UK | d : University of Kentucky
b nowe ge UKnowledge

Theses and Dissertations--Mathematics Mathematics

2019

BOUNDING THE NUMBER OF COMPATIBLE SIMPLICES IN
HIGHER DIMENSIONAL TOURNAMENTS

Karthik Chandrasekhar

University of Kentucky, ak.c@uky.edu
Digital Object Identifier: https://doi.org/10.13023/etd.2019.203

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation

Chandrasekhar, Karthik, "BOUNDING THE NUMBER OF COMPATIBLE SIMPLICES IN HIGHER
DIMENSIONAL TOURNAMENTS" (2019). Theses and Dissertations—-Mathematics. 63.
https://uknowledge.uky.edu/math_etds/63

This Doctoral Dissertation is brought to you for free and open access by the Mathematics at UKnowledge. It has been
accepted for inclusion in Theses and Dissertations--Mathematics by an authorized administrator of UKnowledge. For
more information, please contact UKnowledge@Isv.uky.edu.


http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/math_etds
https://uknowledge.uky.edu/math
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT:

| represent that my thesis or dissertation and abstract are my original work. Proper attribution
has been given to all outside sources. | understand that | am solely responsible for obtaining
any needed copyright permissions. | have obtained needed written permission statement(s)
from the owner(s) of each third-party copyrighted matter to be included in my work, allowing
electronic distribution (if such use is not permitted by the fair use doctrine) which will be
submitted to UKnowledge as Additional File.

| hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and
royalty-free license to archive and make accessible my work in whole or in part in all forms of
media, now or hereafter known. | agree that the document mentioned above may be made
available immediately for worldwide access unless an embargo applies.

| retain all other ownership rights to the copyright of my work. | also retain the right to use in
future works (such as articles or books) all or part of my work. | understand that | am free to
register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on
behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of
the program; we verify that this is the final, approved version of the student’s thesis including all
changes required by the advisory committee. The undersigned agree to abide by the statements
above.

Karthik Chandrasekhar, Student
Dr. Richard Ehrenborg, Major Professor

Dr. Peter Hislop, Director of Graduate Studies



BOUNDING THE NUMBER OF COMPATIBLE SIMPLICES IN HIGHER
DIMENSIONAL TOURNAMENTS

DISSERTATION

A dissertation submitted in partial

fulfillment of the requirements for

the degree of Doctor of Philosophy

in the College of Arts and Sciences
at the University of Kentucky

By
Karthik Chandrasekhar
Lexington, Kentucky

Director: Dr. Richard Ehrenborg, Professor of Mathematics
Lexington, Kentucky

2019

Copyright© Karthik Chandrasekhar 2019



ABSTRACT OF DISSERTATION

BOUNDING THE NUMBER OF COMPATIBLE SIMPLICES IN HIGHER
DIMENSIONAL TOURNAMENTS

A tournament graph G is a vertex set V of size n, together with a directed edge set
E C V x V such that (i,j) € E if and only if (j, i) ¢ E for all distincti,j € V and
(i,i) € E for all i € V. We explore the following generalization: For a fixed k we
orient every k-subset of V by assigning it an orientation. That is, every facet of the
(k —1)-skeleton of the (n — 1)-dimensional simplex on V is given an orientation. In
this dissertation we bound the number of compatible k-simplices, that is we bound
the number of k-simplices such that its (k — 1)-faces with the already-specified
orientation form an oriented boundary. We prove lower and upper bounds for all
k > 3. For k = 3 these bounds agree when the number of vertices n is g or g + 1
where g is a prime power congruent to 3 modulo 4. We also prove some lower
bounds for values k > 3 and analyze the asymptotic behavior.
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Chapter 1 The number-theoretic and asymptotic views

1.1 Orientations

For a set X of cardinality n define A¥(X) to be the set of all k-tuples of distinct
elements from the set X, that is,

AK(X) = {(x1,x2,...,x) € X* ¢ x; A xjfor1 <i<j<k}.

An orientation s of the set AF(X) is a function s : A¥(X) — {1, —1} such that for all
permutations 7t € & we have s(X (1), Xz(2), - -+ Xr(k)) = (=1)7 - s(x1,x2,..., x%),
where (—1)" denotes the sign of the permutation 77. We view (x1, X, ..., Xx) as an
oriented (k — 1)-dimensional simplex in the (k — 1)-dimensional skeleton of the
(n — 1)-dimensional simplex with vertex set X.

The notion of an orientation of A?(X) is equivalent to the notion of a tourna-
ment T on the complete graph on the vertex set X. That is, given s(x,y) = 1,
we orient the edge (x,y) to be the directed edge x — y. Szele [23] Equation (28)]
proved that for a tournament T on n vertices the number of directed 3-cycles is
bounded above by

(1.1.1)

(n+1)-n-(n—1)/24 ifnisodd,
(n+2)-n-(n—2)/24 ifniseven.

See also Clark in the paper by Gale [7, Theorem 4]. For more background, see [14,
Section 5]. Furthermore, this bound is sharp, that is for every n there are tourna-
ments that reach this upper bound.

The notion of directed 3-cycles in a tournament can be reformulated as an ori-
ented triangle (x1, x2, x3) such that the induced orientation of its boundary agrees
with the tournament, that is, s(x1,x2) = 1, s(x1,x3) = —1 and s(xp, x3) = 1. This
notion is inspired by the oriented simplices in the definition of simplicial homol-
ogy; see [15] Section 5]. Hence we naturally extend it to higher dimensions. Thus
given an orientation s of AF(X), a k-dimensional simplex {x1, xy, ..., Xx,1} is com-
patible with the orientation s if

(=1)" - s(xq,x2, ., Xy e v Xq) = (—1)]-s(x1,x2,...,3?},. e Xka1)
for1 <i < j < k+1. In other words, the signs of the sequence s(x1,xy,...,Xk),
s(x1,X2, .+, Xk_1, Xk41), S(X1, X2, .+, Xk_2, Xk, Xks1), - - - S(X2, X3, ..., Xk 1) alternate.

Given k > 3 and a set X of cardinality n, it is natural to ask for an upper
bound on the number of oriented k-dimensional simplices whose oriented bound-
ary agrees with the orientation of A¥(X). In this chapter, we give such an upper
bound. Furthermore, we show when k = 3 that this bound is sharp when 7 or
n — 1is a prime power g congruent to 3 modulo 4.



1.2 The upper bound

In order to prove the upper bound, we introduce the notion of a witness. Given
an orientation s of AX (X), we call a subfacet G = {x1,x2,...,xx_1} of a simplex
F = {x1,x2,..., X1} a witness if s(x1,x2, ..., Xp_1,Xk) = s(X1, %2, .-+, Xp_1, Xk11)-
That is, the subfacet G is a witness if the orientation of the two facets G U {x;} and
G U {xt, 1} implies that F is not compatible with the orientation s.

Lemma 1.2.1. Given a k-dimensional simplex F = {x1,xp,...,Xxs1} C X, the number
of subfacets of F that are witnesses is of the forma - (k+1—a) for0 <i <k+1.

Proof. Let F = {x1,x2,...,Xk41}. Divide up the k + 1 facets of F into two subsets
according to

AT = {H{x, 20,0, X, oo x50} 0 s(x, X0, 00, Xy, Xpgq) = (—1)k+1_i},

A ={{x1,x0, .. Xiy Xt os(x, X0, T X)) = —(=1)F),

and let a be the cardinality of A™. If 2 = 0 or 2 = k + 1 the simplex F matches
the orientation s. In these two cases, there are no witnesses. In the remaining
cases, 1 < a < k, note that the set A™ forms a (k — 1)-ball on the boundary of the
simplex. Similarly, A~ forms the complementary ball, that is, the boundary of A
is the boundary of A~. Note that subfacets in JA™ = dA~ are the witnesses. Since

each two facets of F intersect in subfacet, we have a - (k + 1 — a) witnesses, since
|At|=aand |[A"|=k+1—a. O

Geometrically, the set of witnesses can be seen as the boundary of the projection
of a k-simplex onto a hyperplane. For instance, when k = 3 this boundary is either
a triangle or a quadrilateral, demonstrating the values 3 - 1 and 2 - 2, respectively.

Corollary 1.2.2. Given a k-dimensional simplex F = {x1,x2,...,x541} C X, the num-
ber of subfacets of F that are witnesses is bounded above by |(k+1)/2| - [(k+1)/2].

Theorem 1.2.3. Let X be a set of cardinality n. An upper bound for the number of com-
patible k-dimensional simplices for any orientation of A*(X) is given by

() (“"z‘“H”"z‘“J'V‘M),(kn )

k+1 [(k+1)/2] - [(k+1)/2] 1

Proof. Given an orientation s of A¥(X), let M be the number of k-dimensional sim-
plices that are not compatible with the orientation s. For 0 < a < |(k+1)/2] let



N, be the number of simplices which has a - (k + 1 — a) witnesses. A lower bound
for M is obtained as follows:

k+1 k+1 Sl k+1 k+1

e R

%]
> Y a-(k+1—a)-N,

a=0
= ) number of witnesses of F

X
Fe(iiq)

X . .
= Z HFE (k—|—1> : G1saw1tnessforF}‘. (1.2.1)

Ge(k)_(1)

Given a subfacet G = {x1,xp,...,x_1} € X, divide the n — k + 1 elements of
X — G into two classes according to

YT ={yeX-G : s(x,x2,...,%_1,y) =1},
Y_:{yEX—G . S(X1,XZ,...,Xk71,y):—1}.

Then a face F that has G as a witness is constructed as the union G U {y, z} where
the two distinct elements y and z are both from YT or are both from Y. That is,
we have the inequality

HFE( X ) : GisawitnessforF}‘
k+1
(YN (]
2 2
_ (n—k+1 n _
= ("3 -
n—k+1 n—k+1 n—k+1
()] e
Now combining the two inequalities and we obtain
<(nfk+1) _ V_kHJ ) [n—k+1D
M > 2 2 2 ( n )
— (k+1)/2] - [(k+1)/2] k—1

Since the number of simplices that are compatible with the orientation s is given
by (;41) — M, we obtain the desired lower bound. O

Corollary 1.2.4. Let X be a set of cardinality n. An upper bound for the number of
oriented 3-dimensional simplices whose boundary agrees with an orientation of A3(X) is
given by
n?-(n—1)-(n—2)/96] if n even,
|(n+1)-n-(n—1)-(n—3)/96] ifnodd.



The upper bound in Corollary is not always sharp. When n = 6 it yields
an upper bound of 7, whereas the next lemma shows that 6 is an upper bound.
Later on, we will give a construction showing that 6 is sharp.

Lemma 1.2.5. Let X be a set of cardinality n and assume n > k + 2. Then the number of
compatible k-simplices for an orientation of A¥(X) is at most

2 ()
n—k—1

Proof. We begin to prove this upper bound for the case n = k + 2 where the upper
bound is 2. Without loss of generality we assume that {xq,xp,..., X, Xx41} and
{x1,%2,..., X, X102} are two compatible simplices. Hence we have

k—i+1 S(

s(xl,...,a?i,...,xk,xkﬂ) = (—1) xl,xz,...,xk) = s(xl,...,a?i,...,xk,xk+2).

This implies that G = {x1,...,Xj_1,Xj+1,..., Xk} is a witness that G U {xy,1, X¢12}
is not a compatible simplex, just leaving us with two compatibles simplices.

Now assume 7 > k 4 3 and let s be an orientation of A¥(X). Consider p, the
number of pairs (F, Z) where F is a compatible k-simplex to the orientation s and Z
isa (k+2)-element set such that F C Z C X. By first choosing Z in () ways, and
then picking a compatible k-simplex F C Z in at most 2 ways by the previous argu-
ment, we obtain p < 2- (kiz)' However, since a compatible k-simplex is contained
in exactly n — k — 1 (k + 2)-element sets, we have that the number of compatible
simplices is bounded above by p/(n —k —1) <2-([l,)/(n —k—1). O

1.3 A polynomial lower bound

We now give a lower bound for the maximal possible number of compatible sim-
plices. We begin by first weakening the conditions of an orientation. A partial
orientation s of the set A¥(X) is a function s : A¥(X) — {0,1, —1} such that for all
permutations 7t € &; we have s(X (1), Xz(2), - -+, Xn(k)) = (=1)7 - s(x1,x2,. .., x¢).
We view the (k — 1)-dimensional faces that get assigned the value 0 as not yet being
assigned an orientation. Furthermore, a k-dimensional simplex {x1,xp, ..., Xky1}
is compatible with the partial orientation s if

(1) - s(x1, %200, iy xpg1) = (1) s(x1, %2000, B, Xp) # 0

for1 <i<j<k+1.



Let X be the set {1,2,...,n} and define two partial orientations «y and x; by
the following, where x = (x1,xp,...,Xk):

1 if xy Zxp # -+ #Z xy mod 2,

ko(x) = (1) ifxg ZExp # - £ X =Xip1 Z Xjiano - Zxemod 2, (1.3.1)
0 otherwise,
(1 ifl=x1 Zxp £+ % xpymod 2,

(—1)i ifOExl %XZ 5_'5 %xizxiﬂ ;7éx,-+2 §_é ;7ékaod2,
-1 if0=x1 Zxp -+ % x, mod 2,
L0 otherwise.

(1.3.2)
We begin by studying the case when k is even.

Lemma 1.3.1. For k even, the number of k-simplices that are compatible with the partial
orientation xq in equation (1.3.1)) is given by

2 ((ni_:ﬁ/z) ifn =0mod 2,
(D 72) (O D2) gy — 1 mod 2

This function is a quasi-polynomial of period 2 in the variable n where the leading term is
nk L/ 2k (k+1)).

Proof. Note that a simplex {y; < y2 < -+ < Y41} is compatible with the par-
tial orientation xg if and only if the parities of y1,y>, ..., yx1 alternate. Thus the
k-simplex {y1 < y2 < -+ < Y1} is compatible with xj if and only if all the
differences y» — y1,¥3 — Y2, ..., Yk+1 — Yk are odd. Hence by the bijection between
subsets of {1,2,...,n} and compositions of n + 1, we are interested in the number
of compositions (¢, ¢, ..., ki) of n + 1into k + 2 parts, so that cp, ¢3, ..., ¢k 1 are
odd. Call this number a,, ;. The generating function is given by

k
! ! t
2 Ll — . .
ok 1t (1—#) 1t

n>k+1
1
_ 4k+2 2
= A e
k+j+1\ o
=0 k+1
The result follows now by comparing the coefficients for t"*1. O

Lemma 1.3.2. For k odd, the number of k-simplices that are compatible with the partial
orientation x1 in equation (1.3.2)) is given by

(L 072D,

k+1



This function is a quasi-polynomial of period 2 in the variable n where the leading term is
nk+1/(2k+1 . (k—l— 1)!)'

Proof. Note that a simplex {y; < y2 < -+ < Y41} is compatible with the partial
orientation x; if and only if y; is even and the parities of y1, 2, ..., yx+1 alternate.
Hence the proof differs from that of Lemma in that we also need to assume
that the first part is even. The generating function is given by

2 t\*" ¢ i3 k+i4+1\ .
Y -ttt = 5 < 2) : = ~(1+t)-2< )-tf.
i 1—12 \1—t 1—t S\ k+1

The result follows again by comparing the coefficients for #"*1. O

Let Comp (k) be the collection of all compositions of k, that is, all vectors of pos-
itive integer entries, such that that their sum is k. For a vector x = (xq,xp,...,Xk)
of k integers define its type modulo a to be the composition of k consisting of lengths
of runs of congruence classes modulo a. More formally, we define type (x) = ¢ =
(c1,¢2,...,cr) where

Xeobl = Xep2 = -+ = X, mod a
foralll1 <i<randx; #x,41modaforl <i<r-—1

Define Comp®?%=3(k) to be all compositions of k such that all entries are odd

and all the entries are at least 3. More formally, we have

CompOdng‘(k) ={(c1,¢,...,¢c+) € Comp(k) : c1,¢p,...,crareall odd
and ¢q,¢3,...,¢ > 3}

Let & denote the i unit vector, that is, & = 0,...,0,1,0,...,0). Also introduce
the short hand X[q,p) tO denote the vector (x4, X341, ..., Xp).

We now extend the partial orientations x( and x7 in equations (1.3.1) and (1.3.2)
by equation (1.3.3), where we let ¢ = (cy1,¢3,...,¢,) be the composmon type, (x)
and [; be the mterval [c1+ -+ ci-1+lLe+--+cia1+ c]-]. Furthermore, let
o denote concatenation of compositions and hence (1)° denotes the composition
(1,1,...,1) of the positive integer c. Finally, let i be the unique index such that the
part c; is even. Define

(1p(x) if kp(x) #0,
(=1)7t if typey(xg,) = (1) forall1 < ¢ <r,
Ap(x) = { (1)1 if type,(x;,) = (1)% for alld £i1<¢<r  (133)
and type,(x;;) = (1)/"' o (2) o ()57,
0 otherwise.




Proposition 1.3.3. The number of compatible k-simplices with the orientation A in equa-
tion (1.3.3) is of order

(2% +ap- 2721 0/ (k+ 1)1+ O(nF)  ifk=0mod 2,
(27K 4y - 2721 gk (k+ 1)1+ O(n*)  ifk =1 mod 2,

where the constants wy are given by the generating function

Zak-uk“ =(1-u?)/(1—u?®-2u°)
k>0

=1+ 2u® +2u° +4u® + 2u” + 8u® +10u° + 12u10 + ..

Proof. The compatible simplices to the partial orientation A, that are not com-
patible to x, have the form v = (y1,2,...,Yk+1) Where y; < yo < -+ < Vg,

type,(y) € Comp®dd=3(k + 1) and type,(y) = (1)¥*!. Thus given a composition
d = (dq,dy,...,ds) in CompOdd’Z?’(k + 1) the generating function for the number
of compatible k-simplices y such that type,(y) = d is given by

Ay = N N A R S
S 1—t \1-# 1—t4 \1-# 1—t

43 2\
11— \1_4 1—¢

Collecting factors in this expression yields

tr+1 . (1 + t2)r—1 1 tr—l—l . (1 + t2)r—1

A= T @Ay~ -0 (v v s PR

Note that
Aty ~ (1 —t)F2.207172k a5 517,

Now applying the Hardy-Littlewood—Karamata Tauberian theorem (see for in-
stance Theorem 9 in [2]), we obtain

21’71721( . pqk+1

n

[t"A(t) ~ ENCES

as mn — oo,

It remains to sum over all compositions d = (dy,da, .. .,d,) in Comp®3d=3(k + 1).
Note that the generating function is given by

1 1—u?

v, k+1l —
. D 2 1—2.. % 1—u?2—2u3 -
deComp®dd=3(k41) 1—u?




We believe that the lower bound for the maximal number of compatible k-
dimensional simplices in Proposition[1.3.3]is far from the truth. In the construction
of this proposition the compatible k-simplices do not share any facets. In order to
obtain better bounds sharing of facets has to occur. In the remainder of this chap-
ter, we will concentrate on the k = 3 case.

1.4 The Legendre symbol over finite fields and Mdbius transformations

For a prime power g let F; denote the finite field of order . We begin recalling
the Legendre symbol for fields of odd order. Call a non-zero square in the field a
quadratic residue. Similarly, a non-zero non-square is called a quadratic non-residue.

Definition 1.4.1. For an odd prime power q, and a an element in the field F,, define

1 if a is a quadratic residue in F,,
a
(—) = ¢ —1 ifaisa quadratic non-residue in F,,
1 0 ifa=0.

To begin we note that the Legendre symbol is multiplicative.

Lemma 1.4.2. For a and b in the field F; of odd order, the following hold:
()= () ()
q 1 q
5)-()-G)
=|-]-|=] b#0
( q q q

Proof. The first identity is directly true if 2 = 0 or b = 0. Otherwise, let y be a
primitive element in the field, that is, the order of 7 is 4 — 1. Now we observe

that (%) = (—1) from which the multiplicative statement follows. The second

statement follows from <%k> = (-Dk=(-1)"F= (%) O

Lemma 1.4.3. Let g be an odd prime power. The element —1 is quadratic residue in the
field Fy if and only if ¢ = 1 mod 4.

Proof. Let 7y be a primitive element in the field F,. Note that (7(771)/2)2 = 1. Since

7 has order g — 1, we conclude that 4(7~1/2 = —1. If g = 1 mod 4 then (g — 1) /2
is even and hence —1 is a quadratic residue. If 4 = 3 mod 4 then (g — 1) /2 is odd
and hence —1 is not a quadratic residue. O

Another way to state this lemma is (%) = (—-1)la-1/2,



Lemma 1.4.4. Let g = p* be an odd prime power. The element 2 is a quadratic residue in
the field Fy if and only if ¢ = +1 mod 8.

The following proof was communicated to us by David Leep.

Proof of Lemma([l.4.4 We will work in Fp, the unique quadratic extension of F;.
The multiplicative group of F is a cyclic group of order g> — 1. Since g is odd,
we have g2 — 1 is divisible by 8. Let 8 be a generator of this cyclic group and let
x = ,B(qz’l)/S. Thus the element & has order 8. We observe that (&« +a 1) =
W +a2+2=a2 (a*+1)+2 =2, because a* = —1. Thus £(a + a~!) are the
two square roots of 2 in the field Fp,.

The question becomes: When is « +a~! an element of F;? Wehavea +a~! € F,
if and only if (« + a7 1)7 = a + a~!. Since g is a power of p, the characteristic of
our fields, we have that (« +a~1)7 = a1 +a 7. If g = =1 mod 8, then a7 + a1 =
a + a~! since a has order 8. If ¢ = 3,5 mod 8, then we have a7 + a1 = o +a° =
ot (a+a )= —(a+al). O

Let F be a field. Recall that a Mdébius transformation is a function on the set
F U {oo} to itself of the form

a-z+b

&= ya
where a,b,c,d € Fand a-d # b-c. Note that we define f(c0) = a/c and
f(—d/c) = oo. For more on Mdbius transformations on finite fields, see the

book [6, Section 3.1]. The set of Mobius transformations forms the group PGL, (F).
When the field F is finite of order g the group is denoted by PGL,(g) and has order

equalling (94+1)-g- (g —1).

Let G be the set {x,1—x,1/(1 —x),x/(x—1),(x —1)/x,1/x} consisting of
Mobius transformations. Observe that G is closed under composition, that is, G is
a subgroup of PGLy(F). In fact, G is isomorphic to the symmetric group on three
elements since G permutes the three elements {0,1,00}.

Definition 1.4.5. The cross-ratio of a 4-tuple (a,b,c,d) € A*(F) is defined by

(a—b)-(c—4d)
(b—c)-(d—a)

Cr(a,b,c,d) =

We extend this definition to A*(F U {co}) by

Cr(oo,b,c,d) = —(c—d)/(b—c),
Cr(a,c0,c,d) = —(c—d)/(d —a),
Cr(a,b,00,d) = —(a—1b)/(d —a)



and

Cr(a,b,c,00) = —(a—1b)/(b—c).

Note that the cross-ratio is invariant under the action of two disjoint 2-cycles to
its entries:

Cr(a,b,c,d) = Cr(b,a,d,c) = Cr(c,d,a,b) = Cr(d,c,b,a). (1.4.1)

Lemma 1.4.6. Assume that Cr(ay,ay, a3, ay) = x. Then for any permutation 7w € S4 we
have Cr(a, (1), Ar(2), An(3), An(s)) € {x,1—x,1/(1—x),x/(x—1),(x —1)/x,1/x}.
In fact, this mapping provides an epimorphism from the symmetric group Sy to Sa.

Proof. Observe that Cr(ay, a3, a4,a1) = 1/x and Cr(ay,a3,a,a4) = 1 — x. Since &4
is generated by (2,3,4,1) and (2, 3), the result follows. O

A classic result is the following statement connecting Mobius transformations
and the cross-ratio.

Theorem 1.4.7. The cross-ratio is invariant under Mobius transformations, that is,

Cr(f(a), f(b), f(c), f(d)) = Cr(a,b,c,d)
for any Mobius transformation f and a,b,c,d in F U {co}.

Lemma 1.4.8. Given k + 1 elements ay, ay, . . ., ax, e in Fy U {co}, the number of Mobius
transformations f in PGLy(q) such that f(a;) # e forall 1 < i < kis given by q - (q —
1)-(g+1—k).

Proof. The number of Mobius transformations g such that g(e) = a;, for a given
index 7, is g - (§ — 1). Hence the number of Mobius transformations g such that
g(e) & {m,ay,...,ar} is givenby q- (9 —1) - (9 + 1 — k). By letting f to be the
compositional inverse of g, the result follows. O

1.5 Construction for k = 3 where n — 1 is an odd prime power

It remains now to show that the bound given in Corollary is sharp when 7 or
n —11is a prime power congruent 3 modulo 4. We begin with the case n = g+ 1,
where g is a prime power. We now introduce the orientation on set A3(X) where
X = F; U {co}.
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Definition 1.5.1. For an odd prime power q define the VL function o, on A3(F; U {eo})
by the following four Legendre symbols

( (a_b).(b;c)(ll—c)) ifa,b,C €k,

% ifb,c € Fyjand a = oo,
UQ(al b/ C) = c—a . .

e ifa,c € Fyand b = oo,

”q;b> ifa,b € Fyand ¢ = oo,

Lemma 1.5.2. Let q be an odd prime power. If ¢ = 1 mod 4 then the VL function oy is
symmetric. If g = 3 mod 4 then the VL function o, is anti-symmetric, that is, o, is an
orientation.

Proof. When q = 1 mod 4 we have <’71> = 1. The VL function o is then sym-
metric, that is, when transposing two variables, the function ¢; does not change

sign. When g = 3 mod 4 we have (%) = —1. The VL function ¢; is then anti-

symmetric. O

Hereafter, in the case of § = 3 mod 4 we will call the VL function 0, a VL ori-
entation. The last three cases in Definition should be understood by viewing
the element co? as a quadratic residue. For instance, when a = co we have

O e e R

Similarly, when b = co we have

((a—b)-(b;c)-(a—c)) _ (—(a—qc).ooz) _ (c;a)'

Lemma 1.5.3. For an odd prime power q, for the VL function o = o, and for four distinct
elements a,b,c,d € F; U {co} the following identity holds

Cr(b,a,c,d) )
—6] )

U(alblc) 'U(b,C,d) = (

11



Proof. We begin with the case when all the elements 4, b, ¢, d belong to the field F;:

_(la=Db)-(b—c)-(a—c)\ ((b—c)-(b—d)-(c—d)
a(a,b,c)v(b,c,d)-( p ) ( p )

(b—a)-(c—d)
_ | G
q

-(5597),

Next we have the four cases when one of elements is equal to co. First when a = o

we have:
o(oo,b,c)-0(b,c,d) = ((b_c)) ) ((b—c) : (b;d) : (c—d))

_ (—Cr(b' o C'd)) . (1.5.1)
q

Second, when b is equal to co:

comay insa= (3 (57) - () - (55322

(1.5.2)

When ¢ is equal to oo we have ¢(a,b,00) - 0(b,00,d) = 0(d,00,b) - 0(c0,b,a) =

(M) = (M), by using (1.5.2) and (1.4.1). Similarly, when d = co we
have o(a,b,c) - 0(b,c,00) = (oo, c,b) -o(c,b,a) = <—Cr(c';°'b'“)> = (—Cr(b’g'c’m)) by
using (1.5.1) and again (1.4.1).

Proposition 1.5.4. Let q be a prime power such that ¢ = 3 mod 4. Let S be a subset of the
finite field F; such that S consists of quadratic non-residues and that S is closed under the
action of the group G = {x,1—x,1/(1 —x),x/(x —1),(x —1)/x,1/x}. Then every
simplex {a,b,c,d} C F; U {co} such that Cr(a,b,c,d) € S is compatible with the VL
orientation o,.

Proof. Let {a,b,c,d} be a 3-dimensional simplex such that Cr(a,b,c,d) € S. Since

S is closed under operations of the group G of order 6 we have Cr(b,a,c,d) € S.

Especially, (M) = —1. Now by Lemma|l.5.3 we have c(a,b,c) - o(b,c,d) =

—1, thatis, o(a,b,c) = —o(b,c,d). Also o(a,b,c) = —o(d,a,b) = —o(a,b,d) and
o(a,b,c) =0c(b,c,a) = —o(c,a,d) = o(a,c,d). The last three identities show that
{a,b,c,d} is compatible. O
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Proposition 1.5.5. Let g be a prime power such that ¢ = 3 mod 4. Then there exists
a subset S of the finite field F; such that S consists of quadratic non-residues, S is closed
under the action of the group G = {x,1 —x,1/(1 —x),x/(x—1),(x —1)/x,1/x} and
the cardinality of S is given by (g + 1) /4.

Proof. Consider the action of G on the set F; U {co} and the orbits of this action.
The set S is a disjoint union of these orbits. However, we need to select orbits that
consist of quadratic non-residues only. We begin to discuss all the orbits.

(i) The set {0,1, 00} is an orbit. Note that this orbit has one element which is a
quadratic residue and no quadratic non-residues.

(ii) The set {2,1/2,—1} is an orbit. Since (_71) = —1, the element —1 is a
quadratic non-residue. By Lemma we have that the elements 2 and
1/2 are quadratic non-residues if § = 3 mod 8 and quadratic residues if
g = 7 mod 8. Furthermore, if 4 is a power of 3, then this orbit consists of
only one element, that is the case 4 = 3 mod 24.

(iii) If g = 1 mod 6 then there two primitive 6!" roots of unity: ’y(q_l)/ 6 = w
and w®. The set {w,w’} forms an orbit since these elements are the roots
of the polynomial x*> — x + 1, the 6/ cyclotomic polynomial. Note that the
condition ¢ = 3 mod 4 implies that 4 = 7 mod 12. Hence (g — 1) /6 is always
odd and we conclude that when this orbit occurs it consists only of quadratic
non-residues.

(iv) Finally, there are orbits of size 6. Note that -1 = x-1/(1 —x) - (x —1)/x.

Hence L (3) | (1/(1q_ x)> ‘ ((x —ql)/x)'

Thus among the three elements x, 1/(1 — x) and (x — 1)/x there are one
or three quadratic non-residues. Hence among the elements of the orbit x,
1/x,1/(1—x),1—x,(x —1)/xand x/(x — 1) there are two or six quadratic
non-residues. We will assume among these orbits that there are mg¢ orbits
Co,6 containing six quadratic non-residues and 114 orbits C4 » containing two
quadratic non-residues.

Note that there is no prime power such that 4 = 15 mod 24 since it would
imply that 3 divides g4 and hence that g is 3 to an odd power, which implies that
g = 3 mod 24, a contradiction.

The proof now consists of the five cases g = 3,7,11,19,23 mod 24. The proof
is summarized in Table First, the possible orbits are listed with how many
quadratic residues versus the non-residues. Then using the fact that there are (g —
1) /2 quadratic residues, we can solve for m, 5, the number of orbits C4, with four

13



Table 1.1: The possible orbits of G when acting on F; U {co} in the case when
g = 3 mod 4. The number of orbits of type Cy is 16 and the number of orbits of
type Cap is my4 . Finally, observe that the set S has cardinality (g + 1) /4 in each of
the five cases.

3mod?24 | 7mod?24 | 11mod24 | 19 mod 24 | 23 mod 24

qr an' qI' an qI' an' qI' an qI' an
0Lel |1 0 |T 0 |T 0 |T 0 |1 0
{2,1/2,-1}|/0 1 |2 1 |0 3 0o 3 2 1
{w,0®} |0 0 0 2 0 0 0 2 0 0
Cos 0O 6 |0 6 |0 6 0 6 0 6
Car 4 2 |4 2 |4 2 4 2 4 2
My (9—3)/8 | (9=7)/8 | (9—3)/8 | (4—3)/8 | (4—7)/8
Mo 6 (q—3)/24 (q—7)/24 (q—ll)/24 (q—19)/24 (q+1)/24
S| (g+1)/4 | (g+1)/4 | (g+1)/4 (g+1)/4 | (q+1)/4

quadratic residues. Using the value of my4, and that there are (g — 1) /2 quadratic
non-residues we can solve for m . Finally, the cardinality of S, that is, the union
of the orbits of consisting only quadratic non-residues is determined. In all five
cases we obtain |S| = (g + 1) /4. O

By combining Propositions|1.5.4/and [1.5.5] we obtain

Theorem 1.5.6. Let q be a prime power such that g = 3 mod 4. Then there are

(g+1)%-q-(q-1)
9

3-dimensional simplices compatible with the VL orientation oy of the set A3(F, U {oo}).

Proof. There are (‘7’51) three-element subsets {a, b, c} of F; U {co}. There are exactly
(q+1)/4 ways to pick an element ¢ in the set S given in Proposition[1.5.5| Now we
can solve for the unique d in the equation Cr(a,b,c,d) = t, yielding the simplex
{a,b,c,d}. However, this simplex is obtained in four different ways depending
on which 2-dimensional face we started with. Hence the number of simplices is

(T (g +1)/4-1/4. -

Lemma 1.5.7. The VL orientation o, is uniform in the following sense:

(i) Everyvertex a € F; U {oco} liesin (g4 1) - q- (q — 1)/24 compatible 3-simplices.
(ii) Every edge {a,b} C F; U {oo} liesin (q+ 1) - (q — 1)/8 compatible 3-simplices.
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(iii) Every triangle {a,b,c} C F; U {co} lies in (q + 1) /4 compatible 3-simplices.

Proposition 1.5.8. Let g be a prime power such that ¢ = 3 mod 4 and let oy be the
VL orientation. Assume that X = F; U {co} is the disjoint union of the two sets Y
and Z where the Y has cardinality k. Let M be the number of compatible 3-simplices in
the restriction A3(Y). Then the number of compatible 3-simplices of the orientation o,

restricted to A>(Z) is given by

(@+1%*q-(g=1) (+1-q-(q=1)

96 24
(+1)-(q—1) (k\ (@q+1) (k
+ 3 ’ 1 5) T M. (1.5.3)
Proof. The proof is by inclusion-exclusion. O

Corollary 1.5.9. Let g be a prime power such that ¢ = 3 mod 4. Then the number
of compatible 3-simplices of the VL orientation oy restricted to A3(F;) is equal to upper

bound given in Corollary

Proof. 1t is enough to observe

(@+1%-9-(q=1) @+D-q-(¢=1) _(q+1D-q-(q-D-(q-3)

96 24 96

For small values of k, we can a give a lower bound for the maximal number of
compatible 3-simplices. Define the partial function f,(k) by

0 if0<k<3,

2k—6 ifk=0mod3andk < (g+5)/4,
2k—7 ifk=1mod3andk < (g+9)/4,
2k—8 ifk=2mod3andk < (q+13)/4.

falk) =

Proposition 1.5.10. Let g be a prime power such that g = 3 mod 4. Then for Z a set
of cardinality q + 1 — k there is an orientation on A3(Z) with the number of compatible
3-simplices given by

. — (g2 — . 2
(g+1)-(g+1—2k) (q% (2k+1) -g+ 2k 2k)+fq(k).
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Proof. We apply Proposition For k < 3 use any set Y of cardinality k.

Let{x,1/x,(x —1)/x,x/(x—1),1/(1 —x),1 — x} be an orbit contained in the
set S and let A be the subset {x, (x —1)/x,1/(1 — x)}. Assume that the set A has
cardinality 3, that is, three elements in A are distinct. Note that we have

Cr(x,0,1,00) =Cr(0,x,(x—1)/x,1/(1 —x)) = x,
Cr((x—1)/x,0,1,00) =Cr(1,x,(x—1)/x,1/(1—x)) = (x—1)/x

and
Cr(1/(1—x),0,1,00) = Cr(oo,x, (x —1)/x,1/(1—x)) =1/(1 —x),
which yields six compatible 3-simplices supported on the set {0,1,00} U A.

We begin in the case when k = 0 mod 3. We have to find j = k/3 — 1 such
three-element sets Ay, Ay, ..., A;. There are 2 - mog such sets and possibily the
orbit {2,1/2,—1} if the containment {2,1/2, —1} C S holds. Using Table we
obtain at least (g — 7) /12 such sets. Hence the union of these sets, together with
{0,1,00}, yields thebound k = 3- (j+ 1) < (g +5) /4. Finally, each set A; together
with {0,1,00} supports 6 compatible simplices, yielding at least 6 - j = 2k — 6
compatible simplices supported on the set Y = {0,1,00} U Ule A;.

When k = 1 mod 3 we use the above construction to obtain k — 1 elements
supporting 2 - (k — 1) — 6 compatible simplices. In each case we can find another
element y from the set S, either from the orbits {w, w®} or {2,1/2, —1}. In the case
when g = 11 mod 24, we pick the element y from one of the six-element orbits
that were not used. We obtain one more compatible simplex on the set {y,0,1, oo}.
Hence we obtain k elements supporting 2 - (k —1) — 6 +1 = 2k — 7 compatible
simplices. Lastly, the bound on k is given by k — 1 < (g + 5)/4, that is, we have
k<(g+9)/4

Finally, when k = 2 mod 3 we again use the above construction to obtain k — 2
elements supporting 2 - (k — 2) — 6 compatible simplices. When g = 7,19 mod
24 we pick the two extra elements w and w® which support the two simplices
{w,0,1,00} and {w>,0,1,00}. When g = 3, 11,23 mod 24 we pick the two elements
from one of the six-element orbits that were not used. Hence we obtain k elements
supporting 2 - (k —2) — 6 + 2 = 2k — 8 compatible simplices. Finally, the bound on
kis givenby k —2 < (g+5)/4, thatis, k < (q+13)/4. O

Given an orientation s on A3(X) and a subset Y of X, we can duplicate the
nodes in the set Y to create a partial orientation on a set of size |X| + |Y|. Let
X' be the set X x {1} UY x {2} and let ¢ be the projection map ¢ : X' —
X defined by ¢(x,i) = x. Then define the function s’ on X’ by s'(x,y,z) =
s(p(x),¢(y), ¢(z)). It follows directly from the definition that s’ is antisymmet-

ric, that is, that s’ is a partial orientation. Furthermore, there are (]5) simplices
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of the form {(x,1),(x,2),(y,1),(y,2)} that do not share any 2-dimensional faces
between themselves and with the previously-defined orientation. Thus we can ex-
tend s by s((x,2), (1,1), (4,2)) = ~s((x, 1), (5, 1), (5,2)) = s((x,1), (.2), (,2)) =
—s((x,1),(x,2),(y,1)) = 1 and obtain (];) more compatible simplices.

Proposition 1.5.11. Let g be a prime power such that ¢ = 3 mod 4 and let o5 be the VL
orientation. Let Y be a subset of X = F; U {co} of cardinality k. Let N be the number
of compatible 3-simplices in the restriction A3(Y). Then the number of compatible 3-
simplices when the nodes in Y are duplicated is given by

(g+1)%q-(4=1) g+ -9-(9=1)

(WH?W—U,k W%U_k k
+ < Q)+ 1 Q)+N+(J. (15.4)

Proof. A compatible 3-dimensional simplex F in F, U {co} will appear 2/F™| times
in the duplication and this number is accounted for in the |[F N Y| + 1 first terms in
the sum (1.5.4). O

By combining Proposition|1.5.11] and the construction in the proof of Proposi-
tion[1.5.10, we have the next result.

Proposition 1.5.12. Let q be a prime power such that ¢ = 3 mod 4. Then there is an
orientation on A3(X') where X' has cardinality g + 1 + k and this orientation has the
following number of compatible orientations:

+1) - (g° + 492k + 6gk? + 4k — 10gk — 18k? — g + 14k k
(9+1)-(q° +49°k +6q . q q )+ﬁ®+(9_

A different way to view the compatible 3-simplices is as follows. Let S be the set
in Proposition[1.5.5 of cardinality (g + 1) /4. For s in the set S, consider the quadru-
ple (s,0,1,00). Note that the cross-ratio is given by Cr(s,0,1,00) = s. Consider all
the images of this quadruple when acting upon by the Mobius transformations
in PGL;(gq). Finally, view these quadruples as 3-simplices, that is, we remove the
order between the 4 elements, obtaining the set

{{£(s), f(0), (1), f(e0)} : f € PGLa(q)}-

This is the set of compatible 3-simplices and its cardinality is directly given by
|S] - | PGL2(q)[/4L.

This viewpoint yields a different proof of the second part of Corollary
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Second proof of Corollary[1.5.9, The number of Mdbius transformations f such that
f(s), f(0), f(1) and f(oc0) are all different from oo is given by (4 —1) - q- (9 — 3) by
Lemma Hence the number of compatible 3-simplices in A3(F,) is given by
IS|-(g—1)-q- (g —3)/4!, which is the upper bound. O

1.6 Products of two prime powers

We now will explore the componentwise action of PGL;(q1) x PGL,(g3) on the
Cartesian product (Fj; U {oo}) x (Fj; U {o0}), where q; = i mod 4 for i = 1,3. We
start by investigating the orbits of the action of the group G on F; U {0} in the case
when g = 1 mod 4 to obtain results analogous to Table

Proposition 1.6.1. Let q be a prime power such that g = 1 mod 4. Then the possible
orbits of the action of the group G = {x,1—x,1/(1 —x),x/(x —1),(x —1)/x,1/x}
are listed in Table[1.2

Proof. Consider the action of G on the set F; U {co} and the orbits of this action.
The set S is a disjoint union of these orbits. However, we need to pick out orbits
that consist of quadratic non-residues only. We begin to discuss all the orbits.

(i) The set {0,1, 00} is an orbit. Note that this orbit has one element which is a
quadratic residue and no quadratic non-residues.

(i) Theset{2,1/2,—1}isan orbit. Since (%) = 1, the element —1 is a quadratic
residue. By Lemma we have that the elements 2 and 1/2 are quadratic
residues if 4 = 1 mod 8 and quadratic non-residues if 4 = 5 mod 8. Further-
more, if g is a power of 3, then this orbit consists of only one element, that is

the case g = 9 mod 24.

(iii) If § = 1 mod 6 then there two primitive 6" roots of unity, namely, y(7-1)/6 =
w and w°. The set {w, w’} forms an orbit since these elements are the roots
of the polynomial x? — x + 1, the 6 cyclotomic polynomial. Note that the
condition ¢ = 1 mod 4 implies that 4 = 1 mod 12. Hence (g — 1) /6 is always
even and we conclude that when this orbit occurs it consists only of quadratic
residues.

(iv) Finally, there are orbits of size 6. Note that —1 = x-1/(1 —x) - (x —1)/x.

Hence . (%) | <1/(1q_ x)) . ((x —ql)/X> .

Thus among the three elements x, 1/(1 — x) and (x — 1)/x there are one
or three quadratic residues. Hence among the elements of the orbit x, 1/x,
1/(1—x), 1 —x, (x —1)/x and x/(x — 1) there are two or six quadratic
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Table 1.2: The possible orbits of G when acting on F; U {co} in the case when
g = 1 mod 4. The number of orbits of type Cg is 14,0 and the number of orbits of

type C2,4 is nj 4.

1mod24 | 5mod24 | 9mod 24 | 13 mod 24 | 17 mod 24
qr gnr qr qnr qr gnr qr qnr qr anr
0Le} [T o0 |T 0 |17 0 |1 0 |1 0
{2,1/2,-1}| 3 0 1 2 |1 o |1 2 |3 o0
{w,®} |2 0 0 0 0 0 2 0 0 0
Ce,0 6 0 6 0 6 0 6 0 6 0
Coa 2 4 2 4 2 4 2 4 2 4
M4 (9—1)/8 | (9-5)/8 | (4—=1)/8 | (9—5)/8 | (3—1)/8
M0 (g—25)/24|(q—5)/24|(q—9)/24 | (9 —13)/24 | (9 —17)/24

residues. We assume among these orbits that there are myg g orbits Cg con-
taining six quadratic residues and m; 4 orbits C; 4 containing two quadratic
residues.

Note that there is no prime power such that g = 21 mod 24 since it would
imply that 3 divides g and hence that g is 3 to an even power, which implies that
g =9 mod 24 a contradiction.

The proof now consists of the five cases g = 1,5,9,13,17 mod 24. The proof
is summarized in Table First the possible orbits are listed with how many
quadratic residues versus quadratic non-residues. Then using that there are ex-
actly (g —1)/2 quadratic non-residues, we can solve for m, 4, the number of orbits
Cy,4 with four quadratic non-residues. Using the value of m5 4 and that there are
q/2 quadratic residues we can solve for m . O

Let g1 and g3 be two prime powers such that g; = i mod 4. We will now con-
struct a partial orientation on the set A3(X) where the set X = X; x X3 where
X; = Fj;U{oo}. Let R be the ring F;; x F;, where the operations are defined

component-wise. Define the Jacobi symbol ( -

q1-93
x (x X3
(41 '073) - (a) . (q_3> '
where x = (x1, x3). Observe (ﬁ) = <(_qitq_31)> = (;—3) : (;—;) =1-(-1)=-1

Define a partial orientation 0y, 4, as the product of the VL functions o, and o,

> as the product of the two Leg-
endre symbols
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that is,

0711'43((”1/5!3)/ (bll b3)/ (C1/C3)) = O-(h (all bllcl) ' UQ3 (ﬂ?,, b3/ C3)' (161)

By Lemma we know that 0, is symmetric and oy, is anti-symmetric. Hence
the product 0y, - 0y, is anti-symmetric, that is, 0y, 4, is a partial orientation.

Let the group PGL;(g1) x PGLy(g3) act upon the product X = Xj x X3 by
componentwise action. Also let the group G of order 6, act on X by the diagonal

action, thatis, go (x1,x3) = (g(x1), g(x3)).
We also need analogues of Lemma and Theorem [1.5.4]

Lemma 1.6.2. Let g1 and q3 be two odd prime powers. For the orientation o in equa-
tion (L.6.1), four distinct elements ay, by, c1 and dy in Fy, U {co} and four distinct ele-
ments as, b3, c3 and d3 in Fy, U {co}, the following identity holds:

Cr(b,a, c,d))
n-gs )’
where a = (ay,a3), b = (by,b3), c = (c1,¢3) and d = (dq,d3).

U(ﬂ,b,c) 'U(b,C,d) = (

Proof. This is a direct application of Lemma [1.5.3}

U(ﬂ, b/ C) : U(b/ c, d) = Uql (alz bllcl) : Uq3(a3/ b3/ C3) : Uql (bllcl/dl) : O'%(bg, C3, d3)
_ (Cr(b1,ﬂ1,c1,d1)) . (Cr(b3,ﬂ3,c3,d3)) 0
7 q3 '

Proposition 1.6.3. Let g1 and g3 be two prime powers such that q; = i mod 4. Let S
be a subset of the product ring Fy, X Fg, such that S consists of elements whose Jacobi
symbol is negative and that S is closed under the action of the group G = {x,1 —
x,1/(1 —x),x/(x—=1),(x —1)/x,1/x}. Then for four distinct elements a1, by, c1
and dy in Fy, U {co}, and four distinct elements a3, bs, c3 and ds in Fy, U {oo}, such that
Cr((a1,a3),(b1,b3),(c1,¢3),(d1,d3)) € S the set {(a1,a3), (b1,b3), (c1,¢3), (d1,d3)} is
a compatible simplex with the orientation o in equation (1.6.1)).

Proof. The Jacobi symbol satisfies <ﬁ = —1. The remainder of the argument is
the same as the proof of Proposition O
We now observe how the product of two orbits of the group G decomposes.

Lemma 1.6.4. Let D; be an orbit of G in X;, for i = 1,3. Then the Cartesian product
D1 x D3 decomposes into orbits of G. The multiset of the cardinalities of these orbits is
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given by the table below, where the superscripts denote multiplicity:

D3| =1||Ds| =2 |D3| =3||D3| =6
D1 =1] {1} {2} {3} {6}
D1 =2] {2} {2°} {6} {6°}
D1 =3| {3} {6} 13,6} {6°}
D1l =6| {6} {6°} {6°} {6°}

Our goal is to obtain orbits of the set X such that all the elements of the orbits
have negative Jacobi symbol. Returning to Tables [I.1] and (1.2 we note that there
are seven types of orbits, when considering the quadratic residues versus non-
residues. In Table we have the orbits {0,1, 0}, Eg1, E21, Eos, {ws, wg }, Coe
and Cyp, where E; ; denotes the orbit {2, —1,1/2} with i quadratic residues and j
quadratic non-residues. For instance, the orbit Ej ; only appears when g is a power
of 3. Similarly, in Table we have the orbits {0,1, 0}, Eq 0, E12, E3p, {wl,w? },
C6,O and C2,4.

Lemma 1.6.5. Let D; be an orbit of G in X;, for i = 1,3. Then the Cartesian product
Dy x D3 decomposes into orbits of G. The multiset of the cardinalities of these orbits,
where all the elements have negative Jacobi symbol, is given by:

Eo1 | Exn| Eos | {ws w3} | Cog | Cap
Eip [ {1} ]| — | {3} 12} {6} | —
Eip - {3} - - — | {6}
Eso [ {3}] — [{36}] {6} {6} —
{wi,wi} [ {2} ] — | {6} {22} [{6°}] -
Ce,0 {6} | — | {6°} {6’} [{6°}] —
Coa — {6} ] - — - [ {6%}

Proposition 1.6.6. Let q and q3 be two prime powers such that q; = i mod 4. Then
there exists a subset it of the ring Fy, X Fy, such that S consists of elements with negative
Jacobi symbols and is closed under the action of the group G = {x,1—x,1/(1—x),1/x,
x/(x—1),(x —1)/x} and cardinality of S is given by ((q1 —2) - (g3 —2) — 3) /4.
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Proof. The result follows from multiplying the three matrices

001 1 =% n-l 10 3 2 6 0
0100 w5 ws| [030 0 0 6
1000q12é9q1§1 309 6 18 0
WP o Fs| |20 6 4 120
0101[12_417qs_1 6 0 18 12 36 0
0010 27 06 0 0 0 12
1 0 0 0 0
o 1 o0 0 1
o 0 1 1 0
o 1 0 1 0
33—3 q3—7 q3—11 q3—19 g3+1
24 24 24 24 24

33=3 $3=7 =3 -3 g3-7
8 8 8 8 8

The first matrix encodes Table The rows of this matrix correspond to the cases
71 = 1,5,9,13,17 mod 24 and the columns to the orbits E; o, E12, E3), {wl,w?},
Cs,0 and Cp 4. The second matrix enumerates the elements in the array in Lemma
Finally, the third matrix encodes Table where the rows correspond to the or-
bits Eg1, Ez1, Eo3s, {ws3, wg}, Coe and C4p and the columns to the cases q3 =
3,7,15,19,23 mod 24. The resulting matrix product is given by (g1 - g3 —2-q1 — 2~
g3 + 1) /4 times the matrix | of all ones. O

Combining Propositions [1.6.3|and [1.6.6| yields the next result.

Proposition 1.6.7. Let g1 and g3 be two prime powers such that q; = i mod 4. Then
there are

((1=2)-(93—=2)=3)- (1 +1) - q1-(q1—1) (g3 +1)-g3- (g5 —1)
9%

3-simplices on the set (Fy, U {oo}) x (Fy, U {oo}) compatible with the partial orientation
in equation (1.6.1).

We can slightly improve the construction in Proposition by changing the
partial orientation as follows.

Theorem 1.6.8. Let q1 and q3 be two prime powers such that q; = i mod 4. Assume
there is an orientation on A3(Y), where Y has cardinality q; + 1, with M compatible 3-
simplices. Then there is a partial oreintation on A3((Ey, U {oo}) x (Fy, U {o0})) with the
number of compatible 3-simplices given by

(1—-2) (q3=2)=3) (u+D)-q1- (1 —1)-(g3+1)-q3- (93— 1)
96

+1)2-93- (g3 —1
(q3 )9(163 @5 =1 | M. (g5 +1).

+ (1 +1)-
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Proof. View the set Y as F;, U {co} and let 7’ denote the partial orientation on
A3(Y). Use the following partial orientation T, where a = (a1, a3), b = (by,b3)
and ¢ = (¢, ¢3):

Oq195(a,b,c)  if ay, by, ¢y distinct and a3, bs, c3 distinct,
T(a,b,c) = { 0g,(az, bz, c3)  ifa; = by =y, ]
T/(a].lbllcl) if as = b3 = (3.

We note that the improvement from Proposition to Theorem is slight,
since the leading term in the proposition is (g - g3)*/96, whereas the number of
added simplices in the theorem is at most of the order q; - q3/96 + g3 - 43/96.

Corollary 1.6.9. Let g1 and g3 be two prime powers such that q; = i mod 4. Assume there
is an orientation on A3(Y), where Y has cardinality q,, with M’ compatible 3-simplices.
Then there is a partial orientation on A3(Fy, x Fy,) with the number of compatible 3-
simplices given by

((g1—-2)-(q3—2)—3)-q1-(q1—1)-(q1 —3)-q3- (93— 1) - (g3 — 3)

96

(3+1)-q3-(93—1)-(q3—3)
96

+q1- + M - gs.

1.7 Asymptotic behavior

In a recent paper Baker, Harman and Pintz [1]] showed the following bound on the
prime gap.

Theorem 1.7.1. There exists a real number xo such that for all x > xq, the interval
[x — 29525 x] contains prime numbers.

In this section we are interested in primes congruent to 3 modulo 4. Hence it is
reasonable to make the following conjecture.

Conjecture 1.7.2. There exist a real number o € (0,1) and a real number xq such that
for all x > xq, the interval [x, x + x*| contains a prime number congruent to 3 modulo 4.

Theorem 1.7.3. Assume that Conjecture is true. Then for n > x there exists an
orientation of A3(X), where X is an n-element set, with at least

4 3+«

n* n
96 24

+0(n?)

number of compatible simplices.
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Proof. Given n > xq there exists a prime g such that n < g < n + n* and congruent
to 3 modulo 4. Hence we have an orientation of the set F, U {co} with (7 + 1)?-
q-(q —1)/96 compatible simplices. Let k be the difference g + 1 — n. By part (i)
Lemma we remove at most (g +1) -g- (g —1)/24 - k number of compatible
3-simplices when we restrict the orientation on F; U {co} to a subset of size n. Thus
a lower bound is given by

(g+1)*q-(q-1) (g+1)-q-(g—1)

9% 24
(q+1)%-q-(q—1) (q+1)-q-(q—-1)
> — .
= 9 24 (n"+1)
nt 3 n3 2 «
> B .
> 1+ 00r%) <M+OM))(n+U
n4 n3+4x 3
> — — .
~ % 7 +O(n”) O

1.8 Concluding remarks

It is tempting to suggest that for k > 4 and g a prime power such that g = 3 mod 4
that the following orientation of A¥(F,) would maximize the number of compati-
ble k-simplices:

o(ay,ap, ..., ax) = <H1§i<j§;(ﬂ]' _ai)> . (1.8.1)

Note that the alternating property of the Vandermonde product and the Legen-
dre symbol (‘71) = —1 imply that ¢ is an orientation. When k is even, it is not

clear how to extend this o to F; U {co}. However, we conjecture that the following
enumeration of compatible 4-simplices holds:

Conjecture 1.8.1. Let g be a prime power congruent to 3 modulo 4. Then for k = 4 the
number of compatible 4-simplices to the orientation in (1.8.1) is given by

q-(q—=1)-(g=7)-(9q—3)-(q+1)
1920

Note this conjecture has the same leading term as Lemma hence it is over-
taken by Proposition[1.3.3]

Conjecture 1.8.2. Let q be a prime power congruent to 3 modulo 4. Then for k = 5 there
are no compatible 5-simplices to the orientation in (1.8.1)).

These two conjectures show that new techniques are needed to find good ori-
entations to maximize the number of compatible simplices.
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Table 1.3: For k = 3, the upper bound and the best constructions for 4 < n < 83.

n | upper | lower n | upper | lower

bound | bound bound | bound
4 1 1 44 | 36421 | 36421 | Thm.[L.5.4
5 2 2 45| 39847 | 39732 | Prop.[[.5.10|&[[5.12
6 6 6 | Lem.[[25 46 | 43642 | 43516 | Prop.[.5.10]
7 14 14 | Cor.[[.5.9] 47 | 47564 | 47564 | Cor.[1.5.9]
8 28 28 | Thm.[L.5.6 48 | 51888 | 51888 | Thm.[L.5.6
9 45 42 | Prop.[I.5.10] 49 | 56350 | 56212 | Prop.[[.5.12
10 75 70 | Prop.[1.5.10] 50 | 61250 | 60813 | Prop.[[.5.12
11 110 110 | Cor.[I.5.9] 51| 66300 | 65742 | Prop.[L.5.10)
12 165 165 | Thm.[L.5.6] 52| 71825 | 71233 | Prop.[L.5.10]
13 227 220 | Prop.[[.5.12 53 | 77512 | 77057 | Prop.[I.5.10]
14 318 296 | Prop.[[.5.10] 54 | 83713 | 83226 | Prop.[L.5.10)
15 420 402 | Prop. [I.5.10] 55 | 90090 | 89752 | Prop.[I.5.10]
16 560 536 | Prop.[[.5.10] 56 | 97020 | 96656 | Prop.[L.5.10]
17 714 700 | Prop.[1.5.10] 57 | 104139 | 103950 | Prop.[I.5.10]
18 918 900 | Prop.[L.5.10] 58 | 111853 | 111650 | Prop.[L.5.10]
19| 1140 | 1140 | Cor.[.5.9 59 | 119770 | 119770 | Cor.[1.5.9
20| 1425| 1425 | Thm.[L5.6 60 | 128325 | 128325 | Thm.[L.5.6
21| 1732| 1710 | Prop.[[.5.10&[[5.12] || 61 | 137097 | 136880 | Prop.[[.5.12]
22| 2117 | 2090 | Prop.[I.5.10] 62 | 146552 | 145900 | Prop.[L.5.10)
23| 2530 | 2530 |Cor.1.59 63 | 156240 | 155790 | Prop.[L.5.10]
24| 3036 | 3036 | Thm.[.5.6 64 | 166656 | 166176 | Prop.[I.5.10]
25| 3575 | 3542 | Prop.[[.5.10&[[5.12] || 65 | 177320 | 177072 | Prop.[I.5.10]
26 | 4225| 4186 | Prop.[[.5.10] 66 | 188760 | 188496 | Prop.[I.5.10]
27| 4914 | 4914 | Cor.[[59 67 | 200464 | 200464 | Cor.[1.5.9
28| 5733 | 5733 | Thm.[L.5.6 68 | 212993 | 212993 | Thm.[L.5.6
29| 6597 | 6552 | Prop.[[.5.10&[1.5.12] || 69 | 225802 | 225522 | Prop. [I.5.10|&[[.5.12
30| 7612 | 7560 | Prop.[I.5.10] 70 | 239487 | 239190 | Prop.[L.5.10]
31| 8680 | 8680 | Cor.[.5.9] 71 | 253470 | 253470 | Cor.[L.5.9]
32| 9920 | 9920 | Thm.[I.5.6 72 | 268380 | 268380 | Thm.[T.5.6
33| 11220 | 11160 | Prop.[.5.12] 73 | 283605 | 283290 | Prop.[T.5.12
34| 12716 | 12520 | Prop.[I.5.12] 74 | 299811 | 298866 | Prop.[I.5.10]
35| 14280 | 14026 | Prop.[L.5.10] 75 | 316350 | 315702 | Prop.[I.5.10]
36 | 16065 | 15793 | Prop.[I.5.10] 76 | 333925 | 333241 | Prop.[I.5.10]
37 | 17926 | 17717 | Prop.[L.5.10] 77 | 351851 | 351500 | Prop.[I.5.10]
38 | 20035 | 19806 | Prop.[I.5.10] 78 | 370870 | 370500 | Prop.[I.5.10]
39 | 22230 | 22068 | Prop.[I.5.10] 79 | 390260 | 390260 | Cor.[1.5.9]
40 | 24700 | 24520 | Prop.[I.5.10] 80 | 410800 | 410800 | Thm.[1.5.6
41| 27265 | 27170 | Prop.[L.5.10] 81 | 431730 | 431340 | Prop.[[5.10/&[[.5.12
42| 30135 | 30030 | Prop.[I.5.10] 82 | 453870 | 453460 | Prop.[L.5.10)
43| 33110 | 33110 | Cor.[.5.9] 83 | 476420 | 476420 | Cor.[.5.9
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It is remarkable in Propositions [1.5.5/and [1.6.6|that the end result of the cardi-
nality of the set S does not depend on the congruence class of g, 4; and g3 mod-
ulo 24. This fact suggests that there is proof of these results that do not split the
argument in 5, respectively 25, cases.

Given an orientation s of A¥(X), instead of enumerating the boundaries of k-
simplices, we can ask the same question for other k-dimensional simplicial poly-
topes. For tournaments several authors have given a sharp upper bound on the
number of 4-cycles, that is, the number of compatible squares; see [5] 11} 13]. For
results on pentagon, hexagons and heptagons, see [3,/12,[19,20]. For general values
of k, the first step in this direction would be to find an upper bound for the number
of boundaries of bipyramids of (k — 1)-simplices. More challenging would be to
find upper bounds for the number of boundaries of k-dimensional cross-polytopes
or cyclic polytopes.

Copyright© Karthik Chandrasekhar, 2019.
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Chapter 2 The representation-theoretic view

2.1 Introduction

The problem of maximizing the number of compatible simplices is a combinatorial
optimization problem. One recent method to solve such a problem is the sum-of-
squares certificate method, introduced in the papers [8], [16] and [17]. This tech-
nique has been useful in industrial fields of enquiry like dynamical systems and
control theory. For more information see the papers [4] and [24]. We begin with
an example to show the role of a sum of squares in accomplishing upper bounds.
The idea is to express the problem in terms of a polynomial in several variables,
then rewrite it as a sum of squares of other polynomials. Since squares of polyno-
mials are non-negative the polynomial will reveal a bound for the cardinality of
the combinatorial object we are trying to bound. Below is an example of a proof of
a lower bound for a polynomial in x and y, where x and y are constrained.

Example 2.1.1. (due to A. Raymond) We claim that 1 —y > 0 on the x> + y*> = 1. To
prove this we rewrite

1 x\? y—1 2
l—y=1-y+(x*+y*—1 :(-) +<—) 2.1.1
y y+oFHy -1 =(75 NG (21.1)
Thus the right-hand side of equation is a sum-of-squares expression for 1 — y mod-
ulo the ideal 1 generated by the polynomial f(x,y) = x>+ y* — 1 over the field R.
Note that on the unit circle f(x,y) = 0. Thus we have that 1 — y is non-negative on
x? + y2 =1

In combinatorial applications the variables take one of two possible values.
Usually in the literature those values are 0 and 1. Hence the polynomials are op-
timized over the vertices of a hypercube. However, in our application it is more
convenient to optimize over the cube {—1,1}", that is the two values are +1 and
we have the identity that each variable squared is 1. Furthermore in many com-
binatorial optimization problems there is an underlying symmetry. For instance
in the problem described in Section (1.1 if we relabel the vertex set X we do not
change the problem. The papers [8], [16] and [17] describe a theory how such a
symmetry is helpful in finding sum-of-squares expressions.

2.2 Sum-of-squares Certificate Proofs

Definition 2.2.1. Let R be a commutative ring with unity and let x1,xy,...,x, be in-
determinates. A sum-of-squares certificate modulo an ideal I for a polynomial p is a
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sum ZZ 1 pi of squares of polynomials p; in the polynomial ring R[x1,x2, ..., %, such
that there exist a constants c,  satisfying cp +a = Y5 p;> mod I.

Remark 2.2.2. Definition implies the following bounds:

c<0 = p< —al/c
c>0 = p>—alc

We are now able to prove the bound in Equation (1.1.1)).
Theorem 2.2.3. The number of directed 3-cycles in a tournament graph on n vertices is
bounded above by
(n—1)-n-(n+1)/24 nisodd,
(n—2)-n-(n+2)/24 niseven.

Furthermore there are tournaments that attain this bound for each n.

Proof. Let x; ; be 1 if the edge ij is oriented i — j and otherwise let x;; = —1. That
is, for all variables we have x;; = —x;;. Then 4 times number of 3-cycles in a
directed graph is given by

s = 5 Z (T +2xi) - (T +xj0) - (T4 28:) + (1 —2x5) - (1 —x4) - (1 — x¢5))
1<]<k
= Z (1 + xi,]‘x]',k + x]-,kxk,i + xk,ix,-,j)
i<j<k
n
= (3) —+ Z xi,jx]',k—i— Z xj,kxk,i+ Z Xk,iXij
i<j<k i<j<k i<j<k
n
= (3> - Z XijXik — Z XiiXik — Z Xi kX, j
j<i<k k<j<i i<j<k
= ( > —1/2-Y ) xjig
i jk#i

_ (’;>_1/2-Zi; (J;xi,j>2(n1)
- (-0 -x(GEe)

where in the fourth step we switched i and j in the first sum and switched i and k in
the second sum and in the sixth step we used } ;4 x2 j=n—L The inference is that

like in Example we have shown a sum-of-squares certificate for (3) + (5) — 4s.

Thus we obtain
(M)
— 4 3 2 '
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2
When 7 is even the sharper inequality (Zﬁéi xi,]-) > 1 yields the better bound

<))

For n odd the inequality in the bound is an equality when }_;.; x; ; = 0 for all
1 < i < n. That is the in-degree equals the out-degree of each of the vertices i.
Such a tournament is obtained by taking an Eulerian circuit of K, and orienting
the edges along the circuit.

For n even the inequality in the bound is an equality when };; x; ; = 1 for all
1 <i < n. That is the in-degree and the out-degree of each of the vertices i differ
by 1. To form such a tournament, first a complete matching M of K, is picked.
Note that the edges of K;;, — M form a regular graph with even vertex degree. We
therefore orient along an Eulerian circuit in K;, — M and then orient the edges of
M in any way. This forms the required tournament. O

Theorem 2.2.4. The number of 4-cycles in a tournament graph is bounded above by

(n—1)-n-(n+1)-(n—3)/48 ifnisodd,
(n—2)-n-(n+2)-(n—23)/48 ifniseven.

Furthermore, for each n there are tournaments that attain this bound.

Proof. As in the proof of Theorem we let x;; = +1 according to how the
edge ij is oriented i — j. Note that a tournament on 4 vertices has either as 0 or 1
directed 4-cycles. Hence a bound on the number of 4-cycles is given by removing
the number of subgraphs on 4 vertices where one vertex is dominating over the 3
other vertices from ().

s < (Z) - éz Yo (U4 x)) - (T4 xp) - (14 x0)-

i j<k<t
Jk A

We have a similar bound by removing subgraphs where one vertex is dominated
by the 3 other vertices:

s < (Z) - %Z Yo (=) - (1 —xx) - (1= x50).

ij<k<t
jkO£i
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By adding these two bounds and multiplying by 4 we have

n
8-5<8- (4) =Y ) (g 4 X+ X 0)

i jk#F
j.k distinct

3
2
3

4

ij<k<t
ik OAi
n n—1
=8 (4) —n ( 3 ) =Y Y (XX XX XX )
i j<k<t
kb
n n 1
=8 (4) —4: (4> e Yoo Y (g e+ Xipxie)
ikl
k¢ distinct
n\ n
=4 (4) - ' Y. xijik
( n

2
4 > Z (in/]) —(n—-1)

j7i

i

IN

4-(Z)+(n—3)-<’5).

2
Again, when 7 is even we have a sharper bound (Ej;éi xi,]-> > 1, giving

8-5§4-<Z>—W+(ﬂ—3)-(2). O

The examples discussed at the end of the proof of Theorem show that the
bound is attained for each 7.

2.3 Introduction to polynomial rings

We now describe the polynomial we intend to optimize over the set { —1,1} (3). Re-
call the definition of orientation in the beginning of Section[1.1} We try to maximize
the number of compatible 3-simplices over all orientations s : A3([n]) — {—1,1}.
Set s(i, j, k) = x; k- Thus the polynomial to optimize is

pP=g Z (1 = XijkXij e T XijkXike = XijkXjke = XijeXike + XijeXjke
1<i<j<k<t<n

— X e 0 e 0 F X j XX k0 Xk ) - (2.3.1)
It can be checked that for each set i, j, k, £ of four integers the corresponding sum-
mand evaluates to 8 if (i,},k, ¢) is a compatible 3-simplex and 0 otherwise. Thus

p counts the number of oriented 3-simplices and hence maximizing p solves the
problem.
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The goal is to find a real number a as small as possible such that &« — p is a
sum-of-squares modulo the ideal I in the sense of Example

We now determine precisely the polynomial ring p lives in. For this we need
some more definitions.

Definition 2.3.1. An RG-module is a real vector space with the action of a group G by
linear transformations.

Definition 2.3.2. For a polynomial ring R define R 4) to be the vector subspace spanned
by the degree-d monomials in R.

Definition 2.3.3. Define S, ,, to be the set of symbols {xs : S € A™([n])}.

Definition 2.3.4. Define R®[S,, ,,] to be the polynomial ring R[S, ;] modulo relations
xs = (—1)7 - xgs for every S € 8, i and every permutation o € Sg of S.

Definition 2.3.5. For any set X, we denote by F(X) the set of all formal linear combina-
tions of elements of X over the field R.

Definition 2.3.6. Let G be a group. Define the tensor product V1 @ Vo ® - -+ ® Vyy, of
RG-modules V1, Vy, ...,V by F(Vy X Vp X - -+ X Vi) / ~ where the following relations
hold forall 1 <i < k.

(Ull 02,...,0i-1,0i,0i41,+++, Um) + (01/ 02,...,0;_1, 'U;, Oitlsevy Um)

~ (01,02,...,0i_1,0i + U, 0is1, -, Om),

c(v1,02,...,0i1,0i,0i41, -+, Om) ~ (V1,02,...,0i_1,C0;,Vis1, -, Um).
The tensor product is equipped with the induced action of G from the action of G on each
V; that is

g (v1,02,...,0m) ~ (§:01,8° 02, -, & Um)-

Definition 2.3.7. The symmetric product Sym(Vy, Va, ..., Vi) of m copies of V, also
denoted as Sym* (V) is defined as

m m

Sym(Vy, Va, ..., Vi) = { Y Ruei: QuieVi@,®-- ®Vm} :
TEG) =1 i=1

We denote the symmetric product of v; € V; for 1 <i < m by v1v2- - - vp,.

Definition 2.3.8. The exterior product Ext(Vy, Vo, ..., Viu) of m copies of V, also denoted
as Ext™ (V) is defined as

m m
Ext(Vi,Va,..., V) = { Y. (17 Q) vei : R v; € V1®V2®---®Vm}.

ce6y, i=1 i=1

We denote the exterior product of v; € Vi for1 <i <mby vy Avpg A+ N0y
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Remark 2.3.9. Sym™ (V') and Ext™ (V') are RG-modules whenever V is an RG-module.

Lemma 2.3.10. For positive integers m < n and a sequence X = X1,X2, ..., X we have
the isomorphism of RG,, modules,

gb . ]ReXt [Sn,m](l) — Ext™ (IR[X](U)
satisfying ¢(xi iy, in) = Xiy N Xiy A== AN Xj. O
Since the variables x; j ; in the polynomial in Equation all are =1 we only

need to optimize over the quotient ring R®![S,, 3]/ of polynomials that vanish
on I, where I is the ideal generated by xl-,j,k2 —lforalll <i<j<k<n
The polynomial terms are degree either 4, 2 or 0. Note that multiplying xi,j,kZ to
any element of the quotient ring leaves it unchanged, it is enough to consider the
degree 4 terms. We conclude that we need to optimize over the ring

Sym* (Ext’ (R[] 1)))-

where the Sym*-term above covers the degree-k terms.

2.4 General theory of sum-of-squares expressions

We now introduce the general theory of sum-of-squares optimization. See the pa-
pers [8]], [16] and [17] for more details. Recall real symmetric positive semi-definite
matrices are matrices all of whose eigenvalues are non-negative.

Definition 2.4.1. We say p is a d-sum-of-squares (or simply d-SOS) if p can be ex-
pressed as the sum of squares of degree d polynomials.

Theorem 2.4.2. Let p be a polynomial p(x1, Xy, ..., x,) of degree d. Let v be the (column)
vector where the entries are the monomials of degree d or less (and therefore has length

("49)). The polynomial p is a d-SOS if and only if there exists a ("57) x ("+) symmetric
positive semi-definite matrix M such that

oI!Mv=1p
Proof. Setm = (”:;d). We need a preliminary result. We claim that any real sym-

metric positive-definite matrix M has a factorization M = AT A. To prove it let us
diagonalize M via an orthogonal matrix U. That is

M=U"DU (2.4.1)

where D = diag(A1, Ay, ..., Am) has only non-negative eigenvalues. Define a ma-
trix V = diag(v/A1, VA2, - -, VAm). Now we have D = VTV and thus

M=UTvTvu.
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Setting A = VU our claim is proved.

Now we assume p = vl Mov. By means of the factorization above we have
p = vT AT Av = || Av||> which makes p a d-SOS.

Conversely, if p is a d-SOS, then p occurs as the sum of squares of polynomials
each of which is a linear combination of monomials. Thus the list of polynomials
whose squares add up to p is encoded in the column vector Av for some m x m
matrix A. Then the sum of squares of the concerned polynomials is nothing but
p = ||Av||? = vT AT Av. However, AT A is a real symmetric positive semi-definite
matrix and we are done. O

2.5 Classic theory of Specht modules

In general, finding SOS certificates is hard, which is why we need to use the tech-
nique of semi-definite programming to optimize polynomials. See [8] for various
formulations of a semi-definite programming problem and algorithms for their so-
lutions. The optimization algorithms of our interest involves decomposing mod-
ules of an appropriate ring into irreducible submodules. In [16] it is proven that
the aforementioned algorithms can be improved so that the number of irreducible
submodules in the decomposition depends only on the degree of the polynomial
to be optimized. We will define these terms precisely. The key ingredient in this
process is what is known as a Specht module. We now introduce some definitions
with the aim of defining a Specht module. Recall the definition of RG-module
from

Definition 2.5.1. An RG-submodule of V is a subset U of V which is also an RG-
module.

Definition 2.5.2. An RG-module U is said to be irreducible if the only RG-submodules
of U are U and {0}.

Throughout we focus on the case G = &,, where &, is the symmetry group on
n letters.

Definition 2.5.3. A Young tableau of shape A = (A1, Ay, ..., Ax) F n, or a A-tableau
is a finite collection of boxes, or cells, arranged in left-justified rows, with the row lengths
A > Ay > - > A > Ay in that order, where each cell is populated with entries
from [n].

Definition 2.5.4. A standard Young tableau (SYT) of shape (A1, Ay, ..., Ax) F nis
a Young tableau in which the cells are populated with entries in [n] so that they increase
from left to right as well as top to bottom.
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Example 2.5.5. Below A and B are Young Tableaux of shapes (4,2,1) and (3,3,1) re-
spectively, but only A is a SYT.

3/4|6]

A=

ENE
N

1
, B=2]3|7].
15

The group &, acts on tableaux by permuting labels as usual. See example be-
low:

Example 2.5.6. For a permutation T = (12)(345) and a tableau T = g 2 ‘ 4 ‘ 1 ‘, we
have T
o_|3l1]5]2]
= ,

Definition 2.5.7. A tabloid of shape A or a A-tabloid is an equivalence class {T} of a
tableaux T, where T ~ v whenever for every i, the i*" rows of T and v have the same
elements.

712]4]1] 1/2]4]7
Example 2.5.8. Let T = |6 | 3 andv =|3 |6 be tableaux. Then we have
5 5
the following equation of tabloids: o
4 7

1 2
{t}={v}= 3 6
o

Definition 2.5.9. If a tableau T has rows Ry, Ry, . .., Ry and columns C1,Cy, ..., Cy the
row stabilizer R; is given by

Ry =GR, X G, X -+ X Bp,
and the column stabilizer is given by
Cr =6, X B¢, X -+ X B¢,.
Definition 2.5.10. With T from Example we have the following stabilizers.

Rt = G247 XS 36 X S5y,
Cr = G567 X623 X Gy X Gyqy.

Remark 2.5.11. Note that the equivalence class {T} can be expressed as {T} = R¢ - T.
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Definition 2.5.12. For any subset H C &,, we define the following formal sums:

H* = Y n,

neH

H = ) (-1)"m

meH
Definition 2.5.13. We define x. for a partition T by xr = C;.

Definition 2.5.14. For a partition T the associated polytabloid e is defined by . - {T}.

Example 2.5.15. Fort=|1|3 |5 ‘and Id the identity permutation we have
24

xr = (Id —(12))(1d - (34)),

1 3 5 2 3 5 145+245
2 4 1 4 2 3 1 3

er =

Definition 2.5.16. The space M* is defined as the formal linear span of all A-tabloids. In
other words M* is said to be the collection of all polytabloids.

Definition 2.5.17. The Specht module S* is the subspace of M" generated by e for all
A-tableaux T.

2 3 1 3
Example 2.5.18. Let 71 = 1 , T = 5 , T3 = be tabloids. These
tabloids are of shape A = (2,1). We have the following. o
MY = {C1T1 + T + 0373 : C1,C2,C3 € ]R},
M = {em+on+aiic, o €R e +o+4cz =0

The latter is true because here S is generated by the polytabloids T — Ty and T3 — T1.

Definition 2.5.19. The inner product {-,-) on M”* where A \- n is a partition is defined
as follows
({7} {v}) = 6(x} v}, where {T},{v} are A-tabloids

and extended linearly to all of M*.

Theorem 2.5.20. [10, Theorem 3] The irrecudible RS ,,-modules are precisely the Specht
modules S* where A is a partition of n.
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2.6 Polynomial rings in terms of Specht modules

Recall that for a tableau T of shape A - 1, we have that R; is the subgroup of &,
consisting of all permutations that leave the rows of T invariant.

Definition 2.6.1. For an RS,,-module, define
VR —{veV:oc.v=v VoecR.}.
Theorem 2.6.2. [17, Theorem 4.9] For T a tableau of shape A, the following holds

via C v
HEA

where V¥ = (S*)®™r for some positive integers m,,.

Theorem 2.6.3. The Specht module S* has dimension equalling the number of SYTs of
shape A.

Proof. Follows directly from [18, Theorem 2.5.9 and Theorem 2.6.4] which show
that the set
{er : Tisa SYT of shape A}

is a basis for S*. O

Example 2.6.4. For an integer k > 0, we count the number of SYTs of shape (n — k, 1¥)
- known as hook partitions. In an SYT the values ascend as you go down a column or
across to the right along a row. Thus a choice of k integers (neither of which can be 1) along

the tail (the 1%-part) of the hook completely determines the SYT. Thus there are (”;1) SYTs
of shape (n — k,1%). By Theorem |2.6.3|the dimension ofS(”*kflk) is (")

Theorem 2.6.5. Let x = x1,x2,..., X, be a sequence. Then the following decomposition
holds true:
]R[X](l) = S(nil’l) b S(n)

Proof. The monomial x; is fixed by the tableau T of shape (n — 1,1) where i is in
the tail and the elements other than i are inserted into T. Thus we have

VvV C Z VRT C @ VH = (S(n—l,l))®m1 D (S(n))@mz
shape(t)=(n—1,1) u>(n—-1,1)

where the latter containment and the last equality are due to Theorem We
know that V(=11 = (§(n=11)y&m and v(n) = (5(M)&m2 for some my, my > 1. By
Example the dimension of (S~ 11))®m g (§(1))PM2 §s - (n — 1) 4 my - 1.
However this cannot exceed the dimension of V, so we have my(n — 1) + my = n.
Since n was arbitrary, we must have m; = mp = 1. H

36



One can show the following results using Definition
Lemma 2.6.6. For 1 < k < n integers, we have the following isomorphisms
Extk(s(n—l,l)) ~ S(n—k,lk),

Extf(S() = {0} ifk > 2.

Lemma 2.6.7. For integers 1 < k < n we have the isomorphism

Extk(s(n—l,l) ® S(n)) ~ S(n—k.lk) ® S(n—(k—l),lk_l).

Proof. The result follows from Lemma and the fact that

Ext‘(A@B) = Y Ext'(A) ®Ext/(B). O
i+j=k
i,j>0

When k = 3 in Lemma above we have
Ext3(§(1=11) g §(M)) o g(n=3.1%) gy g(n=21%) (2.6.1)
By Theorem we need to work in the ring
Sym4 ( S(n—3,13))

There is no known formula for the multiplicities of the Specht factors of symmetric
products. However, we do know by definition that symmetric products are sub-
modules of the corresponding tensor products. We find an upper bound on the
multiplicities of the Specht modules in the tensor product. These will be obvious
upper bounds for the case of the symmetric product. The following sections will
elaborate on this process.

2.7 Permutations and permutation matrices

First we introduce definitions and notations. Let &,, denote the group of permu-
tations. All permutations hereafter will be defined in one-line notation. We will
denote by [n] the set of all positive integers not exceeding n, i.e., {1,2,..,n}. We
also denote by B, the set of all permutation matrices of order .

Definition 2.7.1. For u € &, in one-line notation, the descent set D(u) C [n —1] is
the set of all positions i such that the i*" letter of u exceeds the (i + 1) letter. That is, if
u=umay...apthenD(u) ={i:1<i<n-—1,a; > aj;1}.
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Definition 2.7.2. The descent composition C(u) of u € &, is given by
C(u) - (ﬂl,ﬂZ —ay1,a3 —az,..., — Ax_1,Nn — Elk)
where the descent set D(u) is given by {ay,a, ..., ax}.

Example 2.7.3. For u = 7562413 € &y, we have D(u) = {1,3,5} and C(u) =
(1,2,2,2).

Definition 2.7.4. We define w : B, — &, by ((Silgj)i,j — 0, where 0 € &, and J is the
Kronecker delta.

Lemma 2.7.5. If U,V € B,, are matrices, then we have w(UV) = w(U)w(V).

Proof. Follows by the definition of matrix multiplication. O
Corollary 2.7.6. For permutations u,v € &, we have w ! (u)w ' (v) = w = (uv).

Definition 2.7.7. Let 1 < a,b < n + 1 be a two integers, M be an n x n matrix. We
write the matrix M in block form below

A B
v=(c o)
where A isan (a — 1) x (b — 1) matrix. We define,
A 0 B
(M)gp:= (0" 1 0
cC 0 D

where 0’s are (column) zero vectors of appropriate length.

Whenever u = w(U) we set (1), = w((U)gp)-
Lemma 2.7.8. For1 <a,b,c < n+1and M, N matrices of order n X n we have,

(M)a,b : (N)b,c = (MN)u,c-

Proof. The proof follows by definition of matrix multiplication. O

Corollary 2.7.9. For integers 1 < a,b,c < n+ 1 and two permutations u,v € S, we
have,

(u)a,b ) (v)b,c = (uv)a,c-
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Proof. Follows by multiplicativity property in Lemma and the definition of
matrix multiplication. O

Corollary 2.7.10. For a permutation u € &,, integers a,b € [n+ 1] and b = u(a), we
have (1w, = (1)),

Proof. By definition of permutation matrices, we have

(1), = @(U)pa) ™ = W ((U)p,0) = @((UT)gp) = (g O

In what follows we denote by 7t o u the concatenation of compositions (or par-
titions) 7t and p.

Lemma 2.7.11. Suppose u € &, is a permutation, a,n,r integers such that 1 < a <
n—r,b=u(a)and v a composition of r. Then we have the equivalence

Cu)=(n—r)om <= C((u)py) =n—r+1)om.

Proof. Firstassume C(u) = (n —r)o . Let (U)p, = w1 ((u)p,). Sincea < n —r,
we use Definition and conclude that (1)}, is ascending for the firstn —r + 1
letters. Examining the blocks in (U), , it is also clear that the descent composition
of the word formed by the last r letters of (1)}, is 7T just as in case of u. Conversely,
we delete the row and the column containing the entry at (b, 2) and conclude that
the descent composition of u is (n —r) o 7. O

We now define a left-inverse of the family of operations defined in Defini-
tion[2.7.71
Definition 2.7.12. For M an n x n matrix and indices 1 < a,b < n let (M)“'b be the
matrix M where the a'* row and b*" column removed.

Whenever u = w(U) and u(b) = a we denote (u)** = w((U)*).

Lemma 2.7.13. Suppose we have three integers 1 < a,b,c < n and two matrices in block

form
A 0 B
Mi=1|0"10"), i=12
C; 0 D

where the singleton block 1 in My and M, are in positions (a,b) and (b, c) respectively.
Then we have
(M Mp)™? = (My)™? (M), (2.7.1)

Proof. Follows by definition of matrix multiplication. O
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Corollary 2.7.14. For integers 1 < a,b,c < n+ 1and permutations u,v € S,, such that
u(b) = aand v(c) = b we have,

(u)a,b . (U)b,c — (uv)a,c.

Proof. Follows by multiplicativity property in Lemma and the definition of
matrix multiplication. O

Corollary 2.7.15. If u € &, is a permutation, a € [n] and b = u(a), then we have

((u)b’”) -1 _ (u—l)a,b_

Proof. The proof is analogous to that of Corollary [2.7.10 O
A 0 B
Corollary 2.7.16. If M = | 0T 1 07 | is a matrix where the singleton block containing
C 0 D
"1 is at position (b,a), then
((M)")p, = M. 2.7.2)
Proof. Follows by Definitions[2.7.7jand 2.7.12 O

Corollary 2.7.17. If v € &, is a permutation satisfying v(a) = b, then

((©)")p0 = v. (2.7.3)

Proof. One proves this statement by passing to the permutation matrices and by

using Corollary [2.7.16 O

Lemma 2.7.18. Forn > 1ifv € 6,41 satisfies v(a) = band v(a+ 1) = b+ 1 for some
1 < a,b < n+1, then there exists unique u € &, such that u(a) = band (u)y, = v,
and u = (v)b".

Proof. We pass to permutation matrices and note by Definition 2.7.12| that u =
(v)b* satisfies u(a) = b. Now by Corollary [2.7.16| the existence follows. The map
which sends u to (u);, is injective by definition so the uniqueness follows. O
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2.8 Ascent behavior of permutations

We need a few preliminary definitions for this study on ascent behavior of permu-
tations.

Definition 2.8.1. For integers 1 < a < n the a'* nerve of a sequence u of permutations
(uy,up, ..., ux) € (6,)k is a sequence a = (ag,ay,...,ay) € [n]**' with ag = a and
aj = uj(aj_q) forall 1 < j < k. We use notation a = My, (u).

Definition 2.8.2. The cumulation of a sequence u = (uy,us,...,u;) € (6,)%isa
sequence © = (0p,01,...,0%) € (6,)" 1 such that oy is the identity and o; = u;0;_1 for
all i > 1. We use notation ¢ = €(u).

Remark 2.8.3. Note that for all 1 < i < k, the permutation o; above is an th partial
product of the sequence (uy,uy, ..., uy). Thatis 0; = uju;_q - - - uy. Further, if o = €(u)
then the a' nerve of u is given by a = (0g(a), o1 (a), ..., o1(a)).

Lemma 2.8.4. If v € S, is a permutation (in one-line notation) and a,b € [n] such that

a < band v is ascending from position a thru b, then v(b) —v(a) > b — a.

Proof. The proof follows from the fact that each ascending step is at least 1. O

Theorem 2.8.5. Suppose the sequence v € (&,)* has a nerve My, (v) = (ag, ay, .. ., ax)
and cumulation €(v) = (0, 01, . .., 0% ) and the following holds - for each 1 < i < k, v; is
ascending from o;_1(ag)™ to o;_1(ag + 1) position. Then the nerve Nyy+1(V) satisfies:

O'k(blo—l—l) = [lk—|—1 — maO_H(V) = (610+1,L11 —|—1,...,ak+1).

Proof. By Remark[2.8.3)we have
oj(ag) =a; V1<j<k (2.8.1)
By Lemma applied in succession, the following inequalities hold:
jv1(a0 +1) = 0j41(a0) = 0j(ao +1) —0j(ag) 21 VI<j<k-1. (282
Now assume v(ag + 1) = a + 1. We have v(ay) = ox(ag) = ax. Thus we have
v(ag+1) —v(ag) = 1.
Thus forall 1 <j < k — 1 from the inequality we have
oi(ag +1) —oj(ag) < 1.
But permutations are injective maps, therefore

oi(ap +1) — oj(ag) = 1. (2.8.3)
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From equations and we have that
gilap+1)=a;+1 V1<j<k (2.8.4)
Now from and the definition of cumulation we have for 1 < j < k that
vi(aj_1+1) =vjoj_1(ag+1) =0j(ap+1) =a; + 1. O

Corollary 2.8.6. Suppose (v1,v2, .. .,v;) € (&) has a nerve My, (v) = (ag,ay, ..., ar)
and cumulation €(v) = (09,04,...,0%) where v = oy. Suppose further that 0 <
r1,72,...,1 are integers such that n > ag + Zﬁ-‘zl ri and C(v;) = (n —r;) o u; with
u; composition of v; for all 1 < i < k. Then we have for all 1 < j < k the inequality

aj—1 < n—tj.

Proof. By Remark we need to show that ¢j_;(ag) < n —r;. We prove this
inequality for all 1 <j < k by proving the two inequalities below

j—1
oji_1(a0) < ag+ ) ri (2.8.5)
i=1
-1
ap + Z rp < n—tj. (2.8.6)
i=1

The inequality is true since n — Y.}_,r; —ap > n— Y5 7, —ap > 0 by hy-
pothesis. We now prove the second inequality in by induction. For j =1
this becomes op(ag) < ap which is true since oy is the identity. This establishes the
basic step. Inductively assume holds for a particular 1 < j < k. This com-
bined with shows that 0j_1(ap) < n —r;. Thus the ascending behavior

of v;
ensures that v; is increasing from ¢;_1 (a9)™ to (n — r;)™ position thus Lemmam
be comes applicable. Thus we have

n—j(oj-1(a0)) = vj(n —r;) = v(0j-1(a0))
> n—rj—0j_1(ao)

j—1
n—rj— <a0+ Zrl)
i=1

where the first inequality is because v; € &;, the second by Lemma and the
third by induction hypothesis. Rearranging the terms yields

Y

j
n—vj(oj_1(ag)) > n— (ao +) rl-) . (2.8.7)

i=1
Canceling the term 7 in the equation (2.8.7) we have a; = oj(ao) = vjoj_1(ag) <
ao + Zﬁzl r; which proves the induction step. O
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Corollary 2.8.7. Suppose n,r; where 1 < i < k are integers with n > 1+ 25-‘:1 1

and yi; is a composition of r; for each i. Let v = (v1,0y,...,0;) € (Sny1)" with nerve
MNi(v) = (1,a4,...,a;) and cumulation €(v) = (09,04, . .., 0%) satisfying the following
equality

Cloj))=m+1—-r)ou; vV1<i<k.

Then we have the implication

O'k(2) =g +1 = m2(V) = (2,a1—1—1,a2—|—1,...,ak+1).

Proof. Firstly let 03(2) = ax + 1. By Remark we have 0y (1) = a;. Thus we
have as an immediate consequence,

0k(2) —ox(1) = 1.
Again by Remark2.8.3we get 0;(1) = a; for all 0 < j < k. If we show
0']',1(1) < 0']',1(2) <n-— T +1 (2.8.8)

then we are done because we know hypothesis implies that v; is ascending for the
first n — r; + 1 letters; this forces v; to ascend from ¢j_1 (1) to 0j_1(2)™ position
for every j and we are done by Theorem Thus it suffices to prove (2.8.8). By
hypothesis we have n +1 > 24 YX_ r;. Thus by Corollarywith n+1in place
of n and 4y = 2 the second inequality in is true.

We turn to proving the first part of equation (2.8.8). For j = 1 the inequality
holds since oy is the identity. Let us assume the inequality holds for some 1 < j <
k. By the second inequality in (2.8.8) we conclude

0']',1(1) < 0']',1(2) <n-— T+ 1.
The ascending behavior of v; now ensures
0'](1) = U]'O']',l(l) < U]'O'J',l(Z) = 0'](2)

and the proof follows by induction. Thus (2.8.8) holds and the theorem follows.
0

2.9 Specht factors of the tensor product of Specht modules

In this section, we are interested in the multiplicities of Specht modules in the
direct-sum decomposition of the tensor product of finitely many Specht modules.
We begin by stating a remark which is straightforward to check.
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Remark 2.9.1. It can be checked that there is at most one SYT T for any permutation
u € &y, such that the letters of u inserted in order from left to right, bottom to top forms
the SYT t. This is because C(u) determines the rows of T uniquely. That brings us to the
below definition.

Definition 2.9.2. For a permutation u € S, if the letters of u inserted in order from
left to right, bottom to top forms a SYT T of shape A then we say that the companion
tableau T(u) is T and the companion partition T(u) is A. Else we write T(u) = @ and
T(u)=0Q.

Example 2.9.3. For u = 5271346, we have T(u) = (4,2,1) since we have the following
companion tableau:

1/3/4]6]
T(u) =27
5

On the other hand for v = 6571423, we have T(v) = @.

Definition 2.9.4. A tableau A is said to be truncatable if deleting the first entry, shifting
the first row one cell to the left and then subtracting 1 from each entry gives a valid tableau
which is called the truncation of A denoted by A"

Example 2.9.5. Among the tableaux below, A is not truncatable whereas B is truncatable
with truncation given below.

134\32124\Btr:13

A=Ts 3/5 214

Definition 2.9.6. Let (Q, ) € (Py)* x Py, Q = (y1, pt2, - - -, ix). We define P - to be
the set of all tuples (uy,ua, . .., ug, u) € (6,) 1 satisfying the following:
i. Clu)) =piforl <i<k;
. U = Uglp_q--- Uy, and
ii. Tw™') =1
For 7, ji; as above let the multiplicity of ST in the tensor product & <;< S" be
denoted by (ST, ®1<;<x S").

Theorem 2.9.7. [9, Theorem 17] (Gessel) For an integer n > 1, and Q € (Pn)k where
Q= (1,2, ..., py) and a partition T - n, we have

(ST, ®@1<i<k SM) = |Pg| -

44



For the rest of this article, we refer to partitions of n whose first partis A; =
n — r for some r > 0. We denote such a partition by (n — r, r) where 77 - r.

Theorem 2.9.8. Forn > 0and 1 < k < n — 1 integers we have

<S(n)’5(n—k,1k) ® S(n—m,lm)> = G-

Proof. Set Q = ((n —k,1¥), (n —m,1™)) and T = (n) the trivial partition.

Suppose k = m. By Definition[2.9.6, P r must only have tuples (u,v,1d) which

satisfy
D(u) =D(v) = [n—k,n—1].

This forces u(n — k) = v(n —k) = n. By definition of Po, we have v = u~™.
Consequently we have that v(n) = u(n) = n — k. Thus, we deduce directly from
the descent sets that u = v and u is the involution that reverses the last k +- 1 letters.
Thus Po = {(u,u,1d)} with u as above. By Theorem the trivial summand
has multiplicity 1 and the case k = m is disposed.

Now we claim that Pg ; # @ implies k = m. If we prove this implication then
we are done. We know

Du)=[n—kmn—-1 and D(v)=[n—m,n—1].

As before we have the equation 1 = v~! and consequently the equalities u(n —
k) = v(n—m) =n,u(n) =n—mand v(n) = n —k. We therefore have a strict
decreasing sequence in {n,...,n —m} in u, of length k 4+ 1. The longest such se-
quence has length m + 1. Thus we deduce k < m. Similarly with v instead we
show that m < k. This forces k = m. O

Theorem 2.9.9. For integers k, m such that k +m < n — 1 and partitions =k, o = m,
bk rand A = (n —r, u) we have the implication

<S/\’5(n—k,7f) ® S(n—m,0)> ?é 0 —= r< k+ m.
Proof. Let Qbe ((n —k) o, (n—m) o). We firstly have that the tuples (u1,up, v)
in Pg A must satisfy uouq = v and the following descent set containments:
D(u;) Cn—kmn—1] and D(up) C[n—m,n—1].

Every permutation u; with a descent set as above satisfies 111(1) < k+1 <n —m.
Now as a consequence of the D(uy) above, we have v(1) = up(u1(1)) < upx(k +
1) < k+ m + 1. Therefore, we have

o(1) <k+m+1. (2.9.1)
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This shows that v~ ! written in one-line notation must have 1 occuring in position
v(1) <1+ k+ m. Now, a valid SYT must have in its first row, exactly the letters of
v~ ! starting from v(1)!" to n*" position, whichis n — r = n — v(1) + 1 letters. Thus

from (2.9.1) we have,
r=9v(1)—1<k+m. L

Corollary 2.9.10. For I a finite index set and r,r; > 0 integers y = r and y; &= r; for all
i € I a finite ordered indexing set, the following implication holds

<S(1’l—r,y)’®iel S(n_rirﬂi)> 7£ 0 — S ZZEI 1’1-.

Proof. Note that the case |I| = 2 is Theorem Thus the proof is very similar.
[

Theorem 2.9.11. Suppose for r; > 0 integers, u; = r;, u &= r partitions and r > 1 we
have

S={(n—r)om}y, T=(-r)op
S={n—ri+Nou)},, "=m-r+1)opn
Let ¢ : Psr — Pgr o be defined by

(P(ul/ Uz, ..., Ug, u) = ((”1)611/5101 (”2)612,611’ SR (uk)ﬂkﬂk—y (”)ak,ﬂo)'

where (ag, ay, . .., ax) is the first nerve of (uq,uy, ..., ux). Then the following holds:

(a) Ifn>1+ Z;-‘Zl rj then ¢ is well-defined and injective.

(b) Ifn>r+ Z;‘:l rj then ¢ is surjective.

Proof. We start by proving the first statement. The map ¢ is injective by definition
if well-defined. Thus we only need to show that the image of any element in the
domain lies in the range. Let 0y be the identity permutation and ¢; = u;0; 1 for all
1 <j <k Alsolet (ag,ay,...,a;) be the first nerve of (v1,vy,...,vk). Thus we get
a;j = 0j(1) forall 0 < j < k. By Corollarywe have for all 1 < i < k that

a1 =0;1(1) <n-—r.

Since C(u;) = (n — r;) o p; it follows from Lemma 2.7.11|that for all 1 < i < k we
have

C ((ui)aya; ) = (n—ri+1) opy. (29.2)

We additionally have T(u~1) = (n — r) o u by hypothesis. Thus we have the equal-
ities

T(()g1 ) =T((u )1g)=m—r+1)op, (2.9.3)
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where the equalities follow from Corollary 2.7.10|and from Lemma [2.7.11|in that
order. Now, by Corollary we know that

(”k)akﬂkfl(uk—l)ﬂkfl,akfz T (”1)011/010 = (u)ﬂkﬂO' (2'9'4)

From equations (2.9.2), (2.9.3) and (2.9.4) and Definition it follows that ¢ maps

into Pg » and is therefore well-defined.

We proceed to proving the second statement. We do this by directly computing
the pre-image of each element in the range under ¢ and showing that it lies in the
domain. Using the fact that the composition of increasing functions is increasing

one shows that v = vvr_1 - - - v1 is ascending in the first n — <Zi~‘:1 ri> + 1 letters.

Thus v is ascending until position r +1 < n — (Zi-‘zl ri> + 1. Consequently, v~ !

must have the letters 1, 2, ..., r + 1 appear in that order a priori not necessarily
successively.

However, if v~ fits in an SYT then the letter 1 cannot be followed by a descent.
Thus the letters 1 through r + 1 must be successive letters in v~! and hence the
first row of the tableau has the entries 1,2,...,7 4+ 1 in succession and possibly
more entries, all in ascending order. Since r > 1, the letter 2 must follow 1 in
tableau B. Thus letting v~ (a;) = 1 we have v~ (a; + 1) = 2. Therefore we infer

v(2) = a+ 1. (2.9.5)

Since y I r, the second row has r or fewer entries each of which exceeds r + 1. Set
T(v~!) = B. It can be checked that the first two rows of B have the form given
below wherej <randr+1<m; <mp < --- < My_,_1.

1 2 ] ]'_|_1 r+1|my|my My—y—1

Further the tableau B = A has shape (1 — r) o  and we have A = T((v~1)4%).
Thus we get

T((o YY) = (n—r)opu. (2.9.6)

Let (1,ay,...,a,_1,by) be the first nerve of (vq,vy,...,vx). Thus we have

ar = v(ag) = vxvx_1- - v1(ap) = b.

This implies (v1, vy, ..., v) has first nerve (1,43, ...,4;). This fact combined with
(2.9.5) implies that the tuple (vy,v,...,v;) and the sequence (1,ay,...,a;) now
satisfy the hypotheses of Theorem and we therefore have forall1 < j <k
that

Z)]'(aj_l + 1) =a;+ 1. (2.9.7)
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Since v(1) = a and vj(aj_1) = a; for all j, by equations (2.9.5) and (2.9.7) and
Lemma[2.7.18 we have

(1) 4,0, = v and (v)*% =y, (2.9.8)
u(ag) = a, (2.9.9)

(4j)aje; , = vjand (v)V1 =u; V1<j<k, (2.9.10)
ui(aji_) =a; v1<j<k (2.9.11)

Thus ¢(uy, up, ..., ug,u) = (vl, vy, ..., U, 0) and by we have (ag, a1y, ..., ax)
is the first nerve of (uy, uy, . . . It remains to check that u satisfies the conditions
in Def1mt1onn By Lemma and equation (2 we have u~1 = (v=1)%4k,
Thus by (2.9.6) we have the th1rd condltlon

T(u ) =m—-r)opn
By the multiplicativity property in Corollary we have the second condition
Ut - - - g = (0) W0 (0 ) W2 - ()0 = (0)% =
Finally it now follows from Lemma that the first condition below also holds:
Cuj))=m—ri)ou; V1<i<k. O
Corollary 2.9.12. Given r; > 0 are integers and y; = r;, u = v (r > 1) are partitions, the

coefficient <S(”_r)°", Rk, S(”_”)Oﬂi> is an increasing function of n forn > 1+ Y5 r;

and constant forn > r + Y5 7.

Proof. Follows directly from Theorem and Theorem [2.9.1T O

210 Concluding Remarks

Unfortunately we were unable to carry out the calculation of the decomposition
of the &, module Sym*(Ext*(V)) into Specht modules. Thus we decomposed
(Ext*(V))®* which contains Sym*(Ext*(V)) as a submodule. The decomposition
of the tensor product is computed in the Appendix.

The computations were done via a computer search using the programming
language of Python, for k-tuples of permutations satisyfing the conditions in the
Definition for Pg . where Q is a k-tuple of partitions of n. Let m, and n, be
multiplicities of $* in Sym*(Ext?(V)) and (Ext?(V))®* respectively. The multiplic-
ities n) are tabulated in the Appendix. We have chosen values of n for each table
large enough that the hypotheses in Corollary2.9.12]are satisfied. Thus 7, is stable
at its values given in the Appendix. By [16, Theorem 2.2], we need to solve a semi-
definite programming problem of size ) , m,. We have )}, m, <}, n), = 911300
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as the maximum size of the problem, where the last equality is arrived at using
equations and on the multiplicities tabulated in the Appendix. Since
the symmetric power has a total dimension of approximately 1/4!" of that of the
tensor power here, this upper bound is possibly a very crude one.

Copyright© Karthik Chandrasekhar, 2019.
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Appendix: Multiplicities of Specht modules

We tabulate the multiplicities
<S(n—k,y)’ (S(n—3,13))69i ® (S(n—2,12))@j> )

where i +j = 2 and p is a partition of k. We do the same for i +j = 4. Recall
that by Corollary 2.9.12] the multiplicities stabilize for n > k + 3i 4 2j. Also by
Corollary [2.9.10| we have k < 3i 4 2j. So partitions (n — k) o u with k > 3i + 2j
have zero multiplicity. In all the tables below we set Q;; to the multiset {(n —
3,13)!, (n — 2,12)/} of partitions of n. Also, each cell in the table is the cardinality
of Pg  for the corresponding partition 7 and the multiset Q = Q;; € P,. For
each table we choose a value n = k + 3(i —|— j) > k + 3i + 2j thus the multiplicities
are stable in the sense of Corollary 2. The exception is Table [??l where we
use Theorem [2.9.§ n The total mult1pl1c1ty of (Ext®>(V))®2 and (Ext?( V))®4 can be
computed using the below equations:

(Ext}(V))®2 = (§(1=31°) g g(n=21%))e2

(n—3,13) ®1 (n—2,1%)\®2—i @(%)
—Z( ® (Sin21)e2-)

= Z(Qz—i,i)@@) (A1)
i=0

Similarly to above equation (A.1) we have

4
(EXt3 Z Qs 11 i (A.2)

i=0

The multiplicity of ST in the tensor product ,co S” were computed using
2.9.7|that is by enumerating the set of all permutations in Pg .
y & p Q
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Multiplicities fori +j = 2

T=(n—6)ouy ukF6 n=12

T Q20 | Q11 | Qo2
(n—6,1°) 1 0 0
(n—6,2,1%) | 1 0 0
(n—6,2%,12) | 1 0 0
(n—6,2%) 1 0 0

T=(m—-5opu uk5 n=11

T 1 2

(n—5,1°)

(n—5,2,13)

(n—5,22,1)

(n—5,3,1%)

| o] o] = | B

I=}
OOP—\P—\F—\Z._Q
ooooog)

(n—5,3,2)

T=m—-4)ou uk4 n=10

0| Q

T

—_

,1 2

(n —4,1%)

(n—4,2,1%)

(n—4,2,2)

(n—4,3,1)

HNNNHQ
OO»—\H»—\ZOC)

(n—4,4)

O8] ol R RN~

t=(n-3)ou pr

T 0

(n—3,13)

(n—3,2,1)

ro| 1| =&
SN
R
HI\J»-\Q
o

(n—3,3)

T=m—-2)ou ut-2 n=3=8
T Q20 | Q11 | Qo2

(n—2,1%) | 1 1 1

mn—-22) | 2 | 1 | 2

T=mn-11) n=7

T Q20 | Q11 | Qop
-1, 1 | 1 | 1

T=(n) n=4

T | Q20 | Q11| Qo2
M| 1 | 0 | 1
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Multiplicities fori +j = 4

T=m-12)ou uk12 n=24

H Qa0 | Q31 | Qo2 | Q13 | Qoa
(112) 1 0 0 0 0
(2,110) 3 0 0 0 0
(22,1%) 6 0 0 0 0
(23,1°) 10 | 0 0 0 0
(24,1%) 11 | 0 0 0 0
(2°,1?) 9 0 0 0 0
(2°) 4 0 0 0 0
(3,19) 3 0 0 0 0
(3,2,17) | 8 0 0 0 0
(3,22,1°) | 15 | 0 0 0 0
(3,23,13) | 16 | © 0 0 0
(3,241) | 11 | 0 0 0 0
(3%,1°) 6 0 0 0 0
(32,2,1%) | 15 | 0 0 0 0
(3%,22,1) | 15 | 0 0 0 0
(32,2%) 6 0 0 0 0
(3%,13) 10 [ 0 0 0 0
(3%,2,1) 8 0 0 0 0
(3% 1 0 0 0 0
(4,18) 1 0 0 0 0
(4,2,19) 3 0 0 0 0
(4,22,1%) | 6 0 0 0 0
(4,23,12) | 6 0 0 0 0
(4,2%) 3 0 0 0 0
(4,3,1°) | 3 0 0 0 0
(4,3,2,13)| 8 0 0 0 0
(4,3,22,1) | 7 0 0 0 0
(4,3%,1%) | 6 0 0 0 0
(4,3%,2) | 3 0 0 0 0
(42,1%) 1 0 0 0 0
(4%,2,1>) | 3 0 0 0 0
(42,2?) 2 0 0 0 0
(42,3,1) | 3 0 0 0 0
(4°) 1 0 0 0 0
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T=m—-11)opu uk11

n=23

H Qa0 | Q31 | Qo2 | Q13 | Qoa

(1t 6 1 0 0 0
(2,19) 24 | 3 0 0 0
(22,17) 54 | 6 0 0 0
(23,1°) 84 | 9 0 0 0
(24,1%) | 90 | 9 0 0 0
(2°,1) 60 | 6 0 0 0
(3,18) 36 | 3 0 0 0
(3,2,1%) [ 102 | 8 0 0 0
(3,22,1%) [ 162 | 13 | 0 0 0
(3,23,12) [ 156 | 12 | 0 0 0
(3,2%) 66 | 5 0 0 0
(3%2,1°) | 84 | 6 0 0 0
(3%,2,13) | 156 | 12 | © 0 0
(3%,22,1) | 126 | 9 0 0 0
(3%,1%) 72 | 6 0 0 0
(3°,2) 42 | 3 0 0 0
(4,17) 24 | 1 0 0 0
(4,2,1%) | 72 | 3 0 0 0
(4,22,1%) | 108 | 5 0 0 0
(4,25,1) | 84 | 4 0 0 0
(4,3,1%) | 72 | 3 0 0 0
(4,3,2,12) | 120 | 6 0 0 0
(4,3,2%) | 60 | 3 0 0 0
(4,3%2,1) | 48 | 3 0 0 0
(42,13 | 24 | 1 0 0 0
(42,2,1) | 36 | 2 0 0 0
(42,3) 12 | 1 0 0 0
(5,1°) 6 0 0 0 0
(5,2,1%) | 18 [ 0 0 0 0
(5,22,12) | 24 | 0 0 0 0
(5,23) 12 | 0 0 0 0
(53,13 | 18 [ 0 0 0 0
(5,3,2,1) | 24 | 0 0 0 0
(5,3%) 6 0 0 0 0
(5,4,1%) | 6 0 0 0 0
(5,4,2) 6 0 0 0 0
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T=m—-10)ou uk10 n=22

H Qa0 | Q31

N

(119) 25 | 6

(2,1%) | 115 | 24

(22,1%) | 273 | 51

(2%,1%) | 403 | 72

(2%4,1%) | 381 | 66

(2°) 161 | 27

(3,17) | 216 | 36

(3,2,1°) | 608 | 93

(3,22,13) | 864 | 129

(3,23,1) | 660 | 96

(3%,1%) | 503 | 69

(3%,2,1%) | 765 | 105

(3%,2%) | 376 | 51

(3%,1) | 259 | 36

(4,1°) | 208 | 24

(4,2,1%) | 561 | 63

(4,2%2,1%) | 693 | 78

(4,2%) | 328 | 36

(4,3,1°) | 510 | 54

(4,3,2,1) | 608 | 66

(4,3%) | 129 | 15

(42,1?) | 160 | 15

(42,2) | 120 | 12

(5,1°) [ 103 | 6

(] o] o] o) f o) f ol ol ol o) o] o] o) ol o] o) ol o) ol ol o) o) ol ol o] o) ol o] o) o) ol o) o OOO\Z;_Q
(e8]
o>} Nl He») Heo) Feo) Nl o] o) Hool H o) Hoo) Hoo) Heo) N o] Nl o] Heo) N o) ool Hool R ool H ool N o) o) Foo) Hor] Roo] Hoo]l R ool N ool Heo) Nan) CD(D(D\ZOCD
NS

(5,2,13) | 240 | 15
(5,22,1) | 231 | 15
(53,1%2) | 186 | 12
(5,3,2) [ 131 | 9
(5,4,1) | 52 | 3
(5%) 3 0
6,1%) [ 21 | 0
(6,2,1) | 39 | 0
6,22) | 24 | 0
6,31) [ 21 | 0
(6,4) 3 0
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T=(mn—-9ou ukF9 n=21

H Qa0 | Q31 | Q22 | Q13 | Qoa
(1) 85 | 25 | 6 1 0
(2,17) | 426 | 112 | 24 | 3 0
(22,1°) | 993 | 243 | 48 | 6 0
(23,1%) | 1346|315 | 60 | 7 0
(24,1) [1007 | 231 | 43 | 5 0
(3,1%) | 886 | 201 | 36 | 3 0
(3,2,1%) [ 2337 | 500 | 84 | 8 0
(3,22,1%) [ 2853 | 591 | 97 | 9 0
(3,2%) | 1328|271 | 44 | 4 0
(3%,1%) | 1798 | 356 | 55 | 6 0
(3%,2,1) | 2084 | 403 | 62 | 6 0
(3°) 417 | 78 | 12 | 1 0
(4,1°) | 968 | 181 | 24 | 1 0
(4,2,1%) [ 2340 | 417 | 54 | 3 0
(4,22,1) | 2214 | 387 | 50 | 3 0
(4,3,1%2) | 1836 | 306 | 38 | 3 0
(4,3,2) [ 1246 | 206 | 26 | 2 0
(4%,1) | 464 | 70 | 8 1 0
(5,1%) | 579 | 82 | 6 0 0
(5,2,1%) [ 1149 | 156 | 12 | © 0
(5,22) | 640 | 86 | 7 0 0
(5,3,1) | 687 | 87 | 7 0 0
(5,4) | 117 | 13 | 1 0 0
(6,13) | 178 | 15 | 0 0 0
(6,2,1) | 256 | 21 | 0 0 0
(6,3) 82 | 6 0 0 0
(7,12%) 22 | 0 0 0 0
(7,2) 18 | 0 0 0 0
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T=(mn—k)oy ukk k=78 n=k+12

T Qo | Q31 | Q22 | Q13 | Qoa

(n—8,18) 251 | 84 | 25 | 6 1
(n—8,2,1%) | 1273 | 388 | 109 | 24 | 3
(n—8,2%,1%) | 2761 | 803 | 213 | 45 | 6
(n—8,2%,1%) | 3205 | 904 | 232 | 48 | 6
(n—8,2%) 1470 | 406 | 104 | 21 | 3
(n—8,3,1°) | 2634 | 732 | 186 | 36 | 3
(n—8,3,2,1%) | 6208 | 1658 | 398 | 75 | 8
(n—8,3,2%,1) | 5839 | 1518 | 356 | 66 | 7
(n—8,3%,1%) | 4106 | 1038 | 232 | 42 | 6
(n—8,3%) | 2763 | 684 | 150 | 27 | 3
(n—8,4,1%) | 2858 | 715 | 155 | 24 | 1
(n—8,4,2,1%) | 5853 | 1404 | 290 | 45 | 3
(n—8,4,2%) | 3272 | 765 | 157 | 24 | 2
(n—8,4,3,1) | 3539 | 801 | 155 | 24 | 3
(n —8,4?) 538 | 112 | 20 | 3 1
(n—8,51%) | 1735 | 376 | 63 | 6 0
(n—8,52,1) | 2632 | 542 | 88 | 9 0
(n—8,53) | 927 | 178 | 27 | 3 0
(n—8,6,1%) | 579 | 99 | 10 | 0 0
(n—8,6,2) | 483 [ 77 | 8 0 0
(n—8,7,1) 96 10 0 0 0
(n—38,8) 6 0 0 0 0
(n—7,17) 643 | 230 | 83 | 25 | 6
(n—7,2,1°) | 2992 | 1030 | 350 | 106 | 24
(n—7,22,1%) | 5724 | 1911 | 626 | 183 | 42
(n—17,23,1) | 5092 | 1666 | 533 | 154 | 36
(n—7,3,1%) | 5671 | 1860 | 590 | 171 | 36
(n—7,3,2,1%) [ 11159 | 3551 | 1088 | 302 | 66
(n—7,3,2%) | 6173 [ 1929 | 581 | 159 | 36
(n—7,3%,1) | 5591 | 1712 | 501 | 131 | 30
(n—7,4,1%) | 5594 | 1724 | 501 | 130 | 24
(n—7,4,2,1) | 8561 [ 2558 | 718 | 180 | 36
(n—7,4,3) | 2962 | 852 | 228 | 54 | 12
(n—7,51%) | 3031 | 859 | 220 | 46 | 6
(n—7,52) | 2586 | 709 | 176 | 36 | 6
(n—7,6,1) 862 | 216 | 45 | 6 0
(n—7,7) 103 | 21 3 0 0

56




T=m—-k)oy ubk k<6 n=k+12

T Qa0 | Q31 | Q22 | Q13 | Qos
(n—6,1%) | 1291 | 507 | 209 | 82 | 25
(n—6,2,1%) | 5278 | 2044 | 810 | 312 | 103
(n—6,22,1%) | 8320 | 3162 | 1221 | 462 | 153
(n—6,2%) | 4353 | 1628 | 624 | 232 | 81
(n—6,3,1%) | 8624 | 3256 | 1234 | 460 | 156
(n—6,3,2,1) | 12500 | 4619 | 1716 | 625 | 212
(n—6,3%) | 3523 | 1272 | 460 | 163 | 53
(n—6,4,1%) | 7046 | 2562 | 922 | 325 | 106
(n—6,4,2) | 5952 | 2118 | 753 | 258 | 87
(n—6,51) | 2890 | 997 | 338 | 108 | 31
(n—6,6) 481 | 154 | 49 | 13 | 3
(n—5,1°) | 1923 | 849 | 390 | 188 | 81
(n—5,2,1%) | 6688 | 2906 | 1312 | 613 | 274
(n—5,22,1) | 7748 | 3318 | 1477 | 682 | 311
(n—5,3,1%2) | 8773 | 3738 | 1648 | 747 | 342
(n—5,3,2) | 6981 | 2932|1280 | 575 | 267
(n—5,4,1) | 5164 | 2144 | 919 | 403 | 186
(n—5,5) 1156 | 463 | 193 | 81 | 37
(n—4,1%) | 2101 | 1028 | 528 | 291 | 167
(n—4,2,1%) | 5804 | 2796 | 1417 | 771 | 439
(n—4,2,2) | 3749 [ 1778 | 900 | 483 | 285
(n—4,3,1) | 5385 | 2542 | 1274 | 679 | 390
(n—4,4) 1682 | 774 | 385 | 199 | 118
(n—3,1%) | 1644 | 874 | 496 | 306 | 209
(n—3,2,1) | 3174 [ 1660 | 935 | 573 | 396
(n—3,3) 1541 | 789 | 442 | 268 | 187
(n—2,1%) 874 | 496 | 306 | 209 | 162
(n—2,2) 876 | 484 [ 301 | 202 | 165
(n—1,1) 286 | 168 | 112 | 83 | 74

(n) 45 | 25 | 19 | 14 | 16
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