
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2012

Utilization of machined skin collimation for
electron therapy
Ryan Kenneth Posey
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Physical Sciences and Mathematics Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Posey, Ryan Kenneth, "Utilization of machined skin collimation for electron therapy" (2012). LSU Master's Theses. 457.
https://digitalcommons.lsu.edu/gradschool_theses/457

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/457?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F457&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


 

 

UTILIZATION OF MACHINED SKIN COLLIMATION FOR ELECTRON THERAPY 

 

 

 

 

 

 

A Thesis 

 

Submitted to the Graduate Faculty of the 

Louisiana State University and 

Agricultural and Mechanical College 

in partial fulfillment of the  

requirements for the Degree of 

Master of Science 

 

in 

 

The Department of Physics and Astronomy 

 

 

 

 

 

 

 

by 

Ryan Kenneth Posey 

B.A., University of Mississippi, 2005 

December 2012



ii 

 

Acknowledgements 

This research was supported in part by .decimal, Inc. (Sanford, FL), and I thank them.  

Also, I thank Mary Bird Perkins Cancer Center for providing the required resources and 

facilities. 

I acknowledge Dr. Mich Price for his serving as my supervisor for the bulk of this work.  

Upon his departure, I extend my most sincere gratitude to my adviser, Dr. Wayne Newhauser, 

for assuming that role and for his many hours of careful consideration of and unwavering 

attention, both to this project and to my countless questions.  Without the help of Dr. Newhauser, 

I almost certainly would not have completed this endeavor.  I would also like to thank Dr. 

Kenneth Hogstrom for contributing his expertise on the electron beam to this investigation and, 

on a larger scale, for believing me when I indicated to him my intentions of becoming a medical 

physicist.  Without Dr. Hogstrom’s help, advice, and understanding, I would never have reached 

my current advancement toward that profession.  Additionally, I want to thank my remaining 

committee members:  Dr. John Gibbons, Dr. Robert Fields, Dr. Mette Gaarde, and especially 

Connel Chu.  Connel spent many hours discussing with me the clinical aspects of this project, 

and I would like to convey my appreciation to him for his time and perspective. 

I want to thank the other students, faculty, and staff that frequently assisted me with the 

various (and numerous) obstacles encountered throughout this investigation, particularly James 

Kavanaugh, Dr. Robert Carver, John Chapman, David Perrin, Frank Apollo and the dosimetry 

staff.  Finally, I want to thank Ms. Yvonne Thomas and Mrs. Susan Hammond for their continual 

assistance and support above and beyond their duty—I will dearly miss you both.



iii 

 

Table of Contents 

 

Acknowledgements ......................................................................................................................... ii 

 

List of Tables .................................................................................................................................. v 

 

List of Figures ................................................................................................................................ vi 

 

Abstract ........................................................................................................................................... x 

 

Chapter 1: Introduction .............................................................................................................. 1 

 

Chapter 2: Properties and Techniques for Fabrication of eSCs ................................................. 6 

 Determination of Skin Collimator Attributes for Clinical Use ................................ 6 2.1

2.1.1 Skin Collimators Made from Lead ........................................................................... 6 

2.1.2 Skin Collimators Made from Cerrobend................................................................... 9 

2.1.3 Machined (Brass) Skin Collimators ........................................................................ 14 

 

Chapter 3: Specific Aim 1—Dosimetric Influence of eSC Bevel Angle ................................. 22 

 Methods and Materials ........................................................................................... 22 3.1

3.1.1 Variation of the Angle of the Aperture Edge .......................................................... 22 

3.1.2 Variation of Gantry Angle from Nominal Delivery Angle ..................................... 22 

3.1.3 Effects of Beveled Collimator Edges—Experimental Setup .................................. 25 

3.1.4 Effects of Beveled Collimator Edges—Film Dosimetry ........................................ 29 

3.1.5 Comparison of Measured Dose Distributions ......................................................... 33 

 Results for Specific Aim 1 ..................................................................................... 34 3.2

3.2.1 Collimator Scattered Dose ...................................................................................... 34 

3.2.2 Penumbral Width .................................................................................................... 35 

3.2.3 90% Dose Area ....................................................................................................... 36 

 

Chapter 4: Specific Aim 2—Dimensional Accuracy of the Machined eSC ............................ 49 

 Methods and Materials ........................................................................................... 49 4.1

4.1.1 Skin Collimation Evaluation Cycle ........................................................................ 49 

4.1.2 Cylindrical Phantom Case....................................................................................... 50 

4.1.3 Anthropomorphic Head Phantom Cases – Case 1 (Nasolabial Fold)                           

and Case 2 (Whole Nose) ....................................................................................... 52 

4.1.4 Comparison of Brass Machined Skin Collimation to Planned Skin Collimation— 

Dimensional Characteristics ................................................................................... 53 

 Results for Specific Aim 2 ..................................................................................... 54 4.2



iv 

 

4.2.1 Dimensional Accuracy of Machined eSC Devices ................................................. 54 

4.2.2 Thickness Comparisons of Machined eSC Devices ............................................... 58 

4.2.3 Agreement of Machined eSC Distal Surfaces ........................................................ 58 

4.2.4 Agreement of Machined eSC Aperture Edges ........................................................ 59 

4.2.5 Other Observations ................................................................................................. 59 

4.2.6 Summary of Specific Aim 2 Results ....................................................................... 59 

 

Chapter 5: Specific Aim 3—Dosimetric Equivalence of the Machined eSC .......................... 64 

 Methods and Materials ........................................................................................... 64 5.1

5.1.1 Experimental Setup ................................................................................................. 64 

5.1.2 Data Analysis .......................................................................................................... 65 

5.1.3 Comparison of Measured Dose Distributions ......................................................... 67 

5.1.4 Leakage ................................................................................................................... 67 

 Results for Specific Aim 3 ..................................................................................... 67 5.2

5.2.1 Collimator Scattered Dose ...................................................................................... 68 

5.2.2 Field Width and 90% Dose Area ............................................................................ 71 

5.2.3 Penumbral Width .................................................................................................... 71 

5.2.4 Radiation Leakage .................................................................................................. 72 

 

Chapter 6: Discussion of Results and Clinical Recommendations .......................................... 81 

 Collimating Material .............................................................................................. 81 6.1

 Bevel Angle and Collimator Scatter (Aim 1) ......................................................... 81 6.2

 Collimator Thickness (Aim 2 and 3) ...................................................................... 83 6.3

 Validation of Fabrication of Brass eSC (Aim 2) .................................................... 84 6.4

 Dosimetric Equivalence of Brass eSC (Aim 3) ...................................................... 85 6.5

 

Chapter 7: Conclusions ............................................................................................................ 87 

 Conclusions ............................................................................................................ 87 7.1

 Proposed Future Work ............................................................................................ 87 7.2

 

References ..................................................................................................................................... 90 

 

Vita ................................................................................................................................................ 93 

 



v 

 

List of Tables 

Table 3.1:  Results from a survey of aperture bevel angles and thicknesses measured from fifteen 

eSCs made of Cerrobend that were previously used in our clinic. ....................... 26 

 

Table 3.2:  The field setups used to measure the selected ranges of bevel and gantry angle 

variations ............................................................................................................... 27 

 

Table 3.3:  The specific field setups used to measure the effects of bevel and gantry angle 

variations for Ep,0 = 6 MeV. .................................................................................. 27 

 

Table 3.4:  90% relative dose area [mm
2
] for all measured combinations of bevel angle and 

relative gantry angle for 6 MeV beams................................................................. 42 

 

Table 3.5:  R90 depth on central axis for all measured combinations of bevel angle and relative 

gantry angle for a 6 MeV beam ............................................................................ 43 

 

Table 3.6:  Penumbral widths measured from data collected with variations in eSC                

bevel angle ............................................................................................................ 46 

 

Table 4.1: Volumetric comparison of the planned eSC to the machined brass eSC .................... 60 

 

Table 5.1:  Quantitative comparisons of cylindrical phantom data .............................................. 77 

 

Table 5.2:  Penumbral widths measured from data collected with the cylindrical phantom ........ 79 

  



vi 

 

List of Figures 

Figure 1.1:  Comparison of dose distributions for a 6 MeV, 3×3 cm
2
 beam .................................. 2 

 

Figure 2.1:  eSC lateral extention ................................................................................................... 7 

 

Figure 2.2:  Clinical example of scalp irradiation incorporating lead eSC and an acrylic scatter 

plate (Hogstrom 1991). ........................................................................................... 8 

 

Figure 2.3:  Clinical example of whole nose irradiation using lead eSC to collimate the beam 

beneath tissue-compensating bolus (Million et al. 1991) ....................................... 8 

 

Figure 2.4:  Schematic diagram depicting the conventions used to describe the aperture bevel 

angles (ϴB°) in this study ...................................................................................... 10 

 

Figure 2.5:  eSC “shadow”............................................................................................................ 11 

 

Figure 2.6:  Design procedure within the TPS, step one .............................................................. 16 

 

Figure 2.7:  Design procedure within the TPS, step two .............................................................. 17 

 

Figure 2.8:  Design procedure within the TPS, step three ............................................................ 18 

 

Figure 2.9:  Design procedure within the TPS, step four.............................................................. 19 

 

Figure 2.10:  Design procedure within the TPS, step five ............................................................ 20 

 

Figure 2.11:  Design procedure within the TPS, step six.............................................................. 21 

 

Figure 3.1:  Collection of patient Cerrobend skin collimators used to determine common   

clinical attributes ................................................................................................... 23 

 

Figure 3.2:  Approximate locations of protractor measurements are marked with yellow lines 

around the aperture edge ....................................................................................... 24 

 

Figure 3.3:  The gantry angle is referenced in this study with respect to the nominal gantry 

position .................................................................................................................. 24 

 

Figure 3.4:  Example setup of the phantom apparatus used for bevel angle measurements ......... 27 

 



vii 

 

Figure 3.5:  Example isodose distributions of 12 MeV preliminary bevel data—0°, +10°,      

+20°, and +30° bevels with a 0° gantry angle ...................................................... 28 

 

Figure 3.6:  Common errors seen in film dosimetry of high energy electrons related to    

imprecise experimental setup as demonstrated by Dutreix and Dutreix (1969) ... 32 

 

Figure 3.7:  Measured RCF calibration dose points with a piecewise polynomial fit. ................. 32 

 

Figure 3.8:  Isodose plots of the measured dosimetric data for the investigation into the 

dosimetric effects of eSC bevel angles ................................................................. 37 

 

Figure 3.9:  Isodose plots of the measured dosimetric data for the investigation into the 

dosimetric effects of eSC bevel angles ................................................................. 39 

 

Figure 3.10:  Isodose plots of the measured dosimetric data for the investigation into the 

dosimetric effects of eSC bevel angles ................................................................. 41 

 

Figure 3.11:  Uniformity within 90% plotted from bevel angle dosimetric measurements ......... 43 

 

Figure 3.12:  Lateral profile plots plotted from bevel angle dosimetric measurements ............... 44 

 

Figure 3.13:  Profile relative dose maxima plotted from bevel angle dosimetric        

measurements ........................................................................................................ 45 

 

Figure 3.14:  Measured 90% relative dose area comparison.  The bevel angle was held     

constant at 0° and the gantry was varied at 0°, ±3°, and ±5° ................................ 46 

 

Figure 3.15:  Measured 90% relative dose area comparison of bevel angles.  Relative gantry 

angle was held constant at 0° for Cerrobend eSCs with bevel angles of 0°,     

+10°, and -10° ....................................................................................................... 47 

 

Figure 3.16:  Measured 90% relative dose area comparison of bevel angles.  Relative gantry 

angle was held constant at -5° for Cerrobend eSCs with bevel angles of 0°,    

+10°, and -10° ....................................................................................................... 47 

 

Figure 3.17:  Measured 90% relative dose area comparison of bevel angles.  The bevel angle  

was held constant at +10° with the gantry varied at 0°, +5°, and -5° ................... 48 

 

Figure 3.18:  Measured 90% relative dose area comparison of bevel angles.  The bevel angle  

was held constant at -10° with the gantry varied at 0°, +5°, and -5° .................... 48 



viii 

 

 

Figure 4.1:  MVCT fusion of the anthropomorphic head phantom (case #2) eSC ....................... 51 

 

Figure 4.2:  3D rendering of the BEV for the cylindrical phantom taken from the TPS .............. 51 

 

Figure 4.3:  The HIWO polystyrene cylindrical phantom (Kavanaugh 2011) ............................. 52 

 

Figure 4.4:  Anthropomorphic head phantom PTVs ..................................................................... 55 

 

Figure 4.5:  Cylindrical phantom eSC and the head phantom case #1 and case #2 eSC—           

[a] brass, Cerrobend, and lead and [b] brass and the wax replicas ....................... 56 

 

Figure 4.6:   kVCT and MVCT fusion images of the cylindrical phantom case .......................... 61 

 

Figure 4.7:  kVCT and MVCT fusion images of the head phantom (case #1) ............................. 62 

 

Figure 4.8:  kVCT and MVCT fusion images of the head phantom (case #2) ............................. 63 

 

Figure 5.1:  Cylindrical phantom experimental setup with Cerrobend eSC ................................. 66 

 

Figure 5.2:  Percent depth dose plots before and after the correction of the surface effect .......... 69 

 

Figure 5.3:  Plots of the uniformity within 90% relative dose region before and after the 

correction of the surface effect. ............................................................................ 70 

 

Figure 5.4:  Isodose plot of the measured dosimetric data collected using the cylindrical  

phantom................................................................................................................. 73 

 

Figure 5.5:  Isodose plot of the measured dosimetric data collected using the cylindrical  

phantom................................................................................................................. 74 

 

Figure 5.6:  Uniformity within 90% relative dose region taken from the measured dosimetric  

data collected using the cylindrical phantom ........................................................ 76 

 

Figure 5.7:  Differential dose area histogram within 90% dose region taken from the       

measured dosimetric data collected using the cylindrical phantom...................... 77 

 

Figure 5.8:  Profiles taken from the measured dosimetric data collected using the cylindrical 

phantom................................................................................................................. 78 

 



ix 

 

Figure 5.9:  Isodose overlay of the measured dosimetric data collected using the cylindrical 

phantom—brass eSC v. Cerrobend eSC v. lead eSC ............................................ 79 

 

Figure 5.10:  90% relative dose area comparison taken from the measured dosimetric data 

collected using the cylindrical phantom—brass eSC v. Cerrobend eSC v.               

lead eSC ................................................................................................................ 80 

 

Figure 5.11:  Leakage profiles taken from measured dosimetric data collected using the      

cylindrical phantom .............................................................................................. 80 

 

  



x 

 

Abstract 

Purpose:  Electron skin collimation (eSC) sharpens the penumbra, allowing electron 

radiotherapy of cancers while minimizing dose to adjacent normal tissue, e.g., protecting the eye 

in treating eyelid and nose cancers. This study assessed the clinical potential for milled brass 

eSCs to replace manually-fabricated lead or Cerrobend eSCs.  

Methods:  Aim one was to measure the influence of eSC edge angle on the dose distributions, 

which were measured under edges of lead eSCs for combinations of three bevel (0°,±10°) and 

five gantry (0°,±3°,±5°) angles for a 6-MeV beam. Aim two was to validate the dimensional 

conformity of three machined brass eSCs, one designed for a cylindrical phantom and two for an 

anthropomorphic head phantom. eSC shapes were compared using megavoltage computed 

tomography (MVCT) of brass eSCs, kilovoltage computed tomography (kVCT) of wax replicas, 

and physical measurements. Aim three compared dose distributions in the cylindrical phantom 

for a brass eSC (≈ 7×9 cm
2
) with those for lead and Cerrobend eSCs at 16-MeV. All dose 

distributions were the average of three radiochromic EBT2 film measurements. 

Results:  Aim one showed all combinations of (0°,±10°) bevel and (0°,±3°,±5°) gantry angles to 

have insignificant effect on penumbral width (≈ 0.5 mm). Increased dose from scatter, as great as 

11% near the edge, was clinically insignificant because of low surface dose for 6 MeV beams 

and insignificant change in R90. Aim two showed MVCT, kVCT, and physical measurements 

useful for quality assurance. Also, it revealed that distal eSC surfaces matched designs (≤ 2 mm), 

that thicknesses deviated ≤ 1.5 mm from design, and that two of three eSCs had aperture edges 

focused ≈20 cm above the eSC generating errors up to 3 mm. Aim three showed the brass eSC to 

have comparable radiation leakage, penumbral width, field width, and coverage of distal 90% 

dose contour, but increased scatter dose (3-10%). 
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Conclusions:  Results indicated that machined brass eSC holds good potential for replacing lead 

or Cerrobend eSCs. Prior to clinical utilization, two recommendations are (1) to eliminate the 

cause of incorrect divergence in the aperture edges and (2) to determine the bevel angle that 

minimizes scatter dose from brass eSC edges.



1 

 

Chapter 1:  Introduction 

Skin cancer is a major health care problem in the United States; in 2010 and 2011, 

approximately 75,000 new cases of skin cancers were diagnosed, resulting in nearly 12,000 

deaths (Jemal et al. 2010; Siegel et al. 2011).  With the departure of orthovoltage x-ray machines 

from the clinic, as Co-60 and linear accelerators became the machine of choice in the 1960s and 

1970s (Brahme 1987), electron therapy became an essential clinical modality for the treatment of 

skin and other superficial cancers.  Some of the advantages of this treatment modality include a 

characteristically high surface dose, a sharp surface dose buildup (<10 mm) of delta rays, a 

relatively uniform dose plateau as dose slowly builds up due to multiple Coulomb scatter, and a 

steep distal dose fall-off (Hogstrom 2003).  Electrons have been used to treat cancer target 

volumes within 6 cm of the surface, primarily in the head, neck, and chest wall (Hogstrom 2003).  

These include superficial or skin lesions, involving basal cell and squamous cell carcinomas 

(primarily of the head and neck) (Tapley 1976), total limb electron irradiation (Wooden et al. 

1996), and total skin electron irradiation (TSEI) for the treatment of mycosis fungoides 

(Karzmark et al. 1987; Khan et al. 1991).  The function of skin collimation in electron therapy is 

to minimize the penumbra when treating in close proximity to critical structures, which is 

especially important for low energy electron beams, small fields, extended treatment distances, 

using bolus (on or off the patient surface), and using arc therapy (Hogstrom 2003). 

Electron skin collimation (eSC) is often used in the head and neck region due to the 

typically small field size, as well as the proximity of critical structures to the treatment volume 

(Hogstrom 2003).  For small field sizes, eSC sharpens the penumbra allowing better dose 

homogeneity and, as a result, improves coverage of the therapeutic region (i.e., within the 90% 

dose contour), as shown in Figure 1.1 (Hogstrom 1991).  As such, the treatments of small lesions 
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(e.g., on the eyelids and inner canthi) can be significantly enhanced with the incorporation of 

eSC (Tapley 1976).  Bolus is frequently used in the treatment of the nose due to the irregular 

surface of the nose and tissue inhomogeneities, and in such cases, eSC is often used to restore 

penumbral sharpness beneath the bolus (Million et al. 1991) (see Figure 2.3). 

 
Figure 1.1:  Comparison of dose distributions for a 6 MeV, 3×3 cm

2
 beam.  (a)  A larger field 

size is reduced to a 3×3 cm
2
 field size using eSC.  (b) The 3×3 cm

2
 field size is collimated by the 

treatment head collimators (10 cm air gap), which results in diminished penumbral sharpness and 

a reduction of the coverage of the 90% dose region (Hogstrom 1991). 

Despite the improvements made by eSC in certain situations, utilization of eSC remains 

somewhat limited because of challenges associated with its on-site fabrication (e.g., time, labor, 

expertise, cost, and toxicity of materials).  Additionally, with the widespread incorporation of x-

ray multi-leaf collimators (xMLC) on linear accelerators, the number of mould rooms dedicated 

to the fabrication of in-house collimation (x-ray blocks) and treatment aids (compensators) has 

dwindled.   In an effort to expand the availability and convenience of electron skin collimation, a 

commercial medical device manufacturer (.decimal, Inc., Sanford, FL) is developing the 

capability to provide custom skin collimators milled from brass whose shape is based on patient-

specific CT data.  Prototype eSCs are manufactured from brass using a computer numerical 

control (CNC) milling machine.  The eSC can be designed relatively easily within a commercial 

Treatment Planning System (TPS), and the coordinates of the skin collimator contours, based on 

the CT coordinate system, can be used to generate data electronically delivered to the eSC 
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manufacturer for machining.  An eSC requires approximately an hour to design and upload to the 

manufacturer.  The manufacturer should be able to mill the eSC and mail it to the clinic within a 

24-48 hour time period at a reasonable cost.  Comparatively, approximately 12 hours of clinical 

staff time is required for in-house design and construction.  In principle, milled collimators 

should be more accurate than in-house fabrication (i.e., better fit the patient surface, more exact 

aperture shape, and more uniform thickness than Cerrobend).  However, the literature does not 

contain any reports on the dosimetric performance of a third-party milled eSC device.   

The practice at our clinic (Mary Bird Perkins Cancer Center) has been to construct 

Cerrobend skin collimators with “open” beveled edges defining the aperture.  “Open” beveled 

edges, as compared to straight edges, allow fine tuning of the gantry angle (±5°) by the radiation 

oncologist after fabrication without modifying the projected electron field on the patient and also 

should prevent small rotational setup errors from having a substantial dosimetric impact.  With a 

straight edge, the upstream surface of the skin collimator will define the edge on the side of the 

eSC to which the gantry is rotated (e.g., a 5° rotation will shrink the field edge positioned on 

central axis by approximately 1 mm for an eSC with a thickness of 1 cm), while on the opposite 

side of the eSC, the number of electrons grazing the collimator edge increases.  Although “open” 

beveled eSC edges removes the former issue, it increases the number of electrons grazing the 

collimating edge surface, which further impacts the collimator-scattered electrons striking the 

patient.  Verhaegen et al. (2001) reported some results of how the electron dose distribution is 

perturbed by the presence of eSC, particularly near the eSC aperture edge and under the eSC.  

Near the eSC edge, a lobe of increased dose is formed by scattered electrons at a seemingly 

predictable angle relative to the nominal beam direction at the surface.  Based on Monte Carlo 

calculations, their results showed that, in general, a decrease in electron beam energy caused an 
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increase in the angle of the lobe of increased dose and that this effect is almost independent of 

eSC thickness.  The literature contains some other studies that address electrons scattering at a 

collimator edge (Beardmore 2007; Chi et al. 2005; Lax and Brahme 1980), but the applicability 

of these studies to optimizing the design of eSCs is limited.  As such, there is incomplete 

knowledge of the dosimetric impact of the selection of the edge angle of collimators for the 

treatment of skin lesions. 

The purpose of this study was to evaluate the potential for a commercial device 

manufacturer to mill brass skin collimators that are clinically acceptable (i.e., comparable or 

better than skin collimators of lead or Cerrobend currently being fabricated in-house).  One key 

eSC design feature, the angle of the aperture edges and its effects on the dose distribution via 

collimator scatter, will be examined.  Also, dosimetric features of a milled brass eSC will be 

compared with that of lead eSC and Cerrobend eSC that were fabricated using the current in-

house methods.  The results of this study will be important because they should provide 

information useful for determining the clinical potential of a milled brass eSC system.  

The hypothesis of this project was [1] that a third-party milled brass eSC, with its 

collimating edge parallel to the mean direction of the divergent electron beam, can be milled 

accurately, i.e., within design parameters and [2] that it will be dosimetrically equivalent to 

current lead and Cerrobend eSCs, with edges parallel to the beam central axis and an open bevel 

angle of 10°, respectively.   

For [1] “accuracy” was assessed using the following criteria: 

 eSC brass thickness will agree with design thickness within ± 1 mm. 

 Distal surface of the eSC will agree with the skin surface within 2 mm. 

 The eSC edge will agree with the design of the aperture within ± 2 mm. 
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For [2], dosimetric equivalence was assessed using the following criteria: 

 Change of R90 on central axis will be ≤ 1 mm 

 Change in maximum dose value will be ≤ 5%  

 Change in penumbral width (P80-20) will be ≤ 2 mm 

This hypothesis was tested by completing the following specific aims: 

Aim 1:  Measure the influence of collimator edge angle on the properties of dose 

distribution.  The influence of the collimator edge angle (0°, ±10°) on the lateral penumbral 

width and dose uniformity in a simple, homogeneous, box-shaped phantom was evaluated for a 6 

MeV electron beam with multiple gantry angles (0°, ±3°, ±5°). 

Aim 2:  Validate the dimensional conformity of the machined brass eSC to the planned eSC 

design.  The dimensional accuracy of the machined eSCs (thickness, shape of the distal surface, 

and shape of the aperture) was examined using an MVCT fusion of the brass eSC as well as a 

kVCT fusion of a wax replica of the brass eSC with the design.  Also, manual measurements 

were used.  Results were compared with the design shapes determined by the TPS.  Calculated 

distances within the CT coordinate system were used to verify design conformity and also to 

discern any observable differences in the CT fusions from potential imaging artifacts. 

Aim 3:  Evaluate the dosimetric performance of a machined brass eSC and compare to that 

for the current standard of care (lead or Cerrobend eSC).  The results of dosimetric 

validation tests, which were collected using collimators fabricated according to the current 

standard of care (Cerrobend collimation and lead collimation fabricated in-house), as well as the 

proposed standard of care (milled brass collimators fabricated off-site), were compared to assess 

dosimetric equivalence of the collimating materials.  Dosimetric performance was evaluated by 

measurement of the dose distribution in a cylindrical phantom for a 16 MeV electron beam 

incident on an irregular eSC aperture (≈ 7×9 cm
2
).  
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Chapter 2:  Properties and Techniques for Fabrication of eSCs 

2.1 Determination of Skin Collimator Attributes for Clinical Use 

2.1.1  Skin Collimators Made from Lead 

A significant portion of electron skin collimators (eSCs) used for electron radiotherapy is 

manually fabricated using multiple thin sheets (≈1.5 mm) of lead.  Lead (Z = 82, ρ = 11.34 

g/cm
3
) is well suited for skin collimator fabrication due to its relatively high linear stopping 

power and malleability at room temperature.  This malleability facilitates fabrication of electron 

skin collimation (eSC) that closely follows the contour of the patient’s surface.  Due to the 

hazardous nature of lead to humans, handling precautions must be observed and guidelines must 

be followed at the time of its disposal.  Since skin collimators serve to shape the electron beam 

incident on the patient, the collimator must be of sufficient thickness to stop the primary 

electrons, i.e., reduce the transmission of dose to the expected level of bremsstrahlung outside 

the collimator’s aperture.  To determine this minimum thickness, tPb, the following equation was 

utilized:  

    [  ] ≈ (
    [   ]

 
)   ,                                                         (2.1) 

where Ep,0 is the most probably electron beam energy at the surface (Khan et al. 1991).  This 

“rule-of-thumb” applies to the interval of clinically utilized electron beam energies (4 to 20 

MeV). 

 The shape of the treatment field is delineated by the physician, using either CT data or 

patient anatomy.  The aperture shape of the eSC is then produced based on the specifications of 

the physician’s drawing.  The eSC is fabricated using the following process:  first, using mould 

technique (e.g., Watkins (1981)), a plaster stone bust positive of the region of the patient 

containing the treatment field was created that included the area to be irradiated.  The treatment 
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field was then directly drawn on the patient-surrogate by the physician, or in some cases, it was 

drawn on the patient, for which case it was carried through in the moulding process (Watkins 

1981).  A ball-pein hammer is typically used to conform the lead eSC to the contour of the 

patient surface. 

 Using the physician-defined aperture shape, the aperture was cut from a number of lead 

sheets.  The eSC was laterally extended to intercept the penumbra formed by the upstream 

collimation, consisting of an electron applicator with or without an applicator insert (Hogstrom 

2003) (Figure 2.1).  The malleability of lead makes precise dimensional accuracy of the aperture 

difficult to achieve.  The lead eSC edges are usually approximately perpendicular to the patient 

surface due to the lack of precision in common fabrication methods, and the outer portion of the 

eSC is sometimes flared away from the patient surface (see Figure 2.2), typically to 

accommodate patient setup and improve comfort.  Two clinical examples are shown in Figures 

2.2 and 2.3. 

 

 

 

Figure 2.1:  eSC lateral extention. (a) A side view of a hypothetical treatment setup shows the 

larger field formed within the treatment head that is further reduced downstream by the eSC.  A 

beam’s eye view is shown in (b) to further illustrate that the eSC should be laterally extended to 

intercept the penumbra formed by the upstream collimation (Hogstrom 1991). 
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Figure 2.2:  Clinical example of scalp irradiation incorporating lead eSC and an acrylic scatter 

plate (Hogstrom 1991). 

 
Figure 2.3:  Clinical example of whole nose irradiation using lead eSC to collimate the beam 

beneath tissue-compensating bolus (Million et al. 1991).  Shown are the lead eSC on the patient 

without bolus (upper-left), the bolus placed on top of the lead eSC (lower-left), and an 

illustration of the expected impact of the bolus on the dose distribution (right) without eSC. 
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2.1.2  Skin Collimators Made from Cerrobend  

In addition to lead eSC, Cerrobend (MT-A158, MED-TEC, Orange City, IA), or 

Lipowitz’s alloy, is commonly utilized as an eSC material.  This is due to Cerrobend’s low 

melting point (158°F), which allows for easy casting of the material.  To fabricate Cerrobend 

collimation, molten Cerrobend is poured into a mould and becomes rigid as it cools to room 

temperature.  This rigidity allows for precise shaping of the eSC edges with the use of a rotary 

machining tool.  Cerrobend is an alloy of bismuth (50%), lead (26.7%), tin (13.3%), and 

cadmium (10%), with an effective atomic number (Zeff) of 76.8 and density of 9.4 g/cm
3
.  To 

determine the required Cerrobend collimator thickness (tCerr) to adequately shield proximal 

healthy tissues, a modified form of Equation 2.1 was used: 

         (   )                                                              (2.2) 

The 20% increase in the required thickness of the Cerrobend, compared to lead, comes from the 

ratio of the density of lead (11.3 g/cm
3
) to Cerrobend (9.4 g/cm

3
) (Khan et al. 1991). 

In contrast to lead collimators, which typically had edges parallel to the beam central 

axis, our clinic has traditionally preferred for Cerrobend eSC to have a “positive” (convergent) 

bevel angle (Figure 2.4).   

Due in part to the characteristic customized fit of Cerrobend eSC, the positioning of the 

collimator on the patient surface is highly reproducible.  As such, patient setup errors (e.g., head 

rotation) could translate into beam angle inaccuracies with respect to the aperture.  For example, 

if an aperture has a perpendicular or negative (divergent) bevel angle, deviation from the 

prescribed beam angle (with respect to the patient) can potentially cause a portion of the incident 

beam to be scattered by the proximal (upstream) surface of the skin collimator aperture edge, 

creating an increase in dose near the surface and a distal cold region, or “shadow,” in a portion of 
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the treatment field (Lax and Brahme 1980).  Consequently, a positive bevel angle is preferred to 

prevent a setup error from resulting in a “shadow” being cast over a portion of the treatment area 

(Figure 2.5). 

 
Figure 2.4:  Schematic diagram depicting the conventions used to describe the aperture bevel 

angles (ϴB°) in this study.  A positive bevel angle may also be referred to as “convergent” or as 

being “beveled out.”  Likewise, a negative bevel may be described as “divergent” or “beveled 

in.”  Also visible in the figure is the convention used to describe gantry rotation (ϴG°); the 

downward-pointing arrows are representative of the beam central axis and indicate the beam 

direction. 

In the present study, three patient-like skin collimators were fabricated using the 

following technique.  To fabricate a Cerrobend skin collimator, a plaster stone positive of the 

region of the patient containing the treatment field was created.  The treatment field was then 

directly drawn on the patient-surrogate by the physician.  A thin line was etched into the stone 

that follows the physician-defined field shape.  A wall (of Styrofoam, used for Cerrobend 

shielding block construction, or a clay-like modeling compound) was then built around the stone 

to dam the molten Cerrobend that was poured onto the bust.  When necessary, modeling 

compound was used to create small spaces between the skin collimator and any surface 

structures that may hinder or prevent the separation of the eSC from the stone bust.  

After the Cerrobend was poured and cooled, the stone bust was carefully pried away from 

the hardened Cerrobend.  The appropriate thickness of the skin collimator, per Equation 2.2, was 

achieved using a soldering iron to remove excess Cerrobend from the surface of the eSC. 
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Figure 2.5: eSC “shadow”—Displayed (approximately to scale) are isodose plots for a 6 MeV 

electron beam with the gantry angle (ϴG°) offset to -5° using Cerrobend eSC with (a) a +10° 

bevel angle, (b) a 0° bevel angle, and (c) a  -10° bevel angle.  The distal surface of the eSC was 

positioned 50 mm OAX, and the beam edge defined by the eSC is illustrated with a dashed red 

line.   

 

For (a) a +10° bevel angle, the geometric distance of the beam edge from 50 mm OAX at the 

surface ([A]; green line, arrows) was zero.  The penumbral width (P90-10) at a depth of 10 mm 

([B]; orange arrows) was 8.2 mm.  The distance of the projected beam edge at the depth of 

maximum dose (dmax = 14 mm) from 50 mm OAX ([C]; black arrows) was 0.4 mm.  The positive 

bevel provides a more forgiving margin of error in the presence of rotational setup error.  If a 

“shadow” is cast by the eSC, penumbral sharpness is diminished, the homogeneity of dose is 

reduced, and the treatment field area is reduced causing an unexpected (and potentially 

undetected) deviation from the prescribed treatment. 

(a) 
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Figure 2.5 (continued):  eSC “shadow”—Displayed (approximately to scale) are isodose plots for 

a 6 MeV electron beam with the gantry angle (ϴG°) offset to -5° using Cerrobend eSC with (a) a 

+10° bevel angle, (b) a 0° bevel angle, and (c) a  -10° bevel angle.  The distal surface of the eSC 

was positioned 50 mm OAX, and the beam edge defined by the eSC is illustrated with a dashed 

red line.  

 

 

 

 

For (b) a 0° bevel angle, the geometric distance of the beam edge from 50 mm OAX at the 

surface ([A]; green line, arrows) was 0.7 mm.  The penumbral width (P90-10) at a depth of 10 mm 

([B]; orange arrows) was 10. 8 mm.  The distance of the projected beam edge at the depth of 

maximum dose (dmax = 14 mm) from 50 mm OAX ([C]; black arrows) was 1.3 mm.  The 

proximal surface of the eSC slightly reduced the field size at the surface, which resulted in a 

small shift of the treatment field ([A] and [C]) and an increase in penumbral width ([B]) as 

compared to the +10° beveled eSC. 

  

(b) 



13 

 

 

Figure 2.5 (continued):  eSC “shadow”—Displayed (approximately to scale) are isodose plots for 

a 6 MeV electron beam with the gantry angle (ϴG°) offset to -5° using Cerrobend eSC with (a) a 

+10° bevel angle, (b) a 0° bevel angle, and (c) a  -10° bevel angle.  The distal surface of the eSC 

was positioned 50 mm OAX, and the beam edge defined by the eSC is illustrated with a dashed 

red line.  

 

 

 
 

 

For (c) a -10° bevel angle, the geometric distance of the beam edge from 50 mm OAX at the 

surface ([A]; green line, arrows) was 3.3 mm.  The penumbral width (P90-10) at a depth of 10 mm 

([B]; orange arrows) was 10.1 mm.  The distance of the projected beam edge at the depth of 

maximum dose (dmax = 14 mm) from 50 mm OAX ([C]; black arrows) was 3.8 mm.  The 

proximal surface of the eSC substantially reduced the field size at the surface, which resulted in a 

significant shift of the treatment field ([A] and [C]) and an increase in penumbral width ([B]) as 

compared to the +10° beveled eSC. 

  

(c) 
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2.1.3  Machined (Brass) Skin Collimators 

To circumvent the previously established difficulties associated with skin collimation 

fabrication, a commercial device manufacturer (.decimal, Inc.) is developing the capability to 

provide custom brass skin collimators to clinics unable or averse to create eSC in-house.  Brass 

is an alloy of Copper and Zinc, and the proportions of each can be varied to exploit various 

properties (such as hardness and density) of the component elements.  The density of the brass 

used by the manufacturer was reported to be 8.498 g/cm
3
.  Thickness calculations for skin 

collimation constructed from this material were calculated according to 

          (   ),                                                          (2.3) 

as (ρPb / ρbrass) = (11.3 / 8.5) ≈ 1.3.  Several properties contributed to the selection of brass as the 

material to be used for the manufacturer’s eSC.  Required thickness of the eSC and production of 

bremsstrahlung dose are minimized by the high density and intermediate atomic number, 

respectively, of brass.  Additionally, brass is durable and is an excellent machining material 

(Hogstrom et al. 1985).  The absorbed dose due to electrons scattered through a collimator edge 

is inversely proportional to the density of the collimating material and only has a weak 

dependence on energy and atomic number (Lax and Brahme 1980).  Thus, due to the lower 

density of Cerrobend and brass, relative to that of lead, a small increase in dose near the eSC 

aperture edges was expected due to scattered electrons. 

2.1.3.1     Computer-Aided Design of Machined Skin Collimation 

The brass eSC machined by the manufacturer was designed within a commercial 

Treatment Planning System (TPS) (Philips Pinnacle
3
, Philips Electronics North America 

Corporation, Andover, MA) by first scanning the patient—or phantom in our case—on a kVCT 

scanner.  A large bore, multi-slice CT scanner (GE LightSpeed, General Electric Medical 
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Systems, Fairfield, CT) was used in this study.  The phantom image sets were acquired using 

common clinical settings for kVCT scans: the tube current and tube potential were 400 mA and 

120 kVp, respectively.  The phantoms were imaged using the helical scanning technique with a 

pitch of 0.938 and a slice thickness of 2.5 mm.  The central sagittal plane of the phantoms was 

aligned with the sagittal laser plane of the kVCT scanner.  After importing the image set into the 

TPS, the brass eSC was designed using the following procedure described in the captions of 

Figures 2.6-2.11. 

2.1.3.2   Manufacturing of Machined Skin Collimation and Wax Replica 

 Once designed within the TPS, DICOM files were exported from the TPS and imported 

into the manufacturer’s (.decimal, Inc.) software via file-transfer protocol.  The manufacturer’s 

software converted the planned eSC from its DICOM structure (i.e., a set of slice contours) into a 

pair of surface meshes.  This pair of surface meshes represented the proximal and distal surfaces 

of the eSC with respect to the electron beam orientation.  The conversion process involves ray-

tracing along the beam’s central-axis to determine the proximal and distal intersections with the 

DICOM eSC structure.  These surfaces are used to generate the pathways to be taken by the 

milling tool during the machining process. 

 The skin collimator was milled from a larger block of brass.  Each of the eSC surfaces 

(proximal and distal) was milled separately such that the brass must be flipped between the 

milling routines.  The manufacturer also milled a wax replica of the eSC to be used for kVCT 

quality assurance tests.  The manufacturer’s quality assurance procedure involved automated 

inspections of thickness at specific locations (called “control points”). 
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Figure 2.6:  Design procedure within the TPS, step one—Once imported into the TPS, regions of 

interests were contoured on the data sets, including critical organs (e.g., lungs, spine, eyes), the 

Planning Target Volume (PTV), and the external patient surface.  The PTV for this nose 

simulation is depicted by the blue shaded region.  The three views shown here (as well as in 

Figures 2.7-2.11) are the mid-transverse CT plane (upper); mid-sagittal CT plane (lower-left); 

and a 3-D rendering of the phantom as viewed from above and to the right of the phantom 

(lower-right). 
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Figure 2.7  Design procedure within the TPS, step two—An electron beam was then added at an 

appropriate beam energy, gantry angle, electron cone size, and collimator angle.  The beam 

energy was selected such that the distal surface of the PTV is encompassed by R90, the depth 

reached by 90% of the given dose.  While R90 should exceed the maximum depth of the PTV, the 

nominal beam energy was selected with consideration for possible critical structures distal to the 

PTV.  The beam to be used in conjunction with the eSC was set to 105 cm source-to-surface 

distance (SSD), as is common practice, to prevent any possible collision between the patient and 

an electron cone.  After a beam was created, an auto-surround electron block was added to 

collimate the beam to follow the PTV edge.  In the present case, the green lines show the edges 

of a 15×15 cm
2
 field, and the red lines show the intended treatment field to be defined by the 

eSC. 
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Figure 2.8:  Design procedure within the TPS, step three—The Pinnacle

3
 TPS allows for the 

creation of an “auto-bolus,” which is a constant-thickness layer of (typically water-equivalent) 

material that can be placed atop the patient surface.  The thickness of the auto-bolus was dictated 

according to the required thickness of brass calculated from Equation 2.3.  The lateral extent of 

the auto-bolus was extended ≥ 3cm around the PTV.  When deciding the lateral extent of the 

auto-bolus, which eventually became the eSC contour, consideration for the 15×15 cm
2
 electron 

cone size was taken into account.  The auto-bolus was conservatively extended laterally outside 

the chosen electron cone size by 1-2 cm.  The auto-bolus was then converted into an ROI.  To 

accomplish this, the plan was saved and exited, and the “bolus.roi” and “plan.roi” files for this 

particular patient and plan were located and opened as text files.  Within the “bolus.roi” file, the 

text was copied from the beginning of the header reading “Beginning of Bolus ROI…” to the end 

of the file.  This copied text was then pasted to the end of the “plan.roi” file and saved.  After re-

opening the plan, the fully editable auto-bolus ROI appeared at the end of the ROI list as an 

unnamed ROI. 
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Figure 2.9:  Design procedure within the TPS, step four—After enabling the beam visualization 

option, a contour was made to conform to the edge of the beam.  This resulted in a trapezoidal 

contour on each slice containing the visualized beam edge that had been collimated down by the 

auto-surround electron block.  We defined the aperture bevel angle to follow the beam 

divergence because assuming the absence of setup error, the ideal angle for the aperture bevel 

will match the angle of the beam fan-line at each specific lateral extent from central axis (CAX) 

(Lax and Brahme 1980). 

  



20 

 

 

Figure 2.10:  Design procedure within the TPS, step five—The final step in forming the contour 

of the eSC was to subtract the contour of the field edge (upstream from the phantom surface) 

from the auto-bolus contour to create the field-defining aperture.  The resulting ROI’s density 

was assigned at  8.498 g/cm
3
, i.e., the density of the machined brass eSC.  The eSC ROI was 

inspected for appropriate thickness and coverage then designated as the contour of the desired 

eSC.   
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Figure 2.11:  Design procedure within the TPS, step six—The ROIs and plan were exported from 

the TPS and uploaded into the manufacturer’s commercial software (p.d v4.2, .decimal, Inc., 

Sanford, FL).  p.d v4.2 is .decimal, Inc.’s proprietary software used to convert an ROI’s spatial 

information into a format compatible with CNC machinery.  Once in the manufacturer’s 

software, the appropriate ROI was selected, optimized, and submitted to the manufacturer for 

production.  The optimization process performs coordinate system transformations necessary to 

facilitate electronic submission to the manufacturer and compatibility with their CNC milling 

machinery. 
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Chapter 3:  Specific Aim 1—Dosimetric Influence of eSC Bevel Angle 

3.1 Methods and Materials 

3.1.1  Variation of the Angle of the Aperture Edge 

The introduction of collimation to an electron beam is known to degrade and perturb the 

homogeneity of a dose distribution near the field edge due to electrons scattered from the 

collimator edge (Lax and Brahme 1980).  The present study investigated the significance of the 

collimator edge angle (ϴB).   

 A collection of fifteen Cerrobend skin collimators was used to establish a range of 

aperture edge angles (with respect to the beam CAX) that would be considered typical of clinical 

applications (Figure 3.1).  These collimators had been previously used in our clinic for the 

treatment of various head and neck lesions.  On each collimator, the aperture edge angle, or 

bevel angle, was measured at four locations—the superior, inferior, left, and right edges.  A 

stainless steel protractor equipped with a 15.24 cm locking arm was used to measure these angles 

(Figure 3.2).  For these measurements, the arm of the protractor was positioned along the bevel 

surface, and the face of the protractor was positioned proximal to the eSC aperture and 

approximately perpendicular to the beam direction, such that the bevel angles were measured 

with respect to the CAX of the electron beam.  Another set of measurements was taken from this 

collection of skin collimators to characterize the thickness of Cerrobend collimators. 

3.1.2  Variation of Gantry Angle from Nominal Delivery Angle 

 As previously stated, the aperture angle is often beveled “out” (positive bevel angle) in 

order to account for rotational setup error, or to avoid casting a “shadow” across a portion of the 

field (Figure 2.5).  In some situations, precise patient positioning or accurate skin collimator 

placement, can be difficult to achieve with consistency.  Typically, markings are made on the 
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patient surface to facilitate proper positioning, as patient positioning errors can cause significant 

changes to the dose distribution.  To simulate an angular setup error in which the patient is 

positioned with a minor rotational error, the gantry angle was systematically varied.  For the 

investigation of the dosimetric effects of the bevel angles, film measurements were collected for 

beveled collimators at relative gantry angles (ϴB) of 0°, ±3°, and ±5°, where a 0° angle is 

considered to be the nominal gantry position in which the beam is aimed toward the ground.  In 

this study, a positive gantry angle denotes a clockwise gantry rotation as shown in Figure 3.3.  In 

the analysis of this data, each field was halved along CAX , and the right half was mirrored (left-

to-right), i.e., for the analysis, the beveled eSC was always located on the left, and the CAX was 

to the right.  Thus, when the left half had a +ϴG°, the right half had a -ϴG°. 

 

 

Figure 3.1:  Collection of patient Cerrobend skin collimators used to determine common clinical 

attributes.  The general treatment sites are as follows:  whole nose (1-4), inner canthus (5), partial 

nose (6-9), scalp/cheek/forehead (10-12), and ear (13-15). 
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Figure 3.2:  In the image at left, approximate locations of protractor measurements are marked 

with yellow lines around the aperture edge: superior, inferior, right and left.  The protractor used 

is pictured on the right.   

 

 
Figure 3.3:  The gantry angle is referenced in this study with respect to the nominal gantry 

position (i.e., with the treatment head directly above the couch and the beam directed straight 

downward).  We refer to this nominal position as a relative gantry angle (Grel) of 0°.  The yellow 

arrow represents the nominal beam direction, while the green and red arrows indicate the 

direction of positive and negative rotations, respectively.  The curved arrows represent the 

direction of rotational movement of the treatment head, and the straight arrows represent the 

beam direction. 
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3.1.3  Effects of Beveled Collimator Edges—Experimental Setup 

 To assess the dosimetric impact of the bevel angle, blocks were fabricated of Cerrobend 

with one edge tapered to 0° and 10° (see Figure 3.4).  These angles were chosen based on the 

previously established range of aperture edge angles taken from manual measurements of the 

fifteen Cerrobend skin collimators and considered typical of clinical applications.  To simulate 

the anticipated margin of error in patient set-up and physician adjustment of gantry angle, the 

gantry angle was varied at 0°, 3°, and 5°. To satisfy requirements of Specific Aim 1, we 

surveyed certain aspects of the current standard of care at our institution for the use of eSC with 

electron beam therapy.  We were primarily interested in angle of the aperture edge, or bevel 

angle.  Dimensional measurements were taken of fifteen Cerrobend eSCs that were previously 

used for treatments in our clinic.  A summary of that survey, presented below in Table 3.1, 

showed the mean angle (±σ) was +30.4° (±9.0°).  While eSC thickness is determined by the 

nominal beam energy and the collimating material used, the thickness measurements in Table 3.1 

were a reasonable indicator of the typical eSC thickness, as well as the wide interval of possible 

thicknesses.   

 A preliminary investigation was performed using eSCs with bevel angles of +30°, +20°, 

+10°, 0°, -10°, -20°, and -30° and a 12 MeV electron beam.  We observed that the eSC with 

bevel angles of +20° and +30° both resulted in a noticeable increase in dose at shallow depths 

near and behind the beveled eSC edge (Figure 3.5).  Presumably, this increase in surface dose 

was due to an increase in the number of electrons scattered from the eSC edge, as well as 

electrons penetrating the thinner portion of the bevel and depositing their remaining energy near 

the surface of the phantom.  Despite an average bevel angle of +30.4° in our clinical sample and 

based on these preliminary data on the effects of bevel angle variations at 12 MeV, the bevel 
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angle interval from -10° to +10° using a 6 MeV beam was selected for the focus of this 

investigation.  With future machined eSC and with the optimal angle presumably being parallel 

to the beam divergence, a bevel angle greater than ±10° seems suboptimal.  

 Dosimetric measurements were made using radiochromic film (RCF) in slabs of water-

substitute plastic.  To account for any non-uniformity in the slabs that might yield discrepancies 

in dose distribution, the slabs were positioned identically for each measurement.  The slabs were 

compressed by bar clamps to minimize the effect of any air gaps between the film and the slab 

(Figure 3.6b).  Three film measurements (n = 3) were taken for each setup.  Measurements were 

taken at 100 cm SSD on a linear accelerator (Clinac 21EX 4-10, Varian Medical Systems, Inc., 

Palo Alto, CA) using an electron beam energy of 6 MeV.  A 15×15 cm
2
 applicator collimated the 

beam. The beveled skin collimator was placed on the surface of the phantom, further collimating 

the field width to 10 cm.  The RCF was exposed en face (edge-on) to approximately 400 cGy at 

dmax.  The ranges of bevel and gantry angle variations selected for this study are listed in Table 

3.2.  The specific setups used to measure the effects of bevel and gantry angle variations are 

listed in Table 3.3.  

Table 3.1:  Results from a survey of aperture bevel angles and thicknesses measured from fifteen 

eSCs made of Cerrobend that were previously used in our clinic. 

 
 

 

 

 

 

eSC Bevel Angle    

[°]

eSC Thickness 

[mm]

Mean 30.4 9.0

Standard Deviation 9.0 3.5

Maximum 50.0 22.1

Minimum 5.0 3.8



27 

 

Table 3.2:  The field setups used to measure the selected ranges of bevel and gantry angle 

variations. The cells of the measured fields are marked with a ‘’ on a yellow background.  

Details of how this was accomplished using 6 setups is shown in Table 3.3. 

 

Table 3.3:  The specific field setups used to measure the effects of bevel and gantry angle 

variations for Ep,0 = 6 MeV. 

 

 

Figure 3.4:  Example setup of the phantom apparatus used for bevel angle measurements.  The 

two beveled collimators pictured are the +30°collimator (on left) and the +20°collimator (on 

right).  Each are placed 5 cm from central axis atop four-5 cm slabs of solid water.  This image 

was taken during our preliminary investigation using a 12 MeV beam and including bevel angles 

up to 30°. 
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Figure 3.5:  Example isodose distributions of 12 MeV preliminary bevel data—0° (upper-left) 

and +10° (upper-right), +20° (lower-left), and +30° (lower-right) bevels with a 0° gantry angle.  

The 10% (violet) and 20% (blue) isodose curves show the penetration of the incident electrons 

through the thinner portion of the eSC bevel, and an increase in dose from electrons scattered 

from the eSC aperture edge can be seen in the 90% isodose curve as it is drawn more toward the 

surface for the +30° bevel. 
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3.1.4  Effects of Beveled Collimator Edges—Film Dosimetry 

 RCF (Gafchromic EBT2, International Specialty Products, Wayne, NJ) (Lot # 

F06110901, A09171003, and A12041005A) was used to quantify the effects of beveled 

collimator edges.  Each 20.3×25.4 cm
2
 sheet of film was halved into two 20.3×12.7 cm

2
 sheets, 

one of which was then placed between the two inner slabs of water-substitute plastic, with the 

edge aligned to the proximal surface.  Dutreix and Dutreix (1969) reported for radiographic film 

[1] that if the film edge is not precisely aligned to a phantom surface, en face film measurements 

with the film protruding outside (inside) the phantom surface can underestimate (overestimate) 

dose near the surface (depth < 2 cm) by as much as 10% for a 0.1 cm error (Figure 3.6a) and [2] 

that if any air gap (0.25-0.75 mm) exists between the film and phantom, the film measurements 

underestimate the dose at the surface before sharply increasing to overestimate the dose by 10%-

30% (Figure 3.6b).  The former was addressed by placing the factory-cut edge at the phantom 

surface per the procedure described in the next paragraph.  The latter was addressed by using two 

bar clamps to compress the phantom enveloping the RCF.  However, even making these 

changes, Robertson (2010) noted an unexplained surface effect, wherein the RCF measurements 

consistently underestimated the dose by as much as 3-4% at shallow depths  (< 2 cm) at higher 

electron energies (16-20 MeV). 

 Efforts were made to ensure appropriate and consistent alignment of the film.  Alignment 

marks were made on the inner surface of the phantom to center the film laterally and position the 

film edge at the surface.  As the phantom edges were slightly beveled (45° bevel, 1 mm deep), 

the film was placed at the bevel corner to ensure that the film did not extend into the air, and the 

distal film edge was taped to the inner surface of the phantom to prevent the film from shifting 

during phantom construction.  This resulted in the film edge being 1 mm below the bulk of the 
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phantom surface with a 45° bevel dropping to the film.  Such geometry should produce a slight 

increase in the film reading near the surface and underestimate R50 by 1 mm.   

 Excluding calibration exposures, each film was exposed to approximately 400 cGy 

maximum dose (400 MU/field).  The delivered dose was determined by the machine output, 

which was checked immediately before each measurement session.  We followed the protocol set 

forth by AAPM Task Group 51 (Almond et al. 1999) for the beam dose output checks.  Per 

AAPM Task Group 142 (Klein et al. 2009), water-substitute plastic (Plastic Water, Elimpex-

Medizintechnik, Moedling, Austria) was used in lieu of a liquid water phantom.  A 0.6 cm
3
 

thimble ionization chamber (PTW Farmer, Type 30006, PTW, Hicksville, NY) was positioned at 

100 cm SSD inside a slab of water-substitute plastic at energy-dependent reference depths (dref) 

(dref = 1.4 cm for 6 MeV; dref = 4.1 cm for 16 MeV) with 10 cm of water-substitute plastic placed 

downstream for backscatter.  The chamber was positioned along the CAX of a 10×10 cm
2
 field.  

The reference depths were determined by the water-equivalent depth based on the relative 

stopping power of the water-substitute plastic, as recommended by AAPM Task Group 25 (Khan 

et al. 1991).  An aneroid barometer was used to measure the local atmospheric pressure, and the 

temperature was measured inside the Plastic Water prior to the beam output measurements; these 

measurements were used to make necessary temperature and pressure corrections to the 

ionization chamber readings.  The results of these output measurements were used primarily to 

accurately normalize the film data to the given dose.   

 For conversion from optical density to absorbed dose, a calibration curve was measured 

for each beam energy used for each batch of film.  Each calibration curve was established with 

12 measurements following the methodology set forth by Robertson (2010).  A single sheet of 

RCF was divided into 6.35×6.35 cm
2
 squares (12).  Each square was exposed to a different, 
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known dose.  To maintain orientation, the bottom left corner of each square was numbered prior 

to dividing the film sheet into the squares.  The film was placed at an equivalent depth of 

maximum dose (dmax) with respect to the beam energy (Ep,0) in Plastic Water slabs with 10 cm of 

backscatter.  For the beam energies used in this study, 6 and 16 MeV, the dmax values used were 

1.4 and 3.3 cm, respectively.  The surface of the Plastic Water was positioned at 100 cm SSD, 

and the beam was collimated with a 10×10 cm
2
 cone.  The 12 squares were irradiated, 

perpendicular to the beam direction and centered within the 10×10 cm
2
 field, to the following 

doses: 0, 60, 110, 170, 220, 280, 330, 390, 440, 490, 560, and 610 cGy.  The unexposed RCF 

square allowed determination of dose readings below 60 cGy.   

 All film measurements, including calibration squares, were digitized using a transmission 

type (white light-source) scanner (VIDAR DosimetryPRO Advantage, SN: 320419, Vidar 

Systems Corporation, Hendon, VA).  The RCF squares were scanned with the aid of a template, 

as shown in Figure 2.20 in Sutton (2011), to carry them through the scanner on a reproducible 

path.  Each scan of the loaded template digitized 4 RCF calibration squares.  We followed the 

recommended digitizing process from the manufacturer.  Once digitized, dose was correlated to 

the average pixel value of a 2×2 cm
2
 region in the center of each film image.  A piecewise 

polynomial fitting function was used within commercial software (RIT113 v5.2, Radiological 

Imaging Technology, Inc., Colorado Springs, CO) to produce a calibration curve from the 12 

data points.  The resulting curve was used to convert the scanner values of the digitized RCF to 

dose (see Figure 3.7).  

 Film calibration, registration, and cropping were performed using commercial software 

(RIT113 v5.2, Radiological Imaging Technology, Inc., Colorado Springs, CO).  The films were 

digitally registered using a 5-point registration template created within the software 
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corresponding with a physical template.  Prior to scanning, the physical registration template was 

used to precisely mark each film.  The digitized film images were exported for analysis, 

including normalization, using in-house MATLAB software (The Mathworks, Nattick, MA).  

Each film data array was normalized to the given dose, adjusted for the beam output measured 

just prior to irradiation of the films. 

 (a)          (b)  

Figure 3.6:  Common errors seen in film dosimetry of high energy electrons related to imprecise 

experimental setup as demonstrated by Dutreix and Dutreix (1969).  Shown are (a) the effects of 

film edge misalignment and (b) effect of air gap between the film and the phantom for en face 

film measurements. 

 
Figure 3.7:  Measured RCF calibration dose points with a piecewise polynomial fit. 
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3.1.5 Comparison of Measured Dose Distributions 

3.1.5a  Therapeutic Dose Region 

Measured dose distributions were compared using several quantitative metrics.  Of 

particular interest was the 90% relative dose region, as prescriptions for electron therapy are 

defined such that the PTV should be encompassed by this isodose line.  To investigate this 

agreement, pixel values greater-than or equal-to 90% were gleaned from the normalized dose 

array and placed into a separate array.  This new array was then inspected and compared through 

several different methods.  With the pixel size of 0.5 mm, (1) the depth (R90) of the 90% dose 

region was determined, and (2) the pixel size was used to calculate the area encompassed by the 

90% isodose line within the film plane.  We hypothesized that the reduction of the area within 

the 90% relative dose region would be ≤ 5% and that any change in the depth of R90 on CAX 

would be ≤ 1 mm. 

Dose due to electrons scattered from the eSC edges will degrade the uniformity of the 

dose distribution (Lax and Brahme 1980).  The uniformity within the 90% dose region was 

examined to observe the changes in collimator-scatter seen with the different collimating 

materials and deviations in the collimator-edge construction. 

3.1.5b  Penumbral Width 

A deviation from a 0° bevel angle will affect the amount of scatter from the collimator 

edge.  Additionally, the beveled collimator edge will partially attenuate some electrons and 

create an increase in dose near the surface leading to a decrease in dose downstream.  As such, 

the sharpness of the penumbra will be diminished by the contributions of these actions (Lax and 

Brahme 1980).  To measure the penumbra widths, four rows of data, each at a different depth, 

were taken from the normalized dose array.  The chosen depths were dependent on the nominal 

beam energy.  The values in these rows were converted to off-axis ratios (OARs) by normalizing 
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each value to the value found at CAX.  The penumbral width (P80-20) at each depth was defined 

as the distance between the 80% and 20% OARs.  We hypothesized that any increase in 

penumbral width would be ≤ 2 mm. 

3.2 Results for Specific Aim 1 

 For comparison of the beveled eSCs, we were interested in [1] overall dosimetric 

agreement (Figures 3.8-3.10), [2] the impact of collimator scattered dose (Figures 3.8-3.11 and 

3.13), [3] penumbral width (Figure 3.12), and [4] the 90% relative dose region (Figures 3.11 and 

3.14-3.18).  Results of isodose curves for the conditions listed in Table 3.3 are plotted in Figures 

3.8-3.10.  The field setup with a bevel angle of 0° and a relative gantry angle of 0° was 

considered the prevailing standard of care and used as a standard of comparison.  A relative 

gantry angle, Grel, of 0° corresponds to a nominally positioned gantry (directly above the couch 

pointing downward); as such, a positive gantry rotation would be clockwise as viewed from the 

foot of the couch (Figure 3.3), while a negative gantry rotation denotes a counter-clockwise 

movement of the gantry.  For quantitative comparisons, Table 3.2 lists the area covered in the 

film plane by the 90% region for each field, while Table 3.3 lists the distal depth of the 90% 

relative dose for all measured combinations of bevel angle and relative gantry angle.  The 

penumbral widths, gleaned from the profiles plotted in Figure 3.12, are shown in Table 3.3.   

3.2.1 Collimator Scattered Dose 

Measured isodose plots for all gantry angles (0°, ±3°, and ±5°) at bevel angles of 0°, 

+10°, and -10° are plotted in Figures 3.8-3.10, respectively.  The eSC bevel angle had a 

relatively minor influence on the dose homogeneity of the measured distributions.  Electrons 

scattered from the eSC edge into the field created “hot spots” and “cold spots” within the 

treatment field.  A qualitative comparison of the dose uniformity within the 90% relative dose 
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region is shown in Figure 3.11, which contains nine subplots that have been arranged in rows 

according to bevel angle and columns by relative gantry angle.  Each of these subplots is a color-

mapped relative dose distribution in which the relative dose value of each pixel has been mapped 

to a particular color with respect to the color bar shown at the bottom of the Figure.   

Figure 3.12 contains nine subplots that have been arranged similarly to Figure 3.11.  Each 

of the subplots contains lateral profiles from each measured field taken at depths of 5, 10, 14, and 

18 mm.  The maximum value of each of these profiles is plotted in Figure 3.13, providing a more 

quantitative comparison of these fields.  As a quantitative comparison, the penumbral widths 

were measured at the four profile depths for each measured field (Table 3.4).   

Figure 3.13 is arranged into six subplots, and the data shown within these subplots is 

grouped by bevel angle (left column) with variation of gantry angle in each subplot and by 

gantry angle (right column) with variations of the bevel angle in each subplot. 

Figures 3.14-3.18 show the 90% relative dose area comparison plots.  By grouping the 

various data and plots, our intention is to identify characteristics or trends with respect to the 

variation in the eSC bevel angle and in the presence of simulated setup error (variations in the 

relative gantry angle).   

3.2.2  Penumbral Width 

 The penumbral widths (P80-20) are listed Table 3.4 from the profiles plotted in Figure 

3.12.  We defined the penumbral width as the lateral distance between the 80% and 20% relative 

dose points along each profile.  The penumbral width definitely increases with decreasing bevel 

angle (+10° → -10°) and depth, but less variation was seen with change of the gantry angle.  The 

difference in penumbral width was very small between the measured fields.  Upon comparing the 

penumbral widths of all the measured fields and all lateral profile depths, the largest difference 
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was 2 mm, for only one instance; all other differences were ≤ 1.5 mm.  This difference is not 

considered to be clinically significant. 

3.2.3 90% Dose Area 

 Figures 3.14-3.18 specifically address the coverage of the 90% dose area.  The +10° 

bevel increases the contribution of scattered electrons to the dose, but the distributions measured 

with the +10° beveled eSC were observed to be the least affected by variations in the gantry 

angle (±5°).  This is, perhaps, most clearly shown in the comparisons of the 90% relative dose 

areas (Figures 3.14-3.18) and in the calculated areas listed in Table 3.2.  For a nominal gantry 

angle, increasing the bevel angle from 0° to +10° resulted in a 16% increase in the 90% relative 

dose area.  Additionally, the lateral extent of the 90% isodose line was shown to be the most 

stable in the presence of gantry angle variations (±5°) for the +10° beveled eSC.  The -10° bevel 

showed decreases from the (ϴB = 0°, ϴG = 0°) area, ranging from 5%-11%.  
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(a)  

 

 

 

 

(b)  

Figure 3.8:  Isodose plots of the measured dosimetric data for the investigation into the 

dosimetric effects of eSC bevel angles.  Dosimetric measurements were obtained using 

radiochromic film with a 6 MeV electron beam.  Shown are measurements for a 0° bevel angle 

and (a) a 0° gantry angle, (b) a +3° gantry angle, (c) a +5° gantry angle, (d) a -3° gantry angle, 

and (e) a -5° gantry angle. 
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Figure 3.8 (continued):  Isodose plots of the measured dosimetric data for the investigation into 

the dosimetric effects of eSC bevel angles.  Dosimetric measurements were obtained using 

radiochromic film with a 6 MeV electron beam.  Shown are measurements for a 0° bevel angle 

and (a) a 0° gantry angle, (b) a +3° gantry angle, (c) a +5° gantry angle, (d) a -3° gantry angle, 

and (e) a -5° gantry angle. 

(c)  

 

 

(d)  

 

 



39 

 

Figure 3.8 (continued):  Isodose plots of the measured dosimetric data for the investigation into 

the dosimetric effects of eSC bevel angles.  Dosimetric measurements were obtained using 

radiochromic film with a 6 MeV electron beam.  Shown are measurements for a 0° bevel angle 

and (a) a 0° gantry angle, (b) a +3° gantry angle, (c) a +5° gantry angle, (d) a -3° gantry angle, 

and (e) a -5° gantry angle. 

(e)  

(a)   

Figure 3.9:  Isodose plots of the measured dosimetric data for the investigation into the 

dosimetric effects of eSC bevel angles.  Dosimetric measurements were obtained using 

radiochromic film with a 6 MeV electron beam.  Shown are measurements for a +10° bevel 

angle and (a) a 0° gantry angle, (b) a +5° gantry angle, and (c) a -5° gantry angle. 
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Figure 3.9 (continued):  Isodose plots of the measured dosimetric data for the investigation into 

the dosimetric effects of eSC bevel angles.  Dosimetric measurements were obtained using 

radiochromic film with a 6 MeV electron beam.  Shown are measurements for a +10° bevel 

angle and (a) a 0° gantry angle, (b) a +5° gantry angle, and (c) a -5° gantry angle.  

(b)  

 

 

(c)  
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(a)  

 

 

 

 

(b)  

Figure 3.10:  Isodose plots of the measured dosimetric data for the investigation into the 

dosimetric effects of eSC bevel angles.  Dosimetric measurements were obtained using 

radiochromic film with a 6 MeV electron beam.  Shown are measurements for a -10° bevel angle 

and (a) a 0° gantry angle, (b) a +5° gantry angle, and (c) a -5° gantry angle. 
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Figure 3.10 (continued):   Isodose plots of the measured dosimetric data for the investigation into 

the dosimetric effects of eSC bevel angles.  Dosimetric measurements were obtained using 

radiochromic film with a 6 MeV electron beam.  Shown are measurements for a -10° bevel angle 

and (a) a 0° gantry angle, (b) a +5° gantry angle, and (c) a -5° gantry angle. 

 

(c)  

 

 

 

Table 3.4:  90% relative dose area [mm
2
] for all measured combinations of bevel angle and 

relative gantry angle for 6 MeV beams.  A reduction of the area within the 90% relative dose 

region was expected to be ≤ 5%. 

 
  

-5 -3 0 +3 +5

+10 514.0 539.3 528.8

0 449.0 494.3 465.3 476.3 467.8

-10 441.5 415.8 421.0

+10 1.10 1.16 1.14

0 0.96 1.06 1.00 1.02 1.01

-10 0.95 0.89 0.90

90% Relative Dose Area [mm
2
]

Gantry Angle [°]Bevel Angle 

[°]

Normalized to Bevel = 0°, Grel = 0°
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Figure 3.11:  Uniformity within 90% plotted from bevel angle dosimetric measurements.  Each 

of the three plot areas in the top row are dose distributions measured using an eSC with a bevel 

angle of +10°.  Similarly, the middle and bottom rows correspond to bevel angles of 0° and -10°, 

respectively.  The columnar grouping of the plot areas corresponds to the relative gantry angle in 

each; from the left column to the right column, the relative gantry angles were -5°, 0°, and +5°.  

The relative dose value for each pixel in each plot was mapped to a color with respect to the 

color bar at the bottom of the figure. 

 

 

 

Table 3.5:  R90 depth on central axis for all measured combinations of bevel angle and relative 

gantry angle for a 6 MeV beam.  Change in the depth of R90 on CAX was expected to be ≤1 mm. 

 

 

-5 0 +5

+10

0

-10

Gantry Angle [°]Bevel 

Angle 

[°]

-5 -3 0 +3 +5

+10 18.0 18.0 18.0

0 18.0 18.0 18.0 18.0 18.0

-10 18.0 17.5 18.0

Depth of R90 on CAX [mm]

Bevel Angle  

[°]

Gantry Angle [°]
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Figure 3.12:  Lateral profile plots plotted from bevel angle dosimetric measurements. The nine 

subplots are grouped in rows by bevel angle and columns by relative gantry angle.  The rows, 

from top to bottom, correspond to bevel angles of +10°, 0°, and -10°, respectively, while the 

columns, from left to right, correspond to relative gantry angles of -5°, 0°, and +5°.  Each subplot 

contains four lateral profiles taken at four depths (5, 10, 14, and 18 mm).  Each depth is 

represented by a different colored line: depth = 5 mm (magenta), 10 mm (blue), 14 mm (green), 

and 18 mm (red).  

-5 0 +5

+10

0

-10

Bevel 

Angle 

[°]

Gantry Angle [°]
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Figure 3.13:  Profile relative dose maxima plotted from bevel angle dosimetric measurements.  

At each profile depth, the maximum value was plotted for comparison to other measured fields.  

The subplots are arranged such that the bevel angle is held constant in the left column, and the 

relative gantry angle is held constant for those in the right column.  Shown by a red line and data 

points on each of the subplots is the field setup with a bevel angle of 0° and a relative gantry 

angle of 0°; this field was used as a standard of comparison. 
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Table 3.6:  Penumbral widths measured from data collected with variations in eSC bevel angle.  

Provided is a quantitative comparison of penumbral widths of the selected electron fields in our 

assessment of the dosimetric effects of variations in eSC bevel angle.  These penumbral widths 

were taken from the lateral profile data shown previously in Figure 3.12.  We defined the 

penumbral width as the lateral distance between the 80% and 20% relative dose points along 

each profile.  The difference in penumbral width was very small between the measured fields.  

Upon comparing the penumbral widths of all the measured fields and all lateral profile depths, 

the largest difference was 2 mm, and there was only one instance of this; all other differences 

were ≤ 1.5 mm. 

 

 

Figure 3.14:  Measured 90% relative dose area comparison.  The bevel angle was held constant 

at 0° and the gantry was varied at 0°, ±3°, and ±5° to demonstrate the possible effects of 

rotational setup error.  The region shaded in red is the 90% relative dose area for the field setup 

with a bevel angle of 0° and a relative gantry angle of 0° and was used as a standard of 

comparison. 

Bevel  

Angle  

[°]

Relative 

Gantry Angle  

[°]

dref = 5 mm dref = 10 mm dref = 14 mm dref = 18 mm

+10 +5 1.5 5.0 7.5 10.0

+10 0 1.5 4.0 7.0 9.0

+10 -5 1.5 3.5 6.5 9.5

0 +5 1.5 4.0 7.0 10.0

0 +3 1.0 4.0 7.0 9.5

0 0 1.5 4.0 7.5 10.0

0 -3 1.5 4.0 7.0 9.5

0 -5 2.0 4.0 7.0 10.0

-10 +5 2.0 4.5 8.0 10.5

-10 0 2.5 5.0 8.0 11.0

-10 -5 2.0 4.5 7.0 10.0
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Figure 3.15:  Measured 90% relative dose area comparison of bevel angles.  Relative gantry 

angle was held constant at 0° for Cerrobend eSCs with bevel angles of 0°, +10°, and -10° to 

demonstrate the effects of bevel angle on the dosimetric distribution.  The region shaded in red is 

the 90% relative dose area for the field setup with a bevel angle of 0° and a relative gantry angle 

of 0° and was used as a standard of comparison. 

 

 

Figure 3.16:  Measured 90% relative dose area comparison of bevel angles.  Relative gantry 

angle was held constant at -5° for Cerrobend eSCs with bevel angles of 0°, +10°, and -10° to 

demonstrate the occlusive effects of the proximal surface of eSCs that have a bevel angle ≤ 0° in 

the presence of rotational setup error.  The region shaded in red is the 90% relative dose area for 

the field setup with a bevel angle of 0° and a relative gantry angle of 0° and was used as a 

standard of comparison. 
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Figure 3.17:  Measured 90% relative dose area comparison of bevel angles.  The bevel angle was 

held constant at +10° with the gantry varied at 0°, +5°, and -5° to demonstrate the stability of the 

90% relative dose region in the presence of rotational setup error and an eSC bevel angle of 

+10°.  The region shaded in red is the 90% relative dose area for the field setup with a bevel 

angle of 0° and a relative gantry angle of 0° and was used as a standard of comparison. 

 

 

Figure 3.18:  Measured 90% relative dose area comparison of bevel angles.  The bevel angle was 

held constant at -10° with the gantry varied at 0°, +5°, and -5° to demonstrate the negative 

impact on the 90% relative dose region in the presence of rotational setup error and an eSC bevel 

angle of -10°.  The region shaded in red is the 90% relative dose area for the field setup with a 

bevel angle of 0° and a relative gantry angle of 0° and was used as a standard of comparison. 
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Chapter 4:  Specific Aim 2—Dimensional Accuracy of the Machined eSC 

4.1 Methods and Materials 

4.1.1  Skin Collimation Evaluation Cycle 

Each of the eSCs used in this project underwent a series of dimensional and dosimetric 

tests to ensure agreement with the planned eSC.  For this study, three separate phantom cases 

were examined.  This chapter examines the dimensional accuracy. 

Using CT images of a phantom, eSC was designed using a commercial TPS (Philips 

Pinnacle
3
, Philips Electronics North America Corporation, Andover, MA) as described in 

Section 2.1.3.1.  Once designed as a Region of Interest (ROI), the file containing the surface 

coordinates of the eSC ROI with respect to the CT coordinate system was imported into p.d v4.2.  

Upon submission of this output file to the manufacturer, the eSC was machined and delivered to 

MBPCC.  For each submission, the manufacturer machined a brass eSC, as well as a wax replica 

of the eSC (Figure 4.5[b]) to be used for quality assurance testing.   

A kVCT image set of the wax replica was acquired using a kVCT (GE LightSpeed, 

General Electric Medical Systems, Fairfield, CT) scanner and fused with the planned ROI using 

the TPS to assess equivalence of the machined eSC to the planned eSC.  The fusions were 

performed primarily by manually matching the distal surface and aperture edge of the eSC image 

to that of the planned eSC contour.  The brass eSC was scanned using a TomoTherapy unit (Hi-

Art, TomoTherapy, Inc., Madison, WI) MVCT imaging system and fused to the kVCT TPS data 

set, similar to the procedure for the wax replica (Figure 4.1).  Any observable dimensional 

deviation from the eSC design was expected to be ≤ 2 mm. 
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4.1.2  Cylindrical Phantom Case 

The first case was planned on a high-impact white opaque (HIWO) polystyrene (ρ = 

1.045 ± 0.01 g/cm
3
)

1
 cylindrical phantom.  With a diameter of 27 cm and a length of 37.4 cm, the 

cylindrical phantom was selected for use in this study for its simplistic shape and capacity to 

collect film dosimetry measurements (Figure 4.3)(Chi et al. 2005).  As described by Kavanaugh 

(2011), the phantom contains two cassettes, each with a central slot to fit a single bare film.  

With respect to the longitudinal axis of the phantom, one cassette was positioned in a transverse 

plane and one in the central sagittal plane.  Dose measurements are assessed in Chapter 5 

(Specific Aim 3).  

Dose was prescribed such that 90% of the given dose encompassed the distal surface of 

an arbitrary PTV.  For the cylindrical phantom irradiation, a hypothetical PTV was constructed 

that was roughly 5×7 cm
2
 and of irregular shape.  The PTV (not shown; exact shape not relevant) 

reached a depth of just over 4 cm requiring a 16 MeV beam.  Using a 1 cm margin, the irregular 

field size was approximately 7×9 cm
2
 (Figure 4.2).  The aperture size was relatively large (about 

9 cm along the sagittal axis) as compared to most skin collimation applications (cf. Figure 3.1), 

but this was an intentional deviation in an attempt to minimize the influence of collimator edge 

scatter at the central axis.  The three collimating materials (brass, Cerrobend, and lead) were each 

used to construct eSC for the cylindrical phantom case (see Figure 4.5—top row) using methods 

described in Chapter 2.   

                                                 

 

1
 The discrepancy in the density of the cylindrical phantom was due to differing values reported in previous studies 

that utilized this particular phantom.  Chi et al. (2005) reported the density to be 1.035 g/cm
3
, while Kavanaugh 

(2011) designated the density to be 1.054 g/cm
3
.  Possibly contributing to the discrepancy, Khan et al. (1991) 

include a table of information on the physical properties of non-water phantoms in which they list a density of 1.054 

g/cm
3
 for high-impact polystyrene (white).  Regardless, we do not expect this difference (< 2%) in the density of the 

phantom to have a significant influence on our data. 
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Figure 4.1:  MVCT fusion of the anthropomorphic head phantom (case #2) eSC.  The yellow 

contour lines represent the contour of the wax eSC.  The upper images are coronal planes of the 

eSC anterior (left) and posterior (right) aperture edges from the MVCT image set.  The lower-left 

image is a sagittal plane along CAX, and the lower-right image is a transverse plane, also along 

CAX. 

 
Figure 4.2:  3D rendering of the BEV for the cylindrical phantom taken from the TPS.  The PTV 

is shown (in blue) in the center of this image.  The axes in the image represent the cardinal axes 

of the electron beam, and each of the tick-marks represents 1 cm at an SSD = 100 cm.  The PTV 

is surrounded by the digitally designed eSC (shown in orange). 
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Figure 4.3:  The HIWO polystyrene cylindrical phantom (Kavanaugh 2011)—the schematic 

drawings show in (a) the central sagittal plane and (b) a transverse plane or end view of the 

phantom (Chi et al. 2005).  As shown in (c) the phantom has two cassettes oriented in sagittal 

and transverse planes.  These cassettes have been partially removed in the image to clearly 

indicate their positions. 

4.1.3  Anthropomorphic Head Phantom Cases – Case 1 (Nasolabial Fold)                          

 and Case 2 (Whole Nose) 

The second and third cases were planned on an anthropomorphic phantom (RANDO, The 

Phantom Laboratory, Salem, NY).  The phantom was constructed using a natural human skeleton 

encased by soft tissue-simulating material and includes air cavities found within the head and 

neck region.  The phantom consisted of 2.5 cm transverse slabs to allow for the insertion of film 
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sheets, but this phantom was not used for film dosimetry in the present study.  For this study, we 

used the head and neck portion of the phantom (approximately down to the clavicle).   

The head phantom cases and PTVs, shown in Figure 4.4, were meant to mimic realistic 

clinical setups that require the use of eSC.  The first head phantom case was based on the 

treatment of a tumor located in the nasolabial fold area, and the second case was modeled after a 

whole nose treatment field.  The three collimating materials (brass, Cerrobend, and lead) were 

each used to construct eSC for each of the two head phantom cases (Figure 4.5—middle and 

bottom rows).  The brass eSCs for these two cases underwent an identical dimensional 

evaluation cycle as performed for the cylindrical phantom case (i.e., no comparison of film 

dosimetry for the brass eSC versus the lead and Cerrobend eSCs).  Film measurements with the 

head phantom were not included in this study as en face film irradiation within an 

inhomogeneous phantom has proven to be inaccurate due to perturbations caused by bone and air 

in the phantom abutting the film (Shiu and Hogstrom 1991).  Hence, the purpose of Figure 4.5 is 

to allow a visual comparison of brass, lead, and Cerrobend eSCs for the three phantom cases. 

4.1.4  Comparison of Brass Machined Skin Collimation to Planned Skin              

Collimation— Dimensional Characteristics 

 

As previously discussed in Section 4.1.1, each milled skin collimator underwent three 

tests to assess agreement with the planned eSC.  First, the calculated volume of the planned eSC 

was compared to the volume of the milled eSC.  In both the kVCT and MVCT image sets, the 

machined eSC was contoured on each of the CT images.  To accomplish this, an auto-contour 

function was used within the TPS, where the maximum and minimum thresholds were set to 

4095 and 2000, respectively.  After establishing the dimensional limits of the machined eSC with 

the contours, the volume of the physical eSC was calculated for comparison to the volume of the 

planned eSC.  Volumetric comparisons were used in conjunction with CT fusions to verify 
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conformity to the plan.  Additionally, these quantitative comparisons were only performed after 

the CT fusions qualitatively verified the absence of any deviations from the plan that could 

potentially have a clinically significant impact on the dose distribution. 

 In addition to the CT fusions, physical dimensions of the brass collimators were also 

collected and compared to measurements of the planned collimator within the TPS, which were 

collected using the distance measuring tool.  The distance measuring tool in the TPS calculated 

distances based on the CT coordinate system.  Per our criteria, the physical dimensions were not 

expected to deviate from the design by more than 2 mm.  The comparison of these dimensions, 

along with the volumetric comparisons, provided a quantitative comparison of the machined vs. 

planned dimensions.   

Three geometric quantities were assessed:  [1] eSC thickness, [2] distance between the 

distal eSC surface and the skin (phantom surface), and [3] distance between planned and actual 

aperture edge.  Measured eSC thickness was compared to the planned eSC thickness.  The fit of 

the manufactured collimator to the irregular surface of the head phantom was qualitatively 

evaluated through (a) visual inspection when placed on the phantom, and (b) the assessment of 

the surface conformity within the CT fusions.  The location of the aperture edge was compared 

with the planned edge.  

4.2 Results for Specific Aim 2 

4.2.1  Dimensional Accuracy of Machined eSC Devices 

 The primary purpose of Specific Aim 2 was to ensure that, upon delivery, the physical 

shape of the brass eSC matched the digital design specifications.  We performed several 

dimensional checks to confirm this, which included kVCT fusions of the wax surrogate eSC and 

MVCT fusions of the brass eSC to the planned region of interest, as well as physical 
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measurements of the dimensions of the eSC to be compared with dimensional distances 

determined using measuring tools in the treatment planning system.  Of particular interest in this 

study was [1] the accuracy of the thickness of the machined eSC, [2] the accuracy with which the 

distal surface of the machined eSC conformed to the contour of the patient surface, and [3] the 

accuracy of the eSC aperture edge.   

 Results comparing the planned eSC contour with the wax eSC shape in the kVCT images 

are shown in the upper portions of Figures 4.6-4.8 for the cylindrical phantom, head phantom 

(case #1), and head phantom (case #2), respectively.  Results of the MVCT images with the brass 

eSC fused with the planning kVCT images are shown in the lower portions of Figures 4.6-4.8. 

 
Figure 4.4:  Anthropomorphic head phantom PTVs—case #1 can be seen in the upper images 

and case #2 in the lower images.  Seen in orange are the planned eSC contours, and the treatment 

volumes are pictured in blue.  The images on the left of each row are 3-D renderings of the 

beam’s-eye-view, while the images on the right are transverse slices along the central axis of the 

beam. 
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Figure 4.5:  Cylindrical phantom eSC (top row) and the anthropomorphic head phantom case #1 

(middle row) and case #2 (bottom row) eSC—[a] brass, Cerrobend, and lead (left to right) and 

[b] brass (left) and the wax replicas (right). 

[a] 
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Figure 4.5 (continued):  Cylindrical phantom eSC (top row) and the anthropomorphic head 

phantom case #1 (middle row) and case #2 (bottom row) eSC—[a] brass, Cerrobend, and lead 

(left to right) and [b] brass (left) and the wax replicas (right). 

 

 [b] 
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4.2.2  Thickness Comparisons of Machined eSC Devices 

 The thickness of eSC dictates the amount of dose transmitted through the collimator and 

contributes to other aspects of treatment such as scatter.  The thickness of the machined eSCs 

was verified with the kVCT and MVCT fusions and, more precisely, with physical 

measurements.  The volumes of the machined eSCs were calculated using the CT image sets and 

used as a secondary comparison of the accuracy of the thicknesses.  Table 4.1 compares the 

minimum and maximum brass eSC thickness with the planned thickness of 1 cm (which was 

mistakenly less than the recommended 1.2 cm for 16 MeV electrons) and provides a volumetric 

comparison of the planned eSC to the physical eSC, as determined by the kVCT and MVCT 

image sets, for each phantom case. 

4.2.3  Agreement of Machined eSC Distal Surfaces 

For the brass to fit the patient surface well, its milled distal surface should match the 

designed surface within 2 mm.  In the mid-transverse planes, excellent agreement (≤1 mm) is 

illustrated using the kVCT scans of the wax eSC surrogate.  In all cases there appears to be a 

small air gap (≤1 mm) that is caused by the eSC not perfectly fitting the phantom surface, but 

qualitatively, the eSC seemed to fit exceptionally well when inspected by hand.  Despite the 

coarse steps due to the 2.5 mm CT scan thicknesses, the distal surfaces of the eSCs were 

sufficiently smooth for patient comfort. 

The MVCT images, as expected, were not as clear as the kVCT of the wax eSC replica.  

Some smearing and streaking was observed in all cases, but with appropriate window and level 

settings (as specified for each case in the captions of Figures 4.6-4.8), the brass eSC could 

become resolved enough for fusion with the planned eSC contour.  For each case, the brass was 
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nearly identical to the wax eSC replica, i.e., the minor differences between the distal surfaces of 

the planned eSC and the MVCT image of the milled eSC were within 1 mm.  

4.2.4  Agreement of Machined eSC Aperture Edges 

The machined eSC aperture edges were designed to be parallel to the beam divergence in 

the transverse planes.  Due to limitations in the design process (e.g., contours can only be created 

or edited in the transverse plane), this could not be done in the superior-inferior direction.  The 

cylindrical phantom eSC and the head phantom case #2 have a negative bevel angle such that, 

contrary to the design, the edges appear to emanate from a virtual source only 20 cm (or less) 

above the patient as opposed to 105 cm, which is the location of the virtual source in the TPS 

(Figures 4.6 and 4.8).  This deviation from the planned eSC edge shows up to a 3 mm difference 

where the eSC abuts the phantom surface.  Contrastingly, the head phantom case #1 results show 

agreement with the planned aperture edge within 1.5 mm and do not show an incorrect slope on 

the edge.  While the reason for this inconsistency remains under investigation, the cause is likely 

an error in either the p.d software or the data input.  

4.2.5  Other Observations 

One remaining observation was that the outer edges of all three eSCs were milled at least 

5-10 mm short in the superior-inferior direction.  Although not likely clinically significant, this 

deviation from the design is currently under investigation. 

4.2.6  Summary of Specific Aim 2 Results 

Overall, good agreement was seen between the dimensions of the machined eSC and 

those of the planned eSC.  The following summarizes the observations of Specific Aim 2:  [1] a 

≤ 1.5 mm difference was seen in the thickness of the cylindrical phantom case (i.e., the eSC was 

planned to be slightly more thick than the machined eSC was fabricated); [2] the distal surface of 
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the eSC matched the shape of the phantom surface within 1 mm; and [3] in all three cases, the 

eSC was missing approximately 2.5-5.0 mm from the extreme superior and inferior edges (i.e., 

each eSC was approximately 5-10 mm shorter in the superior-inferior direction).  These were all 

considered to be minor deviations from the planned eSC design.  These differences were not 

expected to have any sort of significant dosimetric impact and, thus, were not considered to be 

clinically relevant. 

However, in all cases, the aperture was designed to be parallel to the beam divergence, 

but in the cylindrical phantom case and the second head phantom case (whole nose) the 

divergence was significantly overestimated in some areas (≤ 2.5 mm).  These differences are 

considered clinically relevant and should be corrected prior to clinical utilization. 

 

 

Table 4.1: Volumetric comparison of the planned eSC to the machined brass eSC.  These 

volumes are based on calculated volumes within the TPS.  The machined brass eSC volumes are 

based on MVCT image sets of the physical eSCs. 

 

 

  

Dimensional Agreement
Cylindrical 

Phantom

Head Phantom 

Case #1

Head Phantom 

Case #2

Planned eSC Thickness 1 cm 1 cm 1.2 cm

Thickness Range of     

Machined Brass eSC
0.85 - 1.05 cm 0.90 - 1.10 cm 1.05 - 1.20 cm

Planned eSC Volume 399.0 cm
3

191.1 cm
3

221.8 cm
3

Machined Brass eSC Volume 369.9 cm
3

183.7 cm
3

232.2 cm
3
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Figure 4.6:   kVCT and MVCT fusion images of the cylindrical phantom case.  Shown are the 

kVCT images (upper) of the wax eSC replica, where the planned eSC shape is represented by the 

blue line.  This same contour is shown overlaying the MVCT images (lower) of the brass eSC.  

The images on the left are transverse slices through CAX, and the right images are sagittal slices, 

also through CAX.  For the kVCT of the wax eSC replica, the window and level values used 

were 1065 and 309, respectively.  For the MVCT of the brass eSC, the window and level values 

used were 3224 and 646, respectively.  The MVCT of the brass eSC for the cylindrical phantom 

matched the planned specifications fairly well, with two exceptions.  The brass eSC was shorter 

than the planned eSC in the superior-inferior direction approximately 5-10 mm (shown in the 

sagittal kVCT image, and the brass eSC had a negative bevel angle, also in the superior-inferior 

direction, which deviated from the planned eSC as seen in the sagittal slice image.  A manual 

measurement of the superior and inferior bevel angles showed them to be -17° and -12°, 

respectively. 
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Figure 4.7:  kVCT and MVCT fusion images of the head phantom (case #1).  Shown are the 

kVCT images (upper) of the wax eSC replica, where the planned eSC shape is represented by the 

blue line.  A contour of the planned eSC shape is also shown overlaying the MVCT images 

(lower) of the brass eSC.  The images on the left are transverse slices through CAX, and the right 

images are sagittal slices through the central-sagittal axis of the phantom, which was not parallel 

to the beam CAX as the beam had a gantry rotation of +40° (see Figure 4.4).  For the kVCT of 

the wax eSC replica, the window and level values used were 1012 and 462, respectively.  For the 

MVCT of the brass eSC, the window and level values used were 1401 and 2599, respectively.   

For this phantom case, CT images were collected without the use of the head phantom.  The blue 

contour in the images is the external contour of the head phantom.  The brass eSC for the first 

head phantom case corresponded well to the planned eSC.  The lone deviation was a shortened 

brass eSC in the superior-inferior direction.   Similar to the cylindrical phantom, this eSC was 

approximately 5-10 mm short of the full planned superior-inferior length (about 2.5-5.0 mm 

from each end).  
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Figure 4.8:  kVCT and MVCT fusion images of the head phantom (case #2).  Shown are the 

kVCT images (upper) of the wax eSC replica, where the planned eSC shape is represented by the 

blue line.  A contour of the planned eSC shape is also shown overlaying the MVCT images 

(lower) of the brass eSC.  The images on the left are transverse slices through CAX, and the right 

images are sagittal slices through the central-sagittal axis of the phantom, also through CAX.  

For the kVCT of the wax eSC replica, the window and level values used were 1013 and 462, 

respectively.  For the MVCT of the brass eSC, the window and level values used were 1401 and 

2599, respectively.  The brass eSC for the second head phantom case corresponded well to the 

planned eSC, but again, the brass eSC was approximately 5-10 mm short of the full planned 

superior-inferior length (about 2.5-5.0 mm from each end).  
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Chapter 5:  Specific Aim 3—Dosimetric Equivalence of the Machined eSC 

5.1 Methods and Materials 

This chapter compares 2-D dose distributions measured in the mid-sagittal plane of the 

HIWO cylindrical phantom.  A 16 MeV electron beam irradiated an irregular field (≈ 7×9 cm
2
) 

formed by brass, Cerrobend, or lead eSC.  Measurements were taken with a 0° and +3° gantry tilt 

relative to central axis. 

5.1.1 Experimental Setup 

All film measurements performed using HIWO cylindrical phantom were acquired using 

RCF (Gafchromic EBT2, International Specialty Products, Wayne, NJ) (Lot # F06110901, 

A09171003, and A12041005A), exposed en face (“edge-on”) in the sagittal film cassette of the 

phantom [19 cm×25.4 cm (depth×width)].  Since the RCF dimensions were 20.3 cm×25.4 cm, 

the film was trimmed, using a single-sided razor, to align the film edge with the phantom surface 

prior to exposure. For each measurement condition, results of three films were averaged. 

For irradiation, the longitudinal axis of the cylindrical phantom was aligned with the axis 

of gantry rotation of the linear accelerator as shown in Figure 5.1.  The couch, gantry, and 

collimator rotation were all set to 0°.  For each eSC material (brass, Cerrobend, lead) (Figure 

4.5), three films were exposed.  Additionally, to simulate setup error, the beam angle was rotated 

+3° in the plane of the film, and the measurements were repeated for all three eSCs.  This was 

facilitated by rotating the couch and collimator to 90° and the gantry to +3°.  The portion of the 

cylindrical phantom containing the sagittal cassette was considered superior with respect to head-

first-supine orientation, and each eSC was oriented as such.  The nominal beam energy used for 

the cylindrical phantom case was 16 MeV, the SSD was 105 cm, and the beam was collimated by 

a 15×15 cm
2
 electron cone.  Each film was exposed to 400 MU, and the corresponding dose was 
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determined by acquiring output measurements, as described in Section 3.1.4, prior to film 

irradiation.  This value of given dose was used to normalize the measured film dose distributions. 

Digitization of the film measurements was performed following previously discussed 

methods (Section 3.1.4).  The registration methodology was identical to that used previously by 

investigators using the sagittal cassette of this phantom (Kavanaugh 2011).  A physical 5-point 

template was made to mark the films prior to scanning with the registration points placed at 

known distances from the origin in areas of little or no interest on the film.  The films were 

digitally registered using a 5-point registration template created within commercial software 

(RIT113 v5.2, Radiological Imaging Technology, Inc., Colorado Springs, CO) corresponding 

with the physical template.  Using this template within the commercial software, the digitized 

film images were spatially registered to an ASCII planar dose calculation with a pixel size of 

0.05 cm×0.05 cm.  Once the film was calibrated and registered within the commercial software, 

the digitized film images were exported for analysis, including normalization, using in-house 

MATLAB software. 

5.1.2 Data Analysis   

The measured distributions were from digitized RCF measurements (see Section 3.14).  

The dose arrays exported by the RIT software as .mat files were analyzed using in-house Matlab 

v7.5 software written specifically for this study.  The exported arrays had a 0.5 mm pixel 

spacing.  Each array was normalized to the given dose (independent of eSC), adjusted for the 

beam output measured just prior to irradiation of the films.  Surface artifacts, similar to those 

reported by Robertson (2010), were observed both on CAX and near the eSC edge.  Therefore, 

for all data points within 2 cm of the surface (z ≤ 2 cm), the following correction was applied to 

the en face film dose measurements collected using the cylindrical phantom: 
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      (   )        (   )  (
      (   )

      (   )
) ,       (5.1) 

where %Dclin(0,z) is the clinical CAX depth dose measured in a water phantom, and %Dmeas(0,z) 

is the CAX depth dose measured in the cylindrical phantom.  For shallow depths (z ≤ 2 cm), this 

correction restored agreement of our measurements with the measured dose in a water phantom.  

Typical results for this process are illustrated in Figures 5.2 and 5.3.  Since this effect was 

significantly diminished at lower energies (also observed by Robertson (2010)), the correction 

was not necessary for previously discussed (see Section 3.1.4) film dose measurements in this 

study at 6 MeV. 

   

Figure 5.1:  Cylindrical phantom experimental setup with Cerrobend eSC, pictured from the foot 

of the couch.  The phantom was extended further from the measurement SSD of 105 cm to allow 

the view (photo) of the eSC placement.  This particular image shows the Cerrobend eSC on the 

phantom.  The couch, gantry, and collimator rotation were all set to 0°.  For variation of the 

gantry from the nominal delivery angle, the couch and collimator were rotated to 90°, and the 

gantry was set to +3°; these adjustments allowed for a +3° gantry rotation within the film plane 

(central sagittal plane).  The proximal edge of the film plane is approximated in the right image 

by a line drawn along the longitudinal surface of the phantom. 
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5.1.3  Comparison of Measured Dose Distributions 

We compared 2-dimensional distributions of measured relative dose to evaluate 

dosimetric equivalence of the machined brass eSC with the current standard of care (lead eSC 

and Cerrobend eSC).  Measured dose distributions were compared using several quantitative 

metrics as previously described in Section 3.1.5.  Dose distribution agreement was investigated 

in order to validate the dosimetric equivalence of each collimating material.   

5.1.4  Leakage 

Collimator leakage was assessed to ensure that each collimating material demonstrated 

sufficient shielding properties to be used clinically.  This was only investigated for the 

cylindrical phantom case.  For this assessment, off-axis dose profiles were plotted at depths of 

0.5, 1.0, 2.0, and 3.0 cm with data 3 cm outside the field edge.  Also, in the normalized dose 

array, the depth-dose profiles, averaged over the data in the columns between 6.5 and 7.0 cm 

distance off-axis, were determined and plotted.  These depth-dose plots fell approximately 2 cm 

lateral to the eSC aperture edge. 

5.2 Results for Specific Aim 3 

For comparison of the three eSCs of different collimating materials (brass, Cerrobend, 

and lead), we were interested in [1] overall dosimetric agreement (Figures 5.4-5.5), [2] the 

impact of collimator scattered dose (Figures 5.4-5.6), [3] field width and the 90% relative dose 

region (Figures 5.6, 5.7, 5.9, and 5.10), [4] penumbral width (Figure 5.8), and [5] radiation 

leakage (Figures 5.8 and 5.11).  The lead eSC was considered to be the prevailing standard of 

care.  The penumbral widths are listed Table 5.2, and the profiles from which they were gleaned 

are plotted in Figure 5.8.  The leakage seen with the brass eSC measurements was due to errors 

made in the planning process and is addressed in section 5.2.4.  Otherwise, all three of the eSCs 
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for the cylindrical phantom case showed very good dosimetric agreement.  Slight variations were 

seen in the width of the eSC aperture between the three (approximately 2-3 mm), but since the 

Cerrobend eSC and lead eSC were fabricated by hand according to the current standard of care at 

our institution, a variation of a few millimeters was likely within the expected uncertainty. 

5.2.1  Collimator Scattered Dose 

Measured isodose plots for the brass, Cerrobend, and lead eSCs for 0° and +3° gantry 

angles are plotted in Figures 5.4 and 5.5, respectively.  In all cases a lobe of increased dose 

(>100%) due to collimator scatter is observed.  At 0° the increased dose is slightly greater in the 

negative direction, which is due to the collimating edge parallel to gantry axis being closer to the 

film measurement plane at the inferior (negative) field edge, cf. Figures 4.2 and 5.1.  For brass 

eSC the maximum doses at dref = 10 mm are approximately 107%(-) and 105%(+); for Cerrobend 

eSC approximately 104%(-) and 100%(+); and for lead eSC approximately 105%(-) and 

103%(+).  Figure 5.6, a color-wash dose plot of dose values 90-110%, better illustrates a 

qualitative comparison of the increased dose due to collimator scatter.  Small differences can be 

seen in the collimator-edge scatter, attributed to the different properties of the collimating 

materials as well as the different bevel angles of the eSCs (negative bevel angle, slightly greater 

than the angle of the beam divergence; approximately +20°; and approximately parallel to CAX 

for the brass, Cerrobend, and lead, respectively).  The brass eSC shows increased scatter dose 

compared to lead, which is slightly greater than that for Cerrobend.  Results for a +3° gantry 

angle were similar, perhaps, showing slightly less dose (1-2%) on both sides.  The features of 

these comparisons can be more quantitatively appreciated using the off-axis dose profile plots in 

Figure 5.8 and the differential dose area histograms within the 90% dose contour in Figure 5.7. 
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Figure 5.2:  Percent depth dose plots before (left) and after (right) the correction of the surface 

effect.  The upper images are of the dose along CAX, and the lower plots are of the dose at 4 cm 

off-axis. 
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Figure 5.3:  Plots of the uniformity within 90% relative dose region before (upper) and after 

(lower) the correction of the surface effect.  
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5.2.2  Field Width and 90% Dose Area 

Figure 5.9 overlays isodose curves of 20%, 50%, 80%, and 90% for the brass, Cerrobend, 

and lead eSCs.  These curves have essentially identical shapes (≤ 1 mm) with the exception of 

the lead isodose curves being shifted -1 mm in the negative half plane and the Cerrobend isodose 

curves being shifted +1.5 mm in the positive half plane.  These shifts are indicative of an 

approximately 2 mm error in manually fabricating the lead eSC and Cerrobend eSC apertures. 

 Figure 5.10 specifically addresses the coverage of the 90% dose area.  The areas are 

comparably shaped with the exception of slight differences primarily due to accuracy of the 

beam edges and secondarily due to differences in collimator scatter.  This is reflected in the 

calculated areas listed in Table 5.1.  For 0° the brass area is 4.5% less than that for lead and 2.4% 

less than that for Cerrobend, again attributed to manual fabrication of the lead eSC and 

Cerrobend eSC.  Had the edges been identical, the 90% dose areas would reflect differences due 

only to scatter. 

5.2.3  Penumbral Width 

 The penumbral widths (P80-20) are listed Table 5.2, and the profiles from which they were 

gleaned are plotted in Figure 5.8.  We defined the penumbral width as the lateral distance 

between the 80% and 20% relative dose points along each profile.  The difference in penumbral 

width was very small between the measured fields, 0.5 mm or less (precision was limited to 0.5 

mm due to matrix resolution) for 0° gantry angle.  Upon comparing the penumbral widths of all 

the measured fields and all lateral profile depths, the largest difference was 1.5 mm.  These 

larger differences were for a +3° gantry angle and due to different bevel angles.  This difference 

is not considered to be clinically significant, thus demonstrating the comparable abilities of the 

brass, Cerrobend, and lead as collimating materials. 
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5.2.4  Radiation Leakage 

Radiation leakage through the eSC, which should be primary bremsstrahlung x-rays with 

some secondary electrons, can be appreciated by depth dose curves under the eSCs shown in 

Figure 5.11 and in the off-axis profiles of Figure 5.8.  In Figure 5.8, the surface dose of 

approximately 23% under the brass eSC is a direct result of its being fabricated too thin, i.e., 

primary electrons penetrated the brass.  From 0 to 3 cm, Cerrobend and lead agree well (±0.5%), 

and all three agree at 3 cm and deeper, beyond the range of the primary electrons.  The peak of 

increased dose deeper than 3 cm in Figure 5.8 is due to lateral scatter of the primary electron 

beam, and differences are likely due to the ≤ 1 mm differences in the location of the beam edge, 

e.g., the wider edges for lead give < 2% greater dose, as discussed in section 5.2.2.  There is no 

evidence of any clinical significant difference in leakage dose between brass, Cerrobend, and 

lead. 
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(a)  

 

 

 

(b)  

Figure 5.4:  Isodose plot of the measured dosimetric data collected using the cylindrical 

phantom.  Dosimetric measurements were obtained using radiochromic film with a 16 MeV 

electron beam, at 105 cm SSD, and with a nominally oriented gantry angle (Grel = 0°).  Shown 

are (a) brass eSC, (b) Cerrobend eSC, and (c) lead eSC. 
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(c)  

Figure 5.4 (continued):   Isodose plot of the measured dosimetric data collected using the 

cylindrical phantom.  Dosimetric measurements were obtained using radiochromic film with a 16 

MeV electron beam, at 105 cm SSD, and with a nominally oriented gantry angle (Grel = 0°).  

Shown are (a) brass eSC, (b) Cerrobend eSC, and (c) lead eSC. 

 

(a)  

Figure 5.5:  Isodose plot of the measured dosimetric data collected using the cylindrical 

phantom.  Dosimetric measurements were obtained using radiochromic film with a 16 MeV 

electron beam, at 105 cm SSD, and with a nominally oriented gantry angle (Grel = +3°).  Shown 

are (a) brass eSC, (b) Cerrobend eSC, and (c) lead eSC. 
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(b)  

 

 

 

(c)  

Figure 5.5 (continued):   Isodose plot of the measured dosimetric data collected using the 

cylindrical phantom.  Dosimetric measurements were obtained using radiochromic film with a 16 

MeV electron beam, at 105 cm SSD, and with a nominally oriented gantry angle (Grel = +3°).  

Shown are (a) brass eSC, (b) Cerrobend eSC, and (c) lead eSC. 



76 

 

 

 

 

Figure 5.6:  Uniformity within 90% relative dose region taken from the measured dosimetric data 

collected using the cylindrical phantom.  The three subplots on the left correspond to a relative 

gantry angle of 0°, while those on the right correspond to a relative gantry angle of +3°.  The top 

row is the measured distributions of the brass eSC, the second row is the Cerrobend eSC, and the 

bottom row is the Lead eSC.  The relative dose value for each pixel in each plot was mapped to a 

color with respect to the color bar at the bottom of the figure.  As expected, an increase in 

collimator-edge scatter with the brass eSC decreases the dose uniformity relative to the other two 

eSCs. 
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Figure 5.7:  Differential dose area histogram within 90% dose region taken from the measured 

dosimetric data collected using the cylindrical phantom.  The red, blue, and green lines 

correspond to the relative dose within the 90% region for the brass eSC, Cerrobend eSC, and 

lead eSC measurements, respectively.  For this plot, each pixel with a value ≥90% relative dose 

was placed into the appropriate bin between 90% and 115% relative dose (bin size = 1% relative 

dose).  The number of points (or pixels) in each bin was then normalized based on the total 

number of points ≥90% relative dose in the distribution measured with the lead eSC, which was 

considered the prevailing standard of care and used as a standard of comparison for the 

measurements collected with the three eSCs on the cylindrical phantom.  This plot demonstrates 

that, while the Cerrobend and lead eSCs produced more points within the 100% to 105% relative 

dose interval than the brass eSC, the brass eSC resulted in more points beyond approximately 

105%.  Furthermore, as the relative number of points for the Cerrobend and lead eSC 

distributions falls to near zero around 106%, the line representing the brass eSC distribution 

reaches approximately 113% before reaching the same level. 

 

Table 5.1:  Quantitative comparisons of cylindrical phantom data—depth of R90, 90% relative 

dose area, and maximum relative dose (near the left eSC edge, right eSC edge, and an average of 

both sides).  The three eSCs yielded similar values for the listed quantities.   

 

Field Description
depth of R90 

[mm]

90% area 

[mm
2
]

Δarea

max relative 

dose [%]     

(left of CAX)

max relative 

dose [%]     

(right of CAX)

max relative 

dose [%] 

(average)

mean relative dose 

within 90% [%] ± σ

Brass eSC, Grel = 0° 51.5 4022.0 4.5% 114.4% 113.5% 113.9% 99.1 ± 4.0

Cerrobend eSC, Grel = 0° 52.0 4123.3 2.1% 117.8% 103.3% 110.6% 98.8 ± 3.5

Lead eSC, Grel = 0° 53.0 4212.5 0.0% 106.1% 107.0% 106.6% 100.1 ± 3.6

Brass eSC, Grel = +3° 50.5 3927.8 6.8% 114.6% 116.0% 114.3% 99 ± 4.1

Cerrobend eSC, Grel = +3° 52.0 4139.8 1.7% 106.2% 102.4% 104.3% 98.3 ± 3.1

Lead eSC, Grel = +3° 52.5 4195.3 0.4% 106.4% 107.4% 106.9% 99.9 ± 3.6
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Figure 5.8: Profiles taken from the measured dosimetric data collected using the cylindrical 

phantom.  Profile depths = 5 mm (magenta line), 10 mm (blue line), 20 mm (green line), and 30 

mm (red line).  Shown are the profiles for the brass eSC (top row), the Cerrobend eSC (middle 

row), and the lead eSC (bottom row).  For each of the three eSCs, profiles are shown for 

exposures at relative gantry angles of 0° (left column) and +3° (right column). 
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Table 5.2:  Penumbral widths measured from data collected with the cylindrical phantom.  

Provided is a quantitative comparison of penumbral widths of the dose distributions measured 

with the three eSC materials.  These penumbral widths were taken from the lateral profile data 

shown previously in Figure 5.8.  We defined the penumbral width as the lateral distance between 

the 80% and 20% relative dose points along each profile.  The difference in penumbral width 

was very small between the measured fields.  Upon comparing the penumbral widths of all the 

measured fields and all lateral profile depths, the largest difference was 1.5 mm. 

 

 

 
Figure 5.9:  Isodose overlay of the measured dosimetric data collected using the cylindrical 

phantom—brass eSC v. Cerrobend eSC v. lead eSC. Dosimetric measurements were obtained 

using radiochromic film with a 16 MeV electron beam, at 105 cm SSD, and with a nominally 

oriented gantry angle (Grel = 0°).  Displayed in the figure are measured data for the brass eSC 

(red line), Cerrobend eSC (blue line), and lead eSC (green line). 

Relative 

Gantry Angle 

[°]

eSC Material dref = 5 mm dref = 10 mm dref = 20 mm dref = 30 mm

Brass 2.0 2.0 4.5 8.5

Cerrobend 2.0 2.5 4.5 8.5

Lead 1.5 2.0 5.0 8.5

Brass 2.0 3.0 5.0 9.5

Cerrobend 1.5 1.5 4.5 8.5

Lead 1.5 2.0 5.0 9.0

+3

Cylindrical Phantom Penumbral Width [mm] at depth (dref)

0
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Figure 5.10:  90% relative dose area comparison taken from the measured dosimetric data 

collected using the cylindrical phantom—brass eSC v. Cerrobend eSC v. lead eSC.  This plot 

represents the area cover by 90% or greater of the relative dose.  The area shaded in red 

represents the 90% relative dose area of the brass eSC.  The blue line and green line represent the 

90% relative dose areas of the Cerrobend eSC and Lead eSC, respectively. 

 
Figure 5.11:  Leakage profiles taken from measured dosimetric data collected using cylindrical 

phantom.  Shown in the figure are the leakage profiles from the cylindrical phantom measured 

data for the brass eSC (red line), Cerrobend eSC (blue line), and lead eSC (green line).  An 

unexpected amount of leakage was observed with the brass eSC and was determined to have 

been caused by a planning error within the TPS during the design process, which resulted in the 

insufficient eSC thickness. 
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Chapter 6:  Discussion of Results and Clinical Recommendations 

6.1 Collimating Material 

Summary of Results:   

 The quality of the milled product, its weight, and its overall dosimetry (see section 6.5) is 

clinically comparable to Cerrobend and lead. 

 Brass was shown to be compatible with MVCT imaging for validating the shape of the 

machined eSC.  It gave comparable results to that of the kVCT images of the wax replica 

and manual measurements. 

Discussion of Results:  Brass was selected as the eSC material for the present study because of a 

need for a dense metal that is easily machined.  Ma et al. (2000) studied the suitability of 

multiple metals using Monte Carlo calculations to study photon and electron fluence under 1.5 

cm of zinc, copper, lead, and tungsten, and these results showed comparable leakage if scaled by 

density.  Potential advantages of the denser materials could be less bremsstrahlung leakage if the 

higher density material were used for constant thicknesses; however, this would result in 

additional weight (potential discomfort).  Also, neither lead nor tungsten is easily milled, and 

toxicity is a concern with milling Cerrobend (lead alloy).   

Clinical Recommendation:  The durability of brass and similar dosimetry of brass relative to 

lead and Cerrobend make it an excellent potential candidate for machined eSC. 

6.2 Bevel Angle and Collimator Scatter (Aim 1) 

Summary of Results: 

 Regardless of the eSC bevel angle (ϴB = 0°, ±10°), the edge of the beam (50% Off-Axis 

Ratio at R100) was defined by the divergence of the beam (accounting for gantry angle) 

and the inner-most, beam-defining edge of the eSC (cf. Figure 2.5). 
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 The penumbral width (P80-20) was the least for bevel angles of 0° and +10° and varies 

insignificantly (±0.5mm) with gantry angle (ϴG = 0°, ±3°, ±5°) (cf. Table 3.4). 

 Increased scatter from the eSC (relative to ϴB = 0°, ϴG = 0°; reference condition of 

OARmax = 103.5% at 5 mm depth) was greatest for a bevel angle of +10° with gantry 

angles of 0° and +5°, where the OAR was as great as 111% (cf. Figure 3.13).  Because of 

the low percentage depth-dose of the 6 MeV beam, the dose never exceeded 100% (cf. 

Figures 3.8-3.10; Figure 3.11). 

 Although scatter impacted the 90% relative dose area (cf. Table 3.2), this primarily 

impacted the proximal portion of the 90% region.  The depth to the distal 90% contour 

remained essentially unchanged (cf. Table 3.3 for central-axis R90 comparisons). 

Discussion of Results:  Electron scatter from the edge of an eSC is complex, depending on 

energy, depth , angle of bevel, and direction of electrons striking the eSC edge.  Results here are 

comparable with others.  Lax and Brahme (1980) observed a 109% OAR near the field edge for 

10.5 MeV electrons (depth = 1 mm) due to scatter from the eSC edge (ϴB = 0°, ϴG = 0°, eSC 

edge on central axis).The most comparable geometry in the present study (ϴB = 0°, ϴG = -3°) 

showed a 106% OAR for 6 MeV electrons.  Verhaegen et al. (2001) observed a peak dose of 

approximately 103% at 6 MeV, and they saw the lobe of scatter dose emitted about 60° from the 

central axis direction, both consistent with the present data.  Chi et al. (2005) observed a similar 

increase in dose near the eSC edge at a depth of 0.5 cm for a 15 MeV electron beam, which 

diminished with depth. 

 Due to the low surface dose (i.e., slow percent depth-dose buildup), there was no clinically 

relevant increase in dose, and in some cases, the increase in the 90% relative dose area could be 

beneficial.  Also, the -10° bevel angle needlessly increased P80-20 by approximately 1 mm.  In 
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addition, the proximal edge of eSC with a negative bevel angle can shield 1-2 mm of the 

intended treatment field, whereas for 0° and positive bevel angles, the field edge is defined by 

the distal eSC edge. 

Clinical Recommendations:  For low energy beams (low surface dose), the eSC bevel angle is 

recommended to be between 0° and +10°, with +10° being more preferable if gantry angle is 

expected to be adjusted. 

6.3 Collimator Thickness (Aim 2 and 3) 

Summary of Results:   

 Aim 2:  MVCT and physical measurement of the brass eSC showed thickness variations 

within -1.5 and +1.0 mm (i.e., ±1.5 mm) of the thickness designed within the TPS (cf. 

Table 4.1).  Variations could be due to the TPS and/or the milling process. 

 Aim 3:  9 mm of brass (typical thickness of brass eSC) was insufficient for stopping 16 

MeV (Ep,0 = 15.9 MeV) electrons, resulting in electrons penetrating approximately 2.25 

cm in the HIWO polystyrene cylindrical phantom (cf. Figure 5.11).  2.25 cm of 

polystyrene corresponds to an electron energy of approximately 4.5 MeV, which requires 

an additional 2.9 mm of brass to stop, i.e., 11.9 mm of brass. 

Discussion of Results:  For brass at 16 MeV, a minimum thickness (tbrass) of 10.7 mm is 

required, according to equation 2.3, without safety margin.  This is not consistent with dose 

measurements under brass by Hogstrom et al. (1985) (at 17.8 MeV, tbrass = 12.7 mm, which 

scales to 11.4 mm for 16 MeV).  The values of 11.4 and 11.9 mm of brass at 16 MeV indicate 

that the calculated lead thickness is more reasonably scaled by a factor of 1.43 (i.e., tbrass = 1.43 × 

tPb).  This increase of 1.3 to 1.43 is believed to be due to less multiple scattering per unit energy 

occurring within the brass. 
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Clinical Recommendations:  To account for a 1.5 mm uncertainty in the eSC design and 

milling process and the decreased multiple scattering, the brass eSC thickness should be 

determined by the following equation: 

      [  ]  (
 

 
     [   ]         )        (6.1), 

6.4 Validation of Fabrication of Brass eSC (Aim 2) 

Summary of Results: 

 MVCT images of the brass eSC and kVCT images of its wax replica provided similar 

results for verification of dimensional agreement of the eSC fabrication with the eSC 

design. 

 MVCT and kVCT results agreed well with physical observations and measurements  

 A variation in thickness of approximately ±1.5 mm was seen in the brass eSC (cf. Table 

4.1). 

 The distal surface of the eSC fit the skin surface well, within 2 mm of design. 

 The eSC aperture edge had up to a 3 mm deviation from the eSC design, which is 

clinically relevant in 2 of the 3 tested eSCs.  The edge of the other was within 0.5 mm. 

Discussion of Results:  The machined brass eSC matched the design relatively well.  The distal 

surface fit well, and the thickness was within ±1.5 mm.  The aperture edge had the correct shape, 

but incorrect divergence, in some cases back-projecting to a virtual source located 20 cm or less 

from the eSC.  The origin of this error was unknown. 

Clinical Recommendations:  It is recommended that there be a QA procedure to validate the 

eSC dimensions—thickness, bevel angle, aperture, and distal surface.  This could be performed 

manually by: [a] fitting eSC on the patient; [b] validating correct aperture shape by comparison 

with skin markings; [c] having sufficient outer margin (≥ 2 cm outside of light field); and [d] 
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measuring thickness and bevel angle.  Alternatively, MVCT could be used and compared with 

the TPS design contour.  The MVCT could be either on the patient (cf. Figures 4.6 & 4.8) or in 

air (cf. Figure 4.7). 

6.5 Dosimetric Equivalence of Brass eSC (Aim 3) 

Summary of Results:  Overall, there was good dosimetric agreement between identical brass, 

lead, and Cerrobend eSCs: 

 Impact of collimator scattered dose—increased dose (3-10%) was observed with brass, 

but that difference decreased to almost 0% at 3 cm depth for the 16 MeV beam (cf. Table 

5.1). 

 Field width and the 90% relative dose region—good agreement was seen in 90% regions; 

there was a slight difference in field width (50% isodose) due to manual fabrication 

methods for lead and Cerrobend eSCs (cf. Figure 5.9). 

 Penumbral width—no significant difference (≤ 0.5 mm) was observed between the three 

eSC materials with a nominal gantry angle (cf. Table 5.2). 

 Radiation leakage—no evidence of any clinical significant difference in leakage dose 

between brass, Cerrobend, and lead (cf. Figure 5.11). 

Discussion of Results:  For the phantom case used in this investigation (16 MeV), the results 

demonstrated that machined brass eSC was dosimetrically comparable to the current standard of 

care, with the exception of increased dose near the aperture edge due to scatter.  Relative to the 

standard of comparison in this study (lead eSC), an increase in scattered electrons was observed 

with the brass eSC, specifically near the eSC edge.  However, the increase in scatter was near the 

surface (0-3 cm) which is partially offset by the buildup of surface dose.  Small volumes of dose 

greater than 105% dose were seen (cf. Figure 5.4 and 5.5).  If important, they could be reduced 
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by better optimizing the collimator bevel.  Only a minor effect on the 90% relative dose region 

was seen.  The eSC material did not have any significant effect on penumbral width. 

Clinical Recommendations:  Results demonstrated brass to be comparable eSC material to 

current standard of care (lead) with the exception of increased scattered dose.  Further 

investigations should determine the optimal bevel angle to reduce scatter dose from brass eSC. 
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Chapter 7:  Conclusions 

7.1 Conclusions 

Results of this work indicated that brass eSC holds good potential for replacing lead and 

Cerrobend skin collimation. 

With respect to part 1 of the hypothesis:  “that a third party milled brass eSC with its 

collimating edge parallel to the mean direction of the divergent electron beam is milled 

accurately, i.e., within design parameters” was false.  Results for the three milled brass eSCs 

showed their thickness to be slightly outside ±1 mm (within ±1.5 mm).  Their distal surface 

matched the phantom (“skin”) surface to within 2 mm.  The aperture shapes were within ±0.5 

mm for one eSC.  The other two eSCs were fabricated with a bevel whose divergence appeared 

to be emitted approximately 20 cm above the eSC, as opposed to 105 cm, resulting in variations 

in aperture edge location of up to ±3 mm. 

With respect to part 2 of the hypothesis:  “that it (brass eSC) is dosimetrically equivalent 

to current lead and Cerrobend eSCs with edges parallel to beam central axis and an open bevel 

angle of 10°, respectively.”  The R90 values agreed within 1 mm, and the penumbral width agreed 

within 2 mm.  However, scatter dose from the brass was greater, as much as 10% greater than 

that from lead. 

7.2 Proposed Future Work 

The present study was limited for several reasons: 

1) The results for aim 1 were limited because [1] only 6 MeV was studied, [2] there was 

no comparison with brass, and [3] data analysis was complicated by the edges being 

positioned 5 cm (3°) off-axis, making data on the left and right sides asymmetric 
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because one side the beam divergence increased the angle of the mean direction of the 

electrons with respect to the eSC aperture edge, but decreased it on the opposite side. 

2) The results for aim 2 were limited because two of the three brass eSCs had apertures 

with exaggerated divergence (cause unresolved). 

3) The results for aim 3 were limited because [1] the brass eSC was designed too thin for 

16 MeV electrons, [2] the aperture edge was in error (see 2 above), and [3] only 16 

MeV was studied, an energy not used often with eSC. 

 

Prior to clinical use of brass eSCs, the following 3 studies are recommended: 

1) Collimator Fabrication:  Determine and correct the problem as to why the edges of 

the two brass eSCs were fabricated with too great of a divergence.  Once corrected, 

design new brass eSCs with the new recommended thickness relationship,  

      [  ]  (
 

 
     [   ]         ), 

and validate with MVCT. 

2) Optimal Bevel Angle:  Determine the most appropriate brass eSC bevel angle.  

Repeat 2-D dose measurements/calculations from aim 1 using [1] 6, 9, 12, and 16 

MeV; [2] brass eSC with bevel angles of 0°, 5°, 10°, and 20°; [3] lead eSC with bevel 

angles of 0°, 5°, 10°, and 20°; [4] Cerrobend eSC with bevel angles of 0°, 5°, 10°, and 

20°; [5] with the beveled edge placed on central axis of a 20×20 cm
2
 field; and [6] a 

nominal gantry angle (ϴG = 0°).  2-D diode dose measurements in a water phantom (d 

≥ 5 mm) and Monte Carlo (MC) dose calculations should be performed, and the 

resulting data should be evaluated using similar metrics as the present study.  MC 

calculations should allow the scattered dose component from the eSC to be isolated. 
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3) eSC with Bolus:  The next logical step toward widely available improvements in 

electron conformal therapy (ECT) would be to use machined eSC to sharpen the 

blurred penumbra beneath a variable-thickness bolus.  The use of bolus ECT is a 

relatively new development in electron therapy and allows for the modulation of the 

electron range to match the distal tumor surface.  Much success has been seen with 

bolus ECT, but one drawback is the blurring of the penumbra as the electrons traverse 

the bolus.  Machined eSCs could be used to restore the penumbral sharpness.  In this 

situation, however, we are, again, faced with the likely prospect that some current 

clinical electron dose algorithms will be unable to provide sufficiently accurate dose 

calculations for an eSC located below the surface of the bolus.  The integration of 

machined eSC with bolus ECT would likely provide significant improvement to 

currently available treatment options and, perhaps, broaden the application of this 

therapy to sites that are more commonly treated using other modalities. 
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