.e.

F̂ (t; d) =
∏
s>t

[
1−

∑n
j=1K{(Dj − d)/h}dNj(s)∑n
j=1K{(Dj − d)/h}Yj(s)

]
,

where K(·) is a kernel function, and h is a bandwidth such that nh→∞ and nh2 → 0

as n → ∞. To ensure computational stability, a modified Silverman kernel [19] is

suggested, which is flatter and less likely to produce extremely small kernel weights,

K(u) =
|1
2
e
−|u|√

2 sin( |u|√
2

+ π
4
)|∫∞

−∞ |
1
2
e
−|u|√

2 sin( |u|√
2

+ π
4
)|du

.

For the bandwidth, σ̂n−1/3 is suggested, where σ̂2 is the sample variance of the DL.

In the second step, we estimated F (t) by the average of estimated conditional CDF

values over all DL values in the sample, i.e. F̂ (t) = n−1
∑n

i=1 F̂ (t;Di). F̂ (t) is the

kernel reverse Kaplan-Meier (KRKM).
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Weighted kernel reverse Kaplan-Meier statistics

To develop a test statistic comparing the CDFs of the exposure level between two

groups, we consider a cumulative weighted difference in the CDF estimates for the

two groups. Suppose n1 and n2 are the sample sizes in the two groups, n = n1 + n2

and F̂1(t) and F̂2(t) are the CDF estimates for the exposure level in the two groups

obtained by the KRKM estimators. We propose the following class of test statistics

U =

√
n1n2

n

∫ ∞
0

ŵ(t){F̂1(t)− F̂2(t)}dt,

where ŵ(·) is a random weight function that estimates a deterministic function

w(·). The statistics U will be referred to as a weighted kernel reverse Kaplan-Meier

(WKRKM) statistic. Because the variability of the difference F̂1(t) − F̂2(t) is large

at values close to 0 where the probability of below DL is large, it is critical to choose

an appropriate weight function to down-weigh the difference at these values in the

integrand so that the corresponding test statistic has finite asymptotic variance. We

will first study the conditions under which the weight function ensures the stability

of the proposed WKRKM statistic and then discuss the choice of the weight function

later.

The proposed class of statistics is based directly on the difference between two

CDFs, so it will be sensitive to the alternative hypothesis of ordered CDFs and the

absolute difference between two CDFs. In contrast, the log-rank test essentially esti-

mates integrated weighted differences in hazard functions and thus is not necessarily

sensitive to the alternative hypothesis of ordered CDFs [16]. In addition, by plugging

in the KRKM estimator proposed in Chapter 1, the proposed statistics can handle

the correlation between the exposure level and DL. The idea of using the integrated

weighted difference in distribution estimates to compare the distributions between

two groups was first proposed by [16, 35]. However, it was for right-censored sur-

vival data and only considered the simple KM estimator and thus cannot deal with
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dependent censoring.

Choice of the weight function

To study the conditions for the weight function such that the corresponding

WKRKM statistic is stable, we need to study the asymptotic variance of the WKRKM

statistic. To this end, we first study the asymptotic distribution of
√
n
∫∞
0
w(t)[F̂ (t)−

F (t)]dt. As shown in the Appendix,

√
n

∫ ∞
0

w(t)[F̂ (t)− F (t)]dt
d→ N(0, σ2)

where

σ2 =

∫ ∞
0

∫ ∞
0

w(t)w(s)

[∫ ∞
0

{F (t | u)− F (t)}{F (s | u)− F (s)}dG(u)

]
dtds

+

∫ ∞
0

w2(t)

[∫ ∞
0

{
F 2(t | s)[1− 1

F (max(t, s) | s)
]

}
dG(s)

]
dt,

and G(·) is the CDF of the DL.

To ensure that σ2 is finite for all choices of the unknown underlying exposure and

DL distributions, a sufficient and almost necessary condition to be satisfied by w(·)

is that w2(t)/G(t) should be bounded uniformly in t on [0,∞). We can replace the

deterministic weight function w(t) by a random weight function ŵ(t) if

sup
t∈[0,∞)

ŵ(t)− w(t)

G(t)1/2
p→ 0

|w(t)| ≤ ΓG(t)1/2+δ

|ŵ(t)| ≤ ΓĜ(t)1/2+δ
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for some Γ ≥ 0 and δ ≥ 0. Then

√
n

∫ ∞
0

ŵ(t){F̂ (t)− F (t)}dt d→ N(0, σ2).

Assume that the above conditions are satisfied for both groups. Then under the

null hypothesis H0 : F1(t) = F2(t), we have√
n1n2

n

∫ ∞
0

ŵ(t){[F̂1(t)− F̂2(t)]}dt
d→ N(0, σ2

WKRKM).

where

σ2
WKRKM =

p2

∫ ∞
0

∫ ∞
0

w(t)w(s)

[∫ ∞
0

{F1(t | u)− F1(t)}{F1(s | u)− F1(s)}dG1(u)

]
dtds

+

∫ ∞
0

w2(t)

[∫ ∞
0

{
F 2
1 (t | s)[1− 1

F1(max(t, s) | s)
]

}
dG1(s)

]
dt

+ p1

∫ ∞
0

∫ ∞
0

w(t)w(s)

[∫ ∞
0

{F2(t | u)− F2(t)}{F2(s | u)− F2(s)}dG2(u)

]
dtds

+

∫ ∞
0

w2(t)

[∫ ∞
0

{
F 2
2 (t | s)[1− 1

F2(max(t, s) | s)
]

}
dG2(s)

]
dt,

and p1 and p2 are the limits of n1/n and n2/n, respectively.

Integrated difference is sensitive to the range of exposure level. To ensure the

stability, we may exclude the outliers in the exposure level. Therefore, one choice of

the weight function can be

ŵ(t) =

{
Ĝ1(t)Ĝ2(t)

(n1/n)Ĝ1(t)+(n2/n)Ĝ2(t)
, t ≤ q

0, t > q
,

where Ĝ1(·) and Ĝ2(·) are the CDF estimates of the DL in these two groups, q =

Q3 + 3(Q3 − Q1), Q1 and Q3 are the lower and upper quartiles of exposure in two

groups combined respectively [36]. Any exposure level greater than q is considered
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to be an outlier. This weight function is akin to a geometric average of two CDF

estimates of the DL in the two groups, and satisfies the conditions of the weight

function. With this weight function the corresponding WKRKM statistic becomes

the difference in means when there are no non-detects. Therefore, the WKRKM

statistics can be regarded as a generalization of the two-sample z-test to data subject

to DLs.

3.3 Simulation studies

Size properties

To access the performance under null hypothesis, we analyze size properties in

this section. We mimicked exposure levels in colon cancer study through F̂ (·), where

F̂ (·) is the KRKM estimetors of two groups combined. We considered two config-

urations: the distributions of DLs in both groups are identical or not. When the

distributions of DLs are identical, DLs were generated from Ĝ(·), which is estimated

from two groups combined. When the distributions of DLs are different, DLs were

generated from Ĝ1(·) and Ĝ2(·), i.e. the empirical CDFs in cases and controls. We

first generated two standard uniform random variables X and Y , then exposure levels

of two groups are generated from F̂−1(X), DLs are generated from Ĝ−1(Y ), Ĝ1

−1
(Y )

and Ĝ2

−1
(Y ) dependent on different configurations. X and Y can be either depen-

dent or independent. Three correlations (0, 0.3, 0.5) are taken into account. We

considered the setting that mimics Nickel (Ni) from Appalachian sample under each

configuration. Table3.1 summarizes the size simulation results for the WKRKM test,

the Log-normal test, the Peto-Peto test and the log-rank test based on 1000 repli-

cates and 500 bootstraps with different correlations. Different correlations may cause

different non-detect rates. Correlation with 0, 0.3, 0.5 will cause non-detect rate 39,

36 and 34 per cent. As expected, all the tests are valid when the distributions of DLs

are identical. When the distributions of DLs are not identical, the empirical levels of
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Table 3.1: Size simulation results for the Log-rank test, the Peto-Peto test, the log-
normal test and the WKRKM test.

Identical DLs Cor Log-rank Peto-Peto Log-normal WKRKM
n1 = n2 = 50 0 0.042 0.042 0.036 0.052

0.3 0.058 0.072 0.082 0.051
0.5 0.046 0.064 0.072 0.058

n1 = n2 = 100 0 0.050 0.058 0.064 0.047
0.3 0.054 0.034 0.050 0.052
0.5 0.052 0.040 0.054 0.051

n1 = n2 = 150 0 0.048 0.048 0.054 0.050
0.3 0.050 0.050 0.056 0.042
0.5 0.050 0.056 0.048 0.047

Different DLs Cor Log-rank Peto-Peto Log-normal WKRKM
n1 = n2 = 50 0 0.044 0.042 0.046 0.047

0.3 0.058 0.076 0.072 0.048
0.5 0.090 0.094 0.080 0.055

n1 = n2 = 100 0 0.040 0.058 0.066 0.045
0.3 0.080 0.072 0.066 0.045
0.5 0.150 0.154 0.106 0.046

n1 = n2 = 150 0 0.048 0.050 0.066 0.050
0.3 0.110 0.116 0.074 0.043
0.5 0.190 0.188 0.114 0.047

Note: Cor denotes the correlation between the exposure level and DL.

the Peto-Peto test, the log-rank test and the log-normal test could be substantially

higher than the nominal levels in correlated setting. With the increase of sample

size, such elevation gets even worse. In contrast, the empirical levels of the WKRKM

test are very close to the nominal levels across both configurations regardless of the

distributions of DLs and the correlation between exposure level and DL. We can draw

the conclusion that all the aforementioned tests work well when the the distributions

of DLs are identical or exposure level and DL are uncorrelated. The WKRKM test

is the only valid test when DLs distributions are different and the exposure level and

DL are correlated.
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Power properties

In this part, we conducted simulation studies of power. We adopt the above set-

ups but generated exposure level from F̂1(·) and F̂2(·), i.e. the KRKM estimators of

cases and controls. In the simulated setting, the exposure difference of two groups

does not manifest itself until larger exposure level as shown in the left panel of figure

3.1. Non-detect rates are 39, 35 and 33 per cent for the correlation with 0, 0.3, 0.5.

Table 3.2 summarizes the power simulation results for the WKRKM test, the Log-

normal test, the Peto-Peto test and the log-rank test based on 2000 replicates and 500

bootstraps. When the DLs distributions are identical, it indicates that the superior

performance of the the WKRKM test over the Peto-Peto test, the log-rank test and

the log-normal test regardless the correlation between the exposure level and DL. The

WKRKM test, which places more weight at larger exposure level rather than smaller

exposure level, is quite well suited to this alternative. When DLs distributions are

different and the exposure level and DL are correlated, the power of the WKRKM

test achieve the same range compared to other tests even though these tests are most

likely to be inflated.

3.4 Example

Kentucky has the nation’s highest colon cancer incidence rates [5]. Appalachian

Kentucky, which has a unique geology that contains high-quality bituminous coal nat-

urally rich in trace elements, has even higher rates of colon cancer compared to other

regions of the state. A case-control study was conducted to explore the association

between environmental exposure to trace elements such as arsenic (As), chromium

(Cr) and nickel (Ni) and colon cancer and whether exposure to these trace elements

contributes to the elevated colon cancer rate in Appalachian Kentucky [2, 6]. For

this purpose, 274 colon cancer cases and 253 controls were selected from 23 contigu-

ous rural counties in the Appalachian region of Kentucky and Jefferson County, the
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Table 3.2: Power simulation results at significance level α = 0.05 for the Log-rank
test, the Peto-Peto test, the log-normal test and the WKRKM test.

Identical DLs Cor Log-rank Peto-Peto Log-normal WKRKM
n1 = n2 = 50 0 0.074 0.108 0.216 0.524

0.3 0.048 0.106 0.234 0.506
0.5 0.050 0.104 0.260 0.494

n1 = n2 = 100 0 0.058 0.142 0.360 0.584
0.3 0.052 0.152 0.430 0.608
0.5 0.058 0.166 0.486 0.626

n1 = n2 = 150 0 0.064 0.210 0.530 0.734
0.3 0.040 0.220 0.576 0.708
0.5 0.052 0.248 0.638 0.750

Different DLs Cor Log-rank Peto-Peto Log-normal WKRKM
n1 = n2 = 50 0 0.070 0.106 0.204 0.486

0.3 0.062 0.180 0.288 0.470
0.5 0.110 0.276 0.428 0.478

n1 = n2 = 100 0 0.056 0.144 0.360 0.564
0.3 0.088 0.308 0.528 0.596
0.5 0.164 0.496 0.680 0.630

n1 = n2 = 150 0 0.054 0.226 0.528 0.714
0.3 0.120 0.450 0.710 0.714
0.5 0.254 0.680 0.858 0.736

Note: Cor denotes the correlation between the exposure level and DL.

largest, most urban county in Kentucky as a comparison to the Appalachian region

(henceforth referred to as non-Appalachian region). Among 274 cancer cases, 145

were from Appalachian and 129 from non-Appalachian; Among 253 controls, 102

were from Appalachian and 151 from non-Appalachian. Toenail samples from these

subjects were collected, and 12 trace elements concentrations in toenail samples were

measured as markers of long-term environmental exposure to these trace elements.

We first examine the homogeneity of DL distributions in cases and controls by

region. The DLs in cases and controls for 10 metals from the Appalachian sample

are drawn from different distributions. Seven metals have significantly heterogeneous

results from the Non-appalachian sample.

We then use the metal Ni from Appalachian sample to demonstrate the WKRKM

test. Exposure levels are estimated by KRKM estimators as shown in Figure 3.1.
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Figure 3.1: KRKM Estimation of exposure distribution and 4 tests comparison in
colon cancer study from Appalachian sample. The blue curves are the estimations of
cases; the red curves are the estimations of controls; the dotted black curves is q in
ŵ(t) of WKRKM test statistics.
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There are 145 subjects in cases and 102 subjects in controls from Appalachian sample.

The non-detect rates for Ni are 0.23, 0.48 in cases and controls respectively. We

compare the WKRKM test to the Log-rank, the Peto-Peto test and the Log-normal

test. Estimated exposure distributions manifest in the same range for small exposure

level but differ for large exposure level. Dls distributions from cases and controls in

this setting are significant different(p < .001). From the above simulation results,

the Log-rank, the Peto-Peto test and the Log-normal test are tend to inflate type I

error when DLs distributions are different. Although all three tests tend to reject

the null hypothesis, only the WKRKM test is significant, which is consistent with

the demonstration in Figure 3.1. As a result, the WKRKM test is more powerful

to detect the difference at large exposure compared to Peto-Peto and Log-rank tests

since it places more weight at large exposure rather than small exposure.
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3.5 Discussion

To compare the exposure distributions between two groups, we have developed

a class of test statistics(WKRKM) by using the integrated weight difference in the

KRKM estimator. The WKRKM test statistics is based on two exposure level CDFs

and has several advantages. Firstly, it will be sensitive to the alternative hypothesis

of ordered CDFs and the absolute difference between two CDFs. Secondly, compar-

ing to the tests based on hazard function, it has a more meaningful epidemiology

interpretation. Thirdly, by relying on the KRKM estimator, it can deal with the

correlation between the exposure level and DL. Under null hypothesis, when the dis-

tributions of DLs differ in two groups, the empirical levels of the WKRKM test are

close to nominal levels, while the rank-based tests inflate the type I errors. In the

cases that rank-based tests are valid, the WKRKM test are powerful to detect the

difference occurs at large exposure level.

There are several extensions of the WKRKM statistics. First, the WKRKM test

statistics is based on the KRKM estimator, which requires the data come from a

simple random sample of the underlying population. Once we adjust the KRKM

estimator by incorporating sampling weight, we can form the adjust the WKRKM

statistics in the same way. Then we can extend the WKRKM test statistics to

complex survey data. Second, one can extend the WKRKM test statistics to paired

data. In this case, variance estimator is more complicated than the unpaired case

but the bootstrap method can be used.

APPENDIX

In Chapter 1, we utilized a two-step strategy and kernel techniques to develop a

nonparametric consistent estimator for the exposure distribution without imposing
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any independence assumption between the exposure level and DL, i.e.

F̂ (t; d) =
∏
s>t

[
1−

∑n
j=1K{(Dj − d)/h}dNj(s)∑n
j=1K{(Dj − d)/h}Yj(s)

]

F̂ (t) = n−1
n∑
i=1

F̂ (t;Di).

And we showed that the process
√
n(F̂ (t) − F (t)) converges weakly to a zero-mean

Gaussian process and is asymptotically equivalent to the process

√
n(Pn − P )

{
F (t;D)− F (t;D)

∫ ∞
t

dN(u)− Y (u)d lnF (u;D)

F (u;D)I(D ≤ u)

}
.

Applying functional delta method, we can easily show that
√
n
∫∞
0
w(t)[F̂ (t) −

F (t)]dt =
√
n(Pn − P )

∫∞
0
w(t)ξ(t)dt, where

ξ(t) =

{
F (t;D)− F (t;D)

∫ ∞
t

dN(u)− Y (u)d lnF (u;D)

F (u;D)I(D ≤ u)

}
.

The asymptotic variance σ2 would be the variance of
∫∞
0
w(t)ξ(t)dt. Let g(T ) =∫∞

0
w(t)η(t)dt, where η(t) = ξ(t) − F (t). Since E(η(t)) = 0 for all the t, then

E(g(T )) = 0, σ2 = E(g(T )2) = ED[E(g(T )2 | D)]. To study the variance, we fist

study ∫ ∞
t

dN(u)− Y (u)d lnF (u; d)

F (u;D)I(D ≤ u)
.

By lemma 1, we can show that

[N(t)−
∫∞
t
Y (u)d lnF (u; d) | D] = [N(t) +

∫∞
t
Y (u)dR(u; d) | D] is a martingale.

Also dR(u;D) = − lnF (u; d).Then

E

[∫ ∞
t

dN(u)− Y (u)d lnF (u; d)

F (u;D)I(D ≤ u)
| D
]

= 0

V ar

[∫ ∞
t

dN(u)− Y (u)d lnF (u; d)

F (u;D)I(D ≤ u)
| D
]

=

∫ ∞
t

dR(u;D)

F (u;D)I(D ≤ u)
.
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Apply the lemma of[37] and the properties of martingale,

E(g(T )2 | D) ={
∫ ∞
0

w(t)(F (t | D)− F (t))dt}2

+

∫ ∞
0

w2(t)F 2(t | D)(

∫ ∞
t

dR(u;D)

F (u;D)I(D ≤ u)
)dt.

Then

ED(

[∫ ∞
0

w(t){F (t | D)− F (t)}dt]
]2

)

=

∫ ∞
0

[∫ ∞
0

∫ ∞
0

w(t)w(s){F (t | u)− F (t)}{F (s | u)− F (s)}dtds
]
dG(u)

=

∫ ∞
0

∫ ∞
0

w(t)w(s)

[∫ ∞
0

{F (t | u)− F (t)}{F (s | u)− F (s)}dG(u)

]
dtds.

clearly, this term is bounded.

ED

{∫ ∞
0

w2(t)F 2(t | D)(

∫ ∞
t

dR(u;D)

F (u;D)I(D ≤ u)
)dt

}

= ED

{
[

∫ ∞
0

w2(t)F 2(t | D)(

∫ ∞
t

−dF (u;D)

F 2(u;D)I(D ≤ u)
)dt

}

≤ ED

{∫ ∞
0

w2(t)F 2(t | D)

∫∞
t
dF (u;D)

−F 2(t;D)I(D ≤ t)
dt

}

= ED

{∫ ∞
0

w2(t)
(1− F (t;D))

−I(D ≤ t)
dt

}

=

∫ ∞
0

w2(t)

{∫ ∞
0

(1− F (t; s))

−I(s ≤ t)
dG(s)

}
dt

≤
∫ ∞
0

w2(t)

G(t)
dt (Jensen′s inequality)

Thus this term would be bounded if |w(t)| ≤ ΓG(t)1/2+δ for some Γ ≥ 0 and δ ≥ 0.
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Combining the aforementioned results σ2 is finite when this condition holds,where

σ2 =

∫ ∞
0

∫ ∞
0

w(t)w(s)

[∫ ∞
0

{F (t | u)− F (t)}{F (s | u)− F (s)}dG(u)

]
dtds

+

∫ ∞
0

w2(t)

[∫ ∞
0

{
F 2(t | s)[1− 1

F (max(t, s) | s)
]

}
dG(s)

]
dt,

Lemma 1. [M(t) | D] = [N(t) + A(t) | D] is a martingale, where A(t) =∫∞
t
Y (u)dR(u; d)

Proof:

r(t; d)dt ≈ P (t−4t ≤ T ≤ t | Y ≤ t)

= P (t−4t ≤ T ≤ t | Y ≤ t,D ≤ t,D)

E(dN(t) | T ≤ t,D) = r(t; d)dtI(T ≤ t) = −dA(t) | D

E(dA(t) | T ≤ t,D) = E[−r(t; d)dtI(T ≤ t) | T ≤ t,D]

= −r(t; d)dtI(T ≤ t) | D = dA(t) | D

E[dM(t) | T ≤ t,D] = E[d(N(t) + A(t) | T ≤ t,D] = 0
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Chapter 4 Estimation and Comparison of Exposure Distributions

Adjusting for Complex Sample Designs

4.1 Introduction

In environmental exposure studies, researchers are interested in investigating the

relationship between cancer and exposure to environmental chemicals such as trace

elements, pesticides, and dioxins. To achieve this goal, there are two fundamental

questions: (i) estimate exposure distributions under various situations, (ii) compare

exposure distributions between two groups. It is very common to observe a portion

of exposure measurements to fall below experimentally determined detection limits

(DLs). A detection limit (DL) is “a threshold below which measured values are not

considered significantly different from a blank signal, at a specified level of proba-

bility” [1]. Therefore, the exposure level of a chemical for a sample is only reported

when its value is not less than the DL and otherwise is reported as a less than value

or non-detect.

Both parametric and nonparametric methods have been developed to estimate

and compare exposure distributions. Parametric methods, such as the Tobit model

[33], assuming a normal distribution for the residual, and the accelerated failure time

(AFT) models [21] for left-censored data, including the log-normal regression model

as a special case, can be used since the data subject to DLs can also be treated as left-

censored data [1]. But these approaches require assumptions about the underlying

distribution of the exposure distribution. Nonparametric methods are widely used for

DLs data since they do not require an assumption that data follow a specific distribu-

tion. The Reverse Kaplan-Meier (RKM) estimator, which mimics the Kaplan-Meier

(KM) estimator for right-censored survival data with the scale reversed has been

used to estimate exposure distribution. But it requires the independence assump-
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tion between the exposure level and DL. Log-rank test[34] and Peto-Peto test[14]

are the most common two in the right-censored survival data and can be applied to

left-censored DLs data with the scale reversed. However, the test statistics based on

these tests essentially estimate integrated weight difference in hazard function and

lack meaningful environmental interpretation since there is no concept that corre-

sponds to hazard function. And the asymptotically efficiency of these tests depends

on the assumption that the distributions of DLs in two groups are identical[14, 15].

To address these limitations, we proposed a kernel reverse Kaplan-Meier (KRKM)

estimator for the exposure distribution without imposing any independence assump-

tion between the exposure level and DL and a class of nonparmetric test (WKRKM)

statistics by considering the integrated weighted difference in KRKM estimators of

the two groups. Both KRKM estimator and WKEKM test statistics assume data

come from simple random sampling.

Statisticians usually use sampling weighted estimators and the unweighted estima-

tors tend to introduce basis. When the sample design is simple, we can use linearizion

as a method to estimate the variance of an estimator that is a function of a set of

simpler estimator, e.g. weighted sums. However, the variances are usually underesti-

mated for surveys with complex sample designs when the sample design is not taken

into account[38]. For example, for clustering in multistage designs, extra variability

occurs because of the correlation of observations within each sampled cluster. As a

result, ignoring the sample design can underestimate the variance of an estimator.

Therefore, the aforementioned methods of estimations of exposure distributions and

exposure difference, as well as their variances that assume simple random sampling

are not suitable for data from complex sample designs. Rader and Andrew extended

the log-rank test and the Peto-Peto test to complex survey data[39]. Lumley et al.

implemented and updated this approach in their R package ’survey’ [40].

In this chapter, we develop appropriate nonparametric methods for estimating the
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exposure distributions and exposure difference, as well as their variances under strat-

ified multistage cluster samples. In section 4.2, we extended the KRKM estimator

and the WKRKM test statistics to complex survey data by incorporating sampling

weights. In Section 4.3, the results of several simulation studies are reported to

demonstrate the performance of the proposed methods. Jackknife method is utilized

for variance estimation of our proposed estimators that accounts for complex sam-

ple design and sampling weight. In Section 4.4, a National Health and Nutrition

Examination Survey (NHANES) data is provided for illustration.

4.2 Methods

Kernel reverse Kaplan-Meier (KRKM) estimator

Let T̃ and D be random variables for the exposure level and DL, respectively,

and F (·) be the cumulative distribution function (CDF) of the exposure level. Let

T = max(T̃ , D) and δ = I(T̃ ≥ D). Here δ indicates whether T is an exposure level

value or a DL value. For data subject to DL, only (T, δ,D) are observable for each

subject. Suppose the data consist of n replicates {(Ti, δi, Di): i = 1, · · · , n}. It is

useful to adopt the counting process notation. Analogous to the observed counting

process and at-risk process for right censored survival data, we define two counting

processes, Ni(t) = I(Ti ≤ t, δi = 1) and Yi(t) = I(Ti ≤ t), for the data subject to

DLs.

In previous work, we utilized a two-step strategy and the kernel smoothing tech-

nique to develop a nonparametric consistent estimator for the exposure distribution.

In the first step, we obtained a consistent estimator for the conditional CDF of the

exposure level, denoted by F̂ (t; d), i.e.

F̂ (t; d) =
∏
s>t

[
1−

∑n
j=1K{(Dj − d)/h}dNj(s)∑n
j=1K{(Dj − d)/h}Yj(s)

]
,
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where K(·) is a kernel function, and h is a bandwidth such that nh→∞ and nh2 → 0

as n → ∞. To ensure computational stability, following modified Silverman kernel

[19] is suggested, which is flatter and less likely to produce extremely small kernel

weights,

K(u) =
|1
2
e
−|u|√

2 sin( |u|√
2

+ π
4
)|∫∞

−∞ |
1
2
e
−|u|√

2 sin( |u|√
2

+ π
4
)|du

.

For the bandwidth, σ̂n−1/3 is suggested, where σ̂2 is the sample variance of the DL.In

the second step, we estimated F (t) by the average of estimated conditional CDF

values over all DL values in the sample, i.e. F̂ (t) = n−1
∑n

i=1 F̂ (t;Di). F̂ (t) is the

KRKM estimator. Though it is a consistent nonparametric estimator for the exposure

distribution without requiring any independence assumption between the exposure

level and DL, it requires the data come from a simple random sampling(SRS) of the

underlying population. To apply the KRKM estimator to complex sample survey

data we need to take into account differential sampling rates and other aspects of the

sample designs.

Estimation of exposure level for stratified multistage cluster sampling

For stratified simple random sampling(SSRS), each unit in the population is cate-

gorized into disjoint and exhaustive strata prior to sampling. Simple random sampling

is then done independently in each of the strata, with the sample size for each stratum

set by the sampler. SSRS not only increases the statistical efficiency of estimators

but also permits the calculation of accurate estimates for strata. Stratified multistage

cluster sampling, a multistage version of SSRS is a commonly used complex design for

national household surveys. There are two major reasons for using multistage clus-

ter sampling. First, it minimizes the travel costs of interviews in household survey.

Second, a sampling frame may not exist for individuals in the target population, but

may be constructed sequentially as needed[38]. However, the clustering in multistage
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designs tends to increase the variability of estimators because of the correlation of

observation within each cluster. Without loss of generality, we will consider strati-

fied two-stage cluster sampling (STSCS) design. SRS is conducted independently for

each stratum. The sampling rates within stratum can vary depending on the sur-

vey requirements. For example, at the first stage of clusters, called primary sample

units(PSUs), a sample PSUs with probability proportional-to-size (population size

of the cluster) sampling (PPS) of the PSUs is taken from within each stratum. At

second stage, units are selected by SRS from the sample PSUs. This type of sample

design will result in a self-weighted sample, i.e. where all the sampled second stage

units have the same probability of inclusion in the sample.

In particular, we assume the finite population has L strata with Kh PSUs in the

hth stratum. From the hth stratum, kh PSUs are sampled with inclusion probabilities

πh1, πh2, · · · , πhkh . When the sampling is complete, there are nhi units that have

been sampled from the ith sampled PSU of stratum h, with sample weights ωhij,

j = 1, 2, · · · , nhi. The sample weights are the inverse of joint inclusion probabilities,

i.e. ωhij = [πhi(nhi/Nhi)]
−1, where Nhi is the population size of the ith sampled PSU

in the hth stratum. Then we can modify KRKM estimator by incorporating sample

weights, i.e.

F̂w(t; d) =
∏
s>t

[
1−

∑L
h=1

∑kh
i=1

∑nhi

j=1 ωhijK{(Dj − d)/h}dNhij(s)∑L
h=1

∑kh
i=1

∑nhi

j=1 ωhijK{(Dj − d)/h}Yhij(s)

]
,

Then F̂w(t) = n−1
∑n

i=1 F̂w(t;Di). F̂w(t) will be referred to as a sampling weight-

adjusted KRKM (KRKMA) estimator. The KRKMA estimator can be easily ex-

tended for PPS sampling of the PSUs by replacing the inverse of the single inclusion

probabilities and joint inclusion probabilities according to the PPS sampling scheme

that is used. In the cases of a common DL, the KRKMA estimator reduces to the

RKM estimator.
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Adjust weighted kernel reverse Kaplan-Meier statistics

In the previous chapter, we developed a class of test statistics, the WKRKM

statistics, by using the integrated weighted difference in KRKMA estimator for the two

groups. Following the same strategy, we propose the adjusted WKRKM (WKRKMA)

statistics through the KRKMA estimator, i.e.

U =

√
n1n2

n

∫ ∞
0

Ŵ (t){F̂w1(t)− F̂w2(t)}dt,

where n1 and n2 are the sample sizes in the two groups, n = n1 + n2, F̂w1(t) and

F̂w2(t) are the CDF estimates for the exposure level in the two groups obtained

by the KRKMA estimators and Ŵ (·) is a random weight function that estimates a

deterministic function W (·). In practice, the weight function can be

Ŵ (t) =
Ĝ1(t)Ĝ2(t)

(n1/n)Ĝ1(t) + (n2/n)Ĝ2(t)
,

where Ĝ1(·) and Ĝ2(·) are the CDF estimates of the DL in the two groups. Anal-

ogous to the WKRKM statistics, first, the WKRKMA statistic is epidemiologically

meaningful and sensitive to the alternative hypothesis of ordered CDFs and the ab-

solute difference between two CDFs. Second, it can handle the correlation between

the exposure level and DL. In additional, the WKRKM statistics can be used to test

two groups exposure difference when data come from complex survey.

Variance estimation

We use jackknife leaving-one-out method for variance estimation of the KRKMA

estimator and the WKRKMA test statistics. A jackknife variance estimator for data

from the STSCS design is given by

v̂arJK(θ̂) =
L∑
h=1

kh − 1

kh

kh∑
i=1

(θ̂(hi) − θ̂)2,
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Table 4.1: Simulation results of KRKMA and jackknife standard error estimator when
exposure level and DL are dependent. Bias, the sampling bias; SSE, the sampling
standard error ; JK, the sampling mean of jackknife standard error estimator; CP,
the coverage probability of the 95% confidence interval. Each entry is based on 1000
replicates and 500 bootstraps.

True Bias SSE SEE CP Bias SSE SEE CP
ρ = 0 ρ = 0.2

n=160 0.25 .003 .062 .068 .951 .006 .065 .070 .924
0.50 .005 .062 .068 .933 .007 .064 .069 .911
0.75 .003 .049 .055 .935 .006 .051 .059 .917

n=400 0.25 .003 .040 .043 .922 .005 .046 .048 .934
0.50 .004 .038 .044 .936 .006 .047 .051 .934
0.75 .002 .031 .036 .949 .005 .036 .041 .947

n=800 0.25 .002 .028 .030 .957 .005 .035 .038 .947
0.50 .003 .028 .030 .933 .006 .038 .042 .953
0.75 .002 .022 .025 .950 .005 .029 .033 .959

where Kh PSUs are sampled from hth stratum and θ̂(hi) are the estimators of the

same functional form as θ̂, but computed from the reduced sample by omitting the

ith sampled PSU from stratum h[41].

4.3 Simulation Studies

KRKMA estimator and jacknife variance estimator under STSCS designs

To access the performance of the KRKMA estimator and jacknife variance estima-

tor, we mimicked the trace metal cadmium (Cd) from NHANES 2005-2010. Without

loss of generality, STSCS designs are used in all the situations. A finite population size

of T = 200, 000 is generated with H = 8 strata. The population size of each stratum is

set to be the same size (Th = 25, 000). Each stratum is composed of 10 unequal-sized

PSUs. Intra-cluster correlations (ρ) for the PSUs vary from ρ = 0 or 0.2. In each

PSU. we generated DLs from log-normal distribution ln N(µ, σ) and exposure levels

from the log-normal regression model: ln(T̃ ) = µ′ + β log(D) + ρσ′s +
√

1− ρ2σ′ε,

where s is a fixed value sample from standard normal distribution across with PSU

and ε follows a standard normal distribution. The parameters µ, σ, µ′, β, σ′ are -1.61,
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2.22, -0.79, 0.21, and 1.95. The non-detect rate of the simulated data is 44%. The

total sample size draw from the population are, N = 160, 400, or 800 . At the first

stage, 2 out of 10 clusters are selected without replacement from each stratum by

using PPS, where the size measure is the PSU population size and a specified number

of subjects are chosen from the selected PSUs within each stratum by SRS. Table 4.1

summarizes the results of the KRKMA and the jackknife standard error estimator

when exposure level and DL are dependent. Since the KRKMA is a weighted ver-

sion of the KRKM, the biases are small and the coverage probabilities are accurate

regardless of intra-cluster correlation. The jackknife standard error estimators are

slightly larger than the sampling standard errors.

To compare the performance of the KRKMA estimator and the jacknife variance

estimator along with the RKM estimator under situation that the the exposure level

and DL are independent, we adopted the above set-ups but set β = 0. The non-detect

rate of the simulated data is 48%. In additional, common DLs (0.061) are taken into

account with non-detect rate 40%. Table 4.2 shows the comparison of the KRKMA (

with the jackknife standard error estimator) and the RKM when the exposure level

and DL are independent. When there is no intra-cluster correlation, for both KRKMA

and RKM estimators, the biases are very small, the variance estimators are accurate

and the confidence intervals have proper coverage probabilities. When intra-cluster

correlation exists, RKM estimators have relatively large biases. Especially when the

DLs are common, the biases of RKM estimators result in inappropriate coverage

probabilities. In all the settings, The jackknife standard error estimators of KRKMA

are slightly larger than the sampling standard errors. With increasing sample size,

the difference decreases. As expected, the variance estimators of the KRKMA are

slightly and consistently larger than variance estimators of the RKM because sample

weighting usually increases the variance.
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Table 4.2: Comparison of simulation results of KRKMA ( with jackknife standard
error estimator) and RKM when exposure level and DL are independent. Bias, the
sampling bias; SSE, the sampling standard error of both KRKMA and RKM; JK, the
sampling mean of jackknife standard error estimator; SEE, the sampling mean of the
standard error estimator of RKM; CP, the coverage probability of the 95% confidence
interval. Each entry is based on 1000 replicates and 500 bootstraps.

KRKMA RKM
True Bias SSE JK CP Bias SSE SEE CP

Various DLs
ρ = 0
n=160 0.25 .000 .055 .062 .935 .003 .038 .039 .936

0.50 .000 .060 .066 .953 .001 .041 .042 .941
0.75 .001 .049 .055 .945 .002 .035 .035 .934

n=400 0.25 .000 .035 .039 .950 .001 .024 .024 .943
0.50 .000 .037 .041 .948 .001 .025 .026 .942
0.75 .000 .030 .034 .946 .002 .022 .022 .935

n=800 0.25 .000 .025 .028 .952 .002 .017 .017 .931
0.50 .000 .027 .030 .954 .001 .018 .019 .941
0.75 .000 .021 .023 .952 .002 .015 .016 .929

ρ = 0.2
n=160 0.25 .005 .057 .066 .952 .005 .040 .042 .942

0.50 .005 .066 .075 .938 .006 .043 .047 .955
0.75 .005 .055 .059 .958 .003 .036 .040 .948

n=400 0.25 .001 .040 .045 .945 .005 .028 .030 .949
0.50 .001 .045 .050 .955 .007 .031 .034 .948
0.75 .001 .037 .041 .953 .004 .027 .029 .941

n=800 0.25 .000 .033 .035 .946 .005 .022 .025 .959
0.50 .000 .037 .040 .946 .005 .026 .030 .949
0.75 .000 .030 .033 .952 .003 .022 .025 .947

Common DLs
ρ = 0
n=160 0.25 .001 .048 .054 .952 .001 .033 .035 .949

0.50 .000 .054 .060 .956 .003 .038 .040 .945
0.75 .002 .049 .054 .952 .002 .035 .035 .934

n=400 0.25 .002 .031 .035 .942 .002 .022 .022 .931
0.50 .001 .036 .040 .957 .002 .024 .026 .946
0.75 .000 .031 .034 .951 .001 .021 .022 .949

n=800 0.25 .002 .021 .024 .958 .002 .015 .015 .945
0.50 .002 .024 .027 .955 .003 .017 .018 .930
0.75 .001 .022 .023 .956 .002 .015 .016 .948

ρ = 0.2
n=160 0.25 .009 .052 .059 .935 .017 .036 .037 .904

0.50 .011 .060 .066 .946 .020 .043 .044 .912
0.75 .007 .051 .059 .961 .015 .036 .038 .946

n=400 0.25 .010 .036 .041 .929 .018 .025 .025 .865
0.50 .012 .043 .047 .947 .022 .030 .031 .890
0.75 .007 .037 .041 .946 .016 .026 .027 .917

n=800 0.25 .011 .029 .032 .926 .017 .019 .021 .853
0.50 .012 .035 .037 .944 .021 .023 .026 .875
0.75 .008 .028 .033 .948 .015 .020 .022 .903
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Size properties of WKRKMA test under STSCS designs

To access the performance of the WKRKMA test under null hypothesis, we analyze

size properties in this section. We adopt the previous STSCS designs setting. In

each PSU, we mimicked the trace metal cobalt(Co) of cancer-free responders from

NHANES 2005-2010. Exposure levels were generated from log-normal distribution

ln N(−0.95, 0.79) and truncated under the 3σ rule. Common Dls(0.040) with non-

detect rate 6% are used. To consider the situation that Dls are varying, we generated

the Dls from log-normal distribution ln N(−1.18, 0.79). Then non-detect rate is 36%.

In both situations, we consider two settings. Setting 1: in the sample drawn from

the finite population, the sizes of two groups are equal. Setting 2: one group always

has size of 36, whatever the total sample size drawn from the population. The latter

setting is aimed to mimic the rare cancer cases in population. Table 4.3 summarizes

the size simulation results for the Peto-Peto test, the log-rank test, the weighted

Peto-Peto test, the weighted log-rank test and the WKRKMA test. The WKRKMA

test, the Peto-Peto test and the log-rank test are valid and the empirical levels are

close to nominal levels across a broad range of situations. The Peto-Peto test and the

log-rank test are more conservative compared to the WKRKMA test. The weighted

Peto-Peto test and the weighted Log-rank test are not valid when the group sizes are

unbalanced. When the tests are valid, intra-cluster correlation does not affect the

performance of these tests.

Power properties of WKRKMA test under STSCS designs

In this part, we conducted simulation studies of power. We adopt the pre-

vious STSCS designs setting. In each PSU, exposure levels for two groups were

mimicked from trace metal cobalt(Co) of responders in controls and colon cancer

cases from NHANES 2005-2010 and were generated from log-normal distribution

ln N(−0.95, 0.79) and ln N(−1.13, 0.79). DLs are common (0.31) for two groups. The
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non-detect rate of the simulated data are 38% and 43% in two groups. Two settings

of sample sizes allocation for two groups are considered. The ratio of cases to controls

are 1:1 and 1:4 in the two settings, corresponding to setting 1 and setting 2. Table 4.4

summarizes the power simulation results for the Peto-Peto test, the log-rank test, the

weighted Peto-Peto test, the weighted Log-rank test and the WKRKMA test. Five

tests are more powerful when two group sizes are balanced. The WKRKMAtest, the

Peto-Peto test and the log-rank test attain high efficiency over the weighted Peto-

Peto test, the weighted Log-rank test across a broad range of situations. When two

group sizes are balanced, the WKRKMA test is more powerful for small sample size

and less power with the increasing of sample size compared to the Peto-Peto test and

log-rank test. When two group sizes are unbalanced, it indicates that the superior

performance of the WKRKMA test over the Peto-Peto test and the log-rank test.

Intra-cluster correlation does not affect the performance.

4.4 Example

The NHANES is a program of studies designed to assess the health and nutritional

status of adults and children in the United States. Starting in 1999, NHANES be-

came a continuous, ongoing annual survey of the noninstitutionalized civilian resident

population of the United States. About 12,000 persons per 2-year cycle were asked to

participate in NHANES. Response rates varied by year, but an average of 10,500 per-

sons out of the initial 12,000 agreed to complete a household interview. A four-stage

sampling design was used: (i) selection of PSUs, which are counties or small groups of

contiguous counties; (ii) selection of segments within PSUs that constitute a block or

group of blocks containing a cluster of households; (iii) selection of specific households

within segments; (iiii) selection of individuals within a household. A sample weight

was assigned to each sample person. Weighting took into account several features

of the survey: the differential probabilities of selection for the individual domains;
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Table 4.4: Power simulation results at significance level α = 0.05 under STSCS
designs

n WKRKMA Peto Logrank PetoW LogrankW

Setting 1
ρ = 0
160 .322 .286 .241 .183 .161
400 .518 .599 .550 .371 .315
800 .760 .885 .842 .627 .567

ρ = 0.2
160 .335 .331 .299 .209 .203
400 .518 .645 .583 .362 .348
800 .714 .879 .840 .582 .520

Setting 2
ρ = 0
160 .315 .153 .130 .162 .123
400 .502 .410 .361 .301 .259
800 .688 .677 .663 .503 .448

ρ = 0.2
160 .261 .174 .171 .159 .133
400 .452 .434 .404 .272 .247
800 .633 .612 .622 .447 .405

Note: N: the total sample size of two groups combined
WKRKMA, adjust WKRKM test; PetoW , weighted Peto-Peto test, LogrankW ,
weighted Log-rank test.

nonresponse to survey instruments; and differences between the final sample and the

total population[7]. Masked Variance Strata and Masked Variance Units or MVUs

are used to protect the confidentiality of information provided by survey participants

and to reduce disclosure risks. The variance estimates that are produced, using the

Masked strata and MVUs, closely approximate the variances that would have been

estimated using the true sample design variance units that are based on the actual

survey sample strata and PSUs[8].

From NHANES 2005-2010, inductively coupled plasma-mass spectrometry (ICP-

MS) method is used to measure the following 12 elements in urine: beryllium (Be),

cobalt (Co), molybdenum (Mo), cadmium (Cd), antimony (Sb), cesium (Cs), barium

(Ba), tungsten (W), platinum (Pt), thallium (TI), lead (Pb), and uranium (U)[42, 43].
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Figure 4.1: KRKMA estimation of exposure distribution and p values of tests com-
parison in cobalt (Co).
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The detection limits were constant for all of the heavy metals. The NHANES med-

ical conditions questionnaire (MCQ) section is generally modeled on the ”Medical

Conditions” questionnaire section of the U.S. National Health Interview Survey. It

provides self-reported personal interview data on a broad range of health conditions

for both children and adults. Among the responders in MCQ section from NHANES

2005-2010, there were 8353 participants whose laboratory urine samples were avail-

able. 36 were self reported as colon cancer cases. There were 46 pseudo-strata each

with two pseudo-PSUs of the NHANES 2005-2010.

We then use cobalt (Co) to demonstrate the KRKMA estimator and the WKRKMA

test. We classify the participants by colon cancer. Figure 4.1 displays CDF estimates

of the KRKMA and 5 tests comparison.
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Chapter 5 R package: krkm

5.1 Document

Package ‘krkm’

December 9, 2016

Type Package

Title Statistical Methods for Environmental Exposure Data Subject to

Detection Limits

Version 1.0

Date 2016-05-13

Author Yuchen Yang

Maintainer Yuchen Yang <yuchen.y@uky.edut>

Description Estimation of Exposure Distribution Adjusting for Dependence

between Exposure Level and Detection Limit.Comparison of Exposure Level

Distributions Between Two Groups.

License GPL-2

krkm-package Statistical Methods for Environmental Exposure Data Sub-
ject to Detection Limits

Description

Estimation of Exposure Distribution Adjusting for Dependence between Exposure

Level and Detection Limit.

Comparison of Exposure Level Distributions Between Two Groups.
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Details

Package: krkm
Type: Package
Version: 1.0
Date: 2016-05-13
License: GPL-2

Author(s)

Yuchen Yang

Maintainer: Yuchen Yang <yuchen.y@uky.edu>

KRKM Calculate exposure distribution for detection limit data

Description

Estimate exposure level by kernel reverse Kaplan-Meier(KRKM) estimator.

Usage

KRKM(obs, lod, wei = rep(1, length(obs)), bandwidth = NULL,

psu = NULL, stra= NULL, b = 1000, var = FALSE)

Arguments

obs Observed exposure levels

lod Detection limit

wei Sampling weight. The default value has the same sampling weight

and assumes data come from simple random sampling.
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bandwidth Bandwidth of Silverman kernel. The default value use σ̂n−1/3,

where σ̂2 is the sample variance of the detection limit.

psu Identifier for primary sampling units. The default value is NULL

and assumes data come from simple random sampling.

stra Identifier for sampling strata. The default value is NULL and

assumes data come from simple random sampling.

b Number of bootstrap replicates to calculate variance when data

come from simple random sampling. The default value is 1000.

var Indicator for variance calculation. The default value is false.

Details

This function calculates exposure distribution for detection limit data. It can

handel the correlation between the exposure level and detection limit when data

either come from simple random sampling or complex survey design.

Value

obs Unique observed exposure

n.risk Number of subjects that exposure levels are greater then current

exposure level

n.event Number of subjects that exposure levels are observed at current

exposure level

prob Estimates of exposure level

sd The standard errors of the estimated exposure level

lower.cl The 95% lower confidence limits of exposure level

upper.cl The 95% upper confidence limits of exposure level
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Note

Bootstrap method is used to estimate variance when data come from simple ran-

dom sampling. Jackknife method is used to estimate variance when data come

from complex survey design.

Author(s)

Yuchen Yang

See Also

plot.KRKM, summary.KRKM

Examples

data(nhanes)

t=as.numeric(nhanes[,'co'])
data1=nhanes[!is.na(t),]

wei=as.numeric(data1[,2])

t=as.numeric(data1[,'co'])
lod=as.numeric(data1[,'co_dl'])
stra=as.numeric(data1[,'stra'])
psu=as.numeric(data1[,'psu'])

fit<-KRKM(obs=t,lod=lod,wei=wei,psu=psu,stra=stra)

summary(fit)

nhanes NHANES

Description

NHANES 2005-2010 Laboratory Data

Usage

data("nhanes")
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Format

A data frame with 8353 observations on the following 58 variables.

Details

It cintains following 4 elements in urine:cobalt (Co), cadmium (Cd), lead (Pb)

and Arsenics (As)

Source

http://www.cdc.gov/nchs/nhanes/nhanes questionnaires.htm

References

Zipf, G., Chiappa, M., Porter, K., Ostchega, Y., Lewis, B., and Dostal, J.

(2013).National health and nutrition examination survey: plan and operations,

1999-2010.Vital and health statistics. Ser. 1, Programs and collection procedures,

(56):1-37.

Examples

data(nhanes)

plot.KRKM Plot method for KRKM objects

Description

Plot the estimated exposure level obtained by the KRKM function

Usage

plot.KRKM(t, ...)
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Author(s)

Yuchen Yang

See Also

KRKM

Examples

data(nhanes)

t=as.numeric(nhanes[,'co'])
data1=nhanes[!is.na(t),]

wei=as.numeric(data1[,2])

t=as.numeric(data1[,'co'])
lod=as.numeric(data1[,'co_dl'])
stra=as.numeric(data1[,'stra'])
psu=as.numeric(data1[,'psu'])

fit<-KRKM(obs=t,lod=lod,wei=wei,psu=psu,stra=stra)

plot(fit)

plot.WKRKM Plot method for KRKM objects

Description

Plot exposure level estimates of two groups by KRKM estimator.

Usage

plot.WKRKM(t, ...)

Note

WKRKM
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Author(s)

Yuchen Yang

See Also

WKRKM

Examples

data(nhanes)

t=as.numeric(nhanes[,'co'])
data1=nhanes[!is.na(t),]

wei=as.numeric(data1[,2])

t=as.numeric(data1[,'co'])
lod=as.numeric(data1[,'co_dl'])
stra=as.numeric(data1[,'stra'])
psu=as.numeric(data1[,'psu'])

group=data1[,'cancer']=='lung'
fit<-WKRKM(t=t,lod=lod,wei=wei,group=group,psu=psu,stra=stra)

plot(fit)

WKRKM Compare two exposure level distributions

Description

Comparison of exposure level distributions between two groups by WKRKM test

statistics.

Usage

WKRKM(t, lod, wei = rep(1, length(t)), group, bandwidth = NULL,

psu = NULL, stra= NULL, b = 1000, cl = FALSE, weight =

function(x, g1, g2, n1, n2) {
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out = (g1(x) * g2(x))/(n1/(n1 + n2) * g1(x) + n2/(n1 + n2) * g1(x))

return(out)

})

Arguments

t Observed exposure levels

lod Detection limit

wei Sampling weight. The default value has the same sampling weight

and assumes data come from simple random sampling.

group Two group indicator

bandwidth Bandwidth of Silverman kernel of KRKM estimator. The default

value use σ̂n−1/3, where σ̂2 is the sample variance of the detection

limit.

psu Identifier for primary sampling units. The default value is NULL

and assumes data come from simple random sampling.

stra Identifier for sampling strata. The default value is NULL and

assumes data come from simple random sampling.

b Number of bootstrap replicates to calculate variance when data

come from simple random sampling. The default value is 1000.

cl Indicator for variance calculation of KRKM estimator. The de-

fault value is false. If TRUE, the plot.WKRKM() would contain

confidence limits.

weight Weight function for WKRMK statistics. The default function is

ŵ(t) = Ĝ1(t)Ĝ2(t)

(n1/n)Ĝ1(t)+(n2/n)Ĝ2(t)
, where Ĝ1(·) and Ĝ2(·) are the CDF

estimates of the DL in the two groups.
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Value

z Test statistics

pvalue P-value

group1 KRKM object for the first group

group2 KRKM object for the second group

Note

Bootstrap method is used to estimate variance when data come from simple ran-

dom sampling. Jackknife method is used to estimate variance when data come

from complex survey design.

Author(s)

Yuchen Yang

See Also

plot.WKRKM

Examples

data(nhanes)

t=as.numeric(nhanes[,'co'])
data1=nhanes[!is.na(t),]

wei=as.numeric(data1[,2])

t=as.numeric(data1[,'co'])
lod=as.numeric(data1[,'co_dl'])
stra=as.numeric(data1[,'stra'])
psu=as.numeric(data1[,'psu'])

group=data1[,'cancer']=='lung'
WKRKM(t=t,lod=lod,wei=wei,group=group,psu=psu,stra=stra)
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5.2 Source codes

silverman<-function(x)

{

abs(0.5*exp(-abs(x)/sqrt(2))*sin(abs(x)/sqrt(2)+pi/4))/1.140086

}

ker2<-function(obs,lod,wei,bandwidth)

{

n=length(lod)

censored= obs>lod

if(is.null(bandwidth)){

h=1.059*sd(lod)*n^(-1/3)

}else{

h=bandwidth

}

ind<-order(obs)

data=cbind(obs,censored)

data=data[ind,]

wd=lod[ind]

obs=obs[ind]

we=wei[ind]

dn<-data[,2]

unique.obs=unique(obs)

if(length(unique(obs))!=length(obs)){

een=tn=en=ttn=rep(NA,length(unique.obs))

for (i in 1:length(unique.obs))

{

ttn[i]=sum(obs==unique.obs[i])
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tn[i]=sum( we[obs==unique.obs[i]] )

indi=which(obs==unique.obs[i])

en[i]=sum(dn[indi]*we[indi])

een[i]=sum(dn[which(obs==unique.obs[i])])

}

}else{

tn=we

en=dn*we

ttn=rep(1,length(obs))

een=dn

}

if (length(unique(lod))==1){

num=en

deno=cumsum(tn)

pro=1-(num/deno)

out=rev(cumprod(rev(pro[2:length(unique.obs)])))

prob=c(out,1)

}else

{

record=rep(NA,length(unique.obs))

num=deno=temp.num=temp.deno=matrix(0,length(obs),length(unique.obs))

for(i in 1: length(obs)){

if(obs[i]<=max(unique.obs)){

record=min(which(unique.obs>=obs[i]))

temp.deno[i,record:length(unique.obs)]=1

if(dn[i]==1){

temp.num[i,record]=1
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}

}

}

dist=t(kronecker(t(wd),rep(1,n))-wd)/h

temp=silverman(dist)

sw=t(kronecker(t(we),rep(1,length(unique.obs))))

temp.num=temp.num*sw

temp.deno=temp.deno*sw

for(i in 1:length(lod))

{

for(j in 1:length(unique.obs))

{

num[i,j]=sum(temp[i,]*temp.num[,j])

deno[i,j]=sum(temp[i,]*temp.deno[,j])

}

}

pro=1-(num/deno)

cond=t(apply(pro,1,function (x){

out=rev(cumprod(rev(x[2:length(unique.obs)])))

out=c(out,1)

return(out)

} ))

prob=apply(cond,2,mean)

}

out<-cbind(obs=unique.obs,n.risk=cumsum(ttn),n.event=een,prob)

out=subset(out,out[,3]>0)

return(out)
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}

KRKM <- function(obs, lod,wei=rep(1,length(obs)),bandwidth=NULL,

psu=NULL,stra=NULL,b=1000,var=FALSE) UseMethod("KRKM")

KRKM.default<-function(obs,lod,wei=rep(1,length(obs)),

bandwidth=NULL,psu=NULL,stra=NULL,b=1000,var=FALSE)

{

if(var==0){

output=ker2(obs,lod,wei,bandwidth)

}else{

if(length(unique(wei))==1){

out=ker2(obs,lod,wei,bandwidth)

temp=matrix(NA,dim(out)[1],b)

for(i in 1:b)

{

ind=sample(1:length(lod),replace=TRUE)

obs.b=obs[ind]

lod.b=lod[ind]

wei.b=wei[ind]

x=out[,c(1,4)]

y=ker2(obs.b,lod.b,wei.b,bandwidth)[,c(1,4)]

temp[,i]=merge(x,y,by='obs',all.x=TRUE)[,3]

}

sd=apply(temp,1,sd,na.rm=TRUE)

lower.cl=pmax(rep(0,length(sd)),out[,4]-1.96*sd)

upper.cl=pmin(rep(1,(length(sd))),out[,4]+1.96*sd)

var=cbind(sd,lower.cl,upper.cl)

output=cbind(out,var)
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}else{

out=ker2(obs,lod,wei,bandwidth)

temp.stra=matrix(NA,dim(out)[1],length(unique(stra)))

for( j in 1:length(unique(stra)))

{

ind3=stra==unique(stra)[j]

kh=length(unique(psu[ind3]))

temp.psu=matrix(NA,dim(out)[1],kh)

for(i in 1:kh)

{

ppsu=psu[stra==unique(stra)[j]]

ind1=stra==unique(stra)[j]&psu==unique(ppsu)[i]

ind2=stra==unique(stra)[j]&psu==unique(ppsu)[3-i]

wei[ind2]=kh/(kh -1 )*wei[ind2]

tjk=t[!ind1]

lodjk=lod[!ind1]

weijk=wei[!ind1]

x=out[,c(1,4)]

y=ker2(tjk,lodjk,weijk,bandwidth)[,c(1,4)]

temp=merge(x,y,by='obs',all.x=TRUE)

temp.psu[,i]=(kh-1)/kh*(temp[,2]-temp[,3])^2

}

temp.stra[,j]=apply(temp.psu,1,sum,na.rm=TRUE)

}

sd=sqrt(apply(temp.stra,1,sum,na.rm=TRUE))

lower.cl=pmax(rep(0,length(sd)),out[,4]-1.96*sd)

upper.cl=pmin(rep(1,(length(sd))),out[,4]+1.96*sd)
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var=cbind(sd,lower.cl,upper.cl)

output=cbind(out,var)

}

}

class(output) <- 'KRKM'

output

}

summary.KRKM<-function(t,...)

{

print(t[,])

}

print.KRKM<-function(t,...)

{

n=tail(t[,2],1)

event=sum(t[,3])

output=cbind(n,event)

colnames(output)=c('N','event')

print(output)

}

plot.KRKM<-function(t,...)

{

options( warn = -1 )

if(dim(t)[2]==4){

plot(t[,1],t[,4],type='s',col='black',lty=1,log="x",ylab='CDF'

,xlab='',lwd=1)

}else{

plot(t[,1],t[,4],type='s',col='black',lty=1,log="x",ylab='CDF'
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,xlab='',lwd=1)

points(t[,1],t[,6],type='s',col='black',lty=2,log="x",lwd=1)

points(t[,1],t[,7],type='s',col='black',lty=2,log="x",lwd=1)

}

}

testest<-function(t,lod,group,wei,bandwidth,cl,weight=

function(x,g1,g2,n1,n2){

out=(g1(x)*g2(x))/( n1/(n1+n2)*g1(x) +n2/(n1+n2)*g1(x))

return( out )

}

)

{

names=unique(group)

ind=group==names[1]

t1=t[ind]

t2=t[!ind]

lod1=lod[ind]

lod2=lod[!ind]

wei1=wei[ind]

wei2=wei[!ind]

g1=ecdf(lod1)

g2=ecdf(lod2)

n1=length(t1)

n2=length(t2)

bound=max(t1,t2,lod1,lod2)

temp1=KRKM(t1,lod1,wei1,bandwidth,var=cl)

temp2=KRKM(t2,lod2,wei2,bandwidth,var=cl)

75



f1=stepfun(temp1[,1],c(0,temp1[,4]))

f2=stepfun(temp2[,1],c(0,temp2[,4]))

t=sort(c(temp1[,1],temp2[,1]))

wet=weight(t,g1,g2,n1,n2)

wet[is.na(wet)]=0

f12=f1(t)-f2(t)

t.gap=c(diff(t),bound-max(t))

est=sum( (wet*f12)*t.gap)

return(list(est=est,group1=temp1,group2=temp2,names=names))

}

WKRKM<-function(t,lod,wei=rep(1,length(t)),group,bandwidth=NULL,

psu=NULL,stra=NULL,b=1000,cl=FALSE,weight=function(x,g1,g2,n1,n2)

{

out=(g1(x)*g2(x))/( n1/(n1+n2)*g1(x) +n2/(n1+n2)*g1(x))

return( out )

}) UseMethod("WKRKM")

WKRKM.default<-function(t,lod,wei=rep(1,length(t)),group,

bandwidth=NULL,psu=NULL,stra=NULL,b=1000,cl=FALSE,weight=

function(x,g1,g2,n1,n2){

out=(g1(x)*g2(x))/( n1/(n1+n2)*g1(x) +n2/(n1+n2)*g1(x))

return( out )

})

{

temp.test=testest(t,lod,group,wei,bandwidth,cl,weight=weight)

est=temp.test$est

if(length(unique(wei))!=1){

temp.stra=rep(NA,length(unique(stra)))
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rec=NULL

for( j in 1:length(unique(stra)))

{

ind3=stra==unique(stra)[j]

kh=length(unique(psu[ind3]))

temp.psu=rep(NA,kh)

for(i in 1:kh)

{

ppsu=psu[stra==unique(stra)[j]]

ind1=stra==unique(stra)[j]&psu==unique(ppsu)[i]

ind2=stra==unique(stra)[j]&psu==unique(ppsu)[3-i]

wei[ind2]=kh/(kh -1 )*wei[ind2]

tjk=t[!ind1]

lodjk=lod[!ind1]

weijk=wei[!ind1]

groupjk=group[!ind1]

temp=testest(tjk,lodjk,groupjk,weijk,bandwidth,cl,weight=weight)$est

rec=c(rec,temp)

temp.psu[i]=(kh-1)/kh*(temp-est)^2

}

temp.stra[j]=sum(temp.psu)

}

sd=sqrt(sum(temp.stra)/(kh^2))

}else

{

temp=rep(NA,b)

for(i in 1:b)
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{

ind=sample(1:length(lod),replace=TRUE)

t.b=t[ind]

lod.b=lod[ind]

wei.b=wei[ind]

group.b=group[ind]

temp[i]=testest(t.b,lod.b,group.b,wei.b,bandwidth,cl=FALSE,

weight=weight)$est

sd=sd(temp,na.rm=TRUE)

}

}

stat=abs(est/sd)

output=list(z=est/sd,pvalue=2*(1-pnorm(stat)),group1=temp.test$group1,

group2=temp.test$group2,names=temp.test$names)

class(output) <-'WKRKM'

output

}

print.WKRKM<-function(t,...)

{

cat('z: \n')

print(round(t$z,3))

cat('p-value: \n')

print(round(t$pvalue,4))

n1=tail(t$group1,1)[2]

n2=tail(t$group2,1)[2]

event1=sum(t$group1[,3])
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event2=sum(t$group2[,3])

output=cbind(c(n1,n2),c(event1,event2))

colnames(output)=c('N','event')

rownames(output)=c(paste('group=',t$names[1]),

paste('group=',t$names[1]))

print(output)

}

plot.WKRKM<-function(t,...)

{

xl=min(t$group1[,1],t$group2[,1])

xu=max(t$group1[,1],t$group2[,1])

options( warn = -1 )

if(dim(t$group1)[2]==4){

plot(t$group1[,1],t$group1[,4],type='s',col='blue',lty=1,

log="x",ylab='CDF',xlab='',lwd=1,xlim=c(xl,xu))

points(t$group2[,1],t$group2[,4],type='s',col='red',log="x",

lty=1,lwd=1)

}else

{

plot(t$group1[,1],t$group1[,4],type='s',col='blue',lty=1,log="x",

ylab='CDF',xlab='',lwd=1,xlim=c(xl,xu))

points(t$group1[,1],t$group1[,6],type='s',col='blue',log="x",

lty=2,lwd=1)

points(t$group1[,1],t$group1[,7],type='s',col='blue',log="x",

lty=2,lwd=1)

points(t$group2[,1],t$group2[,4],type='s',col='red',log="x",

lty=1,lwd=1)
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points(t$group2[,1],t$group2[,6],type='s',col='red',log="x",

lty=2,lwd=1)

points(t$group2[,1],t$group2[,7],type='s',col='red',log="x",

lty=2,lwd=1)

}

}
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