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ABSTRACT

Terrestrial Gamma ray Flashes (TGFs) -- very short, intense bursts of electrons,
positrons, and energetic photons originating from terrestrial thunderstorms -- have been
detected with satellite instruments. The TGF and Energetic Thunderstorm Rooftop Array
(TETRA), an array of Nal(Tl) scintillators at Louisiana State University, has now been
used to detect similar bursts of 50 keV to over 2 MeV gamma rays at ground level. After
3.3 years of observation, twenty-eight events with durations 0.02 - 4.2 msec have been
detected associated with nearby lightning, three of them coincident events observed by
detectors separated by ~1000 m. Nine of the events occurred within 6 msec and 3 miles
of negative polarity cloud-to-ground lightning strokes with measured currents in excess
of 20 kKA. The events reported here constitute the first catalog of TGFs observed at
ground level in close proximity to the acceleration site. The ability to observe ground-
level Terrestrial Gamma Flashes from close to the source also allows a unique analysis of
the storm cells producing these events. The results of this analysis are presented here.

In addition to the ground-based TETRA array, a balloon-borne detector (the Lightning-
Associated Gamma-ray Observer, LAGO) has been constructed and flown. Results from
an engineering flight of this balloon payload are presented. Plans for an upgraded version
of the ground-based array are also included.

Xiii



CHAPTER 1 - INTRODUCTION

Lightning provides the most powerful natural accelerator available on Earth for
producing high energy particles. Intense millisecond-scale bursts of gamma rays
produced by upward-moving electrons accelerated to energies of tens of MeV or more
have been detected with satellite instruments. These Terrestrial Gamma-ray Flashes
(TGFs) have been shown to be associated mainly with positive polarity intracloud
lightning, with the particle acceleration occurring at altitudes of 10-15 km. We show that
negative polarity cloud-to-ground lightning accelerates particles downward and produces
gamma rays with energies of at least 2 MeV.

TGF observations from satellite platforms are limited to events apparently beamed

upward and large enough to be detected even in the presence of attenuation and Compton

scattering by the atmosphere. Although these events observed from space are extremely
intense (gamma ray rates in excess of 300 kHz measured with the Burst And Transient

Source Experiment) [Fishman et al., 1994], the bulk of the events are presumably smaller

events which can only be observed much closer to the lightning -- i.e., at aircraft or
balloon altitude or at ground level [Smith et al., 2011; Briggs et al., 2013; Gjesteland et
al., 2012; @stgaard et al., 2012]. Observations at ground level and in the atmosphere are
necessary to observe the downward component, to better understand the TGF intensity
distribution and emission pattern, to understand whether the observed 30° beaming is
intrinsic to the emission process or is the result of atmospheric attenuation, and to
measure the spectrum vs altitude relationship. The present work describes a program to
observe TGFs from the ground and at balloon altitudes and presents a summary of the
events detected in the first three years of observation.

Chapter 2 introduces the scientific motivation for the project. Chapter 3 describes the
ground-based TGF and Energetic Thunderstorm Rooftop Array (TETRA)
experiment, the main focus of this work. Chapter 4 gives the initial published results
for July 2010 to February 2013 (~2.5 years of data) acquired with TETRA and the
associated data analysis for the initial observations. These results are summarized in
Table 4.1. Chapter 5 updates the results, extending them to March 2014, using an
improved data analysis process. The most current details of the TETRA results can
be found in Table 5.1. An analysis of the storms that produced event candidates is
given in chapter 6. In addition to the ground-based TETRA array, a balloon-borne
detector (the Lightning-Associated Gamma ray Observer, LAGO) has been
constructed and is described in chapter 7. Results from an engineering flight of this
balloon payload are also found in chapter 7. Conclusions based on the TETRA and
LAGO data are presented in chapter 8. Plans for an upgraded version of the ground-
based array are described in chapter 9. Appendix A contains the schematics of the
electronics boards used in the rooftop array. The schematics of the electronics boards
used in the balloon payload are included in Appendix B. The analysis code used to
analyze the TETRA and LAGO data is described in Appendix C and can be accessed
at http://heastro.phys.lsu.edu/Isutgfcode.




CHAPTER 2 — MOTIVATION

Terrestrial Gamma-ray Flashes (TGFs) were first observed by the Burst and Transient
Source Experiment (BATSE) aboard the Compton Gamma Ray Observatory [Fishman et
al., 1994; Gjesteland et al., 2012]. The time profiles of the initial twelve events reported
are shown in Fig. 2.1. These bursts have shorter durations — about one millisecond or less
-- than cosmic gamma-ray bursts and are correlated with terrestrial thunderstorms. The
gamma-ray community was not convinced of the physical nature of these events until
Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) published a map of
820 TGF detected by the satellite over six years of its operation (Fig. 2.2) [Grefenstette et
al., 2009]. If indeed these events were caused by noise, then the events should be
distributed randomly across the satellite’s orbit. Instead, these events are concentrated
over Central America, central Africa and Southeast Asia -- areas correlated with intense
lightning. Figure 2.3 shows the annual number of lightning strikes per square kilometer
detected by the National Aeronautics and Space Administration’s (NASA’s) Optical

Figure 2.1 Time profiles of BATSE TGFs. The time resolution of the plots is 0.1 ms per
bin. From Fishman et al., 1994.

"Portions of this chapter previously appeared in Ringuette, R., et al., (2013), TETRA
observation of gamma-rays at ground level associated with nearby thunderstorms. J.
Geophys. Res. Space Physics 118, 7841. It is licensed under CC 3.0.
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Transient Detector (OTD) and Lightning Imaging Sensor (LIS) instruments. The
comparison of the two figures shows clearly that these events are correlated with regions
of high lightning density.

Fig. 2.2 Map of sub-satellite location for all 820 RHESSI TGFs. From Grefenstette et al.,
20009.

“hhrmm-=NsO®

=150 -120 =80 -60 -30 0 30 60 90 120 150

Fig. 2.3 High Resolution Full Climatology Annual Flash Rate. Global Distribution of
lightning April 1995 - February 2003 from the combined observations of the NASA OTD
(Apr 1995 — Mar 2000) and LIS (Jan 1998 — Feb 2003) instruments. From the National
Weather Service.



Since the initial discovery of TGFs by the BATSE instrument, TGFs have now been
observed by several additional satellite detectors including RHESSI [Smith et al., 2005;
Grefenstette et al., 2009], the Gamma-Ray Imaging Detector (GRID) [Marisaldi et al.,
2010] and MiniCALorimeter (MCAL) [Marisaldi et al., 2011; Tavani et al., 2011] on
Astro-Rivelatore Gamma a Immagini Leggero (AGILE), and the Gamma ray Burst
Monitor (GBM) [Cohen et al., 2010; Fishman et al., 2011; Briggs et al., 2013] and Large
Area Telescope (LAT) [Grove et al., 2012] on the Fermi mission. A map of TGFs
detected over Central America by GBM is shown in Fig. 2.4.

30.

Latitude
o)

-30.

-120. -90.
Longitude

Figure 2.4 TGFs detected by GBM on the Fermi satellite. The cyan and red circles
indicate 225 TGF detected in the Caribbean. From Briggs et al., 2013.

TGF events are typically detected close to the sub-satellite point [Grefenstette et al.,
2009] and are correlated both with regions of high thunderstorm activity [Cohen et al.,
2006; Fuschino et al., 2011; Marisaldi et al., 2011] and with individual positive polarity
intracloud (+IC) and possibly positive polarity cloud-to-ground (+CG) lightning
discharges to within 1 - 2 msec [Inan et al., 2006; Stanley et al., 2006; Hazelton et al.,
2009]. (Positive polarity is needed to produce the upward beam of electrons and
secondary photons necessary for detection of TGFs from space [Dwyer, 2003; Cohen et
al., 2010].) Lightning flashes are known to emit a large fraction of their electromagnetic
energy into low frequency (0.3 - 30 kHz) atmospheric radio signals, called sferics, which
can be located accurately by arrival time measurements in a worldwide radio receiver
network [Rodger et al., 2009]. TGFs are well correlated both with sferics [Inan et al.,
2006; Connaughton et al., 2013] and the LIS-OTD (Fig. 2.3) and WWLLN high
resolution lightning data [Hazelton et al., 2009; Smith et al., 2010; Fuschino et al., 2011].



GBM has also demonstrated that in some cases, as the original gammas propagate
upward through the atmosphere, they produce secondary electron and positron (e+) via
pair production [Cohen et al., 2010; Briggs et al., 2011] that escape into space. These
secondaries are then able to spiral around magnetic field lines to the spacecraft far from
the lightning location, producing Terrestrial Electron Beams (TEBs) characterized by 511
keV signals and both long duration pulses and delayed pulses resulting from particles
moving past the spacecraft and then reflecting from magnetic mirror points and returning
to be detected by GBM.

Given the altitude of the satellites around 500 km, the observations point to beaming of
the photons upward with a ~30° half-angle cone coupled with attenuation of wide-angle
photons passing through greater atmospheric path lengths [ Grefenstette et al., 2008;
Ostgaard et al., 2008; Hazleton et al., 2009; Gjesteland et al., 2011]. Based on the spectra
observed by RHESSI [Smith et al., 2005], Dwyer and Smith [2005] performed detailed
Monte Carlo simulations showing that the spectra were consistent with bremsstrahlung
from electrons accelerated by the relativistic runaway electron avalanche (RREA)
mechanism [Gurevich et al., 1992; Dwyer, 2003] at altitudes near thunderstorm tops.
Over the 0.1 - 10 MeV range, the spectrum observed by AGILE [Marisaldi et al., 2011]
has been well fit by a cutoff power law of the form F(E) ~ E%"¥E° with E, compatible
with the ~7 MeV electron energies predicted by RREA, but the observation of individual
gamma rays with energies in excess of 40 MeV has posed a challenge for the emission
models [Tavani et al., 2011; Celestin et al., 2012].

An accurate model of TGF production must account for many complex interactions. The
primary factor involved in generating TGFs is the production of runaway electrons. In
order for an electron to ‘run away’, it must gain energy from an electric field faster than it
loses energy through ionization interactions and inelastic scattering [Wilson, 1925]. The
effective frictional force that an electron must overcome is plotted against the electron’s
kinetic energy in Figure 2.5 (Dwyer, 2003). The minimum electric field strength at which
this occurs is called the break-even field. The break-even field is defined as the field
strength necessary for the average energy of a 1 MeV electron at standard temperature
and pressure (STP) to remain constant as it gains energy from the electric field and loses
energy in inelastic collisions with molecules and by emitting x-rays [Marshall et al.,
1995]. With this definition, the break-even field is Ep = 2.18 x 10° V/m X n, where n is
the density of air as compared to the air density at sea level [Dwyer, 2012a].

Electron energy losses in air increase with decreasing energy below ~1 MeV (with
equivalent break-even field of eEb), resulting in the curve on the left of Fig 2.5. Electrons
with energies below ~0.1 keV (with equivalent break-even field of eEc) are typically
captured by ions as shown by the dip at the far left. For electrons with energies above
1.022 MeV -- twice the rest mass energy of two electrons -- bremsstrahlung emission and
particle creation increase the effective frictional force, resulting in the dashed curve on
the right. Including elastic scattering in the TGF model results in an increase in the
strength of the break-even field by about 30% (Ewm = 2.84 x 10° V/m x n), resulting in an
electric field requirement comparable to those observed in thunderstorm clouds [Dwyer,
2012a; Rakov and Uman, 2003].



The production of runaway electrons is generally modeled beginning with energetic seed
electrons with energies of a few MeV [Dwyer, 2003, 2008; Gjesteland et al., 2011].
These seed electrons have been argued to be produced by either cosmic ray air showers,
cold runaway electrons, or lightning initiation processes [Gurevich, 1961; Dwyer, 2012a].
Cosmic ray air showers occur when a high energy proton or nucleus interacts with the
atoms in the atmosphere, causing a shower of particles that decrease in energy as the
shower altitude decreases. Cold runaway electrons are produced when the electric field
exceeds the critical electric field strength (E. in Fig. 2.5), causing the low-energy thermal
electrons to run away. Recently, it has been shown that TGFs cannot be explained by
cosmic rays or extensive cosmic ray air showers based on flux arguments [Dwyer, 2008].
The experimental association of TGFs with lightning suggests that TGFs are either
seeded by cold runaway electrons produced by lightning leaders or the charge moment
change in the early stages of lightning.

1000 F T T T T T T T
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Figure 2.5 The effective frictional force experienced by a free electron moving through
air at STP as a function of kinetic energy. The solid curve is due to inelastic scattering of
the electron by air molecules, and the dashed curve indicates the effects of
bremsstrahlung emission. The horizontal line shows the electric force from a 5.0 x 10°
V/m electric field. Runaway electrons occur for kinetic energies greater than the
threshold energy, € > em. Here Ec is the critical electric field strength for which low-
energy thermal electrons will run away and Eb is the so-called breakeven field. Figure 1
from Dwyer, 2012a.

Runaway electrons produce avalanches with a characteristic energy scale of 7.2 MeV
(Eq. 2.1). Using the electric field observed within thunderclouds (Ewn = 2.84 x 10° V/m X
n), the runaway electron avalanche process produces a multiplication factor of 1.043.
While this multiplication factor is large enough to produce a small avalanche, it is far
below what is necessary for one seed electron to produce the ~10'7 runaway electrons
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observed by the BATSE, RHESSI and GBM instruments [Briggs et al., 2010]. For an
electric field of 8 x 10* V/m x n, as observed for negative polarity cloud-to-ground
lightning, the multiplication factor increases to 8.031 — still far below observed TGF
fluxes. This large flux difference between the standard avalanche model prediction and
satellite TGF observations is resolved by including the relativistic feedback of positrons
and backward-propagating x-rays.

Runaway electrons undergo avalanche multiplication due to Meller scattering (electron-
electron elastic scattering), resulting in large numbers of runaway electrons for each
initial seed electron as shown in the central portion of Fig. 2.6. When these relativistic
electrons are deflected in the electric field of a nucleus, they emit bremsstrahlung X-rays,
thus slowing the avalanche. A small portion of these X-rays Compton randomly
backscatter towards the beginning of the avalanche region, producing more runaway
electrons via Compton scattering or photoelectric absorption, causing a secondary
avalanche (shown on the left in Fig. 2.6).

00— e e
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Fig. 2.6 Partial Monte Carlo simulation showing the runaway breakdown of air. The light
tracks are the runaway electrons, the dashed lines are the gamma-rays and the dark track
is a positron. The entire avalanche is initiated by one, 1 MeV, seed electron injected at
the top center of the volume. The horizontal dotted lines show the boundaries of the
electric field volume (E = 1000 kV/m). For clarity, only a small fraction of the runaway
electrons and gamma-rays produced by the avalanche are plotted. The avalanches on the
left and right illustrate the increase in the avalanche multiplication factors caused by the
addition of the X-ray and positron feedback mechanisms, respectively. From Dwyer
2003a.

The backscattered X-rays can also pair produce, generating relativistic positrons traveling
backwards in the electric field towards the avalanche region. As the positrons travel
backwards, some emit secondary bremsstrahlung X-rays that can further seed the
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avalanche (shown on the right in Fig. 2.6). They also interact with atomic electrons in the
air via hard elastic scattering, producing additional runaway electrons that seed secondary
avalanches. The positrons eventually annihilate, producing 511 keV gamma rays which
can also increase the avalanche multiplication and produce a possible downward-directed
positron and gamma ray signature [Dwyer 2012a]. This runaway mechanism is referred
to as the relativistic runaway avalanche mechanism (RREA), or the ‘snowball effect’
[Wilson, quoted in Williams, 2010].

These relativistic feedback mechanisms lengthen TGF durations up to several
milliseconds and explain the flux seen from TGFs at satellite altitudes [Dwyer, 2008;
Dwyer et al., 2012a and references therein]. Ground-based lightning observations and
comparisons of model calculations with the measured spectra indicate that the TGFs are
produced at altitudes ~ 10-15 km [Dwyer and Smith, 2005; Grefenstette et al., 2008;
Shao et al., 2010; Gjesteland et al., 2010; Cummer et al., 2011; Xu et al., 2012]. As a
practical consideration, it has been suggested that lightning-induced gamma rays might
produce a significant radiation exposure for airplane passengers flying close to a
lightning stroke [Dwyer et al., 2010]. A more detailed review of TGF models and
observations is presented by Dwyer et al. [2012b].

The majority of ground-level observation projects currently focus on correlating satellite-
observed TGFs with lightning and measuring possible associated magnetic signatures
[Cummer et al., 2011; Lu et al., 2011]. The International Center for Lightning Research
and Testing (ICLRT) project, however, has reported two gamma ray bursts, one in
association with triggered lightning of negative polarity [Dwyer et al., 2004] and another
in association with nearby negative polarity cloud-to-ground (-CG) lightning [Dwyer et
al., 2012c]. TGFs associated with negative polarity lightning strikes, as with these [CLRT
events, produce downward beams of photons which can be detected from the ground.
ICLRT operates in a triggered mode, requiring either a triggered lightning current above
6 kA or the simultaneous trigger of two optical sensors.

Other observations of gamma-rays from thunderstorms have been reported, although
these events show different characteristics from the TGFs described here. The array of
particle detectors at Aragats Space Environment Center (ASEC) has detected
thunderstorm-associated ground enhancements above 7 MeV with timescales of
microseconds and tens of minutes [Chilingarian et al., 2010, 2011]. These have been
detected approximately once per year and seem to be correlated with -IC lightning.
Longer duration (40 seconds to minutes or longer) X-ray and gamma ray events have
been reported previously from the ground [Tsuchiya et al., 2011, 2013]. In comparison,
only the two ICLRT events exhibit the same spectral properties and the same timescale as
the TGFs detected from space. The only other case in which a TGF-like event with
millisecond emission of MeV gammas has been observed from within the atmosphere is
the observation by the Airborne Detector for Energetic Lightning Emissions (ADELE)
aboard an aircraft at an altitude of 14 km [Smith et al., 2011].

Observations of TGFs from the ground are necessary to resolve several detection issues.
Although hundreds of TGFs have been detected from space, satellites have difficulty



distinguishing low flux events from the observed background. For upward-directed
TGFs, the predicted positron signature must be observed from beneath the source. Also,
the location uncertainty of the majority of these events is 300 km — much larger than
individual thunderstorm cells [Briggs et al., 2013]. By monitoring with a ground-based
detection array, we are able to detect TGFs, associate them with specific portions of
thunderstorms, and look for trends between the TGFs and the properties of the storms
producing them. Here we present observations from July 2010 through October 2013 of
twenty-eight TGF-like events in which 50 keV - 2 MeV gamma rays are observed at
ground level in shorter than 5 msec bursts associated with nearby negative polarity
lightning. These observations increase the number of TGFs detected from the ground by a
factor of 14, compared to the two previously known TGFs detected from the ground by
ICLRT.



CHAPTER 3 — TETRA DETECTOR DESCRIPTION

The TGF and Energetic Thunderstorm Rooftop Array (TETRA) consists of an array of
twelve 19 cm x 19 cm x 5 mm Thallium-doped sodium iodide (Nal(T1)) scintillators
designed to detect the gamma ray emissions from nearby lightning flashes over the range
50 keV -2 MeV. The scintillators are mounted in four detector boxes, each containing
three sodium iodide (Nal) detectors viewed by individual photomultiplier tubes (PMTs)
(pictured in Fig. 3.1). The boxes are spaced at the corners of a ~700 x 1300 m? area on
four high rooftops at the Baton Rouge campus of Louisiana State University (LSU) at
latitude 30.41° and longitude -91.18 ° (Fig. 3.2). Unlike ICLRT, TETRA operates in a
self-triggered mode, allowing for events to be recorded without requiring the direct
detection of lightning.

Figure 3.1 One of the four TETRA detector boxes. The boxes are covered with Mylar to
reflect ultraviolet (UV) radiation. The PVC curved pipes shown are to promote air flow
through the box. This box is located on the roof of the LSU School of Veterinary
Medicine. The Mississippi River can be seen in the background.

Each TETRA detector box contains three Nal scintillator plates oriented at 30° from the
zenith direction and separated by 120° in azimuth (Fig 3.2). Each Nal(Tl) crystal is
hermetically sealed between a 6.4 mm thick glass optical window on one flat face and a
0.75 mm thick Aluminum entrance window on the other face. An ultraviolet transmitting
Lucite lightguide is coupled to the glass window, and the light is viewed by an Electron
Tubes 9390KB 130 mm photomultiplier tube (PMT) with a standard bialkali

"Portions of this chapter previously appeared in Ringuette, R., et al., (2013), TETRA
observation of gamma-rays at eround level associated with nearby thunderstorms. J.
Geophys. Res. Space Physics 118, 7841. It is licensed under CC 3.0.
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Figure 3.2 Map of TETRA detection box locations. A map of the campus of LSU is
shown. The lightning symbols mark the locations of the four TETRA detection boxes.

photocathode (Fig 3.3, PMT electronics shown in Fig 3.4). The scintillator-PMT
assemblies are housed in ~ 1" thick plastic foam insulation to prevent rapid temperature
changes. Electronics boards in each detector box supply high voltage, amplify and shape
the PMT outputs, provide an internal trigger for the data acquisition software, digitize the
data, assign timestamps, and record analog-to-digital conversion (ADC) values for each
event. Once triggered, each PMT anode output is integrated and assigned a 12-bit ADC
value. A detailed description of the electronics used in TETRA is given in Appendix A.
A 32-channel 12-bit ADC board, a Lassan iQ Global Positional System (GPS) board, and
a Mesa Field-programmable Gate Array (FPGA) board are incorporated onto a PC104
stack controlled by a Microcomputer Systems VDX-6357 800 MHz 486 Central
Processing Unit (CPU) board running a Qunix (QNX) operating system. The FPGA is
programmed to handle trigger logic, clock functionality, and event time stamping. We
refer to the Mesa board together with its FPGA as the Trigger Logic Module (TLM).
Each is capable of detecting events at a sustained rate of 30 kHz and a burst rate of up to
70 kHz. The data are then transferred over a wireless link to a central station for analysis.
The initial version of the data acquisition software, used from October 2010 to January
2013, utilized a network time protocol to keep timestamps accurate to within
approximately 2 msec and to monitor the absolute timing uncertainty. The current version
of the software, implemented in January 2013, uses a GPS-disciplined clock to produce
timestamps accurate to within 200 ns. This improvement in timing accuracy will improve
detection significance by a factor of 10* for events observed on more than one detection
box.

The ADC-to-energy conversion is calibrated with radioactive sources (**Na, *’Cs, ®Co).
Individual detector energy resolution ranges from 9 to 13.5% full width half maximum
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Figure 3.3 Inside a TETRA detection box. The three foam blocks house the Nal PMTs
described above. The electronics boards are located at the bottom right. The PC104 stack
is located at the bottom left. Power and Ethernet cabling is to the left (not shown).

Figure 3.4 One of TETRA’s Nal PMT assemblies. The 19 cm x 19 cm x 5 mm Nal(TI)
scintillator is shown at the bottom of the assembly. The clear prism in the middle is the
acrylic light guide described above. A 130mm PMT views the light guide from the top,
shown wrapped in electrical tape. This assembly is turned upside-down in the detection box
to view gamma rays from thunderstorms.
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(FWHM) at 662 keV and from 5.5 to 10.8% at 1.3 MeV. The total interaction probability
in the Nal scintillators is 95% at 100 keV, 82% at 500 keV, and 10% at 1 MeV (with
photoelectric interaction probabilities 93%, 26%, and 0.63% respectively). In addition to
the three Nal scintillators, one detector box contains a one inch diameter by one inch
thick cerium-doped lanthanum bromide (LaBr3:Ce) scintillator that provides high energy
resolution measurements (3.5% FWHM at 662 keV) of intense events. Beginning in
October 2012, all boxes contain a bare PMT (photomultiplier tube without a scintillator)
to check for electronic noise.

Figure 3.5 Standard voltage divider used for TETRA’s Nal PMTs.

Data are accumulated for a day at a time for each of the four detector boxes individually.
The daily analysis software selects events with signals corresponding to at least 50 keV
deposited energy within 1 psec. The data are then binned into 2 msec bins and assigned a
timestamp. TETRA triggers are selected with counts/2 msec at least 20 standard
deviations above the mean for the day. Once days with excessive electronic noise or other
instrumental problems are removed, there are 835.09 days of live time and 1303 TETRA
triggers.

13



CHAPTER 4 - TETRA DATA ANALYSIS AND RESULTS: JULY 2010
TO FEBRUARY 2013*

In Fig. 4.1, the heavy black line shows a time history of the count rates for the three Nal
photomultiplier tubes of > 50 keV events in a single detector box for one day. The total
count rate, plotted in counts per minute, is reasonably constant for the first seventeen
hours, and then increases by a factor of approximately 2 beginning at about 1800 Central
Standard Time (CST). The small peak in the count rate seen at about 1200 CST is due to
noise in the system seen only in a single PMT on a 60-second timescale. The thin black
histogram near the bottom shows the local radar reflectivity in decibels (dBZ) acquired
from www.wunderground.com, indicating rain, thunderstorms, hail, or strong winds. The
increase in the Nal detector rate is clearly correlated with the radon fallout caused by
rainstorms. The gamma ray spectrum, measured during a rain event with the high
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Figure 4.1 Summed Nal counting rate per minute in Box 3 on 8/18/2011 (heavy black
line, left hand scale). Thin black histogram near the bottom (right hand scale) shows radar
reflectivity. The filled rectangle at the bottom marks times of lightning strikes within 5
miles. The row of filled circles near the top marks intervals in which the count rate in 60
sec bins exceeds the day’s average by 3 o; the open square marks the TETRA trigger, i.e.,
the interval when the rate in 2 msec bins exceeds the day’s average by 20 .

"This chapter previously appeared in Ringuette, R., et al., (2013), TETRA observation of
gamma-rays at ground level associated with nearby thunderstorms. J. Geophys. Res.
Space Physics 118, 7841. It is licensed under CC 3.0.
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resolution LaBr3:Ce detector mounted together with the Nal detectors in one of the
detector boxes, shows a clear indication of 295, 352, 609, 1120, and 1764 keV *'“Bi and
214Pb lines characteristic of radon decay (Fig. 4.2).

The filled rectangle near the bottom of Fig. 4.1 at approximately 1800 CST marks the
times of lightning strikes detected by the United States Precision Lightning Network
(USPLN) Unidata Program within 5 miles of the LSU campus. These are mainly cloud-
to-ground events with positions accurate to approximately %4 - %2 mile. In the upper
section of the diagram, the line of filled circles marks 60-second intervals in which the
Nal detector count rate is 3 standard deviations higher than the average rate for the day;
these are correlated with the peak of the extended rise at the time of the rainstorms.
TETRA triggers are defined as intervals during which the rate in a 2 msec window
exceeds the day’s average by 20 6. The TETRA trigger observed is indicated near the top
of the plot as an open square. (For a typical average counting rate of 8900 min™' in a
detector box above 50 keV, a 20 ¢ excess corresponds to 10 counts in the three PMTs in
a detector box within a 2 msec window.)
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Figure 4.2 LaBr3:Ce Rain Spectrum. LaBr3:Ce background-subtracted spectrum during a
6 hour precipitation event showing radon lines at 295 keV, 352 keV, 609 keV, 1120 keV
and 1764 keV.
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Figure 4.3 shows an expanded view of the data on the same day, illustrating the
correlation of the triggers in individual boxes with lightning and cloud density overhead.
Panel A shows the times of the triggers in each detector box. Panel B shows the rate per
second of lightning strikes within 5 miles of the detectors, and Panel C shows the
distance of all lightning strikes recorded by the USPLN network within 100 miles. Panel
D shows the overhead cloud density as measured by Next Generation Radar (NEXRAD)
data.

DA '}H"|{HHHIIHIIHIIIIH!!H

Figure 4.3 TETRA Report for 8/18/2011 events. Panel A (top): Triggers detected on
8/18/2011 (Nal signals above 50 keV in a single detector box with count rate per 2 msec
in excess of 20 ¢ above the 8/18/2011 daily mean counting rate). Box 1 triggers are
indicated by plus signs, Box 3 by triangles and Box 4 by squares. Panel B: Rate per
second of USPLN lightning strikes within 5 miles. Panel C: Distance to each recorded
lightning strike within 100 miles. Panel D: Overhead cloud density.

From July 2010 through February 2013, TETRA recorded a total of twenty-four events
with triggers occurring within several minutes of thunderstorm activity producing at least
one lightning flash within 5 miles of the detectors. Such events are classified as Event
Candidates (ECs) and are listed in Table 4.1. In this table each event trigger time is listed,
along with the number of lightning flashes detected within +2.5 minutes and 5 miles and
the cloud density above TETRA. Also listed for each EC is the time difference to the
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lightning stroke closest in time to the event trigger, the distance to that lightning stroke,
the current, the number of gamma rays detected in the EC, and the Too duration of the
event (i.e., the time over which a burst emits from 5% to 95% of its total measured counts
in a single detector box). The number of sigma above the mean is listed in the second to
last column for each event. (For the first three events in the table, observed
simultaneously in multiple detector boxes, the smallest number of sigma above the mean
is listed. These coincident events, labeled Coincident Event Candidates -- CECs -- are
discussed in more detail below.)

TETRA’s events, with an average of 20 + 2 photons detected, are significantly smaller
than the typical events observed in space. For TETRA’s events, the Too duration was
calculated by considering all events detected within a +£3 msec window around the trigger
time, discarding the first and last 5% of timestamps for each event, and recording the
time difference between the first and last events remaining. The uncertainty in the Too
determination is approximately £200 psec based on a simple Monte Carlo simulation of
the data.

In each of the 24 events, 7 to 45 y-rays were detected within a time window of less than 5
msec, with the total energy deposited per event ranging from 2 to 32 MeV. The distances
to the nearest lightning flashes were 0.4 - 2.9 miles. For 14 events, absolute timing was
available with ~2 msec accuracy. For each of these 14 events, lightning was observed
within 7 seconds of the trigger time. Nine of these events were associated with negative
polarity cloud-to-ground (-CGQG) lightning detected within 6 msec of the trigger. Another
10 ECs were detected during June - July 2012 during a period when accurate trigger-
lightning time differences were not recorded due to network timing difficulties. Eight of
the ECs during that period were correlated with two intense thunderstorms that passed
directly over TETRA on 6/6/2012.

The accidental rate of triggers coincident within 7 sec of a lightning flash that is less than
5 miles distant (i.e., events masquerading as ECs) is calculated based on the rate of
TETRA triggers (due mainly to cosmic ray showers), the live time, and the duration of
storm activity. The storm activity time is taken to be the sum of all time windows where
there was lightning within 5 miles and 7 seconds and there was no electronic noise or
other instrumental problems. For a total storm time of 12.65 hrs, we calculate the
expected number of ECs due to accidental triggers to be 0.82. This assumes 100%
lightning detection efficiency. The USPLN is part of the National Lightning Detection
Network (NLDN), which has an efficiency above 99% in our area for cloud-to-ground
lightning. However, the efficiency of the USPLN for total (IC + CG) lightning in our area
has not been tested. If we assume a similar sensitivity to that measured by Jacques et al.
(2011) (for cloud-to-ground lightning with peak current in excess of 20 kA) of
approximately 25% to account for undetected lightning flashes, then we would expect 3.3
accidental ECs compared to the 14 observed.

The expected number of CECs due to random triggers is small: Given an initial EC with

counting rate in one box in excess of 20 ¢ above the daily average, the likelihood that a
second or third trigger occurred at random in another box within the timing uncertainty of
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Table 4.1 Properties of the 24 Event Candidates.

Max # Flashes Trigger-
Trigger ~ Lightning  Cloud within Lightning Lightning Lightning Too Event Totaly Total o
Time (CST) Rate within Density Smi. and Difference Distance Current Duration Rays  Energy Above Probability

Date (hh:mm:ss) Smi. (sec'l) (dBZ)  Smin. (ms) (mi) (kA) (us)  Detected (MeV) Mean of CEC
31Jul 2011  16:21:44.976 2 45 12 -6 1.4 -43.6 702 22 147 255 1.7E-06
31Jul 2011 16:21:45.300 2 45 12 -4 1.8 -29.1 1326 24 11.7 255 1.7E-06
18 Aug 2011 17:57:38.984 4 50 40 6743 1.3 =234 1318 40 20,3 225 1.2E-13
24 Feb 2011 23:11:15.787 3 45 1 -6 2.9 -20.9 953 20 1.7 246 -
29Jul 2011  10:38:58.932 6 45 42 5 0.4 -57.7 153 8 48 226 -

18 Aug 2011 17:57:39.202 4 50 40 6525 1.3 -23.4 24 7 3.6 26.1 -
12 Mar 2012 11:30:16.500 6 45 4 5 1.6 -81.3 1997 7 32 218 -
2 Apr2012  12:29:30.554 3 50 8 6 0.6 -29.9 464 30 31.6 104.3 -
4 Apr2012  02:49:21.900 5 55 21 -3 1.9 -158.4 515 24 21.3 886 -
5 Aug 2012 14:43:35.661 7 40 16 -849 0.6 -56.5 392 18 124 40.6 -
6 Aug 2012  19:17:33.359 5 50 1 1017 0.8 -23.1 465 13 45 219 -
9 Aug 2012 15:27:29.804 4 50 21 2 0.4 -27.8 2412 12 29 290 -
9 Aug 2012 15:28:36.070 4 50 27 80 0.9 -36.7 4217 24 74 413 -
9 Aug 2012 15:28:36.560 4 50 27 2 0.8 -19.2 146 12 8.0 339 -

CEC:s are listed in the top section; ECs for which the absolute timing uncertainty is known are listed in the middle section; and ECs
for which the absolute timing uncertainty is unknown are listed on the next page. The date and time of each EC trigger are listed
(Columns 1 and 2), along with the properties of the storm associated with each event (Columns 3-5). The properties of the
associated lightning (Columns 6-8), event duration (Column 9), number of gamma rays detected (Column 10), total energy (Column
11) and event significance (Column 12) are also listed for each event. The probability of each CEC occurring is listed in the last
column (Column 12) for the CECs. Refer to text for details.
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(Table 4.1 Continued)

_ Max. # Flashes  Trigger-
Trigger ~ Lightning  Cloud  within  Lightning Lightning Lightning Teo Event Totaly Total o
Time (CST) Rate within Density 5mi. and Difference Distance Current Duration Rays Energy Above Probability

Date (hh:mm:ss) Smi. (sec']) (dBZ) Smin. (ms) (mi) (kA) (us)  Detected (MeV) Mean of CEC
6 Jun 2012 15:37:31 6 55 40 - - - 865 45 272  86.1 -
6 Jun 2012 15:44:18 6 35 16 - - - 609 14 8.5 45.7 -
6 Jun 2012 19:23:27 6 55 40 - - - 2979 18 6.7 457 -
6 Jun 2012 19:29:43 6 55 33 - - - 376 24 9.7 353 -
6 Jun 2012 19:31:21 6 55 19 - - - 919 40 29.8 483 -
6 Jun 2012 19:32:41 6 55 19 - - - 827 9 54 210 -
6 Jun 2012 19:36:40 6 55 18 - - - 2035 8 52 201 -
6 Jun 2012 19:36:41 6 55 18 - - - 631 32 314  63.1 -
9 Jun 2012 13:40:16 6 50 1 - - - 1930 15.0 86 531 -
7 Jul 2012 17:38:45 5 45 1 - - - 510 14.0 8.0 339 -

CECs are listed in the top section of the previous page; ECs for which the absolute timing uncertainty is known are listed in the
middle section of the previous page; and ECs for which the absolute timing uncertainty is unknown are listed on the current page.
The date and time of each EC trigger are listed (Columns 1 and 2), along with the properties of the storm associated with each event
(Columns 3-5). The properties of the associated lightning (Columns 6-8), event duration (Column 9), number of gamma rays
detected (Column 10), total energy (Column 11) and event significance (Column 12) are also listed for each event. The probability
of each CEC occurring is listed in the last column (Column 12) for the CECs. Refer to text for details.

19



2 msec on the same day is estimated as (4 msec x N/86400 sec)®!, where N is the total
number of random 20 o triggers detected per day through February 2013 and b is the
number of boxes triggered in the event. (For simplicity, we neglect here the increase in
trigger rate during a thunderstorm shown in Fig. 4.1.) Multiplying by the number of ECs
then gives the expected number of spurious CECs involving two boxes occurring by
chance as 1.7 x 10-6, as listed in Table 4.1.

Figure 4.4 compares data acquired within 7 seconds of lightning to the remaining data
with accurate timing information. The distribution of events vs ¢ within 7 seconds of a
USPLN lightning strike within 5 miles is shown in black. The significance distribution of
the remaining data has been normalized to the total storm activity time of the lightning
distribution for comparison, shown in grey. The excess of events above 20 sigma in the
lightning distribution (black) as compared to the normalized distribution (grey) indicates
the association of the gamma ray events with nearby lightning. (Note that, since three
events involve seven separate coincident triggers in individual detector boxes, there are
18 individual triggers shown in Fig. 4.4 compared to the 14 ECs with accurate timing
information in Table 4.1.) A Kolmogorov-Smirnov test of the two distributions results in
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Figure 4.4 Distribution of events with significance o. Distribution of events within 7
seconds of nearby (< 5 miles) lightning is shown in black. Distribution of all data,
normalized to 0.52 days of live time, is shown in grey, showing excess of lightning-
associated ECs at ¢ > 20.
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a D parameter of 0.25, corresponding to high confidence that the two distributions are
distinct.

The dark solid histogram in Fig. 4.5 shows the deposited energy spectrum of the 24 Event
Candidates, with events observed up to 2.7 MeV deposited energy. It should be
emphasized that, with TETRA’s thin detectors, only a portion of the incident gamma ray
energy is actually detected. Between 200 keV and 1.2 MeV, the EC spectrum is fit with a
power law E* with o = 0.92 + 0.19 and y*/degree of freedom = 0.9 (dark dashed line).
On the same figure, the grey line shows the spectrum of non-EC triggers (i.e., triggers not
associated with lightning within 5 miles and 7 seconds); this spectrum is softer, with a
best fit power law index a = 1.46 £ 0.05 and y*/degree of freedom = 1.5 (grey dashed
line). The EC spectrum below shows no evidence of the predicted positron-electron
annihilation line at 511 keV. This may be due to a lack of statistics, the resolution of the
detectors, or the atmospheric attenuation between the event and the array. As before, the
associations of the events reported here with negative polarity lightning strikes and the
low likelihood that these are background events, along with the durations observed, are
indicative of downward directed TGFs produced by the RREA mechanism.
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Figure 4.5 Spectra of Event Candidates and non-EC TETRA triggers. Spectrum of ECs is
shown in black. Spectrum of non-EC TETRA triggers (triggers not associated with
lightning nearby in time and distance) is shown in grey. Power law fits between 200 keV
and 1200 keV of the form E™ are shown with dotted lines, where oo = 0.92 + 0.19 and
1.46 = 0.05 for EC and non-EC events respectively.
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In three of the 24 ECs, triggers were recorded in two or more boxes separated by ~1000
m within less than £2 msec. This is approximately the relative timing accuracy between
separate boxes. All three of these Coincident Event Candidates (CECs) occurred in July
and August of 2011, when storms in southern Louisiana tend to be associated with
disturbances in the Gulf of Mexico rather than frontal lines. No CECs were detected
when there was no lightning activity within 5 miles.

Time histories for the three CECs are shown in Fig. 4.6. The plot shows a 50 msec
window centered on the event trigger time, defined as the center of the first 2 msec bin
containing a trigger. The counts for each box (i.e., the number of phototubes detecting a
signal with amplitude in excess of 50 keV within the 1 microsecond PMT anode output
integration time) are plotted vs time relative to the event trigger time. For the two events
on 7/31/2011 (panels A and B), the lightning strikes closest in time occurred within
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Figure 4.6 Nal time histories over 50 msec window centered on the trigger time for each
CEC. Lightning strikes within 5 miles in the 50 msec window have a £2 msec timing
uncertainty and are shown with X’s in panels A and B. No lightning was detected within
5 miles in the 50 msec window for the event shown in Panel C. Panel A: CEC on
7/31/2011 at 16:21:44.976 CST. The Box 3 time history is centered at 0 msec and Box 4
at 2 msec. Panel B: CEC on 7/31/2011 at 16:21:45.300 CST. The Box 3 time history is
centered at 0 msec and Box 4 at 2 msec. Panel C: CEC event on 8/18/2011 at
17:57:38.984 CST with the Box 3 time history centered at 0 msec, Box 1 at 2 msec and
Box 4 at 4 msec. Refer to text for details.
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approximately 6 and 4 msec of the event trigger. For those cases, the time of the lightning
strike is shown as an X with a timing uncertainty of £2 msec near the top of the plot. In
the first 7/31/2011 event (Panel A of Fig. 4.6), one PMT in box #3 fired, followed by two
PMTs in box #4 2.3 msec later. The distance between the two boxes was 1500 m,
corresponding to a gamma ray travel time difference of up to 5 psec. In fact, we infer the
differences between the event times in the separate boxes in Fig. 4.6 are a direct measure
of the absolute timing differences between the boxes.

A composite energy spectrum summed over the 3 CECs is shown in Fig. 4.7. A total of
80 gamma ray pulse heights above 50 keV and within the Too interval of each
coincidence trigger are shown. The average photon energy detected is approximately 0.5
MeV, an energy at which the fraction that passes through a nominal 1 mile of atmosphere
at ground level (STP) without interaction is ~ 10”. This average energy is low compared
to the typical energies observed by the orbiting detectors (Dwyer et al., 2012b) and is
presumably biased to low energies by the 0.5 cm thickness of the TETRA Nal
scintillators.

L e n A A
TR TARI

INRRARRNAREATARARARARANAGEE SR T
UL IIIIHIHIIH-HHH-H+HJI|IIII|HII'[[FI'ITHITI'II|I\I|IIIIIHIIIIII|I\I|IIII|I\I|IIII|I\I|IIII|HI|IIII|IHIIIIIII|I|IIH—H—HH!»!—I—H!!I!HHI!!HTH‘HTH‘H‘IiiiiiHHiii|I\I|IIII|I\I|IIIIIHIIIIII|IHIIIIIIHIIIIIIIIHIIII

Figure 4.7 CEC Event Spectra. Combined Nal detector energy spectrum for the three
CEC:s. 80 photons were detected within the Too interval of each individual detector box’s
trigger time.

Figure 4.8 shows the distance from the detectors and the measured current for each
lightning flash within 5 miles of TETRA from 7/1/2010 to 2/28/2013 as reported by the
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USPLN. There were a total of 5360 flashes within 5 miles. For each of the 10 ECs and
CECs with lightning within 5 miles and £100 msec of the trigger time, the distance and
measured current are plotted with black X’s. Although all the TETRA events correspond
to lightning less than 3 miles away, the two lightning flashes within 100 msec of a CEC
are both more than a mile away. No CECs were detected with closer lightning strikes. If
all discharges produce TGFs (Ostgaard et al., 2012), then the rate of detection and the
CEC distances point to either a range of intensities extending below the sensitivity limit
of TETRA, strongly beamed emission, or the possibility that the gamma ray emission is
only indirectly associated with the lightning (Connaughton et al., 2013). This can also
occur if some gamma ray events are produced by intracloud (IC) strikes, since the
USPLN data record primarily cloud-to-ground strikes.
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Figure 4.8 All Lightning Activity within 5 miles of TETRA from 7/1/2010 to 2/28/2013.
The current and distance for all USPLN lightning flashes within 5 miles of TETRA are
indicated by grey X’s. Lightning strikes that are within 5 miles and 100 msec of an EC or
CEC are considered coincident strikes and are plotted with black X’s. The vertical line at
0 kA indicates IC lightning.

Out of the 10 ECs shown in Fig. 4.8, nine were found to be within 6 msec of a negative
polarity CG lightning strike within 3 miles with current above 20 kA (Table 4.1). For the
two CECs that occurred on 7/31/2011, lightning strikes are recorded at 6 msec and 4
msec before the TETRA triggers. In both cases, these were nearby, cloud-to-ground

24



events at 1.4 miles distance with current -43.6 kA and 1.8 miles distance with current -
29.1 kA. For four ECs with accurate timing information, the lightning strikes closest in
time to the TETRA triggers were in excess of +100 msec before or after the Nal signal
and so are not considered coincident with a USPLN observed strike. Again, this can
occur if some gamma ray events are produced by intracloud (IC) strikes or if the gamma
rays are not all directly associated with the lightning.
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CHAPTER 5 - UPDATED TETRA DATA ANALYSIS AND RESULTS:
JULY 2010 TO MARCH 2014

Accurate trigger-lightning time differences were not recorded during June - July 2012
due to network timing difficulties, resulting in timing errors of several minutes. During
this period, event times were generated by alternating between an onboard system clock
and network timing. In a secondary analysis, it was found that the data acquisition
software (DAQ, v6.5) produced groups of erroneous timestamps while these difficulties
were experienced. One such group is shown in Fig. 5.1. The top panel plots the time in
microseconds originally assigned to each individual count with increasing index number
(event number). Normally, this type of plot shows an approximately linear increase of
time with index number. In this case, a large ‘dip’ is evident, indicating that erroneous
timestamps were used. These dips indicate clock offsets tens of milliseconds below the
projected time.
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Figure 5.1 Time assigned to a group of counts by DAQ v6.5 during June - July 2012. Top
Panel: Original time in msec assigned to counts with increasing index number. Bottom
Panel: Corrected time in msec for the same counts.

Instead of discarding these groups, software was written to correct for the offset. The
maximum time offset on either side of the dip was added to each timestamp within the
dip. The bottom panel of Fig. 5.1 shows the corrected time for the same counts. The small
step in the bottom panel of Fig. 5.1 is a result of the differing time offsets on either side
of the dip. After the count times were corrected for the event candidates (ECs) affected
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by this error, four ECs were no longer within +7 seconds of lightning within 5 miles of
TETRA, specifically the events on June 9, 2012, July 7, 2012 and two events on June 6,
2012 at 19-32-41 and 19-36-40 (hh-mm-ss). Since the trigger-lightning time was no
longer within the defined limit, these ECs were removed from the list. This clock
monitoring and correction software is included in the analysis of the 2013 and future
events.

One more EC was removed from the list due to noise on one detector during the event,
specifically the EC on June 6, 2012 at 19:23:27.057. The individual detector count rates
for each event are shown in Fig. 5.2. For this case, two Nal photomultiplier tubes (PMTs)
in each box were operating on that day, but no counts on the second PMT were recorded
within £3 milliseconds of the trigger time. It was also found that several false triggers
exhibited similar behavior. As a result, this and future ECs found to exhibit noise on one
detector during the event are classified as false triggers. An updated version of Table 4.1
is presented in Table 5.1.

Detector 1 Events/us

Detector 2 Events/us

-40 -20 0 20 40
Time from event (msec)

N
o U0 o
FH T

Counts/us

OO0 = =
(&)
1

IrIIIIIlIIIiIIIIIII

o

i
o

OO0 == =
owv o
IIFII!IIIIIIIIIIIH

o

Counts/us

IIIIIIIIIIIIIIIIIII

Figure 5.2 Nal time histories over +£50 msec window centered on the trigger time for
noise EC detected on June 6, 2012 at 19:23:27.057. Top Panel: Detector 1 count rate.
Bottom Panel: Detector 2 count rate.

Table 5.1 also includes the timing uncertainty for each event. The timing uncertainty is
calculated by finding the Gaussian standard deviation of the offsets of each time
correction listed on the day an EC is detected. The software used for this calculation is
described in Appendix C and located at http://heastro.phys.lsu.edu/lsutgfcode. For DAQ
v6.5, the time correction is performed up to 600 times per 24-hour period from October
2010 to October 2012. The magnitudes of these corrections are from 0.5 to 5
milliseconds. The GPS timing software included in DAQ v8.1 performs this time
correction every second with correction magnitudes less than 60 nanoseconds from
October 2012 to March 2014. Consequently, the timing uncertainties associated with the
2013 events are less than 60 nanoseconds while the timing uncertainties of earlier events
are 0.5 to 5 milliseconds. Two ECs were detected with DAQ v8.01 (a test version of
v8.1) with GPS timing (accurate to within +200 nsec) on Aug 5 and 6, 2012, but the exact
timing uncertainty is unknown.
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Table 5.1 Properties of the 28 Event Candidates.

CECs are listed in the top section; ECs for which the absolute timing uncertainty is known are listed in the second section; and ECs
for which the absolute timing uncertainty is unknown are listed in the third section of the table (from previous chapter). Events
detected during the 2013 season are listed on the next page. The date and time of each EC trigger are listed (Columns 1 and 2),

along with the properties of the storm associated with each event (Columns 3-5). The properties of the associated lightning
(Columns 6-8), event duration (Column 9), number of gamma rays detected (Column 10), total energy (Column 11) and event
significance (Column 12) are also listed for each event. Refer to text for details.
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(Table 5.1 Continued)

Max #Flashes Trigger-
Trigger Time Timing Lightning  Cloud within  Lightning Lightning Lightning Too Event Totaly  Total o
(CST) Error Rate within Density Storm 5mi and Difference Distance Current Duration Rays Energy Above
Date (hh:mm:ss) (us)  Smi. (sec?) (dBZ) Type Smin. (ms) (mt) (kA) (pus)  Detected (MeV) Mean
14 Apr2013  01:26:02.390  0.037 4 45  Coastal 2 -493 0.7 -46.9 1552 9 3.9 514
24 Apr2013  07:11:37.894 0.024 5 50 Front 24 6595 1.9 -64.8 616 7 1.6 25.6
10May 2013 03:51:57.412 0.034 5 35 Front 166 969 1.3 -23.9 1032 29 = 101.3
10 May 2013 03:51:58.116 0,047 5 55 Front 163 265 1.3 -239 80 6 2.1 25.2
22Jun2013  14:31:28.794 0.058 5 50 (Coastal 7 -292 1.7 -33.8 159 8 1.9 258
22 Jun 2013 14:52:49.063  0.043 5 50 Coastal 6 199 1.3 -48.9 1757 15 5.6 50.4
29Jun 2013 04:24:11.550 0.038 4 40 Front 17 -169 1.7 -32.9 732 14 7.0 897
29 Jun 2013 04:24:11.614  0.038 4 40 Front 17 -233 1.7 -32.9 164 4 3.0 31.6
13Sep 2013  18:11:13.263 0.019 5 50 Coastal 39 403 1.4 -35.3 1539 18 6.2 40.9

CEC:s are listed in the top section on the previous page; ECs for which the absolute timing uncertainty is known are listed in
the second section on the previous page; and ECs for which the absolute timing uncertainty is unknown are listed in the third
section of the table on the previous page (from Table 4.1). Events detected during the 2013 season are listed on the current
page. The date and time of each EC trigger are listed (Columns 1 and 2), along with the properties of the storm associated

with each event (Columns 3-5). The properties of the associated lightning (Columns 6-8), event duration (Column 9),
number of gamma rays detected (Column 10), total energy (Column 11) and event significance (Column 12) are also listed
for each event. Refer to text for details.
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In Table 5.1, the reader may notice that the y-rays detected, total energy and ¢ above
mean entries have changed for some of the ECs. When the data were reanalyzed with the
time correction software, the times of some of the counts were moved away from the
event, causing a general decrease in the significance of the 2 msec time bin. No ECs were
removed by this effect. An upper cutoff energy corresponding to each detector’s
saturation energy was also included to ignore the higher energy photons -- presumably
cosmic rays -- present in the events. This cutoff was applied after the event duration was
calculated and before the energy and number of y rays were totaled. This caused a
decrease in the number of y rays detected and in the total energy observed for several of
the events.

Table 5.1 also includes the event candidates detected by TETRA during March 2013 -
March 2014 using the code located at http://heastro.phys.lsu.edu/Isutgfcode. This code is
the same software used to analyze the data presented in chapter 4, but with the
corrections described above. During this period, TETRA recorded nine events occurring
within £7 seconds of lightning within 5 miles of the array. These events are listed on the
second page of Table 5.1. No events were detected later than October of 2013. As in
chapter 4, this table lists the properties of each event, including the timing errors
described above. No CECs were detected in the 2013 season.

The properties of the nine events detected in 2013 are similar to previously reported
events with the exception of lightning associations. Nine of the 13 previously reported
events were associated with lightning. However, none of the 2013 events were linked to
lightning within 100 milliseconds of the event time and 5 miles (8 km) of TETRA. This
confirms that some gamma ray events observed from the ground are not directly
associated with lightning or are produced by intracloud (IC) strikes which are not easily
detected by USPLN [Strader et al., 2013].

As mentioned in chapter 3, a blank PMT (sealed photomultiplier tube without a
scintillator) was included in each box beginning in October of 2012. Figure 5.3 shows the
count rate of each detector channel during the event on 13 Sep 2013. Panel A shows the
total count rate per psec, Panels B and C show the count rates for the two Nal
scintillators, Panel D for the LaBr3 scintillator and Panel E for the blank PMT. No counts
were observed on the blank PMTs during these events, confirming that the events were
not due to electronic noise.

As described in chapter 4, the accidental rate of triggers coincident within 7 sec of a
lightning flash that is less than 5 miles distant (i.e., events masquerading as ECs) is
recalculated based on the rate of TETRA triggers (due mainly to cosmic ray showers), the
live time, and the duration of storm activity. 2091 TETRA triggers were detected during
909.16 days of live time (21.09 storm hours) since July 1, 2010, resulting in 2.02
expected false ECs compared to the 28 total ECs observed. If a total (IC + CG) lightning
detection efficiency of 25% is assumed, then we would expect 8.08 accidental ECs. The
five false ECs already removed from this list are described above.
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Figure 5.4 is an updated version of Fig. 4.4, replotted to include the 2013 events and
remove false events discovered in the reanalysis. As before, ECs without timing are not
included in this figure and the three CECs account for seven ECs. A Kolmogorov-
Smirnov test of the two distributions results in a D parameter of 0.867, higher than the
previously reported value of 0.25. This distinguishes the ECs from the background
distribution with higher confidence.
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Figure 5.3 Detector count rates during event on 13 Sept 2013. Time from the event time
is plotted in milliseconds. Panel A: Total count rate per psec for all detector channels.
Panels B and C: Individual count rates for the Nal scintillators. Panel D: Count rate for
the LaBrs3 scintillator. Panel E: Count rate for the blank PMT.

The energy spectrum of the event candidates is recalculated to include the 2013 events
(Fig. 5.5, an updated version of Fig. 4.5). Between 200 keV and 1.2 MeV, the EC
spectrum is fit with a power law E™*, with o= 0.90 + 0.14 and */degree of freedom =
0.95 (dark dashed line). On the same figure, the grey line shows the spectrum of non-EC
triggers (i.e., triggers not associated with lightning within 5 miles and 7 seconds); this
spectrum is significantly softer, with a best fit power law index oo = 1.58 & 0.04 and
v*/degree of freedom = 2.0 (grey dashed line). These fit parameters are within the
uncertainties of those reported in chapter 4, implying that the events detected in 2013

have similar energy spectra as earlier events.

31



The events presented here were detected with TETRA from July 2010 to March 2014
with nine events in 2013. The majority of these events occurred from June to August,
when storms in southern Louisiana tend to be associated with disturbances in the Gulf of
Mexico rather than frontal lines. However, almost half of the events in Table 5.1 were
associated with fronts, hinting that the source of the storm associated with the TGF may
not be as important as the strength and maturity of the storm itself. These and other storm
characteristics are analyzed in the next chapter.
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Figure 5.4 Distribution of events with significance ¢ for July 1, 2010 to October 31,
2013. Distribution of events within 7 seconds of nearby (< 5 miles) lightning is shown in
black. Distribution of all data, normalized to 0.88 days of live time, is shown in grey,
showing excess of lightning-associated ECs at ¢ > 20.
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Figure 5.5 Spectra of Event Candidates and non-EC TETRA triggers from July 1, 2010 to
October 31, 2013. Spectrum of ECs is shown in black. Spectrum of non-EC TETRA
triggers (triggers not associated with lightning nearby in time and distance) is shown in
grey. Power law fits between 200 keV and 1200 keV of the form E™* are shown with
dotted lines, where o= 0.90 + 0.14 and 1.58 + 0.04 for EC and non-EC events
respectively.
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CHAPTER 6 - TETRA STORM ANALYSIS

Since their discovery, TGFs have been known to be associated with thunderstorms
[Fishman et al., 1994]. A substantial percent of TGF have been matched with individual
lightning strikes detected by ground-based lightning networks [Cummer et al., 2011; Inan
etal., 1996; Lu et al., 2011]. Specific studies of TGF-associated lightning have shown
that the radio signatures (sferic) produced by TGFs occur in a variety of frequency bands
[Connaughton et al., 2012]. In some cases, the altitudes of TGF-sferics have been
determined using ionosphere reflections [Shao et al., 2010]. Although efforts have been
made to correlate TGF production with storm evolution based on lightning flash rates
[Smith et al., 2010], there has been only one study to date on the properties of the storms
that produce TGFs [Splitt et al., 2010]. Splitt et al. performed a population study of
storms associated with RHESSI TGFs, but was unable to analyze the maturity stage of
the storms due to lack of radar information. With TETRA’s reliable detection of TGFs
from the ground, the detailed characteristics of the associated storms can be analyzed for
the first time.

In general, thunderstorms have three main stages of development (Fig. 6.1). In the initial
phase, moist, unstable air forms an updraft, leading to the development of towering
cumulus clouds as pictured on the left. Hills, mountains, surface heating and colliding air
masses provide the lifting mechanism for these updrafts. As the updraft nears the
tropopause (boundary between the troposphere and the stratosphere near 15 km), the
warm air cools and forms a downdraft of precipitation towards the rear of the storm. A
thunderstorm is considered ‘mature’ when both an updraft and a downdraft are present. In
the mature stage, heavy rain, lightning, hail and sometimes tornadoes are produced. In
most cases, the precipitation downdraft eventually chokes the updraft and dominates the
thunderstorm. Without a strong updraft to feed the thunderstorm, the storm begins to

12.2 km EUIGITEIE

Figure 6.1 Main Thunderstorm Stages. From the National Weather Service.
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dissipate, resulting in light precipitation and decreasing cloud cover. In some cases,
lightning can still be produced as the storm dissipates.

The thunderstorms associated with TETRA events fall into two categories: single cell
thunderstorms and squall lines. Single cell thunderstorms are generally short-lived (a few
hours) and only rarely produce severe weather. These storm types are commonly
associated with isolated and scattered thunderstorms. In Louisiana, these storms are
produced by warm, moist updrafts common to coastal environments and approach from
all directions. Squall line thunderstorms form the basis of frontal lines but also occur with
some summer storms. In Louisiana, frontal lines usually approach from the west while
summer thunderstorms associated with squall lines approach from the northwest, north
and northeast. Of the 17 storms producing the 28 events, eight were single cell
thunderstorms and nine were squall lines.

Half of the TGFs observed by TETRA were produced by variations of single cell
thunderstorms. An example of a single cell thunderstorm at the time of a TETRA TGF is
shown in Fig. 6.2. The smoothed radar scan is shown here, produced by the GR2Analyst
software (available at http://www.grlevelx.com/gr2analyst_2/) using radar data requested
at http://www.ncdc.noaa.gov/nexradinv/. The front of the storm is located near White
Castle, LA and is moving SE towards Donaldsonville, LA, as indicated by the white
arrow. The colors in the image correspond to the varying densities of the cloud at the

Figure 6.2 Smoothed radar image of the single cell thunderstorm producing the TETRA
TGF on 12 Mar 2012. Colors in the image correlate to the density of the cloud in decibels
at the lowest elevation angle (0.5°) as indicated in the scale at left. The white arrow
indicates the direction of storm movement. The green triangle indicates the location of
hail. The red square near the top of the figure is the location of TETRA. Local interstates
and highways are shown with red and orange lines near the top of the image. The
locations of various cities are also labeled for reference. The image is approximately 90
km by 50 km.
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lowest elevation angle (0.5°, see scale in image). As is common for thunderstorms, the
main updraft of this storm is located at the front of the storm, shown by the purple and
red areas in the southern portion of Fig. 6.2. The downdraft is located behind this area
and fans out to the northwest, north and northeast. The green triangle in the southern
section of the image indicates the location of hail less than one inch in diameter detected
by Next Generation Radar (NEXRAD) algorithms [Stumpf et al., 1997].

A three-dimensional image of this thunderstorm is shown in Fig. 6.3. In this image, the
storm is viewed from the east from slightly above the image plane. The smoothed radar
image is shown on the bottom layer of the volume. Altitude is indicated by the horizontal
grey lines in tens of thousands of feet. As in Fig. 6.2, the arrow indicates the movement
of the storm. Iso-density surfaces of 30 dBZ, 40 dBZ and 50 dBZ are shown in green,
yellow and red, respectively, to visualize the structure of the thunderstorm cloud. As
expected, the updraft shown by the dense clouds (on the left of the image) is also
correlated with the tallest clouds of the storm. The trailing downdraft is again located
towards the rear of the storm (right side of the image) and is associated with clouds of
decreasing altitude as distance from the updraft increases. In general, winter storm clouds
have lower maximum altitudes than summer thunderstorms. This storm occurred in the
winter season, producing clouds with a maximum altitude of 10.9 km (35.9 kilofeet (kft))
based on the maximum height of the cloud with a reflectivity value of 18.5 dBZ or

Figure 6.3 Three dimensional radar image of the single cell thunderstorm producing the
TETRA TGF on 12 Mar 2012. Altitude is indicated by the grey horizontal lines in tens of
thousands of feet. The smoothed radar image in Fig. 6.2 is shown on the bottom plane for

comparison. Iso-density surfaces of 30 dBZ, 40 dBZ and 50 dBZ are shown in green,
yellow and red, respectively. The white arrow indicates the direction of the thunderstorm
movement. TETRA is located under the trailing edge of the storm — just below Port
Allen. The bottom plane of the image is approximately 90 km by 50 km.
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Higher (see Fig. 6.8 and preceding discussion). For comparison, summer thunderstorms
in Louisiana often reach up to 15-18 km (50 to 60 kft). This variation in altitude is caused
by the seasonally varying altitude of the tropopause. These altitudes are comparable with
the TGF production altitudes of 10-15 km previously discussed [Dwyer and Smith, 2005;
Grefenstette et al., 2008; Shao et al., 2010; Gjesteland et al., 2010; Cummer et al., 2011,
Xu et al., 2012].

Thunderstorms associated with squall lines produced the remaining half of the TGFs
observed by TETRA. The general structure of squall line thunderstorms is shown in Fig.
6.4. As with single cell thunderstorms, the updraft of a squall line thunderstorm is located
at the front of the storm with the heavy precipitation (downdraft) immediately behind. In
some cases, the updraft of the storm is strong enough to break through the tropopause,
causing the protruding cloud shown in the top right of the image. Developed squall lines
also have trailing stratiform clouds, producing additional light rain in the rear of the
storm. The trailing clouds associated with squall lines can extend to hundreds of
kilometers downdraft of the storm. The tops of these storms often take the shape of an
anvil and can cover several thousand square kilometers.
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Figure 6.4 Basic structure of a squall line thunderstorm. From Ackerman and Knox,
2007.

Squall line thunderstorms can extend not only for hundreds of kilometers downdraft of
the storm front, but also for hundreds of kilometers along the storm front. An example of
a squall line thunderstorm is shown in Fig. 6.5. This thunderstorm produced the TGF
observed by TETRA on 29 Jun 2013 at the time of the image. The smoothed radar image
was produced in the same manner as Fig. 6.2. The main squall line extends from
Livingston, LA to Breaux Bridge, LA — approximately 120 kilometers in length. The
trailing stratiform clouds extend north to New Roads, LA (approximately 50 km from the
front of the storm). The storm is moving southeast towards the Gulf of Mexico as
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indicated by the white arrow. As in Fig. 6.2, the colors in the image correlate to the
varying densities of the cloud at the lowest elevation angle (see scale in image). The
green triangles in the southern section of the image indicate the location of hail less than
an inch in diameter detected by NEXRAD algorithms [Stumpf et al., 1997]. The red
square is the location of TETRA.
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Figure 6.5 Smoothed radar image of a squall line of thunderstorms producing the TETRA
TGF on 29 Jun 2013. Colors in the image correlate to the density of the cloud in decibels
at the lowest elevation angle (0.5°) as indicated in the scale at left. The white arrow
indicates the direction of storm movement. The green triangles indicate the location of
hail. The red square is the location of TETRA. Local interstates and highways are shown
with red and orange lines near the top of the image. The locations of various cities are
also labeled for reference. The image is approximately 120 km by 60 km.

For the 17 storms observed to produce TETRA TGFs, the position of the array relative to
the updraft and the maturity of the storms at the time of the events were recorded. Based
on the arguments above, the updraft of the storms was assumed to be located at the front
of the storm with downdrafts trailing behind. For the majority of the storms, TETRA
events were correlated with collapsing cloud formations.

One such storm produced two TETRA TGFs on 22 Jun 2013 within 15 minutes. Figure
6.6 shows the smoothed radar image of the storm at the time of the first event. The storm
is located above TETRA and is gradually moving southwest towards Addis, LA. As in
Figs 6.2 and 6.5, the colors in the image correspond to the cloud densities at the lowest
elevation. Based on the examples above, the storm is classified as a single cell
thunderstorm. The main updraft of the storm is directly above TETRA when the TGFs
are observed. A time sequence of nine three-dimensional radar images of the storm is
included in Fig. 6.7. In general, radar images are taken every four to five minutes (as
soon as the previous scan is completed). The sequence starts about ten minutes (two
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scans) before the first event and continues until about ten minutes (two scans) after the
second event. Thus, the nine images in the sequence show the behavior of the storm over
45 minutes. The colored cloud surfaces in the image correspond to iso-density surfaces of
30 (green), 40 (yellow) and 50 (red) decibels as in Fig. 6.3. The storm is viewed from the
northeast from a slightly tilted angle and, the altitudes are given in tens of thousands of
feet. The smoothed radar image at each time is shown on the bottom plane. The time of
the radar scan is given in Coordinated Universal Time (UTC) at the top of each image.
The radar images taken closest to the time of the TGFs are labeled above the time at the
top of the images.

= y
SR

‘?" “PortAllen

Brusly:
Arlington

Figure 6.6 Smoothed radar image of the storm producing two TETRA TGFs on 22 Jun
2013. Image was taken at the time of the first TETRA TGF. Colors in the image correlate
to the density of the cloud in decibels at the lowest elevation angle as indicated in the
scale at left. The white arrow indicates the direction of storm movement. The red square
is the location of TETRA. Local interstates and highways are shown with red and orange
lines near the top of the image. The locations of various cities are also labeled for
reference. The image is approximately 25 km by 40 km.
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Figure 6.7 Three dimensional radar image sequence of the thunderstorm producing two TETRA TGFs on 22 Jun 2013. Time (hh:mm
UTC) is indicated at the top of each image. The red arrows point to cloud features near TETRA with decreasing altitude. TETRA is
located at the center of the bottom plane in each panel. Each panel is similar to Fig. 6.3. The TETRA TGFs were observed at 20:31

and 20:52 UTC. The bottom plane of each image is approximately 30 km by 30 km.
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The sequence begins during the initial intensifying stage of the storm. In the first image,
the updraft is beginning to form a cloud tower directly above TETRA. By the third image
(20:33 UTC), the cloud tower is well defined and subsequently collapses after the TGF at
20:31 UTC. A second cloud tower forms by 20:47 UTC, and also collapses after the
second TGF at 20:52 UTC. After these two events are observed, the storm completely
dissipates.

In a more detailed analysis, various properties of the storm associated with the TETRA
TGFs on 22 Jun 2013 are plotted to show the behavior of the storm from its initial
development to 30 minutes after the TGFs were produced. Publicly available NEXRAD
data obtained from http://www.ncdc.noaa.gov/nexradinv/ were used to track and analyze
the storm throughout its lifetime.

As a measure of the intensity of the thunderstorm, the echo top and the total vertically
integrated liquid density (VILD) water content of the storm were calculated for each
radar image throughout the lifetime of the storm (Fig. 6.8). The echo top (or estimated
top) is the maximum height of the cloud with a reflectivity value of 18.5 dBZ or higher
(solid line, right-hand scale). Vertically integrated liquid (VIL) is the amount of liquid
water that the radar detects in a vertical column of the atmosphere. VIL density (VILD) is
the VIL value divided by the estimated top (dashed line, left-hand scale), corresponding
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Fig. 6.8 VILD and Estimated Tops of the storm on 22 Jun 2013. The TGF times are
marked with labeled vertical lines.
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to the size of the particles inside the cloud. The times of observed TGFs are indicated
with vertical lines.

As shown in Fig. 6.8, the VILD of the thunderstorm reaches 2.4 kg/m® about 20 minutes
before the first TGF is observed. At this time, the estimated top of the storm is also
increasing. The first TETRA TGF is observed when the VILD decreases to 1.4 kg/m? and
the estimated top is above 45000 feet. The storm cloud then begins to collapse, thus
increasing the VILD to 1.85 kg/m?®. As the cloud top begins to increase in height to above
45000 feet again, the VILD again decreases and a second TGF is observed by TETRA at
20:52 UTC with the estimated cloud top again above 45000 feet. After the second TGF,
the VILD values fall below 1kg/m? and the cloud formation collapses, falling below
20000 feet within 35 minutes. No other TGFs were observed from this storm.

The lightning network used in this study is a very low frequency (VLF) lightning
detection array. In general, VLF arrays are primarily used for cloud-to-ground (CG)
lightning detection due to the stronger emission of CG lightning radio signals in this
frequency band. (Note the sparsity of lightning with small current (intracloud (IC))
compared to the amount of lightning with non-zero current (CG) in Figure 4.8.) Although
VLF lightning arrays are capable of detecting a small percentage of IC lightning, high
frequency (HF) and very high frequency (VHF) lightning arrays have been proven to
detect both CG and IC lightning radio signals more efficiently [Hager et al., 2010].

Several studies have correlated total (IC + CG) lightning behavior with the onset of
severe weather [Metzger and Nuss, 2013; Steiger et al., 2007]. In general, an increase in
IC lightning rate implies an increase in thunderstorm intensity and probable impending
severe weather. CG lightning rates are less strongly correlated with severe weather events
such as tornadoes, hail and severe wind [Schultz et al., 2011]. In the current analysis, the
total and individual -CG, +CG, and IC lightning rates are shown in Fig. 6.9. These rates
include all lightning detected by the USPLN within 10 miles of TETRA, binned into 5
minute sections for comparison with the radar properties of the storm. The two TGFs are
observed during an abrupt increase in the total and -CG lightning rates.

The analysis above shows the storm on 22 Jun 2013 to be collapsing at the time of the
TGFs produced. This conclusion is supported by the increase in VILD and the decrease
in the estimated cloud height (Fig. 6.8). At the same time, jJumps in the total and -CG
lightning rates (Fig. 6.9) occur. It is unknown if the eventual collapse of the storm is due
to the production of the two TGFs, or another entirely different cause.

Out of the 18 storms analyzed, 14 storms were found to produce cloud formations with
decreasing maximum altitude (estimated tops) near the time of the TGFs observed by
TETRA. For three of these storms, no change in cloud altitude was detected. The
remaining storm actually showed an increase in cloud height at the time of the event. This
particular storm produced the CEC and EC observed by TETRA on 18 Aug 2011 (see
Table 5.1 for details). Three-dimensional time sequences for each storm are shown in
Figures 6.7 and 6.10 — 6.26.
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Fig. 6.9 Lightning flash rate observed with the storm producing the TETRA TGFs on 22
Jun 2013. The TGF times are labeled.

The analysis presented here correlates 22 TGFs with cloud formations with decreasing
altitude (Figs. 6.7, 6.10, 6.11, 6.12, 6.14, 6.15, 6.17, 6.18, 6.19, 6.20, 6.21, 6.22, 6.25 and
6.26). Three of the remaining TGFs were produced by storms exhibiting no change in
cloud altitude near the times the TGFs were observed (Figs. 6.16, 6.23 and 6.24). As
described earlier, two TGFs were produced by an intensifying storm passing over
TETRA (Fig. 6.13). Although the association of these TGFs with collapsing clouds does
not classify TGFs as an indicator of decreasing storm strength, it does serve as an
example for future work. In order to test this relationship, other TGF-producing storms
should be analyzed in a similar fashion. If TGFs can indeed be established as an indicator
of storm collapse, then TGFs may potentially be used in conjunction with other radar
properties in the prediction processes of meteorologists. Instead of attempting to detect
TGFs from the ground over large areas, the specific lightning signatures produced by
TGFs (described in Cummer et al. [2011]) can be used to report these TGFs in real time
to meteorologists.
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Figure 6.10 Three dimensional radar image sequence of the thunderstorm producing one
TETRA TGF on 24 Feb 2011. Similar to Fig. 6.7. The TETRA TGF was observed at
05:11 UTC.
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Figure 6.11 Three dimensional radar image sequence of the thunderstorm producing one
TETRA TGF on 29 Jul 2011. Similar to Fig. 6.7. The TETRA TGF was observed at
16:39 UTC.

45



22:18 UTC
- S0 Kft
“ 40 kit
< 30 Kft

- 20 kit

22:22 UTC
- SOk
- 40 kft
- 30 kft

= 200Kt

e 10 ki

22:27 UTC
50kt
o 40 ket
30 kft

= 20 kft

Figure 6.12 Three dimensional radar image sequence of the thunderstorm producing two
TETRA TGFs on 31 Jul 2011. Similar to Fig. 6.7. The TETRA TGFs were both observed
at 22:21 UTC within 400 milliseconds.
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Figure 6.13 Three dimensional radar image sequence of the thunderstorm producing two
TETRA TGFs on 18 Aug 2011. Similar to Fig. 6.7. The TETRA TGFs were both
observed at 23:57 UTC within 300 milliseconds. The absence of red arrows indicates no
decrease in altitude was observed near the TGF times.
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Figure 6.14 Three dimensional radar image sequence of the thunderstorm producing one
TETRA TGF on 12 Mar 2012. Similar to Fig. 6.7. The TETRA TGF was observed at
17:30 UTC.
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Figure 6.15 Three dimensional radar image sequence of the thunderstorm producing one
TETRA TGF on 2 Apr 2012. Similar to Fig. 6.7. The TETRA TGF was observed at
18:29 UTC.
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Figure 6.16 Three dimensional radar image sequence of the thunderstorm producing one
TETRA TGF on 4 Apr 2012. Similar to Fig. 6.7. The TETRA TGF was observed at
08:49 UTC. The absence of red arrows indicates no decrease in altitude was observed
near the TGF times.
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Figure 6.17 Three dimensional radar image sequence of the thunderstorm producing two
TETRA TGFs on 6 Jun 2012. Similar to Fig. 6.7. The TETRA TGFs were observed at
21:37 and 21:44 UTC.
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Figure 6.18 Three dimensional radar image sequence of the thunderstorm producing three
TETRA TGFs on 6 Jun 2012. Similar to Fig. 6.7. The TETRA TGFs were observed at
01:29, 01:31 and 01:36 UTC.
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Figure 6.19 Three dimensional radar image sequence of the thunderstorm producing one
TETRA TGF on 5 Aug 2012. Similar to Fig. 6.7. The TETRA TGF was observed at
20:43 UTC.
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Figure 6.20 Three dimensional radar image sequence of the thunderstorm producing one
TETRA TGF on 6 Aug 2012. Similar to Fig. 6.7. The TETRA TGF was observed at
01:17 UTC.
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Figure 6.21 Three dimensional radar image sequence of the thunderstorm producing three
TETRA TGFs on 9 Aug 2012. Similar to Fig. 6.7. The TETRA TGF were all observed at
21:28 UTC within 7 seconds.
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Figure 6.22 Three dimensional radar image sequence of the thunderstorm producing one
TETRA TGF on 14 Apr 2013. Similar to Fig. 6.7. The TETRA TGF was observed at
07:26 UTC.
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Figure 6.23 Three dimensional radar image sequence of the thunderstorm producing one
TETRA TGF on 24 Apr 2013. Similar to Fig. 6.7. The TETRA TGF was observed at
13:11 UTC. The absence of red arrows indicates no decrease in altitude was observed

near the TGF times.
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Figure 6.24 Three dimensional radar image sequence of the thunderstorm producing two

TETRA TGFs on 10 May 2013. Similar to Fig. 6.7. The TETRA TGFs were observed at

09:51 UTC within 700 milliseconds. The absence of red arrows indicates no decrease in
altitude was observed near the TGF times.
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Figure 6.25 Three dimensional radar image sequence of the thunderstorm producing two
TETRA TGFs on 29 Jun 2013. Similar to Fig. 6.7. The TETRA TGFs were observed at
10:24 UTC within 70 milliseconds.
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Figure 6.26 Three dimensional radar image sequence of the thunderstorm producing one
TETRA TGF on 13 Sep 2013. Similar to Fig. 6.7. The TETRA TGF was observed at
00:11 UTC.
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CHAPTER 7 — LAGO DESCRIPTION AND ANALYSIS

TGF observations from satellite platforms are limited by the event beaming direction and
attenuation and Compton scattering by the atmosphere. Although these events observed
from space are extremely intense (gamma ray rates in excess of 300 kHz measured with
BATSE), the bulk of the events are presumably smaller events which can only be
observed much closer to the lightning -- i.e., at aircraft or balloon altitude [Smith et al.,
2011; Briggs et al., 2013; Gjesteland et al., 2012; Ostgaard et al., 2012]. Observations in
the atmosphere are necessary to better understand the TGF intensity distribution and
emission pattern, to understand whether the observed 30° beaming is intrinsic to the
emission process or is the result of atmospheric attenuation, and to measure the spectrum
vs altitude relationship. This chapter describes a program to observe TGFs at balloon
altitudes.

The Lightning Associated Gamma-ray Observer (LAGO) is a 50 1b (23 kg) balloon
payload stationed at the Columbia Scientific Ballooning Facility (CSBF) in Palestine,
TX. LAGO consists of an array of four 1” x 1” x 5" bismuth germanate (BGO) crystal
scintillators designed to detect gamma-ray emissions from lightning below the payload in
the ranges 300 keV - 3 MeV and 10 MeV to more than 20 MeV. In order to minimize the
distance between the payload path and the thunderstorm path, LAGO must be launched
within a few hours prior to the arrival of the storm at the launch site, placing a strict
upper limit on the size of the high altitude balloon needed to support the weight of the
payload. Due to these limitations, the Winzen 0.194 million cubic foot Stratofilm high
altitude balloon was chosen. Like TETRA, LAGO also operates in a self-triggered mode,
allowing for post-flight correlations of detected events with lightning.

The four BGO scintillators are arranged in a 2 x 2 array with one 3" (76 mm) diameter
Lucite lightguide coupled to each end of the array (Fig. 7.1). The BGO scintillator array
is housed in ~ /2" thick plastic foam insulation to prevent rapid temperature changes in
the crystals. The light at each end is viewed through optical grease by a potted Electron
Tubes 9305KFLA 78 mm photomultiplier tube (PMT) with ten dynodes and a standard
bialkali photocathode. This detector assembly is housed in a polyvinyl chloride

(PVC) tube and wrapped with ~ 1" thick plastic foam insulation. The detector is mounted
on the bottom of the payload frame to view gamma-rays coming up from storms below
the payload. Each PMT bleeder chain is wired to output the anode signal for low energy
signals and the eighth dynode signal for higher energy signals (circuit in Appendix A).

Electronics boards above the detector supply high voltage, amplify and shape the PMT
outputs, provide an internal trigger for the data acquisition software, digitize the data,
assign timestamps, and record ADC values for each event. Once triggered by a PMT
anode signal, each PMT anode and dynode output is integrated and assigned a 12-bit
ADC value. The LAGO ADC and TLM designs are identical to TETRA except that a
solid state hard drive is implemented to enable data recording during flight. These
electronics boards are attached to the payload frame above the detector. Temperatures of
the BGO, PMTs, and electronics boards are monitored during flight. Power to the
payload and required CSBF equipment is supplied by two 30V battery packs mounted on
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the outside of the payload frame above the detector viewing angle. The payload’s internal
time is synchronized during preflight procedures. The ADC-to-energy conversion is
calibrated with radioactive sources (**Na, '¥’Cs, %°Co, ?*?Th). The detector energy
resolution at 662 keV is 29.4% FWHM.

Figure 7.1 2 x 2 BGO scintillator array mounted in 4” PVC.

As described above, the electronics boards and the PC104 stack of LAGO are almost
identical to those used in TETRA. The circuit layout on the LAGO electronics boards
was rearranged to conserve space. This required a slightly more complex assembly as
shown in Appendix B. On LAGO, the data acquisition code version 6.5 was kept while
the code on TETRA was upgraded to include GPS timing (version 8.1). To prevent arcing
at high altitudes, LAGO’s PMT bases were potted. Since it is not feasible to use a hard
disk drive for data storage in high altitude conditions, the standard TETRA hard drive
was replaced with a solid state drive.

The initial LAGO payload integration and testing occurred from Feb. 21 to Feb. 24, 2012
at CSBF in Palestine, TX. During this session, the standard CSBF equipment was
integrated with the LAGO payload, the combined payload was thermal vacuum tested
and the electrical and mechanical checkouts were completed. The detector’s field of view
was not obscured by CSBF equipment in this process. The payload was then attached to
the parachute and balanced. The weight of the integrated payload was 80 lbs (36 kg),
including the CSBF parachute and strobe.

The criterion for a successful balloon launch was set so that LAGO must be within a
maximum lateral distance between the payload and the thunderstorm of ten standard
miles. This distance was calculated using the TGF beaming angle of 30° - 45° and a flight
altitude of ~100,000 ft. The thunderstorm chosen to be in the flight trajectory must also
show a reasonable chance of producing a peak of at least 2 lightning flashes per second
within 5 miles. The minimum required peak lightning flash rate was determined by
finding the smallest peak lightning flash rate associated with the event candidates
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reported in chapters 4 and 5. In order to increase the payload’s chances of flying over a
promising thunderstorm, it is better to fly over a line of strong thunderstorms, such as
those that come through Palestine, TX, instead of trying to catch a scattered
thunderstorm.

In the spring 2012 season, the PC104 stack suffered heat damage, requiring replacement
of the stack. This prevented launch for a promising thunderstorm that came through
Palestine that spring. In fall 2012, the payload was launched on High Altitude Student
Payload (HASP) as an engineering flight. The data accumulated on this flight are
described below. Although the payload stood ready throughout the 2013 season at
Palestine, TX and at Fort Sumner, NM, no suitable flight opportunity arose. The LAGO
balloon payload currently stands ready for the 2014 flight season in Palestine, TX.

LAGO was flown in September 2012 onboard the High Altitude Student Payload (HASP)
to test the behavior of the payload in flight. The HASP/LAGO balloon payload was
launched from CSBF in Fort Sumner, NM with more than 8 hours above 30 km (110,000
ft). The US Precision Lightning Network (USPLN) Unidata Program recorded 128
lightning strikes within a 50 mile radius of the payload. Of these lightning strikes, there
was one IC strike of undetermined polarity 45 miles away from the payload. All the
remaining strikes recorded within a 50 mile radius of the payload path were negative
polarity CG lightning discharges.

In Fig. 7.2, the averaged high energy (dynode) and low energy (anode) count rates per sec
are plotted against the payload altitude. The count rate reflects the data rate due to
background events during the flight. The launch is indicated by the vertical line on the
left and is also reflected in the initial dip in the low energy background rate. The rate
increases on the high and low energy channels as the balloon payload passes the Pfotzer
maximum (~60000 ft, 18 km) and decreases as the payload approaches float altitude
above 110000 ft (30 km) [Bazilevskaya and Svirzhevskaya, 1998]. The gradual decrease
in the high energy and low energy count rate at float altitude seen in Fig 7.2 may be due
to changing temperature or to the loss of optical grease between the PMT and the acrylic
light guide during flight. After the 2012 engineering flight, the remaining optical grease
was removed to prevent future problems. Post-flight testing of LAGO confirmed that all
components of the payload still operate as designed.

Data were accumulated for the entire flight and transmitted via the internet to LSU for
post-flight analysis. The analysis software selects events with signals corresponding to at
least 200 keV deposited energy per channel within 1 psec. Anode signals above this
energy seen on only one PMT are discarded as noise. The data are then binned into 2
msec bins and assigned a timestamp in the center of the bin. The significance of each 2
msec bin is calculated as the number of statistical standard deviations above the average
rate at float. The frequency of each significance level is plotted against the significance
level sigma in Fig. 7.3 (solid line). The distribution plotted shows an exponentially
decreasing number of counts per sigma bin with increasing sigma. A significance of 10 ¢
corresponds to 24 counts in 2 msec. No 2 msec bins were detected above the background
distribution at float altitude, indicating that no gamma flashes were observed on this
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flight. This is expected since the payload remained tens of miles away from the nearest
thunderstorm. For comparison, the expected normal distribution is also plotted (dashed
line), showing an extra cosmic ray shower component above the expected background.
Although no events were detected, the engineering flight of the LAGO payload in
September of 2012 was deemed successful.
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Figure 7.2 Averaged energy channel count rates per sec vs payload altitude during the
2012 flight. The solid line indicates the averaged anode (low energy) channel counts per
sec. The dashed line indicates the averaged dynode (high energy) channel counts per sec.

The vertical line at left indicates the payload launch time.
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Figure 7.3 Frequency of the number of statistical standard deviations above the mean at
float altitude (~110,000 ft) using 2 msec bins (solid line). The expected background
distribution is also shown (dashed line), indicating an extra cosmic ray shower
component. No 2 msec bins were detected above the background during the 2012
engineering flight
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CHAPTER 8 — FUTURE PLANS: TETRA II

TETRA has produced a substantial list of TGFs observed from the ground, although with
several limitations. The spectra of TETRA’s events are restricted to 50 keV - 2 MeV by
the thinness and density of its Nal scintillator plates. The source height of these TGFs
was not determined. The current array cannot correlate events with TGFs seen by satellite
instruments since it is located outside of their orbits. The frequency of detection is also
limited by the modest lightning frequency in the local area. To address these limitations
and provide capabilities for science beyond TETRA, we propose to build an upgraded
version of the array, TETRA II. TETRA II will provide the opportunity to perform more
detailed analyses of TGFs observed from the ground, correlate with TGFs observed from
space, and begin to understand the storms that produce them.

The individual spectra of the TGFs observed with TETRA consist on average of ~20
photons with an average energy ~500 keV. In contrast, the spectral comparison
performed in chapter 4 (Fig 4.5) used over 200 photons in the TGF portion alone to
differentiate between the total background spectra and the TGF spectra. In order to
perform spectral analysis of in