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ABSTRACT OF DISSERTATION

An Inverse Eigenvalue Problem for the Schrödinger Equation on the Unit Ball of R3

The inverse eigenvalue problem for a given operator is to determine the coefficients
by using knowledge of its eigenfunctions and eigenvalues. These are determined
by the behavior of the solutions on the domain boundaries. In our problem, the
Schrödinger operator acting on functions defined on the unit ball of R3 has a radial
potential taken from L2

R[0, 1]. Hence the set of the eigenvalues of this problem is the
union of the eigenvalues of infinitely many Sturm-Liouville operators on [0, 1] with
the Dirichlet boundary conditions. Each Sturm-Liouville operator corresponds to
an angular momentum l = 0, 1, 2..... In this research we focus on the uniqueness
property. This is, if two potentials p, q ∈ L2

R[0, 1] have the same set of eigenvalues
then p = q. An early result of Pöschel and Trubowitz is that the uniqueness of the
potential holds when the potentials are restricted to the subspace of the even functions
of L2

R[0, 1] in the l = 0 case. Similarly when l = 0, by using their method we proved
that two potentials p, q ∈ L2

R[0, 1] are equal if their even extension on [−1, 1] have the
same eigenvalues. Also we expect to prove the uniqueness if p and q have the same
eigenvalues for finitely many l. For this idea we handle the problem by focusing on
some geometric properties of the isospectral sets and trying to use these properties
to prove the uniqueness of the radial potential by using finitely many of the angular
momentum.

KEYWORDS: Schrödinger operator, potential, eigenvalue, eigenfunction, unique-
ness, angular momentum
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Chapter 1 Background: An Overview of The Direct Eigenvalue Problem

1.1 Introduction

In this dissertation we are interested to work in the field of inverse problem. Usu-
ally in the direct problem we have a system of equation and boundary conditions.
The equation describes an physical phenomena appearing in some experiment. The
equation coefficients which present some media properties of that experiment are well
known. And the boundary conditions give an idea about the initial state of the par-
ticles in that phenomena. In these problem we try to find the exact solutions of the
system and their properties like uniqueness and existences either locally or globally.
In the inverse problem the system contains an equation with unknown coefficients
and boundary conditions. We assume that we know the solutions of this system and
our task is to discover the coefficients of the equation.

Specifically, we work on the inverse eigenvalue problem related to the Schrödinger
equation. We have data including the solutions of the Schrödinger equation, which are
called wave functions, Dirichlet boundary conditions, and the Dirichlet eigenvalues of
this quantum system. Our goal is to discover the coefficient of this equation which is
a radial potential. Hence we begin by setting

Hq = −∆ + q(|X|),

for the Schrödinger operator where q is a radial potential taken from L2
R[0, 1] and ∆

is the Laplacian operator on three dimension. Hq acts on functions defined on the
unit ball of R3. The main eigenvalue problem in this paper contains the following
equation

Hqψ(X) = λψ(X), |X| ≤ 1, λ ∈ C (1.1)

with the Dirichlet boundary condition

ψ(X) = 0, |X| = 1. (1.2)

All the complex numbers λ when the boundary value problem (1.1) and (1.2) can be
solved are called eigenvalues of q which we will denote by σ(Hq). The corresponding
nontrivial solutions are called eigenfunctions of q for λ. We will see later that the
set of the eigenvalues σ(Hq) is the union of the eigenvalues of infinitely many Sturm-
Liouville operators on the unit interval [0, 1] with the Dirichlet boundary conditions.
Each Sturm-Liouville operator

H l
q = − d2

dx2
+ q +

l(l + 1)

x2

corresponds to an angular momentum l = 0, 1, 2, ..... So by denoting σ(H l
q) to the

eigenvalues of the operator H l
q, we have σ(Hq) =

⋃
l≥0

σ(H l
q).
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The main interesting question concerns about the uniqueness of the potential: if
two potentials p, q ∈ L2

R[0, 1] have the same set of eigenvalues, that is σ(Hp) = σ(Hq),
then p = q. Notice that if for a fixed angular momenta l we have σ(H l

p) = σ(H l
q)

implies p = q, then σ(Hp) = σ(Hq) implies p = q. For that, many works focused on
discovering the uniqueness and construction of the potentials by using the spectral
data related to a single angular momenta l or finitely many angular momentum
l1, l2, ..., ln. Some of the research gave a description of the isospectral sets and their
tangent spaces.

Begin with the zero angular momenta, in 1929, Ambartsumyan [12, Page 163]
considered the following problem on the interval [0, 1],

H0
qψ(x) = λψ(x) x ∈ (0, 1) (1.3)

with Neumann boundary conditions

ψ
′
(0, λ, q) = 0, ψ

′
(1, λ, q) = 0 (1.4)

When q = 0, the eigenvalues set of of this problem is {(nπ
2

)2}n≥0 . He showed the
following result,

Theorem 1.1.1. (Ambartsumyan’s Theorem) For q ∈ L2
R[0, 1], if the eigenvalues of

the problem (1.3), (1.4) are λn = (nπ
2

)2, n ≥ 0, then q = 0 almost every where on
(0, 1).

The proof of this result can be found in [12]. Then in 1945, Borg in [13] found
that the one set of the eigenvalues associated with a given boundary conditions is
not enough data to determine the uniqueness of the potential. Hence in one method,
He showed that adding another set of eigenvalues associated with second boundary
conditions proves the uniqueness of the potential. So he consider {λn}n≥0 to be the
eigenvalues for (1.3) with the boundary conditions,

ψ′(0) + a1ψ(0) = 0, ψ′(1) + bψ(1) = 0,

and {µn}n≥0 to be the eigenvalues for (1.3) with the boundary conditions,

ψ′(0) + a2ψ(0) = 0, ψ′(1) + bψ(1) = 0

where a1 6= a2, a3 are real numbers. Then he showed that the two sets {λn}n≥0 and
{µn}n≥0 are uniquely determine a1, a2, b and q. In 1949, Levinson [18] proved the
same result with different method. By another method, Borg considered (1.3) with
the following initial condition

ψ(0, λ, q) = 0, ψ
′
(0, λ, q) = 0 (1.5)

Beside to the eigenvalues {λn(q)}n≥0 which is determined by ψ(1, λn) = 0, he
defined additional spectral data consisting norming constants cn which are given by

cn(q) =

∫ 1

0

ψ2(x, λn(q), q)dx.

where ψ(x, λn(q), q) is the nth eigenfunction for λn(q). For problem (1.3) and (1.5),
he proved

2



Theorem 1.1.2. Suppose that q, p ∈ L∞R (0, 1), for all n, λn(q) = λn(p) and cn(q) =
cn(p) then q = p.

Also Pöschel and Trubowitz [1] worked on the direct and inverse eigenvalue prob-
lems of the operator H0

q on the interval [0, 1]. In the direct problem, they provided
good estimates of the eigenfunctions and eigenvalues of the following Dirichlet prob-
lem

H0
qψ(x) = λψ(x) x ∈ (0, 1)

and
ψ(0, λ, q) = 0 and ψ(1, λ, q) = 0.

The basic estimate of the nth eigenvalue λ0,n(q) is given by

λ0,n(q) = n2π2 + [q] + λ̃0,n(q),

where [q] =

∫ 1

0

q(x)dx and {λ̃0,n(q)}n≥1 ∈ l2. The estimate of the nth normalized

eigenfunction is given by

gn(x, q) =
ψ(x, λ0,n(q), q)

‖ψ(., λ0,n(q), q)‖

=
√

2 sin(πnx) +O(
1

n
).

In case the potential q is even with respect to x = 1
2
, that is, q(x) = q(1 − x).

They proved that gn(x, q) = (−1)n+1gn(1 − x, q). By using this property of gn, they
started their work on the inverse problem of the operator H0

q by proving the following
theorem,

Theorem 1.1.3. For p, q ∈ E = {q ∈ L2
R[0, 1] : q(x) = q(1 − x)}, suppose λ0,n(p) =

λ0,n(q) for all n ≥ 1 then p = q.

To prove their result, they considered the map λ from L2
R[0, 1] to R× l2 such that

λ(q) = ([q], {λ̃0,n(q)}n≥1). They proved that this map is one to one if its domain is
restricted to E . The additional data in Theorem 1.1.2 was a good motivation to prove
that map is one to one in the whole space by seeking another equivalent data to be
added to the set of the eigenvalues. Thus they introduced a sequence of norming
constants related to the terminal velocities of the eigenfunctions. These constants
are defined by

κ0,n(q) = log|ψ′(1, λ0,n(q), q)| n ≥ 1,

where ψ
′
(x, λ0,n(q), q) is the derivative of nth eigenfunction of the operator H0

q with
respect to x. The sequence {κ0,n(q)}n≥1 is in the Hilbert space l21 of all real sequences
µ = (µ1, µ2, ...) satisfying

∑
n≥1 n

2µ2
n <∞. Combining the sequence of the eigenvalues

and the sequence of the norming constants they proved,

Theorem 1.1.4. For p, q ∈ L2
R[0, 1], suppose λ0,n(p) = λ0,n(q) and κ0,n(p) = κ0,n(q)

for all n ≥ 1 then p = q.

3



From studying the following map

λ× κ : L2
R[0, 1]→ R× l2 × l21

λ× κ(q) =
(

[q], {λ̃0,n(q)}n≥1, {κ0,n(q)}n≥1

)
they showed that for any potential q, the isospectral set M0(q) = {p : λ0,n(p) =
λ0,n(q) for all n} is a real analytic submanifold of L2

R[0, 1], lying in the hyperplane of
all functions with mean [q].

In [3], Guillot and Ralston proved Theorem 1.1.4 for l = 1. Also Carlson [11]
generalized Theorem 1.1.4 for any angular momentum l ≥ −1

2
. He considered another

spectral data related to different boundary conditions at x = 1 as what Borg did in
case l = 0. Instead of having a single sequence of eigenvalues, he considered two
sequences of eigenvalues corresponding to two different boundary conditions. So by
considering the following system,

H l
qψ(x) = λψ(x) x ∈ (0, 1)

and
ψ(0) = 0, aψ(1) + bψ

′
(1) = 0, a, b ∈ R.

and denoting the nth eigenvalue of this system by λl,n(q, a, b), he proved the following
result,

Theorem 1.1.5. Suppose that for all n ≥ 1, we have λl,n(p, aj, bj) = λl,n(q, aj, bj)
for j = 1, 2 and for linearly independent vectors (a1, b1) and (a2, b2). Then p = q.

In [8], Carlson proved that for any l ≥ 0 the isospectral set M l(q) = {p : λl,n(p) =
λl,n(q) for all n} is a real analytic submanifold of L2

R[0, 1] of infinite dimension and
infinite codimension. This result emphasises that proving the uniqueness of the po-
tential q of the operator Hq can not be done by using a spectrum of a single angular
momuntum. By different method Serier in [4] proved Theorem 1.1.4 for any l ≥ 1.

Another interesting way to study the uniqueness was by considering spectral data
consisting two sequences of eigenvalues {λli,n}n≥1 for two distinct choice of angular
momentum l1 and l2. Rundell and Sacks, in [5], tried to prove the uniqueness of small
potentials by using two sequences of eigenvalues corresponding to l1 = l and l2 = l+1
for any l = 0, 1, 2, ..... Also they work in the case l1 = 0 and l2 = 2. A part of their
work was by using numerical methods to prove their conjectures.

The last interesting way to work in this problem is by analyzing the geometric
properties of the isospectral set M l(q). In [7], Carlson and Shubin by considering
TpM

l(p) to be the tangent space of M l(p) at p proved the following geometric prop-
erties of the isospectral set M l(p).

Theorem 1.1.6. If l1 + l2 = 1 mod 2, then

dim(TpM
l1(p) ∩ TpM l2(p)) <∞.

and TpM
l1(p) + TpM

l2(p) is a closed subspace of finite codimension in L2
R[0, 1].

4



Theorem 1.1.7. If l1 + l2 = 1 mod 2, then M l1(p) ∩M l2(p) is locally a subset of
finite dimensional manifold.

In their work they considered two angular momentum with different parity. The
results in Theorem 1.1.6 were proved before by Shubin in [6] for l1 = 0 and l2 = 1.
Also she proved the following theorem

Theorem 1.1.8. For each p ∈ L2
R[0, 1], M0(p) ∩M1(p) is locally compact.

In this research, we are interested to handle the problem by several ways. The
first way concerns potentials that are not even in case l = 0. The method we will
use for that case is inspired from the proof of the uniqueness for the even potential of
H0
q by Pöschel and Trubowitz [1]. Thus in the second chapter, we will consider two

potentials p, q ∈ L2
R[0, 1] with different parity. For each potential q ∈ L2

R[0, 1], we will
extend the domain of the solutions to be [−1, 1] and consider the following problem

H0
q̃ψ(x) = λψ(x) x ∈ (−1, 1)

and
ψ(−1, λ, q) = 0 and ψ(1, λ, q) = 0.

where q̃ ∈ L2
R[−1, 1] is the even extension of q. We will prove that the set of the

eigenvalues of the new system for the even extended potentials p̃, q̃ ∈ L2
R[−1, 1] is

enough data to prove p = q. Then in the third chapter our question is about if we
can show the uniqueness by focusing on eigenvalues corresponding to finitely many
angular momentum l1, l2, ...., ln. We will see that assuming λl,n(p) = λl,n(q) = λl,n for
any fixed angular momentum l leads to∫ 1

0

(p(x)− q(x)) ψ(x, λl,n, p) ψ(x, λl,n, q) dx = 0, for each n.

Hence, showing the set {ψ(x, λl,n, p) ψ(x, λl,n, q)}n≥1 is complete in L2
R[0, 1] proves

that p = q. In chapter four and five we work on the geometric properties of the
isospectral sets. We proved the same result of Theorem 1.1.6 for l1 = 0 and l2 any
positive integer number. In our work, we consider the tangent space to be at any
point q ∈ M l1(p) ∩M l2(p). Then we try to find links between the uniqueness of the
potential and these properties of the isospectral sets. In the last chapter, we list some
conjectures for this problem as open problems. Some of them we have worked on but
we didn’t get results, it may there are other good methods to solve them.

Since the work on this inverse eigenvalue problem depends on knowing the results
of the direct eigenvalue problem. We will start by giving a background about the set
of the eigenvalues of this operator and its solutions and their asymptotic. From these
knowledge we will start to discover the uniqueness of the potential.

1.2 Solutions of The Direct Problem and Their Properties

In this section we present known results of the direct eigenvalue problem of the
following Schrödinger equation in the unit ball of R3,

−∆U + q(|X|)U = λU |X| < 1, λ ∈ C, (1.6)

5



with the boundary conditions,

U(X) = 0 |X| = 1. (1.7)

Since q ∈ L2
R[0, 1] is a radial potential, we can convert the system (1.6) and (1.7)

to an easier system in one dimensional space by considering solutions in the separated
form

U(x, θ, φ) =
ψ(x)

x
Y m
l (θ, φ)

where X = (x, θ, φ) are spherical coordinates in R3 and Y m
l is a spherical harmonic

function. Since we will consider the spherical coordinates then we write the Laplacian
operator in the following form

∆ =
1

x2

∂

∂x
(x2 ∂

∂x
) +

1

x2
Lθ,φ

where Lθ,φ =
(

1
sin(θ)

∂
∂θ

(
sin(θ) ∂

∂θ

)
+ 1

sin2(θ)
∂2

∂φ2

)
. Using this form with the separated

form of U in (1.6) leads to

x2

ψ(x)
ψ
′′
(x) + x2(λ− q(x)) =

−1

Y m
l (θ, φ)

Lθ,φY
m
l (θ, φ)

Since that holds for all X = (x, θ, φ) in the unit ball of R3, then by separation
of variables method, both sides are equal to a constant C. By solving the equation
associated to the operator Lθ,φ, Y m

l (θ, φ) exists when C = l(l+1), where l = 0, 1, 2, ...
These l are called angular momenta. Hence for each angular momentum l = 0, 1, 2, ...
we have the following Sturm-Liouville ordinary differential equation for ψ,(

− d2

dx2
+ q(x) +

l(l + 1)

x2

)
ψ(x) = λψ(x), x ∈ (0, 1), λ ∈ C (1.8)

with the Dirichlet boundary conditions

ψ(0, λ, q) = 0 and ψ(1, λ, q) = 0. (1.9)

1.2.1 Solutions of the Sturm-Liouville Operator Corresponding to l ≥ 1

When q = 0, by writing ψ(x) = xR(x), equation (1.8) becomes

x2d
2R

dx2
+ 2x

dR

dx
+ ((ωx)2 − l(l + 1))R(x) = 0

where ω =
√
λ. The last equation has the following two linearly independent solutions

R1(x) = jl(ωx), R2(x) = ηl(ωx)

where jl and ηl are the spherical Bessel functions of the first and second type of order
l. Hence the two linearly independent solutions of (1.8) when q = 0 are

u(x, λ) =
1

ωl+1
xjl(ωx) and v(x, λ) = −ωlxηl(ωx)

6



with Wronskian W (u, v) = −1.
In case q 6= 0 the solutions of (1.8) are constructed by Picard’s iteration method,

see [3] for l = 1 and [4] for l ≥ 1. The following two linearly independent solutions ψ
and φ are defined by

ψ(x, λ, q) =
∞∑
k=0

ψk(x, λ, q) φ(x, λ, q) =
∞∑
k=0

φk(x, λ, q)

with
ψ0(x, λ, q) = u(x, λ),

ψk+1(x, λ, q) =

∫ x

0

G(x, t, λ) q(t) ψk(t, λ, q) dt, for each k ∈ N

and
φ0(x, λ, q) = v(x, λ),

φk+1(x, λ, q) = −
∫ 1

x

G(x, t, λ) q(t) φk(t, λ, q) dt, for each k ∈ N

where the Green’s function G is given by,

G(x, t, λ) = v(x, λ)u(t, λ)− u(x, λ)v(t, λ).

Theorem 1.2.1. The series
∞∑
k=0

ψk(x, λ, q) and
∞∑
k=0

φk(x, λ, q) converge uniformly

on bounded subsets of [0, 1] × C × L2
R[0, 1] towards solutions of equation (1.8) and

satisfy the integral equations

ψ(x, λ, q) = u(x, λ) +

∫ x

0

G(x, t, λ) q(t) ψ(t, λ, q) dt

φ(x, λ, q) = v(x, λ)−
∫ 1

x

G(x, t, λ) q(t) φ(t, λ, q) dt

and the estimates

|ψ(x, λ, q)| ≤
( x

1 + |ω|x

)l+1

e(|Imω|)x eC‖q‖
√
x

|φ(x, λ, q)| ≤
(1 + |ω|x

x

)l
e(|Imω|)(1−x)eC‖q‖

√
x

where C is given in (15).

Proof. From (8), we have

|u(x, λ)| ≤
( x

1 + |ω|x

)l+1

e(|Imω|)x

7



By using (8) and (10), we get

|ψ1(x, λ, q)| ≤ C

∫ x

0

( |x|
1 + |ωx|

)l+1(1 + |ωt|
|t|

)l
e|Imω|(x−t)e|Imω|t

( |t|
1 + |ωt|

)l+1

|q(t)|dt

≤ C
( |x|

1 + |ωx|

)l+1

e|Imω|x
∫ x

0

t|q(t)|
1 + |ω|t

dt

≤ C

ω

( |x|
1 + |ωx|

)l+1

e|Imω|x
∫ x

0

|q(t)|dt

Proceeding by induction we get,

|ψn(x, λ, q)| ≤ 1

ω

( |x|
1 + |ωx|

)l+1

e|Imω|x
Cn

n!

(∫ x

0

|q(t)|dt
)n

(1.10)

This shows the uniform convergence on bounded subset of [0, 1]×C×L2
C[0, 1] for

ψ. By taking the sum over n for (1.10) we get

|ψ(x, λ, q)| ≤
( x

1 + |ω|x

)l+1

e(|Imω|)x eC‖q‖
√
x

Similarly, the proof of the φ estimate.

Recall that any complex number λ such that the boundary value problem (1.8)
and (1.9) can be solved is called an eigenvalue of q. From definition of ψ, we have
ψ(0, λ, q) = 0 for all λ. Hence the eigenvalues will be determined by the second bound-
ary condition, thus the eigenvalues are solutions of ψ(1, λ, q) = 0. The corresponding
nontrivial solution is called an eigenfunction of q for λ. We will denote for the nth

eigenvalue by λl,n(q) and for the nth eigenfunction by ψ(x, λl,n(q), q). It is important
to have asymptotic and basic properties of the normalized eigenfunctions and the
product of ψ and φ. For any angular momentum l and each q ∈ L2

R[0, 1], let

gl,n(x, q) =
ψ(x, λl,n(q), q)

||ψ(., λl,n(q), q)||L2
R[0,1]

, n ≥ 1,

to be the sequence of the normalized eigenfunctions. Also let al,n(x, q) to be

al,n(x, q) = ψ(x, λl,n(q), q)φ(x, λl,n(q), q).

Theorem 1.2.2. For any angular momentum l and potential q ∈ L2
R[0, 1], the se-

quence of the normalized eigenfunctions {gl,n(x, q)}n≥1 is an orthonormal basis for
L2
R[0, 1]. The asymptotic estimate of gl,n

gl,n(x, q) =
√

2jl(ωl,n(q)x) +O(
1

n
).

holds uniformly on bounded subsets of [0, 1]× L2
R[0, 1].

Theorem 1.2.3. For any angular momentum l and potential q ∈ L2
R[0, 1], we have
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• The vectors {1, {g2
l,n − 1}n≥1} are linearly independent, as well as { d

dx
g2
l,n}n≥1.

• For all (n,m) ∈ R2, we have,

(i) 〈g2
l,n,

d
dx
g2
l,m〉 = 0,

(ii) 〈al,n, d
dx
g2
l,m〉 = 1

2
δm,n,

(iii) 〈al,n, , ddxal,m〉 = 0

In case l = 0, the eigenfunctions have special properties. Pöschel and Trubowitz
[1] gave detailed results of these eigenfunctions and their properties and estimates.
In the next subsection we will present the most important of these results that will
be needed later.

1.2.2 Solutions of the Sturm-Liouville Operator Corresponding to l = 0

When l = 0 the eigenvalue problem is

− d2

dx2
ψ(x) + q(x)ψ(x) = λψ(x), x ∈ (0, 1), λ ∈ C (1.11)

with the Dirichlet boundary conditions

ψ(0, λ, q) = 0 and ψ(1, λ, q) = 0. (1.12)

When q = 0, (1.11) corresponds to the spherical Bessel equation of order 0.

Hence its solutions form by j0(x) =
sin(x)

x
and η0(x) = −cos(x)

x
. So the two linearly

independent solutions of (1.11) are

u(x, λ) =
sin(ωx)

ω
and v(x, λ) = − cos(ωx)

with Wronskian W (u, v) = 1. Since the eigenvalues are determined by the value of
the solution at the boundary, then the eigenvalues are the zeros of sin(ω) = 0. Hence
{λ0,n(0)}n≥1 = {(nπ)2}n≥1.

For q 6= 0, the two linearly independent solutions of equation (1.11) are defined
by

ψ(x, λ, q) =
sin(ωx)

ω
+

∫ x

0

G(x, t, λ) q(t) ψ(t, λ, q) dt, x ∈ [0, 1]

φ(x, λ, q) = − cos(ωx) +

∫ x

0

G(x, t, λ) q(t) φ(t, λ, q) dt, x ∈ [0, 1] ,

where the Green function is giving by

G(x, t, λ) =
sin(ω(x− t))

ω

The basic estimates on these solutions following in the next theorem and for more
details about these solutions, see the first chapter in [1].
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Theorem 1.2.4. The basic estimates for ψ and φ on [0, 1]× C× L2
C are given by,∣∣∣ψ(x, λ, q)− sin(ωx)

ω

∣∣∣ ≤ 1

|λ|
exp(|Imω|x+ ‖q‖

√
x)∣∣∣φ(x, λ, q)− cos(ωx)

∣∣∣ ≤ 1

|ω|
exp(|Imω|x+ ‖q‖

√
x)

and ∣∣∣ψ(x, λ, q)
∣∣∣ ≤ 1

|ω|
exp(|Imω|x+ ‖q‖

√
x)∣∣∣φ(x, λ, q)

∣∣∣ ≤ exp(|Imω|x+ ‖q‖
√
x).

Theorem 1.2.5. For any potential q ∈ L2
R[0, 1], the subspaces{

η0 +
∑
n≥1

ηn(g2
0,n − 1) : (ηn) ∈ l2

}
and

{∑
n≥1

ξn
d

dx
g2

0,n : (ξn) ∈ l21
}

are perpendicular and closed. In particular when q is even, they are the even and odd
subspaces respectively.

Next theorem illustrates the product expansion of ψ at x = 1. This representation
follows from the product expansion of the sin function which forms the leading term
of ψ,

sin(
√
λ)√
λ

=
∏
m≥1

m2π2 − λ
m2π2

The proof of this product expansion was given by Pöschel and Trubowitz in [1].

Theorem 1.2.6. For q ∈ L2
R[0, 1],

ψ(1, λ, q) =
∏
m≥1

=
λm(q)− λ
m2π2

Hence,

• ψ̇(1, λ0,n(q), q) =
−1

(nπ)2

∏
m6=n

λ0,m(q)− λ0,n(q)

(mπ)2
=

(−1)n

2n2π2

(
1 +O

( log n

n

))
• sgn ψ̇(1, λ0,n(q), q) = (−1)n = sgn ψ

′
(1, λ0,n(q), q)

By this product expansion, Pöschel and Trubowitz proved specific property for
the eigenfunction when the potential is even.

Theorem 1.2.7. If q ∈ E , then g0,n is even when n is odd and odd when n is even.
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1.3 Eigenvalues of the Main Operator Hq

For each angular momentum l, let H l
q = −d2/dx2 + q + (l(l + 1))/x2 be the operator

in (1.8), and σ(H l
q) be the spectrum of H l

q which contains all the eigenvalues of the
system (1.8), (1.9). Similarly let Hq = −∆ + q and σ(Hq) to be the spectrum of Hq

which is the set of all the eigenvalues of the problem (1.6), (1.7). By converting the
problem with operator Hq to a problem containing infinitely many Sturm-Liouville
operators H l

q, we get σ(Hq) = ∪∞l=oσ(H l
q). For each angular momentum l, σ(H l

q) is a
countable sequence of eigenvalues {λl,n(q)}n>0.

For more details about the asymptotic of the eigenvalues, see [1] for l = 0, [4] for
l = 1, and [5] for l > 1. By considering the Dirichlet eigenvalues as functions defined
on L2

R[0, 1], they showed the following result,

Theorem 1.3.1. For any angular momentum l and each n ≥ 1, λl,n is a real analytic
function on L2

R[0, 1]. its gradient is

∂λl,n
∂q(t)

= g2
l,n(t, q).

Theorem 1.3.2. For l ≥ 0 and q in L2
R[0, 1],

√
λl,n(q) =

(
n+

l

2

)
π+

∫ 1

0

q(x) dx− l(l + 1)

(2n+ l)π
+βl,n(q),

∞∑
n=1

nβ2
l,n(q) <∞, (1.13)

equivalently

λl,n(q) =
(
n+

l

2

)2
π2 +

∫ 1

0

q(x) dx− l(l + 1) + λ̃l,n(q),
∞∑
n=1

λ̃2
l,n(q) <∞. (1.14)

Also,
λl,n(q) = λl,n(0) +O(1).

Corollary 1.3.1. For l ≥ 0 and p, q ∈ L2
R[0, 1], if λl,n(p) = λl,n(q) for each n, then∫ 1

0

(p(x)− q(x)) dx = 0

Proof. From (1.14) in Theorem 1.3.2, we have∫ 1

0

(p(x)− q(x)) dx = λ̃l,n(q)− λ̃l,n(p) ∀n.

Since
∑∞

n=1 λ̃
2
l,n(p) < ∞ and

∑∞
n=1 λ̃

2
l,n(q) < ∞ then the sequences {λl,n(p)}n≥1

and {λl,n(q)}n≥1 converge to zero as n goes to infinity. Hence by taking the limit for
both sides as n goes to infinity we get,∫ 1

0

(p(x)− q(x)) dx = 0.
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Theorem 1.3.3. For any l ≥ 0 and q in L2
R[0, 1], if λ(q) is a Dirichlet eigenvalue of

(1.8) and (1.9), then

ψ′(1, λ(q), q)ψ̇(1, λ(q), q) =

∫ 1

0

ψ2(t, λ(q), q)dt

= ‖ψ(., λ(q), q)‖2 > 0.

In particular, ψ̇(1, λ(q), q) 6= 0. Thus, all roots of ψ(1, λ(q), q) are simple.

We provide in this chapter the most important results of the direct eigenvalue
problem of (1.8) and (1.9) which will be used later to discover some results of the
inverse eigenvalue problem of the operator (1.6).

Remark: From the next chapter, for any angular momentum l and n ∈ N we will
use ψql,n to denote the nth eigenfunction of q for the eigenvalue λl,n(q).
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Chapter 2 Uniqueness of the Potential of the Extended Domain

2.1 Introduction

The result in this chapter is restricted to the zero angular momentum. As we saw
in the previous chapter that the eigenvalues of the problem (1.6), (1.7) is the union
of the eigenvalues of infinitely many Sturm-Liouville operators on [0, 1] with the
Dirichlet boundary conditions. This spectral data is a large set to start with. We
may work on the problem and get the uniqueness by following one of these ways.
Either by focusing on the eigenvalues corresponding to a single angular momenta and
restricting the work on some subspaces of L2

R[0, 1] such as the subspace of the even
functions, or by focusing on the eigenvalues corresponding to finitely-many angular
momenta. In this chapter we will focus on the angular momentum l = 0. In the
l = 0 case, one early result of Pöschel and Trubowitz, in [1], is that the uniqueness
of the potential holds when the potentials are restricted to the subspace of the even
functions, Theorem 1.1.3. They formulate the inverse problem of this system(

− d2

dx2
+ q(x)

)
ψ(x) = λψ(x) x ∈ (0, 1)

and
ψ(1) = 0 and ψ(0) = 0,

by defining a map λ from the Hilbert space L2
R[0, 1] to R× l2 as following

q → ([q], λ̃(q))

where [q] =

∫ 1

0

q(x)dx and λ̃(q) =
{
λ̃0,n(q)

}
n≥1

is the sequence of the last terms in

the asymptotic of the eigenvalues in the equation (1.14). They have shown that this
map is one to one if its domain is restricted on the subspace of the even functions E
of L2

R[0, 1]. Their proof of this result is based on the fact that the nth eigenfunction
for an even potential is odd if n is even and even if n is odd, Theorem 1.2.7 which
was proved in chapter 2, [1].

This property does not hold if the potential is not even. From this point, our
work in this chapter will focus potentials that are not even potentials. But we will
use their method by looking to the potentials p, q ∈ L2

R[0, 1] that have even extended
potentials p̃, q̃ ∈ L2

R[−1, 1] sharing the same eigenvalues. By proving the equality
between p̃ and q̃, we will get the p = q. Let us first give a clear definition of the
subspace of the even functions of L2

R[−1, 1].

Definition 2.1.1. q̃ ∈ L2
R[−1, 1] is called even if q̃(x) = q̃(−x) for any x ∈ [−1, 1],

and called odd if q̃(x) = −q̃(−x) for any x ∈ [−1, 1].

For any q ∈ L2
R[0, 1], we will consider here the following eigenvalue problem for

the extended domain [−1, 1](
− d2

dx2
+ q̃(x)

)
ψ(x) = λψ(x), x ∈ (−1, 1), λ ∈ C (2.1)
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with the Dirichlet boundary conditions

ψ(1, λ(q̃), q̃) = 0 and ψ(−1, λ(q̃), q̃) = 0. (2.2)

where q̃ is the even extension of q. The purpose of this extension is trying to prove the
uniqueness of q̃ which leads to the uniqueness of q. Thus the spectral data that we
will focus on in this chapter is related to the extended potential q̃. The result in the
next lemma explains that we are still working in the same main problem of Chapter
1 but for specific type of potentials lying in L2

R[0, 1]. That is, if the two extended
potentials q̃, p̃ ∈ L2

R[−1, 1] share the same eigenvalues then also the main potentials
q, p ∈ L2

R[0, 1], that we are trying to prove are equal, share the same eigenvalues.

Lemma 2.1.1. Let q̃ ∈ L2
R[−1, 1] be the even extension of q ∈ L2

R[0, 1]. Then{
λ0,n(q)

}
n≥1
⊂
{
λ0,n(q̃)

}
n≥1

, where the first set forms the eigenvalues of the problem

(1.11)-(1.12) and the second set forms the eigenvalues of the problem (2.1)-(2.2).

Proof. Let ψq0,n be the eigenfunction of the problem (1.11)-(1.12) on [0, 1] correspond-

ing to the nth eigenvalue λ0,n(q). Consider ψ̃0,n to be the odd extension of ψq0,n on
[−1, 1], i.e,

ψ̃0,n(x) =

{
ψq0,n(x) x ∈ [0, 1]

−ψq0,n(−x) x ∈ [−1, 0)

We choose ψ̃0,n to be the odd extension of ψq0,n to guarantee the continuity of ψ̃0,n at
x = 0. Thus for any x ∈ [0, 1] we have

− d2

dx2
ψ̃0,n(x) + q̃(x)ψ̃0,n(x) = − d2

dx2
ψq0,n(x) + q(x)ψq0,n(x)

= λ0,n(q)ψq0,n(x)

= λ0,n(q)ψ̃0,n(x)

and if x ∈ [−1, 0)

− d2

dx2
ψ̃0,n(x) + q̃(x)ψ̃0,n(x) =

d2

dx2
ψq0,n(−x)− q(x)ψq0,n(−x)

= −λ0,n(q)ψq0,n(−x)

= λ0,n(q)ψ̃0,n(x)

Hence ψ̃0,n is a solution of (2.1). From the definition of ψ̃0,n we have ψ̃0,n(1) =

ψ̃0,n(−1) = 0. Thus ψ̃0,n is an eigenfunction of (2.1)-(2.2) corresponding to the
eigenvalue λ0,n(q). Hence

{
λ0,n(q)

}
n≥1
⊂
{
λ0,n(q̃)

}
n≥1

.

Before we start proving the uniqueness of the extended potential we need to know
more about the eigenfunctions and the eigenvalues of the extended problem. In the
next sections we present the most important properties and asymptotic estimates of
them.
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2.2 Eigenfunctions of the Extended Problem

When q̃ = 0, the equation (2.1) has the two linearly independent solutions

u(x, λ) =
sin(ωx)

ω
, v(x, λ) = − cos(ωx)

where ω =
√
λ. Since we are looking for two solutions satisfying the following initial

conditions
u(−1) = 0 v(−1) = −1

u
′
(−1) = 1 v

′
(−1) = 0

we will shift the argument of sin and cos from x to x + 1 to have the following two
linearly independent solutions

ũ(x, λ) =
sin(ω(x+ 1))

ω
, ṽ(x, λ) = − cos(ω(x+ 1))

with Wronskian W (u, v) = 1. The eigenvalues are determined by Dirichlet boundary
conditions (2.2). Since ũ(−1, λ) = 0 for all λ, then the eigenvalues will be solutions
of

ũ(1, λ) =
sin(ω(2))

ω
= 0.

Hence the Dirichlet spectrum is the set of zeros of sin(2ω) which are the following
infinite sequence

π2

4
,
(2π)2

4
, ....,

(nπ)2

4
, ....

When q̃ 6= 0 we consider the following solution,

ψ(x, λ, q̃) =
sin(ω(1 + x))

ω
+

∫ x

−1

G(x, t, λ) q̃(t) ψ(t, λ, q̃) dt, x ∈ [−1, 1]

where,
G(x, t, λ) = ũ(x, λ)ṽ(t, λ)− ũ(t, λ)ṽ(x, λ).

The construction of this solution and some estimates on it are justified in the next
theorem.

Theorem 2.2.1. For any q̃ ∈ L2
R[−1, 1], ψ is a solution of (2.1) and satisfies the

following basic estimates uniformly on bounded subsets of [−1, 1]× R× L2
R[−1, 1],∣∣∣ψ(x, λ, q̃)− sin(

√
λ(x+ 1))√
λ

∣∣∣ ≤ 1

|λ|
exp(|Im

√
λ|(x+ 1) + ‖q̃‖

√
x+ 1)

∣∣∣ψ(x, λ, q̃)
∣∣∣ ≤ 1

|
√
λ|
exp
(
|Im
√
λ|(x+ 1) + ‖q̃‖

√
x+ 1

)
.
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Proof.
By Picard iteration method, we can show the definition of ψ is well defined.

Let ψ be defined by
∞∑
k=0

ψk(x, λ, q̃)

with,
ψ0(x, λ, q̃) = ũ(x, λ) and

ψk+1(x, λ, q̃) =

∫ x

−1

G(x, t, λ) q̃(t) ψk(t, λ, q̃) dt for each k ∈ N.

By induction we will prove that this series converges uniformly on bounded subsets
of [−1, 1]× R× L2

R[−1, 1], to the solution of equation (2.1).
Note that

ψ1(x, λ, q̃) =

∫ x

−1

G(x, t1, λ) q̃(t1) ψ0(t1, λ, q̃) dt1

=

∫ x

−1

sin(
√
λ(x− t1))√
λ

q̃(t1)
sin(
√
λ(t1 + 1))√
λ

dt1

and ,

ψ2(x, λ, q̃) =

∫ x

−1

sin(
√
λ(x− t2))√
λ

q̃(t2) ψ1(t2, λ, q̃) dt2

=

∫ x

−1

sin(
√
λ(x− t2))√
λ

q̃(t2)

∫ t2

−1

sin(
√
λ(t2 − t1))√
λ

q̃(t1)
sin(
√
λ(t1 + 1))√
λ

dt1 dt2

=

∫ x

−1≤t1≤t2≤t3=x

sin(
√
λ(t1 + 1))√
λ

2∏
i=1

q̃(ti)
sin(
√
λ(ti+1 − ti))√

λ
dt1dt2

Proceeding by induction

ψn(x, λ, q̃) =

∫
x

−1≤t1≤...≤tn≤tn+1=x

sin(
√
λ(t1 + 1))√
λ

n∏
i=1

q̃(ti)
sin(
√
λ(ti+1 − ti)√

λ
dt1dt2...dtn

By the following elementary inequality

cos(
√
λ(x+ 1)) =

1

2

∣∣∣ei√λ(x+1) − e−i
√
λ(x+1)

∣∣∣ ≤ exp(Im
√
λ(x+ 1))

we have, for −1 ≤ x ≤ 1,∣∣∣sin(
√
λ(t+ 1))√
λ

∣∣∣ =

∣∣∣∣ ∫ x

−1

cos(
√
λ(t+ 1))dt

∣∣∣∣∣ ≤ 1√
λ
exp(|Im

√
λ|(t+ 1)).
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Hence,

|ψn(x, λ, q)| ≤ e|Im
√
λ(x+1)|

|λ|

∫
x

−1≤t1≤...≤tn≤x

n∏
i=1

|q̃(ti)|dt1dt2...dtn

=
e|Im

√
λ(x+1)|

|λ| n!

∫
[−1,x]n

n∏
i=1

|q̃(ti)|dt1dt2...dtn

=
e|Im

√
λ(x+1)|

|λ| n!

(∫ x

−1

|q̃(t)|dt
)n

≤ e|Im
√
λ(x+1)|

|λ| n!
(‖q̃‖ (

√
x+ 1))n.

(2.3)

This shows the convergence of the series to a continuous function. Since we
have uniform convergence of this series then the integration and summation may be
interchanged to get,

ψ(x, λ, q̃) = ψ0(x, λ, q̃) +
∞∑
k=1

ψk(x, λ, q̃)

= u(x, λ) +
∞∑
k=1

∫ x

−1

G(x, t, λ) q̃(t) ψk−1(t, λ, q̃) dt

= u(x, λ) +

∫ x

−1

G(x, t, λ) q̃(t)
∞∑
k=1

ψk−1(t, λ, q̃) dt

= u(x, λ) +

∫ x

−1

G(x, t, λ) q̃(t) ψ(t, λ, q̃) dt

That verifies that the integral equation of ψ is well defined, and substituting in
(2.1) by ψ proves that ψ is a solution of the ODE (2.1). By taking a sum from n = 1
to ∞ on the estimates of |ψn(x, λ, q)| in (2.3), we get the first inequality, and by
adding the first term n = 0 we will get the second inequality.

2.3 Eigenvalues of the Extended Problem

In this section we present some of the properties of the eigenvalues. The first property
follows from the fact that this problem contains a self-adjoint operator with boundary
conditions. Thus the eigenvalues are real numbers.

Theorem 2.3.1. The Dirichlet spectrum of q̃ ∈ L2
R[−1, 1] is a set of real numbers.

Proof. Suppose λ is a Dirichlet eigenvalue of q̃ with eigenfunction ψ then,

−ψ′′ + q̃(x)ψ = λψ
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Conjugating the equation,
−ψ̄′′ + q̃(x)ψ̄ = λ̄ψ̄

since q̃ is real. Multiplying the first equation by ψ̄, the second by ψ and taking the
difference, we obtain

[ψ, ψ̄]′ = ψψ̄
′′ − ψ′′ψ̄ = (λ− λ̄)|ψ|2.

where [., .] is the Wronskin of any two differentiable functions f and g which is given
by [f, g] = f

′
g − fg′ . Hence by integration,

[ψ, ψ̄](−1)− [ψ, ψ̄](1) = (λ− λ̄)

∫ 1

−1

|ψ(t)|2dt.

Since λ is an eigenvalue, then the left hand side is zero by the values of the
eigenfunction at the boundary. Since the eigenfunction is non trivial solution then
the integral does not equal zero. Therefore λ− λ̄ = 0, which means that λ is real.

As we saw that for q = 0, the Dirichlet spectrum is the set of zeros of ũ(1, λ)

which are { (nπ)2

4
}n≥1. The compactness of the resolvent and Fredholm alternative

shows that the Dirichlet spectrum of any potential q̃ is an infinite sequence of real
numbers, which is bounded below and tends to +∞. the main point of the following
Counting Lemma is to give an estimate of their location.

Lemma 2.3.1. (The Counting Lemma)
Let q̃ ∈ L2

C and N > 2e2‖q̃‖ be an integer. Then ψ(1, λ, q̃) has exactly N roots,
counted with multiplicity, in the open half plane

Reλ < (N +
1

4
)2π2,

and for each n > N , exactly one simple root in the egg shaped region

|
√
λ− nπ

2
| < π

4
.

There is no other roots.

Proof. Fix N > 2e2‖q‖, and let K > N be another integer. Consider the contours

|
√
λ| = (K +

1

4
)π

Re
√
λ = (N +

1

4
)π

and
|
√
λ− nπ

2
| = π

4
, n > N.

By Lemma A2.4 from the appendix, the estimate

e|Im2
√
λ| < 4| sin 2

√
λ|

18



holds on all of them. Therefore, by the basic estimate for ψ,∣∣∣ψ(1, λ, q̃)− sin 2
√
λ√

λ

∣∣∣ ≤ e2‖q̃‖

|
√
λ|
e|Im2

√
λ|

|
√
λ|

<
2N

|
√
λ|

∣∣∣∣∣sin 2
√
λ√

λ

∣∣∣∣∣
<

∣∣∣∣∣sin 2
√
λ√

λ

∣∣∣∣∣
(2.4)

also holds on them. It follows that ψ(1, λ, q̃) does not vanish on these contours.
Hence, by Rouche’s theorem, ψ(1, λ, q̃) has as many roots, counted with multiplicity,

as
sin 2
√
λ√

λ
in each of the bounded regions and the remaining unbounded region.

Since
sin 2
√
λ√

λ
has only the simple roots (

nπ

2
)2, n ≥ 1, and since K > N can be

chosen arbitrary large, the lemma follows.

Theorem 2.3.2. If λ is an eigenvalue of q̃ ∈ L2
R[−1, 1], then

ψ′(1, λ, q̃)ψ̇(1, λ, q̃) =

∫ 1

−1

ψ2(t, λ)dt = ‖ψ(., λ, q̃)‖2 > 0.

In particular, ψ̇(1, λ, q̃) 6= 0. Thus, all roots of ψ̇(1, λ, q̃) are simple.

Proof. Let ψ = ψ(x, λ, q̃). Differentiating equation (2.1) with respect to λ yields

− d2

dx2
ψ̇ + q̃(x)ψ̇ = ψ + λψ̇

Multiplying this equation by ψ, the equation (2.1) by ψ̇ and taking the difference
we obtain

ψ2 = ψ
′′
ψ̇ − ψ̇′′ψ = [ψ̇, ψ]

′

Integration both sides over [−1, 1] ,we will get∫ 1

−1

ψ2(t, λ, q̃)dt = [ψ̇, ψ](1)− [ψ̇, ψ](−1)

= ψ̇(1, λ, q̃)ψ
′
(1, λ, q̃),

since ψ(−1, λ, q̃) and ψ̇(−1, λ, q̃) vanish for all λ, and ψ(1, λ, q̃) vanishes for an eigen-
value λ. Since ψ is real for real λ. then the integral is equal to ‖ψ(., λ, q̃)‖2 .

Now if we consider λn as a function on L2
R[−1, 1], then as in Theorem 3 in [1], λn

for any n, is real analytic function on L2
R[−1, 1].
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Theorem 2.3.3. For any q̃ ∈ L2
R[−1, 1] the gradient of λn is given by

∂λn
∂q̃(t)

= g2
n(t, q̃),

where gn is the normalized eigenfunction.

Proof. To get an idea how to get this gradient, recall that the derivative of a map
f : E → F between two Banach spaces E and F at a point x ∈ E is a bounded linear
map from TxE into Tf(x)F which we denote by dxf . Moreover, if E and F are Hilbert
spaces then TxE = E, Tf(x)F = F . Also if E is a Hilbert space and F is the real
or complex line, then by the Riesz representation theorem, there is a unique element
∂f/∂x in E, such that for all ν in E,

dxf(ν) =
〈
ν,
∂f

∂x

〉
.

This element is the gradient of f at x. Hence, by differentiating both sides of the
differential equation (2.1) of gn in the direction ν we obtain

−dq̃g
′′

n(ν) + q̃dq̃gn(ν) + νgn = λndq̃gn(ν) + dq̃λn(ν)gn

If q̃ is continuous, then gn is twice continuously differentiable, and we may interchange
differentiation with respect to x and q to obtain

−(dq̃gn(ν))
′′

+ qdq̃gn(ν) + νgn = λndq̃gn(ν) + dq̃λn(ν)gn

Multiplying both sides by gn and integrating we get〈
(− d2

dx2
+ q̃)gn(ν), gn

〉
+
〈
g2
n, ν

〉
= λn

〈
dgn(ν), gn

〉
+ dq̃λn(ν)

The first term equals〈
(− d2

dx2
+ q̃)gn(ν), gn

〉
= λn

〈
dq̃gn(ν), gn

〉
.

Hence
dq̃λn(ν) =

〈
g2
n, ν

〉
and

∂λn
∂q̃(t)

= g2
n(t, q̃).

Theorem 2.3.4. For q̃ in L2
R[−1, 1],

λn(q̃) = (
nπ

2
)2 +

∫ 1

−1

q̃(t)dt− 1

2
〈cos(nπ(x+ 1)), q̃〉+O(

1

n
)

= (
nπ

2
)2 +

∫ 1

−1

q̃(t)dt+ l2(n)
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and

gn(x, q̃) = sin(
nπ

2
(x+ 1)) +O(

1

n
)

g
′

n(x, q̃) =

√
2nπ

2
cos(

nπ

2
(x+ 1)) +O(1)

Proof. Let λn = λn(q̃). By the Counting lemma,√
λm =

nπ

2
+O(1)

By the estimate of ψ,

ψ(x, λn, q̃) =
sin(
√
λn(x+ 1))√
λn

+O(
1

|λn|
)

=
sin(
√
λn(x+ 1))√
λn

+O(
1

n2
)

Using the identity 2 sin2(2ax) = 1− cos(2ax), we get∫ 1

−1

ψ2(t, λn, q̃)dt =

∫ 1

−1

sin2(
√
λn(t+ 1))

λn
dt+O(

1

n3
)

=
1

2λn

(
2− sin 4

√
λn

2
√
λn

)
+O(

1

n3
)

=
1

λn
(1 +O(

1

n
))

It follows that

||ψ(., λn, q̃)||−1 =
√
λn(1 +O(

1

n
))

Hence,

gn(x, q̃) =
ψ(x, λn, q̃)

||ψ(., λn, q̃)||
= sin(

√
λn(x+ 1)) +O(

1

n
) (2.5)

Note that,

λn(q̃)− (
nπ

2
)2 =λn(q̃)− λn(0)

=

∫ 1

−1

d

dt
λn((

t+ 1

2
)q̃)dt

=

∫ 1

−1

〈g2
n(x, (

t+ 1

2
)q̃), q̃〉dt

(2.6)

Since
λn(q̃) = (

nπ

2
)2 +O(1)
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or equivalently √
λn(q̃) =

nπ

2
+O(

1

n
)

then,

gn(x, q̃) = sin(
nπ

2
(x+ 1)) +O(

1

n
)

Since (2.5) holds for t+1
2
q̃ , −1 ≤ t ≤ 1, then by inserting the last estimate of gn

into (2.6) and using the identity

2 sin2 ax = 1− cos 2ax

we obtain

λn(q̃)− (
nπ

2
)2 =

∫ 1

−1

〈1
2

(1− cos(nπ(x+ 1)) +O(
1

n
), q̃〉dt

=

∫ 1

−1

q̃(t)dt− 〈cos(nπ(x+ 1)), q̃〉+O(
1

n
)

=

∫ 1

−1

q̃(t)dt+ 〈cos(nπx), q̃〉+O(
1

n
)

=

∫ 1

−1

q̃(t)dt+ l2(n)

since 〈cos(nπ(x+ 1)), q̃〉 are the square summable Fourier coefficients of q̃.
Finally, we estimate g

′
n, by using the basic estimate of ψ

′
,

ψ
′
(x, λn, q̃) = cos(

√
λn(x+ 1)) +O(

1√
λn

)

= cos(
nπ

2
(x+ 1)) +O(

1

n
)

Dividing by ||ψ(., λn, q̃)||,

g
′

n(x, q̃) =
√
µn cos(

nπ

2
(x+ 1)) +O(1)

=
πn

2
cos(

nπ

2
(x+ 1)) +O(1).

2.4 Uniqueness of the Potential

The method that will be used in this section to prove uniqueness depends in the fact
that if ψn(x, λn(q̃), q̃) = ψn(x, λn(p̃), p̃) then q̃ = p̃ almost every where. This fact
follow from equation (2.1)

ψn(x, λn(q̃), q̃)q̃ = λn(q̃)ψn(x, λn(q̃), q̃) + ψ
′′

n(x, λn(q̃), q̃)

= λn(p̃)ψn(x, λn(p̃), p̃) + ψ
′′

n(x, λn(p̃), p̃)

= ψn(x, λn(p̃), p̃)p̃.
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Since ψn(x, λn(q̃), q̃) = ψn(x, λn(p̃), p̃) then q̃ = p̃. The equality between the eigen-
functions for q̃ and p̃ requires some specific properties. Thus, before we give the proof
of the uniqueness, we will prove some important properties of the eigenfunctions that
will help to prove the uniqueness. Recall that we write ψ(x, λn(q̃)) for ψ(x, λn(q̃), q̃).

Theorem 2.4.1. For q̃ in L2
R[−1, 1], ψ(1, λ, q̃) =

∏
n≥1

λn(q̃)− λ
(nπ

2
)2

where λn(q̃) is the

nth eigenvalue of (2.1)-(2.2).

Proof.
Since λn(q̃) = (nπ

2
)2 + O(1), then by Lemma A2.2, the infinite product p(λ) =

∞∏
n≥1

λn(q̃)− λ
(
nπ

2
)2

is an entire function of λ and

p(λ) =
sin(2

√
λ)√

λ

(
1 +O

( log n

n

))
uniformly on the circle |λ| = rn = (n

2
+ 1

2
)2π2 for n large enough.

Also the roots of p(λ) are λn(q̃), hence the quotient p(λ)
ψ(1,λ,q̃)

is an entire function. By
the basic estimate for ψ we have

ψ(1, λ) =
sin(2

√
λ)√

λ

(
1 +O

( 1

n

))
uniformly for λ = rn . Hence,

p(λ)

ψ(1, λ, q̃)
= 1 +O

( log n

n

)
for |λn| = rn, that is,

sup
|λ|=rn

∣∣∣ p(λ)

ψ(1, λ, q̃)
− 1
∣∣∣→ 0

as n → ∞. It follows from the maximum principle that the difference vanishes
identically. Hence p(λ) = ψ.

This product formula of ψ(1, λ, q) gives us important information about the type
of the eigenfunction either even or odd depending in its sign. In the next corollary
we have useful consequences of the previous theorem.

Corollary 2.4.1.

• ψ̇(1, λn(q̃)) =
−1

(nπ
2

)2

∏
m6=n

λm(q̃)− λn(q̃)

(mπ
2

)2
=

(−1)n

n2π2

2

(
1 +O

( log n

n

))
• sgn ψ̇(1, λn(q̃)) = (−1)n = sgn ψ

′
(1, λn(q̃))
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Proof. Part one follows from Lemma A2.3, The first identity in the second part follows
from the first part, and the second identity is a consequence of the first identity and
Theorem 2.3.2.

Theorem 2.4.2. let gn(x, q̃) be the normalized eigenfunction of λn(q̃). If q̃ is even,
then gn(x, q̃) is even when n is odd and odd when n is even.

Proof. Note that gn(x, q̃) and gn(−x, q̃) are eigenfunctions of q̃ for λn(q̃) with norm
1. By Theorem 2.3.2, λn(q̃) is simple then,

gn(x, q̃) = Cgn(−x, q̃)

where C = +1 or −1. Since g
′
n(−1, q̃) = 1, then g

′
n(1) = −C, thus sgn C = - sgn

g
′
n(1) = (−1)n+1. Hence gn(x, q̃) = (−1)n+1gn(−x, q̃).

Lemma 2.4.1. Let f be a meromorphic function in the plane. If

sup
λ=rn

|f(λ)| = o(
1

rn
)

for an unbounded sequence of positive real numbers rn, then the sum of the residues
of f is zero. In particular, If the residues of f are real nonnegative, then they are all
zero.

Proof. The sum of the residues of f is, by definition,

lim
n→∞

1

2πi

∫
|λ|=rn

f(λ)dλ

But ∣∣∣ ∫
|λ|=rn

f(λ)dλ
∣∣∣ ≤ ∫

|λ|=rn
|f(λ)|dλ

= o(
1

rn
)

∫
|λ|=rn

dλ

= o(1),

(2.7)

so the sum is zero.

Theorem 2.4.3. For q, p ∈ L2
R[0, 1], let q̃, p̃ ∈ L2

R[−1, 1] be their even extensions
respectively with λn(q̃) = λn(p̃) = λn for each n, then q = p.

Proof. Since q̃, p̃ are the even extensions of q and p respectively then q̃ = p̃ implies
q = p. So the goal is to prove that q̃ = p̃. Notice that if ψ(x, λ, q̃) = ψ(x, λ, p̃) for
some λ and each x then p̃ = q̃. Hence we will assume that there is some x such that
ψ(x, λ, q̃) 6= ψ(x, λ, p̃) and define,
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f(λ) = −
(
ψ(x, λ, q̃)− ψ(x, λ, p̃)

)(
ψ(−x, λ, q̃)− ψ(−x, λ, p̃)

)
ψ(1, λ, q̃)

.

f is a meromorphic function which has simple poles at λn, for each n ≥ 1 otherwise
it is regular. Since ψ(x, λn) = (−1)n+1ψ(−x, λn) for p̃ and q̃ and by Corollary 2.4.1
sgn ψ̇(1, λn(q̃)) = (−1)n.Thus the residue of f at each λn is

Rf (λn) =

(
ψ(x, λn, q̃)− ψ(x, λn, p̃)

)2

(−1)nψ̇(1, λn, q̃)
≥ 0.

Now we show that the function f satisfies the hypothesis of Lemma 2.4.1 for
rn = (n

2
+ 1

4
)2π2. The numerator of f is bounded from above by,

e|Im
√
λ|(x+1) e|Im

√
λ|(−x+1)

|λ|2
=
e|Imλ|

|λ|2

To bound the denominator from below we have,∣∣∣ψ(1, λ, q̃)− sin 2
√
λ√

λ

∣∣∣ ≤ e||q̃||e2|Im
√
λ|

|
√
λ||
√
λ|
≤ e2|Im

√
λ|

8|
√
λ|

for |λ| ≥ 8e||q̃||. Therefore,

|ψ(1, λ, q̃)| ≥
∣∣∣sin 2

√
λ√

λ

∣∣∣− ∣∣∣ψ(1, λ, q̃)− sin 2
√
λ√

λ

∣∣∣
≥ e2|Im

√
λ|

4|
√
λ|
− e2|Im

√
λ|

8|
√
λ|

≥ e2|Im
√
λ|

8|
√
λ|

for |λ| = rn, and n sufficiently large. Hence the quotient of the two bounds is

O(1/r
3/4
n ) = O(1/rn) as required, so Rf (λn) = 0 for each n which implies,

ψ(x, λn, q̃) = ψ(x, λn, p̃), n ≥ 1

Hence q̃ and p̃ have the same eigenfunctions, then by (2.1)

q̃ψ = λn(q̃)ψ + ψ
′′

= λn(p̃)ψ + ψ
′′

= p̃ψ

and therefore q̃ = p̃ almost everywhere which implies that q = p.

In this section we prove that p = q by looking to their even extended potentials
and studying the eigenfunctions of the extended potentials. In the next section we
will present a second method to solve this problem. This method also related to
the assumption that the extended potentials share the same eigenvalue to get extra
spectral data. Before we start the next section we want to thank Herschenfeld, Samuel
who suggested this method.
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2.5 Second Method to Prove the Uniqueness of the potential

Firs, we will consider the following diffemorphism φ : [0, 1]→ [−1, 1] which is defined
by φ(x) = 2x− 1. Let φ−1 : [−1, 1]→ [0, 1] be the inverse of φ, so φ−1(x) = 1

2
(x+ 1).

Let q ∈ L2
R[0, 1], and q̃ ∈ L2

R[−1, 1] be the even extended of q. We consider the new
potential Q = 4q̃ ◦ φ in L2

R[0, 1]. To prove the uniqueness of q we need to prove
the uniqueness of Q. Before we give the proof, we will show some properties of the
potential Q.

Theorem 2.5.1. For q ∈ L2
R[0, 1], let Q ∈ L2

R[0, 1] such that Q = 4q̃ ◦ φ where
q̃ ∈ L2

R[−1, 1] is the even extended of q. Then the potential Q is even and σ(HQ) =
4σ(Hq̃).

Proof. Q is even that follows from the definition of q̃ and φ. To show that σ(Hq̃) =

σ(HQ), we consider the following function ψ = ψ̃ ◦φ, where ψ̃ is the solution of (2.1)-
(2.2). For x ∈ (0, 1) let x1 ∈ (−1, 1) such that φ−1(x1) = x, so for each λn(q̃) ∈ σ(Hq̃)
we have

−ψ′′(x, λn(q̃)) +Q(x)ψ(x, λn(q̃)) = −ψ′′(φ−1(x1), λn(q̃)) +Q(φ−1(x1))ψ(φ−1(x1), λn(q̃))

= −4ψ̃
′′
(x1, λn(q̃)) + 4q̃(x1)ψ̃(x1, λn(q̃))

= 4λn(q̃)ψ̃(x1, λn(q̃))

= 4λn(q̃)ψ(x, λn(q̃))

and for the boundary conditions ψ(0, λn(q̃))) = ψ̃(−1, λn(q̃))) = 0 and ψ(1, λn(q̃))) =

ψ̃(1, λn(q̃))) = 0. Hence ψ(., λn(q̃)) is the nth eigenfunction of 4λn(q̃), that show that
σ(HQ) = 4σ(Hq̃).

Theorem 2.5.2. For q, p ∈ L2
R[0, 1], let q̃, p̃ ∈ L2

R[−1, 1] are the even extended of q
and p respectively. If σ(Hq̃) = σ(Hp̃) then q = p.

Proof. Define Q = q̃ ◦ φ and P = p̃ ◦ φ. From Theorem 2.5.1, Q and P are two even
potentials in L2

R[0, 1] such that σ(HQ) = σ(HP ). Hence from Pöschel and Trubowitz’s
Theorem 1.1.3, Q = P. Hence q̃ = 1

4
Q ◦ φ−1 = 1

4
P ◦ φ−1 = p̃ which implies q = p.

In this chapter we focused on the zero angular momentum and the set of po-
tentials in L2

R[0, 1] that have even extended potentials in L2
R[−1, 1] sharing the same

eigenvalues of the extended problem. In the next chapter we will study the problem
from geometric side. For any p ∈ L2

R[0, 1] and two angular momenta l1, l2, we will
work on the dimension of two tangent spaces at any point q ∈M l1(p) ∩M l2(p).
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Chapter 3 Dimension of the Intersection of Tangent Spaces

3.1 An Overview of the Isospectral Set of a Potential p ∈ L2
R[0, 1]

In this chapter we focus on the dimension of the intersection of two tangent spaces
corresponding to two different angular momentum l1, l2. The first angular momenta
will be fixed l1 = 0 and we will vary l2.

Definition 3.1.1. For each angular momentum l = 0, 1, 2, ... denote the isospectral
set of p by M l(p) and its definition is given by

M l(p) = {q ∈ L2
R[0, 1] : λl,n(q) = λl,n(p), n = 1, 2, 3, ....}

and for each q ∈ M l(p) denote the tangent space of M l(p) at q by TqM
l(p) which is

the set consisting all the velocity vectors at q of all smooth curves on M l(p) which
pass through q.

For any angular momentum l, by considering the map

λl : L2
R[0, 1]→ R× l2

λl(q) =
(
[q], {λ̃l,n(q)}n≥1

)
where [q] =

∫ 1

0

q(x)dx and

λl,n(q) =
(
n+

l

2

)2
π2 +

∫ 1

0

q(x) dx− l(l + 1) + λ̃l,n(q),
∞∑
n=1

|λ̃l,n(q)|2 <∞

we have the following properties of λl and M l(p).

Theorem 3.1.1. λl is a real analytic map on L2
R[0, 1]. It is derivative at q is the

linear map from L2
R[0, 1] into R× l2 given by

dqλ
l(ν) =

(
〈1, ν〉,

{
〈∂λ̃l,n
∂q

, ν〉
}
n≥1

)
=
(
〈1, ν〉,

{
〈g2
l,n − 1, ν〉

}
n≥1

)
.

Theorem 3.1.2. For any angular momentum l and p ∈ L2
R[0, 1],

1. M l(p) is a real analytic submanifold of L2
R[0, 1] of infinite dimension and co-

dimension lying in the hyperplane of all function with mean value

∫ 1

0

p(t)dt.
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2. At every point q ∈M l(p) the tangent space is

TqM
l(p) = span{2 d

dx
g2
l,n : n ≥ 1}

and the normal space is

NqM
l(p) = span{g2

l,n − 1 n ≥ 1}.

For any q ∈ M l(p), λl(q) is a regular value of λl with the following splitting of
L2
R[0, 1] in the sense of Definition 3.1.1

L2
R[0, 1] = ker(dqλ

l)
⊕

(ker(dqλ
l))⊥.

Also the restriction of dqλ
l to (ker(dqλ

l))⊥ is boundedly invertible. Hence by
Regular Value Theorem A2.1, M l(p) is a real analytic sub-manifold of L2

R[0, 1] with
infinite dimension and co-dimension (see [1] and [8]) and

TqM
l(p) = ker(dqλ

l) (3.1)

The vectors of the tangent space follow from Theorem 1.2.3 and definition of dqλ
l,

for more details see [1] for l = 0 and [3] for l ≥ 1.
According to Definition A3.1 of the Fredholm operators, Shubin, in [6], proved that

the intersection of TpM
0(p) and TpM

1(p) is finite dimensional for any p ∈ L2
R[0, 1] by

defining a Fredholm operator that has TpM
0(p)∩ TpM1(p) as a kernel. Then Shubin

and Carlson [7] have proven that these result is hold for any two angular momunta
l1 and l2 such that l1 + l2 = 1 mod 2 which means that l1 and l2 have different
parity see [7]. In this work we try to use the same method used by Shubin in [6] to
prove similar results. The tangent spaces that we will consider here are at any point
q ∈ M l1(p) ∩ M l2(p). In Chapter 4, we will try to connect the uniqueness of the
potential with the dimension of the intersection of its tangent spaces. So the main
theorem of this chapter is

Theorem 3.1.3. For any p ∈ L2
R[0, 1] and l ≥ 1, the intersection of TqM

0(p) and
TqM

l(p) is finite dimensional at each fixed q ∈M0(p) ∩M l(p).

We will discusses this problem in two different cases, one of them when one angular
momentum is even and the second case when it is odd. Since that method depends
on showing an operator is Fredholm, we will begin by introducing some important
operators that will be used in the proof.

3.2 Some Important Operators and Their Properties

The first operator has a special property that converts squared eigenfunctions for
angular momentum l = 0 to the eigenfunctions for l > 0. This property will help
to analyze some operators easily. In the next definition and lemma, we will give a
simple review of this operator and its properties. For more details about the proof of
its properties, see [5] and [3].
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Definition 3.2.1. For each positive integer l, define the operator Sl : L2
C[0, 1] →

L2
C[0, 1] by

Sl[f ](x) = f(x)− 4lx2l−1

∫ 1

x

f(s)

s2l
ds

and the operator Tl : L2
C[0, 1]→ L2

C[0, 1] by

Tl = (−1)l−1SlSl−1... S1.

Lemma 3.2.1. For each positive integer l
1. The operator Sl has the following properties :

(i) Sl is bounded on L2
C[0, 1].

(ii) Sl is one to one and

S−1
l [f ](x) = f(x)− 4lx−2l

∫ 1

x

f(s)s2l ds.

(iii) The family Sl pairwise commutes: Sl1Sl2 = Sl2Sl1 for any l1, l2.

(iv) The adjoint of Sl is

S∗l [f ](x) = f(x)− 4lx−2l

∫ x

0

s2l−1f(s) ds

2. The operator Tl is a bounded, one to one linear operator on L2
C[0, 1] such that for

any ξ ∈ L2
R[0, 1] and λ ≥ 0∫ 1

0

(2Φl(
√
λx)− 1)ξ(x) dx =

∫ 1

0

cos(2
√
λx)Tl[ξ](x) dx

where Φl(x) = (xjl(x))2 and jl is the spherical Bessel function of order l.

It is straightforward to compute explicit expressions for the operator Tl using
the definition of Sl, hence

T2[f ](x) = −f(x)− 12x

∫ 1

x

f(s)

s2
ds+ 24x3

∫ 1

x

f(s)

s4
ds

T3[f ](x) = f(x)− 24x

∫ 1

x

f(s)

s2
ds+ 120x3

∫ 1

x

f(s)

s4
ds

− 120x5

∫ 1

x

f(s)

s6
ds

T4[f ](x) = −f(x)− 40x

∫ 1

x

f(s)

s2
ds+ 360x3

∫ 1

x

f(s)

s4
ds

− 840x5

∫ 1

x

f(s)

s6
ds+ 560x7

∫ 1

x

f(s)

s8
ds
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Hence in general

Tl[f ](x) = a1f(x) + a2x

∫ 1

x

f(s)

s2
ds+ a3x

3

∫ 1

x

f(s)

s4
ds

+ .......+ al+1x
2l−1

∫ 1

x

f(s)

s2l
ds

where a1 = (−1)l+1 and a2, a3, ....al+1 ∈ R.

Following [6], the second operator we will consider here depends on l, and its
composition with the previous operator Tl will be the interested operator that we will
focus on.

Definition 3.2.2. For each l ≥ 1, define the operator

Pl : L2
R[0, 1]→ TqM

0(p)

by

Pl(w) =
∑
n≥1

〈w, fl,n−1〉hn(x, q)

where {hn} is a basis of TqM
0(p) given by

hn(x, q) =

√
2

2nπ

d

dx

∂λ̃0
n

∂q

=

√
2

2nπ

d

dx
(g0,n(x, q)2)

=
√

2 sin(2nπx) +O(
1

n
)

where g0,n is the normalized eigenfunction of problem (1.8)-(1.7) and

fl,n(x, q) =
√

2 cos 2
√
λl,n(q)x+Rn,l(x, q), n ≥ 1.

where |Rl,n(x, q)| ≤ Cn−1 (see [3] for more details for fl,n).

From Theorem 1.3.2 the leading term of the asymptotic of λl,n is (n+ l
2
)2π2. Thus

when l is even, fl,n has the following asymptotic form

fl,n(x, q) =
√

2 cos(2nπx) +O(1/n)

and when l is odd, fl,n has the following asymptotic form

fl,n(x, q) =
√

2 cos((2n+ 1)πx) +O(1/n)

By recalling the definition of the eigenfunctions which have the spherical Bessel
function as a leading term and using the properties of the operator Tl we have

T ∗l (1) = −1
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T ∗l (fl,n) =
∂λ̃l,n
∂q

= g2
l,n(x, q)− 1, n ≥ 1.

Now we return to our goal which is to define an operator with kernel as an in-
tersection of two tangent spaces, we will consider the composition of Pl in definition
3.2.2 and Tl in definition 3.2.1 as an operator from TqM

0(p) to itself. So for any
ω ∈ TqM0(p) we have,

PlTl(ω) =
∑
n≥1

〈Tlω, fl,n−1〉hn(x, q)

=
∑
n≥1

〈ω, T ∗l fl,n−1〉hn(x, q)

= −〈ω, 1〉h1(x, q) +
∑
n≥2

〈ω, ∂λ̃l,n−1

∂q
〉hn(x, q).

Lemma 3.2.2. For any l > 0, the operator

PlTl : TqM
0(p)→ TqM

0(p)

has the following kernel

ker(PlTl) = TqM
0(p) ∩ TqM l(p).

Proof. Recall from (3.1) the tangent space of M l(p) at any q ∈M l(p) is given by

TqM
l(p) = ker(dqλ

l)

where

dqλ
lω = (〈1, ω〉,

{
〈∂λ̃l,n
∂q

, ω〉
}∞
n=1

).

Thus ω ∈ TqM l(p) if and only if 〈1, ω〉 = 0 and 〈∂λ̃l,n
∂q

, ω〉 = 0 for all n. Hence from

the definition of PlTl and being {hn} is a basis of TqM
0(p) we have ω ∈ ker(PlTl) if

and only if ω ∈ TqM0(p) ∩ TqM l(p).

3.3 A Proof of the Main Theorem (Dimension of the Intersection of Two
Tangent Spaces)

In this section, we will prove Theorem 3.1.3 which says, for any p ∈ L2
R[0, 1] and

l ≥ 1, the intersection of TqM
0(p) and TqM

l(p) is finite dimensional at each fixed
q ∈M0(p) ∩M l(p).

From Lemma 3.2.2, the intersection of TqM
0(p) and TqM

l(p) is the kernel of PlTl,
hence all what we need is to show that the kernel of PlTl has a finite dimension.
Depending on Corollary A3.1, we can show that PlTl is a Fredholm operator by

31



factoring PlTl to a sum of two operators, one of them is Fredholm and the second one
is compact from TqM

0(p) to itself. Recall that

PlTl(ω) =
∑
n≥1

〈Tlω, fl,n−1〉hn(x, q).

So to factor PlTl, we will start by some notes that will help to understand that
factoring

1. Since hn(x, q) =
√

2 sin(2nπx) + O( 1
n
), so we will consider the set {en} =

{
√

2 sin(2nπx)} which is an orthonormal basis for O, the subspace of odd func-

tions in L2
R[0, 1], because it is a set of the eigenfunctions associated to − d2

dx2

with Dirichlet boundary conditions. we will use ‖hn − en‖ = O(1/n).

2. Recall that, in case l is even we have fl,n(x, q) =
√

2 cos(2nπx) + O(1/n).
Thus we will consider the set {Fn} = {

√
2 cos(2nπx)} which is the orthonormal

basis for E , the even space of L2
R[0, 1], because it is the set of the eigenfunc-

tions associated to − d2

dx2
with anti-periodic boundary conditions. Also we have

‖Fn − fn‖ = O(1/n).

3. In case l is odd, fl,n(x, q) =
√

2 cos((2n+1)πx)+O(1/n). Thus we will consider
{Fn(x)} = {cos((2n+1)πx)} which is the orthonormal basis of the odd supspace

O of L2
R[0, 1], because they are the eigenfunctions associated to − d2

dx2
with anti-

periodic boundary conditions also we have ‖Fn − fl,n‖ = O(1/n).

4. For any ω ∈ TqM
0(p), the basis of TqM

0(p) gives us a nice expression for w
explained in the next lemma,

Lemma 3.3.1. For any ω ∈ TqM
0(p) there exists a sequence {bn} ∈ l2 such that

ω =
∑
n≥1

bnhn and ‖ω‖L2 ∼ ‖{bn}‖l2 , which means there are two constants C1, C2 > 0

such that
C2 ‖ω‖L2 < ‖{bn}‖l2 < C1 ‖ω‖L2 .

Proof. Assume ω =
∑
n≥1

bnhn. From Theorem 1.2.3, for any (n,m) ∈ N2 we have

〈an,
d

dx
g2
m〉 =

1

2
δm,n, where an = ψnφn is the product of the two linearly independent

solutions (1.8) evaluated at the nth eigenvalue. Taking the inner product of ω with
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an gives bn = 2〈ω, an〉. Thus

‖{bn}‖2
l2 =

∞∑
n=1

|bn|2

= 4
∞∑
n=1

|〈ω, an〉|2

≤ 4 ‖ω‖2
L2

∞∑
n=1

‖an‖2

<∞

Because from the basic estimates of ψ and φ, there is some constant C1 > 0 such

that ‖an‖ <
C1

n
for each n, and that implies {bn} ∈ l2.

For the second claim, from the definition hn, there is a constant C2 > 0 such that
‖hn‖ < C2 for all n and that implies

‖ω‖2
L2 =

∫ 1

0

∣∣ ∞∑
n=1

bnhn(x)
∣∣2dx

≤
∞∑
n=1

|bn|2
∫ 1

0

|hn(x)|2dx

≤ C2 ‖bn‖2
l2 .

Hence ‖ω‖L2 ∼ ‖{bn}‖l2 .

Now by using all these three notes we can factor PlTl as following, take ω ∈
TqM

0(p), then ω =
∑
n≥1

anhn for some {an} ∈ l2 , so we have

PlTlω =
∞∑

n,m=1

am〈Tlhm, fl,n−1〉hn

=
∞∑

n,m=1

am

(
〈Tlem, Fn−1〉en + 〈Tl(hm − em), fl,n−1〉hn

+ 〈Tlem, fl,n−1 − Fn−1〉hn + 〈Tlem, Fn−1〉(hn − en)

)

= C +
3∑
i=1

I i

where

C =
∞∑

n,m=1

am〈Tlem, Fn−1〉en
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I1 =
∞∑

n,m=1

am〈Tl(hm − em), fl,n−1〉hn

I2 =
∞∑

n,m=1

am〈Tlem, fl,n−1 − Fn−1〉hn

and

I3 =
∞∑

n,m=1

am〈Tlem, Fn−1〉(hn − en)

For the second claim above, we need to show that C is Fredholm and I1, I2 and I3

are compact. At some point the proving that C is a Fredholm operator will depend
on being l is odd or even, so we will start first proving the compactness of I1, I2 and
I3 and then we will prove that C is Fredholm.

Lemma 3.3.2. I1, I2 and I3 are uniform limits of compact operators, so by Lemma
A3.5 they are compact.

Proof. Before we prove the compactness of theses operator, recall that ‖hm − em‖2 =
O(m−2), {Fn} is an orthonormal basis for E,

∑
‖Fn − fl,n‖2 = O(n−2) and by Lemma

3.3.1 for each ω ∈ TqM
0(p) there is {am} ∈ l2 such that ω =

∑
amhm and ‖ω‖ ∼

‖{an}‖l2 .
Now to prove I1 is compact, consider the following sequence of operators

I1
N(ω) =

N∑
n=1

∞∑
m=1

am〈Tl(hm − em), fl,n−1〉hn, N ≥ 1

Each I1
N is a bounded linear operator and has finite rank, so is compact. By using

the Schwarz inequality we have,

∥∥I1 − I1
N(ω)

∥∥2
=

∥∥∥∥∥∑
n>N

∑
m

am〈Tl(hm − em), fl,n−1〉hn

∥∥∥∥∥
2

≤ C
∑
n>N

∣∣∣∣∣∑
m

am〈Tl(hm − em), fl,n−1〉

∣∣∣∣∣
2

≤ C ‖ω‖2
∑
n>N

∑
m

〈Tl(hm − em), fl,n−1〉2
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Note that∑
n>N

∑
m

〈Tl(hm − em), fl,n−1〉2 ≤ 2
∑
n

∑
m

〈Tl(hm − em), Fn−1〉2

+ 2
∑
n

∑
m

〈Tl(hm − em), fl,n−1 − Fn−1〉2

≤ 2
∑
m

‖Tl(hm − em)‖2

+ 2
∑
m

‖Tl(hm − em)‖2
∑
n

‖fl,n−1 − Fn−1‖2

≤ 2 ‖Tl‖2 (∑
m

‖(hm − em)‖2

+
∑
m

‖(hm − em)‖2
∑
n

‖fl,n−1 − Fn−1‖2 )
<∞.

Hence ‖I1 − I1
N(ω)‖2 → 0 as N tends to infinity. Thus I1 is the uniform limit of

compact operators hence it is compact.
Now for I2, for each N ≥ 1 let

I2
N =

N∑
n=1

∞∑
m=1

am〈Tlem, fl,n−1 − Fn−1〉hn.

Each I2
N is bounded and has finite rank, so it is compact. Using the Schwarz

inequality,

∥∥I2 − I2
N(ω)

∥∥2
=

∥∥∥∥∥∑
n>N

∞∑
m=1

am〈Tlem, fl,n−1 − Fn−1〉 hn

∥∥∥∥∥
2

≤ C ‖ω‖2
∑
n>N

∣∣∣〈Tlem, fl,n−1 − Fn−1〉
∣∣∣2

≤ C ‖ω‖2 ‖Tl‖2
∑

n>N−1

‖fl,n − Fn‖2

≤ C ‖ω‖2 ‖Tl‖2
∑

n>N−1

n−2.

So ‖I2 − I2
N(ω)‖2 → 0 as N →∞, hence I2 is compact.

Finally, for I3 we will consider the following sequence

I3
N =

N∑
n=1

∞∑
m=1

am〈Tlem, Fn−1〉(hn − en), N > 1.
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Each I3
N is bounded with finite rank, so it is compact. Using the Schwarz inequality

and {Fn} is orthonormal basis to get,

∥∥I3 − I3
N(ω)

∥∥2
=

∥∥∥∥∥
N∑
n=1

∞∑
m=1

am〈Tlem, Fn−1〉(hn − en)

∥∥∥∥∥
2

≤ C ‖ω‖
∑
n>N

∣∣∣〈Tlem, Fn−1〉
∣∣∣2 ∑
n>N

‖hn − en‖2

≤ C ‖ω‖ ‖Tl‖2
∑
n>N

n−2.

So ‖I3 − I3
N(ω)‖2 → 0 as N →∞ , hence I3 is compact.

Now to get more understanding of C we will write it as a composition of specific
operators, some of these operator will be different in case l is even or odd. So the
first case where l is even we consider the following operators,

1. The projection operator onto the even space E ,

Π : L2
R[0, 1]→ E , Πw =

∑
n≥1

〈w, Fn〉Fn

where Fn(x) =
√

2 cos(2nπx).

2. The operator A : O → O,

Aw =
∑
n≥1

〈T2w, Fn−1〉en

3. The operator S : TqM
0(q)→ O

S
(∑
n≥1

anhn

)
=
∑
n≥1

anen

S−1
(∑
n≥1

anen

)
=
∑
n≥1

anhn

4. The operator H : E → O

H(
∑
n≥1

anFn−1) =
∑
n≥1

anen

So A can be expressed as the composition: A = HΠTl, and C = AS.
In the next lemma we prove that C is Fredholm operator.

Lemma 3.3.3. C is Fredholm operator from TqM
0(p) into O.
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Proof. Since S is invertible, then by Lemma A3.4 we just need to show that A is
Fredholm from O into O. Identify O with L2

R[0, 1/2] by restriction. Taking f ∈
L2
R[0, 1/2],

ΠTlf(x) = 1/2(Tlf(x) + Tlf(1− x))

=
1

2
(Tlf(x)− f(1− x)) +

1

2
(Tlf(1− x) + f(1− x))

= T (f)(x) +K(f)(x)

where Tf(x) = 1
2
(Tlf(x)− f(1− x)) and K(f)(x) = 1

2
(Tlf(1− x) + f(1− x)). Note

that for f ∈ O and n ≥ 1 we have,∫ 1

x

f(s)

s2n
ds =

∫ 1/2

x

f(s)

s2n
ds+

∫ 1

1/2

f(s)

s2n
ds

=

∫ 1/2

x

f(s)

s2n
ds−

∫ 1

1/2

f(1− s)
s2n

ds

=

∫ 1/2

x

f(s)

s2n
ds−

∫ 1/2

0

f(s)

(1− s)2n
ds.

(3.2)

Also ∫ 1

1−x

f(s)

s2n
ds = −

∫ 1

1−x

f(1− s)
s2n

ds

= −
∫ x

0

f(s)

(1− s)2n
ds.

(3.3)

Therefore, for 0 ≤ x ≤ 1/2 we have,

Tf(x) =
1

2
(Tlf(x)− f(1− x))

= 1/2
(
a2x

∫ 1/2

x

f(s)

s2
ds+ a3x

3

∫ 1/2

x

f(s)

s4
ds+ .......+ al+1x

2l−1

∫ 1/2

x

f(s)

s2l
ds

−
(
a2x

∫ 1/2

0

f(s)

(1− s)2
ds+ a3x

3

∫ 1/2

0

f(s)

(1− s)4
ds+ .......+ al+1x

2l−1

∫ 1/2

0

f(s)

(1− s)2l
ds
))

= T̃ (f)(x) +K1(f)(x)

where

T̃ (f)(x) = 1/2
(
a2x

∫ 1/2

x

f(s)

s2
ds+a3x

3

∫ 1/2

x

f(s)

s4
ds+.......+al+1x

2l−1

∫ 1/2

x

f(s)

s2l
ds
)

and

K1(f)(x) = −1/2
(
a2x

∫ 1/2

0

f(s)

(1− s)2
ds+ a3x

3

∫ 1/2

0

f(s)

(1− s)4
ds

+ .......+ al+1x
2l−1

∫ 1/2

0

f(s)

(1− s)2l
ds
)
.
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Also we have

K(f)(x) =
1

2
(Tlf(1− x) + f(1− x))

= 1/2
(
a2(1− x)

∫ 1

1−x

f(s)

s2
ds+ a3(1− x)3

∫ 1

1−x

f(s)

s4
ds

+ .......+ al+1(1− x)2l−1

∫ 1

1−x

f(s)

s2l
ds
)

=− 1/2
(
a2(1− x)

∫ x

0

f(s)

(1− s)2
ds+ a3(1− x)3

∫ x

0

f(s)

(1− s)4
ds

+ .......+ al+1(1− x)2l−1

∫ x

0

f(s)

(1− s)2l
ds
)
.

Hence
ΠT2f(x) = T̃ (f)(x) +K1(f)(x) +K(f)(x)

Note that the integrals in the definition of K1 and K have Hilbert Schmidt Ker-

nels
xf(s)

(1− s)2n
, and

(1− x)f(s)

(1− s)2n
, for each n = 1, 2, 3, ... on [0, 1/2] × [0, 1/2] respec-

tively. Thus by Theorem A3.2, K1 and K are compact operators from L2
R[0, 1/2] to

L2
R[0, 1/2].

If T̃ is Fredholm, then ΠTl is Fredholm. So we need to show that dim(kerT̃ ) <∞ ,

dim(cokerT̃ ) <∞, and RanT̃ is closed.

1) dim(kerT̃ ) <∞ :If f ∈ kerT̃ then

0 =
(
a2x

∫ 1/2

x

f(s)

s2
ds+ a3x

3

∫ 1/2

x

f(s)

s4
ds+ .......+ al+1x

2l−1

∫ 1/2

x

f(s)

s2l
ds
)
.

By differentiating this equation l times we find that f is a solution of the following
system of Euler equation of degree l − 1 with initial conditions,

f (l−1)(x) +
b1

x
f (l−2)(x) +

b2

x2
f (l−3)(x) + ......

bl−1

xl−1
f(x) = 0

f (r)(1/2) = 0, r = 1, 2, ..., l − 1

f(1/2) = 0

where b1, b2, ....., bl−1 ∈ R. The kernel of T̃ is generated by the solutions of this system.
Since this system has a finite number of solutions then dim(kerT̃ ) <∞.

2) dim(cokerT̃ ) <∞ : Note the cokerT̃ is the quotient space L2
R[0, 1/2]/T̃ (L2

R[0, 1/2]) =

L2
R[0, 1/2]/(kerT̃ ∗)⊥, hence to know the dimension of the cokerT̃ we need to know

the kernel of T̃ ∗.

T̃ ∗(f)(x) = 1/2
(a2

x2

∫ x

0

f(s)s ds+
a3

x4

∫ x

0

f(s)s3 ds+ .......+
al+1

x2l

∫ 1/2

x

f(s)s2l−1 ds
)
.
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If f ∈ kerT̃ ∗ then

0 =
a2

x2

∫ x

0

f(s)s ds+
a3

x4

∫ x

0

f(s)s3 ds+ .......+
al+1

x2l

∫ 1/2

x

f(s)s2l−1 ds

Differentiating this equation l times we get that f is a solution of the following
system 

f (l−1)(x) +
c1

x
f (l−2)(x) +

c2

x2
f (l−3)(x) + ......

cl−1

xl−1
f(x) = 0

f (r)(1/2) = 0, r = 1, 2, ..., l − 1

f(1/2) = 0

where c1, c2, ....., cl−1 ∈ R. Similarly this system has a finite number of solutions which
generates the kernel of T̃ ∗. Hence dim(kerT̃ ∗) <∞.

3) ranT̃ = (kerT̃ ∗)⊥ which is a closed subspace of L2
R[0, 1/2] .

Hence T̃ is Fredholm operator on L2
R[0, 1/2], therefore ΠT is the sum of a Fredholm

operator T̃ and two compact operators K1 and K, so it is Fredholm operator from O
to O. Since A = HΠT and C = AS this prove the lemma.

Note that C is a Fredholm operator from TqM
0(p) into O, but what we want to

get is PlTl as a sum of Fredholm and compact operators from TqM
0 into itself. For

that reason we will factor C as following, for ω ∈ TqM0(p) write

Cω =
∑
m,n

am〈Tlem, Fn−1〉hn −
∑
m,n

am〈Tlem, Fn−1〉(hn − en)

= (S−1C +K2)ω.

Since S−1 is invertible from O into TqM
0, then by Lemma A3.3, S−1C is Fred-

holm operator from TqM
0 into itself. Also note that K2 = PlTl − S−1C is a sum of

two operator from TqM
0(p) into itself and it is compact. Therefore PlTl is Fredholm

operator from TqM
0(p) into TqM

0(p).

Now for the case where l is odd, the proof is almost similar to the even case. The
difference will be in the operators that are used to factor C. For showing the operator
C is Fredholm, we will consider the operators A and S are the same as in the even
case, and we will consider the following two operators

1. The projection operator onto the odd space O

Π : L2
R[0, 1]→ O, Πw =

∑
n≥1

〈w, Fn〉Fn

where Fn = cos((2n+ 1)πx).
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2. The operator
H : O → O

H
(∑
n≥1

anFn−1

)
=
∑
n≥1

anen.

So we will get C = AS = HΠTlS. Since S and H are invertible. By Lemma A3.3
and Lemma A3.4 it is enough to show that ΠTl is Fredholm to get C Fredholm from
O to O. Taking f ∈ L2

R[0, 1/2],

ΠTlf(x) = 1/2(Tlf(x)− Tlf(1− x))

=
1

2
(Tlf(x) + f(1− x))− 1

2
(Tlf(1− x)− f(1− x))

= T (f)(x) +K(f)(x)

where Tf(x) = 1
2
(Tlf(x) − f(1 − x)) and K(f)(x) = 1

2
(Tlf(1 − x) + f(1 − x)). By

using equations (3.2) and (3.3) we have

ΠTlf(x) = T̃ (f)(x) +K1(f)(x) +K(f)(x)

where

K1(f)(x) = −1/2
(
a2x

∫ 1/2

0

f(s)

(1− s)2
ds+ a3x

3

∫ 1/2

0

f(s)

(1− s)4
ds

+ .......+ al+1x
2l−1

∫ 1/2

0

f(s)

(1− s)2l
ds
)

and

K(f)(x) = −1

2

(
a2(1− x)

∫ x

0

f(s)

(1− s)2
ds+ a3(1− x)3

∫ x

0

f(s)

(1− s)4
ds

+ .......+ al+1(1− x)2l−1

∫ x

0

f(s)

(1− s)2l
ds
)
.

K1 and K are compact since they are integral operators with Hilbert-Schmidt
kernels. Also, the operator

T̃ (f)(x) = 1/2
(

2f(x)+a2x

∫ 1/2

x

f(s)

s2
ds+a3x

3

∫ 1/2

x

f(s)

s4
ds+.......+al+1x

2l−1

∫ 1/2

x

f(s)

s2l
ds
)

is Fredholm because

1) dim(kerT̃ ) <∞ : If f ∈ kerT̃ then

f(x) =
(
a2x

∫ 1/2

x

f(s)

s2
ds+ a3x

3

∫ 1/2

x

f(s)

s4
ds+ .......+ al+1x

2l−1

∫ 1/2

x

f(s)

s2l
ds
)
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By differentiating this equation l times we find that f is a solution of the following
system of Euler equation of degree l − 1 with initial conditions,

f (l)(x) +
b1

x
f (l−1)(x) +

b2

x2
f (l−2)(x) + ......

bl−1

xl−1
f(x) = 0

f (r)(1/2) = 0, r = 1, 2, ..., l

f(1/2) = 0

where b1, b2, ....., bl−1 ∈ R. Since this system has a finite number of solutions that
generate the kernel of T̃ , then dim(kerT̃ ) <∞.

2) dim(cokerT̃ ) <∞ : Note the cokerT̃ is the quotient space L2
R[0, 1/2]/T̃ (L2

R[0, 1/2]) =

L2
R[0, 1/2]/(kerT̃ ∗)⊥, hence to know the dimension of the cokerT̃ we need to know

the kernel of T̃ ∗.

T̃ ∗(f)(x) = 1/2
(a2

x2

∫ x

0

f(s)s ds+
a3

x4

∫ x

0

f(s)s3 ds+ .......+
al+1

x2l

∫ 1/2

x

f(s)s2l−1 ds
)

If f ∈ kerT̃ ∗ then

f(x) =
a2

x2

∫ x

0

f(s)s ds+
a3

x4

∫ x

0

f(s)s3 ds+ .......+
al+1

x2l

∫ 1/2

x

f(s)s2l−1 ds.

Differentiating this equation l times we get that f is a solution of the following
system 

f (l−1)(x) +
c1

x
f (l−2)(x) +

c2

x2
f (l−3)(x) + ......

cl−1

xl−1
f(x) = 0

f (r)(1/2) = 0, r = 1, 2, ..., l − 1

f(1/2) = 0

where c1, c2, ....., cl−1 ∈ R. Similarly this system has a finite number of solutions, then
dim(kerT̃ ∗) <∞.

3) ranT̃ = (kerT̃ ∗)⊥ which is a closed subspace of L2[0, 1/2].
Thus ΠT is a Fredholm operator and as a consequence C is Fredholm. Ending of

the proof is exactly as the even case.

In the next Chapter we will try to explain how the result of Theorem 3.1.3 could
lead to the uniqueness of the radial potential by considering a finite number of angular
momenta.
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Chapter 4 Some Geometric Properties of the Isospectral Set

4.1 Introduction

By Theorem 3.1.2, we know that for p ∈ L2
R[0, 1] and each l ≥ 1, dim(M l(p)) is

infinite. Also at any point q ∈ M l(p) we have that dim(TqM
l(p)) is infinite. These

fact imply that the set of eigenvalues corresponding to a single angular momentum
is not enough date to show the uniqueness. In Theorem 1.1.6, Carlson and Shubin
showed that dim(TpM

l1(p) ∩ TpM l2(p)) < ∞ for any angular momunta l1, l2 such
that l1 + l2 = 1 mod 2. Also in the previous chapter, we proved Theorem 3.1.3
which says that for p ∈ L2

R[0, 1] and each l ≥ 1, the dimension of TqM
0(p)∩ TqM l(p)

is finite at each q ∈ M0(p) ∩M l(p). In this chapter we will try to figure out how
the finite dimension of the intersection of tangent spaces leads to the uniqueness of
the potential. We will define the sequence of angular momenta that q shares their
eigenvalues with p by

l1(q) = 0 < l2(q) < ...... < li(q) < .....

The reason for being l1(q) is the zero angular momentum to guarantee that

dim
( k⋂
i=1

TqM
li(p)

)
<∞ for any k > 1

where li(q) is the ith angular momentum. Also we will define a sequence of the
dimensions of the finite intersection of the tangent spaces as following

d2(q), d3(q), d4(q), ..., dk(q), ....

where

dk(q) = dim
( k⋂
i=1

TqM
li(p)

)
.

Since
⋂k+1
i=1 TqM

li(p) ⊂
⋂k
i=1 TqM

li(p), then {dk(q)}k≥1 is a decreasing sequence
of natural numbers that is bounded below by zero. Hence this sequence converges to
some constant c ≥ 0. The interesting question here, if we assume that c = 0, that is
there is some k0 such that dk(q) = 0 for all k > k0, then can we prove the uniqueness
by using the eigenvalues that corresponds to l1(q), l2(q), ..., lk0(q)?

Before we start discuss this problem, we will give a brief overview for some prop-
erties of the isospectral set. Some of these properties were proven for each l ≥ 0 and
some of them were proven for l = 0. In the next section we will prove them for l > 0.

4.2 Overview of Some Important Properties of the Isospectral Set of
Potential p ∈ L2

R[0, 1]

The first property is illustrated in Theorem 3.1.2. It was proven by Pöschel, and
Trubowitz in [1] for l = 0 and by Serier in [3] for l ≥ 1. It depends on analyzing the
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following map
λl × κl : L2

R[0, 1]→ R× l2 × l21

λl × κl(q) =
(

[q], {λ̃l,n(q)}n≥1, {κl,n(q)}n≥1

)
where κl,n is defined by the terminal velocity of each eigenfunction corresponding to
angular momentum l

κl,n(q) = ln

∣∣∣∣∣ψ′l,n(1, q)

u′(0, q)

∣∣∣∣∣
and λ̃l,n is the last term in the asymptotic of the nth eigenvalue (1.14).

Theorem 4.2.1. For any angular momentum l, κl is a real analytic map on L2
R[0, 1].

It is derivative is given by

dqκ
l(ν) =

({
〈∂κl,n
∂q

, ν〉
}
n≥1

)
where

∂κl,n
∂q

= −ψl,n(t, q)φl,n(t, q) +
∂λl,n
∂q

∫ 1

0

ψl,n(s, q)φl,n(s, q)

and has the following estimate

∂κl,n
∂q

(t) =
1

ωl,n
jl(ωl,nt)ηl,n(ωl,nt) +O(

1

n2
).

From Theorem 3.1.1 and 4.2.1 we have,

Theorem 4.2.2. λl× κl is a real analytic map on L2
R(0, 1). Its derivative is given by

dq(λ
l × κl)(v) =

(
〈1, v〉,

{
〈∂λ̃l,n
∂q

, v〉
}
n≥1

,
{
〈∂κl,n
∂q

, v〉
}
n≥1

)
.

Before describing M l(p) in details, we will set some notations that will be used
later. For any angular momentum l, set

Ul,0 = 1

Ul,n = g2
l,n − 1 n ≥ 1,

and

Vl,n = 2
d

dx
g2
l,n n ≥ 1,

where gl,n is the nth normalized eigenfunction. These vectors depend on x and q.
Also for any η ∈ R× l2 and ζ ∈ l22 we will write,

Ul,η =
∑
n≥0

ηnUl,n
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and
Vl,ζ =

∑
n≥0

ζnVl,n

By Theorem 1.2.3,
{
Ul,η : η ∈ R× l2

}
and

{
Vl,ζ : ζ ∈ l22

}
are perpendicular. By

analyzing λl, Theorem 3.1.2 illustrates that M l(p) is a real analytic submanifold of
L2
R[0, 1] of infinite dimension and co-dimension lying in the hyperplane of all functions

with mean value

∫ 1

0

p(t)dt with the tangent space given by

TqM
l(p) = span{Vl,ζ : ζ ∈ l22}

and the normal space given by

NqM
l(p) = span{Ul,η : η ∈ R× l2}.

Theorem 4.2.3. For any angular momentum l and p ∈ L2
R[0, 1], κl is a global coor-

dinate system on M(p). Its derivative dqκ
l is an isomorphism between TqM

l(p) and
Tκ(q)l

2
1 ' l21, which is given by

dqκ
l(Vl,ζ) = ζ.

The value of Vl,ζ by dqκ
l followes from Theorem 1.2.3. Notice that every tangent

vector at q ∈M l(p) is of the form

Vl,ζ =
∑
n≥0

ζnVl,n

with uniquely determined coefficients ζ = (ζ1, ζ2, ....) ∈ l21. Since Vl,n depend on q
then these coefficients uniquely determine a tangent vector at every point in M l(p)
by the same expression. Hence every tangent vector Vl,ζ at a given point determines
a vector field on M(p), which we denote by the same symbol. By these vector fields
we will define the exponential map expq for any q ∈M(p). But first we will introduce
the solutions curve.

Definition 4.2.1. For any q ∈M l(p) and vector field Vl,ζ , a curve

Φt
l(q) = Φt

l(q, Vl,ζ), a < t < b

on M l(p) is called a solution curve of the vector field Vl,ζ with initial value q, if

d

dt
Φt
l(q) = Vl,ζ(Φ

t
l(q)) a < t < b

and Φ0
l (q) = q.

From Theorem 4.2.3, the vector field Vl,ζ is the constant vector field ζ in the κl

coordinate system on M l(p). Hence, any solution curve in this coordinate system is
a straight line, so we have

κl(Φt
l(q, Vl,ζ)) = C + tζ.
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Since Φ0
l (q) = q, then

κl(Φt
l(q, Vl,ζ)) = κl(q) + tζ.

From this equation we can get an expression for Φt
l(q, Vl,ζ) by taking (kl)−1 for

both sides but that can be done if we know that κl(q) + tζ is inside the open set
κl(M l(p)). Thus in the next steps we will see that Φt

l(q, Vl,ζ) is defined for all time t
and that implies unbounded property of M l(p).

Lemma 4.2.1. For n ≥ 1 and angular momentum l,

〈q, Vl,n〉 = 4δl,n(q)sinh(κl,n(q)).

where

δl,n(q) =
(−1)n

ψ̇l,n(1, λl,n)

Proof. Using the differential equation (1.8) and the boundary conditions we get,

〈q, d
dx
g2
l,n〉 =

∫ 1

0

2qgl,ng
′
l,ndx

=

∫ 1

0

2(g′′l,n + λl,ngl,n)g′l,ndx

=

∫ 1

0

d

dx
((g′l,n)2 + λl,ng

2
l,n)dx

= (g′l,n)2
∣∣∣1
0

=
(ψ′(x, λl,n, q))

2

(ψ̇(1, λl,n, q))(ψ′(1, λl,n, q))

∣∣∣1
0

=
1

ψ̇(1, λl,n, q)

(
ψ′(1, λl,n, q)−

1

ψ′(1, λl,n, q)

)
Hence, by using the definition of κl,n and the identity 2sinh(x) = ex− e−x we get,

〈q, Vl,n〉 = 2〈q, d
dx
g2
l,n〉

=
2(−1)n

ψ̇(1, λl,n, q)
(eκl,n − e−κl,n)

= 4δl,n(q)sinh(κl,n(q)).

Lemma 4.2.2.∥∥Φt
l(q, Vl,ζ)

∥∥2
= ‖q‖2 + 8

∑
n≥1

∫ t

0

ζnδl,n(Φt
l(q))sinh(κl,n(q) + tζn).
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Proof. Set Φt
l(q, Vl,ζ) = Φt

l(q), we have

1

2

d

ds
‖Φs

l (q)‖
2 =

1

2

d

ds

∫ 1

0

(Φs
l (q))

2(x)dx

=

∫ 1

0

Φs
l (q)(x)

d

ds
Φs
l (q)(x)dx

At s = 0 we have Φ0
l (q) = q and d

ds
Φs
l (q)(x)

∣∣
s=0

= Vl,ζ(q) =
∑
n≥1

ζnVl,n(q). Hence by

Lemma 4.2.1, we get

1

2

d

ds
‖Φs

l (q)‖
2 =

∑
n≥1

ζn

∫ 1

0

q(x)Vl,n(q, x)dx

=
∑
n≥1

4ζnδl,n(q)sinh(κl,n(q))

For the derivative at time t 6= 0, replace q in the last expression by Φt(q) and use the
fact that Φs+t

l (q) = Φs
l (Φ

t
l(q)).Thus we have

1

2

d

ds

∥∥Φt
l(q)
∥∥2

=
1

2

d

ds

∥∥Φs
l (Φ

t
l(q))

∥∥2

∣∣∣∣∣
s=0

=
∑
n≥1

4ζnδl,n(Φt
l(q))sinh(κl,n(Φt

l(q)))

=
∑
n≥1

4ζnδl,n(Φt
l(q))sinh(κl,n(q) + tζn)

The right hand side converges uniformly on bounded intervals of time because

ζnδl,n(Φt
l(q))sinh(κl,n(q) + tζn) = O(ζnδl,n(Φt

l(q))(κl,n(q) + tζn))

= O(δl,n(Φt
l(q))(ζnκl,n(q) + tζ2

n))

for bounded t and ζ ∈ l21. Thus we can integrate under the summation sign to get,

∥∥Φt
l(q, Vl,ζ)

∥∥2 − ‖q‖2 =

∫ t

0

d

ds
‖Φs

l (q)‖
2 ds

= 8
∑
n≥1

∫ t

0

ζnδl,n(Φs
l (q))sinh(κl,n(q) + sζn)ds.

Recall that δl,n(q) =
(−1)n

ψ̇(1, λl,n, q)
. In case l = 0, by Theorem 1.2.6 we have

ψ̇(1, λ0,n, q) =
−1

(nπ)2

∏
m6=n

λ0,m − λ0,n

(mπ)2
.
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Notice that ψ̇ is the same function for all q in the same isospectral set. Hence
δ0,n(q) = δ0,n(Φt(q)) since q and Φt

l(q) belongs to the same isospectral set. Also
δ0,n(q) = δ0,n are constant for each n. Thus

∥∥Φt
0(q, V0,ζ)

∥∥2 − ‖q‖2 =

∫ t

0

d

ds
‖Φs

0(q)‖2 ds

= 8
∑
n≥1

δ0,n

∫ t

0

ζnsinh(κ0,n(q) + sζn)ds

= 8
∑
n≥1

δ0,n(cosh(κ0,n(q) + tζn)− cosh(κ0,n(q))).

Theorem 4.2.4. For every q ∈M l(p) and every ζ ∈ l21, the solution curve Φt
l(q, Vl,ζ)

exists for all time.

Proof. Fix q in M l(p) and ζ ∈ l21.To prove the this theorem need to show that the
stright line κl(q) + tζ is in the open set κl(M l(p)) for all t. Assume that there is some
t so that κl(q) + tζ is not in κl(M l(p)), hence there is a t∗ such that kl(q) + t∗ζ is on
the boundary of κl(M l(p)) while the segment κl(q) + tζ , 0, t, t∗ is in its interior. By
Lemma 4.2.2

sup
0<t<t∗

∥∥Φt
l(q)
∥∥ <∞.

Thus we can choose a sequence tn converging to t∗ from below such that Φtn converges
weakly to some point q∗ in M l(p) with

κ(q∗) = κl(q) + t∗ζ.

Since κl,n is compact functions on L2
R[0, 1]. That implies κl(q)+ t∗ζ lies in the interior

of κl(M). That is a contradiction.

Now we can define the exponential map on TqM
l(p) by the solution curve with

initial value q as following,

Definition 4.2.2. For any q ∈M l(p), the exponential map at q

explq : TqM
l(p)→M(p)

is defined by
explq(Vζ) = Φ1

l (q, Vζ)

Theorem 4.2.5. For all q ∈ M l(p), the exponential map explq is a real analytic
isomorphism between TqM

l(p) ' l21 and M l(p). It satisfies

κl(expq(Vζ)) = κ(q) + ζ.

Hence M l(p) is connected and simply connected.
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Proof. To prove that the exponential map is an isomorphism map, we will define the
translated map

(explq)
−1 : M l(p)→ TqM

l(p)

(explq)
−1(q̃) = κl(q̃)− κl(q)

which is a real analytic isomorphism between M l(p) and l21 by Theorem 4.2.3. For
one direction we have,

(explq)
−1(explq)(Vζ) = (explq)

−1(Φ1(q, Vζ))

= κl(Φ1(q, Vζ)− κl(q)
= κl(q) + ζ − κl(q) = ζ.

For the second direction,

explq((exp
l
q)
−1)(q̃) = explq(κ

l(q̃)− κl(q))

= explq
(∑
n≥1

η̃nVl,n(q)−
∑
n≥1

ηnVl,n(q)
)

= explq(Vη̃−η)

= Φ1(q, Vη̃−η).

Notice that,

κl(Φ1(q, Vη̃−η)) = κl(q) + η̃ − η
= κl(q) + κl(r)− κl(q)
= κl(r)

which implies Φ1(q, Vη̃−η) = r by Theorem 4.2.3. The identity

κl(expq(Vζ)) = κ(q) + ζ

follows from the definition of explq and the value of κl(Φ1
l (q, Vζ)).

4.3 Uniqueness of the Potential by Using a Finite Number of Angular
Momentum

In this section we will try to prove the uniqueness of the potential by using the
geometric properties of the isospectral sets and the finite dimension of the intersection
of the tangent spaces. From Theorem 4.2.5 we have that M l(p) is simply connected
for each l which implies that M l(p) is path connected. In case we have that a finite
intersection of isospectral sets ∩ki=1M

ni(p) are path connected, then with assuming
some conditions on the dimension of the intersection of the tangent spaces at each
point q ∈ ∩ki=1M

ni(p) we get the following result.

Theorem 4.3.1. let p ∈ L2
R[0, 1] and a finite sequence of angular momentum

l1 = 0 < l2 < l3 < ..... < lk

for some k ∈ N such that
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• ∩ki=1M
li(p) is simply connected

• dim ∩ki=1 TqM
li(p) = 0 for all q ∈ ∩ki=1M

li(p)

Then ∩ki=1M
li(p) = {p}.

Proof. Let q ∈ ∩ki=1M
li(p). Since ∩ki=1M

li(p) is simply connected then there is a path

δ : [a, b]→ ∩ki=1M
li(p)

such that δ(a) = q and δ(b) = p. Note that δ([a, b]) ⊂ M li(p) for all i = 1, 2, .., k.

Thus
dδ

dt
(to) = vt0 ∈ ∩ki=1Tδ(t0)M

li(p) for all t0 ∈ [a, b]. Since dim(∩ki=1Tδ(t0)M
li) = 0

for all δ(t0) ∈ ∩ki=1M
li(p) then vt0 = 0 for all t0. Hence δ is a constant path which

means q = δ(a) = δ(b) = p.

In Theorem 4.3.1 we set some assumptions on the intersections of the isospectral
sets and the dimension of the intersection of the tangent spaces to the isospectral
sets at each points to prove the uniqueness. If we can prove these assumption then
the theorem will be more stronger and include all applications. Hence in the next
chapter we will write these assumptions as open problems. Also we will list all others
conjectures for the inverse eigenvalue problem for the Schrödinger equation on the
unit ball of R3 that were raised when we worked in this research. Some of these
conjectures we worked on but we could not get results.
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Chapter 5 Open Problems

Starting with Pöschel and Trubowitz result, in case the angular momentum l = 0, they
proved the uniqueness of two even potentials p, q ∈ L2

R[0, 1] that share the same eigen-
values. The proof of this result depends on the fact that ψq0,n(x) = (−1)n+1ψq0,n(1−x)
for any even potential q. That is, ψq0,n(1−x) is also an eigenfunction for q, and satisfies

− d2

dx2
ψq0,n(1− x) + q(x)ψq0,n(1− x) = λψq0,n(1− x), x ∈ (0, 1).

In case l > 0, this fact can not be proved because the last part of the Sturm-Lioville
operator

H l
q = − d2

dx2
+ q +

l(l + 1)

x2

which is l(l+1)
x2

does not have the symmetric property. In the second chapter of this
dissertation, we use the Pöschel and Trubowitz method to prove Theorem 2.4.3 which
says that in case l = 0, if two potentials p, q ∈ L2

R[0, 1] have even extended potentials
p̃, q̃ ∈ L2

R[−1, 1] sharing the same eigenvalues then p = q. In the extended problem,
the even potentials are with respect to 0, i.e. q̃(x) = q̃(−x). One of our attempt is
trying to generalize the result of Theorem 2.4.3 for any angular momentum l > 0.
Because by the extended domain, the last part of H l

q satisfies l(l+1)
x2

= l(l+1)
(−x)2

. From this

point we conjectured that for l > 0, the function ψ̃ql,n(−x) may be a solution of the
extended problem. But the main problem we faced that the extended eigenfunctions
are not defined at x = 0. Because the singular part l(l+1)

x2
. It may there is another

way to define the extended eigenfunctions to get the desired result, so the next open
problem is

Problem: For l > 0 and p, q ∈ L2
R[0, 1], let p̃ and q̃ in L2

R[−1, 1] be the even
extended potentials of p and q respectively. Can we prove that p = q by assuming
that p̃ and q̃ share the same eigenvalues of the extended problem?

In chapter four, the main result, Theorem 3.1.3. It says that for any l > 0 and
p ∈ L2

R[0, 1], the dim(TqM
0(p) ∩ TqM l(p)) <∞ at each fixed q ∈ M0(p) ∩M l(p). In

this theorem we fixed the first angular momentum to be the zero angular momentum
and we vary the second one l > 0. The proof depends on showing that the operator

PlTl : TqM
0(p)→ TqM

0(p)

is a Fredholm operator with kernel ker(PlTl) = TqM
0(p) ∩ TqM l(p). Our work is

similar to Shubin’s work in [6]. She proved this result for l1 = 0 and l2 = 1. Carlson
and Shubin [7], by using a different method, proved this result in case the isospectral
sets corresponding to two different angular momentum l1 and l2 such that l1 + l2 =
1 mod 2. Thus, the open problem we thought about is

Problem: For l1 and l2 such that l1 + l2 = 0 mod 2, can one prove the same
result. Can we construct a Fredholm operator with kernel TqM

l1(p) ∩ TqM l2(p) to
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get that dim(TqM
l1(p)∩TqM l2(p)) <∞ ? Can the maps Pl1Tl1 and Pl2Tl2 be helpful

to create that map?

In chapter five, we focused in the geometric properties of the isospectral sets and
tried to see how these properties lead to the uniqueness. We tried to show how the
finite dimension of the intersection of tangent spaces could give a finite dimention
of the intersection of the isospectral sets for finitely many angular momentum. We
build Theorem 4.3.1 based on some assumptions. We considered l = l1, l2, ..., lk to
be all angular momentum where q and p share their eigenvalues. We assumed that
∩ki=1M

li(p) is simply connected to get the path connected property. By Theorem
4.2.5, M l(p) is simply connected for any l. That also implies that M l(p) is path
connected. So the next open problem is

Problem: Can we show that ∩ki=1M
li(p), for k > 1, is simply connected or path

connected ?
In Theorem 4.2.5 we proved that the exponential map explq is an isomorphism

between TqM
l(p) and M l(p) for each q ∈ M l(p) and each l. Hence it may useful to

involve the exponential maps to create a path connected between any two distinct
points in ∩ki=1M

li(p).

The second assumption in Theorem 4.3.1 is dim ∩ki=1 TqM
li(p) = 0 for all point

q ∈ ∩ki=1M
li(p). By Theorem 4.2.3, we know that dqκ

l is an isomorphism between
TqM

l(p) and Tκ(q)l
2
1 ' l21 for each l ≥ 0. Thus Tq1M

l(p) and Tq2M
l(p) are isomorphic

for each q1, q2 ∈ ∩ki=1M
li(p). If this isomorphic relation could give any idea about the

dimension of the intersection of tangent spaces at two distinct points q1 and q2. Thus
the next open problems related to these assumptions is,

Problem: For two different potentials q1, q2 ∈ ∩ki=1M
li(p), can we show that

dim ∩ki=1 Tq1M
li(p) = dim ∩ki=1 Tq2M

li(p)?

The last open problem we would like to mention here is related to the main
question of this dissertation: Does σ(Hq) = σ(Hp) lead to q = p? Recall that σ(Hq) =
∪∞l=0σ(H l

q), hence proving the uniqueness by assuming the potential q and p share
eigenvalues associated to a finite number of angular momentum leads to answer this
question. By working in this idea and focusing in each angular momenta we notice
some results could be helpful to answer the main question.Thus, first we will discuss
this result in the next section, then we will form the related open problem for these
result.

5.1 Results Related to Each Angular Momentum

We will start by assuming that two potentials p and q share the same sequence
of eigenvalues

{
λl,n
}∞
n=1

corresponding to a fixed angular momentum l. From the
equation (1.8), we get,∫ 1

0

(p(x)− q(x)) ψpl,n(x) ψql,n(x) dx = 0, for each n,
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where ψpl,n and ψql,n are the eigenfunctions of λl,n for p and q respectively. Since our
goal is to show the equality between p and q and we have the inner product between
p − q and ψpl,n ψql,n is equal zero for each n, then Showing this set

{
ψpl,n ψql,n

}∞
n=0

is a basis for L2
R[0, 1] leads to the desired result. Notice that if for a single angular

momentum l this set
{
ψpl,n ψ

q
l,n

}∞
n=0

is a basis then the isospectral set M l(q) will have a
zero dimension and that is contradiction to the result proven by Carlson about infinite
dimension of M l(q) for any q ∈ L2[0, 1]. Hence our conjecture for this problem is if
we consider a finite number of angular momenta l1, l2, ...lm, such that q and p share
their eigenvalues, then we may get that ∪mi=1

{
ψpli,n ψ

q
li,n

}∞
n=0

is a basis.
Since the zero potential has a nice eigenfunction with well known eigenvalues, we

will begin by fixing p to be the zero potential. Recall that the eigenfunctions of the
zero potential are given by Spherical Bessel functions

ψ0
l,n(x) = u(x, λl,n) =

x

ωl+1
l,n

jl(xωl,n)

where ω =
√
λ. Thus by the boundary conditions, if λl,n is an eigenvalues for 0 then

it is a solution of jl(ωl,n) = 0. Hence ωl,n ' (n + l
2
)π. Let q be a potential sharing

the eigenvalues with zero potential, then the eigenfunction of λl,n for q is

ψql,n(x) = ψ0
l,n(x) +Kl,n(x, q)

where Kl,n(x, q) =

∫ x

0

G(x, t, λl,n) q(t) ψql,n(t) dt. Hence

ψ0
l,n(x)ψql,n(x) = (ψ0

l,n)2(x) + ψ0
l,n(x)Kl,n(x, q).

Since q shares the eigenvalues with the zero potential then∫ 1

0

q(x)dx = 0

by Corollary 1.3.1. Combining this fact with∫ 1

0

q(x) ψ0
l,n(x) ψql,n(x) dx = 0, for each n,

we get,∫ 1

0

q(x)
{

1− 2(nπ)2(ψ0
l,n)2(x) +−2(nπ)2ψ0

l,n(x)Kl,n(x, q)
}
dx = 0, for each n,

(5.1)
In case l = 0, 1− 2(nπ)2(ψ0

0,n)2(x) = cos(2nπx), so the integral (5.1) becomes,∫ 1

0

q(x)
{

cos(2nπx) − 2(nπ)2ψ0
0,n(x)K0,n(x, q)

}
dx = 0, for each n.

For l ≥ 1, we will use the following property of the operator Tl which is given in
the definition 3.2.1∫ 1

0

(2Φl(
√
λx)− 1)ξ(x) dx =

∫ 1

0

cos(2
√
λx)Tl[ξ](x) dx

52



where Φl(
√
λx) = x2j2

l (
√
λx) for any ξ ∈ L2

R[0, 1] to get∫ 1

0

q(x)
{

2ω2l+2
l,n (ψ0

l,n)2(x)− 1 + 2ω2l+2
l,n ψ0

l,n(x)Kl,n(x, q)
}
dx =∫ 1

0

Tl[q(x)]{cos(2n+ l)πx) + K̃l,n(q, x)}dx

where T ∗l [K̃l,n(x, q)] = 2ω2l+2
l,n ψ0

l,n(x)Kl,n(x, q). Hence (5.1) becomes∫ 1

0

Tl[q(x)]{cos(2n+ l)πx) + K̃l,n(q, x)}dx = 0

5.1.1 Conjecture for the Case l1 = 0 and l2 = 1

If we consider the angular momenta l1 = 0 and l2 = 1 then we have the following
system,

∫ 1

0

q(x)
{

cos(2nπx) + 2(nπ)2ψ0
0,n(x)K0,n(x, q)

}
dx = 0, for each n.

∫ 1

0

T1[q(x)]{cos(2n+ 1)πx) + K̃1,n(q, x)}dx = 0 for each n

The second part of each integral has the following estimate of

|2(nπ)2ψ0
0,n(x)K0,n(x, q)| = O(

1

n
)

|K̃1,n(q, x)| = O(
1

n
)

For this monument, we will ignore the error parts and prove the following theorem

Theorem 5.1.1. For q ∈ L2
R[0, 1], if we have

∫ 1

0

q(x) cos(2nπx) dx = 0, for each n

∫ 1

0

T1[q](x) cos((2n+ 1)πx) dx = 0 for each n

then q = 0.

Proof. Since {cos(nπx)}n≥1 is an orthonormal basis of L2[0, 1], then from the first
integral we can say that q is an odd function which we will denote by q = qO. So now,
we have ∫ 1

0

T1[qO](x) cos((2n+ 1)πx) dx = 0 for each n
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which implies that the odd part of T1[qO] is zero. By using the definition of T1

T1[qO] = qO + 4x

∫ 1

x

qO(s)

s2
ds

we get

0 =
1

2

(
T1[qO](x)− T1[qO](1− x)

)
=

1

2

(
2qO(x)− 4x

∫ 1

x

qO(s)

s2
ds+ 4(1− x)

∫ 1

1−x

qO(s)

s2
ds
)

Since qO is odd then ∫ 1

1−x

qO(s)

s2
ds = −

∫ x

0

qO(s)

(1− s)2
ds

Hence,

qO(x) = 2x

∫ 1

x

qO(s)

s2
ds+ 2(1− x)

∫ x

0

qO(s)

(1− s)2
ds

Because these integrals in the form of qO are absolute continuous, then we can
take the derivative of qO to get

q
′

O(x) = 2

∫ 1

x

qO(s)

s2
ds− 2

∫ x

0

qO(s)

(1− s)2
ds− 2

qO(x)

x
+ 2

qO(x)

(1− x)
a.e

Since also these integrals in the form of q
′
o are absolute continuous then we can

take the derivative to get

(1− x)xq
′′

O(x)− (4x− 2)q
′

O = 0 a.e

Hence,
(

(1−x)2x2q
′
O

)′
= 0. Integration from 0 to x with using lim

x→0
(1−x)2x2qO(x) =

0 to get
(1− x)2x2q

′

O(x) = 0

Thus q
′
O(x) = 0 almost everywhere, hence qO is constant. Since qO is a constant

and odd function, then qO is zero.

Now return back to the main problem which contains the error parts. we have
this sysytem

∫ 1

0

q(x)
{

cos(2nπx) + 2(nπ)2ψ0
0,n(x)K0,n(x, q)

}
dx = 0, for each n.

∫ 1

0

T1[q(x)]{cos(2n+ 1)πx) + K̃1,n(q, x)}dx = 0 for each n
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If we can show that E = {cos(2nπx) + 2(nπ)2ψ0
0,n(x)K0,n(x, q)

}
n≥1

is a basis of

the subspace of the even functions of L2
R[0, 1] and O = {cos(2n+1)πx)+K̃1,n(q, x)}n≥1

is a basis of the subspace of the odd functions of L2
R[0, 1] then by the process as above

we will get q = 0. One of our attempt for this case is trying to use the following
results related to complete sets of Hilbert spaces,

Definition 5.1.1. A sequence of vectors {ψn}n≥1 in an infinite dimensional Hilbert
space H is said to be a basis for H if to each vector u ∈ H there is a unique sequence
{µn}n≥1 of complex numbers such that

u =
∑
n≥1

µnψn

Corollary 5.1.1. Let {φn}n≥1 be a complete orthonormal family in H and {ψn}n≥1

be a sequence of nonzero vectors of H. Then∑
n≥1

‖φn − ψn‖ < 1

is a sufficient condition for {ψn}n≥1 to be a basis.

Corollary 5.1.2. Let {φn}n≥1 be a complete orthonormal family in H. Suppose
{ψn}n≥1 is another sequence of vectors in H that either spans or is linearly indepen-
dent. If, in addition ∑

n≥1

‖φn − ψn‖2 <∞ (5.2)

then {ψn}n≥1 is a basis of H. Moreover, the map

u→ (〈u, ψn〉)n≥1

is a linear isomerism between H and l2.

First we tried to apply Corollary 1.1, by considering {φn}n≥1 = {cos(nπx)}n≥1

and {ψn}n≥1 = E ∪O. From Theorems 1.2.1 and 1.2.4 we have,

‖φn − ψn‖ =
∥∥2(nπ)2ψ0

0,n(x)K0,n(x, q)
∥∥ ≤ 1

n
e‖q‖

in case ψn ∈ E and

‖φn − ψn‖ =
∥∥∥K̃1,n(q, x)

∥∥∥ ≤ 1

n
eC‖q‖

in case ψn ∈ O. Since ‖φn − ψn‖ depends on the norm of q, then applying Corollary
5.1.1 will give a condition on the norm of q to guarantee that {ψn}n≥1 is a basis.
But the problem here is the asymptotic of these terms which is ‖φn − ψn‖ = O( 1

n
).

Hence the sum over n of theses terms gives diverges series. Another way to handle
this problem we consider is to apply Corollary 5.1.2, where the sum here will be for
these terms

‖φn − ψn‖2 = O(
1

n2
)
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That is good since these squared summable, but the basic problem in applying
this corollary is to show that {ψn}n≥1 = E ∪ O is linearly independent sets or spans
of L2

R[0, 1], which is difficult since these two sets depends on different two angular
moment. In 1946, Borg [13] proved that for l = 0 and p, q ∈ E , this set {ψq0,nψ

p
0,n −

1}n≥1 is linearly independent. Then by using Corollary 5.1.2 and∫ 1

0

(p(x)− q(x)) (ψp0,n(x) ψq0,n(x)− 1) dx = 0, for each n,

he proved p = q. So the open problem for this part is
Problem: For l = 0, 1 can we show that E and O are a basis of the subspace of

the even functions and odd functions respectively?

5.1.2 Conjecture for the Case l1 > 0 and l2 = l1 + 1

Now let’s consider two different angular momentum l1, l2 such that l2 = l1 + 1. From
Definition 3.2.1 we have Tl2 = Sl2Tl1 . Assuming q shares the eigenvalues associated
with l1 and l2 with the zero potential, and using the properties of Tl1 and Tl2 (3.2.1)
leads to the following system,

(∗)



∫ 1

0

Tl1 [q](x){cos(2(n+
l1
2

)πx) + K̃l1,n(q, x)}dx = 0 for each n

∫ 1

0

Sl2 [Tl1 [q]](x){cos(2(n+
l2
2

)πx) + K̃l2,n(q, x)}dx = 0 for each n

Consider the two following sets Al1 = {cos(2(n + l1
2

)πx) + K̃l1,n(q, x)}n≥1 and

Al2 = {cos(2(n + l2
2

)πx) + K̃l2,n(q, x)}n≥1. If l1 is even, Al1 and Al2 are perturbation
sets of {cos(2nπx)}n≥1 and {cos(2(n + 1)πx)}n≥1 respectively. So by ignoring the

error parts K̃l1,n and K̃l2,n, the first integral in (∗) tells that Tl1 [q] is odd. Then from
the second integral we will get that the odd part of Sl2 [Tl1 [q]] is zero. So we have the
following equation,

1

2

{
Sl2 [Tl1 [q]](x)− Sl2 [Tl1 [q]](1− x)

}
= 0 (5.3)

So our conjecture is solving (5.3) for Tl1 [q] giving Tl1 [q] = 0. Since Tl1 is a one to
one map then q = 0. Hence for the main problem without ignoring the error parts,
showing that Al1 and Al2 are bases for the subspace of the even and odd functions
could lead to q = 0. Similarly if l1 is odd, showing that Al1 and Al2 are base for the
subspace of the odd and even functions could lead to the same result. So the last
open problem is,

Problem: For l1 and l2 = l1 + 1, in case l1 is even can we show that Al1 and Al2
are bases for the subspace of the even and odd functions of L2

R[0, 1] ? In case l1 is
odd can we show that Al1 and Al2 are bases for the subspace of the odd and even
functions of L2

R[0, 1]?
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Appendix

A1 Spherical Bessel Functions

A1.1 Series Forms of Spherical Bessel functions

1- The fist spherical Bessel function of order l is jl:

xjl(x) =

√
xπ

2
Jl+1/2(x)

=

√
xπ

2

∞∑
s=0

(−1)s

s!Γ(s+ l + 3
2
)

(x
2

)2s+l+ 1
2

=
(x

2

)l+1√
π

1

Γ(l + 3
2
)

∞∑
s=0

(−1)s

s!(l + 3
2
)s

(x
2

)2s

Since Γ(l + 3/2) =
√
π

(2l + 1)!!

2l
then we have

xjl(x) =
(x

2

)l+1 2l

(2l + 1)!!

∞∑
s=0

(−1)s

s!(l + 3
2
)s

(x
2

)2s
(4)

2- The second spherical Bessel function of order l:

ηl(x) = (−1)l+1j−l−1(x)

Hence

xηl(x) =

√
xπ

2

∞∑
s=0

(−1)s

s!Γ(s− l + 1
2
)

(x
2

)2s−l− 1
2

=
(2

x

)l√
π
∞∑
s=0

(−1)s

s!Γ(s− l + 1
2
)

(x
2

)2s−l− 1
2

Since Γ(s− l + (1
2
)) = Γ(1

2
− l)(1

2
− l)s =

√
π(−2)l

(2l−1)!!
(1

2
− l)s we have

xηl(x) =
(2

x

)l (2l − 1)!!

(−2)l

∞∑
s=0

(−1)s

s!(1
2
− l)s

(x
2

)2s
(5)

A1.2 Trigonometric Polynomial Forms of Spherical Bessel functions

1- The trigonometric polynomial form of xjl(x) and xηl(x) are given by

xjl(x) = sin(x− lπ

2
)Pl(

1

x
) + cos(x− lπ

2
)Il(

1

x
) (6)
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and

xηl(x) = cos(x− lπ

2
)Pl(

1

x
)− sin(x− lπ

2
)Il(

1

x
) (7)

where

Pl(x) =

[l/2]∑
s=0

(−1)s(l + 2s)!

(2s)!(l − 2s)!
(

1

2x
)2s and Il(x) =

[l/2]∑
s=0

(−1)s(l + 2s+ 1)!

(2s+ 1)!(l − 2s− 1)!
(

1

2x
)2s

For any x, t ∈ C, we define Now we will define G̃(x, t, λ) = xjl(ωx)tη(ωt) −
tjl(ωt)xη(ωx) where ω =

√
λ. In the next

A1.3 Upper Bound of Spherical Bessel Functions

For any x ∈ C there is a constant Cl depending on l such that

|xjl(x)| ≤ Cle
|Imx|

( |x|
1 + |x|

)l+1

(8)

|xηl(x)| ≤ Cle
|Imx|

(1 + |x|
|x|

)l
(9)

Also for any x, t such that 0 ≤ t ≤ x ≤ 1, there is C such that

|G̃(x, t, λ)| ≤ C
( |ω|x

1 + |ω|x

)l+1(1 + |ω|t
|ω|t

)l
(10)

and for each x ≤ t ≤ 1

|G̃(x, t, λ)| ≤ C
(1 + |ω|x
|ω|x

)l( |ω|t
1 + |ω|t

)l+1

(11)

To verify (8) and (9), we will use the trigonometric forms in case |x| > 1, and the
series forms in case |x| ≤ 1.

In case |x| > 1, we have

1 ≤ e|Imx| = e|Imx|
(1 + |x|

1 + |x|

)l+1

≤ e|Imx|2l+1
( |x|

1 + |x|

)l+1

Hence from (6)

|xjl(x)| ≤ e|Imx|
( |x|

1 + |x|

)l+1

2l+1

(
|Pl(

1

x
)|+ |Il(

1

x
)|

)

≤ e|Imx|
( |x|

1 + |x|

)l+1

2l+1

(
[l/2]∑
s=0

(l + 2s)!

(2s)!(l − 2s)!
(
1

2
)2s +

[l/2]∑
s=0

(l + 2s+ 1)!

(2s+ 1)!(l − 2s− 1)!
(
1

2
)2s

)
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Thus

|xjl(x)| ≤ Cjle
|Imx|

( |x|
1 + |x|

)l+1

.

where

Cjl = 2l+1

(
[l/2]∑
s=0

(l + 2s)!

(2s)!(l − 2s)!
(
1

2
)2s +

[l/2]∑
s=0

(l + 2s+ 1)!

(2s+ 1)!(l − 2s− 1)!
(
1

2
)2s

)

In case |x| ≤ 1, notice that 2l+1 > (1 + |x|)l+1. Hence from (4) we have

|xjl(x)| ≤
( |x|

1 + |x|

)l+1 2l

(2l + 1)!!

∞∑
s=0

1

s!(l + 3
2
)s

(1

2

)2s

≤ e|Imx|
( |x|

1 + |x|

)l+1 2l

(2l + 1)!!

∞∑
s=0

1

2s

Since (2l + 1)!! > 2l for each l > 0 then 2l

(2l+1)!!
< 1 also

∑∞
s=0

1

2s
= 1 then we have

|xjl(x)| ≤ e|Imx|
( |x|

1 + |x|

)l+1

Hence For any x ∈ C we have

|xjl(x)| ≤ Cjle
|Imx|

( |x|
1 + |x|

)l+1

(12)

Now for the estimate in (9)

In case |x| > 1, we have |x|l < (1 + |x|)l hence 1 <
(1 + |x|)l

|x|l
, then from (7)

|xηl(x)| ≤ e|Imx|
(1 + |x|
|x|

)l(
|Pl(

1

x
)|+ |Il(

1

x
)|

)

≤ e|Imx|
(1 + |x|
|x|

)l+1
(

[l/2]∑
s=0

(l + 2s)!

(2s)!(l − 2s)!
(
1

2
)2s +

[l/2]∑
s=0

(l + 2s+ 1)!

(2s+ 1)!(l − 2s− 1)!
(
1

2
)2s

)

Hence,

|xηl(x)| ≤ Cηle
|Imx|

(1 + |x|
|x|

)l
(13)

where

Cηl =

(
[l/2]∑
s=0

(l + 2s)!

(2s)!(l − 2s)!
(
1

2
)2s +

[l/2]∑
s=0

(l + 2s+ 1)!

(2s+ 1)!(l − 2s− 1)!
(
1

2
)2s

)
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In case |x| ≤ 1, Since 1l < (1 + |x|)l, then from (5) we have

|xηl(x)| ≤
(1 + |x|
|x|

)l
2l

(2l − 1)!!

(−2)l

∞∑
s=0

1

s!(1
2
− l)s

(1

2

)2s

≤
(1 + |x|
|x|

)l
(2l − 1)!!

∞∑
s=0

1

2s

≤ e|Imx|
(1 + |x|
|x|

)l
(2l − 1)!!

Hence,

|xηl(x)| ≤ C̃ηle
|Imx|

(1 + |x|
|x|

)l
(14)

where C̃ηl = (2l − 1)!! . By taking Cl = max{Cjl , Cηl , C̃ηl}, we prove (8) and (9).

Now for the estimate of G̃, from (8) and (9) we have

|G̃(x, t, λ)| ≤ C2
l

{( |ω|x
1 + |ω|x

)l+1(1 + |ω|t
|ω|t

)l
+
( |ω|t

1 + |ω|t

)l+1(1 + |ω|x
|ω|x

)l}

≤ C2
l

( |ω|x
1 + |ω|x

)l+1(1 + |ω|t
|ω|t

)l{
1 +

( |ω|t
1 + |ω|t

)2l+1(1 + |ω|x
|ω|x

)2l+1
}

In case |ω|x ≤ 1, the we will use (1 + |ω|x)2l+1 ≤ 22l+1 to get

|G̃(x, t, λ)| ≤ C2
l

( |ω|x
1 + |ω|x

)l+1(1 + |ω|t
|ω|t

)l{
1 + 22l+1

}

≤ 22l+2Cl

( |ω|x
1 + |ω|x

)l+1(1 + |ω|t
|ω|t

)l
In case |ω|x ≥ 1, we will use (6) and (7) to find an estimate for G̃:

G̃(x, t, λ) =
(
Pl(ωx)Pl(ωt) + Il(ωx)Il(ωt)

)
sin(ω(x− t))

−
(
Pl(ωx)Il(ωt) + Il(ωx)(Pl(ωt)

)
cos(ω(x− t))

If |ω|t ≥ 1 and we have |ω|x ≥ 1 then |Pl(ωx)| ≤ C1,|Pl(ωt)| ≤ C1,Il(ωx) ≤ C2

and Il(ωt) ≤ C2

C1 =

[l/2]∑
s=0

(l + 2s)!

(2s)!(l − 2s)!
(
1

2
)2s and C2 =

[l/2]∑
s=0

(l + 2s+ 1)!

(2s+ 1)!(l − 2s− 1)!
(
1

2
)2s

.

By considering C1,2 = max{C2
1 , C

2
2 , C1C2}, 1 =

(1 + |ω|x
1 + |ω|x

)l+1

≤ 2l+1
( |ω|x

1 + |ω|x

)l+1

and 1 ≤
(1 + |ω|t
|ω|t

)l
, we will get

|G̃(x, t, λ)| ≤ 2l+1C1,2

( |ω|x
1 + |ω|x

)l+1(1 + |ω|t
|ω|t

)l
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Last case when |ω|x ≥ 1 and |ω|t ≤ 1 we have

|Pl(ωt)| ≤
C1

|ωt|l
≤ C1

(1 + |ω|t
|ω|t

)l
|Il(ωt)| ≤

C2

|ωt|l
≤ C2

(1 + |ω|t
|ω|t

)l
and 1 ≤ 2l+1

( |ω|x
1 + |ω|x

)l+1

. Thus

|G̃(x, t, λ)| ≤ 2l+1C1,2

( |ω|x
1 + |ω|x

)l+1(1 + |ω|t
|ω|t

)l
Hence for any λ ∈ C and 0 ≤ t ≤ x ≤ 1 we have,

|G̃(x, t, λ)| ≤ C
( |ω|x

1 + |ω|x

)l+1(1 + |ω|t
|ω|t

)l
where

C = max{2l+1C1,2, 2
2l+2Cl}. (15)

For more interested information of Spherical Bessel functions and their estimate,
see [15], [17], and [18].

A2 Infinite Product

Lemma A2.1. Suppose amn,m, n > 1 , are complex numbers satisfying

|amn| = O
( 1

|m2 − n2|

)
, m 6= n

then ∏
m 6=n
m≥1

(1 + amn) = 1 +O
( log n

n

)
, n ≥ 1,

Lemma A2.2. Suppose zm = (mπ
2

)2 +O(1) then,

•
∞∏
m≥1

zm − λ(mπ
2

)2
is an entire function of λ with roots zm, m ≥ 1

•
∞∏
m≥1

zm − λ(mπ
2

)2
=

sin(2
√
λ)

2
√
λ

(
1 +O

( log n

n

))
Proof.
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• Note that zm − (mπ
2

)2 is uniform bounded, so we have here

∑
m≥1

zm − λ(mπ
2

)2
− 1 =

∑
m≥1

zm −
(mπ

2

)2 − λ(mπ
2

)2

converges uniformly on bounded subsets of C, therefore
∞∏
m≥1

zm − λ(mπ
2

)2
converges

to an entire function of λ and its roots zm, m ≥ 1.

• Note that
sin(2

√
λ)

2
√
λ

=
∞∏
m≥1

(mπ)2 − 4λ(
mπ)2

=
∞∏
m≥1

(mπ
2

)2 − λ(mπ
2

)2

Hence
∞∏
m≥1

zm − λ(mπ
2

)2
÷ sin(2

√
λ)

2
√
λ

=
∞∏
m≥1

zm − λ(mπ
2

)2 − λ
.

On the circle |λ| = (n
2

+ 1
2
)2π2 the uniform estimates given by

zm − λ(mπ
2

)2 − λ
=

{
1 +O( 1

n
) m = n

1 +O
(

1
|m2−n2|

)
m 6= n

Hence
∞∏
m≥1

zm − λ(mπ
2

)2 − λ
=

zn − λ(nπ
2

)2 − λ

∞∏
m 6=n

zm − λ(mπ
2

)2 − λ

=
(

1 +O(
1

n
)
)(

1 +O
( log n

n

))
= 1 +O

( log n

n

)
The last line follow from lemma A2.1.

Lemma A2.3. suppose zm,m ≥ 1, is a sequence of a complex numbers such that

zm =
m2π2

4
+O(1) then for each n ≥ 1

∏
m6=n
m≥1

zm − λ
m2π2

is an entire function of λ such that∏
m6=n
m≥1

zm − λ
(
mπ

2
)2

=
1

2
(−1)n+1

(
1 +

( log n

n

))
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uniformly for λ = n2π2 +O(1).

Lemma A2.4. If |z − nπ| ≥ π
4

for all integers n, then

e|Imz| < 4| sin z|.

Proof. Write z = x + iy with real x and y. since | sin z| is even and periodic with
period π, it is suffices to prove the lemma for 0 ≤ x ≤ π/2 and |z| ≥ π/4.
we have

| sin z|2 = cosh2y − cos2 x

For π/6 ≤ x ≤ π/2,

cos2 x ≤ 3

4
≤ 3

4
cosh2y

for all real y. For 0 ≤ x ≤ π/6, the assumption |z| ≥ π/4 implies y2 ≥
(π/4)2 − x2 ≥ 5

144
≥ 1

3
and hence

cosh2y ≥ 1 + y2 ≥ 4

3
≥ 4

3
cos2 x

as before. Thus, in both cases we have

| sin z|2 ≥ 1

4
cosh2y >

1

16
e2|y|

and the result follows.

Definition A2.1. (Regular Value )
Let f : A → F be a continuously differentiable map from an open subset A of a
Banach space E into another Banach space F . A point c ∈ F is a regular value of f ,
if for every point x in the level set

Mc = {x ∈ A : f(x) = c}

there exists a splitting E = Eh
⊕

Ev, such that dxf |Ev, the restriction of dxf to Ev
is a linear isomorphism between Ev and F.

Theorem A2.1. (Regular Value Theorem)
Suppose f : A→ F is a real analytic map from an open subset A of a Banach space
E into another Banach space F. If c ∈ F is a regular value of f, then

Mc = {x ∈ A : f(x) = c}

is a real analytic submanifold of E. Moreover,

TxMc = ker(dxf)

at every point x ∈Mc. For the proof of this theorem see [1].
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A3 Fredholm and Compact Operators

Definition A3.1. Let X and Y be Banach spaces, and let F : X → Y be a bounded
linear operator. F is said to be Fredholm operator if the following hold,

• ker(F ) is finite dimensional,

• coker(F ) is finite dimensional,

• ran(F ) is closed.

Lemma A3.1. Let X, Y, and Z be Banach spaces. If F : X → Y and S : Y → Z be
two linear operators such that dim(kerF ) <∞ and S invertible, then dim(kerSF ) <
∞.

Proof. Since S is ivertiable then kerS = {0}. let f ∈ KerSF then

SF (f) = 0 ⇐⇒ F (f) = 0 ⇐⇒ f ∈ kerF

hence kerSF = kerF which proves the claim.

Lemma A3.2. Let X, Y, and Z be Banach spaces. If S : X → Y and F : Y → Z be
two linear operators such that dim(kerF ) <∞ and S invertible, then dim(kerFS) <
∞.

Proof. Since S is invertible then there is a linear operator S−1 such that SS−1(Y ) = Y
and S−1S(X) = X. Assume kerF = span{f1, f2, ..., fn}. Let f ∈ kerFS then
FS(f) = 0. Since S−1(Y ) = X and f ∈ X then there is g ∈ Y such that S−1(g) = f .
Thus 0 = FS(f) = FSS−1(g) = F (g) which implies that g ∈ kerF . Hence g =∑n

i=1 aifi, therefore f =
∑n

i=1 aiS
−1(fi) so f ∈ span{S−1(f1), S−1(f2)...., S−1fn}.

Thus dimker(FS) ≤ n.

Lemma A3.3. Let X, Y, and Z be Banach spaces. If F : X → Y and S : Y → Z be
two linear operators such that F is a Fredholm operator and S is invertible, then SF
is Fredholm.

Proof. SF is Fredholm operator if dimker(SF ) < ∞, dimcoker(SF ) < ∞ and
Ran(SF ) is closed. Lemma A3.1 shows the ker(SF ) has a finite dimension. For
the second condition, note that

coker(SF ) = Z/SF (Y ) = Z/(ker(SF )∗)⊥

Hence dimcoker(SF ) = dim(ker(SF )∗) = dim(ker(F ∗S∗))
Note that F is Fredholm then dimker(F ∗) = dimcoker(F ) <∞, also S is invertible
which implies S∗ is invertible. Hence by lemma A3.2 we have dimcoker(SF ) =
dim(ker(F ∗S∗)) <∞.
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For the last condition, Let {fn}∞n=1 ∈ Ran(SF ) be a convergent sequence to f ∈ Z,
we need to show that f ∈ Ran(SF ). Note that for each n there is gn ∈ X such that
SF (gn) = fn. since S−1 is invertible then S−1(fn) = F (gn) is convergent to some
point ω in the range of F because Ran(F ) is closed. ω = F (g) for some g ∈ X. Since
S is invertible then SF (gn) converges to SF (g) and since the limit is unique then
SF (g) = f hence f ∈ Ran(SF ).

Lemma A3.4. Let X, Y, and Z be Banach spaces. If S : X → Y and F : Y → Z be
two linear operators such that F is a Fredholm operator and S is invertible, then FS
is Fredholm.

Proof. Similar to the proof of Lemma A3.3 .

Theorem A3.1. (Atkinson)
For a bounded operator F : X → Y between Banach spaces the following statements
are equivalent.

(1) F is Fredholm operator.

(2) There exist compact operators K1 from X to itself and K2 from Y to itself and a
bounded operator S from X to Y such that SF = IX −K1 and FS = IY −K2.

(3) There exist compact operators K1 from X to itself and K2 from Y to itself and
a bounded operator S1 and S2 from X to Y such that such that S1F = IX −K1

and FS2 = IY −K2.

Corollary A3.1. If F : X → Y is a Fredholm operator, then for each compact
operator K : X → Y the operator F +K is also Fredholm.

Proof. Since F is Fredholm then by Lemma A3.1 there exist compact operators K1

from X to itself and K2 from Y to itself and a bounded operator S1 and S2 from X
to Y such that such that S1F = IX −K1 and FS2 = IY −K2. It follows that
S1(F +K) = IX − (K1 − S1K) and (F +K)S2 = IY − (K2 −KS2).
Since the operators K1−S1K and K2−KS2 are compact and that implies by Lemma
A3.1 F +K is a Fredholm operator.

For more properties of Fredholm operators see [9].

Definition A3.2. (Compact operator)
Let H be a Hilbert space. A linear operator T on H is compact, if it maps weekly
converging sequences into strongly converging sequences. Equivalently, a compact
operator T maps bounded subsets into relatively compact subset of H.

Lemma A3.5. The uniform limit of compact operators is compact.
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Proof. Let T be the uniform limit of compact operators Tn. Let xm be a weakly
converging sequence, and let x be its weak limit. Then, by the Principle of uniform
boundedness,

‖x‖ ≤ sup
m
‖xm‖ ≤M <∞

hence

‖Txm − Tx‖ ≤ ‖Txm − Tnxn‖+ ‖Tnxm − Tnx‖+ ‖Tnx− Tx‖
≤ ‖T − Tn‖M + ‖Tnxm − Tnx‖+ ‖T − Tn‖M

The first and third terms can be made small by choosing n sufficiently large. Then
the middle term can be made equally small by choosing m sufficiently large, since all
Tn are compact. It fallows that

‖Txm − Tx‖ → 0

as m tends to infinity. That is, Txn converge strongly to Tx. Thus, T is compact.

Definition A3.3. (Hilbert Schmidt Kernel )
Let Ω be an open and connected set in n−dimensional Euclidean space Rn, a Hilbert–Schmidt
kernel is a function k : Ω× Ω→ C with∫

Ω

∫
Ω

|k(x, y)|2 dx dy <∞.

Theorem A3.2. Let T be an integral operator on L2[0, 1] given by

T (f)(x) =

∫ 1

0

∫ 1

0

k(x, y)f(y) dx dy

where K ∈ L2([0, 1]× [0, 1]) is a Hilbert Schmidt kernel.Then T is a compact operator.

Proof. Let {en(x)} be an orthonormal basis of L2[0, 1], then {en(x)em(y)} is an or-
thonormal basis of L2[0, 1]. Thus

k(x, y) =
∞∑

m,n=1

kn,men(x)em(y)

where

kn,m =

∫ 1

0

∫ 1

0

k(x, y)en(x)em(y) dx dy.

Define

TN(f)(x) =

∫ 1

0

kN(x, y)f(y)dy.

66



where

kN(x, y) =
N∑
n=1

∞∑
m=1

kn,men(x)em(y)

Note that the range of TN is generated by {e1, e2, ...., en}, so TN is bounded and
has a finite rank, so it is compact.

Note that

‖Tf − TNf‖2 =

∥∥∥∥∫ 1

0

(k(x, y)− kN(x, y)f(y) dy

∥∥∥∥2

=

∫ 1

0

(∫ 1

0

(k(x, y)− kN(x, y)f(y) dy
)2

dx

≤ ‖f‖2

∫ 1

0

∫ 1

0

|k(x, y)− kN(x, y)|2 dy dx

= ‖f‖2
∞∑

n=1+N

∞∑
m=1

|kn,m|2

since
∞∑

n=1+N

∞∑
m=1

|kn,m|2 ≤ ‖k‖2 <∞

Hence as N → ∞, ‖Tf − TNf‖2 → 0. Thus T is the uniform limit of compact
operators, hence it is compact by previous lemma A3.5.
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Notation Index

The following is a list of symbols used in this dissertation

R3 n-dimensional real Euclidean space

R 1-dimensional real Euclidean

C field of complex numbers

L2
C[0, 1] the Hilbert space of all complex-valued square-integrable functions on [0, 1]

L2
R[0, 1] the Hilbert space of all real-valued square-integrable functions on [0, 1]

E supspace of the even functions of L2
R[0, 1] with respect to x = 1/2

O supspace of the odd functions of L2
R[0, 1] with respect to x = 1/2

l2 the Hilbert space of all real real sequences (α1, α2, ...) such that
∑

n≥1 α
2
n is

finite

l2k the Hilbert space of all real real sequences (α1, α2, ...) such that
∑

n≥1(nkαn)2

is finite for k > 0

σ(H) set of the eigenvalues of the operator H

jl Spherical Bessel function of the first type of order l.

ηl Spherical Bessel function of the second type of order l.

ḟ derivative of the function f with respect to λ

f ′ derivative of the function f with respect to x

dxf derivative of a map f between two Banach spaces at a point x

[f, g] the Wronskin of any two differentiable functions f and g

68



Bibliography
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