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Abstract

Purpose: The purpose of this work was to use a permanent magnet electron energy spectrometer to
measure and compare electron beam energy spectra from matched electron beams on Elekta
radiotherapy accelerators at Mary Bird Perkins Cancer Center.

Methods: Electron beam collimation, X-ray background collimation, and irradiation geometry were
developed to produce suitable latent images in computed radiography (CR) strips at the exit side of a
0.5-Tesla permanent magnet spectrometer. An analytical technique transformed CR strip images into
energy spectra on central axis at 95-cm source-to-collimator distance. Electron energy spectraat 7, 9,
10, 11, 13, 16, and 20 MeV for four Elekta accelerators, whose beams had been matched to one of two
reference accelerators at commissioning, were measured and compared to measured energy spectra of
their reference accelerator. Percent depth-dose (%DD) matching criteria of 0.05 cm for Rsp and 0.1 cm
for Rgo-20 correlated to 0.12 MeV and 2.0 MeV for the modified incident peak mean energy ((E);, ,) and
full-width-at-half-maximum (FWHM) of the energy spectra, respectively.

Results: For 19 of the 28 matched beams, (E);, , did not match (E);, , of their reference accelerator to
within 0.12 MeV, showing shifts likely due to inadequate beam tuning subsequent to commissioning and
energy drifting of the accelerator within quality assurance (QA) limits (£0.2 cm of Rsy). However, FWHM
of all 28 matched beams matched FWHM of their reference accelerator despite having considerably
different spectral shapes. By correlating %DD metrics with energy spectra metrics, it was determined
that Rsq had a linear relationship with (E);, ,, whereas Rgq_, depended primarily on (E);, , and
secondarily on FWHM.

Conclusions: First, this study demonstrated that not all MBPCC electron beam energy spectra were
matched. Second, electron beams with matched %DD metrics do not necessarily have matched energy
spectra, which are more sensitive for comparing beams than %DD curves. Third, the instrument,
methods, and analytical analysis developed in this study offer the potential for an inexpensive,
lightweight, real-time electron energy spectrometer which could be useful for beam tuning and
matching, QA, and determination of X-ray and electron beam energy spectra for radiation transport

calculations.



Chapter 1 - Introduction
1.1. Background and significance
1.1.1. History and clinical use of electron beam therapy

Electron beams have long played an important role in radiation oncology. Treatments first
developed in the 1930s and 1940s with Van de Graff generators demonstrating the clinical utility of
electron beams. These treatments have matured, with conventional electron beam therapy being
delivered with microwave-powered linear accelerators.

Electron beams are a radiotherapy modality useful for treating superficial planning target
volumes (PTVs) located within 6.0 cm of an external surface of a patient (Hogstrom, 2003). This is due
to the finite ranges and sharp distal falloffs of electron beams’ central-axis percent depth-dose (%DD)
curves, which are apparent in the %DD curves measured at Mary Bird Perkins Cancer Center (MBPCC) in

Figure 1.1.
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Figure 1.1. Electron central-axis %DD curves. Electron %DD curves measured on MBPCC’s Baton Rouge
Elekta Infinity accelerator on Jan/14/2013 by clinical MBPCC staff. All beam energies shown are nominal
energies. The distal 90% dose points are indicated by the open circles.
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Electron beam %DD curves have a fairly uniform dose plateau from the surface to the distal
depth of 90% of the maximum dose, Rqy. Also, they have a sharp falloff between the depths of the 90%
and 10% dose, Rqg_19- The distal region of the %DD curve where this sharp falloff happens is known as
the dose falloff region. This falloff allows radiation oncologists to irradiate a PTV between the patient
surface and 6.0 cm depth, keeping the PTV completely inside a 90% isodose surface while sparing
normal tissue distal to the PTV. Above 20 MeV however, lateral penumbra and bremsstrahlung
production increase rapidly with energy, while the gradient of the dose falloff region decreases,
deteriorating the clinically desirable properties of electron beams. Additionally, electron beams below
about 6 MeV have too low of a surface dose to be clinically useful. Thus, manufacturers currently
provide electron beam energies typically limited to incident peak energies, E, ,, between 6 MeV and 20
MeV.

Due to these unique properties, electron beams are useful for several clinical sites. For
example, a significant portion of post-mastectomy chest wall, post-lumpectomy breasts, parotid gland,
nose, and ear PTVs can be treated completely or partially with electron beams (Tapley 1976, Hogstrom
1991). The sharp distal dose falloff of electron beams allows them to be used while sparing distal tissue,
such as the lung for chest wall treatments, and the brain, spinal cord, eyes and optic chiasm for head
and neck treatments. In conjunction with bolus material, electron beams can be used to treat skin
lesions. They are also ideal for total skin and total scalp treatments, as the deeper structures can be
spared while maintaining a fairly uniform dose to the skin. Beyond this, electrons have been proven for
several less common cases such as retinoblastoma patients, where there is a chance for preserving
vision in the afflicted eye, or for use in craniospinal irradiation of pediatric patients, where reducing

integral dose is important (Gerbi et al 2009).



1.1.2. Basic properties of electron beam %DD curves
Various range definitions, given to different aspects of electron beam %DD curves, are

illustrated in Figure 1.2. Ryqq is the depth of maximum dose (D,;,). The region between the surface and
R0 is known as the buildup region. Rqg or R; is the therapeutic range, marking the depth of the distal
edge of the 90% isodose surface. This range parameter is sometimes called the therapeutic range
because radiation oncologists require that Rqy exceeds the maximum PTV depth, and they often
prescribe the dose to the 90% isodose line. Rsj is the depth where the dose is half the maximum and is
correlated to the mean energy (ICRU 35 1984). R, is the practical range, so named because it marks the
depth beyond which the electron dose is practically negligible. More exactly, it is the point where the
tangent of the steepest point on the descending portion of the depth dose curve (i.e. the dose falloff
region) intersects the extrapolated bremsstrahlung background (ICRU 35 1984). R,, is correlated to the
most probably energy incident upon a water phantom (ICRU 35 1984). Dq is the dose at the surface of

the water phantom. D, is the bremsstrahlung dose tail that exists beyond R,,.
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Figure 1.2. Nomenclature for clinical electron beam %DD curve parameters. lllustrated are the surface
dose, Dg, maximum dose, D,,, depth of maximum dose, R;qo, depth of 90% dose, Rqy, depth of 50%
dose, Rsg, and the practical range, R, (from Brahme and Svensson 1976).



1.1.3. Basic properties of electron beam energy spectra
The kinetic energy, E, distribution of the electrons that compose a therapeutic electron beam is
referred to as the electron beam’s energy spectrum. The energy spectrum, illustrated in Figure 1.3, has
units of energy on the x-axis and units of relative planar fluence (or probability) per unit energy, the

latter being a type of probability density, on the y-axis.
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Figure 1.3. Example 20 MeV electron beam energy spectrum. lllustrated are the peak energy (E},),

mean energy (E,), and full width at half the maximum (') of the energy spectrum at isocenter.

Besides the most probable energy of the incident spectrum, E,, ,, the mean energy, E,, and full

p,0’
width at half the maximum (FWHM), T, are displayed. In Figure 1.3, E,, , equals 20.5 MeV, E, equals
20.0 MeV, and T equals 3.6 MeV. Sometimes ' is specified as a percentage of £, ,,, i.e. 17.7% in Figure
1.3.

It is worth noting that a clinical electron beam energy spectrum contains two major

components, a peak region and a low-energy tail. In Figure 1.3, the peak region is the portion of the
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energy spectrum greater than about 17 MeV, and the low-energy tail is the portion of the energy
spectrum less than about 16 MeV. The peak region, which is approximately Gaussian in shape, is where
the majority of the area under the spectrum is found. In Figure 1.3, the peak region consists of a single
peak (approximately Gaussian), but this may not always be the case. In Figure 1.15 in section 1.1.5, it is
clear that the peak region could consist of the sum of three or more Gaussians. The reasons for this will
be explained in section 1.1.5. The low-energy tail takes up a much smaller portion of the area under the
energy spectrum. It is connected to the side of the peak region and declines down to zero as you move
to lower energies. The low-energy tail is due to energy-straggling, which is the non-uniform loss of large
amounts of energy through delta-ray and bremsstrahlung production as the electron beam passes
through a material (ICRU 35 1984). Energy straggling also broadens the peak region of the energy
spectrum. Most of the energy straggling happens in the primary scattering foil.
1.1.4. Effect of energy spectra on electron beam %DD curves

Different energy spectra at the surface of a phantom will produce different %DD curves. Energy
spectra that are composed of higher energy electrons will penetrate further, resulting in deeper
penetration. This is apparent from the two traditional equations relating range parameters in water to
energy parameters of the energy spectrum at the water’s surface. The most probable incident energy
(Ep,0) and the mean incident energy (E,) of a broad parallel electron beam at the surface of a water

phantom are related to the practical range (R,) and the depth of the 50% dose point (Rs), respectively

by
MeV MeV )
and
E,(Mev) = 2497,
= . * ,
olMe om 50 1.2



where all range parameters are in centimeters (ICRU 35 1984, Khan et al 1990). To use these equations
with R, and R, values taken from measured %DD curves produced by the divergent beams found in a
clinical setting, all data points of the %DD curves must be corrected using the inverse of the spherical-
divergence correction, though this correction was ignored throughout this study as it has a negligible
effect below 20 MeV (Khan et al 1990).

Additionally, it is thought that increases in FWHM values of the energy spectrum correspond to
increases in the length of the dose falloff region of the %DD curve. This length is sometimes specified
using the difference between Ry and Rqy, i.e. Rgg_19, Where Ry and Rqq are the depth of the 10% and
90% dose points of the %DD curves, respectively. However, the literature reveals that the shapes and
FWHMs of the incident energy spectra have a small effect on the %DD curves as long as the energy
spectra are not too wide, as is the case for most therapeutic electron beams.

Kainz et al (2004) determined the Rgy_1, values for electron beam %DD curves generated using
Monte Carlo (MC) techniques. They simulated point, monodirectional electron beams with mean
energies of 9, 12, 15, 18, and 21 MeV through a scattering foil system and water phantom. A unique
scattering foil system was designed for each energy. The energy spectra of the electron beams prior to
interacting with the scattering foils, i.e. the initial spectra, were modeled as rectangle functions with
widths, i.e. AE, of 0.5, 2.5, 4.5, and 6.5 MeV centered on the mean energies. The resulting %DD curves
for these four rectangle function widths are plotted in Figure 1.4 for the 9 and 15 MeV beams.

The Rgg_10 values are plotted versus the Rqq values for all mean energies and all rectangular
function widths in Figure 1.5. The five Rqq points of increasing depth correspond to the five electron
beams of increasing mean energy. Note that the rectangular spectra with AE of 4.5 and 6.5 MeV have
significantly larger Rqy_1o values as compared to the rectangular spectra with AE values of 0.5 and 2.5
MeV. This is also apparent in Figure 1.4. As these results show, noticeable increases in Rgy_1o values

beyond those corresponding to the rectangular spectra with AE of 0.5 MeV only result for fairly
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Figure 1.4. MC simulated %DD curves for rectangular initial energy spectra of various AE. These rectangle
functions were centered on (a) 9 MeV and (b) 15 MeV and had widths of 0.5, 2.5, 4.5, and 6.5 MeV
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Figure 1.5. Penumbral widths versus R90 for various AE. Plotted are penumbral widths, Rgg_1¢ (labeled

R19_9p by Kainz), versus Rq, for the five mean energies and four rectangular function widths assumed
for the initial energy spectra (modified from Kainz et al 2004).



significant increases in AE. This is because by the time the electrons reach Rqq, they have experienced
significant energy-straggling. Therefore, unless the spectral width prior to the dual scattering foil is
relatively large, the spectral broadening due to energy-straggling in the scattering foils and first couple
centimeters of water will dominate, masking the effect of any initial energy width.

Johnsen et al (1983) took electron %DD curves and energy spectra measurements at 6 MeV and
12 MeV using a single linear accelerator and irradiation geometry. Thin foils and lead bricks were used
to simulate scattering foils and clinical collimation systems, respectively. They varied the shapes of the
energy spectra while keeping the E,, , values of the spectra the same. They found only small differences
in the dose falloff region and range parameters due to changes in the FWHMs, yet noticeable shifts in
the practical range with the mean energy of the spectral peak structure. This is apparent in Figure 1.6,
where both the narrow and broad 6 MeV electron beams had a E,, of 5.8 + 0.2 MeV and a Epoof6.1+
0.2 MeV. The narrow and broad 6 MeV spectra had FWHMs of 0.1 and 0.8 MeV, respectively. The %DD
curves for these beams in Figure 1.6 demonstrate that the practical ranges are almost identical. This is
not the case with the broad and narrow 12 MeV electron beams, even though they both had peak
energies of 12.2 + 0.3 MeV. This is because the mean energies of the 12 MeV beams differed
noticeably, being 11.8 + 0.3 MeV for the narrow spectrum and 11.4 + 0.3 MeV for the broad spectrum.
The narrow and broad 12 MeV spectra had FWHMs of 0.2 MeV and 1.2 MeV, respectively. Note that in
Figure 1.6 the R values for the broad-spectrum and narrow-spectrum 12 MeV beams differ by about
0.4 cm, yet the E, values only vary by 0.4 MeV, which is inconsistent with equation 1.2.

This work indicates that the practical range is more closely related to the mean energy of the
energy spectrum’s peak structure than E,, ,. This is in contradiction to convention, which relates the
practical range to the Ey, , of the energy spectrum. Johnsen et al’s work also indicates that below a
certain threshold, the FWHM of the spectra has little to no effect on any part of %DD curve except the

build-up region.
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Figure 1.6. Narrow and broad energy spectra and their %DD curves. Plotted are (a) measured narrow
and broad energy spectra and (c) corresponding %DD curves for a 6 MeV beam as well as (b) narrow
and broad energy spectra and (d) corresponding %DD curves for a 12 MeV beam (from Johnsen et al
1983).

Other MC simulations performed by Andreo et al (1989) also studied the effect of different
energy distributions on the %DD curves. Like Kainz et al, they simulated monoenergetic,
monodirectional point beams through a scattering foil system. Then, they scored the energy spectra of
electron beams within a 10-cm diameter circle on the surface of water phantom after they had been
transported through a lead foil of varying thicknesses followed by one meter of air. Initial

monoenergetic energies of 11.5, 10.49, and 10.25 MeV were used in combination with 1.0, 0.3, and 0.1



mm of lead, respectively. These three lead thickness and initial energy combinations were selected
because they all produced E), , values of 10 MeV (+ 0.02 MeV) at the surface of the water phantom yet
had different spectral distributions and mean energies of the peak structure. These energy spectral
distributions are illustrated in Figure 1.7. The narrowest distribution corresponds to the 0.1 mm foil,
and the broadest distribution corresponds to the 1.0 mm foil, with the 0.3 mm foil falling in-between.
At the surface, electron beams with 1.0, 0.3, and 0.1 mm of lead had mean energies of 8.56, 9.48, and

9.73 MeV, respectively, and FWHMs of 0.57, 0.13, and 0.04 MeV, respectively.
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Figure 1.7. Variable width MC simulated energy spectra. Plotted are the energy spectra for three MC
simulated electron beams transported through varying thickness of lead foils to the surface of a water
phantom. The electron beams had energy spectra with FWHMs of 0.57, 0.13, and 0.04 MeV and E, of
8.56, 9.48, and 9.73 MeV corresponding to lead foil thicknesses of 1.0, 0.3, and 0.1 mm, respectively. All
the electron beams had E,, , values of 10 MeV (from Andreo et al 1989).

10



Andreo et al then simulated %DD curves using single point, monodirectional electron beams
normally incident upon a water phantom that had the energy spectra shown in Figure 1.7. The
reciprocity theorem was applied to the resulting dose distributions to calculate %DD curves of a broad
plane-parallel electron beam (ICRU-35, 1984). Four %DD curves were calculated in this way, three with
the three energy distributions illustrated in Figure 1.7, and a fourth with a 10 MeV monoenergetic
energy distribution. The resulting %DD curves are plotted in Figure 1.8. The most penetrating %DD
curves are, in order of increasing Rsy, 1.0mm lead, 0.3mm lead, 0.1mm lead, and the monoenergetic

beam.

Depth-dose distribution %)

Depth (cm)

Figure 1.8. MC simulated %DD curves generated from the energy spectra plotted in Figure 1.7. The
most penetrating %DD curves are, in order of increasing Ry, 1.0mm lead, 0.3mm lead, 0.1mm lead, and
the 10 MeV monoenergetic beam (from Andreo et al 1989).

11



From Figure 1.8, it is apparent that the practical ranges of the electron beams vary noticeably
even when the peak energies are almost identical. Clearly, the variations in R, values are not
attributable to the E, , values. Interpreted through Johnsen et al's work, this is probably because the
mean energies in the electron beams’ peak spectral structure are significantly different. Additionally,
the Rgg_10 values increase significantly with the thickness of the lead foil. This is due to a significant
increase in low-energy electrons created via energy-straggling. This increase in low-energy electrons
also reduces the depth of R values and increases the surface dose and dose in the build- up region.

The above studies motivated the analytical methods employed by Deasy et al (1992 and 1994).
Deasy modified equation 1.1, arguing that the left side of the equation should be the mean of the peak
structure of the incident energy spectra, i.e.(E);, rather than the E}, ,. The star in (E)), denotes that the
mean is taken only over the peak region. A more exact definition of (E); is given in section 3.1.4.2.1.
Additionally, he relates the Rz, and slope of the dose falloff region to (E); , arguing that those %DD
curve parameters are more strongly correlated with (E)} than they are with E, and FWHM,
respectively.

Secondary electrons scattered from the beam collimation are another component of the energy
spectrum that affect the %DD curves. Udale-Smith (1988) showed that secondary electrons deposit
most of their energy at the surface of a water phantom and then fall off exponentially, as shown in
Figure 1.9, becoming totally negligible at a depth of about 2.0 cm. Her study was performed with the 10
MeV beam on the SL75-20 accelerator, which used solid-walled applicators that produce more
secondary electrons than current trimmer bar applicators. The total dose from the secondary electrons
at the surface using this accelerator was about 5%. The secondary electrons rarely make much if any
contribution to the portion of the %DD curve outside of the surface dose and buildup region, unlike the
straggled electrons, which can affect practically all regions of the %DD curve excluding the most distal

portions.
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Figure 1.9. Secondary electron dose contribution versus depth. Plotted are deposited doses due to
secondary electrons scattered from collimation versus depth in a water phantom for MC simulated 10
MeV electron beams. The different symbols correspond to different field sizes of solid-walled electron
applicators use in the simulations (from Udale-Smith 1988).

1.1.5. Elements that affect Elekta Infinity accelerator energy spectra
In the Elekta Infinity linear accelerator, there are several major components that affect the
energy spectra at isocenter. Some of these components are part of the treatment head, such as
scattering foils and collimation, while others have to do with how the accelerating RF power is
generated and transported to the traveling waveguide. The latter can be modified in service mode by
“tuning” the energy spectra of the electron beams. Tuning is usually performed during accelerator
installation or when the electron beam’s range parameters have moved out of tolerance. Several of

these components are presented below in the order in which they affect the electron beam.
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The most essential accelerator setting related to the electron beam energy spectrum is the
charge rate setting, titled “Chargerate” in Elekta’s service mode. Changing this parameter changes the
kinetic energy of the electrons at the exit of the traveling waveguide. This parameter is always changed
in tandem with the magnetron magnet current, titled “M.Mag ctrl” in service mode. The “Chargerate”
setting modifies the magnitude of the DC voltage pulse applied to the magnetron. The greater the
magnitude of this pulse, the higher the amplitude of the RF power sent from the magnetron to the
injection point of the traveling waveguide. At the injection point, the electron bunches are formed and
synchronized so that they enter the traveling waveguide at the peak strength of the RF power’s electric
field, as electron bunches ride the crest of a single wave of the RF power’s electric field down the
traveling waveguide. The greater the amplitude of the RF power, the greater the acceleration of the
electron bunches. Because the electrons very quickly approach the speed of light, the magnitude of the
RF power has a significant effect on the kinetic energy, but little effect on the speed. This is why one
traveling waveguide, which can only be operated at one frequency, works for all electron beam
energies. Thus, changing the magnitude of the DC voltage pulse changes the kinetic energy of the
electrons exiting the traveling waveguide. The traveling waveguide was designed for RF power of a
frequency around 3.0 GHz (private communications, McCann, Elekta engineer), meaning electron
bunches enter the traveling waveguide about every 0.33 nanoseconds throughout the duration of the
DC voltage pulse.

The DC voltage pulse is created when the pulse forming network (PFN), modeled as a series of
capacitors and inductors in the top right portion of Figure 1.10, is discharged. This type of circuit
releases the stored energy from the capacitors sequentially instead of simultaneously, allowing the
release time to be extended to several microseconds (Karzmark et al 1992). The PFN is charged by the
high voltage power supply illustrated in the top left portion of Figure 1.10 and discharged to the

magnetron at regular intervals by a thyratron, which is a type of switch used in high-power RF circuits.
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By increasing the charge rate to the PFN with the HT control system illustrated in the bottom left portion
of Figure 1.10, the resulting DC voltage pulse applied across the magnetron is increased in magnitude.

In this way, the charge rate setting increases the kinetic energy of electrons exiting the traveling
waveguide. This setting is modified in tandem with the magnetron the “M.Mag ctrl” setting to maintain
proper operation.
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Figure 1.10. Elekta Infinity accelerator pulse forming network. lllustrated is a circuit diagram of Elekta’s
PFN related components. The HT control system generates a pulse in the PFN that is fed to the
magnetron where it generates RF power (from Elekta Limited 2007).

Another important setting for the Elekta Infinity accelerator is the High Power PHase shifter
(HPPH), which is a part of the recycling waveguide system. The recycling waveguide system is needed
because magnetrons cannot produce RF power with a large enough amplitude to accelerate electrons to
energies above 15 MeV. To compensate for this, some of the RF power is recycled throughout the
duration of the DC voltage pulse, while the rest is dissipated in the RF load. This is done using the

recycling waveguide system illustrated schematically in Figure 1.11 and pictorially in Figure 1.12.
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Figure 1.11. Traveling and recycling waveguide schematic.
waveguide system for the Elekta, previously Phillips, SL25 accelerator.
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section of the recycling waveguide’s length, as is the RF load where excess RF power is dissipated. Kok
and Welleweerd sampled the RF power at the point labeled RF2 (Kok and Welleweerd 1999).
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Figure 1.12. Traveling and recycling waveguide physical layout. lllustrated is the physical layout of the
traveling and recycling waveguide shown schematically in Figure 1.11. The HPPH and RF load are visible
in the illustration, as are the RF probe points Kok and Welleweerd used to sample the RF wave (from
private communications, McCann, Elekta engineer).
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After the RF power reaches the end of the traveling waveguide, the electron bunches are sent to
the bending magnets, and the remaining RF power is circulated back to the injection point of the
traveling waveguide. In doing so, the recycled RF power passes through the HPPH show in Figure 1.11
and Figure 1.12. The HPPH is a section of the recycling waveguide with variable RF path length. The RF
path length can be modified by the operator in service mode. Ideally, the path length of the HPPH is set
so that the recycled RF wave adds to the RF wave at the injection point at the correct phase. If the
phase is incorrect, then the recycled RF wave will add to the RF wave coming from the magnetronin a
way that is either too constructive or too destructive.

The effects of suboptimal HPPH settings on SL25 spectra were studied by Kok and Welleweerd
(1999). lllustrated in Figure 1.13 are measurements of the accelerating RF wave’s amplitude at the RF2
measurement point shown in Figure 1.11. Different HPPH settings change the way the RF wave
amplitude changes with time. The duration of the RF pulse shown in Figure 1.13 is about 3.0 us, as the
DC voltage pulse that produced it lasted about 3.0 us. The RF power amplitude seems to change in 1.0
us steps, which is due to the fact that it takes about 1.0 us for the RF power to cycle from the injection
point through the traveling and recycling waveguide system and back to the same point. Most of this
delay is due to the 0.86 us filling time of the traveling waveguide (Kok and Welleweerd 1999). Thus,
after the first microsecond, the RF amplitude increases in each of the proceeding 1.0 us steps due to
recycled RF being added to the RF injected from the magnetron. Changing the HPPH setting changes the
phase at which this recycled RF is added back into the traveling waveguide, modifying the magnitude of
the increase in RF amplitude during the second and third 1.0 us steps.

The energy spectra that result from the HPPH settings in Figure 1.13 are plotted in the left
column of Figure 1.14. The best way to understand the relationship between the RF amplitude plot in
Figure 1.13 and the energy spectra measured at isocenter is to approximate the three 1.0 us segments

of the pulse in Figure 1.13 with rectangle functions that produce their own Gaussian energy spectra.

17



amplitude [ V ]

0.25

0.2 0, A
/M
0.15 " N\ . '
,J\\"/ % 12,50 cm
0.1 ' o
\ 13.00 cm
0.05 e
13.50cm
0
005 s ;
05 15 25 35 55

time [micro second]

w0 f
il
i
200 1
1 IR
500 Y
. AR
B Ja
100 150 200 250 300 30
(a) HPPH 13.50 cm
2400
2000
N, '/’ﬁ\ i
hi
1200 +—— —f‘—ti —
” ‘ iln,\ |
Hoam
a0 iu‘ L!\“ —
NN
l|Jllﬂ 150 200 220 30 =
(c) HPPH 13.00 cm
2400
[0
1600 I ™
1200 = |"
/1L
400 — I ——
Q;__AL__\L¥
100 150 200 50 30 350

(¢) HPPH 12.50 cm

Figure 1.13. RF amplitude measured at RF2 point shown in Figure 1.11. Region 1, 2, and 3 correspond
to the original RF power, addition of the first recycled power, and addition of the second recycled
power, respectively. The shape of this curve varies with the phase of the recycled power, which is a
function of the HPPH setting shown on the right (Kok and Welleweerd 1999).
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(f) HPFH 12.25 cm

Figure 1.14. Elekta SL25 energy spectra with varied High Power Phase shifter settings. The x-axes are
pixel numbers (distance) produced by the film scanner, which are roughly proportional to energy. The y-
axes are relative fluence per unit distance. The three energy spectra on the left correspond to the three
RF amplitude versus time plots shown in Figure 1.13 (Kok and Welleweerd 1999).



Each rectangle function will produce a single Gaussian energy spectrum, with the total energy spectrum
being the compilation of three the Gaussian distributions. If the three sections of the RF pulse all have
similar amplitudes, then the three Gaussian energy spectra that are summed up will have their peaks
centered on the same energy. Thus, the total energy spectrum will approximate a single Gaussian,
which is ideal. If the three sections of the RF pulse all have very dissimilar amplitudes, the total
spectrum will look more like three single Gaussians that were shifted left and right relative to one
another before being added together. This explains why the HPPH settings in Figure 1.13 that produce
more level RF amplitudes across the duration of the RF pulse produce narrower spectra in Figure 1.14.
In reality, the energy spectra at the end of the traveling waveguide is a product of the fine structure of
the RF amplitude plot in Figure 1.13 and components beyond the traveling waveguide that modify the
spectra.

Kok et al’s study of the HPPH’s effect on the energy spectra was in part motivated by another
study performed by Deasy et al (1996). Deasy et al measured energy spectra of the Phillips SL25 prior to
its acquisition by Elekta, measuring the energy spectra plotted in Figure 1.15. It seems likely that
suboptimal HPPH settings caused the multiple peaks observed in the spectra Deasy measured, though it
is unclear why these spectra deviate so much further from the ideal single, narrow Gaussian than
anything Kok et al were able to produce. It is possible that improvements were made to the SL25 after
acquisition by Elekta.

The SL25 used for Kok et al’s measurements contained momentum slits in the slalom bending
magnet that limited the energy spectra to +9% of the nominal energy (Kok and Welleweerd 1999).
These slits, labeled “S” in Figure 1.16, when used in combination with the fine and coarse bending
magnet currents of the slalom magnet, act as a variable band pass filter for the energy spectra exiting
the traveling waveguide. The achromatic slalom magnet was designed to bend and focus electrons of

various energies to a single focal point and direction at the exit window. The course bending magnet
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Figure 1.15. Measured electron energy spectra for 6-22 MeV beams from a Phillips SL25 accelerator.

Many of the plotted energy spectra have two or more distinction peaks and aberrant shapes (Deasy et al
1996).

current, titled “Bending C.” in Elekta’s service mode, is a single current that is driven through three
electromagnet pairs that make up the slalom magnet shown in Figure 1.16. In order to achieve proper
bending, the portion of the slalom magnet that bends electrons 112.5° has an additional, separate
electromagnet called the fine bending magnet which has its own current setting, titled “Bending F.” in
service mode. The fine and coarse bending magnet currents cannot vary independently, but must

maintain a ratio of currents. By varying these currents in tandem, focusing can be maintained while
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selecting different portions of the energy spectrum exiting the traveling waveguide for passage through

the energy slits. An example of energy slit selection is shown in Figure 1.17.

Figure 1.16. Slalom bending magnet for a Phillips SL25. The slits, labeled S, limit the spectrum of
electron momentums that can pass through the slalom bending magnet, acting as a bandpass filter for
the energy spectrum that exists prior to the bending magnet (Karmark et al 1992).

le—t—— Energy

Selection
Slit

e

+Ap

Figure 1.17. Energy selection using slits in the bending magnet. Illustrated is the portion of the electron
fluence prior to the bending magnet allowed to pass through the slits shown in Figure 1.16 in terms of
the electron fluence’s momentum spectrum. The shaded portion of the spectrum is removed by the
slits (modified from Karmark et al 1992).

After being transported through the slalom bending magnet, the energy spectra are modified by
Elekta’s dual scattering foil system illustrated in Figure 1.18. This system is composed of a primary foil,
which spatially broadens the beam, and a secondary foil, which spatially flattens the beam. In the Elekta
Infinity, as with all clinical accelerators, the primary scattering foil is made of a high Z material while the
secondary foil is made of aluminum, a relatively low Z material.

In the process of shaping the beam, the scattering foils also reduce and broaden the energy

spectrum and add a low-energy tail. This isillustrated in Figure 1.19, where a modeled energy spectrum
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for the 11 MeV beam on the Elekta Infinity at MBPCC is Monte Carlo simulated from the (blue) exit
window to the (green) collimator plane at 95-cm source to collimator distance (SCD) (Harris, 2012).
Harris’s simulation included a detailed physical model of the entire treatment head configured for
electron therapy. The spectrum at 95-cm SCD, which is essentially at the patient, gained a low-energy
tail due to more intense energy-straggling of some of the electrons. The shifting and broadening of the
spectrum, including addition of the low-energy tail, is primarily due to the primary scattering foil. The
energy spectra prior to the scattering foil system are obviously not perfect Gaussian spectra, as modeled
by Harris, but rather products of the fine structure of the RF amplitude plotted versus time in Figure
1.13 and the energy-defining slits. The scattering foil system should smooth any fine structure as it
reduces and broadens the energy spectra.

Namow Beam

Primary Scattering Foil

Secondary Scattenng Foil

off-axis position

! ¢—poth Scattern 12 Foils
1 I Combined

44— Pnwary Scaitenng Foil
Only

Figure 1.18. Dual-scattering foil system. lllustrated is the dual-scattering foil system used to create
broad, flat electron beams at the patient. Dose distributions in a water phantom created both with and
without the secondary scattering foil are illustrated, with the positive magnitude inverted for illustrative
purposes (modified from Karzmark et al 1992).
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Figure 1.19. Energy spectra of electron beam simulated from source to 95-cm SCD. lllustrated are the
energy spectra of the 11 MeV electron beam with an assumed Gaussian energy spectrum at the (blue)
exit window MC simulated to (green) 95-cm SCD. The simulation included a detailed model of the
accelerator treatment head and 14 x 14 cm? applicator of an Elekta Infinity accelerator (from Harris
2012).

1.1.6. Electron beam matching at MBPCC

Currently MBPCC has six Elekta Infinity accelerators that are commissioned for clinical use.
These accelerators are located in Baton Rouge (BR), Gonzales (Gonz), Hammond (Ham), Houma, and
Covington (CV1 and CV2), Louisiana, with plans to commission additional Elekta accelerators in the
coming years. These accelerators were configured to deliver electron beams with nominal energies of 7,
9,10, 11, 13, 16, and 20 MeV in order to achieve Rqq values of 2.0, 2.5, 3.0, 3.5, 4, 5.0, and 6.0
centimeters, respectively, for the 14 x 14 cm? applicator. By matching the electron beams of the
different accelerators to one reference, MBPCC can greatly reduce the commissioning time and effort,
as only one set of beam data from one accelerator needs to be measured and processed for use in MU
calculation software, treatment planning systems, and QA procedures. Without beam-matching, this

data would need to be measured and processed for each accelerator, a process which would require
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approximately two man months per accelerator. Additionally, beam matching allows patients to be
moved between accelerators without replanning to accommodate accelerator outages or patient
scheduling issues.

At MBPCC, a single Elekta accelerator was chosen as the reference for beam matching. All other
accelerators were matched, within defined specifications, to this reference. Initially, the Elekta Infinity
accelerator at the Gonzales satellite was the reference, as this was MBPCC's first Elekta accelerator.
Subsequently, beam matching requires that (1) central axis %DD curves for the 14 x 14 cm? open
applicator, (2) off-axis ratios (OARs) for the 25 x 25 cm? open applicator, and (3) dose output for the 14
x 14 cm? open applicator are matched. This is achieved by (1) tuning the energy spectra (i.e. beam
tuning), (2) ensuring identical X-ray jaw settings exist for the same energy-applicator combination, and
(3) possibly making minor modifications to the scattering foil systems, which is by far the least desirable
solution. Criteria for agreement are (1) £2% or £0.05 cm distance to agreement (DTA) for all data
points of the central-axis %DD curves, (2) 1% for OARs along diagonal and major axes with the 25 x 25
cm? open applicator attached at depths of 1.0 cm for Ep o values of 9 MeV and below and 2.0 cm for
Ep o values above 9 MeV, and (3) 1% for dose output. MBPCC’s matching criteria are the objective but
in practice have not always been achieved. Therefore, the medical physicist may match the Ry, through
R, points in the dose falloff region but fail to match R, to within 0.05 cm. Also, the medical physicist
may accept a +1.5% agreement in OAR for a large field far off axis. Matched electron beams for two
different accelerators which fail the central axis %DD criteria are plotted in Figure 1.20.

To achieve these matching criteria, the Elekta engineer will tune each electron beam by
modifying the accelerator settings mentioned in section 1.1.5 until the %DD curves match those of the
reference accelerator at commissioning. This requires an iterative process of modifying accelerator
parameters, taking %DD curve measurements, and then checking the %DD curves versus those of the

reference accelerator’s %DD curves.
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Figure 1.20. Matched 11 MeV Elekta Infinity accelerator electron beams. The plotted %DD curves were
measured by MBPCC's clinical staff during commissioning at their (blue) Baton Rouge facility and (green)
Gonzales satellite facility. The Baton Rouge %DD curve fails to meet MBPCC’s 0.05 cm matching criteria
with the Gonzales %DD curve around Ry,.

1.2. Permanent magnet electron energy spectrometer

There are several different methods available for measuring the energy spectra of electron
beams, most of them having serious drawbacks. Total absorption scintillators or semi-conductor
detectors, i.e. counting detectors, can determine the kinetic energy of incoming electrons but are
impractical because the high fluence rate of the therapeutic electron beams causes pulse pile-ups. Gas
Cherenkov detectors measuring light intensity versus gas pressure can measure energy spectra, but
have severe experimental conditions, such as requiring high gas pressures and very low noise, as the
derived energy spectra are proportional to the second derivative of the light-intensity vs. pressure
curves (ICRU 35 1984). To date, the most practical method for measuring electron beam energy spectra

is magnetic spectroscopy. A limitation to magnetic spectroscopy is that the required collimation only
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allows nearly completely forwarded directed electrons through to the detecting medium. This disallows
secondary and highly straggled electrons from contributing to the measured energy spectrum, as their
angles are rarely forward directed. However, information about such electrons can be gained using MC
simulations.

Deasy et al (1994) constructed a magnetic spectrometer by using an electromagnet to sweep a
collimated electron beam across a slit placed in front of an electron-counting scintillating detector and
correlating the electromagnet current to the energy of the electrons that would be allowed to interact
with the detector, thus determining the relative fluence within an energy bin. The collimation also
reduced the electron fluence to a level that would not cause significant pulse pile-up in the scintillator.
Additional shielding was added to guard the scintillator against bremsstrahlung X-rays. A helium-filled
chamber was used to reduce the electron scatter inside the bending magnet cavity. Though described
by Deasy et al (1994) as small and lightweight, the dimensions and mass of its most essential and
massive component, the powered electromagnet, were 31 x 17 x 28 cm? (H x L x W) and 50kg (110lb),
respectively. Transporting such a system would be cumbersome, reducing clinical applicability.
Furthermore, the power supply needed for the electromagnet and the helium-filled chamber are added
experimental constraints that further reduce clinical applicability.

The magnetic spectrometer used for this study is significantly smaller that Deasy’s. Its most
essential component is the permanent magnet block, pictured in Figure 1.21, which has a volume of 6.4
X 16.5x 7.7 cm3 (W x L x H) and mass of approximately 4kg (9lb). The magnet block (provided to LSU by
Professor Edison Liang’s research group in the Dept. of Physics and Astronomy at Rice University in
Houston, TX) consisted of two permanent neodymium magnets separated by two iron end pieces. This
assembly was then encased in aluminum plates. The magnets bend the trajectories of electrons that
enter the front aperture of the magnet block. The bending takes place in the gap between the

permanent magnets that is at equilibrium with the ambient air, meaning no power supply or helium-
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filled/vacuum chamber is necessary. The lack of a helium-filled/vacuum chamber is acceptable, as the
distance traveled by the electrons in the air gap between the permanent magnets is less than the
distance traveled by electrons in Deasy’s helium cavity. A beam defining aperture consisting of a hole
drilled in a copper block, i.e. the spectrometer aperture, abutted to the front of the magnet block is

required for the magnet block to serve as a spectrometer.
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Figure 1.21. Permanent magnet block used for electron beam energy spectroscopy. The pictured
magnet block is shown both (a) with and (b) without the CR strip inserted in its slot. The visible circular
aperture is an entry point where the electrons enter the magnet block, and the visible slot is where the
electrons exit the magnet block’s air gap and intercept the CR strip.

Additional bremsstrahlung collimation was included in the magnetic spectrometer. This
collimation, along with the copper spectrometer block, had a mass of about 17.7kg (39.0lb), bringing the
mass of the entire device to 21.7kg (48lb). While still heavy, this compact device is easily transportable
in pieces by a single user. Whereas Deasy et al (1994) used an electron-counting scintillator detector or
radiographic film, this study’s magnetic spectrometer used Computed Radiography (CR) plates cut into
6” X 1” strips for the detection medium. These strips were taped into a slot in the side of the magnet
block at a reproducible position where they would intercept defelcted electrons. The electrons deposit
energy into the photostimulable layer of the CR strips at positions that varied with the kinetic energy of
the electrons. A laser scanner then triggered photostimulated luminescence and recorded the intensity

of the luminescence as a function of strip position, forming CR strip images where the signal intensity of
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the pixels were proportional to the deposited energy. These CR strip images were analyzed to
determine the energy spectra at 95-cm SCD. Details of spectrometer design, data acquisition, and data
analysis are explained in subsequent chapters of this thesis.

1.3. Motivation for study

Though the current method for tuning the electron beam energies to achieve matched beams
produces satisfactory dosimetric results, the process is tedious, time-consuming, and suboptimal. It
requires the user to measure a %DD curve every time adjustments are made to accelerator parameters
that change the energy spectra. This requires the operator to setup a scanning water tank, and also
requires the clinical medical physicist to infer aspects of the energy spectra from the %DD curves. By
measuring the energy spectra directly, the scanning water tank used to measure %DD curves could
possibly be eliminated from the beam tuning process, being used only for final verification. This should
quicken the beam tuning process, and probably improve matching quality as %DD curves only indicate
aspects of the energy spectra rather than the entire energy spectra. Regular measurements of the
energy spectra could possibly replace current quality assurance (QA) checks of the energy that use
Plastic Water® phantom slabs and a Farmer chamber.

1.4. Hypothesis

The purpose of this work was to use a permanent magnet electron beam energy spectrometer
to measure and compare electron beam energy spectra on matched electron beams at MBPCC.
Specifically, this work tested the following hypothesis:

Matched electron beams on MBPCC's six Elekta Infinity linear accelerators will have energy
spectra that are sufficiently matched. Two spectra will be considered sufficiently matched if their
incident modified peak mean energies, (E);, , (defined in section 3.1.4.2.1), and FWHM agree to within
0.12 MeV and 2.0 MeV, respectively, which corresponds to 0.05 cm and 0.1 cm agreement in the Rg

and Rgg_, values of the %DD curves, respectively.
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1.5. Specific aims
The Hypothesis will be determined using the following four aims:

Aim 1 — Develop methods for measuring suitable CR strip images and intensity profiles

Determine the accelerator geometry, the geometry of additional electron beam collimation, the
geometry of additional X-ray shielding, and the level of exposure to the CR strips that is required to
obtain a suitable CR strip image and corresponding intensity profile (defined in section 2.1.7) for each of
the seven electron beam energies using the permanent magnet spectrometer. Suitable implies the
image was created with (1) an electron beam exposure that delivers, but does not exceed, 1.0 cGy peak
dose to the CR strip, i.e. an exposure limitation inherent to the CR strip readout device used in this study
(2) an irradiation time sufficiently long to minimize the variation in the beam phase space inherent to
the first few milliseconds of irradiation, i.e. > 5sec, but short enough to be convenient, i.e. < 60sec, (3) a
sufficiently parallel electron beam so that divergence does not need to be included in the electron beam
model used for data analysis, (4) a diameter small enough to ignore electron beam spread outside the 1”
width of the CR strip and provide good energy resolution in the corresponding intensity profile, and (5) a
peak signal to X-ray background ratio of approximately 1.5:1 or better for the intensity profile.

Aim 2 — Develop methods for transforming measured intensity profiles into energy spectra at 95-cm SCD

Develop the methodology to transform a measured intensity profile into an energy spectrum on
central axis at 95-cm SCD. This was done by (1) extracting and smoothing net dose profiles (defined in
section 3.1.1) from the intensity profiles, (2) transforming the net dose profiles into energy spectra at
the spectrometer aperture, and (3) transforming the energy spectra at the spectrometer aperture to
those on central axis at 95-cm SCD. Because the above tasks used equation 2.7 (defined in section
2.1.2), a fit of equation 2.7 to clinically derived energy and position parameters was performed to obtain

values for the parameters B, and x,, used in equation 2.7. This analysis, performed using MATLAB
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R2012a, was verified with a calculated net dose profile derived from an assumed energy spectrum at the
spectrometer aperture in place of a measured net dose profile.

Aim 3 - Compare energy spectra of matched electron beams

Determine the energy spectra on central axis at 95-cm SCD for each of the seven electron beams
on each of the six MBPCC Elekta Infinity accelerators by applying the analysis techniques of Aim 2 to
intensity profiles measured in Aim 1. Compare all matched electron beam energy spectra.

Aim 4 - Correlate measured energy spectra metrics with %DD curve metrics

For every electron beam whose energy spectrum was measured, compare the (E);, , values and
FWHM values of the energy spectra with the R5y and Rgy_5q values. Values for Rgg and Rgy_,o Were
determined from relative ionization measurements in Plastic Water® phantom slabs taken in tandem

with the energy spectra measurements.
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Chapter 2 Aim 1 — Develop methods for measuring suitable CR strip images and intensity
profiles

Aim 1: Determine the accelerator geometry, the geometry of additional electron beam
collimation, the geometry of additional X-ray shielding, and the level of exposure to the CR strips that is
required to obtain a suitable CR strip image and corresponding intensity profile (defined in section 2.1.7)
for each of the seven electron beam energies using the permanent magnet spectrometer. Suitable
implies the image was created with (1) an electron beam exposure that delivers, but does not exceed,
1.0 cGy peak dose to the CR strip, i.e. an exposure limitation inherent to the CR strip readout device
used in this study (2) an irradiation time sufficiently long to minimize the variation in the beam phase
space inherent to the first few milliseconds of irradiation, i.e. > 5sec, but short enough to be convenient,
i.e. < 60sec, (3) a sufficiently parallel electron beam so that divergence does not need to be included in
the electron beam model used for data analysis, (4) a diameter small enough to ignore electron beam
spread outside the 1” width of the CR strip and provide good energy resolution in the corresponding
intensity profile, and (5) a peak signal to X-ray background ratio of approximately 1.5:1 or better for the
intensity profile.

2.1. Methods and materials
2.1.1. Overview of permanent magnet electron energy spectrometer

The basic irradiation geometry of the permanent magnet spectrometer used in this study is
illustrated in Figure 2.1. A two-aperture design was used for the collimation of the electron beam, with
the first aperture being a hole drilled in a Cerrobend® applicator insert positioned at 95-cm SCD and the
second aperture, henceforth the spectrometer aperture, being a hole drilled in a copper block that
abuts the magnet block. The two-aperture collimation design reduces the electron fluence rate at the
CR strip, allowing suitability criteria (1) and (2) of Aim 1 to be achieved simultaneously. Second, it
creates a highly parallel electron beam for passage into the magnet block and limits its diameter,

achieving suitability criteria (3) and (4) of Aim 1, respectively. Using a parallel electron beam for this

31



incident electron beam

. — & — 3 - - -

/ -
Cerrobend aperture — 95-cm SCD

\—- X-ray block

Copper aperture _1".'

Magnet separator

T

5cm

]

E2
CR strip

Figure 2.1. Cross-section of the magnetic spectrometer and beam collimation components. Illustrated
is a top-down view of a cross-section of the magnet block, its idealized magnetic field model, and
example electron paths. The magnetic field vectors that comprise the magnetic field point out of the
page. The incident electron beam is collimated into a small circular beam by the first aperture made of
Cerrobend®. The second aperture made of copper defines the beam’s diameter before it enters the
magnet block. The two together create a highly parallel beam and reduce the number of electrons
entering the magnet block. The dipole magnetic field (blue area) bends electrons according to the
Lorentz force law, dispersing different energies such that higher energy electrons (E2) travel further
downstream than lower energy electrons (E1) prior to striking the CR strip. The lead X-ray block shields
the CR strip from bremsstrahlung X-rays emitted by beamline components, primarily the primary
scattering foil. All dimensions are to scale.
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study greatly simplified the detector measurement theory for Aim 2 (Chapter 3). The lead block in
Figure 2.1 limited the amount of bremsstrahlung X-rays reaching the spectrometer’s CR strip, achieving
suitability criterion (5) of Aim 1. More detailed schematics of the complete magnetic spectrometer and
collimation apparatus are available in Appendix A.

The perpendicular magnetic field created by the permanent magnets in the magnet block is
illustrated as the dotted-circle, blue region inside the magnet block in Figure 2.1. This magnetic field
bends the electron trajectories to one side. The higher the kinetic energy of the electrons, the further
downstream, i.e. away from the source, the electrons will travel in the air gap before colliding with the
CR strip placed to the side. Thus, there is a relationship between where an electron deposits energy on
the CR strip and the kinetic energy of the electron. Therefore, the spread in deposited energy that
forms the latent image in the CR strip’s sensitive layer contains information about the spectrum of the
kinetic energies incident on the spectrometer aperture in front of the magnet block. This information
was analyzed to determine the energy spectrum of the electron beam (Aim 2, Chapter 3).

Figure 2.2 illustrates the magnetic spectrometer and beam collimation of Figure 2.1 setup on
MBPCC’s Baton Rouge Elekta Infinity accelerator for energy spectra measurements. Additional details of
the principal of operation, magnetic field, measurement geometry, exposure conditions, detection

medium now follow.
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Figure 2.2. Complete irradiation geometry. The irradiation geometry in Figure 2.1 is pictured with
respect to the Elekta Infinity accelerator rotated to 90°, producing a horizontal beam collimated by its
14 x 14 cm? applicator. The magnet and X-ray block were constrained by rails and screws, respectively,
on an aluminum base plate added for alignment purposes. The baseplate was set on top of two 5-cm
Plastic Water® blocks placed on the treatment table to make it easier for a user to look down the rails
and align the apparatus so that apertures are concentric. After turning off the vault lights, cardboard
was taped over the unoccupied magnet block slot opposite the slot occupied by the CR strip to shield
the CR strip’s sensitive layer from any left-over ambient light, as visible light erases CR strips.

2.1.2. Principle of spectrometer operation and Lorentz force law

The fundamental principal of operation behind this study’s magnetic spectrometer is a one-to-
one correlation between the kinetic energy of the electrons entering the magnet block and the position
at which the electrons strike the CR strip. A single CR strip position is not correlated to a single kinetic
energy of a monoenergetic electron beam because a single beam energy projects to a finite distribution
at the CR strip, i.e. the detector response function. This distribution, modeled in section 3.1.2.1, is
ignored here. The derivation of the relationship between electron energy and CR strip position, as well
as other aspects of this study’s analysis, require the definition of a cartesian coordinate system relative

to the magnet block. Such a coordinate system is defined in Figure 2.3.
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Figure 2.3. Spectrometer coordinate system. The Cartesian coordinate system is defined with respect
to the enlarged view of the magnetic spectrometer of Figure 2.1. It shows the x direction in red, which
is the aligned with the CR strip, the y direction in green, which is parallel to the front face of the magnet
block, and the z direction in blue, which is parallel to the magnetic field vectors. An example collimated
electron beam trajectory is illustrated in yellow. All dimensions are to scale.

The position to energy relationship is based on a simplified model of the electron beam and the
magnetic field in the magnet block’s air gap. The magnetic field is modeled as not having a vector
component in any of the directions orthogonal to the z direction referenced in Figure 2.3, hence By = B,
= 0. The magnetic field strength in the z direction, B,, is assumed to be perfectly uniform throughout
the blue shaded region illustrated in Figure 2.1, Figure 2.3, and Figure 2.4, which represents the physical
cross section of the magnets, and zero outside of it. The edges of this blue dotted region are defined by
the CR strips, the back face of the air gap near the exit aperture, and the effective entrance edge that
starts at distance x, downstream of x = 0, the CR strip origin. In Figure 2.4, the origin is the edge of the
CR strip in the x-direction nearest the magnet block’s entrance aperture. This means that in the model,
the incoming electron beam sees no fringe field. Additionally, the electron beam is modeled as forward-

directed, infinitely narrow, and centered in the middle of the magnet block’s entrance aperture.
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Figure 2.4. Electron trajectory variables for a point beam. An enlarged view of an example electron
trajectory in Figure 2.1 shows the electron’s radius of curvature, r, CR strip impact position, x, magnetic
field offset relative to the edge of the CR strip nearest the source, x,,, and distance between CR strip and
center of entrance aperture, L,. All dimensions are to scale.
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Equating the Lorentz force law to the centripetal force on an electron gives

2
F=le(v xB)| = m: : 2.1

where e is the charge of the electron, v is the velocity vector of the electron, B is the magentic field
vector in the air gap, m is the mass of the electron, and r is the radius of curvature of the electron inside
the magnetic field illustrated in Figure 2.4.

Solving for r yields,

2.2

where p = mv is the momentum of the electron and B, is the strength of the magnetic field in the
negative z direction, i.e. the direction perpendicular to the plane of motion.

Geometrically,

r2=(r—1Ly)*+ (x —x,)?%, 2.3

where x is the position along the CR strip where the electrons deposit energy, x,, is the effective edge of
the magnetic field with respect to the CR strip origin (i.e. x = 0) and L, is the distance between the CR
strip and the center of entrance aperture, all of which are illustrated in Figure 2.4.

Substituting equation 2.2 into equation 2.3 and solving for p results in,

eB, eB,L,

P=2Lo(x—xo)2+ > 2.4
The momentum of an electron is related to its kinetic energy, E, and rest energy, E,, by,
E = [p*c* + EOZ]% - E,, 2.5
where c is the speed of light. Substituting equation 2.4 into 2.5 gives
5 1
E= [{(;LCO (x —x,)% + %) BZ} + EOZ]Z — E,. 2.6

Substituting actual values for the constants into equation 2.5 and converting the units results in,
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E = (0 517—M6V 2+435—M6V)B
B { ' cm?2Tesla (x = %o) " Tesla Z}

where x and x,, are in centimeters and B, is in Tesla. Note that x is the independent variable while x,
and B, are parameters that were determined by fitting equation 2.7 to clinically-dervied energy and
position parameters drawn from calibration measurements.

According to this model, when the radius, r, of an electron beam equals half of L,, then it will
complete a half circle and just barely impact the CR strip parallel to its face at CR strip position x,,.
Electron beams with lower energies will miss the CR strip entirely. Hence, the lowest energy electron

that can strike the CR strip, Ecyto5r, is

eB,L,\* 1
Ecutoff = [( ; O) c? +E02]2 - E,. 2.8

2.1.3. Description of permanent dipole bending magnet block
The core of the permanent magnet spectrometer used throughout this study was the

permanent dipole bending magnet block illustrated in Figure 2.5, henceforth called the magnet block.
The magnetic field inside the magnet block was created by two rectangular 6” x 2” x 1” permanent N42
neodymium rare-earth magnets (Model NB085-5; Applied Magnets, Plano, TX) placed above and below
the 9/16”-thick air opening. Collimated electron beams enter this air space after passing through the
entrance aperture in the iron end piece labeled (1) in Figure 2.5. 9/16” of separation is created between
these two magnets with internal lips formed by extruded portions of the two iron pieces placed at each
end of the magnet block. These iron end pieces also help contain the magnetic field lines at the
entrance and exit aperture ends of the magnet block, reducing the fringe fields there. The magnets and
iron end pieces are surrounded by four aluminum plates whose dimensions are partially illustrated in
Figure 2.5. Recessed areas cut in the two side aluminum plates, one of which is labeled (4) in Figure 2.5,

accept CR plates cut into 1” x 6” strips for recording the spatial dispersion of electrons. These
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permanent magnets, along with the iron and aluminum structure enclosing them, comprise the magnet
block. This magnet block was loaned to LSU/MBPCC for this study by Professor Liang’s research group in

the Dept. of Physics and Astronomy at Rice University (Houston, TX).

61/2"

11/32"

~3J

127/32"

1/4"

23/32"

Figure 2.5. Magnet block dimensions. Labeled are (1) the face of iron magnet separator nearest the
source and (2) furthest from the source, (3) the bottom of two the permanent neodymium magnets, (4)
one of the two side aluminum plates with a slot cut into it, and (5) the top aluminum plate, with the
bottom one being identical. The entrance aperture, which unlike the exit aperture is visible in this
illustration, was drilled in the iron magnet separator nearest the source. Also, the CR strips were only
placed in the visible slot as the opposite slot would only be useful for positron collection. All dimensions
are to scale.

A map of B, versus position for several xy planes, three of which are plotted in Figure 2.6, was
provided by Liang et al. Measured B, values vary from about 0.35 to 0.625 Tesla in the central portion
of the air gap where the electrons travel, though for the vast majority of their trajectories electrons
experience B, values greater than 0.5 Tesla. Hence, B, values were not spatially-uniform as assumed in

the magnetic field model used in this study, though this discrepancy was ignored to simplify the analysis.
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Figure 2.6. Map of Bz between inside the magnet block. Contours of B, in Tesla for horizontal planes
located (a) midway between the surface of the top magnet facing the air gap and midplane of the air
gap, (b) at midplane of the air gap, and (c) midway between the the surface of the bottom magnet
facing the air gap and midplane of the air gap.

40



2.1.4. Description of measurement geometry
2.1.4.1. Accelerator orientation
The magnetic spectrometer and its collimation was designed to lie flat on a horizontal surface
and accept a horizontal beam. Hence, it was placed on the Elekta Infinity accelerator’s treatment couch
with the couch rotated to 270°, the gantry to 90°, and the collimator to 0° with the 14 x 14 cm?
applicator attached, as shown in Figure 2.7. The magnetic spectrometer was oriented on the couch so
that its central axis was collinear with the central axis of the electron beam during irradiation, as

illustrated in Figure 2.1 and Figure 2.2.

Figure 2.7. Accelerator configuration during irradiation. The accelerator’s gantry angle was set to 90°,
collimator angle to 0° and couch angle to 270° to deliver a horizontal beam to the magnetic
spectrometer. During irradiation, the Cerrobend® aperture insert replaced the open-field applicator
insert shown here.

2.1.4.2. Electron beam collimation
As stated earlier, a two-aperture design was used for the electron beam collimation. The two-
aperture collimation design creates an approximately parallel electron beam with a limited diameter for

passage into the magnet block and restricts the fluence striking the CR strip. These objectives were
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achieved by adjusting the distance between the upstream Cerrobend® and downstream spectrometer
apertures and their diameters.

Varying the diameter of the Cerrobend® aperture varies the number of electrons that are
allowed to pass, meaning the Cerrobend® aperture diameter controls the electron fluence reaching the
spectrometer aperture. Varying the distance between the two apertures also modifies the electron
fluence reaching the downstream spectrometer aperture as the electron beam exiting the Cerrobend®
aperture has an angular spread. Additionally, increasing the distance between the two apertures makes
the beam entering the magnet block more parallel. Beyond 10.6 cm of separation the beam was
considered parallel (divergence < 1.52°). Finally, increasing the diameter of the spectrometer aperture
increases the diameter of the electron beam entering the magnet block.

Note that in selecting the diameter of the Cerrobend® aperture and the distance between the
two apertures, there was an inherent tradeoff between meeting the Aim 1 objectives related to (2)
irradiation time and (5) peak signal to X-ray background ratio. This trade-off exists because as the
distances between the two apertures increases, the electron component of the signal decreases much
more rapidly than the X-ray component, hence decreasing the signal to X-ray background ratio. Also,
the irradiation time required to reach a maximum dose of 1.0 cGy to the CR strip increases because the
electron fluence rate at the spectrometer aperture decreases. Similarly, reducing the size of the
Cerrobend® aperture reduces the electron component of the signal but does not affect the X-ray
background, hence reducing the signal to X-ray background. Also, reducing the fluence rate at the
spectrometer aperture increases the irradiation time required to reach a max dose of 1.0 cGy to the CR
strip.

The equations used to design the collimation geometry in this study, which were derived in
section 2.1.5, were also used to calculate the appropriate number of MUs to deliver for each beam

energy. These equations were used to determine the initial diameters of the apertures and the distance
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between them. After determining a rough design with these equations, the design was fine-tuned with

a series of test measurements to arrive at the design described below and illustrated in Figure 2.8.

7164 =D1 /— 1st aperture (Cerrobend)
/ f
5/8'
. !
411/64" = L_aper

2nd aperture (Copper) —E= 4

1/2

1

Lrlv - RS = B3 I_‘J
Figure 2.8. Electron beam collimation cross-section without the X-ray block. Schematic illustrates the
thicknesses of the copper block and Cerrobend® insert, distance between the apertures, and diameter
of the apertures with the X-ray block removed for illustrative purposes. The electron beam, illustrated
in red, has an angular spread at the Cerrobend® aperture that spreads out to form a Gaussian spatial

distribution at the spectrometer aperture. All dimensions are to scale except those of the Gaussian
distribution, whose width was increased by about 50% beyond the width of a 7 MeV distribution.

As illustrated in Figure 2.8, the centers of the apertures were placed 4 11/64” (10.6 cm) apart.
This separation was sufficient to ensure that the electron beam entering the magnet block can be
approximated as parallel (divergence < 1.52°). The first aperture was a 7/64” hole drilled in the center
of a Cerrobend® applicator insert. The Cerrobend® insert, shown in Figure 2.9 (a) and (b), as well as in
Figure 2.8, was poured to 5/8” thickness using the 14 x 14 cm? Elekta applicator mold. The downstream
spectrometer aperture, pictured in Figure 2.9 (c) and (d), as well as in Figure 2.8, consisted of a 1/8” hole
drilled in a 1/2” thick copper block.
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Figure 2.9. Electron beam collimating apertures. Pictured are the (a) Cerrobend® insert with 7/64”
aperture, (b) Cerrobend® insert placed into the 14 x 14 cm? applicator, (c) copper block with 1/8”
aperture and alignment pins on the bottom, (d) and copper block placed in the aluminum base plate
downstream of X-ray block with the downstream magnet block removed for viewing purposes.

The spectrometer aperture and magnet block were held in place by the aluminum base plate
pictured in Figure 2.9 (d). The copper spectrometer block was held rigid relative to the base plate by
inserting the block’s attached pins, visible in Figure 2.9 (c), into the one of the hole pairs drilled into the
aluminum base plate. Two sets of such hole pairs are shown vacant in Figure 2.9 (d) with the third set
occupied by the copper spectrometer block. The magnet block, constrained laterally by two aluminum
rails attached to the base plate, was free to slide along the length of the base plate. For the purposes of
this study, measurements were only taken with the front face of the magnet block pushed flush against
the copper spectrometer block. The Cerrobend® aperture insert was held in place by the 14 x 14 cm?

applicator, as shown in Figure 2.9 (b). Because the aluminum base plate and applicator are not attached
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to one another, the position of the spectrometer aperture relative to the Cerrobend® aperture is
adjustable.

To achieve the irradiation geometry shown in Figure 2.2 and Figure 2.8, the aluminum base
plate was manually aligned using the positioning lasers and the concentricity between the Cerrobend®
and spectrometer apertures. First, the front edge of the aluminum baseplate nearest the Cerrobend®
insert was made co-linear with the overhead sagittal alignment laser and then moved towards the
Cerrobend® insert using longitudinal couch shifts. Then, the concentricity of the spectrometer aperture
relative to the Cerrobend® aperture was improved with vertical and lateral couch adjustments. The
concentricity between the two apertures was judged by staring upstream through all four apertures (i.e.
the exit and entrance apertures of the magnet block, the spectrometer aperture, and the Cerrobend®
aperture) while standing downstream of the magnet block. An illustration of perfect concentricity

between the spectrometer and Cerrobend® apertures from this view is illustrated in Figure 2.10.

Cerrobend insert

/Copper block

Figure 2.10. lllustration of aperture concentricity. White light is illustrated emanating through the
concentric Cerrobend® and copper apertures. Concentricity cannot include the magnet block apertures
because their centers were displaced vertically above the center of the copper aperture. The X-ray
block was removed for illustrative purposes. All dimensions are to scale.
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2.1.4.3. X-ray shield for CR strips

After the collimation in section 2.1.4.2 was designed, tests indicated that additional shielding
was needed between the major sources of bremsstrahlung X-rays (primary scattering foil, secondary
scattering foil, applicator trimmer bars, Cerrobend insert) and the magnet block to reduce the X-ray
fluence reaching the CR strips and achieve goal (5) of Aim 1. These bremsstrahlung X-rays created the
background portion of the CR strip image on top of which the electron beam portion sat. Reducing the
background X-ray portion allowed the percentage of the CR strip image that is due to the electron beam
to be maximized while not exceeding the 1.0 cGy max CR strip dose limit.

Lead was chosen for the X-ray block shielding material due to its high density (11.34 g - cm™3).
It was screwed to the aluminum baseplate in the available space between the Cerrobend® insert and the
spectrometer aperture. Based on preliminary measurements, a thickness of 3” was chosen for the lead
shielding, which filled nearly all the space between the Cerrobend® insert and spectrometer aperture.

The X-ray block was designed to reduce the bremsstrahlung X-ray contribution to the CR strip
image but have minimal effect on the transmitted electron beam. Hence, a 13/32” hole was drilled
halfway through the lead block, and a 51/64” hole was drilled through the other half, creating a stepped
aperture, illustrated in Figure 2.11, that did not interact with most electrons that passed through the
Cerrobend® aperture. To demonstrate this, one only needs to prove that the X-ray block has minimal
effect for the lowest energy electron beam on MBPCC's Elekta Infinity accelerators (7 MeV), as electron
scattering power decreases as energy increases.

Electrons exiting the Cerrobend® aperture can be modeled as a divergent point source with a
Gaussian angular distribution around central axis. From the point source at the exit of the Cerrobend®
aperture, the angle between the central axis of the electron beam and the most limiting lip of the X-ray
block is +5.89°, or 11.78° from edge to opposite edge of the limiting lip, as illustrated in Figure 2.11.

The standard deviation of the point source’s Gaussian angular distribution in the xy plane, 9, is 4.01°
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7/64"=D1— [ 1st aperture (Cerrobend)
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[32°

411/64" = L_aper

/2"

2nd aperture (Copper) a/64"

Figure 2.11. Electron beam collimation cross-section with the X-ray block. Schematic illustrates the
thicknesses of the copper block, Cerrobend® insert, and X-ray block. Additionally, the diameters and
lengths of the stepped X-ray block aperture are illustrated along with the X-ray block’s acceptance angle
for electrons diverging from at a point source placed in the middle of the exit of the Cerrobend®
aperture. All dimensions are to scale.

for an Eyo of 7.14 MeV, i.e. the Epo of the 7 MeV beam. In terms of a 2D Gaussian distribution in the xy
plane, this means the X-ray block would allow electrons inside approximately 1.4709y to pass assuming
Fermi-Egyes MCS. This means 85% of the electrons in the xy plane pass through the X-ray block. In
terms of a 3D Gaussian distribution, the fraction electrons inside 1.47dy , i.e. those passing through the
X-ray block, equals 66%. Hence, the majority of the electrons passing through the Cerrobend® aperture
also pass through the X-ray block, even for the lowest energy electron beams. Electrons that do not

pass through the X-ray block were unlikely to have been scattered back into the spectrometer aperture
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anyway. Therefore, it was assumed that the X-ray block had insignificant effect on the energy spectrum
at the spectrometer aperture.
2.1.5. Determining monitor units for each beam energy

Once the irradiation geometry was established, exposure levels were determined for each of the
seven electron beam energies. The number of MUs that could be delivered was constrained by the fact
that the max dose limit for the CR strip readout device was approximately 1.0 cGy, beyond which the
readout device saturates. The maximum deposited dose on the CR strip was within the electron spot.
Therefore, for each energy the appropriate number of MUs to deliver was estimated by approximating
dose within the electron spot.

This was done by determining the electron fluence per MU at the upstream Cerrobend®
aperture at 95-cm SCD and then determining the ratio of fluence at the spectrometer aperture to
fluence at the Cerrobend® aperture. Combining these relationships resulted in the electron fluence per
MU at the spectrometer aperture. Next, the electron fluence per MU at the CR strip was assumed to be
spread over an area larger than that of the spectrometer aperture. This, along with the 1.0 cGy max
dose limit for the CR strips, allows one to calculate the proper amount of MUs to deliver for each of the
seven electron beam energies. These calculations, which are described below, were used in tandem
with multiple test irradiations to arrive at the final MUs shown in Table 2.1 below. Test irradiations
were necessary primarily because the bremsstrahlung X-ray contribution to the CR strip image was not
calculated.

Electron fluence within a water phantom is related to the dose by,

p-o(l) . 29

p col,water

E
where ¢ is electron fluence, D is dose, and (;) is the mass collisional stopping power in water
col,water

for an electron of energy E. Solving for fluence and dividing both sides by the MUs delivered results in,
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¢ D (S)E ]_1 2.10
MU MU p col,water .

Accelerators at MBPCC are calibrated to deliver 1.0 cGy/MU on central axis using the 14 x 14
cm? open applicator at depth of maximum dose in a water phantom whose surface is at 100-cm SSD.
The dose per MU at the surface is obtained by multiplying the dose per MU at the calibration point, i.e.

R100, by the surface percent dose factor, i.e. %D(d = 0, E), resulting in,

-1

(,%)mo_cmm = 1'24(2]@ (%D(d = 0,E)) [(;)E ] : 2.11

col,water

Including the inverse square correction to find fluence per MU at the applicator results in,

-1

¢ ) 1.0 cGy 100\ [/S\®
2 = %D(d = 0,E) (—) (—) . 212
(MU 95—cm SCD MU ( ) 95 P/ cotwater
E
Because (5) varies little with E for therapeutic electron beams, a value of 1.968 MeV = sz/
P/ col,water g

was assumed for all beams, resulting in,

( [0} ) 3519+« 107 electrons

%D(d = 0,E). ,
0 %D ( JE) 2.13

95—cm SCD cm? x MU
Assuming the electron source could be treated as a point source inside the Cerrobend®
aperture, the electron fluence in the spectrometer aperture is approximated by

(R1)?
®105.6-cm ssp = Pos—cm scp 2(09y)2(L_aper)2 , 2.14

which is a result of Fermi-Eyges multiple Coulomb scattering (MCS) that holds when R1 < L_aper * 9,

where R1 is the radius of the Cerrobend® aperture (0.139 cm) and L_aper is the distance between the
Cerrobend® and spectrometer apertures (10.6 cm). The values for all of these variables are shown in

Figure 2.11. Note that R1 is half of D1, the diameter of the Cerrobend ® aperture.
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Combining equations 2.13 and 2.14 and solving for ¢1¢5.6—cm ssp results in,

(R1)? 3.519 * 107 electrons %D(d = 0,E) * MU 2.15
— * = * . '
¢105.6—cm SSD Z(O'Qy)z(L_apeT)z cm?2 x MU 0 ’

To account for the spread of the electrons in the x direction (due to dispersion in the energy
spectrum) and z direction (due to divergence in the xz plane) prior to reaching the CR strip, the electron
fluence of the beam at the spectrometer aperture at 105.6-cm SSD from equation 2.15 was multiplied

by 0.1, resulting in

01 (R1)? 3.519E7 electrons %D(d = 0,E) «MU|. 216
. = U. * * = * . °
¢Peak@str1p 2(09y)2(L_aper)2 cmZ = MU 0 )

where ¢peqrastrip 1S the peak electron fluence at the CR strip. Assuming the sensitive layer of the CR

strip is water equivalent,
\E
Dyear@strip = ¢peak@strip - , 2.17
P col,water

where Dpeqr@sterip iS the peak dose at the CR strip. Using equations 2.16 and 2.17, the relationship
between MU and Dy eqr@strip Was determined for each beam energy in Table 2.1.

Table 2.1. Relationship between MU and peak dose at the CR strip for each beam energy. Listed are the
T, and %D(d = 0,E) values used in equation 2.16 as well as the delivered MUs and resulting

Dpeak@strip- The T, and %D(d = 0, E) values were derived from MBPCC clinical data for each of the
nominal beam energies, E,, ;- In these calculations R1 = 1.39 mm and L_aper = 10.6 cm.

Enom (MeV) O-Gy %D (d = 0: E) Mu Dpeak@strip (CGV)

(rads)

0.070 0.80 300 0.47

0.058 0.83 200 0.47
10 0.050 0.83 120 0.38
11 0.044 0.85 90 0.38
13 0.038 0.88 75 0.43
16 0.031 0.92 65 0.59
20 0.024 0.93 55 0.85
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2.1.6. Overview of CR strips and CR strip readout device

To measure the CR strip images from which the energy spectra were extracted, CR plates cut
into 1” wide by 6” long strips were taped into the slot on the side of the magnet block, as shown in
Figure 1.21. When irradiated, the electron beam entering the magnet block was deflected towards the
CR strip by the permanent magnets and interacted with the CR strip. The electrons deposited energy in
the sensitive photostimulable phosphor layer of the strip, forming the latent image that was later
readout by a laser scanning system. The principle of operation of the CR strips and readout device are
detailed in Appendix B.

In this study, CR strips were irradiated with clinical electron beams and then transported in light-
tight envelopes to LSU where they were readout by Dr. Polad Shikhaliev using his model C431200
Cyclone Plus Storage Phosphor System (PerkinElmer, Waltham, MA) laser scanner pictured in Figure 2.12
(a). Asvisible light erases CR strips, all room lights in the vault were turned off during irradiation and
cardboard was placed over the CR strip slot opposite the CR strip slot that was occupied by a strip to
reduce the ambient light exposure to the strip. CR strip measurements were taken this way for all seven
beam energies of a single Elekta Infinity accelerator. For the purposes of this study, the time between
measurements and readouts, which varied between two to five days, was not long enough to
appreciably degrade the resulting CR strip images.

The CR plates used were Agfa MD-10 storage phosphor plates (Agfa-Gevaert N.V., Belguim),
pictured in Figure 2.12 (b). Though the manufacturer did not specify, the grains used in the CR strips’
sensitive layer were assumed to be BaFBr crystals doped with Eu™? activators, also written BaFBr:Eu*?2.
The crystal lattice contained Ba:F:Brin a 1:1:1 proportion. The CR strips were 0.46 mm thick, 0.26 mm

of which was the sensitive layer and 0.2 mm of which was the flexible backing.
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(b)

Figure 2.12. CR strip readout device and CR strips. Pictured is the (a) (right) Model C431200 Cyclone
Plus Storage Phosphor System and its (left) monitor display as well as the (b) (top) active layer and
(bottom) flexible plastic backing layer of example 1” x 6” Agfa MD-10 CR strips used in this study (top

picture from PerkinElmer Inc.)

The CR strips were readout using the phosphor readout device in Figure 2.12 (a). The strips
were taped horizontally onto the readout device’s carousel. The medium format carousel was used for
the Cyclone Plus Storage Phosphor System. The lowest resolution setting, i.e. 150 dots per inch (DPI),

was used during readout as it produced the fastest scan times. The result of a single readout was a .tiff
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image file that contained a 2D array of pixel values, each value being the square root of the signal
intensity for that pixel. The square root of the signal intensities for each pixel was produced rather than
the unmodified signal intensities due to hardware limitations of the readout device. Hence, to obtain
the correct signal intensities all pixel values were converted from 16-bit to 32-bit values and then
squared using Image) software (National Institutes of Health, Bethesda, MD). The result was an image
file with signal intensities for each pixel that were approximately proportional to deposited dose, as is
apparent in the signal intensity to dose calibration curve plotted in Figure 3.2 in section 3.1.1.1. Four
example CR strip images in a single .tiff image file from a single readout are pictured in Figure 2.13.
Notice that the signal due to the electron beam appears as a white electron spot in each CR strip image.
After the CR strips were readout, they were erased using the integrated CR plate eraser found in the
Kodak ACR-2000i CR plate reader (Eastman Kodak, Rochester, NY) and reused.

For the energy spectra generated in this study, it was assumed that the dose deposited per unit
of incident fluence did not vary with position along CR strip. As the photons produced due to the mass
radiative stopping power of electrons are unlikely to be reabsorbed in the CR strip’s sensitive layer, the
energy deposited in the strip due to the mass collisional stopping power dominates. As is illustrated in
Figure 2.14, the mass collisional stopping power of the sensitive layer of the CR strip varies little with
energy, and hence position of the incident electron beams. The low-energy cutoff to the permanent
magnet spectrometer is about 2.0 MeV and practically no electrons above 25 MeV are generated.
Additionally, the electrons for a single beam will span an energy range of about 15 MeV at maximum,
with the majority of the area under the spectrum falling within a 8 MeV range for the broadest spectra.
Also, deposited dose in the sensitive layer due to backscatter from the CR strip backing is around 3% and
does not vary much with electron energy, hence was ignored. Therefore, the assumption of uniform
response with electron energy is reasonable (i.e. 8 MeV range corresponds to a maximum deviation of

+3% from uniform response).
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Figure 2.13. .tiff image of a CR strip readout. A .tiff image file resulting from a single readout
illustrated as (a) a 2D grayscale image and (b) a colorized 3D image. This .tiff image file had all its
pixel values converted to 32-bit and squared, making the signal intensities approximately
proportional to deposited dose. Four CR strip images are contained within this .tiff image file, as
four CR strips were taped to the readout device’s carousel.
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Figure 2.14. Mass collisional stopping power of the CR strip’s sensitive layer for electron energies
between 1 and 30 MeV. Assuming the sensitive layer of the CR strip was 45% BaFBr crystal (assumed
density of 5.1 g/cm?) and 55% polyethylene (assumed density of 0.93 g/cm?3) (Rowlands 2002), a unique
material composed of 26.2% Ba, 3.6% F, 15.2% Br, 7.9% H, and 47.1% C by mass, with a density of 1.48
g/cm3, was inserted in the NIST data base to gather the plotted mass collisional stopping powers.

In addition to minimal variation in signal intensity with electron energy, it was essential that the
CR strip response did not vary much with position. This was demonstrated with irradiations of the 1” x
6” face of the CR strips with broad, uniform, normally incidience electron beams. These irradiations are
described in greater detail in section 3.1.1.1. The CR strip images that resulted from these irradiations
were summed in the z direction along their 1” widths to produce the average signal intensity per column
versus CR strip position plots in Figure 2.15. These plots were sufficiently flat to be considered spatially
uniform for this study, especially since the electron peak structure of the CR strip image occupied only a

small segment of the total 6” length.
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Figure 2.15. Spatial uniformity of CR strip response. Plotted are signal intensities of uniformly irradiated
CR strips averaged along the 1” strip width versus the 6” strip length, i.e. x direction, for various levels of
exposure. The measurements used to generate these plots are described in section 3.1.1.1.

2.1.7. Generating intensity profiles

To determine the usability of the CR strip images, the average signal intensity per column versus
CR strip position was calculated. This was done by averaging the signal intensity per pixel along a
column of pixels oriented in the z direction, i.e. the 1” width direction, of the CR strip image, for all such
columns along the x direction, i.e. the 6” length direction, of the CR strip image. Four such measured CR
strip images from a single readout are illustrated in Figure 2.16, with the horizontal direction and
vertical directions of the .tiff image aligning with the x and z axes, respectively. The plot of average
signal intensity per column versus CR strip position, x, will henceforth be referred to as the intensity

profile. During the analysis in Aim 2, energy spectra were extracted from these intensity profiles.
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The heights of the columns used for averaging did not extend across the entire 1” width of the
CR strip image, as the electron spot only fell within the central portion of the CR strip image’s 1” width.
Hence, there was an insignificant contribution of signal from the electron beam outside the central
portion of the strip to the edges of the CR strip image. Also, a significant portion of the CR strip image
comes from bremsstrahlung X-rays depositing energy in the strip’s sensitive layer. Though these X-rays
contribute to the signal throughout the entire CR strip image, their contribution varies with the level of
attenuation experienced by the X-rays. Notably, the lip of the slot cut into the side aluminum plate of
the magnet block creates additional attenuation for X-rays reaching the edges of the CR strip, creating

the lip attenuation shadows illustrated in Figure 2.16. These lip attenuation artifacts are also visible in

electron peak

L

lip attenuation - marker
annotation

Figure 2.16. Measured gray scale CR strip images from a single readout. The coordinate system of the
spectrometer is illustrated in the top left of the this .tiff image file. From top to bottom, the CR strip
images come from the 20 MeV, 9 MeV, 10 MeV, and 11 MeV beam of MBPCC’s Baton Rouge Elekta
Infinity accelerator. The right edge of each strip’s image defines x=0 for that strip (marker annotations
correspond to the edges of the CR strips nearest the entrance aperture of the magnet block). The bright
spots contain the electron energy spectra information. The artifacts from the marker annotations and
scotch tape used to attach strips to the carousel obscured stimulating laser light and resulting
photostimulated luminescence (PSL) photons that were too far from the electron peak to be of concern.
On the other hand, the lip attenuation artifacts, which were positioned near the electron peaks, had to
be avoided during column integration as illustrated in Figure 2.17.
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the 3D image in Figure 2.13 (b). These lip artifacts should be excluded from the columns used for
averaging as they have abnormally low signal intensities compared to the rest of the CR strip’s width.
Therefore, a limited portion of the CR strip image called the averaging window was used for averaging.
For each CR strip image, the top and bottom edges (z direction) and left and right edges (x direction) of
its averaging window defined the top and bottom pixels of the vertical averaging range for averaging
columns and the left and right pixels of the horizontal range over which the columns were averaged,
respectively.

The windows were selected to include as much of the electron beam spot as possible while
excluding the lip attenuation artifacts and the regions just above and below the edges of the electron
beam spot in the z direction. Throughout this study, the width of the averaging window in the z
direction was 63 pixels from edge to edge, including the edge pixels, which corresponds to a distance of
1.06 cm. The decision to use 63 pixels was somewhat subjective, but slight variations in this width (1-10
pixels) had no significant effect on the results. The central pixel of the averaging window’s 63 pixel
width was drawn from a fit of a 2D 5" order polynomial over the electron peak portion of the CR strip
image, i.e. the portion of the image that had signal intensities greater that 50% of the max signal
intensity for the .tiff image. Taking the pixel with the maximum signal intensity from the fit rather than
from the raw CR strip image mitigates the effect of noise in the electron peak structure. To find the
length of the averaging window, a program was written to move horizontally outward from the electron
peak structure to the left and right edges, i.e. x direction edges, of the CR strip image. Along the way,
the program determined whether or not the signal intensities of pixels were below a threshold that was
set above the background signal intensity yet below the lowest CR strip image signal intensity and
ceased operation if they were. When this happened, the program recorded the coordinates, producing
the left and right edge pixels of the CR strip image. Hence, the 63 pixel width and this length defined the

dimensions of the averaging window.
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An example averaging window generated in this way is illustrated in Figure 2.17, along with the
resulting intensity profile. The peak signal to X-ray background ratio for intensity profiles was defined as
the peak (maximum) average signal intensity per column divided by the average signal intensity per
column of the X-ray background at the CR strip position of the peak. The method for determining the X-
ray background is described in section 3.1.1.2, though all the average signal intensities per column were
converted to dose first. This conversion if nearly linear though, so the peak signal to X-ray background

ratios change insignificantly.
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Figure 2.17. Example averaging window and resulting intensity profile. lllustrated on top of a CR strip
image is an example averaging window in white and one of the resulting columns used for averaging in
red. The window contains averaging columns that are 63 pixels tall. Below the CR strip image is the
intensity profile that resulted from the averaging window shown.
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2.2. Results and discussion
2.2.1. CR strip images and intensity profiles

Illustrated in Figure 2.18 are the CR strips images for the 7, 9, 10, 11, 13, 16, and 20 MeV beams,
along with their corresponding intensity profiles, measured on the Baton Rouge Elekta Infinity
accelerator on Jan/14/2013. The CR strip images and intensity profiles measured on MBPCC’s other
Elekta Infinity accelerators are of similar quality to those shown here.

Of note, the horizontal orientation of the CR strips on the laser scanner readout carousel was
neither perfect nor completely uniform. For example, the CR strip shown in Figure 2.18 (a) is more
horizontal than the CR strip shown in Figure 2.18 (b). The effect this had on the resulting energy spectra
was small and hence ignored in this study. Also, the tape artifacts visible in the CR strip images also
show up in the resulting intensity profiles, visible as sharp reductions in average signal intensity per
column at the edges. It is also worth noting that even for the lowest energy electron beam, where the
area of the electron peak structure as a percent of the total area under the intensity profile was the
smallest, the electron peak structure was still prominent. Additionally, there was a clear increase in the
distance between the origin of the CR strip, i.e. x=0, and the position of the electron peak with
increasing energy, as was expected.

During the analysis described in section 3.1.1.1, average signal intensities per column were
converted to doses with the signal intensity to dose calibration curve plotted in Figure 3.2. Using this
calibration curve, the max signal intensity per CR strip image was converted to dose for all seven beam
energies on each of MBPCC's six Elekta Infinity accelerators. These max doses are listed in Table 2.2
below. Note that the max dose to the CR strip exceeded 1.0 cGy by a small margin in only a few cases
where the energy spectra were narrower than normal. Hence, the CR strip images that resulted from
the irradiation geometry and exposure levels described in this aim were close enough to meeting

objective (1) to be used in further analysis.
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Figure 2.18. Plots of average signal intensity per column versus CR strip position. These plots show the
average signal intensity per column versus CR strip position extracted from the CR strip image above the plot
for Baton Rouge Elekta electron beams at: (a) 7 MeV, (b) 9 MeV, (c) 10 MeV, (d) 11 MeV, (e) 13 MeV, (f) 16
MeV, and (g) 20 MeV. x = 0 corresponds to the upstream edge of the strip, and the falloff at approximately
15.2cm (6”) indicates the downstream edge of the strip. The energy spectra information is contained in the
peak regions superimposed on the background curve created by bremsstrahlung X-rays.
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(Figure 2.18 continued)
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(Figure 2.18 continued)
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(Figure 2.18 continued)
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Table 2.2. Maximum doses per CR strip. Tabulated are the maximum doses in cGy per CR strip for the
intensity profile measurements performed for each beam energy of each accelerator at MBPCC. The
maximum doses that exceeded 1.0 cGy are highlighted in grey.

Max dose Gonz BR Ccvl Cv2 Houma | Ham

7 MeV (cGy) 0.893 0.962 0.757 1.092 0.718 0.852

9 MeV (cGy) 0.819 0.909 0.803 1.093 0.763 0.777
10 MeV (cGy) 0.546 0.678 0.531 0.702 0.631 0.562
11 MeV (cGy) 0.647 0.741 0.574 0.704 0.620 0.530
13 MeV (cGy) 0.674 0.725 0.485 0.739 0.608 0.545
16 MeV (cGy) 0.796 0.976 0.691 1.029 0.724 0.705
20 MeV (cGy) 0.867 1.075 0.760 1.221 0.898 0.951

As the Elekta Infinity accelerators at MBPCC delivered radiation at rate of about 400 MU/min,
the irradiation times resulting from the exposure levels in Table 2.1 consistently fell between 5 seconds
and 50 seconds , hence meeting objective (2) of Aim 1. The electron beam that passed into the
spectrometer aperture had a divergence of less than 1.52°, which was deemed small enough to ignore.

Hence, objective (3) of Aim 1 was achieved, allowing the beam to be modeled as parallel in further
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analysis. Additionally, as is visible in Figure 2.18, the diameter of the spectrometer aperture produced
electron spots that fell inside the 1” width and lip attenuation artifacts and provided sufficient energy
resolution for further analysis. This trend was true for all other accelerators, meaning objective (4) of
Aim 1 was met.

Finally, the peak signal to X-ray background ratios, were 1.87, 1.89, 2.69, 2.95, 2.86, 3.71, and
3.64 for the intensity profiles of the 7, 9, 10, 11, 13, 16, and 20 MeV beams plotted in Figure 2.18,
respectively. As was expected, there was a general increase in signal to background ratios with beam
energy due to the increasing percentage of electrons reaching the CR strip. These peak signal to X-ray
background ratios are similar to those calculated for all other MBPCC Elekta Infinity accelerators,

meaning objective (5) of Aim 1 was met.
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Chapter 3 Aim 2 — Develop methods for transforming measured intensity profiles into energy
spectra at 95-cm SCD

Aim 2: Develop the methodology to transform a measured intensity profile into an energy
spectrum on central axis at 95-cm SCD. This was done by (1) extracting and smoothing net dose profiles
(defined in section 3.1.1) from the intensity profiles, (2) transforming the net dose profiles into energy
spectra at the spectrometer aperture, and (3) transforming the energy spectra at the spectrometer
aperture to those on central axis at 95-cm SCD. Because the above tasks used equation 2.7 (defined in
section 2.1.2), a fit of equation 2.7 to clinically derived energy and position parameters was performed
to obtain values for the parameters B, and x,, used in equation 2.7. This analysis, performed using
MATLAB R2012a, was verified with a calculated net dose profile derived from an assumed energy
spectrum at the spectrometer aperture in place of a measured net dose profile.

3.1. Methods and materials
3.1.1. Extracting net dose profiles from intensity profiles and smoothing

Three steps were required to obtain smoothed net dose profiles: (1) transform intensity profiles
into gross dose profiles, (2) subtract the X-ray background portions from the gross dose profiles to
obtain net dose profiles, and (3) smooth the resulting net dose profiles.

3.1.1.1. Transforming intensity profiles into gross dose profiles

To simplify later calculations of energy spectra, the average signal intensities per column of the
intensity profiles were converted to doses. This conversion from average signal intensity per column to
dose was marginally necessary, as results showed the average signal intensity per column scaled almost
linearly with dose.

To obtain the signal intensity to dose calibration curve, CR strips were irradiated with the 6 MeV
electron beam on MBPCC’s Varian Clinac 21EX S/N 1412 (Varian Medical Systems, Palo Alto, CA) using
the 25 x 25 cm? open applicator. The gantry was rotated to 270° so that the electron beam traveled

horizontally. A 5-cm thick Plastic Water® (CIRS Inc., Norfolk, VA) slab was placed at 300-cm SSD on its
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side so that the electron beam struck at normal incidence to the slab’s square surface, as pictured in
Figure 3.1. The same 1” wide x 6” long CR strips used in the measurements described in Aim 1 were
placed in modified radiographic film packets to shield them from ambient light and then oriented
horizontally and taped to the center of the slab’s surface such that the middle of the strips were on
central axis, as pictured in Figure 3.1. After placement, the strips were irradiated individually with 0, 2,
4,6,8,10,12, and 14 MUs. These strips were then readout using the laser scanning readout device
described in section 2.1.6, producing CR strip images. Because the 75-cm field width at 300-cm SSD was
so much greater than the 6” strip length, the electron fluence was assumed uniform across the CR strip.

The MUs delivered were converted to dose at the CR strip in two steps. First, the delivered MUs
were converted to dose at 100-cm SSD using MU calculations. Then, this dose was converted to dose at
the CR strip, i.e. at 300-cm SSD, using relative ionization measurements. The dose output at 100-cm SSD
was calculated using,

D(d = 0,55D = 100cm, FS = 25x25c¢cm?) = Dg; * S, * %D(0), 3.1
where D,4; equals the calibration dose output on central axis at Ry in water at 100-cm SSD when
using the 10 x 10 cm? open applicator (1.0 cGy/MU), S, equals the output factor for the 25 x 25 cm?
open applicator (1.008), and %D (0) equals the percent dose at the surface of a water phantom at 100-
cm SSD when using the 25 x 25 cm? open applicator (69%). Inserting the values for these factors into

equation 3.1 results in,

0.6955 cGy 39

D(d = 0,SSD = 100cm, FS = 25x25cm?) = i

This dose output was converted to the dose output at the surface of a water phantom at 300-
cm SSD with the relative ionization measurements. The ionization output in nC/MU was measured for
the 6 MeV beam with the 25 x 25 cm? open applicator. The measurement took place at the surface of a

Plastic Water® phantom placed at 100-cm SSD using a model TN34001 parallel plate chamber (CNMC
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Figure 3.1. Irradiation geometry for the average signal intensity to dose calibration. Pictured is (a) (b) the
Varian Clinac 21EX rotated to 270° to deliver a broad 6 MeV beam at normal incidence to CR strips. The
CR strips were (c) placed in modified radiographic film packets and taped to the surface of 5-cm of Plastic
Water® slab material. Irradiations were performed using the (d) 25 x 25 cm? open applicator.

Company Inc., Nashville, TN). This measurement was repeated, except with the phantom placed at 300-
c¢cm SSD. As 300-cm SSD was achieved by placing the Plastic Water® slab on its side and orienting the
gantry horizontally, a thin piece of masking tape was used to ensure the parallel plate chamber did not
fall out of the Plastic Water® chamber slab. Since the placement of the tape was constant for both the
100-cm SSD and 300-cm SSD measurements, it had no effect on the relative ionization outputs between
the two setups. No build-up material was placed between the ionization chamber and the source, but 5-
cm of Plastic Water® slab material was placed immediately downstream of the chamber flush to the

chamber slab to generate full backscatter. The ratio of the ionization output at 300-cm SSD to the
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output at 100-cm SSD was 0.0846. This ratio was assumed equal to the ratio of the dose output at 300-
cm SSD to the dose output at 100-cm SSD and hence multiplied by the dose output at 100-cm SSD, i.e.
0.6955 cGy/MU, to obtain the dose output at 300-cm SSD where the CR strips were placed, i.e. 0.0588
cGy/MU.

Then, for each of the resulting CR strip images, the average signal intensity from a central 1.6 cm
high x 2.5 cm long, rectangular portion of the CR strip image was calculated using Image). Care was
taken to avoid any dark streaks in the CR strip image that existed due to scratches in the sensitive
phosphor layer of the CR strip. The resulting average signal intensities and corresponding doses were fit
to a second order polynomial, i.e.

D =a,(D*+ a,() + a3, 3.3
where D was dose and a4, a,, and a; were constants determined by the fit. From the fit, a; =
3.357E7'%, a, = 7.392E7%, and a; = 0.04385.

As we can see from the plot of this fit on top of the data points in Figure 3.2, the relationship
between dose and average signal intensity is almost linear, i.e. a, is much larger than a,. Therefore,
assuming a linear conversion from signal intensity to dose would have produced results within 2% of
the correct values.

Using this conversion, intensity profiles, like those plotted in Figure 2.18, were converted to
gross dose versus CR strip position plots, i.e. gross dose profiles'. An example gross dose profile is
plotted in Figure 3.3 (b). Next, the dose due only to electrons, i.e. the net dose, was determined by

subtracting the dose due to the bremsstrahlung X-ray contribution, i.e. the background dose.

! Ideally, the conversion to dose should be applied to the signal intensity of each pixel of a CR strip
image rather than to the average signal intensities per column of the intensity profiles. However, in the
present study it was applied after the column averaging performed in section 2.1.7. Because of the
higher degree of linearity, the present method should have an error of less than 1%.
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Figure 3.2. Signal intensity to dose calibration curve. Plotted are (blue dots) doses delivered to each CR
strip in cGy and the average signal intensity that resulted from averaging the signal intensities within
rectangular portions of the middle of the CR strips. Also plotted is (green) the result of fitting equation
3.3 to these data points.
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profile from the 7 MeV beam on MBPCC’s Baton Rouge Elekta Infinity accelerator and (b) its resulting
gross dose profile. The steps at each end of each profile are due to tape artifacts.
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3.1.1.2. Subtracting X-ray background from gross dose profiles

After obtaining the gross dose profile, the bremsstrahlung X-ray background was subtracted to

obtain the net dose profile. In Figure 3.3, this background structure is the gradually sloping, hill-like

shape upon which the electron peak structure lies. This structure also contains the tape artifacts that

resulted from affixing the CR strips to the carousel with scotch tape.

To remove the background structure from the plot, a 3™ or 4™ degree polynomial was fit to the

portions of this background structure that fell inside the tape artifacts at the edges yet outside of the
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Figure 3.4. Background subtraction process. Plotted are (a) (blue) the gross dose profile and (black) the
two regions of the gross dose profile to which the background polynomial was fit, (b) (blue) the result of
this fit, (c) the background dose profile resulting from replacing the two portions of the gross dose
profile corresponding to the fit regions and data points between the two with the result of the fit, and
(d) the net dose profile resulting from the subtraction of the background dose profile from the gross
dose profile.
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electron peak structure. These portions were selected manually after MATLAB prompted for the
boundaries of these two regions. Sample fit regions are shown in black in Figure 3.4 (a) and (b). There
must always be two regions included in the fit, one on each side of the electron beam peak structure.
4™ order polynomials were only used for some 7 MeV and 9 MeV beams whose background structures
had too many kinks for a 3™ order polynomial to fit properly.

The portion of the gross dose profile corresponding to the data points of the fit regions and the
data points between the fit regions were then replaced with values from the resulting polynomial fit.
The result of this replacement was the background dose profile, an example of which is plotted in Figure
3.4 (c). The background dose profile was subtracted from the gross dose profile, an example of which is
plotted in Figure 3.4 (a), resulting in the net dose profile, an example of which is plotted in Figure 3.4 (d).

3.1.1.3. Smoothing net dose profiles

A smoothing function was created to smooth the net dose profiles, as the transformation
described in section 3.1.3 amplified noise in the low-energy portions of the energy spectra. This
smoothing function allowed the user to manually smooth the net dose profiles using three smoothing
subfunctions: a zeroing smoothing subfunction, a moving average smoothing subfunction, and a
polynomial fit smoothing subfunction.

The first smoothing subfunction, the zeroing subfunction, replaced values within specified
ranges with zeros. This is commonly used to flatten portions of the position spectra that fall well
outside of the electron peak structure.

The second subfunction was the polynomial fit smoothing subfunction, which laid several
polynomial curves on top of a net dose profile and used their central values to replace the original
points. Each of these curves was the result of fitting a polynomial of user-specified order to a user-
specified range of data points centered on the data point that was being replaced. This resulted in each

data point being replaced, with the fit value for the fit centered on that point. If used properly, this
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smoothing function further reduced the spatial noise while maintaining the general shape of the curve.
The use of this subfunction was restricted to the peak structure.

For the third subfunction, the moving average smoothing subfunction, MATLAB’s built-in
function smooth(), was used. When using smooth(), the range over which smooth() would operate and
the span of the averaging kernel were specified manually. For each element in the range over which
smooth() operated, the element was replaced with the average of the elements within an averaging
kernel centered on that element. The number of adjacent points used, plus the central point of the
kernel, was the span. Since the span expanded evenly around the central element that was being
replaced, the specified span required an odd number of data points. Further details about how
smooth() works, including how it handles elements at the edges of the range of operation, is found
within MATLAB help documentation. The moving average subfunction was used to smooth the
transition between the zeroed regions and the peak region smoothed with the polynomial fit smoothing
subfunction.

Using a combination of the subfunctions found in this smoothing function, the net dose profiles
were smoothed to reduce noise. An example unsmoothed renormalized net dose profile, and the
smoothed version of it resulting from the use of the smoothing function, are plotted in Figure 3.5 (a) and
(b), respectively. Though artificially manipulating data in this way is not ideal, further analysis produced
more well-behaved results if smoothing was performed. Most importantly, without at least zeroing the
low-energy region to the left of the peak, the transformation described in section 3.1.3 would magnify
noise in that region to heights greater than that of the electron peak. The energy metrics drawn from
the resulting energy spectra, i.e. (E);, , (described section 3.1.4.2.1) and FWHM, are not appreciably

affected by such smoothing, so the resulting error was ignored in this study.
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Figure 3.5. Net dose profile smoothing. Plotted is (a) an unsmoothed net dose profile renormalized to
have an area of unity and (b) the smoothed version of it created with the smoothing function. The
unsmoothed net dose profile was generated from the measured intensity profile of the 7 MeV beam on
the Baton Rouge Elekta Infinity accelerator.

3.1.2. Transforming net dose profiles into energy spectra at spectrometer aperture
The next step of the analysis was the conversion of the net dose profiles into energy spectra at
the spectrometer aperture. This conversion required (1) deriving the theory behind calculating net dose
profiles at the CR strip given known energy spectra at spectrometer and (2) using this theory to create
an inversion algorithm for determining the energy spectra at the spectrometer given the measured net
dose profiles.

3.1.2.1. Theory of operation: transforming energy spectra at spectrometer aperture into net
dose profiles

In this section, the relationship between the energy spectrum of an electron beam at the
spectrometer aperture and the net dose profile it creates at the CR strip is derived. This relationship
was first derived for monoenergetic electron beams and then generalized to polyenergetic beams. The
magnetic field model described in section 2.1.2 was used here. The electron beam, while still modeled
as perpendicular to the yz-plane hence parallel to the central axis, was not assumed to be a point beam

as it was in section 2.1.2. Rather, the electron beam was assumed circular with radius equal to that of
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the spectrometer aperture, b, illustrated in Figure 3.6 (a). The electron fluence inside the spectrometer
aperture pictured in Figure 3.6 (a) was assumed spatially uniform.

The deposited dose in the CR strip is related to electron fluence by

E

D(x,z) = ¢pcr(x, 2) (f—)) , 34

CR

where D(x, z) is the net dose deposited in the CR strip’s sensitive layer, ¢ (x, z) is electron fluence at

E
point (x, z) on the CR strip, and (%) is the electron mass stopping power for the CR strip for kinetic

CR
energy E. The CR strip was assumed sufficiently thin that the net dose and electron fluence did not vary

with depth of penetration, y, into the strip’s sensitive layer, hence y does not appear in equation 3.4.

(a) (b)

h/2 h/2

Figure 3.6. Mapping of electron fluence from the spectrometer aperture to the CR strip. The total
number of electrons inside the red differential area is conserved as the electrons move from the (a)

spectrometer aperture to the (b) CR strip. The labels h/z and b are half the height of the aperture at the

center of the red area and the radius of the aperture, respectively. Note that the heights of the
apertures at the centers of the red areas in (a) and (b) are equal. Though the ellipse at the CR strip is
illustrated as a larger in area than the spectrometer aperture, it is possible for electrons in the
spectrometer aperture to map to smaller area at the CR strip.

To create a net dose profile, D(x), the dose must be averaged for each column, resulting in,

1 (2% /5\F
D(x) = — — d 3.5
@ =53] () ez,

where Az is large enough to capture all electron fluence even if there is spreading in the z direction.
Assuming no electron spreading and a monoenergetic beam, the limits change such that
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+h(y)/
2
E

D(x) ! f (f—)) ¢cr(x,2)dz, 3.6

" 20z
-hGy,

where Az = h(y), illustrated in Figure 3.6 (a), is the height of the spectrometer aperture seen by
electrons at a particular position y. Geometrically,

h(y) = 2(b2 —y2)'/2 for |yl <b, 3.7
where b is the radius of the spectrometer aperture.

Because the fluence is constant in the z direction over the limits of integration,

+h(y)/
E 2
_ 1 /S
D(X) = _(_) d)CR(X, 0) f dZ. 3.8
20z \p/ -
—h(y)/
2
Evaluating the integral gives
D) = (2) fea0h0) 39
x)=5—(= X, y). .
20z \p/ . CR

The electrons entering through a differential width y + Ay of the spectrometer aperture, shown
in red in Figure 3.6 (a), are conserved and spread over an area bound by x + Ax on the CR strip, shown

in red in Figure 3.6 (b), meaning

bépect ¥, Oh(WAY = pcp(x, 0)h(Y)Ax, 3.10
where ¢§’pect is the planar fluence at the spectrometer aperture and ¢£; is the planar fluence at the CR
strip. At the spectrometer aperture, the electron fluence is equal to the electron planar fluence, as the
beam is parallel and perpendicular to the yz plane. Additionally, the electron planar fluence is spatially

uniform inside the spectrometer aperture, meaning

¢5pectAy = ¢5R(x; 0)Ax. 3.11

Note that there is no longer any indication of spatial dependence in ¢§pect.
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At the CR strip, the electron fluence, ¢z (x, 0), is given by

_ d)gR(xr 0)
¢cr(x,0) = m ) 3.12

where 8 is the angle of incidence of electrons on the CR strip relative to normal incidence. Increasing
the obliquity with which electrons impact the CR strip increases the deposited dose as the electrons will
have longer track lengths through the sensitive layer of the CR strip. Since a specific CR strip position x
will be struck by electrons from various spectrometer aperture positions, 8 is a function of both x and y.

Geometrically, using Figures 2.4 and 3.6,

s
;z[y,ﬂ] g 3.13
cos(@(x, y)) (x — x,)?

forL=L,+yandr = ﬁ (eqgn. 2.2), which gives

1 sl i 3.14
o |

Combining equations 3.11, 3.12, and 3.14 reduces to

1
T2 /2 Ay
_.p 3.15
dcr(x,0) = Pspece [m] Azl
and substituting equation 3.15 into equation 3.9 results in
1
_ 1 (S\F r? /2 dy
D) = —(2) P | _|h _ 3.16
) =2n2 (p) g Poveet [ZrL - LZ] ax| ")
Based on the geometry in Figures 2.4 and 3.6
y=1—L,—[r2 = (x —x,)2] /2, 3.17
and taking the derivative of y with respect to x gives
-1
2 2
|ﬂ|:[( r ) _1] _ 3.18
dx X — X,
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Substituting equation 3.7, 3.17, and 3.18 into equation 3.16 and simplifying results in the net
dose profile for a monoenergetic electron beam being

2 1,
D(X) = K¢5pect [(rz—(;——xo)z> (bz — {T —L,— [7'2 - (x — Xo)z]l/z}z)] ’ 3.19
where
1 /S\E

CR

Note that equation 3.19 is only valid as long as |y| < b. Integrating equation 3.19 across an
N\E
electron’s beam entire momentum spectrum and assuming (;) , and thus K, is constant throughout
CR

the therapeutic electron beam energy range (3-20 MeV) gives,

Pmax (%)

2 1/2
D(x) =K f GFect (D) Krz_(:—_x)z) (bz —{r—Lo-Ir*—(x- xo)z]l/z}Z)] dp, 321
Pmin(*) ?

where ¢_fpect(E) is the momentum spectrum at the spectrometer aperture and py,q, (x) and py,in (x)

are the maximum and minimum momentums of electrons that the spectrometer aperture allows to

reach a certain position x on the CR strip, respectively, where

_eB[(x—x,)? " 29
pmax(x)_7m+(o_ )]. 22a
and
_eB[(x —x,)?
Pmin (%) = > (LO—+b) + (L, + b)] . 3.23a
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In the energy domain, eq. 3.21 becomes

D(x) =K E’"f‘(") Ppect (E) [(ﬁ) (b2 —{r—Lo—Ir* - (x- ;co)'z]l/z}z)]l/2 dE, 3.24
Emin (%)
where:
Emax(0) = [(Pmax () * ©)? = E,2] /2 — E,, 3.22b
and
Emin(0) = [(Pmin(0) x 0> = E?] /2 — E, . 3.23b

Alternatively, equation 3.24 can be written as

+00
D(x)=K j $épect (E)DRF (E, x)dE , 3.25

Ecutoff
where E1o5f comes from equation 2.8 except L, was replaced by L, + b, and DRF(E, x) is the

detector response function, i.e. CR strip dose per electron incident on the spectrometer aperture, i.e.

1

>(b2 - {r —L,—[r*—(x— xo)Z]l/z}z)] 2, 3.26a

TZ

DRF(E,x) = [(

r2 — (x — x,)?

when E, i, (x) < E < Eppgx(x), and elsewhere (i.e. E < Epyjn(x) or E = Epp g (X))

DRF(E,x) =0, 3.26b

1
T_[E2+2*E*EO]/2. 397

ecB,
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3.1.2.2. Properties of detector response function

The detector response function, DRF(E, x), given in equations 3.26a & b includes the effects of
the (1) finite size of the aperture, (2) non-normal incidence of the electrons on the CR strip, and (3) the
Jacobian of the transformation from the energy domain to the spatial domain. Example monoenergetic
DRF(E, x) plotted in red in Figure 3.7 (a) were created using the 1.59-mm radius of the spectrometer
aperture for b in equation 3.26a. The widths of monoenergetic DRF (E, x) vary with b, approaching
zero as b approaches zero. The area under DRF(E, x)*cos(G(E, x)), examples of which are plotted in
blue in Figure 3.7 (a), remains constant with E though the heights and widths of
DRF(E, x)*cos(Q(E, x)) decrease and increase, respectively, as E increases beyond about 5.5 MeV.
This is indicative of the fact that the planar fluence was conserved between the spectrometer aperture
and the CR strip while the cross-sectional area between the beam and the CR strip increased with E.
Note cos(6(x,y)) in eqn. 3.14 was rewritten to cos(6(E, x)) to emphasize energy dependence. The
widths of monoenergetic DRF (E, x) also widen with E, though the decrease in heights is retarded by
the fact that DRF(E, x) is proportional to fluence, not planar fluence, meaning total area under
DRF(E, x) increases with E due to an increase in obliquity of incidence angle.

As the E of the DRF(E, x) is lowered, DRF (E, x) will encompass a x — x,, value that equals ,

2

rz_(:—_x)z) term in equation 3.26a equals infinity. Physically, this can be understood as a

meaning the (

convergence of monoenergetic electrons upon a single CR strip position, as is illustrated in Figure 3.8 (b).
This creates a vertical asymptote inside DRF(E, x) as long as the E of the DRF(E, x) falls within this
convergence range (=4.0-4.6 MeV). The forming of this vertical asymptote is illustrated in Figure 3.9 (b).
This asymptote is problematic, as equation 3.25 was executed via discrete integration with
monoenergetic DRF(E, x) sampled at CR strip positions, i.e. x values, corresponding to a constant 0.01
MeV sampling interval in the energy domain. Variations in the distance between the vertical asymptote
and nearest x value of the sampling grid as E varied within the convergence range caused large
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Figure 3.7. lllustration of DRF(E,x) characteristics. Plotted (a) are example (red) DRF(E, x) and (blue)
DRF(E, x)*cos(H(E, x)) for equal-fluence, monoenergetic electron beams of energies of 8, 9, 10, 11,
and 12 MeV assuming a 1.59-mm spectrometer aperture. Multiplying DRF(E,x) by cos(G(E, x))
removes the effect of non-normal electron incidence. The areas under the blue plots are unity, while
the areas under the red plots are 1.11, 1.15, 1.19, 1.23, and 1.27 for the 8, 9, 10, 11, and 12 MeV beams,
respectively. Also illustrated are (b) example monoenergetic electron beams with (red) low and (yellow)
high beam energies demonstrating an increase in beam-CR strip cross-sectional area with beam energy.
All dimensions are to scale.

81



M>Ty

CR Strip
gm—
Q)
—

CR Strip

CR Strip

spectrometer aperture spectrometer aperture spectrometer aperture

Figure 3.8. Electron beamlet convergence. lllustrated are electron beamlet trajectories for
monoenergetic electron beams when the electrons are all (a) downstream-directed, (c) upstream-
directed, and (b) both upstream and downstream-directed, as well as neither (i.e. striking at normal
incidence) when they strike the CR strip. The direction of the electrons upon impact changes as the
energy, E, hence radius of curvature, r, of the beam decreases. Notice that as the impact direction of
the beamlets transitions from downstream to upstream, the impact positions on the CR strip trace over
one another, creating spots of concentrated dose.
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Figure 3.9. Formation of vertical asymptote in DRF. Plotted is (a) 5 MeV monoenergetic DRF(E, x)
demonstrating the bunching up of electrons in the most downstream portion of the CR strip prior to the
formation of a vertical asymptote. The formation of the vertical asymptote becomes more apparent as
(b) the energy of the DRF (E, x) is lowered further and approaches the convergence region. The plotted
DRF(E, x) were sampled with a resolution of 1078 MeV in the energy domain for illustrative purposes.
In practice, a resolution of 0.01 MeV was used as increasing the resolution to 0.001 MeV or finer created
prohibitively long run times. The 0.01 MeV sampling grid is fairly course in this region, as less than eight
data points were sampled per DRF(E, x) plotted in (b).
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fluctuations in the maximum magnitude sampled per monoenergetic DRF (E, x). As discrete integration
in this study was performed by approximating the area per data point by multiplying the magnitude
sampled by the width of the spatial bin, these fluctuations in maximum magnitude sampled per
monoenergetic DRF (E, x) caused the distribution of area within the approximated DRF (E, x) to vary
erratically with E. This is especially true since the sampling grid is very course relative to the widths of
DRF(E, x) in the convergence range. This causes significant errors in output of equation 3.25 when
operating in the convergence range. More importantly, the sampled magnitudes were sometimes so
large that their values could not be assigned to double-precision variables (i.e. 64 bits). In these cases,
MATLAB assigns a value of infinity (Inf) to the magnitude, rendering further calculations impossible.

To deal with this problem, the calculated net dose, D.4;.(x), was determined for the portion

above and below 5.5 MeV separately. Then, these portions were added together, i.e.

5calc(x) = 5calc,lower(x) + 5calc,upper(x) ’ 3.28

where Ecalc_upper(x) was obtained by changing the low-energy limit of equation 3.25 from E¢y;o5f to
5.5 MeV, which was a low-energy limit large enough to ensure no DRF (E, x) were generated that were

too narrow relative to the sampling grid or contained vertical asymptotes. The result was

Dcalc,upper(x) =a f ¢§pect(E)DRF(E’ x)dE . 3.29
5.5 MeV

where a; was a constant chosen such that for any energy greater than 5.5 MeV, if DRF (E, x) did not
include the effect of the variation in angle of incidence from the normal, then equation 3.29 would be
an area conserving operation, i.e.

+ 00

1=a, f DRF(E, x) cos(Q(E, x)) dx for55MeV < E. 3.30

— 00
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Dcqic1ower () was the portion of d)fpect(E) between Ey;orr and 5.5 MeV converted to the spatial

domain, i.e.

1.0 ¢cGy dE
Dcalc,lower(x(E)) = Td)gpect(E) |E| for Ecutoff < E < 55MeV. 3.31
cm?
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Figure 3.10. Smoothing of the low-energy cutoff artifact. Plotted above is the input (blue) to and output
(green) from the inversion algorithm both without (a) (b) smoothing of the low-energy cutoff artifact
and with (c) (d) smoothing of the low-energy cutoff artifact. Plots on the right (b) (d) are zoomed in
versions of plots on the left (a) (c).

This work-around creates the “hill and valley” low-energy cutoff artifact seen in Figure 3.10 (a) and (b).
This artifact was eliminated by fitting a 4™ order polynomial to the regions to the immediate left and
right of the artifact. The result of the fit was used to replace data points in the artifact region, resulting
in smoothed artifact regions like the one pictured in Figure 3.10 (c) and (d). The resultis a D.4;(x) that

does not include the effects of the finite size of the aperture or the variation in the angle of incidence
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from normal for CR strip positions corresponding to energies below 5.5 MeV. This discrepancy was
ignored as it was small and existed only in the portion of ¢§pect(E) that lies below 5.5 MeV, which is a
minor fraction of the entire area under ¢§pect(E) even for the lowest energy beams.
3.1.2.3. Solving for energy spectra at the spectrometer aperture
For a given measured net dose profile at the CR strip, D,,,0qs (%), the energy spectrum at the
spectrometer aperture, (;bfpect (E), was determined by solving equation 3.28. The equation was solved

using the following numerical process:

Step 1: The initial estimate of the energy spectrum at the spectrometer aperture,

Pepect est,1 (E), was determined by transforming Dpyqs(x) normalized to an area of unity, i.e.

Dineasn(X), into the energy domain, i.e.

Yz —

_cem” 3.32
X
1.0 ¢G meas,N( )

de| !
¢5pect,est,1(E(x)) = |d_ .

This estimate of the energy spectrum ignores the effect of finite aperture size and variation in angle of

incidence from the normal, 8(E, x).

Step 2: Next, the first estimate of the net dose profile calculated using equation 3.28, i.e.

Ecalc,l(x)f was generated with ¢§pect,est,1(E)-

Step 3: Next, the difference between D g 1 () and Dpeqs v (%), AD; (x), was calculated, i.e.

Aﬁl (x) = Emeas,N(x) - Ecalc,l (x) . 3.33

AD; (x) was transformed into the energy-domain, i.e.
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1 -1
fem? AD, (%) |d_E| _ 3.34
1.0 cGy dx

A¢1(E(x)) =

A, (E) indicates how ¢ &,ecr est.1 (E) needs to change to produce a calculated net dose profile that

better matches Dpeqsn (X).

Step 4: Prior to being added to ¢§pect,est,1 (E) to generate the next estimate of the energy

spectrum at the spectrometer aperture, A¢, (E) was smoothed via an eight-Gaussian fit, i.e.

N=8 _(E_az,k)z
A(»bGauss,l (E) = ayxe 3k 3.35

k=1

where a, y, a, x, and az , were determined by fitting eight Gaussians distributions to A¢, (E). More

details about the fit are available in section 3.1.2.4.

Step 5: An iterative process, i.e.i =i + 1, continued whereby

¢5pect,est,i(E) = ¢5pect,est,i—1(E) + A¢Gauss,i—1(E) . 3.36

then steps (2-4) were repeated, i.e. the ith estimate of the net dose profile, [_)calc,i(x)f was calculated

using equation 3.28 and ¢ £, ocr esr,i (E),

then,

1/m2 B -1

dE
¢ - 3.37
AD;
1.0 cGy i) |dx

Agi(E(x)) =

)

then
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A‘pGauss,i(E') 3.38

I
Q
=
.
®
)
L
=

where ay x, a, x, and az ; were determined by fitting eight Gaussians distributions to A¢; (E).

This process, henceforth the inversion algorithm, was executed from i=2 until i=N, where N was
the number of iterations such that the total area under |A¢causs,i(E)| was less than 0.0001 for five
consecutive iterations (i =N-4 through i =N). After N iterations, ¢5pect,est,i(E) was assumed equal to
Gépect (E). In practice, N = 15 for most beams energies. Note that for iteration i = 1, qbfpect_est,i(E)
will have an area of exactly one. For all other iterations i > 1, ¢§pect,est,i(E) will not have an area of
unity, though it will approach unity as i increases.

3.1.2.4. Details of Gaussian smoothing

In preliminary versions of the inversion algorithm described in section 3.1.2.3, A¢;_; (E) was
not smoothed with the 8-Gaussian fit, i.e. A@¢qyss,i(E), prior to being added to ¢5pect,est,i—1(E) to
obtain (,bfpect,est_i(E). Executing the inversion algorithm without modifying A¢;_; (E') produced
erractic, unrealistic results. After several iterations, the inversion algorithm began to add narrow pieces
of area back into (,bfpect,est,i(E) at inappropriate energies, creating poorly behaved energy spectra like
the green one plotted in Figure 3.11. Smoothing A¢;_; (E) with Gaussians first meant the inversion
algorithm could only add or subtract area to or from ¢§pect,est,i—1(E) in smooth, gradual portions and
would do so mostly inside the bounds of the original estimate, ¢fpect,est,1(E). To ensure the fitting
algorithm called by the inversion algorithm did not get stuck continually trying to fit Gaussian
distributions to just one portion of A¢;_; (E), the initial estimates of the centers of the eight Gaussian
distributions used by the fitting algorithm, a;, 1, a, , a; 3, az 4, Az 5, Az 6, a3 7, and a, g, were randomly
selected from inside the 4-7, 7-10, 10-13, 13-16, 16-19, 19-22, 22-26, and 26-30 MeV ranges of

Ag;_,(E), respectively, for each iteration.
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Figure 3.11. Inversion algorithm with and without Gaussian smoothing. Plotted are the results of the
inversion algorithm described in section 3.1.2.3 after 15 iterations both (blue) with and (green) without
Gaussian smoothing of A¢;_(E). Note Gaussian smoothing results in more well-behaved and less
noisy energy spectra at the spectrometer aperture.

3.1.3. Transforming energy spectra at spectrometer aperture into energy spectra at 95-cm SCD
The dual aperture, collimation design preferentially selects forward-directed, higher-energy
electrons for passage into the magnetic spectrometer, meaning that for any single electron beam the
energy spectrum at 95-cm source to collimator distance (SCD), $&s_.m scp (E), differs from ¢§pect(E).
Using Fermi-Eyges MCS theory, (pfpect(E) was determined given a known ¢f<_ .., scp (E). Then, the
process was inverted to determine ¢ds_cm scp (E) given a known ¢&,ecr (E).
To determine the ¢ £, (E) for a known ¢5s_ . scp (E), it was necessary to model the

transport of the electron beam from the Cerrobend® aperture at 95-cm SCD to the spectrometer
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aperture. Due to the small diameter of the Cerrobend® aperture relative to the distance between the
two apertures, the electron beam was approximated as a point source centered in the middle of the
Cerrobend® aperture. Then, the radial spread of the electrons away from the central axis as the beam
travels from the point source to the spectrometer was modeled assuming a Gaussian angular
distribution in the xy-plane and xz-plane at the point source.

Under these assumptions, the electron fluence at the face of the copper block was a Gaussian
spatial distribution centered in the middle of the spectrometer aperture where the standard deviation
of the spatial distribution in the xy-plane was much greater than the diameter of the spectrometer
aperture. The magnitude of the electron fluence on central axis at the face of the copper block per

incident electron at the Cerrobend ® aperture, ¢, , is given by

1
a ~ ]
Zn(Lsurf)z(o'Gy)z

3.39

where Lg,;,-r equals the distance between the upstream surfaces of the apertures and dg,, Is the
standard deviation of the projected angular distribution in the xy-plane.

Because the diameter of the spectrometer aperture was small compared to the spread of the
Gaussian spatial distribution at the upstream face of the copper spectrometer block, the entire area
inside the spectrometer aperture was assumed to have an electron fluence per electron incident upon
the Cerrobend® insert of ¢,. Because Ly, is constant, variations in ¢, are due solely to changes in

o, which is related to electron energy by the approximation

(agy)z —a, *E178, 3.40
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where a, is a constant of proportionality (Werner et al 1982). Data based on the work of Harris (2012)
plotted in Figure 3.12 from MC simulations performed at MBPCC (courtesy of Dr. Robert Carver)

demonstrated that this relationship is valid for electron beam energies above 3.25 MeV.
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Figure 3.12. Validation of Werner's relationship. Plotted is (red) 0p,, Versus E for scattering powers of

air from Werner's relationship (equation 3.40) on top of (blue) results of MC simulated electron beam
data. Simulations were performed at MBPCC by Dr. Robert Carver using a detailed physical model of the

treatment head and applicator geometry (Harris 2012). Equation 3.40 with a;=226.3 provided the best
fit to the MC data points for E > 3.25 MeV.

Substituting equation 3.40 into equation 3.39 leads to,

¢oq = by xEL78, 3.41

where b, is a constant of proportionality. Hence,

(pfpect(E) =C % E'78 « ‘.ng—cm SCD (E), 3.42
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where c; was a constant whose value was chosen such that the area under d)fpect(E) was unity. Hence,
the electron beams loses more low than high energy electrons in passing through the two-aperture
collimation system, meaning the energy spectrum contains a disproportionally high percentage of higher

energy electrons. Inversely,

(;bgs—cm scD (E) = dy * E~178 & d’gpect(E) ’ 3.43

where d; is a constant such that the area under ¢fs_ ..., scp (E) is unity.
3.1.4. CR strip position to electron energy calibration

The methods of section 3.1.2 use equation 2.7. The values for the parameters x, and B, in
equation 2.7 were determined by a fit of the equation 2.7 to clinically derived energy and position
parameters. These parameters were drawn from the calibration data, i.e. (1) the seven %DD curves in
water and (2) the seven CR strip net dose profiles measured on Jan/14/2013 on the Baton Rouge Elekta
Infinity accelerator. After the initial fit of equation 2.7 to determine the values for x, and B,, the energy
spectra at 95-cm SCD were calculated using the methods described in sections 3.1.2 and 3.1.3. Then,
the change in the energy spectra created by the passage of the electron beam through the two-aperture
collimation system was used to adjust the energy parameters used in the fit, generating a second more
accurate estimate of the values for x, and B,.

3.1.4.1. Calibration %DD curves and net dose profiles

Calibration data consisted of %DD curves in water and CR strip net dose profiles measured for all
seven electron beams on MBPCC’s Baton Rouge Elekta Infinity accelerator on Jan/14/2013. All
calibration data were gathered on a single day to minimize the chance for energy spectra to drift
between measurements. Hence, it was assumed that the measured %DD curves and net dose profiles
for each nominal beam energy were produced by electron beams with the same energy spectra. To

obtain measured %DD curves, percent depth ionization (%DI) curves were measured with the 14 x 14
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cm? open applicator using a scanning water tank with a 0.13 cm3 CC13 air ionization chamber (IBA,
Louvain-la-Neuve, Belgium). These %Dl curves, which were plots of percent ionization versus effective
depth (physical depth minus 0.57,,,,), were converted into the %DD curves used for calibrating the
magnetic spectrometer. Percent ionization was converted to percent dose using the AAPM TG-70
protocol (Gerbi et al 2009) and TG-25 protocol (Khan et al 1990) with TG-51 values for relative stopping
powers (Almond et al 1999), as implemented in the IBA data acquisition system (IBA, Louvain-la-Neuve,
Belgium). Prior to being converted to %DD curves, the %DI curves were shifted deeper by 0.063 cm to
align with same-day %DIl measurements taken in Plastic Water® phantom slabs. These phantom slab
measurements are explained in Aim 4.
3.1.4.2. Calibration energy and position parameters

The energy and position parameters used for the fit were the modified peak mean energy of an
electron beam incident on the surface of a water phantom placed near isocenter, (E)}, ,, and the
modified peak mean position, (x);,, respectively. (E), ,, the average energy of the peak region of the
energy spectrum, was obtained from measured %DD curve R, values and equation 3.45. (x);, is an
analogous parameter defined relative to (E);, , and drawn from measured CR strip net dose profiles.

3.1.4.2.1. Definition of modified peak mean energy

(E)m,o is @ modified version of the incident peak mean energy, (E);, defined by Deasy (private
communications 2012). (E); is the average energy within a limited range of the energy spectrum called
the energy averaging range. The energy averaging range used to find (E);, incorporates most of the
electron peak structure of the energy spectrum. The lower energy limit of the energy averaging range,
as defined by Deasy (2012) was 0.85E), ,, and the upper energy limit of the energy averaging range was

1.15E

p,0, Where E, , was the drawn from measured energy spectra. A sample +15% energy averaging

range is illustrated in Figure 3.13.
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Deasy used (E); as a substitute for E, , in equation 1.1, resulting in,

MeV MeV

(E)p,(MeV) = 0.22MeV + 1.98 * R, +0.0025

* (Rp)?, 3.44

cm cm?

where R, is derived from measured electron beam %DD curves.
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Figure 3.13. Energy averaging ranges used to calculate peak mean energy. Plotted is an (black) example
7 MeV energy spectrum from MBPCC’s Baton Rouge Elekta Infinity accelerator and (red vertical lines)
the edges of its energy averaging range calculated using Deasy’s method (i.e. low-energy edge of range =
0.85E,, , and high-energy edge of range = 1.15E), ;). Also plotted is the energy spectrum’s (blue overlay
and vertical lines) energy averaging range calculated using the modified Deasy method.

To understand Deasy’s reasoning behind this substitution, it is necessary to understand that
equation 1.1 was derived by simulating monoenergetic, monodirectional electron point beams normally
incident upon the surface of a water phantom with MC techniques (ICRU 35, 1984). Then, the
reciprocity theorem (ICRU 35, 1984) was used to calculate the %DD curve for a broad parallel electron
beam of the same monoenergetic energy, Epnono- T0 compare these %DD curves to clinically measured
%DD curves produced by the diverging beams of clinical linear accelerators, the inverse of the spherical-
divergence correction should be applied to all data points of the measured %DD curves, though Deasy

sometimes ignored this correction because its effect on R,, was negligible below 20 MeV. Because
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electron beams used in the clinic are not monoenergetic, energy parameters drawn from measured
energy spectra must be substituted for the E,,,,, values energy spectra used in the MC simulations.
ICRU 35 (1984) recommends Ej, ,, resulting in equation 1.1, while Deasy used (E)s, resulting in equation
3.44.

Deasy (1992) concluded that (E); was a better substitution for Ey,,p, than E, , by obtaining R,,
values with the same methods used to derive equation 1.1, except with measured energy spectra from a
Phillips SL25, now the Elekta Infinity, instead of with E};,,,,- As can be seen from Figure 3.14, the plot of
R, versus (E);, overlaps the plot of the inverse of equation 1.1 better than the plot of Ry, versus Ey, ,,

which led Deasy to the conclusion that equation 3.44 should be used in lieu of equation 1.1.
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Figure 3.14. Comparison of simulated Rp plotted versus measured incident peak mean energy and
incident peak energy. The (E)); and E,, , values were drawn directly from the measured energy spectra,
while the R,, values were drawn from MC simulated %DD curves generated using that same measured
energy spectra. As is visible, plots of R, versus (E); tend to overlap the plot of ICRU 35 equation 1.1
better than plots of R, versus E, ,, suggesting Deasy’s energy parameter, (E);, is a better substitution
for Epmono in equation 1.1 than E, , (modified from Deasy 1992).
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Besides producing better agreement with the inverse of equation 1.1, (E);, is also better at
minimizing the effects of strangely-shaped spectra on the resulting R, values. Consider the hypothetical
situation where an energy spectrum has two noticeable peaks, like those in Figure 1.15, but with one
peak only slightly taller than the other peak. The peak energy would lie underneath the tallest of the
two peaks. If the second highest peak rises slightly, then it may become the highest peak, and the peak
energy would shift such that it was underneath that peak. Depending on how far displaced the peaks
are from one another, this very slight change in the energy spectrum could result in a relatively large
shift in the peak energy, hence R,, value assuming equation 1.1 is correct. This is problematic, as the R,
values of energy spectra that are only slightly different should be practically the same. Additionally,
even if there is only one noticeable peak in an energy spectrum, the shape of the spectrum can vary
greatly, as shown in Figure 1.14 and Figure 1.15. There is no reason to assume that the exact placement
of the highest point of the peak structure relative to the bulk of the peak structure is as important as the
general distribution of relative fluence within the peak structure. Thus, Deasy’s energy parameter, (E),
is a more stable parameter than Ey, ,.

Though Deasy’s energy parameter was an improvement, the +15% energy averaging range used
to calculate (E);, is prone to the same problems as E), , because it is uses Ej, , as the central energy of
the range. Therefore, slight modifications to the shape of the energy spectra may result in more
significant changes in the placement of the energy averaging range used for calculating (E);. To
mitigate this problem, a “modified Deasy method” for finding the energy averaging range was used,
resulting in the incident modified peak mean energy, (E);, ,, which will be used throughout this study

instead of (E);. Henceforth, R, will be related to (E));, , instead of (E);, by,

. MeV MeV )
(E)m,O(MeV) = 0.22MeV + 1.98 * Rp + 0.0025 o * (Rp) . 3.45

cm
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To find (E);, 0, an algorithm was created to search for the central energy, E.y,;, of the Deasy +15%
energy averaging range that maximized the area of the energy spectrum that fell within said energy
averaging range. In most cases, values for (E), , and (E); were very close.
3.1.4.2.2. Definition of modified peak mean position

The position parameter used for the fit of equation 2.7 was (x);,, an analog to (E)},; . (X)m,
exists in the spatial domain and came from a measured net dose profile, D;,0qs(x), instead of existing in
the energy domain and coming from an energy spectrum. (x)y, is the average CR strip position within a
region of D,,.4s (%) known as the position averaging range. Because D,,,,s(X) exists only in the context
of this study, the position averaging range was defined relative the energy averaging range of D04 ()
transformed to the energy domain, i.e. ¢f,q5(E), which is a close first estimate of ¢pfec, (E). This is
problematic, as transformations to the energy domain require values for the coefficients B, and x,,,
which are themselves determined by the fit of equation 2.7 to seven (x);, and (E);, , values drawn

from the calibration data. Hence, (x)j, was solved for using the following numerical process:

Step 1: Afirst estimate of (x),, i.e. (X)3, est,1, Was calculated by

Xmax,est,1 Y
X X * Dmeas(x) dx
<x>* ‘1 — min,est,1 3 46
m.est, Xmax.est1 Ty :
) x) dx
fxmax,est,l meas( )
where
Xminest,1 — 0-9xcent,est,1 , 3.47
and
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Xmax,est,1 — 1-1xcent,est,1 . 3.48

where X ont est,1 Was the center of a £10% averaging range found using the modified Deasy method on
Dmeas(x). The only difference between using the modified Deasy method in the spatial domain versus
using it in the energy domain is that the x-axis has different units. Trial runs demonstrated that +10%

produced a more accurate first estimate of the position averaging range than +15%.

Step 2: First estimates of coefficients B, and x,, i.e. B, ¢5t 1 and X, 0t 1, Were determined by
fitting equation 2.7 to the seven (x)y, ¢s¢.1 and (E)y, , values, where (E);, , values were determined

using equation 3.45 and the R, values drawn from the measured calibration %DD curves.

Step 3: Using By st 1 and X, ¢s¢,1 iN €quation 2.7, Dipeas(x) was transformed to the energy

domain, i.e.

1 -1

2 dE
¢r€leas,1(E(x)) = 1.0622}] Dmeas(x) |a

3.49

Step 4: The upper and lower limits of the energy averaging range for qb,’fwas,l(E), i.e. Emaxest1

and Eypin est1 respectively, were determined, where

Emax,est,l = 1-15Ecent,est,1 , 3.50

and

97



Emin,est,l = 0-85Ecent,est,1 , 3.51

where E ot ost.1 Was the center energy of the standard +15% energy averaging range in the energy
domain determined by applying the modified Deasy method to ¢1I;1eas,1(E)- Though ¢§Leas,1(E) is not a
proper energy spectrum as the finite size of the spectrometer aperture and the variation in the angle of
incidence from normal incidence were not accounted for when determining it, it was close enough for

calibration purposes.

Step 5: Aniterative process, i.e. i = i + 1, continues whereby X, est.i aNd Xpin est,i are
determined by converting Ep, 5 esti—1 aNd Epyin est,i—1 t0 the spatial domain using the inverse of

equation 2.7 and B, ot ;-1 and X, ¢t i—1, then

Xmax,est,i n
x*D

Xmin,est,i meas (X) dx 3.52

fxmax,est,i Emeas (X) dx

Xmin,est,i

<x>:n,est,i =

then steps (2-4) are repeated, i.e. a fit of equation 2.7 to the seven resulting {(x)y, ¢s¢; and (E);, , values

determines B, g5 ; and X, ¢sr ;- Next,

P 1/cm2 A dE| ™ 353
¢meas,i(E(x)) = 1.0 cGy Dimeas(x) |a , .
then,
Emax,est,i = 1-15Ecent,est,i , 3.54
and
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Emin,est,i = 0-85Ecent,est,i . 3.55

This process was executed from iteration i=2 until iteration i=N, where N was chosen such that
| ()i esti — (XVmesti—1| < 0.01 for iterations i =N-2 through i =N. This usually occurred at N=5, at
which point all estimates were assumed equal to the true values for their respective parameters. An
example D,,.qs(x) and the (a) first and (c) second estimate of its position averaging range, as well as the
(b) first and (d) second estimate of ¢} ., (E) and its energy averaging range, are illustrated in Figure

3.15.

a lteration 1 b Iteration 1
1.6 T T T T T T T T T T T
net-dose profila surrafate spectrum
{4+ awe fange 4 v ave range
12r /\ 7

] AU
ol _gj \ ﬁ |
ol / R N S \

o k L

%, R N

L g

. T I I L 1 . . . . I

3 35 4 48 5 55 B B5 7 3 4 5 5 7 B g ]
CR strip position {cm) Enargy (Mah/)

c lteration 2 lteratinn 2
16 T T T T T T T T T T T
net.dose profils surrogate spectrum
{4k + ave range 4 * ave range
1 2F /\ 4

Relative doge (cGy)
Relative fluence per umit energy (Mev 1)

>
T
=2
= 2; 504
: =
£os ! , S 03
o T
£ i \ .
= 4 c
& § Z 0zt
3 B
04 - =
\ : ’
o
e 01 f o \
02 i 8 et \
e Y "
e 2
0 12 T | | L e 0 i . | I ! I
3 35 4 48 5 55 B B5 7 3 4 5 3 7 B g ]
CR strip position {em) Ensrgy (Ma)

Figure 3.15. Position averaging range and energy averaging range estimates. Plotted are (a) an
example D,.q5(X) and the initial +10% estimate of its position averaging range, (b) ¢,’;Leas’1(E)
and the first estimate of the energy averaging range, (c) D045 (%) and the second estimate of its
position averaging range, and (d) (.bgleas,l(E) and the second estimate of the energy averaging
range for the 7 MeV beam of MBPCC’s Baton Rouge Elekta Infinity accelerator.
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3.1.4.3. Recalibration

To determine B, and x,, equation 2.7 was fit to seven (x),, (E);, , pairs measured on the
Baton Rouge Elekta Infinity accelerator. The (x);, values were obtained from measured CR strip net
dose profiles, i.e. Dpeqs(x). The (E);, , values, henceforth (E);‘,’ff,DD, were obtained by inserting Ry,
values drawn from measured %DD curves into equation 3.45. Implicit in this correlation is the
assumption that for any one of the seven (x);,, (E);‘;f’/"ODD pairs, the Dp,eqs(x) and %DD curve from
which these parameters were drawn were created by the same beam with the same energy spectrum.
This assumption is incorrect, as the beam that created the %DD curve only passed through a 14 x 14
cm? open applicator, hence its energy spectrum was equivalent to ¢§5_Cm scp(E), while the beam that
created D,,,.4s(x) passed through the two-aperture collimation system, hence its energy spectrum was
equivalent to ¢5,.. (E). The transformation of ¢ &, (E) into Db _cm scp(E) in section 3.1.3, the
results of which are plotted in Figure 3.21, creates a noticeable shift in the modified peak mean energies
(~0.13-0.28 MeV).

To account for these shifts, the seven ¢&,..(E) and ¢§s_cp scp (E) distribution of the Baton
Rouge Elekta Infinity accelerator were calculated using the initial B, and x, values that resulted from
the initial fit of equation 2.7 to the seven (x),, (E);;Z/"ODD pairs, i.e. X, init and B, ;. The modified peak
mean energies of ¢ &ece (E) and dbs_cm scp (E), i-e. (E)yerace and (E)yo 7, were calculated using the
modified Deasy method. The mag symbol in the superscripts of (E);zr;ggct and (E);’Zf)ag indicate that

these parameters came from energy spectra measured with the magnetic spectrometer rather than

from %DD curve measurements. The differences between (E):;ﬁ;“gct and (E)y o ¢ were used to shift

0, . .
the (E):,{:’,DD values, resulting in

(E)vspect = (v + [(Edmrepece = (Vo | 3:56

m,spect m,spect m,o
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where (E)j;f_/g’;gct is the modified peak mean energy of the beam at the spectrometer aperture obtained

from %DD curve measurements.

(E)j;f{ggfct was then used as the energy parameter in the second fit of equation 2.7, i.e. the

recalibration, to determine the second set of x,, and B, values, i.e. X, r¢cq; and B, ;ccq;- Hence, it was

assumed the differences between (E),"c’? . and (E) o ¥ values calculated using Xo inie and By ini

were equal to the differences between <E):;Z,7§Z§cc and (E);k,,’:f,ag values calculated with x, y¢cq; and
By recal Xorecar and By recqr Were used throughout this study’s analysis instead of x, j;r and B ¢
The energy spectra generated with X, r¢cq; and By 1-¢cq; should be similar to the energy spectra
generated with x,, ;;r and By ;;¢, except shifted to slightly higher energies.
3.2. Results and discussion
3.2.1. Subtracting X-ray background from gross dose profiles

Shown in Figure 3.16 are the gross, background, and net dose profiles measured on the Elekta
Infinity at MBPCC'’s Baton Rouge facility. The gross dose profiles plotted in Figure 3.16 were obtained by
transforming the intensity profiles in Figure 2.18 into gross dose profiles using the signal intensity to
dose calibration curve plotted in Figure 3.2. These gross dose profiles are similar to those for all other
MBPCC Elekta Infinity accelerators. Note that the size of the low-energy tail portion of the net dose

profile relative to the rest of the net dose profile was somewhat dependent on how the fit regions were

chosen and whether a 4" or 3™ degree polynomial was fit for background subtraction.
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Figure 3.16. Background subtractions results for the Baton Rouge Elekta Infinity accelerator. Plotted are
the (blue) gross dose profile (dose versus CR strip position), (red) background dose profile, and (green)
net dose profile produced by subtracting the background dose profile from the gross dose profile
measured for the (a) 7 MeV, (b) 9 MeV, (c) 10 MeV, (d) 11 MeV, (e) 13 MeV, (f) 16 MeV, and (g) 20 MeV
beams on the Baton Rouge Elekta Infinity accelerator.



(Figure 3.16 continued)
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(Figure 3.16 continued)

(f)

Dose (ci5y)

08

0.5

0.4

0.3

0z

0.1

13 MV dose profiles

CR strip postion (cm)

104

gross
B riel
background
* it data points
I
B
__’_"-_.—ei_'_l M\H
Ll . N ]
- III |I —
/ | |
_d_,_f’ lll
: ! | | e i i i E
ad 2 4 G g 1a 12 14 18
CH strip postion (cm)
16 Me\ dose profiles
gross
L riel ]
background
= fit data points
S A 4
|
! | \H _
__m_,.—-"/ \
J.'~—"""""""""_'“ . ] ‘\\___
E Fa I| \ '|| -
L | ——
J |
F—«f/ 4
: ) T i e i i -
] 2 4 G 8 10 12 14 18



(Figure 3.16 continued)
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3.2.2. Smoothing net dose profiles

Plotted in Figure 3.17 are the unsmoothed and smoothed net dose profiles. Prior to smoothing,
the unsmoothed net dose profiles were renormalized to have an area of unity, hence their y-axes have
units of relative dose. Note the regions significantly to the left and right of the peak region are

completely flat, as they were zeroed. These smoothed net dose profiles were considered acceptable for

use in further analysis, hence objective (1) of Aim 2 was met.
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Figure 3.17. Unsmoothed and smoothed net dose profiles for the Baton Rouge Elekta Infinity
accelerator. Plotted are the (left) unsmoothed and (right) smoothed net dose profiles (relative dose
versus CR strip position) for the (a) 7 MeV, (b) 9 MeV, (c) 10 MeV, (d) 11 MeV, (e) 13 MeV, (f) 16 MeV,
and (g) 20 MeV electron beams on MBPCC’s Baton Rouge Elekta Infinity accelerator.
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(Figure 3.17 continued)
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(Figure 3.17 continued)
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3.2.3. Transforming net dose profiles into energy spectra at spectrometer aperture

To validate the transformation of net dose profiles into energy spectra at the spectrometer

aperture described in section 3.1.2, a Gaussian distribution centered on 15 MeV with a ¢ of 0.9 MeV and

an area of unity was assumed for qﬁsppect(E). Using the theory described in section 3.1.2.1, a net dose

profile at the CR strip was calculated with this energy spectrum. The energy spectrum and the resulting

net dose profile are plotted in Figure 3.18 (a) and (b), respectively. Then, this calculated net dose profile

was assumed the measured net dose profile, D,,.4s (), for the purposes of calculating (;bfpect(E) with

the inversion algorithm described in section 3.1.2.3. Obtaining a (,‘bfpect(E) from the output inversion

algorithm that closely matched the original qbfpect(E) used to calculate the net dose profile in Figure

3.18 (b) would validate the inversion algorithm.
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Figure 3.18. Assumed Gaussian energy spectrum and the resulting net dose profile. Plotted are (a) a
Gaussian energy spectrum (relative fluence per unit energy versus energy) centered on 15 MeV witha o
of 0.9 MeV and (b) its resulting calculated net dose profile (relative dose versus CR strip position).
Though the area under the energy spectrum is unity, the area under the net dose profile is greater than
unity, as the replacement operation does not conserve area under the curve.

The first five estimates of ¢fpect(E) from the inversion algorithm, along with the 15" and final
estimate, are plotted in Figure 3.19. Additionally, the A qyss,i(E) used in the first five iterations, along
with the 15" iteration of Adgayss,i(E), are plotted in Figure 3.20 (a) and (b). The largest improvements
happened in the first five estimates (iterations), after which improvement is marginal, as the 5" and 15"
estimates are almost indistinguishable. This can also be observed from the reduction in the size of the
Apgauss,i(E) plotted in Figure 3.20 (a), (b), and (c). Notice ¢5pect,est,i(E) become narrower and taller
as the iteration number, i, increased. This was expected, as including the physical effects of the finite
aperture size in the determination of D, ;(x) broadens the results, hence the inversion algorithm
must compensate by sharpening qbfpect,est'i(E). Though the match between the original and the higher
iteration qbﬁ’pect,est’i(E) was not perfect, this error was deemed small enough to ignore in this study.

Hence, the results of this algorithm were considered acceptable, meaning objective (2) of Aim 2 was

met.
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Figure 3.19.

Relative fluence per unit energy (Mak! 2

(b)

Relative fluence per unit energy (Mak! g

Estimates of enetyy spectrum at spectrometer aperture

T
—_—r,
| ﬂ:‘f\
|'(l

\n

0.2 -
—— —arginal
15t
0.15
2hd
01 - 3rd
Ath
— 1&th
EI . | 1 | I | 1 1 1 1 = ’
[0 12 13:5 14 4.5 15 195 16 s A7 17.5
Enargy (hak]
Estimates of energy spectrum at spectrometer aperfure
D‘QE T T T T T T T
0dd - -
042 ! A
/
04r ; .
a‘f .fll
038} /4 -
/ 'f — — —anginal
036} i/ 954 -
! sl
/;' 2nd
Da4r A/ 3t
fr‘/ Ath
ikcrA Sy St
W — 15th
D3 ; .'X 1 1 1 | | .I | i
14.2 14.4 14.E 14.8 15 15.2 15,4 1546 184

Enargy (hdah

110

Estimates of the energy spectrum at the spectrometer aperture from the inversion
algorithm. Plotted are (a) zoomed-out and (b) (c) zoomed-in views of the (green) 1%, (red) 2", (light
blue) 3, (magenta) 4™ (yellow) 5", and (black) 15" estimate of the energy spectrum at the
spectrometer aperture, along with the (dashed blue) original energy spectrum used to calculate the net
dose profile. All estimates of the energy spectra were normalized to have an area of unity prior to being



(Figure 3.19 continued)
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Gausslan-smoothed difference arrays
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Figure 3.20. Decrease in modification array size during the progression of the inversion algorithm.
Plotted are (a) zoomed-out and (b) zoomed-in views of the (blue) 1%, (green) 2", (red) 3", (light blue)
4", (magenta) 5", and (yellow) 15" iterations of A¢gquss:(E). Also plotted is (c) the area under
Apgauss,i(E) after taking the absolute value of all of its magnitudes (unsigned area). The decrease in
the unsigned area is marginal after about 15 iterations.
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3.2.4. Transforming energy spectra at spectrometer aperture into energy spectra at 95-cm SCD
The energy spectra resulting from the inversion algorithm in section 3.1.2.3 were transformed
from the spectrometer aperture to the Cerrobend® aperture, meeting objective (3) of Aim 2. The results
of this transformation for selected beams are plotted in Figure 3.21. Notice how the transformation

increases the magnitudes of the low-energy tail portions of the energy spectra at the expense of the

magnitudes of the high-energy peak portions.
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Figure 3.21. Transformation of energy spectra from the spectrometer aperture to 95-cm SCD. Plotted

are the measured energy spectra at (solid line) the spectrometer aperture and (dashed line) 95-cm SCD

(i.e. Cerrobend® aperture) for the (blue) 7 MeV, (red) 13 MeV, and (black) 20 MeV beams on MBPCC's
Baton Rouge Elekta Infinity on Jan/14/2013.
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3.2.5. CR position to electron energy calibration

Plotted in Figure 3.22 are the original and recalibrated CR strip position to energy calibration
curves. These curves were determined by the fit of equation 2.7 to the calibration data measured for
MBPCC’s Baton Rouge Elekta Infinity accelerator on Jan/14/2013. Note that the recalibrated calibration
curve transforms the same positions on the CR strip into greater energies when compared to the original
calibration curve, as was expected. From the original calibration, (blue) x, ;,;; equals 1.10 £ 0.18 (+10)
cm, and B; ;,;¢ equals 0.540 £ 0.025 (+10) Tesla. From the recalibration, (red) x, recq; €quals 1.07 +
0.20 (+10) cm, and B, y¢cq; €quals 0.542 £ 0.027 (+10). Using the recalibrated X, y¢cq; and B, recal
values in equation 2.7 instead of the original values causes a slight shift (0.1 — 0.3 MeV) in the energy

spectra to higher energies, as illustrated in Figure 3.23.
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Figure 3.22. Original and recalibrated position to energy calibration curves. Plotted are the (blue)
original calibration curve generated by fitting equation 2.7 to the (blue dots) original (E);, , versus (x);,
data points and the (red) recalibrated calibration curve generated by fitting equation 2.7 to the (red
dots) (E)7 spect Versus (x), data points.
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Figure 3.23. Shift in energy spectra due to recalibration. Plotted are the energy spectra (relative fluence
per unit energy versus energy) for the (blue) original calibration and (red) final calibration from the
Baton Rouge Elekta Infinity accelerator generated using the original and recalibrated x, and B, values,
respectively.

3.2.6. Validation of use of modified peak mean energy
As explained in section 3.1.4.2.1, instead of using Deasy’s (E);, energy parameter, a modified
energy parameter, (E);, ,, was used in this study. A plot of (E);, , values drawn from energy spectra
measured on the MBPCC’s Baton Rouge Elekta Infinity accelerator plotted versus the R, values drawn
from same-day measured %DD curves is pictured in Figure 3.24. As the plot of (E);, , versus Ry, has a
lower sum of squared residuals, i.e. 0.1431, compared to that of the plot of Ep,o versus Rp, i.e.0.4843,
and the plot of Ey, , versus R,, is noticeable more erratic, the use of (E), , instead of E,, , in equation

1.1 was assumed more appropriate for this study.
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Figure 3.24. Validation of use of modified peak mean energy instead of peak energy. Plotted are the
(solid line) Ej,, versus R, data points from ICRU 35 equation 1.1, (green dots) (E);,, versus R,
measured data points, and (red dots) E, , versus R, measured data points. The measured (E)m,0 and
Ep o values were drawn from measured energy spectra and measured R, values were drawn from same-
day measured %DD curves on MBPCC’s Baton Rouge Elekta Infinity accelerator.
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Chapter 4 Aim 3 — Compare energy spectra of matched electron beams
Aim 3: Determine the energy spectra on central axis at 95-cm SCD for each of the seven
electron beams on each of the six MBPCC Elekta Infinity accelerators by applying the analysis techniques
of Aim 2 to intensity profiles measured in Aim 1. Compare all matched electron beam energy spectra.
4.1. Methods and materials
4.1.1. Reproducibility of measurement technique
The energy spectra of the 7 MeV, 11 MeV, and 16 MeV beams on the Baton Rouge Elekta
Infinity were measured several consecutive times on the same day without disturbing the initial setup
geometry. These spectra were measured using the methods described in Aims 1 and 2. Assuming the
electron beam energy spectra were constant throughout the measurements, these measurements
estimated the uncertainty of the measurement technique. It was believed that any variations in the
energy spectra were due to mechanical errors in the placement of the CR strip in the slot, the placement
of the CR strips on the carousel, variations in the dimensions of the CR strips, variations in the individual
CR strip responses, and amplification of these effects by the data analysis methods.
4.1.2. Reproducibility of energy spectra
To assess accelerator stability (i.e. the reproducibility of energy spectra) over time, the same
spectra were measured on a single accelerator on different days using the methods described in Aims 1
and 2. For the Baton Rouge Elekta Infinity accelerator, the energy spectra for the 7, 11, and 16 MeV
beams were measured on Jan/14/2013 and May/3/2013. Additionally, for the Gonzales Elekta Infinity
accelerator, the energy spectra for all seven beam energies were measured on Feb/14/2013 and
April/11/2013.
4.1.3. Comparing energy spectra across multiple accelerators
The energy spectra were measured for each of the seven beam energies on each of the six

MBPCC Elekta Infinity accelerators using the methods described in Aims 1 and 2. Then, the energy
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spectra from the different Elekta Infinity accelerators were compared to the energy spectra of the
accelerators to which they were matched, i.e. the reference accelerators, using the energy spectra
matching criteria.
4.1.3.1. Metrics for comparing energy spectra

The metrics used for comparing the energy spectra were the incident modified peak mean
energy, (E)y, o, and the full width at half maximum, FWHM. The definition of (E’);, , is given in section
3.1.4.2.1. The FWHM were determined by fitting a Gaussian distribution to the portion of each energy
spectrum that fell within its +15% energy averaging range. The standard deviations, g, of the resulting
Gaussian distributions were multiplied by 2.35 to obtain the FWHM values.

4.1.3.2. Matching criteria for energy spectra

For an electron beam’s energy spectrum to be considered matched, its (E);,, , must match the
reference beam’s (E));, , to within 0.12 MeV, which corresponds to a difference in R5, of approximately
0.05 cm. Additionally, its FWHM had to match the reference beam’s FWHM to within 2.0 MeV, which
corresponds to a difference in Rgy_5( of approximately 0.1 cm. Details of how the matching criteria
were determined are available in Aim 4.
4.2. Results and discussion

4.2.1. Reproducibility of measurement technique

Plotted in Figure 4.1 are the consecutive, same-day energy spectra measurements of the 7, 11,
and 16 MeV beams of the Baton Rouge Elekta Infinity accelerator. Notice that for these measurements,
the portion of the area under an energy spectrum’s tail versus its peak structure varies noticeably. This
reduces the magnitudes of some spectra’s peak regions relative to other spectra’s peak regions, as all
the spectra are normalized to have an area of unity. These variations are due to how the fit regions for
the background subtraction were selected (section 3.1.1.2) and do not significantly affect the resulting

(E)m,o and FWHM values.
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Figure 4.1. Consecutive, same-day spectral measurements. Seven consecutive same day measurements
of the energy spectra of the (a) 7, (b) 11, and (c) 16 MeV beams on MBPCC’s Baton Rouge Elekta Infinity
accelerator. The seventh measurement of the energy spectra for 11 MeV beam was ruined during
readout and hence is not displayed.

The (E)y, 0, FWHM, and FWHM/(E);, , values of these energy spectra are listed in Table 4.1.
The standard deviations of the (E):n'o values were 0.030, 0.045, and 0.077 MeV at 7, 11, and 16 MeV,
respectively. These values, although less than the 0.12 MeV matching criteria for (E)}, ,, were
significant particularly at the higher energies. Ideally, the uncertainty would be an order of magnitude
less than the matching criteria, i.e. 0.012 MeV. Further investigation into the source of the uncertainty

is warranted.
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On the other hand, the standard deviations of the FWHM values were 0.031, 0.027, and 0.042
MeV at 7, 11, and 16 MeV, respectively, significantly smaller than the 2.0 MeV matching criteria. In
other words, the standard deviations of the FWHM values were less susceptible to variations in the
positioning of the CR strips than the standard deviations of the (E’);, , values. The variations in the
percent standard deviations of the (E);, , values across all three energies are fairly small.

Table 4.1. Energy metrics of consecutive, same-day measurements. The (E);, , (PME), FWHM, and
FWHM/(E )}, o (FWHM/PME) are listed for all seven measurements of the 7, 11, and 16 MeV beam,
except for the 7" measurement of the 11 MeV beam which was ruined by a readout error. The mean
(MEAN), standard deviation (STD DEV), and percent standard deviation (% STD DEV) of all the energy
metrics are listed to the right.

STD %STD

1 2 3 4 5 6 7 MEAN DEV DEV

7MeV PME (MeV) 700 7.01 694 694 7.00 7.00 7.00 6.99 | 0.0300 0.43
FWHM (MeV) 178 187 183 179 181 183 180 1.82 | 0.0308 1.70
FWHM/PME | 0.254 0.267 0.264 0.258 0.259 0.262 0.257 0.26 | 0.0044 1.68

11MeV  PME (MeV) 11.29 11.23 11.27 1123 1127 11.17 N/A 11.24 | 0.0450 0.40
FWHM (MeV) 239 240 233 241 239 238 N/A 238 | 0.0271 1.14
FWHM/PME | 0.212 0.213 0.207 0.214 0.212 0.213 N/A 0.21 | 0.0026 1.23

16MeV  PME (MeV) 16.32 16.33 16.27 16.14 16.17 16.28 16.32 | 16.26 | 0.0768 0.47
FWHM (MeV) 319 332 321 321 322 322 3.25 3.23 | 0.0422 131
FWHM/PME | 0.196 0.203 0.197 0.199 0.199 0.198 0.199 0.20 | 0.0024 1.18

4.2.2. Reproducibility of energy spectra

The reproducibility of energy spectra on Elekta Infinity accelerators was determined by
comparing energy spectra from the same accelerator measured on different days. For the Baton Rouge
accelerator, the measurements described in section 4.1.1 and performed on May/3/2013 were
compared against the 7, 11, and 16 MeV beams of the complete set of energy spectra measured on
Jan/14/2013 and plotted in Figure 4.4 (b). This comparison is plotted in Figure 4.2. The values for the
energy spectra metrics, (E)y, o, FWHM, and FWHM/(E);,, , are listed in Table 4.2.

Additionally, energy spectra measurements were performed on the Gonzales accelerator on

Feb/14/2013 and April/11/2013. The results are plotted in Figure 4.3. The values for (E);, ,, FWHM,
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Table 4.2. Energy metrics from energy spectra measured on the Baton Rouge Elekta Infinity on separate
days. The (E);,, (PME), FWHM, and FWHM/(E)}, , (FWHM/PME) of the Baton Rouge energy spectra
measured on separate days are listed along with the differences (DIF) between the metrics. The
differences are the energy metrics from January subtracted from the energy metrics from May.

May-3-2013 DIF
Jan-14-2013 (average) (May-Jan)
7 MeV PME (MeV) 7.1687 6.9852 -0.1835
FWHM (MeV) 1.6361 1.8178 +0.1817
FWHM/PME 0.2282 0.2602 +0.0320
11 MeV PME (MeV) 11.4461 11.2435 -0.2026
FWHM (MeV) 2.4040 2.3830 -0.0210
FWHM/PME 0.2100 0.2119 +0.0019
16 MeV PME (MeV) 16.5441 16.2612 -0.2829
FWHM (MeV) 3.2607 3.2293 -0.0314
FWHM/PME 0.1971 0.1986 +0.0015
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Figure 4.2. Energy spectra measured on the Baton Rouge Elekta Infinity on separate days. Plotted are
the 7 MeV, 11 MeV, and 16 MeV beams measured on MBPCC's Baton Rouge Elekta Infinity accelerator
on (red) May/3/2013 and (blue) Jan/14/2013.
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and FWHM/(E);, , are listed in Table 4.3. Notice that the differences in the (E);, , values for different
day energy spectra measurements are larger for the Gonzales accelerator than for Baton Rouge
accelerator, yet for both accelerators the differences increase monotonically with energy.

For the Baton Rouge accelerator, shifts in (E');, , were -0.18, -0.20, and -0.28 MeV at 7, 11, and
16 MeV, respectively. For the Gonzales accelerator, shifts in (E);, , increased with energy, ranging from
-0.29 to -0.69 MeV for the 7 to 20 MeV beams, respectively. The increasing shift with energy could be

due to a systematic error in CR strip origin, as |Z—i| increases with energy (cf. Figure 3.22). The shifts in

(E)m,0 in Table 4.3 all correspond to a shift of approximately 0.12 cm.
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Figure 4.3. Energy spectra measured on the Gonzales Elekta Infinity on separate days. Plotted are the
complete set of energy spectra measured on MBPCC's Gonzales Elekta Infinity accelerator on (solid)
Feb/14/2013 and (dashed) Apr/11/2013.
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When compared with the standard deviations of the (E);, , and FWHM values in Table 4.1, it is

clear that the deviations of the energy metrics in Table 4.2 and Table 4.3 were due to drifting of the

energy spectra with time rather than measurement error. The cause of these drifts is not clear,

emphasizing the utility of a real-time version of this study’s magnetic spectrometer developed for beam

tuning and QA.

Table 4.3. Energy metrics from energy spectra measured on the Gonzales Elekta Infinity on separate
days. The (E);;, (PME), FWHM, and FWHM/(E);, , (FWHM/PME) values of the Gonzales energy
spectra measured on separate days are listed along with the differences (DIF) between the metrics. The
differences are the energy metrics from February subtracted from the energy metrics from April.

DIF
Feb/14/2013 Apr/11/2013 (Apr-Feb)
7 MeV PME (MeV) 7.5726 7.2814 -0.2912
FWHM (MeV) 2.2136 2.2346 +0.0210
FWHM/PME 0.2923 0.3069 +0.0146
9 MeV PME (MeV) 9.3307 9.0101 -0.3207
FWHM (MeV) 2.1993 2.1497 -0.0497
FWHM/PME 0.2357 0.2386 +0.0029
10 MeV PME (MeV) 10.3440 9.9349 -0.4091
FWHM (MeV) 2.5241 2.6614 +0.1373
FWHM/PME 0.2440 0.2679 +0.0239
11 MeV PME (MeV) 11.6548 11.2805 -0.3743
FWHM (MeV) 1.7067 1.7785 +0.0718
FWHM/PME 0.1464 0.1577 +0.0112
13 MeV PME (MeV) 13.2655 12.7945 -0.4709
FWHM (MeV) 1.9374 1.9950 +0.0576
FWHM/PME 0.1460 0.1559 +0.0099
16 MeV PME (MeV) 16.6803 16.1329 -0.5474
FWHM (MeV) 2.5092 2.6057 +0.0966
FWHM/PME 0.1504 0.1615 +0.0111
20 MeV PME (MeV) 21.1866 20.4952 -0.6914
FWHM (MeV) 3.4881 3.7429 +0.2548
FWHM/PME 0.1646 0.1826 +0.0180
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4.2.3. Comparing energy spectra across multiple accelerators

The energy spectra for each Elekta Infinity accelerator at MBPCC are shown below in Figure 4.4.
Though MBPCC had intended to match all accelerators to its original Elekta Infinity accelerator at
Gonzales, attempts by local and factory Elekta engineers to do so on the Elekta Infinity accelerator
installed at MBPCC's satellite in Houma were unsuccessful. Hence, separate commissioning data was
taken for the Elekta accelerator at Houma, to which the subsequently installed Elekta accelerator at
MBPCC’s Hammond satellite was matched. Hence, there are two reference accelerators at MBPCC to
which other accelerators were matched, the Elekta Infinity at its Gonzales satellite, which was the first
Elekta accelerator installed at MBPCC, and the Elekta Infinity accelerator installed later at its Houma
satellite. Both Elekta Infinity accelerators installed at MBPCC'’s Covington satellite, as well as the Elekta
Infinity accelerator at MBPCC’s main facility in Baton Rouge, were matched to the Gonzales reference
accelerator. The Elekta Infinity accelerator at MBPCC’s Hammond satellite facility was matched to the
Elekta Infinity at MBPCC’s Houma satellite. MBPCC intends to match all future Elekta Infinity
accelerators to the reference accelerator at its Houma satellite.

All accelerators were tuned to give Rqq values spaced every 0.5 cm (2.0, 2.5, 3.0, 3.5, and 4.0
cm) from 7 to 13 MeV and every 1.0 cm (4.0, 5.0, and 6.0) from 13 to 20 MeV. This results in evenly
spaced energy spectra from 7 to 13 MeV and from 13 to 20 MeV. Visual exceptions to this are observed
for the 9 MeV Covington 1, 10 MeV Covington 2, and 11 MeV Hammond beams.

As is visible in Figure 4.4, there is a general trend towards broader energy spectra as the energy
of the electron beam increases, which is to be expected as higher energy electron beams require thicker
scattering foils to broaden and flatten the beams, resulting in greater energy straggling. Interestingly,
some accelerators have energy spectra that do not follow this trend monotonically. This indicates that

electrons beams can have noticeably different spectral widths and yet have acceptably matching %DD
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(a)

(b)

Figure 4.4. Measured energy spectra for each Elekta Infinity accelerator. Plotted are complete sets of
energy spectra measured on the Elekta Infinity accelerators at (a) Gonzales, (b) Baton Rouge, (c)

Gonzales energy spectra (measured Apr/11/2013)
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Covington 1, (d) Covington 2, (e) Houma, and (f) Hammond, listed in order of installation.
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(Figure 4.4 continued)
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(d)
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Covington 1 energy spectra (measured Apy8/2013)
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(Figure 4.4 continued)

Houma energy specira (measured Aprf14/2013)
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curves. Itis worth noting that the variations in FWHM across the seven beam energies are comparable
to the variations in spectral width of the rectangular spectra simulated by Kainz et a/ (2004).

While almost all energy spectra from this study have an electron peak structure that resembles
a single Gaussian distribution, most energy spectra measured by Deasy in Figure 1.15 did not. In fact,
most of the energy spectra in Figure 1.15 have two or more distinct peaks. The energy spectra
measured in this study are likely more Gaussian due to improvements in the traveling waveguide design
and/or tuning procedures since the time of Deasy et al’s SL25 Phillips measurements. Regardless, some
multi-peaked energy spectra are still apparent, e.g. the 9 MeV Baton Rouge beam shown in Figure 4.4
(b) and the 13 MeV Covington 1 beam in Figure 4.4 (c). These multi-peaked energy spectra were likely
due to suboptimal HPPH settings.

Though Deasy measured the energy spectra in Figure 1.15 using film and performed background
subtraction on the film densitometry results in a fashion similar to the background subtraction described
in section 3.1.1.2, the results have smaller low-energy straggling tails than the energy spectra measured
in this study. Hence, Deasy either included a larger portion of the low-energy tails within his background
fits, hence removing them, or the tails were never sufficiently visible. The prominence of the low-
energy tails in this study’s methods, in combination with the fact that the fit regions used for
background subtraction were chosen manually, results in noticeable variations in the fraction of area of
the energy spectra that fall under the low-energy tails versus the peak structures. These variations are
most apparent in the energy spectra in Figure 4.1. In future work, it may be possible to mitigate these
variations by further reducing the background contribution to the detection medium or subtracting the
background with measured background subtraction.

The spectral tails in Deasy’s study and in this study differ significantly from the MC simulated
spectral tails of Harris’s study, an example of which is illustrated in Figure 1.19. Further study of this

discrepancy is only warranted if it remains after addressing the future work recommendations in the
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above paragraph. However, the energy metrics used for comparison of energy spectra, (E);, , and
FWHM, are not significantly affected by these variations in the low-energy tail.

Figure 4.5 below displays the same spectra shown in Figure 4.4, but on a per-energy as opposed
to per-accelerator basis. Each plot was separated into the two matching groups used at MBPCC. The
blue plots are the Gonzales reference accelerator and all the accelerators that were matched to it, and
the red plots are the Houma reference accelerator and the Hammond accelerator that was matched to
it. The energy spectra from the reference accelerators are displayed with solid lines. Also, the (E);, ,
(PME), FWHM, and FWHM/(E);, , (FWHM/PME) values for the energy spectra in Figure 4.5 are listed in
Table 4.4.

At 7 MeV, the Houma reference spectrum has a lower (E);, , and lower FWHM (6.98 and 1.85
MeV) than the Gonzales reference spectrum (7.28 and 2.23 MeV). The reference Gonzales spectrum
clearly contains at least two peaks. The Covington 2 spectrum is the narrowest (FWHM = 1.64 MeV).
The Baton Rouge and Covington 1 spectra are the second narrowest and match almost exactly. The
Hammond spectrum has a slightly greater (E);, , and FWHM (7.15 and 1.99 MeV) than its reference
Houma spectrum (6.98 and 1.85 MeV).

At 9 MeV, the Houma reference spectrum was shifted to lower energies and had a slightly
narrower width than the Gonzales reference spectrum (8.70 and 2.01 MeV versus 9.01 and 2.15 MeV for
(E)m0 and FWHM). The Covington 2 had the narrowest spectrum (FWHM = 1.75 MeV), as was the case
at 7 MeV. The BR spectrum had the broadest spectrum (FWHM = 2.73 MeV), which is attributed to the
multiple peaks (at least two). The Covington 1 spectrum clearly had a greater (E’), , than that of the
reference Gonzales beam (9.22 versus 9.01 MeV). The Gonzales spectrum and all those matched to it

have significantly different shapes and are clearly not matched. Contrastingly, the Hammond beam
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Figure 4.5. Measured energy spectra for each beam energy. Plotted are measured (a) 7, (b) 9, (c) 10, (d)
11, (e) 13, (f) 16, and (g) 20 MeV energy spectra for MBPCC's six Elekta Infinity accelerators. The energy
spectra from the (solid line) reference accelerators are plotted, along with the rest of the energy spectra
from the (blue) Gonzales matching group and the (red) Houma matching group.
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(Figure 4.5 continued)
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(Figure 4.5 continued)
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(Figure 4.5 continued)
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closely matches its reference spectrum, that of the Houma accelerator, being only slightly shifted to a
lower energy and having only a slightly greater FWHM (8.68 and 2.32 MeV versus 8.70 and 2.01 MeV for
(E)m,o and FWHM).

At 10 MeV, the Houma reference spectrum is shifted to higher energies and has a slightly
narrower width than the Gonzales reference spectrum. The BR and Covington 2 are similar to their
reference spectra, the Gonzales spectrum, being only slightly narrower (2.05 and 2.35 MeV versus 2.66
MeV for FWHM). The Covington 2 spectrum shows the greatest difference from its reference spectrum,
showing a significant shift to the higher energies (10.41 versus 9.93 MeV for (E);, ,), while the
Covington 1 spectrum is only slightly more energetic (9.98 versus 9.93 for (E);, ,). Contrastingly, the
Hammond spectrum, relative to its reference, shows a significant shift to a lower energies (10.12 versus

10.30 MeV for (E)y, o).
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Table 4.4. Comparison of energy spectra metrics from MBPCC’s six accelerators for all seven beam
energies. Listed are the (E), , (PME), FWHM, and the relative width values (FWHM/PME) for the seven
beam energies on all six Elekta Infinity accelerators at MBPCC. The standard deviation (STD DEV) per
beam energy for all three metrics are listed in the column to the right of the table. The (E);,, and
FWHM of the reference accelerators are illustrated with light gray fill, with the energy metrics that do
not match those of their reference accelerator being illustrated in dark gray fill for the (1) Gonzales
matching group and the (2) Houma matching group. The matching criteria was 0.12 MeV for (E);, , and
2.0 MeV for FWHM.

1 2

Gonz BR Ccvl Cv2 Houma Ham STD DEV

7 MeV PME (MeV) 7.28 7.17 7.10 7.38 6.98 7.15 0.139
FWHM (MeV) 2.23 1.64 1.71 1.64 1.85 1.99 0.234
FWHM/PME 0.31 0.23 0.24 0.22 0.26 0.28 0.032

9 MeV PME (MeV) 9.01 8.98 9.22 8.97 8.70 8.68 0.205
FWHM (MeV) 2.15 2.73 2.34 1.75 2.01 2.32 0.336
FWHM/PME 0.24 0.30 0.25 0.19 0.23 0.27 0.037

10 MeV PME (MeV) 9.93 9.95 9.98 10.41 10.30 | 10.12 0.199
FWHM (MeV) 2.66 2.05 2.15 2.35 2.21 2.39 0.216
FWHM/PME 0.27 0.21 0.22 0.23 0.21 0.24 0.022

11 MeV PME (MeV) 11.28 11.45 11.33 11.70 11.92 @ 10.98 0.333
FWHM (MeV) 1.78 2.40 2.29 2.07 2.40 2.33 0.246
FWHM/PME 0.16 0.21 0.20 0.18 0.20 0.21 0.022

13 MeV PME (MeV) 12.79 13.35 13.22 13.21 13.47 12.79 0.287
FWHM (MeV) 2.00 3.04 3.38 2.59 2.85 2.86 0.467
FWHM/PME 0.16 0.23 0.26 0.20 0.21 0.22 0.034

16 MeV PME (MeV) 16.13 16.54 15.94 16.29 16.31 @ 15.80 0.272
FWHM (MeV) 2.61 3.26 2.80 2.49 3.42 3.20 0.385
FWHM/PME 0.16 0.20 0.18 0.15 0.21 0.20 0.023

20 MeV PME (MeV) 20.50 20.45 20.30 20.28 20.27 | 19.92 0.201
FWHM (MeV) 3.74 4.34 4,01 3.17 3.80 3.37 0.421
FWHM/PME 0.18 0.21 0.20 0.16 0.19 0.17 0.020

At 11 MeV, the Houma reference spectrum is shifted to higher energies than the Gonzales
reference spectrum (11.92 versus 11.28 MeV for (E);, ,). BR, CV1, and CV2 are noticeably broader than
their reference spectrum (2.40, 2.29, and 2.07 MeV versus 1.78 MeV for FWHM) and shifted to higher
energies (11.45, 11.33, and 11.70 versus 11.28 MeV for (E)y, ,). The Hammond spectrum is shifted to
much lower energies than its Houma reference spectrum, though it has about the same width (10.98
and 2.23 MeV versus 11.92 and 2.40 MeV for (E);, , and FWHM).
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At 13 MeV, the Houma reference spectrum is more energetic and significantly broader than the
Gonzales reference spectrum (13.47 and 2.85 MeV versus 12.79 and 2.00 MeV). BR, CV1, and CV2 have
higher energies and widths than their reference Gonzales spectrum (13.35 and 3.04, 13.22 and 3.38,
13.21 and 2.59 MeV versus 12.79 and 2.00 MeV for (E);, , and FWHM). Again, the BR, CV1, and CV2
spectrum all have fairly close (E)in’o though their widths are not matched quite as well. Notably, CV1
and BR spectra are quite broad. The Hammond spectrum is shifted to much lower energies than the
Houma spectrum though they have similar widths (12.79 and 2.86 MeV versus 13.47 are 2.85 MeV for
(E)m,o and FWHM).

At 16 MeV, the Houma reference spectrum is more energetic and broader than the Gonzales
reference spectrum (16.31 and 3.42 MeV versus 16.13 and 2.61 MeV for (E);, , and FWHM). The
spectra matched to the Gonzales reference spectrum are all shifted slightly from the (E’);, , of Gonzales
(15.94 to 16.54 MeV versus 16.13 MeV for (E);, ,), and the BR beam had a broader spectrum (3.26
versus 2.61 MeV for FWHM). The Hammond spectrum is both narrower and less energetic than its
reference spectrum (15.80 and 3.20 MeV versus 16.31 and 3.42 MeV for (E));, , and FWHM).

At 20 MeV, the Houma reference spectrum is shifted to slightly lower energies than the
Gonzales reference spectrum, but they have almost identical widths (20.27 and 3.80 MeV versus 20.50
and 3.74 MeV for (E);, , and FWHM). Most of the spectra matched to the Gonzales reference spectra
are fairly close to the reference in (E);, , (20.28-20.45 versus 20.50 MeV for (E);, ,) with a slight spread
in widths (3.17 — 4.34 MeV versus 3.74 MeV). The Hammond spectrum is narrower and less energetic
than its reference spectrum (19.92 and 3.37 MeV versus 20.27 and 3.80 MeV for (E), , and FWHM).
Overall, the spectra at 16 and 20 MeV are slightly better matched in shape than the spectra at lower
energies.

Table 4.4 cells are shaded dark grey to indicate which energy metrics did not match their

reference accelerator energy metrics, which were shaded light grey. Interestingly, few of the energy
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spectra matched exactly. A few are closely matched, yet some are significantly different. There could
be several reasons that matched electron beams’ energy spectra do not match, including errors in the
original beam tuning, subsequent beam tuning, spectral drifting between tuning, error in the positioning

of the CR strips, or a combination thereof.
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Chapter 5 Aim 4 — Correlate measured energy spectra metrics with %DD curve metrics

Aim 4: For every electron beam whose energy spectrum was measured, compare the (E);, ,
values and FWHM values of the energy spectra with the Rsy and Rgy_,o values. Values for Rsy and
Rgo_20 Were determined from relative ionization measurements in Plastic Water® phantom slabs taken
in tandem with the energy spectra measurements.
5.1. Methods and materials

5.1.1. Measuring R50 and R80-20

To study the correlation between the %DD curves of electron beams and their measured energy
spectra, %DD curve metrics were drawn from same-day relative ionization measurements. Measuring
energy spectra and %DD curve metrics on the same day minimized the potential for drifting of energy
spectra in between the two types of measurements. Instead of using a beam scanner and a tank filled
with water, relative ionization measurements were taken in Plastic Water® phantom slabs (CIRS Inc.,
Norfolk, VA), which eliminated the uncertainty in the depth that results from manually registering the
position of the physical center of the scanning chamber at the water’s surface prior to scanning. This
error in the placement of the chamber would be systematic for a single tank setup, but random from
setup to setup, meaning it would not affect intra-accelerator comparisons of %DD metrics, but would
affect inter-accelerator comparisons. The importance of both types of comparisons motivated the use
of the Plastic Water® phantom slabs over beam scanning in a water-filled tank. As MBPCC’s 2% or 0.5
c¢m DTA matching criteria for electron beams was hardest to achieve in the dose falloff region of the
%DD curves, Plastic Water® slab measurements were taken at depths such that R5, and Rgy_5, could be
determined from the results. Ideally, if both R5y and Rgg_5¢ matched that of their reference
accelerator, most if not all data points in the dose falloff region of the %DD curve should match.

Relative ionization measurements were taken with a 0.6 cm® Farmer chamber (TN 30013, PTW,

Freiburg, Germany) with a cavity radius, 7,4, ,0f 0.3 cm. The Farmer chamber was placed in the Plastic
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Water® slab designed to hold it, henceforth referred to as the chamber slab. Figure 5.1 shows the
chamber slab (a) with and (b) without the Farmer chamber inserted into it. The chamber slab was 2.0
cm thick, with a 1-cm distance between the center of the chamber hole and the surface of either side of
the slab. To increase the physical depth beyond 1.0 cm, additional Plastic Water® slabs were placed on
top of the chamber slab between the chamber and the radiation source. Two 5-cm Plastic Water® slabs
were placed below the chamber slab to provide sufficient backscatter. For all combinations of slab
material used for the measurements, the surface of the phantom was placed at 100-cm SSD using the

alignment lasers and irradiated with 100 MU using the 14 x 14 cm? open applicator.

Figure 5.1. Setup for ionization measurement taken in Plastic Water®. lllustrated is the Plastic Water®
phantom setup (a) with and (b) without the 0.6 cm3 Farmer chamber inserted in the chamber slab. The
chamber slab was placed on top of two 5-cm slabs to ensure sufficient backscatter was generated. Slab
material was also placed above the chamber slab to increase the measurement depth. Visible above the
slabs is the 14 x 14 cm? open applicator.

Since ionization can only be measured at one depth for a particular combination of Plastic
Water® slabs, it is not feasible to take ionization measurements at the closely-spaced intervals possible
for a single scan in a water-filled tank as the stepper motors of the beam scanner allow for depth
measurements of a finer resolution than the thinnest, 1.0-mm Plastic Water® slab. Instead, ionization
measurements were only taken at four depths, which were different for every beam energy. These
depths, listed in Table 5.1, are the physical depths of the maximum ionization (R100ion)' 80% ionization
(Rg0;,,,)» 50% ionization (Rsy; . ), and 20% ionization (Ryy,,,.) of the percent ionization depth (%DI)
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curves measured in water. However, the depths were rounded to the nearest millimeter so that they
could be simulated with Plastic Water® slabs. %Dl curves in water were measured for each beam energy
of the Baton Rouge Elekta accelerator on Jan/14/2013 along with same-day %DI measurements in
Plastic Water®. After measuring the ionization at the four specified physical depths for each beam
energy, all four ionization values were divided by the max ionization value near depth Ry, ,, and
multiplied by 100% to produce four percent ionization values. Ryq;,, was selected from the middle of
the relatively flat maximum plateau region of the %Dl curve measured in water to ensure spectral drift
did not appreciably reduce the percent ionization measured from 100% when measuring ionization on
other accelerators.

These %Dl curves, which were plots of percent ionization versus effective depth (physical depth
minus 0.57,,,), were converted into the %DD curves used for calibrating the magnetic spectrometer.
Percent ionization was converted to percent dose using the AAPM TG-70 protocol (Gerbi et al 2009) and
TG-25 protocol (Khan et al 1990) with TG-51 values for relative stopping powers (Almond et al 1999), as
implemented in the IBA data acquisition system (IBA, Louvain-la-Neuve, Belgium). Prior to conversion,
all effective depths of the %Dl curves in water were increased by 0.063 cm to improve the match
between the %Dl curves in water and the four %Dl data points in Plastic Water®, whose slab
measurement depths were more reproducible. Like all other calibration data, these %Dl curves were
only measured for the Baton Rouge Elekta Infinity accelerator on Jan/14/2013.

Table 5.1. Physical depths of ionization measurements using Plastic Water® phantom slabs.

Measurement depths are the physical depths of the Ryg0;,,,, R80;pps R50;0n, @Nd R20;,, Of the %DI
curves measured in water on Jan/14/2013 on MBPCC’s Baton Rouge Elekta Infinity accelerator.

7MeV  9MeV 10MeV 11MeV 13MeV 16MeV 20MeV

R100;9y (€M) 1.6 2 2.2 2.5 2.4 2.6 1.7
Rgo;y, (cm) 2.4 3 3.5 4.0 4.6 5.7 6.8
Rso;,,, (cm) 2.8 3.5 4.0 4.6 5.3 6.6 8.2
R30;0y (€M) 3.3 4.2 4.6 5.3 6.2 7.6 9.6
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To compare beams to one another, it was necessary to determine the depth of the 80%, 50%,
and 20% dose values (e.g. Rgg, Rso, and R,() rather than the percent ionization values at the measured
physical depths. First, the four percent ionization values measured for all seven beam energies on all six
accelerators were converted to percent dose values by multiplying them by the ratio of percent dose to
percent ionization at depth in water, where the %DD and %Dl came from the beam scanning calibration
data. Plotted in Figure 5.2 are example percent dose to percent ionization ratios versus depth for the 9
MeV beam, as well as the %DD and %Dl curves used to get these ratios. Second, to determine Rgg, Rsg,
and R,, the four %DD data points were fit to an empirical function that closely models the %DD curve
in the falloff region, i.e.

erfc(a,;d + a,)

%D(d) = (100% — D) >

+ Dy, 51

where d is the effective measurement depth, D, is the bremsstrahlung dose percent at R, + 2.0 cm, erfc
is the complimentary error function, and a, (slope of argument of erfc) and a, (offset of argument of
erfc) are parameters determined by the fit. D, which varies for each beam energy, was taken from
clinical measurements. Example fits of equation 5.1 to the four %DD data points are plotted in Figure
5.3 for the 9 and 16 MeV beams of the Baton Rouge Elekta Infinity accelerator. For each beam, the Rgy,

Rsq, and R, values of the %DD curve were determined by the fit.
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Figure 5.2. Ratios of percent dose to percent ionization. Plotted is a (a) comparison of %DD and %DI
curves measured for the Baton Rouge Elekta Infinity 9 MeV beam with the 14 x 14 cm? open applicator
and the (b) resulting ratios of percent dose to percent ionization versus effective depth. These
measurements were part of the calibration measurements taken on Jan/14/2013.

141



110 . = : : .
-arfe fit
(a) o ___h““x\ = measured data
a0 F \ o Rapi Rag Ryp from fit L

a0 % _
70+ \ ]
a0 \9 |

10t | |

%liose

20+ GK il

10 F %
g

11i:| T T T T T

b - atfc fit
g «  measured data
o0 | ™ 6 Ry Regs Ry from fit |

B0 l

B0+ 4

%lose

a0 ¢ ; 4

o} \ |
an} % |

10 F N i

Effective depth (cm)

Figure 5.3. Fitting modified complementary error functions to the dose falloff region. Plotted are the
(blue lines) results of fitting equation 5.1 to the (green dots) four measured %DD data points for the (a)
9 and (b) 16 MeV beams. Also plotted are the (black open circles) Rgg, Rsg, and R, values drawn from
these fits.

142



5.2. Results and discussion

5.2.1. R50 and R80-20 values

Using the methods described in section 5.1, the R5q and Rgy_5q values were determined for all

seven electron beam energies on all six MBPCC Elekta Infinity accelerators. The results are listed in

Table 5.2 below.

Table 5.2. R50 and R80-20 values. Displayed are the Rsq and Rgy_,o values for all seven beam energies
of all six Elekta Infinity accelerators at MBPCC. The matching groups are labeled 1 and 2. Within
matching group 1, three accelerators were matched to (light grey fill) the Gonzales accelerator. Within
matching group 2, one accelerator was matched to (light grey fill) the Houma accelerator. Also listed are
the (Af,4) maximum positive and (A;;,,,) maximum negative deviations of accelerators’ Rsy and Rgg_20
values from their reference accelerators’ R5y and Rgg_, values for each beam energy.

2

Gonz BR cv1 CV2 | Houma Ham | Ap..  Af..

7MeV  Rs (cm) 291 280 287 292 281 278 | -0.105| 0.013
Rgo_20 (cm) 1.05 099 107 1.04 1.02 1.03| -0.059 | 0.020

9MeV  Rs (cm) 359 352 372 357 347 3.39| -0084| 0.123
Rgo_20 (cm) 127 125 129 121 1.20 1.19| -0.062 | 0.019

10 MeV  Rsq (cm) 407 4.03 406 420 416 4.05| -0.109 | 0.128
Rgo_20 (cm) 133 124 127 131 131 131 | -0.084 | 0.006

11MeV Rsq (cm) 464 461 468 478 485 4.48| -0370| 0.137
Rgo—_20 (cm) 145 146 150  1.53 1.52 143 | -0.087 | 0.077

13MeV Rsq (cm) 528 536 544 541 548 5.23| -0.250 | 0.163
Rgo—_20 (cm) 165 172 172 1.5 1.70 164 | -0.061| 0.067

16 MeV  Rsq (cm) 6.67 6.68 6.68  6.72 6.65 6.54 | -0.107 | 0.041
Rgo—_20 (cm) 206 201 2,00 197 2.08 2.04| -0.085| -0.035

20 MeV  Rsq (cm) 829 828 833 822 825 8.12| -0.126| 0.043
Rgo—_20 (cm) 276 280 2583 270 278 269 | -0.094| 0.069

When matching electron beams at MBPCC, electron %DD curves’ data points must match those

of their reference accelerator’s %DD curves to within 0.05 cm DTA or 2%. This matching criteria is

applied to all %DD curve data points, not just the R, values. Hence, to match electron beams it is

important that the slope of the dose falloff region of the %DD curves match as well as the R5, values,

otherwise data points near Rqy and Ry, will not match even if points near R5y do. For the purposes of

this study, the slope metric of the %DD curve’s dose falloff region was represented by its Rgg_5¢. It was
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assumed that if the Rgy_, and Rsq both match, all data points in the dose falloff region would match.
Adding the individual 0.05 cm matching criteria for Rgg and R, together results in a maximum
allowable difference of 0.1 cm in Rgg—_7o.

In Table 5.2, the Rs values varied from their reference Rg, values by as much as -0.37cm and
+0.16cm. These variations are well outside the 0.05 cm matching criteria for Rsy. Table 5.2 also shows
that the Rgy_5( values can be as much as 0.08 cm greater or 0.09 cm less than the Rgy_5( values of their
reference accelerators. These failures to meet MBPCC’s matching criteria indicate that several beam
energies were never sufficiently matched or that their energy spectra drifted due to changes in
accelerator parameters.

5.2.2. Comparison of R50 and R80-20 values with energy spectra metrics
Traditionally, the mean energy of the energy spectra at the surface of a water phantom at 100-

cm SSD, E,,, is related to Rs, by
E, = C4(Rsp), 5.2
where the recommended value for Cy is 2.4 (TG-25 1990). Since E,, is similar to (E )y, o, all (E )y, , were
plotted versus Rs in Figure 5.4 to determine a correlation. Plotted on top of this data is
Rso = a1(E)m,o + az, 5.3
where a,; and a, were determined by a least square fit of equation 5.3 to all six accelerators’ (E);, , and

Rs, values for seven beam energies. The value for a; was 0.4147 cm/MeV, hence a; ™!

was equal to
2.411 MeV/cm, which agrees well with the recommended value of 2.4 MeV/cm for C,. In combination
with MBPCC’s matching criteria of 0.05cm for Rsg, 2.4 MeV/cm corresponds to a matching criteria of
0.12 MeV for (E);, », which was used throughout this study.

However, the 16 MeV beams have data points that vary from the fit by +£0.3 MeV while
agreeing to within 0.05 cm in terms of their R5, values. Hence, exceeding the 0.12 MeV match criterion

for (E)m,o values does not necessarily mean Rs, values do not match. Such a dilemma suggests that
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(E)m,o alone is not a sufficient surrogate and that FWHM may also play a role. For example, the CV1
and BR accelerators have (E);, , values of 15.94 and 16.54 MeV, respectively, with identical Rs, values

of 6.68 cm. However, their FWHM values are 2.80 and 3.26 MeV, respectively.

9 T T T T T T T
+  Gonz v
+ BR e
8« ow e i
. BV2 3
e
= Houma e
7t E
Harn .__},‘-
= 0.4147(<E>, ) 01076 S
E G . -
3 s
o o
5t - .
%
f/.
41 x .
“.I'
. 3
A
i .
5 8 10 12 14 16 18 20 22

<>y (W)

Figure 5.4. Correlation between R50 and incident modified peak mean energy. Plotted are the (colored
dots) measured Rs, values versus (E);, , values for all seven beam energies on all six Elekta Infinity
accelerators at MBPCC and the result of the (solid line) fit of equation 5.3 to them.

Rgg_20 values for all seven beam energies on all six Elekta Infinity accelerators are plotted
versus their respective (E);, , values in Figure 5.5. As the fit of a second order polynomial to this data
demonstrates, Rgo—y is primarily governed by the incident (E);,, ,, increasing supralinearly with
increasing (E);, , values. This can be attributed to an increase in range straggling with (E);, ,.
However, variations amongst the six data points for each of the seven nominal energies indicate an
additional, second order dependence on another factor, which is almost certainly the difference in the

widths of the energy spectra. FWHM was selected as the spectral width metric, where

FWHM = 2.350, 54
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where g was the standard deviation of a Gaussian distribution fit to the portion of the energy spectra
inside the energy averaging range used to calculated (E), ,.

Rgo—_20 values for all seven beam energies on all six Elekta Infinity accelerators are plotted
versus FWHM in Figure 5.6. For each nominal energy, the Rgy_5( values had a second-order
relationship with spectral width, increasing slightly with increases in FWHM. For example, for the 10
MeV beam there is a slope of about 0.05cm/MeV. Hence, this data confirms (1) that the FWHM of the
energy spectra plays a minor, but important role, in beam matching and (2) that matching spectral
widths would allow for finer beam matching and beam tuning than is possible with Rgq_5, or some
other metric drawn from measured %DD curves. Variations from a straight line fit at each energy were
due in part to variations in (E)y, , values for all six accelerators at the same nominal energy. To better
understand this data it was fit to a theory that relates the slope of the dose falloff region with (E);, ,

and FWHM.
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Figure 5.5. Plot of R80-20 versus incident modified peak mean energy. Plotted are the (colored dots)
measured Rgg_»q Values versus the (E);, , values for all seven beam energies on all six MBPCC Elekta
Infinity accelerators. Also plotted is the (solid line) result of fitting an equation of the form a,x? +
a,x + as to the data, where a,; equals 0.0038, a, equals 0.023, and a3 equals 0.69 from the fit.

146



3 T T T T T T

+  ThiaW o )
©amMey o &
S 10Mey Y
25H % TIMe .
© 1{3hev
O 1BMeW
& d0MeN
E 2 -
=
o - . ®
1.5 v, gy &
R :
" '-':':' L -
* #
1L ;t"' S i
I_ 1 1 1 I. 1
| 15 2 25 3 34 4 4.5
EWHM (e

Figure 5.6. Plot of R80-20 versus FWHM. Plotted are the (colored dots) measured Rgy_5( values versus
the FWHM values for all seven beam energies on all six MBPCC Elekta Infinity accelerators. The data for
each beam energy illustrates a slight increase in Rgg_5o with FWHM.

The theory used to relate Rgg_50 to (E )y, and FWHM was a modified version of equation 6.35

in ICRU 35 (1984), i.e.

i i FWHM
Rso—zo((E)m,o'FWHM) = R80—20(<E>m,0! 0) 1+a W ) 5.5
m,o
where Rgo_»¢ at (E)y, o, for FWHM = 0 is modeled by
* * 2 *
R80—20(<E)m,0' 0) =a; ((E)m,o) + a3((E>m,o) + ay . 5.6

The values for a4, a,, as, and a, were 0.394 + 0.174, 0.003205 + 0.000385, 0.03414 + 0.0094, and
0.540 + 0.071, respectively. These values were determined by fitting equation 5.5 to all the FWHM and
(E)m o values in Table 4.4 and the corresponding Rgg—_»0 values in Table 5.2 using the non-linear,
Marquardt algorithm option in the software package ProStat (Pearl River, NY). Plotted in Figure 5.7 are
all the measured data as well as the calculated values from the fit of equation 5.5 to the data. Figure 5.7

shows excellent agreement (sum of least squares = 0.0389 cm?) between the measurement data and
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calculated points, which is consistent with a 0.03 cm uncertainty in the measured Rg(_,( data.
Additionally, the plot of the calculated values for R80—20(<E>:n,o: 0) versus the measured Rgg_5( values
for the Therac 20 (Pfalzner and Clarke 1981) and Therac 25 (O'Brien et al 1985) accelerators in Figure 5.7
show reasonable agreement. The Therac 20 and Therac 25 are scanned beams, which having narrow
energy spreads (Deasy et al 1996) are better for comparison to RBO_ZO((E);‘,LO, 0) than beams from
other linear accelerators. Though these values are close, it is noteworthy that the measured Rgg_2¢
values are slightly less than the R80—20(<E):71,o; 0) values, which is the opposite of what one would
expect.

Utilizing these results it is possible to correlate matching criteria comparing FWHM with the

clinical value of 0.1 cm for Rgg_5g, i-€.

-1

dRgo—20({E)in o , FWHM
AFWHM = ARgy_50 |—2 ZOSF;;";M ) , 5.7
. -1
Rgo—20({E )0, 0) 58

= ARgg_20

- a
(E)mo !
where a, equals 0.394 + 0.174. For (E)y,, =7, 13, and 20 MeV, AFWHM = 1.9, 2.16, and 2.03 MeV,

respectively. Hence, an agreement of 0.1 cm in Rgg_,( corresponds to an agreement of approximately

2.0 MeV in FWHM.
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Figure 5.7. Plot of R80-20 versus the ratio of FWHM to incident modified peak mean energy. Plotted
are (dots) measured Rgq_5( values versus FWHM/(E);, , values. Also plotted are the (open circles)
results of the fit of equation 5.5 to the measured data at the same FWHM/(E);, , values. The solid lines
result from the same fit with (E);, , being set equal to the average (E);, , for all six data points within a
single nominal beam energy and the FWHM being allowed to vary, hence demonstrating the linear
dependence of Rgg_5¢ on FWHM.
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Figure 5.8. Comparison of R80-20(E,FWHM=0) from model to measured R80-20 measured for narrow
energy spectra beams. Plotted are the (solid line) calculated values for Rgg_2o({E )1 0, FWHM = 0)
versus (E);, , from the fit of equation 5.5 to the measured data and the measured Rg(_5( versus Ep ,
values for the (x points) Therac 20 (Pfalzner and Clarke 1981) and (open cirlces) Therac 25 (O'Brien et al
1985) accelerators, whose scanned beams have narrow energy spectra.
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Chapter 6 - Conclusions and future work
6.1. Summary of results

e Development of magnetic spectrometer: A lightweight, permanent-magnet, electron energy

spectrometer from Rice University was modified and configured to record maps of signal intensity
from CR strip readouts. The signal was created by dose deposited in the CR strip’s sensitive
phosphor layer from electrons transported from the spectrometer aperture. These maps of signal
intensity were transformed into intensity profiles, from which the energy spectra of electron beams
at 95-cm SCD were extracted. Dual pin-hole collimators provided a parallel beam to the
spectrometer and reduced the dose rate at the CR strip to appropriate levels, i.e. levels that created
irradiation times between 5 and 50 seconds. Also, a 7.68-cm thick lead block lowered
bremsstrahlung X-ray background to provide a peak signal to X-ray background ratio of 1.8:1 or
greater.

e Transformation of intensity profiles into energy spectra: A method for extracting net dose profiles

from the intensity profiles was developed. It was based on an analytical equation that related the
net dose profiles at the CR strips to the incident electron beam energy spectra at the spectrometer
aperture. An algorithm that solved the equation was developed, allowing the energy spectra at the
spectrometer aperture to be determined from the measured net dose profiles. As these methods
were analytical as opposed to statistical, they could be used in potential real-time versions of this
study’s magnetic spectrometer.

e Measurement of energy spectra for seven beam energies on six matched Elekta Infinity accelerators:

The energy spectra for the seven beam energies on MBPCC's six Elekta Infinity accelerators were
measured and compared. These electron beams had been previously tuned by Elekta service
engineers to have matched %DD curves (match criteria was £0.05 ¢cm for Rg and +0.10 cm for

Rgo_20). Results showed:
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6.2.

o For the three Elekta Infinity accelerators matched to the Gonzales accelerator, (1) the

(E)m,o varied from the reference (E);, , by as much as 0.18, 0.21, 0.47, 0.42, 0.56, 0.41,
and 0.22 MeV for the 7, 9, 10, 11, 13, 16, and 20 MeV beams, respectively, and (2) the
FWHM varied from the reference FWHM by as much as 0.6, 0.58, 0.61, 0.63, 1.39, 0.65,
and 0.59 MeV for the 7,9, 10, 11, 13, 16, and 20 MeV beames, respectively.

o For the one Elekta Infinity accelerator matched to the Houma accelerator, (1) the (E);, ,

varied from the reference (E);, , by 0.17,0.02, 0.18, 0.95, 0.69, 0.51, and 0.35 MeV for
the 7,9, 10, 11, 13, 16, and 20 MeV beams, respectively, and (2) the FWHM varied from
the reference FWHM by 0.15, 0.32, 0.18, 0.07, 0.01, 0.22, and 0.43 MeV for the 7, 9, 10,
11, 13, 16, and 20 MeV beams, respectively.

Correlation of Rcy and Rgy_,q values with (E);, , and FWHM: Rs, and Rgg_,o Were measured and

correlated with (E)y, , and FWHM from the measured energy spectra. The 0.05 cm and 0.1 cm
matching criteria for the R5y and Rgqy_»0, respectively, led to a matching criteria of 0.12 MeV and
2.0 MeV for the (E);, , and FWHM, respectively.

Major conclusions
Hypothesis: The hypothesis of this study was “Matched electron beams on MBPCC’s six Elekta
Infinity linear accelerators will have energy spectra that are sufficiently matched. Two spectra will
be considered sufficiently matched if their (E);, , and FWHM agree to within 0.12 MeV and 2.0
MeV, respectively, which corresponds to 0.05 cm and 0.1 cm agreement in the Rgg and Rgy_»g
values of the %DD curves, respectively.”

Based on the results, the hypothesis is false. For the three Elekta Infinity accelerators matched

to the Gonzales accelerator, at least one accelerator exceeded the 0.12 MeV matching criteria for
(E)m,o for all seven beam energies, whereas all beam energies on all three accelerators met the 2.0

MeV matching criteria for FWHM. For the one accelerator matched to the Houma accelerator, the
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0.12 MeV matching criteria for the (E’);, , was not met for six of the seven beam energies, whereas
the 2.0 MeV matching criteria for the FWHM was met for all seven energies. It is likely that energy
spectra metrics did not match due to (1) inadequacies in the Elekta Infinity accelerator beam tuning
process, (2) subsequent drifting of the energy spectra, (3) systematic error in the placement of the
CR strips in the magnet block slot, or a combination thereof.

e Sensitivity of energy spectra for beam matching: The energy spectra and their metrics, FWHM in

particular, are significantly more sensitive for comparing beams than %DD curves and their metrics.
Matched %DD curves do not necessarily result in matched energy spectra. Because unmatched
energy spectra may impact beam stability, there could be some advantage to matching energy
spectra when matching electron beams.

e Potential for a real-time, electron energy spectrometer: The apparatus and analysis techniques

developed in this study offer the potential for an inexpensive, lightweight, real-time electron energy
spectrometer.
6.3. Recommended future work

e Develop of real-time magnetic spectrometer: Every time the service engineer modifies accelerator

parameters while tuning the beam, the clinical medical physicist must remeasure the %DD curve to
determine if the result is acceptable. Since tuning a single beam may involve many modifications to
the accelerator parameters, any measurement of the %DD curve must produce results within a
couple seconds so as to not slow the tuning process. In lieu of %DD curve measurements,
measurements of the energy spectra using this study’s spectrometer could be used to observe the
effect of modifying accelerator parameters. To do so, this study’s spectrometer must produce
results in real-time.

For the magnetic spectrometer developed in this study to produce such immediate results, a

real-time detection medium must be used to make measurements in lieu of CR strips. Most likely
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this would involve permanently affixing a scintillating screen to the magnet block, which has the
added benefit of eliminating the biggest sources of measurement error, the placement of the CR
strips in the magnet block slot and the placement of the CR strips on the laser scanning carousel.

Improvements to beam collimation and X-ray shielding: It is possible to improve the peak signal to

X-ray background ratio by increasing the diameter of the Cerrobend® aperture at 95-cm SCD. MC
simulations should be used to optimize the diameters of and distance between the Cerrobend® and
spectrometer apertures. Additionally, it is possible to lower the mass of the collimation apparatus
by reducing the size of the X-ray block. The majority of the X-ray block’s mass, which composes
most of the mass of the entire measurement device, does not contribute to blocking X-rays from
reaching the CR strip.

Enhancements to data analysis: The magnetic field model used in section 2.1.2 could be improved

by including the positions of the magnetic field edges parallel to the CR strips in equation 2.7 as
parameters. This would allow the position of those edges to be determined by the fit of equation
2.7 to the calibration data instead of assuming the edges are contiguous with the CR strips. Also,
calibrating the magnetic spectrometer on one of MBPCC’s Varian accelerators may improve the
resulting calibration curve, as Varian energy spectra are more monochromatic and Gaussian-shaped
than Elekta energy spectra (Wessels et al 1979).

Methods for background subtraction: The bremsstrahlung X-ray background subtraction (section

3.1.1.2) and net dose profile smoothing (section 3.1.1.3) should be automated, as in the current
implementation of the code those processes require operator intervention to produce a complete
set of energy spectra for a single accelerator (5-6 minutes of manual curve fitting and smoothing per
beam). Automating these processes would shorten the execution time and remove any variations in
the results due to inconsistent operator performance. It might be possible to automate background

subtraction using measured background subtraction. To perform measured background
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subtraction, each energy spectrum could be measured normally and then measured again with all
the same irradiation conditions except for the spectrometer aperture being blocked. The dose
profile from the measurement with the aperture blocked would then be subtracted from the dose
profile measurement with the aperture unblocked. The result would be the net dose profile.

6.4. Potential applications for real-time magnetic spectrometer

e Beam tuning and matching: A real-time version of this study’s magnetic spectrometer would allow

service engineers to match electron beam energy spectra instead of %DD curves. This would be
advantageous because well-matched energy spectra should have well-matched %DD curves,
whereas the inverse might not be true. This is because %DD curves are fairly insensitive to some
spectral changes, particularly spectral width or shape. These details have no clinical relevance if the
%DD curves match, but being able to examine the energy spectra directly adds a level of detail that
might allow service engineers to gain a better understanding of what accelerator parameters must
be modified to perfect the matching of the %DD curves. This insight might expedite a normally
tedious, time-consuming process as well as improve the resulting match. Also, using a magnetic
spectrometer for beam matching has the advantage of eliminating the error due to the placement of
the physical center of the scanning ionization chamber at the surface of a water phantom prior to
measuring %DD curves, meaning there would be less setup error in the data used to match
accelerators. This is especially important when matching beams, as this setup error is systematic for
a single setup but random from setup to setup.

e Quality assurance by medical physicist: A real-time version of this study’s magnetic spectrometer

could be used as a QA device, possibly replacing ionization measurements in water or Plastic Water®
as the standard for monthly and yearly checks of electron beam energy. This would require new QA

methods to be developed in tandem with the device to take advantage of the increased sensitivity
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made available by measuring energy spectra. With this added sensitivity, it may be possible to
detect spectral changes that impact the stability of %DD curves.

Determination of electron beam energy spectra for radiation transport calculations: The resulting

energy spectra measured at 95-cm SCD could be used in transport calculations to determine dose in
a water phantom or patient. Also, the energy spectra at 95-cm SCD could be used to determine the
energy spectra at the vacuum window of the accelerator.

Determination of X-ray beam energy spectra for radiation transport calculations: It should be

possible to configure this study’s magnetic spectrometer to measure the energy spectra of
Compton-scattered electrons, from which the incident X-ray spectra could be calculated. Such
methods have been used previously with synchrotron keV X-ray beams (Dugas et al 2008) and MeV
beams (Landry and Anderson, 1991). The advantage of this detector is that unlike electron-counting

scintillating detectors, there is no detector dead time during an accelerator pulse.
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Appendix A - Schematics of magnetic spectrometer and collimation apparatus

312 ' l

Figure A.1. Side view of combined spectrometer and collimation apparatus. The position of the
aluminum baseplate relative to the Cerrobend® insert during irradiation is accurately depicted. The
Cerrobend® insert and aluminum baseplate are shown unattached to reflect the fact that they are free

to move relative to one another. All dimensions are to scale.

N
1 '_" .
=3}
-4
— = =
1 —
- - * L]
" :—| .
el (o]
_— —
— o -
w - i~
T v
I b
- L I -
| iy
o ]

Figure A.2. Top view of combined spectrometer and collimation apparatus. The position of the
aluminum baseplate relative to the Cerrobend® insert during irradiation is accurately depicted. The
Cerrobend® insert and aluminum baseplate are shown unattached to reflect the fact that they are free
to move relative to one another. All dimensions are to scale.
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Figure A.3. Isometric view of spectrometer and collimation apparatus. The position of the aluminum
baseplate relative to the Cerrobend® insert during irradiation is accurately depicted. The Cerrobend®
insert and aluminum baseplate are shown unattached to reflect the fact that they are free to move
relative to one another. All dimensions are to scale.
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Appendix B - CR plates and CR plate readout device

To create a CR plate, phosphor grains are combined with a polymer binder and a solvent to
create a slurry. This slurry is deposited onto a strong, flexible backing. After drying, the slurry hardens
into the sensitive layer of the CR plate, titled “Phosphor layer” in Figure B.1. When irradiated, some
electrons in the crystal lattice of the senstive layer’s phosphor grains are excited into the conduction
bands, leaving behind holes in the valence band. A single hole and electron pair created by this
excitation creates a hydrogen-like psuedo-atom known as an exciton which is held together by the a
mutual attraction between the hole and electron (Rowlands 2002).
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Figure B.1. CR Plate fabrication. lllustrated is the deposition of the sensitive phosphor layer onto the
flexible backing layer of a CR plate (from Rowlands 2002).

This exciton moves freely through the crystal lattice until it is contained by one of the lattice’s
many traps. If trapped at one of the activator sites created by doping the crystal with activator
elements, the electron-hole pair can be stimulated with a laser to recombine in a process known as
photostimulable luminscence (PSL). An example activator site is illustrated in Figure B.2. During PSL,
the exciton recombines and gives off energy in the form of photons of the activator element’s
characteristic wavelength. Hence, the trapping of excitons in phoshphor grains in the CR plate’s

sensitive layer forms a latent image that is readout with laser light.
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(a) Band structure representation of exciton
Figure B.2. Band structure and exciton trapping. Illustrated is the band structure of the crystal lattice of

phosphor grains in the CR plate. Excitons traveling through the lattice are trapped at activator sites
where they are stimulated to recombine with laser light (from Rowlands 2002).

To readout the latent image with laser light, a laser is scanned over the entire surface of the CR
plate’s sensitve layer. In this study, the readout device consisted of a rotating carousel and a laser
focused into a spot beam that scans in the direction perpendicular to the carousel rotation direction.
The CR plate is taped to this carousel and the scanning of the laser in combination with the carousel
rotation results in a raster scan across the entire face of the CR strip. The resulting PSL photons are
directed towards a light guide which transports them to a photomultipler tube (PMT) (Rowlands 2002).

The PSL photons detected by the PMT are then mapped to the collection position, creating the CR plate

image.
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(b) Exciton trapped on PSL complex
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