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Abstract

A hard x-ray/gamma-ray telescope with high sensitivity and wide field of view would be

capable of performing an all-sky census of black holes over a wide range of obscuration and

accretion rates. As an example, NASA’s Black Hole Finder Probe mission was designed to

provide a 5σ flux sensitivity in a 1-year observation of ∼ 0.02 mCrab in the 10 - 150 keV

energy range and 0.5 mCrab in the 150 - 600 keV energy range with 3 - 5 minutes of arc

angular resolution. These are significantly higher sensitivity and resolution goals than those

of current instruments. The design focus on sensitivity would make the instrument equally

suitable for national security applications in the detection of weak shielded illicit radioactive

materials at large distances (100 m - 1 km).

X-ray and gamma-ray imaging designs for astrophysics and security applications typi-

cally utilize a coded aperture imaging technique. The spatial resolution necessary, however,

coupled with the specification of high sensitivity, requires a large number of readout channels

(resulting in high cost and complexity) and limits the use of this technique to relatively low

energies. As an alternative approach, an investigation is made here of the rotating modu-

lator (RM), which uses primarily temporal modulation to record an object scene. The RM

consists of a mask of opaque slats that rotates above an array of detectors. Time histories

of counts recorded by each detector are used to reconstruct the object scene distribution.

Since a full study of RM characterization and capabilities has not been performed prior

to this work, a comprehensive analytic system response is presented, which accounts for

realistic modulation geometries. The RM imaging characteristics and sensitivity are detailed,

xvi



including a comparison to more common hard x-ray imaging modalities. A novel image

reconstruction algorithm is developed to provide noise-compensation, super-resolution, and

high fidelity.

A laboratory prototype RM and its measurement results are presented. As a pathfinder

mission to an eventual astrophysics campaign, a one-day high-altitude balloon-borne RM

is also described, including expected performance and imaging results. Finally, RM de-

signs suitable for next-generation astrophysics and security applications are presented, and

improvements to the RM technique are suggested.
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Chapter 1

Introduction

1.1 Astrophysical Motivation

1.1.1 Science

A high-sensitivity hard x-ray/gamma-ray telescope with good energy and angular resolution

would be capable of performing an all-sky census of black holes over a wide variety of obscu-

ration and accretion rates: from stellar-mass black holes in our own galaxy, to intermediate

mass (100 - 1000 solar mass) black holes produced by the very first stars, to supermassive

black holes located in the nuclei of galaxies. Such a census would investigate how black

holes form and evolve and their role in the development of the universe and was a prime

goal of NASA’s proposed Black Hole Finder Probe (BHFP) mission. BHFP was intended

as a pathfinder mission to the Black Hole Imager, one of the “vision” missions of NASA’s

Beyond Einstein program (National Research Council, 2007) and a high priority in several

NASA strategic plans (NASA, 2006).

The BHFP census (Grindlay et al., 2001; McConnell et al., 2004) required a 5σ flux

sensitivity in a 1-year observation of 5 × 10−13 erg cm−2 s−1 (∼ 0.02 mCrab) in the 10 -

150 keV energy range, and 0.5 mCrab in the 150 - 600 keV energy range, comparable to the

sensitivity of the all-sky soft x-ray (0.5 - 2.5 keV) survey conducted by ROSAT (Truemper,
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1982). The BHFP census would be approximately 1000× the sensitivity of the HEAO-1

A4 sky survey (Matteson, 1978), 1 - 20× the sensitivity of Swift (Gehrels et al., 2004), and

20× the sensitivity of CGRO/BATSE (Fishman et al., 1989) for gamma-ray bursts (GRBs).

The field of view (FOV) of the instrument must allow for full-sky observation once per orbit

and 20% continuous observation per source. Angular resolution of 3 - 5 arcmin is necessary

to avoid source confusion from the more than 30, 000 Active Galactic Nuclei (AGN) that

will be detected (McConnell et al., 2004). Bright sources must be measured with a location

accuracy of 10 arcsec to allow for follow-up observations by other satellite- or ground-based

narrow-field instruments.

Sensitivity in the 10 - 600 keV energy range is especially important to a black hole

survey mission, since most accreting black holes are hidden by interstellar dust and gas.

While hard x-rays, infrared, and radio waves can all penetrate this dust with relatively little

attenuation, x-rays have the advantage in that emission from accreting black holes is more

easily distinguished from stellar emission. Additionally, previous missions have indicated

the importance of this energy band to the discovery of black hole candidates. The Swift

all-sky survey (Tueller et al., 2008) showed that the majority of astronomical sources in the

energy range 15 - 200 keV are due to AGN, bright centers of galaxies believed to harbor

supermassive black holes; the majority of these AGN were determined to be Seyfert galaxies.

Observations in this same energy range by the IBIS telescope on INTEGRAL (Revnivtsev

et al., 2004) showed that most sources located in the vicinity of our Galactic Center are due

to X-ray binaries, many of which consist of a donor star accreting onto a black hole.

The positron annihilation line, at 511 keV, is the brightest emission line observed in the

Galaxy (Purcell et al., 1997; Knödlseder et al., 2005), but its source is poorly understood.

Black hole binaries, supernovae, pulsars, and cosmic ray interactions could play a role, while

some of the more exotic recent suggestions include dark matter annihilation (Boehm et al.,

2004; Cassé et al., 2004) and light super-conducting strings (Ferrer & Vachaspati, 2005).

Gamma-ray observations of the Galactic bulge region, where the distribution of 511 keV is
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brightest, would, with good angular resolution, better define the source distribution and help

to uncover the origin of this emission.

The most sensitive gamma-ray imager currently flying – the SWIFT Burst Alert Tele-

scope (BAT) coded aperture – observes up to ∼ 150 keV (Gehrels et al., 2004). Sensitivity

extending to energies up to 1 MeV would allow for the observation of an even wider range

of astrophysical phenomena and would provide a means of achieving broader scientific ob-

jectives. As seen in data from CGRO/COMPTEL (McConnell et al., 2000), observation

at energies above a few hundred keV could help to determine the underlying mechanism of

non-thermal emission from Galactic black hole candidates (GBHCs) such as Cygnus X-1.

Cygnus X-1 has been observed at energies up to several MeV in order to precisely define

its spectrum (McConnell et al., 2002). The x-ray/gamma-ray sky is highly variable, and

GBHCs are no exception to this rule. GBHCs are typically quiescent, with sudden bright

outbursts in which they are observed in one of two states: the “breaking gamma-ray state,”

associated non-thermal state observed in the x-ray regime, and the “power-law gamma-ray

state,” associated with the x-ray thermal state (Grove et al., 1998; Remillard & McClintock,

2006). A new survey telescope should precisely define the spectra of GBHCs up to high

energies during outburst to determine in which of these states the source currently resides

and to observe candidates transitioning between the two states. Such observations would

provide observational data to help constrain theoretical models.

A wide energy band would also enable the observation of the peak energy in GRBs,

low energy cyclotron lines, and nuclear lines. In particular, supernovae and their remnants

could be studied via the nuclear lines from radioisotopes emitted by these events. Type

Ia supernovae, resulting from thermonuclear explosions of white dwarf binaries, emit their

energy primarily in the form of radioactive 56Ni and its daughter isotope, 56Co. It is the

energy released from these decays that is the primary cause of the optical emission. In

gamma rays, the 158, 749, and 812 keV lines of 56Ni and the 511 and 847 keV lines from

56Co may be observed. Precise identification (requiring good energy resolution) combined
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with flux measurements of these nuclear lines could help to determine the amount of 56Ni

in the supernova, and help to distinguish between Chandrasekhar and sub-Chandrasekhar

mass explosions (Boggs, 2006).

Type II supernovae, explosions resulting from stellar core collapse, may be identified by

the 68 and 78 keV nuclear lines of ejected 44Ti. Additionally, it is believed a short flash of 511

keV due to 18F (158 min half-life) should accompany Type II supernovae. It has also been

suggested that other nuclear lines such as 478 keV from 7Be could be used to indicate the

supernova rate in the Galaxy (Grindlay et al., 2001). A broad energy range extending well

beyond the 150 keV upper bound of the Swift survey (Tueller et al., 2010), good sensitivity,

and high angular resolution are thus essential for a next generation hard x-ray/gamma-ray

telescope mission.

1.1.2 Current and Proposed Missions

Since the late 1970’s, numerous hard x-ray/gamma-ray instruments have sucessfully launched

and observed in this energy regime. Two of the most recent missions employ coded aperture

imaging techniques (see Sec. 2.2) and are described below.

The International Gamma-Ray Astrophysics Laboratory (INTEGRAL; Winkler et al.

2003), launched in 2002, is composed of four instruments independently focused on high-

resolution spectroscopy, high-angular resolution imaging, and monitoring. Of these, the IBIS

telescope (Ubertini et al., 2003) consists of a 1 m2, 1.6 cm-thick tungsten coded mask with a

uniformly redundant array pattern (Fenimore & Cannon, 1978). A detection plane of 0.26 m2

of cadmium telluride (CdTe) sits beneath the mask, providing imaging sensitivity between 15

- 150 keV. A second detection plane of 0.29 m2 of cesium iodide (CsI) scintillators sits below

the CdTe, and provides imaging sensitivity up to 10 MeV using the Compton interaction

of the incident gamma rays in the top detection plane. The full energy range is defined

for a 9◦ × 9◦ (fully-coded) FOV and 12′ angular resolution. An active Bismuth Germanate
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(BGO) veto system combined with passive collimation lead shields reduces the background

contribution from cosmic diffuse flux and Earth albedo.

The Swift Gamma-Ray Burst Mission (Gehrels et al., 2004), launched in 2004, consists of

three instruments for observation at hard x-ray, soft x-ray, and ultraviolet/optical energies

to observe and study GRBs. The Burst Alert Telescope (BAT) is a random pattern coded

aperture-based telescope, sensitive to an energy range of 15 - 150 keV. The mask consists

of 5× 5× 1 mm-thick lead pixels to provide 1′ - 4′ angular resolution. The detection plane,

totaling 0.52 m2 in area, is comprised of 4×4×2 mm pixels of cadmium zinc telluride (CZT),

a solid-state device with good energy resolution (< 3% at 662 keV). The geometry provides

a 100◦ × 60◦ (half-coded) FOV. A graded passive shield minimizes background.

Both INTEGRAL and Swift have been highly successful in their missions. The focus of

INTEGRAL has been on sensitivity to a wide energy range, but with a narrow FOV. Swift has

a wide FOV for the purpose of generating an all-sky catalog, but is only sensitive to energies

up to 150 keV. Design for the next generation of x-ray/gamma-ray telescopes has focused on

sensitivity, allowing for the observation of a wide range of sources, in particular for those that

are dim, far away, or obscured by dust and gas. Two telescope designs that were proposed

to the National Academy of Sciences’ Beyond Einstein Program Assessment Committee

(BEPAC) to satisfy the scientific requirements of the BHFP are examples: Like the majority

of prior successful missions operating in this energy range, both of these instruments –

EXIST and CASTER – used a coded aperture imaging modality, though the telescopes

differed primarily in the detection plane design.

The Energetic X-ray Imaging Survey Telescope (EXIST; Grindlay et al. 2001, 2003)

combined three coded aperture telescopes to achieve a 180◦ × 75◦ FOV. Each sub-telescope

featured a quasi-hemispherical tungsten coded aperture mask. To achieve the angular res-

olution necessary for the BHFP, the mask pixels were 2.5 mm wide, while a thickness of 7

mm provided sufficient attenuation for 600 keV gamma rays. The EXIST detection planes

were composed of 5 - 10 mm thick CZT. Each detector plane had an array of 1.0 mm pixels
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totaling 2.7 m2 (8.4 m2 total). Collimating shields located beneath and to the sides of the

detector array attenuated Earth albedo and provided cosmic ray-induced background rejec-

tion. Additionally, the shield outputs were pulse-height analyzed for GRB detection up to

10 MeV. This large-area detector system required 4.6 × 106 electronics channels (Grindlay

et al., 2003).

The Coded Aperture Survey Telescope for Energetic Radiation (CASTER; McConnell

et al. 2004, 2005) addressed the costly nature of EXIST due to its use of CZT and large

number of readout channels. CASTER was proposed as an array of coded aperture tele-

scopes, each with a 5 mm-thick graded tungsten mask composed of 1.3 - 2.2 mm pixels.

Inorganic scintillators, which have a long record of successful use in laboratory and space-

based missions, were used as the primary detectors. The CASTER detection plane was an

Anger array, a grouping of photomultiplier tubes (PMTs) optically coupled to the backside

of a sheet of cesium iodide (CsI), sodium iodide (NaI), or lanthanum bromide (LaBr3) scin-

tillator. By measuring the relative outputs of the PMTs, the photon interaction location

could be determined with a spatial resolution better than the spacing of the PMT anodes,

significantly reducing the required number of channels when compared to EXIST. For a total

8 m2 detector area, 3.2× 105 channels were required.

Both CASTER and EXIST were considered and criticized by BEPAC for being too costly

and complex (National Research Council, 2007). This result, arising primarily from the

large number of readout channels required, was a consequence of the fine spatial resolution

necessary for a coded aperture-based design. Combined with the scientific requirement of

high sensitivity and good energy resolution, these telescopes could not satisfy the budget

constraints of the Beyond Einstein probe missions. Although the Swift and INTEGRAL

coded aperture telescopes have proven extremely successful, new imaging technology must

be developed if a next generation follow-on mission (operating with high sensitivity and good

efficiency above 150 keV) is to be feasible.
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1.2 National Security Motivation

A hard x-ray/gamma-ray imager capable of the scientific performance described in Sec. 1.1.1

would also be suitable as a stand-off radiation detection system for security applications.

In particular, the emphasis of next-generation designs on sensitivity makes the instrument

capable of detecting weak, distant (100 m - 1 km) illicit nuclear materials. Such a capability

would be useful for the surveillance of trucks at border crossing points or the monitoring of

ships entering a port, both of which could potentially be carrying contraband radioactive

cargoes (Cherry et al., 2006).

Fissionable nuclear materials shipped illicitly into the United States pose a serious threat

to national security, as do lost and abandoned sources and waste from medical clinics (U.S.

Congress, Office of Technology Assessment, 1995b,a; National Research Council, 2002).

Though these sources are not useful for producing nuclear bombs, highly effective weapons of

mass destruction and Radiological Dispersion Devices (RDDs) could be assembled from these

readily available materials. An RDD, or “dirty bomb,” employs the use of a non-nuclear

explosive material (e.g. dynamite) to spread a radioactive material, presumably in a high

population center, resulting in long term health hazards, psychological effects, and possibly

immense decontamination and cleanup costs. While no terrorist or criminal organizations

have ever exploded such a device to date, they have demonstrated the ability to obtain small

amounts of 235U and 239Pu. Additional isotopes such as 137Cs, 60Co, and 241Am are available

as medical waste and in commercial irradiators and could also potentially be obtained and

used in an RDD (Intl. Atomic Energy Agency, 2000; Ferguson, 2003).

To produce an effective device, gamma-emitting sources (e.g., 60Co, 137Cs, 192Ir) would

need to be procured in gram quantities for an RDD; enriched uranium or weapons-grade

plutonium would need to be obtained in kilogram quantities for a bomb (U.S. Congress,

Office of Technology Assessment, 1995b). Such large quantities would require shielding

during preparation and transportion to protect the terrorists or criminals from hazardous

radioactivity and partly to hinder detection before detonation. If 238U or 60Co is encased in
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an 8.5 cm-thick lead shield, only 10−3 of the 1 MeV gamma rays escapes without interacting.

In the case of 186 keV photons from 235U decay, 5 mm of lead provides equivalent shielding.

A stand-off detector must therefore be capable of detecting Curie quantities of radiological

materials in the presence of a 103 factor of attenuation. Such severe attenuation of the

radioactive flux broadens sharp nuclear lines. An effective detection instrument, therefore,

need not have exceptionally fine energy resolution; instead, the focus should be on high

sensitivity (Reilly et al., 1991; DOE, 2001). An additional premium is put on sensitivity due

to the long distances over which the radiological materials should be detected. Sensitivity can

be achieved by maximizing the detection plane area, minimizing background contributions,

and optimizing angular resolution.

The United States Department of Energy’s Domestic Nuclear Detection Office (DNDO)

outlined the short term requirements and longer term goals of a radiation-monitoring device

in the Stand-off Radiation Detection System Advanced Technology Demonstration program

(Broad Agency Announcement BAA07-01). The constraints on the system design are in-

dependent of the detailed instrument, and provide a framework for the design of such a

security device. Energy resolution must be 7.5% at 662 keV, with a goal of reaching 2%.

Detection efficiency must be capable of detecting at least 15 photons per second in a 662

keV photopeak from a 1 mC 137Cs source at a distance of 100 m. Finally, the FOV must

span 115◦ with angular resolution less than 17◦. If an instrument is to be deployed at a large

number of border crossings, harbors, etc., costs must be minimized. Several coded aperture

designs have been proposed for this application (e.g., see N06/N14 of Yu 2009), and there is

a need for improved and more cost-effective approaches.

1.3 Plan of the Dissertation

The motivation of this dissertation is to address the shortcomings of the coded aperture

technique to accomplish many of the scientific objectives outlined above for NASA’s BHFP
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by investigating an alternative approach to hard x-ray/gamma-ray imaging. This technique

should satisfy the sensitivity and resolution requirements of a black hole census astrophysics

mission at reduced cost and complexity. A telescope developed for this application would

be equally suitable for national security, whereby trucks and ships could be monitored for

shielded illicit nuclear materials. Coded apertures have been used extensively in both appli-

cations due to the fine position resolution achievable and minimal sidelobe contributions; the

necessary spatial resolution however, increases the number of readout channels and raises

costs. The subject of this dissertation is therefore an alternative imaging modality, rotating

modulation, in which temporal and spatial modulation work in concert to encode trans-

missions from the FOV prior to interaction in an array of detectors. The combined use of

these two modulations enables the RM to function without a heavy second grid as seen in

some temporal modulators and to achieve good angular resolution comparable to the coded

aperture with fewer detector elements and readout channels. Furthermore, as will be shown,

the RM sensitivity is comparable to that of the coded aperture in a high-energy, wide FOV

regime.

In Chap. 2, the rotating modulation technique is introduced through a brief history of its

precursors, a comparison of alternate modalities, and an explanation of its basic mechanism.

Chap. 3 examines the characteristic system response of an RM, a necessary component in

solving the inverse problem of image reconstruction. An overview of several reconstruction

algorithms is provided in Chap. 4, including a novel method developed specifically for the

RM that resolves images with little-to-no spurious noise fluctuations and provides “super-

resolution” beyond the geometric limit of the instrument. Sensitivity characteristics of the

RM are compared against those of the coded aperture and a common temporal modulation

technique in Chap. 5.

The development of a laboratory-scale RM prototype is described in Chap. 6. Mea-

surements and characteristics are presented in support of the RM concept analysis results.

In Chap. 7, a design for a high-altitude balloon-borne mission is proposed as a pathfinder
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experiment to a future BHFP. The mission’s expected performance and simulation results

are presented, based on the extrapolation of measurements made on a high-altitude balloon

flight of the detector material. The implications of these results, including the possibility of a

balloon campaign to satisfy some of a black hole census’ science requirements and a stand-off

radiation detection system to detect illicit nuclear materials are discussed in Chap. 8.
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Chapter 2

X-ray / Gamma-ray Imaging

2.1 Introduction

At optical wavelengths, photons are traditionally imaged using a refractive lens or a parabolic

mirror angled at nearly normal incidence to the photon trajectory (Schwarzschild, 1905). In

these cases, the observed data constitute a direct image of the object scene requiring little or

no subsequent modification. As refractive indices of a material are a function of electromag-

netic frequency, refraction and reflection play a smaller role for high-energy photons. For

soft x-rays, compound grazing incidence mirrors (Wolter, 1952) have been successfully used

(e.g. Weisskopf et al., 1995), but above ∼ 50 keV, these techniques become less useful (in ’t

Zand, 2009).

One popular class of techniques to image the hard x-ray and soft gamma-ray spectrum (10

keV - 1 MeV) employs an encoding modulation of incident photons prior to detection. These

“multiplexing” techniques are so named since each detection element responds to intensity

characteristics of multiple regions of the observable field (in ’t Zand, 2009). Consequently,

subsequent analysis is required to “redistribute” these measurements to the object scene, thus

perfoming image reconstruction. Here, we examine two of the most often-used multiplexing
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(a) (b)

Figure 2.1: (a) The simplest imager design, the pinhole camera. (b) The multi-pinhole
camera.

imagers, the coded aperture and the rotating modulation collimator, and we present the

mechanism for the rotating modulator.

2.2 Coded Mask

The simplest imaging technique works for any wavelength of light: the pinhole camera (Fig.

2.1a). It employs a single “pinhole”-sized aperture above a position-sensitive detection plane.

As light from the object scene is incident on the mask, all photons are blocked except those

which pass through the aperture. The interaction location in the detector plane is uniquely

correlated to the photon’s incident angle, and so the sum of measurements constitutes a

direct image distribution. Since all but a small percentage of the incident light is blocked,

sensitivity is inherently low. At the cost of this sensitivity, angular resolution is improved

by shrinking the aperture size, a. The ratio of the aperture width to its distance from the
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Figure 2.2: Coded mask system with mask
suspended above position-sensitive detection
plane.

Figure 2.3: Basic pattern of a 17× 19 Feni-
more URA coded mask.

detection plane, L, provides the resolution of the system,

δθ =
a

L
. (2.1)

An effort to increase the sensitivity of the pinhole concept was introduced by Ables

(1968) and Dicke (1968), whereby multiple pinholes are used to generate overlapping images

on the detection plane (Fig. 2.1b). Angular resolution is unaffected, though the sensitivity

is increased by a factor
√
N , where N is the number of pinholes present. Since the image

offsets reflect the location of the apertures, the measured data can be deconvolved with the

mask geometry to reconstruct the object scene.

Contemporarily, this spatial-encoding technique is referred to as a “coded mask” system

(Caroli et al., 1987) and typically features 50% transmission with a half open/half closed

configuration (Fig. 2.2). Pixel patterns are chosen such that sidelobes, artifacts of the mask

pattern which arise in the image reconstruction process, are nullified. That is, patterns are

sought whose autocorrelation yields a Kronecker delta function, such that any one shadow

distribution corresponds uniquely to a single location in the field of view.

One common pattern, for example, is the uniformly redundant array (Fenimore & Can-

non, 1978). When compared to a randomly distributed mask pattern, the URA provides a
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greater signal-to-noise ratio (SNR) and fewer reconstruction atrifacts. The URA distribu-

tion, A(i, j), is an r× s array of open/transparent (1) and closed/opaque (0) pixels where r

and s are prime numbers, and r − s = 2:

A(i, j) =



0 if i = 0

1 if j = 0, i 6= 0

1 if Cr(i)Cs(j) = 1

0 otherwise,

(2.2)

where

Cτ (i) =


1 if there exists an integer x, 1 ≤ x < τ such that i = x2 mod τ

−1 otherwise.

(2.3)

The mask is manufactured by creating a mosaic of the central URA, with dimensions twice

that of the central URA (Fig. 2.3).

If the coded pattern is well chosen and the deconvolution technique sound, images may

be produced with a coded mask camera that suffer little from the overlapping nature of the

data. Mask pixels may be kept small to achieve good angular resolution without sacrificing

sensitivity. The detection plane must, however, be capable of describing the shadow distribu-

tion accurately. (To satisfy the Nyquist criterion, the detector pixels must be at least twice

as small as the mask pixel size.) For a high-sensitivity large-area design such as CASTER

(McConnell et al., 2004) or EXIST (Grindlay et al., 2001), this requirement results in a large

number of pixels and consequently readout channels.

2.3 Rotating Modulation Collimator

Oda (1965) first proposed the use of a modulation collimator (MC) to address the inability
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(a) (b)

Figure 2.4: A modulation collimator measures (a) a high count rate when the wire grids are
aligned with the angle of photon incidence, and (b) a low count rate otherwise. (Adapted
from Oda 1965.)

of a single-pixel device to achieve good angular resolution. Two offset wire grids form the

modulation device. One grid sits just above the detector while the other sits a distance L

overhead (Fig. 2.4). For a single source, the top grid shadow falls exactly onto the bottom

grid wires, exactly onto the spacings between them, or a combination thereof, resulting in

a difference of intensity measurement by the detector depending on the angle of the source.

Slewing of the instrument alters the angle of incidence, and so a time history of intensity

measurements is recorded that can be correlated (with resolution according to a/L) to a

source location in one dimension. Unlike narrow-field collimated devices, the MC allows for

a wide FOV to be examined at once (in one dimension) while maintaining good angular

resolution.

Mertz (1967) suggested an improvement to the MC design by rotating the wire grids (or

slats at higher energies) in tandem about a central axis, sampling data in two dimensions

(Fig. 2.5). Rotating modulation collimators (RMCs; Schnopper et al. 1968) have seen use

in rocket (Schnopper et al., 1970) and balloon (Crannell et al., 1986; Gaither et al., 1996)

experiments, as well as space-based missions with sensitivity to a range of x-ray and gamma-

ray energies: e.g. Ariel-V (3 - 7 keV; Carpenter et al. 1976), SAS-3 (1.5 - 60 keV; Doxsey

et al. 1976), and RHESSI (3 keV - 17 MeV; Hurford et al. 2002). RMCs are lauded for their
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Figure 2.5: Rotating Modulation Collima-
tor.

Figure 2.6: Rotating Modulator.

simplicity and ability to achieve good angular resolution, but have significant limitations.

The use of two (typically 50% transparent masks) reduces the transmission throughput to

half that of the coded mask, and the instrument response suffers from significant sidelobes

which reduce image reconstruction fidelity (Cruise & Willmore, 1975).

2.4 Rotating Modulator

A Rotating Modulator (RM; Durouchoux et al. 1983) is another of the class of multiplexing

imagers. It consists of a single grid of opaque slats spaced equidistance apart and suspended

above an array of circular non-imaging detectors (Fig. 2.6). Typically, the detector diam-

eters, slat widths, and slat spacings are equal. The grid rotates, periodically blocking the

transmission of incident photons from the object scene onto the detection plane. A char-

acteristic time history of counts is recorded by each detector for the entire length of the

exposure, varying from 0 to 100% of incident exposure intensity. Like the coded aperture or

RMC, these data are then correlated to a source or sources to reconstruct the object scene

distribution.

The RM may be considered a trade-off between the coded aperture and RMC, featuring

both temporal and spatial modulation. It features an arrayed detection system, ∼50% mask
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transmission, and relatively low weight due to the use of a single modulating mask. In

analogy to the coded aperture and RMC, the intrinsic angular resolution is defined by the

ratio of slat spacing to mask-detector separation. Since this width is typically equal to the

detector diameters in order to maximize sensitivity (as is discussed in Chap. 5), the resolution

is effectively dictated by the mask-detector separation and detector diameter. Furthermore,

RMs, like RMCs, typically exhibit extended sidelobes in their reconstructions (Durouchoux

et al., 1983). In order for the RM to be a competitive imager with the coded aperture, it

must be shown to approach or exceed the sensitivity of the coded aperture (particularly for

a high-energy, wide FOV regime) and achieve resolving power beyond the geometric limit

of the instrument geometry (i.e., “super-resolution”) with a reconstruction technique that

produces artifact-free images.

Compared to other multiplexing techniques, the RM has seen relatively little use. The

WATCH experiment (Lund, 1981) is a self-described single-grid RMC, although its design is

perhaps closer to that of an RM with some key differences (including slat detectors instead

of circular detectors). Other than the prototype RM recently constructed in our laboratory

(described in Chap. 6), we are aware of only one other RM in development (Shih et al., 2008)

as of March 2011. The intention is to demonstrate the feasibility of the RM as a solution to

hard x-ray/gamma-ray imaging for both a black hole census mission and for national security

applications with a simple and cost effective design.
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Chapter 3

RM Instrument Response1

The RM grid of slats modulates the transmission of photons from the object scene, S,

describing a time history of counts recorded by each detector d. These data are folded

modulo the mask rotation period to produce a single count profile for each detector, Od(t),

which may be described by

Od(t) =
∑

n

Pd(t, n)S(n) +B +N(t), (3.1)

where B is a constant background contribution and N(t) is noise. Pd(t, n) is the instrument

response function, a collection of characteristic count rate profiles for point sources at all

possible scene locations n. Chap. 4 examines deconvolution techniques for solving the inverse

problem of Eq. 3.1 for the object scene S. The problem necessitates a pre-determined and

well-defined modulation pattern, Pd(t, n).

The technique for determining the expected modulation patterns should be computation-

ally fast, allow for unconstrained instrument geometry, account for projection effects and

non-uniform attenuation, and describe the cumulative shadowing by multiple slats simulta-

neously. Brute force Monte Carlo simulations accomplish these tasks, but the computation

is time-consuming. A standard characteristic profile (Dadurkevicius & Ralys, 1985) that

1Reprinted by permission of Astrophysics and Space Science (Budden et al., 2011).
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can be calculated analytically is described in Sec. 3.1. While suitable in many cases, this

formula imposes tight constraints on instrument geometry and is too simplistic to account

for non-uniform attenuation or shadow lengthening.

To achieve a wide FOV and high-energy sensitivity (which requires thick mask slats), a

more robust analytical profile is necessary to accurately describe the instrument response.

In Sec. 3.2, an advanced characteristic profile for the RM is presented that is capable of

describing the complex modulation pattern and can be calculated analytically in a relatively

short time. In Sec. 3.3, we show examples of count rate profiles generated with the standard

and advanced formulae and with Monte Carlo simulations, and reconstructed images using

modulation patterns resulting from each of these techniques.

3.1 Classical Response

The standard characteristic formula for a single-mask RM is presented by Durouchoux et al.

(1983) and examined in greater detail by Dadurkevicius & Ralys (1985). An RM has slat

width a, slat spacing b, and detector diameter c (Fig. 3.1). The mask is suspended a

distance L from the detection plane. The standard formula imposes the constraint a = b = c

and assumes that the slats have infinitesimal thickness but attenuate 100% of the incident

photons. An attenuation coefficient may be applied to correct for transmission through

the slats, but clipping effects, spatially non-uniform attenuation, and shadow lengthening

(all effects of finite mask thickness) are ignored. For the description of both the standard

formula below and the more realistic advanced formula in Sec. 3.2, the mask is assumed to

be centered midway between two slats and begins its period with the bars parallel to the lab

frame’s ŷ direction; a simple transformation and offset parameter, however, easily provide

an alternate case.

A point source in the object scene has intensity I0 (as measured by a detector in the

absence of a mask) and is located at azimuthal angle φ and zenith θ. For a detector centered

19



Figure 3.1: Top-down view of the RM ge-
ometry. A mask with slat width a and slat
spacing b rotates above an array of circular
detectors with diameter c, according to the
function ξ(t).

Figure 3.2: Top-down view of the RM, de-
scribing the polar location (r, ξ0) of a partic-
ular detector (dashed outline) relative to the
mask shadow origin (

⊗
).

at (x0, y0) in the lab frame (relative to an origin coincident with the mask’s rotational axis),

a detector’s polar coordinates (r, ξ0) relative to the mask shadow’s projected axis (Fig. 3.2)

are given by

r =
√

(x0 + L tan θ cosφ)2 + (y0 + L tan θ sinφ)2, (3.2)

and

ξ0 = tan−1

[
y0 + L tan θ sinφ

x0 + L tan θ cosφ

]
. (3.3)

The mask’s angular orientation is ξ(t) = ωt for frequency ω. The x-component of the leading

edge of the first slat in the −x̂ direction from the origin is given by

x(t) = r cos (ξ(t) + ξ0). (3.4)

To account for the periodic traversal by multiple slats, transmission through the spacings

between slats, and symmetry of the system, a modified x coordinate is defined in units of
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detector diameter a,

x∗(t) = 1−
∣∣∣∣∣∣∣∣x(t)a

∣∣∣∣ mod 2− 1

∣∣∣∣ , (3.5)

where the function x mod y provides the remainder of x/y. The x∗ component defines the

traversal across the detector diameter of the leading edge of whichever bar shadows the

detector at time t. The percentage of detector face shadowed is given by the integration over

the area of a circle from zero to a fractional distance τ across its diameter,

F (τ) =
1

π
cos−1(1− 2τ)− 2

π
(1− 2τ)

√
τ − τ 2. (3.6)

The characteristic count rate profile measured by detector d is found by subtracting from

100% transmission the fractional shadowing of the detector described by Eq. 3.6 (with x∗

as the input variable), scaled to the intensity of the source:

Pd(t) = I0 (1− F [x∗(t)]) . (3.7)

Examples of profiles generated with this formula are shown in Fig. 3.3.

Figure 3.3: Four sample RM count profiles generated for different detectors for a single point
source using the standard characteristic formula. The horizontal axis covers a full rotation.
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3.2 Advanced Characteristic Formula

3.2.1 Introduction

Particularly at high energies where the mask may not be 100% opaque, a more realistic

advanced characteristic profile must describe attenuation, clipping, and shadow-lengthening

effects as a function of photon energy, and the cumulative shadowing of a detector by multiple

slats simultaneously. The RM slat width a, slat spacing b, and detector diameter c should

be defined independently to enable a comprehensive analysis of instrument sensitivity and

resolution, and a finite slat thickness of h should be incorporated. An improved characteristic

profile satisfying these requirements is described in the following section.

3.2.2 Description

A single slat shadow may be divided into three regions (Fig. 3.4). The middle region of the

shadow is due to attenuation of photons that are incident on the “full thickness” portion

of the slat, i.e. the photon trajectory penetrates both the top and bottom face of the slat;

the resulting shadow is spatially uniform. The other two regions reside on the outside of

the full thickness shadow and are a result of the attenuation of photons whose trajectory

“clips” the slats, i.e. the trajectories pass through either the top or bottom face of the slats,

Figure 3.4: Top-down view of slat shadow on a detector face.
A slat shadow in the advanced formula is divided into three
regions: the “full thickness” region (1) where the shadow
opacity is uniform, and the outer clipping sections (2,3) where
the shadow opacity decreases exponentially away from region
(1).
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but not both. Since the distance a photon travels through this portion of the slat varies

depending on how close it is to the slat edge, the opacity of this shadow will be non-uniform

with exponential decrease away from the full thickness region.

As the RM mask rotates, the width of a slat shadow varies due to the finite slat thickness

by an amount |s(t)|, where

s(t) = h tan θ sin(ξ(t)− φ). (3.8)

The absolute value of this parameter is the width at time t of either of the two clipping

shadow regions. Because of this effect, the point of symmetry in the mask shadow shifts by

an amount s(t)/2. The x-component of the leading slat shadow is modified from Eq. 3.4 to

become

x′(t) = r cos(ξ(t) + ξ0) +
s(t)

2
, (3.9)

where the polar coordinates (r, ξ0) for the starting position of the detector in the frame of the

projected mask shadow for a source at (θ, φ) are still given by Eqs. 3.2 and 3.3. Similarly,

the width of the “full thickness” shadow region shrinks relative to a due to the increased

percentage of incident photons that clip the slats (Fig. 3.5),

a′(t) = a− |s(t)|. (3.10)

A coordinate x∗ is defined (analogous to Eq. 3.5) to account for the mask’s periodic na-

ture, symmetry, and in this case, the ability for multiple bars to shadow the detector face

simultaneously. Consequently, x∗ is an array of time-dependent functions,

x∗m(t) =
1

c

(
1

2
[a′(t) + c]−

∣∣∣∣|x′(t)| mod (a+ b)− (1 + 2m)
a+ b

2

∣∣∣∣) ,
−M ≤ m ≤M, (3.11)

where index m spans the integer values from −M to M . The size of the array is equal to
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Figure 3.5: Side view diagram of the time-
variable mask shadow parameters. The
projected leading (bottom) edge of the
bar position is given by x∗(t). The full-
thickness shadow region has width a′(t),
the clipping regions width |s(t)|, and b′(t)
describes the slat shadow spacing.

the total number of bars that may simultaneously shadow any one detector, 1 + 2M , where

M is the integer given by2

M = floor

(
a+ smax + c

a+ b

)
. (3.12)

The maximum |s(t)| value, smax, occurs when the mask angle is 90◦ and 270◦ out of phase

with the source azimuth:

smax = h tan θ. (3.13)

The fraction of detector area shadowed (analogous to Eq. 3.6) becomes

F0(τ) =
1

π
cos−1(1− 2Λ[τ ])− 2

π
(1− 2Λ[τ ])

√
Λ[τ ]− Λ[τ ]2, (3.14)

where we have introduced the constraint formula,3

Λ[τ ] = min{max{τ, 0}, 1}. (3.15)

In the standard formula from Sec. 3.2.2, this constraint is not necessary since only a

single slat is evaluated, and its width equals the detector diameter. Since multiple bars

2The function floor(x) rounds x down to the nearest integer value.
3The function max{x, y} returns the maximum value of the two input values, and similarly, the minimum

for min{x, y}.
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may now simultaneously contribute to the shadowing, the constraint limits the integration

of shadow between the two edges of the detector area.

Eq. 3.14 and the Beer-Lambert law (which provides the transmission factor of photons

through a material) determine the shadowing of the detector from all contributing slats,

G0(t) =

(
1− exp

[
− hσρ

cos θ

])[
F0

(
x∗m(t) +

|s(t)|
c

)
−F0

(
x∗m(t)− a′(t)

c
− |s(t)|

c

)]
, (3.16)

where σ is the mass attenuation coefficient (for a particular photon energy) and ρ is the

density of the slat material. G0 includes the shadow contributions from all three regions of the

slat shadow with constant attenuation assumed. To account for the additional transmission

through the clipping portion of the shadow, a function F1 is defined,

F1(τ, t) =
4

π

∫ Λ[τ+|s(t)|/c]

Λ[τ ]

exp [−Z(t)(τ − x)]
√

1− (2x− 1)2 dx

+ F0(τ)− F0

(
τ +

|s(t)|
c

)
, (3.17)

where

Z(t) =
hcσρ

|s(t)| cos θ
. (3.18)

The first part of Eq. 3.17 is the integration of the transmission fraction of the exponentially-

decreasing shadow opacity about the circular geometry of the detector; the second part

removes the transmission (or lack of attenuation) already accounted for in Eq. 3.16. The

transmission by clipped photons not accounted for in Eq. 3.16 is given by

G1(t) = exp

[
− hσρ

cos θ

] [
F1(x

∗
m(t), t) + F1

(
1− x∗m(t) +

a′(t)

c
, t

)]
. (3.19)
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The advanced characteristic count rate profile combines these functions:

Pd(t) = I0

(
1−

∑
m

[G0(t)−G1(t)]

)
. (3.20)

3.2.3 Approximation for Practical Use

Equation 3.17 has no closed-form solution and is computationally expensive to evaluate

numerically. Also, as the source azimuth φ and grid angle ξ(t) align, s(t) → 0 and Z(t) →∞;

the span of the integral in F1 thus approaches zero causing numerical solutions of F1, and

consequently G1 (Eq. 3.19), to become unstable.

In most cases, the G1 transmission contribution from the clipped photons will be a

small contribution relative to G0, and so may be simply ignored in Eq. 3.20. The shadow-

lengthening effects are still described by G0 with uniform attenuation assumed for the clip-

ping shadow regions. A suitable approximation for G1, however, is to use the ratio of the

integral underneath the isolated exponential function in Eq. 3.17 to the full transmission,

ignoring the circular shape of the detector:

α =
cos θ

hσρ

(
1− exp

[
− hσρ

cos θ

])
− exp

[
− hσρ

cos θ

]
. (3.21)

A fortunate result of this approach is that α is constant over s(t), and thus all grid angles.

It must only be calculated once per source zenith, providing a computationally fast solution

for approximating G1,

G̃1(t) = α

[
F0

(
x∗m(t) +

|s(t)|
c

)
− F0 (x∗m(t)) + F0

(
x∗m(t)− a′(t)

c

)
−F0

(
x∗m(t)− a′(t)

c
− |s(t)|

c

)]
. (3.22)
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3.3 Simulation and Results

We have performed custom-written Monte Carlo simulations (described in Sec. 6.4) with

various instrument geometries and compared the results with the profiles derived from the

advanced and, where suitable, the standard count rate formulae. For the results described

below (unless otherwise indicated), a lead mask (ρ = 11.34 g/cm3) is suspended L = 1

m above the detection plane (approximately mirroring the laboratory prototype geometry

described in Chap. 6). Monoenergetic 662 keV photons have a total mass attenuation

coefficient4 of σ = 0.103 cm2/g in the mask. Results are computed for various combinations

of a, b, and c. Background is assumed to be zero, and only photopeak events are included in

the analysis. Additional mask geometry and source parameters are selected for each scenario

individually to demonstrate a particular advantage of the advanced formula over its standard

counterpart.

3.3.1 Computational Speed

For a direct comparison of the computational expense for the advanced versus the standard

formula, instrument response functions are calculated using both solutions for an RM with

a 14◦ FOV divided into 12′ field bins (4900 elements) and count profiles broken up into 560

time bins. The calculations are performed using IDL 6.3 on a Windows machine with the

software described in Sec. 6.4.

The instrument response based on the standard formula (one profile per sky bin) is

computed in 0.8 s for each detector. The advanced formula, ignoring the G1 term, takes 2.6

s, while inclusion of the approximated G̃1 term increases the time to 5.4 s. The processing

time is still many orders of magnitude shorter than that required to determine the instrument

response using a Monte Carlo simulation: If we require a 10σ result per time bin to derive a

Monte Carlo profile that is suitable for the purposes of image reconstruction, the instrument

response for a single detector takes ∼ 1.3 days to compute.

4NIST XCOM, http://www.nist.gov/pml/data/xcom/
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3.3.2 Count Rate Profiles

The count rate profiles as calculated by the two formulae are compared directly to the data

recorded with Monte Carlo simulations. Two scenarios are first examined with a = b = c = 4

cm, so that the advanced formula can be compared directly to the standard formula (where

a = b = c is required).

An extreme case of shadow lengthening is demonstrated in Fig. 3.6 by increasing the

thickness of the slats to 20 cm and placing a source at zenith angle θ = 6◦. The Monte

Carlo result shows a profile that is asymmetric, with transmission peaks varying in height

due to the broadened shadow. The standard formula is incapable of accurately describing

this effect, since it assumes infinitesimal slat thickness; the advanced profile, however, is

virtually identical to the Monte Carlo result. Though the thickness of the slats here is

Figure 3.6: Count profiles for a mask with
slat thickness 20 cm, source at θ = 6◦, and
a = b = c = 4 cm. The horizontal axis
is given in terms of mask rotation angle ξ,
while the vertical axis is measured source
intensity in arbitrary units. The result of
shadow lengthening due to the large mask
thickness is evidenced by the asymmetry in
the profile.

Figure 3.7: Count profiles for a mask with
slat thickness 1 cm and source at θ = 50◦.
Shadow lengthening due to the large inci-
dent angle is seen as an asymmetry in the
envelope of the high frequency modulations,
and the lack of attenuation due to the thin
mask appears as a reduction of contrast in
the profile.
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greatly exaggerated for visual demonstration, the purpose is to describe a thick mask to

image higher energy gamma rays, where even small inaccuracies of the system description

could pose a large hindrance to reconstruction fidelity.

Shadow lengthening is again examined in Fig. 3.7 by instead increasing the source zenith

angle to 50◦ with a slat thickness of only 1 cm. Two features of the Monte Carlo profile are

observed here: (1) the asymmetry in the envelope of high frequency modulations between

the two low-frequency peaks and (2) the decreased profile contrast (i.e., a minimum count

rate which does not go all the way to zero) due to transmission through the mask. The

standard formula is unable to describe either of these features, and so would be unsuitable

for analysis with an instrument that has a large field of view.

We next examine the results of altering the mask geometry by removing the a = b = c

constraint. Since the standard formula utilizes only a single variable to account for these

three mask parameters, a direct comparison is not possible. Instead, only the Monte Carlo

and advanced profiles are presented. The profiles for an RM with mask geometry providing

increased transmission is shown in Fig. 3.8. The slat spacing is increased to b = 12 cm, while

Figure 3.8: Spacing between mask slats =
12 cm, while slat and detector widths = 4
cm. The increased transmission is well repre-
sented by the advanced formula, as the pro-
file intensity saturates several times during
the rotational period.

Figure 3.9: Slat widths = 12 cm, with slat
spacing and detector diameters = 4 cm. The
increased shadowing is seen as intervals of
zero-intensity transmission.
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Figure 3.10: For slat width and spacing =
4 cm and detector diameter = 12 cm, up
to two bars may simultaneously shadow the
detector.

the slat and detector widths remain at 4 cm. The advanced profile describes the expected

saturation of the transmission intensity several times during the rotational period.

Conversely, increased shadowing is shown in Fig. 3.9 by setting the slat widths to a = 12

cm, while the slat spacing and detector diameters are 4 cm. Again, the advanced formula

describes the “dead time” of the profile, with several timespans of zero intensity transmis-

sion. Finally, the ability of the advanced formula to describe the simultaneous shadowing of

multiple slats is shown in Fig. 3.10. Here, the slat width and spacing is 4 cm, and detector

diameter is increased to 12 cm. While the ratio of these dimensions is again extreme for

purposes of visual demonstration, the ability to individually define these variables is key to

optimization of the instrument geometry, as described in Sec. 3.3.4, particularly when high

energy sensitivity and large FOV are desired.

3.3.3 Image Reconstruction

The reconstructed images of Monte Carlo data based on both the standard and advanced

characteristic count rate formulae are compared. For data deconvolution, the Noise-

Compensating Algebraic Reconstruction (described in Sec. 4.6) is used.

First, if a 122 keV point source at small zenith angle is imaged by an RM with mask

thickness 2 cm, providing 100% attenuation, both the standard and advanced formulae

produce accurate image reconstructions (Fig. 3.11). The slightly extended reconstructions
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reflect the locational uncertainty of the source due to noise in the data, as explained in Sec.

4.6.

Next, a 5 mm mask is used to image a 662 keV point source in the same location, allowing

55% transmission of photons incident on the slats (Fig. 3.12). The reduced contrast is

properly accounted for in the advanced formula. In the image based on the standard formula,

however, the increased transmission is reconstructed as spurious peaks in the image.

Finally, the 662 keV source is moved to a large zenith angle, θ ≈ 48◦, and imaged by

an RM with a 2 cm thick mask (Fig. 3.13). At such a large angle of incidence, a large

fraction of photons clip the slats, and so this effect must be accurately represented in the

instrument response formula. The effect of shadow lengthening is poorly described by the

standard formula, and so the respective reconstruction is misrepresented and mislocated.

The advanced formula, however, provides an accurate reconstruction of the source with high

fidelity.

In addition to the subjective assessment of the reconstructions described, a quantitative

result may also demonstrate the superiority of the advanced formula. An objective “figure

of merit” should be defined based on the task of the imaging; in this case, we endeavor to

demonstrate a higher fidelity reconstruction with the advanced formula over the standard

Figure 3.11: Monte Carlo simulation: A 122 keV point source is imaged by an RM with
mask thickness 2 cm. The standard and advanced formula reconstructions both accurately
depict the object scene. (Axes in degrees.)
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Figure 3.12: Monte Carlo simulation: A 5 mm-thick mask is used to reconstruct a 662
keV point source. Due to increased transmission through the mask, the standard formula
reconstructs additional noise in the object field that is not present in the advanced formula
reconstruction. (Axes in degrees.)

Figure 3.13: Monte Carlo simulation: A subsection (zoomed-in view) of a full reconstruction
for an RM with mask 2 cm, and a point source located at θ ≈ 48◦. At this large zenith
angle, the standard formula is incapable of correctly resolving the source. Multiple spurious
peaks are visible. Due to the wide FOV, large sky elements (∼ 1.5◦) are used to reduce the
size of the image matrix. (Axes in degrees.)

formula, and so the mean square error (MSE; Barrett & Myers 2003) is used. MSE is the

average of the square of the deviations of the final reconstruction F (n) from the original

object scene S(n):

MSE =
〈
|F (n)− S(n)|2

〉
, (3.23)
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Table 3.1: Mean square error (Eq. 3.23) of standard and advanced reconstructions for Figs.
3.11 - 3.13. The smaller MSE for each scenario is in bold face, demonstrating the improved
performance of the advanced formula.

Fig.
Mean Square Error

Standard Recon. Advanced Recon.
3.11 225.4 203.6
3.12 279.6 241.1
3.13 200.7 2.1

where 〈X〉 denotes the average of the distribution X. A lower MSE value indicates a smaller

deviation from the object scene, and thus a higher fidelity reconstruction.

Table 3.1 presents the MSE for the reconstructions in Figs. 3.11 - 3.13. In every scenario,

the MSE is smaller for the advanced formula. In particular, for the source image with large

zenith angle, the MSE of the advanced reconstruction is two orders of magnitude smaller

than its standard counterpart, indicating the importance of this new characteristic profile

for the wide-FOV regime.

3.3.4 Discussion

We have demonstrated that the advanced formula performs better than the standard instru-

ment response by more accurately reconstructing the object scene. For a typical RM, where

a = b = c, this advantage is most apparent for high photon energies (requiring a thick mask)

and for large angles of incidence. In these cases, slat clipping and shadow lengthening have a

significant effect on the profile shape, which must be accounted for in image reconstruction.

In the standard formula, the shadow opacity is uniform and its width assumed to remain

unchanged despite the source zenith. Based on this assumption, the optimal values are given

by a and b equal c. This equality results in the highest possible sensitivity of the instrument

by ensuring that two conditions are met: (1) the profile has maximum contrast (varies from

0 to 100%), and (2) there is zero “dead time” (time intervals with no modulation). However,

for a realistic finite slat thickness, a = b = c results in dead time due to shadow lengthening,
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and so to maximize sensitivity the spacing b should be increased. The standard formula does

not provide a means of correcting for these effects, but the advanced formula allows for a

detailed analysis of the sensitivity and angular resolution properties of any RM geometry.

In Sec. 5.4, this opportunity is exploited to examine the optimal slat width and pitch for a

typical RM design.
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Chapter 4

Image Reconstruction

4.1 Imaging Problem

The measurement by any indirect linear imaging system may be described by an obser-

vational vector O(m) in measurement space m. This vector does not constitute a direct

representation of the object scene vector S(n) (where n corresponds to a single element in

the field of view) but rather the result of a correlation of the instrument response P (m,n)

with the object scene; i.e.,

O(m) =
∑

n

P (m,n)S(n) +B(m) +N(m). (4.1)

Included in this measurement is a background contribution B(m) and noise N(m) arising

from statistical uncertainties in both the source and background rates and systematic ef-

fects (e.g., inaccurate description of the instrument response). To simplify the analysis, we

make two assumptions: (1) the observation vector is digitized with sufficient precision and

sampled above the Nyquist frequency of the region of interest in the object scene, and (2)

the background contribution may be mostly removed by one of three techniques described

in Sec. 4.2.

A decoding matrix G(m,n′) is defined to convert the observation vector back to image
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space. Thus, a cross-correlation image is computed,

C(n′) =
∑
m

G(m,n′)O(m) (4.2)

≈
∑
m

G(m,n′)

(∑
n

P (m,n)S(n)

)
(4.3)

≈
∑

n

P ′(n, n′)S(n), (4.4)

where the approximation symbol (≈) is used to denote that the background and noise terms

have been dropped. A system matrix has been defined to provide a direct relationship

between the object scene and cross-correlation image,

P ′(n, n′) =
∑
m

G(n′,m)P (m,n). (4.5)

The challenge of image reconstruction is to solve the inverse problem of Eq. 4.4 for S(n)

from C(n′). A successful solution to this problem is dependent on the fundamental nature

of the instrument response P (m,n), an accurate definition of its structure and that of the

decoding matrix G(n′,m), and the suppression of noise in the observation vector. In Sec.

4.5, we examine several possible solutions.

4.2 Background Removal

The background contribution in Eq. 4.1 must be removed prior to solving the system of

equations defined in Eq. 4.4. Three methods may accomplish this task: (1) subtraction

of an experimental measurement of its value, (2) use of an anti-mask, and (3) use of a

proper decoding matrix for a constant B. The first of these solutions requires a “background

run,” or exposure time during which no sources are in the field of view. Such an exposure

represents the contributions from external and internal backgrounds, and over sufficient time,

should sufficiently approximate B(m) for any subsequent source exposure. This method,
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however, requires additional time to perform (eating into valuable observation time) and

is more difficult in satellite and balloon-borne applications where sources can not be easily

“removed” for such an exposure.

Anti-masks are typically used in coded aperture systems to remove artifacts from the

reconstruction which arise from background nonuniformities in the detection plane, though

the concept is applicable to any multiplexing instrument. If the background is not removed

through a background exposure, then Eq. 4.3 is written as

C(n′) =
∑

n

(∑
m

G(m,n′)P (m,n)

)
S(n) +

∑
m

G(m,n′)B(m), (4.6)

The decoding matrix, G(m,n′) is chosen such that its average is zero, e.g.

G(m,n′) = P (m,n)− P (n), (4.7)

where P (n) is the instrument response at scene element n averaged over all detection elements

m. For a typical multiplexing instrument for which P (m,n) varies uniformly between zero

and one, it may be rewritten as

G(m,n) = 2

(
P (m,n)− 1

2

)
. (4.8)

An anti-mask is an exact opposite of the mask, with open elements switched with closed

elements and vice versa. The instrument response for the anti-mask, P̃ (m,n) is thus

P̃ (m,n) = 1− P (m,n). (4.9)

By combing Eqs. 4.8 and 4.9, the decoding matrix for the anti-mask is found to be the
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negative of that of the mask:

G̃(m,n) = 2

(
P̃ (m,n)− 1

2

)
= −2

(
P (m,n)− 1

2

)
= −G(m,n). (4.10)

The combination of two exposures, one with the mask and one with the anti-mask, effectively

remove the background term:

C(n′) + C̃(n′) =
∑

n

(∑
m

G(m,n′)P (m,n) + G̃(m,n′)P̃ (m,n)

)
S(n)

+
∑
m

(
G(m,n′) + G̃(m,n′)

)
B(m)

=
∑

n

(∑
m

G(m,n′)P (m,n) + G̃(m,n′)P̃ (m,n)

)
S(n). (4.11)

If the background term in Eq. 4.3 is constant across the spatial dimension m, then

neither a background-subtraction nor anti-mask is required. Instead, the selection of a

decoding matrix with average zero as defined in Eq. 4.7 is sufficient to accomplish this task.

The cross-correlation image is given as

C(n′) =
∑

n

(∑
m

G(m,n′)P (m,n)

)
S(n) +B

∑
m

G(m,n′), (4.12)

where it is easy to see that the second summation is equal to zero. In a multiplexing

instrument such as the coded aperture, which uses spatial modulation to encode the object

scene, background contributions across the detection plane are typically non-uniform, and so

this technique may not be used. In a temporal-modulating imager which folds the exposure

over short finite periods, such as the RM or RMC, the background may be approximately

constant across the time elements of the profiles, and thus no background exposure (or

anti-mask) is necessary.
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4.3 Imaging System Analysis

The ability of an imaging device to achieve high fidelity is governed largely by the nature

of its system response. The ability to well-represent and reconstruct the observed object is

evaluated by consideration of the systems’ impulse response, or point spread function (PSF).

The PSF, h(n′;n0) is the reaction of the instrument to a Kronecker delta function in the

object scene located at n0:

h(n′;n0) =
∑

n

P ′(n, n′)δ(n;n0). (4.13)

The PSF is characterized by several properties: support, linearity, and shift. The support

of h(n′) has a large bearing on the subsequent analysis required, particularly on the ability

to accurately reconstruct crowded fields and elongated structures. Compact support is de-

sired, whereby nonzero values of h(n′) are confined to a finite number of elements. Infinite

support implies that the PSF does not vanish even far away from the centroid of the point

source. In this latter case, source confusion may present a significant challenge in accurate

deconvolution. The ideal PSF is a delta function, in which case it is easy to see from Eq.

4.13 that the instrument response would be described by the identity matrix.

Linearity of the system ensures multiple observations obey superposition. As written in

Eq. 4.1, this condition is always satisfied. Similarly, application of the decoding matrix also

obeys linearity in the calculation of C(n′). Linearity of a final reconstructed image, however,

is dependent on the deconvolution technique used for solving Eq. 4.4. Of the methods

described in the sections below, this property is rarely satisfied.

Shift-invariance ensures that the PSF remains unchanged, only shifted, for a translation

of a point source in the field of view. That is, the PSF must obey the relation that

h(n′ − n0; 0) = h(n′;n0). (4.14)
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In this case, the matrix P ′(n, n′) can be completely described by the vector P ′(n), and the

image defined by

C(n) = P ′(n) ∗ S(n), (4.15)

where ∗ is the convolution operator:

P ′(n) ∗ S(n) =

∫ ∞

−∞

∫ ∞

−∞
P ′(n)S(n− n′)dn′. (4.16)

While the PSF describes the system’s spatial response, the transfer function, H(η) =

F{P ′(n)}, provides an analysis of the frequency response of the system. By taking the

Fourier transform of both sides of Eq. 4.15, the convolution theorem (see Sec. 4.5.2) provides

the relation

H(η) =
F{C(n)}
F{S(n)}

. (4.17)

Thus, the transfer function is the ratio of the frequency components in the raw image to

those in the actual object scene; i.e., it is a measure of how well the imaging system preserves

spatial frequencies.

4.4 RM Imaging Properties

As described previously, the background-subtracted observation vector for a rotating mod-

ulator is a time history of counts for each detector d, described by

Od(t) =
∑

n

Pd(n, t)S(n), (4.18)

where the sky element n may be given in terms of cartesian (x, y) or polar (θ, φ) coordinates.

Each detector observation can thus be transformed to image space, producing a detector-
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specific cross-correlation image:

Cd(n
′) =

∑
t

(
Pd(t, n

′)− Pd(n
′)
)
Od(t)

=
∑

n

P ′
d(n, n

′)S(n), (4.19)

where the decoding matrix has been selected as the mean-subtracted transpose of the instru-

ment response for detector d, as described in Sec. 4.2. The instrument’s cross-correlation

image is found by summing these individual images over all detectors:

C(n′) =
∑

d

Cd(n
′) (4.20)

=
∑

d

(∑
n

P ′
d(n, n

′)S(n)

)

=
∑

n

(∑
d

P ′
d(n, n

′)

)
S(n)

=
∑

n

P ′(n, n′)S(n) (4.21)

Alternatively, a cross-correlation image could be generated for the entire instrument by

first concatenating all detector profiles to produce a single observation vector. However,

such a deconvolution problem requires a large array, making this technique slow. Instead,

the observations are transformed to image space and summed there. Mathematically, the

approaches are equivalent.

Eq. 4.21 implies the existence of a single system matrix for the RM given by

P ′(n, n′) =
∑
d,t

(
P T

d (t, n′)− Pd(t, n
′)
)
Pd(n, t), (4.22)

where each element of Pd(n, t) is provided by the characteristic formulae presented in Chapter

3. Conceptually, an element of P ′(n′, n) may be thought of as the relative brightness of pixel

n′ for a point source located at location n. The PSF appears as a central concentric peak
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Figure 4.1: RM Cross-correlation image sur-
face mesh of a single point source centered
in the FOV. The concentric “ring” nature of
the PSF is apparent.

with “ringed” sidelobes (Fig. 4.1). This distribution may be described analytically by a

zeroth order Bessel function of the first kind (Mertz, 1976). Consequently, the PSF is of

infinite support, which complicates image deconvolution.

4.5 Imaging Solutions

4.5.1 Direct Inversion

One solution to deconvolve the cross-correlation image is to multiply both sides of Eq. 4.4

by the inverse of P ′(n, n′). Equivalently, this could be done with the observation vector, by

selecting the decoding matrix such that G(n′,m) = P−1(m,n). In this case,

C(n′) ≈
∑
m

P−1(n′,m)P (m,n)S(n) (4.23)

≈ S(n) (4.24)

This solution will only hold, however, if P−1(n′,m) exists. Thus, P (m,n) must be square

and non-singular (its determinant must be non-zero), which in general is not true. While it

is straightforward to fabricate P (m,n) to be square by ensuring the number of measurement

elements equals those of the object space, non-singularity of the system matrix is determined

by the system geometry and method of encoding.

42



If P (m,n) is non-singular, then a solution may still be difficult to find. Iterative tech-

niques (e.g. Gaussian elimination) suffer from compounded rounding errors particularly for

large matrices. As noted by Li & Wu (1994), the mathematical solutions to these linear

systems will further deviate due to measurement errors and noise. Though infrequently so,

if P (m,n) is small and non-singular, then direct inversion offers a fast and simple method

for deconvolving observed data.

4.5.2 Convolution Theorem

A similarly simple deconvolution technique may be employed for imaging systems which

are linear and shift-invariant. The convolution theorem states that the convolution of two

functions in the spatial domain is equivalent to the dot product of those functions in the

Fourier domain (and vice versa):

F{C(n)} = F{P ′(n) ∗ S(n)} = F{P ′(n)} · F{S(n)}, (4.25)

where F{f(x)} represents the Fourier transform of the function f(x),

F{f(x)}(µ) =

∫ ∞

−∞
f(x)e−2πixµdx. (4.26)

S may thus be solved for analytically,

S(n) = F−1

{
F{C(n)}
F{P ′(n)}

}
= F−1

{
F{C(n)}
H(η)

}
. (4.27)

If the imaging system has small or zero response to a particular frequency component (i.e.,

there exists one or more η where H(η) = 0), then singularities arise in Eq. 4.27, making this

technique impractical. If, however, the instrument responds well to all observable frequencies

with a relatively flat transfer function, this technique, like direct inversion, provides a quick

solution to the deconvolution problem.
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4.5.3 Iterative Techniques

Eq. 4.1 represents a perfectly suitable system of equations to solve directly for the object

scene. Yet, by employing a decoding matrix to generate a cross-correlation image as in Eq.

4.4, we are able to more easily examine the nature of the instrument response by placing

both the object scene and measurements in the same domain. Additionally, this procedure

allows some flexibility in the design of the matrix P ′(n, n′): the decoding matrix G(m,n′)

may be chosen to satisfy desirable conditions of P ′(n, n′). For example, as shown in Sec.

4.2, a constant background may be removed without its measurement by careful choosing

G(m,n′). For iterative techniques, it is useful to select the decoding matrix such that

G(m,n′) = P (m,n′). (4.28)

Thus, the system matrix is then

P ′(n, n′) =
∑
m

P (m,n′)P (m,n), (4.29)

which, by definition, is positive and square-symmetric. While this definition can not take

advantage of the auto-removal of constant background, these properties make Eq. 4.4 a

more suitable system for a wide variety of iterative deconvolution techniques, which have

been developed across a broad spectrum of applications including optical deblurring, radio

interferometry, and medical tomography. Here, we note a few of the more common iterative

algorithms which we have applied to the RM imaging technique.

CLEAN

Introduced by Högbom (1974), the CLEAN technique was originally developed for use in

radio interferometry, and so named for its operation on the “dirty map,” analogous to the

cross-correlation image. This ad hoc technique iteratively seeks the highest value in the raw
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image, and subtracts from it a fraction of the weighted PSF corresponding to that element’s

location and brightness. This “source” is added to a new “cleaned” map, which ultimately

serves as the final reconstructed image. This procedure is iterated using the residual dirty

map until some lower background threshold limit is reached.

CLEAN performs very well for sparse object scenes, and can even represent extended

sources by breaking them down into a finite number of point-like sources. Additionally, the

simplicity of the CLEAN operation makes the technique computationally fast. The fidelity

of the reconstructed scene is, however, largely dependent on the support of the PSF. PSFs

that are not compact present a significant problem in the form of source confusion.

Maximum Entropy Method

With its roots in information theory (Shannon, 1948), the Maximum Entropy Method (MEM;

Jaynes 1957; Frieden 1972; Cornwell & Evans 1985) is a technique for solving the ill-posed

deconvolution problem with missing data and noise. It asserts that the the best choice for

the probability distribution of the reconstructed image is that which has maximum entropy

while simultaneously achieving the best fit to the original data.

The “entropy” of an image is defined as the natural logarithm of its multiplicity, or total

number of ways in which it could have been formed. For an image F (n) with N pixels and

M total counts, the entropy, S, is defined as

S = ln

(
M !∏N

n F (n)!

)
. (4.30)

The chi-squared goodness of fit of the newest iteration of the reconstruction, F (n), is given

by

χ2 =
N∑
n′

[∑N
n P

′(n, n′)F (n)− C(n′)
]2

C(n′)
. (4.31)

These constraints can be implemented as a Langrange multiplier problem, to iteratively find

the best distribution which accomplishes these two goals simultaneously. The probability

45



distribution is then found iteratively by

F (n) =
exp

(
−
∑N

n′ λ(n′)P (n, n′)
)

∑N
n exp

(
−
∑N

n′ λ(n′)P (n, n′)
) , (4.32)

where the multipliers are determined for iteration (k + 1) by

λ(k+1)(n′) = λ(k)(n′) + lnC(n′)− ln

(
N∑
n

F (n)P (n, n′)

)
(4.33)

Maximum Likelihood Expectation Maximization

The likelihood L(F ) of a reconstructed image distribution F is equivalent to the probability

of the data given the image, P (O|F ), i.e.

L(F ) = P (O|F ). (4.34)

The Maximum Likelihood Expectation Maximization (MLEM; Dempster et al. 1977; Moon

1996) algorithm finds the solution to the deconvolution problem which maximizes this pa-

rameter.

Most commonly used in medical imaging modalities, MLEM assumes the observation

vector O(m) is Poisson-distributed, such that the uncertainty of each element is given by

the square root of its value. By writing out the Poisson distribution function, an iterative

solution for maximizing the likelihood can be found. The (k + 1) iteration is given by

F (n)(k+1) =
F (n)(k)∑
m P (m,n)

∑
m

[
O(m)∑

n′ P (m,n′)F (n′)(k)
P (m,n)

]
. (4.35)

Algebraic Solutions

While statistical and ad-hoc techniques boast speed and the ability to perform well with

incomplete and noisy data, exact agreement with the data can be achieved through the
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use of algebraic techniques to solve the deconvolution problem. One technique devised by

Kaczmarz (1937) is shown to converge for non-singular matrices (Barrett & Myers, 2003).

This technique was reintroduced for medical imaging modalities by Gordon et al. (1970) as

the Algebraic Reconstruction Technique (ART).

Other, more common solutions for solving the systems of linear equations include the

Jacobi and Gauss-Seidel methods (Barrett et al., 1994). These techniques iteratively remove

sidelobe contributions from each pixel caused by sources elsewhere in the field. The Jacobi

iteration determines the contributions based on the last iteration of the reconstructed image:

F
(k+1)
i =

1

P ′(n, n)

(
C(n)−

∑
n′ 6=n

P ′(n, n′)F (n′)(k)

)
. (4.36)

Gauss-Seidel differs from Jacobi in that the updated elements in the current iteration are

used in the calculation:

F
(k+1)
i =

1

P ′(n, n)

(
C(n)−

∑
n′>n

P ′(n, n′)F (n)(k) −
∑
n′<n

P ′(n, n′)F (n)(k+1)

)
. (4.37)

Algebraic techniques enforce exact agreement with the observation vector. Consequently,

in the case of noisy or incomplete data, these solutions may produce spurious artifacts and

reduced fidelity. Smoothing and regularization are typically employed to compensate for this

shortcoming. The Direct Demodulation (DDM) technique (Li & Wu, 1994), for example,

uses Jacobi or Gauss-Seidel iterations with a positivity constraint enforced as a physical

parameter to dampen these oscillations. In Sec. 4.6, we present a novel algebraic solution

based on DDM developed specifically for the RM.
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Table 4.1: Characteristics of several reconstruction techniques as applied to the RM.

Technique Feasible Noise Computational Super
Suppression Speed Resolution

Direct Inversion No — Fast —
Fourier Inversion No — Fast —
CLEAN Yes Yes Fast No
MEM Yes Yes Fast No
MLEM Yes Yes Slow Yes
Algebraic Yes No Moderate Yes
NCAR Yes Yes Moderate Yes

4.6 Noise-Compensating Algebraic Reconstruction

4.6.1 Introduction

The deconvolution techniques described in 4.5 were developed to solve the ill-posed recon-

struction problem for a wide variety of system responses and noise conditions. For image

reconstruction for an RM-based black-hole survey mission, a deconvolution technique must

(1) be relatively fast, (2) remove extended sidelobes, (3) solve multiple point sources and

extended distributions, (4) compensate for noise and incomplete data, and (5) achieve super-

resolution.

Most of the techniques described are capable of satisfying some but not all of these

requirements (see Table 4.1). Direct inversion is not feasible since the system matrix is typi-

cally large, contributing to errors in the calculation of its inverse. The non-ideal RM transfer

function results in Fourier inversion being similarly not useful. CLEAN performs well for

multiple point-like sources for PSFs with small finite support, but the extended RM sidelobes

cause significant source confusion, and it is not able to resolve past the intrinsic resolution

of the instrument. While we have previously shown imaging results using MEM (Budden

et al., 2008a), it is unable to provide super-resolution or resolve complex source distribu-

tions. MLE performs very well for RM reconstruction, compensating for noise, achieving

super-resolution, and providing good image fidelity. However, the assumption that the data

48



is Poisson-distributed means the detector data must be concatenated and not summed in

image space. As mentioned in Sec. 4.4, this results in a computationally slow reconstruction.

4.6.2 Algorithm

We have developed a new technique derived from Direct Demodulation (DDM; Li & Wu

1994). In simulations, DDM has been previously shown to provide super-resolution with

RMCs (Chen et al., 1998) and we have shown (Budden et al., 2009) the ability of DDM with

an RM to achieve ∼ 8× the geometric resolution and to resolve multiple and complex sources

when little or no noise exists. For the reconstruction of actual measured data in the presence

of background, we modify the DDM routine and implement a key step to compensate for

noisy data. We refer to this technique as Noise-Compensating Algebraic Reconstruction

(NCAR).

The Gauss-Seidel iterative method is used to solve algebraically for the object scene. The

(k + 1) iteration of the reconstruction, f(n), is determined by (Barrett et al., 1994)

f (k+1)(n) =
1

P ′(n, n)

(
C(k+1)(n)−

∑
m<n

P ′(m,n)f (k+1)(m)−
∑
m>n

P ′(m,n)fk(m)

)
, (4.38)

with f 0(n) = 0. Gauss-Seidel uses the results of calculations from the same iteration, and so

to prevent pixel bias, it is prudent to randomize the order of m every iteration. A positivity

condition is enforced as a physical constraint on each pixel of f (k+1)(n).

A normalized parameter β may be defined, which sums over all pixels in the residual to

examine the agreement of the reconstruction with the cross-correlation,

β(k+1) ≡ 1

β(0)

∑
n′

∣∣∣∣∣∑
n

P ′(n′, n)f (k+1)(n)− C(n′)

∣∣∣∣∣ . (4.39)

In Fig. 4.2a, this residual summation is plotted against the iteration number for a sample

reconstruction. The successive reconstructions converge to the data (i.e. β shrinks) for an
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(a) (b)

Figure 4.2: Low SNR simulation of a single point source centered in the FOV. The recon-
structed image (top) and corresponding normalized residual summation, β, plotted against
iteration number (bottom) are shown for (a) Direct Demodulation and (b) with the noise
compensation additive, R[σ(n)], given in Eq. 4.40. In (b), the vertical dashed line cor-
responds to κ, the iteration at which the maximum agreement has been reached, and the
horizontal dashed line corresponds to the residual convergence value given the noisy data.
Note the contrast to (a), which converges indefinitely to zero (i.e. perfect agreement).
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indefinite number of iterations. This agreement, however, includes any fluctuations from

noise within the data, and so this method causes spurious peaks and poor location accuracy

of the true source, as seen in the reconstruction, when the SNR is low.

This “noise amplification” is the primary problem in image reconstruction using an al-

gebraic technique. Regularization methods (e.g. smoothing, pixel-to-pixel variation con-

straints) may be employed, but this regularized image is still forced to agreement with the

data, C(n). The NCAR technique allows for deviation from the noisy data, by replacing

C(n) in Eq. 4.38 with C(k+1)(n), such that

C(k+1)(n) ≡ C(n) +R(k+1)[σ(n)]. (4.40)

The function R[σ] provides a random number from a normal distribution with average zero

and standard deviation σ, where σ(n) is the error in each pixel of the cross-correlation. If the

error is assumed to be only from Poisson uncertainty, it can be shown for any multiplexing

imager that

σ(n) =

√∑
m

O(m)P (m,n)2. (4.41)

In the case of the RM, where multiple observational vectors are used to construct the cross-

correlation image, the uncertainty is

σ(n) =

√∑
d

∑
t

Od(t)Pd(t, n)2. (4.42)

The reconstruction and residual summation, β, are plotted for NCAR in Fig. 4.2b. The

agreement between reconstruction and data fluctuates about an envelope showing initial

convergence followed by a leveling off beginning at some iteration κ. Once this minimum β

is reached, the image has converged as well as possible to the data given the noise. Each

successive iteration still contains spurious peaks arising from noise fluctuations, but because

the component R[σ(n)] has been added to randomize the noise, the amplitude and location
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of these peaks are unique to each iteration, while the iterative images have the true sources

in common. By now averaging over all the images after iteration κ, the spurious random

peaks are suppressed while the true source distributions remain:

F (k+1)(n) =
f (k+1)(n) + (k − κ)F k(n)

k + 1− κ
, k + 1 > κ. (4.43)

F (k+1)(n) is the final reconstruction shown in Fig. 4.2b. Using NCAR, statistical uncertainty

in the data is manifest as an increase in the size of the reconstructed source in the form of

fuzzy sidelobes. In cases where the actual size of the source is desired, NCAR may not be

desirable; but with large noise in the data, an algebraic technique alone will produce spurious

peaks and may not represent the true source size anyway. When it is acceptable that source

size in the reconstructed image relates to uncertainty in the data, NCAR produces image

reconstructions with a significant reduction in noise fluctuations compared to results using

MEM, CLEAN, or algebraic solutions, as will be demonstrated in detail in Sec. 4.6.4.

4.6.3 Simulation

Custom-written Monte Carlo simulations (desribed in Sec. 6.4) are performed to test and

verify the NCAR technique using software described in Sec. 6.4. The instrument response

is calculated as described in Chapter 3. Since the instrument response assumes far-field

imaging, sources are simulated at an “infinite” distance from the detector; i.e. photons from

the same source arrive at equal angles of incidence. The geometry of the simulated RM

reproduces that of the laboratory prototype, described in Chap. 6.

In Sec. 4.6.4, the NCAR technique is compared to its precursor, DDM, to demonstrate the

effect of noise compensation. Additionally, we include a comparison to MEM and CLEAN,

because of their wide use in astrophysical applications. For these simulations, the FOV is

divided into 12× 12 arcmin bins, totaling 4900 pixels for a single image. Each of the results
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is that of a 30-minute simulated exposure. NCAR, DDM, and CLEAN are run for 10k

iterations, and MEM for 50k – 100k to assure convergence.

4.6.4 Results

We first observe how a single point source with a measured rate of 10 cts/s (over all detectors)

is imaged in the presence and absence of background. When no background exists (Fig. 4.3),

all deconvolution techniques reconstruct the scene reasonably well, although spurious point

sources are faintly visible in the MEM reconstruction.

When a background rate of 500 cts/s is included (Fig. 4.4), the MEM, CLEAN, and

DDM reconstructions exhibit noise fluctuations that are manifest as spurious peaks in the

image. The true source itself, however, remains relatively unaffected. The NCAR image

shows the presence of diffuse background features, and the true source peak has broadened.

Due to the nature of NCAR, the width of a point source reconstruction narrows as the SNR

grows. This can be a desirable feature of an image, where a “blur” is typically considered

an uncertainty on source location. As we continue to show, this blurring characteristic helps

to remove spurious noise fluctuations.

In Figs. 4.5-4.6, object scenes with two sources, each with a measured rate of 50 cts/s,

and a background contribution of 100 cts/s, are simulated. The background is kept rela-

tively low here to demonstrate the intrinsic ability of NCAR to achieve super-resolution. In

Fig. 4.5, the sources are separated by 3◦, greater than the 1.9◦ geometric resolution of the

instrument. NCAR produces the result that is the most free of spurious peaks and other de-

grading artifacts. Due to the broadened nature of the RM PSF, CLEAN in particular shows

difficulty in resolving sources at this separation. In Fig. 4.6, the sources are moved to a

separation of 1◦, about half the intrinsic resolution of the instrument. MEM reconstructs an

elongated structure, while CLEAN reconstructs only a single point source. Additional sim-

ulations confirm that MEM and CLEAN are both limited by the geometric resolution of the

instrument. DDM and NCAR resolve both sources and provide the desired super-resolution.

53



Object Scene Raw Image

MEM CLEAN

DDM NCAR

Figure 4.3: Monte Carlo Simulation results
for a single point source (measured rate of
10 cts/s) and no background exposed for 30
minutes. Object scene is shown at upper left,
raw cross-correlation image (Eq. 4.21) is at
upper right, and results of MEM, CLEAN,
DDM and NCAR are shown below. All re-
construction techniques perform reasonably
well. (Axes in degrees)

Object Scene Raw Image

MEM CLEAN

DDM NCAR

Figure 4.4: Monte Carlo Simulation results
for a single point source (10 cts/s) with back-
ground (500 cts/s) exposed for 30 minutes.
Note that, in the presence of background,
the MEM, CLEAN, and DDM reconstruc-
tions contain spurious point-like sources and
the image does not convey the uncertainty
of the location of the true source. NCAR,
however, smooths over the noise contribu-
tions, and places an uncertainty on the true
source that is related to the SNR of the mea-
surement. (Axes in degrees)

NCAR also provides image reconstructions for more complicated source distributions.

Fig. 4.7 shows the results for 5 sources, each with a measured source rate of 50 cts/s and
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Object Scene Raw Image

MEM CLEAN

DDM NCAR

Figure 4.5: Monte Carlo Simulation re-
sults for two equal intensity sources (each
50 cts/s) separated by 3◦ exposed for 30
minutes in the presence of background (100
cts/s). Statistical and algebraic reconstruc-
tion techniques are both capable of resolving
two sources that are at an angular separation
greater than the geometric resolution defined
by the instrument. (Axes in degrees)

Object Scene Raw Image

MEM CLEAN

DDM NCAR

Figure 4.6: Monte Carlo Simulation re-
sults for two equal intensity sources (each
50 cts/s) separated by 1◦ exposed for 30
minutes in the presence of background (100
cts/s). At angular separations less than
the geometric resolution of the instrument,
MEM reconstructs a single elongated source
and CLEAN sees only a single source, while
DDM and NCAR are able to fully resolve
the two sources. (Axes in degrees)
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Object Scene Raw Image

MEM CLEAN

DDM NCAR

Figure 4.7: Monte Carlo Simulation results
for five equal intensity sources (each 50
cts/s) in the presence of small background
(50 cts/s) exposed for 30 minutes. Even with
little background in the measurement, both
MEM and DDM suffer from noise artifacts in
the reconstruction due to the more complex
object scene. NCAR, however, compensates
for the noise and produces an image better
representative of the object scene. (Axes in
degrees)

Object Scene Raw Image

MEM CLEAN

DDM NCAR

Figure 4.8: Monte Carlo Simulation results
for a line source distribution (total measured
rate 4.5× 103 cts/s) exposed for 30 minutes
in the absence of background. The PSF in-
terference patterns cause MEM to perform
poorly with a complex source, while DDM
continues to suffer from from noise artifacts.
NCAR removes most of the spurious sources.
(Axes in degrees)
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Object Scene Raw Image MEM

CLEAN DDM NCAR

Figure 4.9: Monte Carlo Simulation results for weak source (lower right, 15 cts/s) in the
presence of a stronger source (upper left, 25 cts/s) exposed for 30 minutes with significant
background (500 cts/s). (Axes in degrees)

equivalent background rate. MEM is capable of resolving some, but not all of the sources

entirely, while CLEAN performs slightly better. DDM suffers from spurious peaks near the

true sources. NCAR, however, reconstructs each of the sources well, with no visible noise, but

instead, a slight blurring. A line source distribution (Fig. 4.8) is also simulated. To examine

the ability of the reconstruction techniques to resolve an extended source, the background

rate is set to zero, and the line source has a total measured rate of 4.5 × 103 cts/s. MEM

performs poorly with a significant spurious reconstruction to the left due to the interference

of sidelobes. The CLEAN result has no significant spurious reconstructions, but the line is

poorly resolved. DDM suffers from some spurious peaks arising from noise and interfering

PSFs from the complex nature of the object scenes. NCAR provides a reconstruction of the

line similar to DDM with most of the spurious peaks smoothed out.

As might be expected, the “broken” lines observed in the DDM and NCAR reconstruc-
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tions in Fig. 4.8 are not due to sensitivity variations. As seen in Fig. 6.3, the sensitivity is

relatively uniform, and the low-sensitivity sky regions are uncorrelated with the line breaks.

Rather, this is a consequence of the statistical noise in the image causing the deconvolution

to converge on an imperfect solution to the data. This effect is seen to increase for more

complex object scenes (i.e. the number of non-trivial sky bin values increases), and is an

inherent property of the RM response, not the deconvolution algorithm. The effect could be

reduced by increasing the exposure time (thus improving SNR).

In order to observe two weak sources imaged simultaneously, a 25 and 15 cts/s source in

the presence of 500 cts/s background are simulated in Fig. 4.9. MEM performs poorly, show-

ing spurious reconstructions indistinguishable from the weaker of the two sources. CLEAN

and DDM perform the best, with two sources clearly reconstructed with relative fluxes ap-

parent. The “blurring” characteristic of NCAR, however, means that the weaker of the two

sources is blurred to a greater degree, suppressing its apparent brightness further. For higher

SNR, this discrepancy disappears.

An objective assessment of the NCAR technique is accomplished by first defining a new

figure of merit for the image reconstructions. There is no singular objective value to describe

image quality. Instead, the parameter defined must be based on the task of NCAR: to

remove spurious fluctuations arising from noise, which are located randomly throughout the

field. NCAR manifests these counts as a blurring of the true source location by populating

adjacent image elements. The assertion is that this result is preferable in most cases since

it allows for the identification of the true sources while removing false positives.

A standard MSE (Barrett & Myers, 2003) as described in Eq. 3.23 is not suitable to

compare techniques here, since spurious fluctuations away from the true source carry the

same weight as those near to the source. Instead, a weighted mean square error (wMSE) is

defined:

wMSE =
〈
w(n) |F (n)− S(n)|2

〉
. (4.44)

In contrast to the standard MSE, the square of the deviation in each element n is multiplied
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here by a weighting parameter w(n). The weighting parameter is determined by the minimum

distance between element n and a true source. If ~N describes the shortest vector between a

true source in the field and element n, then

w(n) = 1 + | ~N |. (4.45)

Elements in which there is a true source have minimum weight (1), while those far from a

true source have greater weight. A smaller wMSE thus indicates both higher fidelity and a

consolidation of populated elements about the true source.

Table 4.2 presents the results of wMSE calculated for each of the image reconstructions

by the various techniques in Figs. 4.3 - 4.9. For most of the object scene distributions, NCAR

provides the best result (lowest wMSE) as expected. For the scenario in Fig. 4.4 (single

point source with significant background), both MEM and DDM reconstructions provide

superior results (lower wMSE) despite the spurious fluctuations apparent in the field. Here,

the inherently low SNR causes significant diffuse background to be present in the NCAR

reconstruction, which increases the wMSE. As shown in Fig. 4.2, for even lower SNR, noise

manifestations in DDM dominate the true source representation. The diffuse background

inherent in the NCAR reconstruction, however, may still cause a higher wMSE value despite

Table 4.2: Weighted mean square error (Eq. 4.44) for reconstructions shown in Figs. 4.3 -
4.9. The smallest wMSE values are in bold face. For most object scene distributions, NCAR
provides the best result (lowest wMSE).

Fig.
Weighted Mean Square Error

CLEAN MEM DDM NCAR
4.3 6.48× 10−3 4.04× 101 1.64× 10−2 2.00 × 10−3

4.4 2.20× 101 1.31 × 100 2.91× 100 1.42× 101

4.5 5.33× 102 2.87× 103 1.62× 101 1.39 × 100

4.6 1.09× 105 4.16× 102 9.15 × 100 1.36× 101

4.7 2.88× 102 9.11× 107 1.65× 101 5.15 × 100

4.8 5.09× 103 3.29× 105 9.22× 103 2.25 × 103

4.9 6.24× 101 4.65× 1012 2.77 × 10−1 2.01× 101
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an apparent subjective assessment of its superiority. In this ultra-low SNR regime, therefore,

wMSE is no longer a good indicator of image quality. It’s definition and scope is therefore

limited, but it is suitable for most of the scenarios examined.

While for two sources separated by 1◦ (Fig. 4.6), NCAR does not exhibit the lowest

wMSE, it is almost equivalent to the lowest (that of DDM). Both DDM and NCAR demon-

strate much lower wMSE than CLEAN and MEM due to their ability to reconstruct and

separate the two sources. Finally, for the scenario in Fig. 4.9 (two sources with varying

intensity in low SNR), DDM again demonstrates the lowest wMSE. This result is, however,

expected, since this object distribution was presented specifically to demonstrate a regime

in which NCAR is not preferable to other techniques.

4.7 Discussion

An algebraic technique such as NCAR is necessary to exploit the super-resolution capability

of the RM while simultaneously suppressing noise fluctuations. NCAR will not, however,

be suitable for all scenarios. As shown, its weakest performance is in resolving two weak

sources with different measured rates. Because of the inherently low SNR, the peaks are

“blurred” to different degrees, suppressing the weaker of the two and thus not accurately

depicting relative source strength. In the other cases presented, however, NCAR performs

quite well, reconstructing the object scene and suppressing noise fluctuations that typically

plague algebraic solutions. In scenarios where the size of the source is of importance, NCAR

will not produce good results with low SNR. If the ultimate desire is to survey and locate

true sources, however, NCAR generates images free of spurious reconstructions with a visual

representation of the locational uncertainty of a particular source measurement.
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Chapter 5

Sensitivity

5.1 Signal-to-Noise Ratio

For a counting detector with only Poisson noise, the signal-to-noise ratio (SNR) of an un-

modulated observation is given by

SNR =
CS√

CS + CB

, (5.1)

where CS is the total number of measured source events and CB the total number of back-

ground events. These counts are related to the exposure time, T , and source and background

rates, S and B, by

CS = ST and CB = BT, (5.2)

and so Eq. 5.1 may be rewritten as

SNR = S

(
T

S +B

)1/2

. (5.3)

A mutliplexing imaging device has an inherently lower SNR than an equivalent non-

imaging detector for two reasons: (1) the existence of a modulation which blocks a fraction

of incident photons and (2) some of the detected source counts may contribute to sidelobes,
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decreasing the image value at the true source location. It can be shown (see Appendix B.3)

that the SNR for a multiplexing imager is proportional to the standard deviation, σ, of the

system matrix,

SNRmultiplex = σS

(
T

B + S(µ+ γσ)

)1/2

. (5.4)

The standard deviation parameter accounts for both the mask absorption and system re-

sponse effect on the signal value, while the average, µ, and skewness1, γ, of the system matrix

are correlated with the noise contribution from source counts.

In most imaging modalities, the system matrices are evenly distributed about a mean,

and so the skewness will be close to or equal to zero. Additionally, these systems typically

detect 50% or less of incident photons (the other fraction is absorbed by the modulation

device), and so µ ≤ 1/2. In astrophysical applications, background contributions often

dominate observations. If B � S/2, then Eq. 5.4 may be simplified to

SNRmultiplex ≈ σS

(
T

B

)1/2

, (5.5)

which is equivalent to that of the background-dominated non-multiplexing observation mul-

tiplied by the standard deviation of the instrument response.

5.2 Comparison of Modalities

The coded aperture system matrix is represented by an array of ones (open pixels) and zeros

(closed pixels), typically in equal numbers. The standard deviation of this distribution is

σ = 1/2. The SNR of an observation by the coded mask imager is then

SNRCA ≈
1

2
S

(
T

B

)1/2

. (5.6)

Unlike the coded aperture’s discrete system response, RM and RMC system matrices

1Skewness is the third standardized moment of a distribution.
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Figure 5.1: SNR of three multiplexing imagers in units of S
√
T/B.

are represented by a continuous range of values: 0 → 1 for the RM and 0 → 1/2 for

the RMC. Furthermore, these profiles do not sample all parts of the sky equally, and so the

standard deviation is dependent on the source location. For the RMC, the continuous nature

of the profiles combined with the inherently low mask transmission reduces the sensitivity

considerably compared to a coded aperture. On average, the standard deviation is ∼0.16,

and so the SNR is

SNRRMC ≈ (0.16)S

(
T

B

)1/2

. (5.7)

The standard deviation for the RM is approximately twice as large:

SNRRM ≈ (0.31)S

(
T

B

)1/2

. (5.8)

In Fig. 5.1, the SNR of these three multiplexing imagers (with comparable geometries)

are plotted as a function of source angle. The results are compared in units of S
√
T/B,

and so an SNR of 1 corresponds to an observation by a non-modulating device. The coded

aperture is found to be the ideal device in terms of sensitivity; the SNR is limited only by the

number of open mask pixels, and the sensitivity is completely uniform across the sky. The

RMC has the lowest SNR due to its intrinsically lower mask transmission. Furthermore, the
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sensitivity drops to zero directly overhead, where the object scene is unmodulated; counts

from this region are indistinguishable from background.

For an RM, the overall sensitivity is approximately twice as high as the average RMC

SNR. The summation of the detector-dependent cross-correlation images smooths over re-

gions of insensitivity, providing virtual uniformity across the sky. Additional detectors en-

hance this effect, though the mean sensitivity remains constant.

5.3 Verification of Sensitivity

Analytical simulations are performed using software described in Sec. 6.4 to verify the

sensitivity calculation of the RM. A system geometry is defined with the same parameters as

those of the laboratory prototype presented in Chap. 6. Resulting simulated count profiles

are used to generate the raw cross-correlation image. A PSF is scaled to the intensity of the

source and subtracted from this image. The standard deviation of the residual is taken as

the noise component in calculation of the simulation SNR (Fig. 5.2).

Six pairs of source and background rates are selected for a fixed exposure time as a

(a) (b) (c)

Figure 5.2: Simulation results verify the calculation of the RM SNR formula. (a) Cross-
correlation image of a point source. (b) PSF centered at source location, (c) Residual image
found by subtracting a scaled (b) from (a) and used to measure noise.
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Figure 5.3: Simulation result for
RM SNR vs. calculated values for
a range of source and background
rates.

selection of input SNRs. For each input SNR, four independent trials are run, and the

simulation SNRs are averaged. These values are compared with those calculated using Eq.

5.8 in Fig. 5.3. A 1:1 fit to the analytically- and Monte Carlo-based sensitivity values has a

coefficient of determination (R2) value of 0.98, showing good agreement.

5.4 Sensitivity vs. Angular Resolution

In the simple case of zero bar thickness and perfect attenuation, the standard deviation of

the RM response, and thus its sensitivity, is maximized for equal bar and spacing width. For

finite bar thickness, shadow lengthening increases a′, the bar shadow width, and so larger

spacing is required to compensate to keep the sensitivity high. In Fig. 5.4, the SNR is plotted

against the slat width percentage, a/(a+ b), the ratio of slat width to pitch. Here, the slat

thickness is 1.5 cm, and so the maximum SNR occurs when the slat width is 0.37/0.63 = 59%

of the spacing width. For larger slat thickness, this maximum would occur at a smaller slat

width fraction.

At slat width fractions larger than the ideal, detectors are shadowed during the profile

for a finite period of time, reducing standard deviation and thus sensitivity. Conceptually,

this is seen by a narrowing of the PSF, which, in general, aids sensitivity. However, the

reduced transmission has a greater effect, causing the SNR to drop. This same effect occurs

for reduced slat width fraction, where spacings are large, and detectors are fully-illuminated
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Figure 5.4: The SNR averaged over the FOV (blue) and the angular resolution enhancement
(red) for varying slat width fractions, a/(a+ b), and grid thickness 1.5 cm.

for a finite time in the profile. Despite the increased transmission, the PSF is broadened,

a similar lowering of the SNR occurs. This symmetric nature of the RM sensitivity curve

is seen in Fig. 5.4, and verifies the description by Durouchoux et al. (1983) for zero grid

thickness.

Also plotted in Fig. 5.4 is the enhancement of angular resolution, where a value of one

corresponds to the default angular resolution with slat width and spacings equal. Since

angular resolution is equal to the arcsine of the ratio of slat spacing and grid/detector

displacement, angular resolution increases with increasing slat width fraction. This plot

shows that for fixed detector size, enhanced resolution may be achieved by increasing the

slat width fraction, but at the cost of lowered sensitivity. Furthermore, angular resolution is

enhanced relatively little for large drops in sensitivity–e.g. for a resolution enhancement of

2, the sensitivity is 39% of its maximum value. At smaller than ideal slat width fractions,

both sensitivity and resolution enhancement are reduced, and so this regime has undesirable

properties for imaging.
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5.5 Super-Resolution

By moving modulation of incident photons to the temporal domain, the RM and RMC gain

a unique advantage over the coded aperture. Rather than the sampling of the instrument

response being fixed by the instrument geometry as with a coded aperture, the time-tagged

data may be rebinned during analysis. By sub-sampling the observation profiles (and the

instrument response function), the object scene can likewise be further subdivided.

With the appropriate deconvolution algorithm, super-resolution, resolving power beyond

the intrinsic geometric resolution of the instrument, may be achieved. There is, however, an

inherent loss of sensitivity in achieving super-resolution. A proof outlined in Appendex B.4

suggests that the incorporation of a factor η of super-resolution implies the system matrix,

P ′, and consequently its standard deviation, σ, should be modified with a coefficient 1/η2.

By keeping P ′ fixed, this result may instead be included in the SNR expression by rewriting

Eq. 5.5 as

SNRmultiplex ≈
σ

η2
S

(
T

B

)1/2

. (5.9)

5.6 Detector Efficiency Consideration in SNR Com-

parison

As demonstrated in Sec. 5.2, due to the single mask design and ideal system matrix distri-

bution, the coded mask provides a higher SNR than the RM for any observation. This result

assumes perfect detector efficiency of all incident photons. In practice, the detector efficiency

for a coded aperture is less than that for an RM, particularly for large zenith angles and

high energies, due to an instrinsically smaller horizontal dimension.

At equal geometrical resolutions, the coded aperture detector pixels are half the width

of those on a comparable RM. Consider a coded aperture/RM with mask pixel/slat size a.

The RM detector diameter, cRM, is ideally given by cRM = a, since this condition maximizes
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(a) (b)

Figure 5.5: Diagrams describing the computation of the average distance, dave a photon
traverses through a 1-dimensional detector for incidence angle θ in (a) the typical case, and
(b) at extreme zenith angle.

the contrast and modulation of the profiles, thus maximizing the standard deviation and

sensitivity. A coded aperture pixel, cCA, however, is cCA = a/2 or smaller due to the Nyquist

criterion; the detection plane must sample the shadow pattern at twice the shadow’s spatial

frequency.

The inclusion of super-resolution capability requires further subdivision of these elements,

such that the pixel size is cCA = a/(2η). For the RM, however, a subdivision of the obser-

vational data is a subdivision of temporal elements in the measured profiles. For data time-

tagged to good precision, this procedure is trivial and the detector sizes remain unchanged.

The inherently smaller pixel size of the coded aperture indicates that for obliquely incident

photons (particularly at higher energies), the RM will have a greater detection efficiency,

and possibly a comparable sensitivity to the coded aperture in this regime.

As a suitable approximation to this problem, a two-dimensional detector is shown in

Fig. 5.5. A photon that enters through the top detector face may have a trajectory that

passes through the bottom face or one of the side faces. The average mean path for detector
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thickness t is derived in Appendix B.5, where it is shown that

dave(c) =


t
(
1− t

2c
tan θ

)
, for 0 ≤ θ ≤ tan−1

(
c
t

)
c

2 tan θ
, for θ > tan−1

(
c
t

)
.

(5.10)

The detection efficiency is calculated based on the above equation,

εdet(c) = 1− exp [−σρdave(c)] , (5.11)

where σ is the mass attenuation coefficient and ρ the density of the detection material. If

the background is due primarily to external contributions, then both the source rate S and

background rate B are dependent on this detection efficiency; the detection efficiency should

be included in Eq. 5.9 of the SNR,

SNR ≈ σ

η2

√
εdetS

(
T

B

)1/2

. (5.12)

If the background rate is instead due primarily to intrinsic contributions (as may be the case

at low energies for scintillators such as LaBr3 described in Sec. 7.1.1), then B is not primarily

dependent on the detection efficiency, and Eq. 5.12 should be written with εdet to the first

power. The problem is therefore dependent on the detector material and environment to

which the instrument is exposed. Eq. 5.12 therefore represents a conservative estimate in

terms of comparing the RM detection efficiency to that of the coded aperture, and so in

many cases the ratio of RM to coded aperture SNR will be better than is described here.

Eq. 5.12 is used to directly compare the sensitivity of the RM to the coded aperture.

Several scenarios are examined, with parameters selected for mask pixel/slat width a, de-

tector thickness t, photon energy E, photon zenith θ, and super-resolution factor η. In each

case, one parameter is variable while the others are fixed. For each scenario, results are

69



(a) (b)

Figure 5.6: SNR of the RM (lower, red curves) and coded aperture (upper, blue curves) are
compared for photon energies ranging from 30 keV to 1 MeV with 45◦ zenith angle for (a)
a = 3.8 cm, t = 2.5 cm, and (b) a = 4 mm, t = 1 cm.

calculated for two scintillator materials, sodium iodide and lanthanum bromide (described

further in Sec. 7.1.1).

We first examine energy dependence at angle of incidence θ = 45◦. Small angles will

show little change in the relative sensitivities of the two instruments and angles much larger

than 45◦ are unreasonable in practice. Fig. 5.6(a) shows the results of using a = 3.8 cm and

t = 2.5 cm (based on the RM prototype geometry discussed in Chap. 6). For low energies

(< 150 keV), the detection efficiencies are high, with the RM providing SNR ≈ 0.31 and

coded aperture providing SNR ≈ 0.50. At higher energies, the detector width advantage

of the RM is noticeable, as the relative difference in SNRs between the two instruments

becomes much smaller. Even at 1 MeV, however, the RM SNR does not exceed the coded

aperture SNR. Furthermore, the shapes of the plots suggest the RM will not provide an

advantage at even higher energies using this geometry. Fig. 5.6(b) shows a similar plot for
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(a) (b)

Figure 5.7: SNR of the RM and coded aperture are compared for photon energy 800 keV
and azimuth ranging from 0 to 50◦, with (a) a = 3.8 cm, t = 2.5 cm, and (b) a = 4 mm,
t = 1 cm.

a = 4 mm and t = 1 cm. Here, the RM advantage is more prominent, with the RM SNR

nearly equaling the coded aperture at higher energies.

Next, SNR dependence on photon incidence (i.e., zenith) angle is examined. Photon

energy is fixed at 800 keV. Fig. 5.7(a) examines the RM prototype geometry. At θ = 0,

SNRs are lower than the expected 0.31 and 0.50 due to imperfect absorption efficiency. The

SNR of the coded aperture, however, drops off faster at higher angles than does the SNR

of the RM, and the two become comparable at the highest of incident angles. While the

RM SNR conceivably overcomes the coded aperture SNR at even higher angles, such shallow

angles are not feasible in practice. Fig. 5.7(b) examines this dependency for the alternate

geometry. At θ = 0, SNRs are lower than in (a), due to thinner detectors. Convergence

of the coded aperture and RM SNR is observed at higher angles, though the RM SNR still

never matches that of the coded aperture.
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(a) (b)

Figure 5.8: SNR of the RM and coded aperture are compared for photon energy 520 keV
and zenith angle 20◦, and super-resolutions ranging from 1 to 4, with (a) a = 3.8 cm, t = 2.5
cm, and (b) a = 4 mm, t = 1 cm.

Finally, Fig. 5.8 examines the SNR dependence on super-resolution of both instruments.

In 5.8(a) (prototype geometry), the two SNRs begin convergence at around η = 3 → 4, but

due to the inherently low SNR obtained with η > 1 (0.025 at η = 3), the result may lack

significance. In Fig. 5.8(b) SNR of the two instruments converges sooner, at η ≈ 1.5, and

the superior detection efficiency of the RM provides a better SNR than the coded aperture

at higher super-resolutions.

5.7 Discussion

Modulation imaging instruments demonstrate a sensitivity proportional to the standard

deviation of the system response distribution. From this effect alone, the coded aperture

is the preferred choice over the RM since it can offer the maximum SNR for a given mask
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transmission. Partially for this reason, coded apertures have seen widespread use in hard

x-ray/gamma-ray imaging.

Besides this “coding power,” however, detection efficiency must be considered in the

analysis. Due to the mechanisms by which these two modalities modulate incident photons,

the RM has larger detector elements, and thus better detection efficiency than a coded

aperture. This is especially true in the case of large zenith angle, high photon energy, or a

high factor of super-resolution. In these regimes, the high RM detector efficiency may result

in an SNR comparable to (though rarely exceeding) that of a coded aperture.

The RM maintains two advantages over the coded aperture: (1) since the RM detec-

tors are approximately twice the dimension as those of the comparable coded aperture, the

number of readout electronics is smaller by a factor of four, reducing cost and complexity;

(2) super-resolution may be achieved without altering the physical instrument and without

sacrificing detection efficiency. In the case of high-energy and wide FOV, these results make

the RM an attractive and viable alternative to a coded aperture design.
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Chapter 6

Laboratory Prototype RM

6.1 Introduction

Empirical verifications of the feasibility of the RM technique (Sec. 2.4), system response for-

mulae (Chap. 3), NCAR reconstruction algorithm (Sec. 4.6), and sensitivity characteristics

(Chap. 5) are accomplished by the design, construction, and testing of a laboratory-scale

prototype. The Lanthanum Bromide-based Rotating Aperture Telescope (LaBRAT) is a

nineteen-channel RM, which features a custom data acquisition system (DAQ) and simula-

tion/analysis software. In this chapter, these components and techniques are described, and

measurement results are presented. This work serves as a precursor and proof-of-concept

verification for the high-altitude balloon RM mission to be described in Chap. 7.

6.2 Mechanical

The LaBRAT prototype (Fig. 6.1) measures approximately 75 cm tall × 90 cm wide × 150

cm long. An aluminum tubing frame provides a rigid structure with low weight. The frame

rests on four casters to provide mobility for aiming and transportation.

The mask is composed of eight lead slats, each 3.8 cm wide and 1.9 cm thick, providing

∼90% attenuation of 662 keV photons. The slats are spaced 3.8 cm apart and coupled to
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Figure 6.1: (Top) Annotated CAD drawing and (Bottom) Photograph of the LaBRAT pro-
totype.
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(a) (b)

(c) (d)

Figure 6.2: (a) Four roller bearings support the mask and allow it to rotate. (b) Four roller-
balls keep the mask in place and prevent wobble. (c) Photointerrupter circuit/fork and mask
pin for interruption. (d) 3.8 cm diameter, 2.5 cm thick hermetically-sealed LaBr3 scintillator
and 3.8 cm diameter Electron Tubes 9102B PMT.

2.5 cm square aluminum tubing on the inside face and 3.8 cm-wide aluminum plates on the

outside face; this configuration provides the necessary support for the soft lead slats without

impinging on the FOV.

To allow for rotation, the grid frame is sandwiched between two sections of 61 cm (outer

diameter) PVC piping, which rest on four roller bearings mounted on base struts angled at

45◦ from horizontal (Fig. 6.2a). Four roller balls are positioned perpendicular to the mask

face and dampen axial motion of the mask composite (Fig. 6.2b). A shallow groove in the

rear PVC section allows for attachment of a 1 cm-thick rubber belt, coupled to a single-phase
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Figure 6.3: Contour plot of the relative sen-
sitivity of LaBRAT’s FOV. Relative unifor-
mity is achieved by having multiple detector
elements. Axes in degrees.

servo motor. The mask is driven at a frequency of ∼10 rpm; for stationary sources, the rate

does not matter, though for transient sources, the rotation period must be much less than

the characteristic time scale of the source.

Four infrared LED photointerrupters (PIs) are mounted about the circumference of the

rear PVC section. A metal pin attached to the PVC interrupts the transmission between

each PI fork once per revolution, providing quarter-period time-tagged markers to allow

for correction of nonuniformities in the grid rotation speed during analysis (Fig. 6.2c). PI

circuitry is described in Sec. 6.3.2.

The detector plane is comprised of nineteen cylindrical cerium-doped lanthanum bromide

inorganic scintillating crystals (scintillation properties discussed in Sec. 7.1.1) arranged in a

circular layout; one detector is aligned with the grid axis of rotation and is surrounded by

outer concentric rings of six and twelve detectors. Each crystal measures 3.8 cm in diameter

× 2.5 cm thick and is hermetically-sealed in an aluminum casing with a glass window on one

end. This window is coupled to an Electron Tubes 9102B photomultiplier tube (PMT) with

Saint-Gobain BC-630 optical grease (Fig. 6.2d). Each detector/PMT package is optically

sealed with black tape to prevent light leakage.

The detector array is mounted on an aluminum frame 1.16 m behind the mask. This

geometry provides a 13.8◦ fully-coded FOV and 1.9◦ full-width-at-half-maximum (FWHM)

geometric angular resolution. As a result of using 19 detectors in LaBRAT, the sensitivity is
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Figure 6.4: Cross-sections of the LaBRAT (Top) point-spread function and (Bottom) mod-
ulation transfer function.

fairly uniform. Fig. 6.3 is a contour plot of the sensitivity across the object scene, which, on

average, is 0.31 S(T/B)1/2, with less than ±4% maximum deviation from this value. Regions

of low sensitivity are those that are unmodulated from the viewpoint of one of the detectors;

unmodulated regions manifest as a profile with low standard deviation, shown in Chap. 5

to be directly proportional to sensitivity. Since each of the detectors sees this region in the

direction of the grid axis, the pattern in the figure thus mimics the detector layout.

Given its FOV and geometric angular resolution, the LaBRAT PSF contains 2 concentric

sidelobes about the central source location for a centered source. A cross-section of the

response is shown in the top of Fig. 6.4. The modulation transfer function, MTF(η) is the

absolute value of a normalized transfer function, H(η), which was described in Sec. 4.3:

MTF(η) =
|H(η)|
|H(0)|

. (6.1)

The MTF is displayed in the bottom of Fig. 6.4. The highest frequency response is approx-

imately ±0.21 deg−1, and then goes to zero for higher frequencies.
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Figure 6.5: The 6-dynode voltage divider circuit used on each PMT base.

6.3 Electronics

6.3.1 PMT Voltage Divider

Due to the relatively high light output of LaBr3, custom PMT interstage voltage dividers

are constructed, in which the last four dynodes of a standard ten-dynode chain are shorted

together, reducing gain from the standard value (Fig. 6.5). High voltages are selected

independently (800 - 1200 V) for each PMT to ensure equalized output signals (i.e. photon

energies are measured at approximately the same ADC values). A 150 V zener diode provides

a constant voltage drop from the grounded photocathode to the first dynode. Sequential 4.8

MΩ resistors produce interstage voltage drops of 110 - 175 V up to the anode.

Capacitors, valued 1 - 3.3 nF, couple dynodes 4 - 6 and the high voltage input to ground;

this placement provides the extra charge necessary to prevent a temporary drop in voltage

at these later stages due to large photoelectron input. Another capacitor AC-couples the

anode to the signal output, which is fed into the Front End Module (FEM) of the DAQ.
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Figure 6.6: LaBRAT Photointer-
rupter Circuit Diagram.

6.3.2 Photointerrupter Circuit

The photointerrupter circuit (Fig. 6.6) makes it possible to adjust for nonuniformity in the

grid rotation. It is designed to mimic the short negative pulse output of a PMT anode

signal. A potential difference of 5 V is applied to the circuit. Infrared light from the LED

allows the photodetector to provide a path to ground, keeping the collector voltage at 300

mV. The collector and constant 5 V are supplied as two inputs to a NAND Schmidt trigger

(“one-shot”). Interruption of the beam causes the phototransistor to open, and the collector

voltage rises to 3 V. The output of the NAND gate, typically held at 5 V, drops to zero. A

47 pF capacitor AC-couples this output to the signal.

The result of an interruption to the photointerrupter package is ultimately a 80 ms-wide

negative pulse with an amplitude of 200 mV. The signal is plugged into one of the FEM

channels where it is used as a trigger, digitized, and recorded in the same manner as any

PMT output. The readout software designates this channel as a photointerrupter, and the

time-tagged markers are used to fold the measured count profiles.

6.3.3 Data Acquisition

The 32-channel LaBRAT data acquisition system (DAQ) features two front-end modules

(FEMs), a trigger logic module (TLM), an analog-to-digital converter (ADC) board, and

a QNX-based computer system for readout control and archiving. The DAQ is custom
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designed for LaBRAT, with conversions and operations timed specifically to match the rise

and decay times of the LaBr3 light output.

The negative anode signal from each of the 19 PMTs and four photointerrupters is fed

into an FEM input channel where the signal is split. One branch is fed into a signal shaper.

An integrator and differentiator first convert the signal into one with a constant 4 µs width.

A subsequent second-order low-pass integrator inverts the polarity and produces a 10 µs-wide

symmetric gaussian pulse. The pulse is then amplified to 0 - 5 V to match the sensitivity

of the ADC. The second signal branch feeds into a discriminator shaper. An integrator and

differentiator produce a signal with a 200 ns decay time to be sent to a 32-channel TLM.

The signal is compared to upper and lower threshold voltages. A positive trigger condition

sends a convert signal to each of the four eight-channel ADCs to begin conversion of the

shaped anode pulses. A register is set containing the list of the channels triggered, which is

read by the computer for use in the data record.

On the ADC board, a track-and-hold is timed to hold the maximum voltage from the

signal shaper output pulse. The 12-bit ADC then digitizes each of the channel voltages to a

value from 0 - 4095 and outputs the values to a register. The register is read by the computer

and archived in the open data file.

6.4 Software

Object-oriented RM simulation and analysis software is written in IDL 6.3. The code features

a graphical user interface (GUI), the ability to perform simulations, a DAQ file reader, and

image reconstruction capability. The primary GUI window (Fig. 6.7) allows for all the

parameters of the RM to be defined, including mask/detector geometry and data binning

options. This information is utilized for both simulations and data analysis, which are

selected by radio buttons. A click-sensitive source map allows for simulated object scenes

to be quickly placed with specific source rates and energies, as well as both external and
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Figure 6.7: The primary window of the RM GUI software allows for easy designation of the
RM geometrical parameters, source fields, binning options, data files, and tasks.

internal background contributions. For experimental analysis, data and background files

may be selected. Project files containing all specified settings may be defined, saved, and

loaded.

Simulations include both analytical and Monte Carlo. Analytical simulations query the

pre-computed system matrix. Background and Poisson noise are subsequently added, and

profiles are generated based on the source distribution. Monte Carlo simulations object-

oriented and are custom written in IDL for this research. Objects are instantiated from

classes defining the grid, detectors, and photons to randomly cast incident gamma rays on

the instrument based on the object scene distribution. Attenuation in the grid only is taken

into account based on the density and cross-section of the slats and energy of the photons.
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Figure 6.8: The deconvolution/reconstruction GUI allows one of several algorithms to be
run for a specified number of iterations. The raw image (left), reconvolved image (middle),
reconstruction (right) and convergence plot (bottom right) are shown.

Scattered photons are disregarded as these will contribute only to constant background and

should be ignored during energy windowing. While analytical simulations produce the final

folded profiles suitable for submission to the image reconstruction analysis, these custom

Monte Carlo simulations produce raw data equivalent to that read in for experimental data.

For experimental data, a multi-dimensional array of ADC values and timestamps for

each channel is produced after being read from each of a number of files associated with

an exposure. The first nineteen channels contain the data from the LaBr3 detectors. An

energy window is selected over the range of interest to provide upper and lower energy

thresholds for included events. The last four channels are the photointerrupters, and so

threshold ADC values mark the timestamps where these interruptions occur. The raw data

are subsequently folded over these markers to produce a single count profile for each of

the nineteen detector channels. Background rates are determined from exposures taken

in the absence of sources, which are read from a separate list of files; the same energy

windows are used here, and the measured contribution from background is then subtracted

from the profiles. The energy windows as selected on each channel may not be completely
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consistent, and so to prevent detector bias, a normalization factor is calculated for each

detector proportional to its background rate. The inverses of these normalization factors are

multiplied by the respective instrument response in the subsequent analysis.

The system matrix is calculated as described in Chapter 3. A cross-correlation image is

generated from the profiles resulting from simulation or experimental data analysis. This

raw image and the system matrix are provided to an image deconvolution GUI, which allows

several reconstruction algorithms to be run for a specified number of iterations. The GUI

shows the raw image, the latest iterative reconstruction, this reconstruction reconvolved with

the system matrix, and a plot of convergence (Fig. 6.8).

6.5 Results

6.5.1 Simulation

Analytical simulations have been performed with the software described in Sec. 6.4 using

the LaBRAT geometry to examine the RM response (Sec. 4.4) and to verify the derived

sensitivity formulas (Sec. 5.3). Monte Carlo simulations have similarly been used to validate

the analytical RM system matrix (Secs. 3.3.3, 3.3.2) and to demonstrate the advantage

of the NCAR reconstruction algorithm (Sec. 4.6.3) in reducing noise and achieving super-

resolution.

Here, analytical simulations demonstrate the reconstruction capabilities in the limit of

low noise (measured results are then presented in Sec. 6.5.2). In the high SNR regime,

reconstruction fidelity is related primarily to the existence of sidelobes in the system response.

This analysis empirically examines the impact of extended sidelobes on the RM technique.

For this reason, complex object scene distributions are produced in Fig. 6.9: an object scene

with numerous point sources, extended line sources, and several small extended sources with

varying brightnesses. Cross-correlation images of the simulations show the difficulty of the

deconvolution problem; the detailed object scenes must be reconstructed from raw images
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Figure 6.9: Object scenes, cross-correlation images, and final reconstructions demonstrate
the ability of the RM technique to remove sidelobes in the high SNR regime for a variety of
source distributions.
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with very broad features. The final reconstructions are the result of the NCAR algorithm

run for 200,000 iterations. Multiple sources are well reconstructed, despite the interference

of sidelobes from each source. Similarly, extended line sources are reconstructed with only

moderate noise arising from the convolution. Finally, sources with varying brightnesses

maintain the ratios reasonably well; only the dimmest source is lost in the reconstruction.

6.5.2 Experimental

As described in Sec. 7.1.1, the use of LaBr3 in the LaBRAT prototype provides better

energy resolution than more commonly-used inorganic scintillators such as sodium idiode

and cesium iodide. In Fig. 6.10, the gamma-ray lines from 133Ba and 137Cs isotopes are

Figure 6.10: (Top) 133Ba and (Bottom) 137Cs spectrum show the resolutions obtained with
the LaBRAT prototype at 80, 356, and 662 keV.
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Figure 6.11: Contour plots of the cross-correlation (C), final reconstructed image (F), and
surface mesh of final reconstruction for a single 137Cs point source centered in the field of
view.

measured to compare the energy resolutions at 80, 356, and 662 keV. At 662 keV, the

resolution is measured to be 3.1%, close to the best reported value, 2.6%. (Short exposure

time, low quantum efficiency of the PMT photocathode, and noise in the data acquisition

all contribute to the worsening of this resolution.) At lower energies, the resolution worsens

(10.7% at 80 keV) due to increased statistical uncertainties.

The first experimental result is for a single 100 µCi 137Cs isotope. The source is placed

∼10 m from the detection plane. Since the RM was designed primarily as a far-field imager,

the reconstruction algorithm assumes detected photons from a source are mutually parallel

when incident on the instrument. Parallax can degrade the image, and so this distance

provides a suitable tradeoff between minimal parallax and high measured source rate (for a

brief discussion of a possible solution to this effect, see Sec. 8.3). The measured source rate

is 6 cts/s and background rate is 30 cts/s (within the selected 662 keV photopeak window).

For an exposure time of 45 minutes, the cross-correlation image and final reconstruction

are shown in Fig. 6.11. Since the exposure time is relatively short given the inherently

low source to background rates, the final reconstruction (using the NCAR deconvolution

algorithm) exhibits some uncertainty on the source location indicated by a blurring. Longer

exposure times would narrow this reconstruction.
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Figure 6.12: Normalized measured count profiles for middle and outer-ring detectors for one
of the observations shown in Figure 6.13. The profiles differ due to the different x/y locations
of the each detector.

Next, two 50 µCi 137Cs sources are placed at the same distance at various separations

to analyze the resolving power of the LaBRAT prototype. In the 662 keV photopeak, each

source has a measured count rate of 3 cts/s amongst a background rate of 30 cts/s. Since

multiple sources present source confusion and increased background, these exposures are

longer than that seen in Fig. 6.11. Additionally, to demonstrate super-resolution, which

is inherently less efficient, extended exposure lengths are required. Each of the following

object scenes was imaged for 5 - 10 hours. Example count profiles for one of these exposures

is shown in Fig. 6.12. The profiles are unique per detector location, and exhibit varying

frequencies of modulation depending on the sources’ apparent positions relative to the grid

axis, as seen by each detector.

Fig. 6.13 shows the results with these two sources placed at varying angular separations,

and probes the limit of the resolving power of the prototype. At 2◦ separation, the cross-

correlation image clearly shows the two sources, and the NCAR reconstruction successfully

removes the sidelobes. At 1◦ separation, roughly half the geometric resolution of the instru-

ment, the cross-correlation image contains only a single central peak. An algorithm such as

is NCAR is required to take advantage of the super-resolution capability of the RM’s tem-

poral modulation by deconvolving this raw image with the system response and resolving
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two independent sources. At 35′, over 3× super-resolution, NCAR is again able to resolve

each of these two sources.

When the sources are placed within 20′, however, the reconstruction indicates the pres-

ence of two sources, but is unable to fully separate their peaks. A 2-dimensional gaussian

function fit to the reconstruction displays a slightly wider x-dimension, 31′, than its vertical

dimension, 27′; both widths, however, are larger than the 20′ source separation. Thus, while

the ability to achieve super-resolution has no theoretical limit, insufficient exposure times

(to overcome the 1/η2 inefficiency described in Sec. 5.5) and systematic effects result in a

practical limit.
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Figure 6.13: Contour plots of the cross-correlation (C), final reconstructed image (F), and
surface mesh of final reconstruction for two 137Cs point sources placed at varying angular
separations. Top to bottom: 2◦, 1◦, 35′, and 20′ (zoomed in).
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Chapter 7

High-Altitude Balloon-borne RM
Mission Concept

7.1 Balloon Flight Measurement of LaBr3 Background

7.1.1 Introduction

Satisfying the scientific requirements of a large-area RM astrophysics mission coupled with

the demand for a low-cost instrument necessitate the use of a relatively inexpensive detector

with good energy resolution capable of correctly identifying nuclear lines. A variety of scin-

tillators and semiconductor devices are available with a wide range of costs and performance

characteristics (see Table 7.1). Germanium semiconductors (Ge) provide the best resolution

available (0.3% FWHM at 662 keV), but the operational temperature (< −150 ◦C) requires

the use of liquid nitrogen for cooling. Alternatively, CZT semiconductor is often chosen for

its excellent energy resolution (< 3%), but at more than 5× the cost of Ge, it is prohibitively

expensive (e.g. as proposed for EXIST). Inorganic scintillators are typically used for their

inherently low cost, but suffer from poorer resolution. Sodium iodide (NaI) offers resolution

of 7% and cesium iodide (CsI) offers 10% (using a bialkalai PMT), and both cost a small

fraction of the price of semiconductor detectors. These resolutions are sufficient to achieve

the primary science goals of a black hole mission, but better resolution would enhance the

secondary science goals (McConnell et al., 2004).
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Table 7.1: Summary of Detector Characteristics (McConnell et al., 2004). Since 2004, CZT
and LaBr3 have both come down in cost, though they are still significantly more expensive
than NaI and CsI.

LaBr3 NaI(Tl) CsI(Tl) CZT Ge
Density (g/cm3) 5.29 3.67 4.51 5.78 5.33
Light Output (ph/MeV) 63,000 39,000 52,000 N/A N/A
∆E/E (FWHM) @ 662 keV < 3% 7% 10% < 3% 0.3%
Peak λ (nm) 358-385 415 550 N/A N/A
Fast Decay (ns) 25 230 1000 N/A N/A
Hygroscopic yes yes slightly no no
Cost ($ per cm3) 30 2 4.50 3,000 500

Consequently, the use of LaBr3 (manufactured by Saint-Gobain) has been suggested for

CASTER, implemented in LaBRAT (Chap. 6), and proposed as the detection material for

a high-altitude balloon-borne RM pathfinder mission for the BHFP (Sec 7.2). LaBr3 offers

a light yield of ∼60,000 photons/MeV (van Loef et al., 2001; Shah et al., 2003) and provides

energy resolution of 2.6% FWHM, comparable to that of typical commercial CZT. The peak

wavelength emission, 380 nm, is well-matched to the 25% peak quantum efficiency at 360

nm of borosilicate glass window Electron Tubes 9102B PMTs with bialkali photocathodes.

Additionally, it features a decay time of < 25 ns, offering the potential to create a device

with very good time resolution.

Compared to the other inorganic scintillators and semiconductor devices listed in Table

7.1, LaBr3 is a relatively new detector technology and lacks the space-flight heritage of these

other materials. A high-altitude mission to prove the spaceworthiness of LaBr3 is especially

important due to the presence of a relatively high internal background caused by two decay

modes of naturally occuring 138La (Rozsa et al., 2006). A 66% branching ratio by electron

capture to 138Ba produces a 1436 keV gamma ray and coincident 32 keV Ba X-ray. 138La

may also decay by beta emission to 138Ce with a 34% yield, producing a 789 keV gamma

and free electron.

In a self-counting background spectrum of LaBr3 (Fig. 7.1), a beta-continuum is observed
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Figure 7.1: Self-counting background spectrum of LaBr3 with features resulting from the two
decay modes of naturally-occuring 138La (Rozsa et al., 2006). Additional unlabeled spectral
properties arise primarily from external background contributions

down to 255 keV from events in which the 789 keV gamma escapes detection. From 255 -

750 keV, a Compton continuum from both decay modes is visible. The 789 keV photopeak

is present but has a wide high-energy shoulder extending to ∼1 MeV since the detection

coincides with that of the beta. A prominent 1468 keV peak results from the electron capture

decay mode, with its Compton edge and partial continuum visible down to ∼1 MeV.

The count rate in a 2.5 × 2.5 cm cylindrical LaBr3 detector is measured to be 0.23 cts/sec

in the 0 - 255 keV energy range, 0.07 cts/sec between 790 and 1000 keV, and 0.07 cts/sec

in the 1468 keV gamma ray photopeak (Budden et al., 2008b). In order for the detector to

be deemed spaceworthy, it must be demonstrated that background rates are sufficiently low,

and that no induced activation of the crystal is observed in a near-space environment due

to exposure to cosmic ray flux.

7.1.2 Mechanical

The Advanced Thin Ionization Calorimeter (ATIC; Guzik et al. 2004) is an LSU-developed

balloon-borne observatory of cosmic ray nuclei and electrons spanning an energy range of

20 GeV – 200 TeV. The instrument consists of a silicon matrix for charge identification, a

93



Figure 7.2: A photograph of the LaBr3 ex-
periment “piggy-backed” onto ATIC. Shown
here is the experiment from a failed 2005
flight attempt where NaI and LaCl3 were
tested along with LaBr3. (The succesful
flight described in the text did not include
the LaCl3 detector.)

graphite target, scintillator hodoscopes, and a fully active calorimeter comprised of 400 2.5

× 2.5 × 25 cm Bismuth-Germanate (BGO) scintillating crystals viewed on-end by PMTs.

ATIC has completed 3 successful flights in 2000, 2002, and 2007 from the NSF-NASA balloon

facility at Williams Field in McMurdo Station, Antarctica. A 40 million ft3 helium-filled bal-

loon lifts the 1500 kg payload to approximately 120,000 ft, where circumpolar wind currents

transport the instrument in a path around the continent.

The December 2007 ATIC flight provided an opportunity to test the feasibility of LaBr3

use in a near-space environment by mounting a “piggy-back” payload onto the ATIC frame

(Fig. 7.2). The experiment was comprised of one LaBr3 and one NaI crystal, each a 2.5 cm

diameter × 2.5 cm long cylinder viewed by a 3.8 cm Electron Tubes 9102B PMT. The anode

output signals of each PMT were split; one end fed into an OR’d trigger, and the other end

fed into the DAQ for digitization and recording to hard disk.
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Figure 7.3: Trajectory of the 2007 – 2008
ATIC balloon flight. The star designates the
location of the magnetic South Pole, and the
arrow indicates the direction of the South
Atlantic Anomaly (Budden et al., 2008b).

7.1.3 Results

ATIC launched on December 26, 2007 and followed a circumpolar trajectory (Fig. 7.3). On

January 10, 2008 ATIC was brought down after an unexpected loss of pressure in the ATIC

pressure vessel forced an end to the mission. ATIC remained aloft at an average of ∼120,000

ft, with variations corresponding to temperature swings from day/night cycles (Fig. 7.4).

The LaBr3 piggy-back mission successfully collected data for all 16 days of the flight.

Temperatures rose steadily during the flight from 25 ◦C to 35 ◦C, causing a 10% shift in

gain. A 511 keV photopeak is present in both the NaI and LaBr3 spectra, and is likely due

to positron annihilation from pair production in the ATIC calorimeter. The 511 and 1468

keV photopeaks were utilized in the analysis to provide a gain correction of the LaBr3 data.

In the energy range of 700 - 1500 keV, the count rate on the ground was 2.5 cts/sec, while

at float altitude, the rate rose to 7.0 cts/sec. While it rose slightly as the balloon neared the

South Atlantic anomaly, the LaBr3 count rates remained constant for most of the flight at

about 3× the normal level. The total rates during the balloon flight for both LaBr3 and NaI

above 200 keV are plotted in Figure 7.5. LaBr3 is found to have approximately 1.5× the

background as NaI at float, with 6.2 cts/s/cm3. A background-subtracted LaBr3 spectrum

is given in Fig. 7.6 for 100 – 700 keV; the 511 keV emission line is clearly visible.
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Figure 7.4: Plot of ATIC’s altitude (in ft)
during the 10-day flight (Budden et al.,
2008b).

Figure 7.5: Count rates of a 2.5 cm diameter
× 2.5 cm thick LaBr3 and NaI crystals dur-
ing the ATIC mission (Budden et al., 2008b).

Figure 7.6: The LaBr3 spectrum
over the energy-range of interest
from the ATIC flight shows the 511
keV bump and a large contribution
from internal background due to
naturally-occuring 138La at lower
energies.

While at least one previous balloon mission launched from New Mexico has seen the flight

of LaBr3 to a near-space altitude (McConnell, 2008), no experiment has flown both LaBr3 and

a comparable inorganic scintillator with proven spaceworthiness. In this experiment, LaBr3

and NaI scintillators of equal size were flown to an altitude of 120,000 ft and were subjected

to increased background due to “backsplash” from the ATIC calorimeter. LaBr3 measured a

higher background rate (by 50%) than NaI at float altitude, but did not suffer from induced

activation by cosmic flux, verifying its ability to perform in a space environment.
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7.2 High Altitude Rotating Modulator for Energetic

Radiation Imaging

7.2.1 Introduction

The High Altitude Rotating Modulator for Energetic Radiation Imaging (HARMEnI) is the

culmination of the prototypical work on the RM. HARMEnI will demonstrate the results and

concepts described regarding the RM and its analysis including: the temporal modulation

and imaging mechanism; the robustness of the advanced characteristic profiles, particularly

for wide FOV and high energy photons; the validity of the NCAR imaging algorithm and its

ability to perform well in the presence of strong background; reinforcement of LaBr3’s ability

to perform well in a near-space environment; the RM sensitivity characteristics; and the

super-resolution capability of the RM by resolving nearby sources. The results of a successful

HARMEnI mission might provide evidence of high-fidelity performance comparable to a

coded aperture telescope, at reduced cost and complexity. This demonstration would make

a convincing argument for the use of the RM in a full-scale astrophysics mission.

7.2.2 Mechanical and Electronics

The HARMEnI design (Fig. 7.7) is an extrapolation of the LaBRAT geometry. The fully-

coded FOV is increased to 20◦ by inclusion of an additional two lead bars in the mask.

The mask sits on a custom gear-toothed turn-table driven by a stepper motor for precise

computer control over its motion and orientation. It is suspended 1.2 m above the array,

offering the the same geometric resolution (and ultimately, resolving power) as LaBRAT.

The sensitivity is also increased by an additional concentric ring of scintillators; in to-

tal, HARMEnI consists of 37 LaBr3 crystals packed into a tight configuration to minimize

dead area; the minimum distance between detectors is 0.5 cm. The inclusion of additional

detectors further smooths the sensitivity in the object scene by smearing the regions of un-
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Figure 7.7: CAD figure of the HARMEnI concept. The balloon pressure shell and support
ring have been cut away to show the instrument detail. Inset photo: The entire HARMEnI
payload with the pressure shells made fully transparent.

modulated sky due to each detector. Dithering of the RM orientation about the vertical

due to inevitable instrument swinging motions will result in additional uniformity across the

FOV.

A major difference between LaBRAT and HARMEnI is the environment to which they

are exposed. HARMEnI will encounter a significant amount of cosmic diffuse flux and Earth

albedo, reducing the SNR of an observation. Most of this background is reduced by four

passive graded 5 mm-thick lead-tin-copper shields, which extend from the detection plane

to the grid. Aluminum plates support and connect the shields to the rest of the HARMEnI

frame. The total instrument weight is ∼1000 kg.

HARMEnI utilizes the same electronic design as LaBRAT for the PMT base voltage

dividers (Sec. 6.3.1) and DAQ (Sec. 6.3.3). Since the payload will be enclosed in the

ATIC pressure shell, no further modification (e.g. potting) of the electronic components

is necessary. The current 32-channel DAQ on LaBRAT is easily expanded to 64 channels

for HARMEnI. The current LaBRAT computer is considered the Detector Control Unit
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(DCU). Two additional PC/104 stacks contain the Flight Control Unit (FCU) for balloon

craft communications, and the Data Archive Unit (DAU) for recording the DCU data output

and FCU housekeeping records to a solid-state hard drive.

7.2.3 Balloon Payload

The HARMEnI telescope will launch in the same external balloon payload structure as that

of ATIC (Guzik et al., 2004). This structure includes a Kevlar fabric pressure vessel (under

∼8 psi during flight) and pressure vessel ring. Four aluminum internal support rods attach

HARMEnI to the ring and fix its elevation angle at 20◦ from zenith to provide optimal

observation of its primary targets during the flight.

Azimuth is controlled from ground by a CSBF-supplied rotator (Solar Pointing System),

which should allow the telescope to point to within 2 - 5◦ of the intended target. Given the

wide FOV, this error is sufficiently low to allow for continuous observation of a particular

source or nearby sources. Knowledge of the attitude, however, is critically important, espe-

cially to achieve and demonstrate the capability of super-resolution; a star tracker (Percival

et al., 2007, 2008) provides attitude information to within 30′.

7.2.4 Flight Mission

The proposed HARMEnI mission is intended to image the Crab Nebula (RA 05h34m, Dec

22◦00’) and surrounding field during a one-day flight from Ft. Sumner, New Mexico. The

Crab measures approximately 6′ x 4′ (at optical wavelengths) and so can be considered as a

point source given HARMEnI’s angular resolution. From the Ft. Sumner latitude of 34.5◦,

the Crab will rise to a maximum elevation angle of 12.5◦ from zenith. The trajectory of

the Crab in the sky from rise to set will provide four hours of fully-coded observation. A

secondary observational target is Cygnus X-1 (RA 19h58m, Dec 35◦12’), which will be visible

for a total of three hours.
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Figure 7.8: The significance of an observation by HARMEnI of the Crab Nebula will exceed
10σ in 11 minutes and Cygnus X-1 in 16 minutes. If observed for the maximum possible
exposure time (4 hours for the Crab and 3 hours for Cygnus X-1), SNRs of 46 and 34 may
be achieved.

7.2.5 Expected Performance

Laboratory experiments measure the rate per cubic element of internal background contri-

bution from 138La in a LaBr3 crystal. In the energy range of 30 - 700 keV, this value is ∼0.6

cts/s/cm3. An extrapolation to the detector volume of HARMEnI (1071 cm3) determines

an expected internal background rate of 679 cts/s.

These same measurements are normalized to the data from the LaBr3 high-altitude flight

discussed in Sec. 7.1 and subtracted to determine an energy-dependent cosmic diffuse flux

rate. For the same energy range, the background contribution from external sources for

HARMEnI is 5.6 × 103 cts/s. The inclusion of a 5 mm-thick lead shield reduces this contri-

bution considerably, particularly at lower energies, to 364 cts/s.

Given the mask transmission ratio (50%) and sensitive detector area, count rates for the

Crab are calculated to be 41 cts/s and Cygnus X-1, 35 cts/s. In the presence of the total 103

cts/s background contribution, a 10-sigma imaging result may be achieved in 11 minutes for

the Crab and in 16 minutes for Cygnus X-1. If the observations are made for the full four

or three hours exposure time, SNRs of 46 and 34 may be obtained (Fig. 7.8).

The software described in Sec. 6.4 simulates the HARMEnI data using these calculated

rates. In Fig. 7.9, the NCAR algorithm deconvolves the data to reconstruct images of the
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Crab from exposures lasting 3 minutes, 11 minutes and 4 hours. The confusion between the

source location and the PSF sidelobes is apparent for the shorter exposures, but the Crab is

still reconstructed well even for exposure times as short as 3 minutes.

Figure 7.9: Simulation Results for the HARMEnI observation of the Crab Nebula over an
exposure time of 3 minutes (5σ), 11 minutes (10σ), and 4 hours (5 σ).
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Chapter 8

Discussion

Motivated by the need for a high-sensitivity x-ray/gamma-ray imager for astrophysical and

national security applications, the rotating modulator has been investigated as an alternative

to the costly and complex coded aperture. The RM provides comparable sensitivity and

angular resolution at high energies and for wide FOVs, with approximately 1/4 the number

of readout channels. Additionally, the RM is able to provide super-resolution and may take

advantage of insensitivity to background contributions with a proper choice of decoding

matrix during reconstruction. While a laboratory prototype has been developed and a 1-day

balloon flight proposed, the objectives for these experiments have been to demonstrate the

RM performance capability and not to achieve specific scientific objectives.

Here, we instead propose the designs of two RM imagers: one as a full-scale balloon-

borne astrophysics mission to survey black holes in the universe and the other as a stand-

off radiation detection system to detect illicit nuclear materials. The geometry of the two

instruments is based on the scientific objectives outlined in Chap. 1 and is tweaked using the

advanced characteristic formula from Chap. 3 and the sensitivity calculations from Chap. 5.

Additional enhancements to the RM imaging technique are then described that would make

it more suitable for a wider range of applications and improve its results.
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8.1 Stand-off Radiation Detection System

The United States Department of Energy’s DNDO outlines the short term requirements for

a stand-off radiation detection system, including the ability to detect 15 photons per second

in a 662 keV photopeak from a 1 mC 137Cs source at a distance of 100 m. 137Cs has a

94.4% branching ratio and 90.1% branching fraction to produce a 662 keV photon, and so

will produce

0.001Ci× 3.7× 1010 decays

Ci
× 0.944× 0.901 = 3.1× 107 ph/s. (8.1)

The density of air is 0.001225 g/cm3 and its mass attenuation coefficient is 0.077 cm2/g.

Thus, at 100 m, the percentage of photons that are not attenuated is

exp

[
−0.001225

g

cm3
× 0.077

cm2

g
× 104cm

]
= 38.9%. (8.2)

The flux at this distance due to the source activity is

38.9%×
3.1× 107 ph

s

4π × (104cm)2
= 9.75× 10−3 ph/s/cm2. (8.3)

LaBr3 detectors with diameter 3.8 cm and thickness 5 cm are used, and so 85% of incident

662 keV photons will interact in the crystal (Rozsa et al., 2006). For an event to occur in

the photopeak, however, the 662 keV photon may Compton scatter in the crystal so long as

it ultimately interacts by the photoelectric effect and therefore does not escape the detector.

Monte Carlo simulations are performed by Rozsa & Menge (2004) to determine the peak-

to-total ratio of 662 keV photons in various configurations of LaBr3 crystals. For a 3.8 × 5

cm detector, the peak-to-total ratio is found from Rozsa & Menge (2004) to be ∼0.45.

Given this ratio and the attenuation efficiency, the overall photopeak detection efficiency is
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0.85× 0.45 = 0.41, and so the flux of photopeak detections at 100 m is

0.41× 9.75× 10−3 ph

s · cm2
= 3.73× 10−3 ph/s/cm2. (8.4)

The area required to enable a photon detection rate of 15 cts/s is then

15s−1

3.73× 10−3s−1cm−2
= 4021 cm2. (8.5)

If the mask is separated from the detection plane by 30 cm, then to achieve a 115◦ fully-

coded FOV, the mask diameter must be 195 cm, requiring 26 lead slats. The mask should

be at least 1.8 cm thick to attenuate 90% of the incident 662 keV photons, and so weighs

a total of 213 kg. Sensitivities of the instrument geometry described here are derived for

various slat width to pitch ratios. Due to the wide FOV and thick mask, sensitivity due

to encoding power is maximum for a ratio of 0.25. Thus, slats should be 1.9 cm wide and

spaced 5.7 cm apart. This maximization of sensitivity implies that on average, the mask has

a 50% transmission despite it being only 25% opaque when viewed straight on. Thus, the

area of the detection plane must be doubled to 8042 cm2 to account for this attenuation,

requiring 705 3.8 cm diameter detectors.

Due to the wide FOV, angular resolution will vary significantly across the scene. For

sources directly ahead, the angular resolution will be the worst, at tan−1(5.7/30) = 10.8◦.

At the edge of the field of view, where apparent slit widths are smaller as seen by the

detection plane, the resolution enhances to 5.6◦. These resolutions are 1.5 - 3× better than

those specified by for the DOE/DNDO stand-off radiation detection system.

The RM instrument described here has 705 readout channels, weighs less than 400 kg,

and fits within a 2 × 2 × 1 m volume. It is capable of detecting photopeak events from

662 keV photons emitted by a 1 mC 137Cs source at a distance of 100 m at a rate of 15

cts/s over a 115◦ field of view and with 5 - 10◦ angular resolution. A coded aperture with

these qualities would require at least ∼ 4×705 = 2820 individual detectors and would suffer
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from reconstruction artifacts arising from the finite thickness of the grid (especially at wide

angles). While the coded aperture would have better overall sensitivity, the RM sensitivity

is comparable for sources away from the center of the FOV. Furthermore, the RM has the

advantage that better angular resolution (i.e., super-resolution) can be achieved over time

with a prolonged exposure to the object scene.

8.2 High-Altitude Balloon-Borne Campaign

A high-altitude balloon campaign based on the HARMEnI design (Chap. 7) would be capable

of accomplishing some of the scientific objectives of a black hole survey mission. If a mask

is constrained to be 2.5 m across, then

2.5m

2× 0.038m
≈ 32 (8.6)

slats are needed to match the 3.8 cm-diameter detectors. At 1.8 cm thickness, the total mass

is 500 kg. If the mask is separated from the detection plane by 218 cm, then the geometric

resolution is defined at

sin−1

(
3.8cm

218cm

)
∼ 1◦. (8.7)

Since super-resolution has been demonstrated with LaBRAT on the order of 3× the geometric

limit, 20′ resolving power should be achievable for bright sources. Unlike as was done for

the stand-off imager for security applications, the slat width to pitch ratio is fixed here

at 0.5. The reason for this is that reducing this value will worsen the angular resolution.

Additionally, the FOV for this instrument will be much less than that of the security imager,

and so the sensitivity will be maximized for a ratio closer to 0.5.

Under these mask constraints, a larger detector area narrows the fully-coded FOV, but

increases sensitivity. By defining a 20◦ FOV, a total detection plane diameter of 173 cm is

possible, with area 2.4 m2, approximately 1/3 that of the proposed CASTER (McConnell
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et al., 2004, 2005) and EXIST (Grindlay et al., 2001, 2003) designs. Given this diameter, a

partially-coded FOV extends out to

2× tan−1

(
173cm + 250cm

2× 218cm

)
≈ 88◦. (8.8)

Such a configuration requires 2062 3.8 cm-diameter detectors. At 5 cm thick, the total mass

is 623 kg. Shields which extend from the detection plane to the grid and are 5 mm thick

would add an additional 1063 kg to the weight, resulting in a combined weight (detectors,

mask, and shields) of just over 2000 kg. By allowing another 1000 kg for structure and

electronics, the mass is close to the maximum possible for a balloon payload.

To examine the sensitivity with this instrument design, we consider a 5-year campaign of

2 week high-altitude balloon flights, totalling 6.05× 106 seconds. Given a 20◦ FOV, any one

source may be visible for ∼ 4 hours per day, and so total exposure time of a single source

would be 1.01 × 106 s. The results of the high-altitude flight of a LaBr3 crystal (Sec. 7.1)

are used to determine Crab and background count rates. A 5σ imaging sensitivity that can

be achieved is 1.4 mCrab in the 30 - 150 keV energy range and 13.2 mCrab in the 150 - 600

keV energy range. For a coded aperture technique, the sensitivity would be slightly better,

but 8.2k readout channels would be required. Additionally, resolving power would be fixed

at 1◦, instead of being able to resolve down to 20′ or smaller for extended exposure times.

8.3 Additional Enhancements to RM Design

A benefit of a temporal modulation technique such as the RM is its ability to “automatically”

remove background contributions with the proper choice of decoding matrix (described in

Sec. 4.2). Since NCAR (and many of the techniques described in Sec. 4.5.3) requires a

positive-valued PSF, the background term is not removed. Instead, a background exposure

must be used to manually remove the constant offset from the observed count profiles.

This process reduces source exposure time and is difficult in a balloon-borne or satellite
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mission. A modification to the NCAR routine to handle negative-valued PSFs (e.g. through

regularization) would enhance the RM technique and provide an additional advantage over

the coded aperture, which due to its spatial nonuniformity in background contributions,

must inherently perform a background exposure.

The removal of the constant background offset may have a secondary beneficial effect.

Accorsi & Lanza (2001) suggests the use of an anti-mask with a coded aperture imager to

remove near-field artifacts. Near-field artifacts will similarly arise with the RM technique,

since the assumption of sources being at infinite distance causes nearby sources to reconstruct

poorly; i.e., they are “out of focus.” If the axis of an RM grid is aligned with the edge of a

slat (as opposed to the center of a slat or slit), then the second half of the rotational period

will be exactly the inverse of the first half, mimicking an anti-mask. If this property can

be used to remove near-field artifacts in coded aperture imaging, it is conceivable that this

technique may also be used with the RM. Such a property would make the RM even better

suited to security applications, where the instrument may be within close proximity to the

source.

Other than lower sensitivity, a disadvantage of the RM when compared to the coded

aperture is its requirement of mechanical rotation of the grid. For a satellite-based RM

telescope, mechanical rotation would not, however, be required as with a laboratory or

balloon-borne experiment. Instead, the entire instrument would be rotated as is commonly

done with satellite-based or rocket-borne RMCs (e.g. Hurford et al. 2002). Unlike the

RMC, however, for the RM this whole-instrument rotation alters the system response since

each detector location now moves with respect to the object scene. An investigation should

therefore be made into the effect on coding power and sensitivity for this application.

For both astrophysical and security applications, a monolithic detector with an Anger

array (i.e., gamma camera) might improve the sensitivity variations in the FOV as seen in Fig.

6.3. Additionally, this configuration would allow for any slat/slit widths (or combinations

thereof) to sample a large range of the frequency spectrum. Such a design would, however, be
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subject to spatial resolution limitations unlike the individual non-imaging detectors typically

used in an RM. An investigation should be made to weigh the advantages and disadvantages

of such a system.

Further improvements to the imaging technique could be made to maximize the signal-

to-noise ratio of an observation. In the current system, all profiles are weighted equally,

despite the fact that profiles with fewer modulations provide less coding power. Shikhaliev

(2010) presents a generalized weighting method in a study on medical computed tomography

which biases the reconstructed image towards specific “sub-images” of the data set in order

to maximize the SNR of the final reconstruction. This same technique could be used with

RM data, where each sub-image is either from a particular detector, or from a particular

profile in the system response.
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Chapter 9

Conclusion

The Black Hole Finder Probe, part of NASA’s Beyond Einstein program, was proposed as a

satellite mission to survey the universe for black holes over a wide range of accretion rates and

sizes. To accomplish the primary scientific goals, sensitivity is required significantly greater

than previous all-sky surveys in the energy range of 10 - 600 keV, with 3 - 5 minutes of arc

angular resolution and a wide field of view capable of observing the entire sky once per orbit.

The suggested instrument designs (EXIST and CASTER) relying on coded mask imaging

techniques (McConnell et al., 2004, 2005; Grindlay et al., 2001, 2003) were deemed too costly

and complex by the Beyond Einstein Program Assessment Committee (National Research

Council, 2007). This judgement motivates the search for an alternate hard x-ray/gamma-

ray imaging technique that can meet the sensitivity and resolution requirements with fewer

electronic channels and lower cost.

Rotating modulation uses temporal and spatial encoding in concert to measure the object

scene. A grid of opaque slats spaced equidistance apart is suspended above an array of non-

imaging detectors. The grid rotates, modulating incident photons with a pattern specific to

the RM geometry and source location. Each detector records a time history of counts, which

is used to construct an image of the object scene convolved with the instrument response.

The image contains sidelobes due to an extended point-spread-function. Deconvolution of
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this raw image with the pre-computed system matrix may remove sidelobes and suppress

noise to reconstruct the object scene.

A standard system matrix is described by the inventor of the RM concept (Durouchoux

et al., 1983), but is simplistic in its assumptions about the grid geometry and photon at-

tenuation. At high energies and wide zenith angle, a more realistic characteristic formula is

necessary to describe shadow lengthening, non-uniform attenuation effects, and simultaneous

slat shadowing. An advanced system response is derived and presented to satisfy this goal,

and is shown to outperform the standard formula in these regimes.

The extended sidelobes inherent to the RM response necessitate a reconstruction algo-

rithm that correctly deconvolves the raw image with little source confusion. Since the RM

works primarily in the temporal domain, super-resolution is achievable, and so a recon-

struction algorithm must also be able to demonstrate this capability. Algebraic techniques

employed with positivity constraints as a form of non-linear regularization satisfy these re-

quirements, but are subject to spurious fluctuations arising from noise. To compensate, the

NCAR technique has been devised, which introduces random noise in the iteration based

on Poisson uncertainty in the data. Once the reconstructed image has reached best conver-

gence to the data, images are averaged to smooth over noise components. NCAR is shown to

perform better than many common deconvolution techniques used in the field of astronomy.

One of the most significant advantages of the coded mask imager is its high sensitivity.

Due to the discrete and symmetric mask pattern, the coded aperture has zero sidelobes.

Measurements from a source location are attributed entirely to that location, maximizing

the SNR of the observation. Temporal techniques such as the RM have continuous system

formulas, which inherently have a lower standard deviation. The RM, in particular, is shown

to have a sensitivity approximately 62% that of a comparable coded aperture, assuming

perfect detection efficiency. At equal geometric resolutions, however, the coded aperture

requires detector pixels approximately half that of the RM. At wide photon incidence angles

(such as would be seen with a survey mission) and high photon energies, the detection
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efficiency drops more rapidly for the coded aperture than for the RM. In these regimes, the

RM is shown to be comparable in sensitivity to the coded aperture.

A laboratory prototype RM, LaBRAT, has been developed to demonstrate the RM mech-

anism and verify the derived characteristic formula, image reconstruction algorithm, and sen-

sitivity calculations. The nineteen-channel LaBr3-based prototype features a custom DAQ

and readout software. Simulations based on the prototype geometry demonstrate the ability

to deconvolve the raw data to resolve complex object scene distributions despite the extended

sidelobes of the RM response. Experimental data verify the ability of the NCAR algorithm

to achieve super-resolution and compensate for noise. LaBRAT serves as a proof-of-concept

for a high-altitude balloon flight, which extends the number of detectors and field of view.

A proposed balloon mission, HARMEnI, is a 37-channel LaBr3-based RM with 20◦ fully-

coded FOV and 1.9◦ geometric angular resolution. A 2007 high-altitude flight of LaBr3 –

which suffers from internal background due to the decay of 138La – and commonly-used NaI

directly compared the latter, which has a large space heritage, to the former, which had only

seen one previous high-altitude mission. In this high-energy regime, LaBr3 demonstrated

only ∼1.5× the background contribution as NaI and suffered from no induced activation.

An additional challenge in the design of the mission is in the existence of cosmic diffuse flux

and Earth albedo in this near-space environment. Shields extend from the detection plane to

the mask to reduce this contribution by ∼90%. HARMEnI simulations show a 10σ result is

achievable with an observation of the Crab Nebula in 11 minutes and 16 minutes for Cygnus

X-1. The successful HARMEnI flight will complement the theoretical work and results of

LaBRAT to serve as a proof-of-concept for the RM candidacy as a full-scale astrophysics

mission for performing an all-sky black hole census.

Based on the advanced system response derived in Chap. 3 and sensitivity calculations

described in Chap. 5, a full-scale balloon-borne astrophysics campaign is proposed to satisfy

some of the scientific objectives of a black hole survey. For national security applications, a

low-cost alternative to coded aperture designs is suggested using the RM technique to detect
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shielded illicit nuclear materials at long distances. Improvements to both designs and the

RM in general are suggested for further investigation to improve the imaging technique and

provide additional advantages over commonly-used coded aperture designs.
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Appendix A

Derivation of RM Characteristic
Formulae

In Sec. A.1, the Classical Characteristic Formula for an RM is derived. While practical in

many cases, this formula suffers from assumptions not always suitable. Next, the imaging

system is generalized to allow for more flexibility of design including unrestricted bar width,

bar spacing, and detector diameter. This Generalized Characteristic Formula (Sec. A.2)

also accounts for assymetries in the system whereas the classical formula does not. Finally,

the Advanced Characteristic Formula is derived (Sec. A.3), which addresses attenuation

properties of the bars and accounts for clipping/edge and shadow-lengthening effects.

This appendix encompasses a complete derivation of the formula. Verifications are herein

performed including proper reduction characteristics and Monte Carlo simulation results.

A.1 Classical Formula

A.1.1 Fractional Area of Circular Detector

A unit circle centered at the origin is defined by

x2 + y2 = 1, (A.1)
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or, for radius r and central coordinates x0 and y0,

r2 = (x− x0)
2 + (y − y0)

2. (A.2)

This relation is written in the form of a function with y → C(x),

C(x) = ±
√
r2 − (x− x0)2 (A.3)

A function F (x∗) is needed to describe the percentage of area of a circle integrated when a

chord is swept a distance x∗ (unit diameter) across its face. Since 0 ≤ x∗ ≤ 1, r = x0 = 1/2

(i.e. the circle has diameter 1). Then,

C(x) = ±

√(
1

2

)2

−
(
x− 1

2

)2

= ±

√(
1

2

)2

−
(

1

2
(2x− 1)

)2

= ±

√(
1

2

)2

−
(

1

2

)2

(2x− 1)2

= ±1

2

√
1− (2x− 1)2. (A.4)

Integration finds the total area enclosed by the circle through the distance x∗:

A(x∗) =

∫ x∗

0

C(x)dx

= 2

∫ x∗

0

1

2

√
1− (2x− 1)2dx

=

∫ x∗

0

√
1− (2x− 1)2dx. (A.5)

A table of integrals provides the following indefinite integral solution:

∫ √
a2 − x2dx =

1

2
x
√
a2 − x2 +

1

2
a2 tan−1

(
x√

a2 − x2

)
+ C. (A.6)
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In this case, a = 1, so

∫ √
1− x2dx =

1

2
x
√

1− x2 +
1

2
tan−1

(
x√

1− x2

)
+ C. (A.7)

The trigonometric identity, tan−1 (x/
√

1− x2) = sin−1 (x), is used:

∫ √
1− x2dx =

1

2
x
√

1− x2 +
1

2
sin−1 x+ C. (A.8)

The substitution x′ = 2x− 1, dx′ = 2dx→ dx = dx′/2 is made in Eq. A.5:

A(x∗) =

∫ x∗

0

√
1− (x′)2

1

2
dx′

=

(
1

2

)2 [
x′
√

1− x′2 + sin−1(x′)
]x∗

0

=

(
1

2

)2 [
(2x− 1)

√
1− (2x− 1)2 + sin−1(2x− 1)

]x∗
0

=

(
1

2

)2 [
(2x− 1)

√
1− 4x2 − 1 + 4x+ sin−1(2x− 1)

]x∗
0

=

[
1

4
(2x− 1)

√
4(x− x2) +

1

4
sin−1(2x− 1)

]x∗

0

=

[
1

2
(2x− 1)

√
x− x2 +

1

4
sin−1(2x− 1)

]x∗

0

=
1

2
(2x∗ − 1)

√
x∗ − x∗2 +

1

4

(
sin−1(2x∗ − 1)− sin−1(−1)

)
=

1

2
(2x∗ − 1)

√
x∗ − x∗2 +

1

4

(
sin−1(2x∗ − 1) +

π

2

)
. (A.9)

The term in parentheses,

(
sin−1(2x∗ − 1) +

π

2

)
= − sin−1(1− 2x∗) +

π

2

= cos−1(1− 2x∗), (A.10)
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Figure A.1: Visual Representation of the percentage of circulation area integrated, F (x∗).

provides the final A(x∗),

A(x∗) =
1

4
cos−1(1− 2x∗)− 1

2
(1− 2x∗)

√
x∗ − x∗2. (A.11)

To find the fraction of circle area, Eq. A.11 is divided by the total area (see Figure A.1):

F (x∗) =
A(x∗)

π
(

1
2

)2
=

4A(x∗)

π

F (x∗) =
1

π
cos−1(1− 2x∗)− 2

π
(1− 2x∗)

√
x∗ − x∗2. (A.12)

This result provides the fractional area of a circle when integrated a unit distance x∗ over its

diameter. To relate this to fraction exposed or shadowed, grid specifics must be known. For

a grid with its axis through the center of a bar, a particular detector may “start” completely

shadowed, and so Equation A.12 will represent fraction exposed, while it will represent

fraction shadowed for a grid with its axis centered on a spacing. The transformation between

the two cases is seen to be

F (x∗) → 1− F (x∗), (A.13)

so that the fractional area of a circle exposed for a given x∗ fractional distance across the
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detector is

F (x∗) = 1− 1

π
cos−1(1− 2x∗) +

2

π
(1− 2x∗)

√
x∗ − x∗2. (A.14)

A.1.2 Detector Location in Shadow Frame

The grid rotation axis is defined as the origin. The grid shadow location must first be

determined to describe detector shadowing. For a grid height L and source zenith θ, the

shadow is offset from the grid in the detection plane by a magnitude

|~R| = L tan θ. (A.15)

The x and y components of this position are determined by the source azimuth φ,

~Rx = |~R| cosφ = L tan θ cosφ,

~Ry = |~R| sinφ = L tan θ sinφ. (A.16)

A particular detector located at ~r′ = (x′0, y
′
0) in the frame of the grid will be located at

~r = (x0, y0) in the frame of the grid shadow. Since

~Rx = x0 − x′0 and

~Ry = y0 − y′0, (A.17)

it is found that

x0 = x′0 + L tan θ cosφ and

y0 = y′0 + L tan θ sinφ. (A.18)
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This result defines the components of a vector ~r to describe the location of a detector in the

shadow frame for a source at (θ, φ):

~r = x0x̂+ y0ŷ

= (x′0 + L tan θ cosφ)x̂+ (y′0 + L tan θ sinφ)ŷ

r = |~r| =
[
(x′0 + L tan θ cosφ)2 + (y′0 + L tan θ sinφ)2

] 1
2 . (A.19)

A.1.3 Determining Detector x∗ Value

The grid shadow rotates, and thus the reference frame rotates. Modulation across ~ry (defined

to be parallel to the grid bars) is non-existent. Thus, only modulation across ~rx, which

describes the binary nature of the bar pattern, is of concern. The time-dependent function

of x(t) is then

x(t) = r cos(ξ(t) + ξ0) (A.20)

= cos(ξ(t) + ξ0)
√

(x′0 + L tan θ cosφ)2 + (y′0 + L tan θ sinφ)2, (A.21)

where ξ(t) is the orientation of the grid, and ξ0 represents the starting angle of the detector

in the (static) shadow frame. Note that F (x∗) from the previous section is only valid for

0 ≤ x∗ ≤ 1. The final solution must be constructed as a piecewise function symmetric about

x = a, with a period of 2a (see Fig. A.2a). The symmetry about 0 (i.e. −x∗ produces the

same result as x∗) and the periodicity of 2a are taken into account by defining an index d in

units of bar width a:

d =
1

a
(abs (x) mod 2a)

=
abs(x)

a
mod 2. (A.22)

The index d has range 0 → 2. F (d), however, is symmetric about 1 (see Fig. A.2b,c),
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(a) (b) (c)

Figure A.2: (a) Demonstration of 2a periodicity of grid pattern. (b) Demonstration of
symmetry about d = 1 (c) Plot of F (d).

and so a transformation T (d) is required to satisfy a closed form,

x∗ = T (d), 0 ≤ x∗ ≤ 1. (A.23)

The relation of d and x∗ that describes the same F (x∗) over the entire range is considered:

0 ≤ d < 1 x∗ = d,

1 ≤ d ≤ 2 x∗ = 2− d. (A.24)

Zero is added to the right side of these relations to put them into forms that more closely

resemble one another:

0 ≤ d < 1 x∗ = 1 + (d− 1) = 1− (1− d),

1 ≤ d ≤ 2 x∗ = 1 + (2− d− 1) = 1 + (1− d) = 1− (−1)(1− d). (A.25)

It is apparent that the two relations are identical, except for the (−1) coefficient in one. For

0 ≤ d < 1, the term (1− d) is positive, while for 1 ≤ d ≤ 2, (−1)(1− d) is positive. On each
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of these ranges, the respective terms can be replaced with |1−d| without altering the result:

0 ≤ d ≤ 2 x∗ = 1− |1− d|. (A.26)

Plug in d from Eq. A.22 to arrive at

x∗ = 1−
∣∣∣∣ |x|a mod 2− 1

∣∣∣∣ . (A.27)

A.1.4 Summary

For an RM with grid co-axial on a spacing, the formula that describes the count profile for

a unit-intensity source on a particular detector is

Pd(θ, φ, t) = F

(
1−

∣∣∣∣∣∣∣∣r(θ, φ)

a
cos(ξ(t) + ξ0)

∣∣∣∣ mod 2− 1

∣∣∣∣) , (A.28)

where a is the grid slat width/spacing, ξ(t) is the angular orientation of the grid at time

t, r(θ, φ) is the distance between the detector position and the axis of the projected grid

shadow from a grid height L,

r(θ, φ) =
[
(x0 + L tan θ cosφ)2 + (y0 + L tan θ sinφ)2

] 1
2 , (A.29)

and F (τ) describes the fraction of exposed detector area,

F (τ) = 1− 1

π
cos−1(1− 2τ) +

2

π
(1− 2τ)(τ − τ 2)

1
2 . (A.30)

This formula is consistent with that described by Dadurkevicius & Ralys (1985).
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Figure A.3: Basic layout for b > a.

A.2 Generalized Formula

In the previous section, the characteristic RM formula is derived for equal slat, slit, and

detector widths, ie. a = b = c. In this section, the formula is generalized to remove the

dependency of these three paramenters. Such a derivation is necessary to complete that of

the Advanced Formula in Sec. A.3. This derivation is performed by incrementally altering

one of the three parameters and determining its effect on the system response.

A.2.1 Differing Bar (a) and Space (b) Width (b > a)

Fig. A.3 shows the layout for differing bar/space widths, with b > a. Detector width c is

constrained to c = a. The nature of the profile is still periodic across one bar and one space

width, a + b. Thus the detector x position may be folded across this range. The shadow

pattern remains symmetric across the centered origin, F (x) = F (−x). These two pieces of

information yield a new position variable in units of detector diameter a:

d(x) =
1

a
(|x| mod (a+ b)) . (A.31)

The shadow does not reach the detector until a distance x = (b − a)/2 has been traversed;

a piecewise function will thus be required. A function with a closed form is desired, x∗ =

T (d), 0 ≤ x∗ ≤ 1. For clarity, Fig. A.4 examines each stage of a complete slat shadow

transversal.
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Start End

d = 0 d = (b− a)/2a
x∗ = 0 x∗ = 0

d = (b− a)/2a d = 1 + (b− a)/2a
x∗ = 0 x∗ = 1

d = 1 + (b− a)/2a d = 2 + (b− a)/2a
x∗ = 1 x∗ = 0

d = 2 + (b− a)/2a d = (a+ b)/a
x∗ = 0 x∗ = 0

Figure A.4: A detailed examination of the piecewise nature for b > a.
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Using the endpoints of each step as detailed in Fig. A.4, it is straightforward to construct

the piecewise transformation function x∗(d):

x∗(d) =



0 if 0 ≤ d ≤ (b− a)/2a

d− (b− a)/2a if (b− a)/2a ≤ d ≤ 1 + (b− a)/2a

2 + (b− a)/2a− d if 1 + (b− a)/2a ≤ d ≤ 2 + (b− a)/2a

0 if 2 + (b− a)/2a ≤ d ≤ (a+ b)/a.

(A.32)

The ranges can be simplified, since 1+(b−a)/2a = (a+b)/2a and 2+(b−a)/2a = (3a+b)/2a:

x∗(d) =



0 if 0 ≤ d ≤ (b− a)/2a

d− (b− a)/2a if (b− a)/2a ≤ d ≤ (a+ b)/2a

2 + (b− a)/2a− d if (a+ b)/2a ≤ d ≤ (3a+ b)/2a

0 if (3a+ b)/2a ≤ d ≤ (a+ b)/a.

(A.33)

Consider only the cases where x∗ 6= 0 (second and third parts of the piecewise Eq. A.33).

Then,

x∗(d) =


d− (b− a)/2a if d < (a+ b)/2a

2− (d− (b− a)/2a) if d > (a+ b)/2a

=


d− (a+ b)/2a+ 1 if d < (a+ b)/2a

−d+ (a+ b)/2a+ 1 if d > (a+ b)/2a

=


1 + (d− (a+ b)/2a) if d < (a+ b)/2a

1− (d− (a+ b)/2a) if d > (a+ b)/2a.

(A.34)

Eq. A.34 is in a form that readily reveals its symmetry. For d < (a + b)/2a, the term

(d− (a+ b)/2a) is negative, while for d > (a+ b)/2a, the term (d− (a+ b)/2a) is positive.
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Thus, the two pieces of Eq. A.34 can be rewritten as

x∗(d) = 1−
∣∣∣∣d− a+ b

2a

∣∣∣∣ . (A.35)

Eq. A.35 is only valid in the range (b − a)/2a < d < (3a + b)/2a, since outside of this

range, x∗ = 0. Eq. A.35, however, can never be greater than 1 due to the absolute value

term on the right hand side. Under the condition that |d − (a + b)/2a| > 1, however, x∗ is

less than 0. This bound is defined by the ranges and easily verified:

x∗(d = (b− a)/2a) = 1−
∣∣∣∣b− a

2a
− a+ b

2a

∣∣∣∣
= 1−

∣∣∣∣b− a− a− b

2a

∣∣∣∣
= 1−

∣∣∣∣−2a

2a

∣∣∣∣
= 0

, x∗(d = (3a+ b)/2a) = 1−
∣∣∣∣3a+ b

2a
− a+ b

2a

∣∣∣∣
= 1−

∣∣∣∣3a+ b− a− b

2a

∣∣∣∣
= 1−

∣∣∣∣2a2a
∣∣∣∣

= 0.

Setting x∗ = 0 outside this range is necessary to satisfy parts one and four of the piecewise

Eq. A.33, and so a minimum constraint is imposed on x∗ (plugging in Eq. A.31),

x∗ = max

{
1−

∣∣∣∣d− a+ b

2a

∣∣∣∣ , 0} , b > a

= max

{
1−

∣∣∣∣ |x| mod (a+ b)

a
− a+ b

2a

∣∣∣∣ , 0} , b > a (A.36)

where max{x, y} provides the largest of the two values x and y. The components of Eq.
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Figure A.5: Basic layout for b < a.

A.36 are easily interpreted to be rewritten as a conceptual ‘pseudoformula’:

x∗ = max {[Detector Width]− |(|[Location]| mod [Period])− [Point of Symmetry]| , 0}

(A.37)

A.2.2 Differing Bar (a) and Space (b) Width (b < a)

For the case where b < a, the situation is similar to b > a, with the exception that multiple

bars may simultaneously shadow the detector (see Fig. A.5). Fig. A.6 describes the piecewise

nature of the system.

The function x∗(d) is constructed as follows:

x∗(d) =



d+ (a− b)/2a if 0 ≤ d ≤ (a− b)/2a

d+ (a− b)/2a if (a− b)/2a ≤ d ≤ 1− (a− b)/2a

2− d− (a− b)/2a if 1− (a− b)/2a ≤ d ≤ (a+ b)/a− (a− b)/2a

2− d− (a− b)/2a if (a+ b)/a− (a− b)/2a ≤ d ≤ (a+ b)/a.

(A.38)

Eq. A.38 only needs to have two pieces, however the first and fourth pieces will include

a contribution from a second bar not noted here. The function is written in a form easier to
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Start End

d = 0 d = (a− b)/2a
x∗ = (a− b)/2a x∗ = (a− b)/a

d = (a− b)/2a d = 1− (a− b)/2a
x∗ = (a− b)/a x∗ = 1

d = 1− (a− b)/2a d = (a+ b)/a− (a− b)/2a
x∗ = 1 x∗ = (a− b)/a

d = (a+ b)/a− (a− b)/2a d = (a+ b)/a
x∗ = (a− b)/a x∗ = (a− b)/2a

Figure A.6: A detailed examination of the piecewise nature for b < a.
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read:

x∗(d) =



d+ (a− b)/2a if 0 ≤ d ≤ (a− b)/2a

d+ (a− b)/2a if (a− b)/2a ≤ d ≤ (a+ b)/2a

2− (d+ (a− b)/2a) if (a+ b)/2a ≤ d ≤ b/a+ (a+ b)/2a

2− (d+ (a− b)/2a) if b/a+ (a+ b)/2a ≤ d ≤ (a+ b)/a.

(A.39)

Keeping in mind that two more pieces (for d < (a− b)/2a and d > b/a+(a+ b)/2a) must

incorporate a second bar, Eq. A.38 is rewritten as only two pieces:

x∗(d) =


d+ (a− b)/2a if d < (a+ b)/2a

2− (d+ (a− b)/2a) if d > (a+ b)/2a

=


d+ a/a− (a+ b)/2a if d < (a+ b)/2a

2− (d+ a/a− (a+ b)/2a) if d > (a+ b)/2a

=


1 + (d− (a+ b)/2a) if d < (a+ b)/2a

1− (d− (a+ b)/2a) if d > (a+ b)/2a.

(A.40)

In Eq. A.40, if d < (a+ b) then (d− (a+ b)/2a) is negative, while if d > (a+ b)/2a, then

(d− (a+ b)/2a) is positive. The two pieces are thus combined:

x∗ = 1−
∣∣∣∣d− a+ b

2a

∣∣∣∣ . (A.41)

Eq. A.41 is identical to Eq. A.35. That is, the same equation may be used to describe the

traversal of a bar, any width a and spacing b across the detector; it is only the lack of shadow

for b > a and addition of shadow for b < a that distinguishes between the two cases.

In Fig. A.6, the second bar, whether it be B1 or B3, is always offset from the location

of B2 by ±(a + b)/a (in units of detector width). This suggests that for a second bar,
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d→ d± (a+ b)/a; thus

x∗[] =

{
1−

∣∣∣∣d− a+ b

2a

∣∣∣∣ , 1− ∣∣∣∣d± a+ b

a
− a+ b

2a

∣∣∣∣} , (A.42)

where [] denotes an array. Equation A.42 incorporates all three bars which may appear on

the detector during a single bar’s period, however, it is apparent that the latter two terms

are negative (x∗ < 0) in extreme cases. Thus, a positivity constraint is implemented (on the

latter terms only) as was done for b > a. The final equation is

x∗[] =

{
1−

∣∣∣∣d− a+ b

2a

∣∣∣∣ ,max

{
1−

∣∣∣∣d± a+ b

a
− a+ b

2a

∣∣∣∣ , 0}} , b < a. (A.43)

A.2.3 Differing Bar (a) and Space (b) Width (any b and a)

The two previous sections examined the formulation of a fractional distance x∗ across a

circle’s diameter for two cases: with bar spacing greater than bar width (b > a), and with

bar spacing less than bar width (b < a). The two equations (A.36 and A.43) are extremely

similar, with only two significant differences: (1) in Eq. A.36, a positivity constraint is

implemented on the bar of interest, since part of its period consists of no detector shadowing;

(2) in Eq. A.43, the left and right bars must be taken into account, and a positivity constraint

included. There is no reason that distinctions (1) and (2) can not be incorporated into a

single formula. The left and right bars can be added to Eq. A.36, since they make no

contribution. Similarly, a positivity constraint can be added to the specified bar in Eq. A.43

without alteration of the result.

Thus, an array of values is obtained for the general case b 6= a:

x∗[] =

{
max

{
1−

∣∣∣∣d− a+ b

2a

∣∣∣∣ , 0} ,max

{
1−

∣∣∣∣d± a+ b

a
− a+ b

2a

∣∣∣∣ , 0}} . (A.44)
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Figure A.7: Basic layout for b > a > c.

For completion, Eq. A.31 is plugged in and the result is simplified:

x∗[] =

{
max

{
1−

∣∣∣∣ |x| mod (a+ b)

a
− a+ b

2a

∣∣∣∣ , 0} ,
max

{
1−

∣∣∣∣ |x| mod(a+ b)

a
± a+ b

a
− a+ b

2a

∣∣∣∣ , 0}}
=

{
max

{
1− 1

a
||x| mod (a+ b)− (a+ b)/2| , 0

}
,

max

{
1− 1

a
||x| mod (a+ b) + (a+ b)/2| , 0

}
,

max

{
1− 1

a
||x| mod (a+ b)− 3(a+ b)/2| , 0

}}
.

The final result for b 6= a is then

x∗[] = max

{
1− 1

a

∣∣∣∣|x| mod (a+ b) + n
(a+ b)

2

∣∣∣∣ , 0} , n = −1, 1,−3. (A.45)

A.2.4 Differing Bar (a), Space (b), and Detector (c) Widths (b >

a > c)

By not constraining the detector diameter, c, to the same size as the bar width, a, a new

level of complexity is added. Every possible case will not be examined for the three variables.

Rather, it is sufficient to examine a couple of the cases and infer a general solution from these
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results. The derivation begins with the simplest of cases, b > a > c. Eq. A.31 requires only

a small change, since it already incorporates the periodicity (a + b) and symmetry across

(a + b)/2. The alteration comes in the factor, 1/a. Since this is no longer the width of the

detector, d is now

d(x) =
1

c
(|x| mod (a+ b)) . (A.46)

1 2 3

d = 0 d = (b− c)/2c d = (b+ c)/2c
x∗ = 0 x∗ = 0 x∗ = 1

d = (b+ c)/2c d = (a+ b)/2c d = a/c+ (b− c)/2c
x∗ = 1 x∗ = 1 x∗ = 1

d = a/c+ (b− c)/2c d = a/c+ (b+ c)/2c d = (a+ b)/c
x∗ = 1 x∗ = 0 x∗ = 0

Figure A.8: A detailed examination of the piecewise nature for b > a > c.

Fig. A.8 is constructed to examine each stage of the bar shadow traversal and provides
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the following piecewise function:

x∗(d) =



0 if 0 < d < (b− c)/2c

d− (b− c)/2c if (b− c)/2c < d < (b+ c)/2c

1 if (b+ c)/2c < d(a+ b)/2c

1 if (a+ b)/2c < d < a/c+ (b− c)/2c

(1 + a/c) + (b− c)/2c− d if a/c+ (b− c)/2c < d < a+ (b+ c)/2c

0 if a+ (b+ c)/2c < d < (a+ b)/c.

(A.47)

The second and fifth pieces of Eq. A.47 are considered and rewritten in a more suitable

form (point of symmetry recognized according to Eq. A.37):

x∗(d) =


d− b−c

2c
if d < a+b

2c(
1 + a

c

)
+ b−c

2c
− d if d > a+b

2c

=


d− a+b

2c
+
(

1
2

+ a
2c

)
if d < a+b

2c

−d+ 1
2

+ a
2c

+ a+b
2c

if d > a+b
2c

=


1
2

+ a
2c

+
(
d− a+b

2c

)
if d < a+b

2c

1
2

+ a
2c
−
(
d− a+b

2c

)
if d > a+b

2c

=


1
2

(
1 + a

c

)
+
(
d− a+b

2c

)
if d < a+b

2c

1
2

(
1 + a

c

)
−
(
d− a+b

2c

)
if d > a+b

2c

=
1

2

(
1 +

a

c

)
−
∣∣∣∣d− a+ b

2c

∣∣∣∣ .
The other pieces of Eq. A.47 are maximum and minimum constraints on x∗, so (by plugging
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in Eq. A.46) the result becomes

x∗ = min

{
max

{
1

2c
(a+ c)−

∣∣∣∣d− a+ b

2c

∣∣∣∣ , 0} , 1}
= min

{
max

{
1

2c
(a+ c)−

∣∣∣∣ |x| mod (a+ b)

c
− a+ b

2c

∣∣∣∣ , 0} , 1}
x∗ =

1

c
min

{
max

{
1

2
(a+ c)−

∣∣∣∣|x| mod (a+ b)− a+ b

2

∣∣∣∣ , 0} , 1} ,
b > a > c. (A.48)

The comprehensive pseudoformula further generalizes Eq. A.37:

[Bar/Detector Width Average]− ||[Location]| mod [Period]− [Point of Symmetry]|

(constrained between 0 and 1) (A.49)

A.2.5 Differing Bar (a), Space (b), and Detector (c) Widths (a > c,

any b)

A detailed analysis here is not required. By not constraining b to be greater than a and c,

the only difference from the last case is that multiple bars (up to two) may shadow the bar

simultaneously. Thus, a jump from Eq. A.48 to Eq. A.51 is made as was done from Eqs.

A.36 and A.43 to A.45. The solution is, again, an array of three values for x∗:

x∗[] =
1

c
min

{
max

{
1

2
(a+ c)−

∣∣∣∣|x| mod (a+ b) + n
a+ b

2

∣∣∣∣ , 0} , 1} , (A.50)

(n = −1, 1,−3), (a > c). (A.51)
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Figure A.9: Basic layout for c > a.

A.2.6 Differing Bar (a), Space (b), and Detector (c) Widths (c > a,

any b)

Eq. A.51 contains two implications: (1) no more than two bars may ever shadow a portion of

a single detector simultaneously, for to do so would require 2(a+ b) < c, and (2) a single bar

always reaches the point of shadowing the entire detector since a > c. These assumptions are

not valid, however, for the general case, where bar shadows may not cover the entire detector.

Also, there exists no limit to the number of bars that may cast a shadow simultaneously onto

a detector provided the detector diameter is large enough. Implication (2) is first considered.

A piecewise function for x∗ for c > a may be constructed as in previous cases, but Fig. A.10

reveals a problem: the solution for x∗ is ill-defined for d = (a + b)/2c. While this location

may be found, plugging it into the formula for F (x∗) yields an incorrect result since the

left-most side of the detector is no longer shadowed.

The constraint requirements should be dropped from Eq. A.51:

x∗[] =
1

c

(
1

2
(a+ c)−

∣∣∣∣|x| mod (a+ b)− n
a+ b

2

∣∣∣∣) , (n = −1, 1, 3), (a > c), (A.52)

and, instead, Eq. A.12 is modified to include the constraints,

F (x∗) =
1

π
cos−1(1− 2M [x∗])− 2

π
(1− 2M [x∗])

√
M [x∗]−M [x∗]2, (A.53)

138



1 2 3

d = 0 d = (b− c)/2c d = a/c+ (b− c)/2c
x∗ = 0 x∗ = 0 x∗ = a/c

d = a/c+ (b− c)/2c d = (a+ b)/2c d = (b+ c)/2c
x∗ = a/c x∗ = x∗ = (a+ c)/2c x∗ = a/c

d = (b+ c)/2c d = a/c+ (b+ c)/2c d = (a+ b)/c
x∗ =? x∗ = 0 x∗ = 0

Figure A.10: A detailed examination of the piecewise nature for c > a.

where

M [τ ] = min{max{τ, 0}, 1}. (A.54)

The difference in this reorganization is nonexistant for previously examined cases, but will

come of importance in the following step. A transformation of F (x∗) is to remove the portion

of unshadowed detector to the left of the shadow in question:

F (x∗) → G(x∗, a, c) = F (x∗)− F (x∗ − a/c). (A.55)
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The total number of bars shadowing the detector simultaneously must be determined,

ensuring that x∗[] is an array containing the leading edge locations of all bars. For (a+ b) >

(a + c), only one bar will shadow the detector at a time. The relation a + b = a + c

(i.e. b = c) represents the smallest value for b that may occur without multiple shadows

appearing simultaneously. For slightly smaller values of b, two more bars will appear (one

before and one after the bar of interest). Thus, the number of bars that must be considered

simultaneously per one bar’s period is

N = 1 + 2 floor

(
a+ c

a+ b

)
. (A.56)

In Eq. A.52, N = 3 and these bars are denoted by the coefficients

n = −1, 1, 3.

Extrapolating this result, the coefficients for N = 5 are

n = −3,−1, 1, 3, 5,

and so on. Using these examples, a more general solution for n is constructed:

n = {−3,−1, 1, 3, 5}

= {−4,−2, 0, 2, 4}+ 1

= 2{−2,−1, 0, 1, 2}+ 1

= 1 + 2{−(N − 1)/2...(N − 1)/2}.

Since this result is messy, N is redefined,

N = floor

(
a+ c

a+ b

)
, (A.57)
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and then n is simply

n = 1 + 2{−N...N}. (A.58)

Eq. A.52 is generalized to

x∗ =
1

c

(
1

2
(a+ c)−

∣∣∣∣|x| mod (a+ b)− n
a+ b

2

∣∣∣∣) , n = 1 + 2{−N...N}. (A.59)

A.2.7 Summary

A general solution for x∗ has been constructed which will work under most circumstances for

varying bar and spacing widths, a and b. Once c is allowed to become smaller than these two

parameters, however, a modification to F (x∗) must take place to account for multiple bars.

Additionally, constraints must be enforced to keep x∗ within the range [0, 1]. The results of

this section are summarized below.

For an RM with bar width a, spaced an equidistance apart, b, and detectors, diameter

c, if the grid is co-axial on a spacing, the count profile of a unit intensity source located at

(θ, φ) is

Pd(θ, φ, t) = 1−G(x∗, a, c), (A.60)

where G(x∗, a, c) represents the fraction of the detector shadowed,

G(x∗, a, c) =
∑

n

(F (x∗n)− F (x∗n − a/c)) . (A.61)

The function F (x∗) is defined as

F (τ) =
1

π
cos−1(1− 2M [τ ])− 2

π
(1− 2M [τ ])

√
M [τ ]−M [τ ]2, (A.62)

where M [τ ] represents the constraint formula,

M [τ ] = min{max{τ, 0}, 1}, (A.63)
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(a) (b)

Figure A.11: Side views of (a) the “thickness problem” and (b) the definition of s.

and x∗n is an array of fractional distances across the detector diameter,

x∗n =
1

c

(
1

2
(a+ c)−

∣∣∣∣|x| mod (a+ b)− n
a+ b

2

∣∣∣∣) , n = 1 + 2{−N...N} (A.64)

with

N = floor

(
a+ c

a+ b

)
. (A.65)

The position of the detector in the shadow frame, x, is

x = r(θ, φ) cos(ξ(t) + ξ0), (A.66)

where r is given by

r(θ, φ) =
[
(x0 + L tan θ cosφ)2 + (y0 + L tan θ sinφ)2

] 1
2 . (A.67)

A.3 Advanced Formula

The formulation of generalized modulation profiles describing unequal bar/spacing/detector

width parameters was devised specifically to set up the ground work necessary for the in-
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(a) (b)

Figure A.12: Top-down views of (a) the relation of |~R|, ξ, and φ, and (b) the means of
finding s.

corporation of thickness–and thus attenuation and clipping effects–into the analytical RM

solution. As with the formulation of the advanced modulation profiles, the Advanced Char-

acteristic Formula is derived by stepping through sequential generalizations of the geometry.

A.3.1 Consideration of Constant Thickness Portion

The modulation profiles derived in Eqs. A.1 and A.2 assume zero bar thickness, and will

thus cast a shadow as described in Fig. A.11(a). The derivation begins by including only the

portion of the light which has traversed the maximum amount of material possible. That

is, any photons that may have “clipped” the bar are ignored. As seen in Fig. A.11(b),

the “right” side of the projection remains in place, while the “left” side is moved in by an

amount s. Similarly, for a projection in the negative direction, the “right” side would move

in by an amount s, and the “left” side would remain fixed. In either case, the width of the

bar’s shadow, a′, is smaller than the bar width itself, a, by an amount |s|:

a′ = a− |s|. (A.68)

The magnitude (and sign) of s modulates as a function of the grid rotation, ξ, and the

azimuthal location of the source, φ. Figure A.12(a) offers a pictorial view of these relations.
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The positive ξ and φ are defined in opposite directions, and so increasing either one will have

an identical effect on s. Figure A.12(a) also describes the vector magnitude |~R|, which may

be recalled from Eq. A.15,

|~R| = L tan θ.

This magnitude is the distance from the grid origin to the shadow origin projected onto the

shadow plane, i.e., it is the projected distance from any point on the grid bottom and its

counterpart in the shadow plane. Thus, in Fig. A.12(b), a new vector magnitude, |~Rh|, is

defined, which is the projected difference between the top of the grid with thickness h and

the corresponding location on the shadow,

|~Rh| = (L+ h) tan θ. (A.69)

The difference in length between this vector and |~R| is

κ = |~Rh| − |~R|. (A.70)

This distance, however, is in the direction of projection. The width s is desired, which is in

the direction of the shadow’s x-component. The length s relates to κ by

s = κ cos(ξ + φ)

= (|~Rh| − |~R|) cos(ξ + φ)

= [(L+ h) tan θ − L tan θ] cos(ξ + φ)

= h tan θ cos(ξ + φ). (A.71)

The projected width of the bar shadows, without bar clipping, is determined from Eqs. A.68
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(a) ξ = 0◦ (b) ξ = 90◦, ξ = 270◦ (c) ξ = 180◦

Figure A.13: Demonstration of the now-offset point of symmetry, and how it relates to grid
rotation. The axis of rotation is designated by ⊗, while the point of symmetry is designated
by the dashed bar between the shadows. Source azimuth, φ = 0 (into the page and to the
right) for sake of simplicity.

and A.71:

a′ = a− |s|

= a− |h tan θ cos(ξ + φ)|

= a− h tan θ| cos(ξ + φ)|. (A.72)

Similarly, the width of the shadow spacings increases by an amount |s|:

b′ = b+ h tan θ| cos(ξ + φ)|. (A.73)

The parameter requiring modification in the modulation formula is x. In the generalized

formula, x is defined with the origin centered on the projected rotation axis, which is also a

point of symmetry in the pattern, hence the |x| in Eq. A.64. The rotation axis, however, no

longer lies on the point of symmetry in the shadow, except for when the projection direction

is parallel to the grid (i.e. has no x-component, or ξ(t) = −φ). Fig. A.13 demonstrates this

concept. Since b expands to b′ = b+ s, the point of symmetry will shift by s/2. Thus, a new
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point of symmetry is defined, x′, to be

x′ = x+
s

2

= x+
h

2
tan θ cos(ξ + φ). (A.74)

Eq. A.64 is rewritten with the newly derived variables:

x∗n =
1

c

(
1

2
(a′ + c)−

∣∣∣∣|x′| mod (a′ + b′)− n
a′ + b′

2

∣∣∣∣) , n = 1 + 2{−N...N}. (A.75)

However, since a′ + b′ = a+ b, it may also be written as

x∗n =
1

c

(
1

2
(a′ + c)−

∣∣∣∣|x′| mod (a+ b)− n
a+ b

2

∣∣∣∣) , n = 1 + 2{−N...N}, (A.76)

where

a′ = a− h tan θ| cos(ξ + φ)| and

x′ = x+
h

2
tan θ cos(ξ + φ).

Finally, the parameter N is rewritten with these new variables:

N = floor

(
a′ + c

a+ b

)
. (A.77)

Note that Eq. A.77 is a function no longer of only constants, but now of a′ also, which

is time dependent. Thus the array, n, changes temporally. While possible to implement,

this consequence requires additional computational time. Instead, it is prudent to find

the maximum possible value of N and let constraint conditions, M [τ ], satisfy boundary

requirements. The maximum N occurs simultaneously with maximum a′, which is just a.

Thus Eq. A.65 is preferred over Eq. A.77.
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A.3.2 Inclusion of Attenuation

Inclusion of proper attenuation in the characteristic formulae will lower the profile contrast,

producing a noticeable effect for small thickness, density, or cross sections. The Beer-Lambert

law gives the fraction of light absorbed by a thickness δ,

f(δ) = 1− e−σδρ, (A.78)

where ρ is the density of the material, and σ is the mass attenuation coefficient for a particular

energy. For the constant thickness portion, the distance, δ, through which a photon will travel

is a function only of the source zenith angle and the bar thickness, h:

δ =
h

cos θ
. (A.79)

Eq. A.79 is plugged into Eq. A.78,

f(θ) = 1− exp

[
− hσρ

cos θ

]
. (A.80)

For implementation into the profile, rewrite Eq. A.61 with a→ a′,

G(x∗, a, c) =
∑

n

(F (x∗n)− F (x∗n − a′/c)).

For clarity, this equation may be rewritten as

G(θ, φ, t) =
∑

n

(F [x∗n(θ, φ, t)]− F [x∗(θ, φ, t)− a′(θ, φ, t)/c]) . (A.81)

This coefficient is included in Eq. A.61 (with a→ a′),

G1(θ, φ, t) =
∑

n

f(θ) (F [x∗n(θ, φ, t)]− F [x∗(θ, φ, t)− a′(θ, φ, t)/c]) , (A.82)
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(a) (b)

Figure A.14: (a) Inclusion of “clipped” portion of the bar. (b) Determining the amount of
material traversed in the clipping portion.

where

x∗n(θ, φ, t) =
1

c

(
1

2
(a′(θ, φ, t) + c)−

∣∣∣∣|x′(θ, φ, t)| mod (a+ b)− n
a+ b

2

∣∣∣∣) ,
n = 1 + 2{−N...N}. (A.83)

A.3.3 Determining Distance Traversal through Clipped Portion

Fig. A.14(a) shows the clipping portion of the bar still unaccounted for in the formula. Fig.

A.14(b) examines the clipping portion in detail. A function for δ(x), the distance traversed

through the bar as xc goes from 0 → 1 is desired. A piecewise function may be written:

δ(xc) =


h

cos θ
if xc = 0

0 if xc = s.

(A.84)

From this figure, it is apparent that

s = h tanψ, (A.85)

148



though angle ψ remains unknown. Eq. A.71 provides another defintion of s:

s = h tan θ cos(ξ + φ).

These two equations are combined to solve for the unknown angle ψ,

tanψ = tan θ cos(ξ + φ). (A.86)

A component of the traversal distance (the component perpendicular to the x-direction of

the grid frame, or in the plane of view of Fig. A.14b) is related to lengths a and b by

δ⊥ =
√
a2 + b2. (A.87)

These distances are easily found geometrically:

a = s− xc, and (A.88)

b =
a

tanψ

=
s− xc

tanψ

=
s− xc

tan θ cos(ξ + φ)
, (A.89)

and plugged into Eq. A.87:

δ⊥ =
√
a2 + b2

=

√
(s− xc)2 +

(s− xc)2

tan2 θ cos2(ξ + φ)

= (s− xc)

√
1 +

1

tan2 θ cos2(ξ + φ)
. (A.90)

149



At xc = 0,

δ =
h

cos θ
, and

δ⊥ = s

√
1 +

1

tan2 θ cos2(ξ + φ)

= h tan θ cos(ξ + φ)

√
1 +

1

tan2 θ cos2(ξ + φ)

= h
√

tan2 θ cos2(ξ + φ) + 1.

Apparently,

δ =
δ⊥

cos θ
√

tan2 θ cos2(ξ + φ) + 1

= (s− xc)

√
1 +

1

tan2 θ cos2(ξ + φ)

1

cos θ
√

tan2 θ cos2(ξ + φ) + 1

=
s− xc

cos θ

1√
tan2 θ cos2(ξ + φ) + 1

√
tan2 θ cos2(ξ + φ) + 1

tan θ cos(ξ + φ)

=
s− xc

cos θ tan θ cos(ξ + φ)
,

|δ(xc)| =
s− xc

sin θ| cos(ξ + φ)|
. (A.91)

Using Eq. A.80, the fraction of attenuation in the clipped portion is determined by

f(θ, xc) = 1− exp

[
− (s− xc)σρ

sin θ| cos(ξ + φ)|

]
. (A.92)

A.3.4 Weighting the Integrated Area for Clipping Portion

Unlike the constant thickness portion of the shadow, the clipping shadow region is not

spatially uniform – i.e, the shadow is darkest at xc = 0, and zero at xc = s. The problem is

illustrated in Fig. A.15. To include this bar shadow portion into the modulation formula,

the “right” clipped portion as appears in Fig. A.15b is first examined. A portion of the
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(a) (b)

Figure A.15: (a) The integration over the portion of circle area when the clipping was
ignored – constant weighting. (b) The integration over the circle area with clipping effects –
weighting is a function of x∗.

circle is integrated with a specific weighting factor, where the weight is zero at the line that

designates the upper integration bound, and increases to the left according to Eq. A.92. The

limits of integration of Eq. A.8 are changed to x∗ to x∗ + |s|/c; this factor of c is necessary

since the limits of integration must be in unit diameter. The abbreviation sc = |s|/c is used,

and a weighting factor, f , is added:

A(x∗) =

∫ x∗+sc

x∗
f
√

1− (2x− 1)2dx. (A.93)

But f must be defined in terms of both the part of the shadow in the integration, x, and

the upper bound of the integration, x∗:

f(x) = 1− exp

[
−(|s|+ cx∗ − cx)σρ

sin θ| cos(ξ + φ)|

]
. (A.94)
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The result is plugged into the area integral, with limits constrained between 0 and 1 (see

Fig. A.16):

A(x∗) =

∫ M [x∗+sc]

M [x∗]

(
1− e−

(|s|+cx∗−cx)σρ
sin θ| cos(ξ+φ)|

)√
1− (2x− 1)2dx (A.95)

=

∫ M [x∗+sc]

M [x∗]

√
1− (2x− 1)2dx

−e−
(|s|+cx∗)σρ

sin θ| cos(ξ+φ)|

∫ M [x∗s ]

M [x∗]

e
cxσρ

sin θ| cos(ξ+φ)|
√

1− (2x− 1)2dx

=

∫ M [x∗+sc]

M [x∗]

√
1− (2x− 1)2dx− e−

(|s|+cx∗)σρ
sin θ| cos(ξ+φ)|Γ(x∗), (A.96)

where

Γ(x∗) =

∫ M [x∗+sc]

M [x∗]

e
cxσρ

sin θ| cos(ξ+φ)|
√

1− (2x− 1)2dx, (A.97)

or, defining a constant Z = cσρ/(sin θ| cos(ξ + φ)|),

Γ(x∗) =

∫ M [x∗+sc]

M [x∗]

eZx
√

1− (2x− 1)2dx. (A.98)

The first integral of Eq. A.96 has already been solved (Eq. A.62). It may be written in

terms of the function F (τ),

∫ M [x∗+sc]

M [x∗]

√
1− (2x− 1)2dx =

π

4
[F (x∗ + sc)− F (x∗)] , (A.99)

where the integration constraints are already included in F (τ). The fraction of the detector

shadowed by a single clipping portion is then

A(x∗) =
π

4
[F (x∗ + sc)− F (x∗)]−

∫ M [x∗+sc]

M [x∗]

eZ(x−x∗−sc)
√

1− (2x− 1)2dx

=
π

4
[F (x∗ + sc)− F (x∗)]− π

4
[F̃1(x

∗ + sc)− F̃2(x
∗)], (A.100)

152



(a) (b) (c)

Figure A.16: The integration limits for the clipping shadow (a) totally inside the circular
detector, (b) just at the edge, and (c) falling outside the detector area. Notice the integration
range is limited by the detector edges (including the left side not shown).

where

F̃1(τ) =
4

π

∫ M [τ ]

0

eZ(x−τ)
√

1− (2x− 1)2dx, and (A.101)

F̃2(τ) =
4

π

∫ M [τ ]

0

eZ(x−τ−sc)
√

1− (2x− 1)2dx. (A.102)

This result only accounts for the portion of photons clipped by the “right” clipping portion,

and the fractional area of the detector shadowed is then given by

FR,C =
A(x∗)

π
(

1
2

)2
=

4

π
A(x∗)

= [F (x∗ + sc)− F (x∗)]− [F̃1(x
∗ + sc)− F̃2(x

∗)]. (A.103)
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Similarly, the left clipped portion is determined by

FL,C(x∗) = FR,C(1− (x∗ − a′/c))

= FR,C(1− x∗ + a′/c)

= F (1− x∗ + a′/c+ sc)− F (1− x∗ + a′/c)

−F̃1(1− x∗ + a′/c+ sc) + F̃2(1− x∗ + a′/c). (A.104)

Thus, the total fraction of attenuation due to the clipping portions of the bar is

FC = [F (x∗ + sc)− F (x∗)] + [F (1− x∗ + a′/c+ sc)− F (1− x∗ + a′/c)]

−[F̃1(x
∗ + sc)− F̃2(x

∗)]

−[F̃1(1− x∗ + a′/c+ sc)− F̃2(1− x∗ + a′/c)]. (A.105)

For multiple bars, the entire clipping contribution is

G2(t) =
∑

n

FC(t)

=
∑

n

(
F

(
x∗n(t) +

|s(t)|
c

)
− F (x∗n(t))

+F

(
1− x∗n(t) +

a′(t)

c
+
|s(t)|
c

)
− F

(
1− x∗n(t) +

a′(t)

c

)
−
[
F̃1

(
x∗n(t) +

|s(t)|
c

)
− F̃2(x

∗
n(t))

]
−
[
F̃1

(
1− x∗n(t) +

a′(t)

c
+
|s(t)|
c

)
− F̃2

(
1− x∗n(t) +

a′(t)

c

)])
. (A.106)

Since the effective width of bar shadows increases with inclusion of the clipping portion, it

is necessary to modify N (where 1 + 2N equals the total number of bars considered at one

time) by changing the numerator to a′ + 2smax + c. Since

a = a′ + smax, (A.107)
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where smax = h tan θ, then

N = floor

(
a+ smax + c

a+ b

)
. (A.108)

A.4 Reduction

In an effort to reduce and reorganize the characteristic formula into a more readily intuitive

form, Eq. A.82 and Eq. A.106 may be split into four separate shadowing parameters:

Pd(t) = I0

(
1−

∑
n

[G0(t)−G1(t)−G2(t)]

)
, (A.109)

where G0(t) refers to the shadow by full attenuation across the entire bar shadow width (full

and clipping portions):

G0(t) = F0

[
x∗n(t) +

|s(t)|
c

]
− F0

[
x∗n(t)− a′(t)

c
− |s(t)|

c

]
, (A.110)

and the function F0[τ ] is a renamed version of F [τ ] for clarity. G1(t) and G2(t) constitute

the remaining parameters from Eq. A.82 and Eq. A.106, which describe the transmission of

photons through the constant thickness and clipping regions of the bar shadows, respectively,

G1(t) = exp

[
− hσρ

cos θ

](
F0[x

∗
n(t)]− F0

[
x∗n(t)− a′(t)

c

])
, (A.111)

G2(t) = F1 [x∗n(t), t] + F1

[
1− x∗n(t) +

a′(t)

c
, t

]
, (A.112)

and the following symmetrical relation has been used:

F

[
1− x∗n(t) +

a′(t)

c
+
|s(t)|
c

]
− F

[
1− x∗n(t) +

a′(t)

c

]
= F

[
x∗n(t)− a′(t)

c

]
− F

[
x∗n(t)− a′(t)

c
− |s(t)|

c

]
. (A.113)
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The function F1(τ),

F1[τ, t] =
4

π

∫ M [τ+
|s(t)|

c
]

M [τ ]

e−Z(t)(τ−x+
|s(t)|

c )
√

1− (2x− 1)2dx, (A.114)

defines the integration of an exponential (shadow) across the surface of the circular detector.

A.5 Approximation

Eq. A.114 has no closed form solution, and is difficult to solve numerically in software.

Instead, a parameter α is defined to describe the ratio of the integrated transmission of the

exponential curve and the integrated transmission from τ to τ + sc, ignoring the circular

shape of the detector:

α =

∫ τ+sc

τ
e−Z(t)[τ+sc−x]dx

(τ − sc − τ)× (1− 0)

=
1

sc

∫ τ+sc

τ

e−Z(t)[τ+sc−x]dx. (A.115)

Z(t) may be described in terms of |s(t)|:

Z(t) =
cσρ

sin θ| cos(ξ(t) + φ)|
× h tan θ| cos(ξ(t) + φ)|

|s(t)|

=
hσρ

(|s(t)|/c) cos θ

=
hσρ

sc cos θ
. (A.116)
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Then α is computed:

α =
1

sc

∫ τ+sc

τ

e−
hσρ

sc cos θ
(τ+sc−x)dx (A.117)

=
1

sc

e−
hσρ

sc cos θ
(τ+sc)

∫ τ+sc

τ

e
hσρ

sc cos θ
x (A.118)

=
1

sc

e−
hσρ

sc cos θ
(τ+sc)

[
sc cos θ

hσρ

](
e

hσρ
sc cos θ

(τ+sc) − e
hσρ

sc cos θ
(τ)
)

(A.119)

=
1

sc

[
sc cos θ

hσρ

](
e

hσρ
sc cos θ

(τ+sc−τ−sc) − e
hσρ

sc cos θ
(τ−τ−sc)

)
(A.120)

=
1

sc

[
sc cos θ

hσρ

](
1− e−

hσρ
cos θ

)
(A.121)

=
cos θ

hσρ

(
1− e−

hσρ
cos θ

)
. (A.122)

The percentage is constant for all values of sc. This approximation is implemented in Eq.

A.112:

G2(t) = α

(
F0

[
x∗n(t) +

|s(t)|
c

]
(A.123)

−F0 [x∗n(t)] + F0

[
x∗n(t)− a′(t)

c

]
− F0

[
x∗n(t)− a′(t)

c
− |s(t)|

c

])
. (A.124)

Eq. A.114 may be rewritten as

F1[τ, t] = e−
hσρ
cos θ

4

π

∫ M [τ+sc]

M [τ ]

e−Z(t)(τ−x)
√

1− (2x− 1)2dx. (A.125)

Since this constant exponential term is outside the integral, F1 may be redefined as

F1[τ, t] =
4

π

∫ M [τ+sc]

M [τ ]

e−Z(t)(τ−x)
√

1− (2x− 1)2dx. (A.126)
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The profile formula may be expressed in terms of F0 and F1:

P (t) = I0

[
1−

∑
n

((
1− e

−hσρ
cos θ

)
(F0[x

∗
n(t) + sc]− F0[x

∗
n(t)− ac − sc])

− e−
hσρ
cos θ (F1[x

∗
n(t)]− (F0[x

∗
n(t) + sc]− F0[x

∗
n(t)])

+F1[1− x∗(t) + ac]− (F0[1− x∗ + ac + sc]− F0[1− x∗ + ac]))
)]
. (A.127)

To better organize this result, F1 is redefined again:

F1[τ, t] =
4

π

∫ M [τ+sc]

Mτ

e−Z(t)(τ−x)
√

1− (2x− 1)2dx+ F0[τ ]− F0[τ + sc]. (A.128)

Then,

P (t) = I0

[
1−

∑
n

((
1− e

−hσρ
cos θ

)
(F0[x

∗
n(t) + sc]− F0[x

∗
n(t)− ac − sc])−

e−
hσρ
cos θ (F1[x

∗
n(t)] + F1[1− x∗n(t) + ac])

)]
. (A.129)

Based on Eq. A.129, G functions are also redefined:

G0(t) =
(
1− e−

hσρ
cos θ

)
(F0[x

∗
n(t) + sc]− F0[x

∗
n(t)− ac − sc]), (A.130)

G1(t) = e−
hσρ
cos θ (F1[x

∗
n(t)] + F1[1− x∗n(t) + ac]), (A.131)

to satisfy

P (t) = I0

[
1−

∑
n

(G0(t)−G1(t))

]
, (A.132)

where G0 describes the shadowing by the entire bar with attenuation accounted for, and G1

desribes the transmission through the clipping portion.

In consideration of the approximation α (Eq. A.122) the transmission coefficient is now
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Table A.1: Definition of parameters in the advanced characteristic formula.

Var Description Var Description
a RM Bar Width σ Grid Cross Section for Specified Energy
b RM Bar Spacing x0 Detector X Location Relative to Grid Axis
c Circular Detector Diameter y0 Detector Y Location Relative to Grid Axis
h RM Bar Thickness ω Grid Rotation Frequency
L Grid Height θ Source Zenith
ρ Grid Density φ Source Azimuth

I0 Source Intensity

accounted for in G0, and so must be subtracted so that α becomes

α =
cosθ

hσρ

(
1− e−

hσρ
cos θ

)
− e−

hσρ
cos θ . (A.133)

A.5.1 Summary

An RM and source of interest are defined by the parameters described in Table A.1. The

count profile on detector d is given by

Pd(t) = I0

(
1−

∑
n

[G0(t)−G1(t)]

)
, (A.134)

where G0(t) represents the fraction of the detector shadowed, weighted by the amount of

attenuation by the grid bar(s) at time t. This parameter accounts for the apparent expansion

and contraction of the bar shadow widths depending on source zenith and grid angle,

G0(t) =
(
1− e−

hσρ
cos θ

)
(F0[x

∗
n(t) + sc]− F0[x

∗
n(t)− ac − sc]), (A.135)

where F0[τ ] describes the fraction of circular area integrated for a chord swept a unit

diameter distance τ across the face:

F0(τ) =
1

π
cos−1(1− 2M [τ ])− 2

π
(1− 2M [τ ])

√
M [τ ]−M [τ ]2, (A.136)
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and M [τ ] represents the constraint formula

M [τ ] = min{max{τ, 0}, 1}. (A.137)

The parameterG1(t) accounts for the additional transmission of photons through the clipping

portions of the bars, and is given by

G1(t) = e−
hσρ
cos θ

(
F1[x

∗
n(t), t] + F1

[
1− x∗n(t) +

a′(t)

c
, t

])
, (A.138)

where

F1[τ, t] =
4

π

∫ M [τ+sc]

Mτ

e−Z(t)(τ−x)
√

1− (2x− 1)2dx+ F0[τ ]− F0[τ + sc], (A.139)

and

Z(t) =
cσρ

sin θ| cos(ξ(t) + φ)|
. (A.140)

Since Eq. A.138 has no closed form solution, a suitable approximation may be made by

G̃1(t) = α

(
F0

[
x∗n(t) +

|s(t)|
c

]
− F0 [x∗n(t)] + F0

[
x∗n(t)− a′(t)

c

]
−F0

[
x∗n(t)− a′(t)

c
− |s(t)|

c

])
, (A.141)

where α describes the approximate fractional transmission difference due to lack of attenu-

ation through the clipping portion,

α =
cosθ

hσρ

(
1− e−

hσρ
cos θ

)
− e−

hσρ
cos θ . (A.142)

Variable x∗n(t) is an array of fractional distances across the detector diameter,

x∗n(t) =
1

c

(
1

2
(a′(t) + c)−

∣∣∣∣|x′(t)| mod (a+ b)− n
a+ b

2

∣∣∣∣) , n = 1+2{−N...N}, (A.143)
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where

N = floor

(
a+ smax + c

a+ b

)
, (A.144)

and 2N + 1 is the total number of bars that must be considered at a time. The width of the

constant thickness region of the bar shadow is

a′(t) = a− |s(t)|, (A.145)

where s is the change in the shadow width due to clipping,

s(t) = h tan θ cos(ξ(t) + φ), and smax = h tan θ. (A.146)

The x-component of the shadow location, corrected for shadow lengthening, is

x′(t) = r cos(ξ(t) + ξ0) +
s

2
. (A.147)

The distance from the detector center to the projected shadow axis is

r =
[
(x0 + L tan θ cosφ)2 + (y0 + L tan θ sinφ)2

] 1
2 , (A.148)

the angular orientation of the grid is given by

ξ(t) = ωt, (A.149)

and ξ0 is

ξ0 = tan−1

[
y0 + L tan θ sinφ

x0 + L tan θ cosφ

]
. (A.150)
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Appendix B

Derivation of Sensitivity

B.1 Non-Imaging

For a counting detector, the SNR of an observation is the ratio of the total number of

source counts and the uncertainty in the data. For a source with measured strength S and

background rate B, the total number of measured counts, O, is given by

O = (S +B)T, (B.1)

where T is the length of the exposure. If the uncertainty in the data is assumed to be due

only to Poisson statistics, then the uncertainty in O is

U[O] =
√

(S +B)T . (B.2)

The total measured counts due to the source only will be referred to as o, so that

o = ST. (B.3)
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Since the uncertainty in the measurement must include the noise due to background,

U[o] = U[O]. (B.4)

The SNR of an observation is then

SNR(NI) =
o

U[o]

=
o

U[O]

=
ST√

(S +B)T

= S

(
T

S +B

)1/2

. (B.5)

B.2 Analytical Derivation

An indirect multiplexing instrument does not directly detect the source S, but instead,

the instrument response performs some operation on the incident photons before or during

measurement so that the sum of measurements i can be correlated to sky location j. In

general, the observation by a multiplexing instrument is given by

Oi =

(∑
j

sjP
j
i + b

)
T, (B.6)

where P j
i is the instrument response, which describes this correlation of image and measure-

ment spaces. The vector sj is the measured source rate per detection element or bin for a

source at each location j if all incident photons were detected (no mask or other modulation);

i.e., Sj = Nsj is the object scene for N detection elements. Similarly, b is the background

rate per detection element.

When determining the SNR for a multiplexing instrument, it must be calculated with
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respect to a particular observation at object scene j. Therefore, for this calculation,

sj =


sj0 for j = j0

0 otherwise,

(B.7)

where j0 is the particular element of the object scene under analysis. This assertion is

equivalent to the statement that the SNR for a point is defined when it is the only source in

the image. The observation for element j0 becomes

Oi(j0) =
(
sj0P

j0
i + b

)
T. (B.8)

The background-subtracted source observation is just

oi(j0) = sj0P
j0
i T. (B.9)

To calculate the SNR of a measurement, the measurement must be converted to image space.

A cross-correlation is performed on the source observation with a pre-determined conversion

matrix/vector Gj0
i :

Cj0 =
∑

i

oiG
j0
i

=
∑

i

sj0P
j0
i TG

j0
i

= sj0T
∑

i

P j0
i G

j0
i . (B.10)

The cross-correlation is now in units of sky elements, j, allowing for the significance of a
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particular pixel of C to be determined. The uncertainty in Cj0 is

U[Cj0 ] =

(∑
i

U
[
oiG

j0
i

]2)1/2

=

(∑
i

U
[
OiG

j0
i

]2)1/2

=

(∑
i

OiG
j0
i

2

)1/2

=

(∑
i

bTGj0
i

2
+
∑

i

sj0P
j0
i TG

j0
i

2

)1/2

=

(
bT
∑

i

Gj0
i

2
+ sj0T

∑
i

P j0
i G

j0
i

2

)1/2

. (B.11)

The SNR of an observation is thus

SNR[Cj0 ] =
Cj0

U[Cj0 ]

=
sj0T

∑
i P

j0
i G

j0
i(

bT
∑

iG
j0
i

2
+ sj0T

∑
i P

j0
i G

j0
i

2
)1/2

= sj0T
1/2

∑
i P

j0
i G

j0
i(

b
∑

iG
j0
i

2
+ sj0

∑
i P

j0
i G

j0
i

2
)1/2

. (B.12)

The goal now is to determine the function Gj0
i . Ultimately, the goal is to solve the inverse

multiplexing problem to return from measurement space to image space. It is therefore

obvious that some form of the instrument response is needed. However, one can not simply

multiply the observation by a matrix with varying values, for this will alter the caculation

of the statistical significance. One must, therefore, demand that the average of the function

Gj0
i be zero:

Gj0
i = 0. (B.13)

The solution to this problem is to use the instrument response, and subtract its mean across

165



elements i:

Gj0
i = P j0

i − P j0 . (B.14)

Eq. B.14 is plugged into the calculation of SNR:

SNR[Cj0 ] = sj0T
1/2

∑
i P

j0
i (P j0

i − P j0)√
b
∑

i(P
j0
i − P j0)2 + sj0

∑
i P

j0
i (P j0

i − P j0)2

=
sj0T

1/2
(∑

i P
j0
i

2 −
∑

i P
j0
i P

j0

)
√
b
∑

i

(
P j0

i

2
+ P j0

2 − 2P j0
i P

j0

)
+ sj0

∑
i P

j0
i

(
P j0

i

2
+ P j0

2 − 2P j0
i P

j0

)
=

sj0T
1/2
(
NP j02 −NP j0

2
)

√
b
(
NP j02 +NP j0

2 − 2NP j0P j0

)
+ sj0

∑
i

(
P j0

i

3
+ P j0

i P
j0
i

2

− 2P j0
i

2
P j0

)

=
sj0T

1/2N
(
P j02 − P j0

2
)

√
bN
(
P j02 − P j0

2
)

+ sj0

(
NP j0

i

3
+NP j0

3 − 2NP j02P j0

)

= sj0T
1/2N1/2 P j02 − P j0

2√
b
(
P j02 − P j0

2
)

+ sj0

(
P j0

i

3
+ P j0

3 − 2P j02P j0

) . (B.15)

Recall that sj0 = Sj0/N and b = B/N :

SNR[Cj0 ] =
Sj0

N
T 1/2N1/2 var(P j0

i )√
B
N

var(P j0
i ) +

Sj0

N

(
P j0

i

3
+ P j0

3 − 2P j02P j0

)
= Sj0T

1/2 var(P j0
i )√

B var(P j0
i ) + Sj0

(
P j0

i

3
+ P j0

3 − 2P j02P j0

) . (B.16)

The number of detection elements, N , has dropped out of the expression as expected. The

term var(P j0
i ) is the variance of P j0

i . The term in parentheses in the denominator should be

simplified. Skewness of a probability distribution X, γ, with mean µ and standard deviation
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σ is the third standardized moment of the distribution, given by

γ = skew(X) = E

[(
X − µ

σ

)3
]

=
E[(X − µ)3]

σ3

=
E[(X − µ)(X2 + µ2 − 2Xµ)]

σ3

=
E[X3 +Xµ2 − 2X2µ−X2µ− µ3 + 2Xµ2]

σ3

=
E[X3 + 3Xµ2 − 3X2µ− µ3]

σ3

=
E[X3] + 3E[X]µ2 − 3E[X2]µ− µ3

σ3

=
E[X3] + 3µ3 − µ3 − 3µE[X2]

σ3

=
E[X3]− 3E[X]E[X2] + 2E[X]3

σ3

=
E[X3]− 3E[X]E[X2] + 2E[X]3

var(X)3/2
, (B.17)

where var(X) = σ2. Thus,

skew(P j0
i ) =

P j03 − 3P j0P j02 + 2P j0
3

var(P j0
i )3/2

. (B.18)

Using this result, the term in the denominator of the SNR expression can be simplified:

(
P j0

i

3
+ P j0

3 − 2P j02P j0

)
= P j0

i

3 − 3P j0P j02 + 2P j0
3
+ P j0P j02 − P j0

3

= var(P j0
i )3/2 skew(P j0

i ) + P j0

(
P j02 − P j0

2
)

= var(P j0
i )3/2 skew(P j0

i ) + P j0 var(P j0
i )

= var(P j0
i )
(
P j0 + skew(P j0

i )var(P j0
i )1/2

)
. (B.19)
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Eq. B.19 is plugged back into the SNR expression:

SNR[Cj0 ] = Sj0

var(P j0
i )T 1/2√

B var(P j0
i ) + Sj0var(P j0

i )
(
P j0 + skew(P j0

i )var(P j0
i )1/2

)
= Sj0T

1/2

√√√√ var(P j0
i )

B + Sj0

(
P j0 + skew(P j0

i ) stddev(P j0
i )
) , (B.20)

SNR[Cj0 ] = Sj0 stddev(P j0
i )

 T

B + Sj0

(
P j0 + skew(P j0

i ) stddev(P j0
i )
)
1/2

, (B.21)

or, more simply,

SNR(MP)[Cj0 ] = Sj0σ

(
T

B + Sj0 (µ+ γσ)

)1/2

. (B.22)

If the instrument response P has a uniform distribution, then the skewness is zero. In

this case, the SNR reduces to

SNR
(MP)
(uniformP)[Cj0 ] = Sj0

(
T

B + P j0Sj0

)1/2

stddev(P j0
i ), (B.23)

where P j0 is the average P , or transmission coefficient for the instrument.

If the background rate is much higher than the source rate, B � Sj0 , then the expression

may be even further simplified to that which is presented in Durouchoux (1983).

SNR
(MP)
(highBG)[Cj0 ] = Sj0

(
T

B

)1/2

stddev(P j0
i ). (B.24)
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B.3 RM Sensitivity

The statistical significance for a single detector in an RM is already fully evaluated by the

equation for multiplexing SNR:

SNR(RM,1)[Cj0 ] = Sj0 stddev(P j0
i )

 T

B + Sj0

(
P j0 + skew(P j0

i ) stddev(P j0
i )
)
1/2

. (B.25)

However, an RM typically consists of multiple detectors, and so it is useful to calculate the

combined significance of element j0 of the image derived from all detectors.

The cross-correlation image for an RM is composed of the individual cross-correlations

determined from each of the detectors:

Ctot
j0

=
∑

d

Cd
j0

=
∑

d

(sj0

D

)
T

(∑
i

P j0
i,d(P

j0
i,d − P j0

d )

)
, (B.26)

where d refers to the detector element, and D the total number of detectors. The source

strength sj0 has been divided by D to distribute the source strength amongst the entire

detection area:

Ctot
j0

=
sj0T

D

∑
d

(
N

(
P j0

d

2 − P j0
d

2
))

=
sj0TN

D

∑
d

(
P j0

d

2 − P j0
d

2
)

= Sj0T
∑

d

1

D

(
P j0

d

2 − P j0
d

2
)
. (B.27)

Clearly, the instrument response that directly relates the observed data to the sky is
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given by the summation in the above expression,

P ′
j0 =

1

D

∑
d

(
P j0

d

2 − P j0
d

2
)
. (B.28)

Thus, the sensitivity for an RM with D detectors is given by

SNR(RM)[Cj0 ] = Sj0 stddev(P ′
j0)

(
T

B + Sj0

(
P ′

j0 + skew(P ′
j0) stddev(P ′

j0)
))1/2

. (B.29)

The properties of the distribution of P ′
j0

are given by

P ′
j0 =

1

2
, (B.30)

skew(P ′
j0) = 0, (B.31)

since, like the coded aperture, the the mask has 50% transmission and the distribution of

the instrument response is uniform. The standard deviation, however, can be not be further

reduced analytically. The final analytic expression for an RM with D detectors is given by

SNR(RM)[Cj0 ] = Sj0 stddev

(
1

D

∑
d

(
P j0

d

2 − P j0
d

2
))(

T

B + 1
2
Sj0

)1/2

. (B.32)

Numerically, the standard deviation of the RM instrument response is calculated to be

stddev(P ′) ≈ 0.31, and so

SNR(RM)[Cj0 ] = Sj0(0.31)

(
T

B + 1
2
Sj0

)1/2

. (B.33)
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B.4 Super-Resolution

The total number of counts in the cross-correlation image, Cj, should be normalized to equal

the total number of counts measured by the instrument, α:

M∑
j

Cj = α, (B.34)

where M is the total number of object scene elements. If the object scene is sub-sampled at

a factor of η, then all Mη2 elements must be summed:

Mη2∑
j

Cj = α. (B.35)

The calculation for Cj is then plugged in:

α =

Mη2∑
j

∑
i

OiP
j
i

=
∑

i

Oi

Mη2∑
j

P j
i


=

∑
i

Oi

(
Mη2P j

)
= Mη2

(∑
i

Oi

)
P j. (B.36)

The total number of measured counts α is obviously constant, yet the right side of Eq. B.36

claims this value will scale with the square of the factor of super-resolution, η2. Clearly,

one of the terms on the right must be scaled to account for this consequence. M is not an

option, since it is defined as the total number of elements in the object scene at geometric

resolution. Similarly,
∑

iOi is fixed by the measured data. Thus, the instrument response
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function must be scaled:

P j0
i → P j0

i

η2
, (B.37)

stddev(P j0
i ) → stddev(P j0

i )

η2
, (B.38)

P j0
i → P j0

i

η2
, (B.39)

skew(P j0
i ) → skew(P j0

i ). (B.40)

Plugging this change into the multiplexing SNR formula reveals the effect of sub-sampling:

SNR(MP)[Cj0 ] = Sj0

stddev(P j0
i )

η2

 T

B + Sj0

(
P j0

η2 + skew(P j0
i )

stddev(P
j0
i )

η2

)


1/2

=
Sj0

η2
stddev(P j0

i )

 T

B +
Sj0

η2

(
P j0 + skew(P j0

i ) stddev(P j0
i )
)
1/2

.(B.41)

B.5 Calculation of Average Mean Free Path

The average length of photon trajectory at zenith angle θ across the detector described by

Fig. 5.5 is desired. Only photons that are incident on the top face of the detector are

considered, else they will manifest as background signal. Considering the span α over which

the trajectories achieve their maximum distance, dmax, and the span β over which these

photons clip the detector, one can obtain an average trajectory distance in terms of the

individual average trajectories:

dave =

(
dαα+ dββ

α+ β

)
cos θ, (B.42)
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where cos θ normalizes the distance by accounting for the effective detector area for zenith

angle θ. From the geometry shown in Fig. 5.5(a),

α = c− t tan θ, (B.43)

β = t tan θ, (B.44)

dα =
t

cos θ
, and (B.45)

dβ =
dα

2
=

t

2 cos θ
. (B.46)

Plugging in,

dave =

[
(t/ cos θ)(c− t tan θ) + (t/2 cos θ)(t tan θ)

c

]
cos θ

=

[
t

c cos θ

(
(c− t tan θ) +

1

2
t tan θ

)]
cos θ

=
t

c

(
c− 1

2
t tan θ

)
= t

(
1− t

2c
tan θ

)
. (B.47)

The case when zenith angle is so large that all photons clip the detector (Fig. 5.5b) must

also be included, which occurs when

β > c

t tan θ > c

θ > tan−1
(c
t

)
. (B.48)

In this case, the maximum trajectory is

dmax =
c

sin θ
. (B.49)
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The normalized average is thus

dave =
dmax + 0

2
cos θ

=
c

2 sin θ
cos θ

=
c

2 tan θ
. (B.50)

The results yield a piecewise function for the average trajectory distance across the detector

for any zenith angle:

dave(c) =


t
(
1− t

2c
tan θ

)
, for 0 ≤ θ ≤ tan−1

(
c
t

)
c

2 tan θ
, for θ > tan−1

(
c
t

)
.

(B.51)
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