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Abstract 

Purpose:  To develop an improved nuclear halo dose model of a pencil beam algorithm (PBA) 

for dose calculation of proton beams in heterogeneous media.   

Methods:   The proton PBA consisted of a central axis term and an off axis term.  The central 

axis term was determined from a central axis depth dose profile of a Monte Carlo simulated 

proton beam in water and was scaled by a mass stopping power ratio to account for other 

materials.  The off axis term was determined from Fermi-Eyges scattering theory with material-

dependent scattering powers to calculate the lateral spread of the proton beam in 

heterogeneous media. The nuclear halo dose, which was caused by large angle and non-elastic 

scattering events, was modeled using two terms: a Gaussian distribution and a Cauchy-Lorentz 

distribution.  Depth-dependent widths and amplitudes of each distribution were determined by 

fitting a simulated 1-mm x 1-mm pencil beam in water.  The PBA was evaluated in 

approximately 30 test phantoms containing bone and/or air heterogeneities at 4 energies and 

for 2 field sizes.   Agreement between PBA and Monte Carlo simulations of the test conditions 

was quantified by computing the percentage of points within 2 percent dose difference or 1 mm 

distance to agreement. 

Results:  With the improved nuclear halo model, PBA calculations showed better than of 97% 

of dose points within 2% or 1 mm of MC distributions for all geometries examined.  For 

phantoms containing laterally infinite heterogeneities, agreement between PBA and MC 

distributions was 100% at 2% or 1mm.   For phantoms containing laterally finite heterogeneities, 

agreement was at least 97%.  The points failing were due to the central axis approximation of 

the PBA in regions not influenced by the nuclear halo model. 

Conclusions:  The nuclear halo model developed in this work improves the agreement of the 

PBA with MC simulations in heterogeneous phantoms, particularly in low-dose regions that can 

be important for scanned-beam proton therapy. 
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Chapter 1: Introduction 

1.1 Background and Significance  

1.1.1 Physics of Proton Radiation Therapy 

Radiation is used to treat cancer by depositing energy into tumors.  Different types of 

radiation exhibit different energy deposition characteristics. As will be shown, high-energy 

protons offer fundamental advantages in energy deposition over other types of therapeutic 

radiation such as photons. The dosimeteric benefits of protons come to light in the physics of 

the interactions between the protons and different materials.   

Interactions between protons and matter can be broken up into three main categories: 

energy loss, scattering, and nuclear interactions.   

1.1.1.1 Energy Loss 

Protons lose their energy predominately by the excitation and ionization of orbital electrons of 

the target media.  The mechanism of this interaction is the Columbic force between the proton 

and the electron.  This can be described by imaging the following scenario described by Turner 

(2004).  Imagine a proton traveling at a velocity V through a ring db thick by dx wide with a 

radius b (Figure 1.1). Further imagine there is an electron located in this ring that will feel a 

Columbic force from the proton as it approaches. 

 

Figure 1.1:  The geometry of a proton with velocity V interacting with an electron located in the 
ring with a thickness db, width dx, and a radius b.  Figure from Turner (2004). 
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If one starts with Newton’s second law (Eq. 1), the momentum p imparted on the electron 

from the proton via the Coulomb force can be determined.   Assuming that the net force along 

the direction of travel of the proton is 0, the force is completely in the perpendicular direction.  

 
𝑑𝑝
𝑑𝑡

= 𝐹 = 𝑘𝑜𝑧𝑒2
cos𝜃
𝑟2

= 𝑘𝑜𝑧𝑒2
𝑏
𝑟3

 (1)  

Where, b is the impact parameter or perpendicular distance between the proton and electron, r 

is the straight line distance between the proton and the electron, ѳ is the angle between r and b, 

ko = 8.9876 x 109 Nm2 C-2, e is the charge of an electron, z is the atomic number of the 

projectile and ze is the charge of the projectile.  By integrating over time as shown by Turner 

(1995), the energy lost by a proton (Q) from a single electron located in the ring is inversely 

proportional to the energy of the proton and is shown below. 

 𝑄 =
𝑝2

2𝑚
=

2𝑘𝑜2𝑧2𝑒4

𝑚𝑉2𝑏2
 (2)  

Where V is the velocity of the proton, and m is the mass of the proton.  The differential energy 

deposited to n electrons per unit volume in the ring is then  

 −𝑑𝐸 =
2𝑘𝑜2𝑧2𝑒4

𝑚𝑉2𝑏2
(2𝜋𝑛𝑏 𝑑𝑏 𝑑𝑥) (3)  

  
The differential energy loss per infinitesimal distance dx is the called the linear stopping power 

and can be found from equation number three by integrating with respect to b.   

 
−𝑑𝐸
𝑑𝑥

=
4𝜋𝑘𝑜2𝑧2𝑒4𝑛

𝑚𝑉2
�

𝑑𝑏
𝑏

𝑏𝑚𝑎𝑥

𝑏𝑚𝑖𝑛

=
4𝜋𝑘𝑜2𝑧2𝑒4𝑛

𝑚𝑉2
𝑙𝑛
𝑏𝑚𝑎𝑥

𝑏𝑚𝑖𝑛
 (4)  

Equation 4 predicts a large and infinitesimally narrow peak of energy deposition as the 

protons approach zero energy.  This is called the pristine Bragg peak and, depending on the 

incident energy, occurs at different depths. In reality, each proton undergoes stochastic energy 

loss, causing a broadening of the Bragg peak called range straggling.  Because of range 

straggling and variations in path lengths due to scattering, the Bragg peak has a width that can 

be described by a Gaussian.  Since all incident protons stop at nearly the same depth, 
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Gottschalk (2009b) determined the rms width of Bragg peak is approximately 1% -1.5% of the 

range, i.e. the depth of distal 80% of Bragg peak (d80).  A full quantum mechanical and 

relativistic treatment of the problem has been shown by Bethe (1930).  Berger (2005) computed 

the stopping powers for protons in this manner and the stopping power of protons in water can 

be seen in Figure 1.2.  The Bragg peak and the finite range of protons have been the largest 

motivations for their use in radiation therapy (Figure 1.3).   

 
Figure 1.2:  Linear stopping power for liquid water plotted vs. proton energy.  Data from Berger 
(2005). 

 

Figure 1.3:  Relative energy deposition vs. depth for a 250 MeV proton beam incident on water. 

1.1.1.2 Scattering 

The scattering of protons is predominantly due to the Columbic elastic interactions with the 

target nucleus, resulting in small angular deflections with minimal energy loss. Deflections of the 
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proton due to the Coulomb force can be categorized as multiple Coulomb scatter (most 

common), plural scatter (less common), and single scatter (least common). Multiple Coulomb 

scattering (MCS) is defined as many small angle scatter events.  Single scatter is defined as a 

single relatively larger deflection than the deflections caused by MCS.  Plural scattering is 

defined as an intermediate number of scattering events between single and multiple scattering.  

Even though these interactions occur with the nucleus, they are not generally referred to as 

nuclear interactions as they are due to the electromagnetic force, not the nuclear force.  The 

term nuclear interaction will be reserved for inelastic and non-elastic collisions with the nucleus 

which is discussed later.  

The distribution of charged particles incident on a thick target was described by Moliere 

(1948) and the application of this work to protons was provided by Gottschalk (1992).  The 

distribution is characterized by a Gaussian first term combined in a power series with higher 

order terms.  Due to the complex form of this distribution, it is desirable make approximations to 

this theory that can be more easily adapted for use in dose calculation.  Gottschalk (2009a) 

provides a review of different approximations to Moliere theory and their accuracy.   

1.1.1.3 Nuclear Interactions 

Nuclear interactions between incident protons and the nucleus can be classified into three 

categories: elastic, inelastic and non-elastic.  Elastic interactions occur when a proton and the 

target nucleus interact and all the kinetic energy is conserved between these two bodies (this is 

exclusive of Coulomb scattering). The target nucleus after this interaction remains in the ground 

state.  By contrast, inelastic interactions do not conserve kinetic energy between the two bodies, 

because some of the kinetic energy of the incident proton is transferred to the target nucleus, 

elevating it to an excited state.  Finally, non-elastic interactions with the target nucleus occur 

when the kinetic energy is not conserved between the two bodies and part of the incident 

energy is used to overcome binding energy in the target nucleus.  This results in secondary 

particle production.  Possible secondary particles include protons, neutrons, alphas, other heavy 
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fragments, gamma rays, and the residual recoil nucleus of the target.  An example of each 

interaction type is listed in Table 1.1 

Table 1.1: Example proton nuclear interactions (Gottschalk 2009b). 

Interaction type Example reaction 

Elastic 𝑝 + 𝑂16 → 𝑝 + 𝑂16  

Inelastic 𝑝 + 𝑂16 → 𝑝 + 𝑂∗16  

Non-elastic 𝑝 + 𝑂16 → 𝑝 + 𝑝 + 𝑁15  

      

In summary, the physics of protons interacting with matter can be broken up into three main 

categories:  inelastic Coulomb interactions with orbital electrons that are responsible for the 

majority of the energy loss of the protons; elastic Coulomb interactions with the nucleus that are 

responsible for the majority of lateral deflections of the protons; inelastic interactions with 

nucleus that are responsible for energy loss, scatter, fluence loss and secondary particle 

production.  

1.1.2 Basic Principles of Proton Radiation Therapy  

 
Figure 1.4:  Dose distribution comparison between photons and protons.  This highlights two 
key advantages of protons; finite range and target conformity with one beam.  Figure from Smith 
(2009a). 
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Consider a tumor located at depth (Figure 1.4). The goal is to kill the tumor with a given dose 

(energy per unit mass), while also minimizing the dose delivered to the normal, healthy tissue.  

For deep seated tumors this has been accomplished in the past with high energy x-ray beams 

of 4-20 MV.   X-rays or photons deposit energy in the patient by producing secondary electrons 

in the patient, which in turn, excite and ionize more electrons.  This causes a buildup in dose 

until there is equilibrium between the number of electrons being produced and the number of 

them stopping (e.g. charged particle equilibrium).  After charged particle equilibrium is 

established, dose decreases with depth as photon fluence is exponentially attenuated.  Since 

the maximum dose is delivered near the skin, deep-seated tumors must be treated with multiple 

beams to avoid over dosing regions proximal to the tumor.  This increases the integral dose to 

the patient and more normal tissues are treated. 

In contrast, proton beams if the appropriate energy (100-250 MeV) can reach the target while 

depositing less dose proximal to the target and insignificant dose to tissues distal to the target 

(Figure 1.4).  The peak of monoenergetic proton beam is called a pristine Bragg peak; however 

multiple peaks of beams with different energies summed together with the proper weighting are 

typically used to create a spread out Bragg peak (SOBP) that covers the target in depth (Figure 

1.5).  

 

Figure 1.5: The addition of multiple pristine peaks adds up to a spread out Bragg peak that 
covers the target while still sparing everything behind it.  Figure from Kahn (2010). 
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.  Unlike the target shown in Figure 1.5, tumors are not often at a uniform depth with constant 

thickness and in a homogenous medium.  Imagine something a little more realistic, a non-

uniform tumor with a critical structure behind it and heterogeneous tissue in front of it (Figure 

1.6).  The goal is to deliver the dose to the target volume and spare as much healthy tissue as 

possible while taking particular care in avoiding critical structures.  With proton therapy there are 

two modality options to accomplish this, passively scattered proton therapy and scanned beam 

proton therapy.  In both cases the proton beam starts out as a very narrow pencil beam that 

needs to be either spread out or scanned to cover the target.   

 

Figure 1.6: Image of a patient geometry.  Figure adapted from Chu et al (1993). 

 

Figure 1.7:  Schematic of a typical passive scattering system.  Note the treatment volume 
conforms to the lateral and distal edges but does not conform to the proximal edge of the target 
volume.  Figure from Chu et al (1993).  Note the area in red is receiving 100% of the treatment 
dose. 

In passive scattering a spread out Bragg peak is created by using a rotating range modulator 

wheel.  The range modulator wheel has different thickness and width steps of a low z material.  
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The wheel is rotated in the beam to select the depth and intensity of each pristine peak to be 

added to make the SOBP.  The range of each pristine peak is selected by the thickness of the 

step in the wheel, and the intensity of the peak is selected by the width of the step in the wheel.  

This insures that the spread of Bragg peak covers the full extent of the target, from the distal 

most edge to the proximal most edge.  

Next the beam is laterally broadened using a dual foil scatter system.  The first foil consists 

of high atomic number (Z) material and is used to spread the original small beam out to a larger 

Gaussian shape.  A second composite low Z and high Z foil is used to flatten this beam.  The 

high Z material is used in the middle to spread out the Gaussian core.  The low Z material is 

used to produce the same amount of energy loss along the edges.  This produces a flat uniform 

beam that can cover the tumor.  A collimator near the patient is then used to conform this 

uniform beam laterally to the shape of the target volume.    

To conform the dose to the distal edge of the target, a water equivalent range compensator 

is used (Urie et al. 1984).  The compensator is designed with as little or as much water 

equivalent material as needed to make sure the distal edge of the spread out Bragg peak 

conforms to the distal edge of the target.  Materials with low atomic number are desirable for a 

compensator because the goal is modulate the range of the protons not spread them out.  Since 

scattering is dependent on Coulomb interaction with the nucleus and energy loss is dependent 

on Coulomb interaction with orbital electrons it is beneficial to use low atomic number materials 

to minimize scatter relative to the energy loss in the compensator. 

Since energy loss is a function of electron density, heterogeneities have a significant effect 

on the range of the protons.  Thus, one must be cognoscente of the path length of protons 

traveling to the target.  The path length of a proton passing through different media is usually 

compared to the path length as if it was passing through water only.  For instance, 250 MeV 

protons lose approximately 1.7 times the energy going through one cm of bone compared to 

one cm of water.  A 250 MeV proton beam incident on a water phantom will have a range of 
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approximately 38 cm.  If two centimeters of bone is inserted in the water phantom the range will 

be reduced to approximately 36.55 cm, because the two centimeters of bone is equivalent to 

approximately 3.45 cm of water.  Therefore the bone causes a reduction in the range of 1.45 

cm.   It is very important to take this into account when designing the compensator and selecting 

the correct range modulator wheel to ensure the target volume is covered.   

The largest drawback of the passive scattering system is that the dose is only conformed to 

the distal edge of the target volume and not to the proximal side of the target (Figure 1.7).  

Since the spread out Bragg peak is designed to cover the thickest part of the target volume 

conformity to the proximal side is lost on any part of the tumor that is thinner.  This will lead to 

normal tissue upstream of the target being treated to the full treatment dose. 

The use of multiple beams reduces doses to proximal tissues:  For example, consider two 

apposed beams (Figure 1.8), for which case the dose distal to the tumor now increases.  

Essentially the non conformity of the proximal side of target volume is still occurring but since 

multiple beams are used the overdosed area receives a fraction of the treatment dose instead of 

the full treatment dose.  This comes at the expense of raising the integral dose.  Therefore it is a 

balancing act of the area receiving radiation vs. the amount of the radiation received outside the 

treatment volume.   The use of multiple beam (>2) and their direction is optimized as part of the 

treatment planning process. 

 

Figure 1.8:  Schematic of a passively scattered two beam technique.  The red area is receiving 
100 percent of the treatment dose.  The pink area outside would be receiving 50 percent of the 
treatment dose.  In Figure1.5 both areas would correspond to 100 percent of the treatment 
dose.  Note the absence of the critical structure on the right of the target volume.  Structures 
around the target volume determine which technique is appropriate.  Figure adapted from Chu 
et al (1993). 
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An alternative to passive scattering is pencil beam scanning (Figure 1.9).  Pencil beam 

scanning systems use magnets to scan the narrow proton beam back and forth to cover the 

target instead of scattering it out to cover the target.  To do this, the target is broken into spots 

layered with depth.  At every layer the pencil beam energy is selected to match the range with 

that depth and the beam is scanned across the target.  The process is repeated for the next 

layer and then the next until the tumor is covered.  By doing this dose is conformed to the target 

on all sides of the target and the problem of excess dose on the proximal side of the target is 

taken care off. 

 

Figure 1.9:  Schematic of typical proton pencil beam scanning beam system.  The treatment 
volume is conformed on all sides of the target volume.  Figure from Chu et al (1993). 

1.1.3 Dose Calculation and Treatment Planning Systems 

Regardless of the manufacturer or modality type in order to use protons clinically one must 

be able to plan the treatment of the patient.  Treatment planning systems allow physicians to 

simulate multiple treatment scenarios for a given patient in order to arrive at a final treatment 

plan that maximizes the therapeutic ratio.  To accomplish this goal, a treatment planning system 

requires the patient’s anatomical data, contouring anatomy, beam selections, optimization, dose 

calculation, and dose analysis tools.  The dose delivered to the target volume and surrounding 

tissues is calculated and visualized on the patient anatomical data.  This must be an accurate 
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dose calculation.  Several techniques of dose calculation for proton therapy have been reported:  

Monte Carlo methods, convolution algorithms, broad bream algorithms and pencil beam 

algorithms.   

Monte Carlo methods for dose calculations of proton beams have been shown to be in very 

good agreement with measurement in previous works (Pedroni 2005, Soukup 2005, Titt 2008, 

and Zheng 2007).  This has lead Monte Carlo techniques to become the gold standard in dose 

calculation for protons.  The idea behind Monte Carlo methods is to track each proton 

individually and model the physics of each interaction with probability distributions. A table of 

stopping powers along with a correction for range straggling are used to model energy loss as 

the proton is transported.  A probability distribution to model Coulomb scatter from scattering 

theory is used along with distributions for the different nuclear interactions described in section 

1.1.1.  The probabilities of nuclear interactions are taken from models or measured data.  

Knowing the energy of the proton and the probability distributions of the different interactions, a 

random sample is taken from those distributions to determine what happens to the proton.  After 

each interaction, the amount of energy lost and the particle’s displacement is tracked and the 

process is repeated until the proton is out of energy. 

 In general, Monte Carlo methods are much slower computationally than analytical methods.  

Although assumptions can be made to improve the computing speed; this comes at the 

expense of accuracy.  As computing power continues to grow and become less expensive 

Monte Carlo methods may become more viable for clinical use; however, at present, Monte 

Carlo dose calculations are considered too slow for routine clinical use in proton therapy. 

Convolution methods work as the name suggests; dose is determined from the convolution 

of fluence and a dose kernel.  The dose kernel is the dose distribution from an infinitesimally 

wide proton beam incident on water.  The dose of kernel itself is described by a central axis 

term and an off axis term stored in look up tables.  These values can be derived from 

measurements or Monte Carlo simulations in water.  The fluence is parameterized as a function 
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of depth using measurements in air downstream of all scattering devices in the beam.  The total 

dose is then given by the convolution of all the infinitesimal kernels in the field and the proton 

fluence.  This is shown in Eq. 5 from Schaffner (1998) and visually in Figure 1.10.  Note that the 

kernel is a function of energy, which is controlled by the number of range shifter plates (Nrs).  .  

In order to account for different materials in the beam, the water equivalent range (wer) is 

tracked similarly to the process used for the design of the compensator of passively scattered 

proton beam.  For example in Figure 1.10 note the scaling of the range of the different beamlets 

traveling through different materials 

 𝐷(𝑥,𝑦, 𝑧,𝑁𝑟𝑠) = ∑ ∑ Φ(𝑥 − �̅��̅�𝑦� ,𝑦 − 𝑦�, 𝑧,𝑁𝑟𝑠)𝐾(�̅�,𝑦�,𝑤𝑒𝑟(�̅�,𝑦�, 𝑧),𝑁𝑟𝑠) (5)  

 

Figure 1.10:  Example of a dose kernel convolution method.  This describes a proton beam 
incident on a water phantom containing two heterogeneities (high density in white and low 
density in black). Fluence (profiles plotted in red at two depths) have been calculated for each 
depth and the beam has been split up into beamlets (seen in black).  The ranges of the 
beamlets are scaled to account for the heterogeneities.  The convolution of these two gives 
dose (seen in the color map).  Figure from Schaffner (2007). 

The convolution method provides a quick way to calculate dose, but there are a few 

drawbacks.  The models of the dose kernels are all derived from water, whereas the true width 

of a dose kernel should be material dependent and dependent on the depth and size of the 

material as well.  In this model only the central axis depth dose or range of the kernel is scaled.  

There is also a problem with the kernels near a material with sharp lateral edge.  Whatever is 
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along the central axis of that kernel is used to determine the range of the entire kernel. This is 

called the central axis approximation.   For example, if nearly half the kernel is in water but the 

center of the kernel is in air it assumes the range of the entire kernel is extended.  In actuality, 

the kernel would be split, with nearly half having the nominal range in water, nearly half having 

the increased from going through air, and some small portion being in-between.  This occurs 

whenever there is heterogeneity with a sharp lateral edge and causes the analytical model to 

underestimate dose (cold spot) in some areas and overestimate it (hot spot) in others.  A good 

example of this can be seen in Figure 1.11 when a bone slab is placed in the field. Since the 

central axis is dictating the range of the entire kernel, the kernels near the sharp lateral edge 

suffer from the central axis approximation.  When all the kernels are summed up one can see 

two cold spots and two hot spots behind the heterogeneity. Kernels on the bone slab side have 

a reduced range and conversely the kernels on the water side of slab have the nominal range in 

water.  These assumptions are wrong for kernels near the edge and cause the hot and cold 

spots.   

 

Figure 1.11:  Dose distribution calculated with dose kernel convolution model.  A subtraction of 
Monte Carlo simulated dose distribution and the calculated distribution is overlaid.  Areas in 
white represent a cold spot with a magnitude >10% of the maximum dose and similarly the 
black represents a hot spot of >10% of the maximum dose.  Figure from Schaffner (1998). 

A pencil beam algorithm splits the field into infinitesimal segments called pencil beams.  A 

pencil beam is defined as the charge particles passing through that infinitesimal area (Figure 

1.12).  In practice this area is represented by a pixel of finite size (~0.5 x 0.5 – 2 x 2 mm2) and 

there is a discrete sum of N pencil beams.  The dose from each pencil beam is described by a 

central axis term (CAX) and an off axis term (fluence).  It is important to note that pencil beam 



 

14 
 

algorithms also use the central axis approximation and it also assumes that a material at a 

depth Z along the central axis of a pencil beam is laterally infinite.  The total distribution is given 

by summing up the dose of all the individual pencil beams (Eq. 6).  

 𝐷𝑖(𝑋,𝑌,𝑍) = 𝐷∞(0,0,𝑍) ∙ 𝐹(𝑋,𝑌,𝑍) (6)  

 

 

Figure 1.12:  Example of a single pencil beam in a field.  The total dose from the field would be 
the summation of all the pencil beams across the field.  Figure from Hogstrom (1981). 

The central axis term of each pencil beam may be given by a measured central axis depth 

dose profile, but can also be calculated from the energy loss equations.  However, use of 

measured data is advantageous as it intrinsically includes energy loss, range straggling, and 

fluence losses due to nuclear interactions.  The central axis term is typically acquired from a 

large field (measured or Monte Carlo calculated), which is corrected to an infinitely broad beam 

with side scatter equilibrium.  This ensures that the central axis is only modeling energy loss 

and the off axis term is modeling scattering.  The off axis term is derived from scattering theory 

of charge particles.  As mentioned in section1.1.1, the Gaussian distribution is a good 

approximation of the proton scatter distribution and is easily integrable.  The width of the 

distribution is determined from scattering theory as a function of depth.   
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With these two terms one can calculate dose as function of off axis position (X,Y) and depth 

Z from a single pencil beam of width Δx by Δy centered at (xi,yi)  (Eq. 7).  The summation of N 

pencil beams gives the total dose (Eq. 8).  
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 𝐷𝑡𝑜𝑡(𝑋,𝑌,𝑍) = �𝐷𝑖(𝑋,𝑌,𝑍)
𝑁

𝑖=1

 (8)  

Pencil beam algorithms are similar to convolution algorithms but differ in how heterogeneities 

are handled.  While both types of algorithms are limited by the central axis approximation, the 

off axis and central axis terms of the PBA are material dependent, unlike convolution methods 

where only the central axis term is material dependent.  In cases where there are laterally 

infinite heterogeneities, pencil beam algorithms correctly account for changes in range and 

scatter where the dose kernel convolution method would account for only the former. 

There are two commercial proton treatment planning systems available in the United States: 

the first is a dose kernel convolution method based on the work of Schaffner (1998) (Eclipse, 

Varian Medical Systems, Palo Alto, CA); the second uses two different pencil beam algorithms 

(Xio, Elekta, Ltd., Stockholm, Sweden); a pencil beam algorithm based Hong et al. (1996) for 

passively scattered beams, and a pencil beam algorithm based on Soukup et al. (2005) for 

scanned beams.  These algorithms have performed well, however improvements to their 

multiple Coulomb scatter models and nuclear models of these algorithms is possible.   The 

details of these improvements will be discussed in greater detail when discussing the methods 

of this work.  Recently, our group has begun developing a Proton PBA in an effort to make 

these improvements.   
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1.1.4 Testing the PBA in Water (Chapman 2012) 

The accuracy of our PBA was evaluated by comparing dose distributions in water phantoms 

with predictions from Monte Carlo simulations by Chapman (2012).   This was done for proton 

beam energies of 50, 100, 150, 200, and 250 MeV, and field sizes of 4x4 and 10x10 cm2.  

Results were compared for flat water phantoms, step water phantoms, and beams of oblique 

incidence on flat water phantoms.  Each distribution was calculated on a 1x1 mm2 grid and 

compared between the two calculation methods.  All distributions were normalized to the 

maximum dose in a flat water phantom of the given energy and field size.   A 2% dose 

difference or 1 mm distance to agreement criteria was used to test all points out to a 1% dose 

cut off.  Sample results are shown in Figure 1.13.  For all forty geometries tested, the dose 

distribution calculated by the PBA had greater than 99 percent of points within 2% or 1mm of 

Monte Carlo simulated dose distributions.  The reader is referred to Chapman (2012) for a more 

detailed discussion of the previous results. 

 
Figure 1.13: 2D isodose distributions, Monte Carlo: dashed lines.  PBA: solid lines.  Points not 
meeting the 2% or 1 mm criteria where marked with a red pixel.  a) 250 MeV 10x10 cm2 flat 
water phantom.  b) 250 MeV 10x10 cm2 water phantom with a 4 cm step.  >99% of points are 
passing in both distributions with a few failure points in the low dose low area on the edge of the 
field.  Figures from Chapman (2012).  

a) b) 
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1.2 Motivation for Research 

While PBA calculation agreed well with Monte Carlo simulations, the algorithm only 

calculated dose in water.  While water is a good approximation to human tissue, patients also 

consist of low density materials (air), high density materials (bone), and everything in between 

(soft tissue, fat, muscle, etc.).  Since these heterogeneities can influence scattering and energy 

loss, they must be accounted for in order for the PBA to be used clinically.   

Additionally, agreement between the PBA and Monte Carlo simulations in water was poorer 

in very low dose regions (<5% isodose).  This observation may indicate a deficiency in the 

nuclear halo term used to calculate the dose form non-elastic and single scatter events.  This 

can be particularly important when calculating the dose from a scanned pencil beam.  

To address these issues, this work was undertaken with the following objectives: adapt the 

PBA for calculation in heterogeneous media, improve the nuclear halo model, and determine 

the accuracy of the PBA by comparing PBA dose calculations to Monte Carlo simulations.  

1.3 Hypothesis and Specific Aims 

The hypothesis of this work was that a pencil beam algorithm will predict dose to a 

heterogeneous phantom (simulating human tissues) delivered by a uniform parallel 

monoenergetic proton beam within 2% dose difference or 1 mm distance to agreement of Monte 

Carlo simulated dose distribution of the same geometry.  Phantoms including bone and air 

heterogeneities of different sizes at different depths were studied for four energies (100, 150, 

200, and 250 MeV) and two field sizes (4x4 and 10x10 cm2).   This hypothesis will be tested by 

the following specific aims: (1) modify the PBA to account for heterogeneities, (2) improve the 

accuracy of the nuclear halo model in the PBA, and (3) evaluate the accuracy of the pencil 

beam algorithm.  
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Chapter 2: Methods 

2.1 Design of our PBA 

Our group originally developed a PBA to calculate dose from a monoenergetic and 

monodirectional proton beam to a water phantom (Chapman 2012).  The general 

implementation of the pencil beam algorithms follows the work by Hogstrom (1981) for electron 

beams.   

In this work it was assumed that all (Y,Z) planes of the phantoms were the same as the 

(X,0,Z) plane.  This was done to simplify the calculations and for convenience.  Dose 

calculations were performed along the (X,0,Z) plane and it was assumed the pencil beams were 

infinite in the Y direction.  Therefore, 
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(9)  

The integral of the Gaussian along the Y direction in equation 9 from -∞ to +∞ equals 1.  Thus 

the three dimensional calculation can be reduced to two dimensions. 

𝐷𝑡𝑜𝑡(𝑋, 0,𝑍) = �𝐷𝑖(𝑋, 0,𝑍)
𝑁

𝑖=1

=�𝐷∞(0,0,𝑍)�
1

√2𝜋𝜎𝑥(𝑍)
𝑒𝑥𝑝 �

−[(𝑋 − 𝑥′)2

2𝜎𝑥(𝑍)2 � 𝑑𝑥′ × 1 =
𝑥𝑖+

Δ𝑥
2

𝑥𝑖−
Δ𝑥
2

𝑁

𝑖=1

𝐷𝑡𝑜𝑡(𝑋,𝑍) 

(10)  

 The dose was divided up into two terms: a central axis term and an off axis term just like in 

Equation 6 except with the assumptions made in equations 9 & 10.  The central axis term was 

taken from the central axis depth dose of Monte Carlo simulated protons beams.  Unlike the 

Hong algorithm, the off axis was divided in two terms: a primary term to model multiple Coulomb 

scatter and a nuclear halo term to model single and plural Coulomb scatter, along with inelastic 
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and non-elastic nuclear scatter.   Two term calculations have shown improvements in the 

accuracy of pencil beam algorithms over single term calculations (Chapman 2012, Soukup 

2005, and Pedroni 2005.) 

The first off axis term was derived from first principles and used Fermi Eyges transport theory 

to determine the root mean square (rms) width of the Gaussian versus depth.  Fermi Eyges 

scattering theory required an input scattering power, T, which is the rate of increase of the mean 

square multiple Coulomb scattering angle given by  

 𝑇 =
𝑑 < 𝜃𝑚𝑐𝑠

2 >
𝑑𝑥

 (11)  

Gottschalk (2010) has previously shown that the Gaussian approximation to Moliere 

scattering theory using the differential Moliere scattering power most closely reproduces the full 

Moliere distribution (within ~3%), which when compared to 39 independent measurements 

showed a mean deviation of -0.3% with a rms width of 3%.  The differential Moliere scattering 

power is easily calculated on the fly and has been shown by Gottschalk (2010) to be more 

accurate then what is currently being used in commercially available algorithms that are based 

on work by Hong (1996) or Soukup (2005).  The Hong algorithm uses the Highland formalism 

and the Soukup algorithm gives the user the option of using the Fermi Rossi, Lynch, or Highland 

formalism.  In his review, Gottschalk (2010) determined the Highland formalism was the most 

accurate of these three (within ~7% of Moliere) but not as accurate as differential Moliere 

formalism.  This improved accuracy and the ease of implementation was the key motivation to 

the use of the differential Moliere scattering power.   

The differential Moliere scattering power (note the factor of 2 accounts for equation 11 not 

being the “projected” angle, as was the convention of Gottschalk 2010) is given by  

 𝑇𝑑𝑀 = 2 ∙ 𝑓𝑑𝑀 ∙ �
𝐸𝑠
𝑝𝑣
�
2 1
𝑋𝑠

 (12)  

where Es is the Fermi term and is given by 
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 𝐸𝑠 = �
2𝜋
𝛼
�
1
2
𝑚𝑒𝑐2 (13)  

Xs is the scattering length, a group of constants from Gottschalk’s scattering power derivation, 

and is given by 

 
1
𝑋𝑠

= 𝜌𝛼𝑁𝑟𝑒2
𝑍2

𝐴 �2 𝑙𝑛 �33219(𝐴𝑍)−
1
3� − 1� (14)  

fdM is the single scatter correction term and is given by 

 

𝑓𝑑𝑀 = 0.5244 + 0.1975 ln�1 − �
𝑝𝑣
𝑝1𝑣1

�
2
�+ 0.232 ln(𝑝𝑣)

− 0.0098 ln(𝑝𝑣) ln�1 − �
𝑝𝑣
𝑝1𝑣1

�
2
� 

(15)  

where α is the fine structure constant (7.297 x 10-4 ), mec2
 is the rest mass of an electron (0.511 

MeV), ρ is the density of the target, N is Avogadro’s number (6.022 x 1023), re is the classical 

radius of the electron (2.818 x 10-15 m),  Z is the atomic number of the target, A is the atomic 

mass of the target, p is the local momentum of the particle, v is the local velocity of the particle, 

p1 is the incident momentum of the particle, and v1 is the incident velocity of the particle.   

The differential Moliere scattering power was implemented into Fermi Eyges scattering 

theory in the calculation of the ith scattering moments (ai) given by 

 𝑎𝑖(𝑍) =
1
2
� 𝑇𝑑𝑀
𝑍

0
∙ (𝑍 − 𝑍′)𝑖𝑑𝑍′ (16)  

Thus the rms width of Gaussian due to multiple Coulomb scatter is given by 

 𝜎𝑝(𝑍) = �𝑎2(𝑍) = �
1
2
� 𝑇𝑑𝑀
𝑍

0
∙ (𝑍 − 𝑍′)2𝑑𝑍′ (17)  

The Z-Z’ dependence in Eq. 17 reveals that the rms width is not only a function of depth but 

is also dependent on scatter events upstream.  This dependence is particularly important in 

dealing with heterogeneities, because scattering is not only locally affected by a heterogeneity 

but everything down stream is affected as well.  This upstream dependence was the key 

motivation for using Fermi Eyges scattering theory in our PBA.  Note that in order to increase 
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the speed of the dose calculations, equation 17 was evaluated using the recursion relation 

shown by Hogstrom (1987) where 

 

𝑎2
𝑖,𝑗 = 𝑎2

𝑖,𝑗−1 + 2∆𝑧 𝑎1
𝑖,𝑗−1 + (∆𝑧)2 𝑎0

𝑖,𝑗−1 +
(∆𝑧)3

6
𝑇𝑑𝑀�𝐸𝑖,𝑗� 

𝑎1
𝑖,𝑗 = 𝑎1

𝑖,𝑗−1 + ∆𝑧 𝑎0
𝑖,𝑗−1 +

(∆𝑧)2

4
𝑇𝑑𝑀�𝐸𝑖,𝑗� 

𝑎0
𝑖,𝑗 = 𝑎0

𝑖,𝑗−1 +
∆𝑧
2
𝑇𝑑𝑀�𝐸𝑖,𝑗� 

𝑎2
𝑖,1 = 𝑎1

𝑖,1 = 𝑎0
𝑖,1,𝑎𝑛𝑑 ∆𝑧 = 𝑧𝑗 − 𝑧𝑗−1 . 

(18)  

 The second term of the off axis component of our PBA was called the nuclear halo term, 

following the nomenclature by Soukup (2005) and Pedroni (2005).  This term was intended to 

model things in the off axis distribution of protons scattering not modeled by the multiple 

Coulomb Scatter (MCS) Gaussian core.  These other contributions of proton scatter fall off 

slower further off axis than the Gaussian core.  This is due to a combination of events such as 

single scattering (>ѳmcs) or any head on nuclear interaction (>>ѳmcs).  According to Pedroni 

(2005), if this is not accounted for errors of 5-10% can occur.  The second term was used in 

conjunction with the primary Gaussian predicted from scattering theory.  The width of the 

second Gaussian was given by the convolution of a nuclear Gaussian of width (σN) and the 

primary Gaussian of width (σp).  The convolution of these two Gaussians results in a Gaussian 

of width�𝜎𝑝2 + 𝜎𝑁2.  The total dose from a pencil beam was then given by a weighted sum of the 

primary pencil beam and a nuclear pencil beam given by 

 𝐷𝑖(𝑋,𝑍) = (1 −𝑊𝑁(𝑍))𝐷∞(0,𝑍)𝐹𝑝 + 𝑊𝑁(𝑍)𝐷∞(0,𝑍)𝐹𝑁 (19)  

Where WN is a weighting factor (0 ≤ WN ≤ 1) and thus the dose from a single pencil beam is 

 

𝐷𝑖(𝑋,𝑍) = (1 −𝑊𝑁(𝑍))𝐷∞(0,𝑍) ∙ �
1

√2𝜋𝜎𝑝
∙ 𝑒𝑥𝑝 �

−[(𝑋 − 𝑥′)2

2𝜎𝑝2
� 𝑑𝑥′

𝑥𝑖+
Δ𝑥
2

𝑥𝑖−
Δ𝑥
2

+ (𝑊𝑁(𝑍))𝐷∞(0,𝑍) ∙ �
1

�2𝜋�𝜎𝑝2 + 𝜎𝑁2�
∙ 𝑒𝑥𝑝 �

−[(𝑋 − 𝑥′)2

2�𝜎𝑝2 + 𝜎𝑁2�
� 𝑑𝑥′

𝑥𝑖+
Δ𝑥
2

𝑥𝑖−
Δ𝑥
2

 

 

(20)  
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Note that WN, σp, and σN are depth-dependent parameters.  WN and σN were determined from 

curve fits to cross field profiles from Monte Carlo simulations of proton pencil beam distributions 

in water.  This was done for all the energies used in the PBA (100, 150, 200, and 250 MeV).   

To commission the algorithm, Monte Carlo simulations were done for 50, 100, 150, 200, 250 

MeV proton beams with 0 .1, 2, 4, 10 cm field sizes.  These simulations were used as 

surrogates for measurements.  The Monte Carlo code modeled range straggling and 

contributions to the depth dose from secondary particles created by nuclear interactions in 

water.  The central axis depth dose, corrected for side scatter equilibrium, was used as input 

data of the PBA similar to work by Ciangaru (2005).  In order to use the central axis depth dose 

commissioning data for the different field sizes (FS) they must be corrected for side scatter 

equilibrium.  This insured that the depth dose modeled energy loss and the fluence modeled 

scattering.  Methods from Hogstrom (1981) were adapted to do this and the rationale used is as 

follows. 

The central axis dose of a proton beam of field size FS is given by 

 𝐷𝐹𝑆(0,𝑍) = 𝐷∞(0,𝑍)𝐹(0,𝑍) (21)  

Rearranging, the central dose of an infinitely broad field is 

 𝐷∞(0,𝑍) =
𝐷𝐹𝑆(0,𝑍)
𝐹(0,𝑍)

 (22)  

The fluence must be evaluated across the field.  For the primary fluence this is given by  

 𝐹𝑝(0,𝑍) =  �
1

√2𝜋𝜎𝑝
∙ 𝑒𝑥𝑝 �

[(𝑥′)2

2𝜎𝑝2
�𝑑𝑥′ = 𝑒𝑟𝑓 �

𝐹𝑆
2√2𝜎𝑝

�
𝐹𝑆
2

−𝐹𝑆2

 (23)  

Similarly for the nuclear fluence 

 𝐹𝑁(0,𝑍) =  �
1

�2𝜋�𝜎𝑝2 + 𝜎𝑁2�
∙ 𝑒𝑥𝑝 �

(𝑥′)2

2�𝜎𝑝2 + 𝜎𝑁2�
� 𝑑𝑥′

FS
2

−FS2

= 𝑒𝑟𝑓

⎣
⎢
⎢
⎡ 𝐹𝑆

2�2�𝜎𝑝2 + 𝜎𝑁2�⎦
⎥
⎥
⎤
 (24)  

By substituting the results of equations 23 and 24 and evaluating all the integrals in equation 20 

the equation for the dose from the ith pencil beam centered at xi becomes 
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𝐷𝑖(𝑋,𝑍) =
(1 −𝑊𝑁(𝑍))𝐷𝐹𝑆(0,𝑍)
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2 − 𝑥

�2 [𝜎𝑃2 + 𝜎𝑁12 ]
�� 

(25)  

For a field consisting of N pencil beams the total dose is given by equation 10, the summation of 

Di from i = 1 to N.  Note that in the side scatter equilibrium correction term 𝜎𝑝𝑤 is used to 

explicitly state that the rms width 𝜎𝑝𝑤  is determined for an all water phantom.  This is necessary 

because the input data used is measured or simulated in a water phantom.  The rms width 𝜎𝑝𝑤 is 

used to correct the input data and should not to be confused with the rms width of the primary 

pencil beam 𝜎𝑝, which is material dependent. 

2.2 Specific Aim 1: Modify the PBA to Account for Heterogeneities. 

A pencil beam algorithm splits the dose delivered by a field into smaller contributions called 

pencil beams.  The dose from a pencil beam is split into two terms: the central axis term and the 

off axis term.  In order to correctly account for heterogeneities both of these terms must account 

for changes in material.  Before discussing how each term was modified to account for different 

materials some other details on how the algorithm works must be discussed. 

2.2.1 Dose Calculation Grid and Ray Trace 

To start every calculation, the x-z plane was divided into a 1 x 1 mm2 grid.  Each pixel was 

assigned a CT number corresponding to a different material (similar to a treatment planning 

system).  The CT number of a material is the scaled relative difference between the linear 

attenuation of a material to that of water: It is dependent on the energy of the CT scan.  The CT 

number of a material is generally given in Hounsfield units, with water having a CT number of 0, 
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air having a value of -1000, and hard bone having a value of approximately +600.  Since this 

work examined only stylized geometries, pixels were simply created in MATLAB using arbitrary 

reference CT numbers.  The stopping powers and elemental compositions of all the different 

materials used in this study were stored in look up tables.   

After the material composition and stopping power of each pixel was defined and the incident 

energy of the proton beam was selected, a ray trace was performed to determine the energy 

loss in each pixel.  In this work, all the protons incident on a given pixel are traveling in an 

orthogonal direction relative to the edge of the pixel, therefore the energy E(Zi) of the beam 

entering each pixel at a depth Zi was determined from the energy of the beam entering the 

previous pixel E(Zi-1), stopping power (dE/dZ) of the previous pixel located at Zi-1, and the pixel 

thickness (ΔZ): 

 𝐸(𝑍𝑖) = 𝐸(𝑍𝑖−1) − ��
𝑑𝐸
𝑑𝑍
�
𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

�
𝐸(𝑍𝑖−1)

∙ ∆𝑍 (26)  

Where ��𝑑𝐸
𝑑𝑍
�
𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

�
𝐸(𝑍𝑖−1)

 is the stopping power for the material from Zi-1 to Zi at energy E(Zi-1). 

 
The materials used were air, compact bone, and water.  The stopping powers tabulated by 

Berger et al (2005) were used for all of these materials and were accessed on the PSTAR 

database located at http://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html.  All stopping 

powers were recorded with a 0.5 MeV energy step from 300 MeV to .5 MeV for Water, Air, and 

Compact Bone.  

The water equivalent depth or effective depth (Zeff) for each pixel was also calculated and 

stored, where Zeff is the depth in water that would produce the same energy loss as a given 

pixel at depth Zi and was calculated by: 

 𝑍𝑒𝑓𝑓(𝑍𝑖) = 𝑍𝑒𝑓𝑓(𝑍𝑖−1) + ∆𝑍 ∙ ��
𝑑𝐸
𝑑𝑍

 �
𝑤𝑎𝑡𝑒𝑟

𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

�
𝐸(𝑍𝑖−1)

 (27)  
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Where ��𝑑𝐸
𝑑𝑍

 �
𝑤𝑎𝑡𝑒𝑟

𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙
�
𝐸(𝑍𝑖−1)

is the ratio of the stopping power for the material from zi to zi-1 to that 

of water at E(zi-1). 

  Once the proton energy, effective depth, and stopping power were determined for all the 

pixels, the effects of heterogeneities on the central and off axis terms in the pencil beam 

calculation could be accounted for. 

2.2.2 Central Axis Term  

 

Figure 2.1:  The mass stopping power ratios relative to water of compact bone (black) and air 
(blue) plotted against proton energy.  Data from Berger (2005). 

To account for differences in energy deposition due to the presence of heterogeneities, the 

central axis term, which was determined in water at Zeff, was scaled by the ratio of mass 

stopping powers in a material to that of water.  The mass stopping power of a material is the 

stopping power (dE/dZ) divided by the density of a material (ρ).  Thus equation 28 gives the 

central axis dose accounting for changes in material in depth.  The ratio of mass stopping 

powers of compact bone and air relative to water are plotted in Figure 2.1. 

 𝐷(0,𝑍)𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝐷(0,𝑍𝑒𝑓𝑓)𝑤𝑎𝑡𝑒𝑟 ∙ �
1
𝜌
𝑑𝐸
𝑑𝑍�𝑤𝑎𝑡𝑒𝑟

𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

 (28)  
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2.2.3 Off Axis Term 

The PBA fluence consisted of a primary term along with a nuclear halo term to describe the 

off axis distribution of a pencil beam with depth.  No corrections to the nuclear halo fluence 

terms were done to account for heterogeneities.   

  The primary term utilized the differential Moliere scattering power within the Fermi-Eyges 

scattering theory formalism to determine the spread of each pencil beam with depth.  Within the 

differential Moliere scattering power equation shown in equation 12 is a material-dependent 

term called the scattering length given in equation 14.  The calculation of scattering length for 

compounds follows the Bragg additivity rule 

 
1
𝜌𝑋𝑠

= �𝑤𝑖  �
1
𝜌𝑋𝑠

�
𝑖𝑖

, (29)  

where the weight fraction of a certain element i in the compound is given by wi.  The scattering 

length was calculated for air, water, and compact bone for this work using the chemical 

compositions shown in Table 2.1  

Table 2.1:  Chemical compositions used in this study.  

Compounds Density ρ 
(g/cm3) 

Elemental Make Up 
By Atomic Number 

Weight By Fraction wi 
 

Water 1 1 
8 

0.111907 
0 .888093 

Air .0012 
6 
7 
8 
18 

0.000125 
0.755267 
0.231781 
0.012827 

Compact Bone 1.85 

1 
6 
7 
8 
12 
15 
16 
20 

0.06000 
0.31400 
0.03100 
0.36900 
0.00100 
0.07000 
0.00200 
0.15200 
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2.3 Specific Aim 2:  Improving the Nuclear Model 

2.3.1 Preliminary Results Suggest a Deficiency and a Proposed Solution   

While the PBA model of Chapman (2012), which included a Gaussian halo model, showed 

greater than 99% of points were within 2 percent or 1 mm distance to agreement, there was 

evidence of sub-optimal modeling in low dose regions.  In these regions, the prediction of dose 

was dominated by the secondary nuclear halo term.  Small inaccuracies in the halo term 

modeling low dose regions of a pencil beam will be amplified as many pencil beams are 

summed up.  For example, in Figure 2.1 in the low dose low gradient region near the field edges 

at X= ± 2cm there were failing pixels.  The PBA underestimates the dose outside of X= ± 2cm 

for all depths.  Even though these errors are relatively insignificant in a monoenergetic 4 x 4 cm2 

field, they can be very import when modeling pencil beam scanning modalities with numerous 

spots. 

 

Figure 2.2:  250 MeV 4x4 cm2 proton beam incident on a water phantom.  a) 2D dose 
distribution contour: Monte Carlo data (dashed lines) and PBA data (solid lines) using 
Chapman’s model (Chapman 2011).  The color bar indicates relative dose percentage.  Note 
the PBA underestimates the 1 and 2 percent isodose lines. b) Lateral profile at a depth of Z = 
12.55 cm, where the Monte Carlo data (dashed) falls off slower than the PBA (solid) in the low 
dose regions near the field edge.  

a) 
b) 
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To better understand the dose component in this region of interest, a 4 x 4 cm2 proton beam 

was simulated with and without including the dose from secondary protons.  As shown in Figure 

2.2, secondary protons scattered at large angles were responsible for this low dose region 

outside the field edge (5%-1% isodose).  When the dose from the secondary protons was not 

included the low dose regions outside of field edge were greatly reduced and resembled the 

PBA data.  The dose delivered from just the secondary protons falls off much slower than an erf 

function (integration of a Gaussian pencil beam) as seen in Figure 2.3 and could not be properly 

modeled using the Gaussian nuclear halo model (Chapman 2012).   

 
Figure 2.3:  a) 2D comparison of Monte Carlo simulations of a 250 MeV 4 x 4 cm2 proton beam 
incident on a water phantom with (dashed lines) and without (solid lines) tracking energy 
deposition from secondary protons.  Figure b) Lateral profile recorded at Z = 12.55 cm.  A 
reduction of dose beyond the field edge is evident when energy deposited from secondary 
protons was excluded.  The difference (red line) in the two curves is the secondary proton dose 
component.  

 

Figure 2.4:  3D surface plot of the relative dose delivered by secondary protons from a 250 MeV 
4x4 cm2 proton beam in a water phantom.  Dose was normalized to the maximum dose in water 
from both primary and secondary protons.  The primary Gaussian calculated from scattering 
theory will not predict the off axis dose from secondary particles as they fall of much slower than 
a Gaussian off axis. 

b) a) 1o protons 

2o protons 

1o + 2o protons 
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To better understand the halo model, properties of a pencil beam were studied.  Comparison 

of the PBA and simulated dose distributions of a 1x1 mm2 pencil beam in water, for which PBA 

fit parameters were derived also indicated suboptimal agreement in the low dose region outside 

of the 0.25% isodose contour.  From Figure 2.4 one can see after the 0.25% isodose line the 

model under predicts the dose compared to the Monte Carlo data.  When summing up many 

pencil beams this error compounds leading to the regions of failure present in Figure 2.1 and 

generally poor agreement in low dose regions (≤10% isodose) near and past the field edge.     

 

Figure 2.5:  250 MeV 1 x 1 mm2 proton pencil beam dose distribution in water.  MC (blue lines) 
data and curve fit (black) data using the calculated primary Gaussian and fitted second 
Gaussian.  It is clear that model under-predicts the low dose (≤0.25% isodose) region. 

A cross field profile through the distribution in Figure 2.4 at a depth of 12.49 cm is shown in 

Figure 2.6.  The primary and halo components are shown separately.  From examining the fit, 

the result was good agreement in the high dose and transitional regions but an underestimation 

in the low dose region as seen in Figure 2.6.  This indicated the model was accounting for MCS 

and single scatter events but failing to account for the very large angle scattering from non-

elastic interactions.  An additional Cauchy-Lorentz term was added to the halo term.  The 

Cauchy-Lorentz distribution centered at x=0 is shown in Figure 2.7 and is given by 

 𝑃(𝑥) =
1
𝜋

𝜎
𝑥2 + 𝜎2

 (30)  
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It was chosen because at large distances off axis, it falls off slower than a Gaussian and is 

integrable in closed form.  This additional term allowed the algorithm to improve matching in the 

low dose region, while continuing to match in the primary high dose region and the transition 

region while (Figure 2.7). 

 
Figure 2.6:  Cross field profile at a depth of 12.49 cm of a 250 MeV 1 x 1 mm2 proton pencil 
beam dose distribution in water.  The Monte Carlo data (red crosses) is plotted with the curve fit 
(solid red).  One can see the individual components of the fit: the primary Gaussian plotted in 
blue and the secondary plotted in black.  Most of secondary Gaussian is covered up by the total 
curve fit in solid red.  However it is clear the fit is failing to match the data at large distances off 
axis.  In the central region (-2 to 2 cm) there is good agreement and the curve fit (solid red) is 
obscured by the data (red crosses).  The data displayed is from Chapman (2012). 

 

Figure 2.7: Cauchy-Lorentz (red) and Gaussian (black) probability distributions graphed as a 
function of x.  Each distribution is normalized to have unit area with σ = 0.25.  At approximately 
x≥ ±0.5 the Cauchy Lorentz distribution decreases at a slower rate than the Gaussian 
distribution.   

2o proton 
model 

1o proton 
model 

1o +2o proton 
model 

MC Simulation 
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Figure 2.8: The same cross field profile as in Figure 2.6.  However the Cauchy Lorentz term 
(solid green) was used in conjunction with the calculated primary term (solid blue) and a second 
Gaussian (solid black).  The curve fit (solid red) gave much better agreement with the Monte 
Carlo data (yellow crosses).   

2.3.2  Implementation of the Cauchy Lorentz Distribution in the PBA 

The Cauchy Lorentz distribution was used in combination with the primary and secondary 

Gaussians and was fit to the simulated 250 MeV 1 x 1 mm2 proton pencil beam dose distribution 

in water.  The implementation of the Cauchy Lorentz distribution was accomplished by the 

following.  The dose from a pencil beam was modeled using three terms instead of two. The 

primary dose Dp, the first halo term DN1, and the secondary halo term DN2. 

 𝐷(𝑋,𝑍) = 𝐷𝑃(𝑋,𝑍) + 𝐷𝑁1(𝑋,𝑍) + 𝐷𝑁2(𝑋,𝑍) (31)  

DN2 is the dose from the Cauchy Lorentz term and for a single pencil beam centered at xi is  

 𝐷𝑁2(𝑋,𝑍) = 𝐷∞(0,𝑍) ∙ 𝑊𝑁2(𝑍)�
1
𝜋

𝜎𝑁2
((𝑋 − 𝑥′)2 + 𝜎𝑁22 )

𝑑𝑥′
𝑥𝑖+

∆𝑥
2

𝑥𝑖−
∆𝑥
2

 (32)  

By substitution of u= X-x’ the integral is evaluated 
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Equation 33 can be modified to use the central axis depth dose commissioning data for 

different field sizes (DFS) instead of the depth dose of an infinitely broad beam D∞ by substituting 

equation 33 into equation 22 and solving for 

 𝐷∞(0,𝑍) =
𝐷𝐹𝑆(0,𝑍)

2
𝜋 tan−1 � 𝐹𝑆2𝜎𝑁2

�
 (34)  

By substituting these results back into equations 31 and 33, the total dose from N pencil 

beams in a proton beam of field size FS is  

𝐷(𝑋,𝑍) =
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(35)  

Where WN1, WN2, σN1, and σN2 as a function of depth in water (Z) are found from curve fits of 

Monte Carlo data from a simulation of a 1 x 1 mm2 pencil beam in water and σp is calculated 

from scattering theory using equation 17.   

2.3.3 Curve Fitting  

With the implementation complete, a curve fitting process was done to commission the new 

nuclear halo terms: WN1, WN2, σN1, and σN2.  For all proton energies used in this study, the 

Monte Carlo data from simulations of a 1 x 1 mm2 pencil beam in water was fit to determine the 

halo terms.  The Monte Carlo data was calculated using a 0.25 x 0.25 mm2 grid spacing and 

covered several centimeters past the range and ±10 cm off axis.  The simulations were run with 

500 x 106 incident particles.  The PBA dose equation (Eq. 35) was fit to the Monte Carlo data at 



 

33 
 

depths and WN1, WN2, σN1, and σN2 were written to a text file.    At a given depth, a non-linear 

least squares fit was completed and reviewed visually.  The halo parameters were at times 

adjusted manually to improve visual agreement with high dose regions given more importance 

over lower dose regions.  The curve fits were performed every 2.5 cm in depth, or every 100 

pixels, for the first 75% of the range.  For the remaining portion of the range, the fits were 

performed every 0.625 cm or every 25 pixels.    Linear interpolation was used to find the halo 

parameters between these depths.   

2.4 Specific Aim 3:  Evaluate the Dosimetric Accuracy of the PBA 

To evaluate the accuracy of the PBA, both Monte Carlo and PBA dose calculations were 

performed for water phantoms both without and with air and compact bone heterogeneities on a 

1 mm x 1 mm grid.  The points in the distributions greater than 1% dose were compared using a 

dose difference and distance to agreement criteria of 2% or 1 mm.  The percentage of pixels 

passing the criteria was used as a metric for the accuracy of the PBA.  Comparisons were 

conducted for four energies (100, 150, 200, and 250 MeV) and two field sizes (4 x 4 cm2 and 10 

x 10 cm2). 

The PBA was written in MATLAB and ran on a single processor.   The HPC cluster Philip at 

Louisiana State University was used to complete the PBA calculations.  Using Philip, multiple 

jobs were able to run simultaneously, taking on average between 30 minutes to 6 hours to 

complete depending on the incident proton energy.  Long calculation times were the result of 

nested loops with files being read in and then interpolated.  Matlab is not optimized for these 

styles of operations.  Calculation speed was not a concern during this work; however 

computational optimization of the code can be completed to decrease computation times.  For 

instance, current versions of code implemented in C have calculation times on the order of 

approximately 10-15 seconds. 
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2.4.1 Test Geometries 

Three types of test geometries were used: homogeneous phantoms, phantoms containing 

laterally infinite slabs, and phantoms containing laterally finite slabs (Figure 2.9).  Homogenous 

phantoms of compact bone and water phantoms, and laterally infinite and finite slabs containing 

air and compact bone at different depths in a water phantom were examined.  Approximately 

140 test dose calculations were performed with 30 different geometries, 4 proton energies, and 

two field sizes (Table 2.2).   

Table 2.2:  Test geometries used in this work.  The dose from a 4 x 4 and 10 x 10 cm2 was 
calculated for each of these geometries.  

Depth of Slabs (cm) 

Proton Energy (MeV) 100 150 200 250 

Homogenous Water N/A N/A N/A N/A 

Homogenous Bone N/A N/A N/A N/A 

Laterally Infinite Slabs     

2 cm Air 2 2,5 2,5,10,15 2,5,10,15,30 

5 cm Air 0 0,10 0,10,15 0,10,15,25,30 

2 cm Bone 2 2 2 2,30 

5 cm Bone 0 0 0 0,30 

Laterally Finite Slabs     

2 cm Air 0 0,10  0,10,15 0,10,15,25,30 

2 cm Bone 2,5 2,5,10 2,5,10,15 2,5,10,15,30 

   

 
Figure 2.9:  Example geometries:  a) A laterally infinite 2 cm thick bone slab at 30 cm depth 
(yellow) in a water phantom. b) A laterally finite 2 cm thick air slab located at 0 cm depth (blue) 
inside a water phantom. 

a) b) 
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2.4.2 Monte Carlo Simulations 

All Monte Carlo simulations utilized Monte Carlo N-Particle eXtended (version 2.7a, Los 

Alamos, NM), which is a general purpose code capable of transporting charge particles, 

neutrons, photons.  MCNPX has shown great utility and accuracy in proton therapy applications 

(Zheng 2007, Herault 2007, and Newhauser 2005). The proton source was modeled as a 

parallel, monoenergetic source of uniform intensity.  Energies of 100, 150, 200, and 250 MeV 

were used with field sizes of 4 x 4 cm2 and 10 x10 cm2.  Energy deposition from any particle per 

volume (MeV/ cm3) in a given voxel was tallied using a type 3 mesh tally and then divided by the 

density of the voxel to find absorbed dose (MeV/g).  Mesh tallies bins were placed such that the 

edge of the tally grid began at the surface of the water phantom.  For simulations containing air 

slabs these tallies had to be shifted laterally and downstream by half of a tally to accommodate 

correct transport along the edges of the slabs.  The tally dimensions in X, Y, and Z were 1 mm, 

20 cm, and 1 mm respectively. 

Only protons (primary and secondary) were transported; dose deposited from all other 

particles was deposited locally.  Following protons, neutrons are the second most abundant 

secondary particles and do not deposit energy locally, accounting for a total dose of 

approximately 0.3% of the prescription dose (Taddei 2008).  To confirm that this error was 

insignificant, Monte Carlo simulations were performed to determine the dose delivered by all 

other particles (neutrons, photons, alphas, deuterons, and other heavy ions) besides protons  if 

assumed to be deposited locally (Figure 2.9a).  At 250 MeV, the maximum dose delivered from 

particles assumed to be deposited locally was 0.38% of the maximum dose from all particles 

and was at most 1.25% of the local dose value.  The difference in dose transporting neutrons 

and photons versus assuming local deposition was very small (<0.2% of the maximum dose) 

and can be seen in Figure 2.9b.  This error is further reduced for the lower energies due to the 

reduced number of neutrons and photons produced.  
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Figure 2.10:  a) 2D dose distribution of dose delivered by all secondary particles other than 
secondary protons assumed to be deposited locally form a 250 MeV 4 x4 cm2 proton field 
incident of water.  b) 2D dose difference distribution for the same field.   The dose (%) is 
displayed in the color bar and is normalized to the maximum dose delivered in water by all 
particles.  The maximum dose was 0.38% of the maximum dose delivered by all particles in 
water.  Neutrons and photons produce a fraction of this dose and will carry it out of the field as 
illustrated in b).  The dose distribution was simulated assuming photons and neutrons are 
deposited locally and then subtracted from the same distribution with neutrons and photons 
being transported.  One will note the loss of dose in the field from neutrons and photons 
transported out of the field. This effect was at most a 0.2% reduction in dose relative to the 
maximum dose. 

MCNPX uses a combination of tabular data and the Bertini intranuclear cascade model for 

modeling non-elastic interactions, including creation and transport of secondary protons 

(MCPNX 2011).  MCNPX models energy loss using stopping powers along with a correction for 

energy straggling.  Stopping power tables are discretely sampled over a range between the 

maximum energy and a cut off energy set by the user. In this study the maximum energy was 

set to the incident energy of proton and the cut off energy was set to 1 MeV.  The energy 

interval that the sampling stopping powers are sampled from is equal to 91.7% of the energy at 

the current step.  Thus the end of range has much finer energy resolution.   MCNPX accounts 

for range strangling by using the Valivov model for charge particle straggling (MCNPX 2011).   

In MCNPX as the protons are transported through the energy grid there are a number of sub 

steps per energy step.  The energy loss and distance traveled are estimated and range 

straggling and multiple Coulomb scattering distributions are sampled from at each sub step.  

The type of material determines the number of sub steps, with low Z materials having less sub 

steps than high Z materials.  The default number of sub steps was used in all simulations.   

a) b) 
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All Monte Carlo simulations were run in parallel on the High Performance Computing (HPC) 

cluster Tezpur at Louisiana State University.  The simulations were run with the appropriate 

number of histories such that the statistical uncertainty was under 1% for all dose points.  This 

varied depending on the incident energy, field size, and tally size but was generally between 50 

x 106 and 200 x 106 histories.  The time to complete simulations varied widely.  A short job, such 

as 100 MeV 4 x 4 cm2 proton beam incident on a compact bone phantom, took approximately 

10 minutes on 64 processors.  For longer jobs, such as the ones used to find the nuclear halo 

parameters, the computation time was much longer.  For instance, a 250 MeV 1 x 1 mm2  

proton beam incident on a water phantom with dose being recorded on a 0.25 x 0.25 mm2 grid 

over 40 cm in depth and from -10 to 10 cm laterally took 72 hours running on 128 processors.   

2.4.3 Comparison Metrics 

PBA and Monte Carlo dose distributions were compared following the methodology used by 

Chapman (2012), where all dose points calculated from a proton beam of a field size were 

normalized to the maximum dose delivered in a flat water phantom from a proton beam of the 

same field size. The Monte Carlo dose grid was cropped and/or interpolated to match the PBA 

dose grid.  The dose difference at each point was then taken as the Monte Carlo dose was 

subtracted from the PBA dose.   

Distance to agreement (DTA) was calculated using a routine written by Mancuso (2011) that 

was adapted from work by Ju et al (2008), whereby each point in the PBA matrix was compared 

to the same point in the Monte Carlo matrix.  If the values were equal, the DTA was zero.  

Otherwise the DTA was taken as the shortest distance from the point to a contour of the Monte 

Carlo dose value.  Only pixels having Monte Carlo dose points greater than 1% of the maximum 

dose in a flat water phantom were compared.  Pixels showing either less than 2% dose 

difference or 1 mm DTA were taken as passing criteria. 
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Chapter 3: Results and Discussion 

3.1 Improved Nuclear Halo Model 

3.1.1 Curve Fit Results 

Figure 3.1 shows the 250 MeV 1 x 1 mm2 cross-field profiles of the curve fit results at four 

different depths.  Figure 3.2 shows the full 2D distribution comparison between PBA using the 

curve fit parameters and Monte Carlo.  After including the Cauchy Lorentz term, the PBA 

showed improved dosimetric agreement with Monte Carlo over the previous version (Figure 

2.6). 

 

 

Figure 3.1:  Representative cross-field profiles used in the curve fitting process for the 250 MeV 
proton data.  The Monte Carlo data (yellow markers) is plotted along with the curve fit (red line).  
The individual components of the fit can be seen as well, the primary Gaussian (blue), 
secondary Gaussian (black), and the Cauchy Lorentz (green).  Improved agreement was noted 
in the low-dose off-axis regions relative to the previous version of the PBA (Chapman 2012). 

b) a) 

c) d) 
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Figure 3.2: 2D distribution of the 250 MeV 1 x 1 mm2 pencil beam.  The Monte Carlo data (blue) 
is plotted with the curve fit (black).   

 Figure 3.3 show cross field profiles at two different depths for a 150 and 200 MeV 1 x 1 mm2 

beam.  There was a very sharp drop off in dose in the low dose region of the Monte Carlo data.  

This could not be modeled due to the structure of the Cauchy Lorentz distribution 

(parameterization, not physically based), however since this occurred far off axis in the very low 

dose region it should not be a significant error.  This error would also have been seen in the 250 

MeV data if the dose grid extended further off axis.   

 

Figure 3.3:  Representative cross field profiles used in the curve fitting process for the (a) 150  
and (b) 200  MeV proton data.  Note the sharp lateral fall off not being modeled by the fit.  
However this shouldn’t have a significant effect on overall pencil beam dose calculation. 

b) a) 
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Figure 3.4:  2D distributions of the 100 (a), 150 (b), 200 (c), and 250 (d) MeV 1 x 1 mm2 pencil 
beam distribution.  Monte Carlo data (blue) is plotted with the PBA (black).  The deviation at 
very low isodose lines off axis is apparent in figures a), b), and c) but should have insignificant 
effect on the overall dose calculation. 

c) d) 

a) 

b) 



 

41 
 

Figure 3.4 shows 2D distributions constructed after determining all of the halo parameters as 

a function of the depth for all four energies used.  It is visually apparent the new three term fit 

improved agreement over all regions of the pencil beam dose distributions for all energies 

compared to the two term fit.  The fit parameters (WN1, WN2, σN1, and σN2), i.e. the relative 

weights and widths of the two halo distributions, as a function of depth in water are shown in 

Figure 3.5.   

 

 
Figure 3.5:  Fitted halo parameters as a function of depth plotted for each energy (100 MeV in 
green, 150 MeV in blue, 200 MeV in black, and 250 MeV in red): a) The weighting factor WN1, 
b) the rms width of the second Gaussian σN1, c) the weighting factor of the Cauchy Lorentz 
WN2, and d) The σN2 value of the Cauchy Lorentz distribution. (note that σN2 is not the rms width; 
it is the half width at half maximum).  The depths where a fit was completed are designated with 
markers.  For depths in between these points linear interpolation was used. 

One disadvantage of the curve fit method used in this work was that the two nuclear terms 

were an entirely empirical correction used to model single scatter, inelastic, and non elastic 

nuclear events, which are not accounted for in the theoretical calculation of the primary 

a) b) 

c) d) 
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Gaussian term.  In theory, these events should be modeled in a more physical manner; 

however, they were not separately treated in this work.  The two secondary nuclear pencil 

beams simply accounted for the differences between the primary Gaussian and all other 

interactions.     

3.2 Isodose Comparisons 

Isodose distributions calculated with the PBA were compared to those simulated using Monte 

Carlo.  All of the distributions were normalized to the maximum dose in a flat water phantom and 

the 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 percent isodose lines were contoured.  

The test geometries were broken down into the subsections consisting of homogeneous water 

phantoms, homogeneous compact bone phantoms, water phantoms containing laterally infinite 

compact bone slabs, water phantoms containing laterally infinite air slabs, water phantoms 

containing laterally finite compact bone slabs, and water phantoms containing laterally finite air 

slabs.  In the interest of brevity, only representative samples of the results are presented in this 

section.  A display of all results can be seen in the Appendices A and B.   

3.2.1 Homogenous Phantoms 

Figure 3.6 shows the 2D dose distribution comparisons of Monte Carlo and PBA for a 10 x 

10 cm2 250 MeV beam incident on a water phantom for (a) the previous 2-term PBA and (b) 

current 3-term PBA. The 2-term PBA showed better than 99.0% of points within 2% or 1 mm of 

Monte Carlo for all flat water phantom simulations, where as the present 3-term PBA showed 

100% of points within 2% or 1 mm.  Even though the number of points passing was nearly the 

same, inspection of the isodose lines revealed better agreement in low (≤ 5% isodose) dose 

regions.  The previous 2-term model matched Monte Carlo simulations out to the 5% isodose 

and showed a improvement over previous single Gaussian models (Hong 1996 and Ciangaru 

2005).  However, outside of the 5% isodose, the PBA consistently underestimated the dose 

compared to Monte Carlo data.  By contrast, the new model showed agreement to the 1% 
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isodose line.  For all field sizes and energies, the 3-term PBA calculated dose within 2% or 1 

mm data of Monte Carlo for 100% of points tested.  Comparison of Monte Carlo and PBA 

calculations are also provided for a 250 MeV 4 x 4 cm2 field, 200 MeV 4 x 4 cm2 field,150 MeV 4 

x 4 cm2 field, and a 100 MeV 4 x 4 cm2 field incident on a water phantom can be seen in Figure 

3.7.  

 
Figure 3.6:  Isodose comparisons between Monte Carlo (dashed lines) and PBA (solid lines) in 
a homogenous water phantom for a 250 MeV 10 x 10 cm2 field. In figure a) the PBA data was 
produced using a two Gaussian model.  In figure b) PBA data was produced using the new 
three term model.   The pass rates were 99.9% and 100% for a) and b), respectively, but one 
can see visually the superior agreement in the low dose region achieved in b) with the use of 
the three termed model. 

For the homogenous compact bone phantom, at least 99.5% of PBA dose points were within 

2% or 1 mm of Monte Carlo simulations for all field sizes and energies.  The results for the 200 

MeV 10 x 10 cm2 field are shown in Figure 3.8 and are representative of the results with other 

fields sizes and energies. The PBA overestimated (~1-2 cm DTA) the lateral spread of the one 

and two percent isodose lines.  This occurred because the parameters for the PBA nuclear halo 

terms were determined in water.  Since compact bone has a larger linear stopping power, 

secondary protons created upstream travel less distance, causing significantly less spread in 

the low dose isodose lines.  However, this difference is not of clinical significance and the dose 

points in these regions were within the 2% or 1mm criteria. 

 

a) b) 
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Figure 3.7: Some representative isodose comparisons between Monte Carlo (dashed lines) and 
PBA (solid lines) in a homogenous water phantom. a) 250 MeV 4 x 4 cm2 field, b) 200 MeV 4 x 
4 cm2 field, c) 150 MeV 4 x 4 cm2 field, d) 100 MeV 4 x 4 cm2 field .  There was excellent 
agreement out to the 1% isodose for all field sizes and energies.   

The PBA underestimated the dose in the Bragg peak in the compact bone phantom by 2.5-

6% (Figure 3.8b).  Ciangaru (2005) reported similar discrepancies (~1-10%) for a humorous 

bone phantom.  There are several factors that could have contributed to this. First, MCNPX 

explicitly performs material dependent transport of secondary protons, while the PBA accounts 

for their transport via curve fits done in water but has no material dependence.  The Monte 

Carlo output file indicated there was a reduction in the number of secondary particles produced 

from non-elastic interactions in compact bone compared to water.  The PBA did not model this.  

Second, while the range straggling correction in MCNPX depends on material, the PBA 

a) b) 

c) d) 



 

45 
 

incorporates range straggling that is included in the input data, which, in this was work, was 

acquired in water.  Since this input data used depth dose curves simulated in water it did not 

account for this material dependence, which could have led to differences in the Bragg peak 

dose. Finally, the PBA and MCNPX use different stopping power energy binning.  MCNPX 

binned the stopping powers used based on a percentage of the energy, while the PBA used a 

fixed 0.5 MeV energy step.  These slight differences in how energy loss is modeled could 

produce differences in Bragg peak dose between PBA and Monte Carlo calculations.  All of 

these differences may have led to slight differences in Bragg peak between the Monte Carlo 

data and the PBA.   

 

 
 
Figure 3.8: (a) Isodose comparison and (b) percent depth dose comparison between Monte 
Carlo (dashed lines) and PBA (solid lines) in a homogenous compact bone phantom for a 200 
MeV 10 x 10 cm2 field. There was an overestimation (~1%) of the low dose off axis region and 
an underestimation (~3.75%) in the Bragg peak.  In figure b) the red line is the absolute 
difference between the PBA and Monte Carlo. 

a) 

b) 
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To summarize the results for uniform density phantoms, for all energies and field sizes, the 

PBA was able to calculate dose within 2% or 1 mm of Monte Carlo for 100% of the dose 

calculation points tested in a homogeneous water phantom.  97.91% or greater of the PBA dose 

calculation points were within the criteria of Monte Carlo for calculations in the homogenous 

compact bone phantom.  A summary of percentage of points within 2% or 1 mm of Monte Carlo 

can be seen in Table 3.1.  There was an overestimation (~1%) of low dose off axis regions and 

underestimation (~2-6%) of the Bragg peak dose in the compact bone phantom.  These errors 

were so small that several field size and energy combinations still had a pass rate of 100%.  

Given the excellent agreement in the homogeneous water phantom and that patients are made 

of mostly water, not compact bone, these relatively small errors are likely of little clinical 

significance.   

Table 3.1:  Summary of the percentage of points within 2% or 1 mm of Monte Carlo for uniform 
phantoms.   
 

Percentage of Pixels Within 2% or 1 mm: 

Field 
Size 
(cm2) 

 4x4 10x10 

Energy 
(MeV)  Water 

Phantom  Compact Bone 
Phantom 

Water 
Phantom 

 Compact Bone 
Phantom 

100  100  100 100  100 

150  100  99.31 100  99.67 

200  100  99.43 100  99.85 

250  100  97.91 100  100 

 

3.2.2 Laterally Infinite Slabs 

Geometries consisting of a water phantom with a 2 cm or 5 cm thick laterally infinite compact 

bone slab placed at different depths were examined. Figure 3.9 shows the isodose comparisons 

between Monte Carlo (dashed lines) and PBA (solid lines) in a water phantom containing a 2 cm 

or 5 cm thick compact bone slab located at different depths.  For these geometries, the PBA 
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was able to calculate dose with at least 99.18% of points within 2% or 1 mm of Monte Carlo 

calculations for all field sizes and energies considered here.   

The PBA overestimated the low dose region distal to the proximal edge of the bone slab.  

These 2-10 mm DTA values in the 1% and 2% isodose lines can be most clearly seen in Figure 

3.9c & d.  This was due to the lack of material dependence in the halo terms.  Since these 

errors are small and in a very low dose area likely they are not clinically significant. 

Figure 3.10 shows a depth dose profile and cross field profile through the Bragg peak for a 

250 MeV 10 x 10 cm2 field incident on a water phantom with a 5 cm thick bone slab located at 

30 cm depth.  The cross field profile shows excellent agreement (< 0.5 mm DTA) in the 

penumbral region, whereas other works have shown discrepancies of approximately 1 to 2 mm 

for similar energy and geometries (Ciangaru 2005, Szymanowski 2002).  The depth dose profile 

shows that the PBA underestimates the maximum dose in the Bragg peak (~1-4%) but the 

overall agreement is very good.  By the same logic used in the compact bone phantom results, 

the differences in Bragg peak dose was mostly likely due to slight differences in stopping 

powers, their energy binning, the lack of a material dependent range straggling correction, and 

changes in the production of secondary particles from non-elastic nuclear interactions not being 

modeled by the PBA.  The underestimation of the dose after the bone slab is probably of little 

clinical importance since most treatments will not treat through compact bone thicker than 5 cm.    

Small differences in the location (~±1 mm) of the Bragg peak maximum dose between the 

PBA and Monte Carlo were seen and were most likely due to 1 mm x 1 mm resolution of the 

calculation and differences in stopping powers and their energy binning.  Differences in the 

location of maximum dose of the Bragg peak caused large dose differences in some 

simulations, but since the points passed the 1 mm DTA criteria, there was no significant regions 

of failure.  Our range prediction fell within typical uncertainties as reported by Schaffner (1998), 

where typical uncertainties in range were reported to be between 1-3 mm.  A full summary of 

the pass rate results can be seen in Table 3.2.  
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Figure 3.9: Some representative isodose comparisons between Monte Carlo (dashed lines) and 
PBA (solid lines) in a water phantom containing a 2 cm or 5 cm thick compact bone slab (shown 
in yellow) located at different depths (zslab). a) 100 MeV 4 x 4 cm2 field: (zslab: 2 cm, Pass rate: 
100%. b) 100 MeV 10 x 10 cm2 field:  (zslab: 2 cm, Pass rate: 100%). c) 250 MeV 4 x 4 cm2 
field:  (zslab: 30 cm, Pass rate: 99.47%).  d) 250 MeV 10 x 10 cm2 field: (zslab: 30 cm, Pass 
rate: 99.79%).  In all of the figures the small percentage of failing pixels are located in the Bragg 
peak. 

 
Figure 3.10:  a) Central axis percent depth dose comparison for the geometry in Figure 3.9d 
between Monte Carlo (dashed line) and PBA (solid line) The pba underestimates the maximum 
dose by approximately 4%.  One will note the abrupt drop in the depth dose at the proximal 
edge of the bone slab (Z = 30 cm).  This is due to the mass stopping power ratio of bone to 
water being approximately 0.93. b) Lateral profile through the Bragg peak at z = 34.35 cm.  
There was good agreement in the penumbra but an underestimation of the maximum dose.  In 

a)

 
  

b) 

c) d) 

a) b) 

H2O Bone 

H2O 
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both panels the absolute value of the difference between the Monte Carlo and PBA is plotted in 
red. 

Geometries consisting of a water phantom with a 2 cm or 5 cm thick laterally infinite air slab 

placed at different depths were examined.  Figure 3.11 shows the isodose comparisons 

between Monte Carlo (dashed lines) and PBA (solid lines) in a water phantom containing a 5 cm 

thick air slab located at different depths.  For laterally infinite air slab geometries, the PBA was 

able to calculate dose with at least 93.2% of points within 2% or 1 mm of Monte Carlo 

calculations for all field sizes and energies.   

 

 
Figure 3.11: Some representative isodose comparisons between Monte Carlo (dashed lines) 
and PBA (solid lines) in a water phantom containing 5 cm air slab located at different depths 
(zslab) shown in blue.  The maximum dose difference (Max DD) and mean dose difference 
(Mean DD) are reported. a) 200 MeV 4 x 4 cm2 field: (zslab: 0 cm, Pass rate: 100%, Max DD: 
1.54%, Mean DD: 0.10%).  b) 200 MeV 4 x 4 cm2 field:  (zslab: 15 cm, Pass rate: 99.69%, Max 
DD: 3.24%, Mean DD: 0.42%).  c) 150 MeV 10 x 10 cm2 field:  (zslab: 0 cm, Pass rate: 100%, 
Max DD: 2.06%, Mean DD: 0.12%).  d) 150 MeV 10 x 10 cm2 field:  (zslab: 10 cm, Pass rate: 
100%, Max DD: 2.64%, Mean DD: 0.34%).  The red pixels indicate points failing the criteria. 

c) d) 

a) b) 
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Figure 3.12 shows the 2D isodose comparison for a 4 x 4 cm2 beam incident on a water 

phantom with a 5 cm thick air slab at 30 cm depth. Figure 3.13 shows a depth dose curve for 

the same geometry.  Figure 3.14 shows the 2D dose difference between the PBA and Monte 

Carlo. The PBA overestimated the maximum dose in the phantoms containing air slabs.  In all 

cases, the depth dose curves for simulations containing an air slab, there was the abrupt drop in 

the depth dose at the proximal edge of the air slab due to the mass stopping power ratio of air to 

water being approximately 0.89 (Figure 3.13).  However one can see, the Monte Carlo depth 

dose starts to decrease with depth while going through the air slab and the PBA depth dose 

curve does not.  This was a small effect (~1-2%) for the 2 cm thick air slab and was even less of 

an effect for slabs located at shallow depths, however for certain geometries this effect became 

more apparent.  Distal to the air slab the PBA overestimates the dose along the central axis by 

3 to 7%; causing a large region of failure, approximately 7% of the area tested.  

 
Figure 3.12 Isodose comparison between Monte Carlo simulation (dash lines) and PBA 
calculation (solid lines) for a 250 MeV 4x4 cm2 beam incident on a water phantom with a 5 cm 
laterally infinite air slab (blue) located at 30 cm depth.  The pass rate was 93.2% with a 
maximum difference of 6.90% and mean difference of 3.03% in the failing regions (shown by 
red pixels).  There was good agreement off axis but an overestimation along the central axis 
after the air slab. 
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The overestimation in dose distal to the air slab was most likely due to the changes in the 

secondary proton fluence not modeled by the PBA; specifically the loss of charge particle and 

side scatter equilibrium of secondary protons going through the air slab.  This effect decreased 

with increasing field size because of the larger contribution to the central axis due to scatter off 

axis for larger field sizes.  Smaller field sizes were more sensitive to the abrupt changes in 

scatter and secondary particle production caused by the 5 cm air slab than larger field sizes, 

because fewer particles scatter into the central axis.  Figure 3.15 shows the 2D isodose 

comparison for a 10 x 10 cm2 beam incident on a water phantom with a 5cm thick air slab at 30 

cm depth. This loss of side scatter equilibrium of secondary particles was greatly reduced in the 

10 x 10 cm2 calculation.  The PBA calculation was able to calculate 100% of the points within 

2% or 1 mm of Monte Carlo for a 10 x 10 cm2 compared to 93.2% for the 4 x 4 cm2 case. The 

underestimation distal to the Bragg peak was reduced to ~ 2% vs. ~7%.  This error was also 

reduced in lower energy calculations where secondary particle production, secondary particle 

energy, and lateral displacement were reduced.     

 
Figure 3.13:  Percent depth dose comparison between Monte Carlo (dashed line) and PBA 
(solid line) for a 250 MeV 4x4 cm2 beam incident on a water phantom with a 5 cm laterally 
infinite air slab located at 30 cm depth.  The absolute difference between the two can be seen in 
red. The PBA overestimates the dose by approximately 2-6 % after the beginning of the air slab. 
This occurred because the PBA did not model the loss of side scatter equilibrium of the 
secondary particles produced above the slab or the lack of production of secondary particles in 
the slab.   

H2O H2O Air 
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Figure 3.14:  The 2D Monte Carlo dose distribution subtracted from the 2D PBA dose 
distribution for the geometry in Figure 3.12.  One can see the gradual increase in the 
overestimation of the PBA after entering the air slab at 30 cm in depth (outlined in black).  There 
is also an underestimation in the low dose off axis region due to the lack of material 
dependence in the nuclear halo model.  

 
Figure 3.15:  Isodose comparison between Monte Carlo simulation (dash lines) and PBA 
calculation (solid lines) for a 250 MeV 10x10 cm2 beam incident on a water phantom with a 5 cm 
laterally infinite air slab located at 30 cm depth.  The pass rate was 99.99% with a maximum 
difference of 2.07% and mean difference of 2.04%.  The underestimation distal to the air slab 
seen in the 4 x 4 cm2 simulation was still present but the magnitude was reduced significantly. 

Table 3.3 provides a full summary of the percentage of pixels within the 2% dose difference 

or 1 mm distance to agreement.  The vast majority of the geometries studied had pass rates 

greater than 99% and showed good agreement with Monte Carlo.  Even though in the majority 
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of circumstances the PBA performed extremely well, it should be noted for high energy (250 

MeV) and small field size (< 4x4 cm2) beams treating sites with large (> 5 cm thick) air 

heterogeneities located in the last 75% of the range, the PBA’s overestimation of dose distal to 

the air slab could lead to errors on the order of 7%.  This could be of considerable clinical 

significance in the treatment of lung tumors for instance.  

Table 3.2: :  Summary of results of the percentage of PBA calculated dose points within 2% or 1 
mm of Monte Carlo for water phantoms containing laterally infinite compact bone slabs.   

 
To summarize the results for phantoms containing laterally infinite slabs of compact bone or 

air, the PBA showed greater than 99% of dose calculation points were within 2% or 1 mm of 

Monte Carlo for all but 3 of the 70 geometries tested.  In the three cases where a 250 MeV 4 x 4 

cm2 field was incident on a water phantom with a 5 cm thick air slab located at 15, 25, and 30 

cm, the PBA failed to predict a loss of side scatter equilibrium of secondary protons along the 

central axis due to the air slab.  This caused an overestimation of dose distal to the slab.  For 

Percentage of Pixels Within 2% or 1 mm: 

2 cm Compact Bone Slab 

  100 MeV 150 MeV 200 MeV 250 MeV 

  FS (cm2) FS (cm2) FS (cm2) FS (cm2) 
Depth 
(cm)  4x4 10x10 4x4 10x10 4x4 10x10 4x4 10x10 

2  100 100 100 100 100 100 100 100 

30  n/a n/a n/a n/a n/a n/a 99.18 100 

5 cm Compact Bone Slab 

  100 MeV 150 MeV 200 MeV 250 MeV 

  FS (cm2) FS (cm2) FS (cm2) FS (cm2) 
Depth 
(cm)  4x4 10x10 4x4 10x10 4x4 10x10 4x4 10x10 

0  100 100 100 100 100 100 100 100 

30  n/a n/a n/a n/a n/a n/a 99.47 99.79 
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larger air heterogeneities with smaller field sizes this error could be significant and could warrant 

future investigation.  For all other cases the PBA showed excellent accuracy and great potential 

for future development into a clinical dose calculation algorithm. 

Table 3.3:  Summary of results of the percentage of PBA calculated dose points within 2% or 1 
mm of Monte Carlo for water phantoms containing laterally infinite air slabs. 

 

Percentage of Pixels Within 2% or 1 mm: 

2 cm Air Slab 

  100 MeV 150 MeV 200 MeV 250 MeV 

  FS (cm2) FS (cm2) FS (cm2) FS (cm2) 
Depth 
(cm)  4x4 10x10 4x4 10x10 4x4 10x10 4x4 10x10 

2  100 100 100 100 100 100 100 100 

5  100 100 100 100 100 100 100 99.99 

10  n/a n/a 100 100 100 100 100 100 

15  n/a n/a n/a n/a 100 100 100 100 

30  n/a n/a n/a n/a n/a n/a 99.96 100 

5cm Air Slab 

  100 MeV 150 MeV 200 MeV 250 MeV 

  FS (cm2) FS (cm2) FS (cm2) FS (cm2) 
Depth 
(cm)  4x4 10x10 4x4 10x10 4x4 10x10 4x4 10x10 

0  100 100 100 100 100 99.99 100 100 

10  n/a n/a 100 100 100 100 99.34 100 

15  n/a n/a n/a n/a 99.69 100 98.17 99.99 

25  n/a n/a n/a n/a n/a n/a 97.43 100 

30  n/a n/a n/a n/a n/a n/a 93.2 99.99 
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3.2.3 Laterally Finite Slabs 

Geometries consisting of a water phantom with a 2 cm thick laterally finite air or compact 

bone slab placed at different depths were examined.  For water phantoms containing a laterally 

finite 2 cm thick compact bone slab greater than 95.76% of PBA dose calculation points were 

within 2% or 1 mm of Monte Carlo.  In all but one case, greater than 97.5% of dose calculation 

points were within the criteria of Monte Carlo.  Failures were caused by the central axis 

approximation used in the PBA. The central axis approximation assumes, for a given pencil 

beam, whatever material is along the central axis is laterally infinite.  Thus, the sharp lateral 

edge of the slab caused an error in the PBA were it did not in Monte Carlo.  For slabs located in 

the first 50% of the range, 99% of dose calculation points were within the criteria of Monte 

Carlo. Because both scatter and energy deposition increase with depth, this error increased 

significantly when the slab was placed in the second half of proton range.   The percentage of 

dose calculation points within 2% or 1 mm of Monte Carlo can be seen in Table 3.4.  

 The pass rates for the larger field size were consistently 1 to 2 percent higher than the 

smaller field size.  This was simply due to having more dose points that were unaffected by the 

slab that helped obtain a higher pass rate.  The error produced was of the same magnitude 

even though the pass rate was higher.  The same can be said for the higher energies.  For 

slabs placed at a depth corresponding to the same percentage of the range, the higher energy 

beams have a greater pass rate, because there were simply more dose points that were 

unaffected by the slab.  In this case, the errors produced in the higher energy simulation were 

actually of greater magnitude, but they had the higher pass rate.  These are two limitations of 

using pass rate as the only metric of accuracy of the PBA.  To counteract this, dose difference 

plots, lateral profiles, and depth dose profiles were relied on more heavily than in the previous 

section.  

For the 150 MeV proton beams, the compact bone slab was placed at 2, 5, and 10 cm 

depths.  This corresponds to approximately 13, 32, and 64 percent of the range in water 
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respectively.  The isodose comparisons for the two extremes can be seen in Figure 3.16.  The 

pass rates dropped as the slab position increased in depth as expected.  They were 99.95, 

99.74, and 95.76 percent, respectively.  The maximum errors also increased as the slab was 

placed in the second half of the range.  They were 4.41, 4.25, and 14.25 percent, respectively.  

The same can be said for mean dose differences, which were 3.19, 2.68, and 5.48 percent.  

Any algorithm using the central axis approximation will display this general behavior.  For 

instance, this trend is consistent with results from Schaffner (1998).  Their results for a 1 x 1 cm2 

170 MeV beam incident on a similar geometry show the maximum dose difference is 

approximately10% when a 2 cm bone slab was place at the surface.  This difference increased 

to approximately 27% when the slab was placed at 18 cm depth.   

 
Figure 3.16: Isodose comparisons between Monte Carlo (dashed lines) and PBA (solid lines) in 
a water phantom containing 2 cm compact bone slab located at different depths (zslab).  The 
maximum dose difference (Max DD) and mean dose difference in the failing region (Mean DD) 
were reported. a) 150 MeV 4 x 4 cm2 field: (zslab: 2 cm, Pass rate: 100%, Max DD: 4.41%, 
Mean DD: 3.19%).  b) 150 MeV 4 x 4 cm2 field:  (zslab: 10 cm, Pass rate: 99.69%, Max DD: 
14.25%, Mean DD: 5.48%).  Red pixels indicate a failing point. 

All field sizes and energies exhibited the same behavior with the four areas of failure which 

grew as the slab was placed in the second half the range.  These errors were all caused by the 

central axis approximation.  The geometry shown in Figure 3.16b serves as a good example.  

Figure 3.17 shows the dose difference plot between the PBA and Monte Carlo for this geometry.  

The typical X shape caused by the central axis approximation discussed in section 1.1.3 is 

present.  For pencil beams passing through the bone slab, the PBA assumes the slab is laterally 

a) 
b) 
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infinite.  This causes an overestimation (hot spot) and an underestimation (cold spot) on the left 

side of the central axis by the PBA relative to Monte Carlo.  Conversely pencil beams not 

passing through the bone, the PBA assumes the slab is not there, which causes a wide cold 

spot and a narrow hot spot on the right side of the central axis.   

Dose distal to the bone slab increased slightly faster in the Monte Carlo than in the PBA.  

This was seen in the laterally infinite slab geometries as well.  The PBA also predicted the 

maximum dose to be 1 mm distal of the Monte Carlo prediction. This caused a hot spot with a 

large dose difference that passed the DTA criteria.   This 1 mm difference in the range of 

protons seemed to decrease the width of the hot spot on the left side caused by the central axis 

approximation.  The mean dose difference in the failing region was 5.48% and the maximum 

dose difference in the failing region was 17.58%.   

 
Figure 3.17 The 2D Monte Carlo dose distribution subtracted from the 2D PBA dose distribution 
for the geometry in Figure 3.16b.  The color bar shows percentage of the maximum dose in a 
flat water phantom.  This illustrates where the PBA overestimates the dose relative to Monte 
Carlo (hot spot shown in red) and underestimates the dose relative to Monte Carlo (cold spots 
shown in blue) created by the central axis approximation along with a slight difference in the 
range when going through compact bone which manifests itself as a hot spot distal to the bone 
slab. 

Figure 3.18 shows lateral and depth dose profiles taken through the four regions with failing 

pixels.  The profiles illustrate the problems with the PBA.  First the central axis approximation 

will cause the hot and cold spots as just discussed.  They are present in all four of the profiles.  
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Also there was a one pixel difference in the prediction of the range and energy deposition distal 

to the bone slab increased more rapidly in the Monte Carlo than in the PBA.  This caused an 

additional hot spot in Figure 3.18a.  As previously discussed this was most likely caused by 

differences in stopping power binning and the 1 mm pixel resolution.  Regions not affected by 

the central axis approximation agreed with Monte Carlo as expected from the results in the 

previous sections. 

 
 

 
Figure 3.18:  Profiles taken through the four failing regions of the geometry shown in Figure 
3.16b. Figures a & b are depth dose profiles taken at X = 0.25 cm and – 0.25 cm respectively.  
Monte Carlo (dashed line) was plot with PBA (solid line).  The absolute difference between the 
two was plotted as well (red line).  In figure a) one can see three separate errors occurring: first 
a cold spot then two hot spots.  The cold spot and second hot spot were formed from the central 
axis approximation.  The first hot spot was caused by the one pixel difference in range when 
going through compact bone.  In figure b) there was a hot spot then cold spot from the central 
axis approximation.  Figures c) and d) are lateral profiles taken at Z = 14.05 cm and 15.55 cm 
respectively.  Again one can see the hot (overestimation by the PBA) and cold (underestimation 
by the PBA) spots caused by the central axis approximation. 

The error in the range wasn’t seen in all simulations. For instance, in the 250 MeV 10 x10 

cm2 simulations, this error was not present.  The 250 MeV 10 x10 cm2 isodose comparisons are 

a) b) 

c) d) 

H2O Bone H2O 
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shown in Figure 3.19 along with the 2D dose difference plot in Figure 3.20.  Only the hot and 

cold spots due to the central axis approximation were present (see Figures 3.20 & 3.21).    

Figure 3.21 shows depth dose and lateral profiles for this geometry as well.  The agreement is 

very similar to the results shown in Figure 3.18, except for the absence of the 1 mm discrepancy 

in range. 

 
Figure 3.19: Isodose comparisons between Monte Carlo (dashed lines) and PBA (solid lines) for 
a 250 MeV 10 x10 cm2 beam incident on a water phantom containing 2 cm compact bone slab 
(yellow) located at 30 cm. (Pass rate: 98.60%, Max DD: 19.88%, Mean DD: 7.25%). 

 
Figure 3.20:  The 2D Monte Carlo dose distribution subtracted from the 2D PBA dose 
distribution for the geometry in Figure 3.19.  This illustrates hot and cold spots created by the 
central axis approximation.  Color bar shows the difference between MC and the PBA relative to 
the maximum dose in a flat water phantom. 
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Figure 3.21: Profiles taken through the four failing regions of the geometry shown in Figure 3.19. 
Figures a) and b) are depth dose profiles taken at X = 0.55 cm and – 0.55 cm respectively.  
Figures c) and d) are lateral profiles taken at Z= 35.95 cm and 37.55 cm respectively.  The 
Monte Carlo data (dashed lines) was plotted with the PBA data (solid lines).  The absolute value 
of the difference between the two was plotted as well (red line).  In all four profiles one can see 
the hot and cold spots caused by the central axis approximation. 

To summarize, for water phantoms containing a 2 cm thick laterally finite compact bone slab 

at varying depths the PBA was unable to model perturbations due to the sharp lateral edge of 

the slab. This led to the appearance of two hot spots and two cold spots distal to the 

heterogeneity.  The maximum errors caused by this were between ±4% and ±20% depending 

on the depth of the heterogeneity.  The mean errors caused by this were between ±2% and 

±10%.  These errors could be of clinical significance and should be kept in mind when treating 

areas with sharp lateral edges in the beam. It should also be noted that when the compact bone 

slab was located in the first 50% of the range these errors were significantly reduced.  Thus if it 

is possible one should try to avoid treating in areas sharp lateral edges located at deep depths.  

a) 

c) d) 

b) 

H2O 

Bone 

H2O 
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For water phantoms containing a laterally finite 2 cm thick air slab greater than 96.15% of 

PBA dose calculation points were within 2% or 1 mm of Monte Carlo. For slabs located in the 

first 50% of the range the error from the central axis approximation was small (~1-3%) and 99% 

of dose calculation points were within the criteria of Monte Carlo. Similar to the compact bone 

slab results, this error increased significantly (~ 10-20%) when the slab was placed in the 

second half of the proton’s range.  The percentage of dose calculation points within 2% or 1 mm 

of Monte Carlo can be seen in Table 3.3.  

Figure 3.22 shows the isodose comparison for a 250 MeV 10 x 10 cm2 beam incident on a 

water phantom with a 2 cm thick laterally finite air slab located at 30 cm depth.  Figure 3.23 

shows the 2D dose difference distribution for this geometry.  Similar to the compact bone 

simulation (Figure 3.19), these laterally finite slabs caused errors due to the central axis 

approximation.  The errors look nearly identical to the ones caused by the bone slab (Figure 

3.20) but the locations of the hot and cold spots are switched.  The magnitudes of the errors are 

similar as well.  The pass rate was slightly lower for the air slab at 97.96% compared to 98.60% 

for the bone.  This was probably due to the presence of the regions of failure located at the 

edge of the air slab caused by the central axis approximation.  This error was present in the 

compact bone simulations, but since the mass stopping power ratio is about 3-5% lower for air 

than compact bone, it caused a failure in this case, were it did not in compact bone.  The 

maximum dose difference with the air slab present was 17.75% compared to 19.88% for bone 

and the mean dose difference in the failing region was 6.42% compared to 7.25%.  This was 

most likely due to the air slab having a smaller effect on scatter than the compact bone slab.  

There was an overestimation of the dose in and after the laterally finite air slab, as seen in the 

laterally infinite air slabs in section 3.2.2.  This was most likely due to perturbations of the 

secondary proton fluence caused by the air slab not modeled by the PBA.   

Like the laterally finite compact bone geometries, geometries containing laterally finite air 

slabs displayed similar errors for all energies and field sizes with the magnitude of the errors 
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increasing with increasing depth of the heterogeneity.  As field size increased, there was a 

decrease in the magnitude of the errors due to the increased number of pencil beams far off 

axis, where the central axis approximation was almost valid.  For the larger field size, there were 

more of these pencil beams and this slightly decreased the magnitude of the error by 1-2%.  For 

a heterogeneity located at a given percentage of the range, the errors generally increased with 

increasing energy as expected.  This was due to higher energies having a larger lateral spread 

at a given percentage of their range.   A full summary of the pass rate results can be seen in 

Table 3.4. 

 

Figure 3.22: Isodose comparisons between Monte Carlo (dashed lines) and PBA (solid lines) for 
a 250 MeV 10 x10 cm2 beam incident on a water phantom containing 2 cm air slab (blue) 
located at 30 cm. (Pass rate: 97.96%, Max DD: 17.75%, Mean DD: 6.42%). The red pixels 
indicate failing points. 

To summarize, for water phantoms containing a 2 cm thick laterally finite air slab placed at 

varying depths, the PBA was unable to model perturbations due to the sharp lateral edge of the 

slab. This led to the appearance of two hot spots and two cold spots distal to the heterogeneity.  

The maximum errors caused by this were approximately between ±3% and ±19% depending on 

the depth of the heterogeneity.  The mean errors caused by this were between ±1% and ±10%.  

These errors could be of clinical significance and should be kept in mind when treating areas 
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containing heterogeneities with sharp lateral edges in the beam.  It should also be noted that 

when the air slab was located in the first 50% of the range these errors were significantly 

reduced.  Thus, if it is possible one should try to avoid treating in areas sharp lateral edges 

located at deep depths. 

 

Figure 3.23: The 2D Monte Carlo dose distribution subtracted from the 2D PBA dose distribution 
for the geometry in Figure 3.22. This illustrates hot and cold spots created by the central axis 
approximation.  

To summarize, for water phantoms containing a 2 cm thick laterally finite air slab placed at 

varying depths, the PBA was unable to model perturbations due to the sharp lateral edge of the 

slab. This led to the appearance of two hot spots and two cold spots distal to the heterogeneity.  

The maximum errors caused by this were approximately between ±3% and ±19% depending on 

the depth of the heterogeneity.  The mean errors caused by this were between ±1% and ±10%.  

These errors could be of clinical significance and should be kept in mind when treating areas 

containing heterogeneities with sharp lateral edges in the beam.  It should also be noted that 

when the air slab was located in the first 50% of the range these errors were significantly 

reduced.  Thus, if it is possible one should try to avoid treating in areas sharp lateral edges 

located at deep depths. 
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Figure 3.24: Profiles taken through the four failing regions of the geometry shown in Figure 3.19. 
Figures a and b are depth dose profiles taken at X = 0.55 cm and – 0.55 cm, respectively.  
Figures c and d are lateral profiles taken at Z= 37.45 cm and 39.45 cm, respectively.  The 
Monte Carlo data (dashed lines) was plotted with the PBA data (solid lines).  The absolute 
difference between the two was plotted as well (red line).  In all four profiles one can see the hot 
and cold spots caused by the central axis approximation. 

To summarize, for water phantoms containing a 2 cm thick laterally finite air slab placed at 

varying depths, the PBA was unable to model perturbations due to the sharp lateral edge of the 

slab. This led to the appearance of two hot spots and two cold spots distal to the heterogeneity.  

The maximum errors caused by this were approximately between ±3% and ±19% depending on 

the depth of the heterogeneity.  The mean errors caused by this were between ±1% and ±10%.  

These errors could be of clinical significance and should be kept in mind when treating areas 

containing heterogeneities with sharp lateral edges in the beam.  It should also be noted that 

when the air slab was located in the first 50% of the range these errors were significantly 

reduced.  Thus, if it is possible one should try to avoid treating in areas sharp lateral edges 

located at deep depths. 

c) 

a) 

d) 

b) 

H2O 

Air H2O 

H2O 
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Table 3.4: Summary of results of the percentage of PBA calculated dose points within 2% or 1 
mm of Monte Carlo for water phantoms containing laterally infinite air and compact bone slabs.   

3.3 Summary of Results 

Table 3.4 contains a summary of results from this study.  The results of the 140 dose 

calculation comparisons were sorted into four groups: homogeneous water phantom, 

homogenous compact bone phantom, laterally infinite slab, and laterally finite slab data.  The 

Last two groups were further split into subcategories based on what kind of heterogeneity was 

Percentage of Pixels Within 2% or 1 mm: 

2 cm Compact Bone Slab 

 

  100 MeV 150 MeV 200 MeV 250 MeV 

  FS (cm2) FS (cm2) FS (cm2) FS (cm2) 
Depth 
(cm)  4x4 10x10 4x4 10x10 4x4 10x10 4x4 10x10 

2  99.85 99.93 99.95 99.97 99.83 99.91 100 100 

5  98.93 99.56 99.74 99.89 99.85 99.91 99.81 99.88 

10  n/a n/a 95.76 98.24 99.39 99.62 99.80 99.84 

15  n/a n/a n/a n/a 97.61 98.66 99.37 99.79 

30  n/a n/a n/a n/a n/a n/a 97.61 98.60 

2 cm Air Slab 

 

  100 MeV 150 MeV 200 MeV 250 MeV 

  FS (cm2) FS (cm2) FS (cm2) FS (cm2) 
Depth 
(cm)  4x4 10x10 4x4 10x10 4x4 10x10 4x4 10x10 

0  100 100 100 100 100 100 100 100 

10  n/a n/a 97.58 99.81 99.81 99.88 99.92 99.99 

15  n/a n/a n/a n/a 98.09 99.01 99.41 99.77 

25  n/a n/a n/a n/a n/a n/a 97.54 98.66 

30  n/a n/a n/a n/a n/a n/a 96.15 97.96 
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present.  For all of these groups, the mean pass rate, lowest pass rate, the maximum dose 

difference in the region of failure, and the mean dose difference in the region of failure of all the 

data sets in that group are reported.  The dose difference values are relative to the maximum 

dose in a flat water phantom and were rounded up to the nearest half a percent.  

Table 3.5:  Summary of the results of this work.  Note that the errors present in the laterally 
infinite slab geometries were also present in the laterally finite slab geometries. Note that (Total) 
is used to denote results containing both air and bone slabs. 

 

These results show the improvements made to the algorithm provide superior agreement in 

all areas for water phantoms when compared to single and two termed algorithms.  When 

dealing with laterally infinite heterogeneities, the PBA accurately predicts the lateral penumbra 

where other algorithms struggle.  However, at times the PBA under or overestimates the central 

axis dose.  These are relatively small errors, typically on the order of 2-4%, may be overcome in 

the future by implementing material dependence in range straggling and secondary particle 

Summary of Results 

Type of 
Heterogeneity 

Mean 
Percentage of 
Points within 
2% of 1 mm 

Minimum 
Percentage of 
Points within 
2% or 1  mm 

Maximum Dose 
Difference in 

Failing Region 

Mean Dose 
Difference in 

Failing Regions 
Cause of 

Errors 

Homogenous 
Water Phantoms 100% 100% n/a n/a  

Homogenous 
Compact Bone 

Phantom 
99.5% 97.9% ±6.5% ±3% 

Energy binning 
 

No material 
dependence in 
modeling non 

elastic collision  

Laterally Infinite 
Slabs (Total) 99.8% 93.2% ±7% ±2.5% 

Same as above 
Air 

Slabs 
Bone 
Slabs 99.7% 99.9% 93.2% 99.5% ±7% ±6% ±2.5% ±3% 

Laterally Finite 
Slabs (Total) 99.4% 95.8% ±21% ±5% The central 

axis 
approximation Air 

Slabs 
Bone 
Slabs 99.2% 99.4% 96.2% 95.8% ±20% ±21% ±4.5% ±5% 
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production models.  In the presence of laterally finite slabs the PBA struggles.  This was 

expected as the central axis approximation is a known limitation of pencil beam algorithms and 

convolution algorithms.  These results display similar characteristics with results in literature 

(Hong 1996, Schaffner 1998, Syzmanowski 2002, Soukup 2005, and Ciangaru 2005).    
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Chapter 4: Conclusions 

4.1 Study Summary 

The three specific aims of this work were each successfully completed.  An existing PBA was 

adapted for calculations in heterogeneous media and improvements to the nuclear halo model 

were completed. PBA dose calculations were compared to Monte Carlo dose calculations in 

over 140 different geometries.  The hypothesis of this work was that: a pencil beam algorithm 

can predict dose to a phantom containing heterogeneities delivered by a uniform parallel mono 

energetic proton beam within 2% dose difference or 1 mm distance to agreement of Monte 

Carlo simulated dose distribution of the same geometry for at least 97% of dose calculation 

points and this can be done for test geometries including bone and air heterogeneities of 

different sizes placed at different depths, using four different energies (100, 150, 200, 250 MeV) 

and two field sizes (4 and 10 cm). The hypothesis was found to be false.  In four out of one 

hundred forty cases the PBA was not able to meet the 97% pass rate with the 2% or 1 mm 

criteria.  In these cases the pass rates were 93.2%, 95.8%, 96.2%, and 96.7%. 

4.1.1 Specific Aim 1: Modify the PBA to account for Heterogeneities. 

The modification for calculation in heterogeneous media was accomplished through changes 

in the central axis term and the off axis terms of the PBA.  The central axis term was modified 

by scaling the central axis depth dose input data at an effective depth by mass stopping power 

ratio.  The PBA off axis distribution consisted of three terms.  The primary term was a Gaussian 

calculated by using the differential Moliere scattering power within Fermi Eyges scattering 

theory.  The primary term was material dependent by virtue of the material dependence in the 

scattering power and accounted for the position of the material by using Fermi Eyges scattering 

theory.  The secondary term was Gaussian and the third term was based on the Cauchy 
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Lorentz distribution. Their widths and relative weights were determined from curve fits in water 

and therefore were not material dependent.  

4.1.2  Specific Aim 2: Improve the Accuracy of the Nuclear Halo Model 

The original halo model in the PBA consisted of a single Gaussian.  It was found that it did 

not correctly model the off axis distribution of a proton pencil beam scattering in water.  The 

addition of a third term based on the Cauchy Lorentz distribution was completed.  The 

agreement in the low dose off axis region was improved greatly.  Curve fits were performed to 

determine the relative weights and widths of the two halo terms for the four proton energies 

commissioned in the PBA.   

4.1.3 Specific Aim 3:  Evaluate the Accuracy of the Algorithm 

The accuracy of the PBA was determined by performing 140 dose calculations using Monte 

Carlo methods and the PBA for four proton energies and two field sizes.  This was done on 

phantoms containing different heterogeneities.  It was found that at least 93% of PBA dose 

calculation points were within 2% of 1 mm distance to agreement of Monte Carlo.  In all but four 

dose calculations at least 97% of the PBA dose calculations points were within the comparison 

criteria of Monte Carlo.  Differences between the PBA and Monte Carlo were caused by 

differences in stopping powers, energy step size, the PBA’s lack of material dependence in 

modeling non-elastic scatter, and the central axis approximation.  These effects lead to errors 

ranging from approximately 2% to 21% of the maximum dose in a flat water phantom. 

4.2 Recommendations to Improve the Algorithm and Possible Future Work 

4.2.1 Extension of PBA to Patient Data 

More realistic dose calculations will need to be conducted in the future.  The development of 

a more realistic proton source and the use of spread out Bragg peaks or multiple beam spots to 
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deliver dose to more relevant treatment volumes will be needed when calculating dose on 

patient data.  Development of a model of a passively scattered or scanned source will have to 

include energy and angular spread not included in this work.  These developments could help 

determine the clinical relevance of some problems with PBA found in this work, such as how 

errors in individual pristine peaks of 3-6% translate when treating with a large spread out Bragg 

peak.   

Key to future work is access to a proton facility, where a site specific proton source model 

could be produced.  This would allow for the production of much more robust and realistic 

Monte Carlo and PBA models and would also allow for confirmation of the calculations with 

measurement.   

If the PBA is going to continue to use Monte Carlo data as input, an update to MCNPX 2.7e 

or MCNP6 would allow for a more finely tuned Monte Carlo model and thus better input data.  

Improved control over energy step size and the number of sub steps could prove to solve some 

of the issues with differences in range seen in this work. Improvements in nuclear data tables 

would also allow for further refinements in the Monte Carlo model to made, such as more 

accurate transport of all secondary particles produced in non-elastic interactions. 

4.2.2 The Nuclear Halo Correction 

The current halo model parameters were determined from curve fits to Monte Carlo data.  

These parameters were stored as a function of depth and read in during the dose calculation 

and the proper parameters were determined by sampling these text files.  This has proven to be 

somewhat time consuming and it could prove valuable to parameterize the halo terms as a 

function of depth.  This may require a little smoothing of the fit parameters or perhaps a higher 

resolution fit, but once this was accomplished, it could prove very helpful in the future.    

The current nuclear halo correction was shown to be very accurate in water.  However, it was 

also shown to be vulnerable to changes in material.  The PBA was unable to model changes in 



 

71 
 

the distribution of secondary protons due to changes in material, which proved to be a 

significant problem for small field size high energy beams.  The development of a first principles 

model that can account for these material changes would be ideal.  If this cannot be 

accomplished, a material dependent scaling method could be done in manner similar to what 

was done for the central axis.  Scaling by the ratio of non elastic cross section in the material 

relative to water could also be used to help accommodate for the changes in dose from 

secondary particles that are due to changes in material.  

4.2.3 Patient Calculation & TPS Integration 

Finally once those tasks are accomplished the future integration of CT data based dose 

calculation would provide the test in the environment that the PBA would eventually be used in.  

At the end of the project the success of the algorithm will depend on how it dose when 

calculating dose to patients, not water cylinders containing rectangular bone and air slabs.  All 

of these developments will bring the PBA closer and closer to full 3D dose calculations on CT 

data sets.  Once this has been accomplished the true merit of PBA will be determined. 

4.2.4 The Central Axis Approximation 

The preliminary results in this work have revealed some of the underlying issues that will be 

faced in the future.  The central axis approximation caused by far the largest errors in this work 

and was the only error that cannot be overcome with refinement in the PBA.  In many cases this 

approximation may not have a large effect but it must be kept in mind just as it is when treating 

with electrons.   Similar to work done by Shiu and Hogstrom (1991) and Boyd (2001) in electron 

transport, the development of a proton pencil beam redefinition algorithm (PBRA) should reduce 

the errors caused by this approximation.      
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Appendix A: Isodose Comparison Results 
In this chapter all of the isodose comparisons of this work are displayed.  The results are 

sorted by geometry type and energy.  In each case, the 4 x 4 cm2 results are displayed on the 

left side and the 10 x 10 cm2 on the right.  Each plot also has a tag number in the upper left 

hand of the graph.  This number can be used to look up the geometry parameters, mean dose 

difference, max dose differences, and pass rate of that plot in Appendix B.  In all of the plots the 

Monte Carlo dose distributions were contoured with the dashed lines and the PBA was 

contoured with solid lines.  Each distribution was normalized to the maximum dose in a flat 

water phantom and the 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 percent isodose lines 

were identified. 

A1:  Homogenous Water Phantom Results 
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A2:  Homogenous Compact Bone Phantom Results 
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A3:  Laterally Infinite Compact Bone Slab Results 
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A4:  Laterally Infinite Air Slab Results 
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A5:  Laterally Finite Compact Bone Slab Results  
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A6:  Laterally Finite Air Slab Results  
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Figure A.1:  Complete collection of 2D isodose comparisons from this work. 
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Appendix B:  Table of Results & Data 

In this chapter all of the result data of every test geometry dose comparison done in this work 

has been put in this single table.  Each simulation was given a tag number and entered in the 

table.  The initial energy, field size, slab material, slab thickness, slab width, and the depth 

where the slab was located were specified.  The slab width was described as either laterally 

infinite (Inf) or laterally finite (Fin).  Along with the parameters of the dose calculation geometry, 

the pass rate, mean dose difference of the all the pixels tested (MeanDD total), max dose 

difference of all the pixels tested (MaxDD Total), mean dose difference of the all the failing 

pixels (MeanDD in Failure), and maximum dose difference of the all the failing pixels (MaxDD in 

Failure) was entered for each dose calculation. 

Table B.1:  Table of results and data from this study. 

Table of Results & Data 

Tag 
# Eo FS Slab 

Mat. 
Slab 

Depth 
Slab 
Thick 

Slab 
Width 

Pass 
Rate 

MeanDD 
Total 

MaxDD 
Total 

MeanDD 
in 

Failure 

MaxDD 
in 

Failure 
64 100 4 Bone 2 2 Inf 100 2.11 44.36 0 0 
65 150 4 Bone 2 2 Inf 100 0.81 23.91 0 0 
66 200 4 Bone 2 2 Inf 100 0.39 15.35 0 0 
67 250 4 Bone 2 2 Inf 100 0.15 4.97 0 0 
74 100 4 Bone 0 60 Inf 100 0.4 4.72 0 0 
75 150 4 Bone 0 60 Inf 99.31 0.45 3.18 2.69 3.18 
76 200 4 Bone 0 60 Inf 99.43 0.57 3.83 2.81 3.66 
77 250 4 Bone 0 60 Inf 97.86 0.8 6.44 3.08 6.44 
82 250 4 Water 0 60 Inf 100 0.08 1.64 0 0 
88 100 4 Air 2 2 Inf 100 0.39 6.25 0 0 
89 150 4 Air 2 2 Inf 100 0.2 2.76 0 0 
90 200 4 Air 2 2 Inf 100 0.15 1.68 0 0 
91 250 4 Air 2 2 Inf 100 0.15 3.74 0 0 
92 100 4 Air 5 2 Inf 100 0.46 6.24 0 0 
93 150 4 Air 10 2 Inf 100 0.27 2.66 0 0 

106 200 4 Air 10 2 Inf 100 0.2 1.95 0 0 
107 200 4 Air 15 2 Inf 100 0.21 1.98 0 0 
108 250 4 Air 15 2 Inf 100 0.21 4.13 0 0 
110 250 4 Air 30 2 Inf 99.96 0.2 2.73 2.62 2.73 
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Table of Results & Data cont. 

Tag 
# Eo FS Slab 

Mat. 
Slab 

Depth 
Slab 
Thick 

Slab 
Width 

Pass 
Rate 

MeanDD 
Total 

MaxDD 
Total 

MeanDD 
in 

Failure 

MaxDD 
in 

Failure 
126 150 4 Bone 0 5 Inf 100 0.64 14.17 0 0 
127 200 4 Bone 0 5 Inf 100 0.33 8.85 0 0 
128 250 4 Bone 0 5 Inf 100 0.16 2.03 0 0 
129 100 4 Air 0 5 Inf 100 0.26 6.29 0 0 
130 150 4 Air 0 5 Inf 100 0.11 2.08 0 0 
131 200 4 Air 0 5 Inf 100 0.1 1.54 0 0 
132 250 4 Air 0 5 Inf 100 0.12 2.47 0 0 
133 150 4 Air 10 5 Inf 100 0.49 2.99 0 0 
134 200 4 Air 10 5 Inf 100 0.39 2.55 0 0 
135 250 4 Air 10 5 Inf 99.16 0.41 3.88 2.36 3.88 
136 200 4 Air 15 5 Inf 99.69 0.42 3.24 2.06 2.26 
137 250 4 Air 25 5 Inf 96.69 0.43 5.83 2.89 5.83 
138 100 4 Bone 2 2 Fin 99.85 1.06 44.37 2.78 4.21 
139 150 4 Bone 2 2 Fin 99.95 0.43 23.11 3.19 4.41 
140 200 4 Bone 2 2 Fin 99.83 0.23 12.34 3.39 5.54 
141 100 4 Bone 5 2 Fin 98.93 0.49 20.96 9.16 20.96 
142 150 4 Bone 10 2 Fin 95.76 0.65 24.37 5.48 17.58 
143 200 4 Bone 10 2 Fin 99.39 0.3 12.82 3.3 6.95 
144 200 4 Bone 15 2 Fin 97.61 0.4 13.52 5.15 13.03 
145 250 4 Bone 15 2 Fin 99.37 0.18 4.78 3.2 4.3 
146 250 4 Bone 30 2 Fin 98.96 0.41 20.44 12.19 20.44 
147 150 4 Air 0 2 Fin 100 0.27 5.21 0 0 
148 200 4 Air 0 2 Fin 100 0.19 5.89 0 0 
149 250 4 Air 0 2 Fin 100 0.16 7.05 0 0 
150 150 4 Air 10 2 Fin 97.58 0.53 11.77 4.82 11.77 
151 200 4 Air 10 2 Fin 99.81 0.25 5.82 2.84 4.02 
152 250 4 Air 10 2 Fin 99.92 0.21 6.95 2.42 2.95 
153 200 4 Air 15 2 Fin 98.09 0.37 8.99 4.28 8.99 
154 250 4 Air 25 2 Fin 97.54 0.37 12.82 5.59 12.82 
155 250 4 Bone 30 2 Inf 99.99 0.16 5.21 2.29 2.33 
156 100 4 Water 0 60 Inf 100 0.09 1.54 0 0 
157 150 4 Water 0 60 Inf 100 0.05 1.36 0 0 
158 200 4 Water 0 60 Inf 100 0.06 1.48 0 0 
159 100 10 Water 0 60 Inf 100 0.11 1.65 0 0 
160 150 10 Water 0 60 Inf 100 0.05 1.39 0 0 
161 200 10 Water 0 60 Inf 100 0.06 1.5 0 0 
162 250 10 Water 0 60 Inf 100 0.06 1.47 0 0 
163 100 10 Bone 2 2 Inf 100 2.15 44.53 0 0 
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Table of Results & Data cont. 

Tag 
# Eo FS Slab 

Mat. 
Slab 

Depth 
Slab 
Thick 

Slab 
Width Pass 

Rate 
MeanDD 

Total 
MaxDD 
Total 

MeanDD 
in 

Failure 

MaxDD 
in 

Failure 
164 150 10 Bone 2 2 Inf 100 0.9 24.02 0 0 
165 200 10 Bone 2 2 Inf 100 0.48 15.39 0 0 
166 250 10 Bone 2 2 Inf 100 0.18 4.71 0 0 
167 100 10 Bone 0 60 Inf 100 0.28 4.59 0 0 
168 150 10 Bone 0 60 Inf 99.67 0.24 2.74 2.33 2.72 
169 200 10 Bone 0 60 Inf 99.85 0.32 2.67 2.37 2.67 
170 250 10 Bone 0 60 Inf 100 0.53 2.19 0 0 
171 250 4 Bone 2 2 Fin 100 0.13 4.51 0 0 
172 250 10 Bone 30 2 Inf 100 0.15 4.62 0 0 
173 100 10 Air 2 2 Inf 100 0.4 6.23 0 0 
174 100 10 Air 5 2 Inf 100 0.41 6.19 0 0 
175 150 10 Air 2 2 Inf 100 0.17 2.82 0 0 
176 150 10 Air 10 2 Inf 100 0.19 2.64 0 0 
177 200 10 Air 2 2 Inf 100 0.12 2.5 0 0 
178 200 10 Air 10 2 Inf 100 0.15 2.46 0 0 
179 200 10 Air 15 2 Inf 100 0.16 2.2 0 0 
180 250 10 Air 2 2 Inf 100 0.13 3.38 2.14 2.14 
181 250 10 Air 15 2 Inf 100 0.18 3.42 0 0 
182 250 10 Air 30 2 Inf 100 0.16 3.41 0 0 
183 100 10 Air 0 5 Inf 100 0.21 1.66 0 0 
184 150 10 Air 0 5 Inf 100 0.12 2.06 0 0 
185 150 10 Air 10 5 Inf 100 0.34 2.64 0 0 
186 200 10 Air 0 5 Inf 99.99 0.1 2.1 2.06 2.1 
187 200 10 Air 10 5 Inf 100 0.29 2.44 0 0 
188 200 10 Air 15 5 Inf 100 0.33 2.18 0 0 
189 150 10 Bone 0 5 Inf 100 0.63 14.27 0 0 
190 200 10 Bone 0 5 Inf 100 0.34 9.1 0 0 
191 250 10 Bone 0 5 Inf 100 0.18 1.65 0 0 
192 250 10 Bone 30 5 Inf 99.79 0.13 5.66 2.81 4.4 
193 250 10 Air 0 5 Inf 100 0.1 2.88 0 0 
194 250 10 Air 15 5 Inf 100 0.3 3.37 0 0 
195 250 10 Air 25 5 Inf 100 0.32 3.52 0 0 
196 100 10 Bone 2 2 Fin 99.93 1.06 44.68 2.99 4.3 
197 100 10 Bone 5 2 Fin 99.56 0.37 21.12 9.29 21.08 
198 150 10 Bone 2 2 Fin 99.97 0.47 24.06 3.32 4.52 
199 150 10 Bone 10 2 Fin 98.24 0.56 24.97 5.64 17.58 
200 200 10 Bone 2 2 Fin 99.9 0.26 15.31 3.48 6.08 
201 200 10 Bone 10 2 Fin 99.62 0.31 15.71 3.43 9.43 
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Table of Results & Data cont. 

Tag 
# Eo FS Slab 

Mat. 
Slab 

Depth 
Slab 
Thick 

Slab 
Width Pass 

Rate 
MeanDD 

Total 
MaxDD 
Total 

MeanDD 
in 

Failure 

MaxDD 
in 

Failure 
202 200 10 Bone 15 2 Fin 98.66 0.36 16.13 5.11 13.48 
203 150 10 Air 0 2 Fin 100 0.18 5.17 0 0 
204 150 10 Air 10 2 Fin 98.91 0.32 11.46 4.83 11.46 
205 200 10 Air 0 2 Fin 100 0.13 5.69 0 0 
206 200 10 Air 10 2 Fin 99.88 0.19 5.69 2.79 4.06 
207 200 10 Air 15 2 Fin 99.01 0.25 8.82 4.39 8.82 
208 250 10 Air 0 2 Fin 100 0.11 6.5 0 0 
209 250 10 Air 10 2 Fin 99.99 0.16 6.48 2.2 2.38 
210 250 10 Air 25 2 Fin 98.66 0.26 11.33 5.27 11.33 
215 250 10 Bone 2 2 Fin 100 0.13 4.57 0 0 
216 250 10 Bone 15 2 Fin 99.79 0.14 4.34 2.93 3.97 
217 250 10 Bone 30 2 Fin 98.6 0.23 19.88 7.25 19.88 
220 250 4 Air 30 5 Inf 93.2 0.45 6.9 3.01 6.9 
221 250 4 Air 15 5 Inf 98.17 0.45 4.43 2.41 4.43 
225 250 4 Bone 30 5 Inf 99.47 0.19 5.78 3.89 5.78 
226 150 4 Air 5 2 Inf 100 0.23 2.72 0 0 
227 200 4 Air 5 2 Inf 100 0.17 1.89 0 0 
228 250 4 Air 5 2 Inf 100 0.17 2.07 0 0 
229 250 4 Air 10 2 Inf 100 0.2 2.14 0 0 
230 150 4 Bone 5 2 Fin 99.74 0.48 23.33 2.68 4.25 
231 200 4 Bone 5 2 Fin 99.85 0.24 12.54 3.43 5.35 
232 250 4 Bone 5 2 Fin 99.81 0.42 24.13 11.79 14.76 
233 250 4 Bone 10 2 Fin 99.8 0.44 24.98 11.27 14.47 
234 150 10 Air 5 2 Inf 100 0.22 2.67 0 0 
235 200 10 Air 5 2 Inf 100 0.15 2.18 0 0 
236 250 10 Air 5 2 Inf 99.99 0.11 3.08 2.37 2.74 
237 250 10 Air 10 2 Inf 100 0.14 3.22 2.01 2.01 
238 250 10 Air 15 5 Inf 99.99 0.32 3.11 2.05 2.09 
239 150 10 Bone 5 2 Fin 99.89 0.5 24.24 3 4.35 
240 200 10 Bone 5 2 Fin 99.91 0.28 15.54 3.29 5.47 
241 250 10 Bone 5 2 Fin 99.88 0.19 10.63 3.22 5.14 
242 250 10 Bone 10 2 Fin 99.84 0.2 10.6 3.27 5.21 
243 250 10 Air 15 2 Fin 99.77 0.17 6.48 2.79 3.96 
244 100 10 Air 0 2 Fin 100 0.39 7.4 0 0 
245 100 4 Air 0 2 Fin 100 0.56 7.36 0 0 
246 250 4 Air 15 2 Fin 99.41 0.24 6.95 3.06 4.67 
247 250 10 Air 30 5 Inf 99.99 0.36 4.92 2.04 2.07 
248 250 10 Air 30 2 Fin 97.96 0.32 17.75 6.43 17.75 
249 250 4 Air 30 2 Fin 96.15 0.49 19.84 6.48 19.84 
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