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ABSTRACT OF DISSERTATION 
 
 
 
 
 

STOCHASTIC DYNAMICS OF GENE TRANSCRIPTION 
 

Gene transcription in individual living cells is inevitably a stochastic and dynamic 
process. Little is known about how cells and organisms learn to balance the fidelity of 
transcriptional control and the stochasticity of transcription dynamics. In an effort to 
elucidate the contribution of environmental signals to this intricate balance, a Three State 
Model was recently proposed, and the transcription system was assumed to transit among 
three different functional states randomly.  

 
In this work, we employ this model to demonstrate how the stochastic dynamics 

of gene transcription can be characterized by the three transition parameters. We compute 
the probability distribution of  a zero transcript event and its conjugate, the distribution of 
the time durations in gene on or gene off periods, the transition frequency between 
system states, and the transcriptional bursting frequency. We also exemplify the 
mathematical results by the experimental data on prokaryotic and eukaryotic 
transcription.  

 
The analysis reveals that no promoters will be definitely turned on to transcribe 

within a finite time period, no matter how strong the induction signals are applied, and 
how abundant the activators are available. Although stronger extrinsic signals could 
enhance promoter activation rate, the promoter creates an intrinsic ceiling that no signals 
could cross over in a finite time. Consequently, among a large population of isogenic 
cells, only a portion of the cells, but not the whole population, could be induced by 
environmental signals to express a particular gene within a finite time period. We prove 
that the gene on duration follows an exponential distribution, and the gene off intervals 
show a local maximum that is best described by assuming two sequential exponential 
process. The transition frequencies are determined by a system of stochastic differential 
equations, or equivalently, an iterative scheme of integral operators. We prove that for 
each positive integer n , there associates a unique time, called the peak instant, at which 
the thn  transcript synthesis cycle since time zero proceeds most likely. These moments 
constitute a time series preserving the nature order of n . 
 



KEYWORDS: Stochastic Dynamics, Three State Model, Zero Transcript Event, 
Transition Frequency, Frequency Burst 
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Chapter 1 

Introduction 

Despite the intricacy of gene regulatory networks, transcription in individual 

living cells is inevitably a probabilistic and dynamic process. The timing and strength of 

transcriptional activation are determined by a succession of dynamic events, each with 

a given probability. The randomness of these events would produce fluctuations in the 

number of transcripts and proteins, constituting the phenotypic heterogeneity in a cell 

population (Kaufmann and van Oudenaarden, 2007; Maheshri and O'Shea, 2007; Raj 

and van Oudenaarden, 2008; Schrodinger, 1944). Although numerous protein factors 

responsible for transcriptional control have been identified, and many of their interactions 

have been discerned (Bushnell et al., 2004; Lemon and Tjian, 2000), surprisingly 

little is known about how cell and organisms learn to balance the fidelity of 

transcriptional control and the stochasticity of transcription process (Maheshri N and 

O'Shea, 2007; Raser and O'Shea, 2004). 

Recent studies on stochastic gene expression have created revealing insights on 

the random nature of transcription (Austin et al., 2006; Elowitz et al., 2002; McAdams 

and Arkin, 1997; Ozbudak et al., 2002; Paulsson, 2004, 2005; Raser and O'Shea, 2004; 

Raj et al., 2010; Rosenfeld et al., 2005; Swain et al., 2002; Thattai and van Oudenaarden, 

2001). These studies have offered compelling evidence in support of the model that, 

often, single genes are transcribed randomly and discontinuously, but not 

deterministically and continuously. The recent in vivo RNA detection technique, 

pioneered by the Singer laboratory (Bertrand et al., 1998), has allowed direct real-time 

observations of mRNA transcripts in individual living amoeba Dictyostelium discoideum 
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cells (Chubb et al., 2006). Their findings have confirmed the Poisson scenario of 

transcriptional bursts, previously suggested by theoretical studies of Berg (1978), Rigney 

(1979), and Rigney and Schieve (1977). A transcriptional burst is characterized by 

relatively long periods of zero transcription interrupted by production of many transcripts 

in a quick succession. The bursts occurred randomly, but their durations fitted robustly 

with standard exponential decay curves (Chubb et al., 2006). Golding and his 

collaborators (Golding et al., 2005) have optimized the technique of Singer to allow 

precise counting of transcripts produced by a synthetic variant of the lac promoter in 

living Escherichia coli cells, and offered further statistical quantifications of the 

transcriptional bursts. Xie and colleagues (Cai et al., 2006; Taniguchi et al., 2010; Yu et 

al., 2006) have developed a novel assay allowing the detection of single protein 

molecules in E. coli cells, and confirmed the geometrical distribution of protein bursts 

suggested by Berg (1978) and Rigney (1979). 

What causes stochasticity of gene transcription? This has been an intriguing open  

question in molecular genetics. In an earlier study, Ko (1991) proposed that it was caused 

by random switching between "gene on" and "gene off" states. This elegant proposition 

has been further explored theoretically (Kaern, 2005; Kepler and Elston, 2001; Paulsson, 

2004, 2005; Peccoud and Ycart, 1995) and reinforced by experimental examples 

(Golding et al., 2006; Raj et al., 2006).  For induced transcription, however, it remains 

unclear from this proposition how environmental signals contribute to the randomness of 

the transition between the on and off states. 

In an effort to elucidate how the stochasticity of gene transcription profiles 

correlates with cellular conditions, a Three State Model was proposed (Tang, 2008, 2010) 
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and further extended (Sun, Tang and Yu 2010a, 2010b).  In the model, the transcription 

system consists of a gene, along with one type of sequence specific transcription factors 

(abbreviated as TF) that have cognate binding sites in the core gene promoter, an 

induction agent that can stimulate the specific binding of TF to the promoter DNA, and 

the intermediate agents sustaining their function linkage. It was assumed that the 

transcription system randomly rotates among three different functional states in the 

temporal order: ground state →Q  excited state →Y  engaged state E . The ground state 

is characterized by the lack of effective binding activity between TF and the core gene 

promoter, so there is no transcription initiation complex binding to the promoter, and no 

RNA polymerase II (Pol II) elongating the coding region either. If the TF and DNA 

binding is not followed by the assembling of basal transcription machinery at the 

transcription start site, then the system will remain in the ground state. If the binding can 

facilitate subsequent transcription activity effectively, then there could be multiple stable 

intermediate complexes formed in the pathway from the TF-DNA binding to the 

successful recruitment of Pol II at the transcription start site. We define the exit of the 

ground state, and so the entry of the excited state, to be the threshold moment when a 

particular complex satisfying the following property is formed: The interaction between 

the TF and the core promoter affects the formation and stability of this complex, but 

plays no essential role in the subsequent transcription activities before the system leaves 

the excited state. The exit of the excited state (or the entry of engaged state) is defined to 

be the instant at which the first phosphorylated Pol II is released from the transcription 

initiation complex to begin transcribing the gene. When the last engaged Pol II leaves the 

gene in this transcription cycle, the system returns back to the ground state. 
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The Three State Model was also supported by the genome-wide study performed 

by Zeitlinger et al. (2007). In their study, they analyzed global Pol II occupancy in a 

homogeneous population of mesodermal precursor cells from Toll10b Drosophila 

embryos. They carried out comprehensive Pol II chromatin immunoprecipitation 

microarray (ChIP-chip) assays and showed that the 13,448 protein coding genes could be 

classified into three distinct dynamic states: In 37% of all genes there were no Pol II 

binding altogether and genes remained silent; in about 7.5% of all genes Pol II was 

tightly restricted to the transcription start site; and in the rest of genes Pol II distributed 

throughout the entire transcription unit. Apparently, according to the Three State Model,  

the first class of genes resided uniformly in the ground state. The second class and third 

class genes remained in the excited state and the engaged state respectively.  In the 

second class of genes, Pol II was engaged in transcription initiation but paused near the 

transcription start site.  Pol II stalling in those genes suggests that the transition from 

transcription initiation to elongation could be a rate limiting step in the gene expression 

pathway (Core and Lis, 2008; Wade and Struhl, 2007).  

When compared with previous studies on stochastic gene transcription, in which 

the system behaviors were divided into the "gene on" and "gene off" states (Kepler and 

Elston, 2001; Ko, 1991; Paulsson, 2004; Peccoud and Ycart, 1995; Raj et al., 2006), the 

engaged state E  in the Three State Model is essentially identical to the "on" state, and 

the states Q  and Y constitute the "off" state. The gene can only be transcribed when the 

system remains in the engaged state. Because transition between the system states is 

random, and the engaged state is interrupted by Q  and Y , the Three State Model clearly 

indicates that the gene in individual cells is transcribed randomly and discontinuously. 
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This has been strongly supported by the experimental data and theoretical studies 

(Elowitz et al., 2002; McAdams and Arkin, 1997; Raser and O'Shea, 2004; Rosenfeld et 

al., 2005; Swain et al., 2002; Thattai and van Oudenaarden, 2001). 

In the following chapters, we first revisit in detail the definition of Three State 

Model and demonstrate how the stochastic dynamics of gene transcription could be 

characterized by the transition parameters. Then we compute the probability distribution 

of a zero transcript event, the durations in gene on or gene off periods, the transition 

frequency, and the bursting frequency.  We also exemplify the mathematical results by 

the experimental data on prokaryotic and eukaryotic transcription.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © Yan Xie 2011
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Chapter 2 

The Three State Model 

In this chapter, we revisit in detail the definition of the Three State Model and 

demonstrate how the stochastic dynamics of gene transcription could be characterized by 

the transition parameters.  

2.1 Introduction to the Three State Model 

In an effort to elucidate how the stochasticity of gene transcription profiles 

correlates with cellular conditions, a Three State Model was proposed (Tang, 2008, 2010) 

and further extended (Sun, Tang and Yu 2010a, 2010b).   

In the Three State Model, the transcription system consists of a gene, one type of 

transcription factor (TF) that can activate or repress the gene promoter, an induction 

agent that can induce specific binding of TF to the promoter, and other molecules 

sustaining their functional linkage.  

The transcription system is assumed to exist in three different functional states: 

ground state Q , excited state Y , and engaged state E . The ground state is characterized 

by the lack of effective binding between the core gene promoter and TF, so there is no 

transcription initiation complex on the promoter, and no elongation by RNA polymerase 

II (Pol II). If the TF and DNA binding is not followed by the assembly of basal 

transcription machinery at the transcription start site, then the system will remain in the 

ground state. This occurs especially if the TF is a strong repressor of the gene promoter.  

If the binding effectively facilitates subsequent transcription, then we define the 

exit of the ground state to be the threshold moment when a particular complex satisfying 

the following property is formed: The interaction between the TF and the core promoter 
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affects the formation and stability of this complex, but plays no essential role in the 

subsequent transcription before the system leaves the excited state. There may not be a 

universal configuration of this particular complex, which could vary dramatically 

between cells and organisms.  

The exit of the excited state is defined to be the instant at which the first Pol II is 

released from the transcription initiation complex to begin transcribing the gene. When 

the last engaged Pol II leaves the gene in this transcription cycle, the system returns back 

to the ground state. 

The three functional states randomly rotates in the recurrent Markov chain 

...⎯→⎯⎯→⎯⎯→⎯⎯→⎯ κγλκ QEYQ , where each arrow denotes an exponential 

distribution, and κ , λ , and γ  are the corresponding transition rates.  We treat the 

transition from Q  to Y  as an irreversible stochastic process, because we regard those 

TF/bindings that cannot induce the formation of the stable intermediate complex as sub-

events of the ground state.  

2.2 The parameters in the Three State Model 

The parameter κ , the transition rate from Q  to Y , is called the induction 

strength, that quantifies the effectiveness of the induction agents in transforming the 

system into the excited states. The value of κ  depends not only on the amounts or 

concentrations of the agent, but also on how efficiently the binding of TF and promoter 

initiates the formation of the intermediate complex. Parameter λ , the transition rate from 

Y  to E , is called the activation strength which quantifies the activation potential of the 

TF. Parameter γ , the transition rate from Y  to E , is called the promoter fragility 

because a larger γ corresponds to a shorter life of the elongation state on average.  
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Parameter κ  may or may not correlate with the binding affinity between the TF 

and the gene promoter in a parallel fashion: a strong binding may correspond to a small 

κ  if the binding activity is ineffective in inducing system state transition. There is no 

apparent constraint on the nature of the induction agent: It can be a physical condition 

such as temperature or radiation, or a physiological condition such as starvation or DNA 

damage. More interestingly, it can be a biomolecule such as a growth factor that can 

induce binding of the TF to the gene promoter by turning on intracellular signal 

transduction pathways. In this case, any protein or RNA species within a pathway, 

including the target TF itself, can be taken as the induction agent in the model. This 

flexibility allows us to use the model to examine how the transcription profiles respond to 

perturbations of signal transduction networks. Because the concentration of inducing 

agents may change in time and space, κ  can inherit the temporal variation and spatial 

heterogeneity. As a result, κ  is not a constant, but a function of time and spatial 

variables, and further transfers the heterogeneities to the gene expression profiles.  

The definition of the excited state makes it clear that the transition from Y  to E  

is essentially independent of the cellular concentration of free specific TF and, thus, 

irrelevant to the induction agents. The same is true for the transition from E  to Q . 

Therefore, λ  and γ  are mostly determined by the biochemical properties of the TF and 

the gene, both of which are intrinsic to the transcription system. In contrast to the 

temporal and spatial variation of κ , the parameters λ  and γ  can be approximately 

treated as constants. We define the pair ),( γλ as the transcription mode allied to the TF 

and the gene in the transcription system. It is of great interest to test the hypothesis that 
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this mode could be evolutionary conserved and would not vary notably among cells of 

closely related organisms. 

In summary, the Three State Model deciphers transcription activation through the 

two parameters of distinct characteristics. The induction strength κ  is mostly determined 

by environmental signals, and could inherit the temporal and spatial fluctuation of the 

signals. In contrast, the λ  and γ are intrinsic to the TF and the gene, so they are 

approximately a constant and does not vary significantly within a homogeneous 

population of cells. By decomposing the activation dynamics into the impingement of 

environmental signals and the intrinsic response of activators and promoters, this model 

explicitly relates transcription stochasticity with the variability of micro-environmental 

conditions. 
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Chapter 3 

Probability of a Zero Transcription Event in the Three State Model 

In this chapter, we define and compute the distribution of the probability of zero 

transcription in the Three State Model, then define its conjugate, the probability of gene 

induction. We also discuss the properties of the two probabilities. Finally, we exemplify 

the mathematical results by the experimental data and simulation.  

3.1 The distribution of the probability of a zero transcription event in the Three 

State Model 

In order to test more directly how an induction agent affects the expression of a 

given gene, it has been helpful to work with the experimental assays where the gene 

remains silent before the application of the agent. Accordingly, we only gave the detailed 

mathematical analysis under the assumption that the transcription systems in cells 

are uniformly locked in ground states at time zero. The basic ideas of the analysis 

are similar when other types of initial conditions are more appropriate. For technical 

reasons, we only discuss the dynamics when the induction agents are kept at a constant 

level.  

Theorem 3.1 Let )(0 tP  be the probability that the system has never arrived at the 

engaged state in ),0( t , then  







=+

≠
−

+
−=

−

−−

λ

λκ
λκ

κ
κλ

λ λκ

kekt

ee
tP

kt

tt

)1(

,
)(0           (3.1) 

Proof of Theorem 3.1:  Let )(1 tP q  be the probability that the transcription system has 

remained in the ground state since the application of the induction agents (time zero),  

and )(1 tP y  be the probability that the system is residing on the excited state Y at time t . 
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Then )()()( 110 tPtPtP yq += . We derive the probability distribution of )(1 tP q  and  )(1 tP y  

in the following paragraphs. 

First, we find that t
q etP κ−=)(1 . Here's the details for reasoning: Let X  be the 

waiting time for transition from Q  to Y , then tetXP κ−−=≤ 1)(  since X is distributed 

exponentially with parameter k .  It follows that 

t
q etXobtXobtP κ−=≤−=>= )(Pr1)(Pr)(1 .                (3.2) 

It's apparent that )0(1qP  = 1. 

Second, we find that  
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To find )(1 tP y  analytically, we follow the transition rule of the Three State Model to 

derive the differential equation of )(1 tP y . It is presented in detail below, see Allen (2003) 

for mathematical background. This basic idea also helps us derive the system of master 

equations in Chapter 5 where the functions )(1 tP q  and )(1 tP y  are extended to )(tPnx  with 

n ≥  1 and ,, yqx =  and e .  

Here's the details to find )(1 tP y . Let tΔ  be an infinitesimal time increment. We 

first calculate )(1 ttP y Δ+  in terms of )(1 tP q  and )(1 tP y . If the system has been remained 

in the ground state during the time period ),0( t , then it has a probability tΔκ  to shift to 

the excited state during the time interval ( t , tt Δ+ ) based on the definition of exponential 

distribution; this contributes )(1 ttP qΔκ  to )(1 ttP y Δ+ . If the system has arrived and stayed 

at the excited state in the time period ),0( t , then it has a probability  tΔ− λ1  to remain at 
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this state during the infinitesimal time interval; this contributes )()1( 1 tPt yΔ− λ  to 

)(1 ttP y Δ+ . If the system has arrived and then left the excited state in the time period (0, 

t ), then it contributes zero probability to )(1 ttP y Δ+ .  In summary, 

)()1()()( 111 tPtttPttP yqy Δ−+Δ=Δ+ λκ , 

or  )()(
)()(

11
11 tPtP

t

tPttP
yq

yy λκ −=
Δ

−Δ+
. 

Letting  0→Δt , we have the following reasoning: The limit yields the equation  
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So )(0 tP , the probability that the system has never arrived at the engaged state in 

),0( t , is as given below 


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After the system enters the engaged state, it is possible that there is a short time 

delay before the nascent mRNA emerge from the elongating Pol II. This delay is usually 

insignificant compared to the average residency time of the three functional states. 

Therefore, )(0 tP  equals approximately the probability that no gene transcripts have been 

produced since the application of the induction agents. When the expression profile of a 
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homogeneous population of cells is measured, )(0 tP  can be used to estimate the portion 

of silent cells during the time interval ),0( t .  

3.2 Conjugate of probability of a zero transcription event 

Because the probability of a zero transcription event )(0 tP  provides a measure of 

the proportion of silent cells, its conjugate )(1)( 0 tPtPin −= , called the induction 

probability, can be used to estimate the proportion of the cells where the gene has been 

induced to elongation state at least once since time zero.  

3.3 Properties of probability of a zero transcription event and its conjugate 

The properties of probability of zero transcription event )(0 tP  and its conjugate 

)(tPin  are given as follows: 

1) 1)(0 ≡tP  and 0)( ≡tPin  if either κ =0 or λ =0.  It means that the system 

remains silent for all 0≥t  if either κ =0 or λ =0. This justifies the necessity of the 

induction agents and the regulatory activators for transcription initiation.  

2) )(tPin , as a function of κ , is increasing. That is, )(tPin  increases as the 

induction signal is strengthened, which is consistent with our intuitive perception that 

stronger induction signals activate more promoters. The proof for )(tPin , as a function of 

κ  is increasing, is given as follows: Write ),( κtPin  for )(tPin  to indicate its dependence 

on the induction strength κ  explicitly. Then differentiating ),( κtPin  with respect to κ  

gives, for all λκ ≠ ,  

κ
λκ

κ
κλ

λ

κ

λκ

d

eed

d

tdP
tt

in
)1()(

−−

−
−

−
−

=  
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3) 0)(lim 0 =
∞→

tP
t

 and 1)(lim =
∞→

tPin
t

 as long as κ  and λ  are positive. It predicts that 

any promoter will be turned on to transcribe eventually, if it is kept constantly stimulated, 

and the specific transcription factors are continually available. 

4) t
inin etPtP λ

κ

−

∞→
−=< 1)(lim)(  for all 0>κ  and 0>λ  because )(tPin  as a 

function of κ is increasing, which is due to 0/),( >κκ dtdPin . Therefore, the induction 

probability )(tPin  is always strictly < 1, even if the induction signals are exceedingly 

strong. The upper limit te λ−−1  is determined by the intrinsic parameter λ , and is 

independent of κ . This suggests that no promoters will be definitely turned on to 

transcribe within a finite time period, no matter how strong the induction signals are 

applied, and how abundant the activators are available. Although stronger extrinsic 

signals could enhance promoter activation rate, the promoter creates an intrinsic ceiling 

that no signals could cross over in a finite time. Consequently, among a large population 

of isogenic cells, only a portion of the cells, but not the whole population, could be 

induced by environmental signals to express a particular gene within a finite time period. 

These statements indicate that a weak and continual external signal within a long time 

period may provoke a more potent transcriptional response than a strong and transient 

signal does within a short time period.  
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3.4 Example and simulation result for probability of a zero transcription event 

In this section we demonstrate how formula for )(0 tP  could be utilized to estimate 

the probability of zero transcriptions, by using the transcription system of Golding et al. 

(2005) in the clonal population of living E. coli cells. 

First, we describe the transition system briefly. This system consists of two 

components: the tagging protein and the RNA target. The tagging protein, named MS2-

GFP, is a fusion of the MS2 coat protein to a green fluorescent protein (GFP). And the 

RNA target contains the coding region for a red fluorescence protein (Campbell et al., 

2002), followed by a tandem array of 96 MS2 binding sites. The MS2 coat protein in 

MS2-GFP can recognize the MS2 binding sites in the RNA target, and the GPF in the 

MS2-GFP allows the detection and measurement of this RNA target by fluorescence 

microscopy and image analysis.  In the experiment, the expression of MS2-GFP at 

optimal levels was first induced by adding anhydrotetracycline in the system. The RNA 

target (RNA transcripts) were then induced by Isopropyl- β -D- thiogalactopyranoside 

(IPTG) under the control of a Plac/ara promoter (Lutz and Bujard, 1997). The amount of 

RNA transcripts were imaged and measured at different time points by fluorescence 

microscopy. 

Golding et al. (2005) estimated )(0 tP  by the fraction of cells having no tagged 

RNA because )(0 tP  can be used to estimate the portion of silent cells during the time 

interval ),0( t  when the expression profile of a homogeneous population of cells is 

measured.  They found the measured )(0 tP , as a function of time, decreased 

exponentially at a decay rate 005.0032.0 ± 1min−  (see '+' and 'O' in Figure 3.1). 

However, the estimated decay rate was 02.0014.0 ± 1min− based on their theoretical 
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prediction of the first-order transcription model tetP 1)(0
κ−=  (see dash line in Figure 3.1).  

This estimated number is about four times larger than the measured decay rate 

005.0032.0 ± 1min− . They attributed this discrepancy to the stochastic nature of mRNA 

synthesis and elimination. 

Our formula to estimate )(0 tP  performs better than that suggested by Golding and 

his colleagues (see solid line in Figure 3.1) . In the plot of logarithm of )(0 tP versus time, 

our estimated )(0 tP  fits the actual data much better than that in Golding et al. (2005) does 

(solid line versus dash line in Figure 3.1). Our curve is not identically a straight line, but 

is nevertheless well approximated by a straight line with slope = 0.03125- , which is very 

close to the measured decay rate 032.0 . 
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Figure 3. 1 Probability of zero transcriptions since induction (fraction of cells having no 

tagged RNA ( )(0 tP ) as a function of time after induction t ). Data ( ),, ΔΟ+  are from 

Golding et al. (2005). Dashed line is the theoretical prediction of the first-order 

transcription model tetP 1)(0
κ−=  by Golding and his colleagues, with 14.01 =κ . The 

actual decline is about four times slower, with a rate of approximately 0.032 1min− . Solid 
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line is the theoretical prediction by our model which is 

λκ
λκ

κ
κλ

λ λκ ≠
−

+
−

= −− ,)(0
tt eetP , with 5/1=κ  1min−  and 32/1=λ  1min− .   

The details for estimating κ , λ  and γ  were given here. By (3.3), )(0 tP  is 

determined by the induction strength κ  and the activation strength λ , and is independent 

of the rates of mRNA production and elimination. As Golding and his colleagues had 

estimated that the mean transcription inactivity periods 37≈Δ OFFt  min and the mean 

activity periods 6≈Δ ONt  min, we take 11 −− + λκ =37 min, and 6/1 =γ  min. Although no 

further information is currently available to estimate κ  and λ  separately, we assume that 

κ  is much bigger than λ , because IPTG was added at optimal amounts and the promoter 

was observed to be fully activated when the data were collected. This consideration 

suggests us to take 5/1 =κ  min and 32/1 =λ  min (that is, 2.0=κ  1min−  and 

03125.0=λ  1min− ) in our simulation, see Fig. 1. 
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Chapter 4 

Durations in Gene Off and Gene On Periods in the Three State Model 

In this chapter, we first compute the distribution of durations in gene off or gene 

on periods in the Three State Model. Then we discuss the properties of the distributions. 

Finally, we exemplify the mathematical results by the experimental data and simulation. 

4.1 The distribution of durations in gene off and gene on periods in the Three State 

Model  

Theorem 4.1.1 Let )(tPoff  and )(tfoff  be the cumulative and density distribution 

function of the duration in the gene off period respectively, then  
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3) The average duration in the gene off period is λκ /1/1 + . 

Theorem 4.1.2 Let )(tPon  and )(tfon be the cumulative and density distribution function 

of the duration in the gene on period respectively, then  

1) t
on etP γ−−= 1)(  

2) t
on etf γγ −=)(  

3) The average duration in the gene on period is γ/1 . 

Proof for Theorem 4.1.1: 

1) Show  
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Let X  be the waiting time for the system transiting from state Q  to state Y , then 

t
X etf κκ −=)(  since X  is exponentially distributed with parameter κ . Let S  be the 

waiting time for the system transiting from state Y  to state E , then t
S etf λλ −=)(  

because S  is exponentially distributed with parameter λ .  The joint density function of 

X  and S  is ss ee λκ λκ −−  because X  and S  are independent.  

The duration in the gene off period is the duration that the system is in state Q  or 

state Y . It is also the waiting time for the system transiting from state Q  to state Y , plus 

the waiting time for the system transiting from state Y  to state E .  So it's the sum of 

durations in two sequential exponential process. Therefore, it follows that  
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2) Show 
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3) Show the average duration in the gene off period is λκ /1/1 + . 
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Proof for Theorem 4.1.2: 

The Proof for Theorem 4.1.2 is straightforward.  The duration in the gene on period is the 

duration that the system is in state E , and it is also the waiting time for the system 

transiting from state E  to state Q , which is exponentially distributed with parameter γ . 

So we have  

1) t
on etP γ−−= 1)(  

2) t
on etf γγ −=)(  

3) The average duration in the gene on period is γ/1 . 

4.2 Properties of the density distribution function of the duration in the gene off 

period 

 The properties of )(tfoff , the density distribution function of the duration in the 

gene off period are given as follows: 

1) If κ  and λ  differ dramatically, then the density function )(tfoff  can be well 

approximated by a standard exponentially decaying function. This occurs in particular 

when the gene is fully activated and the transition step from excited state to engaged state 
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is relatively slow, in which case κ  is large and λ  is small, leading to t
off etf λλ −≈)( . 

Conversely, if the induction signals are weak but the transition from excited state to 

engaged state is fast, then κ  is small, but λ  is large, yielding t
off etf κκ −≈)( . In both 

cases, the distribution of the durations in the gene off period fits an exponential decay 

curve, and the logarithm of the distribution fits a straight line whose slope is either λ−  

or κ− .  (see solid and dash lines in Figure 4.1 and Figure 4.2) 

2) However, if κ  and λ  are close, then the logarithm of the distribution deviates 

from the straight line. Because 

)1(log)1(log))(log( )()( tt
off etettf λκκλ

κλ
κλκ

λκ
κλλ −−−− −

−
+−=−

−
+−= , 

the deviation is determined by the two residual log terms behind tλ−  or tκ− . (see dotted 

lines in Figure 4.2) 

3) In the limiting case when λκ = , we have 

tttP y loglog2))(log( 1 ++−= κκλ , 

which differs from the linear part by tlog  (see dot-dash lines in Figure 4.2). This 

difference seems not to be significant, but rather it suggests a noticeable deviation of 

experimental data from straight lines. 
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Figure 4.1 Plot of duration of gene off period versus density distribution ).(tfoff  If the 

values of κ  and λ  differ dramatically, then the density function )(tfoff can be well 

approximated by a standard exponentially decaying function (solid and dash lines). 
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Figure 4.2 Plot of duration of gene off period versus logarithm of density distribution 

))(log( tfoff . If the values of κ  and λ  differ dramatically, ))(log( tfoff  fits a straight line 

whose slope is either λ−  or κ−  (see solid and dash lines). If the values of κ  and λ   are 

close, ))(log( tfoff  deviates from the straight line by the two residual log terms, 

)1(log )( te κλ

λκ
κλ −−−
−

 or )1(log )( te λκ

κλ
κλ −−−
−

   (see dotted lines). In the limiting case 

when λκ = , ))(log( tfoff  differs from the linear part by tlog  (see dot-dash line). 
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4.3 Example and simulation result for the density distribution function of the 

duration in the gene off and gene on period 

The gene transcription was directly monitored at several studies. Raj et al. (2006) 

observed an ON/OFF expression pattern for the master regulatory gene of intestinal 

differentiation. Chubb et al. (2006) observed the Poisson scenario of transcriptional 

bursts. A transcriptional burst is characterized by relatively long periods of zero 

transcription interrupted by production of many transcripts in a quick succession. Chubb 

and his collaborators found the bursts occurred randomly, but their durations fitted 

robustly with standard exponential decay curves. Golding et al. (2005) have observed that 

the transcription is characterized periods of inactivity, followed by period of activity. 

They also confirmed that the period of activity could be described by exponentials.  

Recently, Suter et al. (2011) found in their study that the gene on interval 

followed an exponential distribution, and the gene off interval showed a local maximum 

that was best described by assuming two sequential exponential process (see Figure 4.3). 

The findings of Suter and his collaborators confirmed our theorem for the duration of 

gene off and gene on period.  
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Figure 4.3 Distribution of the duration of gene on and off. (A) Distribution of “on” 

intervals; black lines show exponential fits. (B) Distribution of “off” intervals. Black 

lines show best fits to “two-step” model (Suter et al. (2011)). 
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Chapter 5 

The Transition Frequencies in System States in the Three State Model 

To understand the stochastic dynamics of transcription activities more thoroughly, 

we also explore how frequently the states in the three state system are transformed. For 

instance, for a given time t  and an integer n , we estimate how likely the gene has been 

transcribed exactly n  times during the time period ),0( t . In this chapter, we extend the 

definitions of )(1 tP q  and )(1 tP y  to a larger class of transition frequency probability 

)(tPnx , 1≥n , and ,, yqx =  and e .  Also we introduce the system of master equations 

governing these functions, )(tPnx , derived by Tang (Tang 2008, 2010) utilizing the 

transition rule of the Three State Model. We also derive the formulae to compute )(3 tP q  

and )(3 tP y using the master equation. Finally we derive and discuss the properties of 

these transition frequency probability. 

5.1 The transition frequency probabilities and the master equations 

If the system is in the ground (excited, or engaged) state at any given time 0≥t , 

then we define )(tX = q ( y  or e ). Let )(tN  be a discrete random variable that counts the 

number of transition events among these states. We say that 

),())(),(( xntXtN = , ∈n {1, 2, 3, ...} and  ∈x {q, y, e}, 

if the transcription system is residing on the state X  at time t , and has visited X  

exactly n  times (including the current visiting) since time zero. The transition of the pair 

of random variable ))(),(( tXtN  follows the unidirectional infinite Markov chain 

...),(),(),...(),1(),1(),1( ⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯ γλκγλκ enynqneyq        (5.1) 
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Apparently, each state in this chain can only be reached by earlier states, but not 

by later ones. For any pair of different states in the chain, there is a unique pathway 

connecting them. The connecting pathway is not reversible, so that the two states 

do not "communicate". This chain is reducible, and all states are transient because 

each can only be visited by the transcription system once. See Allen (2003, 

Chapters 2 and 5) for classification of Markov chains. 

Define )},())(),({(Pr)( xntXtNobtPnx == , then )(tPnx  gives the probability 

that the system is residing on the state X  the thn  time at time t , so is called transition 

frequency probability. For instance, )(1 tP q  is the probability that the system has remained 

in the ground state since time zero, and )(1 tP y  is the probability that the system is 

residing on excited state the first time. Because the system must reside on one and only 

one state of the chain (5.1) at any given time 0>t , we have the conservation relations 


∞

=

=++
1

1))()()((
n

nenynq tPtPtP  for all 0>t .                  (5.2) 

We assume that the system is in the ground state at time ,0=t  and so maintains 

the initial condition 

1)0(1 =qP , 0)0()0( 11 == ey PP , and 0)0()0()0( === nenynq PPP  for 1>n .     (5.3) 

Clearly t
q etP κ−=)(1  because the transition ),1(),1( yq ⎯→⎯κ  is exponentially distributed. 

The rest of the transition frequency probability )(tPnx  satisfy the following master 

equations which was derived by Tang (Tang 2008, 2010)  following the same logic to 

find )(1 tP y  in Section 3.1:  

 )()(
)(

tPtP
dt

tdP
nynq

ny λκ −=                                     (5.4) 



 32

)()(
)(

tPtP
dt

tdP
neny

ne γλ −=                                     (5.5) 

)()(
)(

)1(
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tdP
neqn

qn γκ +−= +
+                           (5.6) 

Using the initial condition (5.3), this system of master equations can be 

transformed into the iterative integration scheme (Hirsch, 2003) 
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Here's how (5.7) can be obtained from (5.4) and the condition 0)0( =nyP . 
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dsesPetP
t

s
nq

t
ny =
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)()( λλ κ   since 0)0( =nyP  by (5.3) 
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ny dssPetP
0

)( )()( λκ  

Also (5.8) and (5.9) can be obtained from (5.5) and (5.6) similarly. 

The integral forms (5.7)-(5.9) provide a straightforward iterative scheme for 

finding all transition frequency probabilities )(tPnx  , starting from known formula 

t
q etP κ−=)(1 . For example, inserting t

q etP κ−=)(1  into (5.7) and evaluating the integral, 

we can find )(1 tP y . By inserting )(1 tP y  into (5.8) we can find )(1 tP e ; continuing the 

process iteratively we could obtain )(2 tP q , )(2 tP y , and so on.  

Tang (Tang 2010) also suggested another way to compute )(tPnx . Here's the 

summary of the computation method.  Let  

jiij )()(

1

γκλκ
κ

−−
= ,

jiij )()(

1

κλγλ
λ

−−
= , 

jiij )()(

1

λγκγ
γ

−−
= , and 

t
ij

t
ij

t
ijij eeetE γλκ γλκ −−− ++=)( . 

Define master operator as  

dssfstEtfL
t

)()())((
0

11 −= κλγ .                        (5.10) 

The prominent property of the master operator L ,  

))(()( )1( tPLtP xnnx −= , 

can be used to compute )(tPnx . The expressions for )(1 tP q , )(1 tP y , )(1 tP e , )(2 tP q , 

)(2 tP y , )(2 tP e , )(3 tP e  were given by Tang (2010) and Flemer et al. (2009) as follows: 
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t
q etP κ−=)(1                                                       (5.11) 

λκ
λκ

κ
κλ

κ λκ

=
≠





 −

−=
−

−−

kt

tt

y

te

ee
tP

)(
)(1                                  (5.12) 

)()( 111 tEtP e κλ=                                                    (5.13) 

))(()( 21122112112
tttt

q eeetetP γλκκ γλκκκκλγ −−−− −−++=                     (5.14) 

)222)(()( 221331221221
2

2
ttttt

y eeetEtetetP γλκλκ γλκλκλγκ −−−−− −++++−=       (5.15) 

))(2)(2)(()( 322322
22

2 tEtEttEtP e ++= γλκ                                (5.16) 

))(2)(2)(2

)(2)(2)(2

)()()(

)(3)(5)(3))()((32/)(()(

423311423311423311

332411332411332411

132231223122132213223122

534435433433
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ttt

ttt

e
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eee

tEtEtEtEtEttEttP
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γλγκλγλκκγκλ
γλκ
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++++++
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    (5.17) 

Given below is the expressions for )(3 tP q , )(3 tP y  found by us using master 

operator L : 

))()()()()(()( 21122112113
tttt

q eLeLeLteLtP γλκκ γλκκκκλγ −−−− −−++=        (5.18) 

))(2)()2(

)()()2()(()(

221322

12312221
2

3

tt

ttt
y

eLeL

teLeLteLtP
γλ

λκκ

γλλ

λκκκλγκ
−−

−−−

−+

++++−=
                     (5.19) 

Here, )( teL κ− , )( teL λ− , and )( teL γ−  were shown by Tang (2010) as follows: 

))(()( 2112211211
ttttt eeeteeL γλκκκ γλκκκκλγ −−−−− −−++=  

))(()( 2112211211
ttttt eeeteeL κγλλλ κγλλλκλγ −−−−− −−++=  

))(()( 2112211211
ttttt eeeteeL γκγγγ γκγγγκλγ −−−−− −−++=  

And the expression of  )( tteL κ− and )( tteL λ−  derived by us are as follows: 
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Here are the details to get )( tteL κ− and )( tteL λ− : 

))(()( )(
11

)(
11

)(
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0

dsseeeeteL sststst
t

t κγλκκ γλκκλγ −−−−−−−− ++=   

since t
ij

t
ij

t
ijij eeetE γλκ γλκ −−− ++=)(   and dssfstEtfL

t

)()())((
0

11 −= κλγ  
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The above formulae will be used in Chapter 6. The six transition frequency 

probabilities, )(1 tP q - )(3 tP e , are graphed in Figure 5.1 for 3/1=κ , 5/1=λ , and 

6/1=γ . 
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Figure 5.1 The plot of transition frequency probabilities )(1 tP q - )(3 tP e . 

5.2. Analytical properties of the transition frequencies probabilities 

As shown by the examples discussed above, it is practically unfeasible to write 

down all transition frequency probabilities )(tPnx  in exact form. Furthermore, even with 

the exact form at hand, it is not adequate to work with it directly to explore its analytical 

properties. For instance, it is a rather demanding elementary exercise to verify the simple 

fact that 0)0(3 =eP . We derive some of their important properties using the methods of 
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mathematical analysis. And we summarize the mathematical properties of )(tPnx  in the 

following section.  

Theorem 5.2 Assume that the initial condition (5.2) holds, that is  

1)0(1 =qP , 0)0()0( 11 == ey PP , and 0)0()0()0( === nenynq PPP  for 1>n .          

Then we have:  

(1) All transition frequency probabilities )(tPnx  are infinitely differentiable, and are 

positive and strictly less than 1. They all approach zero as ∞→t .  

(2) Let ),( xnjj =  indicates the position of the state ),( xn  in the Markov chain 

...),(),(),...(),2(),1(),1(),1( ⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯ κγλκγλκ qnenynqeyq ,  

that is, 1),1( =qj , 2),1( =yj , 3),1( =ej , and more generally  

23),( −= nqnj , 13),( −= nynj , and nenj 3),( = .                   (5.20)  

Then the local behavior of )(tPnx  at 0=t  is characterized by  

.0)0(,0)0(...)0()0( )1()2(''' >==== −− j
nx

j
nxnxnx PPPP                     (5.21) 

and  .)()0(,)()0(,)()0( )1()1()1()1()1()1( −−−−−− === nnj
ne

nnj
ny

nj
nq PPP γκλλγκκλγ        (5.22) 

(3) Let 1>j . Then )(tPnx  has a unique positive critical point, called the peak instant of 

the state ),( xn  and denoted by jT  or nxT , where it assumes its unique and absolute 

maximum value. The peak instant nxj TT =  is an increasing function of j :  

......0 2111 <<<<<<<<= nenynqqeyq TTTTTTT                        (5.23)  

(4) Let 1>j . All transition frequency probabilities )(tP xn  with ),(),( xnjxnj >  are 

increasing for nxTt <<0 , and all functions )(tP xn  with ),(),( xnjxnj <  are decreasing 

for nxTt > .  
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We give a brief discussion of this theorem before the proof. Part (1) simply means 

that )(tPnx  are well defined mathematically as probabilities. The vanishing asymptote 

agrees with the basic fact that the state ),( xn  is transient for any fixed n  and x . By the 

initial condition, 1)0(1 =qP  and all other transition frequency probabilities )(tPnx  vanish 

at 0=t . As time goes on, )(1 tP q  decays and the value lost by )(1 tP q  is gained by the rest 

of )(tPnx . For small 0>t , it is expected that )(1 tP y  should take up the most part, because 

the transcription system has to arrive at excited state the first time before shifting to other 

states in the Markov chain (5.1). This is justified by the fact that 0)0('
1 >= κyP , and  

0)0()0( ''
1 == nxe PP  for all 1>n . The argument here can be generalized to each state 

),( xn  and 0>t . Consider two states ),( xn  and ),( xn  with ),(),( xnjxnj > , then we 

expect that )(tP xn  grows behind the growth of )(tPnx , and keeps growing even when 

)(tPnx  reaches its maximum value at the peak instant. Parts (2)-(4) basically quantify this 

observation mathematically.  

To help us to further understand the above properties of )(tPnx , three transition 

frequency probabilities )(2 tP q , )(2 tP y , and )(2 tP e  are graphed in Figure 5.2 for 3/1=κ , 

5/1=λ , and 6/1=γ . The three maximum values of )(2 tP q - )(2 tP e  are marked with 

X . It is obvious that properties (1)-(3) are valid. To verify (4), we may note that these 

transition frequency probabilities increase for ),0( 2qTt ∈ , and decrease for eTt 2> . 

Furthermore, )(2 tP y  and )(2 tP e  increase in ),0( 2 yT , whereas )(2 tP q  and )(2 tP y  decrease 

for yTt 2> .  
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Figure 5.2 The plot of transition frequency probabilities )(2 tP q - )(2 tP e . The three 

maximum values of  )(2 tP q - )(2 tP e  are marked with X . It is obvious that properties (1)-

(3) are valid. To verify (4), we may note that these functions increase for ),0( 2qTt ∈ , and 

decrease for eTt 2> . Furthermore, )(2 tP y  and )(2 tP e  increase in ),0( 2 yT , whereas )(2 tP q  

and )(2 tP y  decrease for yTt 2> . 
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Parts of Theorem 5.2 were proved in Felmer et al. (2009) by an approach relying 

on the theory of linear operators. The proof we present here is self-contained and uses 

only elementary arguments.   

Proof Theorem 5.2:  (1)-1: show all transition frequency probabilities )(tPnx  are 

infinitely differentiable and approaches zero as t →∞:  By substituting t
q etP κ−=)(1  into 

(5.7), which is  −=
t

nq
ts

ny dssPetP
0

)( )()( λκ , and evaluating the integral of (5.7) with 1=n , 

we find that )(1 tP y  is a linear combination of te λ− , te κ−  , and tte κ− , as justified explicitly 

by (5.11) which is 

λκ
λκ

κ
κλ

κ λκ

=
≠





 −

−=
−

−−

kt

tt

y

te

ee
tP

)(
)(1  

Continuing the process of substitution and integration for Equations (5.7)-(5.9), which are 

 −=
t

nq
ts

ny dssPetP
0

)( )()( λκ , 

 −=
t

ny
ts

ne dssPetP
0

)( )()( γλ , 

and  −
+ =

t

ne
ts

qn dssPetP
0

)(
)1( )()( κγ , 

with increasing n  we find that )(tPnx  can be expressed as a linear combination of ti et κ−1 , 

ti et λ−2 , and ti et γ−3  where 1i , 2i , and 3i  are non-negative integers. This is also supported 

by the expression in (5.11)-(5.19).  Since each of ti et κ−1 , ti et λ−2 , and ti et γ−3  is infinitely 

differentiable and approaches zero as t →∞, so does )(tPnx . 
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(1)-2: show all )(tPnx  are positive and strictly less than 1: Apparently, 

0)(1 >= − t
q etP κ  for all 0>t . It follows from (5.7), which is  −=

t

nq
ts

ny dssPetP
0

)( )()( λκ , 

that 0)(1 >tP y , and in turn, from (5.8), which is  −=
t

ny
ts

ne dssPetP
0

)( )()( γλ , that 0)(1 >tP e  

for all 0>t . Applying (5.7)-(5.9) iteratively we find that 0)( >tPnx  as long as 0>t . 

From the conservation relation (5.2), which is 
∞

=

=++
1

1)()()(
n

nenynq tPtPtP  for all 0>t , 

it is clear that 1)( <tPnx  for 0>t .  

(2) We prove (5.21) and (5.22) by induction on n . The proof makes use of the 

initial condition (5.3) and the master equations (5.4)-(5.6) repeatedly, which are 

1)0(1 =qP , 0)0()0( 11 == ey PP , and 0)0()0()0( === nenynq PPP  for 1>n , (5.3) 

)()(
)(

tPtP
dt

tdP
nynq

ny λκ −= ,                                  (5.4) 

)()(
)(

tPtP
dt

tdP
neny

ne γλ −= ,                                   (5.5) 

and )()(
)(

)1(
)1( tPtP

dt

tdP
neqn

qn γκ +−= +
+                               (5.6) 

   

(2)-1 Show (5.21) and (5.22) are true for 1=n .  To refresh our memory, 

equations (5.21) and (5.22) are 

,0)0(,0)0(...)0()0( )1()2(''' >==== −− j
nx

j
nynxnx PPPP               (5.21) 

and .)()0(,)()0(,)()0( )1()1()1()1()1()1( −−−−−− === nnj
ne

nnj
ny

nj
nq PPP γκλλγκκλγ        (5.22) 
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When 1=n , j  takes values 1, 2, and 3. So we need to show that 1)0(1 =qP  when 1=j , 

0)0(1 =yP  and κ=)0('
1yP  when 2=j , and 0)0(1 =eP , 0)0('

1 =eP , and λκ=)0(''
1eP  when 

3=j . 

1)0(1 =qP  is a part of the initial condition (5.3).  

0)0(1 =yP  is also a part of the initial condition (5.3). 

κ=)0('
1yP  because of the following argument: 

)()(
)(

tPtP
dt

tdP
nynq

ny λκ −=  by (5.4) 

)0()0()0( 11
'

1 yqy PPP λκ −=  

kP y =×−×= 01)0('
1 λκ  since 1)0(1 =qP  and 0)0(1 =yP  

0)0(1 =eP  is a part of the initial condition (5.3).  

0)0('
1 =eP  because of the following argument: 

)()(
)(

tPtP
dt

tdP
neny

ne γλ −=  by (5.5) 

)0()0()0( 11
'

1 eye PPP γλ −=  

000)0('
1 =×−×= γλeP  since 0)0(1 =yP  and 0)0(1 =eP  

λκ=)0(''
1eP  because of the following argument: 

 )()(
)(

tPtP
dt

tdP
neny

ne γλ −=  by (5.5) 

)0()0()0( '
1

'
1

''
1 eye PPP γλ −=  

λκγλκ =×−= 0)0(''
1eP  since κ=)0('

1yP  and 0)0('
1 =eP . 

 



 45

(2)-2 Assume that (5.21) and (5.22) are valid for 1−= mn  and 1>m . It means 

that when 532)1(3),1( −=−−=− mmqmj , 0)0(...)0()0( )73(
)1(

''
)1(

'
)1( ==== −

−−−
m

qmqmqm PPP  

and )2()63(
)1( )()0( −−

− = mm
qmP κλγ ,  

when 431)1(3),1( −=−−=− mmymj , 0)0(...)0()0( )63(
)1(

''
)1(

'
)1( ==== −

−−−
m

ymymym PPP  and 

)2()1()53(
)1( )()0( −−−

− = mmm
ymP λγκ , and 

when 33)1(3),1( −=−=− mmemj , 0)0(...)0()0( )53(
)1(

''
)1(

'
)1( ==== −

−−−
m

ememem PPP  and 

)2()1()43(
)1( )()0( −−−

− = mmm
emP γκλ . 

(2)-3 Prove that (5.21) and (5.22) are valid when mn = , 1>m , and 23 −= mj , 

13 −m , and m3 . It means that we need to show that 

when 23),( −= mqmj , 0)0(...)0()0( )43(''' ==== −m
mqmqmq PPP  and )1()33( )()0( −− = mm

mqP κλγ , 

when 13),( −= mymj , 0)0(...)0()0( )33(''' ==== −m
mymymy PPP  and 

)1()23( )()0( −− = mmm
myP λγκ , and  when memj 3),( = , 0)0(...)0()0( )23(''' ==== −m

mememe PPP  

and )1()13( )()0( −− = mmm
meP γκλ .  The details for the proof is given below: 

(2)-3-a Show 0)0(...)0()0( )43(''' ==== −m
mqmqmq PPP  when 23),( −== mqmjj  and  

),(),( qmxn = . 

 )()(
)(

)1(
)1( tPtP

dt

tdP
neqn

qn γκ +−= +
+  by (5.6) 

)0()0()0( )1(
)1(

)1()( −
−

− +−= i
em

i
mq

i
mq PPP γκ  

)0()0( )1()( −−= i
mq

i
mq PP κ  for 431 −≤≤ mi  and 1>m  since  0)0()1( =− emP  by initial 

condition and 0)0(...)0()0( )53(
)1(

''
)1(

'
)1( ==== −

−−−
m

ememem PPP  by the assumption for 1−= mn .  
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0)0()( = i
mqP  for 431 −≤≤ mi  and 1>m  since 0)0( =mqP  , 0)0(' =mqP , ..., 

0)0()1( =−i
mqP  for 431 −≤≤ mi  and 1>m  . 

As follows is the proof for 0)0( =mqP  , 0)0(' =mqP , ..., 0)0()1( =−i
mqP  for 

431 −≤≤ mi  and 1>m : 

 0)0( =mqP  is due to initial condition.  

0)0(' =mqP  because of the following argument: 

 )()(
)(

)1(
)1( tPtP

dt

tdP
neqn

qn γκ +−= +
+  by (5.6) 

)0()0()0( )1(
'

emmqmq PPP −+−= γκ   

0)0(' = mqP   since 0)0( =mqP  and 0)0()1( =− emP  for 1>m  is a part of initial condition. 

0)0('' =mqP  because of the following argument: 

)()(
)(

)1(
)1( tPtP

dt

tdP
neqn

qn γκ +−= +
+  by (5.6) 

)0()0()0( '
)1(

'''
emmqmq PPP −+−= γκ  

00)0(' ×+×−= γκmqP   since 0)0(' =mqP  proved above and 0'
)1( =− emP  by  the 

assumption for 1−= mn . Repeating this process until 0)0()1( =−i
mqP  for 43 −= mi  and 

1>m .   

(2)-3-b Show )1()33(
)1( )()0( −−

− = mm
qmP κλγ  when 23),( −== mqmjj , 1>m , and  

),(),( qmxn = . 

)()(
)(

)1(
)1( tPtP

dt

tdP
neqn

qn γκ +−= +
+  by (5.6) 
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)0()0()0( )1(
)1(

)1()( −
−

− +−= i
em

i
mq

i
mq PPP γκ   

)0()0()0( )43(
)1(

)43()33( −
−

−− +−= m
em

m
mq

m
mq PPP γκ  

)0(0)0( )43(
)1(

)33( −
−

− +×−= m
em

m
mq PP γκ   since 0)0()43( =−m

mqP  proved in (2)-3-a 

)2()1()43( )()0( −−− = mmm
mqP γκλγ  since )2()1()43(

)1( )()0( −−−
− = mmm

emP γκλ  by the assumption for 

1−= mn .  

)1()43( )()0( −− = mm
mqP κλγ  

(2)-3-c Show 0)0(...)0()0( )33(''' ==== −m
mymymy PPP  when 13),( −== mymjj , 

1>m , and ),(),( ymxn = . 

)()(
)(

tPtP
dt

tdP
nynq

ny λκ −=  by (5.4) 

)0()0()0( )1()1()( −− −= i
my

i
mq

i
my PPP λκ  

)0()0( )1()( −= i
my

i
my PP κ  for 331 −≤≤ mi  and 1>m  since 

0)0(...)0()0( )43(''' ==== −m
mqmqmq PPP  proved in (2)-3-a 

0)0()( = i
myP  for 331 −≤≤ mi  and 1>m  since 0)0( =myP  , 0)0(' =myP , ..., 

0)0()1( =−i
myP  for 331 −≤≤ mi  and 1>m  . 

As follows is the proof for 0)0( =myP  , 0)0(' =myP , ..., 0)0()1( =−i
myP  for 

331 −≤≤ mi  and 1>m : 

 0)0( =myP  is due to the initial condition.  

0)0(' =myP  because of the following argument: 

 )()(
)(

tPtP
dt

tdP
nynq

ny λκ −=  by (5.4) 
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)0()0()0('
mymqmy PPP λκ −=   

00)0(' ×−×= λκmyP  since 0)0( =mqP  and 0)0( =myP  for 1>m  is a part of initial 

condition.  

0)0(' = myP  

0)0('' =myP  because of the following argument: 

)()(
)(

tPtP
dt

tdP
nynq

ny λκ −=  by (5.4) 

)0()0()0( ''''
mymqmy PPP λκ −=  

00)0('' ×−×= λκmyP   since 0)0(' =mqP  proved in section (2)-3-a and 0)0(' =myP  

proved above. Repeating this process until 0)0()1( =−i
myP  for 33 −= mi  and 1>m . 

(2)-3-d Show )1()23( )()0( −− = mmm
myP λγκ  when 13),( −== mymjj , 1>m , and 

),(),( ymxn = . 

)()(
)(

tPtP
dt

tdP
nynq

ny λκ −=  by (5.4) 

)0()0()0( )1()1()( −− −= i
my

i
mq

i
my PPP λκ   

)0()0()0( )33()33()23( −−− −= m
my

m
mq

m
my PPP γκ  

0)0()0( )33()23( ×−= −− γκ m
mq

m
my PP  since 0)0(33 =−m

myP  proved above in (2)-2-c 

)1()23( )()0( −− = mm
myP κλγκ  since )1()33( )()0( −− = mm

mqP κλγ  proved above in (2)-2-b   

)1()23( )()0( −− = mmm
myP λγκ  

(2)-3-e Show 0)0(...)0()0( )23(''' ==== −m
mememe PPP  when memjj 3),( == , 1>m , 

and ),(),( emxn = . 
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 )()(
)(

tPtP
dt

tdP
neny

ne γλ −=  by (5.5) 

)0()0()0( )1()1()( −− −= i
me

i
my

i
me PPP γλ  

)0()0( )1()( −= i
me

i
me PP γ  for 231 −≤≤ mi  and 1>m  since 

0)0(...)0()0( )33(''' ==== −m
mymymy PPP  proved above in (2)-3-c  

0)0()( = i
meP  for 231 −≤≤ mi  and 1>m  since 0)0( =meP , 0)0(' =meP , ..., 

0)0()1( =−i
meP  for 231 −≤≤ mi  and 1>m  . 

As follows is the proof for 0)0( =meP  , 0)0(' =meP , ..., 0)0()1( =−i
meP  for 

231 −≤≤ mi  and 1>m : 

 0)0( =meP  is a part of  initial condition.  

0)0(' =meP  because of the following argument: 

 )()(
)(

tPtP
dt

tdP
neny

ne γλ −=  by (5.5) 

)0()0()0('
memyme PPP γκ −=   

00)0(' ×−×= γκmeP  since 0)0( =myP  and 0)0( =meP  is a part of initial condition.  

0)0(' = meP  

0)0('' =meP  because of the following argument: 

)()(
)(

tPtP
dt

tdP
neny

ne γλ −=  by (5.5) 

)0()0()0( ''''
memyme PPP γλ −=  
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000)0('' =×−×= γλmyP   since 0)0(' =myP  proved above in section (2)-3-c and 

0)0(' =meP  proved above. Repeating this process until 0)0()1( =−i
meP  for 23 −= mi  and 

1>m . 

(2)-3-f Show )1()13(
)1( )()0( −−

− = mmm
emP γκλ  when memjj 3),( == , 1>m , and 

),(),( emxn = . 

)()(
)(

tPtP
dt

tdP
neny

ne γλ −=  by (5.5) 

)0()0()0( )1()1()( −− −= i
me

i
my

i
me PPP γλ  

)0()0()0( )23()23()13( −−− −= m
me

m
my

m
me PPP γλ  

0)0()0( )23()13( ×−= −− γλ m
my

m
me PP  since 0)0(23 =−m

meP  proved above in (2)-3-e 

)1()13( )()0( −− = mmm
meP λγλκ  since )1()23( )()0( −− = mmm

myP λγκ  proved above in (2)-3-d.   

)1()13( )()0( −− = mmm
meP γκλ  

(3) Show (5.23). To refresh our memory, (5.23) is as follows: 

Let 1>j , then )(tPnx  has a unique positive critical point, called the peak instant of the 

state ),( xn  and denoted by jT  or nxT , where it assumes its unique and absolute 

maximum value. The peak instant nxj TT =  is an increasing function of j :  

......0 2111 <<<<<<<<= nenynqqeyq TTTTTTT                      (5.23)  

We use mathematical induction to prove that the maximum value for each )(tPnx  

is unique and jj TT <−1 . Here are the details for proof: 

(3)-1 Show )(1 tP q  has a unique maximum value at 0=T  when 1=j  and ),1(),( qxn = . 
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t
q etP κ−=)(1  is decreasing because 0)('

1 <−= − t
q etP κκ , so it take the only critical point 1 

at 01 =T . 

(3)-2 Show )(1 tP y  has a unique maximum value at 2T  and 210 TT <=  when 

2=j  and ),1(),( yxn = . 

Let 2T  be an arbitrary positive critical point of )(1 tP y  so that 0)( 2
'

1 =TP y . We find that 

0)( 2
''

1 <TP y  because of the following argument: 

)()(
)(

tPtP
dt

tdP
nynq

ny λκ −=  by master equation (5.4) 

)()()( 2
'

12
'

12
''

1 TPTPTP yqy λκ −=  

0)()( 2
'

12
''

1 ×−= λκ TPTP qy  since 0)( 2
'

1 =TP y  by assuming 2T  be an arbitrary positive 

critical point of )(1 tP y . 

0)()( 2
'

12
''

1 <= TPTP qy κ   since 0)exp()( 22
'

1 <−−= TTP q κκ . 

Therefore, )(1 tP y  must take a maximum value at 2T  because 2T  be an arbitrary positive 

critical point of )(1 tP y  and 0)( 2
''

1 <TP y  . And furthermore, there exists exactly one 

positive critical point of )(1 tP y : If there were more, then )(1 tP y  should assume a 

minimum value somewhere, i.e. 0)( 2
'

1 =TP y  and 0)( 2
''

1 >TP y  since 2T  is assumed to be 

an arbitrary positive critical point of )(1 tP y . 0)( 2
''

1 >TP y  contradicts 0)( 2
''

1 <TP y  showed 

above. Thus )(1 tP y  must take a unique maximum value at 2T , i.e. 22 TT = . 

Also we have 210 TT <=  because )(1 tP y  must take a unique maximum value at 

2T  and 0)0(1 =yP  by initial condition. 



 52

Put all together, we have )(1 tP y  has a unique maximum value at 2T  and 

210 TT <= .  

(3)-3  Assume that )(tPnx  has a unique positive critical point JT  at which 

0)('' <Jnx TP  and JJ TT <−1  when 1),( >= Jxnj . Then show )(tPnx  has a unique positive 

critical point 1+JT  and  1+< JJ TT   when  11),( >+= Jxnj .      

Without loss of generality, we assume ),(),( qnxn =  when Jj =  for clarity of 

presentation. That is we assume  

0)(' =Jnq TP , 0)('' <Jnq TP ,                               (5.24)  

and ),(),( qnxn =  when Jj = .  We need to show )(tPny  has a unique positive critical 

point 1+JT  and  1+< JJ TT   when  11),( >+= Jynj . 

(3)-3-a Define 1+JT  be the first positive critical point of )(tPny  and show )(tPny  

takes a maximum value at 1+JT . Because 1+JT  is the first positive critical point of )(tPny . 

Also )(tPny  increases for small 0>t  because 0)0(...)0()0( )2(''' ==== −j
nynxnx PPP  and 

0)0()1( >−j
nxP  (5.21). Then )(tPny  takes a maximum value at 1+JT . 

(3)-3-b Show JJ TT ≥+1 .   

)()(
)(

tPtP
dt

tdP
nynq

ny λκ −=  by master equation (5.4) 

 )()()( 1
'

1
''

1
'

+++ += JnyJnyJnq TPTPTP λκ  

0)()( 1
''

1
' ×+= ++ λκ JnyJnq TPTP  since 0)( 1

' =+Jny TP  because 1+JT  is a positive critical 

point of )(tPny . 
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0)()( 1
''

1
' ≤= ++ JnyJnq TPTPκ  because )(tPny  takes a maximum value at 1+JT  proved 

above in (3)-3-a. 

0)( 1
' ≤ +Jnq TP  

JJ TT ≥ +1  because )(tPnq  takes the unique maximum value at JT  by the assumption 

for Jqnj =),(  

(3)-3-c Show that JJ TT ≥+1  can be strengthened to the strict inequality JJ TT >+1  . 

If not, then JJ TT =+1  and )(tPnq  and )(tPny  take the maximum values at the same instant 

JT . We have )()(
)(

tPtP
dt

tdP
nynq

ny λκ −=  by master equation (5.4) 

)()()( '''''''
JnyJnqJny TPTPTP λκ −=  

))()(()()( '''''''
JnyJnqJnqJny TPTPTPTP λκλκ −−=  since )()()( ''''

JnyJnqJny TPTPTP λκ −=  

0)()( ''''' ×−= λκ JnqJny TPTP  since 0)(' =Jnq TP  and 0)(' =Jny TP  which is because we 

assume that  JJ TT =+1  and )(tPnq  and )(tPny  take the maximum values at the same 

instant JT . 

0)(''' < Jny TP  because we assume 0)('' <Jnq TP  and ),(),( qnxn =  when Jj = .  

 )('' tPny  is decreasing near JT  since 0)(''' <xf  implies )('' xf  is decreasing near x . 

 0)('' >tPny  for JTt <  and close to JT  because 0)()()( '''' =−= JnyJnqJny TPTPTP λκ  by the 

assumption that JJ TT =+1  and )(tPnq  and )(tPny  take the maximum values at the same 

instant JT . 
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 )(' tPny  is increasing for JTt <  and close to JT  since 0)('' >xf  implies )(' xf  is 

increasing near x . 

0)(' < tPny  when JTt < and t  is close to T  since  0)(' =Jny TP  by the assumption that 

JJ TT =+1  and )(tPnq  and )(tPny  take the maximum values at the same instant JT . 

0)(' < tPny  when 1+< JTt and t  is close to 1+JT  because we assume JJ TT =+1 .  On the 

other hand we have 0)(' >tPny  when 1+< JTt and t  is close to 1+JT  because 1+JT  is defined 

to be the first positive critical point of )(tPny  and )(tPny takes a maximum value at 1+JT  .  

Assuming JJ TT =+1  gives a contradiction, so  JJ TT >+1  .  

(3)-3-d Show )(tPny can have only one critical point. If )(tPny  has more than one 

critical point, and let 1+JS  be the smallest critical point of )(tPny  such that 11 ++ > JJ TS , 

then )(tPny  should take a minimum value at 1+JS  because )(tPny  takes a maximum value 

at 1+JT  showed in (3)-3-a.  It gives 0)( 1
'' ≥+Jny SP . 

On the other hand, )()(
)(

tPtP
dt

tdP
nynq

ny λκ −=  by master equation (5.4)  

)()()( 1
'

1
'

1
''

+++ −= JnyJnqJny SPSPSP λκ . 

)()( 1
'

1
''

++ = JnqJny SPSP κ  since 0)( 1
' =+Jny SP  because of )(tPny  takes a critical value at 

1+JS . 

0)()( 1
'

1
'' <= ++ JnqJny SPSP κ  since )(tPnq  takes the unique maximum value at JT , and 

JJ TS >+1 . 
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0)( 1
'' < +Jny SP , which gives a contradiction. Therefore, )(tPny  can have only one 

critical point. 

Put 3)-3-a to 3)-3-d together, there is exactly one positive critical point of )(tPny , 

and 11 ++ = JJ TT , and JJ TT >+1 . By mathematical induction, property (3) is established for 

all 1≥j .  

(4) This is an immediate consequence of (3).  
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Chapter 6 

The Burst Frequency in the Three State Model 

In this chapter, we define and compute the distribution of the burst frequency in 

the Three State Model, then discuss the properties of the burst frequency. Finally, we 

exemplify the mathematical results by the experimental data and simulation.  

6.1 The distribution of the burst frequency in the Three State Model 

For each integer 0>n , we define )(tPn to be the probability that exactly n  

transcription bursts have occurred during the time period ],0( t , and call it the burst 

frequency probability. It gives the likelihood of n  transcription bursts in a period of 

observation. It also give the likelihood of n  transcript synthesis cycle in a period of 

observation because one burst indicates one synthesis cycles .  It can be used to compute 

the percentage of cells with the given number of bursts or synthesis cycles within a cell 

population. In particular, )(0 tP  is the probability that the system has not reached the 

engaged state in ],0( t  , which occurs if the system is in the ground state or the excited 

state the first time at time t . In chapter 3, we obtained 







=+

≠
−

+
−=

−

−−
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λκ
λκ

κ
κλ

λ λκ

kekt

ee
tP

kt

tt

)1(

,
)(0

          (3.1) 

In general, let )(tAn  denote the event that n  transcription bursts have occurred 

during the time interval ],0( t . Then 

)}({Pr)( tAobtP nn = . 
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For n > 0, )(tAn  corresponds to the three transient states ),( en , ),1( qn +  or ),1( yn +  in 

the chain (5.1). Hence burst frequency probability )(tPn  and the transition frequency 

probability )(tPnx  are related by 

.0),()()()( )1()1( >++= ++ ntPtPtPtP ynqnnen                             (6.1) 

6.2. Analytical properties of the burst frequency probability in the Three State 

Model 

The mathematical properties of transition frequency probabilities )(tPn  are given  

in the following Theorem: 

Theorem 6.2 Assume that 1≥n  and the initial condition (5.3) holds, which is 1)0(1 =qP , 

0)0()0( 11 == ey PP , and 0)0()0()0( === nenynq PPP  for 1>n .       

(1) All transition frequency probabilities )(tPn  are infinitely differentiable, positive, and 

strictly less than 1. They all approach zero as ∞→t . 

(2) The local behavior of )(tPn  at 0=t  is characterized by 

.0)()0(,0)0(...)0()0( 1)13()23(''' >===== −−− nnn
n

n
nnn PPPP γκλ         (6.2) 

(3) )(tPn  has a unique positive critical point, called the peak instant of n  transcription 

bursts and denoted by nS , where it takes its absolute maximum value. Furthermore 

nyn TS > ,                                                        (6.3) 

where nyT  is the peak instant of the state ),( yn . 

To help us understand the properties of )(tPn , three burst frequency probabilities 

)(0 tP , )(1 tP , and )(2 tP  are graphed in Figure 6.1 for 5=κ , 5/1=λ , and 8.5/1=γ . 

The three maximum values of )(0 tP , )(1 tP , and )(2 tP  are marked with X . It is obvious 
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that properties (1)-(3) are valid. 

 

Figure 6.1 The plot of three bursting frequency probabilities )(0 tP , )(1 tP , and )(2 tP . 

The three maximum values of )(0 tP , )(1 tP , and )(2 tP  are marked with X . 

Proving Part (3) of theorem 6. 2 requires two technical lemmas (proof of theorem 

6. 2 requires lemma 6.3 and proof of lemma 6.3 requires lemma 6.2). The lemmas are 

given here, but the proof of lemmas is given immediately after we prove Theorem 6. 2. 
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Lemma 6.2 Assume that 1≥n  and the initial condition (5.3) holds, which is 1)0(1 =qP , 

0)0()0( 11 == ey PP , and 0)0()0()0( === nenynq PPP  for 1>n , then 

)()()1( tPtP nxxn <+  and 0)('
)1( >+ tP xn  for all nxTt ≤<0 , .,, eyqx =  

Lemma 6.3 Assume that the initial condition (5.3) holds and 1≥n . Then )(tPnx  and 

)()1( tP xn+  intersect exactly once over ),0( ∞ . More precisely, there is a time nxnx TS >  

such that 

)()( )1( tPtP xnnx +>  for ,0 nxSt <<  )()( )1( tPtP xnnx +<  for ,nxSt >               (6.4) 

and 

)()( '
)1(

'
nxxnnxnx SPSP +< .                                             (6.5) 

6.2.1 Proof of Theorem 6.2  

(1) Show part (1), that is )(tPn  are infinitely differentiable, positive, and strictly 

less than 1. They all approach zero as ∞→t .   

We know )()()()( )1()1( tPtPtPtP ynqnnen ++ ++= .  And all )(tPnx  are infinitely 

differentiable and positive, and they all approach zero as ∞→t  by Theorem 5.2. Also 


∞

=

=++
1

1)()()(
n

nenynq tPtPtP  for all 0>t  because of conservation relations (5.2). So we 

have all functions )(tPn  are infinitely differentiable, positive, and strictly less than 1. 

They all approach zero as ∞→t . 

(2) Show part (2), i.e. 0)0(...)0()0( )23(''' ==== −n
nnn PPP  and 

.0)()0( 1)13( >= −− nnn
nP γκλ   

We can get )0()0()0()0( )(
)1(

)(
)1(

)()( i
yn

i
qn

i
ne

i
n PPPP ++ ++=  by differentiating 
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)()()()( )1()1( tPtPtPtP ynqnnen ++ ++=  (6.1). We also have nenj 3),( = , 13),1( +=+ nqnj , 

and 23),1( +=+ nynj  by definition of ),( xnjj =  given in (5.20) .   

If 23 −≤ ni  , then 2−≤ ji  for ),( enj , ),1( qnj + , and ),1( ynj + , so 

0)0()0()0()0( )(
)1(

)(
)1(

)()( =++= ++
i

yn
i

qn
i

ne
i

n PPPP  because the three derivatives )0()(i
neP , 

)0()(
)1(

i
qnP + , and )0()(

)1(
i

ynP +  are all zeros by 0)0(...)0( )2(' === −j
nxnx PP  in (5.21).  

If 13 −= ni , then )0()0()0()0( )(
)1(

)(
)1(

)()( i
yn

i
qn

i
ne

i
n PPPP ++ ++=  

)0()0()0( )13(
)1(

)13(
)1(

)13( −
+

−
+

− ++= n
yn

n
qn

n
ne PPP   

)0()0()0( )3(
)1(

)2(
)1(

)1( −
+

−
+

− ++= j
yn

j
qn

j
ne PPP  since 131),( −=− nenj , 132),1( −=−+ nqnj , and 

133),1( −=−+ nynj  

)0()1( −= j
neP   since )0()2(

)1(
−

+
j

qnP  and )0()3(
)1(

−
+
j

ynP  are both zeros due to 

0)0(...)0( )2(' === −j
nxnx PP  in (5.21) 

)1()( −= nnγκλ  since )1()1( )()0( −− = nnj
neP γκλ  in (5.22) 

(3) Show part (3), i.e. )(tPn  has a unique positive critical point, called the peak 

instant of n  transcription bursts and denoted by nS , where it takes its absolute maximum 

value. Furthermore 

nyn TS >                                              (6.3) 

where nyT  is the peak instant of the state ),( yn . 

(3)-1 Show that )(tPn  has a unique positive critical point, nyS , where it takes its 

absolute maximum value, and nyny TS > (6.3) where nyT  is the peak instant of the state 

),( yn . Here are the details for the proof: 
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)()()()( '
)1(

'
)1(

''
nyynnyqnnynenyn SPSPSPSP ++ ++=  since )()()()( )1()1( tPtPtPtP ynqnnen ++ ++= .  

)()()()()( )1(
'

nynenyqnnynenynynyn SPSPSPSPSP γκγλ +−−= +  

)()( )1()1( nyynnyqn SPSP ++ −+ λκ  by master equations  (5.4)-(5.6)  

)()()( )1(
'

nyynnynynyn SPSPSP +−= λλ  











<
<−=

>=
=



+
+

+

)()(   

 that asserts 6.3 Lemma Since   
0)()()(

 
6.3by Lemma  at t once  

exactly intersect  )( and )(  Since 
0)(

'
)1(

'
'

)1(
'''

)1('

nyynnyny
nyynnynynyn

nxny

ynny

nyn

SPSP
SPSPSP

TS

tPtP
SP

λ
λλ

 

 )(tPn  has a unique positive critical point nyS , where it takes its absolute maximum 

value. Furthermore, nyny TS > . 

(3)-2 Let nyn SS = , then )(tPn  has a unique positive critical point nS , where it 

takes its absolute maximum value. Furthermore, nyn TS > . 

We conjecture that ynn TS )1( +< . Although it is similar to (6.3), we are unable to 

prove or disprove it by a similar argument. If it could be proved, then it would follow that 

nS  increases with n . 

6.2.2 Proof of Lemma 6.2  

Lemma 6.2 Assume that 1≥n  and the initial condition (5.3) hold, which is 1)0(1 =qP , 

0)0()0( 11 == ey PP , and 0)0()0()0( === nenynq PPP , then 

)()()1( tPtP nxxn <+  and 0)('
)1( >+ tP xn  for all nxTt ≤<0 , .,, eyqx =  

Proof of Lemma 6.2:  1) Show )()()1( tPtP nxxn <+  for nxTt ≤<0 . 

dssPstEtP nx

t

xn )()()(
0

11)1( −= + κλγ  by master operator  
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dssfstEtfL
t

)()())((
0

11 −= κλγ  (5.10) and ))(()( )1( tPLtP xnnx −=  

dsstPsEtP nx

t

xn )()()(
0

11)1( −= + κλγ  since dssgstf
t

)()(
0

− = dsstgsf
t

)()(
0

−  

dstPsEtP nx

t

xn )()()(
0

11)1( < + κλγ  for nxTt ≤<0  since 011 ≥E , )(tPnx  is strictly 

increasing over ),0( nxT by part (3) of Theorem 5.2, and  <
b

a

b

a

dxxgdxxf )()( , ba <  if 

)()( xgxf < . 

dstPsEtP nxxn )()()(
0

11)1( 
∞

+ < κλγ  for nxTt ≤<0  since dssfdssf
t


∞

<
00

)()( when )(sf >0 

over ),0( ∞ . 

dssEtPtP nxxn )()()(
0

11)1( 
∞

+ < κλγ  for nxTt ≤<0  

)()()1( tPtP nxxn < +  for nxTt ≤<0  since 1)(
0

11 =
∞

dssEκλγ , and the proof of 

1)(
0

11 =
∞

dssEκλγ  is in Tang, 2010. 

2) Show 0)('
)1( >+ tP xn  for  1≥n  and nxTt ≤<0 . 

dssPstEtP nx

t

xn )()()(
0

11)1( −= + κλγ  by master operator  

dssfstEtfL
t

)()())((
0

11 −= κλγ  (5.10) and ))(()( )1( tPLtP xnnx −=  
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dsstPsEtP nx

t

xn )()()(
0

11)1( −= + κλγ  since dssgstf
t

)()(
0

− = dsstgsf
t

)()(
0

−  

))()(()(
0

11
'

)1( dsstPsE
dt

d
tP nx

t

xn −= + κλγ  

dsstP
dt

d
sEttPtEtP nx

t

nxxn ))(()()()()(
0

1111
'

)1( −+−= + κλγκλγ  since 

dstsgttgdstsg
tt

'

0

'

0

)),((),()),((  +=  

dsstPsEtEtP nx

t

xn )()(0)()( '

0

1111
'

)1( −+×≥ + κλγκλγ  since 0)0( ≥nxP  for 1≥n   

by the initial condition 1)0(1 =qP , 0)0()0( 11 == ey PP , and 

0)0()0()0( === nenynq PPP  for 1>n .  

dsstPsEtP nx

t

xn )()()( '

0

11
'

)1( −≥ + κλγ  for 1≥n  

0)('
)1( > + tP xn  for 1≥n and nxTt ≤<0  since  0)()( '

0

11 >− dsstPsE nx

t

κλγ  for  

1≥n  and nxTt ≤<0 , which is because 0)()(
0

>− dsstgsf
t

 as long as  0)()( >− stgsf , 

and 0)(11 >sE  by definition of )(11 sE  introduced in section 5.1, and 0)(' >− stPnx  

because )(tPnx  is strictly increasing over ),0( nxT  by part (3) of Theorem 5.2. 
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6.2.3 Proof of Lemma 6.3  

Lemma 6.3 Assume that 1≥n  and the initial condition (5.3) holds, which is 1)0(1 =qP , 

0)0()0( 11 == ey PP , and 0)0()0()0( === nenynq PPP ,  then )(tPnx  and 

)()1( tP xn+  intersect exactly once over ),0( ∞ . More precisely, there is a time nxnx TS >  

such that 

)()( )1( tPtP xnnx +>  for ,0 nxSt <<  )()( )1( tPtP xnnx +<  for ,nxSt >                 (6.4) 

and 

)()( '
)1(

'
nxxnnxnx SPSP +< .                                     (6.5) 

Proof of Lemma 6.3:   

We prove Lemma 6.3 by induction on ),0( ∞  in the order of chain 

...),(),(),...(),2(),1(),1(),1( ⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯ κγλκγλκ qnenynqeyq  

(5.1).  

(1) Let ),1(),( qxn = , show )(1 tP q  and )(2 tP q  intersect exactly once over ),0( ∞ . 

More precisely, show there is a time nxnx TS >  such that )()( 21 tPtP qq >  for ,0 1qSt <<  

)()( 21 tPtP qq <  for ,1qSt >  and )()( 1
'

21
'

1 qqqq SPSP < .  

)
)(

)()(

()
)(

)(
(

1

1

0

11

1

2

tP

dssPstE

dt

d

tP

tP

dt

d

q

q

t

q

q

κλγ

κλγ

κλγ

−
=


  by master operator  

dssfstEtfL
t

)()())((
0

11 −= κλγ  (5.10) and ))(()( )1( tPLtP xnnx −=  

)
)(

)()(

()
)(

)(
(

1

1

0

11

1

2

tP

dssPstE

dt

d

tP

tP

dt

d

q

q

t

q

q

−
=


κλγ
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1
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11

1

2

tP

dsstPsE

dt

d

tP

tP

dt

d

q

q

t

q

q
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
κλγ

 since dssgstf
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0

− = dsstgsf
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q

q

−
=


κλγ

 since 

)()()( 11
)()(

1 sPtPeeestP qq
stst

q −===− −−−−− κκκ  

dssPsE
dt

d

tP

tP

dt

d
q

t

q

q )()()
)(

)(
( 1

0

11
1

2 −= κλγ
  

)()()
)(

)(
( 111

1

2 tPtE
tP

tP

dt

d
q

q

q −=
κλγ

 since )()(
0

tfdssf
dt

d t

=  

0)
)(

)(
(

1

2 >
tP

tP

dt

d

q

q

κλγ
 since 0)(11 >tE  and 0)(1 >−tP q  

 )(
)(

1

2

tP
tP

q

q  is a strictly increasing function 

)(1 tPq  and )(2 tP q intersect exactly once at  qS1  over ),0( ∞  because 1)0(1 =qP  and 

0)0(2 =qP   by the initial condition (5.3) 

 )()( 21 tPtP qq >  for ,0 1qSt <<  )()( 21 tPtP qq <  for ,1qSt >  and )()( 1
'

21
'

1 qqqq SPSP < . 

Also nxnx TS > because )()( 12 tPtP qq <  for all qTt 10 ≤<  from Lemma 6.2, and  

)()( 12 tPtP qq <  for ,1qSt >  )()( 21 tPtP qq >  for qSt 10 <<  from argument above. 

(2) Let ),(),( qnxn = , assume it's true that )(tPnq  and )()1( tP qn+  intersect exactly 

once over ),0( ∞ . More precisely, there is a time nqnq TS >  such that )()( )1( tPtP qnnq +>  for 

,0 nqSt <<  )()( tPtP nqnq <  for ,nqSt >  and )()( '
)1(

'
nqqnnqnq SPSP +< .  
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(3) Let ),(),( ynxn = , we need to show it is true that )(tPny  and )()1( tP yn+  

intersect exactly once over ),0( ∞ . More precisely, there is a time nyny TS >  such that 

)()( )1( tPtP ynny +>  for ,0 nySt <<  )()( )1( tPtP ynny +<  for ,nySt >           (6.4) 

and 

)()( '
)1(

'
nyynnyny SPSP +< .                                        (6.5) 

We define nys  as the smallest positive point where )(tPny  and )()1( tP yn+  meet, then 

show in sequential order that nyny Ts > , )()( ''
)1( nynynyyn sPsP >+ , )(tPny  and )()1( tP yn+  can 

intersect only once over ),0( ∞  at nys , indeed nyny Ss = , and )()( )1( tPtP ynny +>  for 

,0 nySt <<  )()( )1( tPtP ynny +<   for nxSt >  (6.4) .                                 

(3)-1 Show nyny Ts >  and )()( ''
)1( nynynyyn sPsP >+ .  We have )()()1( nynynyyn sPsP =+  

because nys  denote the smallest positive point where )(tPny  and )()1( tP yn+  meet. Also by 

Lemma 6.2.2, we have 

nyny Ts >  and )()()1( tPtP nyyn <+  for nyst <<0                    (6.6) 

It follows that  

)()( ''
)1( nynynyyn sPsP ≥+ .                                  (6.7)  

Next we show )()( ''
)1( nynynyyn sPsP ≥+  can be strengthened to the strict inequality 

)()( ''
)1( nynynyyn sPsP >+  because assuming )()( ''

)1( nynynyyn sPsP =+  can lead to contradiction: 

)()( ''
)1( nynynyyn sPsP =+  

)()()('
)1( nynynynqnyyn sPsPsP λκ −= +  since )()()('

nynynynqnyny sPsPsP λκ −=  by equation 

(5.4). 
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)()()( '
)1( nynynyynnynq sPsPsP λκ += +   

)()()( )1(
'

)1( nyynnyynnynq sPsPsP ++ += λκ  since )()()1( nynynyyn sPsP =+  because nys  is the 

point where )(tPny  and )()1( tP yn+  meet. 

)()( )1( nyqnnynq sPsP += κκ  since )()()( )1(
'

)1()1( nyynnyynnyqn sPsPsP +++ += λκ  because of 

)()()( )1()1(
'

)1( nyynnyqnnyyn sPsPsP +++ −= λκ by equation (5.4). 

  )(tPnq  and )()1( tP qn+ also meet at nys . 

 nynq sS =  and )()( '
)1(

'
nyqnnynq sPsP +<  since we assume that )(tPnq  and )()1( tP qn+   

intersect exactly once over ),0( ∞ . More precisely, we assume that there is a time 

nqnq TS >  such that )()( )1( tPtP qnnq +>  for ,0 nqSt <<  )()( tPtP nqnq <  for ,nqSt >  and 

)()( ''
nqnqnqnq SPSP < .  

 )()( '
)1(

'
nyqnnynq sPsP +< κκ  

 )()()()( ''
)1(

''
nynynyqnnynynynq sPsPsPsP λκλκ −<− +  

 )()()()( '
)1(

'
)1(

''
nyynnyqnnynynynq sPsPsPsP ++ −<− λκλκ  since  we 

assume )()( ''
)1( nynynyyn sPsP =+  above 

 )()( ''
)1(

''
nyynnyny sPsP +<  since )()()( ''''

nynynynqnyny sPsPsP λκ −=  and 

)()()( '
)1(

'
)1(

''
)1( nyynnyqnnyyn sPsPsP +++ −= λκ  by equation (5.4). 

 0)()( ''
)1(

'' <− + nyynnyny sPsP  

 )()( )1( tPtP ynny +− takes a maximum value at nyst =  because we assume that 

)()( ''
)1( nynynyyn sPsP =+  above. And this maximum value is zero since )(tPny  and )()1( tP yn+  
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meet at nyst =  by our definition of nys  

 0)()( )1( <− + tPtP ynny  for some nyst < , leading to a contradiction of )()()1( tPtP nyyn <+  

for nyst <<0 in (6.6).  

Taken together, we prove that )()( ''
)1( nynynyyn sPsP >+ . 

(3)-2 We need )()( )1( nyqnnynq sPsP +<  to show )(tPny  and )()1( tP yn+  can intersect 

only once over ),0( ∞  at nys . So we prove it first. Here are the details for the proof:  

)()()('
nynynynqnyny sPsPsP λκ −=  by equation (5.4) 

 )()()( '
nynynynynynq sPsPsP λκ +=  

 )()()( '
)1( nynynyynnynq sPsPsP λκ +< +  for nyny Ts >  since )()( ''

)1( nynynyyn sPsP >+  proved in 

(3)-1. 

 )()()( )1(
'

)1( nyynnyynnynq sPsPsP ++ +< λκ  for nyny Ts >  since )()()1( nynynyyn sPsP =+  because 

nys  is the point where )(tPny  and )()1( tP yn+  meet. 

 )()( )1( nyqnnynq sPsP +< κκ  for nyny Ts >  since )()()( )1()1(
'

)1( nyqnnyynnyyn sPsPsP +++ =+ κλ  

because of )()()( )1()1(
'

)1( nyynnyqnnyyn sPsPsP +++ −= λκ  in equation (5.4) 

 )()( )1( nyqnnynq sPsP +<  for nyny Ts >                                                 (6.8) 

 (3)-3 Show  )(tPny  and )()1( tP yn+  can intersect only once over ),0( ∞  at nys , 

indeed nyny Ss = . Suppose for contradiction that )(tPny  and )()1( tP yn+  intersect more than 

once. Then we can find a time nyny st >  such that  

)()( )1( tPtP ynny +<  for ,nyny tts <<  and )()( )1( nyynnyny tPtP +=            (6.9) 

It follows that )()( '
)1(

'
nyynnyny tPtP +≥ . We show both )()( '

)1(
'

nyynnyny tPtP +=  and 
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)()( '
)1(

'
nyynnyny tPtP +>  could lead to contradiction in the following sections.  

First, show )()( '
)1(

'
nyynnyny tPtP +=  can lead to contradiction: )()( '

)1(
'

nyynnyny tPtP += , 

)()()( '
)1( nyynnynynynq tPtPtP +=− λκ  since )()()('

nynynynqnyny tPtPtP λκ −= by equation (5.4). 

)()()( '
)1( nynynyynnynq tPtPtP λκ += +  

)()()( )1(
'

)1( nyynnyynnynq tPtPtP ++ += λκ  since  )()()1( nynynyyn tPtP =+  by assuming that )(tPny  

and )()1( tP yn+  also intersect at nyt  in (6.9) 

)()( )1( nyqnnynq tPtP += κκ  since )()()( )1(
'

)1()1( nyynnyynnyqn tPtPtP +++ += λκ  because of 

)()()( )1()1(
'

)1( nyynnyqnnyyn tPtPtP +++ −= λκ in equation (5.4). 

  )(tPnq  and )()1( tP qn+ also meet at nyt , which contradicts our assumption that )(tPnq  and 

)()1( tP qn+  intersect uniquely at nqS  in section (2). 

Second, show )()( '
)1(

'
nyynnyny tPtP +>  can lead to contradiction. If 

)()( '
)1(

'
nyynnyny tPtP +> , we can have )()( )1( nyqnnynq tPtP +> κκ  by similar argument to above.  

Combining with )()( )1( nyqnnynq sPsP +< (6.8), it implies that )(tPnq  and )()1( tP qn+  intersect 

at least one time in the interval ),( nyny ts , again leading to a contradiction to our 

assumption that )(tPnq  and )()1( tP qn+  intersect uniquely at nqS  in section (2). 

Put all together, we prove that )(tPny  and )()1( tP yn+  intersect exactly once, and 

indeed nyny Ss = .                                   

(3)-4 Show )()( )1( tPtP ynny +>  for ,0 nySt <<  )()( )1( tPtP ynny +<   for nxSt >  (6.4) . 

We have proved )(tPny  and )()1( tP yn+  intersect exactly once  at nyS .  Combing it with 
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)()( )1( tPtP ynny +>  for nyTt ≤<0  from Lemma 6.2, we have )()( )1( tPtP ynny +>  for 

,0 nySt <<  )()( )1( tPtP ynny +<   for  nySt > , and nyny TS > . 

Put (1) to (3)-4 together, we prove Lemma 3 by induction. 

6.3 Example for burst frequency probability in the Three State Model 

In this section we demonstrate how the functions )(tPn could be used to estimate 

the frequency of gene transcription in eukaryotes by the transcription of an endogenous 

developmental gene dscA in the social amoeba Dictyostelium studied by Chubb et al. 

(2006). The detection system is similar to that of Golding et al. (2005), which followed 

the approach pioneered by Singer and colleagues (Bertrand et al., 1998). In the system, 

twenty-four MS2 stem loops were integrated at 6 bp downstream of the ATG start codon 

of the dscA gene. Upon transcription, the MS2 stem loops were read into nascent RNA 

and detected as a well-resolved fluorescent nuclear spot at the site of transcription, by the 

rapid binding of MS2-GFP stably expressed in the cells. 

The number of transcriptional bursts of the dscA gene was directly counted during 

each 30 min capture period by Chubb and his colleagues, which enabled them to 

calculate accurately the percentage of the cells with given number of bursts.  

This percentage of the cells with given number of bursts can be estimated by the 

following equation:   

)(1

)()()(

)(1

)(
)(

0

)1()1(

0 tP

tPtPtP

tP

tP
tp ynqnnen

n −
++

=
−

= ++ , 0>t ,                  (6.7) 

Here, )(tPn equals the probability that exactly n  transcriptional bursts have occurred 

since time zero. )(0 tP  is portion of silent cells. We also know 1)(
0

=
∞

=n
n tP  due to 



 71

conservation property (5.2). Hence the percentage of the cells that have 3 or more bursts 

among expressed cells in ),0( t  is given by 

 
)(1

)()(
1

)(1

)()()(1
)(

0

21

0

210
3 tP

tPtP

tP

tPtPtP
tpn −

+−=
−

−−−=≥                        (6.8) 

Our estimated percentages of the cells among all expressing cells with 1, 

2, or 3 and more transcriptional bursts within the first 30 min are 8%, 27% and 65%, 

respectively, assuming that 8.5/1=γ 1min− , 5=κ 1min− , and 5/1=λ 1min− . They are 

close to the measured data of Chubb et al. (2006), where these values were estimated as 

about 12%, 26% and 62% respectively, even though they did not exactly match.   

The percentage of the cells with 1, 2, and 3 and plus transitional bursts ( )(1 tp , 

)(2 tp  and )(3 tpn≥ ) based on our model were graphed in Figure 6.2.  As shown in Figure 

6.2, )(1 tp  increases for a short time period (not shown in the Figure 6.2) and then 

decreases, )(2 tp  increases in the first 19 min, and then decreases. Although )(3 tpn≥  

keeps increasing in the time frame of the graph, it decreases sometime later.  We took  

8.51 =−γ min , 11 −− + λκ =5.2 min since the mean durations of gene on and off periods 

were estimated to be 5.8 min and 5.2 min, respectively.  Although no further information 

is currently available to estimate κ  and λ  separately, we assume that κ  is much bigger 

than λ , because HL5 media was added at optimal amounts and the promoter was 

observed to be fully activated when the data were collected. This consideration suggests 

us to take 5=κ 1min−  and 5/1=λ 1min−  in our simulation. 
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Figure 6.2 The percentages of the cells with 1, 2, or 3 and more transcriptional bursts 

during the time period ),0( t . Here )(1 tp , )(2 tp  and )(3 tpn≥  give the percentages of the 

cells with 1, 2, or 3 and more transcriptional bursts during the time period ),0( t , among 

the expressing cells only. )(1 tp  increases for a short time period (not shown in the Fig.) 

and then decreases. )(2 tp  increases in the first 19 min, and then decreases. Although 

)(3 tpn≥  keeps increasing in the time frame of the graph, it decreases sometime later. The 
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percentages of cells with 1, 2, or 3 and more transcriptional bursts within the first 30 min 

are 8%, 27% and 65%, respectively. 

Our simulation suggests considerably more cells with multiple transcriptional 

bursts. It is unclear what caused the slight discrepancy. We offer two arguments here, not 

necessarily exclusive each other. First, the induction signals were not stably applied, and 

so κ  needed to be replaced by a time and space dependent function. Second, and more 

directly, the measurement of the durations in gene on and off periods could artificially cut 

off some transcriptional activities, because the gene activities were monitored within 30 

min blindly captured periods in different developmental stages of a total of 5 hours. 

Therefore, the real durations could be substantially longer, and the values κ , λ , and 

γ could be much less. When smaller values of κ , λ , and γ  are substituted, the number 

of cells with multiple bursts will decrease, and the number of cells with only one burst 

will increase. This could yield a robust fit with the experimental data by the same 

simulation procedure. 

We focus on this time period of 30 minutes for two reasons: First, when gene 

activities were imaged by fluorescent microscopy, fields of cells were blind-captured 

every 2.5 min for a total of 30 min during different developmental stages (Chubb et al., 

2006). Second, the proportion of cells with detectable transcription elevated from zero 

during the  first 30 min of differentiation, suggesting that the initial condition (5.3), 

1)0(1 =qP , and 0)0( =nxP  otherwise, can be used. (For studies in other 30 min capture 

periods, (5.3) needs to be changed appropriately). The choice of κ  here is not 

experimentally supported. Indeed, as suggested by the discussion above and further 

emphasized below, it is more appropriate to treat κ  as a function of time and the spatial 
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variables. In this case, (5.2) and (5.3) remain the same, but )(tPnx  is obtained by more 

advanced techniques not covered in the current study. 

We note that the Three State Model not only supports the existence of 

transcriptional bursts, but also predicts other types of transcriptional dynamics. A 

transcriptional burst is characterized by the production of many transcripts in a quick 

succession after a unambiguous period of zero transcription. It occurs if (i) the average 

duration of gene off period 11 −− + λκ and the average duration of gene on period 1−γ  are 

within a reasonable range, neither too small nor too large; and (ii) when the promoter is 

on the engaged state, mRNA is produced efficiently. These conditions were fulfilled by 

the examples discussed in  this Section. If 11 −− + λκ  is very small, then there are only 

brief off periods and transcripts can be produced in a nearly continuous fashion. The 

same could occur if 1−γ  is very small. If condition (ii) does not hold, then either there can 

be few mRNA synthesized, or the elongation activity is repeatedly interrupted. In the 

first case, there could be insufficient amounts of transcripts to display a burst; in the 

latter case, the elongation interruption could generate several "pseudo-bursts" within 

one round of engaged state. The distribution of the "pseudo-bursts" may not follow 

an exponential decay and its average duration could be much less than 1−γ . 
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Chapter 7 

Conclusion and Future Work  

In this chapter, I summarize our conclusions and propose future related work.  

7.1 Conclusion 

The analysis reveals that no promoters will be definitely turned on to transcribe 

within a finite time period, no matter how strong the induction signals, or how abundant 

the activators. Although stronger extrinsic signals could enhance promoter activation rate, 

there's an upper limit that no signals could cross over it in a finite time. Consequently, 

among a large population of isogenic cells, only a portion of the cells, but not the whole 

population, could be induced by environmental signals to express a particular gene within 

a finite time period.  

We prove that the gene on duration follows an exponential distribution, and the 

gene off intervals show a local maximum that is best described by assuming two 

sequential exponential process.  

The transition frequencies are determined by a system of stochastic differential 

equations, or equivalently, an iterative scheme of integral operators. We prove that for 

each positive integer n , there associates a unique time, called the peak instant, at which 

the system is residing on the state thn  time since time zero most likely. These moments 

constitute a time series preserving the nature order of n . 

A transcriptional burst indicates a transcript synthesis cycle. We prove that for 

each positive integer n , there associates a unique time, called the peak instant, at which 

the thn  transcript synthesis cycle proceeds most likely. These moments constitute a time 

series preserving the nature order of n . 
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7.2 Future work 

If the expression profile of the gene is sensitive to stress or developmental signals, 

then the induction strength κ  may inherit the heterogeneity of the signal distribution 

in time and space. The transcription of the developmental gene dscA in the social 

amoeba provides a convincing example (Chubb et al., 2006): The histogram depicting 

the percentage of expressing cells during a period of more than 5 hours fits into an 

oscillatory curve, which is dramatically distinct from the growth curve predicted by 

the Three State Model for a constant κ . The observation that expressing cells were 

more frequently seen in clusters further indicates that induction signals have a 

inhomogeneous spatial distribution (Chubb et al., 2006). To gain a better understanding 

of the global stochastic dynamics in this case, we need a more detailed understanding of 

the signal transduction pathways impinging on the transcription system. The induction 

strength κ  becomes a function of time and spatial variables, and the corresponding 

theoretical study requires integration of partial differential equations, which might be one 

topic of our future study. 

In contrast, we take λ  and γ  as constants because they are mostly determined by 

the biochemical property of the gene promoter,  the TF, and the basal transcription 

machinery. These properties may not differ significantly from cell to cell. We define the 

pair ),( γλ as the transcription mode associated with the system. For most synthetic 

reporter gene constructs and many genes in prokaryotic cells or simple eukaryotes, we 

hypothesize that this mode could be evolutionary conserved and would not vary notably 

among cells of closely related organisms. In general, if a gene has multiple binding sites 
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in the core promoter region, and each site is targeted by one or several types of  

transcription factors with considerably different functions, then it could correspond to a 

discrete set of different modes. If this is the case, the transcription system may transit 

among a cluster of functional states bifurcating from the same ground state. The 

treatment of this case relies on a nontrivial extension of the Three State Model, whose 

technical steps will be presented in our future work. 
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Appendix 
 

R Code for Figures 
 

######################################################### 
## Figure 3.1, Probability of zero transcriptions since induction (fraction of cells  
having no tagged RNA (P0) as a function of time after induction t). 
######################################################### 
k=1/5 
m=1/32 
t=c(1:100) 
Pz=(m/(m-k))*exp(-k*t)+(k/(k-m))*exp(-m*t) 
Pzz=log(Pz) 
Pgolding=-0.14*t 
plot(t, Pzz, type="l", col = "black", lwd=2, 
xlab = "Time after induction (min), κ=1/5 and λ =1/32", ylab = "ln(P0(t))") 
text(10,-0.3,'+');text(20,-0.7,'+');text(30,-1.05,'+');text(40,-1.4,'+');text(50,-
1.85,'+');text(60,-1.5,'+');text(80,-1.85,'+');text(100,-2.25,'+') 
text(15,-0.625,'O'); text(30,-0.8,'O'); text(45,-1.25,'O'); text(60,-1.625,'O'); text(90,-
2.3,'O') 
lines(t, Pgolding, lty = 2, lwd=2, lheight=1) 

 
######################################################### 

## Figure 4.1, Plot of duration of gene off period versus density distribution ).(tfoff  

######################################################### 
k=70 
la=0.7 
t=c(0:30) 
Poff=k*la/(la-k)*(exp(-k*t)-exp(-la*t)) 
plot(t, Poff, type="l", col = " black", lwd=2, xlab = "Duration of gene off period in 
arbitrary unit", ylab = "Density distribution") 
Poff02_20=.20*20/(20-.2)*(exp(-.2*t)-exp(-20*t)) 
Poff03_04=.3*.4/(.4-.3)*(exp(-.3*t)-exp(-.4*t)) 
Poff05=.05^2*t*exp(.05*t) 
lines(t, Poff02_20, lty = 2, lwd=2, lheight=1) 
lines(t, Poff03_04, lty = 3, lwd=2, lheight=1) 
lines(t, Poff05, lty = 4, lwd=2, lheight=1) 
legend("topright", c("κ=70 >> λ=0.7", "κ=0.2 << λ=20", "κ is close to λ, κ=0.3 and  
λ=0.4", "κ=λ=0.5 "), lty=1:4, lwd=2) 
 
######################################################### 

## Figure 4.2, Plot of duration of gene off period versus logarithm of density distribution 
))(log( tfoff . 

######################################################### 
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lPoff=log(Poff) 
lPoff02_20=log( Poff02_20) 
lPoff03_04= log(Poff03_04) 
lPoff05= log(Poff05) 
plot(t, lPoff, type="l", col = " black", lwd=2, xlab = "Duration of gene off period in 
arbitrary unit", ylab = "Logarithm of Density distribution") 
lines(t, lPoff02_20, lty = 2, lwd=2, lheight=1) 
lines(t, lPoff03_04, lty = 3, lwd=2, lheight=1) 
lines(t, lPoff05, lty = 4, lwd=2, lheight=1) 
legend("bottomleft", c("κ=70 >> λ=0.7", "κ=0.2 << λ=20", "κ is close to λ, κ=0.3 and  
λ=0.4", "κ=λ=0.5 "), lty=1:4, lwd=2) 
 
######################################################### 

## Figure 5.1, The plot of transition frequency probabilities )(1 tP q - )(3 tP e . 

######################################################### 
k=1/3; la=1/5; g=1/6 
t=c(0:50) 
# define kij; 
k11=1/((k-la)*(k-g)) 
k12=1/( (k-la)*((k-g)^2) ) 
k13=1/( (k-la)*((k-g)^3) ) 
k21=1/( ((k-la)^2)*(k-g) ) 
k22=1/( ((k-la)^2)*((k-g)^2) ) 
k23=1/( ((k-la)^2)*((k-g)^3) ) 
k24=1/( ((k-la)^2)*((k-g)^4) ) 
k31=1/( ((k-la)^3)*(k-g) ) 
k32=1/( ((k-la)^3)*((k-g)^2) ) 
k33=1/( ((k-la)^3)*((k-g)^3) ) 
k34=1/( ((k-la)^3)*((k-g)^4) ) 
k35=1/( ((k-la)^3)*((k-g)^5) ) 
k42=1/( ((k-la)^4)*((k-g)^2) ) 
k43=1/( ((k-la)^4)*((k-g)^3) ) 
k44=1/( ((k-la)^4)*((k-g)^4) ) 
k53=1/( ((k-la)^5)*((k-g)^3) ) 
# define lamdaij; 
la11=1/( (la-g)*(la-k) ) 
la12=1/( (la-g)*((la-k)^2) ) 
la13=1/( (la-g)*((la-k)^3) ) 
la21=1/( ((la-g)^2)*(la-k) ) 
la22=1/( ((la-g)^2)*((la-k)^2) ) 
la23=1/( ((la-g)^2)*((la-k)^3) ) 
la24=1/( ((la-g)^2)*((la-k)^4) ) 
la31=1/( ((la-g)^3)*(la-k) ) 
la32=1/( ((la-g)^3)*((la-k)^2) ) 
la33=1/( ((la-g)^3)*((la-k)^3) ) 
la34=1/( ((la-g)^3)*((la-k)^4) ) 
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la35=1/( ((la-g)^3)*((la-k)^5) ) 
la42=1/( ((la-g)^4)*((la-k)^2) ) 
la43=1/( ((la-g)^4)*((la-k)^3) ) 
la44=1/( ((la-g)^4)*((la-k)^4) ) 
la53=1/( ((la-g)^5)*((la-k)^3) ) 
# define gamaij; 
g11=1/( (g-k)*(g-la) ) 
g12=1/( (g-k)*((g-la)^2) ) 
g13=1/( (g-k)*((g-la)^3) ) 
g21=1/( ((g-k)^2)*( g-la) ) 
g22=1/( ((g-k)^2)*(( g-la)^2)) 
g23=1/( ((g-k)^2)*(( g-la)^3)) 
g24=1/( ((g-k)^2)*(( g-la)^4)) 
g31=1/( ((g-k)^3)*( g-la)) 
g32=1/( ((g-k)^3)*(( g-la)^2)) 
g33=1/( ((g-k)^3)*(( g-la)^3)) 
g34=1/( ((g-k)^3)*(( g-la)^4)) 
g35=1/( ((g-k)^3)*(( g-la)^5)) 
g42=1/( ((g-k)^4)*(( g-la)^2)) 
g43=1/( ((g-k)^4)*(( g-la)^3)) 
g44=1/( ((g-k)^4)*(( g-la)^4)) 
g53=1/( ((g-k)^5)*(( g-la)^3)) 
# define eij; 
e11=k11*exp(-k*t)+la11*exp(-la*t)+g11*exp(-g*t) 
e22=k22*exp(-k*t)+la22*exp(-la*t)+g22*exp(-g*t) 
e23=k23*exp(-k*t)+la23*exp(-la*t)+g23*exp(-g*t) 
e32=k32*exp(-k*t)+la32*exp(-la*t)+g32*exp(-g*t) 
e33= k33*exp(-k*t)+la33*exp(-la*t)+g33*exp(-g*t) 
e34= k34*exp(-k*t)+la34*exp(-la*t)+g34*exp(-g*t) 
e43= k43*exp(-k*t)+la43*exp(-la*t)+g43*exp(-g*t) 
e35= k35*exp(-k*t)+la35*exp(-la*t)+g35*exp(-g*t) 
e44= k44*exp(-k*t)+la44*exp(-la*t)+g44*exp(-g*t) 
e53= k53*exp(-k*t)+la53*exp(-la*t)+g53*exp(-g*t) 
#get p1q-p2e; 
p1q=exp(-k*t) 
p1y=k/(la-k)*(exp(-k*t)-exp(-la*t)) 
p1e=k*la*e11 
p2q=k*la*g*(k11*t*exp(-k*t) +(k12+k21)*exp(-k*t)-la12*exp(-la*t)-g21*exp(-g*t)) 
p2y=-(k^2)*la*g*(k21*t*exp(-k*t) +la12*t*exp(-la*t)+e22+2*k31*exp(-
k*t)+2*la13*exp(-la*t)- 2*g22*exp(-g*t)) 
p2e=(k^2)*(la^2)*g*((t*e22+2*e23+2*e32)) 
# get p3q, p3y and p3e 
lk= k*la*g*(k11*t*exp(-k*t)+(k12+k21)*exp(-k*t)-la12*exp(-la*t)-g21*exp(-g*t)) 
lg= k*la*g*(g11*t*exp(-g*t)+(g12+g21)*exp(-g*t)-k12*exp(-k*t)-la21*exp(-la*t)) 
lla= k*la*g*(la11*t*exp(-la*t)+(la12+la21)*exp(-la*t)-g12*exp(-g*t)-k21*exp(-k*t)) 
ltk= k*la*g*(k11/2*(t^2)*exp(-k*t)+ 
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(la11/(la-k)+g11/(g-k))*t*exp(-k*t)- 
(la11/(la-k)^2+g11/(g-k)^2)*exp(-k*t) +la11/(la-k)^2*exp(-la*t)+g11/(g-k)^2*exp(-g*t)) 
ltla=k*la*g*(la11/2*(t^2)*exp(-la*t)+ 
(k11/(k-la)+g11/(g-la))*t*exp(-la*t)- 
(k11/(k-la)^2+g11/(g-la)^2)*exp(-la*t) +k11/(k-la)^2*exp(-k*t)+g11/(g-la)^2*exp(-g*t)) 
p3q=k*la*g*(k11*ltk+(k12+k21)*lk-la12*lla-g21*lg) 
p3y=-k^2*la*g*(k21*ltk+(k22+2*k31)*lk 
+la12*ltla+(la22+2*la13)*lla-g22*lg) 
p3e=k^3*la^3*g^2*( 
t^2*e33/2+3*t*(e34+e43)+3*e35+5*e44+3*e53 
+(la22*k31+g22*k13)*exp(-k*t)+(k22*la13+g22*la31)*exp(-la*t)+ 
(k22*g31+la22*g13)*exp(-g*t) 
+2*k11*(la24+g33)*exp(-k*t)+2*la11*(g24+k33)*exp(-la*t)+ 
2*g11*(k24+la33)*exp(-g*t) 
+2*k11*(la33+g42)*exp(-k*t)+2*la11*(g33+k42)*exp(-la*t)+ 
2*g11*(k33+la42)*exp(-g*t)) 
# plot; 
plot(t, p3e, ylim=c(0,1.1), type="l", lty = 1, col = 1, lwd=2, 
xlab = "Time in arbitrary unit, κ=1/3 and λ =1/5, and γ=1/6", ylab = "The probability 
functions Pnx(t)") 
lines(t, p3y, col =2, lty = 2, lwd=2, lheight=1) 
lines(t, p3q, col =3, lty = 3, lwd=2, lheight=1) 
lines(t, p2e, col =4, lty = 4, lwd=2, lheight=1) 
lines(t, p2y, col =5, lty = 5, lwd=2, lheight=1) 
lines(t, p2q, col =6, lty = 6, lwd=2, lheight=1) 
lines(t, p1e, col =7, lty = 7, lwd=2, lheight=1) 
lines(t, p1y, col =8, lty = 8, lwd=2, lheight=1) 
lines(t, p1q, col =9, lty = 9, lwd=2, lheight=1) 
legend("topright", c("P3e(t)", "P3y(t)", "P3q(t)", "P2e(t)", 
 "P2y(t)", " P2q(t)" ,"P1e(t)", " P1y(t)", " P1q(t)"), lty=1:9,col=1:9, lwd=2) 

 
######################################################### 

## Figure 5.2, The plot of transition frequency probabilities )(2 tP q - )(2 tP e . 

######################################################### 
k=1/3; la=1/5; g=1/6 
t=c(0:50) 
# define kij; 
k11=1/((k-la)*(k-g)) 
k12=1/( (k-la)*((k-g)^2) ) 
k21=1/( ((k-la)^2)*(k-g) ) 
k22=1/( ((k-la)^2)*((k-g)^2) ) 
k23=1/( ((k-la)^2)*((k-g)^3) ) 
k31=1/( ((k-la)^3)*(k-g) ) 
k32=1/( ((k-la)^3)*((k-g)^2) ) 
# define lamdaij; 
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la12=1/( (la-g)*((la-k)^2) ) 
la13=1/( (la-g)*((la-k)^3) ) 
la22=1/( ((la-g)^2)*((la-k)^2) ) 
la23=1/( ((la-g)^2)*((la-k)^3) ) 
la32=1/( ((la-g)^3)*((la-k)^2) ) 
# define gamaij; 
g13=1/( (g-k)*((g-la)^3) ) 
g21=1/( ((g-k)^2)*( g-la) ) 
g22=1/( ((g-k)^2)*(( g-la)^2)) 
g23=1/( ((g-k)^2)*(( g-la)^3)) 
g32=1/( ((g-k)^3)*(( g-la)^2)) 
# define eij; 
e22=k22*exp(-k*t)+la22*exp(-la*t)+g22*exp(-g*t) 
e23=k23*exp(-k*t)+la23*exp(-la*t)+g23*exp(-g*t) 
e32=k32*exp(-k*t)+la32*exp(-la*t)+g32*exp(-g*t) 
# get p2q-p2e; 
p2q=k*la*g*(k11*t*exp(-k*t) +(k12+k21)*exp(-k*t)-la12*exp(-la*t)-g21*exp(-g*t)) 
p2y=-(k^2)*la*g*(k21*t*exp(-k*t) +la12*t*exp(-la*t)+e22+2*k31*exp(-
k*t)+2*la13*exp(-la*t)- 2*g22*exp(-g*t)) 
p2e=(k^2)*(la^2)*g*((t*e22+2*e23+2*e32)) 
# plot; 
plot(t, p2e, ylim=c(0,0.25),type="l", lty = 3, col = "black", lwd=2, 
xlab = "Time in arbitrary unit, κ=1/3 and λ =1/5, and γ=1/6", ylab = "The three 
probability functions P2x(t)") 
text(10,0.1656,'Max.');text(16,0.228,'Max.');text(22,0.2307,'Max.') 
text(12,0.1566,'X');text(17,0.219,'X');text(23,0.2217,'X') 
lines(t, p2q, col = "black", lty = 1, lwd=2, lheight=1) 
lines(t, p2y, col = "black",lty = 2, lwd=2, lheight=1) 
legend("topright", c("P2q(t)", " P2y(t)", " P2e(t)"), lty=1:3) 
 
######################################################### 

## Figure 6.1 The plot of three burst frequency probabilities )(0 tP , )(1 tP , and )(2 tP . 

######################################################### 
k=5; la=1/5; g=1/5.8 
t=c(0:30) 
# define kij; 
k11=1/((k-la)*(k-g)) 
k12=1/( (k-la)*((k-g)^2) ) 
k13=1/( (k-la)*((k-g)^3) ) 
k21=1/( ((k-la)^2)*(k-g) ) 
k22=1/( ((k-la)^2)*((k-g)^2) ) 
k23=1/( ((k-la)^2)*((k-g)^3) ) 
k24=1/( ((k-la)^2)*((k-g)^4) ) 
k31=1/( ((k-la)^3)*(k-g) ) 
k32=1/( ((k-la)^3)*((k-g)^2) ) 
k33=1/( ((k-la)^3)*((k-g)^3) ) 
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k34=1/( ((k-la)^3)*((k-g)^4) ) 
k35=1/( ((k-la)^3)*((k-g)^5) ) 
k42=1/( ((k-la)^4)*((k-g)^2) ) 
k43=1/( ((k-la)^4)*((k-g)^3) ) 
k44=1/( ((k-la)^4)*((k-g)^4) ) 
k53=1/( ((k-la)^5)*((k-g)^3) ) 
# define lamdaij; 
la11=1/( (la-g)*(la-k) ) 
la12=1/( (la-g)*((la-k)^2) ) 
la13=1/( (la-g)*((la-k)^3) ) 
la21=1/( ((la-g)^2)*(la-k) ) 
la22=1/( ((la-g)^2)*((la-k)^2) ) 
la23=1/( ((la-g)^2)*((la-k)^3) ) 
la24=1/( ((la-g)^2)*((la-k)^4) ) 
la31=1/( ((la-g)^3)*(la-k) ) 
la32=1/( ((la-g)^3)*((la-k)^2) ) 
la33=1/( ((la-g)^3)*((la-k)^3) ) 
la34=1/( ((la-g)^3)*((la-k)^4) ) 
la35=1/( ((la-g)^3)*((la-k)^5) ) 
la42=1/( ((la-g)^4)*((la-k)^2) ) 
la43=1/( ((la-g)^4)*((la-k)^3) ) 
la44=1/( ((la-g)^4)*((la-k)^4) ) 
la53=1/( ((la-g)^5)*((la-k)^3) ) 
# define gamaij; 
g11=1/( (g-k)*(g-la) ) 
g12=1/( (g-k)*((g-la)^2) ) 
g13=1/( (g-k)*((g-la)^3) ) 
g21=1/( ((g-k)^2)*( g-la) ) 
g22=1/( ((g-k)^2)*(( g-la)^2)) 
g23=1/( ((g-k)^2)*(( g-la)^3)) 
g24=1/( ((g-k)^2)*(( g-la)^4)) 
g31=1/( ((g-k)^3)*( g-la)) 
g32=1/( ((g-k)^3)*(( g-la)^2)) 
g33=1/( ((g-k)^3)*(( g-la)^3)) 
g34=1/( ((g-k)^3)*(( g-la)^4)) 
g35=1/( ((g-k)^3)*(( g-la)^5)) 
g42=1/( ((g-k)^4)*(( g-la)^2)) 
g43=1/( ((g-k)^4)*(( g-la)^3)) 
g44=1/( ((g-k)^4)*(( g-la)^4)) 
g53=1/( ((g-k)^5)*(( g-la)^3)) 
# define eij; 
e11=k11*exp(-k*t)+la11*exp(-la*t)+g11*exp(-g*t) 
e22=k22*exp(-k*t)+la22*exp(-la*t)+g22*exp(-g*t) 
e23=k23*exp(-k*t)+la23*exp(-la*t)+g23*exp(-g*t) 
e32=k32*exp(-k*t)+la32*exp(-la*t)+g32*exp(-g*t) 
e33= k33*exp(-k*t)+la33*exp(-la*t)+g33*exp(-g*t) 
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e34= k34*exp(-k*t)+la34*exp(-la*t)+g34*exp(-g*t) 
e43= k43*exp(-k*t)+la43*exp(-la*t)+g43*exp(-g*t) 
e35= k35*exp(-k*t)+la35*exp(-la*t)+g35*exp(-g*t) 
e44= k44*exp(-k*t)+la44*exp(-la*t)+g44*exp(-g*t) 
e53= k53*exp(-k*t)+la53*exp(-la*t)+g53*exp(-g*t) 
# get p1q-p2e; 
p1q=exp(-k*t) 
p1y=k/(la-k)*(exp(-k*t)-exp(-la*t)) 
p1e=k*la*e11 
p2q=k*la*g*(k11*t*exp(-k*t) +(k12+k21)*exp(-k*t)-la12*exp(-la*t)-g21*exp(-g*t)) 
p2y=-(k^2)*la*g*(k21*t*exp(-k*t) +la12*t*exp(-la*t)+e22+2*k31*exp(-
k*t)+2*la13*exp(-la*t)- 2*g22*exp(-g*t)) 
p2e=(k^2)*(la^2)*g*((t*e22+2*e23+2*e32)) 
# for p3q, and p3y 
lk= k*la*g*(k11*t*exp(-k*t)+(k12+k21)*exp(-k*t)-la12*exp(-la*t)-g21*exp(-g*t)) 
lg= k*la*g*(g11*t*exp(-g*t)+(g12+g21)*exp(-g*t)-k12*exp(-k*t)-la21*exp(-la*t)) 
lla= k*la*g*(la11*t*exp(-la*t)+(la12+la21)*exp(-la*t)-g12*exp(-g*t)-k21*exp(-k*t)) 
ltk= k*la*g*(k11/2*(t^2)*exp(-k*t)+ 
(la11/(la-k)+g11/(g-k))*t*exp(-k*t)- 
(la11/(la-k)^2+g11/(g-k)^2)*exp(-k*t) +la11/(la-k)^2*exp(-la*t)+g11/(g-k)^2*exp(-g*t)) 
ltla=k*la*g*(la11/2*(t^2)*exp(-la*t)+ 
(k11/(k-la)+g11/(g-la))*t*exp(-la*t)- 
(k11/(k-la)^2+g11/(g-la)^2)*exp(-la*t) +k11/(k-la)^2*exp(-k*t)+g11/(g-la)^2*exp(-g*t)) 
# get p3q-p3e; 
p3q=k*la*g*(k11*ltk+(k12+k21)*lk-la12*lla-g21*lg) 
p3y=-k^2*la*g*(k21*ltk+(k22+2*k31)*lk 
+la12*ltla+(la22+2*la13)*lla-g22*lg) 
p3e=k^3*la^3*g^2*( 
t^2*e33/2+3*t*(e34+e43)+3*e35+5*e44+3*e53 
+(la22*k31+g22*k13)*exp(-k*t)+(k22*la13+g22*la31)*exp(-la*t)+ 
(k22*g31+la22*g13)*exp(-g*t) 
+2*k11*(la24+g33)*exp(-k*t)+2*la11*(g24+k33)*exp(-la*t)+ 
2*g11*(k24+la33)*exp(-g*t) 
+2*k11*(la33+g42)*exp(-k*t)+2*la11*(g33+k42)*exp(-la*t)+ 
2*g11*(k33+la42)*exp(-g*t)) 
# get p0t- pge3; 
p0=p1q+p1y 
p1=p1e+p2q+p2y 
p2=p2e+p3q+p3y 
# plot; 
plot(t, p0, ylim=c(0,1.2), type="l", lty =1, col = 1, lwd=2, xlab = "Time after diferentiatin 
(min), κ=5 and λ =1/5, and γ=1/5.8", ylab = "P0, P1, and P2") 
lines(t, p1, col =1, lty = 2, lwd=2, lheight=1) 
lines(t, p2, col =1, lty = 3, lwd=2, lheight=1) 
legend("topright", c("P0", " P1", " P2"), lty=1:3) 
text(0,1.05,'Max.');text(7.5,0.65,'Max.');text(19,0.48,'Max.') 
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text(0,1,'X');text(7.5,0.615,'X');text(19,0.42,'X') 
 
######################################################### 

## Figure 6.2 The percentages of the cells with 1, 2, or 3 and more transcriptional bursts 
during the time period ),0( t . 
######################################################### 
k=5; la=1/5; g=1/5.8 
#k=5;  
#la=0.8; 
t=c(0:30) 
# define kij; 
k11=1/((k-la)*(k-g)) 
k12=1/( (k-la)*((k-g)^2) ) 
k13=1/( (k-la)*((k-g)^3) ) 
k21=1/( ((k-la)^2)*(k-g) ) 
k22=1/( ((k-la)^2)*((k-g)^2) ) 
k23=1/( ((k-la)^2)*((k-g)^3) ) 
k24=1/( ((k-la)^2)*((k-g)^4) ) 
k31=1/( ((k-la)^3)*(k-g) ) 
k32=1/( ((k-la)^3)*((k-g)^2) ) 
k33=1/( ((k-la)^3)*((k-g)^3) ) 
k34=1/( ((k-la)^3)*((k-g)^4) ) 
k35=1/( ((k-la)^3)*((k-g)^5) ) 
k42=1/( ((k-la)^4)*((k-g)^2) ) 
k43=1/( ((k-la)^4)*((k-g)^3) ) 
k44=1/( ((k-la)^4)*((k-g)^4) ) 
k53=1/( ((k-la)^5)*((k-g)^3) ) 
# define lamdaij; 
la11=1/( (la-g)*(la-k) ) 
la12=1/( (la-g)*((la-k)^2) ) 
la13=1/( (la-g)*((la-k)^3) ) 
la21=1/( ((la-g)^2)*(la-k) ) 
la22=1/( ((la-g)^2)*((la-k)^2) ) 
la23=1/( ((la-g)^2)*((la-k)^3) ) 
la24=1/( ((la-g)^2)*((la-k)^4) ) 
la31=1/( ((la-g)^3)*(la-k) ) 
la32=1/( ((la-g)^3)*((la-k)^2) ) 
la33=1/( ((la-g)^3)*((la-k)^3) ) 
la34=1/( ((la-g)^3)*((la-k)^4) ) 
la35=1/( ((la-g)^3)*((la-k)^5) ) 
la42=1/( ((la-g)^4)*((la-k)^2) ) 
la43=1/( ((la-g)^4)*((la-k)^3) ) 
la44=1/( ((la-g)^4)*((la-k)^4) ) 
la53=1/( ((la-g)^5)*((la-k)^3) ) 
# define gamaij; 
g11=1/( (g-k)*(g-la) ) 
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g12=1/( (g-k)*((g-la)^2) ) 
g13=1/( (g-k)*((g-la)^3) ) 
g21=1/( ((g-k)^2)*( g-la) ) 
g22=1/( ((g-k)^2)*(( g-la)^2)) 
g23=1/( ((g-k)^2)*(( g-la)^3)) 
g24=1/( ((g-k)^2)*(( g-la)^4)) 
g31=1/( ((g-k)^3)*( g-la)) 
g32=1/( ((g-k)^3)*(( g-la)^2)) 
g33=1/( ((g-k)^3)*(( g-la)^3)) 
g34=1/( ((g-k)^3)*(( g-la)^4)) 
g35=1/( ((g-k)^3)*(( g-la)^5)) 
g42=1/( ((g-k)^4)*(( g-la)^2)) 
g43=1/( ((g-k)^4)*(( g-la)^3)) 
g44=1/( ((g-k)^4)*(( g-la)^4)) 
g53=1/( ((g-k)^5)*(( g-la)^3)) 
# define eij; 
e11=k11*exp(-k*t)+la11*exp(-la*t)+g11*exp(-g*t) 
e22=k22*exp(-k*t)+la22*exp(-la*t)+g22*exp(-g*t) 
e23=k23*exp(-k*t)+la23*exp(-la*t)+g23*exp(-g*t) 
e32=k32*exp(-k*t)+la32*exp(-la*t)+g32*exp(-g*t) 
e33= k33*exp(-k*t)+la33*exp(-la*t)+g33*exp(-g*t) 
e34= k34*exp(-k*t)+la34*exp(-la*t)+g34*exp(-g*t) 
e43= k43*exp(-k*t)+la43*exp(-la*t)+g43*exp(-g*t) 
e35= k35*exp(-k*t)+la35*exp(-la*t)+g35*exp(-g*t) 
e44= k44*exp(-k*t)+la44*exp(-la*t)+g44*exp(-g*t) 
e53= k53*exp(-k*t)+la53*exp(-la*t)+g53*exp(-g*t) 
# get p1q-p2e; 
p1q=exp(-k*t) 
p1y=k/(la-k)*(exp(-k*t)-exp(-la*t)) 
p1e=k*la*e11 
p2q=k*la*g*(k11*t*exp(-k*t) +(k12+k21)*exp(-k*t)-la12*exp(-la*t)-g21*exp(-g*t)) 
p2y=-(k^2)*la*g*(k21*t*exp(-k*t) +la12*t*exp(-la*t)+e22+2*k31*exp(-
k*t)+2*la13*exp(-la*t)- 2*g22*exp(-g*t)) 
p2e=(k^2)*(la^2)*g*((t*e22+2*e23+2*e32)) 
# for p3q, and p3y; 
lk= k*la*g*(k11*t*exp(-k*t)+(k12+k21)*exp(-k*t)-la12*exp(-la*t)-g21*exp(-g*t)) 
lg= k*la*g*(g11*t*exp(-g*t)+(g12+g21)*exp(-g*t)-k12*exp(-k*t)-la21*exp(-la*t)) 
lla= k*la*g*(la11*t*exp(-la*t)+(la12+la21)*exp(-la*t)-g12*exp(-g*t)-k21*exp(-k*t)) 
ltk= k*la*g*(k11/2*(t^2)*exp(-k*t)+ 
(la11/(la-k)+g11/(g-k))*t*exp(-k*t)- 
(la11/(la-k)^2+g11/(g-k)^2)*exp(-k*t) +la11/(la-k)^2*exp(-la*t)+g11/(g-k)^2*exp(-g*t)) 
ltla=k*la*g*(la11/2*(t^2)*exp(-la*t)+ 
(k11/(k-la)+g11/(g-la))*t*exp(-la*t)- 
(k11/(k-la)^2+g11/(g-la)^2)*exp(-la*t) +k11/(k-la)^2*exp(-k*t)+g11/(g-la)^2*exp(-g*t)) 
# get p3q, and p3y; 
p3q=k*la*g*(k11*ltk+(k12+k21)*lk-la12*lla-g21*lg) 
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p3y=-k^2*la*g*(k21*ltk+(k22+2*k31)*lk 
+la12*ltla+(la22+2*la13)*lla-g22*lg) 
p3e=k^3*la^3*g^2*( 
t^2*e33/2+3*t*(e34+e43)+3*e35+5*e44+3*e53 
+(la22*k31+g22*k13)*exp(-k*t)+(k22*la13+g22*la31)*exp(-la*t)+ 
(k22*g31+la22*g13)*exp(-g*t) 
+2*k11*(la24+g33)*exp(-k*t)+2*la11*(g24+k33)*exp(-la*t)+ 
2*g11*(k24+la33)*exp(-g*t) 
+2*k11*(la33+g42)*exp(-k*t)+2*la11*(g33+k42)*exp(-la*t)+ 
2*g11*(k33+la42)*exp(-g*t)) 
# get p0, p1, p2, and pge3; 
p0t=la/(la-k)*exp(-k*t)+k/(k-la)*exp(-la*t) 
p0=p1q+p1y 
p1=p1e+p2q+p2y 
p2=p2e+p3q+p3y 
pge3=1-(p0+p1+p2)  
# get pp1, pp2, and ppge3; 
pp1=p1/(1-p0) 
pp2=p2/(1-p0) 
ppge3=1-(p1+p2)/(1-p0) 
# plot; 
plot(t, pp1, ylim=c(0,1), type="l", lty =1, col = 1, lwd=2, 
xlab = "Time after diferentiatin (min), κ=5 and λ =1/5, and γ=1/5.8", ylab = "The 
percentage of cells with 1, 2, or 3 and more bursts") 
lines(t, pp2, col =1, lty = 2, lwd=2, lheight=1) 
lines(t, ppge3, col =1, lty = 3, lwd=2, lheight=1) 
legend("topright", c("p1(t)", " p2(t)", " pn>2(t)"), lty=1:3) 
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