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Abstract

Gamma Ray Bursts (GRBs) have several luminosity relations where a measurable prop-

erty of a burst light curve or spectrum is correlated with the burst luminosity. These lu-

minosity relations are calibrated for the fraction of bursts with spectroscopic redshifts and

hence the known luminosities. GRBs have thus become known as a type of ‘standard can-

dle’; where standard candle is meant in the usual sense that their luminosities can be derived

from measurable properties of the bursts. GRBs can therefore be used for the same cosmol-

ogy applications as Type Ia supernovae, including the construction of the Hubble Diagram

and measuring massive star formation rate. The greatest disadvantage of using GRBs as

standard candles is that their accuracy is lower than desired. With the recent advent of

GRBs as a new standard candle, every effort must be made to test and improve the distance

measures.

Here, several methods are employed to do just that. First, generalized forms of two tests

are performed on all of the luminosity relations. All the luminosity relations pass the second

of these tests, and all but two pass the first. Even with this failure, the redundancy in using

multiple luminosity relations allows all the luminosity relations to retain value. Next, the

‘Firmani relation’ is shown to have poorer accuracy than first advertised. In addition, it is

shown to be exactly derivable from two other luminosity relations. For these reasons, the

Firmani relation is useless for cosmology. The Amati relation is then revisited and shown

to be an artifact of a combination of selection effects. Therefore, the Amati relation is also

not good for cosmology. Fourthly, the systematic errors involved in measuring a popular

luminosity indicator (Epeak ) are measured. The result is that an irreducible systematic error

of 28% exists. After that, a preliminary investigation into the usefulness of breaking GRBs

x



into individual pulses is conducted. The results of an ‘ideal’ set of data do not provide for

confident results due to large error bars. Finally, the work concludes with a discussion about

the impact of the work and the future of GRB luminosity relations.
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1. Introduction

1.1 A Brief History of Gamma-Ray Bursts

Gamma-Ray Bursts (GRBs) are commonly called the ‘biggest explosions since the big

bang’. They appear as flashes in the sky lasting anywhere between fractions of a second to

several minutes. These flashes, comprised mostly of gamma-rays, have peaks in their flux

spectrum ranging from a few keV to a few MeV. During outburst, they are brighter than

all other gamma-ray sources combined (Fishman & Meegan 1995), and generally have an

average total energy of ∼ 1052 ergs. This equates to an average intensity of ∼ 10−7 − 10−5

ergs cm−2 s−1. GRBs were first discovered in 1973 (Klebesadel et al. 1973), observed only

in the gamma-ray range of the spectrum. Until the discovery of their X-ray, optical and

radio counterparts (Costa et al. 1997; van Paradijs et al. 1997; Frail et al. 1998), they

were ‘objects without precedent’ (Fishman & Meegan 1995) as they had previously had no

detected counterparts in any other energy range. This made them exotic objects, which

sparked the interest of many astronomers. From the early measurements through modern

observation techniques, GRBs are renowned for having a wide range of durations, light curves

(see Figure 1.1) and spectral variations, which has made modeling all bursts very difficult.

There are two main classifications of GRBs. This is done largely by the duration of the

burst, with any burst less than two seconds being referred to as ‘short’ and any burst longer

than that to be ‘long’. Long GRBs have vastly more known about them, and are much better

understood than short GRBs. This is largely due to there being much more in the way of

afterglow data on long GRBs. In addition to their shorter durations, short GRBs have a

harder spectral profile than that of a long GRB, thus earning them the moniker “short hard

1
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Figure 1.1 Three examples of Gamma-Ray Bursts. The y-axis is in counts of gamma-ray
photons (the energy range depending on the spacecraft). The first two light curves, GRB
990123 and GRB 990506, are data from BATSE and the last light curve, GRB 050126, is
data from Swift . GRBs have no consistent pattern, except in their chaotic nature. GRB
050126 shows an example of Poisson variations on a faint burst, although GRBs can certainly
be much more ambiguous. GRB 990123 shows one style of a GRB, with one sustained
burst (although with multiple peaks). GRB 990506 is an example of a burst with multiple
separated pulses, making it difficult to describe the duration of the burst.
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bursts”. The emission mechanism for short GRBs is therefore assumed to be different than

that of long GRBs. For the purposes of this thesis, whenever the term GRB is used, it refers

to long bursts (unless specifically referred to otherwise).

One of the biggest questions that dominated many of the early GRB conferences was the

geometrical question of where GRBs were coming from. In the broadest sense, there were two

camps on the issue: galactic and extra-galactic. Indeed, before 1991 and even into the middle

1990’s, a majority of workers on GRBs believed the source to be galactic neutron stars. The

strongest evidence for galactic GRBs came from Murakami et al. (1988), who found absorp-

tion lines at 20-70 keV. This is consistent with cyclotron radiation in highly magnetic fields

typical of a neutron star. Another strong argument made by the galactic source supporters

was that the Eddington luminosity for neutron stars is 1038 erg s−1, which places bursts

at distances within the galaxy. An extragalactic model would require such a tremendous

amount of energy that no one conceived of how such huge energies could be produced in

such a short period (the rest mass energy of a star is on the order of 1052 erg). Arguments

for the galactic models were strengthened by early distribution maps (e.g. Golenetskii, 1988;

Figure 5 of Higdon & Ligenfelter 1990). Golenetskii used this distribution to argue for

a concentration towards the galactic plane. In addition, the distribution did not coincide

with galaxies or galaxy clusters. One of the more famous tests on this distribution was the

‘V/Vmax’ test (Schmidt 1968, Schmidt et al. 1988, Higdon & Schmidt 1990), which confirmed

a spatial uniformity of bursts, which is a conflicting conclusion - that GRBs were coming

from extra-galactic sources.

It was not until GRB detectors like BATSE (Burst Alert and Transient Source Experi-

ment) on CGRO (Compton Gamma Ray Observatory; Meegan et al. 1992), that a sufficient

number of bursts were observed to answer the question as to the origin of GRBs. While
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Figure 1.2 The BATSE discovery of isotropy in the GRB distribution. This graph shows the
positions of the first ∼1,000 BATSE bursts in galactic co-ordinates. The findings solidified
GRBs as coming not only from outside the galaxy but from distant galaxies. Many workers
in GRB astronomy still consider this result to be one of the greatest achievements of GRB
astronomy. This figure is Figure 6 of Briggs et al. (1996), and is reproduced by permission
of the AAS (see Appendix A).

not much better than Konus in giving the astrometry of bursts, BATSE far surpassed its

predecessors, seeing greatly more GRBs than any of the previous GRB detectors on other

missions. BATSE settled the argument in the minds of most GRB workers. The most com-

pelling piece of evidence provided by BATSE was that the observed distribution of GRBs

was isotropic (Fishman 1991; Briggs et al. 1996; Figure 1.2). The lack of any structure to

the GRB distribution is a huge indicator of very-distant extra-galactic sources.

However, the angular isotropy of GRBs is not enough proof of the cosmological distances

of GRBs. An isotropic distribution could still be obtained by a source that is only observed

out to a distance equal to the scale height of the galaxy or out to a distance still within

the galaxy’s halo. It is for this reason that another piece of evidence was looked to: the

log P - log N distribution. If one were to plot the frequency of observations versus the

brightness of the bursts in a log-log plot, there will be a -3/2 power law in the distribution
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if GRBs are homogenous in their locations. This is a simple consequence of convolution

of how many bursts there would be in a given volume by the inverse square law. BATSE

saw a significant deviation from this -3/2 power law, which has a deficit of fainter bursts

(Figure 13 of Fishman & Meegan 1995). So the debate continued as to where GRBs were

coming from for some time. However, as you get finer and finer resolution on how isotropic

GRBs are, you need them to be further and further out to still be ‘local’. Eventually, the

BATSE angular distribution got a fine enough isotropy (again, see Figure 1.2) to convince

most everyone that GRBs had to be cosmological in origin.

A big advance for GRB science came with follow-up observations. These are generally

done in X-ray, radio, ultraviolet, and optical bands, with the first observations made in 1997

(e.g. Costa et al. 1997; van Paradijs et al. 1997; Frail et al. 1998). The discovery of GRB

afterglows allowed for the first arc-second positions of GRB sources. This then led the way

for the first host galaxies to be discovered (Kulkarni et al. 1998) and redshifts measured

(Metzger et al. 1997). Redshift in this instance refers to the Doppler shifting of light as

a result of the expansion of the Universe as it travels to Earth (also called cosmological

redshift). GRB afterglows were consequently the final piece of evidence to convince even the

most skeptical of GRB workers that GRBs were coming from distant galaxies.

With better locations, GRBs were soon linked to star-forming regions. This ties GRBs

to the deaths of massive stars: supernovae (SNe). Direct evidence linked GRBs and Type Ic

SNe (Galama et al. 1998; Hjorth et al. 2003; Price et al. 2003; Stanek et al. 2003; Malesani

et al. 2004; Campana et al. 2006;). However, Podsiadlowski et al. (2004) pointed out that

the GRB rate is one per ∼ 3× 105 years per galaxy. This rate is lower than the supernovae

rate by more than a factor of 103. Therefore, special conditions are required for a SNe to

produce a GRB.
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One such special condition was deduced from GRB afterglows. In the X-ray, the lightcurve

is shown to be a thrice broken power law. These breaks are seen from anywhere from 102

to 104 seconds after the burst. Likewise, the optical afterglow follows a power law with a

single break. This is significant because it confirms that GRBs are not formed in an isotropic

explosion. GRBs must therefore come from a collimated jet with high bulk Lorentz factor

of 100-1000 (Woosley 1993; MacFadyen et al. 2001; Woosley & Bloom 2006).

With all this, the ‘collapsar model’ of GRBs became the accepted paradigm for GRB

progenitors. As GRBs are connected with not only SNe, but areas of high star-formation, the

evidence is that they must come from very massive, low-metallicity stars. As a supermassive

star nears the end of its life, it can no longer generate enough energy via fusion to sustain

its own mass. The star begins to collapse inwards, forming a black hole at the center. If

the progenitor has a high rotation rate, high angular momentum will drive falling material

into an accretion disk about the black hole. From there, it is not clear how the material is

collimated into jets. The prevailing theory is that magnetic fields in the accretion disk get

twisted and cause suitable conditions to create two jets, one from each face of the accretion

disk. These jets, fueled by the material of the dying star, punch their way to the surface

of the star, gradually accelerating as the stellar density decreases. By the time the leading

shock has broken through the star, it will be traveling with a Lorentz factor of 100− 1000.

The emission seen from a GRB is believed to come from material collisions within the jet.

As different fronts of matter are ejected at slightly different speeds, these fronts will collide

with each other. The matter is immediately heated, causing immense motion of particles due

to the high kinetic energy. This is known as an ‘internal shock’, which produces the gamma

and X-rays seen in the ‘prompt’ emission of a GRB (Mészáros & Rees 1997). The emission

mechanism that produces the gamma-ray photons is under debate. The debate generally
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centers around two possibilities: synchrotron radiation and inverse Compton scattering.

In synchrotron radiation, high energy photons are created as a result of a particle being

accelerated as it travels in a highly magnetic field. In inverse Compton scattering, relativistic

electrons scatter lower energy photons into higher energies (Rees & Mészáros, 1992; 1994).

Later, the slowing jet collides into the interstellar medium (ISM) and this action is what

causes the decaying afterglows seen in the other wavelengths, ranging from radio to X-ray

(Sari et al. 1998). The mechanism that causes afterglows is not understood. The idea is that

synchrotron radiation is occurring as a result of particles being accelerated in a magnetic

field. This magnetic field would likely be associated with the relativistic materials moving

outward in the jet.

GRBs are, in a sense, an extreme supernova eruption: one that is so immense that the

formation of a black hole creates the powerful jet that penetrates through the star and sends

out the gamma radiation beam outwards.

1.2 Gamma-Ray Bursts as a Cosmological Tool

It is clear that GRBs are exotic, extreme, and evocative objects that in themselves spark

much interest. Indeed, much remains to be uncovered in the field, especially in terms of the

mechanics of the eruption itself. However, it is their usefulness as a tool for cosmology that

is of significant interest to not only GRB astronomy, but the broader community. GRBs

have a unique advantage over all other cosmological tools (e.g. Supernovae Ia, Cepheid

Variables, RR Lyrae stars) in that they can be seen out to a redshift of z =8.2 (Tanvir et

al. 2009; Salvaterra et al. 2009). While this is the maximum distance that a burst has been

observed, there is sufficent evidence that it is very likely that they will be observed at even

greater distances (Lamb & Reichart 2000; Bromm & Loeb 2002; 2006). There is a great
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deal of cosmological information that can be obtained through GRBs. For example, Lamb

& Reichart (2000) suggested that the optical afterglow light from a GRB sufficiently far out

could pass through galaxies giving chemical abundances out to extreme redshift galaxies.

Another example is given in Tanvir et al. (2009) and Lamb & Reichart (2000) which both

suggest that as GRBs are observed at such extreme distances, they allow for measure of the

Gunn-Peterson effect (a trough in the spectra of early quasars at energies less than that of

Lyman-α which is evidence of the re-ionization of the early Universe). In addition, with the

various Gamma-ray observatories in orbit, many optical transients have been discovered in

the last decade, providing for sub-arc second positioning of (some) bursts. This provides

exact positioning of the bursts (which as discussed earlier, was and is a huge problem with

bursts without said transients). This provides a means for several telescope teams to find

and study extremely high-z galaxies with relative ease. For all these tasks to be realized,

redshifts must be obtained through GRBs. Only a fraction of bursts (31% for Swift , 5% for

Fermi ) have had red-shifts determined spectroscopically.

As it is now widely accepted that GRBs come from high mass stars undergoing core-

collapse supernova, it follows that GRBs can be used as a cosmological tool for star formation

rates (SFR). That is, the rate of GRBs will have to be proportional to the SFR of massive

stars. This is largely due to the stars that are massive enough for core-collapse supernovae

that could produce a GRB would have extremely short main-sequence lifetimes. Therefore,

a GRB must be occurring at a site of recent star formation. While it might seem that

GRBs are at a disadvantage for being an SFR for only massive stars, this is true of all other

methods of measuring SFR, as the massive stars are the ones that give the best evidence of

their lives and deaths in the high-z Universe. If one can accomplish the goal of obtaining

distances to GRBs, then one can map out the GRB rates as a function of redshift, revealing
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the Universe’s SFR. The importance of SFR is vital for a wide variety of galaxy formation

studies as well as determining the best population models. One large hurdle that workers

determining the SFR have is with the lack of good data past z ∼ 4.6 (e.g. Bouwens et al.

2006; Hopkins & Beacom 2006). As GRBs have already have had several detections beyond

this range, they promise to break this limit. In addition, they are impervious to extinction

(the absorption and scattering of light as it travels through space). Lloyd-Ronning et al.

(2002) pointed out a complexity that arises when deriving the GRB SFR is that the burst

luminosity function must be cleanly separated from the rate variations with distance. To

realize the important result of SFRs for cosmology, one must have reliable and accurate

methods of determining a distance to most, if not all, GRBs.

Perhaps the greatest contribution GRBs can provide to cosmology is in their invaluable

extension of the Hubble Diagram out to high-z. The HD is the graphical representation

of Hubble’s Law (equation 1.1) (Sandage et al. 1958; Hubble 1929), which states that the

distance of a galaxy is directly related to how fast it is moving.

v = H0 D , where H0 = 71.0± 2.5
km/s

Mpc
(1.1)

The value used here for Hubble’s Constant, H0, is from the latest WMAP result (Jarosik et

al. 2011). Hubble’s Law is a direct result of the expansion rate of the Universe. The Hubble’s

constant actually changes with time, leading to an apparent change on the larger scale of the

Universe. As such, tracing the evolution of Hubble’s law to the early Universe (also called

the high-z Universe) reveals the evolution of important cosmological factors. Therefore, the

more precisely the HD is known, the better one knows the cosmological parameters which

dictate how much of the Universe is matter, dark matter and dark energy. By refining these

values, one can determine the age and fate of the Universe. This was most famously done

by the Supernovae Cosmology Project (SCP) and the High-z Supernovae Search, which are
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credited with finding that the Universe’s expansion rate was increasing. This was done by

fitting supernovae out to z ∼ 0.98 to the HD.

Type-Ia supernovae have therefore rightfully been trumpeted as a fantastic tool for cos-

mology. However, it becomes clear how big of a contribution GRBs can be for helping refine

the HD as they have been observed well over z = 6.6 (Schaefer 2007, Figure 1.3). GRBs

become a fantastic extension as supernovae have only been useful out to z ∼ 1.4 (Riess et al.

2004), and even the best estimates have shown that proposed state-of-the-art instruments

like the proposed SNAP satellite would only extend supernovae out to z ∼ 1.7. Supernovae

have been shown to have superb accuracy, with a 1-σ uncertainty in the derived distance

modulus of ∼ 0.30 mag (Perlmutter et al. 1999; Riess et al. 2004; Astier et al. 2006).

This is in contrast to GRBs, which have been shown to have a 1-σ uncertainty of 0.65 mag

(Schaefer 2007), although this is only 2.1X worse. Here, distance modulus refers to the dif-

ference between the apparent magnitude and the absolute magnitude of an object as given

by equation 1.2; where m is the apparent magnitude, M is the absolute magnitude, dL is the

luminosity distance, and µ is the distance modulus.

µ = m− M = 5 log10 dL − 5 (1.2)

GRBs are not used with an optical magnitude, yet nevertheless, µ is a convenient way to

represent the distance to the burster. In the next section, an analogous equation will be

presented for the GRB peak flux and its luminosity.

There are a variety of cosmological models (that is, models that map the history and fate

of the Universe’s expansion) that predict differences especially in the early Universe. The

differences can largely be attributed to the choice of cosmological parameters: the amount of

dark matter, dark energy and ‘real matter’ that can be (reasonably) attributed, along with

other choices for the evolution of certain gravitational models etc. and how these parameters
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Figure 1.3 The Hubble Diagram using both supernovae and GRBs. The red diamonds are
the 69 GRBs from Schaefer (2007). The blue empty circles with z < 1.4 are from the ‘Union
sample’ of Type Ia supernovae (Kowalski et al. 2008). In this plot, the strength of both
supernovae and GRBs becomes apparent. Supernovae have 2.1X times the accuracy, but are
limited to z < 1.4 (possibly out to 1.7 with the proposed SNAP mission), whereas GRBs
are able to reach out beyond z = 6. The shape of the GRB Hubble Diagram is well-defined
out to z ∼ 6.5. The redshift range z > 1.7 can only be measured with GRBs, and this
range covers unique physics where the equation of state may be changing (thus varying the
cosmological parameters). The promise of GRB cosmology is to cover this range that only
they can reach. This project is designed to improve the accuracy of GRBs so that there
can be greater accuracy in the HD out to high redshifts. To take close historical analogies,
no astrophysicist would stop testing or improving the Cepheid period-luminosity relation
after Leavitts original work, and the community vigorously pushed, tested and improved the
luminosity-decline relation for supernova (type Ia) after the original papers of Phillips (1993)
and Hamuy et al. (1996). Similarly, the GRB luminosity relations need a lot of testing and
improvement, and that is the work here.
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change over the course of the Universe. These cosmological models generally have relatively

small differences in their predictions for the HD out to z < 1.4, having moderate variations

on the order of 0.25 mag in the predicted distance moduli. However, in the very high-z

Universe, these differences become very large (Figure 1.4). As an example, at a redshift of

z ∼ 5 the differences in predicted distance moduli are as large as 2 magnitudes. Therefore, a

GRB found at these high redshifts are worth ten supernovae found at their extreme redshift,

z = 1.4.

One can then see that while supernovae are the best choice in determining the best

parameters for the current state of the Universe (that is, the current equation of state - the

ratio of pressure to energy density), they do not cover the range of redshifts to determine

these parameters in the early, high-z Universe. GRBs are the only tool for these redshifts,

with a range that spans out to z ∼ 8, they can help cosmological model workers determine

more accurately how the Universe’s equation of state has changed over time. To do this, one

first must have a more accurate means of determining reliable distances to GRBs. GRBs

have great potential, especially with data already coming in for free via the multitude of

gamma-ray satellites, but first the means of obtaining distances of GRBs must be improved

before they can be used to their potential.

1.3 Gamma-Ray Bursts as Standard Candles

In astrophysics, the term ‘standard candle’ is used quite often, and with good reason.

Standard candles are one of the most important tools in modern astrophysics. The concept

is that if an object in the sky is identified as a known standard candle, one then knows its

luminosity. Depending on the type of standard candle this is obtained in a variety of ways,

but always is dependent on using observed quantities to derive the luminosity. For example,
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Figure 1.4 Model differences in cosmologies. The middle curve is for the ‘concordance cos-
mology’; The lower curve is for the best fit to the supernova Hubble Diagram with a variable
equation of state for the Dark Energy (Riess et al. 2004); and the upper curve is for Weyl
gravity (Mannheim 2006; Kazanas & Mannheim 1991), while the Fractal Bubble model
(Leith et al. 2008; Wiltshire 2007) is essentially on top of the concordance curve. The first
two of these models are considered ‘standard cosmologies’ while the later two are considered
‘non-standard cosmologies’. Nonetheless, one can see that even for a standard cosmology,
there are large differences at high redshift. Therefore, while supernovae are indeed 2.1X
more accurate than GRBs for the HD, GRBs are the only tool available to determine which
models are correct by looking at the high-z Universe.
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Cepheid variables are a type of standard candle in which their luminosity can be derived via

the period of the oscillation of their observed brightness. Once the luminosity of standard

candle is derived, this needs only be compared to the apparent brightness of the object via

the inverse square law (equation 1.3).

Φ =
L

4π d2
L

(1.3)

In this manner, the distance to distant galaxies are easily obtainable. Much of astrophysics

depends on knowing the distance to an object, as it determines the energy output, red-

shifts and even the structure of space itself. All these things are required components in

determining the physics of a system, and so distances become a valuable commodity.

Technically speaking, the term ‘standard candle’ has two definitions. The first is any set

of objects that would all have the same luminosity. An example of this is a street lightbulb.

All street light bulbs have the same energy output (luminosity), so it would be intuitive and

common to tell how far away a street lamp is by just seeing how bright the bulb appears

and using the inverse square law to derive its distance. This ideal situation is of course

impossible in astrophysics, so an alternative definition is the one that is typically used in

the astrophysical sense. That is, a class of objects from whom observables can be used to

determine its luminosity. A more appropriate term might have been ‘standardizable candles’.

At first glance, it seems that GRB light curves are too chaotic. That is, on first glance,

it would seem extremely unlikely that GRBs would be able to be turned into a standard

candle. However, a number of relations have been found since 1999 which use some mea-

surable quantity from a GRB as a ‘luminosity indicator’. These indicators are typically well

correlated with the burst peak luminosity or fluence in an equation known as a ‘luminosity

relation’.
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1.4 The Gamma-Ray Burst Luminosity Relations

The promise of GRBs as standard candles began in late 1999, when two groups made

the extraordinary discovery that GRB light curves can be used to derive the intrinsic peak

luminosity of their burst (Norris et al. 2000; Fenimore & Ramirez-Ruiz 2000). In simplest

terms, the groups found specific quantities can be measured from the GRB that are strongly

correlated with the peak luminosity in a ‘luminosity relation’. These groups’ discovery was a

tremendous breakthrough, as GRBs became then a legitimate possibility as a new standard

candle. The results showed that given a tight enough correlation, the distance to a GRB

could be obtained via the gamma-ray energy alone. This would make it possible to get the

distances to almost any GRB without the need of obtaining redshifts from a host galaxy;

something that only had a 31% success rate even with the arc-second resolution of Swift .

Since the first discovery in 1999, a total of seven luminosity relations have been discovered

and seriously analyzed. The most famous relation, termed ‘the Amati relation’ (Amati et al.

2002; Amati et al. 2006), connects the total burst gamma-ray energy for assumed isotropic

emission (Eγ,iso) as a power law to the observed spectral peak energy (Epeak , corrected for

redshifting to the frame of the burst). Where Epeak describes the peak of the E×F(E) curve

(proportional to νFν), which is the photon energy of the peak spectral flux.

The most accurate of these is the so-called ‘Ghirlanda relation’ (Ghirlanda et al. 2004).

The Ghirlanda relation connects the total burst energy, corrected for the anisotropic emission

of the relativistic jet (Eγ), as a power law to Epeak . Luminosity has been used in many

luminosity relations, for example, it has been connected to the spectral lag (τlag) in Norris

et al. (2000), where τlag describes the time between the peak of the light curve in the 25-50

keV and the 100-320 keV channels. Luminosity has also been linked to the variability (V) in

Fenimore & Ramirez-Ruiz (2000) and Li & Paczynski (2006); where the variability is some
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Table 1.1. The Seven GRB Luminosity Relations

Relation Equation Source

τlag−L log ( Liso) = 51.25− 1.01 log
(
τlag
1+z

)
Norris et al. (2000)

V−L log ( Liso) = 55.50 + 1.77 log (V (1 + z)) Fenimore &
Ramirez-Ruiz (2000)

Epeak−Liso log ( Liso) = 48.05 + 1.68 log ( Epeak (1 + z)) Schaefer (2003b)
Epeak−Eγ,iso log ( Eγ,iso) = 47.93 + 2.04 log ( Epeak (1 + z)) Amati et al. (2002;2006)

Epeak−Eγ log ( Eγ) = 47.13 + 1.43 log ( Epeak (1 + z)) Ghirlanda et al. (2004)

τrise−L log ( Liso) = 51.33 + 1.21 log
(
τrise
1+z

)
Schaefer (2002)

Npeak−L log ( Liso) > 50.32 + 2 log ( Npeak) Schaefer (2002)

measure of how ‘spiky’ the light curve is. The spectral peak energy (Epeak ) has also been

connected to the luminosity in Schaefer (2003b) and Yonetoku et al. (2004). The minimum

rise time, τrise, has also been connected to luminosity in Schaefer (2002), where this is the

shortest time over which the light curve rises by half the peak flux of the pulse. Finally,

luminosity has also been connected to the number of peaks in the light curve, Npeak , in

Schaefer (2002). The specific equations can be found in Table 1.1.

These seven relations have been confirmed by several workers who demonstrate the same

relation in independent samples (e.g. Schaefer et al. 2001; Reichart et al. 2001; Amati

2003; Bloom et al. 2003; Amati 2006; Li & Paczynski 2006; Nava et al. 2006; Butler et

al. 2010; and most extensively in Schaefer 2007 for 69 GRBs and all seven relations). A

number of other relations have been proposed, but they have yet to be extensively tested

and thus have not been included above. Lloyd-Ronning & Ramirez-Ruiz (2002) confirmed

the existences of both the V−L and the Epeak−Liso relations by showing that the predicted

V−Epeak relation existed using 159 BATSE bursts with unknown redshifts and 8 BATSE

bursts with known redshifts. Importantly, the seven relations all have reasonable models
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to explain the physics behind them (Kobayashi et al. 2002; Mészáros et al. 2002; Schaefer

2002; Schaefer 2003a; Schaefer 2003b; Eichler & Levinson 2004; Liang et al. 2004; Schaefer

2004; Levinson & Eichler 2005; Rees & Mészáros 2005; Giannos & Spruit 2007; Thompson

et al. 2007). In fact, one of the greater victories in the GRB luminosity relations is that four

of them were originally predicted by theory! (Lloyd-Ronning & Ramirez-Ruiz 2002; Schaefer

2002; Schaefer 2003b) With many different confirmations coupled with understanding of the

underlying theory, there is strong confidence in the existence and reliability of these GRB

luminosity relations.

The quality of GRB luminosity relations varies considerably, with the Epeak−Eγ relation

being the best of the confirmed luminosity relations, and the V−L relation being the worst

(as illustrated in Figure 1.5). The work that is proposed is to not only improve the existing

luminosity relations, but test other proposed ones. In fact, new, quality, luminosity relations

will be of tremendous help and in of themselves even if they are not of superior quality. This

is suggested by the work of Schaefer (2007), which showed that by combining the existing

luminosity relations as a weighted average, the quality of any single luminosity relation gives

for distance is improved by a factor of two.

1.5 Problems With the Luminosity Relations

The luminosity relations are not without criticism, and indeed have a variety of their

own problems. This is similar to both Cepheid and Type Ia supernova luminosity relations

had heavy criticisms and problems in their early days. The Amati relation, which is the

most heavily criticized relation, has had issues because it returns ambiguous redshifts (with

a high-z and low-z possibility) when the redshift is unknown (Li 2007; Schaefer & Collazzi

2007). This trouble is irrelevant when the redshift is known (i.e. obtained spectroscopically
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from the redshift of the host galaxy), which does not affect current HD work which only uses

bursts with known redshifts. There is a complication that has arisen where some fraction

of bursts appear to violate the Amati relation (more in Chapters 2, 3 and 6), and that

fraction itself is debated (Nakar & Piran 2005; Band & Preece 2005; Schaefer & Collazzi

2007; Goldstein et al. 2010). An issue that has been raised with the Ghirlanda relation

is only applicable to a fraction of GRBs. To use the Ghirlanda relation, there needs to be

a long photometric time series on the optical afterglow (if present) for a jet break to be

observed. An additional confusion arises when X-ray breaks are confused with a jet break

(for which the Ghirlanda relation does not work). In addition, there is considerable scatter

in the ‘variability’ and ‘rise time’ relations, so much that little information is provided for

the luminosity of the burst (Schaefer 2007). The relation involving Npeak returns only a

lower limit on luminosity, and therefore not truly useful for most purposes (Schaefer 2007).

Finally, a previously accepted luminosity relation (Firmani et al. 2006, not listed in table

1.1) has been shown to be no significant improvement on either of the two other relations

using Epeak , from which it was derived (Collazzi & Schaefer 2008).

One problem that has been more one of publicity is a so-called ‘circularity problem’ in

the HD. This problem is that if the luminosities for bursts are derived assuming a certain

cosmology, the derived HD cannot be used to test any other cosmology than the one the

burst luminosities were derived with. This problem has been relatively small for supernovae

standard candles, because the calibration of the supernovae luminosity relations operate in

a range where the differences in cosmological models are minimal. For GRBs, the circularity

problem has already been shown to be ignorably small in size (Schaefer 2007). So some

workers (e.g. Wright 2007) have explicitly ignored the issue. Nonetheless, there are two

devices that are usually used to avoid this ‘problem’, both of which are explained in detail in
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Figure 1.5 The calibration plots for two GRB luminosity relations . Here the Ghirlanda
relation (left) and the lag-time relation (right) are displayed. The Ghirlanda relation has the
least scatter of any of the GRB luminosity relations , but still is worse than is desirable. The
lag time relation has substantially more scatter. These calibration plots were formed using
the concordance cosmology, so cannot be used in any other assumed cosmological models.

Schaefer (2007). The first is to calculate the HD for each and every cosmology, and take the

chi-squares as correct with extra degrees of freedom for the varying cosmology. The second

is to calibrate the luminosity relations for the z < 1.4 GRBs based on the cosmology derived

from supernovae, with the uncertainties over this redshift range being greatly smaller than

the error bars. Therefore, this issue is a publicity one, as there are existing ways of avoiding

it, but the issue does still get brought up in the literature (usually by analyst blunder).

Another widely advertised issue claims that the Amati relation is merely the result of

detector threshold effects (Butler et al. 2007). This claim has scared off some luminosity

relation workers from continuing (e.g. Bromm & Loeb 2007). The claim has been since

widely rejected for a wide variety of strong causes, (e.g. Cabrera et al. 2007; Amati et al.

2009; Krimm et al. 2009; Nava et al. 2009; Xiao & Schaefer 2009; Ghirlanda et al. 2010)

and has been recanted by the authors themselves in Butler et al. (2009). Nevertheless, this

issue will be re-analyzed in Chapter 6.
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The most pressing problem with luminosity relations is therefore in their accuracy (see

Figure 1.5). The best relation (Epeak−Eγ ) has an RMS (root-mean square) scatter about

its calibration curve of 0.15 in the log of the luminosity, while the worst (V−L and τrise−L )

relations have RMS scatters of 0.45 in the log of the luminosity. There are a number of

reasons why one can not just use the ‘best’ of these relations and ignore the rest. The

biggest of which being that the most accurate relation, the Ghirlanda relation, requires

that a jet break is observed, which is only seen in a very few number of bursts. The other

reason why one should combine the Ghirlanda relation with other luminosity relations is

to alleviate any concerns about the ambiguity in the Ghirlanda relation as pointed out by

Li (2007). Combining multiple, independent relations will also help reduce the errors on

derived distances. So one is best served by using as many luminosity relations as possible,

and getting a weighted average for the distance modulus.

Schaefer (2007) showed that when the luminosities given by all the relations are combined

as a weighted average, the average error bar is 0.26 in the log of the luminosity. This

translates into an uncertainty in the distance modulus (for the HD) of σµ = 0.65 mag.

This is a significantly larger than desired uncertainty, especially when compared to existing

uncertainties derived using supernovae. The one-sigma errors in the supernovae HD are

σµ = 0.36 mag over 42 supernovae (Perlmutter et al. 1999), which improves to σµ = 0.29 with

the ‘gold sample’ of Riess et al. (2004), and improves even further in the Supernovae Legacy

Survey (Astier et al. 2006). Thus GRBs are 2.1X worse than even the best supernovae

has to offer. This is very encouraging, as it is already substantially lower than what the

community expected. This factor can be lowered significantly by fine tuning the GRB

luminosity relations.
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1.6 This Work

The goal of this work is to improve the accuracy of the luminosity relations, as it is

extremely likely that they can be improved. To draw a parallel from history, once super-

novae (type Ia) were found at high redshifts, k-corrections were applied (and have been ever

since, e.g. Kim et al. 1996). Another example from history would be that the period-

luminosity relation was further improved by finding that color was a third dimension that

when accounted for would lead to a more accurate period-luminosity-color relation. In a

similar fashion, the goal is to improve GRB luminosity relations; the methods of which are

explained in Chapter 2, along with some background of current work being by other GRB

workers. Chapters 3-7 will detail work that the author has done to improve, test, and add

to the luminosity relations. Chapter 8 shall review the impact of the work that the author

has done, and comment on what further work needs to be done.



2. Evaluating and Improving the Luminosity
Relations

With GRBs being so important for understanding the high-z Universe, methods to test

and improve the luminosity relations must be formulated. In this chapter, the underlying

concepts of these methods are reviewed. In later chapters, these methods will be fully

explored with their implications.

2.1 Applying Generalized Tests for the Gamma-Ray

Burst Luminosity Relations

The Amati relation only requires two easily obtainable GRB properties, Sbolo and Epeak .

Recall that Sbolo is the total fluence of the burst over the 1-10,000 keV range, and that Epeak is

the observed energy of the peak in the νFν spectrum. Epeak can be obtained simply by using

the LINUX-based analysis tool XSPEC1 and finding the peak in the best fit of the spectrum.

Sbolo can then be obtained by integrating the E×dN
dE

curve over the 1-10,000 keV range. As

these values are simple to get, the Amati relation is the simplest of the luminosity relations

to critique.

The most widely known of these criticisms is that of Nakar and Piran (2005). This

test was based off a simple idea: use the luminosity relation and inverse square law to set

up an equality between the redshift-dependent terms and the observable quantities. As an

example, start with the Amati relation,

Eγ,iso = AE2.04
peak (1 + z)2.04 . (2.1)

1Version 12.6.0q, http://heasarc.nasa.gov/xanadu/xspec/
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Where, Eγ,iso is the total gamma ray energy assuming for isotropic emission, and z is the

cosmological redshift. A is used here as some constant. The Amati relation describes the total

gamma-ray energy as directly proportional to Epeak in the burst’s rest frame. In contrast,

Eγ,iso is also described by the inverse square law,

Eγ,iso = 4π d2
L Sbolo (1 + z)−1 . (2.2)

Where dL is the luminosity distance. The Nakar and Piran test involves putting these two

equations together, then isolating the observables from the redshift-dependent terms. In the

case of the Amati relation, you would end up with

E2.04
peak

Sbolo

=
4π d2

L (1 + z)−3.04

A
. (2.3)

The result is an equation where the left hand side is composed of observable quantities and

the terms on the right hand side are functions of distance. As the distance rises, d2
L gets larger

and (1+z )−3.04 gets smaller, which yields a maximum redshift for the function. When the

concordance cosmology is used, the function peaks at z ∼ 3.8 (see Figure 2.1). Specifically,

the left hand side of the equation cannot exceed ∼ 109 kev2.04erg−1. This becomes a means

to test the Amati relation, as the observed quantities are readily available, and can be

performed on all bursts, regardless of redshift. The result of the Nakar and Piran (2005)

study was that ∼ 48% of their sample (751 BATSE bursts) were in violation of this limit,

and therefore they concluded that the Amati relation failed the test.

This test was built upon by Li (2007), who noted that an ambiguity arises as a direct

result of the turnover found in the Amati relation by the Nakar and Piran test. Specifically,

a degeneracy arises as the value of the left hand side approaches the maximum value for

the relation (see Figure 2.1). For example, a burst at a distance of z ∼ 2.8 would have

identical properties to that of a burst at a redshift of z ∼ 5.0. As both these distances are
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Figure 2.1 The Amati relation and the Nakar and Piran test. The ratio of the observables
(normalized to the maximum value) is plotted as a function of redshift. The function has
a maximum value that occurs at z ∼ 3.4. This dictates a maximum value for E2.04

peak/ Sbolo

for bursts. Li (2007) built upon this test by noting that a degeneracy exists as a result
of this turnover. For example, a burst at a redshift of z ∼ 2.8 could be mistaken for a
burst of z ∼ 5.0 as the Amati relation would produce the same value for both of these
bursts. As both these redshifts are plausible, the degeneracy must be broken through means
independent of the Amati relation.

plausible for a GRB, Li (2007) argued that the Amati relation was good only for nearby

GRBs, for which the degeneracy could be broken simply because the higher of the values

was unreasonable.

In chapter 3, these tests are revisited on a more general scale, and are applied to eight

luminosity relations. The result is that all eight of the tested luminosity relations pass the

Nakar and Piran test when uncertainties of the data and dispersions of the correlations are

taken into proper account. In addition, all the luminosity relations were found to be good

when used for purposes when z is already known (e.g. calibrating the luminosity relations

and the GRB HD). The result of Li (2007) is confirmed: the Amati relation produces very
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large error bars when a redshift is sought z ∼> 1.4; moreover, it is found that the Ghirlanda

relation has a similar peak, with large error bars when seeking a redshift z ∼> 3.4. None of

the other six luminosity relations have this ambiguity issue; therefore, the degeneracies can

be broken by simply using more than one of the luminosity relations for a given burst.

2.2 Testing Existing Luminosity Relations

Several luminosity relations have been proposed beyond the ones included in Table 1.1.

Most of these relations are not widely tested outside of the groups that have proposed

them, and usually do not have any physical explanation for their existence. There is good

reason to explore the validity of proposed luminosity relations as any new luminosity relation

might provide a tighter relation than any existing one. Another motive for exploring newly

proposed luminosity relations is that the scatter in the GRB HD can be brought down by

up to a factor of
√
N , where N is the number of luminosity relations used.

One such proposed relation was given in Firmani et al. (2006). The relation suggests

that the addition of a duration, T0.45 , greatly reduces the scatter in the Epeak−Liso relation.

Here, T0.45 is the Reichart et al. (2001) definition of a GRB’s duration. The duration takes

the time interval of the brightest bins in the light curve that contain 45% of the burst’s total

fluence. Firmani et al. (2006) found a tight correlation with a reduced chi-square of 0.7 over

16 degrees of freedom introducing this duration into the Epeak−Liso relation. This result

offers hope of improved accuracy of luminosity relations as distance measurement tools.

Still, there is no physical reason to expect that the duration would provide for a tighter

relation. Therefore, the relation might be tightened further through the use of a different

definition of duration. No explanation was provided as to why the Reichart definition was



26

used, so it is reasonable to expect that a different definition of duration might provide for a

better result.

Chapter 4 explores the utility and promise of the Firmani relation as a new luminosity

relation. The investigation starts by reproducing the procedures of Firmani et al. (2006) ex-

actly. This is done in order to ensure that the fitting procedure that is performed is identical

to that of the original study. The Firmani relation is then tested using the same 19 bursts,

except with independently measured values for Liso , Epeak , and T0.45 . The relation gains

significant scatter for the independent data set, and erodes to scatter comparable to the

Epeak−Liso relation when the sample is expanded to 60 GRBs. Therefore, for a significant

sample of bursts, the Liso−Epeak T0.45 relation is just as accurate as the Epeak−Liso relation.

Nonetheless, this does not rule out the possibility that a different definition of duration could

provide for a tighter fit to that of the Epeak−Liso relation. Thirty-two definitions of duration

are tested using the expanded data set. The quality of each fit is compared via the root mean

square (RMS) of the scatter of the predicted and observed values of Liso in log space. The

quality of the fits are also compared via the predicted systematic errors in the fits (defined

as the error needed to bring the reduced chi square to 1). While some duration measure-

ments are found to provide a better fit than others, none of them provide for a significant

improvement to the Epeak−Liso relation. In addition, a simple derivation shows that the

Firmani relation is a combination of the Epeak−Liso and Epeak−Eγ,iso relations. Given that

the Firmani relation is neither independent or a significant improvement of already existing

luminosity relations, it should not be used for GRB cosmology.
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2.3 How Accurately Are the Luminosity Indicators

Being Measured?

Even with these two investigations, there is still the considerable issue that the GRB

luminosity relations have a scatter which is far greater than is desired. One likely cause

of this is could lie in simple failures to measure the luminosity indicators with sufficient

accuracy. That is, it is possible that the luminosity relations’ scatter is dominated by simple

measurement noise. One needs only go through the literature to see how a burst measured by

two different satellites can have very different results. So a vital question becomes whether

the scatter seen in the luminosity relations is merely a result of not knowing the burst well

enough. This would confirm that the underlying physics of the luminosity relations is well

understood, and the problem of scatter in the luminosity relations lies in the data gathering.

When a burst occurs, there are a variety of points in which uncertainty would be added.

For a specific example, one can look to Epeak, arguably the most important GRB parameter.

The most familiar source of uncertainty would be the calculated contribution from ordinary

Poisson errors, σPoisson. This is the error as reported in all the literature when values of

Epeak is given. A second source of uncertainty comes from not knowing the detector response

perfectly (an impossible task), which will be referred to as σDet. Yet another issue that

arises in determining Epeak is the various choices that are made in deriving the value. These

choices include the exact time and form of the background, the exact time interval over

which to accumulate the spectrum, whether to use Bayesian or frequentist statistics, and

even their convergence criteria for the fit. Reasonable analysts will make different choices,

and there is no ‘best’ set of choices known. The same set of data therefore can be looked

at by two entirely different set of analysts, and would result in two entirely different values.

Therefore, this difference between the two is a sort of uncertainty, σChoice. The final source
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of uncertainty is related to the model used to measure Epeak , σModel. An example of the

problem here is illustrated where the same data (i.e. from the same satellite) is measured

by the same group, and yet the Band model will yield a different result in a different value

than when a cut-off power law is used to fit the data. Another example of this uncertainty

is that the value of Epeak will be different when integrating over the whole burst, as opposed

to just the time of peak flux.

The luminosity relations are all expressed as power laws, with this being appropriate for

the physical interpretations of the relations. Also, the various errors described above are

multiplicative. Therefore, it is best to consider the logarithm of the luminosity indicators,

for example, Log(Epeak) or Log(τlag). The total measurement uncertainty will be labeled as

σTotal. As such, as the individual errors are multiplicative, the total errors will be given as

σ2
Total = σ2

Poisson + σ2
Det + σ2

Choice + σ2
Model. (2.4)

The task is then to derive σTotal by determining the remaining three sources of individual

errors (as σPoisson is already reported in the literature).

In chapter 5, the size of these individual error bars for Epeak is explored exhaustively.

This investigation goes beyond the basic Poisson statistics to quantify the individual and

total uncertainties are in measuring Epeak . The one-sigma uncertainty associated with the

choices made by analysts is 28%, which equates to log10(Epeak) = 0.12. Variations associated

with the detector response matrix are found to be negligibly small. The uncertainties caused

by commonly-used alternative definitions of Epeak is typically 23%-46% (although this varies

with application). The final implications of the study are: (1) Even the very best measured

Epeak values will have systematic uncertainties of 28%. (2) Thus, GRBs have a limitation

in accuracy for a single event, with this being reducible by averaging many bursts. (3) The

typical one-sigma total uncertainty for collections of bursts is 55%. (4) It is also found that
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the width of the distribution for Epeak in the burst frame must be near zero, implying that

some mechanism must exist to thermostat GRBs. (5) The community can only improve

on this situation by using collections of bursts which all have identical definitions for the

Epeak calculation.

2.4 Extending the Nakar and Piran Tests

Earlier work in applying generalized tests to the GRB luminosity relations have already

been performed (see Chapter 3). However, more recent studies, particularly in regards to

the Amati relation, have urged a revisit to this of the issue.

In their own work, Nakar & Piran analyzed 751 BATSE bursts, finding 48% of the bursts

to violate this limit, concluding that the Amati relation fails the test. Schaefer & Collazzi

(2007) later showed that this fraction was what is expected for this relation due to simple

scattering effects (see Chapter 3). In the ideal case with no measurement uncertainties, there

are no violators, but as soon as noise is introduced, some of the points (especially those near

the redshift limit) would be over the limit. Of course, there would be an equal number of

bursts that would go up (and thus above the limit) to those who go down (and below the

limit). So the real finding is that the differences between the limit and the equation are very

small given the known scatter (Schaefer & Collazzi 2007). Thus, the original test by Nakar

and Piran actually confirms the Amati relation.

Schaefer & Collazzi (2007) extended this test to 69 bursts with known redshifts from

many satellites. The result was that the Amati relation passed the Nakar and Piran test

(within error bars). The paper goes on to show that this test could be generalized for use

to test all luminosity relations. In most cases, this resulted in no maximum, or at the very

least no maximum within a reasonable redshift range (z < 20). A second luminosity relation
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was found to have a limit - the Ghirlanda relation, with a limit of z = 7.4. In addition,

all luminosity relations were shown to have either no bursts failing the test (like the lag-

luminosity relation), or a number of failures that is acceptable given measurement errors).

The end conclusion is that all known luminosity relations passed the Nakar and Piran test.

A complication arises in Band & Preece (2005), which examined (largely) the same

BATSE bursts without known redshifts, finding an 80% failure rate for the Amati relation.

This result was later confirmed by Goldstein et al. (2010). So it seems that there is a direct

conflict between these four independent tests. Making matters worse, it appears that the 7

bursts from BATSE with spectroscopic redshifts agree with the Amati relation, indicating a

possible population problem.

With this critical possibility, it is of great importance to determine what is going on. The

luminosity indicators must be extracted from different satellites and tested individually. In

doing this, results will be independent of any systematic errors from a single detector. This

analysis should also be generalized to test how bursts with redshifts and without redshifts

behave. It is critical to these tests to see if GRBs with a known redshift are coming from a

separate population.

Another criticism of the Amati relation is that the Amati relation is both dependent on

the satellite and that it arises from selection effects (Butler et al. 2007). Butler et al. (2007)

pointed out an apparent shift in the Amati relation between Swift and pre-Swift data sets.

Their claim that selection effects will produce the Amati relation were never substantiated

by any analysis, examples, or derivations, and the cause of the selection effects was never

identified. These claims have scared off some workers from using any luminosity relations

(e.g. Bromm & Loeb 2007); however, it has been widely rejected for a variety of strong

causes (e.g. Cabrera et al. 2007; Amati et al. 2009; Krimm et al. 2009; Nava et al. 2009;
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Xiao & Schaefer 2009; Ghirlanda et al. 2010) and most recently the authors themselves

recanted their previous findings (Butler et al. 2010). Nevertheless, the cause and effects for

the basic claims of satellite-to-satellite differences are being reconsidered.

In chapter 6, the Nakar and Piran test is revisited explicitly in regards to the Amati

relation. In order to satisfactorily address these many issues, data sets from various different

GRB detectors are performed independently. That is, the Nakar and Piran test is performed

on data sets from each of the BATSE,Swift , Konus , Suzaku , HETE -2 and Beppo-Sax GRB

detectors individually. The first major finding is that all data sets, with the exception of the

HETE -2 data, have an intolerably high violator rate, and therefore have failed the Nakar and

Piran test. The larger result, however, is the discovery that every detector has a different

distribution of bursts when placed on a plot of Sbolo vs Epeak (a graphical representation

of the Nakar and Piran test). This requires that selection effects are dominating these

distributions. A combination of detector and burst population effects are found to be the

cause of this phenomena. For a sufficient set of these selection effects, only bursts which

obey the Amati relation are visible. The conclusion is therefore, that the Amati relation

is merely the result of selection effects within the burst population and the detector. In a

sense, Butler et al (2007) was correct - there is a systematic selection effect in the Amati

relation, but for not for the reasons originally thought. As such, the Amati relation, like the

Firmani relation, should not be used for cosmological purposes. The failure of the Amati

relation is in no way prejudicial against the other luminosity relations.

2.5 Using Individual Pulse Properties

Strong cases haves been made that some of the luminosity relations are really based on

the individual pulse properties (Hakkila et al. 2008; Ghirlanda et al. 2010). This would not
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apply to either the Amati or Ghirlanda relation as they involve the fluence and are based on

the overall burst energetics. The groups have applied the burst properties of several BATSE

bursts (Hakkila 2008; Hakkila & Nemiroff 2009; Hakkila & Preece 2011), some HETE -2

bursts (e.g. Arimoto et al. 2010), and Fermi bursts (e.g. Ghirlanda et al. 2010). Within

individual bursts, the groups have demonstrated that the shorter the lags and durations, the

lower the peak flux of an individual pulse. In addition, the pulses from the BATSE bursts

have shown a fairly tight relation using the lag times and durations of the pulses. This makes

good physical sense because the explanations for the relations using luminosity (lag time,

minimum rise time, and Epeak ) all relate to the conditions at the peak of individual pulses

(as shown in Schaefer 2003b; Schaefer 2004). That is, a different pulse will show different

peak luminosities and thus have different indicators. Therefore, it seems that the relevant

unit is actually the pulses of a burst, and not the whole burst itself.

The formalism in finding and fitting the individual pulses in a burst has been laid out

in Hakkila et al. (2008). This procedure involves a formula with two shape parameters,

τ1 and τ2, which are similar to the rise and decay time of the pulse. Norris et al. (1996)

and Hakkila & Nemiroff (2009) have applied this fitting routine and have found that it has

been very successful in matching observed pulse shapes. Hakkila et al. (2008) provides a

routine that fits light curves, starting with a Bayesian Blocks method (Scargle 1998) and

uses chi-square tests to ensure the pulses extracted are of sufficient significance. Even with

this routine, resolving individual pulses is not an easy task, often times pulses are confused

together (Hakkila 2011).

The developed formalism provides several advantages for pulling out the critical values.

The primary advantage is that the peak flux obtained directly from a binned light curve

becomes more accurate with a fitted functional form. Secondly, the lag times that would be
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extracted via individual pulses are more ‘pure’ than a lag time derived from the whole burst

(which is convoluting a number of pulses). Consequently, the definition of rise time should

be reconsidered, possibly to be replaced with the τ1 parameter, which is much less affected

by Poisson noise (as the whole burst would be). Finally, a redundancy can be developed in

getting multiple measures of key parameters from a burst. In using these multiple values

from a single burst, the average distance from these parameters can be used to improve the

accuracy of the relation.

The groups testing this fitting procedure have yet to apply it toSwift bursts. In addition,

the groups have not done any work in regards to luminosity relations, they have been mostly

concerned with enhancing and advertising their pulse measurement models. AsSwift has the

largest number of GRBs with measured redshifts, this opens the door to model luminosity

relations (particularly the τrise−L and τlag−L relations) based on pulses instead of the whole

burst. In addition, improved peak fluxes can also be obtained (which can also improve

measurements of luminosities).

While the luminosity indicators are always measured in the Earth’s rest frame, the physics

of the luminosity relations work in the burst rest frame. Therefore, one needs to properly ac-

count for any relativistic effects that have changed the data; that is, the observed data needs

to be shifted back into the burst rest frame. Energy values (like Epeak ) will be redshifted

as they travel across space by a factor of (1+z )−1, and the two timescale related indicators

(τlag and τRT) will be time dilated by a factor of (1+z ) . The one luminosity indicator that

is not entirely straightforward is that of the variability. However, the variability seems to

act similarly to an inverse timescale, so one can assume that it undergoes a shift of factor

(1+z )−1. These factors need to be simply reversed in order to shift the observed quantities

to what they would be in the burst frame.
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A more insidious complication arises in how the luminosity indicators change with their

rest frame energy band. The problem is essentially that detectors for GRBs are in a specific

band; e.g., BATSE measures the 50-300 keV range. This energy range that the satellite is

sensitive to is closely constant for a given detector and in the Earth’s frame of reference. This

energy band corresponds to a very different energy band for the burst’s frame, depending

on the distance from us. In addition, the luminosity indicators vary widely depending on

the rest energy frame. Specifically, τlag and τrise increase while Npeak and V decrease if the

energy band is lowered. A similar issue is that data obtained here on Earth is binned by a

constant time interval (on the order of fractions of a second), and of course this binning is

different due to time dilation for any given pair of bursts. Therefore, certain features could

become hidden in the data (or even exacerbated) depending on the light curve.

To be clear, consider two bursts that are identical: one at z = 4 (Burst A), the other

‘nearby’ (Burst B). If Burst B is seen to have Epeak = 500 keV, then Burst A will have

Epeak = 100 keV. If Burst A is shown to have τlag = 1 second between the 25- 50 and 100-300

keV bands, then Burst B measured in its rest frame (and corresponding energy bands 125-

250 keV and 500-1500 keV) will already have a shorter lag time due to the higher energy

bands, with perhaps a 0.5 second lag time. After time dilation, Burst B would be seen to

have τlag = 2.5 seconds. In this case of lag times, one could easily make the mistake of

only shifting for the time dilation, and would wrongly take the lag time to be 0.5 seconds

(instead of it being 1 s as exemplified in Burst A). In doing this mistake, the worker would

then assign a luminosity to Burst B twice that what it really is, which results in giving it

a luminosity distance 1.4X too far. It is clear that a correction is required to allow for this

relation to be used in a meaningful way.
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Attempts have been made to fix these issues by crudely adding a correction factor of some

power of (1+z ) . Fenimore & Ramirez-Ruiz (2000) multiplies the variability by (1+z ) 0.43,

Firmani et al. (2006) corrected time scales by a factor of (1+z ) 0.4, Norris corrected the lag

time by (1+z ) 0.33 (Gehrels et al. 2006). All of these attempts were done for reasonable

cause, but have had limited success. A large problem with this kind of correction is that it

treats all burst with a factor that is more suited for the general trend of bursts. Individual

bursts vary too greatly for such a simple catch-all figure.

There is a much better way to correct these problems. The GRB light curves will be

extracted with a constant energy band and time binning in the rest frame of the burst. This

solution completely solves the problems of burst individuality. In addition, it makes for a

simple means of answering the question of what the luminosity indicators are in the burst

frame.

Light curves can be easily extracted with a time bin of 0.064 s and energy range of 100-

400 keV in the burst rest frame. Specifically: a burst at z = 0.5 will have data that is binned

in 0.096 s time intervals from 67-267 keV; a burst at z = 3, the binning will be 0.256 s and

in the energy range of 25-100 keV; at z = 6, the time binning will be 0.448s and over the

energy range 14-57 keV. This is easily done with modern satellites like Swift and Fermi for

which data can be extracted for any bin size and energy band. Software is already readily

available to perform these tasks with these missions. It will be considerably harder to do this

for older bursts, for example those from BATSE will only provide energy bands which are

close but not completely what is needed. This problem becomes even worse for the HETE -2

and Konus for which only specific energy band data are available. For these two cases, the

closest energy bands will have to be combined to get a sort of best-estimate. As Swift has a

combination of ease and quantity of bursts, it is the obvious sample to test these ideas on.



36

The fluence and peak flux from a burst should also be handled in a similar manner. The

standard methodology at this time is to use the fitted spectrum for the burst (generally a

smoothly broken power law; Band et al. 1993) to extrapolate to a very broad energy range,

usually 1-10,000 keV in the burst rest frame. This transforms the brightness of a burst into

a bolometric quantity, one free of issues that might arise due to the redshift of the burst.

This solution is solid as, except for the most extremely distant bursts, most of the flux is

not contained in the extrapolated regions. Nevertheless, a better solution might exist, such

as always putting the brightnesses into some constant band like 100-1000 keV in the burst

frame. To test this idea, a new set of burst brightnesses need to be calculated. From there,

the scatter in the best fit of the luminosity relations can be derived and compared with the

scatter using just the bolometric brightnesses.

In chapter 7, the promise of using individual pulses as luminosity indicators is explored.

First, the Hakkila model is tested on a select sample of bursts with well separated pulses.

This model is found to be volatile, with little to no robustness. In addition, the cross

correlations between the parameters are far too great to make any accurate statements as

to the best fit of the pulses. In order to reduce these issues, a simpler model is developed, a

two sided gaussian. While the uncertainties are lower with this simpler model, no confident

statements can be made about the burst parameters. As there is no reasonable way of

confidently measuring the lag-time or rise-time in the Earth’s frame, there is no hope of doing

it in the burst’s frame (where there are less photons), so the conclusion is that theSwift data

can not use the luminosity relations on a pulse-by-pulse basis. The only parameter that is

stable through fitting procedures is the amplitude of a pulse, for which the peak brightness

could be extracted in the Epeak−Liso relation. Unfortunately, the Epeak values extracted from

XSPEC show much of the same problems highlighted in Collazzi et al. (2011) in regards to
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choices made by analysts. As such, the conclusion is that none of the luminosity relations

can be used readily used on a pulse-by-pulse basis for the Swift data.

2.6 Conclusions and the Future

Finally, in chapter 8, there is a final discussion about the work presented in this thesis.

The overall impact of the work is explored and the future of GRB luminosity relations is

discussed. In particular, the possibility of new GRB luminosity relations , and possibly using

existing ideas in different ways.



3. Generalized Tests for the Luminosity
Relations1

3.1 Introduction

As of 2006, there were eight GRB luminosity relations, where a measured photometric

or spectroscopic property is correlated with the burst’s luminosity. Since then, the Firmani

relation, Liso−Epeak T0.45 , has been shown to be not good for cosmology (see Chapter 4).

As was discussed in Chapter 1.4, many reasonable models have been put forth to explain

the physics behind these relations, with some of them even been predicted by theory.

Nakar & Piran (2005) proposed a new test of one of these luminosity relations - the Amati

relation, Epeak−Eγ,iso , (Amati et al. 2002; 2006). The relation connects the GRB isotropic

γ-ray energy, Eγ,iso , and the observed photon energy of the peak in the νFν spectrum, Epeak .

Their idea was to set up an equality between the energies based on the observed fluence as

well as from the luminosity relation, move all the redshift dependent terms to one side and

the observables to the other side of the equation. From here, a maximum can be found on the

redshift side and compared with the quantity calculated from the observables for many GRBs.

The Nakar & Piran test is then to see whether the derived quantities from the observables

exceeds this maximum possible value (to within the error bars). When applied to a sample

of BATSE bursts, they found that ∼ 48% violated this simple requirement. Subsequently,

Band & Preece (2005) found that 88% of their sample of BATSE bursts violated the Nakar

& Piran test. This would be a serious blow against the validity of one of the luminosity

1This chapter is largely taken from an article that appeared in The Astrophysical Journal Letters, and is
reproduced with permission of the AAS (see Appendix A for details).
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relations. Amati (2006) has strongly defended this particular luminosity relation, mainly on

the grounds that the luminosity relation is highly significant, broadly applicable, and fits a

well-defined calibration. Ghirlanda et al. (2005) have explained the discrepancy as simply

that Nakar & Piran used an old version of the Amati relation (based on just nine bursts)

and did not allow for the real uncertainties.

Li (2007) has applied a similar analysis to the Epeak−Eγ,iso Amati relation to demonstrate

that the returned redshift for any burst is actually ambiguous with two possible values. Li

finds the maximum to occur at a redshift of 3.8, such that, for example, a z ∼ 2.8 burst

has identical properties to a z ∼ 5 burst. In addition, around the redshift of the maximum,

the derived error bar should be very large. For realistic error bars, Li finds that the Amati

relation will return redshifts with very large uncertainties for bursts with z ∼> 1.4.

With this, there is what can be perceived as a significant challenge to the reliability,

uniqueness, and utility of one of the eight luminosity relations. The obvious task is to

generalize this test to all eight of the luminosity relations. Indeed, Band & Preece have

already applied the Nakar & Piran test to the Epeak−Eγ relation of Ghirlanda et al. (2004),

and found only a small fraction of violators (1.6%). In this chapter, generalized forms of

the Nakar & Piran and Li tests are applied to all eight GRB luminosity relations. The

importance of these tests is that they bear on the validity and accuracy of all the relations,

and the utility of these relations is a prerequisite for getting cosmology from GRBs.

3.2 The Generalized Test

The first step to take is to generalize the Nakar and Piran (2005) test in a way that all

eight of the luminosity relations can be tested.
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The luminosity relations connect a measure of the burst’s luminosity (notated as L) with

a luminosity indicator (notated as I). The luminosity, L, can be the isotropic luminosity,

Liso , the isotropic energy emitted in gamma rays, Eγ,iso , or the Eγ,iso value corrected by

the beaming factor (Fbeaming) from the jet, Eγ. The luminosity indicator, I, can be the

spectral lag τlag (Norris et al. 2000), the variability V (Fenimore & Ramires-Ruiz 2000),

the Epeak from the spectrum, the minimum rise time in the light curve τRT , or the number

of peaks in the light curve Npeak . In addition, Firmani et al. (2006) take a particular

combination involving Epeak and T0.45 (the duration over which the brightest portion of the

light curve emits 45% of the fluence) to be a luminosity indicator, as given by E1.62
peakT−0.49

0.45 .

All of these indicators have to be corrected from their observed values to the values in the

GRB rest frame by multiplication by (1+z ) raised to a power Q. The relations are all simple

power laws with indices m and constants A. The luminosity relations can be expressed as

L = A[I(1 + z)Q]m. (3.1)

The eight relations have their particular values for L, A, I, Q, and m given in Table 3.1.

The L for each burst of known redshift can be determined from the observed brightness,

B. The B value will either be the bolometric peak flux, Pbolo, the bolometric fluence, Sbolo ,

or the beaming corrected fluence, SboloFbeaming, depending on the value for L. The inverse

square law of light can then be expressed as

L = 4π d2
LB(1 + z)−B. (3.2)

The luminosity distance, dL , is related to the redshift, z , through the usual integral,

dL = c H−1
0

∫ z

0
dz
′ [

(1 + z)3 ΩM + ΩΛ

]−1/2
. (3.3)

Throughout this chapter, a flat universe with ΩM = 0.27 and an unchanging dark energy

equation of state of w = −1 is assumed. When dealing with fluences and burst energies, a
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factor of (1+z )−1 is need to correct for time dilation. The corresponding values for B and

B are presented in Table 3.1 for each luminosity relation.

From here, equation 3.1 and 3.2 are used to eliminate L. With this, all the redshift-

dependent terms onto the left side of the equation and all the observable quantities on the

right side of the equation. Finally, both sides are multiplied by (H0/c)
2 so as to make both

sides dimensionless and of reasonable magnitude. Thus,

( H0/c)
2 d2

L(1 + z)−Qm−B = [( H 0/c)
2/4π](A Im/B). (3.4)

This chapter makes frequent reference to both the left and right sides of this equation

separately, so the two sides will be notated here separately. This will be

F(I,B) = [(H0/c)
2/4π](A Im/B), (3.5)

F(z) = (H0/c)
2d2
L(1 + z)−Qm−B. (3.6)

With this, it is expected that F(I,B) = F(z).

It is convenient to define a maximum value for F(z), which will be identified as Fmax.

For two of the relations, the F(z) comes to a simple maximum at some moderate redshift

value, z peak (see Table 3.1). For the other relations, the F(z) keeps rising as the redshift

increases out past where any GRB might lie. In the spirit of this test, F(z) values for all

observed bursts must be less that the value at the maximum GRB redshift. From Bromm

& Loeb (2002), it is known that GRBs cannot be made at z > 20 or so. Thus, for the six

relations with no z peak , Fmax is taken to be the value of F(z = 20). The values of Fmax

are given in Table 3.1. So in the most general terms, the Nakar & Piran test is whether

F(I,B)/Fmax > 1 for observed GRBs, while the Li test is whether z peak∼< 10.
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For this generalized Nakar & Piran test, a set of 69 GRBs with spectroscopic redshifts is

used for which all the required data have already been extracted and reduced for purposes

of making a GRB Hubble diagram. Complete details on the selection of these bursts, their

redshifts, and all their observed properties are presented in Schaefer (2007). These bursts

were the ones used to derive the best fit luminosity relations (Schaefer 2007) as expressed

by equation 3.2 and the parameters in Table 3.1. The scatter of the observed L about

the value derived from the observed I varies widely amongst the relations, with the scatter

generally being larger than the error bars from measurement errors alone. To account for

this systematic error, the values in Table 3.1 are added in quadrature. The result is that

the combined redshifts (from all available luminosity indicators) have a one-sigma scatter of

26% when compared to the spectroscopic redshifts (see Figure 9 of Schaefer 2007). It is this

analysis which validates the use of the luminosity relations to get burst redshifts which are

reliable to within the quoted error bars (typically 26%).

3.3 Test for Ambiguity in Deriving Redshifts

The utility of the luminosity relations is that one can go from observed quantities to the

distance. In more detail, the luminosity relations can be calibrated with GRBs of known

redshift so as to derive A and m, measure I for each burst, calculate F(I,B), set F(z) as

being equal to F(I,B), then determine the luminosity distance and redshift that produces

the F(z). The problem that Li (2007) pointed out is that this procedure is ambiguous for the

Epeak−Eγ,iso Amati relation, because there are always two distances/redshifts that produce

the observed value F(I,B). That is, there will always be a redshift below z peak and a redshift

above z peak for which F(I,B) = F(z). To take a specific example, for the Epeak−Eγ,iso Amati

relation, a z = 1.5 burst could be confused with a z = 10.6 burst, and a z = 1 burst could
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be confused for a z = 18.5 burst; at least in principle. More importantly, Li points out that

the error bars on the derived redshift will be quite large when z ∼ z peak , with the reason

being that F(z) changes little with redshift. Again with the Epeak−Eγ,iso Amati relation,

F(z) is within 10% of Fmax for 2.1 < z < 7.0. Given a one-sigma uncertainty in logL of

∼ 0.15 (Amati 2006), any GRB with z > 1.4 will be within one-sigma of z peak . As such,

the test of Li puts severe limits on the utility of one of the luminosity relations for purposes

of deriving redshifts.

Amati (2006) defends his relation by pointing to the tight calibration curves over a large

dynamic range of luminosities. This is indeed a strong defense if the question is about the

existence and the fit parameters (i.e., A and m) for the Eγ,iso − Epeak relation. This is

because bursts with known redshifts will have a unique and well determined value for F(z).

But this does not work in the other direction, as a known value of F(z) (from the observed

F(I,B)) does not produce a unique or necessarily well-determined value for the redshift. So

both sides appeared to be right; the Epeak−Eγ,iso relation appeared to exist (see Chapter 6),

while the relation fails in practice for determining the redshift if z ∼> 0.9.

The test of Li shall now be expanded to all eight luminosity relations. This can be done

by calculating the values of F(z)/Fmax from 0 < z < 20, as plotted in Figure 3.1. The curve

that rises the fastest is for the Epeak−Eγ,iso Amati relation, and it is immediately clear why

it runs trouble with the test of Li. The reason is that z peak is in the range of redshift where

many GRBs are seen, so that a horizontal line corresponding to F(I,B)/Fmax intersects the

curve in two places. Also, the nearly flat part of the curve (around z peak implies that a given

measured value of F(I,B)/Fmax (with the usual uncertainties) will fit the curve over a large

range of redshifts. With this, it is clear that a luminosity relation will have trouble with the

test of Li only if it has z peak∼< 10 or if there is a near-flat portion.
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Figure 3.1 F(z)/Fmax for the eight luminosity relations. The eight curves, from left to
right where they intersect the horizontal line at 0.4 are for the Epeak−Eγ,iso , Epeak−Eγ ,
Liso−Epeak T0.45 , V−L , Epeak−Liso , τrise−L , τlag−L , and Npeak−L relations. The last
six of these relations all meet at 1.0 for z = 20 as the Fmax value was taken at z = 20 for
these relations with z peak� 20. When dealing with GRBs of unknown redshift, the value of
F(I,B)/Fmax is derived from the data, the F(z)/Fmax is set equal to this, and then the plot
is used to determine the redshift of the GRB. Li (2007) realized that the Epeak−Eγ,iso relation
is ambiguous (in that two redshifts will both fit the observations) and that the uncertainty in
the derived redshift will be large for bursts near the peak in the curve. With this generalized
test, the Epeak−Eγ relation is shown to have the same problem, but at higher redshifts.
Given the typical uncertainties, this means that the Epeak−Eγ,iso and Epeak−Eγ relations
cannot be used with any accuracy to determine the redshifts of GRBs with z ∼> 1.4 and
z ∼> 3.4 respectively. These problems arise due to the F(z)/Fmax function having a maximum
(at z peak ) at redshifts below ∼ 10. However, all other luminosity relations easily pass the
test of Li. Also, when the GRB redshift is known from optical spectroscopy, the F(z)/Fmax

value will be uniquely and accurately determined, so all eight luminosity relations are fine
for questions like the calibration of the relations and the construction of the GRB Hubble
diagram.
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Six of the relations have no problem with the test of Li, as they are monotonically

rising fast out to high redshifts. Other than the Epeak−Eγ,iso relation, only one relation

has apparent problems, the Epeak−Eγ relation of Ghirlanda et al. (2004). In this case,

z peak = 7.4. So, for example, one might be in danger of confusing a z = 3.2 burst for a

z = 20 burst. More importantly, high redshift bursts must have a large uncertainty in any

derived redshift. For a one-sigma scatter in logL of ∼ 0.06 (Ghirlanda et al. 2004), all

bursts with redshift z ∼> 3.4 will be within one-sigma of each other.

In general, the ambiguities in derived redshifts for the Epeak−Eγ,iso and Epeak−Eγ relations

can always be resolved. For example, with the Epeak−Eγ relation, the high redshift branch

will return z values that can be rejected due to afterglow being seen at optical wavelengths

(as required to observe a jet break) which would be shorter than the Lyman limit. Also,

the lower possible redshift will always be much more likely than the higher possible redshift

simply due to the rarity of very high luminosity events in the GRB luminosity function. But

the general solution is to have multiple luminosity indicators, for which the various indicators

will overlap for only one solution. In all, even though there is formally an ambiguity for two

of the relations, the ambiguities will always be resolved in practice.

One of the uses of the luminosity indicators is in the construction of a GRB Hubble

diagram from bursts with known redshifts. The problems noted by Li are not relevant in

this case, as the known redshifts allow us to derive a unique and well-determined value of

F(z) (for the given cosmology).

In summary: (a) Li’s test is easily passed for six of the relations for all questions, (b)

the redshift ambiguity will always be resolved in practice for the other two relations, (c) the

Epeak−Eγ,iso and Epeak−Eγ relations cannot return accurate derived redshifts for z ∼> 1.4
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and z ∼> 3.4 respectively, (d) all eight luminosity relations have no problems for questions

(such as the GRB Hubble diagram) involving bursts of known redshifts.

3.4 Test for Violators

Nakar & Piran (2005) and Band & Preece (2005) report that a large fraction of GRBs

violate the idealized requirement that F(I,B)/Fmax ≤ 1 for the Epeak−Eγ,iso relation.

Ghirlanda et al. (2005) argue that these violations arise only due to the use of an old

calibration of the Amati relation and due to unrealistically small adopted error bars. For

whatever resolution, this test should be extended to all eight luminosity relations.

For the 69 GRBs, F(I,B)/Fmax is calculated for each burst. The number of bursts that

have this value above unity, and thus are violators of the Nakar and Piran test, are tallied.

For each luminosity relation, the fraction of violators are given in the last column of Table

3.1. Three of the relations have zero violators. Three other relations each have only two

bursts that are just barely in violation, where the violators are all within 0.6-sigma of the

expected value of F(z)/Fmax. Thus, these six relations pass the Nakar & Piran test. But two

relations (the Epeak−Eγ,iso and Epeak−Eγ relations) have substantial fractions of violators,

and it is no coincidence that these are the same relations that have z peak∼< 10.

For the two relations with the most violators, a plot is provided of F(I,B)/Fmax and the

theoretical F(z)/Fmax as a function of redshift (see Figure 3.2). If the luminosity indicators

were perfect, then all the observed points would fall along the smooth curve. The plotted

error bars as well as the apparent scatter about the model curve illustrate the typical scatter

that arises in each relation. Violators of the Nakar & Piran test are those GRBs that are

higher than zero on this log-scale.
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Figure 3.2 F/Fmax for two relations. The observed F(I,B)/Fmax values for each burst are
over-plotted on the theoretical F(z)/Fmax curve for the Epeak−Eγ,iso Amati relation (top
panel) and the Epeak−Eγ relation of Ghirlanda et al. (bottom panel). Bursts which violate
the Nakar & Piran test are those with log[F(I,B)/Fmax] > 0 on this plot. For these two
relations only, the theoretical curve is close to the limit over much of the redshift range of
observed bursts. With the normal scatter apparent in these plots, roughly half the GRBs
are expected to be violators when the curve is near the limit. These plots indicate that the
violators are caused by normal scatter about the relation.
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By using a sample of bursts with spectroscopic redshifts, it is easier to see what is going

on. In particular, most of the GRBs have redshifts where log[F(z)/Fmax] ≈ 0, and so the

normal scatter in the relation naturally creates many violators. At z peak , half of the bursts

are expected to be violators. And for redshifts of z > 1.4, one has F(z)/Fmax close to unity,

so somewhat less than 50% of the bursts should be violators. Figure 3.2 shows that the

violators are simply the upper tail of a normal distribution, and hence do not significantly

violate the Epeak−Eγ,iso relation.

For the Epeak−Eγ relation of Ghirlanda et al. (2004), Figure 3.2 shows a similar situation

with only five violators, all with < 1 − σ deviations. The curve is near zero for the higher

redshifts, the violators are all at high redshift, and the scatter about the curve is normally

distributed. Again, the existence of violators appears to be a simple consequence of the

expected scatter from both systematic and observational errors.

In summary of the generalized Nakar & Piran test, all eight luminosity relations are found

to have passed the test. In particular, while some bursts have F(I,B)/Fmax > 1, this is an

expected consequence of ordinary scatter about the best fit relation.



4. Does the Addition of a Duration Improve
the Epeak−Liso Relation for Gamma-Ray

Bursts? - An Examination of the ‘Firmani
Relation’1

4.1 Introduction

Following the generalized tests of the GRB luminosity relations (Chapter 3), eight lumi-

nosity relations were commonly accepted. One of these eight relations is the Liso−Epeak T0.45

relation proposed by Firmani et al. (2006, hereafter named the Firmani relation). Here,

Epeak describes the peak of the E×F(E) curve (proportional to νFν ), which is the photon

energy of the peak spectral flux; Liso is the isotropic luminosity of the burst measured bolo-

metrically (1-10,000 kev in the burst rest frame). T0.45 is the Reichart definition of a GRB

time duration (Reichart et al. 2001) where the duration is the total time interval of the

brightest bins in the light curve that contains 45% of the burst fluence. The Firmani rela-

tion was presented as an improvement over the Epeak−Liso relation. Nineteen GRBs were

used to demonstrate a tight correlation with a reduced chi-square of 0.7 over 16 degrees of

freedom; the resulting luminosity relation being Liso ∝ E1.62
peak T−0.49

0.45 . The reported scatter

in the Firmani relation is substantially smaller than those of most other GRB luminosity

relations. This result offers the hope of substantial improvement in the accuracy of GRBs

for cosmological distance measures.

1This chapter is largely taken from an article that appeared in The Astrophysical Journal, and is repro-
duced with permission of the AAS(see Appendix A for details).
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There is no physical reason to expect that the addition of a duration should make for

a tighter relation. Nonetheless, it is reasonable to investigate whether a tighter luminosity

relation can be obtained from duration definitions other than T0.45 , as T0.45 may not be

the optimal duration to use. There is no physical reason to expect that any one definition

of duration is best, while the particular choice of the Reichart definition was used only for

historical reasons no longer of any relevance. For example, use the Reichart definition, but

measure the duration over a different percentage of the burst fluence. So perhaps the use of

a duration based on 30% or 60% (T0.30 or T0.60) might be better. Alternative definitions of

duration can be considered instead of the Reichart formulation. For example, the duration

can be defined as equalling the total fluence divided by the peak flux to get a sort of equivalent

width; alternatively, use the familiar T90 or T50 durations. The T 90 and T50 duration

definitions are a practical means to identify effective start and stop times, but with the

disadvantage of counting perhaps long intervals in the middle with little or no flux as part

of the duration. They are defined as the central 90% and 50% of the burst light curve. A

wide variety of alternative durations can be defined, and there is no way to know which one

is optimal.

This chapter tests the Firmani relation for its potential as a GRB luminosity relation.

First, the Firmani relation is reproduced for the original data of Firmani et al. (2006) as

a test that identical fitting procedures are being used. Then the Firmani relation is tested

with a set of independent data for the same 19 bursts. A further test of the Firmani relation

is made with a much larger sample of 60 bursts. In section 4.3, many duration definitions are

tested in a Firmani-like relation to see which produces the ‘tightest’ correlation. Section 4.4

contains a simple and forced derivation of the Firmani relation from two other luminosity

relations.
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4.2 Testing the Firmani Relation

First, start with the model as stated in Firmani et al. (2006):

Liso = 1052.11±0.03
(

Epeak

102.37 keV

)1.62±0.08 ( T0.45

100.46 s

)−0.49±0.07 erg

s
. (4.1)

This equation is then generalized, and put into logarithmic form:

log10( Liso) = γ + ξ log10

(
Epeak

102.37 keV

)
+ η log10

(
T0.45

100.46 s

)
. (4.2)

Here γ, ξ, and η are the fit parameters derived from fitting a set of GRB data, which can

then predict model values of log10( Liso). For the one-sigma uncertainty used in evaluating

the chi-square, an elliptical error box was used to account for the errors in the measured

quantities on both axes. Specifically,

σ2
combined = σ2

log10( Liso) +

(
ξ 0.434σEpeak

Epeak

)2

+
(
η 0.434σT0.45

T0.45

)2

. (4.3)

This formulation of the combined error box comes from simple error propagation as shown

below.

σ2
combined = σ2

log10( Liso) + σ2
model

σ2
combined = σ2

log10( Liso) + —σ2
γ + σ2

ξ∗log10

(
Epeak

102.37 keV

) + σ2

η∗log10(
T0.45

100.46 s
)

σ2
combined = σ2

log10( Liso) + σ2
ξ∗log10( Epeak)

−——————–σ2
ξ∗log10(102.37 keV) + σ2

η∗log10( T0.45) −—————–σ2
η∗log10(100.46 s)

σ2
combined = σ2

log10( Liso) +

(
ξ 0.434σEpeak

Epeak

)2

+
(
η 0.434σT0.45

T0.45

)2

With the model values for the luminosity and its uncertainty as well as the observed lu-

minosity (all in logarithmic space), the reduced-chi-square for the model fit can now be

calculated.
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To perform this test on the 19 bursts, the data as reported in Firmani et al. (2006) was

used: Their values for T0.45 were the observed durations, and thus needed to be corrected for

time dilation into the burst frame via dividing by (1+z ) . Their values of Epeak were already

in the burst frame, and did not need to be corrected. Liso was obtained by taking their value

of Liso / Eiso and multiplying it by their value Eiso. Firmani’s reported redshift values were

also used. This fit was done manually in Microsoft Excel.

The best fit had a χr
2 = 0.7 with an root-mean-square (RMS) scatter of the observed

values of log 10( Liso) about the best fit model equal to 0.14. With 19 bursts and 3 fit

parameters, there are 16 degrees of freedom. This is in agreement with the reported value of

χ2
r = 0.7 reported by Firmani et. al. (2006). The best fit parameters and their uncertainties

as reported by Firmani et al. (2006) and as given in Equation 4.1 are also confirmed. Thus,

the result has been reproduced, and and these procedures will be used for all subsequent fits.

Given the nature of observational data, there are inevitably differences in the various

published values of all these burst properties. For instance, Firmani et al. (2006) report

Epeak = 685 ± 133 keV for GRB971214 , while Jimenez et al. (2001) reports a value of 840

± 88 keV. For the same burst, the peak flux is slightly different for different detectors, so

Fimani et al. (2006) report log 10( Liso) equals 52.86 ± 0.08, while Schaefer (2007) derives

a value of 52.92 ± 0.01. The Firmani relation should be robust on the use of independent

measures from different published sources, so the same result should be obtained with these

different values. For this test, independent measures for the luminosity, peak energy, and

T0.45 from various published reports were collected. There is no reason to think that either

set of values for these 19 GRBs is better or worse in accuracy. The independent quantities

for these burst qualities are in Table 4.1. Column 1 is the GRB designation; column 2 is the

redshift; column 3 is the log of the isotropic bolometric luminosity; column 4 is the photon
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Figure 4.1 The Firmani relation with Firmani’s data. Here all burst properties as reported
by Firmani et al., (2006) have been used. Because the scatter was so small, this result is
potentially important as it would offer a means to substantially improve the calibration of
distances to many GRBs. Here, the y-axis is the logarithm of the luminosity which is in ergs
per second. The subtraction of 50 is for easier comparison to the graph as shown in Firmani
et al., (2006). This y-axis convention is used on all subsequent plots for ease of comparing
the results.
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energy of the observed peak spectral energy (which needed to be blueshifted into the bursts’

frame); and column 5 is the Reichart duration T0.45 . The values and their references for

the luminosities, peak energies, and redshifts can be found in Schaefer (2007). Durations for

T0.45 were measured from light curves directly using Excel.

The formal measurement error bars quoted for the T0.45 values in Table 4.1 are fairly

small, but the real total uncertainties are substantially larger. This is evident because

various groups have reported measures of T0.45 for many of the same GRBs and the scatter

is much larger than anyone’s quoted error bars. In particular, independent measures have

been collected as reported by Guidorzi (2005), Firmani et al. (2006), Rizzuto et al. (2007),

Rossi et al. (2008), Table 4.1 of this paper, and independent calculations made by others at

LSU, with an average of five values for each of the bursts in Table 4.1. The median scatter

of these measurements is 17%. This value changes little between bursts measured with one

satellite (Swift) alone and only the results from within the LSU GRB group. It is likely

that variation arises from relatively small changes resulting from differing time bin sizes and

time intervals for the calculation. (Similar scatter is found for other duration measures,

see for example Koshut et al. 1996 and Norris et al. 1995.) This additional systematic

error contributes a small fraction of the extra scatter observed in the Firmani relation. The

reason for this small contribution is that the extra systematic error on T0.45 is ∼12% and

the values are included nearly as a square root (see Eq. 4.1), so the extra contribution to

σcombined is 0.026 (see Eq. 4.3). All this is to say that the systematic errors in measuring

T0.45 are much larger than has ever been realized, yet even these additional uncertainties are

negligibly small.
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Table 4.1. Burst Properties Used Throughout This Chapter

BURST za Log(Liso)a Epeak
af T0.45

b

(erg/s) (keV) (s)
(1) (2) (3) (4) (5)

970228c 0.70 52.20 ± 0.03 115+38
−38 2.37 ± 0.44

970508 0.84 52.04 ± 0.04 389
+[40]

−[40]
4.03 ± 0.24

970828c 0.96 52.68 ± 0.05 298
+[30]

−[30]
10.50 ± 0.45

971214c 3.42 52.92 ± 0.01 190
+[20]

−[20]
6.72 ± 0.09

980703c 0.97 51.78 ± 0.01 254
+[25]

−[25]
18.00 ± 1.80e

990123c 1.61 53.36 ± 0.02 604
+[60]

−[60]
16.58 ± 0.05

990506c 1.31 53.05 ± 0.01 283
+[30]

−[30]
12.67 ± 0.63d

990510c 1.62 52.76 ± 0.02 126
+[10]

−[10]
5.06 ± 0.25d

990705c 0.84 52.36 ± 0.02 189+15
−15 9.54 ± 0.27

991208 0.71 52.67 ± 0.04 190
+[20]

−[20]
4.80 ± 0.24d

991216c 1.02 53.36 ± 0.01 318
+[30]

−[30]
3.58 ± 0.05

000131c 4.5 53.20 ± 0.05 163+13
−13 4.54 ± 0.09

000210 0.85 52.85 ± 0.04 408+14
−14 1.73 ± 0.06

000911c 1.06 53.05 ± 0.04 986
+[100]

−[100]
6.46 ± 0.32d

000926 2.07 52.97 ± 0.04 100+7
−7 4.67 ± 0.45

010222 1.48 53.51 ± 0.01 309+12
−12 6.46 ± 0.14

010921 0.45 51.14 ± 0.04 89+21
−13.8 5.74 ± 0.58

020124c 3.2 52.76 ± 0.07 87+18
−12 12.14 ± 0.58

020405 0.7 52.20 ± 0.02 364+90
−90 10.18 ± 0.38

020813c 1.25 52.56 ± 0.03 142+14
−13 17.36 ± 0.23

021004 2.32 52.00 ± 0.10 80+53
−23 6.89 ± 0.41

021211c 1.01 52.08 ± 0.03 46+8
−6 0.66 ± 0.12

030115 2.5 52.22 ± 0.07 83+53
−22 4.26 ± 0.30

030226c 1.98 51.89 ± 0.08 97+27
−17 8.86 ± 0.87

030323 3.37 52.11 ± 0.22 44+90
−26 6.89 ± 0.70

030328c 1.52 52.38 ± 0.03 126+14
−13 20.83 ± 0.70

030329c 0.17 51.14 ± 0.02 68+2.3
−2.2 4.43 ± 0.23

030429 2.66 52.08 ± 0.12 35+12
−8 2.13 ± 0.35

030528 0.78 50.66 ± 0.09 32+4.7
−5 9.99 ± 0.93

040924c 0.86 51.97 ± 0.05 67+6
−6 0.49 ± 0.02d

041006c 0.71 51.76 ± 0.03 63+13
−13 4.26 ± 0.12

050126 1.29 51.03 ± 0.05 47+27
−8 6.59 ± 0.32

050318 1.44 51.85 ± 0.05 47+15
−8 2.88 ± 0.20

050401 2.9 53.19 ± 0.05 118+18
−18 4.61 ± 0.23

050406 2.44 51.32 ± 0.11 25+35
−13 1.92 ± 0.18

050416 0.65 50.99 ± 0.07 15+2.3
−2.7 0.58 ± 0.07

050502 3.79 52.79 ± 0.12 93+55
−35 4.60 ± 0.28

050505 4.27 52.79 ± 0.07 70+140
−24 9.02 ± 0.41

050525 0.61 51.90 ± 0.01 81+1.4
−1.4 2.24 ± 0.11d

050603 2.82 53.84 ± 0.03 344+52
−52 1.47 ± 0.12

050820 2.61 52.28 ± 0.07 246+76
−40 6.46 ± 0.41

050904 6.29 53.08 ± 0.06 436+200
−90 59.46 ± 2.97d

050908 3.35 52.02 ± 0.07 41+9
−5 4.86 ± 0.14

050922 2.2 52.88 ± 0.02 198+38
−22 1.15 ± 0.05

051022 0.8 52.53 ± 0.03 510+22
−20 10.30 ± 0.23
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Table 4.1—Continued

BURST za Log(Liso)a Epeak
af T0.45

b

(erg/s) (keV) (s)
(1) (2) (3) (4) (5)

051109 2.35 52.54 ± 0.05 161+130
−35 3.78 ± 0.35

060108 2.03 51.54 ± 0.43 65+600
−10 3.20 ± 0.14

060115 3.53 52.21 ± 0.05 62+19
−6 15.42 ± 0.54

060116 6.6 53.03 ± 0.24 139+400
−36 21.76 ± 1.15

060124 2.3 52.66 ± 0.05 237+76
−51 5.12 ± 0.18

060206 4.05 52.86 ± 0.02 75+12
−12 1.86 ± 0.09

060210 3.91 52.93 ± 0.02 149+400
−35 23.62 ± 1.00

060223 4.41 52.64 ± 0.08 71+100
−10 2.82 ± 0.18

060418 1.49 52.35 ± 0.02 230
+[20]

−[20]
12.48 ± 0.59

060502 1.51 51.75 ± 0.19 156+400
−33 7.42 ± 0.28

060510 4.9 52.42 ± 0.07 95
+[60]

−[30]
70.21 ± 1.63

060526 3.21 52.36 ± 0.06 25
+[5]

−[5]
9.54 ± 1.03

060604 2.68 51.75 ± 0.08 40
+[5]

−[5]
9.28 ± 0.63

060605 3.8 52.25 ± 0.19 169
+[30]

−[30]
8.83 ± 0.22

060607 3.08 52.36 ± 0.13 120+190
−17 13.12 ± 0.54

aThese values were obtained from Schaefer (2007); all ap-
propriate references are located in that paper.

bThese values were calculated from light curves from
BATSE,HETE -2 ,Swift and Konus websites.

cThese bursts were used by Firmani et al. (2006) to obtain
the Firmani relation.

dIndicates where an estimate of 5% error was used.

eIndicates where an estimate of 10% error was used.

fValues in square brackets indicate an estimate based on
typical values (see Schaefer 2007).

Upon optimizing the fit with the independent values, the equation for the best fit is:

Liso = 1052.09±0.02
(

Epeak

102.37 keV

)1.90±0.05 ( T0.45

100.46 s

)−0.52±0.05 erg

s
. (4.4)

A comparison with Eq. 4.1 shows that the two best fits are similar, with the exponent for the

Epeak being moderately different. The Firmani relation for this independent data is displayed

in Figure 4.2. The obvious difference between Figures 4.1 and 4.2 is that Figure 4.2 has a

much larger scatter than in Figure 4.1. The RMS value for the independent data was 0.35,
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whereas the RMS for the data from Firmani et al. (2006) is 0.14. The reduced chi-square

for the 19 bursts about this best fit model is χ2
r = 14.50 for the independent data. This is

greatly larger than the value of χ2
r = 0.7 obtained from the data from Firmani et al. (2006).

With this large reduced chi-square, the realization is that there must be some additional

source of systematic uncertainty that is beyond that from ordinary measurement errors.

An additional figure of merit can be introduced which quantifies the scatter about the

best fit Firmani relation. This is the systematic error required to be added in quadrature to

the measurement error such that the resulting reduced chi-square equals unity. A desirable

fit with little scatter will have a small required systematic contribution to the uncertainties,

whereas a poor fit with large scatter will have a large required systematic contribution. For

this, the systematic error is assumed to be a constant, even though the reality is likely more

complex in ways that are unseen. In essence, the uncertainty in the chi-square calculation

is calculated as

σ2
total = σ2

sys + σ2
combined. (4.5)

For the case of Firmani’s 19 GRBs with his data, there is no required additional systematic

uncertainty (as indicated by the reduced chi-square being less than unity). But for the

independent data for the same bursts, a systematic error of 0.34 (in logarithmic units) is

required be added in quadrature so as to get an acceptable fit with a reduced chi-square

of unity. So in all, the quality of the Firmani relation for any data set can be quantified

by three parameters, χ2
r , RMS, and σsys. Table 4.2 summarizes these parameters for the

Firmani relations with various data sets.

The next step was to add more bursts. That is, the Firmani relation should be robust

when applied to a much larger sample of bursts. Specifically, 60 of the bursts as given in

Table 4.1 were used, with the observed burst properties as collected in Schaefer (2007) based
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Figure 4.2 The Firmani relation with independent data for the same 19 GRBs. The main
point from this figure is that the scatter is much greater than in Figure 4.1. The chart
area is matched to the previous one to make better comparison of the relations. The line
in this figure is identical with the line in Figure 4.1 (i.e., the original Firmani relation) as
another aid for comparison. The two best fits for the first two figures have slightly different
exponents (see Eqs 1 and 4) so Figure 4.2 is slightly non-optimal in representing the best fit.

Table 4.2. Expanding the Firmani Relation.

Relation γa ξa ηa χ2
r RMS σsys

19 Bursts, Firmani’s Data 52.11±0.03 1.62±0.08 -0.49±0.07 0.74 0.14 0.00
19 Bursts, Independent Data 52.09±0.02 1.90±0.05 -0.52±0.05 14.50 0.35 0.34
60 Bursts, Independent Data 52.09±0.01 1.91±0.03 -0.67±0.03 15.89 0.41 0.38

aFit parameters in accordance with equation 4.2. γ refers to a constant, ξ refers to the power on
Epeak , and η is the power on T0.45 .
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on references reported therein. Schaefer (2007) tabulates 69 bursts in all, but several had to

be omitted for various reasons. GRB 980613, GRB 990712, GRB 011211, and GRB 020903

were not used due to inability to obtain the light curves for duration calculations. GRB

050824 was omitted because the value of Epeak is only an upper limit. GRB 050319, GRB

050408, GRB 050802, and GRB 051111 were omitted due to the reported value of Epeak in

Schaefer 2007 not having been directly measured.

To remain consistent, only data reported in Schaefer (2007) for the peak energy and

redshift were used. The values for both Liso and σLiso
were derived from values for the

bolometric peak flux (Pbolo) reported by Schaefer (2007). With the standard inverse square

law, one gets

Liso = Pbolo 4π d2
L. (4.6)

The luminosity distance ( dL ) to the GRB is calculated with the measured spectroscopic

redshift, assuming the concordance cosmology (Ω M=0.27 in a flat universe with w = −1).

With this independent data set for 60 GRBs, the model Eq. 4.2 is fitted manually (again

in Excel). The equation for the best fit for this extended sample is:

Liso = 1052.09±0.01
(

E peak

102.37 keV

)1.91±0.03 ( T 0.45

100.46 s

)−0.67±0.03 erg

s
. (4.7)

This best fit model is similar to the best fits with the 19 GRB subsample (cf. Eqs 4.1 and

4.4). The resulting Firmani relation is plotted in Figure 4.3. Again, the immediate reaction

is that the figure displays a lot of scatter, and much more scatter than in either Figures 4.1

or 4.2. Quantitatively, the comparisons are presented in Table 4.2. One sees that the RMS

scatter has risen to 0.41, which is greatly larger than in the earlier figures. The reduced chi-

square of the fit is χ2
r = 15.89, which shows that there is some source of scatter that is much



61

larger than produced by the simple measurement uncertainties in the input parameters. The

systematic error for the 60 burst sample is 0.38, which is substantially larger than for either

data set in the 19 burst subsample.

The primary result from this section is that the Firmani relation is neither robust to the

use of independent data nor robust to the extension to many more bursts.

4.3 Seeking the Optimal Duration

In the previous section, the behavior of the Firmani relation for a sample of 60 GRBs

was identified. The next step would be to try the same test procedures for various different

duration definitions. For this, start with a generalized form of Eq. 4.2:

log10( Liso) = γ + ξ log10

(
Epeak

< Epeak >

)
+ η log10

(
τ

< τ >

)
. (4.8)

Here, the duration has been generically labeled as τ , and the denominators inside the log-

arithms are constants equal to the average τ and Epeak−Liso values for the data set. The

reason to have these averages in the denominator is to improve the convergences of the fits

by avoiding long thin error regions with strong correlations between fit parameters.

There are many alternative ways to measure duration. For example, start with the

Reichart definition, but use a different percentage of the total fluence to take the duration

over. In other words, expand the Reichart definition of duration out to say T0.60, or contract

it to T0.30. Again, there is no reason to believe that using the exact duration as proposed by

Reichart (T0.45 ) would be any more effective than the others. Other duration definitions are

reasonable, and indeed much easier to calculate. Or, adopt a duration defined as the time

a burst spends above x% of the peak flux of the burst (Tx). The well-known definitions of

duration, T90 and T50, should also be included. Here, the two durations are the time interval

containing the central 90 or 50 percent of the fluence of the burst, respectively. Another
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Figure 4.3 The Firmani relation when extended to 60 GRBs. The main point from this
figure is that the scatter is much greater than in Figure 4.1, and is also significantly larger
than in Figure 4.2. This figure is given with identical axes and fit line (from Eq. 4.1) as the
other figures to allow simple comparisons. This scatter is comparable to that for the older
Epeak−Liso relation, and this points to the main conclusion that the Firmani relation is not
an improvement.
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option is take the bolometric fluence Sbolo and divide it by the bolometric peak flux Pbolo to

get a sort of ‘equivalent width’.

A control timescale is also needed, so a case was adopted where all the burst durations are

set equal to a constant, which is arbitrarily taken to be τ=10 seconds. The chosen value does

not matter, as different choices will merely result in a different γ value that will not change

the quality of the fit. By taking a constant duration, the Firmani relation ( Liso−Epeak T0.45 )

is transformed into the old Epeak−Liso relation. A comparison of the scatter in the τ=10

seconds relation versus the generalized Firmani relations will tell us whether the addition of

a time scale has substantially improved the quality of the luminosity indicator.

So far, the alternative durations have all been measures of the total duration of the burst.

However, the physics of the luminosity relations points to the correlations as being with the

individual peak pulse and not the overall set of pulses that make up the entire light curve

(Schaefer 2003; 2004). So the individual pulse duration measures should be considered. A

simple and reasonable means of doing this is to take all of the overall-burst-duration measures

and divide by the number of pulses in the light curve (Npeak , as defined in Schaefer 2007).

This immediately doubles the number of trial definitions considered. The final tally is then

32 different measurements of duration, all of which are listed in Table 4.3.

For all 60 bursts in the sample, the durations according to all 32 definitions have been

measured (all in Excel). These durations have been calculated from the light curves as given

from the light curves as given on the BATSE,HETE -2 , Konus , andSwift websites as well as

the values reported in Schaefer (2007). For T90 and T50, the derived values in Excel almost

always in agreement with values as reported by the instrument teams (see Schaefer 2007 for

references).
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Table 4.3. RMS and Systematic Errors Values For Durations.

Duration Definition RMS σsys

T0.15 0.41 0.37
T 0.30 0.40 0.36

T0.45 (Firmani Relation) 0.41 0.38
T0.50 0.41 0.37
T0.60 0.41 0.37
T0.75 0.41 0.38
T15 0.46 0.39
T30 0.41 0.38
T45 0.37 0.33
T50 0.38 0.38
T60 0.41 0.36
T75 0.40 0.36

Sbolo/Pbolo 0.56 0.49
T90 0.46 0.41
T50 0.47 0.43

10 s ( Epeak−Liso ) 0.50 0.46
T0.15/Npeak 0.33 0.29
T0.30/Npeak 0.35 0.30
T0.45/Npeak 0.34 0.30
T0.50/Npeak 0.34 0.30
T0.60/Npeak 0.35 0.31
T0.75/Npeak 0.35 0.31
T15/Npeak 0.37 0.30
T30/Npeak 0.31 0.27
T45/Npeak 0.32 0.28
T50/Npeak 0.35 0.30
T60/Npeak 0.38 0.34
T75/Npeak 0.38 0.35

Sbolo/P bolo/N peak 0.41 0.33
T90/N peak 0.42 0.38
T50/N peak 0.41 0.37
10 s/N peak 0.52 0.51

Equation 4.8 is fitted for all 60 GRBs for all 32 duration measures. For each best fit

relation, the RMS and σ sys values are calculated as quantitative figures of merit. These are

summarized in Table 4.3.

The results indicate that while there are certainly differences between duration defini-

tions, the differences tend to be small. The smallest values of RMS and σsys occurs for

durations defined as T30/Npeak. The scatter in this best relation is somewhat smaller than

for the original Firmani relation (with T0.45 in the third line of Table 3). However, these
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differences do not appear to be significant. The reason being that there will be noise in the

figures of merit which will inevitably produce one duration definition as being the best even

if the values were uncorrelated or random, and the scale for such variations can be seen by

comparing the values in Table 4.2. That is, the variations of the figures of merit in Table 4.3

are consistent with the case where duration information is not correlated with Liso , and a

different set of 60 GRBs would randomly produce a different ’best’ definition. As such, the

Firmani relation should not be replaced with a luminosity relation involving T30/Npeak.

A particularly important comparison is between the Firmani relation and the Epeak−Liso

relation (represented by the line with the durations all taken to be a constant of 10 seconds).

One sees that the Epeak−Liso relation is the third poorest relation in the table. Nevertheless,

the difference is not large enough to evaluate as being significant. That is, the differences in

the figures of merit (0.09 in the RMS and 0.08 in σsys) are too small to view as necessarily

arising from a physical effect in the bursts. This is evident because the variation caused by

simple sampling effects (see the last two lines of Table 4.2) are of order 0.06 in the RMS and

0.04 in σsys. As such, the Firmani relation should be viewed as having a similar scatter as

the Epeak−Liso relation.

4.4 Discussion

In a recent independent study, Rossi et al. (2008) also examined the Firmani relation,

in particular with a comparison to the Amati relation. They use an extended sample of 40

Beppo-Sax and Swift bursts, with little overlap with the sample of 60 GRBs. Their best fit

is somewhat different from those in Eqs 4.1, 4.4, or 4.7; with their fitted Firmani relation

scaling as Liso ∝E2
peakT−1

0.45. They realized that this Firmani relation is essentially identical to

the Amati relation (Amati et al. 2002), which gives the isotropic energy emitted in gamma
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radiation over the whole burst duration as Eγ,iso ∝E2
peak. With the reasonable approxima-

tion that the total energy in the light curve equals the peak luminosity times the duration

(Eγ,iso ≈LisoT0.45), the Amati relation (Eγ,iso ∝E2
peak) is transformed into their Firmani rela-

tion (Liso ∝E2
peakT−1

0.45). While the exponents in the Firmani relation are somewhat different

from those derived in this work, the Rossi derivation demonstrates that the Firmani relation

has a physical basis that is close to that of the Amati relation. Rossi et al. (2008) further

go on to show that the scatter in their Firmani relation is comparable to that in the Amati

relation, which is another way of saying that the two relations are not independent.

In this section, the Firmani relation will be derived from both the Epeak−Liso and Amati

relations. First, start with the relation Liso ∝E1.68
peak as given in Schaefer (2007). This can

be rearranged as Liso ∝E1.9
peak(E2

peak/Liso)−0.69. The Amati relation (Eγ,iso ∝E2
peak) can be

inserted to get Liso ∝E1.9
peak(Eγ,iso/Liso)−0.69. Next, select one of the duration definitions with

τ =Sbolo/Pbolo. The ratio of fluence to peak flux will equal to the ratio of the burst energy

and the peak luminosity, leaving τ = Eγ,iso/Liso. This can now be substituted to obtain

Liso ∝E1.9
peakτ

−0.69. The resulting equation is simply Eq 4.8 ξ = 1.9 and η = −0.69, values

which are characteristic of the fitted Firmani relation (cf. Eq. 4.7). With this, one sees that

the Firmani relation has no independent existence because it is only a combination of two

simpler relations.

Thus, given any two of these three relations, the third can be derived. A question is

which of these is more fundamental. The inherent problem with making this assessment

is that it comes down to how one identifies the more fundamental of relations that really

address different physics. By Occam’s Razor, the more fundamental relation would be one

that has the fewest parameters, while accurately and efficiently yielding a luminosity. Thus,

the Firmani relation is less fundamental as it uses more parameters for the fit. Of the two
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relations that remain, the one that has the most ‘utility’ will be the one with the least

amount of scatter in its calibration curve.

In this chapter, Firmani’s results over his small sample of 19 bursts were successfully

reproduced. However, when independent values for Liso, Epeak and T0.45 were substituted

in, a substantial broadening occurs around the model. That is, the Firmani relation is

not robust on the use of alternative input data. In addition, when the test is extended to

a larger sample of 60 bursts, the scatter becomes substantially larger again. Indeed, this

scatter is comparable to the scatter in the original Epeak−Liso relation. That is, the Firmani

relation is not robust for the use of additional bursts. These failures of the Firmani relation

have dashed the hopes raised by the tight calibration curves displayed in Firmani et al.

(2006). It also suggests that the addition of a duration does not significantly improve the

Epeak−Liso relation. The larger point of interest is that no duration shows a significant

advantage over the Epeak−Liso . While it might be possible that that a relation involving

T30/Npeak might really have a smaller scatter than the Firmani relation, the improvements

are small and not significant. This leads to the conclusion that the addition of a duration

is not doing enough to improve the Epeak−Liso relation to be considered to be a separate

luminosity relation.

The conclusion is, therefore, that the Firmani relation is not useful for several reasons:

First, the Firmani relation is simply derived by putting together two well-known, simpler,

and independent luminosity relations, and thus it has no separate existence. Second, it is not

robust for the inclusion of independent input data or for the extension to many more GRBs.

Third, the real scatter for the Firmani relation does not live up to the hope generated by

the original report, with the scatter being comparable to those of the luminosity relations



68

from which it is derived. In all, no utility or advantage can be gained in using the Firmani

relation.



5. How Accurately Is Epeak Being Measured?1

5.1 Introduction

Epeak , the peak of the νFν power spectrum from the prompt emission of a long-duration

GRB, is one of the most important quantities measured from a GRB. GRB spectra are

essentially smoothly broken power laws with no sharp features (Band et al. 1993),

dN

dE
=


A
(

E
100 keV

)α
e
−E(2+α)

Epeak : E ≤ α−β
2+α

Epeak

A
(

(α−β) E peak

100 keV(2+α)

)α−β
eβ−α

(
E

100 keV

)β
: E ≥ α−β

2+α
Epeak

. (5.1)

Where A is a constant, and α and β are the low and high energy spectral indices respectively.

Thus, the Epeak value is the primary description of the entire spectrum. Observed Epeak values

typically range from a few keV to over a few MeV (e.g. Barraud et al. 2003; Kippen et al.

2003; Schaefer 2003a; Sakamoto et al. 2005; Sakamoto et al. 2008a). This distribution is

single-peaked (from 20-2000 keV) and fairly narrow (Mallozzi et al. 1995). It is unclear how

X-Ray Flashes (XRFs) fit into this distribution. Two good examples of XRFs contribution to

the distribution can be seen in Figure 7 of Sakamoto et al. (2005) and Figure 4 of Pélangeon

et al. (2008). In both these figures, there is a small marginally-significant secondary peak

composed of XRFs. It is not yet clear whether this is a separate peak or merely an extended

tail from the originally found GRB distribution (as seen in Mallozzi et al. 1995).

Through the luminosity relations, the distances of GRBs can be determined without rely-

ing on spectroscopic redshifts, which offers a means for estimating the luminosity and hence

1This chapter is largely taken from an article that appeared in The Astrophysical Journal, and is repro-
duced with permission of the AAS(see Appendix A for details).

69
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redshift for the ∼ 70% of bursts with no measured spectroscopic redshift. In comparison with

spectroscopic redshifts, the GRB luminosity relations have the big disadvantage of providing

relatively poor accuracy, but they have the big advantages of providing unbiased redshifts

for almost all bursts for demographic purposes (Xiao & Schaefer 2011) and of providing

independent luminosity distances for Hubble Diagram purposes (Schaefer 2007).

A variety of different problems have been raised regarding the luminosity relations, many

of which focus on one specific relation or another. For example, the Amati relation has

an ambiguity when the measured properties are used to determine the redshift (Li 2007;

Schaefer & Collazzi 2007; Chapter 3), the Ghirlanda relation can only be applied to the

small fraction of bursts with a known jet break, the identification of jet breaks has become

confused when the X-ray afterglow light curves are considered (Melandri et al. 2008), the

‘variability’ relation suffers from issues tied to how variability is defined (Schaefer 2007),

and the number-of-peaks relation only provides a limit on the luminosity (Schaefer 2007).

Another proposed luminosity relation (Firmani et al. 2006) has been shown to provide no

improvement upon previously existing ones, and indeed can be directly derived from the

prior luminosity relations (Collazzi & Schaefer 2008; Chapter 4). In addition, a variety of

new luminosity relations have been proposed and have yet to be extensively tested (e.g.

Dainotti et al. 2008; 2010; 2010). These various problems can be well handled, mainly by

the careful use of the relations and their input.

By far the greatest problem with all the luminosity relations is accuracy. The most

accurate of the luminosity relations (the Ghirlanda relation, Epeak−Eγ ) has an RMS scatter

about its calibration line of 0.15 in the log of the luminosity. Meanwhile, the weakest of the

luminosity relations (the variability and rise-time relations) have an RMS scatter about their

calibration lines of 0.45 in the log of their luminosity. When the resultant luminosities for the
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relations for a single burst are combined as a weighted average, the average uncertainty is 0.26

in log-luminosity (Schaefer 2007). This translates into an average one-sigma error in distance

modulus (σµ) of 0.65 mag. This error is greatly larger than those from optical spectroscopy,

yet this poorer accuracy is fine for many GRB demographic studies. For Hubble diagram

work, the community will compare the σµ = 0.65 mag accuracy for GRBs with those of the

Type Ia supernovae. For comparison, supernovae have σµ = 0.36 mag (Perlmutter et al.

1999), σµ = 0.29 mag even after heavy selection to create the ‘gold sample’ (Riess et al.

2004) and σµ > 0.25 mag from the Supernova Legacy Survey (Astier et al. 2006). For some

sort of an average of σµ ≈ 0.30 mag for supernovae, one can see that a single GRB has an

accuracy that is 2.1× worse than that of a single supernova. This is much better than some

people might expect. For Hubble diagram work, GRBs provide unique information on the

expansion history of the Universe for redshifts from 1.7 to 8.2.

A primary task for the GRB community is to substantially improve the accuracy of the

luminosity relations. Some of the scatter in the current calibration might be caused by

apparently random fluctuations in the source resulting in variations of the burst luminosity

even for bursts with identical measured indicators. Another source of scatter might be

that the luminosities and the indicators cannot (or have not) been measured with sufficient

accuracy. That is, the scatter in the luminosity relations might owe part of its scatter to

systematic uncertainties in the luminosity indicators. However, it is not entirely clear how

scatter in Epeak will effect the scatter in the associated luminosity relations. This is largely

because a error in finding Epeak will also result in a mis-calculation of the factors used in the

associated luminosities, Eγ, Liso and Epeak Therefore, it is difficult to quantify just how much

the scatter in finding Epeak will scatter the luminosity relations. Nonetheless, it is clear that
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understanding just how much scatter there is in the measurement of Epeak is important to

work on luminosity relations.

The LSU GRB group has been closely evaluating and optimizing the various luminosity

relations (e.g., Schaefer & Collazzi 2007; Collazzi & Schaefer 2008, Xiao & Schaefer 2009), so

a program has been started to evaluate the real total uncertainties in the various luminosity

relations. The Epeak quantity is the most prominent luminosity indicator (and of high impor-

tance for many other applications), so it will be the focus of this study. The chapter begins

by studying the sources of uncertainty that arise in measuring Epeak . This goes beyond the

usual measurement errors derived from Poisson statistics as reported in all papers, and all

the various sources of systematic errors must be looked at. Three sources of uncertainty

are quantified overall, with the primary tool being the comparison of multiple independent

published values of Epeak reported for the same bursts.

5.2 Types of Uncertainty in Epeak

When a burst occurs, there are a variety of ways in which uncertainty is added. The most

familiar source of uncertainty is the ordinary Poisson variations in the number of photons

that appear in each energy bin, resulting in random variations in the measured Epeak . This

statistical error (σPoisson ) is what is reported in the literature when values of Epeak are given.

A second issue that arises in determining Epeak is the various choices that are made by

the analyst. These choices include the exact time and form of the background light curve,

the exact time interval over which to accumulate the spectrum, the energy range for the

spectral analysis (which is often smaller than the full range of the instrument), and even the

convergence criteria for the fit. Identical burst data can be fit by two independent analysts

with two entirely different (yet reasonable) sets of choices, resulting in different Epeak values.
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Neither of these values can be identified as being right or wrong, nor can one know which

one is better. Therefore, this difference between the two is a type of uncertainty, σChoice.

A third source of uncertainty comes from not knowing the detector response perfectly,

which can be characterized as imperfect calibration of the detector response matrix. These

errors will be identified as σDet. Another component of σDet is the energy range of different

detectors. Two satellites can yield different values for Epeak merely as a result of covering

different energy ranges. This would occur when one satellite gets a better profile of the

‘turnover’ of the spectral profile than another.

The final source of uncertainty is related to the specific definition of Epeak . While, at

first glance, the Epeak has a simple definition, there are actually a variety of alternatives that

are commonly used. Each of these definitions produces a different value, and this appears as

a systematic uncertainty, which is labeled σDef . Four alternative definitions can be pointed

to: (1) The GRB spectrum can be fit either to the Band model, a smoothly broken power

law (Band et al. 1993) or to the ‘Comptonized Power Law’ model, a power law times an

exponential cutoff. (2) The GRB spectrum can be extracted for the entire burst (a ‘fluence

spectrum’) or for just the time of the peak flux. The fluence spectrum is relevant to the

Amati and Ghirlanda relations (which use the burst fluence), while the peak flux is relevant

for the other relations (which use the burst peak luminosity). Problems with the use of the

peak spectrum are that the number of photons are usually low (leading to poor accuracy)

and that the time range for extracting the spectrum is not defined (leading to variations

due to the choice of interval). Epeak varies substantially throughout most bursts (e.g. Ford

et al. 1995), so the choice of the time interval makes for large uncertainty. (3) The high

-energy and low-energy power law indices for the Band function can either be fitted to the

spectrum or they can be set to average values. When the spectrum does not extend much
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above Epeak , many analysts will simply set the high-energy index equal to some average.

This common practice leads to systematically different Epeak values. (4) The analyst might

define the Epeak value based on traditional frequentist method, or they might impose various

priors within a Bayesian method. Depending on the adopted priors, the Bayesian method

can give greatly different values than the frequentist method.

The luminosity relations are all expressed as power laws, which is appropriate for the

physical derivations of the relations, and the various errors are multiplicative. Therefore it is

best to consider the logarithm of the relevant quantities, for example, log(Epeak ). The total

measurement uncertainty of log(Epeak ) will be labeled as σTotal. Therefore, as the individual

errors are additive on a logarithmic scale, the total error will be:

σ2
Total = σ2

Poisson + σ2
Det + σ2

Choice + σ2
Def . (5.2)

The task is now to derive σTotal by determining the remaining three sources of individual

errors (as σPoisson is already reported in the literature).

The general procedure for isolating the various sources of errors will be to compare two

measured Epeak values, Epeak,1 and Epeak,2, that have identical conditions except for some

difference. This difference is quantified as:

∆ = log10( Epeak,1)− log10( Epeak,2). (5.3)

In general, ∆ will be evaluated for various sets of bursts, for example with the values from

one source all being denoted with the subscript ‘1’ and some other source being denoted

with the subscript ‘2’. With many measures of ∆, the average will generally be near zero

and there will be some RMS scatter, denoted as σ∆. The scatter of the ∆ values will be a

measure of the uncertainty arising from the differences in the input.
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5.3 Specific Examples

The essence of the problem and of this method comes from a comparison of Epeak values as

reported for many different satellites, analysts, and models. In this chapter, the analysis will

highlight abstract statistics for which it is easy to lose the real picture that the published

Epeak values have much larger scatter than expected from statistical errors alone. Below,

four specific examples of GRBs are provided. In some cases, e.g. Butler et al. (2007), the

reported error bars had to be converted from their stated 90% confidence values into their

standard one-sigma values. Therefore, all uncertainties below are at the one-sigma level.

GRB 910503 (BATSE trigger 143) was one of the brightest bursts seen by BATSE.

Independent reports on Epeak give 466± 4 keV (Band et al. 1993), 741± keV (Schaefer et al.

1994), 621±11 (Yonetoku et al. 2004), and 586±28 (Kaneko et al. 2006). All of these values

have small statistical error bars, and all are separated from each other by much more than

these error bars. All these measures use identical data and models, so the wide divergence

must be due to specific choices made by the individual analyst. The log10(Epeak ) values are

2.668 ± 0.004, 2.87, 2.793 ± 0.008, and 2.768 ± 0.021. The RMS scatter is 0.083 (which is

greatly larger than all the σPoisson values), which should equal to σChoice for this one burst.

GRB 911109 (BATSE trigger 1025) is a burst near the BATSE median brightness level

for which five independent measures of Epeak are found. Band et al. (1993) give 114 ± 3

keV, Schaefer et al. (1994) give 125 keV, Yonetoku et al. (2004) give 153.2+7.5
−7.1 keV, Kaneko

et al. (2006) give 131 ± 6 keV, and Nava et al. (2008) give 117 ± 74 keV. Again,a scatter

greatly larger than the quoted error bars is seen. For this one burst, the RMS scatter gives

σChoice = 0.05.

GRB 050525A was a very bright burst detected by four instruments. Swift data gives

78.8+2.4
−1.8 keV (Blustin et al. 2006), 82+2.4

−1.8 (Sakamoto et al. 2008a), 82+2.4
−1.8 keV (Butler et al.
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2007), 81±3 keV with a Bayesian analysis (Butler et al. 2007), and 102.4+4.8
−4.0 keV for a time

interval including only the peak of the burst (Blustin et al. 2006). The first three of these

values from Swift are found using identical models and data, so the variations can only arise

from analyst choices, which for a very bright burst will have relatively small effect on the

spectrum. (In particular, it does not really matter what the choices for the background fit

are because the background is so small compared to the burst flux. Also, with a very bright

burst, the start and stop times are well defined so that analyst choices will be very close.)

Nevertheless, two separate analyses of the identical data from INTEGRAL IBIS data gives

either 69± 72 (Foley et al. 2008) or 58+29
−21 keV (Vianello et al. (2009), with these values not

being so close. For measures with other instruments, INTEGRAL SPI data gives 80 ± 28

keV (Foley et al. 2008), and Konus data gives 84.1± 1.7 keV (Golenetskii et al. 2005a).

GRB 070508 was a bright burst detected by four satellites. Konus data gives 188 ± 5

keV (Golenetskii et al. 2007), Suzaku data gives 233 ± 7 keV (Uehara et al. 2007), and

RHESSI data gives 254+43
−27 keV (Bellm et al. 2007). These values are inconsistent with any

constant, implying that there must be additional systematic uncertainties past the reported

statistical error bars. Epeak values have also been reported many times for Swift data, with

the first circular giving 258± 80 keV (Barthelmy et al. 2007), the Sakamoto et al. (2008a)

catalog giving 260+122
−41 keV, an independent analysis giving 210+48

−24 keV (Butler et al. 2007),

a Bayesian analysis giving 208+46
−25 keV (Butler et al. 2007), while a joint fit of the Swift -plus-

Suzaku data gives 235±12 keV for the Band function or 238±11 for the CPL (Comptonized

Power Law) function (Krimm et al. 2009). The first four Swift values all use identical data

and models, yet still the uncertainty for this bright burst runs from 210-260 keV. Looking

at all the reports, if there were a ‘vote on the truth’ with an average, the guess would be

Epeak∼ 230, with this being dominated by the three ‘votes’ controlled by the Suzaku data.
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For all nine published values, a realistic analysis could take the Epeak to be anywhere from

roughly 190 to 260 keV. And this is for a bright burst where all the problems are minimized.

5.4 Typical σPoisson

Ordinary Poisson fluctuations of the counts in each spectral energy bin result in an

apparently random noise, which will somewhat shift the fitted Epeak value. This statistical

uncertainty can be reliably calculated by keeping track of the counts and applying Poisson

statistics, with the resulting uncertainties confidently propagated. Most of the reported

Epeak values in the literature have reported error bars, and these are always from Poisson

statistics alone. These reported error bars are cast into log-base-10 and are labeled σPoisson.

The Poisson errors change greatly from burst to burst. At one extreme for a very bright

burst, GRB050525A has Epeak = 82+2.4
−1.8 keV (Sakamoto et al. 2008a), with this being con-

verted to log10(Epeak )= 1.91 ± 0.01. At the other extreme are faint bursts with only poor

constraints, for example BATSE trigger 658 with Epeak = 70 ± 56 keV (Nava et al. 2008),

with this being converted to log10(Epeak )= 1.85± 0.35. This chapter uses error bars on the

log-base-10 of Epeak , where ±0.01 corresponds to a 2.3% error in Epeak , ±0.10 corresponds

to a 23% error, and ±0.30 corresponds to a factor of two error.

Collections of bursts with a wide range of individual error bars will have a much more

restricted range of average error bars. From 306 BATSE bursts, Kaneko et al. (2006) have

error bars with average σPoisson = 0.04. From 37 HETE -2 bursts, Sakamoto et al. (2005)

have the average σPoisson = 0.17. From 9 INTEGRAL bursts (after excluding two with very

large quoted error bars), Foley et al. (2008) have the average σPoisson = 0.35. From 32 Swift

bursts, Sakamoto et al. (2008a) have the average σPoisson = 0.08.
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An annoying problem is that recently some satellite programs have taken to reporting 90%

error bars rather than the universal standard one-sigma error bars. This creates a problem

when comparing the error bars with standard results or in doing any sort of statistical

analyses. The general solution is to assume that the error distribution is Gaussian in shape

and to multiply the quoted error bars by 0.61 so as to produce one-sigma values. Nevertheless,

this practice still has to be remembered every time, and occasionally the writer (e.g., Krimm

et al. 2009) does not tell the reader that 90% error bars are used.

A complexity arises with many measured Epeak values having asymmetric error bars,

usually with the uncertainty towards high energy being much larger than the uncertainty

towards lower energy. This arises when Epeak is near the upper end of the spectrum. To

illustrate this with an extreme example, consider a spectrum that shows a power law with

a small amount of curvature up to a cutoff of 300 keV, in which case one can say that

the Epeak value is near 300 keV with a small uncertainty to low energies and an unlimited

uncertainty to high energies. This case arises frequently for theSwift satellite due to its fairly

low energy cutoff. The general solution is the tedious one of carrying asymmetric error bars

for all quantities derived from the Epeak values.

5.5 Quantifying σChoice

If two separate analysts independently report their Epeak values, for the same burst as

measured from the same satellite, with the exact same Poisson noise, using the same model,

then the only difference is from the choices made by the analysts, σChoice. Once a pairing of

this kind is identified, for each burst the two analysts have in common, ∆ is the logarithmic

difference in the values the two analysts measured the burst. The result of this will be a

list of ∆ values for the comparison pairs. From here, a simple calculation of the standard
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deviation of the ∆ values will equal σ∆. This scatter of ∆ arises from the differences in the

two individual sets of choices, so the uncertainty due to a single set of choices would simply

be given by:

σChoice =
σ∆√

2
. (5.4)

The procedure is then to find published analyses which report Epeak values for many identical

bursts all using the exact same data from some satellite, to calculate a list of ∆ values,

and finally to calculate σChoice from equation 5.3. With this, the ordinary variations in

Epeak caused by analysis choices will be attributed equally between the two analysts.

For the BATSE era, values from Band et al. (1993), Yonetoku et al. (2004), Kaneko et

al. (2006), and Nava et al. (2008) can be compared. For example, BATSE trigger 1025 has

reported Epeak values of 114, 153, 131, and 117 keV for the four sources, while trigger 451

has 40, 134, and 143 keV for the first three sources respectively. For the BATSE era, the

results are presented in Table 5.1. The Kaneko-Yonetoku pair has the lowest scatter, which

is about half that of the Band-Kaneko pairing and about a quarter of that of the Band-Nava

pairing. This indicates that the choices made by Kaneko and Yonetoku are typically more

alike than the choices made by any other pair. No one analyst can be identified as producing

better be results.

For the Swift era, there is just the one pairing to consider, the published values of

Sakamoto et al. (2008a) and Butler et al. (2007). Here, the Butler values of Epeak that were

derived from frequentist statistics were used, as that is what Sakamoto used in obtaining

his values. 23 common bursts are found for use in this pairing, resulting in σChoice = 0.04.

One possible reason for this Swift σChoice being much smaller than the BATSE values (see

Table 5.1) is that the coded mask of Swift eliminates the uncertainties in the background

subtraction.
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Table 5.1. σChoice in the BATSE Era a

Yonetokuc Bandd Navae

Kanekob 0.07 (75) 0.15 (11) —
Yonetokuc — 0.21 (34) 0.14 (62)
Bandd — — 0.29 (5)

aThe values reported in this table are σChoice,
which are the uncertainties in log10Epeak due to
the particular choices made by one analyst. The
following number in parentheses is the number
of common bursts that were used for the calcu-
lation.

bKaneko et al. (2006)

cYonetoku et al. (2004)

dBand et al. (1993)

eNava et al. (2008)
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To further illustrate the effects of σChoice, see Figures 5.1 and 5.2, which display two of the

comparison sets with the BATSE data. Figure 5.1 plots Epeak from Yonetoku et al. (2004)

vs. Kaneko et al. (2006). Figure 5.2 plots Epeak from Yonetoku et al. (2004) vs. Nava et

al. (2008). In both cases, bursts are represented with a diamond with their associated error

bars. A solid line is plotted in each of these figures to represent where the bursts should lie

in an ideal world (i.e. in total agreement). As described earlier, in these data pairs the only

difference in the analysis is the choices made by the analysts.

There is a significant scatter on the value of Epeak that can be attributed purely to the

choices analysts make in deriving these values. Six different values of σChoice have now been

calculated; 0.07, 0.15, 0.21, 0.14, 0.29, and 0.04. The σChoice can vary by up to a factor

of six. For any analyst, only the average can be used. A simple average is 0.15. Likely, a

better representation is the weighted average where the weights equal the number of bursts,

for which the result is σChoice = 0.12. This typical value of σChoice is daunting in size. For

an example with Epeak = 100 keV, the one-sigma range (from σChoice alone) would be from

76-132 keV, which is nearly a factor of two in total size.

5.6 Measuring σDet

σDet is the uncertainty associated with three particular problems related to the detector

response. The first of these issues is associated with imperfect knowledge of the detector

response. The second issue is how the energy ranges of various detectors are different and

thus could yield different values for Epeak . A third issue lies in the detector thresholds in that

bursts for which the peak energy is just above the detector threshold will have ill defined

spectral indices and therefore will not be well measured. In principle, this can be measured

by comparing Epeak values for measures of individual bursts with different detectors. Care
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Figure 5.1 A visualization of the scatter in Epeak due to σChoice alone. Plotted are BATSE
bursts (diamonds) as measured by two groups of analysts - Yonetoku et al. (2004) vs. Kaneko
et al. (2006). The solid line denotes the ideal case where both groups would be in complete
agreement. The scatter about the diagonal line is σChoice, and the point of this figure is that
there is significant scatter even for identical bursts, identical Poisson noise, and identical
data.
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Figure 5.2 Another visualization of the scatter in Epeak due to σChoice alone. Plotted are
compare BATSE bursts (diamonds) as measured by two groups of analysts - Yonetoku et al.
(2004) vs. Nava et al. (2008). The solid line denotes the ideal case where both groups would
be in complete agreement. The two analysts compared identical bursts, with identical data,
and with identical models; so the large scatter about the diagonal proves that individual
unrecorded choices by the analysts have a large effect on the reported Epeak .
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must be taken that these compared values were made over the whole time interval of the

burst and with an identical model. The procedure is to tabulate ∆ values for many bursts

observed with pairs of satellites, with the RMS scatter of ∆ being related to σDet. The

statistical error bars (σPoisson) for each measure are known and can be accounted for. In

principle however, the effects of σChoice and σDet cannot be separated out. So what can

be taken from this comparison of Epeak values from different detectors is just the combined

uncertainty, σSat =
√
σ2

Choice + σ2
Det.

The uncertainty in each ∆ comes from the statistical uncertainty for each satellite and

the σSat for each satellite;

σ2
∆ = σ2

Poisson,1 + σ2
Poisson,2 + σ2

Sat,1 + σ2
Sat,2 (5.5)

Where the numbers in the subscripts identify the two satellites. In practice, the separate

systematic effects of the two detectors can not be distinguished, so all that can be done is

to take σSat as the average of the two satellites.

The ∆ values will be for bursts with a wide range of statistical errors, with each individual

value being a Gaussian distribution with standard deviation of

σ∆ =
√
σ2

Poisson,1 + σ2
Poisson,2 + 2σ2

Sat. (5.6)

So the quantity ∆/σ∆ should be distributed as a Gaussian with a standard deviation of

unity. The procedure is to vary σSat until the RMS scatter of ∆/σ∆ equals 1.

Published Epeak values for many bursts as measured by many satellites that were collected.

Pairs of measures for individual GRBs that have identical models and that cover the entire

time interval of the burst were identified. For each pair of satellites, σSat was calculated

such that the ∆/σ∆ values have an RMS of unity. These values are given in Table 5.2. Two

effects should be considered when viewing these results. First, the entire second column,
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involving Swift - Suzaku and either Swift or Suzaku , involves joint data in the comparison, so

the differences in the two Epeak values will be smaller than if the two spectra were totally

independent. Thus these two values will not be used in evaluating an overall average σSat.

Second, whenever a small number of bursts are involved, random fluctuations in Epeak will

lead to large variations in σSat. To take an extreme example, if only one burst is considered

and the two measures are randomly close together, then the σSat value will be near zero.

Indeed, for the entire right-hand column of Table 5.2, with all entries coming from 2-4

GRBs, all entries are at the extremes of the range. These three entries have a total of

9 comparisons, which when combined, form a single σSat involving RHESSI versus other

satellites, with this value being 0.14.

So there are now a number of values for σSat, one from the Suzaku column, three from

the Konus column, and one combined value for RHESSI. These values range over a factor of

two, from 0.08 to 0.16. A straight average of these five measures is 0.13. A weighted average

involving the number of bursts in each measure yields 0.12. This last value is taken to be

characteristic and average for a wide range of detectors and analysts.

Therefore, the conclusion is that the global average σSat = 0.12 and σChoice = 0.12.

Formally, this implies that σDet = 0, but the only readily available conclusion is that σDet is

negligibly small. This provides confidence that the detector calibrations are well done. In

other words, the systematic differences from satellite to satellite are negligible, whereas the

often-large differences from satellite to satellite are apparently caused simply by the ordinary

choices made by the individual analysts.
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Table 5.2. σSat in the Swift Eraa

Suzaku c Swift -Suzaku d Konus -Windc RHESSIc

Swift b 0.15 (7) 0.04e(8) 0.16 (13) —
Suzaku c — 0.03e(11) 0.08 (23) 0.18 (3)f

Swift -Suzaku d — — 0.12 (23) 0.02 (2)f

Konus -Windc — — — 0.18 (4)f

aThe values reported in this table are σSat, which are the one-sigma
uncertainty of log10(Epeak) for the combined causes of uncertainties in
one detector response and one analyst’s choices. The following number
in parentheses is the number of common bursts that were used for the
calculation.

bSakamoto et al. (2008) and Butler et al. (2010)

cMultiple GCNs

dKrimm et al. (2009)

eThis entry is a comparison between composite spectra from Swift
-plus- Suzaku versus spectra from one part of that composite. So the
resulting Epeak values are not independent, as the joint part will share
identical data, identical Poisson noise, and identical detector response
measures. As such, the ∆ values will be systematically smaller, and
hence σSat will be smaller than expected for the case where the input
data was completely independent.

fRHESSI comparisons have small number statistics, so the three mea-
surements are combined in a weighted average to get one singular mea-
surement of σSat = 0.14 (9).
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5.7 Measuring σDef

Previous workers have defined Epeak in a variety of different ways, with the resultant

variations leading to an uncertainty labeled σDef . This definitional uncertainty can be broken

into four components: σModel for whether the Band model or the Comptonized power law

model is adopted, σPeak? for whether the spectrum is extracted for the entire burst or just the

time interval around the peak flux, σFixedαβ for whether the analyst systematically fixes the

high-energy and low-energy power law slopes in the Band function (α and β respectively) to

some average value, and σF/B for whether the analyst uses frequentist fitting or uses Bayesian

analysis with some set of adopted priors. For each of these, the same approach is taken as

was taken with σChoice and divide σ∆ by a factor of
√

2. The overall uncertainty from these

definition issues (σDef) will be just the addition in quadrature of the four components as

applicable for the question in hand.

The definition of Epeak (i.e., the photon energy for the maximum of νFν) requires a fit to

the spectrum, but it has not specified the functional form for this fit. Most published values

are roughly evenly divided between the Band function or the Comptonized power law (CPL).

There is a systematic offset in how Epeak is measured in that the CPL model consistently

predicts a higher Epeak than the Band model (see Figure 6 of Krimm et al. 2009). This offset

is expected, because the CPL falls off much faster than the Band function at high energies,

so the CPL fit must push Epeak to higher energies to match the observed spectra. To measure

this difference in Epeak for a typical ensemble of GRBs, the results from Krimm et al. (2009)

are used, where the Swift -plus- Suzaku spectra are fitted to both the Band function and the

CPL. In all, ∆ values is calculated for 67 bursts. The average ∆ is 0.14, while σModel = 0.12.

The definition of Epeak does not state the time interval over which the spectrum is to be

extracted. Indeed, the Epeak values change fast throughout the entire burst, so there is a
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big problem in knowing what interval to use. A unique solution is to take the entire burst.

This has the advantage of getting the best signal-to-noise ratio for the spectrum (unless the

burst is not sufficiently above the background). A spectrum from the entire burst (the fluence

spectrum) makes logical sense for use with the Amati and Ghirlanda relations, both of which

connect with the burst fluence. An alternative solution is to use the Epeak value for the time

interval around the time of the peak flux in the burst light curve. This solution is logical for

all the other luminosity relations that connect with the burst peak luminosity, as then both

the Epeak and luminosity will correspond to the same time and physics. An ambiguity arises

in specifying the duration of the interval, where this interval might be constant, scale with

the (perhaps unknown) redshift, or scale with the burst or pulse duration. The point is that

alternative solutions will lead to a systematic variation in Epeak , and this uncertainty will

be labeled as σPeak?. To evaluate this, the results taken by Krimm et al. (2009) are taken

for 28 GRBs as measured by Swift -plus- Suzaku . For these bursts, they report Epeak for the

Band function for both the entire burst as well as a tight interval centered on the peak in

the light curve, and for these the ∆ and total σPoisson values were calculated. As in section

5.6, one calculates σPeak?=0.06.

The definition of Epeak can use the Band model with or without fixed high-energy and

low-energy power law slopes, and this change of definition will lead to a variation labeled

as σFixedαβ. In general, the Band function is fitted with both α and β as free parameters.

However, in practice, spectra rarely extend far past Epeak which provides little constraint

on β. This is often solved by simply setting the power law slope equal to some average

value. The original paper on the Band function (Band et al. 1993) provides 53 bursts with

alternative fits where the slopes are allowed to vary freely or are fixed at α = −1 and β = −2.

The values of ∆ were calculated for these bursts. The average ∆ is -0.07 while the RMS
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scatter is 0.21. This average is marginally different from zero in the sense that the fixed-slope

values are larger than the values with freely-fitted-slopes. In all, σFixedαβ = 0.15.

The usual definition of Epeak relies on frequentist methods (i.e, chi-square minimization

of spectral models), whereas another possibility is to use Bayesian methods. The Bayesian

approach explicitly assumes sets of priors, where each prior quantifies the likely distribution

of values. This Bayesian method has been used in only one paper (Butler et al. 2007),

and unfortunately, this paper made a variety of poor assumptions for the priors. Most

importantly, they assumed that the probability of the Epeak values above 300 keV falls off

fast as a log-normal distribution, and this means that the bursts with high Epeak values

will have their values pushed to greatly lower energy. The fallacy of this assumption is

demonstrated by a comparison of their Epeak values with those from Suzaku , Konus and

RHESSI. For example, GRB 051008 has a measure of Epeak = 266+349
−80 keV from Butler

et al. (2007), while Konus reports 865+107
−81 keV (Golenetskii et al. 2005b), Suzaku reports

1167+1078
−427 keV (Ohno et al. 2005), and Swift -plus- Suzaku reports 815+54

−47 keV (Krimm et

al. 2009). Of the 11 Konus GRBs with Epeak > 600 keV, all 11 Butler et al. (2007) values

are smaller (whereas only half should be smaller if the Bayesian prior was reasonable), with

typical errors of a factor of 2. Another mistaken prior is that they assume the β values to

follow a simple exponential distribution, with the result being to push the β values greatly

negative (making for a claimed high-energy cutoff that is too sharp hence pushing Epeak to

larger values). Butler et al. (2007) give fitted Epeak values by both frequentist and Bayesian

methods for the exact same data for many bursts, and for each of these there is a calculated

∆ value. For 75 bursts for which the frequentist methods return a value instead of a limit

(i.e., the case where the troubles with the priors are minimized), the RMS of ∆ is 0.07, and

this is the value of σF/B.
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Measures of σModel = 0.12, σPeak? = 0.06, σFixedαβ = 0.15, and σF/B = 0.07 are now in

hand. In a situation where all four uncertainties are operating fully, the total uncertainty

caused by the variations in the definition would be the sum in quadrature of the four com-

ponents, with σDef = 0.21. This would correspond to a one-sigma uncertainty of a factor of

1.62.

Which of these uncertainties are applicable depends critically on the situation. Here

are four typical situations, each with different answers: (1) If one is trying to compare an

observed Epeak value with some measure of a particle energy distribution, then it is com-

pletely unclear how to connect the two, so a full σDef = 0.21 is appropriate. That is, the

Band function is a completely empirical description of the turnover in the spectrum, so it

is unknown what part of the spectrum corresponds with any point in a calculated theoret-

ical particle distribution. (2) If a Hubble diagram is constructed using luminosity relations

where the calibration and bursts all use exactly the same definition, then σDef = 0. This

might be the case if all the Epeak values are pulled from a single paper, or the case if one is

anticipating some future program designed for the purpose. (3) If the luminosity function

is calibrated with a particular definition but then applied to a set of Epeak values with a

mixed set of definitions, then the contribution will be only a fraction of its full value. For

a data set that involves a fraction ‘f ’ of values made with the alternative definition, the σ

value will be
√
f times the full value. For example, the BATSE Epeak values presented in

Nava et al. (2008) have f = 0.31 of the bursts with fixed α or β, so the result would be

σDef =
√

0.31σFixedαβ ≈ 0.08. (4) If the Amati relation is evaluated with bursts from a wide

array of detectors, then the mixed sets of definitions will lead to a partial contributions from

the various alternative definitions used. Schaefer (2007) has calibrated the Ghirlanda and
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Epeak−Liso relations with bursts from BATSE, Beppo-Sax , Konus , INTEGRAL, and Swift ,

with the estimate being σDef ≈ 0.15.

The contributions to σDef change greatly with the question being asked. The contributions

will also change substantially with the data set being used. Not only will the fractions

‘f ’ change, but the size of the unmixed contribution will change. For example, σF/B will

change greatly with the adopted priors, while σFixedαβ will change greatly depending on

the adopted power law slopes. In practice, it is impossible to evaluate meaningful error

bars for the various contributions, because they change for every circumstance. Therefore,

the quantitative measures of the contributions to σDef in this section can only be taken as

approximate or maybe as typical, and each of the definitional alternatives leads to variation

with an RMS scatter of roughly 0.1-0.2 (i.e., 23% to 46% errors). Depending on the situation,

the resulting σDef might vary anywhere from 0.0-0.2.

5.8 Are GRBs Thermostated?

The distribution of Epeak for GRBs has been observed to be fairly narrow (Mallozzi et

al 1995), and thus the intrinsic scatter of Epeak must be narrow as well. The observed and

intrinsic values of Epeak can be related by a simple equation:

Epeak,Obs = Epeak,Int (1 + z)−1 η (5.7)

The observed Epeak is related to the intrinsic Epeak by the cosmological redshift factor of

(1 + z). The factor η encompasses all the various effects that lend to the imperfect measure

of Epeak , with the RMS scatter of log η equaling σTotal. Since these factors are multiplicative,

it is more appropriate to evaluate this equation in log space. Therefore, the expression for
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the distribution of Epeak in log space can be given as:

σ2
log Ep,Obs = σ2

log Ep,Int + σ2
log (1+z) + σ2

Total (5.8)

Many of these values can be quantified from data already in hand. TheSwift website provides

a list of confirmed spectroscopic redshifts from a list can be comprised of log10(1 + z), for

which the RMS scatter is 0.19, which is taken to be the typical value of σlog(1+z). Likewise,

published data sets can be used to get an estimate for σlog Ep,Obs. The scatter in the log

of the observed Epeak can be found from Brainerd et al. (1999). In this paper, the authors

found the full width half-maximum of the BATSE Epeak distribution to be 0.796 in log of the

Epeak , which equates to a one-sigma scatter of ∼ 0.34, which can be used as the value of

σEp,Obs. Putting all these values together yields:

σ2
log Ep,Int = 0.08− σ2

Total. (5.9)

So σ2
Total needs to be 0.08 in order for the intrinsic scatter of Epeak to be zero. This equates

to a σTotal ∼ 0.28.

In previous sections, the values that go into σTotal were identified, so expected values

for σTotal can be easily calculated and compared to what kinds of σTotal are needed for a

‘zero’ distribution of Epeak in the burst rest frame. σPoisson is found to have typical values

near 0.15 for collections of bursts (with the values for individual bursts varying greatly

with the detector and the burst brightness), with an extreme range of 0.04 to 0.35. The

average value of σChoice is found to be 0.12 and σSat is found to be 0.12 (so that σDet is near

zero), with extreme values of 0.08 and 0.16. σDef depends critically on the application, but

typical applications might have values of 0.15, with extremes of 0.0 to 0.2. These sources of

error are independent, so they should be added in quadrature. For these typical values, the

σTotal = 0.24, with an extreme range of 0.09 to 0.43. So the σTotal needed for σlog Ep,Int to
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be zero is not only within the expected range of σTotal, it is a typical value for σTotal. The

value of σlog Ep,Int will be small for any realistic value of σTotal. Even if one were to take a the

lowest estimate of σTotal = 0.09, there would still be a small value of σlog Ep,Int = 0.28. This

means that for the observed distribution of Epeak to be as narrow as observed, the intrinsic

rest frame distribution of Epeak must also be narrow in all cases.

In order to be sure that the choice of Epeak,Obs is appropriate, one must be certain that

selection effects are not causing a perceived distribution. An example of this is in Sakamoto

et al. (2008b), where there are clear cutoffs for different instruments depending on the

energy range of a detector’s energy threshold. This is why exclusively BATSE data is used

to determine this value. In Brainerd et al. (1999), the authors found that the BATSE trigger

thresholds did not cause the observed distributions. The X-Ray flashes (e.g. Sakamoto et

al., 2005; Pélangeon et al., 2008) are just the tail of the observed classical burst distribution,

or at most a small excess out on the tail. Another important part of the findings of Brainerd

et al. (1999) is that the detector thresholds are not causing an artificial distribution in the

detected bursts. Figure 5.3 of Brainerd et al. (1999) shows a simulated histogram for the

detection of bursts for a given power-law distribution of Epeak . The results show that the

distribution of the detection of Epeak has roughly the same efficiency on either side. This

implies that the narrowness of the BATSE distribution is not being artificially cut off by

some sort of systematic effects on the part of the detector threshold. It is for this reason that

is reasonable to believe that the BATSE data at the very least shows a real distribution for

Epeak , not an artifact of selection effects. Therefore, the finding of no scatter in the intrinsic

Epeak distribution is sound.

Another method for showing that the distribution of Epeak,Int is small is to use a large

sample of data for which there are known bursts across a wide range of known redshifts.
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Using the known redshifts, the scatter of Epeak,Obs(1 + z) can be found directly. In doing

this, one of the terms from the earlier method can be, in a sense, removed. The uncertainty

found by finding the standard deviation of Epeak,Obs(1 + z) will instead be quantified as:

σ2
Epeak,Obs(1+z) = σ2

Ep,Int + σ2
Total. (5.10)

For this purpose, the large data set available in Schaefer (2007) can be used. The RMS

scatter of E peak,Obs(1 + z) of the whole data set to be 0.47. Adopting a typical value of

σTotal = 0.30, the resulting scatter is found to be σEp,Int = 0.37, which is still a fairly narrow

distribution. While it is not as small as the first test showed, it is nonetheless narrow,

showing that the one sigma scatter of Epeak is merely a factor of ∼ 2.

There is also the possibility of mixing bursts from widely different redshifts in the sample.

To check this, the Schaefer data are binned up by redshift ranges of 0-1, 1-2, 2-3, and 3-5.

The RMS scatter of Epeak,Obs(1+ z) for these bins is 0.62, 0.40, 0.35 and 0.27 respectively. In

addition, a similar test of Swift - Suzaku data (Krimm et al. 2009) is also applied. For these

data, bursts are binned by redshifts 0-1, 1-2, and 2-4. The RMS scatter of E peak,Obs(1+z) for

these bins is 0.42, 0.44, 0.24 respectively. With seven different bins, the median value is 0.40.

Using the Schaefer (2007) data, that the average value of the log of Epeak,Obs(1 + z) is found

to be 2.23, 2.58, 2.52 and 2.60 for their respective bins, and for the Krimm et al. (2009)

data the average value is found to be 2.66, 3.03, 2.89 respectively. Therefore, there are no

visible trends with redshift. Indeed, this shows that the average value of Epeak,Obs(1 + z) is

close to 511 keV. This implies that the narrowness of Epeak is therefore physical and not the

result of selection effects.

With this finding, the obvious question is what is the mechanism driving all GRBs to

have the same (or essentially the same) intrinsic Epeak . With the rest frame Epeak values

being like the effective temperature of the gamma-ray emitting region, the nearly constant
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temperature requires some mechanism to act as a thermostat, holding the temperature at a

fixed value. The realization that the rest frame Epeak is nearly a constant is new, with this

conclusion being simple and forced. The task for the community is now to understand the

physical mechanism for this thermostat effect.

The typical values of Epeak,Obs(1+z) is nearly comparable to the electron rest-mass energy

(mec
2) of 511 keV. This suggests that the thermostat mechanism involves an equilibrium

between electron-positron pair creation and annihilation.

5.9 Implications

The various sources of scatter on Epeak have now been identified. σPoisson was found to

have typical values near 0.15, although this has a large range of 0.04 to 0.35. The reason

for this range is mostly due to the detector and the brightness of the burst. σChoice is found

to be on the same order of σ Sat, 0.12. This indicates that the scatter due to the detector

itself, σDet is small. There is an extreme range of 0.08 and 0.16 for the error due to analyst

choices. The uncertainty associated with the definition of Epeak depends on the application

and a range of 0.0 to 0.2 for σDef , with a typical value of 0.15. Finally, if these are all put

together, σTotal has a range of 0.09 to 0.43. For the typical values, a value of σTotal = 0.24

should be expected.

One important implication is that there is a real limit on the accuracy with which any

Epeak can be measured. Even for a very bright burst with a well placed Epeak , say with

σPoisson = 0.01, and some agreed-upon definition (so σDef = 0), there will still always be

σTotal = σChoice = 0.12. There is no realistic way to dictate or legislate or even define the

‘best’ choices by analysts, so this limit cannot be improved. This means that all GRBs must

have at least a 28% error in Epeak .
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A second implication that can come from this result is that Epeak has accuracy limits as

a luminosity indicator. On an individual basis, this is a valid limitation. Supernovae have

a similar limitation, although their real systematic uncertainty for an individual event is

2.1× better than for GRBs. The accuracy limitation can be overcome in the same way as

for supernovae by using large numbers of bursts. Therefore, the uncertainty can be brought

down by a factor of the square root of the number of bursts. Again, while Gamma-Ray

Bursts have less accuracy than supernovae, they make up for it in their unique coverage at

high redshifts.

A third important implication is that collections of bursts have a greatly larger average

error than is realized in the community. All collections of Epeak values have mixed definitions

and few bright bursts, so σTotal ≈ 0.24 is the norm. This corresponds to a 55% error. For a

burst claimed to be Epeak = 100 keV, the real total 1-sigma error region will be like 58-174

keV, regardless of the published statistical error bar.

An important implication of this work is that it implies that GRBs have their emission

region effectively held to a constant temperature by some thermostat mechanism. That

is the observed Epeak distribution is already fairly narrow, so the intrinsic distribution of

Epeak in the burst rest frame must be very narrow. There is no conclusive mechanism to

cause this, but one such explanation is that electron-positron annihilation may be acting as

a thermostat for GRB emission.

A final important implication is to that the community can improve the measurement

of Epeak for many purposes. There is no obvious realistic or effective way to legislate the

analyst’s choices. But the community can make sure that all the Epeak values being used

have only one definition. This will require a uniform analysis, which might be accomplished

by having one analyst processing all the bursts used in the sample. Or it might require that
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multiple analysts agree to adopt some standard definition. For this, the suggested standard

would be to use the Band function with freely varying α and β and a frequentist chi-square

minimization for the entire burst time interval.



6. A Significant Problem with Using the
Amati Relation for Cosmological Purposes1

6.1 Background

In the last chapter, an exhaustive study was performed on the sources of error on Epeak .

This study showed a considerable amount of scatter was hidden in how Epeak is measured,

which was much larger than that from the reported Poisson errors alone. The sources of this

scatter included the choices of different analysts, which Epeak is measured, and the detector

response matrix, all in addition to the regular Poisson statistical error. This scatter can be

as large as 0.43 in log space and has a typical value of 0.24. This scatter can explain the

scatter seen in the luminosity relations that use Epeak .

Recall that the currently accepted luminosity relations have their drawbacks. The best

(i.e. the tightest) of these relations, the Ghirlanda relation, can only be applied if there is an

observed jet break. Jet breaks are a well understood phenomena (Rhoads 1997; Sari et al.

1999). This is fairly difficult for a variety of reasons, and has only been observed in a small

percentage of bursts. Melandri et al. (2008) and Kocevski & Butler (2008) have pointed out

problems in identifying these jet breaks with the X-ray data.

Most notably, the Amati relation has been criticized for several reasons. Refer back to

chapters 2 and 3 for the legacy of these tests. As a quick reminder, the tests of Nakar

and Piran (2005) have been generalized in several independent investigations (e.g. Band &

1The following work has been submitted to the Astrophysical Journal for review. As such, this work may
appear in whole or in parts in a submitted academic journal article (as a Collazzi et al. 2011b). Co-Authors
for this future article are Bradley E Schaefer of LSU, along with Adam Goldstein and Robert Preece of
University of Alabama at Huntsville.
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Preece 2005; Schaefer & Collazzi 2007; Goldstein et al. 2010; Chapter 3). They combined

the Amati relation (equation 6.1) with the inverse square law for fluences (equation 6.2) to

eliminate Eγ,iso (equation 6.3).

Eγ,iso = (9.2× 1047 erg keV−2.04) [ Epeak (1 + z)]2.04 (6.1)

Eγ,iso =
4π d2

L Sbolo

1 + z
(6.2)

E2.04
peak

Sbolo

=
4πd2

L

(1 + z)3.04(9.2× 1047 erg keV−2.04)
(6.3)

Here, Eγ,iso is the isotropic gamma ray energy, dL is the luminosity distance as derived with

the concordance cosmology (ΩΛ = 0.7, Ωm = 0.3, H0 = 74 km/s/Mpc), Sbolo is the bolometric

fluence (the fluence over the burst rest frame 1-10,000 keV range), and z is the redshift of

the burst. The quantity
E2.04
peak

Sbolo
has been called the ‘energy ratio’ for the Amati relation (e.g.

Band & Preece 2005). The left side of equation 6.3 uses only directly observable quantities

(albeit, they are model dependent), while the right side is only a function of distance. As the

distance rises, dL
2 gets larger and (1 + z)−3.04 gets smaller, which gives a maximum value

for the right side. When the concordance cosmology is used, the function peaks at z ∼ 3.6.

Specifically, the right side of the equation cannot exceed 1.13 × 109 keV2.04 erg−1 cm2 and,

therefore,
E2.04

peak,obs

Sbolo

≤ 1.13× 109 keV2 erg−1 cm2. (6.4)

This becomes a simple way to test the Amati relation even for bursts without redshifts.

Similarly, for the Ghirlanda relation,

Eγ = (1.35× 1047 erg keV−1.43) [ Epeak (1 + z)]1.43 (6.5)

Eγ =
4π d2

L Sbolo Fbeam

1 + z
(6.6)
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E1.43
peak

Sbolo

=
4π d2

L Fbeam

(1 + z)2.43(1.35× 1047 erg keV−1.43)
(6.7)

The beaming factor, Fbeam, is defined as (1− cos θjet), where θjet is the opening angle of the

jet of the burst. The right hand side has a maximum value at zmax = 12.6 with a value of

2.7× 1010 keV1.43 erg−1 cm2 for Fbeam = 1. Thus, the Ghirlanda relation forces the limit,

E1.43
peak,obs

Sbolo

≤ 2.7× 1010 keV1.43 erg−1 cm2. (6.8)

This results in a simple observational test for compliance with the Ghirlanda relation. This

also reproduces the result that the ‘energy ratio’ for the Ghirlanda differs from the Amati

relation (e.g. Band & Preece 2005).

In this chapter, the Nakar and Piran test is revistited, which following Band & Preece

(2005), is extended by considering bursts in a plot of their Sbolo versus Epeak,obs. In addition,

an explanation is provided as to why a certain amount of violators are expected, and what the

observed distributions of bursts indicate should be expected. This is followed by presenting

gathered data from various detectors and providing a comprehensive examination of how each

detector’s data performs under the Nakar and Piran test. Following this, an explanation is

provided for why the vast majority of the data sets have too many violators of the Amati

limit, and therefore the Amati relation is not good as a luminosity relation. Finally, an

examination is provided of several sources of systematic offsets that are actually the cause

of the Amati relation in the first place, which only further condemns the Amati relation’s

usefulness.

6.2 The Sbolo−Epeak Diagram and the Amati Relation

One way to visualize bursts under the Nakar and Piran test is to plot them on a

Sbolo−Epeak,obs diagram. In doing this, one can not only easily see how a certain group
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of bursts fares on the Nakar and Piran test, but also determine if there is a systematic offset

between different detectors. As an example, one can determine whether different detectors

are pre-disposed towards different regions on the diagram. In addition to plotting points for

individual bursts, the Amati limit (equation 6.4) and the Ghirlanda limit (equation 6.8) are

plotted for easier visualization of where the limits lie. Figure 6.1 shows the basic idea behind

the plots, with three zones for whether the burst violates no limit, the Amati limit only, or

both limits.

To illustrate the Amati limit, Figure 6.2 presents a created Monte Carlo simulation of

1000 bursts where the Amati relation is adopted. There are no measurement errors, no

selection effects for satellite detectors, and the burst luminosity and distance distributions

are a reasonable model of the real Universe. This simulation for each burst starts with

the random selection of Epeak,obs as based on a log-normal distribution like in Mallozzi et

al. (1995). In addition, the redshift of the burst is randomly selected from a reasonable

cosmological distribution, in this case, a log normal distribution with z=2 and a standard

deviation of 1. With these two values, an intrinsic Epeak is found by simply applying the

redshift correction: Epeak,int = Epeak,obs(1 + z). The Amati relation is then used to derive

Eγ,iso, and use equation 6.2 to get the observed Sbolo . As such, the figure shows a realistic

distribution, or at least for no measurement uncertainties. In the figure, one sees that there

are no violators (i.e., bursts appearing below the Amati limit), with most bursts appearing

close to the limit line. This figure is a central illustration of the Nakar & Piran test, which

will be extended in this chapter.

Once one allows for ordinary scatter caused by measurement errors in Epeak,obs and Sbolo ,

then the tight scatter in Figure 6.2 is lost. This is shown in Figure 6.3, where suddenly some-

what less than half of the bursts become violators. For this simulation, the measurement
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Figure 6.1 The basics of the Nakar and Piran test in graphical form. Any burst (even
without a known redshift) can be plotted on this diagram. If the Amati relation is correct,
then any burst must lie above the solid line (from equation 6.4), although normal scatter
from measurement error will put somewhat less than half of the bursts just below the limit
line. If the Ghirlanda relation is correct, then any burst must lie above the dashed line (from
equation 6.8), although normal scatter from measurement error can put a small fraction of
the bursts just below the limit line. If a burst lies below one of the lines, then it is called a
‘violator’ of that relation.
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Figure 6.2 1,000 simulated bursts based on the Amati relation with no measurement errors.
This simulation assumes that the Amati relation is exact. In the Monte Carlo simulation,
each burst had a redshift chosen randomly from a reasonable cosmological model for bursts,
an Epeak,obs value chosen randomly from the log-normal distribution of Mallozzi et al. (1995),
the burst energy calculated from the Amati relation, then the observed Sbolo calculated from
the burst energy and redshift. The simulated bursts are usually close to the Amati limit
line, and there are no violators.
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errors were assumed to have a log-normal distribution with a one-sigma width of 0.25 (Col-

lazzi et al. 2011; Chapter 5). The exact fraction of violators will depend on the size of the

observational scatter. In this realistic simulation, ∼40% of the bursts are below the Amati

limit line. The point of this figure is that normal and expected observational measurement

errors will lead to nearly half the bursts being apparent violators. Importantly, this scatter

does not explain the high violator rates reported by Band & Preece (2005) and Goldstein et

al. (2010). This discrepancy is the main topic of this chapter.

For comparison, consider how the Sbolo−Epeak,obs diagram would look if neither the Amati

or Ghirlanda relations were valid. For this, another Monte Carlo simulation was constructed

(see Figure 6.4). As in Figure 6.2, no assumptions were made about measurement errors

and selection by satellite detectors. Realistic luminosity and distance distributions were

assumed, but no constraints were made from either the Amati or Ghirlanda relations. To

do this, start by selecting burst distances and energies in the 100-500 keV such that they

reproduce the observed log( N)− log( P) curves for BATSE (Fenimore et al. 1993, Fishman

& Meegan 1995). Epeak is then generated based on a log normal distribution with some loose

connection to the brightness of the burst (as seen in Mallozzi et al. 1995). A bolometric

correction is then appled with (α = −1.0 and β = −2.0). The result is an in illustration of the

intrinsic distribution of bursts on the sky. The simulation of 10,000 bursts has approximate

edges at 20 and 3000 keV, plus lower and upper edges simply where the log( N) − log( P)

curve was cut off. The key point is that Figures 6.2 and 6.4 are greatly different, because

low-fluence bursts will dominate unless some law/correlation forces these low-fluence events

to have low-Epeak,obs. So there are now two extreme cases that produce greatly different

distributions in the Sbolo−Epeak,obs diagram.
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Figure 6.3 1,000 simulated bursts based on the Amati relation with realistic measurement
errors. These 1,000 bursts are identical with the bursts in the previous figure, except that a
statistical scatter has been added to the intrinsic values. For this Monte Carlo simulation,
the measurement error is taken from a log-normal distribution where the one-sigma scatter
in log(Epeak,obs) is 0.25 (c.f., Collazzi et al. 2011; Chapter 5). With this, the fraction of burst
that violate the Amati limit rises from zero to ∼ 40%.
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Figure 6.4 10,000 simulated bursts without the Amati relation. First, a flux in the 100-500
keV range is generated using the BATSE log[N(>P)]− log[ P] relation (Fenimore et al. 1993,
Fishman and Meegan, 1995). Epeak is then generated based on a log normal distribution, with
a dependence on the brightness of the burst (as seen in Mallozzi et al. 1995). Finally, the
generated Epeak is used to apply an appropriate bolometric correction based on the band
function with (α = −1.0 and β = −2.0). This bolometric correction ranges from a factor of
∼ 3.5 to ∼ 7.1. The result is an illustration of the intrinsic distribution of the population
of bursts on the sky. The point of this Figure is that the distribution covers a large area
without the Amati relation.



107

Both Figures 6.2 and 6.4 are for the intrinsic distributions of GRBs in a realistic case

with no effects of detector thresholds or measurement uncertainties. From a comparison of

Figures 6.2 and 6.3, one sees that the realistic measurement errors will substantially smear

the underlying distribution. Detector thresholds will also force a fuzzy cutoff roughly running

along some horizontal curve. For a detector with a high threshold, the many violators in

Figure 6.4 will never be detected and the violator fraction might appear acceptable. For a

detector with a low threshold, it should be easy to determine whether the Amati relation is

valid.

6.3 Generalizing the Test to Many Detectors

So far, the Nakar & Piran test has only been applied to BATSE bursts (Nakar & Piran

2005, Band & Preece 2005; Goldstein et al. 2010) and to a collection of bursts with redshifts

as detected by a range of many satellites (Amati 2002; 2006; Schaefer & Collazzi 2007;

Chapter 3). But this test can be extended to many satellites, because all that is needed are

values of Sbolo and Epeak,obs, with both of these being commonly reported for many bursts.

The essence is to find the fraction of violators, ξ, for each sample. The quantity 〈log
E2.04
peak

Sbolo
〉

will be also tracked for each sample, as this can be directly compared to 1.13× 109 (in units

of keV2.04 erg−1 cm2) so as to test the Amati limit (cf. equation 6.4). These statistics will

be tracked for both bursts with spectroscopically determined redshifts (Greiner 2010) and

those with no known redshift. The samples and their statistics are presented in Table 6.1,

with some discussion in Sections 6.3.1 to 6.3.8. The S bolo−Epeak,obs diagrams for each sample

are presented in Figures 6.5-6.13.
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Table 6.1. Demographics of the Data Samples

Data Set # w/z ξw/z
a 〈log

E2.04
peak

S bolo
〉w/zb # w/o z ξw/o z

a 〈log
E2.04

peak

S bolo
〉w/o zb

Ideal, no scatter . . . 0% 8.92±0.24 . . . 0% 8.92±0.24
Ideal, with scatter . . . ∼40% 8.91±0.64 . . . ∼40% 8.91±0.64
Amati et al. 2006 50 34% 8.90±0.56 0 . . . . . .

Schaefer 2007 27 41% 8.95±0.57 0 . . . . . .
BATSE 0 . . . . . . 1654 93% 10.18±0.88

HETE -2 12 33% 8.67±0.62 24 54% 9.05±0.84
Swift 25 76% 9.42±0.47 46 85% 9.46±0.45
Suzaku 7 100% 9.77±0.74 25 92% 10.28±0.87

Swift -Suzaku 28 86% 10.01±1.01 38 74% 9.63±0.85
Konus 33 73% 9.42±0.58 64 78% 9.68±0.87

Beppo-Sax 10 90% 9.36±0.39 119 90% 9.51±0.39

aξ is the fraction of bursts that violate the ’Amati limit’ of 1.13 × 109 keV2 erg−1 cm2 for
the Amati energy ratio E2

peak/ Sbolo.

bFor the Amati relation, the quantity E2.04
peak/Sbolo should never exceed 1.1 ×

109 keV2.04 erg−1 cm2, so even with normal observational scatter a sample of GRBs should

not have 〈log
E2.04

peak

Sbolo
〉 > 9.05 in appropriate units. With a reasonable distribution of burst dis-

tances, the limit will be even smaller. So this column provides a measure of the disagreement

with the Amati limit for a sample of bursts. The RMS scatter for log
E2.04
peak

Sbolo
is given after the

average value, so this can give a measure of the scatter of the distribution.
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6.3.1 Amati et al. (2006) Data

The first task is to use the compilation of data from Tables 1 and 2 of Amati et al. (2006).

These bursts all have redshifts and come from Beppo-Sax , Konus , HETE -2 , BATSE, and

Swift . Using the Amati relation, Sbolo is calculated from the given spectral data. Bursts

050315, 050824, 050904, 981226, 000214 and 030723 are excluded because only limits to

Epeak,obs are provided, and therefore are not useful. Bursts 980329 also had to be excluded

because a redshift range is given, and therefore an accurate measurement of dL could not be

obtained for converting Eiso into Sbolo . The results are in Figure 6.5.

This sample of GRBs was largely the same as used by Amati (2002) to discover and

calibrate the Amati relation, so it is no surprise that the bursts are spread out along the

Amati limit line. The violator fraction is ξ = 34%, which is as expected given the usual

scatter due to measurement errors. The sample has 〈log
E2.04
peak

Sbolo
〉 = 8.90 which is close to the

limit of log(1.13× 109) = 9.05 (in appropriate units). The RMS scatter of log
E2.04
peak

Sbolo
is 0.56,

which is a measure of how tight the Amati relation is for the sample.

6.3.2 Schaefer (2007) Data

Next, another compilation set, this time from Schaefer (2007). This data set also takes

its burst sample from a variety of different detectors: Konus , Beppo-Sax , HETE -2 , BATSE,

andSwift bursts were included for this sample. While the paper studies 69 GRBs with known

redshift, only 27 have the bolometric fluence reported and thus are the ones that are used

(see Figure 6.6).

Of the 27 bursts, 11 fail the Nakar and Piran test (ξ=41%). This is an expected failure

rate for the Amati relation and is in agreement with previous analysis on this data (see

Schaefer and Collazzi 2007; Chapter 3). The average value for the log of 〈log
E2.04
peak

Sbolo
〉 is
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Figure 6.5 The Nakar and Piran test for 50 bursts from Amati et al. (2006). This data came
from a variety of different detectors, including Beppo-Sax , Konus , BATSE, HETE -2 , and
Swift . All bursts in this sample have known associated spectroscopic redshifts. Of the 50
bursts, 34% fail the test. This is within the expected failure rate of the Amati relation.
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8.95±0.57. So this data is similar to the previous data set (which is not surprising as they

share some of the same bursts).

The two samples which contain exclusively bursts with known redshifts both agree well

with the Amati relation, and this has long been the primary justification for accepting the

Amati relation as a physical relation for GRBs. However, other samples (see below) do

not agree with the Amati limit, and this suggests that bursts with redshifts might be a

significantly different sample from those without redshift. This is the reason why bursts

with and without redshifts are distinguished in Table 6.1 and in the figures.

6.3.3 BATSE Data

Data used from BATSE is a part of the upcoming 5B catalog (Goldstein et al. 2011).

Values of Epeak and Sbolo are presented for the most statistically preferred fitting model, CPL

or Band. Only bursts for which there is 40% relative error or better is used. After applying

these selection criteria, there are 1654 bursts, which are plotted in Figure 6.7. In the figure,

two new curved lines are introduced, which represent illustrative thresholds for the trigger

(dotted) and the ability to detect Epeak (dot-dashed). These are explained in detail in Section

6.4.

The BATSE bursts fail at an extreme rate, with 93% violators. In addition, the BATSE

bursts cover a large region of the disallowed zone, with very few bursts above the limit. One

finds that 〈log
E2.04
peak

Sbolo
〉 to have a value of 10.18±0.88. The failure rate is consistent with that

observed in the past of BATSE bursts in previous works. The spread of BATSE bursts is

so large, it hints that almost any future changes to the Amati relation (e.g. as more Swift

bursts are detected with redshifts) will result in a high failure rate.
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Figure 6.6 The Nakar and Piran test for 27 bursts from Schaefer (2007). This data came
from a variety of different detectors, including Beppo-Sax , Konus , HETE -2 , BATSE, and
Swift . All bursts in this ample have known associated spectroscopic redshifts. Of the 27
bursts, 41% fail the test. This is in within the expected failure rate of the Amati relation
and in agreement with previous tests on this data (see Schaefer and Collazzi 2007; Chapter
3).
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Figure 6.7 1654 BATSE bursts from the future 5B BATSE catalog (Goldstein et al. 2011).
The Epeak and Sbolo data come from the best fit of either a CPL or Band model, whichever
was significantly better. In addition, only the bursts for which the relative error on the
measurements are 40% or better are used. This selection fails at a very high rate, with 93%
violators. The zone covered by the BATSE sample has a very large coverage area, but still
only a very few bursts are passing. This is particularly condemning, as it hints that any
future Amati relation will also fail for the BATSE sample. The dotted line represents an
illustrative line for the trigger threshold and the dot-dashed line represents an illustrative
model of the Epeak detection threshold (see Section 6.4).
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6.3.4 HETE -2 Data

The sample of HETE -2 bursts comes from Sakamoto et al. (2005). The quoted values

for Sbolo only cover the 2-400 keV range, and had to be converted into bolometric fluences.

This was done by using the given parameters for the spectral model (Band or Cut-off Power

Law (CPL)) to extrapolate a bolometric correction. This was generally a small correction,

while even the large corrections are still small compared to scatter in Figure 6.8. The quoted

error bars for both Epeak and Sbolo are given for the 90% level, so they had to be converted

into standard one sigma confidence level error bars (σ90% = 1.645σ1−sigma). The figure also

has illustrative lines to represent trigger thresholds (dotted line) and the Epeak detection

threshold (dot-dashed line). Again, these will be explained in detail in Section 6.4.

The HETE -2 bursts have ξ = 33% and 〈log
E2.04
peak

Sbolo
〉 similar to that of the original Amati

sample, so it appears that these bursts are consistent with the Amati relation. Nevertheless,

the scatter apparent in Figure 6.8 is so large that there is little utility in applying the Amati

relation to these bursts. The difference is insignificant for 〈log
E2.04
peak

Sbolo
〉 between bursts with

and without redshifts. Of all the single-satellite data sets that are considered, the HETE -2

data is the only one that apparently obeys the Amati relation, although its large scatter

limits its usefulness.

6.3.5 Swift Data

For the Swift data, the catalog in Butler et al. (2007) is used. Their values of Epeak as

derived from frequentist statistics are used as it is the most common approach to finding

Epeak . (Their Bayesian values were made with unreasonable priors that significantly skew

the results.) The Swift burst detector only goes up to ∼ 150 keV, so the reported values of

Epeak,obs are almost all lower than 200 keV. Their bolometric fluences have been adopted and
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Figure 6.8 HETE -2 data from Sakamoto et al. (2005). In total, 44% of the 36 bursts fail
below the Amati limit line, which is within the expected failure rate. Likewise, 33% of the
12 bursts with associated spectroscopic redshift are violators (which again, is within the
expected failure rate). The bursts with redshift do not appear to be significantly different
from those without. The HETE -2 data is unique in that it seems to most resemble the
original data from Amati, even though the scatter around the Amati limit line is very large.
The dotted line represents an illustrative line for the trigger threshold and the dot-dashed
line represents an illustrative model of the Epeak detection threshold (see Section 6.4). Filled
diamonds represent bursts for which there is a measured redshift, unfilled circles are bursts
for which there is no redshift.
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these have been converted their non-standard 90% error bars into standard one-sigma error

bars. Figure 6.9 plots the results; bursts without known redshifts are represented as empty

circles and bursts with known redshift are represented by a filled diamond. This will be true

for all future plots. This is the last of the three plots in which illustrative lines representing

trigger (dashed line) and Epeak detection thresholds (dot-dashed line) were plotted, which

again, are detailed in Section 6.4.

The Swift bursts violate the Amati limit at a rate of 76% to 82%. That is, the Amati

relation does not work for Swift . This result is not the result of small number statistics,

and it is clear to see that the distribution that the disagreement is highly significant. This

is another version of the same conclusion first reported by Butler et al. (2007).

When first confronted with the discrepancy that bursts with redshifts agreed with the

Amati relation (see Figures 6.5 and 6.6) while bursts without redshifts disagreed with the

Amati relation (Band & Preece 2005), the initial thought was that the bursts with redshifts

might be somehow selected from a separate population for which the Amati relation applied.

However, with this large sample of well-measured bursts from Swift , the distributions of

bursts with and without redshifts is essentially identical. Thus, this is a proof that the success

or failure of the Amati relation does not depend on some selection effect that correlates with

the measuring of spectroscopic redshifts. Another thing to remember is that since Swift

bursts are the bursts that account for a majority of the bursts with known redshifts, there is

a built-in selection effect that will eventually develop that will bias future iterations of the

Amati limit towards the area Swift bursts cover.
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Figure 6.9 Swift data from Butler et al. (2007). In total, there are 71 bursts, 82% of which
violate the Amati limit. This is far beyond the expected value, and thus the Amati relation
fails for the Swift data. The same conclusion is reached when looking just at the bursts
with known spectroscopic data, with 76% of those 25 bursts being violators.The bursts with
known redshift are not different from those without known redshift (see Table 6.1). The
dotted line represents an illustrative line for the trigger threshold and the dot-dashed line
represents an illustrative model of the Epeak detection threshold (see Section 6.4). Filled
diamonds represent bursts for which there is a measured redshift, unfilled circles are bursts
for which there is no redshift.
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6.3.6 Suzaku Data

Suzaku ḋata for long GRBs are available through the GCN circulars2. Typically, the

reported fluence covers the 100 keV to the 1 MeV range, so a bolometric correction is

applied based on the reported spectral fit. A typical bolometric correction value is a factor

of ∼1.7. The Epeak,obs and fluence values reported in the circulars are preliminary and made

soon after the burst, yet any likely changes to get to the final best fits are greatly smaller

than the scatter shown in Figure 6.10 and are thus not important. The Suzaku bursts all

have Epeak,obs > 200 keV, a result of the relatively high energy range of sensitivity of the

detector.

Most of the Suzaku bursts violate the Amati limit, usually by a large factor (ξ ∼, 94%) and

the small fraction that are not violators are very close to the limit (Figure 6.10). Therefore,

the Amati relation does not work for Suzaku bursts. This is true for both bursts with

redshifts and without.

6.3.7 Swift - Suzaku Data

Krimm et al. (2009) presented a catalog of bursts for which there was both Swift and

Suzaku data. The expanded energy range gave better fits to the spectra, with Swift covering

the lower energies and Suzaku covering the higher energies. With the joint spectral fits over

a very wide range of photon energies, the sample has a wide range of Epeak,obs values from 30

keV to 2000 keV. The catalog lists the best fit for the three major spectral models (power

law, power law with an exponential cutoff, and Band model) for the majority of the listed

bursts, while the used Epeak,obs values from just the Band function.

2http://gcn.gsfc.nasa.gov
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Figure 6.10 Suzaku data. Only bursts for which the time-integrated Epeak are reported. The
fluences are also reported in these notices, typically over the 100 keV to 1 MeV range. These
fluences had to be converted to bolometric fluences using the provided spectral parameters.
Of the 32 bursts used, 94% are violators of the Amati limit. The 7 bursts that have associated
spectroscopic redshift have a 100% violator rate. Again, the bursts with known redshift are
not different from the overall sample. Filled diamonds represent bursts for which there is a
measured redshift, unfilled circles are bursts for which there is no redshift.
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The joint sample largely stretches between the Amati limit line and the Ghirlanda limit

line (Figure 6.11). The fraction of violators is 86% for the 28 bursts with spectroscopic

redshifts and 74% for the 38 bursts without redshifts. Again, the Amati relation fails, and

there is no significant difference related to whether the burst has a spectroscopic redshift or

not. No burst significantly violates the Ghirlanda limit.

6.3.8 Konus Data

The GRB detectors on the Wind satellite (Aptekar et al., 1995) are long-running instru-

ments with a stable background that has measured many bursts, with the fluence and Epeak,obs

values promptly reported in the GCN circulars. These reported value are preliminary, with

no final analysis having been published, but any plausible errors due to the preliminary na-

ture of the report are greatly smaller than the observed scatter in the Sbolo−Epeak,obs diagram

(see Figure 6.12). A total of 97 bursts were found, 33 of which have associated spectroscopic

redshifts, with reported fluences and Epeak,obs for the entire burst interval. A bolometric

correction factor was applied, based on the given spectral fits. This factor was typically very

small, due to the large range the reported Konus fluences usually cover.

The distribution of the Konus bursts in the Sbolo−Epeak,obs diagram has a flat lower cutoff,

likely due the trigger threshold (although this cutoff is higher the reported trigger threshold

in Aptekar et al. (1995) of ∼ 5 × 10−7 erg cm−2). The distribution also shows a fairly high

upper limit on Epeak,obs due to the sensitivity of the detectors to high photon energies. From

22% to 27% of the bursts are above the Amati limit line, while all the bursts are above the

Ghirlanda limit line. The Amati relation fails for the Konus bursts. Again, the bursts with

redshifts are distributed identically to those without, so there is no apparent selection effect

based on spectroscopic redshifts.
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Figure 6.11 Combined data from Swift and Suzaku . Krimm et al. (2009) took the raw data
from both detectors and fit the combined spectra to get a better measurement of Epeak for a
large sample of bursts. Their Epeak values are used as found from the Band function. 38 of the
66 usable bursts do not have spectroscopic redshifts, of which 86% are violators. These bursts
have an average log of the energy ratio of 9.63±0.85, whereas the Amati relation requires
that this average must be less than 9.05. 28 of the bursts have spectroscopic redshifts, 86%
of those busts are violators, with an average log of the energy ratio of 10.01±1.01. Even with
the broad spectral range provided by combining theSwift andSuzaku ḋata, the Amati relation
fails. Filled diamonds represent bursts for which there is a measured redshift, unfilled circles
are bursts for which there is no redshift.
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Figure 6.12 Konus bursts. This distribution of bursts has a fairly flat bottom corresponding
to the trigger threshold for the detector. The very broad energy range of Konus allows for
Epeak,obs values to be measures from 30 keV to 2000 keV. The fraction of bursts violating the
Amati limit is 73% for the 33 bursts with spectroscopic redshifts and 78% for the the 64 bursts
without redshifts. With bursts extending down to near the Ghirlanda limit line, the observed
distribution is clearly not that of the Amati relation plus some ordinary measurement errors.
In other words, the Amati relation fails for this sample. Filled diamonds represent bursts for
which there is a measured redshift, unfilled circles are bursts for which there is no redshift.
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6.3.9 Beppo-Sax Data

Guidorzi et al. (2011) provides a large catalog of both Epeak and S from the Beppo-Sax

GRBM. In the catalog, data for the brightest 185 bursts are given; for which 129 are used. Of

the useable 129 bursts, only 10 bursts have spectroscopic redshifts. The provided Sbolo were

over the 40-700 keV range. The same type of bolometric correction is applied as before,

using the provided spectral indices for the CPL used. This correction is typically small, with

a typical correction value of 1.5.

While it is impossible to make a strong statement about the shape of the distribution of

Beppo-Sax bursts with only the bright bursts, there is still an important result from the data.

The data is plotted in Figure 6.13. Even among the brightest bursts, 90% of bursts with

redshifts and 90% of bursts without redshifts are violators. What is particularly provocative

about this result is that these are the brightest bursts, and thus the most likely to not be

violators. It is unlikely that there are a significant number of ‘missing’ bursts that would be

non-violators. Any such burst would have to be both bright and have a low Epeak while still

being dim enough to be missed in the bright burst catalog. Finally, information is provided

as to the average energy ratio of these bursts, but once again, it should be stressed that

these are only the brightest bursts in the catalog. Therefore, these values should be taken

with caution. Nonetheless, it can be said with confidence that the Amati relation fails for

Beppo-Sax bursts, although this statement is not as strong as it is for other detectors because

of the sample used.

6.3.10 Overview of Results

Previously, Butler et al. (2007) had pointed out that the normalization constant for the

Amati relation was slightly different depending on whether Swift or pre-Swift bursts were
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Figure 6.13 Beppo-Sax bursts. These bursts are taken from the Guidorzi (2011) bright
Beppo-Sax burst catalog, of which 119 bursts are used. It is found that the fraction of
bursts violating the Amati relation is 85% for bursts without spectroscopic redshifts, and
90% for bursts with redshifts. Because these are only the bright bursts, no commentary can
be made as to the distribution of bursts like was done with other detectors. Despite these
being the brightest bursts, this sample has a high violator rate. Since the brightest bursts
are the most likely to pass the Nakar and Piran test, one can say with some confidence that
the Amati relation fails for Beppo-Sax bursts. Filled diamonds represent bursts for which
there is a measured redshift, unfilled circles are bursts for which there is no redshift.
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used, and this is like noting that 〈log
E2.04
peak

Sbolo
〉 has changed. Previously, Band & Preece (2005)

and Goldstein et al. (2010) pointed out that > 80% of BATSE bursts violate the Amati

limit. In this section, these analyses have been generalized, both to looking at many GRB

detector instruments and to looking at the two dimensional distribution in the Sbolo−Epeak,obs

diagram.

All of these data sets give consistent conclusions: (1) The distribution of bursts in the

Sbolo−Epeak,obs diagram varies significantly and greatly from satellite-to-satellite. (2) The

only data sets to pass the generalized Nakar & Piran test for the Amati relation are the

early heterogeneous sample of bursts with measured spectroscopic redshifts. (3) The bursts

detected by BATSE, Swift , Suzaku , and Konus all have a high fraction (ξ > 70%) of bursts

which violate the Amati limit, with the violations being highly significant and by large

factors. That is, the Amati relation fails for bursts from these four satellites. (4) The

Amati limit is satisfied for the HETE -2 bursts, to the extent that the violator fraction is

consistent the Amati relation plus normal observational scatter, however, the scatter in the

Sbolo−Epeak,obs diagram is so large that the conclusion is that the Amati relation does not

satisfactorily apply to the HETE -2 data. (5) No bursts are found, from any satellite, that

significantly violate the Ghirlanda limit. (6) These conclusions are true whether examining

only bursts with spectroscopic redshifts or without redshifts.

The normalization factor for the Amati relation will scale closely with 〈log
E2.04
peak

Sbolo
〉. From

Table 6.1, one sees that the Amati relation must vary from detector-to-detector by over an

order of magnitude. With the bursts seen in the sky not depending on the satellite, the large

variations in the Amati relation from detector-to-detector imply that there must be some

selection effect which biases the visible bursts, with these biases being instrument-specific.
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Every burst detector has a substantially different distribution of bursts in Figures 6.7-

6.12. Since the population of bursts that appear in the skies above the Earth does not change

with the satellite, so the large changes from detector-to-detector can only be due to some

selection effect where bursts in various regions of the Sbolo−Epeak diagram are not selected.

The next section will investigate and identify these selection effects that create the Amati

relation.

6.4 The Amati Relation Comes from a Combination of

Selection Effects

The distributions of bursts in the Sbolo−Epeak,obs diagram are caused by a variety of

effects. Some of these effects are caused by detector limitations that prevent a burst from

appearing in some parts of the Sbolo−Epeak,obs diagram (Sections 6.4.1 and 6.4.2), while other

effects make for rare bursts in other regions of the Sbolo−Epeak,obs diagram (Sections 6.4.3

and 6.4.4). The combination of these effects will produce the observed distributions (Section

6.4.5). For some detectors, the selection effects will force the observed bursts to follow a

roughly diagonal region (with wide scatter) that will appear as the Amati relation (Section

6.4.6).

6.4.1 Trigger Thresholds

The best known selection effect is the detector trigger threshold. For example, a burst

would trigger BATSE only if it was produced a peak flux (in a 0.064, 0.256, or 1.024 second

time bin) brighter than 5.5-σ above background in at least two detectors over the 50-300 keV

energy range. Other satellites have more complex trigger algorithms (for example, GBM has

overlapping triggers), but they all come down to the same essentials. The trigger threshold
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depends on the Epeak,obs, the spectral energy range of the trigger, the background flux, and

the effective area of the detector. The triggers operate off the peak flux (Pmax), so the

limiting fluence will depend on the effective duration (Sbolo/Pmax), which can vary widely

from burst to burst. Thus, the limit due to trigger thresholds will be ‘fuzzy’, with no sharp

edge but rather a gradient as Sbolo is reduced. Approximately, the trigger threshold will

produce a horizontal cutoff at the bottom of the Sbolo−Epeak,obs diagram.

In principle, the exact trigger thresholds can be calculated for every detector and burst.

In practice, the conditions (Epeak,obs, background flux, incidence angle, burst light curve)

vary greatly from burst to burst, creating substantial scatter in the thresholds. For this

chapter, an accurate distribution for the Sbolo threshold is not needed, so instead the typical

Sbolo threshold is calculated as a function of Epeak,obs for average conditions. In particular, an

average spectral shape as the Band function (Band et al. 1993) is adopted with a low-energy

power law index of -1.0 and a high-energy power law index of -2.0. The effective duration of

the peak (Sbolo/Pmax) is adopted such that it fits the observed distribution of the detectors.

For each detector, values for the trigger energy range, face-on effective area, and the average

background flux are taken. The formalism and many of the input parameters were taken

from Band (2003). The result is a lower limit in the Sbolo−Epeak,obs diagram, as displayed

in Figure 6.7 for BATSE, Figure 6.8 for HETE, and Figure 6.9 for Swift . There is not

enough information to calculate trigger thresholds for some satellites, but the threshold is

usually fairly obvious (e.g., Figure 6.12 has a nearly flat and moderately sharp lower limit

to Sbolo ). These thresholds are not sharp, so bursts can easily appear somewhat below the

threshold. Indeed, by varying the input conditions somewhat, the trigger threshold lines can

be translated up and down substantially.
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6.4.2 Threshold For Measuring Epeak,obs

A second detector selection effect is that the burst must have enough photons recorded for

the analyst to be able to determine the Epeak,obs value. This will depend on both Sbolo and

Epeaks,obs as well as the detector properties. For example, a burst just above the trigger

threshold will have just enough photons to be detected but not enough photons to allow

any constraints on the Epeak,obs value, so this burst will not be included in a sample for

plotting on the Sbolo−Epeak,obs diagram. For another example, consider a burst with Epeak,obs

at the upper edge of the measured spectral range for a detector, such that a very bright

burst will have a well-measured turnover that accurately defines the fitted Epeak,obs value,

whereas a fainter burst will have poor photon statistics near the turnover in the spectrum

and the Epeak,obs value will remain unmeasured and the burst will not be included in any of

the samples.

In general, for a given Epeak,obs, there will be some lower limit on Sbolo , below which

there will be too few photons to measure Epeak,obs. As Epeak,obs moves to higher energies,

the limit on Sbolo will sharply increase. The result will roughly be a diagonal line across the

Sbolo−Epeak,obs diagram, from lower left to upper right, with any burst below that line not

having a measured Epeak,obs and not appearing in any sample of bursts in Section 6.3.

Calculations were made of this threshold curve for BATSE, HETE -2 , and Swift . To do

this, in a Monte Carlo sense, many simulated bursts were constructed over each detector’s

spectral range for many values of Epeak,obs where the normalization and error bars of the

spectra were determined by the burst fluence. These spectra were then fitted by a power

law times an exponential model (with the calculated Epeak,obs value) and a simple power

law model. If the chi-square values for the two fits differed by more than 15.0 (so that the

model with the peak was a sufficiently good improvement on power law model given the
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extra degree of freedom), then the Sbolo for the burst was taken to be above the threshold.

By varying the Epeak,obs, the threshold for measurement as a curve in the Sbolo−Epeak,obs

diagram was determined. As these lines are merely for illustration, the DRM is not used for

these simulations. For BATSE, HETE -2 , and Swift , the calculated thresholds are presented

as curves in Figures 6.7, 6.8, and 6.9.

6.4.3 The Epeak,obs Distribution

Amongst bursts appearing in the skies, the Epeak,obs distribution is not flat, but rather

bursts appear with a roughly log-normal distribution of Epeak,obs. For bright bursts, the

mean value is 335 keV, with the FWHM stretching from roughly 150-700 keV (Mallozzi et

al. 1995). This mean value shifts significantly as the bursts get dimmer, being 175 keV just

above the BATSE trigger threshold (Mallozzi et al. 1995). The so-called ‘X-ray Flashes’ are

simply bursts in the low-energy tail of the distribution (Kippen et al. 2004; Sakamoto et al.

2005; Pélangeon 2008). The existence of this single peak in the Epeak,obs histogram is highly

significant and not from any instrumental or selection effect (Brainerd et al. 1999). In all,

most bursts are between 100-700 keV, and bursts <30 keV or >1000 keV are rare. This will

directly translate to unpopulated regions of the Sbolo−Epeak,obs diagram. A direct simulation

of this distribution is given in Figure 6.4.

The Epeak,obs distribution will cause definite but gradiated cutoffs in the Sbolo−Epeak,obs

diagram. These cutoffs will be nearly vertical. The drop in the average Epeak,obs will make

the cutoff on the right have a slope down to the lower left.

6.4.4 The Sbolo Distribution

Unsurprisingly, bright bursts are rare, while faint bursts are more frequent. The distribu-

tion of burst fluences is traditionally represented by the log N(>P)− log P curve, for which
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the best observations come from the BATSE catalog (Fishman et al. 1994; Paciesas et al.

1999). For bright bursts, the slope of the curve is nearly the ideal -3
2
. The slope flattens out

for faint bursts, approaching -0.7. In the Sbolo−Epeak,obs diagram, the density of bursts falls

off drastically from bottom to top (see Figure 6.4).

6.4.5 The Effects in Combination

The intrinsic distribution of bursts in the Sbolo−Epeak,obs diagram is determined by the

Epeak,obs log-normal distribution that changes with Sbolo (Mallozzi et al. 1995) and by the

log N(> P) − log P distribution (Fishman et al. 1994). With these two effects, the burst

density across the diagram is displayed in Figure 6.4. Together, the two effects produce

burst density in the diagram Figure 6.14, and the parabolic threshold line in Figure 6.14.

These combined effects dictate that bursts in the upper-left corner of the Sbolo−Epeak,obs will

be doubly rare, as bursts in this region will be very bright and have a low Epeak,obs. In other

words, these distributions show a natural cutoff such that bursts that are below the Amati

limit are rare.

The detector selection effects then operate on the natural distribution. The well known

trigger threshold is actually below the threshold for measuring an Epeak,obs value, so only the

later selection effect is really operating. This selection effect cuts on a sort of diagonal from

lower-left to upper-right, and its position depends greatly on the detector sensitivity and

energy band for the trigger. For a relatively poor sensitivity and a trigger energy band that

effectively does not get much above a few hundred keV, the threshold will be quite high.

Indeed, for many detectors, the threshold will be just below the Amati limit line (Figure

6.14), so there will be few bursts significantly below the Amati limit line. That is, there is
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a selection effect from the intrinsic distribution of bursts such that there is a natural cutoff

below the Amati limit.

For some detectors, it is seen that the Amati relation is a natural and expected conse-

quence of the intrinsic burst distribution combined with normal detector selection effects.

This is illustrated in Figure 6.14, where the allowed region is confined to an area along the

Amati limit line. From Figure 6.3, it is known that bursts along the Amati limit in the

Sbolo−Epeak,obs diagram will then imply a relation close to the Amati relation. Thus, the

natural distribution of bursts makes for bursts above the Amati limit (i.e., the very-bright

low-Epeak,obs bursts) to be rare, while the detector selection effects makes for bursts below

the Amati limit (i.e., the faint high-Epeak,obs to be too faint to have a measured Epeak,obs.

With the only bursts remaining being close to the Amati limit line, a relation like the Amati

relation would be apparent. Thus, the conclusion is that the Amati relation is simply a

result of selection effects and there is no physical basis.

For the original bursts used to define the Amati relation (Amati 2003), an additional

selection effect is operating, in that the burst must also have a measured spectroscopic

redshift for inclusion in the sample used for calibration. The selection effects for measuring

a redshift are complex. There is certainly a selection based on redshift, with the cause being

that more distant bursts are fainter, hence less likely to have a visible optical transient or

host galaxy bright enough to get lines in a spectrum. An additional effect on redshift relates

to the availability of spectral lines in the optical band. The efficiency of measuring redshift

as a function of redshift has been quantified in Xiao & Schaefer (2011), with this effect being

roughly an order of magnitude between z =5 and nearby bursts. The efficiency of measuring

redshifts also presumably depends on Sbolo which will roughly scale as the burst brightness

in the optical band. The redshift measurement efficiency also is time dependent, as optical
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Figure 6.14 The selection effects. The two selection effects based on the intrinsic distribution
of the burst population are combined and displayed as contours of burst density. These
appear as two roughly concave-down parabolas, with each representing a different density
level. The outside region is shaded darkly so as to indicate that bursts in those regions are
rare, while the middle region is shaded a light gray to indicate that bursts in those areas of
the diagram are less common than those in the central area. Of the two detector selection
effects, the more restrictive is the requirement that the burst be bright enough to measure
Epeak,obs. Versions of these detector effects are shown in a way to illustrate how the Amati
relation bursts could be seen. The lower line illustrates a poor detector threshold (with
shading below to indicate that no bursts in that area can be measured and placed onto the
plot). The other line illustrates the result of a detector with both a poor detector threshold
and low energy range (with shading below it). For a poor detector, the bursts that can be
published and placed on this diagram are all in the unshaded and unhatched regions. The
point of this diagram is that the selection effects will force the plotted bursts to roughly lie
along the Amati limit line, and these bursts will then appear to obey the Amati relation.
Thus, simple selection effects create the Amati relation, at least for some samples of bursts.
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follow-up strategies and capabilities change within the community. Thus,Swift bursts started

out with an average redshift of 2.8 in the first year after its launch (Jakobsson et al. 2006),

while the average redshift has steadily declined to 2.1 over the last year (Jakobsson et al.

2009). The reason for this shift is unknown, but it must come from overall follow-up practices

in the community. The bursts with redshift used in the original calibration of the Amati

relation have an average redshift of 1.5, indicating that the effective threshold for this sample

is quite high.

The distribution of bursts in the Sbolo−Epeak,obs diagram will depend greatly on the de-

tector. The threshold for measuring Epeak,obs varies substantially detector to detector. For

example BATSE has a low threshold while Konus has a high threshold. The shape of the

threshold (as a function of Epeak,obs) also varies, from a flat bottom for Konus due to its

sensitivity to high energy, to the up-sloping threshold for Swift due to its lack of high energy

sensitivity and even more exaggerated inHETE -2 with its small area. The ability to measure

Epeak,obs depends critically on the energy range of the spectra. The Konus detectors have

a very wide range of spectral energy resulting in a wide range of measured Epeak,obs values,

the Swift detectors cutoff around a few hundred keV, while the Suzaku detectors can only

record Epeak,obs ∼> 200 keV. The combination of these selection effects makes the distribution

of bursts different for each detector, and accounts for the wide range of distributions seen in

Figures 6.5 - 6.12.

Still, the issue has been raised in recent tests (e.g. Ghirlanda 2011) that what is being

seen in these failures is just the scatter about a relation which is ever changing with new

bursts every day. The primary argument is that the Nakar and Piran test limit should be

formulated from the 3-sigma line about the model, instead of the model line itself. As a

result, the Amati limit would be considerably higher. There are a variety of problems with
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this argument. The first of which being that there is already an allowance made for the

Amati relation to have up to 40% violators and not be considered as failing for the data

set. Therefore, the scatters are already being accounted for, and it is overkill to use such

a generous limit to perform the test. If the test is done in this manner, no longer can

allowances be made for any violators (or, more precisely, there needs to be less than 0.3%

violators). Even by the groups own tests, there are violators on the order of a few percent,

depending on the test. This is an unacceptable violator rate considering they are violating a

limit from the three-sigma deviation from the model. Finally, another question that arises is

that the bursts seen all seem to be biased in one direction. If these results were merely the

of measurement scatter about the Amati relation, an equal fraction of bursts should been

seen well above the limit line. Instead, for almost all data sets, the bursts are systematically

in one direction from the limit.

The Amati relation will certainly see improvement in these tests in the future. With

increasing number ofSwift bursts with spectroscopic redshifts, it will undoubtedly eventually

lie right in the middle of the Swift data set. Even then, the Amati relation will be failing

for the best data sample, the BATSE data. So the argument is that there are undeniable

systematic effects at play that are causing the Amati relation, and therefore even these

‘improvements’ would be fairly meaningless as there would still be systematic differences in

where bursts are observed in the diagrams. Therefore, the Amati relation is simply not good

for making any kind of predictions, cosmological or otherwise.

Perhaps the simplest disproof of the Amati relation is simply that the violator fraction is

greatly too high in most data sets. And perhaps the simplest proof that the Amati relation is

caused by selection effects is the large differences between the various Sbolo−Epeak,obs diagrams

for the many detectors.
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6.5 Beaming Factor and the Sbolo− Epeak Diagram

The Ghirlanda relation is greatly tighter than the Amati relation, and this provides

confidence that a real physics relation is involved. Indeed, the physics behind the Ghirlanda

relation has been easily explained as the simple consequence of relativistic effects and the

viewing geometry within the usual jet model (Bloom et al. 2003; Yamazaki et al. 2004;

Eichler & Levinson 2004; Levinson & Eichler 2005; Rees & Mézáros 2005). Thus, it appears

that the Ghirlanda relation is true and physical for bursts. In the Sbolo−Epeak,obs diagram,

the Ghirlanda limit line (see Eq. 8 and many of the Figures) is reached only for bursts with

no beaming (i.e., Fbeam = 1) for a single high redshift. For Fbeam = 1, a range of redshifts

will produce bursts that are close to and just above the Ghirlanda limit line. This situation

is illustrated in the upper-left panel of Figure 6.15. Most of the simulated bursts are well

below the extreme case, so none of the bursts are actually on the Ghirlanda limit line.

The effect of beaming is easy to see, as it will only raise the bursts vertically in the

Sbolo−Epeak,obs diagram. (The real physics of the jets might result in correlations between

Fbeam and Epeak,obs, with this raising complications.) The Ghirlanda limit line (Equation

6.8) will have to be raised by the inverse of Fbeam. Figure 6.15 displays the limit lines for

beaming factors of 0.1, 0.01, and 0.001. The same figure also shows simulated bursts for the

same sets of beaming factors. Bursts for a given beaming factor are fairly tightly confined

to a narrow diagonal region just above the corresponding limit line. The center line for each

of the panels is roughly parallel to and a factor of three above the limit line. Each of the

limit lines has a constant value for E1.43
peak,obs/Sbolo. With Equation 6.8 for Fbeam = 1 and the

approximate factor of three rise, the beaming factor can be approximated as

Fbeam ≈
(

E1.43
peak S−1

bolo

2.7× 1010 erg−1 cm2

)
. (6.9)
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That is, one can estimate the beaming simply by looking at the position of the burst in the

Sbolo−Epeak,obs diagram. The bursts low down near the Ghirlanda limit line have nearly no

beaming, while the bursts high in the diagram are highly beamed.

While only approximate, the Sbolo−Epeak,obs diagram suddenly allows for measuring the

beaming distribution for all GRBs, an idea first observed by Goldstein et al. (2011b). This is

valuable because beaming can be otherwise measured only for the rare bursts with observed

jet break times, with such a restriction being realized only for heavily selected bursts. Table

6.2 presents the logarithmic average of Fbeam and θjet for the various burst samples. The

majority of the BATSE bursts extends from beaming factors of near unity to 0.001, with

a few bursts exceeding these values. By the average and RMS of the beaming factor, it is

seen that most bursts are between 0.004-0.135. This sample has the lowest threshold across

the bottom, and thus represents the most complete sample. Other satellites have higher

thresholds that cutoff the derived beaming factor distribution from the bottom end. With

this, it seems that the full population of GRBs has a typical beaming angle of ∼ 12◦, and

a typical range of around 5◦ − 30◦. This implies beaming angles substantially wider than

realized only from those bursts with θjet derived from jet break times.

The position of the bursts used to calculate the original Amati relation (see Figure 6.5)

is confined to a relatively narrow range of beaming factors from 0.001-0.01 (see Figure 6.15).

This corresponds to 2.6◦ < θjet < 8◦, which is close to the range derived from detailed

analysis of multi-wavelength afterglow light curves (Panaitescu & Kumar 2002). It is as if

the early bursts with redshifts were some selected for having a relatively narrow range of

beaming angles. A better way to say this is to realize that the early thresholds for getting

the redshifts were restricted to fairly bright bursts, and this allowed primarily bursts with

high beaming factors to be selected (and bursts with very high beaming factors are rare),
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Figure 6.15 Beaming and the Ghirlanda limit. From Equation 8, the Ghirlanda relation
demands that no burst be below some diagonal line in the Sbolo−Epeak,obs diagram, with
this line corresponding a burst with no beaming (isotropic emission with Fbeam = 1). In
principle, with beaming factors of 0.1, 0.01, and 0.001, corresponding limit lines can be
drawn, as shown in each of the panels of this figure. As in Figure 6.2, the Ghirlanda relation
as applied to a population of bursts with realistic distributions of redshift and Epeak,obs will
produce a diagram with points just above the limit line. The upper-left panel shows a set
of 100 bursts from a Monte Carlo simulation with no beaming. No detector selection has
been applied to these bursts. The bursts naturally lie typically a factor of three above the
Ghirlanda limit line, although there is a scatter of around a factor of two. The other three
panels show identical Monte Carlo simulations for 100 bursts each for which Fbeam = 0.1
(upper-right panel), Fbeam = 0.01 (lower-left panel), and Fbeam = 0.001 (lower-right panel).
With this, the position of a burst in the Sbolo−Epeak,obs diagram can be used to read off its
approximate beaming factor. Bursts along the Amati limit line will have beaming factors of
0.001-0.01. Indeed, the selection effects for some samples that allow only bursts to appear
near the Amati limit line are equivalent to a selection on the beaming of the burst. With
the realization that the position in the Sbolo−Epeak,obs diagram gives the beaming, a beaming
distribution for all bursts can now be constructed, not just those biased few for which a
redshift and jet break have been measured.
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Table 6.2. Beaming Factors for Each Data Sample

Data Set #w/z 〈logFbeam〉w/za #w/o z 〈logFbeam〉w/o za

Amati et al. 2006 50 -2.80±0.50 0 . . .
Schaefer 2007 27 -2.78±0.53 0 . . .

BATSE 0 . . . 1654 -1.64±0.77
HETE -2 12 -2.90±0.61 24 -2.45±0.67

Swift 25 -2.15±0.47 46 -2.17±0.48
Suzaku 7 -1.96±0.65 25 -1.60±0.76

Swift -Suzaku 25 -1.93±0.82 38 -2.19±0.70
Konus 33 -2.48±0.58 64 -2.20±0.68

Beppo-Sax 10 -2.57±0.33 119 -2.36±0.37

aFor this, Fbeam is not found with the use of a jet break time. Rather,
Fbeam (and hence θjet) is found for individual bursts in a sample from
Equation 6.9. The tabulated numbers are the average values over the
given sample, while the RMS scatter over the whole sample is given after
the average.
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with the resulting sample strung out along a line which then was identified as the Amati

relation.

6.6 Short Bursts

The short-hard GRBs, with the 90% duration (T90) less than two seconds, are apparently

a separate population from the long duration bursts talked about in al the previous sections.

Goldstein et al. (2010) have presented the Sbolo−Epeak,obs diagram for 168 short GRBs from

the BATSE data. They point out that the use of an ‘energy ratio’ (i.e., E1.43
peak,obs/Sbolo)

provides an excellent discriminator between long and short GRBs. This would replace the

distinction between the two classes as based on two properties (duration and hardness)

with a distinction based on only one property (the energy ratio). This new criterion has a

further advantages that it avoids a property (the hardness ratio) that is highly instrument

dependent and arbitrary, and it avoids the sticky issue of measuring the T90 duration. A

further advantage is that the energy ratio has only a relatively small dependence on the

redshift of a burst, in that the exact same burst as viewed over a range of redshifts will have

a relatively small change in the energy ratio, whereas the 1 + z factor applied to the T90

duration will substantially blur the 2-second paradigm.

For this chapter, the important point is that a short-long distinction based on the en-

ergy ratio implies that the short and long bursts occupy largely separate ranges in the

Sbolo−Epeak,obs diagram. Indeed, Figure 3 of Goldstein et al. (2010) demonstrates that the

short bursts lie just above the Ghirlanda limit line and generally below the long bursts.

Therefore, if the Ghirlanda relation applies to short GRBs, then they should all have

Fbeam ≈ 1. If short GRBs are found to have significant beaming, then the Ghirlanda relation

cannot apply to them.
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While two-seconds is often used as a a cutoff between short and long GRBs, there is

an overlap between the two populations. That is, some hard bursts that last longer than 2

seconds, and there are bursts that are shorter than 2 seconds that are soft. Unfortunately,

Goldstein et al. (2010) finds overlap between the long and short bursts using the energy

ratio that is comparable to the overlap seen using T90. Therefore, while the energy ratio

is a good way of delineating short and long bursts, it does not appear to do any better to

distinguish bursts that are ambiguous as to their classification.

6.7 Conclusions

The Sbolo−Epeak,obs diagram has two limit lines, where bursts cannot be below that line

if the Amati or Ghirlanda relation holds. Actually, with the fairly large total uncertainties,

substantially larger than the simple measurement errors quoted in the literature, nearly half

of the bursts can be expected to be scattered below the Amati limit line. So a simple test of

the Amati relation is whether the average burst falls below the Amati limit. (This is similar

to the original test proposed by Nakar & Piran, except that agreement with the Amati

relation corresponds to about 40% violators.) This test was applied to many burst samples.

The samples of early bursts with spectroscopic redshifts (as originally used to calibrate the

Amati relation) pass the test, as does the sample ofHETE -2 bursts (even though the scatter

about the Amati relation is unusably large). All other satellites have a large fraction of

violators far below the Amati limit line. This is true whether looking at bursts with or

without measured spectroscopic redshifts. This constitutes a proof that the Amati relation

could possibly apply, at best, to only a small and unrecognizable fraction of GRBs. Indeed,

the wide variations in distribution from detector to detector constitute a proof that selection

effects must dominate the Amati relation.
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Four selection effects are found that restrict the distribution on all sides. The best known

detector selection effect is the trigger threshold, which produces a roughly horizontal and

fuzzy cutoff. A more subtle and more restrictive selection effect is that for an Epeak,obs value

to be reported, the burst must be brighter than some threshold, with this threshold rising

fast with increasing Epeak,obs. These two detector selection effects will cut out bursts that

are some combination of faint and hard, with these effects changing greatly from detector to

detector. The third and fourth selection effects operate to restrict the burst population as

it appears in the sky. The third selection effect is that bursts have a log-normal distribution

of Epeak,obs with the mean value shifting to lower values for faint bursts. This effect will also

reduce the number of detectable bursts that are faint and hard. The fourth selection effect

is that bright bursts are much rarer than faint bursts, as quantified by the usual power-law

log[ N(>P)] − log[ P] curve. The combination of the third and fourth effects means that

the bright and soft bursts are doubly-rare, so that the upper-left side of the Sbolo−Epeak,obs

diagram will be empty.

For a detector with a range of spectral sensitivity and a low detection threshold, the

distribution in the Sbolo−Epeak,obs diagram will extend relatively low, with a large fraction

of violators below the Amati limit (like for BATSE). For a detector with a low energy range

of sensitivity and a low detection threshold, the cutoff will be a diagonal line just below the

Amati limit. When combined with the paucity of bright-soft bursts in the GRB population

(i.e., those above the Amati limit line), there is a combined selection effect that picks out

bursts near the Amati limit. Such a burst sample would then appear to follow the Amati

relation. Thus, the very strong selection effects for the early bursts with spectroscopic

redshifts will create the Amati relation without any need for a physical connection between

the Epeak,obs and Sbolo. That is, the Amati relation is not real, but its appearance in some
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data sets is simply a result of various selection effects by the detectors and within the GRB

population.

There are still strong reasons to believe that the Ghirlanda relation is a valid physical law

for GRBs. With this, the position of a burst in the Sbolo−Epeak,obs diagram will be a function

of its beaming factor. Along lines parallel to the Ghirlanda limit, the beaming factor is given

by Equation 6.9. This allows one to construct an approximate distribution of Fbeam for the

BATSE bursts without any selection effects. The typical beaming factor is found to be 0.02

(θjet = 12◦), most bursts have beaming factors in the range 0.004-0.1 (5◦ < θjet < 30◦), while

the extreme values of the beaming factor tending to range from 0.001-1 (from θjet = 2.6◦ to

isotropic). The bursts in the original sample for the Amati relation are stretched out along

the Amati limit line, and these correspond to beaming factors of 0.001-0.01 (2.6◦ < θjet < 8◦).

With these strong results, the Amati relation should clearly not be used for purposes of

cosmology, as has been previously done by many groups. It should be noted that for the

GRB HD, the Amati relation has not been used for any cosmological purpose by the LSU

GRB group (e.g., Schaefer 2007; Xiao & Schaefer 2011).

It needs to be emphasized that the failure of the Amati relation in no way carries any

implications for any other GRB luminosity relation. The fault of the Amati relation can

be viewed as if it is merely a version of the Ghirlanda relation except that the beaming

correction is unknown, so isotropic emission was assumed. The result, however, is that the

Amati relation is biasing itself towards some average of whatever the beaming factors of

the calibrating bursts are. All the other GRB luminosity relations do not involve beaming

corrections, and the known physics of the beaming is already accounted for in the physics

derivations of these laws. The Ghirlanda relation is in essence just a conservation of energy

statement, while the other luminosity relations (all involving the peak flux, not the fluence)
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just involve relativistic effects in the visible region of colliding jets. Indeed, most of the other

GRB luminosity relations were predicted from the physics and then later confirmed. In all,

the failure of the Amati relation is zero evidence for the validity of the other relations (many

of which were confirmed predictions) and there are good physical reasons to know that they

are valid physical laws for GRBs.



7. The Burst Pulse Paradigm

This chapter covers work that is a preliminary investigation into whether the burst pulse

paradigm can be used to improve the GRB luminosity relations.

7.1 Introduction

Recently, a number of good arguments have been made that some burst properties are

really based on individual pulses of the burst (e.g. Hakkila et al. 2008; Ghirlanda et al. 2009;

Hakkila & Preece 2011). In particular, the rise time, τrise, the lag time, τlag , the peak flux,

Pbolo, and the time-resolved Epeak . It makes good physical sense to consider these values on

a pulse-by-pulse basis as opposed to some value over the whole burst. As different pulses

will vary in luminosity, the values for these time-resolved quantities will change greatly over

the course of the burst over the course of various pulses.

Work has already been done in extracting burst pulse properties of bursts over several

detectors, including BATSE, HETE -2 and Fermi (e.g. Hakkila 2008; Hakkila & Nemiroff

2009; Hakkila & Preece 2011; Arimoto et al. 2010; Ghirlanda et al. 2010). These groups

have found a consistent (and unsurprising) trend that within an individual burst, a pulse’s

peak flux is significantly correlated with shorter τlag , τrise, and durations. Despite all this

work, the groups have yet to apply it to Swift bursts, and no work has been done towards

using this information with the GRB luminosity relations. The majority of the work in the

literature has been to advertise and test the robustness of the pulse paradigm.

144
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The formalism in idenifying and fitting pulses has been laid out in the literature. In

Hakkila et al. (2008), this is described as using the following fitting model to pulses

I( t) = A exp

[
2
(
τ1

τ2

)1/2
]

exp
[
− τ1

t− ts

− t− ts

τ2

]
. (7.1)

In this equation, A is the amplitude of the pulse, ts is the start time of the pulse, and τ1 and

τ2 and a rise and decay time of the pulse. This routine has found to be quite successful in

the literature, particularly with BATSE data. Hakkila et al. (2008) described a procedure

in which a Bayesian Blocks (Scargle 1998) method was used to identify possible pulses in

the burst. In addition, Epeak varies with time over the course of a GRB, and tends to spike

when a new pulse starts (Hakkila 2011). Nonetheless, this method cannot be completely

automated, and requires human intuition to determine pulses on a case by case basis.

This formalism provides several advantages for pulling out GRB luminosity indicators.

The most obvious is that pulling the peak flux is much more accurate when taking a fitted

light curve as opposed to some average over the brightest second of the burst. The other

advantage is that using the values from a fitted pulse would provide a purer estimate of

pulse parameters than those that have been derived from the whole burst. This is due to

the pulse parameters from the whole burst being the result of some sort of convolution of a

number of pulses. Finally, as the majority of bursts have multiple pulses, a redundancy can

be developed to improve the accuracy of a distance measure to the burst.

Swift has the largest number of GRBs with measured redshifts, and represents an un-

tapped source to apply the burst pulse paradigm to the GRB luminosity relations. A simple

way to test this is to take Swift bursts for which pulses are well separated. This idealized

case would provide a measurement of how well the luminosity relations can be improved.

This chapter highlights an investigation into such an ‘idealized’ sample. Swift bursts are

analyzed for the means of applying the burst pulse paradigm to the GRB luminosity relations.
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Overall, the Hakkila model for pulses is found to be unstable for the bursts used. The model

is not robust, an suffers from large cross terms in the covariance matricies. In addition, a

two sided Gaussian model is used on the data. While this model has less trouble converging,

it still has unacceptably large uncertainties. As such, the conclusion is that the sample is

not good for using the τrise−L or τlag−L relations. In addition, there are a number of issues

that confuse the accuracy of Epeak over these pulses. Therefore, the Epeak−Liso relation will

also be not useful for the sample. As the ‘best case’ data does not work with the Swift data,

this will likely lead to no good uses for the luminosity relations.

7.2 Data

As the luminosity relations can only be calibrated on bursts for which the distance is

known, the candidate list starts with just the Swift bursts for which there is a measured

spectroscopic redshift. The first cut made was to remove bursts for which there were ob-

viously more than one pulse overlapping (which was a sizable majority). Still more bursts

were rejected for being too noisy. These initial cuts were made via direct observation of the

light curves on the online Swift quick look data table1.

For the remaining bursts, the Swift BAT (Burst Alert Telescope) data was downloaded

through the Swift portion of the HEASARC (High Energy Astrophysics Science Archive

Center) database2. This database provides a simple means download the relevant data to a

local device.

The data was then processed through a series of routines as described in the BAT user’s

manual available on theSwift webpage3. These commands were used to update the data files

1http://swift.gsfc.nasa.gov/docs/swift/archive/grb table/
2http : //heasarc.gsfc.nasa.gov/cgi−bin/W3Browse/swift.pl
3http : //swift.gsfc.nasa.gov/docs/swift/analysis/
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using the latest calibration files, and create light curves and spectra. These processes were

checked multiple times against existing examples to ensure that the commands were being

executed properly. Batbinevt and batgrbproduct are largely the two most commonly used

routines. Batbinevt being the command for making lightcurves and spectra, and batgrbprod-

uct runs this routine for a variety of different time intervals and energy ranges (in addition

to other tasks irrelevant to this investigation).

Having confidence that these routines were being run in the proper way, light curves

were generated for the remaining set of ∼ 15 GRBs. These light curves were binned by

the normal Swift operating mode of 64ms per bin, and used the latest Swift calibration files

to automatically remove the background. This is another important strength of Swift , as

it removes any kind of arbitrary background subtraction that has to be done manually

(like with BATSE). The Swift data analysis programs take into account the various different

contributions to background that need to be considered (e.g. spacecraft motion, variations

in pointing).

The output of the light curves is generally output as a binary table (FITS). This was

converted into an ASCII (American Standard Code for Information Transfer) table for easier

use in codes by means of a personally written script in the Python coding language. The

Python package PyFITS4, as distributed by STScI (Space Telescope Science Institute), was

very useful in this task.

The light curves were once again critiqued for various quality issues. Even at this stage,

some bursts were rejected for having overlapping pulses. These pulses were averaged out

when first observed on the 1-second light curves, but appeared with the finer time resolution.

In addition, some pulses that appeared separated were merged when looked at with the finer

4http : //www.stsci.edu/resources/software hardware/pyfits
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resolution data. Still other pulses had to be removed for having pulses that were barely above

the noise and thus were too faint. The full Swift data set was reassessed to attempt to find

any additional bursts to add to the sample. For example, some bursts were included that

had two pulses, but the second pulse was far too faint to readily measure (e.g. 060904B).

In the end, the sample included 13 bursts with one good pulse (050908, 051111, 060206,

060904B 060912, 070306, 070318, 070612, 070810, 071010B, 080413B, 091018, 091020). In

addition, and only one burst with multiple pulses was suitable for use, 091208B.

7.3 The Hakkila Pulse Model

With the data set now settled upon, the next step was to fit the data to the Hakkila pulse

model (equation 7.1). The first attempt made is the simplest approach in optimization, a

brute force method. By ‘brute force’, the meaning is that every combination of reasonable fit

parameters is attempted, and the combination that provides the best fit is taken. One ‘smart’

way to perform this method is to start with a low-resolution parameter space, and once the

general area of the minima is found, then move to successfully higher resolutions. This was

done with simple coding in Python. Unfortunately, the model created a ‘wrinkly’ chi square

surface, creating many local minima. There was no simple and quick way to converge on

a solution, even with a ‘smart’ approach. Given the computational time required to run a

brute force method, another solution was sought out.

The next attempt was to try the fmin function within Scipy, a Python package. Fmin is

a package that uses the Nelder-Mead simplex algorithm (e.g. Nelder & Mead, 1965). The

general idea of a simplex is to start with a number of attempts of finding the minima, and

to gradually replace the worst of the points with a value that goes through the center of the
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worst of the others. Eventually, the simplex works its way down the slope of the chi-square

surface until it reaches the minimum.

This function converged to a solution in a much quicker manner than the brute force

method. These solutions did not prove to be very robust, and very often gave different

solutions for small changes in the initial parameters. Several attempts were made to resolve

this issue, including giving the algorithm many different starting points, setting absolute

bounds on fitting parameters, and varying the tolerance in the convergence parameters.

While these steps did seem to improve the fits somewhat, they did not resolve the underlying

issue. Computing time was going to be entirely too high to confidently identify the global

minimum. In this sense, the simplex approach was only marginally better than the brute

force method.

The Levenberg-Marquardt optimization method (Levenberg 1943; Marquardt 1963) is

a gradient-based optimization method that uses the slope of the chi-square surface to find

minima. It is generally used in non-linear optimization problems although like the simplex,

can converge on local minima easily. MPFIT is routine originally written on IDL based on

this method is also available on Python through STScI. Likewise, leastsq is another routine

in Python that uses this method. Both these algorithms failed for many of the same reasons

that the simplex method failed. There was no confidence in the results being given by the

optimization software.

At this point, there was concern that the routines failing due to poor implementation.

All previous codes (for all routines) were run for a much simpler set of data - a Gaussian

function with some arbitrary noise. These routines worked quickly and efficiently in finding

the correct answer for the data. These checks provided confidence that these routines were

being run in the correct manner.
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Curve fit, another Scipy optmizer in Python also uses the Levenberg-Marquardt method.

This routine provided a more reliable fit than the other routines, even fitting ‘known data’

quicker and more accurately than other routines. Unfortunately, curve fit also had many

of the same problems with robustness as previous routines. Small changes in the initial

conditions yielded considerably different optimization parameters. This was true regardless

of the brightness of the pulse. Even when given realistic starting parameters, the routine

would return unrealistic fits.

Another problem was that even when the routine returned reasonable values, the uncer-

tainties were entirely too large, often anywhere between one and ten times that of the actual

value. The cross terms were of similar size, only further demonstrating the poor quality

of the fits. With such uncertainties, there was no confident way to declare any set of fit

parameters as optimal.

At this point, the usage of the Hakkila formulation was questioned. The same burst data

however, seemingly had no problems being fit to Gaussian pulse models. This once again

suggested that the problem was not in how the fits were being executed, but in the model

itself. The fits were much more stable with Gaussian functions, with very little of the local

minima issues seen with the Hakkila model. As such, a new model was adopted.

7.4 The Two Sided Gaussian Pulse Model

A new model was therefore adopted, a two-sided Gaussian.. As the model implies, it is

a Gaussian function, but with different widths on either side of the peak. The function is

made continuous by ensuring the amplitude is the same. Specifically, the fitting model used
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was

I ( t) =


A e
− ( t− tp)2

2σ2
1 : t < tp

A e
− ( t− tp)2

2σ2
2 : t ≥ tp

. (7.2)

Where the amplitude A retains the same meaning as the Hakkila pulse model in equation

7.1. The standard deviations for each side of the Gaussian, σ1 and σ2, will be analogs to the

values of τ1 and τ2 in the Hakkila model respectively. The new value tp, represents the time

of the peak.

The two sided Gaussian resolved some of the issues seen within the Hakkila model.

It was far more robust, and did not suffer from the same problems with local minima as

seen previously. In most cases, with even vaguely reasonable starting parameters, the same

values were returned. Unfortunately, the error bars were still large, and still had fairly high

cross terms. These uncertainties, however, were nowhere near as large as what was being

consistently seen using the Hakkila model. Since this new model was robust, the entire data

set was fit to it. The results in these tables were further tested for robustness by varying the

fit intervals. The model provided stable results regardless of fit interval, giving confidence

in the fit values. The fit results are in Table 7.1 and Table 7.2. Swift data is typically broken

down into four channels. Channel 1 covers 15-25 keV, channel 2 cover 25-50 keV, channel

3 covers 50-100 keV, and channel 4 covers 100-350 keV. The data was fit to all individual

channels in Table 7.1 and the sum of all four channels in Table 7.2.

Physically, one should expect that the higher the energy bands will have earlier peaks.

That is, the higher the energy range of the ‘channel’, the earlier the value for tp should be.

This is a direct result of the Liang-Kargatis relation (Liang & Kargatis 1996; Crider et al.

1999; Ryde & Svensson 2000; 2002), which dictates that dEpeak/dt ∝ L. This is established

by the expected case of shocked material cooling at a rate dominated by radiative cooling.
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That is, the shocked material will cool as a function of how quickly it radiates energy away

(its luminosity). Explicitly, as the emitting region of a luminous GRB cools, the ‘peak’ of

a pulse will be seen to occur close in time between the high and low energy channels as the

burst is quickly radiating its energy away. Conversely, a dimmer burst will radiate its energy

away much more slowly and thus have a longer delay in the peaks in the high and low energy

channel. Surprisingly, the idea of using this as a form of luminosity indicator was missed

originally, and it was not until Schaefer (2004) the τlag−L relation was explained.

One of the first things to look for in Table 7.1 is tp in the individual channels. In many

cases, the peak of the pulse did not uniformly get earlier for higher energies, and in other

cases, the time of the higher energy channels had error bars too large to confidently calculate

a lag time. In still other cases, no good fit was obtained in the highest energy band due to

lack of photons. It was only for the bright bursts of the sample that a lag time could even

reasonably be obtained.

Still, most lags were unreliable. They were often too large, and very often negative,

meaning that the lag times were doing the exact opposite of what has been seen in the

literature, and what is expected physically. Table 7.3 shows a list of bursts for which lags

were obtained. These lags were between the 25-50 keV and 100-350 keV Swift channels

(channels 2 and 4), which is the traditional way of measuring lag in Swift bursts. For bursts

where no fourth channel data exists, no lag is recorded. One can see that almost all the lags

are bad in one or more of these ways described.
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Table 7.1. Two-Sided Gaussian Fits to Swift Data - Individual Channel Data

BURST CHa A tp σ1 σ2 χ2 dof
(cts s−1 detector−1) (s) (s) (s)

050908 1 1.50×10−2±2.38×10−6 301.801±7.732 10.535±6.515 8.521±6.077 1165.5 1251
2 2.80×10−2±5.44×10−6 300.450±1.223 3.650±0.903 5.876±1.092 1227.1 1251
3 1.80×10−2±5.22×10−6 302.165±1.622 3.576±1.307 3.338±1.265 1121.9 1251
4 3.00×10−3±4.81×10−6 299.491±20.305 1.367±14.544 3.823±21.749 1183.9 1251

051111 1 5.80×10−2±5.47×10−6 298.810±0.552 3.066±0.366 13.721±0.698 1584.6 1564
2 9.30×10−2±6.60×10−6 296.434±0.152 1.648±0.096 15.124±0.277 1646.2 1564
3 8.70×10−2±6.65×10−6 296.444±0.172 2.045±0.104 12.661±0.242 1673.8 1564
4 3.00×10−2±5.85×10−6 297.456±1.036 2.723±0.674 7.312±1.034 1553.0 1564

060206 1 1.01×10−1±1.33×10−5 301.454±0.033 1.353±0.022 2.433±0.028 551.7 626
2 1.34×10−1±2.09×10−5 301.436±0.024 1.401±0.016 1.949±0.018 663.1 626
3 9.70×10−2±1.70×10−5 301.514±0.028 1.475±0.021 1.360±0.020 632.3 626
4 2.10×10−2±1.10×10−5 302.563±0.142 1.870±0.198 0.350±0.095 639.8 626

060904B 1 5.30×10−2±1.57×10−5 240.282±0.156 0.640±0.106 5.528±0.306 1563.9 1563
2 8.80×10−2±2.13×10−5 240.215±0.095 0.993±0.060 4.451±0.120 1582.3 1563
3 9.80×10−2±2.30×10−5 240.402±0.061 1.113±0.039 2.969±0.058 1450.7 1563
4 2.30×10−2±1.51×10−5 239.936±0.593 0.781±0.394 3.207±0.686 1539.3 1563

060912 1 2.61×10−1±1.39×10−4 239.805±0.007 0.301±0.004 1.698±0.009 917.9 939
2 3.73×10−1±2.49×10−4 239.670±0.003 0.208±0.002 1.293±0.004 968.8 939
3 2.50×10−1±1.89×10−4 239.508±0.005 0.198±0.003 1.299±0.007 969.2 939
4 — — — — — —

070306 1 1.02×10−1±8.11×10−6 337.013±0.188 3.484±0.139 8.406±0.150 1219.8 938
2 1.27×10−1±1.01×10−5 336.994±0.130 3.209±0.094 7.989±0.101 1286.1 938
3 1.00×10−1±9.35×10−6 337.558±0.136 3.232±0.098 5.888±0.101 1185.7 938
4 2.00×10−2±3.48×10−6 339.444±1.595 6.978±1.825 3.290±1.047 924.7 938

070318 1 3.00×10−2±2.33×10−6 176.753±0.801 1.779±0.526 20.732±1.631 1622.4 1564
2 5.30×10−2±3.50×10−6 175.947±0.086 0.513±0.055 16.483±0.392 1578.8 1564
3 4.40×10−2±3.80×10−6 176.047±0.157 0.743±0.099 13.820±0.480 1690.0 1564
4 9.00×10−3±1.74×10−6 175.233±0.601 0.184±0.383 20.317±9.313 1608.3 1564

070612 1 2.40×10−2±7.50×10−6 240.473±14.164 3.563±9.574 36.173±33.512 2180.7 2189
2 3.90×10−2±9.85×10−6 235.884±3.925 2.028±2.488 34.467±11.794 2205.9 2189
3 6.60×10−2±1.72×10−5 232.962±0.193 0.052±0.112 21.014±1.886 2270.3 2189
4 1.90×10−2±1.01×10−5 235.587±18.710 5.176±12.760 16.193±19.620 2207.5 2189

070810 1 5.80×10−2±1.39×10−5 240.379±0.277 1.848±0.190 4.307±0.265 880.8 939
2 8.00×10−2±2.27×10−5 239.929±0.121 1.237±0.083 3.323±0.117 949.0 939
3 3.90×10−2±1.89×10−5 239.543±0.285 0.963±0.196 2.879±0.313 939.7 939
4 — — — — — —

071010B 1 2.57×10−1±1.56×10−5 240.268±0.013 1.221±0.008 6.625±0.017 1322.5 1095
2 3.17×10−1±2.25×10−5 240.422±0.010 1.149±0.006 5.697±0.012 1435.7 1095
3 2.01×10−1±1.72×10−5 240.330±0.013 0.976±0.008 4.650±0.015 1244.7 1095
4 3.00×10−2±6.83×10−6 240.001±0.248 1.135±0.162 3.892±0.289 1095.5 1095
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Table 7.1—Continued

BURST CHa A tp σ1 σ2 χ2 dof
(cts s−1 detector−1) (s) (s) (s)

080413B 1 5.04×10−1±3.55×10−4 239.294±0.009 0.615±0.005 1.676±0.008 529.1 469
2 7.50×10−1±6.89×10−4 239.270±0.005 0.500±0.003 1.430±0.004 624.6 469
3 6.26×10−1±6.06×10−4 239.291±0.005 0.477±0.003 1.019±0.003 491.0 469
4 1.48×10−1±2.61×10−4 239.153±0.028 0.436±0.017 0.844±0.023 467.7 469

091018 1 4.53×10−1±8.60×10−5 243.642±0.003 0.601±0.002 1.669±0.002 511.7 469
2 4.53×10−1±1.08×10−4 243.638±0.003 0.654±0.002 1.315±0.002 545.0 469
3 1.80×10−1±6.65×10−5 243.540±0.012 0.699±0.008 1.100±0.009 515.7 469
4 — — — — — —

091020 1 9.60×10−2±1.73×10−5 241.605±0.392 3.928±0.277 6.720±0.330 844.3 783
2 1.49×10−1±2.48×10−5 240.486±0.102 1.818±0.064 6.408±0.109 795.1 783
3 1.49×10−1±3.17×10−5 240.220±0.074 1.203±0.044 5.622±0.087 898.4 783
4 4.60×10−2±1.97×10−5 240.027±0.400 0.904±0.267 5.845±0.603 822.3 783

091208Bb 1 3.04×10−1±6.91×10−4 367.986±0.045 0.633±0.029 1.450±0.039 165.4 157
2 6.38×10−1±2.45×10−3 367.817±0.007 0.192±0.004 0.843±0.007 177.9 157
3 5.16×10−1±2.17×10−3 367.802±0.009 0.228±0.005 0.780±0.009 189.1 157
4 1.77×10−1±1.14×10−3 368.035±0.041 0.409±0.026 0.400±0.025 138.2 157

091208Bc 1 9.90×10−2±2.09×10−4 359.929±0.270 0.569±0.167 2.711±0.316 121.7 150
2 2.24×10−1±4.58×10−4 359.365±0.009 0.080±0.006 1.803±0.033 124.7 150
3 2.36×10−1±5.36×10−3 359.424±0.542 0.000±0.564 0.919±0.158 142.9 150
4 — — — — — —

aChannels here refer toSwift data channels. Channel 1 covers 15-25, channel 2 covers 25-50, channel 3 covers
50-100, channel 4 covers 100-350 keV.

bPulse 1.

cPulse 2.

These worries were compounded when comparing them to existing lags in the literature.

In Table 7.3 a list of lags from Xiao & Schaefer (2009) for the same bursts is provided. This

paper obtained lags from a cross-correlation technique using the same data, but measures

the lag over the whole body of the burst. For the few bursts for which there was a positive

lag time obtained (regardless of how tp behaves), the difference is taken, along with the

statistical significance of that difference. These lags are grossly different from those found

in Xiao & Schaefer (2009). In addition, for many bursts for which lags were found in Xiao

& Schaefer (2009), there was difficulty in obtaining lags using the fitting technique. For all



155

Table 7.2. Two-Sided Gaussian Fits to Swift Data - Summed 4 Channel Dataa

BURST A tp σ1 σ2 χ2 dof
(cts s−1 detector−1) (s) (s) (s)

050908 6.169×10−2±1.45×10−5 301.341±1.010 5.127±0.787 6.015±0.838 1187.455 1251
051111 2.653×10−1±2.43×10−5 296.692±0.073 1.940±0.046 13.766±0.115 1720.409 1564
060206 3.485×10−1±6.49×10−5 301.504±0.011 1.392±0.008 1.903±0.009 683.713 626

060904B 2.615×10−1±7.51×10−5 240.356±0.034 -0.988±0.022 3.879±0.040 1519.993 1563
060912 8.990×10−1±6.90×10−4 239.727±0.002 0.253±0.001 1.489±0.003 1075.425 939
070306 3.518×10−1±4.42×10−5 337.308±0.071 3.432±0.052 7.197±0.054 1686.447 938
070318 1.368×10−1±1.28×10−5 176.112±0.064 0.674±0.041 16.950±0.243 1792.030 1564
070612 1.425×10−1±3.86×10−5 236.098±1.351 2.826±0.854 29.504±2.803 2144.177 2189
070810 1.788×10−1±6.24×10−5 239.950±0.081 1.389±0.057 3.612±0.082 925.751 939

071010B 7.998×10−1±7.85×10−5 240.399±0.006 1.139±0.003 5.695±0.007 1735.342 1095
080413B 2.034±2.44×10−3 239.354±0.002 0.533±0.001 1.289±0.002 710.577 469
091018 1.092±3.17×10−4 243.660±0.002 0.629±0.001 1.467±0.001 585.627 469
091020 4.457×10−1±1.06×10−4 240.251±0.038 1.393±0.024 6.485±0.046 940.245 783

091208Bb 1.693±9.72×10−3 367.915±0.005 0.269±0.003 0.857±0.005 256.941 157
091208Bc 5.520×10−1±1.89×10−3 359.577±0.013 -0.199±0.008 1.547±0.023 139.612 150

aChannels here refer toSwift data channels. The summed 4-channel data covers the 15-350 keV energy range.
Refer to Table 7.1 for breakdown of what energy range each channel covers.

bPulse 1.

cPulse 2.

these reasons, the hope of using the τlag−L relation on well-separated Swift pulses seems to

be defeated. There is no reliable way to obtain good, reliable values for the τlag , even with

this idealized set of data.

Next, consider the τrise−L relation. The rise time of a GRB is a direct result of the

geometry of a GRB, and was predicted to correlate with luminosity in Schaefer 2002. The

idea is that the rise time is the delay between the arrival time of photons from the center

of the emitting region and the edge of the emitting region. The photons on the edge of the

emitting region will take longer to be observed simply due to the longer path length they

take to Earth. The size of the visible region is dependent on the beaming factor of the jet of

the burst, Γjet. So in turn the rise time of a burst will be proportional to Γ−2
jet . As the burst

luminosity also scales with a power of Γjet (usually accepted to be a power of about 3), the
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Table 7.3. Double Sided Gaussian Fits to Swift Data

BURST τlag
a τlag

b ∆ Significance
(s) (s) (s)

050908 0.959±20.341c — — —
051111 -1.022±1.047c 1.7±0.07 — —
060206 -1.127±0.144c 0.01±0.03 — —

060904B 0.279±0.601c 0.36±0.09 -0.08 0.13
060912 — 0.07±0.01 — —
070306 -2.451±1.600c 1.27±0.07 — —
070318 0.715±0.817c — — —
070612 0.297±19.117 0.77±0.43 -0.47 0.02
070810 — 1.09 ±0.23 — —

071010B 0.420±0.248c 0.84±0.04 -0.42 1.67
080413B 0.117±0.028c 0.23±0.01 -0.11 3.76
091018 — — — —
091020 0.458±0.413 — — —

091208Bb -0.218±0.042 — — —
091208Bc —c — — —

aLags as measured from the two-sided Gaussian.

bLags as measured from a cross-correlation function (Xiao &
Schaefer 2009).

cThe time of the peak of this burst behaves in an unexpected
way. This can be either the time of peak is not getting earlier
as a function of higher energy channels, or the time of peak goes
oscillates across the energy bands. This is a general warning that
the lag time is likely no good, in addition to any concerns that
may be raised by error bar size.
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τrise−L relation comes out of simple geometry. Explicitly, the higher the Γjet, the higher the

luminosity, and the higher the Γjet the shorter the rise time.

Recall that for the model used, σ1 is representative of the rise time of the burst. Looking

at Table 7.1, many of the same problems are seen as were seen with tp. The uncertainties

are often too high to be confident in the returned values. For many bursts, the rise time is

just as ill-behaved as tp. Here, ‘ill-behaved’ carrying the same connotation as it did before.

There is not enough confidence in these fits to use the τrise−L relation on this sample of

Swift pulses.

7.5 Calculating Epeak

The one burst parameter that stayed reasonably constant throughout this whole process

was the amplitude (see Table 7.1 and Table 7.2). The amplitude consistently returned nearly

exactly the same results every time, and generally had considerably small error bars. The

cross terms related to the amplitude were also negligible. This is fairly reasonable, as small

shifts in the other burst parameters will generally not change how high the fitted curve must

be fit to the data. This gave promise that regardless of how good the other parameters were,

the peak flux could be taken out to extract luminosities for the Epeak−Liso relation. This

meant that at least one of the luminosity relations might be useful with individual pulses.

The simplest case to start with involves the most photons, the full four-channel data.

XSPEC is a HEASARC tool designed to fit spectra that is used widely by many different

astronomers. The BAT user’s manual explicitly states that spectra created in the bat analysis

tool batbinebt are made to be used in XSPEC. There are various step-by-step guides on how

to create and fit BAT spectrum including the BAT user’s manual, and online guides5.

5e.g.,http : //swift.gsfc.nasa.gov/docs/swift/analysis/threads/batspectrumthread.html
http : //grbworkshop.wikidot.com/s9− 10− swift− bat
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Generally, Epeak refers to the time integrated Epeak , that is, the Epeak over the entire

burst. For the Epeak−Liso relation, the ‘peak Epeak ’ is needed, often called the ‘time-resolved’

Epeak (see Chapter 6 for differences in defining Epeak ). This is because the Epeak−Liso relation

uses Epeak as a sort of peak flux. As such, the time of interest (i.e. the time for which to

take Epeak over) is going to be some interval around the peak brightness of the pulse.

As has been covered in previous chapters, there are generally three types of models used

in fitting GRB spectra. The first is a simple power law,

dN

dE
= A

(
E

50.0 keV

)−α
. (7.3)

Where A is a normalization constant, α is the photon index, and there is no break in the

spectrum. If this model is the best fit for a GRB spectrum it is considered to have no

measurable Epeak . The second model is a ‘cut-off’ power law (CPL),

dN

dE
= A

(
E

50.0 keV

)−α
exp

[
− E (2.0− a)

Epeak

]
(7.4)

So the CPL model gets its name from the exponential cut off that is introduced into the

equation. Here, the extra fit parameter is Epeak , which is related to the break in the spectrum.

As there is now an extra fit parameter, the chi-square of the fit will usually improve (due

to the extra degree of freedom). As a sort of F-test, the BAT team generally suggests an

absolute minimum of an improvement of 6.0 in the value of chi-square before the model

can be considered a better fit after considering the extra degree of freedom. Finally, the

Band function is also commonly used, and has yet another degree of freedom. It is generally

described as a broken power law smoothed by an exponential, (see equation 5.1).

All the pulses were fit to all three models in XSPEC. For all pulses, the Band function

showed no significant improvement over the simpler models. In Table 7.4, the results of the

fits are presented. These fits are done over two time intervals, the full-width and half-width
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Table 7.4. XSPEC Epeak Fits to Swift Data

BURST Interval Model α Epeak A χ2 χ2
r

(keV) ph cm−2 s−1 keV−1

050908 FWHM PL 1.76±0.10 — 3.03×10−3±2.96×10−4 90.0 1.58
HWHM PL 1.58±1.03 — 4.38×10−3±3.71×10−4 71.4 1.25

051111 FWHM CPL 0.99±0.13 192.22±56.07 2.04×10−2±2.58×10−3 46.6 0.83
HWHM PL 1.23±0.04 — 1.90×10−2±3.62×10−4 58.8 1.03

060206 FWHM CPL 1.07±0.17 76.53±8.62 3.42×10−2±6.65×10−3 49.5 0.88
HWHM CPL 0.87±0.20 77.37±8.53 4.89×10−2±1.11×10−2 50.7 0.91

060904B FWHM CPL 1.07±0.17 76.53±8.62 3.42×10−2±6.65×10−3 49.5 0.88
HWHM CPL 0.87±0.20 77.37±8.53 4.89×10−2±1.11×10−2 50.7 0.91

060912 FWHM PL 1.75±0.05 — 4.80×10−2±1.29×10−3 39.9 0.70
HWHM CPL 1.13±0.21 79.29±12.52 1.18×10−1±2.74×10−2 80.7 1.05

070306 FWHM PL 1.60±0.03 — 1.86×10−2±2.71×10−4 45.6 0.80
HWHM PL 1.60±0.03 — 2.42×10−2±4.01×10−4 43.7 0.77

070318 FWHM CPL 1.10±0.16 141.47±41.62 1.17×10−2±1.98×10−3 35.9 0.64
HWHM CPL 1.00±0.17 123.50±28.56 1.79×10−2±3.25×10−3 32.6 0.58

070612A FWHM PL 1.01±0.07 — 8.28×10−3±3.47×10−4 57.1 1.00
HWHM PL 0.92±0.08 — 1.03×10−2±4.65×10−4 67.5 1.18

070810A FWHM CPL 0.38±0.39 44.39±0.11 7.03×10−2±3.40×10−2 67.6 1.21
HWHM CPL 1.19±0.37 50.07±7.30 2.66×10−2±1.25×10−2 55.1 0.98

071010B FWHM CPL 1.41±0.10 55.48±2.38 7.29×10−2±7.48×10−3 35.0 0.62
HWHM CPL 1.16±0.11 61.61±2.40 1.10×10−1±1.22×10−2 68.9 0.89

080413B FWHM CPL 0.98±0.14 87.11±7.86 2.17×10−1±3.18×10−2 103.3 1.34
HWHM CPL 0.99±0.17 93.73±12.51 2.74×10−1±4.90×10−2 32.2 0.58

091018 FWHM PL 2.34±0.04 — 1.81×10−2±3.96×10−4 54.3 0.95
HWHM CPL 1.30±0.25 43.58±0.17 3.53×10−2±1.11×10−2 53.0 0.95

091020 FWHM PL 1.40±0.04 — 2.73×10−2±5.42×10−4 39.18 0.69
HWHM PL 1.30±0.04 — 3.29×10−2±7.82×10−4 58.70 1.03
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half-maxima (FWHM and HWHM). These were estimated by using the best-fits of the total

four channel data in Table 7.2. Using the definition that a FWHM is ∼2.35σ, the rise and

decay times were each multiplied by a factor of ∼1.18 to obtain the start and stop times

for the FWHM interval. Likewise, a factor of ∼0.59 was used to find the start and stop

times of the HWHM interval. In the table, if the CPL model is not better by at least 6.0

greater in chi-square, the PL model is listed instead. Burst 091208B had too few photons to

adequately fit any models, and thus is not present in the tables.

Four of the thirteen pulses have no Epeak found, and bursts, 051111 and 070318 have very

high error bars. So the sample is not large enough to convince anyone as to the usefulness

of the Epeak−Liso relation for pulses.

Once again, a check was needed to ensure the fits were performed correctly. Sakamoto

et al. (2011) that explicitly gives CPL fits for various bursts over explicit intervals. These

intervals are for time-integrated bursts, and cover the entirety of the burst. In Table 7.5

the results these fits are presented for five such bursts. In Table 7.6, the differences along

with the significance of that difference are given. The significance is determined by dividing

the difference by an uncertainty value where the uncertainty is determined by adding the

separate measurements in quadrature.

While the fits agree within error bars, they do not yield exactly the same results. As

both fits are using the Swift BAT data over the exact same time interval, and both are

using XSPEC to make the fits, both fits should return the same values. The problems with

measuring Epeak have been well documented (e.g. Preece 2011; Collazzi et al. 2011; Chapter

5). What is being observed here is very likely some combination of Epeak evolving over the

course of the burst, and fairly high (and unavoidable) values of σChoice (see Chapter 5). Given
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Table 7.5. Sakamoto Check

Sakamoto et al. (2011) This Work
BURST α Epeak

a Ab α Epeak
a Ab

041224 -0.984+0.281
−0.264 68.9+11.7

−7 10.1+3.7
−2.6 -0.929±0.163 67.6±4.5 10.69±1.90

050117 -1.171+0.182
−0.172 130.3+70.6

−26.7 6.4+1.3
−1 -1.162±0.110 119.0±18.7 6.00±18.67

050219B -0.919+0.236
−0.224 107.9+30.2

−15.2 41.4+10.6
−8.1 -0.925±0.137 105.6±11.4 41.97±0.56

050306 -1.086+0.281
−0.265 140.3+171.5

−35.8 9.3+2.9
−2.1 -1.054±0.170 129.0±28.9 9.80±1.66

050416B -0.391+0.679
−0.585 95.7+65.5

−19.4 76.2+75.1
−34.4 -0.239±0.382 85.8±12.1 93.90±37.11

akeV

b10−3 ph cm−2 s−1 keV−1

Table 7.6. Sakamoto Check 2

BURST ∆α Significance ∆ Epeak
a Significance ∆ Ab Significance

041224 -0.06 0.17 1.3 0.16 -0.59 0.14
050117 -0.01 0.04 11.3 0.35 0.40 0.02

050219B 0.01 0.02 2.3 0.12 -0.57 0.05
050306 -0.03 0.10 11.3 0.25 -0.50 0.15

050416B -0.15 0.20 9.9 0.43 -17.70 0.21

akeV

b10−3 ph cm−2 s−1 keV−1



162

Table 7.7. Robustness Test

BURST Starta Enda α Epeak A
(s) (s) (keV) (10−3 ph cm−2 s−1 keV−1)

050117 -5.72 215.86 -1.164±0.111 120.6±18.9 6.5±0.9
4.28 225.86 -1.177±0.111 121.9±19.6 6.4±0.9
-5.72 225.86 -1.191±0.111 126.0±22.8 6.0±0.9
-15.72 225.86 -1.178±0.113 124.2±23.2 5.9±0.8
-5.72 235.86 -1.189±0.113 126.2±22.8 5.8±0.8
-15.72 235.86 -1.188±0.114 126.7±23.5 5.6±0.8
-25.72 235.86 -1.200±0.115 126.6±24.5 5.3±0.8
-15.72 245.86 -1.160±0.115 122.6±21.3 5.5±0.8
-25.72 245.86 -1.175±0.116 122.5±21.8 5.3±0.8

050219B -15.59 18.57 -0.915±0.121 110.0±10.9 82.7±9.6
-25.59 18.57 -0.972±0.124 116.1±13.8 61.8±7.3
-15.59 28.57 -0.860±0.128 103.7±9.3 68.9±8.5
-25.59 28.57 -0.918±0.130 108.5±11.5 54.2±6.9
-25.59 38.57 -0.602±1.359 114.6±9.6 48.5±6.0
-35.59 28.57 -0.601±0.135 109.9±8.7 51.0±6.3
-35.59 38.57 -0.925±0.137 105.6±11.4 42.0±5.6
-45.59 38.57 -0.449±0.150 107.0±7.9 42.9±5.8
-35.59 48.57 -1.008±0.140 109.9±14.3 34.8±4.8
-45.59 48.57 -0.567±0.150 111.2±9.7 35.3±4.9
-55.59 48.57 -0.627±0.153 115.0±11.3 30.3±4.2
-45.59 58.57 -0.562±0.157 108.8±9.5 32.4±4.7
-55.59 58.57 -0.975±0.154 104.7±13.5 26.8±4.1

050306 -13.42 187.84 -1.055±0.170 130.2±29.7 9.4±1.6
-3.42 197.84 -1.035±0.171 127.7±27.8 9.6±1.7
-13.42 197.84 -1.037±0.171 128.9±27.8 9.2±1.6
-23.42 197.84 -0.929±0.167 118.9±19.3 9.5±1.6
-13.42 207.84 -0.972±0.176 120.4±22.5 9.4±1.7
-23.42 207.84 -0.978±0.179 121.1±23.9 8.9±1.7
-33.42 207.84 -0.952±0.183 118.6±22.5 8.7±1.7
-23.42 217.84 -0.985±0.182 119.5±23.4 8.6±1.7
-33.42 217.84 -0.960±0.185 117.1±22.2 8.4±1.7

050416B -9.94 4.2 -0.151±0.671 97.1±21.7 29.3±18.7
0.06 14.2 -1.102±0.470 106.7±61.6 15.1±78.5
-9.94 14.2 -0.935±0.610 146.3±126.9 8.2±5.7
-9.94 24.2 -0.615±0.789 95.6±45.6 8.7±7.7
-19.94 14.2 -1.055±0.746 119.1±112.7 5.7±6.0
-19.94 24.2 -0.846±0.879 86.9±65.5 6.1±6.8
-29.94 24.2 -0.077±1.172 62.8±15.6 13.1±17.4
-19.94 34.2 -0.621±1.048 105.2±72.7 4.7±7.1
-29.94 34.2 -0.217±1.221 78.5±30.4 7.0±10.9

aTime in seconds from the trigger time.
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all these uncertainties in Epeak , there is little point in attempting the Epeak−Liso relation on

a pulse by pulse basis.

A robustness test was performed where fits were performed over different time intervals.

These time intervals all contained the full burst, the results of which are in Table 7.7. While

the values are all within error bars, the error bars are too large, making such a statement

fairly meaningless. So there is very little confidence in what values of Epeak to use.

7.6 Conclusions

The reality of this investigation is that Swift data cannot be used to calibrate any pulse-

based luminosity relations. In the best cases (i.e. cases where bursts are well-separated), the

bursts are either too faint to measure, or, the fits are unreliable and not robust. Large cross

terms dominate any fits looking for rise or lag times, which leads to no confidence in any of

the values obtained. In addition, when measuring Epeak , even with the same data as other

groups, many of the same scatter issues seen earlier dominate. As a result, none of the three

relations, τrise−L , τlag−L , or Epeak−Liso , can be used. Since they can not be done even in

the Earth’s rest frame, they most certainly will not be able to be done in the burst’s frame

(see Chapter 2), with less photons.

In the future, it is possible that using the less-ideal bursts for which there are overlapping

pulses can be used. In these cases, the Epeak−Liso relation could not be used. This is because

there is no way to determine what photons come from what pulses under such circumstances.

Still, the lag and rise times might be salvaged from these bursts. Unfortunately, given

the error bars on an ‘ideal’ set of data, there is little optimism that it yield a significant

improvement. It is unlikely that the pulse paradigm can be used for Swift bursts, which as

the largest sample of GRBs with known redshift, is disappointing. As Fermi gets more and



164

more bursts with redshifts, perhaps a better data set will emerge to try this study again.

As Fermi is much more like BATSE in operation, the fitting methods might transfer more

easily to that data. The outlook, however, is not optimistic.



8. Conclusions

8.1 This Work

When this work first began, there were eight luminosity relations generally accepted by

the GRB community. As has been discussed at length, these luminosity relations were known

to have various problems, and were in need of improvement. Improving the GRB luminos-

ity relations would greatly improve the GRB HD, and eventually could answer questions

regarding the high-z Universe.

The first steps in the investigation were promising. The luminosity relations were success-

fully defended against a number of good arguments against them (chapter 3). Unfortunately,

a more in-depth investigation of the Amati relation, Epeak−Eγ,iso , revealed that it owed its

existence to a combination of selection effects. Therefore, the Amati relation is not good for

cosmological purposes (chapter 6).

A different investigation went to show that the Firmani relation, Liso−Epeak T0.45 , was

no improvement over the Epeak−Liso relation (chapter 4). The first reason for this was that

the Firmani relation gained significant scatter when using independent data sets, especially

when expanded to a larger data set. Another reason for rejecting the Firmani relation is that

it is not independent of already existing GRB luminosity relations. Therefore, the Firmani

relation is not useful for cosmological purposes.

So one result of this work is that two GRB luminosity relations have been shown to

be not useful. Worse yet, there is still the case of the two relations that are of limited

usefulness (Npeak−L and V−L ). So in reality, only four relations can be confidently use

for cosmological purposes. One side effect of this is that the other four relations will suffer

165
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from a sort of guilt by association. That is, a GRB worker could incorrectly judge that the

remaining luminosity relations are also not useful simply as a result of the failures of others.

In addition, chapter 5 highlighted some very serious issues with the measurements of

Epeak . That is, the scatter in the luminosity relations can only be reduced so much because

of unavoidable sources of scatter beyond the normal Poisson scatter. Even if the community

were to adopt a strict standard, the improvement that can be gained through such standard-

ization is questionable. That is, there will always be some irreducible amount of σChoice. It is

also reasonable to assume that these uncertainties are present in the measurement of other

burst parameters, implying that other luminosity relations have some amount of irreducible

scatter.

In chapter 7, attempts to reduce some of this scatter by dividing apart GRBs into indi-

vidual pulses were not successful. Even with the ‘best case’ of well separatedSwift bursts, no

conclusive data could be obtained to perform calibrations. While the burst pulse paradigm

makes good physical sense, it appears as if any uncertainties lost by breaking convolutions of

multiple pulses will simply be replaced by uncertainties in the measurement of pulse param-

eters. Therefore, it is not clear as to how much can be gained by using the pulse paradigm

for future cosmology.

There have been some positive results as a result of this work. The analysis in chapter 5

led to the discovery that GRBs might be thermostated. This is simply a result of observing

that the distribution of observed Epeak values is of the similar width to the normal obser-

vational errors as calculated in chapter 5. As such, the intrinsic distribution of Epeak must

be small, indicating that some emission mechanism must exist to thermostat GRBs. As

the average value of the intrinsic Epeak is close to 511 keV, this implies that the emission

mechanism that is acting as a thermostat could be electron-positron annihilation.
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8.2 New Luminosity Relations?

In recent years, there have been a number of claims made for new GRB luminosity rela-

tions. These relations are often only found empirically, with little to no physical explanation

for their existence. Unfortunately, these luminosity relations have had considerable doubts

raised against them. There does not appear to be any ‘new’ luminosity relation in the

literature that has any promise.

For example, Danotti et al. (2008; 2010; 2011) proposed a correlation between the break-

time in the X-ray afterglow light curve (Ta) to the luminosity in X-rays at that time (Lx).

The break time here is defined as the time where the afterglow light-curve transitions from

an exponential to a power law decay. However, recent work by Cannizzo et al. (2010) suggest

that the relation may be due to a kind of Malmquist bias where the breaks in faint bursts

are not observed. Indeed, the Dainotti group itself has recently softened its statements as

to the strength of the relation in recent work.

Panaitescu and Vestrand (2008) proposed a similar idea using optical afterglows. Here,

the peak flux in the optical is correlated in a simple power law with the time of that peak.

This relation then only applies to the small subset of bursts that not only have an optical

transient, but also have this peak observed early in the optical transient. Recently, enough

new bursts have been observed to warrant a recheck of the original analysis. In two separate

studies, several new bursts were tested against this relation, and no convincing correlation

was found (Klotz et al. 2009; Kann et al. 2010). Recently, this same finding was made

independently by Bradley Schaefer and Rebecca Fitzgerald at LSU. Consequently, the last

two attempts at finding new GRB luminosity relations have failed.

Tsutsui et al. (2009) makes a similar suggestion as made by Firmani et al. (2006) that

the addition of a duration will improve the Epeak−Liso relation. The proposed duration is
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T=E peakL, which is a sort of equivalent width. This idea, however, was already disproven

in Collazzi & Schaefer (2008) (also see Chapter 4). In that work, one of the alternative

durations used was Sbolo/ Pbolo. By simple application of the inverse square law, one finds

that these are exactly the same duration. Collazzi & Schaefer (2008) found that Sbolo/ Pbolo

yielded no significant improvement to the Epeak−Liso relation.

8.3 The Path Forward

There are a few studies that can be done in the near future to further assess the GRB

luminosity relations. One such path is to perform the same type of analysis of chapter 5 on

other GRB luminosity indicators. Indeed, in Chapter 7, it was seen how greatly lag and rise

time can vary as a result of analyst choices. This gives cause to believe that all the other

luminosity indicators might have similar size widths in σTotal as was seen in Epeak . This

again suggests a need for standardization in the measurement of these burst parameters.

However, this is very difficult given the chaotic nature of GRBs, vast differences in detector

thresholds, and general disagreements in how the parameters should be measured.

This also introduces the common question of what is the best detector to use. The answer,

unsurprisingly, is that it depends on what question is being asked. For example, Swift and

Konus have the largest numbers of bursts with known redshift, and would therefore be the

obvious choice for calibrating GRB luminosity relations. However, the Konus team has never

released an official catalog of bursts. Most of the results must be taken from preliminary

analysis in the GCNs. In addition, Swift data and analysis tools are far more accessible,

making it the better choice of the two. If the worker is trying to answer a question for which

the redshift is unneeded (e.g. chapter 6), BATSE would be the obvious choice. BATSE
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covers the widest range of energies and has the most bursts seen of any detector. Therefore,

BATSE would be the obvious best choice for demographic studies.

A revisit of all GRB luminosity relations for all bursts with cosmological redshifts is

needed. The last such test, Schaefer (2007) is now nearly five years old, and the data

set can easily be tripled. This investigation would go far beyond a simple ‘redo’ with an

expanded data set. Some of the lessons learned over the last few years can be applied to a

new investigation. As an example, it would be appropriate to construct and calibrate the

GRB luminosity relations just for Swift bursts, and compare those fits to the calibrations

for the total data set. This would be building based on the lessons of chapter 6, which

showed that different groups with different detectors can add significant scatter. Chapter

6 also demonstrated how greatly different the time-resolved and time-integrated Epeak can

be. Therefore the Epeak−Liso relation should really be calibrated with just the time-resolved

Epeak , not a mix of time-resolved and time-integrated Epeak . Another attempt would be to

compare the scatter in the luminosity relations from data in the literature as compared to

data derived independently.

The future of the GRB luminosity relations lies chiefly with what predictions can be

made from them. The ideal scenario would be a type of rapid-response system where the

GRB luminosity relations are used to predict the redshift of a new burst accurately and

reliably. This is not a new idea, but the current accuracy of the luminosity relations has

made this difficult to do. Ultimately, however, the best way to convince the community is to

demonstrate consistency between the GRB HD and the SN HD (i.e. for z<1.4). In addition,

the GRB HD would need to have a narrow distribution of hundreds of bursts around some

plausible cosmology.
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Rees, M. J. & Mészáros, P. 2005, The Astrophysical Journal, 628, 847.

Rhoads, J.E. 1997, The Astrophysical Journal Letters, 487, L1.

Rizzuto, D., et al. 2007, Monthly Notices of the Royal Astronomical Society, 379, 619

Rossi, F., et al. 2008, Monthly Notices of the Royal Astronomical Society, 388, 1284.

Ryde, F. & Svensson, R. 2000, The Astrophysical Journal, 529, 13.

Ryde, F. & Svensson, R. 2002, The Astrophysical Journal, 566, 210.

Sakamoto, T., et al. 2005, The Astrophysical Journal, 629, 311.

Sakamoto, T., et al. 2008a, The Astrophysical Journal Supplement, 175, 179.

Sakamoto, T., et al. 2008b, The Astrophysical Journal, 679, 570.

Sakamoto et al. 2011, ApJS, Accepted, astro-ph/1104.4689

Sari, R. et al. 1998, The Astrophysical Journal Letters, 497, L17.

Sari, R. et al. 1999, The Astrophysical Journal, 519, L17.

Salvatera, R. et al. 2009, Nature, 461, 1258.



176

Sandage, A. 1958, The Astrophysical Journal, 127, 513.

Scargle, J. D. 1998, The Astrophysical Journal, 504, 405.

Schaefer, B. E. 2002, Gamma-ray Bursts: The Brightest Explosions in the Universe (Cam-
bridge, MA: Harvard Univ. Press).

Schaefer, B.E. 2003a, The Astrophysical Journal Letters, 583, L67.

Schaefer, B.E. 2003b, The Astrophysical Journal Letters, 583 L71.

Schaefer B.E., 2004, The Astrophysical Journal, 602, 306.

Schaefer, B.E. 2007, The Astrophysical Journal, 660, 16.

Schaefer, B.E. & Collazzi, A.C. 2007, The Astrophysical Journal Letters, 656, L53.

Schaefer, B.E. et al. 1994, The Astrophysical Journal Supplement, 92, 285.

Schaefer, B.E. et al. 2001, The Astrophysical Journal Letters, 563, L123.

Schmidt, M. 1968, The Astrophysical Journal, 151, 393.

Schmidt, M. et al. 1988, The Astrophysical Journal Letters, 329, L85.

Stanek, K.Z. et al. 2003, The Astrophysical Journal, 591, L17.

Tanvir, N.R. et al. 2009, Nature, 461, 1254.

Thompson, C. et al. 2007, The Astrophysical Journal, 666, 1012.

Tsutsui, R. et al. 2009, Journal of Cosmology and Astroparticle Physics, 8, 15.

Uehara, T. et al. 2007, GCN Circ. 6396.

van Paradijs, J. et al. 1997, Nature, 386, 686.

Vianello, G. et al. 2009, Astronomy & Astrophysics, 495, 1005.

Wiltshire, D.L. 2007, Physical Reviews Letters, 99, 251101.

Woosley, S.E. 1993, The Astrophysical Journal, 405, 273.

Woosley, S.E. & Bloom, J.S. 2006, Annual Reviews of Astronomy & Astrophysics, 44, 507.

Wright, E.L. 2007, The Astrophysical Journal, 664, 633.

Xiao, L. & Schaefer, B.E. 2009, The Astrophysical Journal, 707, 387.

Xiao, L., & Schaefer, B. E. 2011, The Astrophysical Journal, accepted.

Yamazaki, R. et al. 2004, The Astrophysical Journal, 606, L33.

Yonetoku, D. et al. 2004, The Astrophysical Journal, 609, 935.



Appendix

Letters of Permission

A.1 Permission to Reproduce Previously Published Work

Permissions to reproduce material appearing throughout this thesis (most notably in Chap-

ters 2, 3, 4, and 5) were obtained through direct contact with the Institute of Physics Pub-

lishing department of Copyright and Permissions. The material is reproduced by permission

of the American Astronomical Society. Each chapter specifically references the papers in-

volved, but the full references are also here for completeness:

Schaefer, B.E. & Collazzi, A.C. 2007, The Astrophysical Journal Letters, 656, L53.

Collazzi, A.C. & Schaefer, B.E. 2008, The Astrophysical Journal, 688, 456.

Collazzi, A.C. et al. 2011, The Astrophysical Journal, 729, 89.

A.2 Permission to Reproduce Figure 1.2

This figure was reproduced by the permission of the American Astronomical Society.

177



Vita

Andrew Charles Collazzi was born in Ridgewood, New Jersey, on March 16, 1984. He

earned his bachelor’s degree in physics and mathematics with honors in astronomy in 2006

from Vanderbilt University, and his master’s degree in physics in 2010 from Louisiana State

University. The degree of Doctor of Philosophy in physics will be conferred on him by

Louisiana State University at the August 2011 commencement ceremony.

178


