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Abstract

Purpose: The purpose of this work was to create a Monte Carlo BEAMnrc/EGSnrc model of the

electron beam delivery system of an Elekta Infinity linear accelerator that could simulate electron

percent depth doses and off-axis profiles to within a specified tolerance criteria,±2% relative quan-

tities (Dmax) or 1 mm distance to agreement (DTA), when compared to a subset of the measured

commissioning data for the accelerator’s existing set of scattering foils and applicators.

Methods: The model was constructed with the BEAMnrc user code from vendor provided schemat-

ics and correspondence with manufacturer engineers under a nondisclosure agreement. The spatial

distribution of the initial electron source was derived by matching the large field (open-insert 25x25

cm2 applicator) cross beam profiles calculated by the model with the measured data. The measured

data was re-sampled and symmetrized about the central axis (CAX) and the simulation data was

smoothed before the two data sets were normalized to reference values along the CAX. The two

data sets were compared to test to the hypothesis.

Results: The model was able to meet the tolerance criteria (2% of Dmax or 1 mm DTA) for all

large-field %DD curves. The model was unable to meet the criteria for any large field, shallow

depth cross-beam profiles. The low energy (7-, 9-MeV) and high energy (16-, 20-MeV) models

over-predict off-axis dose. The medium energy (10-, 11-, 13-MeV) beam model under-predict

off-axis dose. These off-axis dose discrepancies were not pronounced at smaller field-sizes (6x6

and 14x14 cm2) for the subset of the clinical beam energies (7-, 13-, 20-MeV) that were compared.

Conclusions: The Monte Carlo model of the Elekta Infinity electron beam delivery system could

not simulate the considered subset of measured beam data to within the tolerance criteria of the

study. The model could accurately reproduce the smaller field-sizes that were compared but could

not reproduce the measured large field data. The large-field off-axis dose discrepancies observed

with the medium beam energies (10-, 11-, 13-MeV) could be resolved by introducing a small initial

angular spread ( ∼2◦) to the incident electron source of the model.
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Chapter 1
Introduction/Background

1.1 Electron Beam Therapy

1.1.1 History and Clinical Use

Clinical electron beams have played an important role in radiation therapy for over half a

century. The early treatment machines were developed in the 1930s and 1940s and using Van de

Graaff generators. This technology was proceeded by betatron accelerators, which allowed for

higher electron energies. Today, microwave-based accelerators have become the clinical standard

(Karzmark 1984). Figure 1.1 shows a generic percent depth-dose (%DD) curve for a clinically

acceptable electron beam, with a most probable beam energy of 10-MeV, as defined by ICRU

report 35 (1984) . This curve represents normalized dose as a function of depth in water along the

central axis (CAX) of the beam.

Figure 1.1: Parameters used to characterize electron beam central-axis depth-dose curve. These
parameters are discussed in Section 1.1.2. Figure from ICRU report 35 (1984).
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The finite range and sharp distal falloff distal of the electron beam provide unique clinical

characteristics. In particular, electrons offer advantages over photons when the clinical goal is the

treatment of superficial sites while sparing the distal tissues of dose. However, these clinically

desirable properties of electron dose distributions begin to degrade as the beam energy exceeds

20-MeV, above which the lateral penumbra, distal falloff, and Bremsstrahlung production increase

rapidly (see Figure 1.2). Therefore, typical electron beam energies currently in use at radiation

therapy centers range from about 6-MeV to 20-MeV.

AAPM Task Group No. 70 outlines several clinical sites where the clinical properties of elec-

tron beams have shown to be advantageous (Gerbi et al. 2009). Electrons are often used to deliver

boost dose to surgical scars for post-lumpectomy breast treatments following tangential photon

fields. Electron arc therapy is an excellent choice for delivering uniform dose to curved surfaces,

such as the treatment of double post-mastectomy chest walls. Electron treatment is useful for total

skin and total scalp where the goal is to deliver a uniform dose to the skin while sparing the deeper

structures. Electrons have played an important role in the treatment of superficial sites in the head

and neck region. Electron therapy is the primary treatment for retinoblastoma patients that have

a chance for vision preservation in the afflicted eye. Additionally, the matching of photon and

electron fields have greatly reduced both the acute, and more importantly, the late complications

associated with craniospinal irradiation of pediatric patients.

1.1.2 Basic Interactions and Dosimetric Properties

The clinically applicable section of the beam delivers a reasonably uniform dose of radiation

to the tissues that are within the therapeutic range (Rt), recommended to be defined as the depth

that receives 90% of the dose (R90) by Khan et al. (1991) in AAPM Task Group No. 25. The

physics governing the interactions (mainly, multiple coulomb scattering and collisional energy

loss) of electrons result in a sharp distal falloff from R90 to the 10% of the maximum dose, R10.

The practical range of the beam, Rp, corresponds to the intersection of a line tangent to the point of

inflection (∼R50) along the distal falloff of the %DD curve. As the finite range of the electron beam

is reached, the %DD curve approaches a horizontal asymptote as depth increases. This asymptote
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Figure 1.2: %DD curves as a function of electron energy. Figure from Loevinger, Karzmark, and
Weissbluth (1961).

Figure 1.3: Block diagram of medical linear accelerator. Figure adapted from Khan (2010).
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value, denoted Dx, is the dose contribution from bremsstrahlung photons generated primarily by

the beam-line components. The parameters defined in this section are all of clinical importance

and have been shown to be influenced by small changes in the scattering foils, beam collimation,

source-to-surface distance (SSD), and beam energies (Hogstrom and Almond 2006).

1.1.3 Generation of Clinical Beam

The accelerated electron beams produced by modern medical linear accelerators are too nar-

row to be clinically useful. The most common approach for producing usable field sizes is to use

direct the electron beam through a dual scattering foil system. The modern medical linear ac-

celerator, shown in Figure 1.3, achieves microwave-based acceleration of electrons using either a

magnetron or a klystron, with an accelerator structure, which is either traveling wave or standing

wave depending on the manufacturer of the device. This accelerated electron beam is directed

towards the patient plane by an achromatic bending magnet and leaves the vacuum environment of

the acceleration system via a metal exit window.

A simplified example of the dual scattering foil system is shown in Figure 1.4. The primary

foil, denoted in Figure 1.4, is a high-Z material of uniform thickness and is intended to scatter

the initial electron beam into a broadened Gaussian distribution. The secondary foil, denoted in

Figure 1.4, is constructed with lower-Z materials, such as aluminum, and has a varying thickness

that decreases with distance from the CAX. This geometry results in a decrease in electron scatter

as the distance from the CAX increases. The two foils combined effect results in a beam which

is flat and symmetric over a large field size (a minimum of the diagonal field across the largest

electron applicator) at isocenter, usually specified as approximately 100 cm from the exit window.

One combination of primary foil and secondary foil cannot produce an acceptable broad and flat

field for all clinical energies. Therefore, linear accelerator manufacturers generally design a set of

scattering foils for a predetermined set of electron energies (Bieda 1999). Deviation from these

beam energies can cause failure to achieve minimum acceptable flatness (±3% of CAX value) and

symmetry (2% of CAX value) as specified in AAPM Task Group No. 25 (Khan et al. 1991).
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Figure 1.4: Dual scattering foil system. Figure adapted from Karzmark (1993).
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This broadened beam is impacted by the position of the photon jaws. Side scatter equilibrium

affects the penumbra of the field near the projection of the edges of the jaws, particularly at low

beam energies. Additionally, scatter off and out through the edges of the photon jaws is most

prominent at higher energies (Lax and Brahme 1980). Furthermore, electron scatter off the appli-

cator system contributes to the shape of the off-axis dose profiles. To account for these effects,

the jaw positions are different for each applicator/beam energy combination. Although these po-

sitions should be precalculated and optimized, sometimes a procedure is used where adjustments

to the jaw positions are made during the acceptance of a new linear accelerator. These types of

adjustments are not recommended without first looking at the radiation leakage outside of the field.

Figure 1.5: Elekta Infinity electron applicator (14x14 cm2).
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1.1.4 Ancillary Hardware

Since electrons scatter easily in air, additional beam collimation is needed near the patient

surface to reduce lateral penumbra. The typical approach for this purpose has been to use an

electron applicator (Elekta applicator shown in Figure 1.5). The electron applicator generally

attaches to the bottom of the treatment head via a sliding or latching mechanism. The applicator

consists of multiple trimmer bars constructed of high-Z material to prevent electrons from reaching

beyond the desired field size. The patient surface (level of isocenter) and the downstream face

of the applicator are separated by 5 cm of air. A removable collimator, or “insert”, allows for

definition of irregular field shapes.

1.2 Motivation for Study

Mary Bird Perkins Cancer Center (MBPCC) contracted a linear accelerator manufacturer,

Elekta (Elekta Limited, Stockholm, Sweden), to provide five Elekta Infinity linear accelerators

with unique requirements. MBPCC specified the electron beam energies such that the accelerators

would have the following R90 depths: 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, and 6.0 cm. This specification

resulted in electron beam energies that were non-standard for the design of Elekta’s dual scattering

foil system. Additionally, MBPCC flatness requirements (±3% for points 2 cm inside the 50%

OAR along the principal axes and ±4% for points 2
√

2 cm inside the 25% OAR along the di-

agonals of the field) for the electron beams of the Elekta accelerators were more stringent than

industry standards. Furthermore, MBPCC required very strict tolerances for the dosimetric match-

ing of each of the installed accelerators so that a single set of commissioning data could be used at

the five MBPCC sites.

While Elekta was able to achieve all of MBPCC requirements, two of the three secondary scat-

tering foils had to be modified in order to achieve the required beam flatness at the specified beam

energies. Additionally, Elekta has needed to send factory engineers to each MBPCC site during

machine installation to assist in the accelerator tuning process to match the dosimetry of the new

machines with the original commissioning data. In order to make this process more efficient for

future institutions with requirements similar to MBPCC, Elekta entered into a research agreement
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with MBPCC to redesign the dual scattering foil system of the Elekta Infinity linear accelerator.

Concurrently, the electron applicators for the Infinity accelerator will also be redesigned to pro-

vide optimal beam flatness for the newly designed scattering foil system while achieving optimal

geometry and mass for ease of user operation and providing acceptable leakage.

In order to redesign beam-line components of an accelerator, certain materials and tools are

necessary. First, fast analytical calculation tools are needed to quickly optimize the design of the

components. Once initial designs are created, a more robust and intensive calculation tool is then

needed to validate and fine-tune the analytical designs. This more intensive calculation tool is also

needed to verify that the accelerator will meet the specifications for leakage as defined in inter-

national industry (IEC) standard 6061-2-1 (1998) after the beam-line components are redesigned.

Monte Carlo modeling and simulation is considered the “gold standard” of intensive calculation

tools in the field of radiation therapy (Rogers 2006). Before a Monte Carlo model of the beam

line components can be used to validate analytical designs it must be benchmarked against the

current system with the existing scattering foil system. Measured beam data of the current sys-

tem is required to benchmark the Monte Carlo model and measured beam data taken with the

redesigned components is needed to confirm the Monte Carlo results as well as the new beam-line

components.

Analytical code to optimize the design of a scattering foil system for mono-energetic electron

beams was developed by Green (1991). This work was updated by Kainz et al. (2005) include

poly-energetic electron beams. These analytical codes are available for in-house use at MBPCC.

Analytical methods to optimize the Elekta electron applicators are currently being developed from

previous work by Hogstrom et al. (1990). Additionally, the necessary measured beam data for the

current system was acquired during the commissioning of the first MBPCC Infinity accelerator.

This work focused on delivering a Monte Carlo model of the existing electron beam delivery

system of the Elekta Infinity linear accelerators that was validated by the measured beam data of

the accelerators installed at the MBPCC sites.
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1.3 Monte Carlo Simulations

Monte Carlo algorithms are often used to estimate solutions to problems for which analytical

solutions are very difficult or impossible using deterministic methods. The Monte Carlo method

can be used to model any statistical process that can be described by probability distributions. A

process can be simulated by sampling the individual probability distribution of the events that com-

pose the process with random numbers. Computers are able to generate pseudo-random numbers

via an algorithm that uses one or more number seeds. Radiation transport is one such problem

that is well-suited for simulation using Monte Carlo methods since an electron/photon shower is

created by compiling a large number of repetitions of physical processes that follow probability

distributions. When a sufficiently large number of particles are used, the average value of macro-

scopic properties, like dose deposited in a material or fluence at a plane, can be determined. In

radiation therapy, a benchmarked Monte Carlo model is generally accepted as the “gold standard”

for electron-photon transport inside of complex three dimensional geometries (Rogers 2006).

1.3.1 EGSnrc and History

EGSnrc is a Monte Carlo transport code which grew out of the need to model electron-photon

transport at high energies for the research occurring at the Stanford Linear Accelerator Center

(SLAC). The Electron Gamma Shower (EGS) code was originally created for tasks such as the

optimization and validation of calorimeters designed for use with charged particles reaching en-

ergies of several hundred-GeV (Guerra and Nelson 1988). The third revision of the code, EGS3,

was released in 1978 and extended the low energy limits of the package. The extended low en-

ergy simulation abilities gave the code utility to other disciplines, such as the medical physics

community (Nelson, Hirayama, and Rogers 1985). The fourth revision of the code, EGS4, was

released to the public as an open source package in 1985. The current version of the code, the

EGSnrc user package, made numerous improvements to the radiation transport that are listed in

the manual (Kawrakow et al. 2011). The most notable improvements were improved low energy

cross sections, a new multiple scattering theory, corrected Bremsstrahlung routines, and improved

accuracy in the calculation of energy loss (Kawrakow et al. 2011). The improved energy loss accu-

9



racy is due mainly to the replacement of the original algorithm for condensed history electron step,

PRESTA-I, with PRESTA-II. PRESTA-II improves the lateral and longitudinal corrections

for elastic scattering to improve the description of the spread of electrons in a single condensed

history (Kawrakow et al. 2011). The current version at the time of this publication, EGSnrc V4

2.3.2, was considered physically valid for photons, electrons, and positrons over a wide dynamic of

energies. Kawrakow et al. (2011) documented that the transport of charged particles with kinetic

energies from 10-keV to a few hundred GeV and photon energies from 1-keV to several hundred

GeV were considered valid.

1.3.2 BEAMnrc and History

The original BEAM code came about as a solution to the difficulty presented in building the

complex geometry of a linear accelerator using the EGS4 user code. BEAM was developed at the

NRC in conjunction with the Ottawa Madison Electron Gamma Algorithm (OMEGA) project, a

project to develop a dose calculation algorithm for electron beam radiotherapy using Monte Carlo

methods. This code was documented and released for public use in 1995 by Rogers et al. (1995).

The BEAM user package has been updated to BEAMnrc, to correspond with update of EGS4 to

EGSnrc. The BEAMnrc user package includes a program, DOSXYZnrc, that can score dose from

the output of a BEAMnrc simulation as well as other arbitrary sources in a user-defined phan-

tom. The description of the source options in DOSXYZnrc are located in the manual (Walters,

Kawrakow, and Rogers 2011). Another program, BEAMDP, provides the user with a powerful

analysis tool capable of gathering information from the contents of the phase-space output of a

BEAMnrc simulation without any additional Monte Carlo simulation. The BEAMnrc user pack-

age and its programs will be discussed in further detail in Section 2.3. Rogers et al. (1995) demon-

strated the ability of the BEAM user code to accurately model the beam characteristics of several

of the major manufacturers. Figure 1.6 shows agreement of simulation results with the measured

data %DD curves for linear accelerators from three manufacturers over a wide range of clinical

electron beam energies (6-MeV to 20-MeV). In each case, the accelerator geometry was simulated

in the BEAM user code and the dose was scored in a DOSXYZ water phantom. The simulation of
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the electron beams with a 10x10 cm2 applicator was compared with measured data from various

institutions.

The Therac20 accelerator shown in Figure 1.6 was scanning beam accelerator produced by

AECL (Atomic Energy of Canada Limited, Chalk River, Ontario, Canada). Scanning beams

achieve broad beams by quickly scanning a narrow electron beam across a field with a magnetic

field. The Clinac 2100C accelerator shown in Figure 1.6 was a dual scattering foil accelerator

produced by Varian (Varian Medical Systems, Palo Alto, CA). The SL75-20 accelerator shown in

Figure 1.6 was a dual scattering foil accelerator produced by the radiotherapy division of Philips

(Philips Medical Systems, Crawley, England). Elekta (Elekta Limited, Stockholm, Sweden) ac-

quired the radiotherapy division of Philips in 1997. The Elekta Infinity linear accelerator studied

in this work is based off of the design of the SL-series of accelerators.

1.3.3 Applications of BEAMnrc in Medical Physics

BEAMnrc models of linear accelerators have been used for a variety of medical physics appli-

cations. Ali et al. (2011) were able to validate an Elekta linear accelerator electron beam as a dose

calculation tool using a two-source model (one point source for photon dose and one for electron

dose) in DOSXYZnrc. Similarly, a method developed by Jiang, Kapur, and Ma (2000) that uti-

lized a four-source model in BEAM was able produce accurate Monte Carlo distributions for the

electron beams of a Varian Clinac 2100C. BEAMnrc simulations of a Siemens Oncor (Siemens

Medical Solutions, Malvern, PA) accelerator head that was dismantled for additional measure-

ments led to the discovery of an undetected magnetic field inside of the treatment head (Faddegon

et al. 2009). BEAMnrc has also been used as a verification tool for cone-beam CT flat panel de-

tectors (Kim et al. 2011) and the beam characteristics of multi-detector CT simulators (Kim et al.

2012).

Accurate Monte Carlo simulations containing all the beam-line components of an electron

beam delivery system and one initial electron source have been difficult to achieve. The dosimet-

ric properties of a clinical electron beam are sensitive to changes in the scattering foil geometry.

Bieda, Antolak, and Hogstrom (2001) showed that off-axis profiles are most affected by the dis-
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Figure 1.6: BEAM calculated %DD curves with 10x10 cm2 applicators. Figure adapted from
Rogers et al. (1995).
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tance between the foils and the thickness of the secondary foil layers in a sensitivity study on slight

variations of the scattering foil system geometry for a Varian Clinac 2100C. Further works have

shown these effects are most pronounced at large fields (Schreiber and Faddegon 2005). Antolak,

Bieda, and Hogstrom (2002) investigated the feasibility of using a one-source Monte Carlo model

of the full beam-line of a Varian 2100C accelerator to reproduce a set of electron beam commis-

sioning data. Although agreement was good, the Monte Carlo model was unable to reproduce all

of the commissioning data. The failures of the model often occurred when attempting to match the

measured beam data for the largest electron applicator (25x25 cm2). Antolak, Bieda, and Hogstrom

(2002) challenged the medical physics community to reproduce all measured commissioning data

accurately with a one-source model of an accelerator’s entire beam-line.

1.4 Hypothesis and Aims

The hypothesis of the study was that a Monte Carlo BEAMnrc/EGSnrc model of the electron

beam delivery system of an Elekta Infinity linear accelerator could simulate electron percent depth

doses and off-axis profiles to within a specified tolerance criteria, ±2% relative quantities (Dmax)

or 1 mm distance-to-agreement (DTA), when compared to a subset of the measured commissioning

data for the accelerator’s existing set of scattering foils and applicators. The subset of measured

commissioning data is described in Section 2.2.2. The method used to determine if the simulated

results meet the tolerance criteria of the hypothesis is discussed in Section 2.6.2.

The aim of this study was to simulate the complete geometry of the Elekta Infinity treatment

head when the machine is in electron mode with the BEAMnrc user code for all clinical beam

energies. Using schematics and information provided by the manufacturer under a nondisclosure

agreement, the accelerator was modeled from the exit window of accelerating structure to the field

insert of the electron applicator. The provided vendor schematics were validated with physical

measurement whenever possible. The source parameters were determined for all seven clinically

commissioned electron beams (7-, 9-, 10-, 11-, 13-, 16-, and 20-MeV) using the method described

in Section 2.4.2. The simulation results were compared against the measured beam data for the

subset of data listed in Section 2.2.2.
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Chapter 2
Methods and Materials

2.1 Elekta Infinity Linear Accelerator

A Monte Carlo Model was constructed for the electron beam delivery system of the Elekta

Infinity series linear accelerator. The machine, shown in Figure 2.1, contains a traveling wave ac-

celerator structure, and the microwave system is magnetron-based. The accelerated electron beam

(22◦ above horizontal) is directed towards isocenter via a three-pole, achromatic slalom bending

magnet arrangement (total bend angle= 112.5◦), shown in Figure 2.2(a). The electron beam then

exits a nickel vacuum window and impinges upon the dual scattering foil system (schematic is

Figure 2.1: Elekta Infinity series linear accelerator in electron mode. Note the wall-mounted gantry
with the 14x14 cm2 applicator attached and that the imaging components are retracted during
electron mode.

14



Figure 2.2: Visualization of Elekta Infinity upper treatment head geometry and bending magnet
system. (a) shows the achromatic slalom bending magnet arrangement. (b) shows the dual scatter-
ing foil arrangement. Figures adapted from Waldron (2002).
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shown in Figure 2.2(b)). There are multiple levels of collimation downstream of the scattering

foil system. The Infinity series accelerator has a Multi-Leaf Collimator (MLC) with a backup

diaphragm as the upper photon jaw. The MLC motion is parallel to the cross-plane direction (per-

pendicular to the bending plane, the clinical X direction) when the machine is in the default position

(collimator angle=0◦ and gantry angle=0◦). Both the MLC leafs and the backup diaphragm have

rounded, non-focused edges. The lower jaw is a divergent, focused photon jaw. The lower jaw

motion is parallel to the in-plane direction (parallel to the bending plane, the clinical Y direction)

when the machine is in the default position (collimator angle=0◦ and gantry angle=0◦).

In electron delivery mode, the MLC leaves are “parked” (opened completely to a field size

of 40 cm at isocenter), and the backup diaphragm is used as the initial beam collimation in the

cross-plane direction. The lower photon jaws are used as the initial beam collimation in the

in-plane direction. Because electron side scatter equilibrium impacts beam flatness (particularly at

lower energies) and electron scatter from the photon collimators increases dose near the edge of the

field, the photon collimator positions were adjusted during acceptance testing to achieve MBPCC

flatness specification. Table 2.1 contains a list of the photon jaw settings for Elekta accelerators at

MBPCC sites. The jaw positions listed in Table 2.1 define the half-field sizes at isocenter.

Table 2.1: Jaw Positions of Y/X photon jaws projected to isocenter for MBPCC Elekta Infinity Ac-
celerators as a function of beam energy and applicator. Also indicated are primary and secondary
foil positions for each beam energy. Note that the position of the X photon jaws is always greater
because of the increased distance from isocenter.

Energy
(MeV)

1◦ foil
position

2◦ foil
position

25x25cm2

applicator
(Y/X cm)

20x20cm2

applicator
(Y/X cm)

14x14cm2

applicator
(Y/X cm)

10x10cm2

applicator
(Y/X cm)

6x6cm2

applicator
(Y/X cm)

7 3 3 17.0/18.0 14.3/15.1 12.3/12.9 11.2/11.9 7.4/8.1
9 5 3 18.4/19.5 14.4/15.2 11.9/12.6 10.6/11.3 7.3/8.0

10 3 4 16.8/18.0 13.0/14.0 10.7/11.7 10.0/11.0 7.0/8.0
11 4 4 16.3/17.5 12.8/13.4 10.5/11.3 10.0/11.0 7.0/7.7
13 5 4 17.0/18.0 12.7/13.3 9.9/10.6 8.9/9.6 7.0/7.7
16 3 1 15.8/16.8 12.2/12.8 9.2/9.8 8.5/9.5 7.0/7.7
20 5 1 16.8/17.3 11.7/12.6 8.7/9.6 8.0/8.8 7.0/7.5
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The columns labeled “1◦ foil position” and “2◦ foil position” in Table 2.1 correspond to the

positions in the primary foil and secondary foil carriers (shown in Figure 2.2), respectively. The

primary foil carrier rotates on an arc to allow five tantalum thickness options and one position with

no tantalum (used during photon mode). The material thickness of each carrier position is varied

by stacking tantalum layers of uniform thickness. The tantalum thickness provided by Elekta for

each carrier position was verified by hand measurement of a removed primary foil carrier.

The secondary foil in carousel position 3 and the secondary foil in carousel position 1 were

modified by Elekta engineers in order to meet the Mary Bird Perkins Cancer Center (MBPCC)

acceptance criteria. The modification consisted of adding additional layers to the bottom of the

existing foils. The secondary foil in carousel position 4 did not require modification. The three

secondary foils were removed from the machine and measured by hand to verify the geometries

provided in the vendor schematics and the dimensions of the additional layers.

The beam was then collimated by the trimmer bars of the electron applicator. The final and

most downstream component is a frame that holds the field inserts. Each applicator has a beveled

edge, square open-insert that defines the standard field-size. The machine has five applicator sizes

available with open insert field-sizes of 6x6, 10x10, 14x14, 20x20, and 25x25 cm2 at 95 cm SSD.

2.2 Measured Dosimetric Data

2.2.1 Commissioning Equipment and Protocol

The measured data used in this study was collected during the commissioning of an Elekta

Infinity linear accelerator at the Gonzales campus of Mary Bird Perkins Cancer Center. Clinical

medical physicists at MBPCC performed the accelerator commissioning using data collection pro-

cedure and techniques in accordance with the recommendations of AAPM Task Group No. 106

(Das et al. 2008).

The beam dosimetry measurements were performed with a three-dimensional dosimetry scan-

ning system (Blue Phantom, IBA dosimetry, Bartlett, TN). A compact, 0.13-cm3 volume ioniza-

tion chamber (CC13, IBA dosimetry, Bartlett, TN) with a 3 mm air cavity radius and a 5.8 mm air
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cavity length, was used for diagonal profiles and %DD curves. An electron diode (EFD3G, IBA

dosimetry, Bartlett, TN) with an active diameter of 2 mm was used to measure the cross-beam

profiles. Because the effective depth of an ionization chamber measurement is uncertain at depths

shallower than the cavity radius due to meniscus effects, measurements at depths less than 3 mm

were excluded.

The measured data was collected using OmniPro-Accept 6.2 software. This software was

used to operate the scanning dosimetry system, convert ion chamber readings to relative dose, and

record the dosimetric information during the scans. Following acquisition, the data was exported

to the Pinnacle3 treatment planning system (Philips Medical Systems, Fitchburg, WI). The treat-

ment planning system (TPS) imported and stored all of the commissioned beam data needed for

commissioning of the electron therapy treatment planning model.

A computer program was written using MATLAB R2008b (MathWorks, Natick, MA) to ex-

tract all of the measured commissioning data from the treatment planning system. Sample extracted

profiles were compared against original data in scanning software for verification. Because they

are not needed as part of the Pinnacle3 commissioning data set, diagonal profiles for the 25x25 cm2

applicator were extracted directly from the dosimetry scanning software. Additionally, the mea-

sured data was re-sampled and symmetrized about the CAX axis before comparisons were made

with the simulation results. This procedure is discussed in Section 2.2.3.

2.2.2 Measured Cross-Beam Profile Data Set

In-plane and cross-plane profiles were taken for each beam energy. Table 2.2 lists the depths

of the cross-beam profiles for each beam energy. These profile depths were taken for all applica-

tors at 100 cm SSD. Additional cross-beam profiles were taken with the 6x6 and the 14x14 cm2

applicators to aid in constructing isodose plots which were used to validate the commissioning of

the electron pencil beam dose algorithm in Pinnacle3. Table 2.3 lists the additional depths for each

beam energy. These additional measurements were only taken in the cross-plane (X) direction.

Cross-beam profiles were also measured at extended SSD (110 cm SSD) with the 10x10 and the

14x14 cm2 applicators.
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Table 2.2: Commissioned data for Elekta Infinity Accelerator

Energy (MeV) Commissioned Profile Depths (cm)
Measured Rx
depth (cm)

∼R100 R90 ∼R70 ∼R50 1-2 cm past Rp

7 1.0 2.0 2.5 2.8 5.5
9 1.3 2.5 3.1 3.5 6.3

10 1.5 3.0 3.6 4.0 6.9
11 1.7 3.5 4.1 4.5 7.6
13 2.0 4.0 4.8 5.3 8.5
16 2.5 5.0 6.0 6.6 10.0
20 3.0 6.0 7.5 8.3 12.1

Table 2.3: Additional cross-beam profile depths for the 6x6, 14x14 cm2 applicators

Energy (MeV) Profile depths (cm)

7 0.5 3.5 – – –
9 0.5 4.3 – – –

10 0.5 1.0 4.9 – –
11 0.5 1.0 5.6 – –
13 0.5 1.0 1.5 6.5 –
16 0.5 1.0 1.5 2.0 8
20 0.5 1.0 1.5 2.0 10.1

Table 2.4: Diagonal profile depths for the 25x25cm2 applicator

Energy (MeV) Profile depth (cm)

7 1.0
9 1.0

10 1.0
11 2.0
13 2.0
16 2.0
20 2.0
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The extended SSD data set consisted of cross-plane profiles taken at the depths listed in both

Table 2.2 and Table 2.3. No in-plane (Y) profiles were recorded at 110 cm SSD. In addition

to the commissioned data set, diagonal field profiles were recorded for the 25x25 cm2 applicator.

Table 2.4 lists the depth of the diagonal profile for each beam energy. Both diagonal field directions

were measured for each beam energy.

The following subset of measured beam data was used for the validation of the Monte Carlo

model of the Elekta Infinity linear accelerator:

1. CAX %DD curves at 100 cm SSD for open-insert applicators sizes 6x6, 14x14, and 25x25

cm2.

2. In-plane and cross-plane off-axis profiles at measured commissioned depths listed in Ta-

ble 2.2 for the 25x25 cm2 open-insert applicator at 100 cm SSD.

3. Cross-beam profiles at 100 cm SSD for the open-insert 6x6 and 14x14 cm2 applicators at the

depths listed in Table 2.2 and Table 2.3.

4. Large-field diagonal profiles taken with the open-insert 25x25 cm2 applicator at the depths

listed in Table 2.4.

5. CAX %DD curves and cross-beam profiles at 110 cm SSD for the open-insert 14x14 cm2

applicator at the depths listed in Table 2.2 and Table 2.3..

2.2.3 Re-Sampling and Symmetrization of Measured Data

Measured data was acquired using an adaptive sampling resolution of 5 mm in the low dose

gradient regions and 1 mm in the high dose gradient regions. Additionally, systematic scanning

system alignment errors were observed in some profiles. Therefore, all measured off-axis data was

re-sampled and symmetrized by requiring 50% OAR points to be equidistance off-axis in order to

reduce systematic errors and standardize the data set. First, the measured data were re-sampled

(using linear interpolation between existing data points) such that the data points were centered
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Figure 2.3: Example of re-sampling and symmetrization of a 7-MeV, 25x25 cm2 cross-beam profile
(100 cm SSD, depth z=2.8 cm).

about the CAX and positioned midway between the simulated data points of the DOSXYZnrc

water phantom, which is described in Section 2.5.6. Then the average of the two points that were

equidistance off-axis was taken and assigned to both points to symmetrize the measured data. The

procedure applied to diagonal profiles averages the four points that were equidistance off-axis since

there were scans recorded across both diagonals for the applicator. The results of the re-sampling

and symmetrization procedure applied to a cross-beam profile are exemplified in Figure 2.3.

2.3 Monte Carlo Simulations

EGSnrc V4 2.3.2 and its user package, BEAMnrc V4 2.3.2, was the Monte Carlo radia-

tion transport code used to model the Elekta Infinity linear accelerator electron beams. EGSnrc

provided a versatile package that contains a robust model of the physics governing the radia-
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tion transport of photons, electrons, and positrons. The physics for electron transport includes

Moliere multiple scattering, inelastic scattering off of atomic electrons, positron annihilation, and

bremsstrahlung photon production. The physics for photon transport includes Compton scatter-

ing, pair production, photoelectric effect, and optionally, Rayleigh scattering. Figure 2.4 provides

a flow diagram for the algorithm construct of Monte Carlo radiation transport with the EGSnrc

system.

2.3.1 Creating Models in BEAMnrc

As mentioned in Section 1.3.2, the development of BEAMnrc arose from a need to simplify the

modeling of complex linear accelerator treatment head geometries with the EGS4 code. BEAM

was designed to allow users to model treatment heads by breaking the geometry down into in-

dependent blocks, referred to as component modules (CMs). Each component module (CM) is

designed to model a particular geometric shape, and the user orders these CMs along the z-axis

inside of a module file that defines the overall structure of the linear accelerator. Descriptions of

the original CMs included with the release of the BEAM code were given by Rogers et al. (1995).

To build an accelerator in the BEAMnrc user code, the user needs to start by determining the

number and order of CMs necessary to construct the linear accelerator. Unique names must be

given to each CM in order to avoid duplicate names even if a certain type of CM is used more

than once in a model. Once the CM order and names are specified in the module file, the BEAM

code will build the necessary EGSnrc code from the file by using the source code for each CM as

specified in the HEN_HOUSE library. The actual geometry of each CM is determined by ASCII

inputs into a master input file. The input file is also where the user specifies the type of radiation

(photon or electron), the number of initial particles (NCASE), the geometry of the radiation source

and its energy spectrum, ECUT and PCUT as discussed in Section 2.3.3, and other variables that

are discussed in detail in the BEAMnrc user manual (Rogers, Walters, and Kawrakow 2011).

BEAMnrc is capable of outputting multiple phase-space files during a simulation of an accel-

erator build. A phase-space contains the charge, position, momentum, energy and LATCH infor-

mation (discussed in Section 2.3.2) for all particles that cross a defined plane. BEAMnrc allows
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Figure 2.4: Flow chart for Monte Carlo radiation transport. Figure from Bieda (1999)
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the user to simultaneously generate up to three phase-space files at any specified CM in the simula-

tion. This phase-space can be used as the source of another BEAMnrc simulation or the source of

a DOSXYZnrc simulation, a user code used for scoring absorbed dose in an arbitrary 3D phantom.

It can also be divided into bins and analyzed using an axillary program, BEAMDP, a user code that

can sort through the and analyze the particles contained in a phase-space. The phase-space can be

useful as a model of a stationary and unchanging part of the treatment head. Scoring a phase-space

behind fixed beam components, such as after the scattering foil system, to use as a source to the

moving components in the treatment head, such as the photon jaw positions and the different appli-

cators, can be more time efficient than rerunning a full simulation of the accelerator if computing

resources are limited. When a phase-space source is used in either BEAMnrc or DOSXYZnrc, the

particles in the phase-space will be recycled as many times as necessary to reach the user-defined

NCASE for the simulation. The user has the option to reflect the phase-space about the CAX each

time the phase space is recycled. This feature can aid in the reduction of statistical error but can

also introduce systematic errors. If the phase-space is recycled too many times or systematic errors

will be magnified in the final results of the simulation.

2.3.2 LATCH Variable

A particle’s detailed history information can be recorded into a 32-bit variable called LATCH.

The user can specify LATCH bit values to the different geometrical regions of an accelerator model.

A particle can then be tagged with a geometry’s LATCH bit if the particle has been in or interacted

with the region. There are three LATCH_OPTION choices that determine if secondary particles

inherit LATCH bit values from ancestor particles. If LATCH_OPTION is set to 1 then secondary

particles do not inherit any LATCH information from ancestor particles. If LATCH_OPTION is set

to 2 then secondary particles inherit the LATCH values corresponding to the regions any ancestor

particles have passed through. If LATCH_OPTION is set to 3, then photons record and inherit the

LATCH values for the regions where ancestor particles have interacted. All BEAMnrc simulations

performed during this study used the default LATCH_OPTION value (LATCH_OPTION=2).

24



The particles can be filtered further by charge and type as well. The LATCH and charge/type

filtering can be used when analyzing a phase-space with BEAMDP, to isolate dose components in a

phantom using DOSXYZnrc, or to isolate particles for a phase-space input into another BEAMnrc

simulation. In the case of clinical electron beam simulation, LATCH and charge filtering can be

used for a number of purposes, such as determination of bremsstrahlung production from individual

beam components. The LATCH variable was used in this work to aid in the development and

refinement of the analytical optimization codes used to re-design to the beam line components. It

was also used to quantify the electron scatter contribution to off-axis profiles for the lower-photon

jaw and the backup MLC diaphragm. This contribution was found to be small enough that the

photon jaw electron scatter effect could safely be left out of the analytical optimization codes.

2.3.3 EGSnrc Transport Parameters

There are several parameters in EGSnrc that correspond to energy thresholds for particle track-

ing and generation. AE and AP are parameters that determine the cutoff energy for the production of

secondary electrons and photons, respectively. ECUT and PCUT are the threshold energies for de-

termining when to terminate tracking a charged particle or photon history, respectively. The global

electron cutoff (ECUT) and photon cutoff (PCUT) must be greater than or equal to corresponding

values for AE and AP. The user code limits allow the tracking of electrons to .521 MeV (10-keV

kinetic energy) and photons to 1-keV. The values for global transport cutoffs, ECUT and PCUT,

used in a BEAMnrc simulation are provided in the ASCII input file described in Section 2.3.1.

The values for AE and AP are determined when generating the PEGS4 data files that contain

the cross-sectional data and stopping powers for the materials that are used in the simulation. The

user must also specify an upper limit (UE and UP) for secondary particle generation. The details

concerning the generation of PEGS4 data files are provided in the EGSnrc manual (Kawrakow

et al. 2011). Table 2.5 lists the global parameters used in all simulations and generated materials.

The lower limit was used for the global electron transport parameters (AE and ECUT) to prevent the

introduction of energy-loss straggling artifacts observed by Rogers et al. (1995). Kawrakow et al.

(2011) recommended the global photon transport cutoffs (AP and PCUT) to be set to .01 MeV for
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Table 2.5: Global parameters used in EGSnrc Monte Carlo simulations

Global Parameter Value

ECUT .521 MeV
AE .521 MeV
UE 50.521 MeV
PCUT .01 MeV
AP .01 MeV
UP 50.00 MeV

normal operation of the EGSnrc user code. The upper limits of 50 MeV were chosen to sufficiently

cover the energy range relevant to medical physics applications.

All custom mediums and alloys used in the linear accelerator were created from schematics

that detailed the elemental composition of the materials. The materials generated in the PEGS4

data file used the radiative stopping power information from ICRU Report 37 (1984) and included

the optional cross sections for Rayleigh scatter.

Additionally, every region where a material is defined in a simulation has regional cutoff en-

ergies for photons and electrons (PCUTIN and ECUTIN). This allows the user to make regional

optimizations to reduce the simulation run-time with little to no degradation in the quality of the

calculated results. The ECUTIN and PCUTIN values were set equal to the global values for all

regions except for the geometries designed for photon collimation. All of the photon collimation

components were made from a high density tungsten alloy. In this study, the primary collimator,

MLC, backup diaphragm, and lower photon jaw were assigned ECUTIN = .7 MeV, PCUTIN = .01

MeV. This choice reduced the simulation run-time approximately 30 % by ignoring the transport

of low-energy electrons that were unlikely to contribute to the dosimetric properties observed at

the accelerator isocenter.

There were multiple global input parameters in addition to the energy threshold options. These

parameters, described in depth by Kawrakow et al. (2011), were all given the default values that

are listed in the manual.
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2.4 Initial Source Parameters

The spatial distribution, energy spectrum characteristics, and the angular orientation of the

initial electron beam in the vacuum environment were the definable parameters in the Monte Carlo

model. The initial source parameters for the model were determined from the simulation results

for the open insert 25x25 cm2 applicator.

2.4.1 Incident Electron Energy Spectrum

The incident electron energy spectrum is potentially complex. Deasy, Almond, and McEl-

listrem (1996) showed that Elekta accelerator electron beams can have multi-modal energy spectra.

Since there were no measured data concerning the energy spectra of the MBPCC Elekta accelera-

tor beams at the time of this project (although such measurements are currently in progress), single

Gaussian distributions, adjusted to best match the measured %DD curves, were determined.

The energy spectrum of each electron beam, defined on the upstream side of the nickel exit

window, was assumed to be Gaussian in shape. Three parameters were adjusted in order to de-

termine the optimal energy spectrum solution for a given applicator. The peak energy of each

spectrum (Ep) was chosen to match the R50 value of the measured %DD curve. The full-width

half maximum (FWHM) was chosen to match the slope of the R90 to R10 falloff observed in the

measured %DD curves. The FWHM is related to the standard deviation (σ ) of the Gaussian distri-

bution by the following equation:

FWHM = 2
√

2ln2σ ≈ 2.355σ (2.1)

Finally, the limits of the Gaussian distribution were varied if a Gaussian distribution symmetric

about the mean energy was unable to reproduce the measured %DD data. The limits of the dis-

tribution where specified by multiples of sigma (σ ), where Table 2.6 illustrates the parameters of

the initial energy spectrum for all of the clinical electron energies. BEAMDP was used to ana-

lyze the energy spectra after Monte Carlo particle transport through the full accelerator geometry.

The results from BEAMDP were obtained by binning the energies of the electrons recorded in a
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Table 2.6: Incident energy spectrum parameters

Clinical energy
(MeV)

Peak spectrum
value

Ep (MeV)

FWHM
(% of E)

Limits of
distribution

7 7.8 20 -3.0σ to +3.0σ

9 9.9 15 -3.0σ to +3.0σ

10 10.7 15 -3.0σ to +3.0σ

11 12.3 12 -3.0σ to +3.0σ

13 14.0 15 -3.0σ to +3.0σ

16 17.5 15 -3.0σ to +1.5σ

20 22.0 15 -3.0σ to +1.5σ

phase-space acquired at the open insert of the 14x14 cm2 applicator. BEAMDP was set to sample

all electrons of the phase-space within a 1 cm radius of the central axis. Figure 2.5 shows the

incident spectrum for the 7-MeV model, as defined by the parameters in Table 2.6, along with the

resultant energy spectra after transport through the accelerator. Appendix B contains similar plots

for all seven of the clinical beam energies. The lower energy limit of the BEAMDP output was set

to .621 MeV in order to truncate the large number of low energy electrons that appeared beneath

that threshold.

Figure 2.5: 7MeV - 14x14 cm2 applicator - incident energy spectra compared with BEAMDP
spectrum at the field insert (95 cm SSD)
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2.4.2 Initial Electron Source Definition

The source option 19 in BEAMnrc, as shown in Figure 2.6, was chosen to model the spatial

and angular orientation of the initial electron beam. Source option 19 allows the user to define

an elliptical Gaussian electron spot size with either an arbitrary parallel direction or with a mean

angular spread with respect to the central axis. The FWHM of Gaussian distributions that describe

the spatial spot of the electron beam can be set independently in the X- and the Y-direction to

create an elliptical spot size. If the FWHM values are both set to zero, the source collapses down

to a point beam for further utility.

Figure 2.6: Description of parameters available in source option 19 of BEAMnrc. REAM and
REAMY determine the width of the spatial distributions in the X- and Y-direction, respectively. The
orientation of particles in the source in Cartesian space are determined by (UINC, VINC, WINC).
The Z-axis value where the source is defined is determined by the front of first CM in the BEAM-
nrc simulation (Z_min_CM(1)). The mean angular spread, in terms of degrees, is determined
by sigma_src19. If a mean angular spread is used (sigma_src19>0), then (UINC, VINC,
WINC) automatically default to (0, 0, 1). This requires the mean angular spread to be radially
symmetry with respect to the central axis. Figure from Rogers, Walters, and Kawrakow (2011).
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The mean angular spread of the source can be set to approximate the scattering effects of the

exit window as well as the primary scattering foil or to give the incident beam a mean angular

spread within the vacuum window. The mean angular spread value must be radially symmetry

about the central axis. The source was defined on the upstream side of the nickel exit window

and the FWHM values and the mean angular spread values were adjusted to determine the optimal

source definition for the Elekta Infinity linear accelerator. The spatial distribution of the incident

electron beam on the nickel exit window was deduced from the 20-MeV cross-beam profiles.

Figure 2.7(a) shows a comparison of the in-plane and cross-plane measured commissioning

beam data at 3 cm depth in water for the 20-MeV beam. Figure 2.7(b) shows the Monte Carlo

calculated profiles at 3 cm depth in water for a point beam source incident on the nickel window.

Comparison of the two figures suggests the spot size must be elliptically shaped for the measured

data to achieve comparable flatness in both profile directions with a secondary foil that lacks radial

symmetry (see Figure 2.9). Figure 2.7(c) shows an elliptical spot size with a full-width half max-

imum (FWHM) of 2 mm in the in-plane (Y) direction and a FHWM of 1 mm in the cross-beam

direction. This spot size shape was determined to give the best agreement of the calculated in-plane

and cross-plane profiles without degradation of the beam flatness in either cross-beam direction.

Björk, Knöös, and Nilsson (2002) reported that the FWHM of the initial electron beam for

Elekta accelerators is usually between 1 mm and 2 mm. Additionally, it has been demonstrated

that electron spot size is a relatively insensitive parameter for Monte Carlo simulations (Chibani,

Moftah, and Ma 2011). Since no quantitative data concerning the spatial distribution of the initial

electron source was available at the time of this study, the elliptical Gaussian determined for the

20-MeV beam was used to describe the spatial distribution of the incident electron beam for all

beam energies.

2.4.3 Mean Angular Spread

The mean angular spread of the incident electron beam was set to 0◦ for all of the beam

energies. This choice was made since additional initial angular spread greatly deteriorated agree-

ment between measured and simulated profiles at low (7-MeV and 9-MeV) and high (16-MeV and
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(a) Measured Profiles

(b) Point Beam Source (c) Elliptical Gaussian Source

Figure 2.7: Determination of beam spot size using cross-beam profiles for the 20-MeV beam with
the 25x25 cm2 open applicator.(a) Shows the measured cross-beam profiles. (b) Shows the com-
parison of cross-beam profiles with a point beam source. (c) Shows the comparison of cross-beam
profiles with an elliptical Gaussian source (FWHMy=2 mm, FWHMx=1 mm).
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20-MeV) beam energies. The middle energies (10-MeV, 11-MeV, and 13-MeV) were improved

using a slight initial angular spread (∼1-2◦). However, because no overall trend of angular spread

value as a function of beam energy across the clinical range was observed, the angular spread was

set to 0◦ for all simulations.

2.5 Monte Carlo Linear Accelerator Model

The Monte Carlo model of the Elekta Infinity linear accelerator,shown in Figure 2.8, was

built using the standard CMs included in BEAMnrc V4 2.3.2. The model was constructed from

schematics provided by Elekta engineers under a non-disclosure agreement. The schematics pro-

vided detailed information of the geometries and material compositions of treatment head compo-

nents that are impossible to measure directly without disassembly of the accelerator. Additionally,

components were verified with physical measurement whenever it was possible and practical to do

so.

2.5.1 Upper Head Geometry

The upper head of the accelerator consisted of the stationary beam-line components above the

photon jaws. The upper head was modeled using six CMs for the 7-MeV through the 13-MeV

beams, which are listed in Table 2.7. FLATFILT modules are defined by stacking an arbitrary

number of coaxial cones together. Since the radii of these cones can be independently defined

for each layer, the CM can model complex flattening filters and scattering foils. The simplicity

of the CM input parameters also makes it an ideal choice for primary foils, the accelerator exit

window, and the ionization monitor chamber. The main shortcoming of the FLATFILT CM is the

requirement for objects to have cylindrical symmetry. This limitation presented an issue when

modeling the additional foil layer present on the scattering foil used in the 16-MeV and 20-MeV

beams. This additional layer, shown in Figure 2.9(a), was symmetric with respect to both the x-axis

and the y-axis, but did not possess cylindrical symmetry about the z-axis.
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Figure 2.8: Complete model of the Elekta Infinity linear accelerator as rendered by the BEAMnrc
accelerator preview
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Table 2.7: Component modules in upper head (7-13 MeV)

Order of CM CM type Beam-line component modeled

1 FLATFILT vacuum, exit window
2 FLATFILT primary scattering foil
3 CONS3R primary collimator
4 FLATFILT secondary scattering foil
5 FLATFILT ionization monitor chamber
6 FLATFILT light field mirror

2.5.2 Approximation of Additional Foil Layer

Since the secondary foil for the high energy (16, 20-MeV) beams was not symmetric about

the CAX through all layers, it could not be fully modeled with the standard FLATFILT module.

Therefore, the additional secondary foil layer was modeled by adding an additional CM module

called BLOCK immediately downstream of the cylindrically-symmetric disks of the secondary

foil, which were still modeled with the FLATFILT module. This created an offset in the CM order

of the high energy accelerator models as shown in Table 2.8.

Table 2.8: Component modules in upper head (16,20 MeV)

Order of CM CM type Beam-line component modeled

1 FLATFILT vacuum, exit window
2 FLATFILT primary scattering foil
3 CONS3R primary collimator
4 FLATFILT secondary scattering foil
5 FLATFILT ionization monitor chamber
6 BLOCK additional asymmetric foil layer
7 FLATFILT light field mirror

The BLOCK module was designed to simulate photon blocks of arbitrary shapes and sizes.

An arbitrary shape within the field can be modeled by setting the outer material to air and the inner

material, in the case of the secondary foil layer, to aluminum. The additional foil was replicated

using the BLOCK module with 20 user-defined polygonal points that defined the boundary of

the additional foil layer according to the dimensions provided by Elekta. Figure 2.9 shows a

photograph of the additional foil layer (left) and its representation within BEAMnrc (right).
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(a) Bottom of foil (b) Approximation of layer

Figure 2.9: Approximation of the additional asymmetric foil layer. (a) shows a photograph of the
additional foil layer on the secondary foil that is used in the MBPCC accelerators. (b) shows the
rendered approximation of the additional foil layer using the BLOCK module in BEAMnrc

2.5.3 Lower Head Geometry

The lower head of the accelerator consisted of the photon jaws and the Mylar screen that

protects the treatment head from the outside environment. The lower head was modeled with four

CMs, which are provided in Table 2.9. The MLCQ component module was used to model both the

actual multi-leaf collimator (MLC) and the backup diaphragm that is positioned behind it. This CM

was specifically designed to model MLC leafs that have rounded leaf ends. The backup diaphragm

is roughly half the thickness of the MLC and possesses no leafs, but the component does have

rounded edges. The MLCQ module is the only standard CM that allows the user to define rounded

(radiused) edges on a beam-line component. The radius of the backup diaphragm and the radius

for the MLC leafs were specified by schematics. As mentioned in Section 2.1, when operating in

Table 2.9: Component modules in lower head

Order of CM CM type Beam-line component modeled

7 MLCQ MLC
8 MLCQ backup diaphragm
9 JAWS lower photon jaws

10 SLABS Mylar window
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electron mode, the MLC leaves are “parked” to define a 40x40 cm2 field at isocenter while the

backup diaphragm defines the beam edge and performs the initial electron field collimation. While

in photon mode, the backup diaphragm is set to be 2 to 3 mm behind the most open leaf position

of the MLC. All machine readouts of the field size (in both photon or electron mode) are in terms

of the lower jaw location in the Y direction and the photon mode location of the MLC in the X

direction. Thus, the actual field size in the Y-direction projected to isocenter is larger than listed on

the machine when in electron mode due to the built in offset of the backup diaphragm behind what

would be the light field position for the MLC when in photon mode. This offset was confirmed by

measuring the light fields for each applicator and energy combination with the applicator removed.

The offset at the backup diaphragm was determined to be 2 mm on average. Figure 2.10 illustrates

the configuration of the MLC and the backup diaphragm when the machine is in photon mode.

Using the variables listed on Figure 2.10 and the half field-sizes (HFS) denoted in Table 2.2, the

off-axis position of the backup diaphragm, XBACKUP, in electron mode can be determined by the

following equation:

XBACKUP = (
HFS
SAD

)ZBACKUP +2mm (2.2)

The lower photon jaw was approximated with the JAWS module. The JAWS module allows

the user to define slabs of a material with arbitrary openings. A photon collimator may be ap-

proximated by specifying the beginning and end of the slab along z-axis (the jaw thickness) and

the off-axis position of the jaw opening at the front, beam-side, and back, patient-side, to define

the beam divergence of the photon jaw. Elekta engineers provided the z-axis coordinates of the

beam-side and the patient-side of the lower photon jaw when it is completely closed. The motion

of the lower photon jaw is defined in terms of the variables shown in Figure 2.11. Point P is lo-

cated at distance, dp, off-axis and depth, tp, from the beam-side of the photon jaw edge, where the

thickness of the photon jaw is equal to 2tp. The motion of the jaw is such that the z-axis coordi-

nate of point P, labeled Zp, remains constant as the jaw moves. Given this information, and the

half-field size (HFS) at isocenter (z=100 cm), the coordinates needed to define the photon jaw in
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Figure 2.10: Elekta Infinity linear accelerator MLC and backup diaphragm configuration in photon
mode.
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Figure 2.11: Description of lower jaw motion with necessary variables to define the motion.

BEAMnrc can be specified by the y-coordinate and z-coordinate of the beam-side (zupper,yupper)

and the patient-side (zlower,ylower) of the photon jaw. The coordinates for the beam-side edge of

the photon jaw, (zupper,yupper), were determined by the following equations:

yupper = yp−H cos(α−θ) (2.3)

zupper = Zp−H sin(α−θ) (2.4)

H =
√

(t2
p +d2

p) (2.5)

α = arctan
tp

dp
(2.6)

θ = arctan
HFS
SAD

(2.7)

Given the position of the beam-side edge of the photon jaw, (zupper,yupper), the patient-side edge

of the photon jaw can be found using the following expressions:

ylower = yupper +2tp sinθ (2.8)

zlower = zupper +2tp cosθ (2.9)
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The magnitude of shift in photon jaw position with respect to the z-axis is illustrated in Fig-

ure 2.12. This image shows the lower jaw positions and shapes modeled in the BEAMnrc model

of the clinical 13-MeV beam for the 6x6 and the 25x25 cm2 applicators. The 6x6 cm2 applicator

settings have the lighter shading while the 25x25 cm2 applicator settings have the darker shading.

Figure 2.12: Comparison of photon jaw positions for the 6x6 (lighter shading) and the 25x25
(darker shading) cm2 applicators for the 13-MeV beam. Note that the angulation of the jaws,
shown in Figure 2.11, is not modeled. This approximation should not be significant.

2.5.4 Electron Applicator and Field Insert

The applicator and the field insert were modeled with two CMs, which are listed in Table 2.10.

The dimensions, thicknesses, and z-coordinate locations of all the trimmer bars and open inserts

were detailed in the schematics provided by Elekta. The APPLICAT module was used to model the

fixed trimmer bars of the applicator. Since the APPLICAT module could not model beveled edges,

the open insert required the use of a separate module. The PYRAMIDS module allowed for the

bevel angle, which was necessary for all open inserts, to be correctly modeled. Figure 2.13 shows

the electron applicator with the divergent open insert. The support rods that hold the trimmer bars

together were not included in the model. All trimmer layers were approximated in the APPLICAT

module as rectangular in shape.
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Table 2.10: Component modules in electron applicator

Order of CM CM type Beam-line component modeled

11 APPLICAT electron applicator
12 PYRAMIDS applicator insert

Figure 2.13: Schematic of CMs for 6x6 cm2 electron applicator with open insert.

2.5.5 Phase Spacing Scoring and PDD Chamber

The phase-space for the production runs was scored behind the field insert of the applicator (the

PYRAMIDS module) at 95 cm SSD. The recorded phase space was used as the DOSXYZnrc input

for scoring cross-beam dose profiles as described in Section 2.5.6. This allowed the full model to

be recorded before the beam was passed into a CM that efficiently scored the dose deposited

along the central axis. After scoring the phase space, the BEAMnrc simulation continued and

transported the particles through the final component module, a CHAMBER module, which began

at 100 cm SSD. The CHAMBER module was designed to simulate a parallel-plate ion chamber.

The geometry and number of the planes within the chamber, as well as the chamber materials,
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could be arbitrary selected. The choice of a large diameter outer radius, a small radius inner wall,

and a large number of uniformly spaced inner chamber regions with water as the material for all

regions results in a central axis water phantom. When dose scoring is enabled (BEAMnrc will score

absorbed dose in any region where dose scoring has been enabled) in the inner radius region, the

CHAMBER module allows for an efficient method to acquire %DD curves without the need for an

additional DOSXYZnrc simulation. The use of the CHAMBER in this manner is well documented

by Rogers, Walters, and Kawrakow (2011) and has been applied in similar works by Bieda (1999).

The BEAMnrc GUI allows the user to define the input parameters for the CHAMBER module in

terms of an actual parallel-plate chamber or in terms of the simple water phantom described above.

The labeling of the input parameters for both cases are shown in Figure 2.14.

The inner radius the chamber was set to 6 mm and outer radius of the chamber wall was set

to 20 cm. The inner region consisted of 160 layers with 1 mm spacing. These settings allowed

the CHAMBER module to score dose along the central axis to a depth of 16 cm with a resolution

of 1 mm. The CHAMBER module was able to cover the full range of measured depth dose data

for all of the beam energies without a change in spacing resolution. The maximum number of

dose-scoring zones, defined by the variable, MAX_DOSE_ZONE, in the BEAMnrc user macros file,

had to be increased to accommodate the number of dose-scoring zones required by the CHAMBER

module. The default value for MAX_DOSE_ZONE was 50.

2.5.6 Water Phantom Models in DOSXYZnrc

The phase space file collected at the back of the field insert of the applicator was used as

the input for water phantom simulations in DOSXYZnrc. Since the back of the insert module

is located at z = 95 cm, a 5 cm and 15 cm gap was placed between the water surface and the

phase space when running DOSXYZnrc simulations at 100 cm and 110 cm SSD, respectively. The

DOSXYZnrc water phantom was used to generate all calculated cross-beam and diagonal profiles.

For comparison against commissioning data, the water phantom was constructed with non-uniform

spacing in the X and Y direction that was symmetric about the CAX. The spacing for the voxel in

the X and Y direction was chosen to be either 5 mm or 1 mm, which were the two spacing options
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Figure 2.14: CHAMBER CM options and input parameters. Figure from Rogers, Walters, and
Kawrakow (2011).

of the commissioning data. The 1 mm spacing was used in the high dose gradient regions of the

profile (the penumbra region), while the 5 mm spacing was used in the low dose gradient regions

(the in-field and out-of-field regions).

Additionally, a DOSXYZnrc input file was created to score %DD curves. The %DD input file

contained a 0.6 cm2 region in the X and Y directions that was centered on the CAX. Two additional
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regions, with a thickness of 24.7 cm, were defined in both the X and Y directions. This extended

the water phantom to a 50x50 cm2 area in the X-Y plane. The Z direction had uniform spacing

of 1 mm for 161 regions. This choice of phantom spacing created a DOSXYZnrc CAX %DD

phantom that was the rectangular equivalent of the %DD phantom created with the CHAMBER

module. Both methods, DOSXYZnrc simulations and CHAMBER CM with dose scoring enabled,

output dose information in terms of absorbed dose per incident particle at the center of the voxel.

Figure 2.15 shows a comparison of the raw, un-normalized outputs of the CHAMBER module

and the DOSXYZnrc simulation for the 13-MeV beam with the 14x14 cm2 applicator at 100 cm

SSD. The dose output contained all particle types (electrons, photons, and positrons) and the water

surface for both phantoms was located at 100cm SSD.

The 6x6 and 14x14 cm2 applicator simulations compared the simulation against an expanded

set of measured cross-plane profiles as described in Section 2.2.2. The DOSXYZnrc cross-beam

Figure 2.15: Comparison of CHAMBER and DOSXYZnrc output for the 13-MeV 14x14 cm2

applicator at 100 cm SSD
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input files for these applicators only collected dose information along the cross-plane (X) direction.

The spacing of these water phantom simulations were assigned a 5 mm width about the Y-axis for

all cross-plane only DOSXYZnrc simulations.

The 110 cm SSD simulations for the 14x14 cm2 applicator were performed by increasing the

air gap between the phase-space output and the surface of the DOSXYZnrc water phantom. To

avoid re-running the BEAM simulation to obtain %DD information from the CHAMBER module,

DOSXYZnrc was run to score %DD curves at extended SSDs using the input parameters described

above.

The initial particle number (NCASE) for all DOSXYZnrc simulations was chosen to be 1 bil-

lion. The phase-space collected during the BEAM simulation was recycled until 1 billion initial

particles were transported into the water phantom. The redistribution function (ISMOOTH) was

enabled for all DOSXYZnrc simulations in order to reduce statistical uncertainties when recycling

the phase-space. This was acceptable for all setups since the accelerator geometry was always

symmetric with respect to both the Y-axis and X-axis.

2.5.7 Extraction of Simulation Data

When a CHAMBER module with dose scoring enabled is used in a BEAMnrc simulation, an

additional file (.egsplot file) is output at the end of BEAMnrc simulation. This .egsplot file contains

the dose information in terms of absorbed dose per incident particle (Gray/particle) for the location

of each region defined along the CAX. The %DD data for all runs at 100 cm SSD was extracted

from the corresponding .egsplot files.

The cross-beam profile data calculated for the water phantom in DOSXYZnrc was taken from

the .3ddose output file, which is in ASCII format. The structure of this file type is described by

Walters, Kawrakow, and Rogers (2011). A computer program was written to extract the profile

information for each desired depth in the water phantom.

2.5.8 Smoothing of Simulated Dose

All simulated cross-beam and diagonal profile data had the dose values smoothed via a moving

average filter before comparisons to the measured data were performed. The span of the moving
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window was set to 3 points, which is the least amount of smoothing this type of filter can perform.

The dose values for the simulated %DD curves were not smoothed before comparison with the

measured data.

2.6 Data Normalization and Comparison

2.6.1 Normalization

The Monte Carlo dose results were output in terms of absorbed dose (Gray) per incident parti-

cle. In order to compare the simulated data against the measured data, the two data sets needed to

be normalized in a systematic and meaningful manner. For the purpose of this study, the following

protocol was followed for the normalization of all simulated and measured data.

1. Simulated and measured %DD curves were normalized to each profile’s R100 value.

2. The in-plane and cross-plane profiles for the simulated and the measured data sets were first

normalized to the average value of all data points within ±1 cm of the central axis, then

normalized to the %DD value of the measured data at the depth of the profile.

3. The measured and simulated diagonal profiles were normalized to the average value of all

data points within ±1 cm of the central axis.

2.6.2 Comparison Method

The following method was used for comparing the measured and simulated data. First, the tol-

erance criteria were defined in terms of distance-to-agreement, denoted α , and percent difference,

denoted β . For the tolerance criteria specified in the hypothesis of this work, let α = .1 cm and

β=2% of Dmax. Then, let any normalized and smoothed simulation data point be described with

coordinates: (Psim,%Dsim). Similarly, let any normalized and symmetrized measured data point be

described with coordinates: (Pmeas,%Dmeas). The pass/fail algorithm will then analyze the data in

the following manner:
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1. Iteratively, beginning with i=1, for every measured data point along a curve, a line is drawn

from: (Pmeas,i,%Dmeas,i-β ) to (Pmeas,i,%Dmeas,i+β ).

2. Iteratively, beginning with j=1, for all simulated data points along a curve, a line is drawn

from: (Psim, j,%Dsim, j) to (Psim, j+1,%Dsim, j+1).

3. The lines segments created by all adjacent simulated points are then tested for either inter-

section or boundary contact with the line that spans ±2% of the measured point being tested

(Pmeas,i,%Dmeas,i).

4. If any lines are found to intersect or touch, the data point is determined to meet the tolerance

criteria of the hypothesis. The algorithm will then move to the next measured data point (set

i=i+1 and return to the first step).

5. If no intersection is found for any line formed by adjacent simulated data points, then for the

same measured data point, (Pmeas,i,%Dmeas,i), a line is drawn from: (Pmeas,i-α ,%Dmeas,i) to

(Pmeas,i+α ,%Dmeas,i).

6. Once again, beginning with j=1, for all simulated data points along a curve, a line is drawn

from: (Psim, j,%Dsim, j) to (Psim, j+1,%Dsim, j+1).

7. The line segments created by all adjacent simulated points are then tested for either intersec-

tion or boundary contact with the line that spans ±1 mm of the measured point being tested

(Pmeas,i,%Dmeas,i).

8. If any lines are found to intersect or touch, the data point is determined to meet the tolerance

criteria of the hypothesis. The algorithm will then move to the next measured data point (set

i=i+1 and return to the first step).
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9. If no intersection is found for any line formed by adjacent simulated data points, then the

measured data point, (Pmeas,i,%Dmeas,i), is determined to fail the criteria tolerance of the

hypothesis.

The mathematics of the line segment intersection test can be explained by defining two line

segments with 4 points. Let the first line segment have endpoints, PointA and PointB, and the

second line segment have endpoints, PointC and PointD: These two line segments can be described

by the following equations:

Line1 = PointA + t1(PointB−PointA) (2.10)

Line2 = PointC + t2(PointD−PointC) (2.11)

If the location where Line1 = Line2 is solved for, the solution yields two equations:

PA + t1(PB−PA) = Psim,i + t2(Psim,i+1−Psim,i) (2.12)

DA + t1(DB−DA) = Dsim,i + t2(Dsim,i+1−Dsim,i) (2.13)

Equation 2.12 and Equation 2.13 are then used to produce solutions in terms of the two unknowns,

t1 and t2:

t1 =
(Psim,i+1−Psim,i)(DA−Dsim,i)− (Dsim,i+1−Dsim,i)(PA−Psim,i)

(Dsim,i+1−Dsim,i)(PB−PA)− (Psim,i+1−Psim,i)(DB−DA)
(2.14)

t2 =
(PB−PA)(DA−Dsim,i)− (DB−DA)(PA−Psim,i)

(Dsim,i+1−Dsim,i)(PB−PA)− (Psim,i+1−Psim,i)(DB−DA)
(2.15)

The denominator is the same in Equation 2.14 and Equation 2.15. If the denominator term produces

zero as an output then Line1 and Line2 are parallel. In order to test if the line segments intersection,

the values of t1 and t2 must both return values that are between zero (0) and one (1). If both t1 and t2

meet this condition then the line segments intersect. Figure 2.16 shows a graphical representation

of the analysis technique for two 11-MeV 25x25 cm2 applicator cross-plane profiles.
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Figure 2.16: Visual representation of the tolerance criteria algorithm applied to 11-MeV 25x25 cm2 applicator cross-beam profiles
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Chapter 3
Results

3.1 Summary of Run-Time Statistics

The simulation results of the Monte Carlo model were compared against measured %DD

curves, cross-beam profiles at depths listed in Table 2.2, and diagonal profiles for the open-insert

25x25 cm2 applicator for all seven energies. Additionally, model results were compared against

measured %DD curves and the extended set of measured cross-plane profiles with the 6x6 and

the 14x14 cm2 applicator for the 7-, 13-, and 20-MeV beam energies. The 14x14 cm2 applicator

results were compared at both 100 cm and 110 cm SSD. Table 3.1 lists the run-time statistics for

the open-insert 25x25 cm2 applicator accelerator simulations. The initial particle number (NCASE)

was chosen to produce phase-space files with comparable total particle numbers. The total CPU

times are in terms of equivalent time elapsed if the simulation were run on a single processing core.

All simulations were performed on Linux clusters provided by the high performance computing

(HPC) center at Louisiana State University and 4.772 teraflop Linux clusters provided through a

computing allocation granted by the Louisiana Optical Network Initiative (LONI). The details of

the computing resources and the parallel run environment are discussed in Appendix A.

Table 3.1: Run statistics for 25x25 cm2 applicator

Energy
(MeV)

# of
Cores

NCASE
(millions)

Total #
particles in

PHSP

# photons
in PHSP

Size
(GB)

CPU
time
(hr)

CPU
sec/history

7 80 600 189010588 91035798 5.29 195.53 0.00117
9 80 500 205619614 119791861 5.76 217.04 0.00156

10 80 500 279433433 144584794 7.82 244.74 0.00176
11 80 400 250113652 141454700 7.00 218.07 0.00196
13 80 300 221332919 135432453 6.20 192.80 0.00231
16 80 300 326544476 203606036 9.14 251.00 0.00301
20 80 200 283866124 195841630 7.95 212.05 0.00382

Note: Phase-space file is denoted (PHSP) and initial particle number is denoted (NCASE).
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The NCASE value for all water phantom simulations in DOSXYZnrc was 1 billion. This

combination of NCASE values produced %DD curves from the CHAMBER module with less

than 0.5% fractional uncertainty in the electron dominant depths and less than 2.0% fractional

uncertainty in the photon dominant depths. The fractional uncertainty of the dose outputs from

DOSXYZnrc simulated cross-beam profiles were less than 0.5% for the in-field points and less

than 2.5% for out-of-field points. The same NCASE values from Table 3.1 were used for 6x6 and

14x14 cm2 applicator simulations in BEAMnrc. The %DD curves for the 6x6 cm2 applicator were

recalculated with the DOSXYZnrc depth dose phantom in order to reduce statistical noise. The

CHAMBER output from these runs had higher uncertainties due to the smaller number of particles

that reach isocenter when compared with larger field-sizes.

Comparisons of the simulation results with the measured data for smaller field-sizes (6x6 and

14x14 cm2 applicators), shown in Appendix C, demonstrate the ability of the model to produce

simulated results that match the measured beam data within the tolerance criteria of the hypothesis

(2% of Dmax or 1 mm DTA) for nearly 100% of the data points compared. Please refer to Ap-

pendix C for the additional data concerning the 6x6 and 14x14 cm2 applicator simulations for the

7-, 13-, and 20-MeV beams.

Since the model showed the greatest sensitivity to modeling errors at large field-sizes, the

comparison of open-insert 25x25 cm2 applicator data are the main focus of the results of this

work. The results are discussed in terms of low energy (7-, 9-MeV), medium energy (10-, 11-,

13-MeV), and high energy (16-, 20-MeV) beams. These groupings were determined by the beams

which shared a common secondary scattering foil. Only figures and tables from the large-field

simulation results will be shown in this Chapter.

3.2 Low Energy (7-, 9-MeV) Large-Field Results

The simulated %DD curves for both low energy beam models matched the measured data

within the criteria of the hypothesis for the large-field simulations (cf. Figures 3.1 and 3.7). How-

ever, for the shallowest cross-beam depths of 1.0 cm at 7-MeV and 1.3 cm at 9-MeV, simulated

profiles provided a larger off-axis dose relative to the CAX than measured (cf. Figures 3.3(a),
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3.5(a), 3.9(a), and 3.11(a)). The largest difference between measured and simulated doses was

on the order of 3% of Dmax. The trend of over-prediction of off-axis dose by the Monte Carlo

simulations continued with depth for all low energy large-field cross-beam profiles. The simulated

diagonal profiles at depths of 1 cm for both energies also over-predicted the off-axis dose and ex-

hibited a maximum dose difference from the measured diagonal profiles on the order of 4% of

Dmax (cf. Figures 3.2 and 3.8).

The shape of simulated Bremsstrahlung dose profiles agreed reasonably well with the mea-

sured photon dose profiles for both energies (cf. Figures 3.3(e), 3.5(e), 3.9(e), and 3.11(e)). The

slight under-prediction of the simulated photon dose could be resolved by adding mean angular

spread (∼ 1◦) to the initial electron source of the model. However, any initial angular spread with

the low energy beam models would increase the off-axis dose differences observed (by ∼1% per

degree of spread) between the simulated and measured cross-beam profile data at shallower depths.

3.3 Medium Energy (10-, 11-, 13-MeV) Large-Field Results

The simulated %DD curves for the three medium energy beam models matched the measured

data within the criteria of the hypothesis for the large-field simulations (cf. Figures 3.13, 3.19, and

3.25). However, for the shallowest cross-beam depths of 1.5 cm at 10-MeV, 1.7 cm at 11-MeV,

and 2.0 cm at 13-MeV, simulated profiles provided a smaller off-axis dose relative to the CAX

than measured (cf. Figures 3.15(a), 3.17(a), 3.21(a), 3.23(a), 3.27(a), and 3.29(a)). The largest

difference between measured and simulated cross-beam profile doses was on the order of 3% of

Dmax. The trend of over-prediction of off-axis dose by the Monte Carlo simulations continued with

depth for all medium energy large-field cross-beam profiles. The simulated diagonal profiles at a

depth of 1 cm for 10-MeV and 2 cm for 11-MeV and 13-MeV also under-predicted off-axis dose

and exhibited a maximum dose difference from the measured diagonal profiles on the order of

3% of Dmax (cf. Figures 3.14, 3.20, and 3.26). Additionally, the simulated medium energy beam

models failed to match the measured profiles within the DTA criteria in the penumbra region for a

large number of cross-beam profiles. This DTA difference was greater in the cross-plane direction

than the in-plane direction. The DTA differences observed in the penumbra of the medium energy
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beams was much less pronounced for the 14x14 cm2 applicator cross-beam comparisons of the

13-MeV beam.

The simulated Bremsstrahlung dose profiles slightly under-predicted the shape of the measured

photon dose profiles for all three energies (cf. Figures 3.15(e), 3.17(e), 3.21(e), 3.23(e), 3.27(e),

and 3.29(e)). The difference between the simulated and measured photon profiles increased with

the energy of the beam. Including a mean angular spread (∼ 1−2◦) in the incident electron source

of the model improved the agreement of the simulated and measured photon dose profiles. This

mean angular spread term also resolved the under-prediction of simulated off-axis dose as well as

the DTA failures in the penumbra region observed with the medium energy beam models. The

determined mean angular spread values agreed closely with the mean angular spread of 1.75◦

reported by Björk, Knöös, and Nilsson (2002) for a 12-MeV electron beam from a similar Elekta

linear accelerator. The results shown in this work have the mean angular spread parameter set to

0◦ for all beam energies. This was done to fully display the differences in dosimetric qualities

between the different scattering foils of the MBPCC accelerators.

3.4 High Energy (16-, 20-MeV) Large-Field Results

The simulated %DD curves for both high energy beam models matched the measured data

within the criteria of the hypothesis for the large-field simulations (cf. Figures 3.31 and 3.37).

The simulated in-plane (Y) profiles matched the measured in-plane planes within the criteria of

the hypothesis at every depth for both high energy beam models. However, for the shallowest

cross-plane (X) depths of 2.5 cm at 16-MeV and 3.0 cm at 20-MeV, simulated profiles provided a

larger off-axis dose relative to the CAX than measured (cf. Figures 3.33(a), 3.35(a), 3.39(a), and

3.41(a)). The largest difference between measured and simulated doses was on the order of 3%

of Dmax. The simulated cross-plane profiles matched the measured data within the criteria of the

hypothesis for the deeper cross-plane comparisons. The simulated diagonal profiles at depths of 2

cm for both energies also over-predicted the off-axis dose near the penumbra edge and exhibited

a maximum dose difference from the measured diagonal profiles on the order of 4% of Dmax (cf.

Figures 3.32 and 3.38).
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The simulated Bremsstrahlung dose profiles under-predicted the shape of the measured photon

dose profiles for both energies (cf. Figures 3.33(e), 3.35(e), 3.39(e), and 3.41(e)). Including a mean

angular spread (∼ 2◦) in the incident electron source of the model could improve the agreement

of the simulated and measured photon dose profiles. However, adding angular spread to the initial

electron source greatly increased the off-axis dose relative to the CAX for the simulated cross-beam

profiles. This parameter would ruin the agreement observed between the simulated and measured

cross-beam profile data for the high energy beams.
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3.5 7-MeV Large-Field Results

Figure 3.1: %DD: 7MeV - 25x25 cm2 applicator

Table 3.2: 7MeV-25x25 cm2 applicator comparison summary

Profile type Profile depth Percent of points passing
(%DD, X, Y) (cm) 2%/1mm 2%/2mm 3%/3mm

%DD – 100.0% – –

Diagonal 1.0 66.7% 75.0% 100.0%

Cross-plane (X)

1.0 92.4% 93.1% 100.0%
2.0 99.3% 99.3% 100.0%
2.5 100.0% – –
2.8 100.0% – –
5.5 100.0% – –

In-plane (Y)

1.0 95.9% 95.9% 100.0%
2.0 96.6% 97.2% 100.0%
2.5 96.6% 96.6% 100.0%
2.8 100.0% – –
5.5 100.0% – –
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Figure 3.2: Diagonal profile: 7MeV - 25x25 cm2 applicator at z=1 cm
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(a) z=1.0 cm (b) z=2.0 cm

(c) z=2.5 cm (d) z=2.8 cm

(e) z=5.5 cm

Figure 3.3: 7MeV-25x25 cm2 cross-plane (X) profiles at five depths (1.0, 2.0, 2.5, 2.8, and 5.5 cm)
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Figure 3.4: 7MeV-25x25 cm2 cross-plane (X) profiles: zoomed view of Figure 3.3(a)-(d)
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(a) z=1.0 cm (b) z=2.0 cm

(c) z=2.5 cm (d) z=2.8 cm

(e) z=5.5 cm

Figure 3.5: 7MeV-25x25 cm2 in-plane (Y) profiles at five depths (1.0, 2.0, 2.5, 2.8, and 5.5 cm)
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Figure 3.6: 7MeV-25x25 cm2 in-plane (Y) profiles: zoomed view of Figure 3.5(a)-(d)
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3.6 9-MeV Large-Field Results

Figure 3.7: %DD: 9MeV - 25x25 cm2 applicator

Table 3.3: 9MeV-25x25 cm2 applicator comparison summary

Profile type Profile depth Percent of points passing
(%DD, X, Y) (cm) 2%/1mm 2%/2mm 3%/3mm

%DD – 100.0% – –

Diagonal 1.0 69.8% 75.5% 86.8%

Cross-plane (X)

1.3 91.0% 91.0% 100.0%
2.6 98.6% 98.6% 100.0%
3.1 100.0% – –
3.4 100.0% – –
6.3 100.0% – –

In-plane (Y)

1.3 81.4% 84.1% 98.6%
2.6 96.6% 97.9% 100.0%
3.1 99.3% 99.3% 100.0%
3.4 97.9% 99.3% 100.0%
6.3 100.0% – –

60



Figure 3.8: Diagonal profile: 9MeV - 25x25 cm2 applicator at z=1 cm
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(a) z=1.3 cm (b) z=2.6 cm

(c) z=3.1 cm (d) z=3.4 cm

(e) z=6.3 cm

Figure 3.9: 9MeV-25x25 cm2 cross-plane (X) profiles at five depths (1.3, 2.6, 3.1, 3.4, and 6.3 cm)
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Figure 3.10: 9MeV-25x25 cm2 cross-plane (X) profiles: zoomed view of Figure 3.9(a)-(d)
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(a) z=1.3 cm (b) z=2.6 cm

(c) z=3.1 cm (d) z=3.4 cm

(e) z=6.3 cm

Figure 3.11: 9MeV-25x25 cm2 in-plane (Y) profiles at five depths (1.3, 2.6, 3.1, 3.4, and 6.3 cm)
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Figure 3.12: 9MeV-25x25 cm2 in-plane (Y) profiles: zoomed view of Figure 3.11(a)-(d)
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3.7 10-MeV Large-Field Results

Figure 3.13: %DD: 10MeV - 25x25 cm2 applicator

Table 3.4: 10MeV-25x25 cm2 applicator comparison summary

Profile type Profile depth Percent of points passing
(%DD, X, Y) (cm) 2%/1mm 2%/2mm 3%/3mm

%DD – 100.0% – –

Diagonal 1.0 83.2% 85.3% 97.9%

Cross-plane (X)

1.5 99.3% 100.0% –
3.0 94.6% 100.0% –
3.6 94.6% 100.0% –
4.0 100.0% – –
6.9 100.0% – –

In-plane (Y)

1.5 100.0% – –
3.0 99.3% 100.0% –
3.6 100.0% – –
4.0 100.0% – –
6.9 100.0% – –
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Figure 3.14: Diagonal profile: 10MeV - 25x25 cm2 applicator at z=1 cm
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(a) z=1.5 cm (b) z=3.0 cm

(c) z=3.6 cm (d) z=4.0 cm

(e) z=6.9 cm

Figure 3.15: 10MeV-25x25 cm2 cross-plane (X) profiles at five depths (1.5, 3.0, 3.6, 4.0, and 6.9 cm)
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Figure 3.16: 10MeV-25x25 cm2 cross-plane (X) profiles: zoomed view of Figure 3.15(a)-(d)
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(a) z=1.5 cm (b) z=3.0 cm

(c) z=3.6 cm (d) z=4.0 cm

(e) z=6.9 cm

Figure 3.17: 10MeV-25x25 cm2 in-plane (Y) profiles at five depths (1.5, 3.0, 3.6, 4.0, and 6.9 cm)
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Figure 3.18: 10MeV-25x25 cm2 in-plane (Y) profiles: zoomed view of Figure 3.17(a)-(d)
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3.8 11-MeV Large-Field Results

Figure 3.19: %DD: 11MeV - 25x25 cm2 applicator

Table 3.5: 11MeV-25x25 cm2 applicator comparison summary

Profile type Profile depth Percent of points passing
(%DD, X, Y) (cm) 2%/1mm 2%/2mm 3%/3mm

%DD – 100.0% – –

Diagonal 2.0 69.5% 71.4% 90.5%

Cross-plane (X)

1.7 93.9% 98.6% 100.0%
3.5 89.1% 99.3% 100.0%
4.1 91.2% 100.0% –
4.5 92.5% 100.0% –
7.6 100.0% – –

In-plane (Y)

1.7 87.8% 89.8% 98.6%
3.5 87.8% 95.2% 100.0%
4.1 95.9% 100.0% –
4.5 100.0% – –
7.6 100.0% – –
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Figure 3.20: Diagonal profile: 11MeV - 25x25 cm2 applicator at z=2 cm
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(a) z=1.7 cm (b) z=3.5 cm

(c) z=4.1 cm (d) z=4.5 cm

(e) z=7.6 cm

Figure 3.21: 11MeV-25x25 cm2 cross-plane (X) profiles at five depths (1.7, 3.5, 4.1, 4.5, and 7.6 cm)
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Figure 3.22: 11MeV-25x25 cm2 cross-plane (X) profiles: zoomed view of Figure 3.21(a)-(d)
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(a) z=1.7 cm (b) z=3.5 cm

(c) z=4.1 cm (d) z=4.5 cm

(e) z=7.6 cm

Figure 3.23: 11MeV-25x25 cm2 in-plane (Y) profiles at five depths (1.7, 3.5, 4.1, 4.5, and 7.6 cm)
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Figure 3.24: 11MeV-25x25 cm2 in-plane (Y) profiles: zoomed view of Figure 3.23(a)-(d)
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3.9 13-MeV Large-Field Results

Figure 3.25: %DD: 13MeV - 25x25 cm2 applicator

Table 3.6: 13MeV-25x25 cm2 applicator comparison summary

Profile type Profile depth Percent of points passing
(%DD, X, Y) (cm) 2%/1mm 2%/2mm 3%/3mm

%DD – 100.0% – –

Diagonal 2.0 77.4% 82.6% 96.5%

Cross-plane (X)

2.0 95.2% 100.0% –
4.0 83.7% 99.3% 100.0%
4.8 83.7% 98.6% 100.0%
5.3 100.0% – –
8.5 100.0% – –

In-plane (Y)

2.0 98.6% 100.0% –
4.0 89.8% 99.3% 100.0%
4.8 95.9% 100.0% –
5.3 100.0% – –
8.5 100.0% – –

78



Figure 3.26: Diagonal profile: 13MeV - 25x25 cm2 applicator at z=2 cm
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(a) z=2.0 cm (b) z=4.0 cm

(c) z=4.8 cm (d) z=5.3 cm

(e) z=8.5 cm

Figure 3.27: 13MeV-25x25 cm2 cross-plane (X) profiles at five depths (2.0, 4.0, 4.8, 5.3, and 8.5 cm)
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Figure 3.28: 13MeV-25x25 cm2 cross-plane (X) profiles: zoomed view of Figure 3.27(a)-(d)
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(a) z=2.0 cm (b) z=4.0 cm

(c) z=4.8 cm (d) z=5.3 cm

(e) z=8.5 cm

Figure 3.29: 13MeV-25x25 cm2 in-plane (Y) profiles at five depths (2.0, 4.0, 4.8, 5.3, and 8.5 cm)
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Figure 3.30: 13MeV-25x25 cm2 in-plane (Y) profiles: zoomed view of Figure 3.29(a)-(d)
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3.10 16-MeV Large-Field Results

Figure 3.31: %DD: 16MeV - 25x25 cm2 applicator

Table 3.7: 16MeV-25x25 cm2 applicator comparison summary

Profile type Profile depth Percent of points passing
(%DD, X, Y) (cm) 2%/1mm 2%/2mm 3%/3mm

%DD – 100.0% – –

Diagonal 2.0 79.4% 82.4% 97.1%

Cross-plane (X)

10.0 100.0% – –
2.5 99.3% 99.3% 100.0%
5.0 100.0% – –
6.0 100.0% – –
6.6 100.0% – –

In-plane (Y)

10.0 100.0% – –
2.5 100.0% – –
5.0 100.0% – –
6.0 100.0% – –
6.6 100.0% – –
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Figure 3.32: Diagonal profile: 16MeV - 25x25 cm2 applicator at z=2 cm
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(a) z=2.5 cm (b) z=5.0 cm

(c) z=6.0 cm (d) z=6.6 cm

(e) z=10.0 cm

Figure 3.33: 16MeV-25x25 cm2 cross-plane (X) profiles at five depths (2.5, 5.0, 6.0, 6.6, and 10.0 cm)
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Figure 3.34: 16MeV-25x25 cm2 cross-plane (X) profiles: zoomed view of Figure 3.33(a)-(d)
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(a) z=2.5 cm (b) z=5.0 cm

(c) z=6.0 cm (d) z=6.6 cm

(e) z=10.0 cm

Figure 3.35: 16MeV-25x25 cm2 in-plane (Y) profiles at five depths (2.5, 5.0, 6.0, 6.6, and 10.0 cm)
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Figure 3.36: 16MeV-25x25 cm2 in-plane (Y) profiles: zoomed view of Figure 3.35(a)-(d)

89



3.11 20-MeV Large-Field Results

Figure 3.37: %DD: 20MeV - 25x25 cm2 applicator

Table 3.8: 20MeV-25x25 cm2 applicator comparison summary

Profile type Profile depth Percent of points passing
(%DD, X, Y) (cm) 2%/1mm 2%/2mm 3%/3mm

%DD – 100.0% – –

Diagonal 2.0 82.1% 84.6% 92.3%

Cross-plane (X)

12.1 100.0% – –
3.0 96.6% 96.6% 100.0%
6.1 100.0% – –
7.4 100.0% – –
8.3 100.0% – –

In-plane (Y)

12.1 100.0% – –
3.0 100.0% – –
6.1 100.0% – –
7.4 100.0% – –
8.3 100.0% – –
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Figure 3.38: Diagonal profile: 20MeV - 25x25 cm2 applicator at z=2 cm
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(a) z=3.0 cm (b) z=6.1 cm

(c) z=7.4 cm (d) z=8.3 cm

(e) z=12.1 cm

Figure 3.39: 20MeV-25x25 cm2 cross-plane (X) profiles at five depths (3.0, 6.1, 7.4, 8.3, and 12.1 cm)
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Figure 3.40: 20MeV-25x25 cm2 cross-plane (X) profiles: zoomed view of Figure 3.39(a)-(d)
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(a) z=3.0 cm (b) z=6.1 cm

(c) z=7.4 cm (d) z=8.3 cm

(e) z=12.1 cm

Figure 3.41: 20MeV-25x25 cm2 in-plane (Y) profiles at five depths (3.0, 6.1, 7.4, 8.3, and 12.1 cm)
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Figure 3.42: 20MeV-25x25 cm2 in-plane (Y) profiles: zoomed view of Figure 3.41(a)-(d)
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Chapter 4
Conclusions

4.1 Summary of Results

The goal of this work was to create a Monte Carlo model of the Elekta Infinity linear accel-

erator electron beam delivery system. The hypothesis of this work was that dose distributions of

calculated by the Monte-Carlo model could reproduce measured cross-beam profiles and depth

dose distributions to within 2% of Dmax of 1 mm DTA for all field sizes. The model was tested

for the large-field (25x25 cm2 applicator) %DD curves and cross-beam profiles for all seven clin-

ical beam energies (7-, 9-, 10-, 11-, 13-, 16-, and 20-MeV). The comparison of the calculated

dose-distributions obtained from the BEAMnrc simulations against the measured commissioning

data resulted in the following observations:

1. The model could reproduce %DD curves at 100 cm for the open-insert 25x25 cm2 applicator

within the specified criteria for all clinical energies.

2. The calculated cross-beam profiles did not produce results within the specified criteria at

the commissioning depths for any clinical beam energy. The low energy(7-, 9-MeV) and

the high energy(16-, 20-MeV) simulation results over-predicted the off-axis dose in the

high-dose, low-gradient region of the beam. The medium energy (10-, 11- ,and 13-MeV)

beams under-predicted the off-axis dose in the high-dose, low-gradient region of the beam.

3. The under-prediction of off-axis dose and the DTA failures observed in the middle electron

energies (10-, 11-, and 13-MeV), which used the unmodified secondary scattering foil, can

be rectified if some initial angular spread is added to the initial electron source that is incident

on the nickel exit window.
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Table 4.1: Pass rate for 25x25 cm2 cross-beam results

Energy
(MeV)

Pass rate at
2%/1mm

DTA to
achieve 100%

% of Dmax to
achieve 100%

7 98.5 1mm 2.5%
9 96.3 1mm 3%

10 97.4 2.1mm 2%
11 94.0 2.5mm 3%
13 94.6 2.3mm 2%
16 100 1mm 2%
20 99.1 1mm 2.5%

4.2 Evaluation of Hypothesis

The results of this study do not support the initial hypothesis of the work. Using an arbitrar-

ily defined energy spectrum incident on the vacuum exit window as the only free parameter, the

Monte-Carlo model was unable to reproduce the cross-beam profiles within 2% or 1 mm DTA

when compared against the large-field beam measurements from the commissioning data set. If

the criteria were loosened to 3% of Dmax or 2.5 mm DTA then the hypothesis would be supported

for the cross-beam commissioned data. Diagonal profiles required the criteria to be loosened to

4% of Dmax or 2.5 mm DTA for the hypothesis to be supported.

4.3 Utility of Results

Limited investigation of additional cross-beam profiles with smaller applicators (6x6 cm2 and

14x14 cm2) suggest the model can meet the specified criteria for smaller field-sizes at normal and

extended SSDs. AAPM Task Group No. 105 cites Monte Carlo agreement with measured beam

data within 2% or 2 mm as excellent for the purposes of commissioning a Monte Carlo treatment

planning system (Chetty et al. 2007). Thus, the model could be used in its current state as a Monte

Carlo treatment planning system for small field sizes. Additionally, given the dimensions of the

photon flattening filters and the tungsten target, the model could be used to simulate the photon

beams of the Elekta accelerator with minimal additional labor.
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4.4 Future Work

The Monte Carlo model must be able to meet the tolerance criteria of the hypothesis for the

large field beam data to serve as a benchmark for the redesign of beam-line components. Studies

are currently underway to measure the electron energy spectrum at machine isocenter using a

magnetic spectrometer (Hogstrom et al. 2012). This data will be mathematically de-convolved to

reproduce the physical electron spectra as it is incident on the nickel exit window. Actual measured

energy spectrum data could help to resolve some of the discrepancies between the model and the

measured beam data.

The energy bandwidth of the bending magnet system of an Elekta accelerator should be ap-

proximately 9% (Björk, Knöös, and Nilsson 2002). Given this information, the energy spectra

parameters required to model the measured %DD curves are potentially non-physical since the

energies extend past outside of the maximum bandwidth of the bending magnet system. The ac-

tual bandwidth of the bending magnet system is questionable as Deasy, Almond, and McEllistrem

(1994) reported Philips/Elekta accelerator energy spectra measurements with FWHM values as

large as 20%. Further investigation into the truncating the energy spectra to create more physically

valid energy spectrum should be considered.

This work focused on creating a simple model of the incident electron source with as few free

parameters as possible. Further investigation into a sensitivity study of the initial source input

parameters for each beam energy should be considered. Additional source options provided in the

BEAMnrc package could also be investigated.

Additionally, further analysis of the accelerator could be performed by taking dosimetric mea-

surements with critical beam-line components removed. Measurements for each clinical energy

with one or both scattering foils taken out of the beam would allow further insights into the issues

that caused the model to over-predict the off-axis dose for the low energy and high energy beams.

Finally, radio-chromic film measurement in the empty carousel position (used in photon mode) of

the primary foil holder could allow further quantification of the spatial distribution of the electron

spot size for each beam energy.
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Appendix A
Parallel Run Submission Script

The BEAMnrc code was modified to achieve parallel operation on Red Hat Linux Enter-

prise (RHEL) computing clusters. The basic structure of the BASH script necessary to submit the

parallel jobs is as follows:

#!/bin/bash

#PBS -q checkpt
#PBS -l walltime=2:00:00
#PBS -l nodes=5:ppn=4
#PBS -N Parallel_run_example

pegs=pegs4dat file
input=$input_file(.egsinp)
output=$phase_space_name(.egsphsp1)
user_code=BEAM_$module_file(.module)

cd $PBS_O_WORKDIR
cd ..
newhome=‘pwd‘
cd $PBS_O_WORKDIR

#Get the nubmer of available processors.
nprocs=‘wc -l $PBS_NODEFILE | awk ’print $1’‘

#Build a host list
count=0
HOSTLIST=
for host in ‘cat $PBS_NODEFILE‘

do
HOSTLIST[$count]=$host
count=$(( $count + 1 ))

done

#Run the modified pprocess script to get the splitted input files.

EGS_HOME=$newhome /home/$USER/HEN_HOUSE/scripts/pprocess $user_code $input $pegs $nprocs

#Launch one job for each input file.
count=0
for id in ‘cat 13‘

do
remotehost=$HOSTLIST[$count]
cat > childjob_$id.sh << EOF

#!/bin/bash
cd $PBS_O_WORKDIR
EGS_HOME=$newhome $user_code -i $id -p $pegs
EOF

chmod 755 childjob_$id.sh
echo “Connecting to $remotehost...”
ssh -n $remotehost $PBS_O_WORKDIR/childjob_$id.sh &
count=$(( $count + 1 ))

done
wait

#add parallel run phase-space files together
addphsp $input $output $nprocs
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Appendix B
Comparisons of Energy Spectra

Figure B.1: 7MeV - 14x14 cm2 applicator - incident energy spectra compared with BEAMDP
spectrum at the field insert (95 cm SSD)
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Figure B.2: 9MeV - 14x14 cm2 applicator - incident energy spectra compared with BEAMDP
spectrum at the field insert (95 cm SSD)

Figure B.3: 10MeV - 14x14 cm2 applicator - incident energy spectra compared with BEAMDP
spectrum at the field insert (95 cm SSD)
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Figure B.4: 11MeV - 14x14 cm2 applicator - incident energy spectra compared with BEAMDP
spectrum at the field insert (95 cm SSD)

Figure B.5: 13MeV - 14x14 cm2 applicator - incident energy spectra compared with BEAMDP
spectrum at the field insert (95 cm SSD)
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Figure B.6: 16MeV - 14x14 cm2 applicator - incident energy spectra compared with BEAMDP
spectrum at the field insert (95 cm SSD)

Figure B.7: 20MeV - 14x14 cm2 applicator - incident energy spectra compared with BEAMDP
spectrum at the field insert (95 cm SSD)
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Appendix C
Additional Small-Field Results

C.1 7-MeV 6x6 cm2 Applicator - 100 cm SSD

Figure C.1: %DD: 7MeV - 06x06 cm2 applicator

Table C.1: 7MeV-06x06 cm2 applicator comparison summary

Profile type Profile depth Percent of points passing
(%DD, X) (cm) 2%/1mm 2%/2mm 3%/3mm

%DD – 100.0% – –

Cross-plane (X)

0.5 100.0% – –
1.0 100.0% – –
2.0 100.0% – –
2.5 100.0% – –
2.8 100.0% – –
3.5 100.0% – –
5.5 100.0% – –
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Figure C.2: 7MeV-6x6 cm2 100cm SSD - cross-plane profiles at depths, z=0.5 and 1.0 cm
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Figure C.3: 7MeV-6x6 cm2 100cm SSD - cross-plane profiles at depths, z=2.0 and 2.5 cm
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Figure C.4: 7MeV-6x6 cm2 100cm SSD - cross-plane profiles at depths, z=2.8 and 3.5 cm
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Figure C.5: 7MeV-6x6 cm2 100cm SSD - cross-plane profiles at depth, z=5.5 cm
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C.2 7-MeV 14x14 cm2 Applicator - 100 cm SSD

Figure C.6: %DD: 7MeV - 14x14 cm2 applicator

Table C.2: 7MeV-14x14 cm2 applicator comparison summary

Profile type Profile depth Percent of points passing
(%DD, X) (cm) 2%/1mm 2%/2mm 3%/3mm

%DD – 100.0% – –

Cross-plane (X)

0.5 100.0% – –
1.0 100.0% – –
2.1 100.0% – –
2.5 100.0% – –
2.8 100.0% – –
3.5 100.0% – –
5.5 100.0% – –
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Figure C.7: 7MeV-14x14 cm2 100cm SSD - cross-plane profiles at depths, z=0.5 and 1.0 cm
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Figure C.8: 7MeV-14x14 cm2 100cm SSD - cross-plane profiles at depths, z=2.1 and 2.5 cm
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Figure C.9: 7MeV-14x14 cm2 100cm SSD - cross-plane profiles at depths, z=2.8 and 3.5 cm
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Figure C.10: 7MeV-14x14 cm2 100cm SSD - cross-plane profiles at depth, z=5.5 cm
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C.3 7-MeV 14x14 cm2 Applicator - 110 cm SSD

Figure C.11: %DD: 7MeV - 14x14 cm2 applicator

Table C.3: 7MeV-14x14 cm2 applicator comparison summary

Profile type Profile depth Percent of points passing
(%DD, X) (cm) 2%/1mm 2%/2mm 3%/3mm

%DD – 100.0% – –

Cross-plane (X)

0.5 100.0% – –
1.0 100.0% – –
2.1 100.0% – –
2.5 100.0% – –
2.8 100.0% – –
3.5 100.0% – –
5.5 83.2% 83.2% 98.1%
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Figure C.12: 7MeV-14x14 cm2 110cm SSD - cross-plane profiles at depths, z=0.5 and 1.0 cm
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Figure C.13: 7MeV-14x14 cm2 110cm SSD - cross-plane profiles at depths, z=2.1 and 2.5 cm
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Figure C.14: 7MeV-14x14 cm2 110cm SSD - cross-plane profiles at depths, z=2.8 and 3.5 cm
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Figure C.15: 7MeV-14x14 cm2 110cm SSD - cross-plane profiles at depth, z=5.5 cm
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C.4 13-MeV 6x6 cm2 Applicator - 100 cm SSD

Figure C.16: %DD: 13MeV - 06x06 cm2 applicator

Table C.4: 13MeV-06x06 cm2 applicator comparison summary

Profile type Profile depth Percent of points passing
(%DD, X) (cm) 2%/1mm 2%/2mm 3%/3mm

%DD – 100.0% – –

Cross-plane (X)

0.5 100.0% – –
1.0 100.0% – –
1.5 100.0% – –
2.0 100.0% – –
4.0 100.0% – –
4.8 100.0% – –
5.3 100.0% – –
6.5 100.0% – –
8.5 100.0% – –

122



Figure C.17: 13MeV-6x6 cm2 100cm SSD - cross-plane profiles at depths, z=0.5 and 1.0 cm
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Figure C.18: 13MeV-6x6 cm2 100cm SSD - cross-plane profiles at depths, z=1.5 and 2.0 cm
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Figure C.19: 13MeV-6x6 cm2 100cm SSD - cross-plane profiles at depths, z=4.0 and 4.8 cm
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Figure C.20: 13MeV-6x6 cm2 100cm SSD - cross-plane profiles at depths, z=5.3 and 6.5 cm
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Figure C.21: 13MeV-6x6 cm2 100cm SSD - cross-plane profiles at depth, z=8.5 cm
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C.5 13-MeV 14x14 cm2 Applicator - 100 cm SSD

Figure C.22: %DD: 13MeV - 14x14 cm2 applicator

Table C.5: 13MeV-14x14 cm2 applicator comparison summary

Profile type Profile depth Percent of points passing
(%DD, X) (cm) 2%/1mm 2%/2mm 3%/3mm

%DD – 100.0% – –

Cross-plane (X)

0.5 100.0% – –
1.0 100.0% – –
1.5 100.0% – –
2.0 100.0% – –
4.0 97.2% 100.0% –
4.8 100.0% – –
5.3 100.0% – –
6.5 100.0% – –
8.5 100.0% – –
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Figure C.23: 13MeV-14x14 cm2 100cm SSD - cross-plane profiles at depths, z=0.5 and 1.0 cm
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Figure C.24: 13MeV-14x14 cm2 100cm SSD - cross-plane profiles at depths, z=1.5 and 2.0 cm
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Figure C.25: 13MeV-14x14 cm2 100cm SSD - cross-plane profiles at depths, z=4.0 and 4.8 cm
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Figure C.26: 13MeV-14x14 cm2 100cm SSD - cross-plane profiles at depths, z=5.3 and 6.5 cm
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Figure C.27: 13MeV-14x14 cm2 100cm SSD - cross-plane profiles at depth, z=8.5 cm
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C.6 13-MeV 14x14 cm2 Applicator - 110 cm SSD

Figure C.28: %DD: 13MeV - 14x14 cm2 applicator

Table C.6: 13MeV-14x14 cm2 applicator comparison summary

Profile type Profile depth Percent of points passing
(%DD, X) (cm) 2%/1mm 2%/2mm 3%/3mm

%DD – 99.1% 100.0% –

Cross-plane (X)

0.5 100.0% – –
1.0 100.0% – –
1.5 100.0% – –
2.0 100.0% – –
4.0 100.0% – –
4.8 100.0% – –
5.3 100.0% – –
6.5 100.0% – –
8.5 100.0% – –
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Figure C.29: 13MeV-14x14 cm2 110cm SSD - cross-plane profiles at depths, z=0.5 and 1.0 cm

135



Figure C.30: 13MeV-14x14 cm2 110cm SSD - cross-plane profiles at depths, z=1.5 and 2.0 cm
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Figure C.31: 13MeV-14x14 cm2 110cm SSD - cross-plane profiles at depths, z=4.0 and 4.8 cm
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Figure C.32: 13MeV-14x14 cm2 110cm SSD - cross-plane profiles at depths, z=5.3 and 6.5 cm
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Figure C.33: 13MeV-14x14 cm2 110cm SSD - cross-plane profiles at depth, z=8.5 cm
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C.7 20-MeV 6x6 cm2 Applicator - 100 cm SSD

Figure C.34: %DD: 20MeV - 06x06 cm2 applicator

Table C.7: 20MeV-06x06 cm2 applicator comparison summary

Profile type Profile depth Percent of points passing
(%DD, X) (cm) 2%/1mm 2%/2mm 3%/3mm

%DD – 100.0% – –

Cross-plane (X)

0.5 100.0% – –
10.1 100.0% – –
1.0 100.0% – –
12.1 100.0% – –
1.5 100.0% – –
2.0 100.0% – –
2.7 100.0% – –
5.3 100.0% – –
7.0 100.0% – –
8.0 100.0% – –
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Figure C.35: 20MeV-6x6 cm2 100cm SSD - cross-plane profiles at depths, z=0.5 and 1.0 cm
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Figure C.36: 20MeV-6x6 cm2 100cm SSD - cross-plane profiles at depths, z=1.5 and 2.0 cm
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Figure C.37: 20MeV-6x6 cm2 100cm SSD - cross-plane profiles at depths, z=2.7 and 5.3 cm
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Figure C.38: 20MeV-6x6 cm2 100cm SSD - cross-plane profiles at depths, z=7.0 and 8.0 cm
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Figure C.39: 20MeV-6x6 cm2 100cm SSD - cross-plane profiles at depths, z=10.1 and 12.1 cm
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C.8 20-MeV 14x14 cm2 Applicator - 100 cm SSD

Figure C.40: %DD: 20MeV - 14x14 cm2 applicator

Table C.8: 20MeV-14x14 cm2 applicator comparison summary

Profile type Profile depth Percent of points passing
(%DD, X) (cm) 2%/1mm 2%/2mm 3%/3mm

%DD – 100.0% – –

Cross-plane (X)

0.5 100.0% – –
10.1 100.0% – –
1.0 100.0% – –
12.1 100.0% – –
1.5 100.0% – –
2.0 100.0% – –
3.0 100.0% – –
6.0 99.1% 100.0% –
7.4 100.0% – –
8.3 100.0% – –
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Figure C.41: 20MeV-14x14 cm2 100cm SSD - cross-plane profiles at depths, z=0.5 and 1.0 cm
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Figure C.42: 20MeV-14x14 cm2 100cm SSD - cross-plane profiles at depths, z=1.5 and 2.0 cm
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Figure C.43: 20MeV-14x14 cm2 100cm SSD - cross-plane profiles at depths, z=3.0 and 6.0 cm
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Figure C.44: 20MeV-14x14 cm2 100cm SSD - cross-plane profiles at depths, z=7.4 and 8.3 cm
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Figure C.45: 20MeV-14x14 cm2 100cm SSD - cross-plane profiles at depths, z=10.1 and 12.1 cm
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C.9 20-MeV 14x14 cm2 Applicator - 110 cm SSD

Figure C.46: %DD: 20MeV - 14x14 cm2 applicator

Table C.9: 20MeV-14x14 cm2 applicator comparison summary

Profile type Profile depth Percent of points passing
(%DD, X) (cm) 2%/1mm 2%/2mm 3%/3mm

%DD – 100.0% – –

Cross-plane (X)

0.5 100.0% – –
10.1 100.0% – –
1.0 100.0% – –
12.1 100.0% – –
1.5 100.0% – –
2.0 99.1% 100.0% –
3.0 100.0% – –
6.0 99.1% 100.0% –
7.4 100.0% – –
8.3 100.0% – –
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Figure C.47: 20MeV-14x14 cm2 110cm SSD - cross-plane profiles at depths, z=0.5 and 1.0 cm
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Figure C.48: 20MeV-14x14 cm2 110cm SSD - cross-plane profiles at depths, z=1.5 and 2.0 cm
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Figure C.49: 20MeV-14x14 cm2 110cm SSD - cross-plane profiles at depths, z=3.0 and 6.0 cm
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Figure C.50: 20MeV-14x14 cm2 110cm SSD - cross-plane profiles at depths, z=7.4 and 8.3 cm
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Figure C.51: 20MeV-14x14 cm2 110cm SSD - cross-plane profiles at depths, z=10.1 and 12.1 cm
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