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Abstract

In this thesis we try to understand the unconventional superconducting mechanism on
cuprates and organic superconductors (or sodium cobaltates) which can be modeled by a
two-dimensional square- and triangular-lattice Hubbard model respectively. The formation
of the superconducting dome requires explanations of feasible scenarios. Generally speaking,
pairing strength is provided by magnetic �uctuations in the strongly correlated region and
the structure of the Fermi surface in this region will favor superconducting pairings with a
certain type of symmetry.

For the cuprate physics, a superconducting dome composed of d-wave pairings has been
identi�ed experimentally. We study the Hubbard model on square lattices and �nd that
the pairing strength is originated from antiferromagnetic instabilities, and the nearly nested
Fermi surface with the square symmetry further supports the d-wave pairing. Moreover, our
results show there is a quantum critical point (QCP) beneath the superconducting dome.
The QCP is a zero-temperature instability which separates the Fermi liquid and pseudogap
regions and exhibits the quantum �uctuations which may lead to a high superconducting
transition temperature. Above the QCP, a V -shape marginal Fermi liquid region associated
with the quantum critical phenomena is also identi�ed. Using next-nearest-neighbor hopping
t′, chemical potential, and temperature as control parameters, there is a line of Lifshitz
transition associated with the change of topology of the Fermi surface. Along the Lifshitz
line with t′ ≤ 0, the marginal Fermi liquid region prevails, the peak of density of states
crosses the Fermi level, and the bare d-wave pairing susceptibility shows a universal scaling
with the exponent consistent with theoretical proposals.

For the triangular-lattice Hubbard model in the strongly correlated region, we �nd a
d+id superconducting pairing on the hole-doped side of the phase diagram. Here the pairing
strength comes from the instabilities of the antiferromagnetic order (120o-spin structure), and
the nested hexagon-deformed Fermi surface with the triangular symmetry further boosts the
d+id symmetry. Due to the strong competition between electronic interactions and geometric
frustrations, the superconductivity and other novel features of the system equal to or above
half �lling requires future studies.

The numerical tool we apply to study these systems is the dynamical cluster approxi-
mation with continuous-time quantum Monte Carlo as the solver. Our approach includes
nonlocal correlations embedded in a mean �eld host and is a most up-to-date and reliable
approach in dealing with the above mentioned strongly correlated systems valid in the ther-
modynamic limit. Our �ndings shine light on future investigations of the nature of the
unconventional superconductivity in the Hubbard model.
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Chapter 1

Introduction

Conventional Superconductivity Superconductivity was �rst discovered in mercury
(Hg) in 1911[1]. The �rst successful theory to explain the superconductivity was proposed
by J. Bardeen, L. Cooper and B. Schrie�er[2] in 1957 and is called BCS theory. The keystone
of the BCS theory is the concept of Cooper pairs[3] in that an s-wave pair of electrons bonds
with its time reversed partners,(k, ↑) and (−k, ↓), in the momentum space and changes
the statistics from fermionic to bosonic leading to zero resistance. The Cooper pairs are
formed due to the signi�cant rearrangement of the Fermi surface induced by an arbitrarily
weak attractive interaction between electrons. Although electrons repel each other due to
the Coulomb repulsion, Schrie�er et. al[4] illustrated that the electrons can attract each
other due to the electron-ion interactions. Because heavier ions move slower than lighter
electrons, after the �rst electron polarizes the surrounding ions, the �rst electron goes away
but the polarized ionic cloud persists to attract a second electron. Such an indirect attrac-
tion between electrons induced by the retarded ions e�ectively projects the electronic energy
scale EF (Fermi energy) down to the phononic energy scale ~ωD[5] (ωD is Debye frequency),
which limits the transition temperature Tc to an upper bound (∼ 28K)[6] and becomes the
foundation of the conventional superconductivity.

Unconventional superconductivity Unconventional superconductivity is generally de-
�ned without restricting the pairing state to an isotropic s-wave state and the pairing mech-
anism is other than the conventional electron-ion interaction[7]. There are various classes of
unconventional superconductors such as Helium-3 (3He)[8], heavy fermion superconductors[9],
cuprates[10], and organic superconductors[11]. Helium-3 is a neutral fermion which moti-
vates scientists to seek its superconducting phase, because the pairing mechanism of 3He is
not possibly caused by the conventional electron-ion interaction. Oshero� et. al[8] discovered
a new superconducting phase in 3He at a few mini kelvin with a pairing state originated
from many complicated factors (density, spin, transverse current interactions), which opens
the horizon of theorists that the pairing of the unconventional superconductivity is not only
caused by a single mechanism. The conventional superconducting theory also states that
the magnetic impurity or �eld will break the pairing and kill the superconductivity. How-
ever, heavy fermion materials such as CeCu2Si2 and UPt3[9, 12] which contain magnetic
f electrons exhibit superconductivity with Tc ∼ 0.5K. It's intriguing to see that the con-
duction electron becomes �heavy� at T ∼ TK due to the coupling between the magnetic f
electrons, which is the so-called Kondo e�ect. Such heavy fermions can form various ordered
states including d-wave unconventional superconductivity. Before the discovery of cuprates
superconductors, Bernd Matthias[13] set down empirical rules of searching for a new super-
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conductor or maximizing the Tc for a known superconductor in the late 1950s.1 The discovery
of cuprates breaks the Matthias' rules in that the parent material is a quasi-2D antiferro-
magnetic insulator, rather than a 3D cubic transition metal. The transition temperature of
cuprates also breaks the upper bound of Tc (∼ 28K) of the conventional superconductivity
and can go up to 164K (under pressure)[14] which is much higher than the boiling point
(77K) of liquid nitrogen. Such a breakthrough in the transition temperature ignites intense
interests both on applications in the industry and on researches of the strongly correlated ma-
terials emerging unconventional superconductivity. Organic superconductors like κ-(ET )2X
family which is a quasi-2D triangular lattice with one spin per site exhibit superconductivity
under pressure. Such frustrated materials show a close similarity to Anderson's RVB (Res-
onating Valence Bond) picture[15] which predicts the existence of the spin-liquid state, no
long range magnetic order in a Mott insulator, as well as the long sought �spinon� Fermi
surface[16]. Water-intercalated sodium cobaltates NaxCoO2 · yH2O also have a quasi-2D
triangular structure. This material also contains unconventional superconductivity[17].

Outscope In this thesis we will only focus on unconventional superconductivity related
to cuprates, organic materials and sodium cobaltates, which can be modeled by the square-
lattice and triangular-lattice Hubbard models respectively. Although the Hubbard model
cannot describe a complete physics of real materials, at least it captures the dominant
physics of our interests. We will brie�y introduce the Hubbard model in the section 2.1.

The numerical tool we use for the Hubbard model is the dynamical cluster approxima-
tion (DCA, section 2.2.3) with interaction-expansion continuous-time quantum Monte Carlo
(INT-CTQMC, section 2.3) as the solver. We obtain one- and two-particle Green's functions
as a function of Matsubara frequency or imaginary time from the DCA+INT-CTQMC, then
perform analytic continuation on the one-particle Green's functions to obtain real-frequency
Green's functions using Maximum Entropy Method (MEM, section 2.4) and analyze the
two-particle Green's functions by solving the Bethe Salpeter equations (section 2.3.3).

For the Hubbard model on the square lattice, our work in section 3 focuses on the scenario
proposed by C. M. Varma[18] who has explained that the superconducting mechanism on
cuprates may be due to a quantum critical point (QCP) at zero temperature around the opti-
mal doping. The QCP is a zero-temperature instability between two phases where quantum
�uctuations exhibit long-range correlations both in space and time[19]. Here in cuprates the
QCP separates the Fermi liquid and pseudogap phases. Above the QCP, a V -shape marginal
Fermi liquid phase displays the quantum critical scale-invariant particle-hole susceptibility
which is weakly dependent on momentum. Varma further proposed that the self energy of
the single-particle spectrum which can be observed in angle-resolved photoemission exper-
iments (ARPES) also has weak momentum dependence and is proportional to max(|ω|, T )
which has been proved experimentally[20, 21, 22]. In this thesis we use a large-scale DCA
with INT-CTQMC as a solver to explore the physics around the QCP in the square-lattice
Hubbard model. We discover that the marginal Fermi liquid phenomena is concomitant with

1Matthias' rules based on earlier records of high-Tc materials which were transition metal alloys state
that superconducting materials (a) must have d electrons (not just s, p nor f), (b) have high symmetry
(cubic is the best), and (c) Tc is maximized if the peak in the density of states is at the Fermi level.
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the van-Hove singularity passing through the Fermi level (chapter 3 and ref. [23]). Using
temperature, chemical potential, and next-nearest-neighbor hopping as control parameters,
we further identify a line of Lifshitz transition associated with the topology of Fermi surface
changing from electron-like to hole-like. The peak in the density of states also crosses the
Fermi level at the Lifshitz transition line (chapter 4 and ref. [24]). We will show that the
relation between the superconducting dome and the Lifshitz line is coupled to a subtle com-
petition between the charge, spin particle-hole channels, the fully-irreducible vertex and the
bare d-wave susceptibility.

For the Hubbard model on triangular lattice, we focus on the hole-doped side of the
phase diagram and identify the unconventional superconductivity with a d + id pairing in
the strong coupling region (section 5 and ref. [25]). Here our interests start from the metal
insulator transition (MIT) at half-�lling as the electronic interaction increases. Recently,
considerable theoretical progress has been made in situations where the MIT takes place
between a Fermi liquid (FL) metal and a quantum spin liquid (SL) Mott insulator � a
Mott insulating state without any symmetry breaking[15]. Such a quantum critical MIT
scenario has acquired experimental relevance due to the discovery of quantum spin liquid
Mott insulators near the Mott transition in materials, such as the triangular lattice organic
charge transfer salts κ-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2[26, 27, 28, 29,
30, 31]. By applying hydrostatic pressure, these quantum spin liquids become FL metal,
and in between FL and SL there emerges a superconducting phase whose properties such
as pairing symmetry are still unknown[32]. Also, there is another material � the water-
intercalated sodium cobaltates NaxCoO2·yH2O[17, 33, 34], whose underlying lattice structure
is also the geometrically frustrated triangular lattice. A very rich phase diagram has been
mapped out for a range of Na concentrations[34], and there is a superconducting dome
for x ∼ 0.3, y ∼ 1.3 at Tc ∼ 5K[17, 33, 34]. The nature of this superconducting phase
has also remained poorly understood, but since the underlying triangular lattice belongs
to the C6v symmetry group, which allows a doubly degenerate E2 representation of the
superconducting order parameter with dx2−y2 and dxy degenerate states[35, 36, 37], such a
superconducting state might belong to the exciting possibility of a time-reversal symmetry
breaking chiral dx2−y2 ± idxy superconductor. The low-energy properties of the frustrated
organic compounds and cobaltate material may be described by the single-band Hubbard
model on the triangular lattice. With the high quality data of the spectral function, self
energy, quasiparticle fraction and transport measurements, we are able to estimate the MIT
transition point at Uc/t = 9± 0.5 at half-�lling. In the hole-doped side, due to the interplay
of electronic correlations, geometric frustration, and Fermi surface topology, we �nd possible
signature of the d + id, doubly degenerate, singlet pairing, superconducting state at an
interaction strength close to the bare bandwidth. Such an unconventional superconducting
state is mediated by antiferromagnetic spin �uctuations along the Γ-K direction, where the
Fermi surface is nested. We furthermore performed an exact decomposition of the irreducible
particle-particle vertex to con�rm the dominant component of the e�ective pairing interaction
comes from the spin channel.

In the last chapter we will conclude the ideas of unconventional superconductivity on
square- and triangular-lattice Hubbard models and propose possible future research topics.

3



Chapter 2

Background and Numerical Method

2.1 Introduction to Hubbard Model

2.1.1 De�nition

Hubbard Model[38] is the simplest model in the study of strongly correlated electronic sys-
tems. The model consists of two competing terms: kinetic (hopping particles between sites)
and potential terms (on-site Coulomb repulsion). In the following we restrict the particle to
be fermion and de�ne the Hamiltonian as:

H = −t
∑
<ij>σ

(c†iσcjσ + h.c.)− t′
∑
�i,j�σ

(c†iσcjσ + h.c.)− µ
∑
i

(ni↑ + ni↓) + U
∑
i

ni↑ni↓, (2.1)

where c†iσ(ciσ) is the creation (annihilation) operator for electrons with spin σ(=↑ or ↓) on
the site i, h.c. means Hermitian conjugate, < · · · > and� · · · � indicate the hopping events
between nearest-neighbor and next-nearest-neighbor sites with the corresponding hopping
amplitudes t and t′, niσ = c†iσciσ is the number operator, µ is the chemical potential, and U is
the on-site Coulomb repulsion(> 0). The parameter U is associated with the metal-insulator
transition (MIT) and a large U (depending on the dimension, cluster size, unit of energy,
temperature, ...) leads the system to an insulating phase. The �lling n = 1 means the
half-�lled case. At large U , with the bipartite assumption of the lattice and in the Hartree
mean-�eld level, < n↑ >≈< n↓ >≈ 0.5 means an anti-ferromagnetic background on the
ground state. Two bands, the upper Hubbard band and lower Hubbard band, are separated
by the Coulomb interaction U and a gap is built between them. No states exist at the Fermi
level and no Fermi surface can be de�ned in the �rst Brillouin zone.

(a)

U
t t'

(b)
U t

t' t'

Figure 2.1: Two-dimensional (a) square-lattice and (b) triangular-lattice Hubbard model
with U the on-site Coulomb repulsion and t and t′ the hopping amplitudes between nearest-
neighbor and next-nearest-neighbor sites respectively.
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(a)

�

M

X

(b)

M
K

Figure 2.2: Noninteracting dispersions of two-dimensional (a) square-lattice (eq. (2.3) with
t′ = 0) and (b) triangular-lattice (eq. (2.4) with t′ = t). In (a), Γ = (0, 0), M = (π, π),
X = (π, 0). First Brillouin zone is in the ranges (kx, ky) ∈ ([−π, π], [−π, π]). The total
bandwidth is 8t, ranges from −4t (at Γ) to 4t (at M). The point X is the saddle point with
the dispersion value zero. In (b), Γ = (0, 0), M = (0, 2π√

3
), and X = (2π

3
, 2π√

3
). First Brillouin

zone is the green hexagon. The total bandwidth is 9t, ranging from −6t (at Γ) to 3t (at K).
The point M is the saddle point with the dispersion value 2t. The dark-gray squares in (a)
and circles in (b) are the projections of the condition ε0k = 0.

2.1.2 Noninteracting limit U = 0

If there is no Columb interaction (U = 0), the Hubbard Hamiltonian depends only on the
kinetic term which is associated with the lattice structures. The equation (2.1) in momentum
space is

H =
∑
kσ

ε0kc
†
kσckσ − µ

∑
i

(ni↑ + ni↓), (2.2)

where c†kσ(ckσ) is the creation (annihilation) operator for electrons with wavevector k and
spin σ, and the bare dispersion is given by (assume lattice constant a = 1)

ε0k = −2t (cos kx + cos ky)− 4t′ cos kx cos ky, (2D square lattice) (2.3)

and

ε0k = −2t cos kx − 4t′cos

(
kx
2

)
cos

(√
3ky
2

)
.(2D triangular lattice) (2.4)

Figure 2.2 shows two-dimensional (2D) square-lattice and triangular-lattice noninteract-
ing dispersions. The �lling n is de�ned as the total states below the Fermi level (ω = 0):

n =
2

LxLy

∑
ω≤0

δ(ω − (ε0k − µ))

=
2

LxLy

∑
ω=ε0k−µ≤0

δ(ω), (2.5)
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(a)
-3 -2 -1 0 1 2 3

k
x

-3

-2

-1

0

1

2

3

k
y

1
st
 BZ

n=0.8
n=0.9
n=1.0
n=1.1
n=1.2

U=0
t’/t=0

(b)

���
q

�

��
q

�

�

�

�

���
q

�

��
q

�

t'=t
U=0

Figure 2.3: Filling dependence of noninteracting Fermi surfaces, or so-called zero-frequency
spectra A(k, ω = 0), for the (a) square lattice with t′/t = 0 and the (b) triangular lattice
with t′/t = 1. In (a), the half-�lled Fermi surface is an exact square and the Fermi surfaces
become electron-like in the hole-doped (n < 1) side and hole-like in the electron-doped
(n > 1) side. In (b), the Fermi surface grows as the �lling increases and starts to deform to
a hexagon whose �lling is 1.5.

where LxLy is the normalization factor, µ is the chemical potential, reference point to the
dispersion, and the factor 2 means two spin species. The �lling n depends on µ. If µ = 0,
according to eq. (2.5), the dark-gray square in Fig. 2.2(a) shows n = 1 (half-�lled) in the
square-lattice dispersion with t′ = 0 while the dark-gray circle in Fig. 2.2(b) shows n ≈ 0.8
in the triangular-lattice case with t′/t = 1. To obtain a half �lling in the triangular-lattice
noninteracting dispersion, we need to choose the chemical potential µ roughly equals to 0.8t.
If µ 6= 0, such zero-frequency cuts are the de�nitions of the Fermi surfaces shown in the Fig.
2.3 with each �lling n calculated by the eq. (2.5).

Density of states (DOS) for a single-species spin is de�ned by

N(ω) =
1

LxLy

∑
k∈BZ

δ(ω − (ε0k − µ)), (2.6)

where BZ means the �rst Brillouin zone de�ned in the caption of Fig. (2.2). Note that
the density of states is normalized to one due to the �single-species� spin. Corresponding to
the non-interacting Fermi surfaces in the Fig. 2.3, the DOS with the same parameters are
shown in Fig. 2.4. The square-lattice DOS has a particle-hole symmetry at half �lling where
the peak in the DOS, or so-called van-Hove singularity (vHS), is located at the Fermi level
(ω = 0) and the Fermi surface is perfectly nested with the anti-ferromagnetic zone boundary.
The peak of DOS in the triangular lattice will pass through the Fermi level when the �lling
equals to 1.5 with the Fermi surface crossing the saddle point M = (0, 2π√

3
).
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Figure 2.4: Filling dependence of noninteracting density of states for the (a) square lattice
with t′/t = 0 and (b) triangular lattice with t′/t = 1. The peak in the density of states,
van-Hove singularity, passes through the Fermi level (ω = 0) at the �lling n = 1 for the
square lattice and n = 1.5 for the triangular lattice.

Now we consider the e�ects of the next-nearest-neighbor hopping t′ in the eq. (2.3) and
(2.4). We will discuss how t′ a�ects the Fermi surface and DOS both in the square and
triangular lattices in a general picture.

Fig. 2.5(a) shows the noninteracting half-�lled Fermi surface which changes its topology
from hole-like for t′/t = −0.2 and −0.1 to electron-like for t′/t = 0.1 and 0.2, and the
corresponding DOS in Fig. 2.5(b) displays the vHS moving from left to right of the Fermi
level. Physically, the system is energetically favorable for positive t′. The electron prefers
next-nearest-neighbor hoppings, and equivalently in the momentum space the electron has a
tendency to occupy along Γ−M rather than X(π, 0), so the Fermi surface becomes �electron-
like�. On the �ip side, the next-nearest-neighbor hopping of electrons with negative t′ costs
energy. Relatively speaking, the electron prefers to hop to nearest neighbors, and equivalently
the Fermi surface becomes �hole-like� compared to the case with t′ = 0.

When t′ is even larger, the total bandwidth (square: 8t; triangular: 9t) of the system
also changes, and it is proper to take t′ as a new energy unit rather than t. If we increase
t′/t from zero, Fig. 2.5(b) shows the DOS becomes asymmetric with its vHS shifting above
the Fermi level. When t′/t = 0.5 (not shown), the vHS will touch the right edge of the band
and bounce back for even larger t′/t with a new bandwidth larger than 8t. Correspondingly,
the Fermi surface in Fig. 2.5(a) changes from a diamond (t′/t = 0) to an edge-rounded
diamond (0 < t′/t < 0.5) and �nally becomes a rounded square when t′/t = 0.5 shown as
the red dotted line in the Fig. 2.5(c). If t′/t > 0.5, there is a small Fermi surface centered at
M(±π,±π) developed because the dispersion energy aroundM is below the Fermi level. For
the extreme case, Fig. 2.5(d) shows the dispersion when t′/t → ∞ (or t = 0) and the �rst
Brillouin zone (BZ) becomes a 450-rotated smaller square connected by four X points, and
the half-�lled Fermi surface becomes an even smaller square connected by four X ′ points.
What happens in the real space is that the lattice with only the hopping t′ is composed by
two independent embedded square lattices with a larger lattice constant a′ =

√
2a, and the

two independent lattices can be described by two independent and equivalent half-sized BZs
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Figure 2.5: Half-�lled square-lattice dispersion with the e�ects of small t′(= ±0.2, ±0.1 and
0) in the (a) Fermi surface and in the (b) density of states and the e�ects of large and
extreme t′ in the (c) Fermi surface. The contribution of dispersion solely from the t′ term of
the eq. (2.3) is plotted in (d).
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Table 2.1: Values of noninteracting square-lattice dispersion (eq. (2.3)) and its derivatives
at symmetry points Γ(0, 0), M(±π,±π), X(±π, 0) or (0,±π) and X ′(±π

2
,±π

2
). Footnote †:

The values of this column are calculated in a 45◦-rotated coordinate (k′x, k
′
y) = (kx−ky√

2
, kx+ky√

2
),

and X ′(±π
2
,±π

2
) in the coordinate (kx, ky) becomes (± π√

2
, 0) and (0,± π√

2
) in (k′x, k

′
y).

Γ(0, 0) M(±π,±π) X(±π, 0) X(0,±π) X ′(±π
2
,±π

2
)†

ε0k −4t− 4t′ 4t− 4t′ 4t′ 4t′ 0

∂kxε
0
k,∂kyε

0
k 0 0 0 0 ±2

√
2t or 0

∂2
kx
ε0k 2t+ 4t′ −2t+ 4t′ −2t− 4t′ 2t− 4t′ ±4t′

∂2
ky
ε0k 2t+ 4t′ −2t+ 4t′ 2t− 4t′ −2t− 4t′ ∓4t′

∂kx∂kyε
0
k 0 0 0 0 0

�t'/t
-1/2 1/20

�:

M:

X:

Max

Max

min

min

min

Max

Max

min

saddle

X':saddle saddle

-∞ ∞

Max

Max

min

min

min

Max

-- -- --

in the momentum space. If we rename X ′ → X and X →M , rotate the coordinate by 450,
and re-scale lattice constant a′ = 1 and energy unit t′ → t, the dispersion −4t′coskxcosky
becomes −2t (coskx + cosky), which is the eq. (2.3) with t′ = 0.

Table 2.1 displays how the high symmetry points Γ(0, 0),M(±π,±π),X(±π, 0) or (0,±π)
and X ′(±π

2
,±π

2
) in the square-lattice dispersion change between extreme values and saddle

points due to the e�ect of t′/t. Take an example of t′/t = 0 shown in Fig. 2.2(a), the
dispersion value in Γ is a minimum, M is a maximum, and X is a saddle point. The other
way around the limiting case t′/t→∞ in Fig. 2.5(d) shows that the energy value at Γ is still
a minimum, M becomes a minimum, X becomes a maximum, and X ′ is a saddle point. It is
when t′/t = 1/2 the point M changes its extreme value and X loses the role of saddle point.
The point X ′ becomes a saddle point only when t = 0. The value t′/t = 1/2 separates two
di�erent major properties of the lattice dispersions. When |t′/t| < 1/2, the nearest-neighbor
hopping t is a dominant hopping strength and the next-nearest-neighbor hopping t′ acts as a
correction to t′; when |t′/t| > 1/2, t′ becomes the major hopping with t being its correction.

The e�ect of t′/t on the triangular-lattice dispersion is more complicated and interesting.
Similar to the square-lattice case, we summarize the results in table 2.2 to show high sym-
metry points, Γ(0, 0), M1(0,± 2π√

3
), M2(±π,± π√

3
), K1(±2π

3
,± 2π√

3
) and K2(±4π

3
, 0), changing

their dispersion values as a function of t′/t. Here, there are two special values of t′/t(= 1/3
and 2) which separate the properties of the dispersion. When t′/t = 0, the dispersion (eq.
(2.4)) is just−2tcoskx which is one-dimensional. When 0 < t′/t < 1/3, the dispersion is still
�1D-like�. It is when 1/3 < t′/t < 2, the dispersion becomes �triangle-like� with six saddle
points (two M1 and four M2 points). Especially only when t′/t = 1, K1 and K2 become
maximum and have equal values, and the six saddle points are equivalent in their values
as well as their derivatives, in which case it is a so-called isotropic triangular lattice. As
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Table 2.2: Values of noninteracting triangular-lattice dispersion (eq. (2.4)) and its derivatives
at high symmetry points Γ(0, 0), M1(0,± 2π√

3
), M2(±π,± π√

3
), K1(±2π

3
,± 2π√

3
) and K2(±4π

3
, 0).

Footnote ‡: The values of this column are calculated in a ±30◦-rotated coordinate (k′x, k
′
y) =

(
√

3kx±ky
2

, ∓kx+
√

3ky
2

), and M2(±π,± π√
3
) in the coordinate (kx, ky) becomes (± 2π√

3
, 0) in the

corresponding rotated (k′x, k
′
y).

Γ(0, 0) M1(0,± 2π√
3
) M2(±π,± π√

3
)‡ K1(±2π

3
,± 2π√

3
) K2(±4π

3
, 0)

ε0k −2t− 4t′ < 0 −2t+ 4t′ > 0 2t > 0 t+ 2t′ > 0 t+ 2t′ > 0

∂kxε
0
k 0 0 0

√
3(t− t′)

√
3(t′ − t)

∂kyε
0
k 0 0 0 0 0

∂2
kx
ε0k 2t+ t′ > 0 2t− t′ −3

2
(t+ t′) < 0 −t− t′

2
< 0 −t− t′

2
< 0

∂2
ky
ε0k 3t′ > 0 −3t′ < 0 1

2
(−t+ 3t′) −3t′

2
< 0 −3t′

2
< 0

t'/t
10

�:

M2:

K1:

min

K2:

∞

M1:

(1D)

2

--

----

--

--

--

--
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Figure 2.6: Noninteracting triangular dispersion in the case when t′/t → ∞ with the high
symmetry points Γ(0, 0), M(0,± 2π√

3
), M ′(±2π, 0) and X(±π,± π√

3
). The �rst BZ is the

parallelogram with one of the inner angle at 600.
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t′/t > 2, we obtain a �square-like� dispersion. Fig. 2.6 shows the dispersion for the extreme
case t′/t→∞. The �rst BZ becomes a 600 diamond with high symmetry points de�ned as
Γ(0, 0), M(0,± 2π√

3
), M ′(±2π, 0) and X(±π,± π√

3
). Note that the bandwidth becomes 8t′, a

bandwidth for the 2D square-lattice dispersion.
In this thesis we will only focus on the e�ects of small t′/t in the square-lattice Hubbard

model with interaction U = 6t (section 3 and 4), and only consider the isotropic case (t′ = t
) in the triangular-lattice Hubbard model (section 5).

2.1.3 Atomic limit t = t′ = 0

In the atomic limit, the Hubbard Hamiltonian (eq. (2.1)) per site is

H

N
= Un↑n↓ − µ (n↑ + n↓) , (2.7)

where N is the number of lattice points. In the following we will take H/N → H for
simplicity. Choosing |0〉, |↑〉, |↓〉 and |↑↓〉 as the basis in the Fock space, we can obtain the
partition function Z of the Hamiltonian analytically:

Z = Tre−βH = 1 + 2eβµ + e−β(U−2µ), (2.8)

where β = 1/T , then all the physical quantities such as �lling, double occupancy, total
energy, local moment, as well as the single-particle Green's function can be obtained. First,
the �lling is the summation of the particle density for two spin species,

〈n〉 = 〈n↑〉+ 〈n↓〉

(〈n↑〉 = 〈n↓〉) = 2

(
eβµ + eβ(2µ−U)

)
1 + 2eβµ + eβ(2µ−U)

=
2

Z

(
eβµ + eβ(2µ−U)

)
, (2.9)

which increases monotonically as a function of chemical potential µ at high T . The half-
�lling condition is µ = U

2
, resulting in 〈n〉 = 1 which is independent of temperature. When

the temperature decreases, 〈n〉 becomes �at around half �lling in the 〈n〉-µ curve and �nally
develops a discontinuity at 〈n〉 = 1 with a jump of µ equal to U when T → 0.

The double occupancy D is given by

D = 〈n↑n↓〉 (2.10)

=
eβ(2µ−U)

Z
=

1

e−β(2µ−U) + 2eβ(−µ+U) + 1
(2.11)

=

{
0, µ < U
1, µ > U

, T → 0. (2.12)

The total energy E is just the potential energy, U 〈n↑n↓〉 = UD, in the atomic limit because
the kinetic energy is zero without the hoppings. The local moment is given by
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〈
m2
〉

=
〈
(n↑ − n↓)2〉

= 〈n↑〉+ 〈n↓〉 − 2 〈n↑n↓〉 = 〈n〉 − 2D, (2.13)

which means that the �lling is composed of the local moment and twice of the double occu-
pancy. Finally, the single-particle Green's function under the time translational symmetry
is given by (also see eq. (2.33))

Gσ(τ) ≡ −
〈
Tτcσ(τ)c†σ(0)

〉
= − 1

Z

(
eτµ + eβµ+(µ−U)τ

)
, (2.14)

where 0 ≤ τ < β and Gσ(0+) ≡ Gσ(0) = 1− 〈nσ〉 and Gσ(0−) ≡ −〈nσ〉. We also obtain the
Matsubara Green's function through the Fourier transformation:

Gσ(iωn) =

ˆ β

0

eiωnτGσ(τ)dτ

=
1− 〈nσ〉
iωn + µ

+
〈nσ〉

iωn + µ− U
. (2.15)

Analytically continuing Gσ(iωn) to obtain Gσ(ω) by taking iωn → ω + 0+, and using the
de�nition of spectra Aσ(ω) ≡ −1

π
ImGσ(ω), we obtain the single-species spectra (average over

spins) as

A(ω) =
1

2

(
A↑(ω) + A↓(ω)

)
(2.16)

=
1

2
[(2− 〈n〉)δ(ω + µ) + 〈n〉 δ(ω + µ− U)] . (2.17)

The de�nition of �lling in eq. (2.5) can be de�ned in terms of the normalized single-species
spectra A(ω):

n = 2

ˆ 0

−∞
dωA(ω)nF (ω) (2.18)

(nF (ω) = 1−Θ(ω) at low T ) =


0 µ < 0

〈n〉 = 〈n↑〉+ 〈n↓〉 = 1, 0 < µ < U
2 µ > U

. (2.19)

Here we summarize this section using Fig. 2.7. Eq. (2.13) tells us the �lling is composed
of the local moment and twice of the double occupancy. We plot those quantities as a
function of µ for di�erent temperatures (T = 10t, 1t and 0.1t) from left to right of Fig.
2.7. At high temperature (T = 10t), the local moment approaches a constant, 0.5. Since
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<n>
<m2>
2<n n >

T=10t T=1t T=0.1t

U=6t

Figure 2.7: Filling 〈n〉 (eq. (2.9)), local moment 〈m2〉 (eq. (2.13)) and twice of the double
occupancy (eq. (2.10)) as a function of chemical potential µ when T = 10t, 1t and 0.1t with
an energy unit t = U/6.

the eigenvalues of the local moment 〈m2〉 in the basis, |0〉, |↑〉, |↓〉 and |↑↓〉 are 0, 1, 1, 0
respectively at high T , these four states have equal probability 1/4 and the local moment
equals to (0+1+1+0)/4 = 0.5. The �lling and the double occupancy increase monotonically
with µ at high T . When T = 1t, the �lling becomes �at around half �lling and the local
moment starts to increase from 0.5 to 1 near µ = U/2. At low T (= 0.1t), there is a metal-
insulator transition (MIT) which is characterized by

(1) the plateau of µ at half �lling with a width of plateau ∆µ = U ,
(2) the formation of local moment 〈m2〉 = 1 when 0 < µ < U , and
(3) zero double occupancy and zero potential energy when 0 < µ < U .
In our simulations, we always shift the chemical potential

µ→ µ′ + U/2 (2.20)

to make the Green's function and the normalized spectra symmetric at half �lling (µ′ = 0,
〈n↑〉 = 〈n↓〉 = 1/2 and 〈n〉 = 1):

Gσ(ω) =
1/2

ω + U
2

+ 0+
+

1/2

ω − U
2

+ 0+
, (2.21)

A(ω) =
1

2

[
δ(ω +

U

2
) + δ(ω − U

2
)

]
. (2.22)

2.1.4 Preview of the interacting case at half �lling

In this section we will combine the results of the noninteracting limit (U = 0) in section
2.1.2 and the results of the atomic limit (t = t′ = 0) in section 2.1.3 to demonstrate the
terminology we use in the interacting case with an example in the square-lattice Hubbard
model. The Hubbard model with �nite Coulomb interaction is

H =
∑
kσ

ε0kc
†
kσckσ − µ

∑
i

(ni↑ + ni↓) + U
∑
i

ni↑ni↓. (2.23)
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Figure 2.8: Half-�lled (n = 1) density of states (DOS) for the interacting case with param-
eters U = 6t, βt = 10, Nc = 16B and t′ = 0 obtained by DCA+INT-CTQMC (section
2.2.3 and 2.3.1), the noninteracting case with U = 0 (section 2.1.2), and the atomic limit
(t = t′ = 0) (section 2.1.3).

And we will use the eq. (2.23) in the formalism part in the sections 3.2, 4.2 and 5.2.
Fig. 2.8 shows the interacting half-�lled density of states (DOS) obtained by the DCA+INT-

CTQMC (section 2.2.3 and 2.3.1) with parameters n = 1, t′ = 0, U = 6t, βt = 10 and
Nc = 16B . Together with the noninteracting DOS which exhibits its van Hove singularity
at the Fermi level (ω = 0) and the bandwidth 8t (also check Fig. 2.3) and the DOS in the
atomic limit de�ned in the eq. (2.22), two delta functions with equal weight separated by
the distance U and symmetric with respect to the Fermi level, the interacting DOS is still
symmetric with respect to the Fermi level (called particle-hole symmetry), the van Hove sin-
gularity at the Fermi level becomes a gap, and two bands, upper Hubbard band (UHB) and
lower Hubbard band (LHB), are formed. Note that the chemical potential for the interacting
case adopts the convention in the eq. (2.20) for the atomic limit � the chemical potential is
zero at half �lling.

The �lling in the interacting case is twice of the single-species particle density which is
de�ned in the eq. (2.88), and such a �lling is similar, in the notion, to the �lling for the
noninteracting case in the eq. (2.5) and the �lling for the atomic limit in the eq. (2.9).

Away from half �lling, the chemical potential µ 6= 0, the interacting DOS shifts its center
by µ and becomes asymmetric. For the hole-doped (n < 1) case, the peak of the LHB
becomes a van Hove singularity in the DOS, which is associated with the marginal Fermi
liquid phenomena and the quantum critical point (QCP) at T = 0, which will be discussed
in section 3. Such a crossing peak in the DOS is also associated with the Lifshitz transition,
a transition where the Fermi surface changes its topology, and will be discussed in section 4.

14



2.2 DMFT, DMFA and DCA

2.2.1 Brief review of the dynamical mean �eld theory (DMFT)

The DMFT[39] is a theory which can treat strongly correlated materials and bridges the gap
between the nearly-free electron gas limit (valid for the band theory) and the atomic limit
(valid for the density function theory (DFT[40])) of condensed-matter physics. The DMFT
maps an original lattice problem into a local impurity problem. Such a mapping is not
an approximation. The only approximation comes from the assumption of the momentum-
independent (local) self energy. This approximation will become exact in the limit of lattices
with an in�nite coordination (or dimension).

2.2.2 Brief review of the dynamical mean �eld approximation (DMFA)

If we assume that the lattice self energy remains local in the �nite dimension, the DMFT
becomes the DMFA, an �approximation.� The DMFA [41, 42] is a mean-�eld theory on
a single site of a lattice in which the correlations in time are treated explicitly and the
correlations in space are taken in a mean-�eld level, which means that the single-particle self
energy is fully local and is independent of the wavevector, Σ 6= Σ(k). In other words, the
DMFA maps the original lattice problem onto a self-consistently embedded and single-site
impurity problem. The whole procedure in the self-consistency loop is causal, i.e., it preserves
a positive de�nite spectral weight in the density of states (DOS). This approximation becomes
exact in in�nite dimensions D = ∞ (in�nite number of nearest neighbors around a lattice
site). Researchers can give numerical results in the thermodynamic limit and in the high
dimensional limit[43, 41, 44]. However, in �nite dimensions, it is di�cult to consider the
1/D corrections to the DMFA causally and systematically at the same time. In addition,
the physics from the non-local correlations such as pseudo-gap in cuprates, spin waves[45],
charge density waves, non-Fermi liquid and d-wave pairing ... etc. cannot be seen in the
DMFA. Moreover, the DMFA is not a conserving approximation[45], with violation of the
Ward identity associated with current conservation in the equation of continuity in any
dimension (including D → ∞), which leads to a motivation of developing a new theory
including the non-local corrections and restores the conservation law.

2.2.3 Dynamical cluster approximation (DCA)

The Dynamical Cluster Approximation (DCA)[46, 47] is a fully causal approach which sys-
tematically includes the non-local corrections to the DMFA by mapping the lattice problem
onto an embedded periodic cluster of size Nc = L2

c . For Nc = 1 the DCA is equivalent to
the DMFA and by increasing Nc the dynamic correlation length can be gradually increased
while the calculation remains in the thermodynamic limit. For Nc =∞, the DCA becomes
exact compared to a real lattice problem. Figure 2.9 shows an example of Nc = 4. In the
viewpoint of real space (left of Figure 2.9), the total number of the D-dimensional (D=2) lat-
tice is N . There are N/Nc clusters with the origin labeled by x̃, and the Nc(= 4) intracluster
sites labeled by X. The non-local short-ranged correlations (up to Lc/2(=1) inside a clus-
ter) are treated explicitly, while long-ranged correlations (correlations larger than Lc/2(=1))

15



Figure 2.9: De�nition of the DCA cluster in the (left) real and (right) reciprocal space for
Nc = 4. The origin of a cluster is labeled by x̃ , the sites within a cluster by X. The
reciprocal space to X is labeled by K, the wave vectors of the superlattice, i.e., within a cell,
by k̃ .

are taken as a mean-�eld (see the coarse-graining procedure in the following text). In the
viewpoint of the momentum space (right of Figure 2.9), the �rst Brillouin zone is divided
into Nc(=4) equal cells of linear size ∆K(= 2π/Lc = π) labeled by K in their centers, and
the momenta within each cell are labeled by k̃. Non-local correlations of range π/∆K (=1)
are treated explicitly, while correlations smaller than ∆K are coarse-grained like the eq.
(2.26). Note that we cannot just take N/Nc clusters composing the original lattice because
this statement violates the translational invariance of the lattice. Instead, DCA treats N/Nc

clusters composing the �rst Brillouin zone and what happened in the real space is that the
periodic boundary condition is imposed in the cluster. Figure 2.10 demonstrates the example
of Nc = 4 and large-Nc cases.

Betts[48] selects the cluster geometries according to number of neighbors and the required
symmetry. Figure 2.11 shows the examples of square Betts lattices for Nc=4, 8, 12 and 16 on
the left and triangular Betts lattices for Nc=3, 4, 6 and 12 on the right. There are di�erent
ways to choose the geometries for a �xed cluster size, and we distinguish them by adding
the letter �A�, �B�, �C�... after the cluster number. For example the triangular Betts lattice
with Nc=6C contains the high symmetry cluster point K ≡ (2π

3
, 2π√

3
) which is relevant for the

anti-ferromagnetic order in the phase diagram. There is no such K point in the lattices with
Nc=6A, 6B or 6D. The reason why we choose the other clusters is similar. According to our
purpose, we study Nc=12A and 16B for the square-lattice Hubbard model and Nc=6C and
12C for the triangular-lattice Hubbard model in this thesis.

The DCA also preserves the translational and point group symmetry of the lattice up
to ∆K. Laue function depicts the momentum conservation in each vertex of the Feynman
diagram:
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Nc=4

Figure 2.10: DCA maps the in�nite lattice problem onto a self-consistently embedded and
periodic cluster problem. (left) Example of Nc = 4; (right) Nc � 1.

∆ =
∑
x

eix·(k1−k2−q) = Nδk1,k2+q. (2.24)

In the DMFA, the Laue function is set to one, ∆DMFA = 1, which means that the incom-
ing and outgoing momentum in each internal vertex becomes independent, and the momen-
tum conservation is completely relinquished. Summing freely over the internal momentum
k1 and k2 does not contain any information about the conservation relation k1 = k2 + q,
but just averages over the �rst Brillouin zone twice so that the momentum dependent con-
tribution to the free energy is neglected and only the k-independent (local) term survives.
In the DCA, the Laue function is approximated as

∆DCA = NcδK1,K2+Q, (2.25)

which means that the momentum is only conserved and transferred between the Nc cells
(with a resolution ∆K), and the N/Nc momentum transferred inside a cell can be summed
freely and the conservation relations are neglected (or say, coarse-grained out). In other
words, any momentum k within a momentum cell centered at K will be mapped to K,
M(k) = K. Figure 2.12 shows an example of the Feynman diagram in the Hubbard model.
Each Green's function leg in the Feynman diagram is replaced by a coarse-grained Green's
function:

Ḡ(M(k)) = Ḡ(K) =
Nc

N

∑
k̃

G(K + k̃), (2.26)

where k̃ = k −K is the momentum describing the N/Nc sites inside a cell. The DCA also
assumes that the self energy depends only on the cluster momentum, Σ(M(k)) = Σc(K).
Thus the equation (2.26) can be written as

Ḡ(K,z) =
Nc

N

∑
k̃

1

z − εK+k̃ + µ− Σc(K, z)
, (2.27)
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Figure 2.11: (left) Square Betts lattices for Nc=4A, 8A, 12A and 16B and (right) triangular
Betts lattices for Nc= 3A, 4A, 6C and 12C.
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Figure 2.12: A second-order term in the generating functional of the Hubbard model as an
example. The wavy line represents the interaction U, and the solid line on the left-hand
(right-hand) side is the lattice (coarse-grained) single-particle Green's function G (Ḡ). With
the DCA Laue function, the wave vectors collapse onto those of the cluster and each lattice
Green's function is replaced by its coarse-grained average.

which is the self-consistent coarse-graining equation, and z can be the real (ω) or Matsubara
frequency (iωn).

Figure 2.13 illustrates the procedures in the DCA. The cluster solver sums over all dia-
grams of Σc. To prevent overcounting the diagrams of the cluster self energy, we de�ne the
cluster-excluded Green's function

g0(K, z) =
(
Ḡ−1(K, z) + Σc(K, z)

)−1
, (2.28)

which excludes the contribution of the cluster self energy from the dressed cluster Green's
function. The equilibrium is reached when |Ḡn+1 − Ḡn| < ε, where n is the number of DCA
loops. We update the con�gurations in real space and imaginary time and thus we need to
feed g0

R(τ) into the cluster solver. In this thesis we choose weak-coupling continuous-time
quantum Monte Carlo as the cluster solver shown in section 2.3.

Causal requirement A causal Green's function (or self energy) is de�ned by its imaginary
part being negative de�nite when the frequency argument is positive, i.e.,

ImG(K, z) < 0 (or ImΣ(K, z) < 0), (2.29)

where z = ω > 0 or iωn with ωn = (2n + 1)πT > 0. The bare or cluster-excluded
Green's function also satis�es the causal requirement. For example, the bare Green's func-
tion G0(K, iωn) = 1

iωn−εK+µ
and its imaginary part is ImG0(K, iωn) = −ωn

(εK−µ)2+ω2
n
< 0 when

n ≥ 0, which satis�es the causality. If we perform temporal inverse Fourier transformation
(IFT) on the bare Green's function, we obtain

G0(K, τ) ≡ T

∞∑
n=−∞

G0(K, iωn)e−iωnτ (2.30)

= −nF (−εK + µ)e−(εK−µ)τ , (0 < τ < β) = nF (εK − µ)e−(εK−µ)τ , (−β < τ < 0)

= −
〈
cKc

†
K

〉
0
e−(εK−µ)τ , (0 < τ < β) =

〈
c†KcK

〉
0
e−(εK−µ)τ , (−β < τ < 0)

= −
〈
TτcK(τ)c†K(0)

〉
0
, (2.31)
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which is the corresponding de�nition of Green's functions in imaginary time with Tτ being
the time-ordering operator. After spatially inverse Fourier transforming G0(K, τ), we obtain
G0
R(τ):1

G0
R=ri−rj(τ − 0) ≡ 1

Nc

Nc∑
K=1

G0(K, τ)e−iK·R (2.32)

= −
〈
Tτci(τ)c†j(0)

〉
0
. (2.33)

Unfortunately, the de�nitions of Green's function in eq. (2.31) and (2.33) are NOT the
usual conventions in the quantum Monte Carlo (QMC) simulations, because G0(K, τ) and
G0
R=0(τ) are less than zero when 0 < τ < β. Researchers are getting used to the convention

which allows the imaginary-time Green's functions being positive when τ ∈ (0, β). In this
thesis, we adopt such a convention and de�ne the spacial and temporal Green's functions
with an extra minus sign shown in eq. (2.47) and (2.48) in the next section. Figure 2.14
gives an example of g0

R=0(τ) > 0 when 0 < τ < β. At the same time, we also require
the Matsubara Green's functions to be causal (eq. (2.29)). Therefore we need to be very
careful about the connections between the temporal and Matsubara Green's functions. For
example, Fig. 2.13 shows that G(K, iωn) is measured from the cluster solver based on
g0
R(τ). In the next section we will show such a measurement is the eq. (2.86), which has an
unusual minus sign in front of the matrix derived from g0

R(τ). Furthermore, Fig. 2.13 shows
that g0(K, iωn) becomes g0

R(τ) under the inverse Fourier transformation. To make up for
the di�erent conventions of Green's functions, we add an extra minus sign in the temporal
inverse Fourier transformation:

g0(K, τ) ≡ −T
∞∑

n=−∞

g0(K, iωn)e−iωnτ . (2.34)

Considering the high-frequency condition of g0(K, iωn) ∼ 1
iωn

(or more precisely ∼ 1
iωn−εK+µ

,
where εK ≡ Nc

N

∑
k̃ εK+k̃) and also avoiding values over�owed in the exponential, we rede�ne

the temporal inverse Fourier transformation as

g0(K, τ ∈ [0, β)) ≡ g00 + T

∞∑
n=−∞

e−iωnτ
(

1

iωn − εK + µ
− g0(K, iωn)

)
, (2.35)

where

g00 ≡

{
(1− nF (εK − µ)) e−τ(εK−µ) = e−τ(εK−µ)

1+e−β(εK−µ) , (εK-µ ≥ 0)

nF (εK − µ)e(β−τ)(εK−µ) = e(β−τ)(εK−µ)

1+eβ(εK−µ) , (εK-µ < 0)
. (2.36)

1The dimension and size of G0
R(τ) and G0(K, iωn) di�er by Nc

T due to the Fourier transformations. If we

assume
[
G0
R(τ)

]
= 1, then

[
G0(K, iωn)

]
= Nc

T , which can be taken as inverse of density of energy, m3/J in
the SI unit. This dimensional analysis also applies on G or g0. Check footnote 6 for further explanation.
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Cluster Solver

G(K,iωn)

�c=g0 -1 - G-1

IFT

g0
R���

measure

Figure 2.13: Sketch of the algorithm of DCA. The iteration starts with computing the
coarse-grained Green's function Ḡ using an initial guess for the cluster self-energy Σc. The
cluster-excluded Green's function g0 is then used to de�ne the e�ective cluster problem which
yields a new estimate of Σc.

And

g0(K,−τ) =
[
g0(K, β − τ)

]∗
. (τ ∈ (0, β]) (2.37)

2.3 Continuous time quantum Monte Carlo (CTQMC)

If we split the Hamiltonian into two parts labeled by a and b, H = Ha + Hb, write the
partition function Z = Tre−βH in the interaction representation with respect to Ha, and
expand in powers of Hb, thus

Z = TrTτe
−βHaexp

[
−
ˆ β

0

dτHb(τ)

]
=

∑
k

(−1)k
ˆ β

0

dτ1 · · ·
ˆ β

τk−1

dτkTr
[
e−βHaHb(τk) · · ·Hb(τ1)

]
, (2.38)

where Tτ is the time ordering operator. For the Hubbard Model (eq. (2.1) and (2.23)),
Rubtsov et al[49] and F. Assaad et. al[50] choose

Hb = U
∑
i

ni↑ni↓ (2.39)

and the rest term as Ha, which is called weak-coupling or interaction-expansion continuous-
time quantum Monte Carlo (INT-CTQMC).
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2.3.1 Formalism

A trivial sign problem comes from the positive U : (−U)k contributes to the kth term in eq.
(2.38). To reduce such a sign problem, here we choose Hb → HI

loc to be

HI
loc =

U

2

∑
i,s=±1

∏
σ

(niσ=ασ(s)) , (2.40)

where2

ασ(s) =
1

2
+ σs

(
1

2
+ 0+

)
. (2.41)

It's easy to see that the di�erence between eq. (2.39) and eq. (2.40) is only a constant.
There is a quick way to check why the equation (2.40) can reduce the sign problem. If we
take s = 1, then eq. (2.40) becomes U

2
(ni↑ − 1 − 0+)(ni↓ + 0+), which is always negative

thus it contributes an extra (−1)k to cancel (−U)k in the kth term in eq. (2.38). Using
this trick, the minus sign problem is completely removed in the one-dimensional case and is
highly reduced when the dimension is larger than one.

Let's de�ne the ensemble average 〈· · · 〉o = Tr
[
e−βH0 · · ·

]
/Z0 and Z0 = Tre−βH0 . A weak

coupling diagrammatic expansion yields for the partition function

Z

Z0

=
∑
Ck

(
−U
2

)k
1

k!

∏
σ

〈Tτ (n1σ − α1σ) (n2σ − α2σ) · · · (nkσ − αkσ)〉0 , (2.42)

=
∑
Ck

(
−U
2

)k∏
σ

detDσ
k , (2.43)

where Ck = {[i1, τ1, s1] . . . [ik, τk, sk]},
∑

Ck
=
∑∞

k=0

´ β
0
dτ1

∑
i1,s1
· · ·
´ β

0
dτk
∑

ik,sk
, npσ ≡

nipσ(τp), αpσ ≡ δ(p−q)αp,qσ(sp) = δ(ip−iq)δ(τp−τq)ασ(sp) = δ(ip−iq)δ(τp−τq) (1/2 + σspδ)
(p, q ∈ [1, k]) and the matrix Dσ

k is



〈
Tτ c
†
i1

(τ1)ci1(τ1)
〉

0
− ασ(s1)

〈
Tτ c
†
i1

(τ1)ci2(τ2)
〉

0
· · ·

〈
Tτ c
†
i1

(τ1)cik(τk)
〉

0〈
Tτ c
†
i2

(τ2)ci1(τ1)
〉

0

〈
Tτ c
†
i2

(τ2)ci2(τ2)
〉

0
− ασ(s2)

. . .
...

...
. . .

. . .
...〈

Tτ c
†
ik

(τk)ci1(τ1)
〉

0
· · · · · ·

〈
Tτ c
†
ik

(τk)cik(τk)
〉

0
− ασ(sk)


,

(2.44)

where we assume thatD↑k andD
↓
k only di�er by ασ, i.e,

〈
Tτc

†
i (τ)cj(τ

′)
〉

0
is spin-independent[50].

Also note that the factorial k! is canceled because we �x a time order 0 ≤ τ1 < τ2 < · · · <
2Rubtsov et. al[49] found that one should choose α↑ +α↓ = 1 for fermionic systems and α↑ = α↓ = α for

bosonic systems to minimize the minus sign problem. There is no general recipe to give how large the α is
when dimension is larger than one.
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Figure 2.14: Example of the cluster-excluded Green's function g0
R(τ) in eq. (2.47). g0

R(τ) is
discontinuous at τ = 0 only when R = 0. All g0

R(τ)s satisfy the anti-periodic condition in
the eq. (2.49).

τk ≤ β. In other words,

1
k!

∑
Ck

〈Tτ · · · 〉 =
1
k!

∞∑
k=0

ˆ β

0
dτ1

∑
i1,s1

· · ·
ˆ β

0
dτk

∑
ik,sk

〈Tτ · · · 〉 =
∞∑
k=0

ˆ τ2

0
dτ1

∑
i1,s1

· · ·
ˆ β

τk−1

dτk
∑
ik,sk

〈· · · 〉 .

(2.45)

Here we de�ne a bare (cluster-excluded) spin-independent Green's function as

g0σ
i,j (τi, τj) = g0

i,j(τi, τj) =
〈
Tτci(τi)c

†
j(τj)

〉
0
. (2.46)

In the following we will write g0
σ(i, j) ≡ g0σ

i,j (τi, τj) for simplicity. We also de�ne a vertex vi
to be the status of an up and a down electrons doubly occupy at the same space ri and time
τi. If two vertexes have equal time, we de�ne the second time argument of Green's function
to be slightly greater, i.e. g0

σ (i, j) ≡ g0σ
i,j (τi, τ

+
j ) if τi = τj. 3 After applying the translational

symmetry in space and time, we obtain

g0
R(τ) ≡ g0

r1−r2(τ1 − τ2) =
〈
TτcR(τ)c†0(0)

〉
0
. (2.47)

The single-particle Green's function is de�ned similarly:
3The de�nition of equal-time Green's function in weak-coupling CTQMC really depends on the ex-

pression of the local density. Based on the eq. (2.46), the equal-time Green's function is g0σ
i,i (τi, τ

+
i ) =〈

Tτ ci(τi)c
†
j(τ

+
i )
〉

0
= −

〈
c†j(τi)ci(τi)

〉
0
, which equals to −〈ni(τi)〉0 if i = j. In Assaad's and Rubtsov's pa-

pers the Green's function is de�ned as g0σ
i,j (τi, τj) ≡

〈
Tτ c
†
i (τi)cj(τj)

〉
0
. In that case the equal-time Green's

function becomes g0σ
i,i (τi, τi) ≡ g0σ

i,i (τ
+
i , τi) =

〈
Tτ c
†
i (τ

+
i )ci(τi)

〉
0

=
〈
c†(τi)ci(τi)

〉
0
, which equals to 〈n(τi)〉0.

These two conventions can be transformed to each other by swapping the space and time indexes (transpose
of a matrix) and adding an extra minus sign.
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Figure 2.15: Vertexes when k=1 (1) and k=2 (2a)-(2d) in INT-CTQMC.

GR(τ) ≡ Gr1−r2(τ1 − τ2) =
〈
TτcR(τ)c†0(0)

〉
. (2.48)

Both the cluster-excluded (eq. (2.47)) and the single-particle (eq. (2.48)) Green's functions
are anti-symmetric in time with period β:

g0
R(τ) = −g0

R(τ + β) and GR(τ) = −GR(τ + β). (2.49)

When R ≡ r1 − r2 = 0, the Green's functions have a discontinuity at τ = 0,

g0
0(0+)− g0

0(0−) = 1 with g0
0(0+) = 1− 〈n〉0 and g0

0(0−) = −〈n〉0 , (2.50)

G0(0+)−G0(0−) = 1 with G0(0+) = 1− 〈n〉 andG0(0−) = −〈n〉 , (2.51)

where 〈· · · 〉0 denotes the average in the non-interacting bath and n is the local (r = 0)
density; otherwise when R ≡ r1 − r2 6= 0, both Green's functions are continuous at τ = 0,
and they still satisfy the anti-periodic condition in the eq. (2.49). Figure 2.14 shows an
example of the cluster-excluded Green's function in eq. (2.47). The single-particle Green's
functions have similar results.

From the convention of the cluster-excluded Green's function in eq. (2.47), the diagonal
elements in the matrix Dσ

k in eq. (2.44) become〈
Tτc

†
ip

(τp)cip(τp)
〉

0
− ασ(sp) = 〈n〉0 − ασ(sp)

= g0
0(β)− ασ(sp), (2.52)

where p ∈ [1, k], and the o�-diagonal terms become〈
Tτc

†
ip

(τp)ciq(τq)
〉

0
= −g0

iq−ip(τq − τp), (2.53)
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Tips for eqs. (2.42)-(2.46): When k = 1, there is only one 'vertex', 〈ni↑ (τi)ni↓ (τi)〉0
with i = 1, shown in the Fig. 2.15(1). The �rst contribution Z1 to the eq. (2.42) can be
written as´ β

0
dτ1

∑
r1s1=±1

(−U
2

) 〈
Tτ
(
n1↑(τ1)− 1

2
−
(

1
2

+ 0+
)
s1

)〉
0

〈
Tτ
(
n1↓(τ1)− 1

2
+
(

1
2

+ 0+
)
s1

)〉
0
=

(−U)
´ β

0
dτ1

∑
r1

[
〈n1↑(τ1)〉0 〈n1↓(τ1)〉0 −

1
2

(
〈n1↑(τ1)〉0 + 〈n1↓(τ1)〉0

)]
=

(−U)
´ β

0
dτ1

∑
r1

[〈n1(τ1)〉0 (〈n1(τ1)〉0 − 1)] which is larger than zero because the value
in the square bracket is less than zero on the QMC average. In this example we learn that
the e�ect of ασ(s) is really to reduce the minus sign in the odd order (at least k = 1) of the
partition function.
When k = 2, there are two vertexes shown in the Fig. 2.15 and four possible contributions,
(2a)-(2d), to the second order partition function Z2. Here in terms of the eq. (2.46), (2a)
represents

∏
σ (−g0(1, 2)) (−g0(2, 1)), (2b) is

−
(
g0
↑(1, 1)− 1

2
− s1δ

) (
g0
↑(2, 2)− 1

2
− s2δ

) (
−g0
↓(2, 1)

) (
−g0
↓(1, 2)

)
= −

(
g0
R=0(β)− 1

2
− s1δ

) (
g0
R=0(β)− 1

2
− s2δ

)
(−g0(2, 1)) (−g0(1, 2)) ,

(2c) is

−
(
g0
↓(1, 1)− 1

2
+ s1δ

) (
g0
↓(2, 2)− 1

2
+ s2δ

) (
−g0
↑(2, 1)

) (
−g0
↑(1, 2)

)
= −

(
g0
R=0(β)− 1

2
+ s1δ

) (
g0
R=0(β)− 1

2
+ s2δ

)
(−g0(2, 1)) (−g0(1, 2)) ,

and (2d) is ∏
σ

(
g0
σ(1, 1)− 1

2
+ σs1δ

) (
g0
σ(2, 2)− 1

2
+ σs2δ

)
=

∏
σ

(
g0
R=0(β)− 1

2
+ σs1δ

) (
g0
R=0(β)− 1

2
+ σs2δ

)
where δ = 1

2
+ 0+, s1, s2 = ±1 and we assume the cluster-excluded Green's function is

spin-independent. Note the extra minus sign is shown in (2b) and (2c) because the number
of fermion loops is odd (three). These four contributions are the expansion results of the
second order in eq. (2.42) based on the Wick's theorem. The summation of these four terms
becomes the multiplication of two 2× 2 determinants:

∏
σ detD

σ
2 .

where p, q ∈ [1, k] and if τq = τq, the o�-diagonal elements are still de�ned as g0
R(β−) ≡ g0

R(β)
when R = iq − ip and −g0

R′(0
+) when R′ = ip − iq just in case of R ≡ iq − ip = 0.4

Here we are ready to rewrite the matrix Dσ
k in the eq. (2.44) with the notation g0(i, j) ≡

g0
i,j(τi, τj):

4Equal time in the o�-diagonal terms (means di�erent vertexes) are rarely happened in the 'continuous'
time quantum Monte Carlo. Even if the equal time occurs, there is still no di�erence for the case of
R ≡ iq − ip 6= 0 because of the continuity of Green's functions at τ = 0 shown in the Fig. 2.14, i.e.,
g0
R(β−) = −g0

R(0−) = −g0
R(0+) for R 6= 0. When R = 0, it really means that two di�erent vertexes in

the expansion order are at the same space and time (almost impossible), and we de�ne the element in the
upper-triangular matrix as the local density 〈n〉0 = g0

R=0(β) and the element in the lower-triangular matrix
as the local density minus one 〈n〉0 − 1 = −g0

R=0(0+).
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−


−g0

0(β) + ασ(s1) g0(2, 1) · · · g0(k, 1)

g0(1, 2) −g0
0(β) + ασ(s2)

. . . ...
... . . . . . . ...

g0(1, k) · · · · · · −g0
0(β) + ασ(sk)

 ≡ − (Dσ
k)T , (2.54)

where the bold matrix Dσ
k has elements (Dσ

k)i,i = −g0
0(β) + ασ(si) and (Dσ

k)i,j = g0(i, j) for
i 6= j. Later we will show that the one-particle and two-particle Green's functions are related
to the inversion of the bold matrix Dσ

k (check the eq. (2.81)).
In the �Tips for eqs. (2.42)-(2.46)� we demonstrate the cases of k = 1 and k = 2.

Generally speaking, Zk > 0 for U < 0 for all k. When U > 0, Zk > 0 for all k only in the
one-dimensional case with the help of the proper α (eq. (2.41)). Some Zks are less than zero
when the dimension is higher than one. To use the Monte Carlo method, the whole partition
function Z is the summation of weights with signs:

Z =
∑
k=0

|Zk|sgnk (2.55)

=
∑
k∈Ck

w(k), (2.56)

where Ck ≡{(r1, τ1, s1), · · · , (rk, τk, sk)} and

w(k) =
k∏
i=1

dτi(
−U
2

)kdetD↑kdetD
↓
k. (2.57)

One can update the con�guration by adding (k → k + 1) or removing (k + 1 → k) a
vertex. Detail balance condition requires

PaddP (rk+1)P (τk+1)P (sk+1)w(k)Pk→k+1 = PremoveP (v)w(k + 1)Pk+1→k, (2.58)

where Padd and Premove are prior probabilities of adding and removing a vertex and satisfy
Padd + Premove = 1 (Usually we take Padd = Premove = 1

2
); P (rk+1), P (τk+1) and P (sk+1) are

probabilities to add the (k+1)th vertex con�guration in space, time, and auxiliary spin, thus
we have P (rk+1) = 1

Nc
, P (τk+1) = dτ

β
and P (sk+1) = 1

2
; P (v) is the probability to remove one

vertex among the (k+ 1) vertexes and thus P (v) = 1
k+1

; w(k) and w(k+ 1) are according to
the eq. (2.57). The Metropolis ratio Radd is de�ned as

Radd =
Pk→k+1

Pk+1→k
=

P (v)

P (rk+1)P (τk+1)P (sk+1)

w(k + 1)

w(k)

=
2Ncβ

(k + 1)dτ

(−Udτ/2)k+1detD↑k+1detD
↓
k+1

(−Udτ/2)kdetD↑kdetD
↓
k

=
−UNcβ

(k + 1)

∏
σ

detDσ
k+1

detDσ
k

. (2.59)
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Surprisingly, the factor 2 in the term (−U/2) is canceled by P (sk+1) = 1/2. Similarly, the
Metropolis ratio to remove (k → k − 1) a vertex is

Rrem =
Pk→k−1

Pk−1→k
=
−k
UNcβ

∏
σ

detDσ
k−1

detDσ
k

. (2.60)

We choose a random real number r ∈ [0, 1]. If Radd(or Rrem) > r, we accept the change
of adding (or removing) a vertex from order k to k+ 1 (or k− 1); else, we reject the change.

Because it's time consuming to calculate the ratio of determinants. Rubtsov et. al[49]
proposed a fast update formula based on the Sherman-Morrison scheme for the determinantal
QMC. Such a formula can reduce the computation burden from N3 to N2 (N is the linear
dimension of a matrix) or less. In the following we will summarize the contents of the fast-
update scheme by introducing the identity for the ratio of determinants (assume matrix
M(k) = D(k)−1 5):

detD(k + 1)

detD(k)
= Dk+1,k+1 −

k∑
i,j=1

Dk+1,iM(k)i,jDj,k+1, (2.61)

and

detD(k − 1)

detD(k)
= Mn,n, (2.62)

where in the eq. (2.62) we remove the nth row and nth column from the k × k matrix D(k).
If we accept the change of adding a vertex, we update the matrix M according to

M(k + 1) =


−L1,k+1λ

−1

−L2,k+1λ
−1

M(k)
′
i,j · · ·

· · ·
−Lk,k+1λ

−1

−λ−1Rk+1,1 · · · −λ−1Rk+1,k λ−1

 , (2.63)

where Li,j =
∑k

l=1M(k)i,lD(k)l,j, Ri,j =
∑k

l=1D(k)i,lM(k)l,j, λ = detD(k + 1)/detD(k) =
right hand site of eq. (2.61), and M(k)

′
i,j is de�ned by

M(k)
′

i,j = M(k)i,j + Li,k+1λ
−1Rk+1,j. (2.64)

On the other hand, if we accept the change of removing a vertex, the matrix M is updated
by removing the column and row n according to

M(k − 1)i,j = M(k)i,j −
M(k)i,nM(k)n,j

M(k)n
. (2.65)

5Single argument or one subscript of a matrix means the dimension of the matrix. For example, Dk or
D(k) means a k × k matrix. Double subscripts of a matrix means the index of the matrix. For example,
M(k + 1)n,m is the matrix element in the nth row and mth column of a (k + 1)× (k + 1) matrix M .

27



Tips for eqs. (2.61) to (2.65): Convince yourself by doing the following example. Let's

assume D(2) =

(
1 2
−1 −1

)
, so detD(2) = 1 and M(2) = D(2)−1 =

(
−1 −2
1 1

)
; D(3) = 1 2 1

−1 −1 0
2 0 1

, detD(3) = 3 and M(3) = D(3)−1 = 1
3

 −1 −2 1
1 −1 −1
2 4 1

. You can see

that D(3) is obtained by adding a third column and row to D(2). To test if the eq. (2.61)
is true. The left hand side of it is detD(3)/detD(2) = 3, which is agree with its right hand
side:

D3,3−
(
D3,1 D3,2

)( M1,1 M1,2

M2,1 M2,2

)(
D1,3

D2,3

)
= 1−

(
2 0

)( −1 −2
1 1

)(
1
0

)
= 3 ≡ λ.

Eqs. (2.63) and (2.64) tell us how to writeM(3) in terms ofM(2) along with the information

from the third column and row of D(2). Since Li,3 = Mi,lDl,3 =

(
−1 −2
1 1

)(
1
0

)
=(

−1
1

)
and R3,j = D3,lMl,j =

(
2 0

)( −1 −2
1 1

)
=
(
−2 −4

)
, thus M(2)

′
i,j =

M(2)i,j +Li,3λ
−1R3,j =

(
−1 −2
1 1

)
+

(
−1
1

)
1
3

(
−2 −4

)
= 1

3

(
−1 −2
1 −1

)
. AndM(3)

can be expressed as

M(3) =

 1
3

(
−1 −2
1 −1

)
−
(
−1
1

)
1
3

−
(
−2 −4

)
1
3

1
3

 =
1

3

 −1 −2 1
1 −1 −1
2 4 1

 ,

which is identical to the known answer D(3)−1.
To justify the eq. (2.62), we can start from the D(3) and remove its (a) 1st, (b) 2nd and
(c) 3rd column and row. The right hand sites of eq. (2.62) are M1,1 = −1

3
, M2,2 = −1

3
and

M3,3 = 1
3
for the case (a), (b) and (c) respectively, which are agree with the corresponding

left hand sites: (a)
det

0@ −1 0
0 1

1A
detD(3)

= −1
3
, (b)

det

0@ 1 1
2 1

1A
detD(3)

= −1
3

and (c)
det

0@ 1 2
−1 −1

1A
detD(3)

= 1
3
.

The matrix M(2) in the case (c) is updated, according to eq. (2.65), as

M(2)i,j = M(3)i,j −
M(3)i,3M(3)3,j

M(3)3,3

=
1

3

 −1 −2 1
1 −1 −1
2 4 1

− 1

3

 1
−1
1

( 2 4 1
)
/1 =

 −1 −2 0
1 1 0
0 0 0

 ,

which is agree with the D(2)−1. The matrices M(2)s in the case (a) and (b) are obtained in

the similar way and the answers are (a) M(2) =

(
−1 1
2 −1

)
and (b) M(2) =

(
1 0
0 −1

)
.
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If you don't feel comfortable with the eq. (2.61) to (2.65), please follow �Tips for eqs.
(2.61) to (2.65)� for better understandings.

It's also straightforward to generalize the fast update for steps k ± 2 or higher[49]. Here
I also summarize all the required formulas and prepare a useful tips in the following. First,
the ratio of a (k + 2)× (k + 2) determinant and a k × k determinant is

detD(k + 2)

detD(k)
≡ detλ = det (Dq,q′ −Dq,iM(k)i,jDj,q′) , (2.66)

where λ is a 2 × 2 matrix with indexes q, q′ = k + 1, k + 2 and the matrix M(k) = D(k)−1

with index i, j = 1, 2, · · · , k. Here summation over repeated indexes is implied. The ratio of
a (k − 2)× (k − 2) determinant and a k × k determinant is

detD(k − 2)

detD(k)
≡ detλ

′
= detM(k)q,q′ , (2.67)

where λ′ ≡ M(k)q,q′ is also a 2× 2 matrix with indexes q, q′ = n,m ∈ [1, k] , indicating two
columns and rows (nth and mth, n 6= m) in the original matrix D(k) are removed. If we
would like to add two vertexes, the matrix M(k + 2) is updated according to

M(k + 2) =


−L1,qλ

−1
q,k+1 −L1,qλ

−1
q,k+2

M(k)
′
i,j · · · · · ·

−Lk,qλ−1
q,k+1 −Lk,qλ

−1
q,k+2

−λ−1
k+1,q′Rq′,1 · · · −λ−1

k+1,q′Rq′,k λ−1
k+1,k+1 λ−1

k+1,k+2

−λ−1
k+2,q′Rq′,1 · · · −λ−1

k+2,q′Rq′,k λ−1
k+2,k+1 λ−1

k+2,k+2

 , (2.68)

M(k)
′

i,j = M(k)i,j + Li,qλ
−1
q,q′Rq′,j, (2.69)

Li,q = M(k)i,lD(k)l,q, (2.70)

Rq′,j = D(k)q′,lM(k)l,j, (2.71)

On the �ip side, to remove two vertexes (n 6= m), the matrix M(k− 2) is updated based on
M(k) as

M(k − 2)i,j = M(k)i,j −
M(k)i,qM(k)q′,j

M(k)q,q′
. (2.72)

It's trivial to see that M(k − 2)q1,q2=n,m = 0 because the right hand side of the eq. (2.72)
becomes

M(k)q1,q2 −
M(k)q1,qM(k)q′,q2

M(k)q,q′
= M(k)q1,q2 − δq1,q′M(k)q′,q2 = 0. (2.73)

29



Tips for eqs. (2.66) to (2.72): Here we also assume D(2) =

(
1 2
−1 −1

)
,

detD(2) = 1 and M(2) = D(2)−1 =

(
−1 −2
1 1

)
. D(4) =


1 2 1 −1
−1 −1 0 1
2 0 1 0
1 −1 1 2


by adding the 3rd and 4th columns and rows to D(2); detD(4) = 3 and M(4) =

D(4)−1 = 1
3


−1 −3 0 1
1 −3 −3 2
2 6 3 −2
0 −3 −3 3

. Again �rst we test the left hand side of eq.

(2.66): detD(4)/detD(2) = 3, which is agree with the determinant of the matrix λ:

det

 D33 − (D31D32)
(
M11 M12

M21 M22

)(
D13

D23

)
D34 − (D31D32)

(
M11 M12

M21 M22

)(
D14

D24

)
D43 − (D41D42)

(
M11 M12

M21 M22

)(
D13

D23

)
D44 − (D41D42)

(
M11 M12

M21 M22

)(
D14

D24

)


= det

(
3 2
3 3

)
= 3. The inversion of λ is 1

3

(
3 −2
−3 3

)
. Before updating M(4) , we

need to construct the matrices Li,q and Rq′,j de�ned in eqs. (2.70) and (2.71): Li,q =

M(2)i,lD(2)l,q=

(
−1 −2
1 1

)(
1 −1
0 1

)
=

(
−1 −1
1 0

)
and Rq′,j = D(2)q′,lM(2)l,j=(

2 0
1 −1

)(
−1 −2
1 1

)
=

(
−2 −4
−2 −3

)
. thus M(2)′ in eq. (2.69) becomes M(2)i,j +

Li,qλ
−1
q,q′Rq′,j =

(
−1 −2
1 1

)
+

(
−1 −1
1 0

)
1
3

(
3 −2
−3 3

)(
−2 −4
−2 −3

)
= 1

3

(
−1 −3
1 −3

)
.

And M(4) is constructed as

M(4) =


1
3

(
−1 −3
1 −3

)
−
(
−1 −1
1 0

)
1
3

(
3 −2
−3 3

)
−1

3

(
3 −2
−3 3

)(
−2 −4
−2 −3

)
1
3

(
3 −2
−3 3

)
 ,

equals to the known answer D(4)−1.
Next, we start from D(4) and remove its 3rd and 4th columns and rows to
demonstrate the eq. (2.67) and (2.72). The left hand site of eq. (2.67) is

detD(2)/detD(4) = 1/3, agree with its right hand side: detλ
′

= det

(
1 −2/3
−1 1

)
=

1
3
. Thus λ′−1 = M(4)−1

q,q′ =

(
1 −2/3
−1 1

)−1

=

(
3 2
3 3

)
. The matrix M(2)

is updated as (only concern about the �rst two columns and rows) 1
3

(
−1 −3
1 −3

)
−

1
9 (0 1)

(
3 2
3 3

)(
2
0

)
1
9 (0 1)

(
3 2
3 3

)(
6
−3

)
1
9 (−3 2)

(
3 2
3 3

)(
2
0

)
1
9 (−3 2)

(
3 2
3 3

)(
6
−3

)
=

(
−1 −2
1 1

)
, agree with D(2)−1.
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2.3.2 Measurement

All the observables are measured based on the Ensemble average:

〈O〉 =
1

Z
TrTτ (exp(−βH)O) , (2.74)

where Z = TrTτexp(−βH). Using the eq. (2.42) we can express the observable O as

〈O〉 =
Z0

∑
Ck

(−U
2

)k 1
k!

∏
σ 〈Tτ (n1σ − α1σ) (n2σ − α2σ) · · · (nkσ − αkσ)O〉0
Z0

∑
Ck

(−U
2

)k∏
σ detD

σ
k ,

(2.75)

=
Z0

Z

∞∑
k=0

(−1)k

k!

ˆ β

0

· · ·
ˆ β

0

dτ1 · · · dτk
〈
TτH

I
loc(τ1) · · ·HI

loc(τk)O
〉

0
, (2.76)

where HI
loc is de�ned in the eq. (2.40).

1. O = expansion order k: We can calculate the average expansion order 〈k〉 from
the eq. (2.76).

〈k〉 =
Z0

Z

∞∑
k=0

(−1)k

k!
k

ˆ β

0

· · ·
ˆ β

0

dτ1 · · · dτk
〈
TτH

I
loc(τ1) · · ·HI

loc(τk)
〉

0

(let n = k − 1) = −Z0

Z

∞∑
n=0

(−1)n

n!

ˆ β

0

· · ·
ˆ β

0

dτ1 · · · dτndτ
〈
TτH

I
loc(τ1) · · ·HI

loc(τn)HI
loc(τ)

〉
0

= −
ˆ β

0

dτ
〈
HI
loc(τ)

〉
. (2.77)

If HI
loc is independent of τ , 〈k〉 = −β

〈
HI
loc

〉
, which is growing slowly with the interaction

U . This result is important because it tells us the expansion order k is �nite in the thermal
average once the system size, βNcU , is known.

2. O = one-particle Green's function
Single-particle Green's function (also see eq. (2.48)) is de�ned as

Gσ
i,j(τ, τ

′) ≡
〈
Tτciσ(τ)c†jσ(τ ′)

〉
= −

〈
Tτc

†
jσ(τ ′)ciσ(τ)

〉
. (2.78)

Replacing the O in eq. (2.75) by c†jσ(τ ′)ciσ(τ), the curly bracket in the numerator can be
written in terms of a determinant and has one extra column and row adding to the end of the
matrix Dσ(k) in the eq. (2.44) and becomes Dσ(k+1) (Here we assume that cluster-excluded
Green's function is spin-independent. Check eq. (2.46)):
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〈
Tτc

†
i1

(τ1)ci(τ)
〉

0

Dσ(k)
...〈

Tτc
†
ik

(τk)ci(τ)
〉

0〈
Tτc

†
j(τ
′)ci1(τ1)

〉
0
· · ·

〈
Tτc

†
j(τ
′)cik(τk)

〉
0

〈
Tτc

†
j(τ
′)ci(τ)

〉
0

 . (2.79)

Note the extra minus sign in the eq. (2.78) and we can write the Green's function as

Gσ
i,j(τ, τ

′) = −detD
σ(k + 1)

detDσ(k)
(2.80)

(using eq. (2.61)) = −
〈
Tτc

†
j(τ
′)ci(τ)

〉
0

+
〈
Tτc

†
j(τ
′)cip(τp)

〉
0
Mσ

p,q(k)
〈
Tτc

†
iq

(τq)ci(τ)
〉

0

= g0
i,j(τ, τ

′) + (−1)2g0
ip,j(τp, τ

′)Mσ
p,q(k)g0

i,iq(τ, τq)

= g0
i,j(τ, τ

′)− g0
i,iq(τ, τq)

(
−Mσ(k)T

)
q,p
g0
ip,j(τp, τ

′), (2.81)

where the matrix
(
−Mσ(k)T

)
is the inversion of the bold matrix Dσ

p,q(k) in the (2.54) and
summation over repeated indexes is implied. To sum up, in the beginning we prepare the
matrix

Dσ(k) = −Dσ(k)T =


−g0

0(β) + ασ(s1) g0(1, 2) · · · g0(1, k)

g0(2, 1) −g0
0(β) + ασ(s2)

. . . ...
... . . . . . . ...

g0(k, 1) · · · · · · −g0
0(β) + ασ(sk)

 ,

(2.82)
and invert Dσ(k) to obtain Mσ(k) = −Mσ(k)T , which is the required matrix in the eq.
(2.81). After applying the translational symmetry in space and time, the single-particle
Green's function is measured as

Gσ≥R (τ) ≡ 1
2NcNL

∑
σ=↑,↓

Nc∑
i, j = 1

R ≡ ri − rj

NL−1∑
τi, τj = 0

τ ≡ (τi − τj) β
NL
≥ 0

〈
Gσi,j

(
(τi − τj)

β

NL

)〉
QMC

, (2.83)

Gσ<R (τ) ≡ 1
2NcNL

∑
σ=↑,↓

Nc∑
i, j = 1

R ≡ ri − rj

NL−1∑
τi, τj = 0

τ ≡ (τi − τj) β
NL

< 0

〈
−Gσi,j

(
(τi − τj +NL)

β

NL

)〉
QMC

,

(2.84)
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Gσ
R(τ) = Gσ≥

R (τ) +Gσ<
R (τ). (2.85)

where Nc is the size of cluster and NL is the number of time slices measured in [0, β], and
〈· · · 〉QMC denotes the QMC average.. The space index R and time index τ of the Green's
function also have size Nc and NL respectively. After Fourier transformation both in space
and time, we obtain the Matsubara Green's function in momentum space:

G(K, iωn) = g0(K, iωn)− g0(K, iωn)

 T
Nc

〈
−

k∑
i,j

Mi,je
iωn(τi−τj)eiK(ri−rj)

〉
QMC

 g0(K, iωn),

(2.86)
where Mi,j = 1

2
(M↑ + M↓)i,j, Mσ(k) = −Mσ(k)T which is explained after the eq. (2.82),

and K is the cluster momentum. The factor T/Nc is to balance the dimension and size on
both hand sides of eq. (2.86).6 Note there is an extra minus sign inside the QMC average
because we require both G(K, iωn) and g0(K, iωn) to be causal, ImG(K, iωn) < 0 and
Img0(K, iωn) < 0.7

Single-species local density or particle occupancy is de�ned by

〈n〉 = 〈GR=0(β)〉QMC (2.87)

=

〈
g0

0(β)−
k∑
i,j

Mi,j
1

Nc

Nc∑
p=1

g0
p−i(β − τi)g0

j−p(τj − 0)

〉
QMC

=

〈
1− g0

0(0+)−
k∑
i,j

Mi,j
1

Nc

Nc∑
p=1

g0
p−i(β − τi)g0

j−p(τj − 0)

〉
QMC

, (2.88)

where we average over the spacial index for each �xed vertex time and Mi,j = 1
2
(M↑+M↓)i,j,

Mσ(k) = −Mσ(k)T . Note that the �lling is twice of the particle occupancy.
Double occupancy is de�ned by

〈D〉 = 〈n↑n↓〉QMC =
〈
G↑R=0(β)G↓R=0(β)

〉
QMC

(2.89)

6Here we always assume that the size and dimension of GR(τ) is one, and in terms of dimensional analysis
we write it as [GR(τ)] = 1. Thus the matrix M which is composed of GR(τ) also has [M] = 1. We also know[
eiωn(τi−τj)

]
=
[
eiK(ri−rj)

]
= 1 and thus [G(K, iωn)] =

[
g0(K, iωn)

]
= Nc

T . Also check footnote 1.
7In the beginning we prepare a causal cluster self energy Σ(K, iωn) (ImΣ(K, iωn) < 0) by calculating the

Feynman diagram in the second order perturbation or read in from the previous QMC output, then obtain
the causal Ḡ(K, iωn) by doing the coarse-graining. Thus a causal g0(K, iωn) is obtained from the Dyson's

equation g0(K, iωn) =
(
Ḡ(K, iωn)−1 + Σ(K, iωn)

)−1
.
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=

〈
1

Nc

Nc∑
p=1

(
1− g0

0(0+)−
k∑
i,j

M↑i,jg0
p−i(β − τi)g0

j−p(τj − 0)

)
(2.90)

×

(
1− g0

0(0+)−
k∑
i,j

M↓i,jg0
p−i(β − τi)g0

j−p(τj − 0)

)〉
QMC

(2.91)

3. O = two-particle Green's function
A. Transverse spin susceptibility:

χ+−
i,j (τ, τ ′) =

〈
TτS

+
i (τ)S−j (τ ′)

〉
=
〈
Tτc

†
i↑(τ)ci↓(τ)c†j↓(τ

′)cj↑(τ
′)
〉

(2.92)

= −Z0

Z

∑
Ck

(
−U
2

)k
1

k!

〈
Tτc

†
i↑(τ)cj↑(τ

′) (n1↑ − α1↑) · · · (nk↑ − αk↑)
〉

0

×
〈
Tτc

†
j↓(τ

′)ci↓(τ) (n1↓ − α1↓) · · · (nk↓ − αk↓)
〉

0

= −G↑j,i(τ ′, τ)G↓i,j(τ, τ
′), (2.93)

where Gσ
i,j(τ, τ

′) is the single-particle Green's function de�ned in the eq. (2.81). After
applying the translational symmetry in space and time, we obtain

χ+−
R (τ) =

〈
1

NcNL

Nc∑
i, j = 1

R ≡ ri − rj

NL−1∑
τi, τj = 0

τ ′′ ≡ (τi − τj) β
NL

[
−G↑−R (−τ ′′)G↓R (τ ′′) + δi,jδτi,τj

G↑R=0(0)
]〉

QMC

,

(2.94)

where we use

Gσ
R(τ ′′) = Gσ

R(τ) if τ ′′ ∈ [0, β], (2.95)
Gσ
R(τ ′′) = −Gσ

R(τ + β) if τ ′′ ∈ [−β, 0−], (2.96)

to keep the time argument of χ+−
R (τ) to be in the range [0, β]. Note that we add a correction

δi,jδτ,τ ′G
↑
R=0(0) for the case of R = 0 and τ ′′ ≡ (τi − τj) β

NL
= 0.8

8Because the two time indexes in di�erent Green's functions swap their positions in eq. (2.93) and when
τ → τ ′, one argument is τ − τ ′ = 0− and the other argument is τ − τ ′ = 0+. When R = i − j 6= 0, the
Green's functions are continuous at τ − τ ′ = 0 and there is no di�erence for τ − τ ′ = 0+ and 0−. But when
R = 0, the Green's function is discontinuous at τ − τ ′ = 0 (check eq. (2.51)). What we really need in

the spin susceptibility at R = 0 and τ − τ ′ = 0 is −G↑R=0(0+, 0)G↓R=0(0, 0+) = −(1 −
〈
n↑
〉
)(−

〈
n↓
〉
), but

numerically the local and equal-time Green's function means GσR=0(0+, 0) = (1− 〈nσ〉). Thus the local and
equal-time spin susceptibility erroneously becomes −(1 −

〈
n↑
〉
)(1 −

〈
n↓
〉
), which needs to add the extra

term (1 −
〈
n↑
〉
) = G↑R=0(0) to �x the error. The correction for χ−+

i,j (τ, τ ′) is δi,jδτ,τ ′G↓R=0(0). There is no
correction in the pairing susceptibility (see eq. (2.114)).
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B. Longitudinal spin susceptibility:

χzzi,j(τ, τ
′) ≡

〈
TτS

z
i (τ)Szj (τ ′)

〉
(2.97)

=
〈
Tτ

(
c†i↑(τ)ci↑(τ)− c†i↓(τ)ci↓(τ)

)(
c†j↑(τ

′)cj↑(τ
′)− c†j↓(τ

′)cj↓(τ
′)
)〉

=
〈
Tτ

(
c†i↑(τ)ci↑(τ)c†j↑(τ

′)cj↑(τ
′)− c†i↑(τ)ci↑(τ)c†j↓(τ

′)cj↓(τ
′)

−c†i↓(τ)ci↓(τ)c†j↑(τ
′)cj↑(τ

′) + c†i↓(τ)ci↓(τ)c†j↓(τ
′)cj↓(τ

′)
)〉

. (2.98)

Here we need to use the eq. (2.66) to handle the four Fermionic operators with equal spin.
The eq. (2.98) becomes

χzzi,j(τ, τ
′) =

(
G↑ii(τ, τ)G↑jj(τ

′, τ ′)−G↑ij(τ, τ ′)G
↑
ji(τ

′, τ)
)
−G↑ii(τ, τ)G↓jj(τ

′, τ ′)

−G↓ii(τ, τ)G↑jj(τ
′, τ ′) +

(
G↓ii(τ, τ)G↓jj(τ

′, τ ′)−G↓ij(τ, τ ′)G
↓
ji(τ

′, τ)
)
(2.99)

= χzzi,j ,con + χzzi,j ,discon, (2.100)

where we de�ne the connected term χzzi,j ,con with di�erent space and time arguments and the
disconnected term χzzi,j ,discon with the same ones. We also use the equal-time convention that
the second time argument is slightly greater:

χzzi,j ,con = −
∑
σ,σ′

δσ,σ′
(
Gσ
ij(τ, τ

′)Gσ
ji(τ

′, τ)
)
, (2.101)

χzzi,j ,discon =
∑
σ,σ′

σσ′
(
Gσ
ii(τ, τ

+)Gσ′

jj(τ
′, τ ′+)

)
, (2.102)

and Gσ
ii(τ, τ

+) = 1 − Gσ
R=0(τ+, τ) = 1 − Gσ

R=0(0). Similar to the correction term in the
transverse spin susceptibility in eq. (2.94), here after the QMC average and use the eq.
(2.95) and (2.96) the longitudinal spin susceptibility becomes

χzzR (τ) =

〈
1

2NcNL

Nc∑
i, j = 1

R ≡ ri − rj

NL−1∑
τi, τj = 0

τ ′′ ≡ (τi − τj) β
NL

[
χzzi,j ,con(τ ′′) + δi,jδτ,τ ′

(
G↑R=0(0) +G↓R=0(0)

)

+χzzi,j ,discon(τ ′′)
]〉
QMC

(2.103)

where the extra factor 2 will be explained later. Interestingly, if Gσ
i,j(τ, τ

′) = Gi,j(τ, τ
′) which

is independent of spin, we �nd that the disconnected term is zero:

χzzi,j ,discon =
∑
σ,σ′

σσ′
(
Gii(τ, τ

+)Gjj(τ
′, τ ′+)

)
= 0. (2.104)
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And the χzzi,j(τ, τ
′) has only the connected term χzzi,j ,con which is twice of the χ+−

i,j (τ, τ ′) in eq.
(2.93):

χzzi,j(τ, τ
′) = 2χ+−

i,j (τ, τ ′) = χ+−
i,j (τ, τ ′) + χ−+

i,j (τ, τ ′), (2.105)

which means that the spin symmetry is not broken and the longitudinal spin susceptibility
is just twice of the transverse spin susceptibility. The extra factor 2 in the eq. (2.103) is to
re-scale the χzzR (τ) to be measured per spin species.

To extract the two-particle vertex in the charge channel from the Bethe-Salpeter equa-
tions, we need to measure the charge susceptibility in the momentum and frequency spaces.
After Fourier transformation both in space and time, we obtain the Matsubara Green's
function in momentum space:

G(K, iωn,K
′, iω′n) = g0(K, iωn)δK,K′δiωn,iω′n − g

0(K, iωn)

×

[
T

Nc

(
−

k∑
i,j

eiKRieiωnτiMi,je
−iτjω′ne−iRjK

′

)]
×g0(K′, iω′n), (2.106)

or rewrite it using a four-momentum index P ≡ (K, iωn) and R ≡ (R, τ):

G(P, P ′) = g0(P )δP,P ′ − g0(P ) (−MP,P ′) g
0(P ′), (2.107)

MP,P ′ ≡
k∑
i,j

eiP ·RiMi,je
−iRj ·P ′ . (2.108)

In momentum and frequency space, the measurement becomes (use Q ≡ (Q, iνm))

χzzcon(P, P ′, Q) = −
∑
σ,σ′

δσ,σ′G
σ(P, P ′)Gσ(P ′ +Q,P +Q), (2.109)

χzzdiscon(P, P ′, Q) =
∑
σ,σ′

σσ′Gσ(P, P +Q)Gσ′(P ′ +Q,P ′). (2.110)

χzzc (P, P ′, Q) =
1

2
〈χzzcon(P, P ′, Q) + χzzdiscon(P, P ′, Q)〉QMC . (2.111)

C. Pair susceptibility:

χpi,j(τ, τ
′) =

〈
Tτ∆

+
i (τ)∆j(τ

′)
〉

=
〈
Tτc

†
i↑(τ)c†i↓(τ)cj↓(τ

′)cj↑(τ
′)
〉

(2.112)

=
∏
σ

Gσ
j,i(τ

′, τ). (2.113)
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Similarly, we apply the QMC average to recover the translational symmetry in space and
time, use the eq. (2.95) and (2.96) and note that there is no correction term for R = 0 and
τ − τ ′ = 0 here:

χpR(τ) =

〈
1

NcNL

Nc∑
i, j = 1

R ≡ ri − rj

NL−1∑
τi, τj = 0

τ ′′ ≡ (τi − τj) β
NL

G↑−R(−τ ′′)G↓−R(−τ ′′)

〉

QMC

. (2.114)

In momentum and frequency space, use the property of Gσ(−P,−P ′) = (Gσ(P, P ′))∗, the
measurement becomes

χpc(P, P
′, Q) = G↑(P +Q,P ′ +Q)(G↓(P, P ′))∗. (2.115)

After we symmetrize the up and down spins in the QMC average, the measurement becomes

χpc(P, P
′, Q) =

〈
1

2

[
G↑(P +Q,P ′ +Q)(G↓(P, P ′))∗ +G↓(P +Q,P ′ +Q)(G↑(P, P ′))∗

]〉
QMC

.

(2.116)
D. Charge susceptibility:

χCi,j(τ, τ
′) ≡ 〈Tτni(τ)nj(τ

′)〉 − 〈ni(τ)〉 〈nj(τ ′)〉 (2.117)

=
〈
Tτ

(
c†i↑(τ)ci↑(τ) + c†i↓(τ)ci↓(τ)

)(
c†j↑(τ

′)cj↑(τ
′) + c†j↓(τ

′)cj↓(τ
′)
)〉

−
(
G↑R=0(β) +G↓R=0(β)

)2

(2.118)

=
〈
Tτ

(
c†i↑(τ)ci↑(τ)c†j↑(τ

′)cj↑(τ
′) + c†i↑(τ)ci↑(τ)c†j↓(τ

′)cj↓(τ
′)

+c†i↓(τ)ci↓(τ)c†j↑(τ
′)cj↑(τ

′) + c†j↓(τ)cj↓(τ)c†j↓(τ
′)cj↓(τ

′)
)〉

−
(
G↑R=0(β) +G↓R=0(β)

)2

(2.119)

= χCi,j ,con + χCi,j ,discon − χCvacumn, (2.120)

χCi,j ,con = −
∑
σ,σ′

δσ,σ′
(
Gσ
ij(τ, τ

′)Gσ
ji(τ

′, τ)
)
, (2.121)

χCi,j ,discon =
∑
σ,σ′

(
Gσ
ii(τ, τ

+)Gσ′

jj(τ
′, τ ′+)

)
, (2.122)

χCvacumn =
(
G↑R=0(β) +G↓R=0(β)

)2

=
[
2
(
1−GR=0(0+)

)]2 (2.123)

Charge and longitudinal spin susceptibility look very similar except that all the disconnected
terms of the charge susceptibility are �nite (χCi,j ,discon 6= 0 if Gi,j(τ, τ

′) is spin-independent).
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However, the disconnected terms subtract by the vacuum term under the QMC average are
almost zero at high temperature (small β):〈

χCi,j ,discon
〉
QMC

−
〈
χCvacumn

〉
QMC

≈ 0. (2.124)

Generally, we cannot neglect any term in the charge susceptibility.

χCR(τ) =

〈
1

NcNL

Nc∑
i, j = 1

R ≡ ri − rj

NL−1∑
τi, τj = 0

τ ′′ ≡ (τi − τj) β
NL

[
χCi,j ,con + δi,jδτ,τ ′

(
G↑R=0(0) +G↓R=0(0)

)

+χCi,j ,discon
]〉
QMC

−
[
2
(
1−GR=0(0+)

)]2
. (2.125)

The charge susceptibility measured in momentum and frequency space is similar to that
measured in space and time (eq. (2.119)).

χCcon(P, P ′, Q) = −
∑
σ,σ′

δσ,σ′G
σ(P, P ′)Gσ(P ′ +Q,P +Q), (2.126)

χCdiscon(P, P ′, Q) =
∑
σ,σ′

Gσ(P, P +Q)Gσ′(P ′ +Q,P ′), (2.127)

χCvacumn(P, P ′, Q) =
(
G↑(P +Q,P ) +G↓(P +Q,P )

) (
G↑(P ′ +Q,P ′) +G↓(P ′ +Q,P ′)

)
.

Under the QMC average, the charge cluster susceptibility becomes

χCc (P, P ′, Q) =
〈
χCcon(P, P ′, Q) + χCdiscon(P, P ′, Q)− χCvacumn(P, P ′, Q)

〉
QMC

. (2.128)

D. Square local moment:

m2
ii(τ, τ) =

〈(
n↑ − n↓

)2
〉

(2.129)

(since (nσ)2 = nσ) =
〈
n↑ + n↓ − n↑n↓

〉
=

〈
G↑ii(τ, τ) +G↓ii(τ, τ)−G↑ii(τ, τ)G↓ii(τ, τ)

〉
. (2.130)

m2
R=0(τ = 0) =

〈
1

NcNL

Nc∑
i=1

NL−1∑
τi=0

(
G↑ii(τ, τ) +G↓ii(τ, τ)−G↑ii(τ, τ)G↓ii(τ, τ)

)〉
QMC

, (2.131)

with τ = τi
β
NL

. In the eq. (2.130), it doesn't matter if we take nσ = 1−Gσ
ii(τ, τ) or not since

the result of the square local moment would be the same.
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2.3.3 Bethe-Salpeter equation

Now we focus on the two-particle cluster susceptibilities in the magnetic, pairing and charge
channels in the eq. (2.111), (2.116) and (2.128) respectively. Bethe-Salpeter equation, anal-
ogous to the Dyson's equation, allows us to extract the irreducible vertex Γ from the two-
particle susceptibilities:

χ0−1
c (P, P ′ = P )− χ−1

c (P, P ′, Q) = Γ(P, P ′, Q), (2.132)

where χ0−1 is the non-interacting susceptibility composed of a pair of fully-dressed single-
particle Green's functions and is de�ned as

χ0
c(P, P

′) = −G(P )G(P ′ +Q)δP,P ′ (magnetic) (2.133)
χ0
c(P, P

′) = +G(−P )G(P ′ +Q)δP,P ′ (pairing) (2.134)
χ0
c(P, P

′) = −2G(P )G(P ′ +Q)δP,P ′ , (charge) (2.135)

which are very similar to the connected terms in the eq. (2.109), (2.115) and (2.126) re-
spectively, and the single-particle Green's function G(P ) ≡ G(Kc, iωn) is de�ned in the eq.
(2.86). Note that there is an extra factor 2 in the eq. (2.135) because we do not divide the
charge susceptibility by two in the eq. (2.128).

The real physical quantities, lattice susceptibilities χ̄, are obtained by a coarse-grained
non-interacting susceptibility χ̄0 plus the interacting e�ects captured from the irreducible
vertex Γ′:

χ̄ =
χ̄0

1− Γ′χ̄0
. (2.136)

We always assume that the irreducible vertex Γ′ in the lattice susceptibility and the Γ in the
cluster susceptibility (eq. (2.132)) are equivalent once they are coarse-grained to the cluster
level so that

χ̄0−1 − χ̄−1 = Γ′ = Γ = χ0−1
c − χ−1

c , (2.137)

and the lattice and cluster susceptibilities are obtained by several useful expressions:

χ̄ =
1

χ̄0−1 − Γ
χc =

1

χ0−1
c − Γ

=
χ̄0

1− Γχ̄0
=

χ0
c

1− Γχ0
c

(2.138)

= χ̄0
(
1 + Γχ̄0 + Γχ̄0Γχ̄0 · · ·

)
= χ0

c

(
1 + Γχ0

c + Γχ0
cΓχ

0
c · · ·

)
= χ̄0 + χ̄0Γχ̄ = χ0

c + χ0
cΓχc (2.139)

= χ̄0 + χ̄0Fχ̄0 = χ0
c + χ0

cFcχ
0
c . (2.140)

where F (Fc) is the lattice (cluster) fully-reducible vertex and is de�ned by
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F =
Γ

1− χ̄0Γ
Fc =

Γ

1− χ0
cΓ

(2.141)

= Γ + Fχ̄0Γ = Γ + Fcχ
0
cΓ

= Γ + Γχ̄0F = Γ + Γχ0
cFc

(from eq. (2.140)) = χ̄0−1(χ̄− χ̄0)χ̄0−1 = χ0−1
c (χc − χ0

c)χ
0−1
c . (2.142)

And Γ in terms of F 9is

Γ =
F

1 + Fχ̄0
Γ =

Fc
1 + Fcχ0

c

(2.143)

=
F

1 + χ̄0F
=

Fc
1 + χ0

cFc
. (2.144)

Experimentally only the lattice susceptibility (χ) and the lattice fully-reducible vertex F can
be measured and have physical meanings. Plug right formula of eq. (2.144) into left of eq.
(2.141), we obtain lattice F in terms of cluster Fc as

F =
Fc

1− (χ̄0 − χ0
c)Fc

. (2.145)

The eq. (2.145) also determine Tc when the condition (χ̄0 − χ0
c)Fc = 1 is ful�lled. Another

way to determine Tcis based on the pairing matrix described in the following.
Now we are ready to de�ne the coarse-grained non-interacting susceptibilities in three

di�erent channels (use P = (K, iωn)):

χ̄0(P, P ) = −Nc

N

∑
k̃

1

iωn − εK+k̃ + µ− Σ(K)

1

iωn − εK+Q+k̃ + µ− Σ(K + Q)
(magnetic)

(2.146)

χ̄0(P, P ) =
Nc

N

∑
k̃

1

−iωn − ε−K−k̃ + µ− Σ(−K)

1

iωn − εK+Q+k̃ + µ− Σ(K + Q)
(pairing)

(2.147)

χ̄0(P, P ) = −2
Nc

N

∑
k̃

1

iωn − εK+k̃ + µ− Σ(K)

1

iωn − εK+Q+k̃ + µ− Σ(K + Q)
. (charge)

(2.148)

9Be careful about the right or left multiplication. For example, F
1+Fχ̄0 means

(
1 + Fχ̄0

)−1
F and F

1+χ̄0F

means F
(
1 + χ̄0F

)−1
.
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Table 2.3: Phases corresponding to the leading eigenvalue of the pairing matrix in eq. (2.149)
equals to one in the magnetic, charge and pairing channels. The d- (d + id)-wave at Q = 0
on the square (triangular) lattice is only for the hole-doped case in this thesis.
Phase forλ = 1 Q = 0(square) Q = 0(triangular) Q = (π, π)(square) Q = K (triangular)

magnetic Ferromagnetic Ferromagnetic Anti-ferromagnetic Anti-ferromagnetic
charge CDW CDW CDW �
pairing d-wave d+ id-wave � �

Phase transition occurs when the lattice susceptibility χ̄ diverges, i.e., the denominator
of the eq. (2.138) goes to zero. If we de�ne a 'pairing matrix' for a �xed Q = (Q, iνm = 0),

M(P, P ′) ≡ Γ(P, P ′)χ̄0(P ′, P ′), (2.149)

which is a two-dimensional matrix with size (NcNω)2, we say if the leading eigenvalue λ of
the pairing matrix goes to one, the system is experiencing a second order phase transition.
In the pairing channel, the corresponding eigenvectors tell us the pairing structure in the
momentum space, which guides us to choose a correct form factor to strengthen the pairing
susceptibility after projecting the quantity with a corresponding form factor.

We concern about the pairing mechanism. The Fermionic system requires the parity of
total wavefunction to be odd. Table (2.4) shows all possible pairing combinations. In the
hole-doped side of square-lattice Hubbard model, we �nd a d-wave pairing with Tc = 0.028t
when n ≈ 0.85, t′/t = 0, U = 6t and Nc = 16 (inset of the Fig. 3.1). In the hole-doped side
of triangular-lattice Hubbard model, we �nd a dx2−y2 + idxy-wave pairing with Tc = 0.06t
when n ≈ 0.9, t′/t = 1, U = 8.5t and Nc = 6 (Fig. 5.3). The orbitals in both cases are
d-wave and their corresponding spin con�gurations are singlets. The singlet (s) and triplet
(t) channels for a �xed Q = Q∗ ≡ (Q, iνm = 0) are de�ned as

χs/t(P, P
′) = χ(P, P ′)± χ(P,−P ′ −Q∗), (2.150)

where χ can be the lattice pairing susceptibility χ̄, or the reducible vertex F , or the irre-
ducible vertex Γ. Here we show how to construct a pairing matrix at Q ≡ (Q = 0, iνm = 0)
in the singlet and triplet channels. When the irreducible vertex is symmetrized, the lattice
bare bubble has a symmetry factor 1

2
to prevent the double counting.10

10When the particle-particle vertex is symmetrized into singlet or triplet, the upper and lower external legs

of the vertex are not distinguishable by their spin con�gurations. For example, the diagram
�s/t �s/t �s/t

and
�s/t �s/t �s/t are identical when the second diagram �ips the middle irreducible vertex by 1800. To

prevent such a double counting, a symmetry factor 1
2 is added between the pairing bare bubble and the

irreducible vertex. Because the eq. (2.151) is part of the eq. (2.138), where both left- and right-hand side of
each Γs/t has a χ̄0

s/t, one needs two symmetry factors 1
2 to avoid the double counting. For the symmetrized

particle-hole vertex, no symmetry factor is required.
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Table 2.4: Possible pairing combinations in momentum, frequency and spin con�guration in
s, p, d and f orbitals.

Momentum Frequency Spin

s even
even
odd

odd (singlet)
even (triplet)

p odd
even
odd

even (triplet)
odd (singlet)

d and dx2−y2 + idxy even
even
odd

odd (singlet)
even (triplet)

Chapter (4) and (5)

f odd
even
odd

even (triplet)
odd (singlet)

Ms/t(P, P
′) ≡ 1

2
Γs/t(P, P

′)
1

2
χ̄0
s/t(P

′, P ′) (2.151)

(use eq. (2.150)) =
1

2
[Γ(P, P ′′)± Γ(P,−P ′′)] 1

2
[δP ′′,P ′ ± δP ′′,−P ′ ] χ̄0(P ′, P ′)

=
1

4
× 2 [Γ(P, P ′)± Γ(P,−P ′)] χ̄0(P ′, P ′). (2.152)

We always compare the leading eigenvalues (λ) of the original pairing matrix in eq. (2.149)
and the eigenvalues (λs/t) of the singlet or triplet pairing matrix in eq. (2.151) to understand
the pairing mechanism in the table (2.4). For example, we have λ ≈ λs � λt near optimal
doping in the square-lattice Hubbard model and the eigenvalues give evidence that the pairing
should be a singlet.

In the following we will explain how to identify the possible pairing symmetry by pro-
jecting the pairing susceptibility on di�erent form factors. The form factor of each orbital
shown in the table (2.4) is de�ned by

|s〉 = 1, (square, triangular) (2.153)
|p〉 = sinkx + sinky, (square) (2.154)
|d〉 = coskx − cosky, (square) (2.155)

|dx2−y2〉 = 2coskx − 2cos

(
kx
2

)
cos

(√
3ky
2

)
, (triangular) (2.156)

|dxy〉 = −2sin

(
kx
2

)
sin

(√
3ky
2

)
, (triangular) (2.157)

|f〉 = sin(ky)− 2cos

(√
3kx
2

)
cos

(
ky
2

)
. (triangular) (2.158)
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The physical quantities we care about are the lattice pairing susceptibility and irre-
ducible vertex projected with di�erent form factors of interest. For example, the d-wave
susceptibility χ̄d ≡ 〈d|χ̄|d〉 / 〈d|d〉 diverges at a �nite Tc near optimal doping (n = 0.85,
t′/t = 0) in the square-lattice Hubbard model and the d + id-wave susceptibility χd+id ≡
〈d+ id|χ̄|d+ id〉 / 〈d+ id|d+ id〉, where d+id ≡ dx2−y2+idxy, diverges at the hole-doped side
(n = 0.9, t′/t = 1) in the triangular-lattice Hubbard model. The irreducible vertex projected
with the corresponding form factor is called pairing strength. For example, we will show the
d-wave pairing strength Vd ≡ 〈d|Γ|d〉 / 〈d|d〉 as a function of doping in the square-lattice Hub-
bard model and the d + id-wave pairing strength Vd+id ≡ 〈d+ id|Γ|d+ id〉 / 〈d+ id|d+ id〉
in the triangular-lattice Hubbard model in the following sections.

Here we will demonstrate how to project the form factors on a lattice susceptibility in a
singlet or triplet channel. We start from the eq. (2.140), and de�ne its singlet and triplet
channels according to the eq. (2.150):

χ̄s/t = χ̄0
s/t + χ̄0

s/tFs/tχ̄
0
s/t. (2.159)

According to the table (2.4), we need to consider the even or odd form factors in the mo-
mentum space and denoting them as

∣∣ke/o〉 (eq. (2.153) to eq. (2.158)). The odd frequency
form factor is de�ned by

fodd(ωn) =


1, ωn > 0
0, ωn = 0
−1, ωn < 0

. (2.160)

Of cause, feven(ωn) = 1 for all ωn. In fact, the eq. (2.159) is the coarse-grained susceptibility
projected with the s-wave form factor in eq. (2.153). Considering other form factors, we
need to project the lattice χs/t with the form factor before coarse-graining. Here we de�ne
the bare lattice χ0

s/t is just the eq. (2.133) to (2.135) replaced the cluster momentum by a
lattice momentum with the notation p ≡ (k, iωn) with k ≡ K + k̃. First we consider the
even frequency case, where the combination (momentum, spin) equals to (even, singlet) or
(odd, triplet), and the lattice bare bubble projected by the form factors becomes

〈
ke/o|χ0

s/t|ke/o
〉

=
〈
ke/o| [δp′′,p′ ± δp′′,−p′ ]χ0(p′, p′)|ke/o

〉
= 2χ0(P, P ), (2.161)

where the overbar of the curly bracket means the coarse-graining, the odd parity in momen-
tum cancels the minus sign between the delta functions and thus we obtain the coarse-grained
lattice bubble which is de�ned as

χ0(P, P ) ≡ Nc

N

∑
k̃

〈
ke/o

(
K + k̃

)∣∣∣χ0(K + k̃, iωn,K + k̃, iωn)
∣∣∣ke/o (K + k̃

)〉
. (2.162)

43



With the help of the symmetry factor 1
2
between χ0

s/t and F (see footnote 10), the second
term on the right hand side of eq. (2.159) becomes〈

ke/o
∣∣χ0

s/t

1

2
Fs/t

1

2
χ0
s/t

∣∣ke/o〉 =

〈
ke/o
∣∣ 1

4
χ0(p, p) (δp,p1 ± δp,−p1) [F (P1, P2)

±F (P1,−P2)] χ0(p2, p2) (δp2,p′ ± δp2,−p′)
∣∣ke/o〉

=
1

2

〈
ke/o
∣∣χ0(p, p) [F (P, P ′)± F (P,−P ′)

±F (−P, P ′) + F (−P,−P ′)] χ0(p′, p′)
∣∣ke/o〉. (2.163)

Thus the even-frequency lattice pairing susceptibility in the singlet or triplet channel pro-
jected and normalized by the corresponding form factor is obtained by〈

ke/o
∣∣χs/t∣∣ ke/o〉〈
ke/o|ke/o

〉 =
1〈

ke/o|ke/o
〉 {eq. (2.161)+eq. (2.163)} . (2.164)

Next we consider the odd frequency case. Now the combination (momentum, spin) can
be (even, triplet) or (odd, singlet) and here we need to take the frequency form factor, eq.
(2.160), into consideration. The lattice bare bubble becomes

fodd(ωn)
〈
ke/o|χ0

t/s|ke/o
〉
fodd(ω

′

n) = fodd(ωn)
〈
ke/o| [δp′′,p′ ∓ δp′′,−p′ ]χ0(p′, p′)|ke/o

〉
fodd(ω

′

n)

= 2χ0(P, P ), (2.165)

where the odd parity in frequency compensates the minus sign between the delta functions
and we again obtain the coarse-grained lattice bubble. Similarly, the reducible vertex con-
tribution becomes

fodd(ωn)

〈
ke/o
∣∣χ0

t/s

1

2
Ft/s

1

2
χ0
t/s

∣∣ke/o〉fodd(ω′n) =
1

2
fodd(ωn)

〈
ke/o
∣∣χ0(p, p) [F (P, P ′)∓ F (P,−P ′)

∓F (−P, P ′) + F (−P,−P ′)] χ0(p′, p′)
∣∣ke/o〉fodd(ω′n). (2.166)

Thus the odd-frequency lattice pairing susceptibility becomes

fodd(ωn)
〈
ke/o

∣∣χs/t∣∣ ke/o〉fodd(ω′n)〈
ke/o|ke/o

〉 =
1〈

ke/o|ke/o
〉 {eq. (2.165)+eq. (2.166)} . (2.167)

To reduce the computational burden in the eqs. (2.163) and (2.166), we can coarse-grain the
lattice bare bubble with one form factor �rst:

....
χ0(P, P ) ≡ Nc

N

∑
k̃

χ0(K + k̃, iωn,K + k̃, iωn)
∣∣∣ke/o (K + k̃

)〉
. (2.168)
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Next we replace
〈
ke/o
∣∣χ0(p, p) and χ0(p′, p′)

∣∣ke/o〉 in eqs. (2.163) and (2.166) with
....
χ0(P, P )

with proper indexes, then the momentum calculations in those equations are restricted to
the cluster momentum.

The pairing matrix in the eq. (2.149) under a �correct� form factor projection explains
the formation of a superconducting dome. For example, the d-wave projected pairing matrix
in the square-lattice Hubbard model is

Md = Vdχ̄
0
d, (2.169)

where χ̄0
d ≡ 〈d|χ̄0|d〉 / 〈d|d〉. As doping increases from the half �lling and T ∼ Tc, the pairing

strength Vd decreases while the bare bubble χ̄0
d increases and becomes more diverged near the

optimal doping (n = 0.85, t′/t = 0) then the over-doped region. Theoretically the quantity
Md as function of doping when T < Tc gives the shape of superconducting dome, but we
can hardly reach the temperature below Tc due to the minus sign problem in the QMC
simulations. Practically we extrapolate 1/χ̄d(T ) to obtain Tc, show doping dependence of
Vd and χ̄0

d at low enough temperature to see a qualitative behavior of the dome shape, and
show temperature dependence of χ̄0

d to see how the bare bubble diverges at low T at di�erent
doping regions.

2.3.4 Vertex decomposition

The particle-particle vertex can be decomposed into a fully irreducible vertex Λ, a particle-
hole (S = 0) charge contribution ΦC and a particle-hole (S = 1) spin contribution ΦS in the
even frequency case:[51]11

Γpp = Λ + ΦC + ΦS, (2.170)

where

Γpp =
1

2

Nc

T

∑
P,P ′

(Γ(P, P ′) + Γ(P,−P ′)) , (2.171)

with the Γ obtained from the pairing channel of the Bethe-Salpeter equation in eq. (2.132),
and

ΦC/S = a× b× 1

2

Nc

T

∑
P,P ′

[(
FC/S(−P ′, P,Q)− ΓC/S(−P ′, P,Q)

)
δP−P ′,−Q

+
(
FC/S(−P ′,−P,Q)− ΓC/S(−P ′,−P,Q)

)
δP+P ′,Q

]
, (2.172)

where the factor a = 2 for charge and a = 1 for magnetic (spin) in order to adjust the di�erent
de�nitions of charge and magnetic channels (see the discussion after the eq. (2.135)), and
the factor b = 1

2
for charge and b = −3

2
for spin, which are the coe�cients from the parquet

equations. Now we can project the form factors of interest on the eq. (2.170) to check
how the individual component under a speci�c symmetry contributes to the particle-particle
vertex.

11The formula (6) in Maier's paper[51] has a typo in the sign of ΦS .
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2.4 Maximum Entropy Method

Quantum Monte Carlo (QMC) simulations produces Green's functions G as a function of
imaginary time τ or Matsubara frequency iωn. To analytic continue G(τ) or G(iωn) to obtain
a real-frequency G(ω), one needs to invert the integral

G(τ) =

ˆ
dωA(ω)K(τ, ω), (2.173)

or equivalently

G(iωn) =

ˆ
dωA(ω)K(iωn, ω), (2.174)

where A(ω) = − 1
π
ImG(ω) (Fermion) or A(ω) = − 1

πω
ImG(ω) (Boson), and the kernels K

are de�ned as

K(τ, ω) =
e−τω

1 + e−βω
(Fermion) and K(τ, ω) =

ω
[
e−τω + e−(β−τ)ω

]
1− e−βω

(Boson), (2.175)

or equivalently

K(iωn, ω) =
1

iωn − ω
(Fermion) and K(iωn, ω) =

ω2

ω2 + ω2
n

(Boson). (2.176)

First, this inversion is an ill-posed problem because the small value in the high-frequency
tail of kernels gives little information of the spectrum A to G. In other words, in�nite
solutions exist to �nd A for a given G. Second, the left hand sides of the integral equations
(2.173) and (2.174) are obtained from the QMC and thus have error bars: {〈Gi〉 ± σi}. It's
intuitive to guess a trial spectrum Atrial(ωi) in eq. (2.173) and (2.174) to obtain Gtrial

i and
then apply the least-squares method on the QMC data:

χ2 =
∑
i

(〈Gi〉 −Gtrial
i )2

σ2
i

. (2.177)

However, this least-squares method does not work in general because the values of Atrial in
all frequencies ωi are allowed to move independently to minimize χ2, and the best estimate
Atrial may violate causalities (spectrum should be positive in all frequencies Atrial(ωi) ≥ 0).
Even if we restrict the spectrum to be causal, when χ2 � N (total number of imaginary
time or Matsubara frequency measured in QMC), the spectrum still display arti�cial noise
and oscillations to �over-�t� the QMC data. To solve the problems above, one introduces
the concept of default model which is the keystone leads to the success of the Maximum
Entropy Method. In the following I will brie�y summarize the Maximum Entropy Method
based on many theoretical works[52, 53, 54, 55, 56, 57, 58, 59].
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Maximum Entropy Method is a method tries to maximize the conditional probability
P (A|G), where A is the solution of spectrum to the integral eq. (2.173) and (2.174) based
on a given G from the QMC measurement. Use the identity of conditional probability,

P (A|G) = P (G|A)
P (A)

P (G)
, (2.178)

where we de�ne P (A|G) as posterior probability, P (G|A) as likelihood function, P (A) as prior
probability, and P (G) as evidence which is constant because G is measured from the QMC
process and is assumed to be equally probably determined.

The likelihood function tells us how precisely the data is measured under a given Atrial.
P (G|Atrial) = 1 if and only if χ2 = 0 and thus

P (G|Atrial) ∝ exp(−χ
2

2
), (2.179)

where χ2 is de�ned as

χ2 =
∑
i,j

(
Gtrial
i − 〈Gi〉

)
(C−1

i,j )
(
Gtrial
j − 〈Gj〉

)
, (2.180)

and Ci,j is called covariance matrix and de�ned as

Ci,j =
1

Nb(Nb − 1)

Nb∑
k=1

(
〈Gi〉 −Gk

i

) (
〈Gj〉 −Gk

j

)
, (2.181)

where Nb is the number of bins measured in QMC process, the indexes i and j run over the
number of imaginary time or Matsubara frequency, and 〈Gi〉 = 1

Nb

∑Nb
k=1G

k
i . If the errors at

di�erent values of τ or iωn are uncorrelated, Ci,j is diagonal and the eq. (2.180) becomes
the eq. (2.177), and the deviation σi can be derived as

σi =

√∑
k

(
〈Gi〉 −Gk

i

)2

Nb(Nb − 1)
=

√(
〈G2

i 〉 − 〈Gi〉2
)

Nb − 1
. (2.182)

But in general Ci,j has o�-diagonal terms because one cannot completely eliminate the
correlations at di�erent τ and iωn. Thus we always need to diagonalize the covariance
matrix �rst:

U−1CU = σ′2i δij. (2.183)

Second, we transform the kernel and the data G using the matrix U de�ned above:

K ′ = U−1K G′ = U−1G. (2.184)

In this diagonal space we can say each G′i is measured independently. Therefore, we can
de�ne the likelihood function (after normalized) as
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P (G|A) =
1

ZL
exp(−χ

2

2
), (2.185)

where

χ2 =
∑
i

(〈G′i〉 −
∑

lK
′
i,lAl)

2

σ′2i
, (2.186)

and ZL is the normalization factor of the likelihood function and de�ned as

ZL = (2π)N/2
N∏
i

σ′i. (2.187)

Next, we introduce a default model to de�ne the prior probability P (A). The default
model mi ≡ m(ωi) is introduced based on how good a guess of Ai ≡ A(ωi) compared with
the prior knowledge. According to the information theory, we use the Shannon entropy:

S(A) =
∑
i

(
Ai −mi − Ailn

Ai
mi

)
. (2.188)

This entropy has its maximum at S(A = m) = 0, which means that the spectrum A equals
to the default model m. If A and m are not identical, the entropy is less than zero. If the
prior probability behaves

P (A) ∝ exp(S(A)), (2.189)

then P (A) = 1 if A = m and P (A) < 1 if A 6= m , indicating the similar degree between
the solution A and a given (prior) m. To normalize P (A), we need to approximate the
integral by expanding S(A) to second order around the maximum. S ≈ 1

2
δAT∇∇S|A=mδA =

1
2
δAT{1/m}δA, where 1/m is the diagonal matrix with elements 1/mi, and δAi = Ai −mi.

Performing the functional integral, we have the normalization factor ZS like (using
´
DA ≡´

dNAQ
i

√
Ai
)

ZS =

ˆ
DAexp(αS)

≈
ˆ
DAexp

{
α

(
−1

2
δAT{1/m}δA

)}
= (2π/α)N/2 , (2.190)

where α is a regularization factor and will be discussed later. So far we have

P (A) =
1

ZS
exp (αS(A)) . (2.191)

This default model is a key in solving the inversion problem of the high-frequency tail of
kernels in eq. (2.173) and (2.174) for that one can always prepare a good default model (like
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-Q=χ2/2-αS

χ2/2

-S

{Ai}
a b c

{mi}

Figure 2.16: Schematic plots for χ2/2 (eq. (2.186)) and negative entropy −S (eq. (2.188))
and their combination Q (eq. (2.193)) with �nite value of α. Point a, c and b show the
corresponding minimums, and especially at point c, S = 0 and A = m.

Gaussian shape) with a well-behaved high-frequency tail. Now if we combine the likelihood
function and the prior probability, the posterior probability in eq. (2.178) becomes

P (A|G) ∝ P (G|A)P (A) ∝ exp(Q), (2.192)

with
Q = αS − 1

2
χ2, (2.193)

where α is a parameter controlling the tendency of data of minimizing the least squares χ2

and maximizing the information entropy S. If α → ∞, we force the solution A equals to
the default model m; if α→ 0, there is no prior information from the default model and the
whole question goes back to the least-squares method, like eq. (2.177). Figure 2.16 shows
three curves representing χ2/2, −S, and −Q curves. Maximum entropy method seeks for
maximum solution of P (A|G) or minimum solution of −Q. The best estimate spectrum
Ai that minimizes −Q is at the point b which is in the range of a to c. The spectrum at
the point a corresponds to the guess purely from the least-squares method and may violate
causality (Ai ≡ A(ωi) < 0 for certain ωi) while the spectrum at the point c does not have
extra information compared with the default model. At the point c, the entropy is zero
and the spectrum is identical to the default model; while at the point a, the least squares
χ2/2 may not be zero because we choose a causal trail spectrum (Atrial(ωi) ≥ 0) such that
the QMC data and the guess may not be �best �t�. To obtain a best physical spectrum,
one needs to prepare a good default model with a well-behaved high-frequency tail, and set
the initial α as large as possible to force the solution spectrum starts to behave similar to
the default model so that the spectrum's high-frequency tail is properly controlled. Next,
decrease α to �nd the maximum value of P (A|G) for each α. For a certain range of α one
may �nd the global maximum of P (A|G) as the solution spectrum. In the following I will
summarize three methods to determine α in the literature: historic, classic, and Bryan's
approaches.

Historic approach: Adjust α so that χ2 = N , where N is the number of imaginary
time τ or Matsubara frequency iωn. According to eq. (2.186), the right hand side is O(1)
for each term and thus χ2 = N on average. This approach is just a constraint to prevent
χ2 � N , where the solution spectrum is very close to the point a in Fig. 2.16 and the
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spectrum, even though it is causal, may display random oscillation and noise especially in
the high-frequency region.

Classic approach: Find α that maximizes P (α|G,m). Now we consider α as an ex-
tra unknown factor in the posterior probability: P (A,α|G,m). We obtain P (A|G,m) and
P (α|G,m) by integrating out α and functional integrating out spectra A. Their relations
are

P (A|G,m) = P (A|G) =

ˆ
dαP (A,α|G)

=

ˆ
dαP (A|α,G)P (α|G)

≈ P (A|α̂, G), (2.194)

if P (α|G) is sharply peaked at α = α̂ and

P (α|G,m) = P (α|G) =

ˆ
DA

[
P (G|A)P (A|α)

P (α)

P (G)

]
(2.195)

= P (α)

ˆ
DAexp(Q)

ZLZS
(2.196)

=

ˆ
DAexp(Q)

αZLZS
, (2.197)

where we use Je�rey's prior P (α) ∝ 1/α, P (G|A)P (A|α) ∝ exp(Q) from the eq. (2.192),
P (G) is assumed to be a constant and the normalization factors of likelihood function and
entropy are ZL (eq. (2.187)) and ZS (eq. (2.190)) respectively. According to eq. (2.194) and
eq. (2.195), the spectrum A and α depends on each other and both should be determined
iteratively.

Bryan's approach: If P (α|G) is not sharply peaked at α = α̂, the classic approach can
not be used. Bryan[60] calculates optimal spectrum Â(α) for each α in a certain range by
solving

δQ

δA

∣∣∣
A=Â

= 0. (2.198)

The solution spectrum is taken to be

A =

ˆ
dαÂ(α)P (α|G,m). (2.199)

Analytical continue the self energy of Hubbard model: High-frequency expansion
of the self energy of Hubbard model is (Fig. 2.17)

Σσ(K, iωn) = ΣH +
U2χ−σ,−σ
iωn

+O
(

1

(iωn)2

)
+ · · · (2.200)
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Figure 2.17: Second order expansion of the self energy in the Hubbard model.
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Annealing Procedure of Maximum Entropy Method
2D Hubbard Model, Nc=16B, U=6t, 4t=1, t’=0, n=0.85

Figure 2.18: Self energy spectrum σ(K, ω) = − 1
π
ImΣ(K, ω)/U2χσ,σ calculated by annealing

from the DCA data with U = 6t(4t = 1), t′ = 0, K = (0, 0), �lling n = 0.85 and Nc = 16
of the 2D Hubbard model. Annealing method: Start from the Gaussian model as the �rst
default model to obtain the highest-temperature (β = 2) spectrum as the second default
model to the next lower-temperature spectrum, and so on.

where ΣH is the Hartree term U(〈n−σ〉 − 1
2
) and χ−σ,−σ = U2 〈n−σ〉 (1− 〈n−σ〉).12 It's

intuitive to have

Σσ(K, iωn)− ΣH

U2χ−σ,−σ
=

1

iωn
+O

(
1

(iωn)2

)
+ · · · (2.201)

=

ˆ
dω
σ(K, ω)

iωn

(
1 +

ω

iωn
+

(
ω

iωn

)2

+ · · ·

)

=

ˆ
dω
σ(K, ω)

iωn − ω
, (2.202)

where
´
dωσ(K, ω) = 1 and σ(K, ω) = − 1

π
Σ′′(K, ω)/U2χσ,σ. Fig. 2.18 shows an exam-

ple of the analytical continuation of self energy by the annealing procedure, using higher
temperature spectra as the default model for the lower temperature spectra.

12We shift the Hartree term by U
2 based on the idea that the chemical potential µ′ = µ− U

2 = 0 and the
Hartree term is also vanishing at half �lling, n = 1 (〈n↑〉 = 〈n↓〉 = 1

2 ).

51



Chapter 3

Role of the van Hove Singularity in the Quantum Critical-

ity of the Hubbard Model

A quantum critical point is found in the phase diagram of the two-dimensional Hubbard
model[61]. It is due to the vanishing of the critical temperature associated with a phase
separation transition, and it separates the non-Fermi liquid region from the Fermi liquid.
Near the quantum critical point, the pairing is enhanced since the real part of the bare d-wave
pairing susceptibility exhibits an algebraic divergence with decreasing temperature, replacing
the logarithmic divergence found in a Fermi liquid[62]. In this chapter we explore the single-
particle and transport properties near the quantum critical point using high quality estimates
of the self energy obtained by direct analytic continuation of the self energy from Continuous-
Time Quantum Monte Carlo. We focus mainly on a van Hove singularity coming from the
relatively �at dispersion that crosses the Fermi level near the quantum critical �lling. The �at
part of the dispersion orthogonal to the antinodal direction remains pinned near the Fermi
level for a range of doping that increases when we include a negative next-nearest-neighbor
hopping t′ in the model. For comparison, we calculate the bare d-wave pairing susceptibility
for non-interacting models with the usual two-dimensional tight binding dispersion and a
hypothetical quartic dispersion. We �nd that neither model yields a van Hove singularity that
completely describes the critical algebraic behavior of the bare d-wave pairing susceptibility
found in the numerical data. The resistivity, thermal conductivity, thermopower, and the
Wiedemann-Franz Law are examined in the Fermi liquid, marginal Fermi liquid, and pseudo-
gap doping regions. A negative next-nearest-neighbor hopping t′ increases the doping region
with marginal Fermi liquid character. Both T and negative t′ are relevant variables for
the quantum critical point, and both the transport and the displacement of the van Hove
singularity with �lling suggest that they are qualitatively similar in their e�ect.

In this work I improved the e�ciency of the INT-CTQMC codes, wrote the checkpoint
in each DCA iteration to make low-temperature calculations possible. I also developed
the MEM code which can analytically continue the self energy with the minus sign in the
QMC measurement. I also calculated the transport properties such as resistivity, thermal
conductivity, and thermopower using the Kubo's formula. This chapter has been published
in the journal of Phys. Rev. B, 84, 245107 (2011)[23].

3.1 Introduction

A plausible scenario for the high temperature superconductivity in cuprates is based upon
the presence of a van Hove singularity corresponding to the saddle points in the single
particle energy dispersion[63, 64, 65, 66]. These �at regions in the energy dispersion are
directly observed in ARPES experiments on various cuprate compounds[67, 68, 69, 70, 71].
Recently, it was also observed in the tunneling spectra of Bi-2201[72]. The presence of saddle
points in the energy dispersion is also argued to lead to a superconducting instability in other
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correlated systems, e.g. graphene[73]. If the Fermi level is doped to coincide with the van
Hove singularity, then the superconducting transition temperature can be greatly enhanced.

The van Hove scenario is also argued[74, 75, 76] to be responsible for the marginal Fermi
liquid behavior[77] in which the lifetime broadening of the quasiparticles is of the order of its
energy. Thus the van Hove scenario is argued to account for the linear-T resistivity[76, 75, 78],
T -independent thermopower[75], anomalous isotope e�ect[76], etc.

There is numerical evidence for the presence of van Hove singularities in models of strongly
correlated systems. The energy dispersion of one hole in an antiferromagnetic background
has been considered in studies of the Hubbard model[79, 80] and t-J model[81]. These studies
report the presence of extended saddle points. Assaad et al.[79] found that the dispersion
has a quartic dependence with momentum near the anti-nodal point (π, 0).

These examples of extended saddle points in various correlated superconducting systems,
and their proximity to the Fermi level at the doping where the maximum transition tem-
perature occurs, demonstrate that it is extremely important to understand the role played
by these singularities. A plethora of scienti�c e�orts have been devoted towards achieving
this understanding[82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103]. At the simplest level, the role of the van Hove singularity may be interpreted
within the BCS formalism. Here, the superconducting transition temperature, Tc, is deter-
mined by the condition V χ′0(ω = 0) = 1, where χ′0 is the real part of the q = 0 bare pairing
susceptibility, and V is the strength of the pairing interaction. In a BCS superconductor,
χ′0(ω = 0) displays a logarithmic divergence as T → 0, yielding the BCS exponential form
for Tc. The van Hove singularity enhances the divergence of χ′0(ω = 0), yielding higher
transition temperatures.

There is also strong evidence for a quantum critical point located beneath the super-
conducting dome in the cuprates, and in close proximity to the doping with the maximum
Tc[104, 105]. Above the quantum critical point, in a range of doping associated with marginal
Fermi liquid behavior, the in-plane resistivity is known to vary linearly with T over a wide
range of temperatures[106, 107, 108, 109, 110, 111, 112]. In the Fermi liquid region the low
temperature resistivity varies as T 2. The resistivity increases as the doping decreases from
the Fermi liquid into the pseudogap region. Moreover, the thermal conductivity κ[113, 114],
the thermopower S[104, 105] and the tunneling conductance g[115] have been investigated
near the quantum critical point of the cuprates. κ is observed to be nearly independent of
temperature in the marginal Fermi liquid state[116] and depends on 1/T in the Fermi liquid
region. This is consistent with the Wiedemann-Franz Law[117], κρ ∝ T . Chakraborty et
al.[104] suggested that the thermopower changes sign abruptly near the optimal doping in
most of the cuprate materials, signaling a state with particle-hole symmetry. Also in the
marginal Fermi liquid, the tunneling conductance g(V ) ∼ g0 +g1|V |, where g0 and g1 weakly
depend on T and V .

A recent study[61] reported the presence of a quantum critical point in the two-dimensional
Hubbard model, where the quasiparticle spectral weight becomes zero. This quantum crit-
ical point separates the non-Fermi liquid pseudogap from the Fermi liquid region, and is
surrounded by a superconducting dome (c.f. the inset in Fig. 3.1). At �nite temperatures,
the Fermi liquid and pseudogap regions are separated by the marginal Fermi liquid. Interest-
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ingly, at the quantum critical point, the density of states is found to be nearly particle-hole
symmetric at low frequencies with a sharp peak at ω = 0. This �lling is tantalizingly
close to the optimal doping where the superconducting transition temperature Tc attains
its maximum. The proximity of the superconducting dome to the quantum critical point
was recently investigated by[62]. Unlike the BCS case, they found that the bare d-wave

pairing susceptibilityχ′0d(ω = 0) diverges algebraically as
1√
T

at the quantum critical point,

thus leading to a strongly enhanced Tc. Using the Kramers-Krönig relation between the

real part and the imaginary part of the susceptibility, χ′0d(T ) =
1

π

ˆ
χ′′0d(ω)

ω
dω, the alge-

braic divergence of χ′0d(T ) was found to come from a scaling behavior of the imaginary part
χ′′0d(ω). When T 3/2χ′′0d(ω)/ω is plotted against ω/T , the di�erent temperature curves fall
on top of each other when ω ≥ Ts ≡ 4tT/J , determining a scaling function H(x) such
that T 3/2χ′′0d(ω)/ω = H(ω/T ) ≈ (ω/T )−3/2 (see Fig. 3.1). The contribution from H to

χ′(T ) =
T−3/2

π

ˆ
H(ω/T )dω ∝ T−1/2 which will dominate at low T .

Since this enhanced behavior is expressed in the bare pairing bubble, dressed by the self
energy but with no vertex corrections, this discussion naturally raises the question about the
role played by the van Hove singularity in the quantum criticality and its possible connection
to the superconducting Tc. In this chapter, we use the dynamical cluster quantum Monte
Carlo method to explore the relationship between the quantum critical point and the van
Hove singularity for high-temperature superconductivity in the Hubbard model. We obtain
high quality estimates of the real-frequency single-particle self energy Σ(K, ω) at the cluster
momenta K by direct analytic continuation of the Matsubara frequency self energy Σ(K, iωn)
using the maximum entropy method[57, 118]. This direct method avoids the artifacts on
the self energy that come about by inverting the coarse-grained Dyson's equation[57] (eq.
(2.27)). In the model without next-nearest-neighbor hopping (t′ = 0), we �nd that, as we
dope the system across the quantum critical �lling, a �at region in the dispersion crosses the
Fermi level, accompanied by a sharp nearly symmetric peak in the density of states which
also passes through the Fermi level. We �nd that the resistivity follows a linear-T dependence
over a wide range of temperatures yet a narrow range of doping (see Fig. 3.14). We use
these high quality estimates of the self energy to calculate the bare pairing susceptibility, we
again �nd the collapse of the data found in Fig. 3.1. To understand the role played by the
van Hove singularity in determining this critical behavior, we have calculated the pairing
susceptibility in the d-channel for two non-interacting models at half �lling - the standard
quadratic dispersion and a hypothetical quartic dispersion. While the quartic dispersion
can yield the observed algebraic divergence of χ′0d(ω = 0), neither dispersion produces the
collapse of the data found in Fig. 3.1, suggesting that a van Hove singularity alone does
not capture this phenomena. For negative t′, the resistivity follows a linear-T behavior over
a wider range of doping, and the sharp peak in the density of states and the �at region of
the dispersion linger near the Fermi level for the same wider range of doping. These results
suggest that the doping region a�ected by quantum criticality at low temperature becomes
larger when t′ < 0. We also show that the zero-frequency imaginary part of the self energy
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Figure 3.1: (Color online) Frequency dependence of the imaginary part of the particle-particle
d-wave susceptibility obtained from the Dynamical Cluster Approximation for various tem-
peratures at the critical �lling n = 0.85 when U = 6t, t′ = 0 and 4t = 1. The arrow denotes
the direction of decreasing temperature. All the curves fall on top of each other for frequen-
cies greater than Ts/T ≈ 4t/J . The inset shows the phase diagram for the same parameters
(t, t′ and U) including the Fermi Liquid (FL), Marginal Fermi Liquid (MFL) and Pseudo-
gap (PG) regions. The lines indicate the d-wave transition temperature Tc (determined by
extrapolation of data from Nc = 8, 12 and 16 site clusters), the pseudogap temperature
T ∗, and the Fermi liquid temperature TF . (Taken from Yang et al.[62]) The quasiparticle
fraction on the Fermi surface vanishes at the quantum critical point where T ∗ = TF = 0,
and remains zero in the pseudogap region[61].

Σ′′(T, ω = 0), the dominant contribution to the resistivity, has a wider range of linear-T
behavior for t′ < 0 than t′ = 0. All this motivates us to speculate a phase diagram near the
quantum critical point in the discussion section.

This chapter has been organized as follows. Section 3.2 brie�y outlines the model and
methods used in this study. Results are presented in section 3.3. Single particle properties
are discussed in section 3.3.1; the pairing susceptibility calculation in section 3.3.2, the e�ect
of t′ on the dispersion in 3.3.3, and transport results in 3.3.4. The chapter is concluded with
the discussion in section 3.4.
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3.2 Formalism

In this work, we look for direct evidence of the van Hove singularity and marginal Fermi
liquid behavior in the spectra, electronic dispersion, and transport properties of the two-
dimensional Hubbard model which is de�ned in the eq. (2.1) and (2.23) with the bare
dispersion given in the eq. (2.3).

We employ the Dynamical Cluster Approximation (DCA)[119, 45] with a quantum Monte
Carlo algorithm as the cluster solver. The DCA is a cluster mean-�eld theory that maps
the original lattice onto a periodic cluster of size Nc = L2

c embedded in a self-consistently
determined host. This many-to-one map is accomplished by dividing the lattice Brillouin
zone into cells centered at momenta K, and coarse graining the lattice Green's functions by
summing over the momenta labeled with k̃ within each cell. The coarse grained eq. (2.27)
is rewritten as

Ḡ(K, ω) =
Nc

N

∑
k̃

G(K + k̃, ω), (3.1)

where Ḡ andG are the coarse-grained and the lattice single-particle propagators, respectively.
The coarse-grained Green's function de�nes the cluster problem. Spatial correlations up to
a range Lc within the cluster are treated explicitly, while those at longer length scales are
described at the mean-�eld level. However the correlations in time, essential for quantum
criticality, are treated explicitly for all cluster sizes. To solve the cluster problem, we use
continuous-time quantum Monte Carlo[49], which has no Trotter error,[120] and the Hirsch-
Fye quantum Monte Carlo method[121, 122] for the charge polarizability in Fig. 3.2. We
employ the maximum entropy method[57] to calculate the real-frequency spectra.

3.2.1 Calculation of Single-Particle Spectra

In previous calculations of the single-particle spectra, we analytically continue the quantum
Monte Carlo Ḡ(K, τ) to obtain Ḡ(K, ω) then invert the coarse-graining Eq. (3.1) to obtain
the self energy Σ(K, ω). This last step can introduce spurious features in Σ(K, ω). As
observed previously[118], it is better to analytically continue the self energy directly. In this
section we paraphrase the paragraph of continuing self energies in the section 2.4. Because the
self energy spectra does not share the normalization of

´
dωĀ(K,ω) = 1, where Ā(K, ω) =

− 1
π
Ḡ′′(K, ω). This normalization is a desirable feature since it allows us to treat the spectrum

as a normalized probability distribution. Since the Hubbard self energy Σ(K, iωn) = ΣH +
U2χσ,σ/iωn + · · · , where χσ,σ = 〈nσnσ〉 − 〈nσ〉2 = nσ(1 − nσ) is the local polarizability of
a single spin species σ, and Σ(K, iωn) − ΣH =

´
dω − 1

π
Σ′′(K,ω)
iωn−ω . It is easy to see that the

integral of Σ(K, iωn)− ΣH is U2χσ,σ. Therefore we will analytically continue

Σ(K, iωn)− ΣH

U2χσ,σ
=

ˆ
dω
σ(K, ω)

iωn − ω
, (3.2)

where σ(K, ω) = − 1
π
Σ′′(K, ω)/U2χσ,σ,

´
dωσ(K, ω) = 1, using χσ,σ calculated in the Monte

Carlo process. After that we obtain the lattice self energy Σ(k, ω) by interpolating the cluster
self energy Σ(K, ω) to get the single-particle spectral function A(k, ω).
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3.2.2 d-wave Pairing Susceptibility

We calculate the susceptibility in the d-wave channel to the pair �eld V = −fdb†d + h.c, for

various models with a van Hove singularity at the Fermi level. Here b†d = 1
2

∑(
b†i+x̂ − b

†
i+ŷ

)
is the singlet creation operator, where b†i+α̂ creates a singlet at bond i-(i + α̂), α = x, y,
and fd is a complex constant. The non-interacting d-wave pairing susceptibility χ0d can be
computed by calculating the susceptibility bubble

χ0d(T ) = T
∑
k,iωn

g2
d(k)G0(k, iωn)G0(−k,−iωn), (3.3)

where gd(k) is the d-wave form factor given by gd(k) = cos kx − cos ky. G0(k, iωn) is the
non-interacting Green function given by

G0(k, iωn) =
1

iωn − ε0k
, (3.4)

with ε0k the bare band dispersion in Eq.(2.3). χ0d can be evaluated using standard Matsubara
summation which gives

χ0d(T ) =
∑
k

g2
d(k)

(
1− 2fk

2ε0k

)
, (3.5)

where fk is the Fermi function.

3.2.3 Transport Coe�cients

To explain the anomalous transport properties of the marginal Fermi liquid, Varma et al[77,
123]. postulate that for a wide range of wavevectors q, excitations make a contribution to
the absorptive spin and charge polarizabilities re�ected by

χ′′(q, ω) ∝ min (|ω/T | , 1) sign(ω). (3.6)

Electrons scattering from these excitations acquire a self energy

Σ(k, ω) ∝ ω ln (x/ωc)− iπx/2, (3.7)

where x = max(|ω|, T ), and ωc is a cuto�. The marginal Fermi liquid ansatz has several
consequences on experimentally relevant quantities, including transport anomalies, such as
the linear-T electrical resistivity, the tunneling conductance g(V ) ∼ g0 + g1|V |, the pho-
toemission, the nuclear relaxation rate T−1

1 ∼ aT + b, the optical conductivity σ(ω), the
Raman scattering, and the superconductive pairing. For the speci�c heat Cv(T ) and ther-
mal conductivity κ(T ), Varma argued that the normal state's electronic contribution is hard
to extract from the experimental data due to the large phonon contribution. The electronic
thermal conductivity for the marginal Fermi liquid approximates to a constant because the
Wiedemann-Franz law roughly holds.

To calculate the various Onsager transport coe�cients we use the Kubo formula[124]:
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Lijαβ = π

ˆ
dω

(
− df
dω

)
ωi+j−2Dαβ(ω), (3.8)

where f is the Fermi function and

Dαβ(ω) =
1

N

∑
k

vα(k)vβ(k)A(k, ω)2, (3.9)

where vα(k) is the α-component of the electron group velocity and A(k, ω) is the single-
particle spectral function. The di�erent transport coe�cients are given by combinations
of Lij. For example, in units where e = 1 and the chemical potential µ = 0, the re-
sistivity ρ(T ) = 1/L11, the thermopower S = −L12/TL11, the thermal conductivity κ =
1
T

(L22 − (L12)2/L11), and the Peltier coe�cient Π = L21/L11.
We note that a simpler estimate exists for the thermopower S. Here, we perform a

Sommerfeld expansion of L12 at the Fermi level and get an alternative form:

S = −π
2

3
T
∂ log[Dαβ(ω)]

∂ω

∣∣
ω=0

. (3.10)

If the electron group velocity is a constant, and the square of the single-particle spectra is
approximated by δ(ω − εk)τk, where τk is the relaxation time, also assumed constant, the
thermopower over temperature becomes just the derivative of the logarithm of the density
of states at the Fermi level[125].

3.3 Results

3.3.1 Single Particle Properties for t′ = 0

We �rst explore the charge polarizability in the marginal Fermi liquid region at n = 0.85. The
imaginary component of the local charge polarizability χ′′c (r = 0, ω) is plotted in Fig. 3.2.
The main plot shows χ′′c (r = 0, ω) divided by its initial slope at zero frequency (determined
in the inset), so that the curves coincide for low ω. At higher frequencies, the curves break
from this linear rise at a frequency roughly proportional to the temperature. The inset shows
that the zero frequency slope, χ′′c (r = 0, ω)/ω|ω=0, is roughly linear in inverse temperature
up to T ≈ 0.2 or roughly 2J = 8t2/U . These features are consistent with the marginal
Fermi liquid polarizability in Eq. (3.6). The spin polarization (not shown) does not display
such an extended region of marginal Fermi liquid character. This result is consistent with
marginal Fermi liquid behavior due to the proximity of a quantum critical point associated
with phase separation.

Fig. 3.3 shows the frequency dependence of the imaginary self energy at the Fermi
momenta along the anti-nodal (XΓ) and the nodal (ΓM) directions for three �llings: n = 0.75
(Fermi liquid), n = 0.85 (marginal Fermi liquid) and n = 0.95 (pseudo-gap). For the self
energy at n = 0.75, the quadratic dashed line (bottom right panel) provides a good �t
to Σ′′(kF , ω) for small ω, as expected from the Fermi liquid theory[126]. The marginal
Fermi liquid self energy has a form given by Eq. (3.7), which states that the imaginary self
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Figure 3.2: (Color online) The local r = 0 imaginary part of the dynamical charge polar-
izability divided by the initial slope at ω = 0, for n = 0.85, U = 6t, 4t = 1, t′ = 0 and
Nc = 16. It satis�es the marginal Fermi liquid form given by Eq. (3.6). Inset: the zero
frequency slope of χ′′c (r = 0, ω) is roughly linear in inverse temperature, as expected. The
line is a linear �t to the expression a+ b/T .
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energy is proportional to the negative temperature for small frequency and to the negative
ω when the temperature is low. The marginal Fermi liquid self energy in Fig. 3.3 (upper
right panel) shows a linear behavior, but interestingly with di�erent slopes for positive and
negative ω. This is not consistent with Eq. 3.7, but this may be due to the presence of some
short range order. I.e., Markiewicz et al.[127] calculated the self-energy due to the random-
phase approximation (RPA) magnetic polarizability for a single band model with dispersion
obtained by a �tting to the tight binding local-density approximation. They found that the
self-energy has linear forms but with di�erent slopes on positive and negative ω when the
van Hove singularity is at the Fermi level and quadratic otherwise.

Fig. 3.4 shows the temperature dependence of the self energy when ω = 0 and t′ = 0.
Again we �nd a result consistent with Eq. 3.7, Σ′′(kF , ω → 0) ∝ −T , around the marginal
Fermi liquid �lling for n = 0.85 and 0.86. The dashed lines are linear �ts. The error bars are
estimated by changing the random seeds in the Monte Carlo calculation. However, they do
not re�ect the systematic error that comes from the bias towards the default model, which
in this case is the spectra from the next higher temperature. This error is largest at low T
where the data is weak due to the minus sign problem.

The self energy and dynamic charge polarizability near the critical �lling nc = 0.85 are
generally consistent with Varma's marginal Fermi liquid ansatz, as are the results found pre-
viously for the kinetic and potential energies which vary with temperature like T 2 ln(T )[128]
and the vanishing wave function renormalization factor[61]. To understand the relationship
of these results to the van Hove singularity, we will explore the density of states and the
quasiparticle dispersion.

The density of states for several �llings is shown in Fig. 3.5. Since we have highly en-
hanced the quality of the self energy by direct analytic continuation of Σ(K, iωn), the density
of states in Figure 3.5 shows sharper features as compared to the results of Vidhyadhiraja
et al[61]. As the doping decreases from the Fermi liquid to the pseudo-gap region, the peak
of the density of states moves from positive to negative energy while its intensity is reduced.
For n = 0.95, a pseudogap begins to open and a peak to form at positive frequencies. The
half-�lled case (n = 1, not shown) shows upper and lower Hubbard bands located at positive
and negative frequencies, respectively. The density of states for �lling 0.88, close to the
critical �lling of 0.85, shows low-frequency particle-hole symmetry.

Fig. 3.6 shows the dispersion obtained from the peaks of the spectral function A(k, ω)
for four �llings: n = 0.85, 0.87, 0.88 and 0.95, along the anti-nodal direction and around the
Fermi vector kF . In order to de�ne kF we look for the maximum value of the zero frequency
spectral function A(k, ω = 0). In the Fermi liquid and marginal Fermi liquid regions, this
de�nition is roughly equivalent to the Luttinger surface de�ned where G′(k, ω = 0) changes
sign. The two de�nitions yield di�erent results for the pseudogap region, especially when t′ <
0 which enhances the pseudogap. However, this di�erence is not large enough to qualitatively
change our results or to change any of our conclusions. Therefore, for simplicity, we only
show results using the �rst de�nition of kF . For a particular �lling, the left panel shows
the dispersion along the kx direction (ky = 0), while the right panel shows the dispersion
along ky (kx = kFx). A common identi�able feature for all �llings is the presence of a �at
region in the dispersion. This �at region is responsible for the van Hove singularity in the
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Figure 3.6: (Color online) Energy dispersion obtained from the peaks of the spectral function
A(k, ω) for various �llings around the Fermi vector kF along the anti-nodal direction for
t′ = 0, U = 6t, 4t = 1, Nc = 16 and β = 58. By �xing ky = 0 we explore the dispersion along
the kx direction, and for kx = kFx the dispersion along the ky direction is plotted. Notice
that the energy axes are inverted so that positive energies are plotted down. The dispersion
along the ky direction remains pinned near the Fermi level for a range of doping near the
center of the superconducting dome (c.f. the inset of Fig. 3.1) while the dispersion along
the kx direction crosses the Fermi level continuously without being pinned.
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Figure 3.7: (Color online) Single particle dispersion around the Fermi energy taken along
the anti-nodal direction (ky = 0). The data is from Fig. 3.6. The solid lines are �ts to a
quadratic dispersion.

density of states. The van Hove singularity passes through the Fermi level at a �lling of
n ≈ 0.88, which is near the quantum critical �lling, n ≈ 0.85, where the quasi-particle
weight Z goes to zero[61]. At this �lling, the topology of the Fermi surface also changes from
hole-like (closed around the point k = (π, π)) to electron-like (closed around k = (0, 0))
with increasing �lling (not shown) as seen in experiment[129]. The dispersion along the
ky direction remains pinned near the Fermi level for a range of doping near the center of
the superconducting dome, while the dispersion along the kx direction passes continuously
through the Fermi level. This anisotropic motion of the �at dispersion is consistent with a
van Hove peak which moves continuously through the Fermi level as shown in Fig. 3.5, and
would correspond to a �at region at the Fermi level which is most isotropic at the crossing
and shrinks to narrow pencil-like regions for �llings above and below the crossing.

The dispersion along the anti-nodal direction as a function of kx for various �llings is
displayed in Fig. 3.7. Interestingly, a quadratic form �ts well to the data for all �llings.
Next, we investigate if such a dispersion can capture the critical algebraic divergence of the
pairing susceptibility.

3.3.2 Pairing Susceptibility

The density of states and the dispersion show clear evidence for a van Hove singularity
which crosses the Fermi level near the critical �lling. In order to see whether the van Hove
singularity alone is su�cient to explain the enhanced bare pairing bubble, we calculate
the pairing susceptibility in the d-wave channel for two simple models having a van Hove
singularity at the Fermi level. We begin with the tight binding model given by Eq. (2.3)
at half �lling and t′ = 0. The associated density of states has a logarithmic singularity at
ε = 0, N(ε) = log |ε|. The temperature dependence of χ′0d can be obtained by converting
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Figure 3.8: (Color online) Temperature dependence of the real part of the particle-particle
d-wave susceptibility at ω = 0 for the two-dimensional tight binding dispersion at half
�lling. Note that χ′0d diverges logarithmically as T → 0. Inset: Frequency dependence
of the imaginary part of the particle-particle d-wave susceptibility. Note that the curves
corresponding to various temperatures do not scale at large frequency. The arrow denotes
the direction of decreasing temperature.

Eq. (3.5) to an integral over energy with a temperature T cuto�. It results in a −(log T )2

behavior. This is con�rmed by explicit calculation of the sum in Eq. (3.5) as illustrated in
Fig. 3.8. As shown in the inset, the imaginary part does not show scaling behavior as seen
in Fig. 3.1.

We also consider the next higher order model allowed by the symmetry of the square
lattice, a hypothetical model with a quartic dispersion

εk = − 4

π4

(
(|kx| − π)4 − k4

y

)
. (3.11)

Such an extended form has been observed in experiments[68] and also con�rmed by
theoretical studies[80]. The low energy density of states for the quartic dispersion becomes
N(ε) ∼ 1/

√
|ε|[89]. Following a similar logic as we used for the tight binding dispersion, for

a quartic dispersion, we get

χ′0d ∼
1√
T

(3.12)

Results for the explicit calculation (Eq. (3.5)) are shown in Fig. 3.9, and are consistent
with the analytical arguments above. Though the temperature dependence of the real part
of the bare susceptibility is found to be algebraic for this quartic dispersion, the inset reveals
that the imaginary pairing susceptibility does not exhibit the scaling found by Yang et al[62].
Thus, the simple non-interacting picture of the van Hove singularity at the Fermi level does
not completely describe the true temperature and frequency dependence of the susceptibility.
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Figure 3.9: (Color online) Temperature dependence of the real part of the particle-particle
d-wave susceptibility at ω = 0 for the quartic dispersion of Eq. (3.11) at half �lling. Note
that χ′0d diverges algebraically ∼ 1/

√
T as T → 0. A �t to a+b/xc gives values of a = −10.6,

b = 1.98 and c = 0.54. Inset: Frequency dependence of the imaginary part of the pairing
d-wave susceptibility. Note that the curves corresponding to various temperatures does not
scale well at large frequency. The arrow denotes the direction of decreasing temperature.

3.3.3 E�ect of negative t′

The single-band Hamiltonian used to model the hole-doped cuprates generally includes a
negative next-nearest-neighbor hopping t′. For t′ = −0.1t, the temperature dependence of
the self energy at the Fermi momenta and energy is shown in Fig. 3.10. We �nd that
Σ′′(kF , ω = 0) follows a linear behavior over a wider range of �llings, from n = 0.83 to 0.87.

Fig. 3.11 demonstrates that the inclusion of a negative t′ also results in the pinning of
the �at part of the ky-dispersion to the Fermi level. However, now the pinning is observed
for a larger range of �llings, roughly 0.80 to 0.86. Thus both measurements, the temperature
dependence of the self energy and the pinning of the �at dispersion to the Fermi level, are
consistent. If we take the viewpoint that the quantum critical point and the pinning of the
dispersion along ky to the Fermi level are concomitant aspects of quantum criticality, then a
negative t′ leads to a larger range of quantum critical �llings. We will also see the signature
of this behavior in various transport properties discussed in Section 3.3.4.

Fig. 3.12 shows the density of states for t′/t = −0.1 and various �llings as a function of
ω. For a given �lling, the inset of Fig. 3.12 shows that the peak in the density of states is
slightly shifted to smaller frequencies when compared with the peak in the density of states
for t′ = 0. It displays particle-hole symmetry roughly at n = 0.84, not n = 0.88 as for t′ = 0.
Moreover, if we use ∆ωp/∆n, where ωp is the location of peak in the density of states and n
is the �lling, to estimate the rate at which the peak crosses the Fermi level, we �nd that the
peak of the density of states for t′ = 0 crosses the Fermi level more quickly than the peak
for negative t′. This can be seen in the inset of Fig. 3.12, where the �lling dependence of
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Figure 3.10: (Color online) Temperature dependence of the imaginary part of the self energy
Σ′′(kF , ω = 0) at the Fermi energy and momenta, U = 6t, Nc = 16,4t = 1, and t′/t = −0.1.
The self energy for �lling between n = 0.83 and 0.87 shows a linear-T behavior.

the peak location has a steeper slope for t′ = 0 than that for t′/t = −0.1 at the Fermi level.
This con�rms that negative t′ leads to a wider range of �llings with a van Hove peak near
the Fermi level. The fact that this range of �llings coincides with the region where marginal
Fermi liquid behavior is seen in the self energy suggests that the van Hove singularity and
quantum criticality are related.

Another interesting point to be noted here is that, when compared to the t′ = 0 result,
the quasi-particle peaks become more incoherent for negative t′. This can be seen in the
Matsubara quasiparticle weight along the antinodal momentum direction, ZAN [61] displayed
in Fig. 3.13 as a function of temperature for di�erent �llings. The quasiparticle fraction is
consistently smaller for t′/t = −0.1 than for t′ = 0 for all �llings. This can also be seen
through the increase of the blue color in the dispersion curves in Fig. 3.11 when compared
with Fig. 3.6.

3.3.4 Transport Properties

Matrix element e�ects[130, 131], and the low precision of inverse photoemission can com-
plicate the direct measurement of the �at dispersion resulting in the van Hove singularity,
making indirect probes like the Fermi surface topology[129] and transport measurements
more important. The van Hove singularity and the quantum critical point will also impact
the transport properties of the system. Using the Kubo formula under the relaxation time
approximation in Eqs. (3.8) and (3.9), we obtain the resistivity, thermal conductivity, and
thermopower in the Fermi liquid, marginal Fermi liquid, and pseudo-gap regions.

Fig. 3.14 shows the resistivity as a function of temperature for t′ = 0, left panel, and
t′/t = −0.1, right panel. Linear resistivity reveals evidence of the marginal Fermi liquid
because the electronic cross section is proportional to −Σ′′(kF , ω = 0) at low T , and, as
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Figure 3.11: (Color online) Energy dispersion obtained from the peaks of the spectral func-
tion A(k, ω) for various �llings around the Fermi vector kF along the anti-nodal direction
for t′/t = −0.1, U = 6t, 4t = 1, Nc = 16 and β = 48. The dispersion along the ky direction
remains pinned near the Fermi level for a broader range of dopings than found when t′ = 0.
Again, the dispersion along the kx direction moves continuously across the Fermi level.
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Figure 3.12: (Color online) Single-particle density of states for t′/t = −0.1 when U = 6t,
Nc = 16, 4t = 1, and β = 48. Inset: Comparison of the �lling dependence of the position of
the peak of the density of states (ωp) for t′ = 0 and t′/t = −0.1. As the �lling changes, ωp
for t′ = 0 crosses the Fermi level more quickly than for t′/t = −0.1.
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Figure 3.13: (Color online) Temperature dependence of the Matsubara fraction along the
anti-nodal direction, ZAN , for various �llings for t′ = 0 and t′/t = −0.1. At the same �lling
and temperature, the Matsubara fraction decreases when t′ < 0.
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Figure 3.14: (Color online) Resistivity versus temperature for t′ = 0 (left) and t′/t = −0.1
(right) with U = 6t, Nc = 16, and 4t = 1 . The dashed lines in the insets are linear �ts. For
t′ = 0, the resistivity shows linear-T behavior for n = 0.85 and n = 0.86. For t′/t = −0.1,
the resistivity shows linear-T behavior from n = 0.83 to n = 0.87.

seen in Fig. 3.4 and 3.10, this self energy is linear in T . Again, for t′ = 0 a narrow
range of �llings, from n = 0.85 to 0.86, displays a linear-T resistivity at low T . While
for t′/t = −0.1 a larger range of �lling, n = 0.83 to 0.87, exhibits a linear temperature
dependence. The linear resistivity in the marginal Fermi liquid region is consistent with
experiments[106, 107, 108, 109]. For n = 0.75, both t′ = 0 and t′/t = −0.1 show Fermi liquid
character, with a resistivity which goes to zero quadratically when T approaches zero. The
fact that doping region with marginal Fermi liquid character increases with negative t′ has
consequences for the phase diagram near the quantum critical point, which we will discuss
in Section 3.4.

According to the Wiedemann-Franz Law, κ/(σT ) = π2/3 (kB = e = 1), the thermal
conductivity of a Fermi liquid is inversely proportional to T [117]. Fig. 3.15 shows that
κ ∝ 1/T for n = 0.75 when t′/t = 0 and −0.1, , but weakly depends on T for the marginal
Fermi liquid and the pseudo-gap regions. The inset shows that, for n = 0.75, the Wiedemann-
Franz ratio κ/(σT ) approaches a constant which is less than π2/3 when T ≤ 0.08. Dahm et
al.[132] investigated the two-dimensional Hubbard model for n ' 0.9 and also found a smaller
Wiedemann-Franz ratio. However, we �nd that the Wiedemann-Franz ratio is larger than
π2/3 for the marginal Fermi liquid (n = 0.85) and pseudo-gap (n = 0.95) regions. We also
see that the thermal conductivity becomes very small as T → 0 for n = 0.95 and saturates
to a constant for n = 0.85. So, when studying κ, the marginal Fermi liquid seems to separate
the Fermi liquid from the pseudo-gap region. The dashed curves in Fig. 3.15 fort′/t = −0.1
data are always below the solid curves for t′ = 0 when plotting κ. However, the t′/t = −0.1
data is above the t′ = 0 results when we focus on the ratio κ/σT . This implies that negative
t′ reduces the electrical conductivity more than the thermal conductivity.

Chakraborty et al.[104] argue that the thermopower changes sign near the quantum
critical point, and that this is related with the development of a state with particle-hole
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Figure 3.15: (Color online) Thermal conductivity versus temperature for U = 6t, Nc = 16,
and 4t = 1. Inset: Wiedemann Franz ratio for the same physical parameters. The horizontal
solid line labels the constant π2/3.

Figure 3.16: (Color online) Thermopower as a function of �lling for U = 6t, Nc = 16, 4t = 1.
Lines are guides to the eyes. Inset: Frequency dependence of Dxx(ω) (c.f. Eq. (3.9) for
di�erent �llings when t′ = 0, β = 58. The slope of Dxx(ω) at ω = 0 is proportional to the
thermopower according to Eq. (3.10).
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symmetry. Fig. 3.16 shows the thermopower S as a function of �lling. For t′ = 0 and
β = 58, the �lling at which S changes sign is roughly 0.80. We expect that the zero-crossing
of the thermopower will approach the critical �lling of 0.85 for decreasing T . However, this
is di�erent from the �lling, n = 0.88, at which the density of states displays particle-hole
symmetry.

We �nd that due to the k-dependence of the relaxation time and the electron group
velocity, the �lling at which the thermopower crosses zero does not occur at the �lling
where the density of states shows a particle-hole symmetry at low energies. In Fermi liquid
theory[125], if we assume constant relaxation time and group velocity, the thermopower is
proportional to the derivative of the logarithm of the density of states at the Fermi level.
This would suggest a thermopower which changes sign as the van Hove singularity crosses the
Fermi level. However, in this approach A(k, ω)2 in Eq. (3.9) is approximated by δ(ω− εk)τ ,
where τ = τk is a k-independent relaxation time. In addition, the electron group velocity
we use in our calculation also has a k-dependence:

vx(k) =
∂ε0k
∂kx

= 2t sin kx + 4t′ sin kx cos ky. (3.13)

If we compare the quantity Dxx(ω) (the inset of Fig. 3.16) and the density of states (Fig.
3.5) for di�erent �llings and the same t′ = 0, we �nd that the e�ect of vx(k)2 is to pull the
peak of the density of states to the left, because the sin kx term suppresses the contribution
of the van Hove singularity at X(π, 0) and enhances the contribution from the states below
the Fermi level. As a result, the thermopower changes sign continuously and at a �lling
where the quantity D(ω) has a zero slope at the Fermi level, around n = 0.85. As noted
by Chakraborty et al.[104], this �lling is di�erent from the one where the density of states
displays particle-hole symmetry, n = 0.88 for t′ = 0. The impact of the van Hove singularity
on the thermopower and other transport coe�cients is diminished by the fact that the van
Hove singularity comes predominantly from a region in k space where the group velocity
goes through zero.

3.4 Discussion

The results presented here have implications for both the quantum critical phase diagram
and the proximity of the superconducting dome to the quantum critical point.

The close proximity of the quantum critical �lling and the �lling where the van Hove
singularity crosses the Fermi level suggests that the two are related or even concomitant.
Near the quantum critical point, we �nd that the �at part of the dispersion orthogonal to the
antinodal direction is pinned to the Fermi level, but not the dispersion along that direction
(Fig. 3.6). We also �nd that the low energy density of states exhibits particle-hole symmetry
(Fig. 3.5). The linear-T resistivity and self energy, characteristic of a marginal Fermi liquid,
are observed for the same �llings where this pinning is observed. Within the Dynamical Mean
Field Approximation (DMFA)[78], it is known that if the van Hove singularity is pinned to the
Fermi level for the non-interacting case, it remains pinned even for the interacting case due
to the momentum independent nature of the self-energy. In addition, a van Hove singularity
initially away from the Fermi level will tend to move towards the Fermi level due to the
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Figure 3.17: Schematic chemical potential-temperature (µ−T ) phase diagram for three values
of t′: (from left to right) t′ > 0, t′ = 0, t′ < 0 scenario presented in this chapter and a t′ < 0
scenario based on a Lifshitz transition. CC (QC) indicates the classical (quantum) critical
region. ML (MG) indicates the Mott liquid (gas) region. T ∗ is the crossover temperature
between the Mott liquid and the critical region, TFL separates the Mott gas from the critical
region. Note here, we have ignored other phases to focus attention on the quantum critical
region.

narrowing of the coherent component of the band resulting from electronic correlations. In
the simplest Fermi liquid picture, the coherent part of the single-particle Green function
G(k, ω) = Z(k)/(ω + i0+ − Z(k)ε(k)). So, if Z(k), becomes small for some values of k,
then we would expect to see a �attening of the observed quasiparticle dispersion, Z(k)ε(k),
accompanied by a shift of the peak towards the Fermi level with a vanishing weight. The
new result of our work is that the non-local correlations included in the DCA, but absent
in the DMFA, are able to move the van Hove singularity, with �nite weight, to and even
across the Fermi level. This cannot be due solely to the narrowing of the coherent part of
the band, since the van Hove singularity crosses the Fermi level where quasiparticle fraction
Z is already zero.

Neither a non-interacting picture of the van Hove singularity can completely describe the
superconducting transition in the vicinity of the critical �lling. In a BCS superconductor, the
transition is driven by a logarithmic divergence of the bare pairing bubble as the temperature
falls. In a recent work[62], the bare d-wave pairing susceptibility χ′0d of the 2D Hubbard
model was found to diverge algebraically as 1√

T
at the quantum critical �lling, instead of

logarithmically, giving rise to a higher Tc. In the simulation, we traced the origin of this
algebraic behavior to a component of the dynamic bare bubble which scaled as χ′′0d(ω)/ω =
T−3/2H(ω/T ) (see Fig. 3.1). A van Hove singularity is known to enhance the divergence of
the bare pairing bubble. Since the bare d-wave pairing susceptibility is dressed only by the
self energy, with no vertex corrections, a van Hove singularity seems to be the most likely
explanation of its enhanced divergence. However, we found that a simple non-interacting
picture with a van Hove singularity at the Fermi level does not completely explain the
observed phenomena. The standard quadratic dispersion gives a logarithmic divergence of
χ′0d for the half �lled model. A hypothetical quartic dispersion yields the observed algebraic
divergence for χ′0d, but does not give the correct scaling for the imaginary part of the bare
susceptibility found in Yang et al.[62]. The latter is a consequence of the proximity to a
quantum critical point, but not necessarily part of the van Hove scenario.

Our results also shed additional light on the quantum critical phase diagram. We found
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previously[133, 134] that when t′ > 0, there is a �rst order phase separation transition with a
�rst-order line of co-existence in the µ− T phase diagram as shown in Fig. 3.17. In analogy
with liquid-gas mixtures, we identify the two phases as a Mott liquid, which is insulating
and incompressible with well formed local moments and short ranged order, and a Mott
gas, which is a weakly compressible metallic Fermi liquid. The two phases have the same
symmetry, so the �rst order line of co-existence terminates at a second order point where the
charge susceptibility diverges. In analogy to other liquid-gas mixtures, there is a fan-shaped
region dominated by �uctuations for temperatures above the critical point with neither liquid
nor gas character. When t′ → 0, the critical point goes continuously to zero temperature and
thus becomes a quantum critical point[134]. Above the quantum critical point, the marginal
Fermi liquid region is found to exist in the V-shape quantum critical region. Inside this
region, the only scale is the temperature (like Eq. (3.6) and (3.7)). T ∗ is the temperature
separating the marginal Fermi liquid from the pseudo-gap region. T ∗ does not separate the
quantum critical region from a region of hidden order. Rather in our scenario, it is only the
boundary of the quantum critical region. As we cross from the quantum critical region to
the Mott liquid, the character of the Mott liquid becomes apparent including a pseudo-gap.

Here we consider the e�ect of a negative next-nearest-neighbor hopping t′ on the single
particle dispersion. We �nd that for t′/t = −0.1, the �at part of the dispersion orthogonal
to the antinode remains in close proximity to the Fermi level for a larger range of �llings
(0.83 ≤ n ≤ 0.87) when compared with the t′ = 0 result. We �nd that the resistivity displays
a linear-T dependence, and the self energy displays MFL characteristics in the same range
of doping. We also note that the single-particle spectra is less coherent in the center of this
doping region than it is at the quantum critical �lling when t′ = 0. These observations are
consistent with an increase in the doping region of marginal Fermi liquid character when
t′/t < 0.

There are several di�erent scenarios which may explain this behavior. Since the doping
region where the van Hove singularity is near the Fermi level increases with decreasing t′/t,
perhaps the simplest understanding of this behavior is that the van Hove singularity pinning
gives rise to the marginal Fermi liquid behavior[74, 75, 76]. Another possibility is that both
T and negative t′ are relevant variables, or variables that, when �nite, move the system
away from a critical point. In addition, they are roughly similar in their e�ect, in that when
t′ = T = 0 the doping region of marginal Fermi liquid character shrinks to a point, but the
region increases with either increasing T or decreasing t′. Thus when t′ < 0, the quantum
critical point may be viewed as moving to negative temperatures so that the quantum critical
region broadens to allow the linear-T resistivity and the pinning of the �at ky dispersion to
the Fermi level to exist for a wider range of �llings (compare e.g. the third panel of Fig. 3.17
and inset of Fig. 3.1). However, this interpretation is not consistent with scaling theory where
we expect a �nite low temperature scale like TF or T ∗ to emerge for any set of parameters
that take us away from the quantum critical point. Another possibility is that the change
in Fermi surface topology associated with the van Hove singularity crossing the Fermi level
can introduce Lifshitz singularities in the free energy[135, 136, 137, 138, 139, 140, 141]. This
scenario will mean a line of zero temperature critical points in the t′ − µ plane beyond the
quantum critical point as the control parameter t′ is decreased from zero to negative values

73



in the t′−µ plane. For positive t′ the Lifshitz transition may yield a line of �rst order critical
points in t′−µ plane which terminates at the quantum critical point for t′ = 0. To understand
our results, the line of Lifshitz transitions for negative values of t′/t must yield an associated
V-shaped region of quantum criticality which becomes �atter as t′ decreases as shown on the
right in Fig. 3.17. Finally, another mechanism enhanced by the van Hove singularity is the
Pomeranchuk instability [142, 143] of the Fermi surface where the Fermi surface is distorted
to break the C4 symmetry of the square lattice. The possibility of Lifshitz and Pomeranchuk
transitions are being studied currently and will be published elsewhere.

There is some experimental evidence[129] in the cuprates that there is a change in Fermi
surface topology and an associated Fermi level crossing of the van Hove singularity at a
doping that is larger than the doping at which Tc is maximum, while still being within the
dome. On the other hand, we �nd that the van Hove singularity crosses the Fermi level
at a slightly smaller doping than the optimal doping. This disagreement can be due to the
other e�ects present in the real systems e.g. phonons that are not incorporated in this model
calculation, or the strong doping dependence of the strength of the pairing interaction[62]
seen in the simulations.

The transport provides some additional evidence for the van Hove singularity. In our cal-
culations, the low energy particle-hole symmetry and the change in sign of the thermopower
with doping near the critical value are both due to the crossing of the van Hove singular-
ity. However, the doping associated with the van Hove crossing di�ers from that where the
thermopower is zero due to the anisotropy of the group velocity on the Fermi surface.

3.5 Conclusion

We explore the role of the van Hove singularity in the quantum criticality observed at
�nite doping in the Hubbard model[61]. Near the quantum critical �lling, we �nd a van
Hove singularity due to a �attening of the dispersion near the Fermi level. The motion
of the �at part of the dispersion along the antinodal direction is anisotropic. The part
along the antinode moves continuously through the Fermi level. The part orthogonal to
this direction is pinned near the Fermi level at a �lling where the self energy, transport,
and energies[128] also display marginal Fermi liquid behavior, and the quasiparticle fraction
vanishes[61]. Many authors have proposed that the van Hove singularity near the Fermi
level will enhance superconductivity by enhancing the divergence of the bare pairing bubble.
Indeed we found previously that the superconducting dome surrounds the critical doping
where the real part of the pairing bubble diverges algebraically, replacing the Fermi liquid
log divergence[62]. However, a simple non-interacting picture with the van Hove singularity
at the Fermi level doesn't explain the quantum critical scaling of the bare dynamic pairing
susceptibility. We also found previously that a positive t′ is the control parameter for a �rst
order phase separation transition which is terminated by a second order critical point. As
t′ → 0 this second order terminus is driven to zero temperature yielding the quantum critical
point[134]. Here we explore the e�ect of a negative t′, and �nd that it is a relevant variable
which increases the extent in doping (and chemical potential) of the quantum critical region
characterized by marginal Fermi liquid behavior.
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Chapter 4

Lifshitz Transition in the two-dimension Hubbard Model

Using large-scale dynamical cluster quantum Monte Carlo simulations, we study the Lifshitz
transition of the two dimensional Hubbard model with next-nearest-neighbor hopping (t′),
chemical potential and temperature as control parameters. At t′ ≤ 0, we identify a line of
Lifshitz transition points associated with a change of the Fermi surface topology at zero
temperature. In the overdoped region, the Fermi surface is complete and electron-like;
across the Lifshitz transition, the Fermi surface becomes hole-like and develops a pseudogap.
At (or very close to) the Lifshitz transition points, a van Hove singularity in the density
of states crosses the Fermi level. The van Hove singularity occurs at �nite doping due
to correlation e�ects, and becomes more singular when t′ becomes more negative. The
resulting temperature dependence on the bare d-wave pairing susceptibility close to the
Lifshitz points is signi�cantly di�erent from that found in the traditional van Hove scenarios.
Such unambiguous numerical observation of the Lifshitz transition at t′ ≤ 0 extends our
understanding of the quantum critical region in the phase diagram, and shines lights on
future investigations of the nature of the quantum critical point in the two dimensional
Hubbard model.

This work is the following work of the last chapter[23]. I performed analytic continuation
on self energies intensively using the Maximum Entropy Method (MEM) to obtained the
zero-frequency spectra A(k, ω = 0) around the quantum critical point and identify the
Lifshitz physics. This chapter has been published in the journal of Phys. Rev. B, 86,
165136 (2012)[24].

4.1 Introduction

The physical properties of high-Tc cuprate superconductors are extremely sensitive to dop-
ing. Experiments, such as the angle-resolved photoemission spectroscopy[144] (ARPES)
and quantum oscillation measurements[145], have clearly demonstrated a Fermi surface re-
construction as the doping concentration is varied. In the overdoped region, ARPES and
quantum oscillation studies revealed a large Fermi surface that can be well captured by band
theory. On the other hand, once the doping is reduced, the shape and size of Fermi sur-
face change and photoemission data indicate that the Fermi surface breaks up into "Fermi
arcs"[146]. More recent studies further indicate that the "Fermi arcs" are actually part of
closed hole pockets[147, 148]. The formation of small Fermi pockets, as the doping is reduced
from overdoped to underdoped region, has also been substantiated by quantum oscillation
measurements[149, 150].

From a theoretical point of view, the change of the Fermi surface topology from a large
surface to small "arcs" or "pockets" resembles a Lifshitz transition. Although proposed by
Lifshitz in noninteracting Fermion systems decades ago[151], the Lifshitz transition has only
recently begun to be considered as a quantum phase transition in strongly correlated electron
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systems[137, 138, 139, 140, 152, 153, 154]. It has been used to explain experimental data in
high-Tc cuprate superconductors[155, 141] or heavy fermion systems[156].

Using large-scale dynamical cluster quantum Monte Carlo simulations[47], a series of re-
cent numerical works[157, 134, 62, 158, 23, 61] mapped out the phase diagram of the two
dimensional Hubbard model near the quantum critical �lling. Particularly, the supercon-
ducting dome in the proximity to the quantum critical doping has been identi�ed[62]. At
positive t′, there is a �rst-order phase separation transition occurring at �nite temperature.
The two phases being separated are an incompressible Mott liquid and a compressible Mott
gas; these two phases are adiabatically connected to the pseudogap and the Fermi liquid
states at t′ = 0. The �rst-order line of coexistence terminates at a second order point where
the charge susceptibility diverges[134, 158]. As t′ → 0, this critical point extrapolates contin-
uously to zero temperature and thus becomes the quantum critical point (QCP) underneath
the superconducting dome. Above the QCP, a V-shaped quantum critical region, charac-
terized as a marginal Fermi liquid[159, 160] with linear resistivity, separates the pseudogap
and the Fermi liquid phases. Furthermore, when the next-nearest-neighbor hopping becomes
negative, t′ < 0, there is indication of the Fermi surface topology changes at zero tempera-
ture, and the �lling at which such changes occurs is an extension of the QCP at t′ = 0 to
negative t′[23].

Other numerical works also found similar feature of the Fermi surface reconstruction at
t′ ≤ 0 by varying the hole doping concentration from overdoped towards half-�lling. These
include results from both dynamical cluster approximation[161, 162, 163, 164] and the cellular
dynamical mean-�eld theory[165, 166, 167, 168, 169, 170], although the �nite temperature
critical point in the hole-doped side of the phase diagram found in Ref [[167]] is inconsistent
with other works and might su�er from the �nite size e�ects of a small four-site cluster.

Following such evidence, and in light of viewing the Fermi surface reconstruction as a
Lifshitz transition[137, 138, 139, 155, 141, 153], we performed systematic numerical studies
on the quantum critical phase diagram of the two dimensional Hubbard model at various t′,
with special attention to the region of t′ < 0, which is relevant for the hole-doped cuprates.
We �nd at t′/t ≤ 0, as the doping concentration varies from the overdoped to the underdoped
regime, the Fermi surface changes its topology from electron-like with complete Fermi surface
to hole-like with pseudogap at the anti-nodal direction. Such a topological transition in
the Fermi surface is a Lifshitz transition. It is furthermore concomitant with a van Hove
singularity in the density of states crossing the Fermi level at a doping which occurs very
close to (if not at) the quantum critical point.

The van Hove singularity crossing and the concomitant quantum critical point occur at
�nite doping due to correlation e�ects even when t′ = 0. Interestingly, we �nd the quantum
critical phenomena prevail for negative t′, and the van Hove singularity de�nes a line of
quantum critical points which extends from the QCP at t′ = 0 to higher doping for t′ < 0.
The temperature dependence of correlation e�ects close to the van Hove singularities, and
its in�uence on quantities like the quasiparticle fraction and the pairing polarization are very
di�erent from those found in the traditional van Hove scenarios[171, 66]. The QCP and the
van Hove singularity have great impact on the conditions for pairing. At t′ < 0, we �nd an
enhanced temperature dependence of the bare d-wave pairing susceptibility above the QCP
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that cannot be captured by the conventional BCS logarithmic divergence or the log-squared
divergence found at a static van Hove singularity[171].

This chapter is organized as follows. Section 4.2 outlines the model and the methods used
in this study: the dynamic cluster approximation (DCA) with weak-coupling continuous-
time quantum Monte Carlo (CTQMC) as its cluster solver. Section 4.3 and 4.4 contain
our numerical results and discussion, beginning with the spectral function and dispersion
at various doping concentrations and values of t′/t, and followed by a detailed account of
other single-particle properties such as density of states and quasiparticle fraction, across the
Lifshitz transition. We then provide results on the unique temperature dependence of the
bare d-wave pairing susceptibility. We use a schematic quantum critical phase diagram of the
model which summarizes our numerical results. We end with conclusions and an overview
of open questions in Section 4.5.

4.2 Formalism

In this work, we look for direct evidence of a Lifshitz transition in the spectral function of
the two-dimensional Hubbard model de�ned in the eq. (2.23) with bare dispersion given by
eq. (2.3).

We employ the DCA[119, 45] with weak-coupling CTQMC[49] as a cluster solver. The
DCA is a cluster mean-�eld theory that maps the original lattice onto a periodic cluster of
size Nc = LDc (D is the dimensionality) embedded in a self-consistently determined host.
It treats the spatial short-ranged correlations (up to Lc inside a cluster) explicitly while
approximating the long-ranged correlations with a mean-�eld. In this work we choose a
square cluster with Nc = 16. The six independent momentum patches are centered at
Γ = (0, 0), M = (π, π), X = (π, 0), (π/2, π/2), (π, π/2), and (π/2, 0). We set the energy
scale to 4t = 1, choose the interaction strength at U = 6t and study inverse temperatures
up to β = 58/4t. The temporal correlations, essential for quantum criticality, are treated
explicitly by the weak-coupling CTQMC solver for all cluster sizes. The solver expands the
Coulomb interaction diagrammatically and samples in time continuously. Di�erent from the
Hirsch-Fye algorithm[121, 122] it therefore has no Trotter error.

As explained in the section 2.4, here we summarize the method of analytic continuing self
energies using maximum entropy method. We obtain high-quality estimates of the cluster
self-energy Σ(K, ω) by employing the maximum entropy analytical continuation[57] (MEM)
directly to the Matsubara-frequency self energies calculated from the DCA-CTQMC[118,
23, 59]. To perform MEM on the self-energy the non-Hartree part of Σ(K, iωn) must be
normalize by U2χσ,σ, where χσ,σ = 〈nσnσ〉 − 〈nσ〉2 = nσ(1 − nσ) is the local polarization
of a single spin species σ. The normalized spectrum of the self-energy acts as a probability
distribution:

Σ(K, iωn)− ΣH

U2χσ,σ
=

ˆ
dω
σ(K, ω)

iωn − ω
, (4.1)

where σ(K, ω) = − 1
π
Σ′′(K, ω)/U2χσ,σ,

´
dωσ(K, ω) = 1, using χσ,σ obtained from the Monte

Carlo process.
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To obtain the lattice self energy, Σ(k, ω), we interpolate the cluster self energy, Σ(K, ω).
From the lattice self energy we can get the lattice single-particle spectral function, A(k, ω).
An alternative way has been suggested by Stanescu et al.[172, 166, 169, 170], where the
cluster cumulant, M(K, ω) = 1/(ω + µ − Σ(K, ω)), has been used for the interpolation
to lattice quantities. Although the spectral functions produced by the two interpolation
schemes have di�erences in the underdoped region, we found the two methods give the same
quantum critical �lling nc[173].

4.3 Results

Figure 4.1 shows the k-resolved spectral function evaluated at the Fermi level, A(k, ω = 0),
for t′/t = 0 and t′/t = −0.1. At t′ = 0 we observe a change of the Fermi surface topology
from electron-like to hole-like as the �lling increases from n = 0.75 towards half-�lling. This
change of the topology of the Fermi surface or Lifshitz transition occurs at the same �lling
where the van Hove singularity crosses the Fermi level[66, 174]. The corresponding �lling is
the critical �lling, nc, of the Lifshitz transition. In the caset′ = 0 we obtain nc ≈ 0.88. At
t′/t = −0.1 the Fermi surface changes from electron-like to hole-like and then disappears as
n varies from 0.8 towards half �lling. Following the same criterion, the Lifshitz transition
occurs at nc ≈ 0.835. Finally, for t′/t = −0.2, we �nd nc ≈ 0.77 (not shown). For all
t′/t ≤ 0 we studied, the system enters the pseudogap phase once the �lling is larger than the
corresponding nc. In the case of n = 0.92 (left panel of Fig. 4.1) and n = 0.87 (right panel
of Fig. 4.1) the collapses of the single-particle spectral weight along the antinodal direction
can be clearly seen.

Figure 4.2 shows density of states for t′/t = 0 (left panel) and t′/t = −0.1 (right panel)
with the same set of �llings of those in Fig. 4.1. For t′ = 0, the van Hove singularity shifts
from positive to negative frequency as the �lling increases from 0.75 towards 1.0. The van
Hove singularity is located at the Fermi level for the quantum critical �lling nc ≈ 0.88.
These results are consistent with our previous observations[134, 23]. After passing through
the critical �lling, a pseudogap in the density of states is formed, as it is displayed by the
valley at ω ≈ 0.05 for n = 0.92, t′/t = 0. This parameter regime can thus be identi�ed as
the pseudogap region in the phase diagram. For t′/t = −0.1, the results in the right panel
of Fig. 4.2 show a quantum critical �lling nc ≈ 0.835. Note, the van Hove singularity in
single-particle density of states has also been observed in the "momentum-selective" metal-
insulator transition scenario[161, 162, 163, 164], however, the quantum critical phenomena
associated with the van Hove singularity and the Lifshitz transition have not been discussed
there.

The van Hove singularity originates from the �at dispersion along the antinodal direction
with energy close to the Fermi level[84, 66, 174], as shown in Figure 4.3. At the critical doping
for t′/t = 0.0, −0.1, and −0.2, there is always a saddle point region around momentum
X = (π, 0) where the dispersion is �at. In addition, we �nd that the �at region become
wider and more pronounced as t′ becomes more negative. Such �at dispersion at the chemical
potential contributes low energy states and results in the van Hove singularity at the Fermi
energy. Hence, our observation of the Lifshitz transition at the quantum critical doping for
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Figure 4.1: (Color online) Zero frequency spectra A(k, ω = 0) for t′/t = 0 (left) and
t′/t = −0.1 (right) as a function of �lling n. As n increases towards half-�lling, the system
undergoes a Lifshitz transition where the Fermi surface changes topology from electron-like
to hole-like. (Left panel) The Lifshitz transition occurs at nc ≈ 0.88, where the van Hove
singularity crosses the Fermi level (as shown in Figure 4.2). (Right panel) The Lifshitz tran-
sition occurs at nc ≈ 0.835. Note that when t′/t = −0.1, the Lifshitz transition happens at
a smaller �lling than for the t′ = 0 case. In either case, as n → 1, the system enters the
pseudogap phase with vanishing quasiparticle weight.
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Figure 4.2: (Color online) The single-particle density of states for the parameters shown in
Figure 4.1. (Left panel) t′/t = 0 with n = 0.75, 0.83, 0.88 and 0.92. (Right panel) t′/t = −0.1
with n = 0.80, 0.83, 0.85 and 0.87. The position of the van Hove singularity (peak in the
density of states) shifts from positive frequency to negative frequency as the �lling moves
towards half-�lling. The quantum critical point is at nc ≈ 0.88 for t′/t = 0, and nc ≈ 0.835
for t′/t = −0.1.
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Figure 4.3: (Color online) Intensity plots of the spectral function A(k, ω) along the segment
M → X → Γ inside the Brillouin zone. For di�erent t′/t near the quantum critical �llings:
t′/t = 0 with n = 0.88 (left), t′/t = −0.1 withn = 0.83 (middle), and t′/t = −0.2 with
n = 0.78 (right), a saddle point region (�at dispersion) around X crosses the Fermi level at
the critical �lling nc. The region becomes wider as t′ goes to negative values.

t′/t ≤ 0 is closely tied (if not in one-to-one correspondence) to the crossing of the Fermi level
by the van Hove singularity.

The next-nearest-neighbor hopping t′ can be viewed as the control parameter of the
Lifshitz transition. To emphasize this point, we also calculate the zero frequency spectra for
the non-interacting system as a function of t′/t, and compare them with our DCA results
for the interacting system. In Figure 4.4, the left panel demonstrates the e�ect of t′ on the
Fermi surface topology of the non-interacting half-�lled system. We �nd the Fermi surface
changes from electron-like to hole-like when t′ goes from positive to negative values. The
right panel of Fig. 4.4 collects our results for the spectra of the interacting system, with
n = 0.85 �xed and t′/t varies from 0.3 to −0.2. Similar to the noninteracting system,
the Fermi surface topology also changes from electron-like to hole-like as t′/t goes from
positive to negative, which con�rms that t′ is indeed the relevant control parameter of the
Lifshitz transition in the interacting system. However, the interacting system follows a more
complicated phenomenology than the non-interacting system, due to the e�ect of electron-
electron interaction. For example, in the lower two panels of the right hand side of Fig. 4.4,
where t′ is negative, not only is the Fermi surface topology changed to hole-like, but the
spectral weight along the antinodal direction (π, 0) also vanishes, signaling that the system
enters the pseudogap phase. The strong interaction results in a redistribution of the spectral
weight, leading to features di�erent from the ones of the non-interacting system.

Instead of obtaining the spectral information from the analytical continued data, one can
also directly read o� the quasiparticle weight Z(k) from the Matsubara frequency results.
Since the quasiparticle weight will be �nite across a Fermi surface, but it vanishes if the
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Figure 4.4: (Color online) t′/t as the control parameter of the Lifshitz transition. (Left
panel) A(k, ω = 0) for the non-interacting system at half-�lling. As t′/t goes from positive to
negative, the Fermi surface changes from electron-like to hole-like. (Right panel) A(k, ω = 0)
for the interacting system, U/t = 6, with �lling n = 0.85 �xed. At positive t′, the system
is inside the metallic Mott gas phase, and has complete Fermi surface; at negative t′, the
system is inside the pseudogap phase, and the Fermi surface becomes hole-like. Since the
Coulomb interaction reshu�es the spectral weight, at t′/t = −0.1,−0.2, the pseudogap at
the antinodal direction can be clearly seen.
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Figure 4.5: (Color online) Matsubara quasiparticle weight ZAN(T ) versus temperature T
evaluated with k on the Fermi surface along the antinodal direction, for various �llings and
t′. For n < nc, ZAN(T ) displays Fermi liquid behavior, with ZAN(T ) extrapolating linearly
to a �nite value at low T ; for n ≈ nc, ZAN(T ) displays the marginal Fermi liquid behavior,
with negative curvature in ZAN(T ) at low T ; and once inside the pseudogap region, n > nc,
ZAN(T ) goes to zero as a function of T faster than for the marginal Fermi liquid �llings.
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spectrum is incoherent, Z(k) can be used to distinguish a Fermi liquid and a pseudogap
state. The quasiparticle weight is calculated from the Matsubara frequency self-energy as
Z0(kF ) =

(
1− Σ”(k,iω0)

ω0

)−1∣∣
k=kF

, where ω0 = πT is the lowest fermionic Matsubara frequency.
In the limit T → 0, Z0(k) converges to the quasiparticle weight, Z(k). Figure 4.5 shows
ZAN(T ) = Z0(ω0 = πT,kF ), the Matsubara quasiparticle weight on the Fermi surface along
the antinodal direction for various t′/t. ZAN exhibits di�erent behavior for n < nc where
the quasiparticle weight approaches a �nite value and for n ≥ nc where the quasiparticle
weight vanishes in the limit T → 0. The temperature dependence of ZAN(T ) furthermore
provides information about the relevant energy scales. One sees a clear di�erence in the
temperature dependence of ZAN(T ) when the system enters Fermi liquid, marginal Fermi
liquid and pseudogap phases. Inside the Fermi liquid phase, n < nc, where we choose
n = 0.75 for t′/t = 0, n = 0.70 for t′/t = −0.1 and n = 0.65 for t′/t = −0.2, ZAF (T )
extrapolates to a �nite value roughly linearly at low T . Close to the Lifshitz transition
points, n ≈ nc, where we choose n = 0.88 for t′/t = 0, n = 0.83 for t′/t = −0.1 and
n = 0.78 for t′/t = −0.2, ZAN(T ) shows a behavior consistent with the marginal Fermi
liquid picture, i.e., a negative curvature in ZAF (T ) at low T [61]. Finally, when the system
is inside the pseudogap phase, n > nc, we choose the same �lling n = 0.95 for t′ = 0,−0.1
and −0.2, ZAF (T ) goes to zero even faster than it does in the marginal Fermi liquid region.
The detailed information about the crossover temperatures T ∗ and TX , where the former
signi�es the crossover between pseudogap and the marginal Fermi liquid and the latter is
the crossover temperature between the marginal Fermi liquid and the Fermi liquid, and the
quantitative distinction between the marginal Fermi liquid and the pseudogap in terms of
temperature and frequency dependence of the self energy and resistivity, have been discussed
in detail in our previous publications[61, 158, 23].

The bare d-wave pairing susceptibility is calculated as χ0d(ω) =
∑

k χ0(ω, q = 0)gd(k)2

/
∑

k gd(k)2, where gd(k) = cos(kx) − cos(ky) is the d-wave form factor. It exhibits signif-
icant di�erent features near the QCPs compared with those predicted by static van Hove
scenarios[171, 66]. As shown in Fig. 4.6, close to the quantum critical �llings, the real part of
the bare pairing susceptibility χ′0d(ω = 0, T ) diverges quickly with decreasing temperature,
following a power-law behavior close to 1/

√
T , which is di�erent from the BCS type of loga-

rithmic divergence χ′0(T ) ∝ N(0) ln(ωD/T ) with N(0) the single-particle density of states at
the Fermi surface and ωD the phonon cuto� frequency. Such behavior is consistent with our
previous results at t′ = 0 close to the quantum critical �lling[62, 23]. More interestingly, such
temperature dependence persists for t′ < 0. As shown in Fig. 4.6, the prefactor, a, in the
power-law term becomes larger as t′ becomes more negative. It signi�es that the divergence
becomes stronger at t′ < 0 and, if the pairing strength does not change, there will be a
higher superconducting transition temperature Tc compared with the one for t′ = 0. More-
over, when we scale the imaginary part of the bare pairing susceptibility as T 1.5χ”0d(ω)/ω
versus ω/T [175], as shown in Fig. 4.7, we �nd the curves from di�erent temperatures fall
on the same universal scaling function such that T 1.5χ”0d(ω)/ω = H(ω/T ) ≈ (ω/T )−1.5 for
ω/T ≥ 9 ≈ 4t/J , where J ≈ 0.11[176, 61] is the antiferromagnetic exchange energy near half
�lling. From the Kramers-Krönig relation, the real and imaginary parts of the susceptibility
are related via χ′0d(T ) = 1

π

´
dωχ”0d(ω)/ω, so collapse of the χ”0d(ω)/ω will contributes a
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Figure 4.6: (Color online) The real part of the bare d-wave pairing susceptibility, χ′0d(ω =
0, T ), at zero frequency, close to the quantum critical �llings for t′/t = 0, t′/t = −0.1, and
t′/t = −0.2. The solid lines are �ts to χ′0d(ω = 0, T ) = a/

√
T + b log(c/T ). Close to the

quantum critical �llings (n = 0.85 for t′/t = 0, n = 0.83 for t′/t = −0.1, and n = 0.78
for t′/t = −0.2), χ′0d(ω = 0, T ) shows a power-law divergence with decreasing temperature.
The prefactor a associated with the square-root term increases as t′ become negative. This
signi�es a stronger divergence in the pairing susceptibility.
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Figure 4.7: (Color online) Plots of T 1.5χ”0d(ω)/ω versus ω/T close to the quantum critical
doping (n = 0.85 for t′/t = 0, n = 0.83 for t′/t = −0.1, and n = 0.78 for t′/t = −0.2). As the
temperature decreases, the curves coincide for ω/T > 9 ≈ (4t/J) de�ning a scaling function
H(ω/T ), which corresponds to a contribution to χ′0d(T ) = 1

π

´
dωχ”0d(ω)/ω ∝ 1√

T
as shown

in Fig. 4.6. In the scaling regime, H(ω/T ) ≈ (ω/T )−1.5.
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term ∝ 1√
T
in the real part of χ′0d(T ).

4.4 Discussion

One of the important issues in the �eld of cuprate physics is the identi�cation of the quantum
critical point accepted by and large as relevant for the superconductivity and in particular
for the strange �non-Fermi liquid� behavior observed in the vicinity of the maximum of the
superconducting dome. Based on our numerical results presented here together with those
published previously[134, 61, 62, 158, 23], a complete evolution of Fermi surface (A(k, ω = 0))
as a function of chemical potential and t′/t is given in Fig. 4.8. The Lifshitz points are
highlighted in the red boxes. We also suggest the schematic phase diagram for the two
dimensional Hubbard model shown in Figure 4.9 (note that for clarity we purposely neglect
the antiferromagnetic region in this schematic plot). In this schematic phase diagram we
also add a d-wave superconducting dome as a function of t′/t. The transition temperature Tc
is obtained by extrapolating the lattice d-wave susceptibility from the DCA-INT-CTQMC
calculation with Nc = 16 and U = 6t. The control parameters are the next-nearest-neighbor
hopping t′/t, chemical potential µ, and temperature T . For each t′, we shift the chemical
µ with respect to its value at half �lling µHF(t′/t). For t′ > 0, there is a �rst order phase
separation transition between an insulating and incompressible Mott liquid (ML region in
the lower inset of Fig. 4.9) and a weakly compressible metallic Mott gas (MG region in the
lower inset of Fig. 4.9). As a function of temperature, this region of �rst order transitions
terminates in a line of second order classical critical points (red dots and blue line for t′ > 0).
By varying t′ this line of second order transitions is suppressed to T = 0. The corresponding
t′ = 0 doping de�nes the quantum critical point in the phase diagram.

This QCP separates the pseudogap regime from the Fermi liquid. As usual, one ob-
serves a V-shaped quantum critical region above this QCP, which shows the signatures of a
marginal Fermi liquid. Note that this QCP at t′ = 0 also involves a Lifshitz transition, i.e.
a change in Fermi surface topology from electron-like in the Fermi liquid phase to hole-like
in the pseudogap phase. This property can be directly inferred from the changes in the
low-frequency structures of the spectral function (see Fig. 4.1). At the critical doping the
van Hove singularity in the single particle density of states is located at the Fermi energy
(see Fig. 4.2). Note that there are actually two e�ects involved. Firstly, the change in the
overall shape of the Fermi surface, and secondly a distinctive suppression of spectral weight
along the antinodal directions in the pseudogap phase. Based on the momentum resolution
presently available, we are not able to make decisive statements about a possible formation of
hole pockets. Higher momentum resolution would be necessary to unambiguously establish
the nature of the Lifshitz transition. We are currently developing a multiscale dual Fermion
dynamical cluster approach[177], which combines the DCA method used in this work with
the recently introduced dual-Fermion formalism[178]. This approach can systematically in-
corporate the long-ranged correlations through the dual fermion lattice calculation, and will
eventually provide us the necessary momentum resolution to address the question of the hole
pockets and the type of Lifshitz transition associated with the QCP. However, the numerical
data presented in this work are very indicative and indeed consistent with a collapse of the

84



  

t'/t

0.3

0.2

0.1

0.0

-0.1

-0.2

T=0.083t

Figure 4.8: (Color online) Zero-frequency spectra A(k, ω = 0) (equals to Fermi surface at
large doping) as functions of next-nearest-neighbor hopping t′/t and the minus chemical
potential with respect to its half-�lled value at T = 0.083t and U = 6t. When t′/t ≤ 0,
−(µ − µHF ) is a monotonic function of the hole doping. The red boxes point out the
parameters where A(k, ω = 0) crosses the saddle point at (π, 0) or (0, π) and form a Lifshitz
line associated with the topology of Fermi surface changing from electron-like (Fermi liquid)
to hole-like (pseudogap).

85



t'/t

T

-(μ-μHF)
0.1

0.2

0.3

-0.2-0.2

0.1

2nd order
Lifs

hitz

QCP

T

-(μ-μHF)

T

-(μ-μHF)

-(μ-μHF)

Figure 4.9: (Color online) Schematic phase diagram of the Hubbard model close to the
quantum critical point (QCP) with temperature (T ), chemical potential (µ), and next-
nearest-neighbor hopping (t′) as the control parameters. For clarity we neglect the anti-
ferromagnetic phase. For each t′, we shift the chemical potential µ with respect to its half
�lling value µHF(t′/t). The three insets show the cut of the phase diagram at three di�erent
t′/t = 0.1,−0.1 and −0.2. At positive t′, the Mott liquid and Mott gas phases are separated
by a �rst order line; at negative t′, the pseudogap and the Fermi liquid phases are separated
by a quantum critical region, and the region becomes wider as t′ moves towards the negative
direction. As the Lifshitz points move to larger hole doping at negative t′, the slope of the
boundary between the pseudogap and the quantum critical region becomes less steep. The
evolution of superconducting dome as a function t′/t is also plotted in the down-right inset.

86



Fermi surface from a large to a small one.
As t′ becomes negative phase separation is suppressed, but the critical behavior associated

with the Lifshitz transition remains, leading to a line of critical points at T = 0, as sketched
in the schematic phase diagram in the region t′ < 0. Since the e�ect of negative t′ is to
distort the Fermi surface towards hole-like (see Fig. 4.4), in the t′/t < 0 region of the
phase diagram, one necessarily needs higher hole doping concentration to have the van Hove
singularity locate at the Fermi level. This provides us a simple explanation for the fact
that the Lifshitz points move to higher hole doping at t′ < 0. Across the Lifshitz points,
it is not only the change in shape of the Fermi surface, but more importantly the strong
suppression of weight along the antinodal direction which leads to the interpretation of a
Lifshitz transition at T = 0.

The quantum �uctuations here again lead to a region with quantum critical behavior. As
it is commonly accepted, the low-energy model for the high-Tc cuprates is the two dimensional
Hubbard model with at least t > 0 and t′ < 0, we thus have strong numerical evidence that
the QCP is indeed due to a transition of the Fermi surface topology, as already suggested by
several other authors[166, 153]. We also �nd at negative t′ that the quantum critical region
becomes wider in the doping range (see the two upper insets of Fig. 4.9), the quantum
critical points move to higher hole doping concentrations, and the boundary between the
pseudogap region and quantum critical region becomes less steep as t′ moves towards the
negative direction.

There is, however, an important missing link. The explanation, for the interacting elec-
tron system, of why the van Hove singularity crosses the Fermi surface at the critical �lling
nc, even for t′ = 0, thus triggering the Lifshitz transition. In previous DCA studies of the 2D
Hubbard model[179, 164], it was found that the non-local correlations present in the DCA,
but missing in the single site dynamic mean �eld approximation (DMFA), tend to distort the
Fermi surface of the hole doped system so that it is centered around the wavevector (π,π)
rather than (0,0). As the system is doped away from half �lling, these correlations become
weaker, and the DCA Fermi surface returns to the DMFA Fermi surface centered around
(0,0). Thus the topology of the Fermi surface changes from hole-like to electron-like at �nite
doping.

On the other hand, since the correlation e�ects at �nite doping show strong temperature
dependence, we expect the phenomena associated with the van Hove singularity also have
a temperature dependence which is quite di�erent from those predicted by models with a
static van Hove singularity resulting from a saddle point in the bare dispersion[66]. This has
important consequences for the superconducting transition Tc, which, at su�ciently high
doping, is determined by the BCS-like condition Vdχ

′
0d(ω = 0) = 1 where χ′0d is the real

part of the bare d-wave pairing susceptibility and Vd is the strength of the d-wave pairing
interaction.

Following the results in Fig. 4.6 and 4.7, we �nd at t′ = 0, t′/t = −0.1, and t′/t = −0.2,
χ′0d(ω = 0) close to the van Hove singularity diverges quickly with decreasing temperature,
roughly following the power-law behavior ∝ a/

√
T , which is signi�cantly di�erent from the

conventional BCS logarithmic divergence or the log-squared divergence found at a static van
Hove singularity[171, 66]. Moreover, we �nd that the prefactor a increases with negative t′,
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which signi�es a stronger divergence in the pairing bubble compared with the one at t′ = 0.
However, we also know the d-wave pairing vertex, Vd, decays monotonically with hole doping,
since Vd originates predominantly from the spin channel[51, 62]. A negative t′ will frustrate
the antiferromagnetic background, and hence suppress the spin channel contribution to the
d-wave pairing vertex. At the same time, according to our Lifshitz phase diagram (Fig.
4.9), one needs higher hole doping concentration to approach the QCP for negative t′. The
higher quantum critical doping and the suppression of the spin channel contribution to the
pairing vertex lead us to expect the d-wave pairing vertex, Vd, becomes even smaller for
t′ < 0 than it is for t′ = 0. Hence, a more strongly divergent pairing bubble, χ′0d, and a
weaker pairing vertex, Vd, bring us to an interesting situation for t′ < 0, where there is a
competition between χ′0d and Vd. Whether this competition will yield a higher Tc and larger
superconducting dome in the doping range close to the Lifshitz points at negative t′ will be
the subject of future investigations.

Our phase diagram is also phenomenologically consistent with the recent proposal of un-
conventional quantum criticality at the border of a �rst order metal-insulator transition and a
continuous transition triggered by quantum �uctuations[137, 138, 139]. This marginal quan-
tum critical point belongs to an unprecedented universality class and has unique feature with
combined characteristics of symmetry breaking and topological (Lifshitz) transitions[140].
Whether the Lifshitz points presented at t′/t ≤ 0 in this work display unconventional quan-
tum criticality is also a subject of further studies.

4.5 Conclusion

Using large-scale dynamical cluster quantum Monte Carlo simulations, we map out the Lif-
shitz phase diagram of the two dimensional Hubbard model in the vicinity of the quantum
critical �llings. The control parameters of the phase diagram are temperature T , chem-
ical potential, and the next-nearest-neighbor hopping t′/t. Consistent with our previous
results[134, 23, 158], we �nd at positive t′ a �rst order phase separation transition which is
terminated by a second order critical point. As t′ → 0, the second order terminus is driven
to zero temperature, and becomes the QCP separating the pseudogap and the Fermi liquid
phases. Here, we extend the investigation into negative t′, and �nd out a line of van Hove
singularities where the Fermi surface topology changes from electron-like in the Fermi liquid
region to hole-like in the pseudogap region of the phase diagram. The points on this line
of van Hove singularities hence are the quantum critical points where the Lifshitz transi-
tion occurs. Close to these QCPs, the bare d-wave pairing bubble diverges algebraically in
temperature. Originating from these Lifshitz points, the V-shaped quantum critical region
emerges with marginal Fermi liquid properties and vanishing quasiparticle weight[61, 23].
We also �nd the V-shaped quantum critical region becomes wider in doping range (and
chemical potential) as t′/t becomes negative.

There remain a number of interesting open issues, including the possible formation of
hole pockets in the pseudogap phase, the reason of the van Hove singularity crossing the
Fermi surface at the quantum critical doping, the superconducting transition temperature
Tc and the shape of the superconducting dome at negative t′, and the possible unconventional
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quantum criticality associated with the Lifshitz transition points. All these questions require
not only massively parallel large-scale simulations, but more importantly, new techniques
that will greatly increase the momentum resolution. In fact, progress has already been made
along these directions[177], and the remaining questions will be addressed in future work.

89



Chapter 5

Unconventional Superconductivity on the Triangular Lat-

tice Hubbard Model

Using large-scale dynamical cluster quantum Monte Carlo simulations, we explore the uncon-
ventional superconductivity in the hole-doped Hubbard model on the triangular lattice. Due
to the interplay of electronic correlations, geometric frustration, and Fermi surface topology,
we �nd a doubly degenerate singlet pairing state at an interaction strength close to the bare
bandwidth. Such an unconventional superconducting state is mediated by antiferromagnetic
spin �uctuations along the Γ-K direction, where the Fermi surface is nested. An exact decom-
position of the irreducible particle-particle vertex further con�rms the dominant component
of the e�ective pairing interaction comes from the spin channel. Our �ndings provide support
for chiral d+ id superconductivity in water-intercalated sodium cobaltates NaxCoO2 ·yH2O,
as well as insight into the superconducting phases of the organic compounds κ-(ET)2X and
Pd(dmit)2.

My contribution to this work is to establish the INT-CTQMC codes with the tables
containing the triangular Betts lattice built by Dr. Unjong Yu. I also establish the following
analysis codes with the tables including the MEM code, the analysis codes of �nding leading
eigenvalues of the pairing matrix, the analysis codes of decomposing the irreducible vertex,
and the analysis codes to calculate the transport properties using the Kubo's formula. This
chapter has been published in the Phys. Rev. B 88, 041103(R) (2013)[25].

5.1 Introduction

Since the discovery of the Cu-based high temperature superconductors, the search for new
unconventional superconductors is among the central topics in condensed-matter physics[35].
The water-intercalated sodium cobaltates NaxCoO2 · yH2O[17, 33, 34] and two families of
organic charge-transfer salts κ-(ET)2X and Pd(dmit)2[26, 32, 27, 28, 29, 30] are of particular
interest. The underlying structure of these layered materials is the geometrically frustrated
triangular lattice. The competition between electronic correlations and geometric frustration
yields novel phenomena. For example, the most frustrated members of the κ-(ET)2X and
Pd(dmit)2 families are believed to host quantum spin liquid states[15], and the recently
discovered 5K superconducting phase in NaxCoO2.yH2Omight be a chiral state which breaks
parity and time reversal giving rise to interesting edge modes that can carry quantized
particle and spin currents[180, 36, 181].

The layered triangular lattice compound NaxCoO2 · yH2O has a superconducting dome
for x ∼ 0.3, y ∼ 1.3 at Tc ∼ 5K [17, 33, 34]. Due to intercalation, its electronic structure
is e�ectively two-dimensional. A very rich phase diagram has been mapped out for a range
of Na concentrations[34]; however, the nature of the superconducting phase has remained
poorly understood. Recent measurements on high quality single crystals[182] show that the
spin contributions to the Knight shift decreases below Tc along the a and c axes, supporting
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the notion that the Cooper pairs are formed in a spin-singlet state. The temperature and
doping dependence of the Knight shift and the relaxation rate above Tc provide evidence of
antiferromagnetic correlations[182, 183].

There are a number of theoretical proposals for the unconventional superconductivity in
the cobaltates. The underlying triangular lattice belongs to the C6v symmetry group and
allows a doubly degenerate E2 representation of the superconducting order parameter with
dx2−y2 and dxy degenerate states[35, 36, 37], raising the exciting possibility of a time-reversal
symmetry breaking chiral dx2−y2 ± idxy superconductor. Earlier studies of the cobaltates
draw analogy to the cuprates and employed either a phenomenological RV B theory[184], or
a slave boson mean-�eld approach[185] to provide signatures of a spin-singlet d+ id pairing
state. Recent studies of the sodium cobaltates using a Gutzwiller projection supplemented by
symmetry arguments[180], as well as the multi-orbital functional renormalization group[181],
reveal a rich phase diagram with an anisotropic d+ id phase and a possible topological quan-
tum phase transition through a nodal superconducting state. However, one needs to bear in
mind that prior approaches su�er either from their mean-�eld nature, or their incapability
of capturing correlation e�ects in the strong coupling regime. Hence, there is an urgent
need of unbiased studies, where the interplay of strong electronic correlations and geometric
frustration can be treated in a non-perturbed fashion.

The simplest model that captures the essential physics of the cobaltates and organic
compounds is the single-band Hubbard model on a triangular lattice. In this Letter, we
explore the low-energy properties of this model by large-scale dynamical cluster quantum
Monte Carlo simulations[47]. We focus on the di�erent superconducting instabilities in the
hole-doped side of the phase diagram. To the best of our knowledge, this is the �rst study
of the hole-doped Hubbard model on the triangular lattice exploring the pairing symmetries
on di�erent cluster sizes. Clusters up to size Nc = 12 allow a greater momentum resolution
and higher quality data on the spectral function, self energy, and di�erent superconduct-
ing susceptibilities. Therefore, we obtain an unambiguous signature of an unconventional
doubly-degenerate superconducting state in the strong to intermediate coupling region. By
explicitly comparing the pairing susceptibility in the s-, dx2−y2-, dxy-wave singlet channels
and the f -wave triplet channel, we �nd that the dx2−y2 and dxy components are most di-
vergent and extrapolate to the same Tc within our numerical accuracy. We identify that
the pairing is mediated by strong spin �uctuations along the antiferromagnetically (AF)
ordered wavevector on the Γ to K direction. The Fermi surface (FS) is nested along this
AF wavevector, but the system only orders at half-�lling in the Heisenberg limit. An exact
decomposition of the irreducible particle-particle vertex furthermore reveals the dominant
part in the e�ective pairing interaction comes from the spin channel.

5.2 Formalism

The Hamiltonian of the system is de�ned in the eq. (2.23) with the bare dispersion is given
by the eq. (2.4). We investigate one and two-particle properties of the model using the
dynamical cluster approximation (DCA)[119](section 2.2.3) with weak-coupling continuous
time quantum Monte Carlo (CTQMC)[49](section 2.3) as the cluster solver. The DCA
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maps the original lattice onto a periodic cluster of size Nc embedded in a self-consistently
determined host. Spatial correlations inside a cluster are treated explicitly while those at
longer length scales are described at the mean-�eld level. In this work we choose clusters of
sizes Nc = 4, 6, 8 and 12. We study inverse temperatures up to βt = 16.5. We obtain the
cluster self-energy Σ(K, ω) via the maximum entropy method[57] (MEM, section 2.4) applied
directly to the Matsubara-frequency self energies calculated by the DCA-CTQMC[118, 24].
We then interpolate the Σ(K, ω) to obtain the lattice self energy, Σ(k, ω), and lattice spectral
function, A(k, ω).

To obtain various susceptibilities, χ(T ), we extract the irreducible vertex function Γ via
the Bethe-Salpeter equation (eq. (2.132)) from the two-particle Green function measured
on the cluster, then employing χ(T ) =

χ0

1− Γχ0

, where χ0 is the bare susceptibility con-

structed from the dressed one-particle lattice Green function. The superconducting pairing
susceptibilities are obtained from the particle-particle channel, and the charge and spin sus-
ceptibilities are obtained from the particle-hole channel. We further separate the pairing
susceptibilities explicitly into spin singlet and triplet channels, where in the singlet channel
we project the χ(T )pairing onto s-, dx2−y2-, and dxy-wave, and in the triplet channel we project
it onto the f -wave channel, with the corresponding form factors de�ned in the eq. (2.153)
to (2.158)[35, 181] (section 2.3.3).

To explore the pairing mechanism we decompose the particle-particle pairing vertex Γ
into the fully irreducible vertex Λ, the charge (S = 0) particle-hole contribution, Φc, and
the spin (S = 1) particle-hole contribution, Φs, through the parquet equation, Γ = Λ + Φc +
Φs[51](section 2.3.4). We furthermore project the previous expression using di�erent form
factors such as dx2−y2 and dxy,

Vdx2−y2/dxy = V Λ
dx2−y2/dxy

+ V C
dx2−y2/dxy

+ V S
dx2−y2/dxy

, (5.1)

where each term is the projected component of the corresponding term in the parquet
equation[62]. In this way, we are able to distinguish which component contributes the most
to the e�ective pairing interaction.

5.3 Results

Fig. 5.1 displays the cluster spin susceptibility at di�erent �llings,n = 0.667, 0.8, and 1, and
coupling U = 8.5t. The data are obtained from DCA-CTQMC simulations with cluster size
Nc = 12, and we interpolate the cluster susceptibility into the entire Brillouin zone (BZ). At
very high hole-doping, n = 0.667, the susceptibility is mostly �at. As the �lling increases,
n = 0.8, the spin susceptibility develops six bumps at the K points. When n = 1, the
bumps become more pronounced. The vector connecting Γ to K is the antiferromagnetically
ordered wave vector (

−−→
QAF ) in the Heisenberg limit of the half-�lled model. The cluster

spin susceptibility demonstrates that the antiferromagnetic �uctuations become stronger
as the �lling moves towards n = 1. The pairing of electrons may be mediated by these
�uctuations[186, 187].

Fig. 5.2 shows the Fermi surface (FS) at the same �llings used in the previous �gure.
Fig. 5.2(a) corresponds to the non-interacting limit. At n = 0.667, 0.8 and 1 the FS is
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Figure 5.1: (Color online) Cluster spin susceptibility for Nc = 12, interaction strength
U = 8.5t, temperature T = 0.1t and di�erent �llings, n = 0.667, 0.8, and 1.

close to a perfect circle. The van Hove singularity in the non-interacting band structure is
present at n = 1.5 with saddle points at M . One-loop RG calculations[188] show the FS
in the hole-doped side is stable against weak Coulomb interactions. However, under strong
interaction, the FS begins to deform and new phenomena such as superconductivity emerges.
Fig. 5.2(b) displays the FS at n = 0.667, U = 8.5t, which is slightly deformed towards a
hexagon. The red arrow corresponds to

−−→
QAF , while the pink arrow is this vector shifting

its center to Γ and rotating it by 60o. For n = 0.667 the pink arrow is longer than the
diameter of the FS so there is no nesting e�ect, and we do not observe superconductivity
at this �lling. In Fig.5.2(c), n = 0.8, the FS is more deformed, the

−−→
QAF now connects

signi�cant sections of the FS, and as illustrated in Fig. 5.1, the AF �uctuations are stronger.
The nesting e�ect and the strong AF �uctuations together give rise to diverging pairing
susceptibilities at �lling n = 0.8 and 0.9, as discussed below. At half-�lling, n = 1, the FS
is further deformed towards a hexagon, but the spectral weight become less coherent due
to the strong interaction. Interestingly, the nesting vector now is shorter than the diameter
of the FS. Hence, even through the AF �uctuations are the strongest here, electrons on the
FS are hard to pair by

−−→
QAF , the system is rather subject to a Mott transition, whose novel

features are beyond the scope of this thesis.
Fig. 5.3 displays the inverse pairing susceptibility as a function of temperature, 1/χpairing(T ),

at �lling n = 0.9, U = 8.5t, and Nc = 6. Here we explicitly project the lattice pairing sus-
ceptibility in the s-, dx2−y2-, and dxy-wave singlet channels and the f -wave triplet channel
by using the appropriate form factors. Fig. 5.3 shows that the two singlet d-wave com-
ponents are the most divergent ones. Within our numerical resolution their 1/χpairing ex-
trapolate to zero at the same superconducting transition temperature, Tc. This implies that
the superconducting order parameter is doubly degenerate with components dx2−y2 and dxy.
Based on symmetry arguments any linear combination of both d-wave components is possi-
ble below Tc. However, both Ginzburg-Landau and BCS-type mean-�eld approaches favor
superconducting phases that break the time-reversal symmetry for singlet multicomponent
superconductors[189, 190], such as the d+id singlet pairing state predicted in graphene[36, 37]
and the cobaltates[180, 181]. Therefore, our �ndings support the possibility of a chiral d+ id
superconducting phase in the hole-doped triangular Hubbard model. The inset of Fig. 5.3
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Figure 5.2: (Color online) (a) First Brillouin zone, the symmetric path Γ−M −K − Γ and
the non-interacting Fermi surface at di�erent band �llings. (b), (c), (d) Spectral function
A(k, ω = 0) on the Fermi surface for Nc = 12 DCA-CTQMC simulations with U = 8.5t,
T = 0.1t, and n = 0.667 in (b), n = 0.8 in (c), and n = 1 in (d). Red arrow is the AF
ordered wave vector (

−−→
QAF ) and the pink arrow is after shifting its center to Γ and rotating

it by 60o.
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Figure 5.3: (Color online) Inverse pairing susceptibility, 1/χpairing, for Nc = 6, U = 8.5t and
n = 0.9. The singlet s-wave and triplet f -wave do not diverge, whereas the singlet pairing
channels with dx2−y2- and dxy-wave symmetry show a divergencency at the same Tc. Note
that we have multiplied by a factor of 7 the s-wave pairing susceptibility in order to use the
same vertical scale. (Inset) The superconducting transition temperature Tc as a function of
doping. FL and SC label the Fermi liquid and superconducting regions, respectively.

shows the phase diagram for di�erent doping concentrations based on Nc = 6 DCA-CTQMC
simulations. Tc becomes �nite for doping larger than n = 0.7 due to the onset of FS nesting
and strong AF correlations, and increases as n approaches 1, re�ecting that the AF �uc-
tuations become stronger towards half-�lling. However, the nature of the ground state at
half-�lling is still unclear due to a worsened minus-sign problem in our simulations.

To shine light on the dominant contribution to the pairing interaction, we use the parquet
equations to decompose the irreducible particle-particle vertex function, and project each
term onto its dx2−y2 and dxy components. The results are presented in Fig. 5.4 for a DCA-
CTQMC simulation with cluster size Nc = 12, U = 8.5t and �lling n = 0.9. The left, right
panels correspond to the dxy, dx2−y2 projection of the parquet equations, respectively. In
both cases, the dominant contribution to the e�ective pairing interactions Vdxy and Vdx2−y2
is from the magnetic, spin S = 1, particle-hole channel, V S

dxy
and V S

dx2−y2
. In fact, we

also �nd that the pairing interaction, Vdxy/dx2−y2 (k − k′) is peaked at momentum transfer

|k − k′| = |
−−→
QAF |. The vertex decomposition con�rms that this peak comes from the spin

channel V S
dxy/dx2−y2

(
−−→
QAF ) (not shown). Note that both Nc = 6 and 12 size clusters have the

cluster points connected by
−−→
QAF . From the BCS gap equation[189]

∆k = − 1

N

∑
k′

V SC(k− k′)
∆k′

2E(k′)
tanh(

E(k′)

2T
), (5.2)

where E(k) =
√
ε2k + ∆2

k, we infer that if the superconducting pairing interaction V
SC(k−k′)
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Figure 5.4: (Color online) Left: dxy projected contributions to the pairing vertex Vdxy , from
the fully irreducible vertex V Λ

dxy
, charge V C

dxy
and spin V S

dxy
cross channels versus T at n = 0.9,

U = 8.5t. Right: the dx2−y2-wave projection of the same quantities. In both cases, the
contribution to the pairing interaction from spin channel is clearly dominant.

is peaked at
−−→
QAF , the order parameters ∆k which correspond to dx2−y2 , dxy and f -waves are

equally favored in the Nc = 6 and 12 clusters. Our results suggest that dxy and dx2−y2

singlet pairing are favored over the f -wave triplet pairing, probably because f -wave has a
more complex nodal structure than the two d-waves[35].

5.4 Conclusion

Using large-scale dynamical cluster quantum Monte Carlo simulations, we �nd a doubly
degenerate singlet pairing state at interaction strength close to the bare bandwidth and
�lling larger than n = 0.7 in the hole-doped Hubbard model on the triangular lattice. Our
�ndings support the presence of a chiral d+ id singlet superconducting phase in this model.
The pairing mechanism comes from antiferromagnetic spin �uctuations at the magnetic order
wavevector nesting the deformed FS. A decomposition of the vertex further con�rms that
the spin channel contributes the most to the e�ective pairing interaction.

96



Chapter 6

General Conclusion and Outlook

In this thesis, we try to understand the physics of unconventional superconductivity both
on the square- and triangular-lattice Hubbard models using large-scale dynamical cluster
quantum Monte Carlo simulations. For the square-lattice Hubbard model near the optimal
hole doping, we �nd the formation of d-wave pairings is due to the C4 symmetry of the
Fermi surface and the antiferromagnetic instability with nesting wavevector q = (π, π). The
high transition temperature may originate from a quantum critical point (QCP) beneath the
superconducting dome at the ground state. For the triangular-lattice Hubbard model on the
hole-doped side, the d+ id pairing comes from the C6v symmetry of the nested Fermi surface
and the instability of the antiferromagnetic susceptibility with q = (2π

3
, 2π√

3
). Whether there

is a QCP on the phase diagram of the triangular-lattice Hubbard model at half �lling close
to the metal-insulator transition (MIT) requires future investigations.

In the square-lattice Hubbard model, we also identify a line of Lifshitz transition associ-
ated with the change of topology of the Fermi surface. The van Hove singularity crossing the
Fermi level is the characteristic feature of the Lifshitz points. Similarly, the Fermi surface
for the triangular-lattice Hubbard model will also change its topology at �lling n ≈ 1.5. The
properties of such a Lifshitz transition also needs future studies.

For future topics, we �nd that there is a similarity between the n-T phase diagram for the
square-lattice Hubbard model with U �xed and the U -T phase diagram for the triangular-
lattice Hubbard model with n �xed at 1. For the square lattice, there is MIT occurs when
the �lling n moves toward the half �lling under a �xed interaction U , while for the triangular
lattice, MIT when the interaction U increases toward Uc for n = 1. The pseudo-gap physics
before the MIT is discovered for the square case while the long sought �spin-liquid� physics
on the triangular lattice is still a mystery. Due to the serious minus sign problem at large U ,
to study the triangular lattice at or above half �lling in the strongly correlated regime, we
will improve our numerical method using the strong-coupling quantum Monte Carlo solver
to investigate the physics when U ≥ Uc.
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