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ABSTRACT OF DISSERTATION

STOCHASTIC DYNAMICS OF GENE TRANSCRIPTION

Gene transcription in individual living cells is inevitably a stochastic and dynamic
process. Little is known about how cells and organisms learn to balance the fidelity of
transcriptional control and the stochasticity of transcription dynamics. In an effort to
elucidate the contribution of environmental signals to this intricate balance, a Three State
Model was recently proposed, and the transcription system was assumed to transit among
three different functional states randomly.

In this work, we employ this model to demonstrate how the stochastic dynamics
of gene transcription can be characterized by the three transition parameters. We compute
the probability distribution of a zero transcript event and its conjugate, the distribution of
the time durations in gene on or gene off periods, the transition frequency between
system states, and the transcriptional bursting frequency. We also exemplify the
mathematical results by the experimental data on prokaryotic and eukaryotic
transcription.

The analysis reveals that no promoters will be definitely turned on to transcribe
within a finite time period, no matter how strong the induction signals are applied, and
how abundant the activators are available. Although stronger extrinsic signals could
enhance promoter activation rate, the promoter creates an intrinsic ceiling that no signals
could cross over in a finite time. Consequently, among a large population of isogenic
cells, only a portion of the cells, but not the whole population, could be induced by
environmental signals to express a particular gene within a finite time period. We prove
that the gene on duration follows an exponential distribution, and the gene off intervals
show a local maximum that is best described by assuming two sequential exponential
process. The transition frequencies are determined by a system of stochastic differential
equations, or equivalently, an iterative scheme of integral operators. We prove that for
each positive integer N, there associates a unique time, called the peak instant, at which

the n™ transcript synthesis cycle since time zero proceeds most likely. These moments
constitute a time series preserving the nature order of n.
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Chapter 1
Introduction

Despite the intricacy of gene regulatory networks, transcription in individual
living cells is inevitably a probabilistic and dynamic process. The timing and strength of
transcriptional activation are determined by a succession of dynamic events, each with
a given probability. The randomness of these events would produce fluctuations in the
number of transcripts and proteins, constituting the phenotypic heterogeneity in a cell
population (Kaufmann and van Oudenaarden, 2007; Maheshri and O'Shea, 2007; Raj
and van Oudenaarden, 2008; Schrodinger, 1944). Although numerous protein factors
responsible for transcriptional control have been identified, and many of their interactions
have been discerned (Bushnell et al., 2004; Lemon and Tjian, 2000), surprisingly
little is known about how cell and organisms learn to balance the fidelity of
transcriptional control and the stochasticity of transcription process (Maheshri N and
O'Shea, 2007; Raser and O'Shea, 2004).

Recent studies on stochastic gene expression have created revealing insights on
the random nature of transcription (Austin et al., 2006; Elowitz et al., 2002; McAdams
and Arkin, 1997; Ozbudak et al., 2002; Paulsson, 2004, 2005; Raser and O'Shea, 2004;
Raj et al., 2010; Rosenfeld et al., 2005; Swain et al., 2002; Thattai and van Oudenaarden,
2001). These studies have offered compelling evidence in support of the model that,
often, single genes are transcribed randomly and discontinuously, but not
deterministically and continuously. The recent in vivo RNA detection technique,
pioneered by the Singer laboratory (Bertrand et al., 1998), has allowed direct real-time

observations of mRNA transcripts in individual living amoeba Dictyostelium discoideum



cells (Chubb et al., 2006). Their findings have confirmed the Poisson scenario of
transcriptional bursts, previously suggested by theoretical studies of Berg (1978), Rigney
(1979), and Rigney and Schieve (1977). A transcriptional burst is characterized by
relatively long periods of zero transcription interrupted by production of many transcripts
in a quick succession. The bursts occurred randomly, but their durations fitted robustly
with standard exponential decay curves (Chubb et al., 2006). Golding and his
collaborators (Golding et al., 2005) have optimized the technique of Singer to allow
precise counting of transcripts produced by a synthetic variant of the lac promoter in
living Escherichia coli cells, and offered further statistical quantifications of the
transcriptional bursts. Xie and colleagues (Cai et al., 2006; Taniguchi et al., 2010; Yu et
al., 2006) have developed a novel assay allowing the detection of single protein
molecules in E. coli cells, and confirmed the geometrical distribution of protein bursts
suggested by Berg (1978) and Rigney (1979).

What causes stochasticity of gene transcription? This has been an intriguing open
question in molecular genetics. In an earlier study, Ko (1991) proposed that it was caused
by random switching between "gene on" and "gene off" states. This elegant proposition
has been further explored theoretically (Kaern, 2005; Kepler and Elston, 2001; Paulsson,
2004, 2005; Peccoud and Ycart, 1995) and reinforced by experimental examples
(Golding et al., 2006; Raj et al., 2006). For induced transcription, however, it remains
unclear from this proposition how environmental signals contribute to the randomness of
the transition between the on and off states.

In an effort to elucidate how the stochasticity of gene transcription profiles

correlates with cellular conditions, a Three State Model was proposed (Tang, 2008, 2010)



and further extended (Sun, Tang and Yu 2010a, 2010b). In the model, the transcription
system consists of a gene, along with one type of sequence specific transcription factors
(abbreviated as TF) that have cognate binding sites in the core gene promoter, an
induction agent that can stimulate the specific binding of TF to the promoter DNA, and
the intermediate agents sustaining their function linkage. It was assumed that the
transcription system randomly rotates among three different functional states in the

temporal order: ground state Q — excited state Y — engaged state E. The ground state

is characterized by the lack of effective binding activity between TF and the core gene
promoter, so there is no transcription initiation complex binding to the promoter, and no
RNA polymerase II (Pol IT) elongating the coding region either. If the TF and DNA
binding is not followed by the assembling of basal transcription machinery at the
transcription start site, then the system will remain in the ground state. If the binding can
facilitate subsequent transcription activity effectively, then there could be multiple stable
intermediate complexes formed in the pathway from the TF-DNA binding to the
successful recruitment of Pol II at the transcription start site. We define the exit of the
ground state, and so the entry of the excited state, to be the threshold moment when a
particular complex satisfying the following property is formed: The interaction between
the TF and the core promoter affects the formation and stability of this complex, but
plays no essential role in the subsequent transcription activities before the system leaves
the excited state. The exit of the excited state (or the entry of engaged state) is defined to
be the instant at which the first phosphorylated Pol II is released from the transcription
initiation complex to begin transcribing the gene. When the last engaged Pol II leaves the

gene in this transcription cycle, the system returns back to the ground state.



The Three State Model was also supported by the genome-wide study performed
by Zeitlinger et al. (2007). In their study, they analyzed global Pol II occupancy in a
homogeneous population of mesodermal precursor cells from Toll10b Drosophila
embryos. They carried out comprehensive Pol II chromatin immunoprecipitation
microarray (ChIP-chip) assays and showed that the 13,448 protein coding genes could be
classified into three distinct dynamic states: In 37% of all genes there were no Pol II
binding altogether and genes remained silent; in about 7.5% of all genes Pol II was
tightly restricted to the transcription start site; and in the rest of genes Pol II distributed
throughout the entire transcription unit. Apparently, according to the Three State Model,
the first class of genes resided uniformly in the ground state. The second class and third
class genes remained in the excited state and the engaged state respectively. In the
second class of genes, Pol I was engaged in transcription initiation but paused near the
transcription start site. Pol II stalling in those genes suggests that the transition from
transcription initiation to elongation could be a rate limiting step in the gene expression
pathway (Core and Lis, 2008; Wade and Struhl, 2007).

When compared with previous studies on stochastic gene transcription, in which
the system behaviors were divided into the "gene on" and "gene off" states (Kepler and
Elston, 2001; Ko, 1991; Paulsson, 2004; Peccoud and Ycart, 1995; Raj et al., 2006), the
engaged state E in the Three State Model is essentially identical to the "on" state, and

the states Q and Y constitute the "off" state. The gene can only be transcribed when the

system remains in the engaged state. Because transition between the system states is

random, and the engaged state is interrupted by Q and Y , the Three State Model clearly

indicates that the gene in individual cells is transcribed randomly and discontinuously.



This has been strongly supported by the experimental data and theoretical studies
(Elowitz et al., 2002; McAdams and Arkin, 1997; Raser and O'Shea, 2004; Rosenfeld et
al., 2005; Swain et al., 2002; Thattai and van Oudenaarden, 2001).

In the following chapters, we first revisit in detail the definition of Three State
Model and demonstrate how the stochastic dynamics of gene transcription could be
characterized by the transition parameters. Then we compute the probability distribution
of a zero transcript event, the durations in gene on or gene off periods, the transition
frequency, and the bursting frequency. We also exemplify the mathematical results by

the experimental data on prokaryotic and eukaryotic transcription.

Copyright © Yan Xie 2011



Chapter 2
The Three State Model

In this chapter, we revisit in detail the definition of the Three State Model and
demonstrate how the stochastic dynamics of gene transcription could be characterized by
the transition parameters.

2.1 Introduction to the Three State M odel

In an effort to elucidate how the stochasticity of gene transcription profiles
correlates with cellular conditions, a Three State Model was proposed (Tang, 2008, 2010)
and further extended (Sun, Tang and Yu 2010a, 2010b).

In the Three State Model, the transcription system consists of a gene, one type of
transcription factor (TF) that can activate or repress the gene promoter, an induction
agent that can induce specific binding of TF to the promoter, and other molecules
sustaining their functional linkage.

The transcription system is assumed to exist in three different functional states:

ground state Q, excited state Y , and engaged state E. The ground state is characterized

by the lack of effective binding between the core gene promoter and TF, so there is no
transcription initiation complex on the promoter, and no elongation by RNA polymerase
IT (Pol II). If the TF and DNA binding is not followed by the assembly of basal
transcription machinery at the transcription start site, then the system will remain in the
ground state. This occurs especially if the TF is a strong repressor of the gene promoter.
If the binding effectively facilitates subsequent transcription, then we define the
exit of the ground state to be the threshold moment when a particular complex satisfying

the following property is formed: The interaction between the TF and the core promoter



affects the formation and stability of this complex, but plays no essential role in the
subsequent transcription before the system leaves the excited state. There may not be a
universal configuration of this particular complex, which could vary dramatically
between cells and organisms.

The exit of the excited state is defined to be the instant at which the first Pol II is
released from the transcription initiation complex to begin transcribing the gene. When
the last engaged Pol II leaves the gene in this transcription cycle, the system returns back
to the ground state.

The three functional states randomly rotates in the recurrent Markov chain

Q—5Y 2 5E—Z5Q—~..., where each arrow denotes an exponential

distribution, and x, 4, and y are the corresponding transition rates. We treat the
transition from Q to Y as an irreversible stochastic process, because we regard those

TF/bindings that cannot induce the formation of the stable intermediate complex as sub-
events of the ground state.
2.2 The parametersin the Three State Model

The parameter x, the transition rate from Q to Y , is called the induction
strength, that quantifies the effectiveness of the induction agents in transforming the
system into the excited states. The value of x depends not only on the amounts or
concentrations of the agent, but also on how efficiently the binding of TF and promoter
initiates the formation of the intermediate complex. Parameter A, the transition rate from
Y to E, is called the activation strength which quantifies the activation potential of the

TF. Parameter ¥, the transition rate from Y to E, is called the promoter fragility

because a larger y corresponds to a shorter life of the elongation state on average.



Parameter k& may or may not correlate with the binding affinity between the TF
and the gene promoter in a parallel fashion: a strong binding may correspond to a small
k if the binding activity is ineffective in inducing system state transition. There is no
apparent constraint on the nature of the induction agent: It can be a physical condition
such as temperature or radiation, or a physiological condition such as starvation or DNA
damage. More interestingly, it can be a biomolecule such as a growth factor that can
induce binding of the TF to the gene promoter by turning on intracellular signal
transduction pathways. In this case, any protein or RNA species within a pathway,
including the target TF itself, can be taken as the induction agent in the model. This
flexibility allows us to use the model to examine how the transcription profiles respond to
perturbations of signal transduction networks. Because the concentration of inducing
agents may change in time and space, k' can inherit the temporal variation and spatial
heterogeneity. As a result, x is not a constant, but a function of time and spatial
variables, and further transfers the heterogeneities to the gene expression profiles.

The definition of the excited state makes it clear that the transition from Y to E
is essentially independent of the cellular concentration of free specific TF and, thus,

irrelevant to the induction agents. The same is true for the transition from E to Q.
Therefore, A and ¥ are mostly determined by the biochemical properties of the TF and

the gene, both of which are intrinsic to the transcription system. In contrast to the

temporal and spatial variation of X, the parameters A and ¥ can be approximately
treated as constants. We define the pair (A, ¥) as the transcription mode allied to the TF

and the gene in the transcription system. It is of great interest to test the hypothesis that



this mode could be evolutionary conserved and would not vary notably among cells of
closely related organisms.

In summary, the Three State Model deciphers transcription activation through the
two parameters of distinct characteristics. The induction strength X is mostly determined
by environmental signals, and could inherit the temporal and spatial fluctuation of the

signals. In contrast, the 4 and y are intrinsic to the TF and the gene, so they are

approximately a constant and does not vary significantly within a homogeneous
population of cells. By decomposing the activation dynamics into the impingement of
environmental signals and the intrinsic response of activators and promoters, this model
explicitly relates transcription stochasticity with the variability of micro-environmental

conditions.

Copyright © Yan Xie 2011



Chapter 3
Probability of a Zero Transcription Event in the Three State M odel

In this chapter, we define and compute the distribution of the probability of zero
transcription in the Three State Model, then define its conjugate, the probability of gene
induction. We also discuss the properties of the two probabilities. Finally, we exemplify
the mathematical results by the experimental data and simulation.
3.1 Thedistribution of the probability of a zero transcription event in the Three
State Model

In order to test more directly how an induction agent affects the expression of a
given gene, it has been helpful to work with the experimental assays where the gene
remains silent before the application of the agent. Accordingly, we only gave the detailed
mathematical analysis under the assumption that the transcription systems in cells
are uniformly locked in ground states at time zero. The basic ideas of the analysis
are similar when other types of initial conditions are more appropriate. For technical
reasons, we only discuss the dynamics when the induction agents are kept at a constant
level.

Theorem 3.1 Let P, (t) be the probability that the system has never arrived at the
engaged state in (0,t), then

Y K i
e+ e, A
PO =11-« k-1 x

(1+kt)e™ k=4

3.1)

Proof of Theorem 3.1: Let B, (t) be the probability that the transcription system has

remained in the ground state since the application of the induction agents (time zero),

and B, (t) be the probability that the system is residing on the excited state Y at time t.

10



Then F(t) =R, (t)+ B, (1) . We derive the probability distribution of B (t) and B (t)
in the following paragraphs.

First, we find that B () = e ™. Here's the details for reasoning: Let X be the

it

waiting time for transition from Q to Y , then P(X <t)=1-¢€" since X is distributed

exponentially with parameter k. It follows that
P (1) =Prob(X >t) =1-Prob(X <t)=e™". (3.2)
It's apparent that P (0) = 1.

Second, we find that

(e—Kt _e—lt) K';él

t
P, (1) = Ke*ﬂ‘j e+ s =17« (3.3)
0

xte™
To find B (t) analytically, we follow the transition rule of the Three State Model to
derive the differential equation of B (t). It is presented in detail below, see Allen (2003)

for mathematical background. This basic idea also helps us derive the system of master

equations in Chapter 5 where the functions B (t) and B (t) are extended to B, (t) with
n>1land X=q,Y, and e.

Here's the details to find B, (t). Let At be an infinitesimal time increment. We
first calculate B, (t+ At) in terms of B (t) and R (t). If the system has been remained

in the ground state during the time period (0,t), then it has a probability xAt to shift to

the excited state during the time interval (t, t + At) based on the definition of exponential

distribution; this contributes xkAtR,(t) to B, (t+ At). If the system has arrived and stayed

at the excited state in the time period (0,t), then it has a probability 1— AAt to remain at

11



this state during the infinitesimal time interval; this contributes (1-AAt)R, (t) to
R, (t+At). If the system has arrived and then left the excited state in the time period (0,
t), then it contributes zero probability to B, (t+At). In summary,

B, (t+At) = kAR, (1) + (1= AADR (1),

) ply(t+AAtz— Py® _ KB, (1) — AR, (1).

Letting At — 0, we have the following reasoning: The limit yields the equation

dt = KRq(t)_ﬂ’F)ly(t)
B0 e =m0

dP.(t
. lyt( ) e + B, (1)e" 1 = &"kP,,(t) since multiplying both sides by "

d(R,(t)e*
= SIE) et (1) since d(R, (e =

dP._(t
—ijyt( ) e* + P, (he*

t As
N EGNCLR P

t
e®xP _(s)ds
dS _([ lq( )

0

=

t
t
= P,(s)e”|_ = j e™xP, (s)ds
0

t
= B, (he" — R, (0) = [ xR (s)ds
0

t
= P, (t)e" = [ e*xP,(s)ds since R, (0)=0
0

12



t
=P, t)=¢" j e™xP, (s)ds
0

t
=P, (b)=¢" j e™xe™ds since P (s)=€™ by (3.2)
0

t
=B, ()=xe* I e*™5ds

eA-x)s s=t
K " ——— K#A
= Ply(t): A=K =0 1
_at st -
%o
(A-K)t
AL Y |
=P, = A-x A-k )
e (t-0) B
K _xt At
[ —e K#A
=R,M={1_x" )
P k=1

So P, (1), the probability that the system has never arrived at the engaged state in
(0,t), is as given below

Y K i
——e e, A
PO =11-x =4 x

(1+kt)e™ )

After the system enters the engaged state, it is possible that there is a short time
delay before the nascent mRNA emerge from the elongating Pol II. This delay is usually
insignificant compared to the average residency time of the three functional states.

Therefore, P,(t) equals approximately the probability that no gene transcripts have been

produced since the application of the induction agents. When the expression profile of a

13



homogeneous population of cells is measured, P,(t) can be used to estimate the portion
of silent cells during the time interval (0,t).

3.2 Conjugate of probability of a zero transcription event

Because the probability of a zero transcription event P,(t) provides a measure of
the proportion of silent cells, its conjugate P, (t) =1- F,(t), called the induction

probability, can be used to estimate the proportion of the cells where the gene has been
induced to elongation state at least once since time zero.
3.3 Properties of probability of a zero transcription event and its conjugate

The properties of probability of zero transcription event P,(t) and its conjugate
P,(t) are given as follows:
1) B(t)=1 and R, (t) =0 if either K=0 or A=0. It means that the system

remains silent for all t > 0 if either =0 or A=0. This justifies the necessity of the
induction agents and the regulatory activators for transcription initiation.

2) P, (1), as a function of x, is increasing. That is, P, (t) increases as the

induction signal is strengthened, which is consistent with our intuitive perception that

stronger induction signals activate more promoters. The proof for P, (t), as a function of
K is increasing, is given as follows: Write P, (t, x) for P, (1) to indicate its dependence
on the induction strength K explicitly. Then differentiating P, (t, x) with respect to x

gives, forall x # 4,

907 e e )

dx dx

14



_(ﬂ A - e 4 ;L/u et _ (’z_/ﬂt;)_zlfe—it
- K - K K—
B A - ) B -4
(/1—K)2e +/1—Ke (K—ﬂ)ze
Ae™

= _W[l —(A-K)t—e*Y >0 becausel+ x< e aslongasx #0.
- K

3) %im P,(t)=0 and ym P.(t)=1 aslong as x and A are positive. It predicts that

any promoter will be turned on to transcribe eventually, if it is kept constantly stimulated,

and the specific transcription factors are continually available.

4) P (t)<limP (t)=1-¢e™* forall x>0 and A >0 because P, (t) asa

function of x is increasing, which is due to dP, (t, x)/dx > 0. Therefore, the induction

probability P, (t) is always strictly < 1, even if the induction signals are exceedingly

strong. The upper limit 1 —e™*

is determined by the intrinsic parameter 4, and is
independent of x . This suggests that no promoters will be definitely turned on to
transcribe within a finite time period, no matter how strong the induction signals are
applied, and how abundant the activators are available. Although stronger extrinsic
signals could enhance promoter activation rate, the promoter creates an intrinsic ceiling
that no signals could cross over in a finite time. Consequently, among a large population
of isogenic cells, only a portion of the cells, but not the whole population, could be
induced by environmental signals to express a particular gene within a finite time period.
These statements indicate that a weak and continual external signal within a long time

period may provoke a more potent transcriptional response than a strong and transient

signal does within a short time period.
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3.4 Example and ssimulation result for probability of a zero transcription event

In this section we demonstrate how formula for P,(t) could be utilized to estimate

the probability of zero transcriptions, by using the transcription system of Golding et al.
(2005) in the clonal population of living E. coli cells.

First, we describe the transition system briefly. This system consists of two
components: the tagging protein and the RNA target. The tagging protein, named MS2-
GFP, is a fusion of the MS2 coat protein to a green fluorescent protein (GFP). And the
RNA target contains the coding region for a red fluorescence protein (Campbell et al.,
2002), followed by a tandem array of 96 MS2 binding sites. The MS2 coat protein in
MS2-GFP can recognize the MS2 binding sites in the RNA target, and the GPF in the
MS2-GFP allows the detection and measurement of this RNA target by fluorescence
microscopy and image analysis. In the experiment, the expression of MS2-GFP at
optimal levels was first induced by adding anhydrotetracycline in the system. The RNA

target (RNA transcripts) were then induced by Isopropyl- £ -D- thiogalactopyranoside

(IPTG) under the control of a Pj,c/ara promoter (Lutz and Bujard, 1997). The amount of
RNA transcripts were imaged and measured at different time points by fluorescence
microscopy.

Golding et al. (2005) estimated P, (t) by the fraction of cells having no tagged
RNA because P,(t) can be used to estimate the portion of silent cells during the time
interval (0,t) when the expression profile of a homogeneous population of cells is
measured. They found the measured P, (t), as a function of time, decreased
exponentially at a decay rate 0.032+0.005 min~' (see '+ and 'O’ in Figure 3.1).

However, the estimated decay rate was 0.014 +0.02 min~' based on their theoretical

16



prediction of the first-order transcription model P,(t) =€ (see dash line in Figure 3.1).
This estimated number is about four times larger than the measured decay rate

0.032£0.005 min~". They attributed this discrepancy to the stochastic nature of mRNA

synthesis and elimination.

Our formula to estimate P,(t) performs better than that suggested by Golding and
his colleagues (see solid line in Figure 3.1) . In the plot of logarithm of P, (t) versus time,
our estimated P, (t) fits the actual data much better than that in Golding et al. (2005) does

(solid line versus dash line in Figure 3.1). Our curve is not identically a straight line, but
is nevertheless well approximated by a straight line with slope = - 0.03125, which is very

close to the measured decay rate 0.032 .
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Figure 3. 1 Probability of zero transcriptions since induction (fraction of cells having no

tagged RNA (P, (t)) as a function of time after induction t). Data (+,0,A) are from
Golding et al. (2005). Dashed line is the theoretical prediction of the first-order

transcription model P,(t) =e™" by Golding and his colleagues, with &, =0.14. The

actual decline is about four times slower, with a rate of approximately 0.032 min~". Solid

18



line is the theoretical prediction by our model which is

K e, K # A, with k=1/5 min™' and A =1/32 min".

A
e+

P (t) =
o (D) T < K_

The details for estimating K, 4 and y were given here. By (3.3), B(t) is

determined by the induction strength K and the activation strength A, and is independent
of the rates of mRNA production and elimination. As Golding and his colleagues had

estimated that the mean transcription inactivity periods At,.- =37 min and the mean
activity periods Aty =6 min, we take k' +A'=37 min, and 1/ = 6 min. Although no

further information is currently available to estimate K and A separately, we assume that
K is much bigger than A, because IPTG was added at optimal amounts and the promoter

was observed to be fully activated when the data were collected. This consideration

1

suggests us to take 1/x=5 min and 1/ A =32 min (that is, k=02 min~ and

A=0.03125 min™") in our simulation, see Fig. 1.

Copyright © Yan Xie 2011
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Chapter 4
Durationsin Gene Off and Gene On Periodsin the Three State M odel
In this chapter, we first compute the distribution of durations in gene off or gene
on periods in the Three State Model. Then we discuss the properties of the distributions.
Finally, we exemplify the mathematical results by the experimental data and simulation.
4.1 Thedistribution of durationsin gene off and gene on periodsin the Three State
M odel

Theorem 4.1.1 Let Py (t) and f (t) be the cumulative and density distribution
function of the duration in the gene off period respectively, then

2e—1<t _ Ke—/lt

P (t)= 1=~ forx# A1
D For 250 1—Kte{1"‘_—’(e"“ for k=2
KA« a f
—((e " —e orxK#A
2)foff(t): /1—/('( ) f .
e orx=A1

3) The average duration in the gene off period is 1/x+1/1.
Theorem 4.1.2 Let P, (t) and f,, (t)be the cumulative and density distribution function
of the duration in the gene on period respectively, then

1) Pon(t) =1 _e_}{

2) fu () =767
3) The average duration in the gene on periodis 1/ .

Proof for Theorem 4.1.1:

1) Show
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— it — At
e —xe forx# A

Py (1) = A-—K

I—Kte_Kt—e_Kt fork=A4
Let X be the waiting time for the system transiting from state Q to state Y , then
f, (t)=xe™ since X is exponentially distributed with parameter x. Let S be the

waiting time for the system transiting from state Y to state E, then fg(t) = Ae ™

because S is exponentially distributed with parameter A. The joint density function of
X and S is k& A€ ™ because X and S are independent.

The duration in the gene off period is the duration that the system is in state Q or
state Y . It is also the waiting time for the system transiting from state Q to state Y , plus
the waiting time for the system transiting from state Y to state E. So it's the sum of
durations in two sequential exponential process. Therefore, it follows that
Pi()=P(X+S<t)=P(X<t-95)

t—x

( j f (x, s)ds)dx

0

I
O Sy O Sy —+

t—x
(_[(Ke"‘x/%e‘ﬂs)ds)dx since  f(x,5)=xe "l
0

t—x

Ke ™ ( ]. (Ae*)ds)dx

Il
S S——

(= e“srt_x)dx

s=0

Il
[ S
B

Ke ™ (1-e*)dx

Il
S )
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t
J K& dx — J’ —At (rc—/l)xdx
0

x=t —lt I —( K-A1) de

—(k-A)X
1—e™ —Ke"”ﬁ forxk =1
B 0 forx=A1
1-e™ —xke™x o
ety e g (At At for K% A
- l—e’lg:ite*“ k=4 forx=A1
l_e”‘t+ Ke_Kt _ Ke_/ﬁ forx#A
- I_th_m’l T A forx=1
R re” forx# A
= K— K—A _
1— Kte_xt —xt fork=A1
et e for & = A
T AR ALK for = A
2) Show
( ) forxc#A
for (U= forx=A
zczt
For x # A,
-2 e
£ (t)= dRy () _ Ak A-x _— M)+’ (-A) _ Kl
ot dt dt A-K A-K
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For x = A,

-t ot
dfi- Kt?jt ) —x(e™ +te ™ (k) —e ™ (—x) = K’'te™

foff (t) =

3) Show the average duration in the gene off periodis 1/x+1/4.

For x # A, the average duration in the gene off period = .[ tf  (t)dt
0

= J'K—/u(e —e™Mdt

:%I —“dt——jt/le )it

A1 k1
T A-kk A-kA

sin ce jtxe"“dt is mean of exp(A)
0

e
T (A-KkK1

For x # A, the average duration in the gene off period = I tf . (t)dt
0

2 Zefktdt

Il
o—3
A

—

= T— xt*d(e™)

23



t=0

= —(Ktze"‘tr Te"“d(xtz)) since Tu(v)'dx = uv|:1 —jz(u)'vdx

a

= je"“d(Ktz)) sin ce Ktze"“‘; =0
0

= jztke’“dt) sin ce _ftxe”“dt is mean of exp(A)
0 0

=2/k

=1/xk+1/4 since A=«

Proof for Theorem 4.1.2:

The Proof for Theorem 4.1.2 is straightforward. The duration in the gene on period is the
duration that the system is in state E, and it is also the waiting time for the system
transiting from state E to state Q, which is exponentially distributed with parameter ¥ .

So we have
P (t)=1-¢"
2) fo(t) =1
3) The average duration in the gene on period is 1/ .
4.2 Properties of the density distribution function of the duration in the gene off
period
The properties of f (t), the density distribution function of the duration in the
gene off period are given as follows:

1) If x and A differ dramatically, then the density function f (t) can be well

approximated by a standard exponentially decaying function. This occurs in particular

when the gene is fully activated and the transition step from excited state to engaged state
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is relatively slow, in which case & is large and A is small, leading to f_; (t) = Ae™*.

Conversely, if the induction signals are weak but the transition from excited state to

engaged state is fast, then x is small, but A is large, yielding f (t) = k& . In both

cases, the distribution of the durations in the gene off period fits an exponential decay
curve, and the logarithm of the distribution fits a straight line whose slope is either — A
or — k. (see solid and dash lines in Figure 4.1 and Figure 4.2)

2) However, if x and A are close, then the logarithm of the distribution deviates

from the straight line. Because

A (1-e*™) = —xt +log A

l_e—(l('—l)t ,
K—A4 l—/c( )

log(f (1)) =—-At+1log

the deviation is determined by the two residual log terms behind — At or — &t . (see dotted
lines in Figure 4.2)
3) In the limiting case when x = A, we have
log(AR,, (1)) = —&t +2log x + logt,
which differs from the linear part by logt (see dot-dash lines in Figure 4.2). This

difference seems not to be significant, but rather it suggests a noticeable deviation of

experimental data from straight lines.
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Figure 4.1 Plot of duration of gene off period versus density distribution f (t). If the
values of x and A differ dramatically, then the density function f (t) can be well

approximated by a standard exponentially decaying function (solid and dash lines).
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log (1-e ") (see dotted lines). In the limiting case

when k=4, log(f (1)) differs from the linear part by logt (see dot-dash line).
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4.3 Example and simulation result for the density distribution function of the
duration in the gene off and gene on period

The gene transcription was directly monitored at several studies. Raj et al. (2006)
observed an ON/OFF expression pattern for the master regulatory gene of intestinal
differentiation. Chubb et al. (2006) observed the Poisson scenario of transcriptional
bursts. A transcriptional burst is characterized by relatively long periods of zero
transcription interrupted by production of many transcripts in a quick succession. Chubb
and his collaborators found the bursts occurred randomly, but their durations fitted
robustly with standard exponential decay curves. Golding et al. (2005) have observed that
the transcription is characterized periods of inactivity, followed by period of activity.
They also confirmed that the period of activity could be described by exponentials.

Recently, Suter et al. (2011) found in their study that the gene on interval
followed an exponential distribution, and the gene off interval showed a local maximum
that was best described by assuming two sequential exponential process (see Figure 4.3).
The findings of Suter and his collaborators confirmed our theorem for the duration of

gene off and gene on period.
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lines show best fits to “two-step” model (Suter et al. (2011)).
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Chapter 5
The Transition Frequenciesin System Statesin the Three State Model
To understand the stochastic dynamics of transcription activities more thoroughly,
we also explore how frequently the states in the three state system are transformed. For
instance, for a given time t and an integer N, we estimate how likely the gene has been

transcribed exactly n times during the time period (0,t). In this chapter, we extend the

definitions of B (t) and B (t) to a larger class of transition frequency probability
P,t),n=1,and x=0,Y, and e. Also we introduce the system of master equations
governing these functions, P, (t), derived by Tang (Tang 2008, 2010) utilizing the
transition rule of the Three State Model. We also derive the formulae to compute P, (t)
and P, (1) using the master equation. Finally we derive and discuss the properties of

these transition frequency probability.
5.1 Thetransition frequency probabilities and the master equations

If the system is in the ground (excited, or engaged) state at any given time t =0,
then we define X(t)=q(y or e). Let N(t) be a discrete random variable that counts the
number of transition events among these states. We say that

(N(), X(t))=(n,x), ne {1,2,3, ...} and xe{q,Y, €},

if the transcription system is residing on the state X at time t, and has visited X
exactly n times (including the current visiting) since time zero. The transition of the pair

of random variable (N(t), X(t)) follows the unidirectional infinite Markov chain

(L, g)—>(1, y)—2>(l,0) —L>..(n, ) —>(n, y) —>(n,e)—L—.. (5.1
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Apparently, each state in this chain can only be reached by earlier states, but not
by later ones. For any pair of different states in the chain, there is a unique pathway
connecting them. The connecting pathway is not reversible, so that the two states
do not "communicate". This chain is reducible, and all states are transient because
each can only be visited by the transcription system once. See Allen (2003,

Chapters 2 and 5) for classification of Markov chains.

Define P, (t) = Prob{(N(t), X(t)) =(n,x)}, then P, (t) gives the probability
that the system is residing on the state X the n" time at time t, so is called transition
frequency probability. For instance, P, (t) is the probability that the system has remained
in the ground state since time zero, and B (t) is the probability that the system is
residing on excited state the first time. Because the system must reside on one and only
one state of the chain (5.1) at any given time t > 0, we have the conservation relations

i(an () + P, (t) + P () =1 forall t >0. (5.2)

We assume that the system is in the ground state at time t =0, and so maintains
the initial condition

P,(0)=1, B, (0)=PF,(0)=0,and R, (0)=F,(0)=PF,(0)=0 forn>1. (5.3)
Clearly B (1) = €™ because the transition (1,q)—=—(1, y) is exponentially distributed.

The rest of the transition frequency probability P, (t) satisfy the following master
equations which was derived by Tang (Tang 2008, 2010) following the same logic to

find B, (t) in Section 3.1:

dP, (1)

D= P (D)= AR, () (5.4)
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RO _

dt

AP,
M = _KP(nJrl)q(t) + ane(t)

dt

Using the initial condition (5.3), this system of master equations can be

ny (t) - 7Pne(t)

transformed into the iterative integration scheme (Hirsch, 2003)

t
P, (D) = k[ R (s)ds
0

t
P.()=2[€" "R, (s)ds
0

t
I:)(nJrl)q (t) = 7J. eK(S_t) Pne(S)dS .
0

Here's how (5.7) can be obtained from (5.4) and the condition B, (0) =0.

dP, (1)

dt = Kan (t) - ipny(t)

= B, (5)+ AP, (s) = kP, (S)

' s isq s . . . . (4s)
= P, (9)e” + R, (s)€”°1 = kP, (s)e” since multiplying both sides by €

=[P, (9€*] = kP, (s)e® since (U)'=uV+uw/

t t
= J‘[Pny(s)e’ls]'ds = jKan(S)eﬁ'st since integrating this equation over (0,t)
0 0

t
s=t
N Pny(s)e*SLO = [ kP (9)e™°ds
0

t
= P, (e - P, (0)e™ = [ xR, (s)e™ds
0
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t
= P, (t)e" = jKan(s)e‘sds since P, (0) =0 by (5.3)
0

t
=P, ()= ;cj e VP, (9)ds
0

Also (5.8) and (5.9) can be obtained from (5.5) and (5.6) similarly.

The integral forms (5.7)-(5.9) provide a straightforward iterative scheme for
finding all transition frequency probabilities P, (t) , starting from known formula
P, = e ™. For example, inserting P, = €™ into (5.7) and evaluating the integral,
we can find P, (t). By inserting B (t) into (5.8) we can find B, (1) ; continuing the
process iteratively we could obtain P, (t), P, (t), and so on.

Tang (Tang 2010) also suggested another way to compute P, (t). Here's the

summary of the computation method. Let

1 1 1

T o Y B R T B Y R P Py TR

E;(t)=x,e " +4,e ™ +ye .

Define master operator as
t
L(f(t) = myj E, (t—s)f(s)ds. (5.10)
0

The prominent property of the master operator L,
an(t) = L(Bn—l)x(t)) >
can be used to compute B, (t) . The expressions for B (1), B, (1), B.(1), P, (1),

P, (1), Pe(t), P(t) were given by Tang (2010) and Flemer et al. (2009) as follows:
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Py =€

K

o~ efl(’(_ef/lt K‘i/?/
R, =17_x' )

e K=A

Re(t) = &KAE, (1)
P () = KAy(K, te7™ + (i, + Ky )€™ — 4,6 —p,e7)
P, (1) = -’ Ay(K, te ™ + A,te ™ + Eyy (1) + 2k, 87 + 24,67 = 2y,,e77)
P.(t) = KA y(tE, (1) + 2E,, (1) + 2E,, (1))

Pe(t) = K27 (PE (/24 3(Ey, (1) + Eyy (1) + 3E, (1) + SE, (1) +3E, (1)
+ (2‘22’(‘31 + }/22’(13)e_’(t + (K222’13 + 7/222’31)6_;{t + (K22J/31 +ﬂ’22 7/13)6_?t
+ ZKII (/124 + }/33)e_Kt + 2/111(}/24 + ’(‘33)e_/1t + 2'}/11 (K24 + /133)e_7t
+ 2’(11 (133 + 7/42)e_"t + 21’[1 (7/33 + ’('42)e_/1t + 27/11 (K33 + 2‘42)e_}{)

Given below is the expressions for P, (t), P, (1) found by us using master
operator L :

P, (D) = kAy(x;, L(te™) + (K, + Ky)L(e™) — 4, Le™)- 7y L(e™))

Py () =~ Ay (16, L(te™) + (16, + 2 )L(€7™) + A, L(te ™) +
(Ao +2;)L(e7™) =27, L(€7)

Here, L(e™),L(e™), andL(e™) were shown by Tang (2010) as follows:
L(e™) = ~kAy(k, te™ + (K, + K, )€ = A, —y,e™)

L(e™) = kAy(A te™ + (A, + L,)e* —y,e7 — K, e™)

L(e™) = rdy(y te” + (¥, + 75" — Kk, -y, e7)

And the expression of L(te™™)and L(te™™) derived by us are as follows:
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L(teﬁm):K/?vV(%tzef"t—l—( A L e —( A +_ T

A-x y-k A-57  (y—x)

+ /211 e—ﬂt + Vi e—ﬁ
(A=) (y—x)’

L(te™)= KZ7(/11' t?e ™ +( K_”/i + }/7”/1) e ((K’i“;t)z + (75”/1)2 e

Kll — Kt 7/11 -
Yot o)

Here are the details to get L(te™)and L(te™"):

t
L(te™) = wd([ (x5, + 2,7 + 7,67 ) seds)
0

since E; (1) = k,e™" + 4,e

t
= K'/“/(j (Knse_xt + ﬂﬂse(ﬂ_ms_/h + 71136(7_K)S_7t)d5)
0

s=t

= ley(% s’e™

t t
+,e™ j se%ds + 7”e‘7‘f se'7"%ds)
0

s=0

= Kﬂ}/(K;; t’e™ +4,e —J'sde“’ S 4 y,6 7‘—jsde” %)

—K'//M/( 11 t2 —xt +211 (Se(ﬂ. K)S

J'e” “sds)

+7/11e ) 7/ (%(7_’()5

a

1 s=t
— Kﬂ}/( 11 t2 —xt +ﬂ“1 e (te(/l ot e(/l—rr)s )
—-K —-K s=0
1 1 s=t
+ }/lle_?t (te(}/—’()t _ e(}’_’()s ))
VK VK s=0
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1

— Kﬂy]/( 11 t2 —kt +/111e—/'{t 1 (te(ﬂ—lr)t _( (e(/'{—K')t _1))
A-K A

L@y
—-K

1
+7, 6" —— (e

K A A,
= KAy(=Lt2e ™ 1 et _ et _ —ﬂt
K7(2 © +/1—1(e (41— K‘) G-ny © )

+ 711 te—KI_ 71] (—Kt —}4))
VK (y-x)’

Kippoon A Vi v A y i
= iAy(— L t?e™ (D4 AL e M 1y 11 g™
AN 2 (/1—/( }/—K') ((/1—7()2 (7—/()2)

n A ze—/lt+ i Ze—;&)
(A-K) (y—x)

t
L(te ™) = xkAy(] (€™ + 2,679 + 7,67 ¥)se*ds) since

_ - -2
E,(1)=x,e ™+ 4,e"

ij

+y,e" and L(f(t) = K/ij E, (t—s)f(s)ds

t
= 1AY( j (1, e+ 4 57 + 7,587 ) ds)

ﬂ’ll 2 —ﬂt

t
= Kﬂ,}/(’(“e J.$(K—ﬂ)5ds-|- + +;/11e_ﬂJ. $(}’—1)st)

s=0

I I IO _
_ Kt (k—A)s 1 $2 At n (y-4)s
= kAy(k, e —K_l.([sde +—2 t'e” +y,€ —y_l.[sde )
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/1)5

_ — Kt 1 (K— (k-1)s /111 2 At
= kAy(k, e m(se J.e ds) + — 5 t'e

je” Ysds)) since ju(v) dx = uv| J‘(u)'vdx

a

s=t

1 1 y)
= kv e — (e glkAs LIREIN N
7(K, K—/i( 1 S=0) 5
1 a1 e
Y€t ——(te" P - ——e7 Y )
7=4 r=4

— K/i}/(l(lle_"t 1 (te(lc—/l)t _ 1 (e(zc—ﬂ)t _1)) + L 11 tZe—/lt
) K—A

1 1
+ efﬂ te(?”ﬂ)t _ e(}’*ﬂ)'[ _1
et —l »)

K A
— ﬂ 11 te—ﬂt —At —xt M1 tz —t
K’ﬂ;::z x ﬂ)( )+

ST S SV S ot
+———te" ————(e e’))
r=4 (y=4)

— K A 2 Y et K n 7u ot
= D e e
K - Vi )

+ 2 2
(k—2) (r=4)
The above formulae will be used in Chapter 6. The six transition frequency

probabilities, P, (t)- P, (), are graphed in Figure 5.1 for x =1/3, 4 =1/5, and

y=1/6.
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Figure 5.1 The plot of transition frequency probabilities B, (t)- P(t) .
5.2. Analytical properties of the transition frequencies probabilities

As shown by the examples discussed above, it is practically unfeasible to write
down all transition frequency probabilities P, (t) in exact form. Furthermore, even with
the exact form at hand, it is not adequate to work with it directly to explore its analytical
properties. For instance, it is a rather demanding elementary exercise to verify the simple

fact that P,,(0) = 0. We derive some of their important properties using the methods of
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mathematical analysis. And we summarize the mathematical properties of P, (t) in the

following section.

Theorem 5.2 Assume that the initial condition (5.2) holds, that is

P,(0)=1, B, (0)=R.(0)=0,and F,(0)=F, (0)=F(0)=0 for n>1.

Then we have:

(1) All transition frequency probabilities P, (1) are infinitely differentiable, and are
positive and strictly less than 1. They all approach zero as t — oo.

(2) Let j = j(n,X) indicates the position of the state (N, X) in the Markov chain

(LY —=(1, y)——=(1,8)—L>(2,) ——..(n, ) ——=(n,8) —L=>(n,q) — ...,

thatis, j(1,q)=1, j(I,y)=2, j(1,e) =3, and more generally
j(n,g)=3n-2, j(n,y)=3n—1,and j(n,e)=3n. (5.20)
Then the local behavior of P, (t) at t =0 is characterized by
P, (0)=P,(0)=..=PJ?0)=0, PJ™"(0)>0. (5.21)
and P ™ (0) = (kA ™", Py (0) = k"(A) ", RV (0) = (k)" (5.22)

(3) Let j >1. Then P,(t) has a unique positive critical point, called the peak instant of

the state (n,Xx) and denoted by T; or T,

 » Where it assumes its unique and absolute

maximum value. The peak instant T; =T, is an increasing function of | :
0=T,<T, <T<T); <..<T, <Ty <T <... (5.23)
(4) Let j >1. All transition frequency probabilities P (t) with j(1,X) > j(n, X) are

increasing for 0 <t < T

nx?

and all functions P (t) with j(,X)< j(n,X) are decreasing

for t>T,.
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We give a brief discussion of this theorem before the proof. Part (1) simply means

that P_(t) are well defined mathematically as probabilities. The vanishing asymptote
agrees with the basic fact that the state (N, X) is transient for any fixed n and X. By the
initial condition, B,(0) =1 and all other transition frequency probabilities P, (t) vanish
at t =0. As time goes on, B (t) decays and the value lost by B (t) is gained by the rest
of P, (t). For small t>0, it is expected that B, (t) should take up the most part, because
the transcription system has to arrive at excited state the first time before shifting to other
states in the Markov chain (5.1). This is justified by the fact that Pl'y(O) =kx>0,and
P.(0) =P, (0)=0 for all n> 1. The argument here can be generalized to each state
(n,Xx) and t > 0. Consider two states (n,X) and (N, X) with j(, X) > j(n, X), then we
expect that P (t) grows behind the growth of P, (t), and keeps growing even when

P, (t) reaches its maximum value at the peak instant. Parts (2)-(4) basically quantify this

observation mathematically.

To help us to further understand the above properties of P, (1), three transition
frequency probabilities P, (1), P, (1), and P, (t) are graphed in Figure 5.2 for kx =1/3,
A=1/5,and y =1/6. The three maximum values of P, (t) - P,,(t) are marked with

X . It is obvious that properties (1)-(3) are valid. To verify (4), we may note that these

transition frequency probabilities increase for te (0,T,,), and decrease for t>T,,.
Furthermore, P, (t) and P,(t) increase in (0,T, ), whereas P, (t) and P, (t) decrease

for t>T,,.
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Figure 5.2 The plot of transition frequency probabilities P, (t) - P, (t). The three
maximum values of P, (1) - P, (t) are marked with X . It is obvious that properties (1)-
(3) are valid. To verify (4), we may note that these functions increase for te (0,T,,), and
decrease for t > T,,. Furthermore, P, (t) and P, (t) increase in (0,T,,), whereas P, (t)

and P, (t) decrease for t>T,, .
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Parts of Theorem 5.2 were proved in Felmer et al. (2009) by an approach relying
on the theory of linear operators. The proof we present here is self-contained and uses
only elementary arguments.

Proof Theorem 5.2: (1)-1: show all transition frequency probabilities P, (t) are

infinitely differentiable and approaches zero as t —oo: By substituting B, (t) = e ™ into

t
(5.7), which is B, (t) = K‘J. e!ts P (S)ds, and evaluating the integral of (5.7) with n=1,
0

— it

we find that B (t) is a linear combination of e™,e™  and te™, as justified explicitly

by (5.11) which is

K

e—l(t_e—/lt K';t/l
P =17-x° "¢

e k=1

Continuing the process of substitution and integration for Equations (5.7)-(5.9), which are

t

P, ()= K‘J- e**VP (s)ds,
0
t

P.()=2[ &R, (s)ds,
0

t
and P.q(1) = 7] € P, (s)ds,
0

with increasing n we find that P, (t) can be expressed as a linear combination of t"e™,
t"e*, and t"e™ where i,, i,, and i, are non-negative integers. This is also supported

by the expression in (5.11)-(5.19). Since each of t"e™, t>e™* and t"e ™ is infinitely

differentiable and approaches zero as t —o0, so does P, (t).
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(1)-2: show all P, (t) are positive and strictly less than 1: Apparently,

t
PO = e >0 forall t>0. It follows from (5.7), which is Pyt = K.[ eﬂ(H)an(S)dS,
0

t

that B (t) >0, and in turn, from (5.8), which is P, (t) = /IJ- ey(s‘”Pny(S)ds, that B (t) >0
0

for all t> 0. Applying (5.7)-(5.9) iteratively we find that P (t) >0 as longas t >0.

From the conservation relation (5.2), which is Z P+ B, )+ P (t)=1 forall t>0,

n=1
itis clear thatP (t) <1 for t > 0.

(2) We prove (5.21) and (5.22) by induction on n. The proof makes use of the
initial condition (5.3) and the master equations (5.4)-(5.6) repeatedly, which are

P,(0)=1, B,(0)=PB.(0)=0,and P,,(0)=F,(0)=PF,(0)=0 for n>1,(5.3)

Fo® _ o ty-1p, 1), (54)
dt
dPne(t) — ﬂpny(t) _ 7Pne(t) , (55)
dt
ond dp(nalt)q(t) = kP10 (D) + P () (5.6)

(2)-1 Show (5.21) and (5.22) are true for n=1. To refresh our memory,

equations (5.21) and (5.22) are

Px(0)=Py(0)=..=R/?(0)=0,  R/(0)>0, (5.21)

and P;qi-”(O):(zc/w)("-“ PUD(0) = &"(Ay)™ ™, PUD(0) = (k)"y".  (5.22)

> ny > ne
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When n=1, | takes values I, 2, and 3. So we need to show that B,(0) =1 when j=1,
P,(0)=0 and F‘;'y(O) =k when j=2,and P (0)=0, P_,(0)=0, and P_(0)=Ax when
j=3.

P,(0) =1 is a part of the initial condition (5.3).

Ry(O) =0 is also a part of the initial condition (5.3).

F’l'y (0) = x because of the following argument:

dP, (1)
dt

= kB, (1) — AP, (1) by (5.4)

= R, (0)=xP,(0) - 2R, (0)

= B, (0) = xx1-Ax0=k since B, (0)=1 and P, (0)=0
P.(0) =0 is a part of the initial condition (5.3).

P.(0) =0 because of the following argument:

dP.(t) _ P
dt "

y () = 1R(1) by (5.5)
= Plve(o) = )l’F)ly(O) - 7'Ple(0)
= P,(0)=4Ax0-yx0=0 since B, (0)=0 and P,(0)=0

P.(0) = Ak because of the following argument:

% = AP, (1) = 1P (1) by (5.5)

= P(0) = AR, (0) - P (0)

= P,(0)=Ax—yx0= Ak since Pl'y(O) =k and P (0)=0.
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(2)-2 Assume that (5.21) and (5.22) are valid for n=m—1 and m> 1. It means
that when j(m-1,q) =3(m-1)-2=3m-35, P('m)q(O) = P('r'n_l)q(O) =.= P(fﬁf;;)(O) =0

and P(3m—6) (O) — (K'/l}/)(m_Z) ,

(m-1)q
when j(m-1,y)=3(m-1)-1=3m-4, P, (0)=P_, (0)=..=PR.7"(0)=0 and

Py (0) = &MV (Ay) ™, and

(m-1)y
when j(m-1,6) =3(m-1)=3m-3, P, .(0) =P, ,,(0)=...= PU""2(0) = 0 and
Pihe (0) = (&)™ y™2.

(2)-3 Prove that (5.21) and (5.22) are valid when n=m, m>1,and j=3m-2,

3m-1, and 3m. It means that we need to show that

when j(m,q) =3m-2, P (0)=P.,(0)=...=Py"*(0)=0 and PS™(0) = (xAy)™",
when j(m,y)=3m-1, B_(0)=PR, (0)=..=R,"(0)=0 and
PC™(0)=x™(Ay)™", and when j(me)=3m, P, (0)=P,(0)=..=Ry"?(0)=0

and PU™"(0) = (k)™ ™" . The details for the proof is given below:

(232 Show P,;]q(O) B P,;q(O) — T Prr(ém_4)(0) =0 when j = j(mg)=3m-2 and
(n,x) =(m, Q).
dRpeq (1)
% - _KP(n+1)q(t) + 7’Pne(t) by (5.6)

= P (0) = =&Pp, " (0) + P11} (0)
= P (0)=—xPS " (0) for 1<i<3m-4 and m>1 since P, .(0)=0 by initial

condition and R .

(0) =P 1e(0) = ... = RS2 (0) = 0 by the assumption for n=m-—1.
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= Py (0) =0 for 1<i<3m—4 and m>1 since P ,(0)=0, P (0)=0, ...,
PG "(0)=0 for 1<i<3m-4 and m>1.

As follows is the proof for P (0)=0, Pn'rlq 0)=0, ..., Pn(;”(O) =0 for
1<i<3m-4 and m>1:
P (0) =0 is due to initial condition.

Pry(0) =0 because of the following argument:

dP(n+1)q(t)
dt

(n+l)q(t) + 7Pne(t) by (5 6)
= PI’;’Q(O) = _Kqu(O) + 7’P(m—l)e(0)
= P,;u (0)=0 since RB,(0)=0 and P, ,,,(0)=0 for m>1 is a part of initial condition.

Prg(0) =0 because of the following argument:

dP(n+1)q (t)
dt

—KF 0 11)q (D) + 7R,(1) by (5.6)
= P (0) = —KPpg (0) + 1P 11e(0)
=P m(0) =—&x0+yx0 since P m(0) =0 proved above and B, , . =0 by the
assumption for n = m—1. Repeating this process until Prf,iq"”(O) =0 for i =3m-4 and
m>1.

(2)-3-b Show P((rfﬂ;;)(O) = (kAy)"™" when j = j(mqg)=3m-2, m>1,and

(n,X)=(mq).

dP(n+1)q (t)

dt ~KP 1y (D) + 7P (t) by (5.6)
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= P (0) = —&B " (0) + R (0)

m-1)e

= PU™(0) = —xPS™(0) + 7P (0)

m-1)e

= PG (0) = —Kx0+ BT (0) since P™(0) =0 proved in (2)-3-a

m-1)e

= P (0) = p(x)™V y'™? since BT (0) = (k4)™ " #'™ by the assumption for
n=m-1.
= P"(0) = (=Ap) ™"

(2)-3-c Show P, (0) = P (0) =... = PS™(0) = 0 when j = j(m y) =3m—1,

m>1,and (n,X) =(mM,y).

dP, (1)

dt = Kan (t) - ipny(t) by (54)

= B (0) = kRS (0)— APy (0)
= P (0)=&PS ™ (0) for 1<i<3m-3 and m>1 since
Pg(0) =P (0)=...= PL™*(0) = 0 proved in (2)-3-a
= Py (0)=0 for 1<i <3m-3 and m>1 since P, (0)=0, P, (0)=0, ..,
P$(0)=0 for 1<i<3m-3and m>1.
As follows is the proof for P (0)=0, Pr'ny(O) =0, .., Pn(;l)(O) =0 for

1<i<3m-3 and m>1:

P.,(0)=0 is due to the initial condition.

P,y (0) =0 because of the following argument:

dP, (1)

dt = Kan (t) - X’Pny (t) by (54)
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= P,T',y (0) = kP, (0) = AP, (0)

= Pr'ny(O) = Kk%x0-Ax0 since P,(0)=0 and P, (0)=0 for m>1 is a part of initial
condition.

= Pr'ny(O) =0

Pr;,y(O) =0 because of the following argument:

% = kP, (1) = AP, (1) by (5.4)

= P;V(O) = Kqu (0)— /1Pr;,y(0)

= P, (0)=xkx0-Ax0 since P, (0)=0 proved in section (2)-3-a and P, (0)=0

proved above. Repeating this process until PS™(0)=0 for i =3m-3 and m>1.
(2)-3-d Show PE™(0) = ™(Ay)™" when | = j(my)=3m=1, m>1, and

(n,x)=(my).

dP, (1)

dt = Kan (t) - ipny(t) by (54)

= P (0) = kP " (0)— AR5, (0)
= PE™(0) = kPS™(0) - P (0)
= PC™(0) = kPS™ (0) — yx 0 since P3"(0) =0 proved above in (2)-2-¢
= PS™(0) = x(xAy)™" since PS™(0) = (xk4y)™" proved above in (2)-2-b
= Py (0) = x"(4y) ™
(2)-3-¢ Show B(0) = P ,(0) =...= P"(0) =0 when j = j(me)=3m, m>1,

and (n,X)=(m,e).
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% = AP, () — 1Py (1) by (5.5)

= P (0)= AR, (0) /R (0)

me

= PY(0)=PU " (0) for 1<i<3m-2 and m>1 since
P,(0)=PR, (0)=..=R,"(0)=0 proved above in (2)-3-c
= PY(0)=0 for 1<i<3m-2 and m>1 since P, (0)=0, P, (0)=0, ...,
PUP(0)=0 for 1<i<3m-2 and m>1 .

As follows is the proof for P, (0)=0 , P, (0)=0, ..., PL"(0)=0 for
1<i<3m-2 and m>1:

P..(0)=0 is a part of initial condition.
P_(0) =0 because of the following argument:

% = AP, (1) = 1P (1) by (5.5)

= Pre(0) = &5, (0) = 7P (0)
= P_(0)=xXx0—yx0 since P (0)=0 and F,,(0)=0 is a part of initial condition.
=P_(0)=0

P"_(0) =0 because of the following argument:

dPe(t) _ o

ot y (D) = P (1) by (5.5)

= Pre(0) = AP, (0) — 7P (0)
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= P, (0)=Ax0-yx0=0 since B, (0)=0 proved above in section (2)-3-c and
P _(0) =0 proved above. Repeating this process until P{."(0)=0 for i =3m-2 and
m>1.

(2)-3-f Show PC™D(0) = (k1) y™" when j = j(me)=3m, m>1, and

(m-1)e

(n,X)=(m,e).

% = AP, (1) = 1Py (1) by (5.5)

= P (0) = ARy (0) = 7R (0)

= P (0) = APy (0) = R (0)

= PE™(0) = ARS™(0) - ¥ x 0 since Py?(0) =0 proved above in (2)-3-¢

= PE™(0) = Ak (Ap) ™" since P (0) = k™ (Ay)™ " proved above in (2)-3-d.
= P (0) = (k)" y™

(3) Show (5.23). To refresh our memory, (5.23) is as follows:

Let j > 1, then P_(t) has a unique positive critical point, called the peak instant of the

state (n,X) and denoted by T, or T,

- » Where it assumes its unique and absolute

maximum value. The peak instant T; =T, is an increasing function of j:
0=T,<T, <T<T); <..<T <Ty <Te <... (5.23)
We use mathematical induction to prove that the maximum value for each P (t)
is unique and T, , <T,. Here are the details for proof:

(3)-1 Show B, (t) has a unique maximum value at T =0 when j =1 and (n,X)=(1,Q).
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P, = e ™ is decreasing because F’I'q (t)=—xe ™ <0, so it take the only critical point 1
at T, =0.

(3)-2 Show B (t) has a unique maximum value at T, and 0 =T, <T, when
j=2and (n,x)=(1,Y).
Let T, be an arbitrary positive critical point of R, (1) so that F’l'y (T,) =0. We find that

F’ly (T,) < 0 because of the following argument:

:j— = kP, (t) — AR, (t) by master equation (5.4)

dP, (1)
t

= Ry(T,) = xR, (T,) - AP(T))

= P(T,) = #P,(T,) — Ax0 since P, (T,) =0 by assuming T, be an arbitrary positive

critical point of B (t).

= Pl;('ITZ) = KPl'q('ITZ) <0 since Pl'q('ITZ) = —kexp(—«T,) < 0.

Therefore, B, (t) must take a maximum value at T, because T, be an arbitrary positive

critical point of B (t) and P, (T,) <0 . And furthermore, there exists exactly one

positive critical point of B, (t) : If there were more, then B (t) should assume a

minimum value somewhere, i.e. B, (T,) =0 and B, (T,) >0 since T, is assumed to be

an arbitrary positive critical point of B (t). Ply (T,) > 0 contradicts Ply (T,) <0 showed

above. Thus P, (t) must take a unique maximum value at T,,ie. T, =T,.

Also we have 0 =T, <T, because B, (t) must take a unique maximum value at

T, and B (0) =0 by initial condition.
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Put all together, we have B, (1) has a unique maximum value at T, and
0=T,<T,.

(3)-3 Assume that P (t) has a unique positive critical point T, at which
P.(T,)<0 and T, , <T, when j(n,xX)=J >1. Then show P, (t) has a unique positive
critical point T,,, and T, <T,,, when j(n,X)=J+1>1.

Without loss of generality, we assume (N, X) =(Nn,q) when j=J for clarity of

presentation. That is we assume

Pn'q(TJ) =0, an (T,) <0, (5.24)
and (n,x) =(n,q) when j=J. We need to show B, (t) has a unique positive critical
point T;,, and T, <T,,, when j(n,y)=J+1>1.

(3)-3-a Define T,,, be the first positive critical point of P, (t) and show B, (t)
takes a maximum value at T,,,. Because T,,, is the first positive critical point of Py
Also P, (t) increases for small t>0 because P, (0) =P, (0)=...=PJ™?(0)=0 and

PU™(0)>0 (5.21). Then P, () takes a maximum value at T,

(3)-3-b Show T,,, >T,.

dP, (1)

p = kP, (1) = AP, (1) by master equation (5.4)

= &P, (T,,,)) = Py (T,,) + AP, (T,,)
= kP (Ty.) = Py (T,,,) + A%0 since P, (T,,;) =0 because T,,, is a positive critical

point of B (t).
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= KPr;q (T,,) = Pn"y('ITM) <0 because B, (1) takes a maximum value at T,,, proved
above in (3)-3-a.

= Pa(T3,) <0

=T,,, =T, because Py (D) takes the unique maximum value at T, by the assumption

for j(n,q)=1J
(3)-3-c Show that T,,, > T, can be strengthened to the strict inequality T,,, > T, .

If not, then T, =T, and P(t) and B, (1) take the maximum values at the same instant

dI:)ny (t) .
T,. We have v = kP, (t) — AP, (1) by master equation (5.4)

= Py (T)) = kP (Ty) = 4R, (Ty)

= Py (T,) = &Po (T,) = A(kPy (Ty) = AP, (T,)) since Py (T,) = &Py (T;) = APy (T;)

= Pny('FJ) = Kan (T,)—Ax0 since Pn'c| (T,)=0 and F’n'y (T,) =0 which is because we
assume that T, =T, and Py(D and B, (1) take the maximum values at the same
instant T .

= Pny('rJ ) <0 because we assume P,;;q (T,)<0 and (n,x)=(n,q) when j=J.

= P, (t) is decreasing near T, since f"(X)<0 implies f (X) is decreasing near X.

= P, (t)>0 for t <T, and close to T, because P, (T;) = &P, (T,)— AP, (T,) =0 by the
assumption that T,,, =T, and P (1) and B, (1) take the maximum values at the same

instant T, .
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= Pn'y(t) is increasing for t < T, and close to T, since f (X)> 0 implies f (X) is
increasing near X.

= P, (t)<0 when t<T and t is close to T since P, (T,)=0 by the assumption that
T,,=T, and P(t) and B, (1) take the maximum values at the same instant T, .
= P, (1) <0 when t<T,, and t is close to T,,, because we assume T,,; =T,. On the
other hand we have P, (t)>0 when t<T,, and t is close to T,,, because T,,, is defined
to be the first positive critical point of B, (t) and B, (1) takes a maximum value at T, -
Assuming T,,, =T, gives a contradiction, so T,,, >T, .

(3)-3-d Show B, (t) can have only one critical point. If B, (t) has more than one
critical point, and let S;,; be the smallest critical point of B, (t) such that S,,, > Tyus
then B, (t) should take a minimum value at S,,, because B, (t) takes a maximum value

at T,,, showed in (3)-3-a. It gives P, (S,,,) 20.

dP, (t
On the other hand, %() = kP, (t) — AP, (1) by master equation (5.4)

= Pl (Sy) = AP (Sp) = AP (Sy.1)

= Py(Sy,1) = kPyq(Sy,,) since Py (S;,) =0 because of P, () takes a critical value at
Sy,

= P, (S,,1) = kP, (S;,,) < 0 since P, (t) takes the unique maximum value at T;, and

S, >T5.
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= Pn"y(SJH) <0, which gives a contradiction. Therefore, B (t) can have only one

critical point.

Put 3)-3-a to 3)-3-d together, there is exactly one positive critical point of B, (t),

and T,,, =T,,,,and T,,, > T, . By mathematical induction, property (3) is established for
all j>1.

(4) This is an immediate consequence of (3).

Copyright © Yan Xie 2011
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Chapter 6
The Burst Frequency in the Three State Model

In this chapter, we define and compute the distribution of the burst frequency in
the Three State Model, then discuss the properties of the burst frequency. Finally, we
exemplify the mathematical results by the experimental data and simulation.
6.1 Thedistribution of the burst frequency in the Three State M odel

For each integer n> 0, we define P,(t) to be the probability that exactly n
transcription bursts have occurred during the time period (0,t], and call it the burst
frequency probability. It gives the likelihood of n transcription bursts in a period of
observation. It also give the likelihood of n transcript synthesis cycle in a period of
observation because one burst indicates one synthesis cycles . It can be used to compute
the percentage of cells with the given number of bursts or synthesis cycles within a cell

population. In particular, P,(t) is the probability that the system has not reached the
engaged state in (0,t] , which occurs if the system is in the ground state or the excited
state the first time at time t. In chapter 3, we obtained

A K i
e+ e, K#A
RO=11-x K—A

(1+kt)e™ k=4

3.1)

In general, let A, (t) denote the event that n transcription bursts have occurred

during the time interval (0,t]. Then

P,(t) = Prob{A, (1)} .
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Forn> 0, A (t) corresponds to the three transient states (n,e), (n+1,q) or (n+1,Y) in
the chain (5.1). Hence burst frequency probability P,(t) and the transition frequency
probability P, (1) are related by

P.() = B+ Boyg(O + By (O, n> 0. (6.1)

6.2. Analytical propertiesof the burst frequency probability in the Three State

M odel

The mathematical properties of transition frequency probabilities P, (t) are given

in the following Theorem:

Theorem 6.2 Assume that n 21 and the initial condition (5.3) holds, which is B,(0) =1,
F,(0)=P.(0)=0,and B,(0)=R, (0)=PF.0)=0 for n>1.
(1) All transition frequency probabilities P, (t) are infinitely differentiable, positive, and

strictly less than 1. They all approach zero as t — oo.

(2) The local behavior of P,(t) at t =0 is characterized by

P.(0)=P (0)=...=P""(0)=0, PC(0) = (k)" Y™ > 0. (6.2)
(3) P,(t) has a unique positive critical point, called the peak instant of n transcription
bursts and denoted by S,, where it takes its absolute maximum value. Furthermore

S >T,, (6.3)
where T, is the peak instant of the state (N, y).
To help us understand the properties of P,(t), three burst frequency probabilities

P,(t), P(t), and P,(t) are graphed in Figure 6.1 for x =5, A=1/5,and y =1/5.8.

The three maximum values of P, (t), P(t), and P,(t) are marked with X . It is obvious

57



that properties (1)-(3) are valid.

o
= — PO
----- P1
--------- P2
o _Max.
[an]
Jag
(']
o
=]
c
[1+] [in]
= o
o
(=
o
~
o
o
D‘ N T
o
S -
| | | | | | |
0 5 10 15 20 25 30

Time after diferentiatin (min), k=5 and A =1/5, and y=1/5.8

Figure 6.1 The plot of three bursting frequency probabilities P, (t), B (t), and P,(t).
The three maximum values of B, (t), B(t), and P,(t) are marked with X .

Proving Part (3) of theorem 6. 2 requires two technical lemmas (proof of theorem
6. 2 requires lemma 6.3 and proof of lemma 6.3 requires lemma 6.2). The lemmas are

given here, but the proof of lemmas is given immediately after we prove Theorem 6. 2.
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Lemma 6.2 Assume that n 21 and the initial condition (5.3) holds, which is B,(0) =1,
F,(0)=P.(0)=0,and B,(0)=PR,(0)=PF,(0)=0 for n>1, then

P <Py () and P, (t)>0 forall 0<t<T_, x=q,y,e

Lemma 6.3 Assume that the initial condition (5.3) holds and n=1. Then P, (t) and
P« (1) intersect exactly once over (0,0) . More precisely, there is a time S, > T,

such that

P, ()> P, (t) for 0<t<S,, P ()<P,., () for t>S,, (6.4)

n+)x
and
Poc(Si) < R (Si) - (6.5)
6.2.1 Proof of Theorem 6.2
(1) Show part (1), that is P,(t) are infinitely differentiable, positive, and strictly
less than 1. They all approach zero as t — oo

We know B, (t) =B.(1)+ R,,,),(D)+F,.,,,(1). Andall B, (t) are infinitely

n+l)y

differentiable and positive, and they all approach zero as t — co by Theorem 5.2. Also

Z PO+ P, () + P(t) =1 forall t >0 because of conservation relations (5.2). So we
n=1

have all functions P,(t) are infinitely differentiable, positive, and strictly less than 1.
They all approach zero as t — oo,

(2) Show part (2),i.e. P.(0)=P,(0)=...= P®"?(0) = 0 and
PV (0) = (k)" ™ > 0.

(0)+ PY)

(n+l)y

We can get P (0) = PV (0) + P

(n+1)q

(0) by differentiating
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P.(1) =Pt + P, O+ P, 1) (6.1). We also have j(n,e)=3n, j(n+1,q)=3n+1,
and j(n+1,y)=3n+2 by definition of j = j(n,X) given in (5.20) .

Ifi<3n-2 ,theni< j-2 for j(n,e), j(n+1,9),and j(n+1,y), so

P"(0)= P,f;)(O) + P((nill)q(O) + P((nill)y(O) =0 because the three derivatives H(;)(O) ,
P0),)q(0), and RS, (0) are all zeros by P, (0)=...= P{™(0)=0 in (5.21).

If i =3n-1, then P"(0)=PY(0)+ P!

(n+1)q

(0)+ R, (0)
=PRC"(0)+ PU ) (0)+ PU)(0)

(n+1)q (n+l)y

=PU(0)+ P50 (0)+ PUY (0) since j(n,e)-1=3n-1, j(n+1,g)—2=3n-1, and

j(n+1,y)-3=3n-1

=PU™(0) since R (0) and P (0) are both zeros due to
P.(0)=...=PU™?(0)=0 in (5.21)
= (&))" since PU™(0) = (k)" y"™" in (5.22)

(3) Show part (3), i.e. P,(t) has a unique positive critical point, called the peak
instant of n transcription bursts and denoted by S, where it takes its absolute maximum
value. Furthermore

S >T, (6.3)
where T is the peak instant of the state (n, y).
(3)-1 Show that B, (t) has a unique positive critical point, S, , where it takes its

absolute maximum value, and S, > T, (6.3) where T is the peak instant of the state

(n, y). Here are the details for the proof:
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Pr;(sny) = Pn'e(sny) + P('n+1)q(sny) + P(yn+l)y(Sny) Sil’lCG Pn (t) = Pne(t) + P(n+1)q(t) + P(n+1)y(t) .
= IDn' (Sny) = /’any(Sny) - }Pne(sny) - KP(nH)q(Sny) + Wne(sny)
+ KB 1)q(Sy) — AR 11, (S,) by master equations (5.4)-(5.6)

= Pn(sny) = ;i'Pny(Sny) - ﬂ’P(n+1)y(Sny)

Since B, (t)and R, (t) intersect exactly

P(S,) =0
"(Sy) onceatt=§ >T, by Lemma6.3

P"(S ) P (S.) P (S.)<0 Since Lemma 6.3 asserts that
= - <

ni-n n (n+1) , '

y y Sy AN Py (Sy) < AP0, (Sy)

= PB,(t) has a unique positive critical point S, , where it takes its absolute maximum
value. Furthermore, S, >T_ .

(3)-2 Let S, =S,,, then P, (t) has a unique positive critical point S, where it
takes its absolute maximum value. Furthermore, S, > T, .

We conjecture that S, < T, . Although it is similar to (6.3), we are unable to

(n+l)y

prove or disprove it by a similar argument. If it could be proved, then it would follow that
S, increases with n.

6.2.2 Proof of Lemma 6.2

Lemma 6.2 Assume that n > 1 and the initial condition (5.3) hold, which is B (0) =1,
F,(0)=P.(0)=0,and B,(0)=R,(0)=F,(0)=0, then
Poix (D) < Py () and P('nﬂ)x(t) >0 forall 0<t<T_,, X=0q,y,e

Proof of Lemma6.2: 1) Show F ), () <B,(t) for 0<t<T_.

t
Fomx( = K/i}/j E, (t—9)P,(s)ds by master operator
0
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t
L(f (1) = KAy [ E;, (t—5) f (5)ds (5.10) and P, (1) = L(R,, (1)
0
t t t
= Px(t) = myj E,,(S)P, (t—s)ds since j f(t- s)g(s)ds=_[ f(s)g(t—s)ds
0 0 0
t
= Proi(D) < K27 [ B, (9P, (DS for 0<t<T,, since E,, 20, B, (t) is strictly
0

increasing over (0,T.,) by part (3) of Theorem 5.2, and jﬂ f (x)dx <Jlz g(x)dx, a<b if
f(X)<g(x).
= P < l(/l}/]i E, (9P, (t)ds for 0<t<T,_ since Jt- f(s)ds< ]2 f (s)dswhen f(s)>0
0 0 0
over (0,0).

= Pk < an(t)mj E, (s)ds for 0<t<T,
0
= P(nﬂ)x(t) <P,(t) for 0<t<T, since K/i}/j E,,(s)ds=1, and the proof of
0

m;/j E, (s)ds=1 is in Tang, 2010.
0
2) Show P('nmx(t) >0 for n=21 and O0<t<T,.

t
Pax (D) = KAy .[ E, (t—s)P,(s)ds by master operator
0

L(f (1) = KAy [ E;, (t—9) f (5)ds (5.10) and P, (1) = L(R,,, (1)
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t t t
= Pruy() = K27 | E; (9)Py (t—9)0s since [ f(t—s)g()ds=] f(s)g(t-9)ds
0 0 0
. d 0
= P = (A7] B (9P (1 - 99
0
t
= P('n+l)x(t) = KAYE (HP, (t-1) + K/?'VJ. E“(S)%(an(t —S))ds since
0

(Ja(shds) =gt.h+ [ (g(s b)) ds

t
= Pl (t) 2 K27E,, (1) X0+ k¥ [ E, (S)P,,(t — 5)ds since P, (0)20 for n>1
0

by the initial condition B (0)=1, R, (0)=PF(0)=0, and

P, (0) = P, (0) = Po(0) = 0 for n>1.

t
= Pl (8) 2 K27 | E; ()P, (1~ 9)ds for n>1
0

t
= Plhux(t)>0 for n>1and 0<t<T_ since l(/i}/J- E, (S)P,(t—s)ds> 0 for
0

t

n=1and 0<t<T_, which is because j f(s)g(t—s)ds>0 aslongas f(s)g(t—s)>0,

0

and E, (S)>0 by definition of E,,(S) introduced in section 5.1, and P, (t—s)>0

because P, (1) is strictly increasing over (0,T.,) by part (3) of Theorem 5.2.
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6.2.3 Proof of Lemma 6.3

Lemma 6.3 Assume that n 21 and the initial condition (5.3) holds, which is B,(0) =1,
F,(0)=P.(0)=0,and B,(0)=R,(0)=P,(0)=0, then B, (t) and
Py (D) intersect exactly once over (0,0). More precisely, there is a time S, > T,

such that

Px(®) >R, () for 0<t<§,, B, 1) <R, 1) for t>§,, (6.4)

n+1)x

and

Po(S50) < P (Sh) - (6.5)

Proof of Lemma 6.3:

We prove Lemma 6.3 by induction on (0,0) in the order of chain

(L) —(1, y)—25(1,8) —L(2, ) —...(n, y) —2—>(n,e) ——>(n,q) —=
(5.1).

(1) Let (n,x) =(1,q), show B,(t) and P, (t) intersect exactly once over (0,).

More precisely, show there is a time S, >T,, such that B, (t) > P (t) for 0<t<S,,

Ra(t) < Py(t) for t>S,, and R (S,) < P,(Sy) -

t
KAy [ E, (t-9)P(s)ds
d P2q (t) _ 0
— (") =—( ) by master operator

dt xAP, () dt KPP, ()

L(f() = K/Wj E, (t—s)f(s)ds (5.10) and R, (1) = L(R, (1)

0 P g dEnt-9R(ds
(2

o (K/M/qu(t)) “ P, (D )
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jEn(smq(t—s)ds t :
OI( 2! )—E(0 ) since [ f(t-9)g(s)ds=| f(s)g(t-s)ds
~ kAP, (1) dt Pa(® 0 g

L4 P d [ EL(9R, (1P, (-5)ds

~ (l(ﬂ,;qu(t)) s P, (1)

) since

Ry(t—9) =™ = ™™ = B ()R, (-9)

d P, d
= (m ", 0 j E,.(9P,(-9)ds

Po(® | L od 3
( lyﬂq(t)) E, ()P, (~t) since dt_!f(s)ds— f(t)

Pa(®) )>0 since E(t)>0 and B (-t)>0

@ im® P (D

Pog (D) ) is a strictly increasing function

(1) and P, (t) intersect exactly once at §, over (0,c0) because B (0)=1 and
P,,(0) =0 by the initial condition (5.3)
= B, (1) > P, (1) for 0<t<S§,, B, (1) <Pt for t>3,, and P{'q(Sq) < Pz'q(Siq) .
Also S, >T, because P, (t) < P (t) forall 0<t<T, from Lemma 6.2, and
P, <R, () for t>3,, B,(t)>P, (1) for 0<t<S§, from argument above.
(2) Let (n,x) =(n,q), assume it's true that B, (t) and B, (1) intersect exactly

once over (0,e0). More precisely, there is a time S, > T such that B, (t)>F,.,,(t) for

0<t<S,, P,()<P, () fort>S,, and P,;q( J) < (n+1)q( S)-
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(3) Let (n,x) =(n,y), we need to show it is true that B, (t) and B, ., (1)
intersect exactly once over (0,0). More precisely, there is a time §,, > T, such that

P,()>P,., (1) for 0<t<S,, P,()<P,., (1) for t>S,, (6.4)

n+l)y

and
Py(Sy) <Py (Sy)- (6.5)

We define §,, as the smallest positive point where B, (t) and B, .,  (t) meet, then
show in sequential order that s, > T, , P .;,,(S,) > P,(s,), P, (t) and P (t) can

intersect only once over (0,e0) at s, , indeed 5, =S, , and B, (1) >R, () for

ny > n+l)y

0<t<S,, B,(D<PR

ny »

(t) fort>S, (6.4).

n+l)y
(3)'1 ShOW Sny > Tny and F{m—l)y(sny) > I:)r;y(sny) . We have I::m—l)y(sny) = I:)ny(sny)

because §,, denote the smallest positive point where B, (t) and R, (t) meet. Also by

n+l)y
Lemma 6.2.2, we have

Sy > Tny and Bn+1)y(t) < Pny(t) for O<t< Sy (6.6)
It follows that
Py (Sy) 2 Py (s,)- (6.7)

Next we show P’

ey (Sy) 2 P,;y(sny) can be strengthened to the strict inequality

Py (Sy) > Py (S,) because assuming P, (s,) = P, (s,) can lead to contradiction:
F{n-%—l)y(sny) = Pr';y(%y)

= P('nmy(sny) = kP, (s,) — 4P, (s, ) since Pn'y(sqy) = kP, (s,) — 1P, (s,,) by equation

(5.4).
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KPq(Sry) = Pnsnyy (Sy) + APy (S;,)
P (Sy) = Py (Sy) + ARy (Sy) since Ry, (s,) =Py, (s,) because s, is the
point where B, (t) and R, (1) meet.
KP(Sy) = KPnung(Sy) SINCE KP4 (Syy) = Py (Sy) + APy (S,,) because of
Rty (Sy) = KRniiya(Sy) = ARy (S, ) by equation (5.4).

P,() and R (t)also meetat s .

(n+1)q
= 3, =5, and P, q(Sy) < (n+l)q(sny) since we assume that B, (t) and F,,, (1)
intersect exactly once over (0, ). More precisely, we assume that there is a time
an >an such that P, (t) > (n+1)q(t) for 0<t<S s (t) < q(t) for t> an, and
Pra(Sia) < P (Sig)-

1P (Shy) < KRy (Sry)

AP (Siy) = APy (Sy) < K)o (Siy) = APy (S1)

KPa(Shy) = ARy (Syy) < KR i1)q(Sy) = ARy (S,,) since we
assume P, .., (s,) = P, (s,,) above
= Py (Sy) < Ry (Sy) since By(s,) = kRq(Sy ) — AR, (s,) and

Py (Sy) = &P q(Sy) — AR, (S,,) by equation (5.4).

Py (Siy) = Py (Syy) <0

Py (D) — R, (1) takes a maximum value at t = S, because we assume that

Py (Sy) = Py (S,,) above. And this maximum value is zero since P, (t) and R, (t)

67



meet at t =, by our definition of 5,
Py () — By (H) <0 for some t<s, , leading to a contradiction of R, (1) <P, (t)
for 0<t<s, in (6.6).
Taken together, we prove that P('M)y(shy) > Pn'y(sqy) .

(3)-2 Weneed B, (s,) < R,.4(S,) toshow B, (1) and R, (1) can intersect

(n+l)y

only once over (0,o0) at S, . So we prove it first. Here are the details for the proof:

Py (Sy) = &P (Sy) — APy (S,) by equation (5.4)
= kP (Spy ) = Py (Sy) + AP, (Sy)
KPyq(Sy) < Py (Sy) + ARy (S,) for s, > T, since R\, (S,) > Py(S,) proved in
(3)-1.
KPoa(Sy) < Py (Sy) + ARnuy(Sy) for s, >T since B, (s,) = Ry (s,) because

S, 18 the point where B, (t) and B, () meet.

(n+1)y
KPq(Sy) < KRnnq(Syy) for s, > T, since Ry () + ARy (Sy) = KRng(S,)
because of P(In+l)y(S"|y) KB (Sy) = APy (Syy) in equation (5.4)
= Fa(Sy) < Faing(Sy) for 8, >Ty, (6.8)
(3)-3 Show B, (t) and R, .,  (t) can intersect only once over (0,) at s,

indeed s,, = §, . Suppose for contradiction that B, (t) and B, (t) intersect more than

(n+l)y

once. Then we can find a time t,, > S such that

(t) < (n+1)y(t) for Sny <t<tny: and P (tny) (n+1)y(tny) (69)

It follows that P, y(ty) =P (n+1)y(tny) . We show both P (tny) (n+1)y(tny) and
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P& (ty)> P('n+l)y(tny) could lead to contradiction in the following sections.
First, show P, y(ty) = (nﬂ)y(tny) can lead to contradiction: (tny) (nﬂ)y(tny)
KPR () = AR (1) = Ry () since By (t,) = &Py (t, ) — AR, (t,,) by equation (5.4).
KPRy (L) = By (L) + AR, (8,

(tny) (n+1)y(tny) + 2’ (n+1)y(tny) Sil’lCC I:zn+1)y(tny) = R’ny (tny) by assuming that R]y(t)

and B, (1) also intersect at t, in (6.9)

(n+l)y
(tny) (n+])q(tny) since (n+l)q(tny) - (n+1)y(tny) + AP (n+1)y(tny) because of

(n+1)y(tny) (n+])q(tny) 2’ (n+1)y(tny) iIl equation (54)

P and R . (t) also meet at t, , which contradicts our assumption that B, (t) and

(n+1)q ny >

Fosi)g(t) intersect uniquely at S, in section (2).

Second, show R;y(tny) > P('nﬂ)y(tny) can lead to contradiction. If
(tny) > (n+1)y(tny) , we can have &P, (t, ) > xF,,,,(t,) by similar argument to above.

Combining with B, (s,) < F,.,)4(S,) (6.8), it implies that B, (t) and R, (1) intersect

(n+1)q

at least one time in the interval (S,,,t,, ), again leading to a contradiction to our

assumption that B, (t) and B, ., () intersect uniquely at S, in section (2).

(n+1)q

Put all together, we prove that B, (t) and P (t) intersect exactly once, and

(n+l)y
indeed s, =S, .
(3)-4 Show B, (t)> R, (1) for 0<t<S,, B ()<R,,,, (1) fort>§, (64).

We have proved B, (t) and B, (t) intersect exactly once at S, . Combing it with

(n+l)y

69



Py >R, O for 0<t<T from Lemma 6.2, we have B, (t)>F,,, (1) for

n+l)y n+l)y

0<t<S,, By(D<R

ny >

(t) for t>§,,and § >T,.

n+l)y
Put (1) to (3)-4 together, we prove Lemma 3 by induction.
6.3 Examplefor burst frequency probability in the Three State Model

In this section we demonstrate how the functions P, (t) could be used to estimate

the frequency of gene transcription in eukaryotes by the transcription of an endogenous
developmental gene dscA in the social amoeba Dictyostelium studied by Chubb et al.
(2006). The detection system is similar to that of Golding et al. (2005), which followed
the approach pioneered by Singer and colleagues (Bertrand et al., 1998). In the system,
twenty-four MS2 stem loops were integrated at 6 bp downstream of the ATG start codon
of the dscA gene. Upon transcription, the MS2 stem loops were read into nascent RNA
and detected as a well-resolved fluorescent nuclear spot at the site of transcription, by the
rapid binding of MS2-GFP stably expressed in the cells.

The number of transcriptional bursts of the dSCA gene was directly counted during
each 30 min capture period by Chubb and his colleagues, which enabled them to
calculate accurately the percentage of the cells with given number of bursts.

This percentage of the cells with given number of bursts can be estimated by the

following equation:

Pn (t) — Pne(t) + P(n+l)q(t) +P(n+l)y(t)
1-P,(t) 1-P,(t)

p,(t)= , >0, (6.7)

Here, P, (t) equals the probability that exactly n transcriptional bursts have occurred

since time zero. Py(t) is portion of silent cells. We also know Z P,(t) =1 due to
n=0
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conservation property (5.2). Hence the percentage of the cells that have 3 or more bursts

among expressed cellsin (0,t) is given by

I-RO-RO-RO _, RO+RD

I=R(® I-R(® ©9

Prs3 =

Our estimated percentages of the cells among all expressing cells with 1,
2, or 3 and more transcriptional bursts within the first 30 min are 8%, 27% and 65%,
respectively, assuming that ¥ =1/5.8 min™', x =5min™', and A =1/5 min™'. They are
close to the measured data of Chubb et al. (2006), where these values were estimated as
about 12%, 26% and 62% respectively, even though they did not exactly match.

The percentage of the cells with 1, 2, and 3 and plus transitional bursts ( p, (1),
p,(t) and p,.;(t)) based on our model were graphed in Figure 6.2. As shown in Figure
6.2, p,(t) increases for a short time period (not shown in the Figure 6.2) and then
decreases, p,(t) increases in the first 19 min, and then decreases. Although p,.;(t)
keeps increasing in the time frame of the graph, it decreases sometime later. We took
y~' =5.8 min, k' + A"'=5.2 min since the mean durations of gene on and off periods

were estimated to be 5.8 min and 5.2 min, respectively. Although no further information
is currently available to estimate X and A separately, we assume that X is much bigger
than A, because HL5 media was added at optimal amounts and the promoter was

observed to be fully activated when the data were collected. This consideration suggests

us to take k=5 min~' and A =1/5 min™" in our simulation.
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1.0

0.8

The percentage of cells with 1, 2, or 3 and more bursts
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Time after differentiation (min), k=5 and A =1/5, and y=1/5.8

Figure 6.2 The percentages of the cells with 1, 2, or 3 and more transcriptional bursts

during the time period (0,t). Here p,(t), p,(t) and p.,;(t) give the percentages of the
cells with 1, 2, or 3 and more transcriptional bursts during the time period (0,t), among
the expressing cells only. p,(t) increases for a short time period (not shown in the Fig.)
and then decreases. p,(t) increases in the first 19 min, and then decreases. Although

P..;(t) keeps increasing in the time frame of the graph, it decreases sometime later. The
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percentages of cells with 1, 2, or 3 and more transcriptional bursts within the first 30 min
are 8%, 27% and 65%, respectively.

Our simulation suggests considerably more cells with multiple transcriptional
bursts. It is unclear what caused the slight discrepancy. We offer two arguments here, not
necessarily exclusive each other. First, the induction signals were not stably applied, and
so x needed to be replaced by a time and space dependent function. Second, and more
directly, the measurement of the durations in gene on and off periods could artificially cut
off some transcriptional activities, because the gene activities were monitored within 30
min blindly captured periods in different developmental stages of a total of 5 hours.
Therefore, the real durations could be substantially longer, and the values x, A, and

y could be much less. When smaller values of x, A, and y are substituted, the number

of cells with multiple bursts will decrease, and the number of cells with only one burst
will increase. This could yield a robust fit with the experimental data by the same
simulation procedure.

We focus on this time period of 30 minutes for two reasons: First, when gene
activities were imaged by fluorescent microscopy, fields of cells were blind-captured
every 2.5 min for a total of 30 min during different developmental stages (Chubb et al.,
2006). Second, the proportion of cells with detectable transcription elevated from zero
during the first 30 min of differentiation, suggesting that the initial condition (5.3),

F,(0)=1,and P, (0) =0 otherwise, can be used. (For studies in other 30 min capture

periods, (5.3) needs to be changed appropriately). The choice of x here is not
experimentally supported. Indeed, as suggested by the discussion above and further

emphasized below, it is more appropriate to treat x as a function of time and the spatial
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variables. In this case, (5.2) and (5.3) remain the same, but P, (1) is obtained by more

advanced techniques not covered in the current study.

We note that the Three State Model not only supports the existence of
transcriptional bursts, but also predicts other types of transcriptional dynamics. A
transcriptional burst is characterized by the production of many transcripts in a quick
succession after a unambiguous period of zero transcription. It occurs if (i) the average
duration of gene off period &' + A4 'and the average duration of gene on period 7' are
within a reasonable range, neither too small nor too large; and (ii) when the promoter is
on the engaged state, mRNA is produced efficiently. These conditions were fulfilled by
the examples discussed in this Section. If ™' + 4™ is very small, then there are only
brief off periods and transcripts can be produced in a nearly continuous fashion. The
same could occur if 7' is very small. If condition (ii) does not hold, then either there can
be few mRNA synthesized, or the elongation activity is repeatedly interrupted. In the
first case, there could be insufficient amounts of transcripts to display a burst; in the
latter case, the elongation interruption could generate several "pseudo-bursts" within
one round of engaged state. The distribution of the "pseudo-bursts" may not follow

an exponential decay and its average duration could be much less than 7.

Copyright © Yan Xie 2011
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Chapter 7
Conclusion and Future Work

In this chapter, | summarize our conclusions and propose future related work.
7.1 Conclusion

The analysis reveals that no promoters will be definitely turned on to transcribe
within a finite time period, no matter how strong the induction signals, or how abundant
the activators. Although stronger extrinsic signals could enhance promoter activation rate,
there's an upper limit that no signals could cross over it in a finite time. Consequently,
among a large population of isogenic cells, only a portion of the cells, but not the whole
population, could be induced by environmental signals to express a particular gene within
a finite time period.

We prove that the gene on duration follows an exponential distribution, and the
gene off intervals show a local maximum that is best described by assuming two
sequential exponential process.

The transition frequencies are determined by a system of stochastic differential
equations, or equivalently, an iterative scheme of integral operators. We prove that for
each positive integer n, there associates a unique time, called the peak instant, at which
the system is residing on the state N™ time since time zero most likely. These moments
constitute a time series preserving the nature order of n.

A transcriptional burst indicates a transcript synthesis cycle. We prove that for
each positive integer N, there associates a unique time, called the peak instant, at which
the N transcript synthesis cycle proceeds most likely. These moments constitute a time

series preserving the nature order of n.
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7.2 Futurework

If the expression profile of the gene is sensitive to stress or developmental signals,
then the induction strength x may inherit the heterogeneity of the signal distribution
in time and space. The transcription of the developmental gene dsCA in the social
amoeba provides a convincing example (Chubb et al., 2006): The histogram depicting
the percentage of expressing cells during a period of more than 5 hours fits into an
oscillatory curve, which is dramatically distinct from the growth curve predicted by
the Three State Model for a constant x . The observation that expressing cells were
more frequently seen in clusters further indicates that induction signals have a
inhomogeneous spatial distribution (Chubb et al., 2006). To gain a better understanding
of the global stochastic dynamics in this case, we need a more detailed understanding of
the signal transduction pathways impinging on the transcription system. The induction
strength x becomes a function of time and spatial variables, and the corresponding
theoretical study requires integration of partial differential equations, which might be one
topic of our future study.

In contrast, we take A and ¥ as constants because they are mostly determined by
the biochemical property of the gene promoter, the TF, and the basal transcription
machinery. These properties may not differ significantly from cell to cell. We define the
pair (A, y) as the transcription mode associated with the system. For most synthetic
reporter gene constructs and many genes in prokaryotic cells or simple eukaryotes, we
hypothesize that this mode could be evolutionary conserved and would not vary notably

among cells of closely related organisms. In general, if a gene has multiple binding sites
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in the core promoter region, and each site is targeted by one or several types of
transcription factors with considerably different functions, then it could correspond to a
discrete set of different modes. If this is the case, the transcription system may transit
among a cluster of functional states bifurcating from the same ground state. The
treatment of this case relies on a nontrivial extension of the Three State Model, whose

technical steps will be presented in our future work.

Copyright © Yan Xie 2011
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Appendix
R Code for Figures

TR R R R R R T R T

## Figure 3.1, Probability of zero transcriptions since induction (fraction of cells
having no tagged RNA (P0) as a function of time after induction t).
R

k=1/5

m=1/32

t=c(1:100)

Pz=(m/(m-k))*exp(-k*t)+(k/(k-m))*exp(-m*t)

Pzz=log(Pz)

Pgolding=-0.14%*t

plot(t, Pzz, type="1", col = "black", lwd=2,

xlab = "Time after induction (min), k=1/5 and A =1/32", ylab = "In(P0(t))")
text(10,-0.3,"+');text(20,-0.7,'+');text(30,-1.05,'+");text(40,-1.4,'+");text(50,-
1.85,+");text(60,-1.5,'+');text(80,-1.85,"+");text(100,-2.25,'+")

text(15,-0.625,'0"); text(30,-0.8,'0"); text(45,-1.25,'0"); text(60,-1.625,'0"); text(90,-
2.3,'0")

lines(t, Pgolding, Ity = 2, lwd=2, lheight=1)

HHHHHHHHHH

## Figure 4.1, Plot of duration of gene off period versus density distribution f (t).

HHHEH I I I IR IR B

k=70

la=0.7

t=c(0:30)

Poff=k*1a/(1a-k)*(exp(-k*t)-exp(-la*t))

plot(t, Poff, type="1", col =" black", lwd=2, xlab = "Duration of gene off period in
arbitrary unit", ylab = "Density distribution")

Poff02 20=.20*20/(20-.2)*(exp(-.2*t)-exp(-20*t))

Poff03 04=.3*.4/(.4-.3)*(exp(-.3*t)-exp(-.4*t))

Poftf05=.05"2*t*exp(.05*t)

lines(t, Poff02 20, Ity = 2, lwd=2, lheight=1)

lines(t, Poff03 04, Ity = 3, Iwd=2, lheight=1)

lines(t, Poff05, Ity = 4, lwd=2, lheight=1)

legend("topright", c("k=70 >> A=0.7", "k=0.2 << A=20", "k is close to A, k=0.3 and
A=0.4", "k=A=0.5"), Ity=1:4, lwd=2)

R

## Figure 4.2, Plot of duration of gene off period versus logarithm of density distribution

log(f (1))
HHHHEHHHHHH
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IPoff=log(Poff)

1Poff02 20=log( Poff02 20)

1Poff03 04= log(Poff03 04)

1Poff05= log(Poff05)

plot(t, IPoff, type="1", col =" black", lwd=2, xlab = "Duration of gene off period in
arbitrary unit", ylab = "Logarithm of Density distribution")

lines(t, [Poff02 20, Ity = 2, Iwd=2, lheight=1)

lines(t, IPoft03 04, Ity = 3, lwd=2, lheight=1)

lines(t, [Poff05, Ity = 4, lwd=2, lheight=1)

legend("bottomleft", c("x=70 >> A=0.7", "k=0.2 <<A=20", "k is close to A, k=0.3 and
A=04", "k=A=0.5"), Ity=1:4, lwd=2)

HHHHHHHHHH

## Figure 5.1, The plot of transition frequency probabilities B, (1) - P, (1) .

A
k=1/3; la=1/5; g=1/6

t=c(0:50)

# define kij;
k11=1/((k-1a)*(k-g))

k12=1/( (k-la)*((k-g)"2) )
k13=1/( (k-la)*((k-g)"3) )
k21=1/( ((k-la)*2)*(k-g) )
k22=1/( ((k-la)*2)*((k-g)"2) )
k23=1/( ((k-la)"2)*((k-g)"3) )
k24=1/( ((k-la)*2)*((k-g)*4) )
k31=1/( ((k-la)*3)*(k-g) )
k32=1/( ((k-la)"3)*((k-g)"2) )
k33=1/( ((k-la)"3)*((k-g)"3) )
k34=1/( ((k-la)"3)*((k-g)"4) )
k35=1/( ((k-la)"3)*((k-g)"5) )
k42=1/( ((k-la)*4)*((k-g)"2) )
k43=1/( ((k-la)*4)*((k-g)"3) )
k44=1/( ((k-la)*)*((k-g)*4) )
k53=1/( ((k-la)"5)*((k-g)"3) )
# define lamdaij;

la11=1/( (la-g)*(1a-k) )
la12=1/( (la-g)*((la-k)"2) )
la13=1/( (la-g)*((la-k)*3) )
la21=1/( ((la-g)*2)*(la-k) )
1a22=1/( ((la-g)"2)*((la-k)"2) )
1a23=1/( ((la-g)"2)*((1a-k)"3) )
1a24=1/( ((la-g)"2)*((la-k)"4) )
la31=1/( ((la-g)*3)*(la-k) )
1a32=1/( ((la-g)"3)*((la-k)"2) )
1a33=1/( ((la-g)"3)*((1a-k)"3) )
la34=1/( ((la-g)"3)*((la-k)"4) )
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1a35=1/( ((la-g)"3)*((la-k)"5) )

la42=1/( ((la-g)"4)*((1a-k)"2) )

1a43=1/( ((la-g)"4)*((la-k)"3) )

la44=1/( ((la-g)"4)*((1a-k)"4) )

1a53=1/( ((la-g)"5)*((1la-k)"3) )

# define gamaij;

gl1=1/( (g-k)*(g-la) )

gl2=1/((g-k)*((g-la)"2) )

g13=1/( (g-k)*((g-la)"3) )

g21=1/(((g-k)"2)*( g-la) )

222=1/( ((g-k)"2)*(( g-1a)"2))

g23=1/(((g-k)"2)*(( g-la)"3))

224=1/( ((g-k)"2)*(( g-la)™4))

g31=1/(((g-k)"3)*( g-la))

232=1/( ((g-k)"3)*(( g-1a)"2))

g33=1/(((g-k)"3)*(( g-la)"3))

234=1/( ((g-k)"3)*(( g-la)™4))

g35=1/(((g-k)"3)*(( g-la)"5))

e42=1/( ((g-k)4)*(( g-1a)"2))

g43=1/(((g-k)*H*(( g-la)"3))

edd=1/( ((g-k)4)*(( g-la)™4))

g53=1/(((g-k)"*35)*(( g-1a)"3))

# define eij;

el 1=kl T*exp(-k*t)+lal1*exp(-la*t)+gl1*exp(-g*t)
e22=k22*exp(-k*t)+la22*exp(-la*t)+g22*exp(-g*t)
e23=k23*exp(-k*t)+la23*exp(-la*t)+g23*exp(-g*t)
e32=k32*exp(-k*t)+la32*exp(-la*t)+g32*exp(-g*t)

e33= k33*exp(-k*t)+la33*exp(-la*t)+g33*exp(-g*t)

e34= k34*exp(-k*t)+la34*exp(-la*t)+g34*exp(-g*t)

e43= kd3*exp(-k*t)+lad3*exp(-la*t)+g43*exp(-g*t)
e35=k35*exp(-k*t)+la35*exp(-la*t)+g35*exp(-g*t)

ed4= kdd*exp(-k*t)+lad4*exp(-la*t)+gd4d*exp(-g*t)
e53=k53*exp(-k*t)+laS3*exp(-la*t)+g53*exp(-g*t)

#get plg-p2e;

plg=exp(-k*t)

ply=k/(la-k)*(exp(-k*t)-exp(-la*t))

ple=k*la*ell

p2g=k*la*g*(k11*t*exp(-k*t) +(k12+k21)*exp(-k*t)-lal2*exp(-la*t)-g2 1 *exp(-g*t))
p2y=-(k"2)*la*g*(k21*t*exp(-k*t) +tlal2*t*exp(-la*t)+e22+2*k31*exp(-
k*t)+2*lal3*exp(-la*t)- 2*g22*exp(-g*t))
p2e=(k"2)*(1a"2)*g*((t*e22+2*e23+2%e32))

# get p3q, p3y and p3e
Ik=k*la*g*(k11*t*exp(-k*t)+(k12+k21)*exp(-k*t)-lal2*exp(-la*t)-g21*exp(-g*t))
lg= k*la*g*(gl 1 *t*exp(-g*t)+(g12+g21)*exp(-g*t)-k12*exp(-k*t)-la2 1 ¥*exp(-la*t))
lla= k*la*g*(lal 1 *t*exp(-la*t)+(lal2+la21)*exp(-la*t)-gl2*exp(-g*t)-k2 1 *exp(-k*t))
Itk= k*la*g*(k11/2*(t"2)*exp(-k*t)+
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(lal1/(la-k)+g11/(g-k))*t*exp(-k*t)-
(la11/(la-k)"2+g11/(g-k)"2)*exp(-k*t) +lal1/(la-k)*2*exp(-la*t)+g11/(g-k)"2*exp(-g*t))
Itla=k*1a*g*(lal1/2*(t"2)*exp(-la*t)+
(k11/(k-la)+gl1/(g-1a))*t*exp(-la*t)-
(k11/(k-la)y*2+gl1/(g-la)*2)*exp(-la*t) +k11/(k-la)*2*exp(-k*t)+gl1/(g-1a)*2*exp(-g*t))
p3g=k*la*g*(k11*Itk+(k12+k21)*1k-lal12*1la-g21*Ig)
p3y=-k"2*la*g*(k21*1tk+(k22+2*k31)*1k
+lal2*1tla+(1a22+2*1al3)*1la-g22*1g)
p3e=k"3*1a"3*g"2%(
t"2*e33/2+3*t*(e34+e43)+3*e35+5%e44+3%e53
+(1a22*k31+g22*k13)*exp(-k*t)+(k22*1al3+g22*la31)*exp(-la*t)+
(k22*g31+1a22*g13)*exp(-g*t)
+2*k11*(1a24+g33)*exp(-k*t)+2*lal 1*(g24+k33)*exp(-la*t)+
2*g11*(k24+1a33)*exp(-g*t)
+2*k11*(1a33+g42)*exp(-k*t)+2*1al 1*(g33+k42)*exp(-la*t)+
2*g11*(k33+1ad42)*exp(-g*t))
# plot;
plot(t, p3e, ylim=c(0,1.1), type="1", Ity = 1, col = 1, Iwd=2,
xlab = "Time in arbitrary unit, k=1/3 and A =1/5, and y=1/6", ylab = "The probability
functions Pnx(t)")
lines(t, p3y, col =2, Ity =2, lwd=2, lheight=1)
lines(t, p3q, col =3, Ity = 3, Iwd=2, lheight=1)
lines(t, p2e, col =4, Ity = 4, Iwd=2, lheight=1)
lines(t, p2y, col =5, Ity = 5, Iwd=2, lheight=1)
lines(t, p2q, col =6, Ity = 6, lwd=2, lheight=1)
lines(t, ple, col =7, Ity = 7, lwd=2, lheight=1)
lines(t, ply, col =8, Ity = 8, lwd=2, lheight=1)
lines(t, plq, col =9, Ity =9, lwd=2, lheight=1)
legend("topright", c("P3e(t)", "P3y(t)", "P3q(t)", "P2e(t)",
"P2y(t)", " P2q(t)" ,"Ple(t)", " P1ly(t)", " P1q(t)"), lty=1:9,co0l=1:9, lwd=2)

HHEH R

## Figure 5.2, The plot of transition frequency probabilities P, (t) - P (1).

T R R R R T R T
k=1/3; la=1/5; g=1/6
t=c(0:50)

# define kij;
k11=1/((k-1a)*(k-g))

k12=1/( (k-la)*((k-g)*2) )
k21=1/( ((k-la)*2)*(k-g) )
k22=1/( ((k-1a)*2)*((k-g)"2) )
k23=1/( ((k-la)*2)*((k-g)"3) )
k31=1/( ((k-1a)*3)*(k-g) )
k32=1/( ((k-1a)"3)*((k-g)*2) )
# define lamdaij;
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la12=1/( (la-g)*((la-k)*2) )

la13=1/( (la-g)*((la-k)"3) )

1a22=1/( ((la-g)"2)*((la-k)"2) )

1a23=1/( ((la-g)"2)*((1a-k)"3) )

1a32=1/( ((la-g)"3)*((la-k)"2) )

# define gamaij;

g13=1/( (g-k)*(z-1a)"3) )

g21=1/(((g-k)*2)*( g-la) )

£22=1/( ((2-k)"2)*(( g-1a)"2))

g23=1/(((g-k)"2)*(( g-la)"3))

£32=1/( ((g-K)"3)*(( g-1a)"2))

# define eij;

e22=k22*exp(-k*t)+la22*exp(-la*t)+g22*exp(-g*t)
e23=k23*exp(-k*t)+la23*exp(-la*t)+g23*exp(-g*t)
e32=k32*exp(-k*t)+la32*exp(-la*t)+g32*exp(-g*t)

# get p2q-p2e;

p2g=k*la*g* (k1 1*t*exp(-k*t) +(k12+k21)*exp(-k*t)-lal2*exp(-la*t)-g2 1 *exp(-g*t))
p2y=-(k"2)*la*g*(k21*t*exp(-k*t) +lal2*t*exp(-la*t)+e22+2*k31*exp(-
k*t)+2*lal3*exp(-la*t)- 2*g22*exp(-g*t))
p2e=(k"2)*(1a"2)*g*((t*e22+2*e23+2*e32))

# plot;

plot(t, p2e, ylim=c(0,0.25),type="1", Ity = 3, col = "black", lwd=2,

xlab = "Time in arbitrary unit, k=1/3 and A =1/5, and y=1/6", ylab = "The three
probability functions P2x(t)")
text(10,0.1656,'Max.");text(16,0.228,'Max.");text(22,0.2307,'Max.")
text(12,0.1566,'X");text(17,0.219,'X");text(23,0.2217,'X")

lines(t, p2q, col = "black", Ity = 1, Iwd=2, lheight=1)

lines(t, p2y, col = "black",Ity = 2, lwd=2, lheight=1)

legend("topright", c("P2q(t)", " P2y(t)", " P2e(t)"), lty=1:3)
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## Figure 6.1 The plot of three burst frequency probabilities P,(t), P,(t), and P,(t).

S S B S I S
k=5; la=1/5; g=1/5.8
t=c(0:30)

# define kij;
k11=1/((k-1a)*(k-g))

k12=1/( (k-la)*((k-g)"2) )
k13=1/( (k-la)*((k-g)"3) )
k21=1/( ((k-1a)*2)*(k-g) )
k22=1/( ((k-la)2)*((k-2)"2) )
k23=1/( ((k-la)"*2)*((k-g)"3) )
K24=1/( ((k-lay2)*((k-2)"4) )
k31=1/( ((k-1a)*3)*(k-g) )
K32=1/( ((k-la)3)*((k-2)"2) )
k33=1/( ((k-1a)"3)*((k-g)"3) )
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k34=1/( ((k-la)*3)*((k-g)"4) )

k35=1/( ((k-1a)"3)*((k-g)"5) )

k42=1/( ((k-la)*4)*((k-g)*2) )

k43=1/( ((k-la)*4)*((k-g)"3) )

k44=1/( ((k-la)*4)*((k-g)"4) )

k53=1/( ((k-1a)"5)*((k-g)"3) )

# define lamdaij;

lal11=1/( (la-g)*(la-k) )

la12=1/( (la-g)*((la-k)"2) )

la13=1/( (la-g)*((la-k)"3) )

la21=1/( ((la-g)"2)*(1a-k) )

1a22=1/( ((la-g)"2)*((1a-k)"2) )

1a23=1/( ((la-g)"2)*((1a-k)"3) )

la24=1/( ((la-g)"2)*((1a-k)"4) )

la31=1/( ((la-g)*3)*(la-k) )

la32=1/( ((la-g)"3)*((1a-k)"2) )

la33=1/( ((la-g)"3)*((la-k)"3) )

la34=1/( ((la-g)"3)*((1a-k)"4) )

la35=1/( ((la-g)"3)*((1a-k)"5) )

la42=1/( ((la-g)"4)*((1a-k)"2) )

la43=1/( ((la-g)"4)*((1a-k)"3) )

la44=1/( ((la-g)"4)*((1a-k)"4) )

la53=1/( ((la-g)"5)*((la-k)"3) )

# define gamaij;

gl1=1/( (g-k)*(g-la) )

gl2=1/((g-k)*((g-la)"2) )

g13=1/( (g-k)*((g-lay"3) )

21=1/( ((g-k)"2)*(g-la) )

922=1/( ((g-K)"2)(( g-1)"2))

923=1/( ((g-K)"2)*( g-1la)"3))

924=1/( ((g-K)"2)(( g-la"4))

g31=1/( ((g-k)3)*( g-la)

232=1/( ((g-K)"3)(( g-1)"2))

g33=1/(((g-k)"3)*(( g-12)"3))

g34=1/( ((g-)"3)(( g-la)"4))

g35=1/(((g-k)*3)*(( g-1)"5))

g42=1/( (g-)"4)*(( g-1"2))

g43=1/( ((g-k)"H*(( g-1)"3))

gd4=1/( (g-k)"4)(( g-la)"4))

g53=1/(((g-k)"5)*(( g-12)"3))

# define eij;

el 1=kl 1*exp(-k*t)+lal1*exp(-la*t)+gl1*exp(-g*t)
e22=k22*exp(-k*t)+la22*exp(-la*t)+g22*exp(-g*t)
e23=k23*exp(-k*t)+la23*exp(-la*t)+g23*exp(-g*t)
e32=k32*exp(-k*t)+la32*exp(-la*t)+g32*exp(-g*t)
e33= k33*exp(-k*t)+la33*exp(-la*t)+g33*exp(-g*t)
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e34= k34*exp(-k*t)+la34*exp(-la*t)+g34*exp(-g*t)

e43= kd43*exp(-k*t)+lad3*exp(-la*t)+g43*exp(-g*t)

e35= k35*exp(-k*t)+la35*exp(-la*t)+g35*exp(-g*t)

edd= kd4*exp(-k*t)+lad4*exp(-la*t)+gd4*exp(-g*t)

e53= k53*exp(-k*t)+laS3*exp(-la*t)+g53*exp(-g*t)

# get plg-p2e;

plg=exp(-k*t)

ply=k/(la-k)*(exp(-k*t)-exp(-la*t))

ple=k*la*ell

p2g=k*la*g*(k11*t*exp(-k*t) +(k12+k21)*exp(-k*t)-lal2*exp(-la*t)-g2 1 *exp(-g*t))
p2y=-(k"2)*la*g*(k21*t*exp(-k*t) +tlal2*t*exp(-la*t)+e22+2*k31*exp(-
k*t)+2*lal3*exp(-la*t)- 2*g22*exp(-g*t))
p2e=(k"2)*(1a"2)*g*((t*e22+2*e23+2%e32))

# for p3q, and p3y

lk= k*la*g* (k1 1*t*exp(-k*t)+(k12+k21)*exp(-k*t)-lal2*exp(-la*t)-g2 1 *exp(-g*t))
lg= k*la*g*(gl 1*t*exp(-g*t)+(gl2+g21)*exp(-g*t)-k12*exp(-k*t)-la2 1 *exp(-la*t))
lla= k*la*g*(lal 1 *t*exp(-la*t)+(lal2+la21)*exp(-la*t)-gl2*exp(-g*t)-k2 1 *exp(-k*t))
Itk= k*la*g*(k11/2*(t"2)*exp(-k*t)+

(lal1/(la-k)+g11/(g-k))*t*exp(-k*t)-

(la11/(la-k)"2+g11/(g-k)"2)*exp(-k*t) +lal1/(la-k)*2*exp(-la*t)+g11/(g-k)"2*exp(-g*t))
Itla=k*1a*g*(lal1/2*(t"2)*exp(-la*t)+

(k11/(k-la)+gl1/(g-1a))*t*exp(-la*t)-

(k11/(k-la)y*2+gl1/(g-la)*2)*exp(-la*t) +k11/(k-la)*2*exp(-k*t)+g11/(g-1a)"2*exp(-g*t))
# get p3q-p3e;

p3g=k*la*g*(k11*Itk+(k12+k21)*1k-lal12*1la-g21*Ig)
p3y=-k"2*la*g*(k21*1tk+(k22+2*k31)*1k

+lal12*]tla+(la22+2*]al3)*lla-g22*1g)

p3e=k"3*1a"3*g"2%(

t"2*e33/2+3*t*(e34+e43)+3*e35+5%e44+3%e53
+(1a22*k31+g22*k13)*exp(-k*t)+(k22*lal3+g22*la31)*exp(-la*t)+
(k22*g31+1a22*g13)*exp(-g*t)

+2*k11*(1a24+g33)*exp(-k*t)+2*lal 1*(g24+k33)*exp(-la*t)+
2*g11*(k24+1a33)*exp(-g*t)

+2*k11*(1a33+g42)*exp(-k*t)+2*1al 1*(g33+k42)*exp(-la*t)+
2*g11*(k33+lad2)*exp(-g*t))

# get pOt- pge3;

pO=plq+ply

pl=pletp2q+py

p2=p2e+p3q+p3y

# plot;

plot(t, p0, ylim=c(0,1.2), type="1", Ity =1, col = 1, lwd=2, xlab = "Time after diferentiatin
(min), k=5 and A =1/5, and y=1/5.8", ylab = "P0, P1, and P2")

lines(t, p1, col =1, Ity = 2, Iwd=2, lheight=1)

lines(t, p2, col =1, Ity = 3, lwd=2, lheight=1)

legend("topright", c("P0", " P1", " P2"), Ity=1:3)
text(0,1.05,'Max.");text(7.5,0.65,'Max.");text(19,0.48,'Max.")
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text(0,1,X"):text(7.5,0.615,X");text(19,0.42,’X")
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## Figure 6.2 The percentages of the cells with 1, 2, or 3 and more transcriptional bursts
during the time period (0,1).
A
k=5; la=1/5; g=1/5.8

#k=5;

#la=0.8;

t=c(0:30)

# define kij;
k11=1/((k-1a)*(k-g))

k12=1/( (k-la)*((k-g)"2) )
k13=1/( (k-la)*((k-g)"3) )
k21=1/( ((k-la)*2)*(k-g) )
k22=1/( ((k-la)*2)*((k-g)"2) )
k23=1/( ((k-la)"2)*((k-g)"3) )
k24=1/( ((k-la)*2)*((k-g)*4) )
k31=1/( ((k-la)*3)*(k-g) )
k32=1/( ((k-1a)"3)*((k-g)"2) )
k33=1/( ((k-la)"3)*((k-g)"3) )
k34=1/( ((k-la)"3)*((k-g)"4) )
k35=1/( ((k-la)"3)*((k-g)"5) )
k42=1/( ((k-la)*4)*((k-g)"2) )
k43=1/( ((k-la)*4)*((k-g)"3) )
k44=1/( ((k-la)*4)*((k-g)*4) )
k53=1/( ((k-la)"5)*((k-g)"3) )
# define lamdaij;

la11=1/( (la-g)*(1a-k) )
la12=1/( (la-g)*((la-k)"2) )
la13=1/( (la-g)*((la-k)"3) )
la21=1/( ((la-g)"2)*(1a-k) )
1a22=1/( ((la-g)"2)*((1a-k)"2) )
1a23=1/( ((la-g)"2)*((1a-k)"3) )
1a24=1/( ((la-g)"2)*((1a-k)"4) )
la31=1/( ((la-g)"3)*(la-k) )
1a32=1/( ((la-g)"3)*((1a-k)"2) )
1a33=1/( ((la-g)"3)*((la-k)"3) )
la34=1/( ((la-g)"3)*((1a-k)"4) )
la35=1/( ((la-g)"3)*((1a-k)"5) )
la42=1/( ((la-g)"4)*((1a-k)"2) )
1a43=1/( ((la-g)4)*((1a-k)"3) )
la44=1/( ((la-g)"4)*((1a-k)"4) )
la53=1/( ((la-g)"5)*((1a-k)*3) )
# define gamaij;

gl1=1/( (g-k)*(g-la) )
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g12=1/( (g-k)*((g-1a)"2) )
g13=1/((g-k)*((g-1a)"3) )

221=1/( ((g-ky"2)*( g-la) )

g22=1/(((g-k)"2)*(( g-la)"2))

223=1/( ((z-k)"2)*(( g-1a)"3))

g24=1/(((g-k)"2)*(( g-la)"4))

g31=1/( ((g-k)"3)*( g-1a))

g32=1/(((g-k)"3)*(( g-la)"2))

g33=1/(((g-k)"3)*(( g-1a)"3))

g34=1/(((g-k)"3)*(( g-la)"4))

g35=1/(((g-k)"3)*(( g-la)"5))

g42=1/(((g-k)"H*(( g-la)"2))

e43=1/( ((g-k)4)*(( g-1a)"3))

g44=1/(((g-k)*H*(( g-la)"4))

g53=1/(((g-k)"5)*(( g-12)"3))

# define eij;

el1=kl1*exp(-k*t)+lall*exp(-la*t)+gl1*exp(-g*t)
e22=k22*exp(-k*t)+la22*exp(-la*t)+g22*exp(-g*t)
e23=k23*exp(-k*t)+la23*exp(-la*t)+g23*exp(-g*t)
e32=k32*exp(-k*t)+la32*exp(-la*t)+g32*exp(-g*t)
e33=k33*exp(-k*t)+la33*exp(-la*t)+g33*exp(-g*t)
e34=k34*exp(-k*t)+la34*exp(-la*t)+g34*exp(-g*t)

e43= kd3*exp(-k*t)+lad3*exp(-la*t)+g43*exp(-g*t)
e35=k35*exp(-k*t)+la35*exp(-la*t)+g35*exp(-g*t)

ed4= kdd*exp(-k*t)+lad4*exp(-la*t)+gd44*exp(-g*t)
e53=k53*exp(-k*t)+laS3*exp(-la*t)+g53*exp(-g*t)

# get plg-p2e;

plg=exp(-k*t)

ply=k/(la-k)*(exp(-k*t)-exp(-la*t))

ple=k*la*ell

p2g=k*la*g*(k11*t*exp(-k*t) +(k12+k21)*exp(-k*t)-lal2*exp(-la*t)-g2 1 *exp(-g*t))
p2y=-(k"2)*la*g*(k21*t*exp(-k*t) +lal2*t*exp(-la*t)+e22+2*k31*exp(-
k*t)+2*1al3*exp(-la*t)- 2*g22*exp(-g*t))
p2e=(k"2)*(1a"2)*g*((t*e22+2*e23+2%e32))

# for p3q, and p3y;

k= k*la*g*(k11*t*exp(-k*t)+(k12+k21)*exp(-k*t)-lal2*exp(-la*t)-g21*exp(-g*t))
lg= k*la*g*(gl 1 *t*exp(-g*t)+(g12+g21)*exp(-g*t)-k12*exp(-k*t)-1a2 1 *exp(-la*t))
lla= k*la*g*(lal 1*t*exp(-la*t)+(lal2+la21)*exp(-la*t)-g12*exp(-g*t)-k21*exp(-k*t))
Itk= k*la*g*(k11/2*(t"2)*exp(-k*t)+

(lal1/(la-k)+gl11/(g-k))*t*exp(-k*t)-

(lal1/(la-k)"2+gl11/(g-k)"2)*exp(-k*t) +lal1/(la-k)"2*exp(-la*t)+gl11/(g-k)*2*exp(-g*t))
Itla=k*la*g*(lal 1/2*(t"2)*exp(-la*t)+

(k11/(k-la)y+gl1/(g-la))*t*exp(-la*t)-

(k11/(k-la)*2+g11/(g-la)*2)*exp(-la*t) +k11/(k-la)*2*exp(-k*t)+gl1/(g-la)*2*exp(-g*t))
# get p3q, and p3y;

p3g=k*la*g*(k11*Itk+(k12+k21)*1k-lal2*1la-g21*Ig)
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p3y=-k"2*la*g*(k21*1tk+(k22+2*k31)*1k
+lal2*1tla+(1a22+2*1al3)*1la-g22*1g)

p3e=k"3*1a"3*g"2%(
t"2*e33/2+3*t*(e34+e43)+3*e35+5%e44+3%e53
+(1a22*k31+g22*k13)*exp(-k*t)+(k22*1al3+g22*la31)*exp(-la*t)+
(k22*g31+1a22*g13)*exp(-g*t)
+2*k11*(1a24+g33)*exp(-k*t)+2*lal 1*(g24+k33)*exp(-la*t)+
2*g11*(k24+1a33)*exp(-g*t)
+2*k11*(1a33+g42)*exp(-k*t)+2*1al 1*(g33+k42)*exp(-la*t)+
2*g11*(k33+1ad42)*exp(-g*t))

# get p0, pl, p2, and pge3;
pOt=la/(la-k)*exp(-k*t)+k/(k-1a)*exp(-la*t)

pO=plqgtply

pl=pletp2q+py

p2=p2e+p3qtp3y

pge3=1-(p0+pl+p2)

# get ppl, pp2, and ppge3;

pp1=p1/(1-p0)

pp2=p2/(1-p0)

ppge3=1-(p1+p2)/(1-p0)

# plot;

plot(t, ppl, ylim=c(0,1), type="1", Ity =1, col = 1, Iwd=2,

xlab = "Time after diferentiatin (min), k=5 and A =1/5, and y=1/5.8", ylab = "The
percentage of cells with 1, 2, or 3 and more bursts")

lines(t, pp2, col =1, Ity =2, lwd=2, lheight=1)

lines(t, ppge3, col =1, Ity = 3, Iwd=2, lheight=1)
legend("topright", c("p1(t)", " p2(t)", " pn>2(t)"), lty=1:3)
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