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ABSTRACT OF DISSERTATION

A REPRESENTATION THEOREM FOR MATERIAL TENSORS OF TEXTURED
THIN SHEETS WITH WEAK PLANAR ANISOTROPY

Herein we consider material tensors that pertain to thin sheets or thin films, which we
model as two-dimensional objects. We assume that the thin sheet in question carries a
crystallographic texture characterized by an orientation distribution function defined on
the rotation group SO(3), which is almost transversely-isotropic about the sheet normal so
that mechanical and physical properties of the thin sheet have weak planar-anisotropy. We
present a procedure by which a special orthonormal basis can be determined in each tensor
subspace invariant under the action of the orthogonal group O(2). We call members of such
special bases irreducible basis tensors under O(2). For the class of thin sheets in question,
we derive a representation formula in which each tensor in any given tensor subspace Z is
written as the sum of a transversely-isotropic term and a linear combination of orthonor-
mal irreducible basis tensors in Z, where the coefficients are given explicitly in terms of
texture coefficients and undetermined material parameters. In addition to the general rep-
resentation formula, we present also the specialized form for subspaces of tensor products
of second-order symmetric tensors, a type commonly found in mechanics of materials.
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Chapter 1 Introduction

Many materials are polycrystalline aggregates of tiny crystallites or grains of various sizes

and shapes separated by grain boundaries. In theories on physical properties of polycrys-

tals, as a first approximation, all effects of grain boundaries are ignored and the constituent

crystallites of the polycrystal are taken as parts of perfect single crystals, the crystal lat-

tices of which have different orientations in space. As each crystallite is anisotropic,

the macroscopic physical properties of the polycrystal will likewise be anisotropic unless

the orientations of its constituent crystallites are completely random. Manufacturing pro-

cesses (e.g., annealing and hot/cold rolling in the case of sheet metals), however, usually

impart the constituent crystallites of polycrystalline products with preferred orientations,

which are called crystallographic texture in materials science and are quantitatively char-

acterized by orientation distribution functions (ODFs) defined on the rotation group SO(3)

[1, 3, 4, 5, 9, 11, 20, 21].

Material properties are often described by tensors of various types. Material tensors

pertaining to polycrystalline aggregates should manifest the influence of crystallographic

texture on material properties. Many papers which study the effects of texture on various

material properties have been published. But, until the work of Man and Huang [14], all

these papers were restricted to some specific classes of tensors (e.g. second-order tensors

that describe thermal conductivity, optical refractive index and electrical conductivity, the

fourth-order elasticity tensor, the sixth-order acoustoelastic tensor, etc.) and were restricted

to some specific texture and crystal symmetries (e.g., orthorhombic aggregates of cubic or
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hexagonal crystallites were mostly studied). Man and Huang [14] derived a representation

theorem by which any material tensor of a weakly-textured polycrystal can be expressed

as a linear combination of an orthonormal set of irreducible basis tensors, with the com-

ponents given explicitly in terms of texture coefficients and a set of undetermined material

parameters. In their paper they provide a procedure by which the irreducible basis tensors

can be constructed explicitly. The representation theorem of Man and Huang, however, is

valid only for “weakly-textured polycrystals”, which means that they are almost isotropic

in the following sense: All the texture coefficients of the polycrystalline aggregate cl
mn with

l ≥ 1 (i.e., except c0
00, which pertains to the isotropic term; see (4.1)) are sufficiently small

that material tensors which characterize its physical properties can be taken as linear in

texture coefficients with l ≥ 1.

Manufacturing processes such as hot/cold rolling and annealing, however, often pro-

duce sheet metals which show high normal plastic anisotropy and low planar plastic anisotropy,

as reflected in high average r-value and low ∆r-value, respectively (see, e.g., [6, 7]). In

other words, the material is almost transversely-isotropic about the sheet normal but can-

not be taken as almost isotropic. In terms of texture coefficients with l ≥ 1, all cl
mn with

m , 0 are small, while cl
0n = 0 for odd l and there is no restriction on cl

0n for even l; see the

discussion in Chapter 4 until (4.15). The objective of the present research is to extend the

representation theorem of Man and Huang to cover this rather common situation for thin

sheets and thin films.

In this dissertation we model the homogeneous thin sheet or film in question as a

two-dimensional object that lies in a Euclidean plane E2 in the three-dimensional phys-

ical space, and we consider material tensors that pertain to its in-plane properties. On the

2



other hand, we allow flipping the sheet over to exchange its top and bottom faces as a legiti-

mate symmetry operation. The material tensors are based on V , the translation space of E2.

The group of symmetry operations for V is the orthogonal group O(2). As the thin sheet

consists of crystallites with orientations in three-dimensional space, we will keep using the

ODF defined on the rotation group SO(3) to define its texture.

The plan of this dissertation is as follows. After presenting some preliminaries in Chap-

ter 2, we discuss decomposition of a tensor space into its irreducible parts in Chapter 3. In

particular we present a method to determine a special orthonormal basis in any invariant

subspace of tensors which will be instrumental in our proof of the representation theorem

in Chapter 4. For reasons to be given in Chapter 3, members of such special bases will be

called irreducible tensor basis under the group O(2). To illustrate the procedure to gener-

ate the irreducible basis tensors in a given tensor space, we provide examples where the

tensor space in question is a subspace of tensor products of second-order symmetric ten-

sors, partly because this type of tensors is commonly found in mechanics of materials, and

partly because we can use the Kelvin notation to simplify the presentation of the resulting

irreducible basis tensors.

Chapter 4 is devoted to a derivation of the representation theorem we want to get. There

we adopt the same physical assumption (4.17) as that of Man and Huang [14, equation

(41)], which is suggested by the Principle of Material Frame-Indifference. We consider

thin sheets (or films) that are almost transversely-isotropic about the sheet normal. For the

class of thin sheets in question, we derive a representation formula in which each tensor

in any given tensor subspace Z is written as the sum of a transversely-isotropic term and

a linear combination of orthonormal irreducible basis tensors in Z, where the coefficients
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are given explicitly in terms of texture coefficients and undetermined material parameters.

In addition to the general representation formula, we present also the specialized form for

subspaces of tensor products of second-order symmetric tensors.

We end the dissertation with some concluding remarks in Chapter 5.

Copyright c© Yucong Sang, 2018.
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Chapter 2 Preliminaries

2.1 The groups SO(2) and O(2)

Let V be the translation space of the two-dimensional Euclidean space E2. The vector space

V is endowed with an inner product, which is usually called the dot product in physics. In

what follows we denote the inner product of two vectors a,b ∈ V by a · b or 〈a,b〉. Let

Lin be the space of linear transformations on V . We choose an orthonormal basis in V by

arbitrarily selecting two orthonormal vectors and calling them e1, e2. Henceforth unless

stated otherwise we will always use {ei : i = 1, 2} as the chosen basis in V . Under the

chosen orthonormal basis each linear transformation on V can be represented by a 2 × 2

real matrix. Let the space of 2 × 2 real matrices be denoted by M(2). We identify each

linear transformation A on V by its representative matrix, which we denote by the same

symbol A.

A linear transformation Q is orthogonal if it preserves the inner product on V , i.e.,

〈Qa,Qb〉 = 〈a,b〉 for any two vectors a,b ∈ V . Let I be the identity matrix in M(2) and

QT denote the transpose of Q. It follows immediately from the definition that an orthogonal

transformation Q satisfies the condition QQT = QT Q = I, which implies det(Q)2 = 1 or

det Q = ±1. It is easy to verify that the orthogonal transformations on V constitute a group,

which we call O(2), and that the orthogonal transformations R which satisfy det R = 1

constitute a subgroup of O(2), which we denote by SO(2). To determine the general form

of the matrices in SO(2) and O(2) under the basis {ei : i = 1, 2}, we first find the general
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form of the matrices in SO(2). Let a, b, c and d be the four real entries of a 2 × 2 matrix A

in SO(2) as follows:

A =


a b

c d

 , det(A) = ad − cb = 1 (2.1)

Since A is orthogonal, we have A−1 = AT , which implies

d = a and c = −b. (2.2)

From the condition AAT = I, we see that

a2 + b2 = 1. (2.3)

Thus the real numbers a and b should satisfy the condition that

− 1 ≤ a, b ≤ 1. (2.4)

Without loss of generality, we introduce a real parameter ϕ such that

a = cosϕ, b = − sinϕ, (2.5)

in which case a and b both satisfy conditions (2.3) and (2.4). Hence the general form for a

real and orthogonal 2 × 2 matrix R(ϕ) with determinant 1 can be written as

R(ϕ) =


cosϕ − sinϕ

sinϕ cosϕ

 , for ϕ ∈ (−π, π]. (2.6)

The orthogonal group in two dimensions O(2) is defined by the set of real and orthogo-

nal 2 × 2 matrices with determinant ±1. Following similar reasoning, we find that we may

express the general form of a real and orthogonal 2×2 matrix R̃(ϕ) with determinant −1 as

R̃(ϕ) =


cosϕ − sinϕ

− sinϕ − cosϕ

 , for ϕ ∈ (−π, π], (2.7)
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which can also be written as

R̃(ϕ) = MxR(ϕ), Mx =


1 0

0 −1

 . (2.8)

Thus the matrix group O(2) can be generated by

R(ϕ) =


cosϕ − sinϕ

sinϕ cosϕ

 , Mx =


1 0

0 −1

 , (2.9)

where ϕ ∈ (−π, π]. Note that each R(ϕ) is a rotation and Mx is the reflection across the

x-axis (i.e., the axis defined by e1). By direct computations it is easy to show that

MxMx = I, MxR(ϕ) = R(−ϕ)Mx, and R(α)R(β) = R(α + β), (2.10)

which imply

MxR(ϕ)M−1
x = R(−ϕ), (2.11)

R(β)(MxR(ϕ))R(−β) = MxR(−β)R(ϕ − β)

= MxR(ϕ − 2β) for all angles ϕ and β. (2.12)

Equation (2.12) can be written as

R(β)R̃(ϕ)R(−β) = R̃(ϕ − 2β) for all angles ϕ and β. (2.13)

2.2 The Haar Integral on O(2)

Our discussions in this section is based on the following theorem.

Theorem 2.1. [16, 23] Let G be a compact topological group, and let C(G) be the set of

real-valued continuous functions on G. Then there exists a unique mapping I : G → R,

f 7→ I( f ) :=
∫

G
f (g) dg, called the Haar integral, which enjoys the following properties:

7



(a)
∫

G
(c1 f1 + c2 f2) dg = c1

∫
G

f1 dg + c2

∫
G

f2 dg for each f1, f2 ∈ C(g) and c1, c2 ∈ R;

(b) if f is non-negative and not identically zero, then
∫

G
f dg > 0;

(c)
∫

G
f (hg) dg =

∫
G

f (gh) dg =
∫

G
f (g) dg for each h ∈ G;

(d)
∫

G
1 dg = 1.

The orthogonal group O(2) is a compact Lie group with two connected components

(see, e.g., [10], pp. 195, 235):

O+(2) = {A ∈ O(2) : det A = 1}, O−(2) = {A ∈ O(2) : det A = −1}. (2.14)

Topologically each connected component of the group O(2) can be identified with a unit

circle {eiϕ : ϕ ∈ R} so that O(2) is the disjoint union of two unit circles. The Haar integral

on O(2) is then given [25, p. 376] by

∫
O(2)

f (g) dg =

∫
O+(2)

f (g) dg +

∫
O−(2)

f (g) dg

=
1

4π

(∫ π

−π

f (R(ϕ)) dϕ +

∫ π

−π

f (MxR(ϕ)) dϕ
)
. (2.15)

The right-hand side of (2.15) obviously satisfies defining properties (a), (b), and (d) of the

Haar integral. Let us check property (c). It suffices to restrict attention to the cases h = R(β)

and h = MxR(β) for an arbitrarily given angle β. For h = R(β), we have

∫
O(2)

f (hg) dg =
1

4π

(∫ π

−π

f (R(β)R(ϕ)) dϕ +

∫ π

−π

f (R(β)MxR(ϕ)) dϕ
)

=
1

4π

(∫ π

−π

f (R(β + ϕ)) dϕ +

∫ π

−π

f (MxR(−β + ϕ)) dϕ
)

=

∫
O(2)

f (g) dg, (2.16)
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where we have appealed to (2.10). For h = MxR(β), there holds

∫
O(2)

f (hg) dg =
1

4π

(∫ π

−π

f (MxR(β)R(ϕ)) dϕ +

∫ π

−π

f (MxR(β)MxR(ϕ)) dϕ
)

=
1

4π

(∫ π

−π

f (MxR(β + ϕ)) dϕ +

∫ π

−π

f (MxMxR(−β + ϕ)) dϕ
)

=
1

4π

(∫ π

−π

f (MxR(ϕ)) dϕ +

∫ π

−π

f (R(ϕ)) dϕ
)

=

∫
O(2)

f (g) dg. (2.17)

The proof for
∫

O(2)
f (gh) dg =

∫
O(2)

f (g) dg for each h ∈ O(2) is similar.

For complex-valued continuous functions f (g) = u(g) + iv(g) on a compact group G,

where u, v ∈ C(G), we define

∫
G

f (g) dg =

∫
G

u(g) dg + i
∫

G
v(g) dg. (2.18)

2.3 Group Representations

2.3.1 Basics of Group Representations

Definition 2.3.1. Let G be a group and let X be a complex linear space , 0. Consider a

mapping T of G into the set of all linear operators carrying X into itself, written g→ T (g),

with the following properties:

(1) T (e) = 1, where 1 is the identity operators in X;

(2) T (g1g2) = T (g1)T (g2) for all g1, g2 ∈ G.

Then T is called a representation of G in the space X. The space X is called the represen-

tation space and the operators T (g) representation operators.
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If X is finite-dimensional and let GL(X) be the space of non-singular linear transforma-

tions on X. Then a homomorphism

T : G → GL(X)

is a representation of G on X.

A representation in a space X is called irreducible if X admits no subspace except for

0 and X itself that is invariant under all operators of the representation. A subspace M ⊆ X

is said to be invariant under a representation T if it is invariant under all operators T (g) of

this representation.

Two representations T , S of a group G in spaces X and Y are called equivalent (written

T ∼ S ) if there is a one-to-one linear operator A carrying X onto Y and satisfying the

condition

AT (g) = S (g)A, for all g ∈ G (2.19)

It is possible that Y = X, and in this case we speak if the equivalence of representations

in the same space. Condition (2.19) shows that AT (g)x = S (g)Ax for all x ∈ X and

g ∈ G. That is , if A maps x into y (i.e., Ax = y), then A also maps T (g)x into S (g)y (i.e.,

AT (g)x = S (g)y). Condition (2.19) can also be written as follows:

T (g) = A−1S (g)A, for all g ∈ G (2.20)

Theorem 2.2. Representations S and T on X and Y are equivalent representations if and

only if nS = nT and under a proper choice of bases in X and Y, the matrix elements of the

representatons S and T coincide.
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Definition 2.3.1. A Hermitian inner product on a complex vector space V is a complex-

valued bilinear form on V which is antilinear in the second slot, and is positive definite.

That is, it satisfies the following properties, where z denotes the complex conjugate of z.

1. 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 and 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉

2. 〈ax, y〉 = a〈x, y〉 and 〈x, ay〉 = ā〈x, y〉

3. 〈x, y〉 = 〈y, x〉

4. 〈x, x〉 ≥ 0, with equality only if x = 0

A basic example in Cn is of the form 〈x, y〉 =
∑n

i=1 xiyi

A linear space X equipped with a Hermitian inner product is called a pre-Hilbert space.

A linear operator A on a pre-Hilbert space X is called unitary if A is a one-to-one mapping

of X onto X and

〈Ax, Ay〉 = 〈x, y〉 for all x, y ∈ X. (2.21)

A representation T of G in a pre-Hilbert space X is called unitary if all operators of the

representation are unitary. Since operators of a representation in X are by definition one-

to-one mappings X onto X, a represntation T is unitary if and only if

〈T (g)x,T (g)y〉 = 〈x, y〉, for all g ∈ G, x, y ∈ X (2.22)

Theorem 2.3. Two unitary representations T and S of G in Euclidean spaces X and Y are

equivalent if and only if there are orthonormal bases in X and Y with respect to which the

matric of the representations T and S coincide.
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A representation T of group G in a space X is called completely reducible if T is the

direct sum of irreducible representations of G, i.e.,

X = X1 + · · · + Xm

is a direct sum of subspaces Xk (k = 1, · · · ,m), each of which is invariant under G, and

each restriction Tk of T on Xk (k = 1, · · · ,m) is an irreducible representation of G.

Theorem 2.4. Every finite-dimensional unitary representation of a group G is completely

reducible.

A representation T of G in X is said to be (strongly) continuous if g → T (g)x is con-

tinuous on G for every x ∈ X. A set {Ti} of representations of the group G is called a

complete set of irreducible representations of G if the representations Ti are irreducible

and are pairwise inequivalent, and every irreducible representation of G is equivalent to

one of the representations Ti

Finally, we record a simple theorem that we shall use in the next subsection.

Theorem 2.5. Every irreducible finite-dimensional representation of an abelian group is

one-dimensional.

2.3.2 Irreducible Representations of SO(2)

Consider the representation of SO(2) given by (2.6). This representation must be reducible

because SO(2) is an abelian group. In order to determine a complete set of irreducible
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representations of SO(2), we begin by evaluating the eigenvalues of matrix (2.6) as follows:

det(R(ϕ) − λI) =


cosϕ − λ − sinϕ

sinϕ cosϕ − λ


= (cosϕ − λ)2 + sin2 ϕ

= λ2 − 2 cosϕλ + 1 = 0. (2.23)

By solving for λ, we have

λ−1 = cosϕ − i sinϕ = e−iϕ, λ1 = cosϕ + i sinϕ = eiϕ (2.24)

as the two eigenvalues of matrix (2.6). And we can solve for the eigenvectors corresponding

to the two eigenvalues of (2.6), which are

u−1 =
1
√

2


1

i

 , u1 =
1
√

2


1

−i

 (2.25)

Thus the two resulting non-equivalent one-dimensional irreducible representations are given

by

D1(ϕ) = eiϕ, and D−1(ϕ) = e−iϕ (2.26)

In what follows, for any rotation R(ϕ) in SO(2), we denote the representation D(R(ϕ))

by D(ϕ). An one-dimensional irreducible representation is a set of linear transformations

{D(ϕ) : ϕ ∈ (−π, π]} of one-dimensional complex vector space X onto itself, i,e.: D(ϕ) :

X → X. Since D(ϕ) as a function of ϕ is periodic with period 2π, for convenience we

extend the domain of D(·) from (−π, π] to (−∞,∞). When a vector u represents the only

basis vector of X, then D(ϕ) is characterized by:

D(ϕ)u = c(ϕ)u, where c(ϕ) is a complex number (2.27)
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And for any rotation R(ϕ) in SO(2), it is easy to show that

(R(ϕ))n = R(nϕ) (2.28)

Similarly, the representation D(ϕ) also satisfies that

c(nϕ)u = D(nϕ)u = (D(ϕ)u)n = (c(ϕ))nu (2.29)

Since the identity operator R(0) is represented by the identity 1, thus D(0)u = u, i.e.:

D(0) = 1. Consequently, we conclude that the irreducible representations of R(ϕ) in SO(2)

are given by

Dk(ϕ) = e−ikϕ, k = 0,±1,±2, . . . (2.30)

It is easy to show that each value of k gives an irreducible representation inequivalent to

any irreducible representation of other values of k from Fourier-analysis.

Consequently, when we organize the basis of vector space X as {ϕ0, ϕ−1, ϕ1, ϕ−2, ϕ2, . . .},

then the matrix form of a representation D(R(ϕ)) takes the form as a diagonal matrix at the

Fourier basis ϕm with diagonal elements e−imϕ, i.e.:

D(R(ϕ)) =



. . .

e2iϕ

eiϕ

1

e−iϕ

e−2iϕ

. . .



(2.31)
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In terms of the one-dimensional standard irreducible representations, (2.31) can be written

as

D(R(ϕ)) =



. . .

D2(ϕ)

D1(ϕ)

D0(ϕ)

D−1(ϕ)

D−2(ϕ)

. . .



(2.32)

2.4 Material Tensors

2.4.1 Tensors

Recall that V is the translation space of the two-dimensional Euclidean space. Let Vr =

V × V × V · · · × V (r copies), where r ≥ 2. A mapping H : Vr → R is multilinear if it is

linear with respect to each of its vector arguments, i.e.,

H[v1, · · · , vi + αv′i , · · · , vr] = H[v1, . . . , vi, · · · , vr] + αH[v1, · · · , vi, . . . , vr] (2.33)

for each vi (1 ≤ i ≤ r), v′i ∈ V and α ∈ R. In mathematics such multilinear mappings are

called rth-order tensors. Let u1, · · · ,ur be in V . The tensor product of u1, · · · ,ur is the

rth-order tensor u1 ⊗ u2 ⊗ · · · ⊗ ur : Vr → R defined by

u1 ⊗ u2 ⊗ · · · ⊗ ur[v1, · · · , vr] = (u1 · v1) · · · (ur · vr) for each (v1, · · · , vr) ∈ Vr. (2.34)

We call tensor products of vectors simple tensors. Under the usual definition of addition

and of scalar multiplication of mappings, the set of rth-order tensors clearly forms a linear
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space over R, which we denote by V⊗r := V ⊗ V ⊗ · · · ⊗ V (r copies) and call the space of

rth-order tensors.

Let e1, e2 constitute a orthonormal basis in V . Every H ∈ V⊗r can be written in the

form

H = Hi1i2···ir ei1 ⊗ ei2 ⊗ · · · ⊗ eir , (2.35)

where the Einstein summation convention is in force, and

Hi1i2···ir = H[ei1 , ei2 , . . . , eir ]. (2.36)

We define an inner product 〈·, ·〉 on V⊗r by requiring that

〈u1 ⊗ · · · ⊗ ur,w1 ⊗ · · · ⊗ wr〉 = (u1 · w1) · · · (ur · wr). (2.37)

Clearly simple tensors of the form ei1 ⊗ei2 ⊗· · ·⊗eir , where each suffix runs over the indices

1 and 2, constitute an orthonormal basis in V⊗r. Hence dimV⊗r = 2r. For

H = Hi1i2···ir ei1 ⊗ ei2 ⊗ · · · ⊗ eir and K = Ki1i2···ir ei1 ⊗ ei2 ⊗ · · · ⊗ eir , (2.38)

we have

〈H, K〉 = Hi1i2···ir Ki1i2···ir . (2.39)

Each orthogonal linear transformation Q on V induces an orthogonal linear transforma-

tion Q⊗r : V⊗r → V⊗r defined by

Q⊗r(u1 ⊗ · · · ⊗ ur) = Qu1 ⊗ · · · ⊗ Qur, (2.40)

for all u1, · · · ,ur ∈ V .

In continuum physics, many attributes of material points are characterized by multilin-

ear mappings. Let a physical attribute Π of a given point P be described by an rth-order
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tensor H. When the material point P undergoes a rotation or a rotation followed by an

inversion defined by Q ∈ O(2), the multilinear mapping that characterizes its attribute Π

changes from H to TQH. We say that Π is characterized by a material tensor H if

TQH = Q⊗r H. (2.41)

2.4.2 Complexification of Tensor Space

Let Vc = {u + iv : u ∈ V, v ∈ V} be its complexification. We equip Vc with the Hermitian

product induced by the inner product in V for real vectors. Under the orthonormal basis

e1, e2 in V , the Hermitian product of vectors w = 〈w1,w2〉 and v = 〈z1, z2〉 is given by

< w, z >= w1z̄1 + w2z̄2. A rotation Q on V can be extended to a linear transformation on

Vc, which we still denote by Q, defined as follows:

Q(u + iv) = Qu + iQv (2.42)

for each u, v in V . Each rotation Q : V 7→ V is orthogonal, and its extension on Vc is

unitary.

Let V⊗r
c be the complexification of the r-fold tensor product V ⊗ V ⊗ · · · ⊗ V (r factors).

Obvioulsy V⊗r
c = (Vc)r = Vc ⊗ Vc ⊗ · · · ⊗ Vc (r factors). We equip V⊗r

c with the Hermitian

product induced by the Hermitian product on Vc, which satisfies

〈u1 ⊗ · · · ⊗ ur, v1 ⊗ · · · ⊗ vr〉 =

r∏
j=1

〈u j, v j〉 (2.43)

for all u1, · · · , ur and v1, · · · , vr in Vc. For two tensors H = Hi1···ir ei1 ⊗ · · · ⊗ eir and

K = Ki1···ir ei1 ⊗ · · · ⊗ eir in V⊗r
c , the Hermitian product is given by

〈H, K〉 = Hi1···ir Ki1···ir , (2.44)
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and ‖H‖ :=
√
〈H,H〉 defines the norm of tensor H.

Each rotation Q on V induces a linear transformation Q⊗r on V⊗r
c and V⊗r

c defined by

Q⊗r(u1 ⊗ · · · ⊗ ur) = Qu1 ⊗ · · · ⊗ Qur (2.45)

for all u1, · · · , ur in Vc. Note that Q⊗r : Vr
c → Vr

c is a unitary transformation on Vr
c . The

map Q 7→ Q⊗r defines a continuous linear representation of the orthogonal group O(2) on

Vr and Vr
c respectively. A subspace Z ⊂ Vr is said to be invariant under the action of the

rotation group if it remains invariant under Q⊗r for each Q ∈ O(2). Obviously, if Z is an

invariant subspace of Vr, then Zc is an invariant subspace of Vr
c . In what follows, we will

consider only with tensor spaces Z and their complexification Zc which remain invariant

under the action of O(2). And we will work with representations Q 7→ Q⊗r | Zc on Zc,

which are unitary representations.

To specify the various types of tensors (or tensor spaces), we adopt a system of notation

advocated by Jahn[8] and Sirotin[24] . In this notation, V2 stands for the tensor product

of V ⊗ V . [V2] the space of symmetric second-order tensors. [[V2]2] stands for the sym-

metric square of [V2], (i.e., the symmetrized tensor product of [V2] and [V2]), [[V2]3] the

symmetric cube of [V2], [V2][[V2]2]the tensor product of [V2] and [[V2]2], . . ., etc.

When V is replaced by its complexification Vc, the same procedure of bulding the tensor

space Z will result in its complexification Zc. Therefore, V2
c represents the complexification

of V2, [[V2
c ]2] represents the complexification of [[V2]2], . . ., etc.
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2.5 The Kelvin Notation

In this section we will recast the Kelvin notation [15, 13] in three-dimensional linear elas-

ticity to suit our present context that the basic vector space V is two-dimensional.

We choose a pair of orthonormal vectors e1 and e2 in V and keep this choice throughout

the discussion. Then the symmetric second-order tensors

f1 = e1 ⊗ e1, f2 = e2 ⊗ e2, f3 =
1
√

2
(e1 ⊗ e2 + e2 ⊗ e1) (2.46)

constitute an orthonormal basis in [V2], which is a 3-dimensional space. We adopt the

Einstein summation convention for repeated Latin indices, which run from 1 to 2, and for

repeated Greek indices, which run from 1 to 3.

For a second-order tensor A = Ai jei ⊗ e j in [V2], we write A in the Kelvin notation as a

3 × 1 column vector

Â = [â1, â2, â3]T , (2.47)

with

â1 = 〈A, f1〉 = A11, â2 = 〈A, f2〉 = A22, â3 = 〈A, f3〉 =
√

2A12, (2.48)

which represents under the basis (2.46) the relation

A = âαf̂α. (2.49)

The inner product of tensors A and B in [V2] is given by

〈A,B〉 = Ai jBi j = âαb̂α. (2.50)

Under the Kelvin notation, tensors in [[V2]2] are identified with symmetric linear trans-

formations on the 3-dimensional vector space [V2]. Let C = Ci jklei ⊗ e j ⊗ ek ⊗ el be a
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fourth-order tensor in [[V2]2]. Following common practice, we shall use the same symbol

C to denote that which results when we interpret C ∈ [[V2]2] as a symmetric linear trans-

formation on [V2]. In the Kevin notation the second-order tensor C on [V2] is represented

under the basis (2.46) by the 3 × 3 symmetric matrix Ĉ = [ĉαβ]:

C = ĉαβfα ⊗ fβ, where ĉαβ = 〈fα,Cfβ〉. (2.51)

In terms of the tensor components Ci jkl, we have ĉ11 = C1111, ĉ13 =
√

2C1112, ĉ33 = 2C1212,

etc.

A rotation R on V induces an orthogonal transformation R⊗r := R ⊗ · · · ⊗ R (r factors)

on V⊗r defined by

R⊗r(u1 ⊗ · · · ⊗ ur) = Ru1 ⊗ · · · ⊗ Rur (2.52)

for all u1, . . . ,ur in V . To avoid confusion, we use the symbols R⊗2 and R⊗4 also denote

the restrictions R⊗2|[V2] and R⊗4|[[V2]2], respectively. Under Kelvin notation, R⊗2|[V2] is

represented by a 3 × 3 matrix,

R = [Rαβ], where Rαβ = 〈fα,R⊗2fβ〉. (2.53)

The matrix entries Rαβ can be computed explicitly in terms of the components Ri j,

where Ri j = 〈ei,Re j〉 of R. The matrix [Rαβ], which represents the linear transformation

R⊗2|[V2] under the basis (2.46), is orthogonal; it satisfies [15]

QQT = QTQ = I, (2.54)

where I is the 3× 3 identity matrix. Under the orthogonal transformation R⊗2|[V2], a linear

transformation L: [V2]→ [V2] becomes the transformation

(R⊗2|[V2])L(R⊗2|[V2])T . (2.55)
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Given a fourth-order tensor C in [[V2]2], the 3 × 3 matrix that represents the symmetric

linear transformation R⊗4C on [V2] is given by RĈRT , which is interpreted as a product of

3 × 3 matrices. We write

Q⊗4C = QĈQT . (2.56)

Henceforth all 3 × 3 matrix representation of tensors in [[V2]2] or in its complexification

[[V2
c ]2] are given in the Kelvin notation. Moreover, except for places where we want to

emphasize that we are referring to the 3× 3 matrix, we will drop the superscript ˆ in Ĉ and

use the same symbol C to denote the fourth-order tensor in question as well as its 3 × 3

matrix representation.
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Chapter 3 Decomposition of a Tensor into Its Irreducible Parts on O(2)

3.1 Irreducible Representations of O(2)

It is well known (see, e.g., [25], p. 376) that a complete set of irreducible unitary represen-

tations of O(2) is given by the mapping ρk : O(2)→ M(2) where k = 0, 0′, 1, 2..., such that

for each ϕ ∈ R,

ρk(R(ϕ)) =


cos(kϕ) − sin(kϕ)

sin(kϕ) cos(kϕ)

 , ρk(MxR(ϕ)) =


cos(kϕ) − sin(kϕ)

−sin(kϕ) − cos(kϕ)

 , for k ≥ 1 (3.1)

ρ0(R(ϕ)) = 1, ρ0(MxR(ϕ)) = 1; (3.2)

ρ0′(R(ϕ)) = 1, ρ0′(MxR(ϕ)) = −1; (3.3)

For completeness, however, we will provide a proof of this fact.

Since ρk(R(ϕ)), ρk(MxR(ϕ)) ∈ M(2) are orthogonal matrices they satisfy

〈ρk(R(ϕ))u, ρk(R(ϕ))v〉 = 〈u, v〉 (3.4)

〈ρk(MxR(ϕ))u, ρk(MxR(ϕ))v〉 = 〈u, v〉 (3.5)

for any u and v in V2 and 〈u, v〉 is the inner product in V2. Thus the extension of ρk on V2
c

is a unitary representation of O(2). It is obvious that the mappings ρk are continuous.

To show that ρk is irreducible, let χk be character of ρk given by what follows:

χk(R(ϕ)) = eikϕ + e−ikϕ, χk(MxR(ϕ)) = 0, for k ≥ 1; (3.6)

χ0(R(ϕ)) = 1, χ0(MxR(ϕ)) = 1; (3.7)

χ0′(R(ϕ)) = 1, χ0′(MxR(ϕ)) = −1. (3.8)

22



Then we have

〈χk, χk〉 =
1

4π

∫ π

−π

2 cos(kϕ) · 2 cos(2kϕ)dϕ +
1

4π

∫ π

−π

0 · 0dϕ

=
1

4π

∫ π

−π

4 cos2(kϕ)dϕ

= 1 for all k ≥ 1, (3.9)

〈χ0, χ0〉 =
1

4π

∫ π

−π

1 · 1dϕ +
1

4π

∫ π

−π

1 · 1dϕ

=
1

4π
· 2π +

1
4π
· 2π

= 1, (3.10)

〈χ0′ , χ0′〉 =
1

4π

∫ π

−π

1 · 1dϕ +
1

4π

∫ π

−π

(−1) · (−1)dϕ

=
1

4π
· 2π +

1
4π
· 2π

= 1. (3.11)

Thus ρk is irreducible for all k = 0, 0′, 1, 2, · · · .

To prove completeness, we need to show that any irreducible continuous unitary rep-

resentation ρ of O(2) is equivalent to one of the representations ρk. We will prove by

contradiction after going over some preliminaries.

A function f defined on a group G is a central function if it satisfies

f (hgh−1) = f (g), for each g and h in G (3.12)

The character functions χ of linear representations on a group G are central functions. By

(2.10)–(2.13) we observe that for the irreducible representation ρ of O(2),

χρ(R(ϕ)) = χρ(MxR(ϕ)M−1
x ) = χρ(R(−ϕ)), (3.13)

χρ(MxR(ϕ)) = χρ(MxR(ϕ − 2β)) (3.14)
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for any angles ϕ and β. If we choose β =
ϕ

2 in (3.14), then we obtain

χρ(MxR(ϕ)) = χρ(MxR(0)) = χρ(Mx) (3.15)

for any angle ϕ. From (3.13) and (3.15), we can see that χρ is an even function of ϕ.

We now proceed to prove that the set of irreducible unitary representations ρk (k =

0, 0′, 1, 2, · · · ) is complete. Let ρ be a continuous, irreducible unitary representation of O(2)

that is not equivalent to any representation Dk (k = 0, 0′, 1, 2, · · · ). Since O(2) is compact,

ρ is finite-dimensional [26, p. 16].Let χρ be the character of ρ, and let χρ(Mx) = c. Then

we have

〈χρ, χ0〉 =
1

4π

(∫ π

−π

χρ(R(α)) · 1 dα +

∫ π

−π

c · 1 dα
)

= 0, (3.16)

〈χρ, χ0′〉 =
1

4π

(∫ π

−π

χρ(R(α)) · 1 dα +

∫ π

−π

c · (−1) dα
)

= 0, (3.17)

and for k = 1, 2, · · · ,

〈χρ, χk〉 =
1

2π

∫ π

−π

χρ(R(α)) cos kα dα = 0. (3.18)

Equations (3.16) and (3.17) imply

∫ π

−π

χρ(R(α)) · 1 dα = 0, and c = 0. (3.19)

Because χρ(R(·)) is continuous and even on [−π, π], and because the set of functions

{cos kα : k = 0, 1, 2, · · · } is complete in the subspace of even functions in L2[−π, π], equa-

tions (3.18) and (3.19)1 dictate that χρ(R(·)) = 0 on [−π, π]. On the other hand, since ρ is

irreducible and χρ(MxR(α)) = 0 for each α, we have

1
4π

∫ π

−π

|χρ(R(α))|2 dα = 1. (3.20)
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Hence the assumption that the irreducible representation ρ is not equivalent to any Dk (k =

0, 0′, 1, 2, · · · ) leads to a contradiction.

Henceforth we denote any unitary representation of O(2) that is equivalent to ρk by Dk.

Remark 3.1. Under the orthonormal basis u1̄ and u1 in Vc as given by (2.25), we have

ρk(R(ϕ)) =


e−ikϕ 0

0 eikϕ

 , ρk(Mx) =


0 1

1 0

 , f or k > 1 (3.21)

3.2 Decomposition of a Tensor into Its Irreducible Parts

If a subspace Z ⊂ V⊗r is invariant under the action of orthogonal group O(2), then its

complexification Zc is an invariant subspace of V⊗r
c . Since each finite-dimensional unitary

representation of a compact group is reducible, each tensor representation Q 7→ Q⊗r | Zc of

the orthogonal group O(2) can be decomposed as a direct sum of subrepresentations, each

of which is equivalent to some Dk:

Zc = n0D
0 + n0′D

0′ + n1D
1 + · · · + nrD

r, (3.22)

where nk is the multiplicity of Dk in the decomposition. Explicit decomposition formu-

las for specific tensor spaces can be derived by various methods, and some examples are

given in the literature (see, e.g., [2, Table 7]). Later we shall use several decomposition

formulas when we present examples to illustrate our procedure to determine irreducible

tensor bases for tensor spaces. These examples include the tensor spaces [[V2
c ]3] and

[[V2
c ]2] ⊗ [V2

c ]. According to the convention given in Section 2.4.2, [[V2
c ]3] is the com-

plexification of [[V2]3], which stands for the symmetric cube of the space of symmetric

second-order tensors. [[V2
c ]2] ⊗ [V2

c ] is the complexification of [[V2]2] ⊗ [V2], which is the
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tensor product of [[V2]2] and [V2
c ]. The decompositions of these two spaces are given by

the following formulas:

[[V2
c ]3] = D6 + D4 + 2D2 + 2D0, (3.23)

[[V2
c ]2] ⊗ [V2

c ] = D6 + 2D4 + 4D2 + 3D0 + D0′ , (3.24)

Here we include a proof of these two decomposition formulas by the method of characters.

Let the tensor representation ρ of O(2) be equivalent to the symmetric square of D1.

Then ρ(R(ϕ)) and ρ(MxR(ϕ)) have eigenvalues

λ1 = ei2ϕ, λ2 = e−i2ϕ, λ3 = 1, (3.25)

and

λ1 = 1, λ2 = −1, λ3 = 1 (3.26)

respectively. Then we have

χ(ρ⊗3(R(ϕ))) =
∑
i≤ j≤k

λiλ jλk

= λ3
1 + λ2

1λ2 + λ2
1λ3 + λ1λ2λ3 + λ3

2 + λ2
2λ1 + λ2

2λ3 + λ3
3 + λ2

3λ1 + λ2
3λ2

= ei6ϕ + e−i6ϕ + ei4ϕ + e−i4ϕ + 2ei2ϕ + 2e−i2ϕ + 2, (3.27)

χ(ρ⊗3(MxR(ϕ))) = 2, (3.28)

which prove the decomposition formula of [[V2
c ]3].

Using (3.25) and (3.26) with similar calculations, we can also derive the following
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formulas that pertain to the decomposition of [[V2
c ]2], i.e.,

χ(ρ⊗2(R(ϕ))) =
∑
i≤ j

λiλ j

= λ2
1 + λ1λ2 + λ1λ3 + λ2

2 + λ2λ3 + λ2
3

= ei4ϕ + e−i4ϕ + ei2ϕ + e−i2ϕ + 2, (3.29)

χ(ρ⊗2(MxR(ϕ))) = 2. (3.30)

Now we proceed to prove formula (3.24) for [[V2
c ]2] ⊗ [V2

c ]. Let ρ be the tensor repre-

sentation of [[V2
c ]2] ⊗ [V2

c ]. Then by (3.25), (3.26), (3.29), and (3.30), we have

χ(ρ(R(ϕ))) = (ei4ϕ + e−i4ϕ + ei2ϕ + e−i2ϕ + 2)(ei2ϕ + e−i2ϕ + 1)

= ei6ϕ + e−i6ϕ + 2ei4ϕ + 2e−i4ϕ + 4ei2ϕ + 4e−i2ϕ + 4, (3.31)

χ(ρ(MxR(ϕ))) = (1 − 1 + 1 − 1 + 2)(1 − 1 + 1) = 2. (3.32)

Hence formula (3.24) is proved.

3.3 Determination of Irreducible Tensor Bases

Existence of a special basis with some far-reaching properties in a tensor subspace on which

the tensor representation Q 7→ Q⊗r is equivalent to some Dk is indicated by the following

general considerations.

Lemma 3.2. Let Z be a two-dimensional subspace of V⊗r, and let Zc be its complexification.

If H ∈ Zc, then H ∈ Zc.

Proof. Let E1 and E2 constitute a basis in Z. Then H = α1E1 + α2E2 for some α1, α2 ∈ C.

Since Ei = Ei for i = 1, 2, we have H = α1E1 + α2E2 ∈ Zc. �

27



Proposition 3.3. Let Z be a two-dimensional subspace of V⊗r invariant under the action

of O(2), i.e., Q⊗rZ ⊂ Z for each Q in O(2), and let Zc be the complexification of Z. Let

ρ : O(2) → GL(Zc) be a representation of O(2) equivalent to Dk, with k ≥ 1. Then there

exists an orthonormal basis Hk̄, Hk in Zc such that

R(ϕ)⊗r Hk̄ = e−ikϕHk̄, R(ϕ)⊗r Hk = eikϕHk, (3.33)

M⊗r
x Hk̄ = Hk, M⊗r

x Hk = Hk̄, Hk̄ = Hk. (3.34)

Proof. By the hypotheses given in the lemma, and by Remark 3.1, there exists an or-

thonomoral basis Xk̄, Xk under which the matrix representation of of ρ(R(ϕ)) = R⊗r(ϕ) and

ρ(Mx) = M⊗r
x are given by

R⊗r(ϕ) =


e−ikϕ 0

0 eikϕ

 , Mx(ϕ) =


0 1

1 0

 , f or k ≥ 1. (3.35)

It follows immediately that

R(ϕ)⊗r Xk̄ = e−ikϕXk̄, R(ϕ)⊗r Xk = eikϕXk, f or all ϕ, (3.36)

M⊗r
x Xk̄ = Xk, M⊗r

x Xk = Xk̄. (3.37)

Taking the complex conjugate of both sides of above equation, we obtain

R(ϕ)⊗r Xk = e−ikϕXk. (3.38)

Since both Xk and Xk̄ are unit vectors of the same one-dimensional subspace invariant

under R⊗r, there exists a c ∈ C with |c| = 1 such that

Xk = cXk̄. (3.39)
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It follows from (3.38) and above equation that

M⊗r
x Xk = cM⊗r

x Xk̄ = cXk. (3.40)

Let Xk = Xk
i1···ir

ei1 ⊗ · · · ⊗ eir and Xk
i1···ir

= ai1···ir + ibi1···ir . Fpr those components Xk
i1···ir

with an

even (including zero) number of “2” in the subscripts i1, · · · , ir, the above equation dictates

that

ai1···ir − ibi1···ir = c(ai1···ir + ibi1···ir ), (3.41)

which implies

c = 1, b = 0, or c = −1, a = 0. (3.42)

For those components Xk
i1···ir

with an odd number of “2” in the subscripts i1, · · · , ir, the

corresponding requirment is that

− ai1···ir + ibi1···ir = c(ai1···ir + ibi1···ir ), (3.43)

which implies

c = 1, a = 0, or c = −1, b = 0. (3.44)

Hence there are two possibilities:

• Case 1: c = 1. All components Xk
i1···ir

with an even number of “2” in the subscripts

i1 · · · ir are real, whereas those with an odd number of ”2” are imaginary.

• Case 2: c = −1. All components Xk
i1···ir

with an even number of “2” in the subscripts

i1 · · · ir are imaginary, whereas those with an odd number of “2” are odd.

Under Case 1, let Hk := Xk and Hk̄ := Xk. Then Hk and Hk̄ clearly constitute an orthonor-

mal basis that satisfies (3.33). Under Case 2, let Hk := iXk and Hk̄ := iXk̄. By (3.39) and
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c = −1, we have

Hk̄ = −iXk = Hk. (3.45)

By the definition of Hk, Hk̄, and by the properties of Xk, Xk̄, we observe that Hk and Hk̄

constitute an orthonormal basis in Zc. By (3.38), we have

R(ϕ)⊗r Hk̄ = e−ikϕHk̄, M⊗r
x Hk̄ = Hk, M⊗r

x Hk = Hk̄. (3.46)

�

We will develop a procedure to determine explicitly a special orthonormal basis for

any invariant subspace Zc of V⊗r
c under O(2), for which the basis tensors enjoy properties

similar to those displayed in (3.33) and (3.34). We call such a special orthonormal basis

an irreducible tensor basis. In what follows we use Dk and Dk to denote the irreducible

representations of O(2) and SO(2), respectively. Suppose the decomposition of Zc under

O(2) is

Zc = n0D
0 + n0′D

0′ + n1D
1 + · · · + nrD

r,

= n0D
0 + n0′D

0′ +

r∑
k=1

nkD
k

= n0D
0 + n0′D

0′ +

r∑
k=1

Xk (3.47)

where Xk = nkD
k, for n ≥ 1.

Under SO(2), each subspace that transforms as D0 or D0′ remains invariant. Each Dk,

which is of dimension 2, splits into a direct sum of two subspaces that transform as Dk and

D−k, respectively. Hence the decomposition of Zc under SO(2) can be expressed as:

Zc = (n0 + n0′)D0 + n1(D1 + D−1) + . . . + nr(Dr + D−r). (3.48)
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Since the invariant subspaces Xk in the decomposition are mutually orthogonal, we can

examine each Xk, respectively. Let A be a tensor in Xk. It can be decomposed as a direct

sum:

A =

r∑
j=1

A j, (3.49)

where A j is some tensor in X j. Let =k : Zc → Zc be defined by

=k(A) =
1

2π

∫ 2π

0
R⊗rAe−ikϕdϕ. (3.50)

Here we claim that =k is a projection operator onto Xk for all k ≥ 1. (An operator T is a

projection if T 2 = T .) Indeed we have

=k(A) =
1

2π

∫ 2π

0
R⊗rAe−ikϕdϕ

=
1

2π

∫ 2π

0
R⊗r

r∑
j=1

A je−ikϕdϕ

=
1

2π

∫ 2π

0

r∑
j=1

R⊗rA je−ikϕdϕ

=
1

2π

∫ 2π

0

r∑
j=1

ei jϕA je−ikϕdϕ

= δk jA j

= Ak, (3.51)

and

=k(=k(A)) = =k(Ak) = Ak. (3.52)

Thus =k is a projection from Zc onto Xk and we can see that =k is surjective.

To start with, we determine an explicit basis for Xk under O(2) for k ≥ 1. We let =k

run over each member of any basis in Z in an arbitrarily chosen linear order. There will

be a first basis tensor, which we call Ak
1, for which =k(Ak

1) , 0. Then =k(Ak
1) and =k(Ak

1)
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constitute an irreducible tensor basis in the invariant subspace Xk under O(2). If nk = 1,

then we are done with Xk for this step.

If nk > 1, we continue to let =k to run over the selected basis tensors in Z in the order

after Ak
1. There will be a second basis tensor, which we call Ak

2, for which =k(Ak
2) , 0 and

=k(Ak
2) is not a multiple of =k(Ak

1). Then we get =k(Ak
2) as a second tensor basis of Xk. For

i = 1, 2, let X(i)
k be the span of =k(Ak

i ) and =k(Ak
i ). If Xk = X(1)

k + X(2)
k , then our work with

Xk is done for this step.

If nk > 2, we continue to let =k to run over the selected basis tensors in Z in the order

after Ak
1 and Ak

2. There will be a third basis tensor, which we call Ak
3, for which =k(Ak

3) , 0

and =k(Ak
3) is not a linear combination of =k(Ak

1) and =k(Ak
2). Let let X(3)

k be the span of

=k(Ak
3) and =k(Ak

3). If Xk = X(1)
k + X(2)

k + X(3)
k , then our work with Xk is done for this step.

If nk > 3, we repeat the procedure until we find for each 1 ≤ s ≤ nk an irreducible

tensor basis =k(Ak
s) for X(s)

k of Xk, and Xk =
∑nk

s=1X
(s)
k .

Now we show that the basis tensors constructed by the procedure above satisfy (3.33)

and (3.34). In our examples to illustrate the procedure, we will take advantage of the Kelvin

notation for tensor spaces based on [V2]. Hence we shall phrase our argument in the context

of those spaces. In fact there is no loss in generality, because the argument for the general

case of tensor spaces based on V is entirely similar.

LetMx : [V2]→ [V2] be the restriction of M⊗2
x on [V2]. Under the Kelvin notation (see
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Section 2.5) and the basis f1 = e1 ⊗ e1, f2 = e2 ⊗ e2 and f3 = 1
√

2
(e1 ⊗ e2 + e2 ⊗ e1), we have

Mxf1 = Me1 ⊗ Me1 = e1 ⊗ e1 = f1

Mxf2 = Me2 ⊗ Me2 = −e2 ⊗ (−e2) = f2

Mxf3 =
1
√

2
(Me1 ⊗ Me2 + Me2 ⊗ Me1) = −f3. (3.53)

HenceMx is represented by the matrix

Mx =


1 0 0

0 1 0

0 0 −1


. (3.54)

For a non-trivial tensor A′ ∈ Z ⊂ [V2]⊗r, let A = A′ +M⊗r
x A′, where M⊗r

x is the linear

transformation on [V2]⊗r induced by Mx on V . Since Z is an invariant subspace under the

action of O(2), A ∈ Z and all components of A are real. Moreover, it is easy to show that

M⊗r
x A = A. Indeed we have

M⊗r
x A = M⊗r

x A′ +M⊗r
x M

⊗r
x A′

= M⊗r
x A′ + A′ = A. (3.55)

Let R(ϕ) be the linear transformation on [V2] induced by the rotation R(ϕ) on V . Under

the Kelvin notation and the basis fi (i = 1, 2, 3), R(ϕ) is represented by the matrix

R(ϕ) =


cos2 ϕ sin2 ϕ −

√
2 cosϕ sinϕ

sin2 ϕ cos2 ϕ
√

2 cosϕ sinϕ

√
2 cosϕ sinϕ −

√
2 cosϕ sinϕ cos2 ϕ − sin2 ϕ


. (3.56)

Let

Xk =
1

2π

∫ 2π

0
R(θ)⊗rAe−ikθdθ. (3.57)
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Since

Xk̄ =
1

2π

∫ 2π

0
R(θ)⊗rAe−ik̄θdθ

=
1

2π

∫ 2π

0
R(θ)⊗rAeikθdθ

= Xk, (3.58)

we have proved that Xk and Xk̄ satisfy the last equation in (3.34).

Note that

R(ϕ)⊗r Xk =
1

2π

∫ 2π

0
R(ϕ)⊗rR(θ)⊗rAe−ikθdθ

=
1

2π

∫ 2π

0
R(ϕ + θ)⊗rAe−ikθdθ. (3.59)

Let ψ = ϕ + θ. Then we have

R(ϕ)⊗r Xk =
1

2π

∫ 2π

0
R(ψ)⊗rAe−ik(ψ−ϕ)dψ

= eikϕ 1
2π

∫ 2π

0
R(ψ)⊗rAe−ikψdψ

= eikϕXk. (3.60)

Similarly, it is easy to show that R(ϕ)⊗r Hk̄ = e−ikϕHk̄.

When we apply the operator M⊗r
x on the tensor A ∈ Z, we notice that the components

Ai1...ir of tensor A with an odd number of “3” in the subscripts i1, . . . , ir will change the sign.

However by choosing A following the procedure above satisfyingMxA = A, we guarantee

that the components Ai1...ir with an odd number of “3” in the subscripts i1, . . . , ir have to be
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zero. Thus we have

M⊗r
x Xk =

1
2π

∫ 2π

0
M⊗r

x R(θ)⊗rAe−ikθdθ

=
1

2π

∫ 2π

0
R(−θ)⊗rM⊗r

x Ae−ikθdθ

=
1

2π

∫ 2π

0
R(−θ)⊗rAe−ikθdθ. (3.61)

Let ψ = −θ. It follows that

M⊗r
x Xk =

1
2π

∫ −2π

0
R(ψ)⊗rAeikψ(−dψ)

= Xk̄ (3.62)

which implies thatM⊗r
x Hk = Hk̄.

A set of orthonormal irreducible basis tensors in Zc can be constructed from the Xk’s

through the Gram-Schmidt procedure (cf. [14]).

Suppose a set of irreducible basis tensors Bk,s = =k(Ak
s) (1 ≤ s ≤ nk, 0 ≤ k ≤ r) has

been determined by the procedure described above. We apply the Gram-Schmidt procedure

to obtain the orthonormal irreducible basis tensors Hk,s as follows:

Hk,1 =
Bk,1

‖ Bk,1 ‖
, Hk,2 =

Bk,2 − 〈Bk,2,Hk,1〉Hk,1

‖ Bk,2 − 〈Bk,2,Hk,1〉Hk,1 ‖
,

Hk,s+1 =
Bk,s+1 −

∑s
j=1〈Bk,s+1,Hk, j〉Hk, j

‖ Bk,s+1 −
∑s

j=1〈Bk,s+1,Hk, j〉Hk, j ‖
for 1 ≤ s ≤ nk − 1. (3.63)

3.4 Examples of Calculating Irreducible tensor bases under O(2)

First we consider irreducible tensor basis for [V2
c ], which is the space of symmetric second-

order tensors. An orthonormal irreducible tensor basis for [V2
c ] is given by the following
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formulas:

H2 =
1
2


1 −i

−i 1

 , H0 =
1
√

2


1 0

0 1

 , H2̄ =
1
2


1 i

i −1

 . (3.64)

It can be easily checked that

R(ϕ)⊗2H2 =
1
2


cosϕ − sinϕ

sinϕ cosϕ




1 −i

−i −1




cosϕ sinϕ

− sinϕ cosϕ

 = e2iϕH2. (3.65)

for any angle ϕ. Similarly, it is easy to verify by direct computations that H2, H0, and H2̄

satisfy the other equations in (3.33) and (3.34).

From now on, we denote [V2
c ] by V for convenience. Now we consider irreducible

tensor basis for [V2], i.e [[V2
c ]2]. Under the Kelvin notation and the basis f1, f2, and f3 in

[V2], we have, for any angle ϕ,

R(ϕ)⊗4A = R(ϕ)ÂR(ϕ)T , (3.66)

where R(ϕ) is given by (3.56) and Â is the 3 × 3 matrix that represent A under the Kelvin

notation. For Â with A11 = 1 and all other components zero, we have

QÂQT =


cos4 ϕ cos2 ϕ sin2 ϕ

√
2 cos3 ϕ sinϕ

cos2 ϕ sin2 ϕ sin4 ϕ cos2 ϕ sin2 ϕ

√
2 cos3 ϕ sinϕ

√
2 cosϕ sin3 ϕ 2 cos2 ϕ sin2 ϕ


(3.67)

36



An orthonormal irreducible tensor basis for [V2] is given by the following formulas:

H4 =
1
4


1 −1 −

√
2i

−1 1 −
√

2i

√
2i −

√
2i −2


, H2 =

1
4


2 0

√
2i

0 −2
√

2i

√
2i
√

2i 0


,

H0,1 =
1
√

3


1 0 0

0 1 0

0 0 1


, H0,2 =

1

2
√

6


1 3 0

3 1 0

0 0 −2


, H2̄ = H2, H4̄ = H4.

(3.68)

It is easy to verify by direct computation that the basis tensors above satisfy (3.33) and

(3.34).

In what follows we adopt the Kelvin notation for tensors in [V3], where V is taken as a

three-dimensional space above. The components of a sixth-order tensor B in this space is

displayed in array form as

B =


B111 B112 B113 B211 B212 B213 B311 B312 B313

B121 B122 B123 B221 B222 B223 B321 B322 B323

B131 B132 B133 B231 B232 B233 B331 B332 B333


, (3.69)

where the components Bi jk are totally symmetric with respect to its indices. There are ten

independent components, which we take as B111, B112, B113, B122, B123, B133, B222, B223,

B233 and B333.

From (3.23), we know that the decomposition formula of [V3] is given by [V3] =

D6 + D4 + 2D2 + 2D0. The tensors H6 and H4 are obtained by normalizing the tensors

1
2π

∫ 2π

0
R(ϕ)⊗3Ae−i6ϕdϕ,

1
2π

∫ 2π

0
R(ϕ)⊗3Ae−i4ϕdϕ, (3.70)
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respectively, with A111 = 1 and Ai jk = 0 otherwise:

H6 =
1

2
√

15


1 −1

√
2i −1 1 −

√
2i

√
2i −

√
2i −2

−1 1 −
√

2i 1 −1
√

2i −
√

2i
√

2i 2

√
2i −

√
2i −2 −

√
2i
√

2i 2 −2 2 −2
√

2i


,

(3.71)

H4 =
1

4
√

6


3 −1 2

√
2i −1 −1 0 2

√
2i 0 −2

−1 −1 0 −1 3 −2
√

2i 0 −2
√

2i −2

2
√

2i 0 −2 0 −2
√

2i −2 −2 −2 0


. (3.72)

Up to a constant real factor, the tensors B0,1 and B2,1 are given by the integrals

1
2π

∫ 2π

0
R(ϕ)⊗3Adϕ,

1
2π

∫ 2π

0
R(ϕ)⊗3Ae−i2ϕdϕ (3.73)

respectively, with A111 = 1 and Ai jk = 0 otherwise. And the tensors B0,2 and B2,2 are given

by the same integrals respectively, with A112 = A121 = A211 = 1 and Ai jk = 0 otherwise:

B0,1 =


5 1 0 1 1 0 0 0 2

1 1 0 1 5 0 0 0 2

0 0 2 0 0 2 2 2 0


(3.74)

H2,1 =


15 1 5

√
2i 1 −1 3

√
2i 5

√
2i 3

√
2i 2

1 −1 3
√

2i −1 −15 5
√

2i 3
√

2i 5
√

2i −2

5
√

2i 3
√

2i 2 3
√

2i 5
√

2i −2 2 −2 6
√

2i


, (3.75)

B0,2 =


3 7 0 7 7 0 0 0 −2

7 7 0 7 3 0 0 0 −2

0 0 −2 0 0 −2 −2 −2 0


, (3.76)
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B2,2 =


3 13

√
2i 1 −13 7

√
2i

√
2i 7

√
2i −6

13 −1 7
√

2i −13 −3
√

2i 7
√

2i
√

2i 6

√
2i 7

√
2i −6 7

√
2i
√

2i 6 −6 6 −18
√

2i


. (3.77)

We proceed to obtain an orthonormal basis by the Gram-Schmidt procedure described

by Man and Huang [14]. First, we observe that

1
4

(B2,1 − B2,2) =


3 −3

√
2i −3 3 −

√
2i

√
2i −

√
2i 2

−3 3 −
√

2i 3 −3
√

2i −
√

2i
√

2i −2

√
2i −

√
2i 2 −

√
2i
√

2i −2 2 −2 6
√

2i


.

(3.78)

Then we take

H2,1 =
1

8
√

3


3 −3

√
2i −3 3 −

√
2i

√
2i −

√
2i 2

−3 3 −
√

2i 3 −3
√

2i −
√

2i
√

2i −2

√
2i −

√
2i 2 −

√
2i
√

2i −2 2 −2 6
√

2i


(3.79)

and

H2,2 =
B2,1 − 〈B2,1,H2,1〉H2,1

‖B2,1 − 〈B2,1,H2,1〉H2,1‖

=
1

4
√

3


3 1

√
2i 1 −1

√
2i
√

2i
√

2i 0

1 −1
√

2i −1 −3
√

2i
√

2i
√

2i 0

√
2i
√

2i 0
√

2i
√

2i 0 0 0 0


(3.80)

Similarly, note that

1
8

(B0,1 + B0,2) =


1 1 0 1 1 0 0 0 0

1 1 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0


(3.81)
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We choose

H0,1 =
1

2
√

2
=


1 1 0 1 1 0 0 0 0

1 1 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0


(3.82)

and

H0,2 =
B0,1 − 〈B0,1,H0,1〉H0,1

‖B0,1 − 〈B0,1,H0,1〉H0,1‖

=
1

4
√

3


3 −1 0 −1 −1 0 0 0 2

−1 −1 0 −1 3 0 0 0 2

0 0 2 0 0 2 2 2 0


. (3.83)

The independent components of the irreducible basis tensors given above are displayed

in the following table:

Tensor B B111 B112 B113 B122 B123 B133 B222 B223 B233 B333

2
√

15 × H6 1 −1
√

2i 1 −
√

2i −2 −1
√

2i 2 −2
√

2i

4
√

6 × H4 3 −1 2
√

2i −1 0 −2 3 −2
√

2i −2 0

8
√

3 × H2,1 3 −3
√

2i 3 −
√

2i 2 −3
√

2i −2 6
√

2i

4
√

3 × H2,2 3 1
√

2i −1
√

2i 0 −3
√

2i 0 0

2
√

2 × H0,1 1 1 0 1 0 0 1 0 0 0

4
√

3 × H0,2 3 −1 0 −1 0 2 3 0 2 0

Next we consider irreducible tensor basis for V ⊗ [V2]. Again we adopt the Kelvin

notation for tensors in V ⊗ [V2], where V is taken as a three-dimensional space with basis

f1 = e1 ⊗ e1, f2 = e2 ⊗ e2, and f3 = 1
√

2
(e1 ⊗ e2 + e2 ⊗ e1). The components of a sixth-order
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tensor B in this space is displayed in array form as

B =



B111 B112 B113 B211 B212 B213 B311 B312 B313

B121 B122 B123 B221 B222 B223 B321 B322 B323

B131 B132 B133 B231 B232 B233 B331 B332 B333


, (3.84)

where Bi jk = Bik j.

The integral

1
2π

∫ 2π

0
R(ϕ)⊗3Ae−i4ϕdϕ,where A112 = A121 = −1, and Ai jk = 0 otherwise,

delivers after normalization the tensor

H4,1 =
1

4
√

2



1 −1
√

2i 1 −1
√

2i 0 0 0

−1 1 −
√

2i −1 1 −
√

2i 0 0 0

√
2i −

√
2i −2

√
2i −

√
2i −2 0 0 0


. (3.85)

We take B4,2 = 4
√

6 × H4, where H4 is given by (3.72). It turns out that 〈B4,2,H4,1〉 = 0.

Hence we take H4,2 = H4.

With reference to (3.79) and (3.80), here we take

B2,1 =



3 −3
√

2i −3 3 −
√

2i
√

2i −
√

2i 2

−3 3 −
√

2i 3 −3
√

2i −
√

2i
√

2i −2

√
2i −

√
2i 2 −

√
2i
√

2i −2 2 −2 6
√

2i


, (3.86)

B2,2 =



3 1
√

2i 1 −1
√

2i
√

2i
√

2i 0

1 −1
√

2i −1 −3
√

2i
√

2i
√

2i 0

√
2i
√

2i 0
√

2i
√

2i 0 0 0 0


. (3.87)
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The integral

1
2π

∫ 2π

0
R(ϕ)⊗3Ae−i2ϕdϕ,

where (i) A112 = A121 = 1 and Ai jk = 0 otherwise, and (ii) A113 = A131 = −i and Ai jk = 0

otherwise, delivers up to a constant factor the tensors

B2,3 =



1 7 −
√

2i −1 −7
√

2i 3
√

2i 5
√

2i −2

7 1
√

2i −7 −1 −
√

2i 5
√

2i 3
√

2i 2

−
√

2i
√

2i −2
√

2i −
√

2i 2 −2 2 −6
√

2i


, (3.88)

B2,4 =



5 −1 3
√

2i 3 1
√

2i −
√

2i
√

2i 2

−1 −3
√

2i 1 −5 3
√

2i
√

2i −
√

2i −2

3
√

2i
√

2i −2
√

2i 3
√

2i 2 2 −2 2
√

2i


. (3.89)

respectively.

We choose H2,1 and H2,2 to be the tensors given by

2
√

3 × H2,1 =
1
4

(
B2,1 + 2B2,2 − B2,4

)
=



1 0 0 −1 0 0
√

2i 0 0

0 1 0 0 −1 0 0
√

2i 0

0 0 1 0 0 −1 0 0
√

2i


,

(3.90)

and

4
√

2× H2,2 =
1
4

(
4B2,2 − B2,1 − B2,3

)
=



2 0
√

2i 2 0
√

2i 0 0 0

0 −2
√

2i 0 −2
√

2i 0 0 0

√
2i
√

2i 0
√

2i
√

2i 0 0 0 0


,

(3.91)
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respectively. Clearly 〈H2,1,H2,2〉 = 0. Let

C =
1
4

(
B2,3 + B2,4 − 2B2,2

)
=



0 1 0 0 −1 0 0
√

2i 0

1 0 0 −1 0 0
√

2i 0 0

0 0 −1 0 0 1 0 0 −2
√

2i


. (3.92)

Since 〈C,H2,2〉 = 0, we take

H2,3 =
C − 〈C,H2,1〉H2,1

‖C − 〈C,H2,1〉H2,1‖

=
1

4
√

6



1 3 0 −1 −3 0
√

2i 3
√

2i 0

3 1 0 −3 −1 0 3
√

2i
√

2i 0

0 0 −2 0 0 2 0 0 −2
√

2i


. (3.93)

Let

D =
1
4

(
B2,4 − B2,3

)
=



1 −2
√

2i 1 2 0 −
√

2i −
√

2i 1

−2 −1 0 2 −1
√

2i −
√

2i −
√

2i −1

√
2i 0 0 0

√
2i 0 1 −1 2

√
2i


.

(3.94)

Since 〈D,H2,1〉 = 0, we take

H2,4 =
D − 〈D,H2,2〉H2,2 − 〈D,H2,3〉H2,3

‖D − 〈D,H2,2〉H2,2 − 〈D,H2,3〉H2,3‖

=
1
8



1 −1
√

2i −1 1 −
√

2i −
√

2i
√

2i 2

−1 1 −
√

2i 1 −1
√

2i
√

2i −
√

2i −2

√
2i −

√
2i −2 −

√
2i
√

2i 2 2 −2 2
√

2i


. (3.95)

The integral

1
2π

∫ 2π

0
R(ϕ)⊗3Adϕ,where A112 = A121 = 1, and Ai jk = 0 otherwise,
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delivers up to a constant real factor the tensor

B0,3 =



1 3 0 1 3 0 0 0 0

3 1 0 3 1 0 0 0 0

0 0 −2 0 0 −2 0 0 0


. (3.96)

We take

H0,3 =
B0,3 − 〈B0,3,H0,1〉H0,1 − 〈B0,3,H0,2〉H0,2

‖B0,3 − 〈B0,3,H0,1〉H0,1 − 〈B0,3,H0,2〉H0,2‖

=
1

2
√

6



0 1 0 −2 1 0 0 0 1

1 −2 0 1 0 0 0 0 1

0 0 −2 0 0 −2 1 1 0


. (3.97)

The integral

1
2π

∫ 2π

0
R(ϕ)⊗3Adϕ,where A113 = A131 = 1, and Ai jk = 0 otherwise,

delivers after normalization the tensor

H0′ =
1
4



0 0 1 0 0 −1 −2 0 0

0 0 1 0 0 −1 0 2 0

1 1 0 −1 −1 0 0 0 0


, (3.98)
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Chapter 4 Representation Theorem for Almost Transversely-Isotropic Sheets

4.1 Characterization of Almost Transversely-Isotropic Texture

In materials science, macrotexture is usually described by the orientation distribution func-

tion (ODF) w defined on the rotation group SO(3). Generally the ODF can be expanded as

an infinite series in terms of the Wigner D-functions Dl
mn [3, 11, 21, 27]

w(R(ψ, θ, φ)) =
1

8π2 +

∞∑
l=1

l∑
m=−l

l∑
n=−l

cl
mnDl

mn(R(ψ, θ, φ)), (4.1)

where the three-dimensional rotations are parametrized by the Euler angles (ψ, θ, φ), cl
mn

are expansion coefficients called texture coefficients, and the ODF is normalized so that its

integral over the rotation group SO(3) is equal to 1, i.e.,

∫ 2π

0

∫ π

0

∫ 2π

0
w(ψ, θ, φ) sin θ dψdθdφ = 1. (4.2)

Because w is real-valued, the texture coefficients and the Wigner D-functions satisfy the

constraints that

cl
mn = (−1)m+ncl

m̄n̄, (4.3)

Dl
mn(R) = (−1)m+nDl

m̄n̄(R). (4.4)

When the crystallites of the polycrystal have no preferred orientations (in other words, the

polycrystal is isotropic), we have

w := wiso =
1

8π2 . (4.5)
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Let us choose a Cartesian coordinate system defined by an orthonormal triad e1, e2, and

e3 so that the homogeneous thin sheet in question lies in the plane spanned by e1 and e2.

The texture of the thin sheet is said to be transversely-isotropic about the sheet normal if

the ODF w remains unchanged after the sheet undergoes a rotation R(e3, ϕ), i.e., a rotation

about e3 by an angle ϕ, or R(e2, π) that flips e3 to −e3. We proceed to prove that w is

transversely-isotropic about the sheet normal (i.e., the axis defined by e3) if it is of the form

wtiso =
1

8π2 +

∞∑
l=1

l∑
n=−l

cl
0nDl

0n(R), (4.6)

cl
0n = 0 for odd l. (4.7)

In order to prove (4.6) and (4.7), we first introduce some transformation formulae [11].

Let w andTQw be the ODF of a polycrystal before and after the sample undergoes a rotation

Q. Then it is clear that TQw and w are related by

TQw(R) = w(QT R) (4.8)

for each rotation R. For rotations Q in the symmetry group of the macrotexture, we have

TQw(R) = w(R) for each rotation R. (4.9)

For notational convenience, let us put w̃ = TQ. Let c̃l
mn and cl

mn be the texture coeffi-
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cients pertaining to w̃ and w, respectively. By (4.1) and (4.9), we have

w̃(R) = w(QT R)

=

∞∑
l=1

l∑
m=−l

l∑
n=−l

cl
mnDl

mn(QT R)

=

∞∑
l=1

l∑
m=−l

l∑
n=−l

cl
mn(

l∑
p=−l

Dl
mp(QT )Dl

pn(R))

=

∞∑
l=1

l∑
p=−l

l∑
n=−l

(
l∑

m=−l

cl
mnDl

mp(Q−1))Dl
pn(R) (4.10)

Thus we obtain

c̃l
pn =

l∑
m=−l

cl
mnDl

mp(Q−1)), (4.11)

which by renaming indices is equivalent to

c̃l
mn =

l∑
s=−l

cl
snDl

sm(Q−1)). (4.12)

If the polycrystal is transversely isotropic about z-axis, the elements of Gtex, the group

of texture symmetry, are I, R(e2, π), and R(e3, φ) for 0 ≤ φ < 2π. Transversely isotropy

dictates that c̃l
mn = cl

mn for Q−1 given by the Euler angle (0, 0, φ) and (0, π, 0) and (0, 0, φ)

for 0 ≤ φ < 2π, respectively.

For Q−1 given by (0, 0, φ), we have

cl
mn =

l∑
s=−l

cl
snDl

sm((0, 0, φ))

=

l∑
s=−l

cl
sndl

sm(0)e−imφ

= cl
mne−imφ, (4.13)

which holds for any angle φ. Hence we obtain cl
mn = 0 if m , 0.
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For Q−1 given by (0, π, 0), we have

cl
mn =

l∑
s=−l

cl
snDl

sm((0, π, 0))

=

l∑
s=−l

cl
sndl

sm(π)

=

l∑
s=−l

cl
sn(−1)l+sdl

sm̄(0)

= (−1)l−mcl
m̄n. (4.14)

When m = 0, we obtain

cl
0n = (−1)lcl

0n =


0 for odd l

cl
0n for even l

. (4.15)

Hence we have proved (4.6 )and (4.7) for wtiso.

The texture of a homogeneous thin sheet is said to be almost transversely-isotropic

about the sheet normal if under a Cartesian coordinate system with the sheet normal being

the z-axis, the ODF that defines the texture is of the form

w = wtiso +

∞∑
l=1

∑
m∈Jl\{0}

∑
n∈Jl

cl
mnDl

mn, (Jl = {−l, · · · ,−1, 0, 1, · · · , l}) (4.16)

where wtiso is given by (4.6) and all texture coefficients cl
mn with l ≥ 1 and m , 0 are small

in the sense that only terms linear in these coefficients need to be considered as far as their

effects on material tensors are concerned.

4.2 Representation Theorem

In their paper [14], Man and Huang consider material tensors H in three-dimensional space

which are smooth functions of the ODF w in an SO(3)-invariant neighborhoodN of wiso in
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SO(3). Their main physical assumption is the constraint

H(TQw)[Qv1, . . . ,Qvr] = H(w)[v1, . . . , vr] (4.17)

for each Q ∈ SO(3), each w ∈ N , and any v1, . . . , vr ∈ V (3), where V (3) denotes the

translation space of the three-dimensional Euclidean space. Constraint (4.17) is suggested

[11, 19] by the general principles of material frame-indifference and isotropy of space.

Paroni [18] proved this constraint in the context of stochastic homogenization by making

the assumption that the orientation field of the crystallites in the polycrystalline aggregate

be statistically independent.

In this dissertation we consider material tensors based on the two-dimensional transla-

tion space V of the sheet plane. To make use of constraint (4.17), we must restrict Q to

R(e3, ϕ) and R(e1, π), which correspond to R(ϕ) and Mx, respectively, in our theory based

on O(2), so that vectors in V are transformed into vectors in V .

In what follows we assume that the thin sheet in question carries a texture which is

almost transversely-isotropic about the sheet normal and is characterized by a specific

ODF of the type given by (4.16). We restrict attention to values of the r-th order tensor

H[v1, . . . , vr], where v are in V (or in V (3) with zero 3-component). We assume that H(·)

is smooth in a neighborhood of wtiso. Let DH(wtiso) denote the Frechet derivative of H

at wtiso. We consider the case that the physical property characterized by H in the given

polycrystalline aggregate is adequate to be replaced by its approximation at wtiso, i.e.,

H(w) = H(wtiso) + DH(wtiso)[w − wtiso]. (4.18)

For the moment, let us not put any restriction on any restriction on the three dimensional

rotation Q (i.e., allowing Qvi to have a non-zero 3-component). It then follows from the
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assumptions on H that for each w, we have

H(w)[v1, . . . , vr] = (H(wtiso) + DH(wtiso)[w − wtiso])[v1, . . . , vr], (4.19)

and

H(TQw)[Qv1, . . . ,Qvr] = (H(TQwtiso) + DH(TQwtiso))[TQ(w − wtiso)][Qv1, . . . ,Qvr].

(4.20)

By the assumption (4.17), we have

(H(wtiso)+DH(wtiso)[w−wtiso])[v1, . . . , vr] = (H(TQwtiso)+DH(TQwtiso)[TQ(w−wtiso)])[Qv1, . . . ,Qvr].

(4.21)

Let

G := {Q ∈ SO(3) : TQwtiso = wtiso}. (4.22)

Then by (4.21), DH(wtiso)[w − wtiso] satisfies

(DH(wtiso)[TQ(w − wtiso)])[Qv1, . . . ,Qvr] = (DH(wtiso)[w − wtiso])[v1, . . . , vr] (4.23)

for each Q ∈ G and any v1, . . . , vr ∈ V . We will write H′ := DH(wtiso). Thus we have the

equivalent form

Q⊗r H′(wtiso)[w − wtiso] = H′(TQwtiso)[TQ(w − wtiso)] (4.24)

for each Q ∈ G and w.

In what follows, let

H0 = { f ∈ L2(SO(3),C) : f =

∞∑
l=1

∑
m∈Jl\{0}

∑
n∈Jl

cl
mnDl

mn, (4.25)

cl
mn ∈ C, Jl = {−l, · · · ,−1, 0, 1, · · · , l}}. (4.26)
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Note that by (4.16) we have w − wtiso ∈ H0 for each ODF w.

Now we introduce a representation theorem as follows.

Theorem 4.1. Let V be the space of symmetric second-order tensors which is also denoted

by [V2]. For k ≥ 1, let Z be a two-dimensional subspace ofV⊗r invariant under the action of

O(2). Let Zc be its complexification. Let R andMx be defined as in Section 3.3. Suppose the

representation R(ϕ) 7→ R(ϕ)⊗r|Zc, MxR(ϕ) 7→ M⊗r
x R(ϕ)⊗r|Zc is equivalent to the irreducible

unitary representation Dk. Let H′ : H0 → Z be linear and satisfy (4.24) for each Q ∈ G

and w. The assertion below is valid:

There exists an orthonormal basis Hk and Hk̄ in Zc such that

Hk̄ = Hk

R(ϕ)⊗r Hk = eikϕHk, R(ϕ)⊗r Hk̄ = e−ikϕHk̄

M⊗r
x Hk = Hk̄, M⊗r

x Hk̄ = Hk (4.27)

where k̄ = −k, and

H′(wtiso)[w − wtiso] =
1
2

∞∑
l=1

l∑
n=−l

(
cl

knβk(wtiso)[Dl
kn(·)]Hk + cl

k̄nβk̄(wtiso)[Dl
k̄n(·)]Hk̄

+ (−1)l+kcl
k̄nβk̄(wtiso)[Dl

k̄n(·)]Hk + (−1)l+kcl
knβk(wtiso)[Dl

kn(·)]Hk̄

)
,

(4.28)

where βk(wtiso) and βk̄(wtiso) are complex-valued linear functionals which satisfy

βk(wtiso)[ f ] = βk̄(wtiso)[ f ] for each f ∈ L2(SO(3),C). (4.29)

Proof. A procedure to construct orthonormal basis tensors Hk and Hk̄ in Zc which satisfy

(4.27) has already be given in Section 3.3.
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Since H′(wtiso)[w − wtiso] is in the two-dimensional invariant subspace Zc under O(2),

we can write

H′(wtiso)[w − wtiso] = βk(wtiso)[w − wtiso]Hk + βk̄(wtiso)[w − wtiso]Hk̄, (4.30)

for some complex-valued linear functionals βk, βk̄ defined onH0. We proceed to prove that

they satisfy

βk(wtiso)[ f ] = βk̄(wtiso)[ f ] for each f ∈ H0. (4.31)

To prove 4.31, we letH c
0 be the complexifications ofH0. We extend the H′ : H0 → Z

to the linear mapping fromH c
0 to Zc, which will still be denoted as H′, defined by

H′[g + ih] = H′[g] + iH′[h] (4.32)

for each g and h inH0. H′ still satisfies condition (4.24) after the extension.

Since Hk = Hk̄ and by the linearity of βk and βk̄, we observe that

H′(wtiso)[g + ih] = βk(wtiso)[g + ih]Hk + βk̄(wtiso)[g + ih]Hk̄,

= βk(wtiso)[g + ih]Hk + βk̄(wtiso)[g + ih]Hk̄

= βk(wtiso)[g] + iβk(wtiso)[h]Hk̄ + βk̄(wtiso)[g] + iβk̄(wtiso)[h]Hk

= (βk(wtiso)[g] − iβk(wtiso)[h])Hk̄ + (βk̄(wtiso)[g] − iβk̄(wtiso)[h])Hk (4.33)

On the other hand, we observe that

H′(wtiso)[g + ih] = H′(wtiso)[g] − iH′(wtiso)[h]

= H′(wtiso)[g] − iH′(wtiso)[h]

= {βk(wtiso)[g]Hk + βk̄(wtiso)[h]Hk̄} − i{βk(wtiso)[h]Hk + βk̄(wtiso)[h]Hk̄}

= (βk(wtiso)[g] − iβk(wtiso)[h])Hk + (βk̄(wtiso)[g] − iβk̄(wtiso)[h])Hk̄ (4.34)
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Comparing the coefficients of Hk and Hk̄ respectively in (4.33) and (4.34), we have

βk̄(wtiso)[g + ih] = βk(wtiso)[g − ih], βk(wtiso)[g + ih] = βk̄(wtiso)[g − ih], (4.35)

i.e.,

βk̄[ f ] = βk[ f ], βk[ f ] = βk̄[ f ] (4.36)

for each f ∈ H0.

From our basic assumption, there holds

Q⊗r(H′(wtiso)[w − wtiso]) = βk(TQwtiso)[TQ(w − wtiso)]Hk

+ βk̄(TQwtiso)[TQ(w − wtiso)]Hk̄. (4.37)

In what follows, assume that Q = R(e2, π) or Q = R(e3, ϕ), where ϕ is arbitrary. For

these rotations, we have

TQwtiso = wtiso. (4.38)

Substituting (4.38) and

TQ(w(R) − wtiso) =

∞∑
l=1

∑
m,0

l∑
n=−l

cl
mnDl

mn(QT R)

=

∞∑
l=1

∑
m,0

l∑
n=−l

cl
mn

 l∑
s=−l

Dl
ms(Q

T )Dl
sn(R)

 (4.39)

into equation (4.37) and multiplying both sides of the equation on the left by (QT )⊗r, we

obtain the following two cases:

Case 1: Q = R(e3, ϕ). The Euler angles for Q is (ψ, θ, φ) = (ϕ, 0, 0). Then Dl
ms(Q

T ) =
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eimϕdl
ms(0) = eimϕδms. We have

H′(wtiso)[w − wtiso] =

∞∑
l=1

∑
m,0

l∑
n,s=−l

(
cl

mneimϕδmsβk(wtiso)[Dl
sn(·)]

(
(R(−ϕ))⊗r Hk

)
+ cl

mneimϕδmsβk̄(wtiso)[Dl
sn(·)]

(
(R(−ϕ))⊗r Hk̄

))
=

∞∑
l=1

∑
m,0

l∑
n=−l

(
cl

mneimϕβk(wtiso)[Dl
mn(·)]e−ikϕHk

+ cl
mneimϕβk̄(wtiso)[Dl

mn(·)]eikϕHk̄

)
. (4.40)

Integrating both sides of (4.40) with respect to ϕ from 0 to 2π, we obtain

H′(wtiso)[w − wtiso] =

∞∑
l=1

l∑
n=−l

(
cl

knβk(wtiso)[Dl
kn(·)]Hk + cl

k̄nβk̄(wtiso)[Dl
k̄n(·)]Hk̄

)
. (4.41)

Case 2: Q = R(e2, π)R(e3, ϕ). The Euler angles for R(e2, π) is (ψ, θ, φ) = (0, π, 0). Note

that QT = Q, and

Dl
ms(Q

T ) =

l∑
p=−l

Dl
mp(R(e2, π)Dl

ps(R(e3, ϕ))

=

l∑
p=−l

dl
mp(π)e−ipϕdl

ps(0)

=

l∑
p=−l

(−1)l+mδmp̄ e−ipϕδps

= (−1)l+me−isϕδms̄. (4.42)

We have

H′(wtiso)[w − wtiso] =

∞∑
l=1

∑
m,0

l∑
n,s=−l

(
cl

mn(−1)l+me−isϕδms̄βk(wtiso)[Dl
sn(·)]

(
(MyR(ϕ))⊗r Hk

)
+ cl

mn(−1)l+me−isϕδms̄βk̄(wtiso)[Dl
sn(·)]

(
(MyR(ϕ))⊗r Hk̄

))
=

∞∑
l=1

∑
m,0

l∑
n=−l

(
cl

mn(−1)l+meimϕβk(wtiso)[Dl
m̄n(·)]eikϕHk̄

+ cl
mn(−1)l+meimϕβk̄(wtiso)[Dl

m̄n(·)]e−ikϕHk

)
. (4.43)
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Integrating both sides of (4.43) with respect to ϕ from 0 to 2π, we obtain

H′(wtiso)[w−wtiso] =

∞∑
l=1

l∑
n=−l

(
−1)l+kcl

k̄nβk̄(wtiso)[Dl
k̄n(·)]Hk + (−1)l+kcl

knβk(wtiso)[Dl
kn(·)]Hk̄

)
.

(4.44)

Gathering (4.35) and (4.38), we can write the representation formula as

H′(wtiso)[w − wtiso] =
1
2

∞∑
l=1

l∑
n=−l

(
cl

knβk(wtiso)[Dl
kn(·)]Hk + cl

k̄nβk̄(wtiso)[Dl
k̄n(·)]Hk̄

+ (−1)l+kcl
k̄nβk̄(wtiso)[Dl

k̄n(·)]Hk + (−1)l+kcl
knβk(wtiso)[Dl

kn(·)]Hk̄

)
.

(4.45)

�

If the texture of the sheet is monoclinic with R(e2, π) ∈ Gtex, the group of texture

symmetry, then the texture coefficients satisfy the requirement that

cl
mn = (−1)l+mcl

m̄n, (4.46)

and representation formula (4.28) assumes the simpler form

H′(wtiso)[w − wtiso] =
1
2

∞∑
l=1

l∑
n=−l

(
cl

kn

(
βk(wtiso)[Dl

kn(·)] + βk̄(wtiso)[Dl
k̄n(·)]

)
Hk

+ cl
k̄n

(
βk(wtiso)[Dl

kn(·)] + βk̄(wtiso)[Dl
k̄n(·)]

)
Hk̄

)
=

∞∑
l=1

l∑
n=−l

αkn

(
cl

knHk + cl
k̄nHk̄

)
, (4.47)

where

αkn =
1
2

(
βk(wtiso)[Dl

kn(·)] + βk̄(wtiso)[Dl
k̄n(·)]

)
(4.48)

are material constants.
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Applying the preceding theorem to each of the non-trivial irreducible two-dimensional

subspaces of the decomposition

Zc = n0D
0 + n0′D

0′ +
∑
k≥1

nkD
k,

we obtain the following representation theorem on H′(wtiso)[w − wtiso].

Theorem 4.2. Let Z ⊂ V⊗r be a subspace invariant under the action of O(2). Let its

complexification have the decomposition Zc = n0D
0+n0′D

0′+
∑

k≥1 nkD
k. Let tensor function

H′ : H0 → Z be linear and satisfy (4.24) for each rotation Q ∈ G and ODF w. For each k

in J := { j : n j > 1, j , 0, 0′} and 1 6 s 6 nk, the assertion below is valid:

There exists an orthonormal basis Hk,s in Zc such that

Hk̄,s = Hk,s

R(ϕ)⊗r Hk,s = eikϕHk,s, R(ϕ)⊗r Hk̄,s = e−ikϕHk̄,s

M⊗r
x Hk,s = Hk̄,s, M⊗r

x Hk̄,s = Hk,s (4.49)

where k̄ = −k, and

H′(wtiso)[w − wtiso] =
1
2

∑
k∈J

nk∑
s=1

∞∑
l=1

l∑
n=−l

(
cl

knβk,s(wtiso)[Dl
kn(·)]Hk,s + cl

k̄nβk̄,s(wtiso)[Dl
k̄n(·)]Hk̄,s

+ cl
knβk̄,s(wtiso)[Dl

k̄n(·)]Hk,s + cl
k̄nβk,s(wtiso)[Dl

kn(·)]Hk̄,s

)
. (4.50)

If the texture of the sheet is monoclinic with R(e2, π) ∈ Gtex, the group of texture sym-

metry, then the texture coefficients still satisfy the requirement (4.46), and representation

formula (4.50) assumes the simpler form

H′(wtiso)[w − wtiso] =
∑
k∈J

nk∑
s=1

∞∑
l=1

l∑
n=−l

αkn,s

(
cl

knHk,s + cl
k̄nHk̄,s

)
, (4.51)
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where

αkn,s =
1
2

(
βk,s(wtiso)[Dl

kn(·)] + βk̄,s(wtiso)[Dl
k̄n(·)]

)
(4.52)

are material constants.

Theorem 4.1 and Theorem 4.2, while phrased in the context of Zc being a subspace of

V⊗r
c = [V2

c ]⊗r remain valid for general tensor subspaces of V⊗r
c , with obvious modifications

such as replacingR(ϕ) andMx by R(ϕ) and Mx, respectively. The proofs are also essentially

the same. If Zc ⊂ [V2
c ]⊗r, then it is advantageous to use V rather than V as the base vector

space because a tensor of order 2r in V⊗2r becomes a tensor of order r inV⊗r and the Kelvin

notation can be used instead of the more cumbersome standard tensor notation.
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Chapter 5 Closing Remarks

In this dissertation we have derived a representation formula for material tensors that per-

tain to textured thin sheets or thin films which carry weak planar anisotropy but possibly

strong normal anisotropy. We model the texture of such sheets as almost transversely-

isotropic about the sheet normal. The most glaring difference between our representation

formula and that of Man and Huang [14] on almost isotropic polycrystals is that Man and

Huang’s formula is a finite sum which involves texture coefficients of order l no higher

than the rank of the tensor in question, while the formula presented herein is an infinite

series that involves texture coefficients of all orders l ≥ 1. Nevertheless, the texture coef-

ficients cl
mn are themselves expansion coefficients of a convergent infinite series of Wigner

D-functions. In some applications (e.g., plastic anisotropy of steel sheets), it has been

reported that truncating the series expansion of the ODF at l = 8 or l = 10 would suffice.

A comparison of representation formula (4.50) and its counterpart (4.51) in the presence

of monoclinic texture indicates that the representation formula will be significantly simpli-

fied in the presence of higher texture and crystal symmetries. For future work, specialized

versions of the formula should be worked out for common cases such as orthorhombic

aggregates of cubic or hexagonal crystallites. Such specialized representation formulas

should be used in applications, e.g., to derive the angular dependence of the r-value in

anisotropic plasticity and compare the findings with those available in [12] where the sheet

metal in question is assumed to be almost isotropic.
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