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ABSTRACT 

Purpose:  Using the technique developed by Vinci et al. (2007), this project quantified the 

accuracy and precision of the Elekta Infinity using an end-to-end test for the entire image guided 

radiation therapy (IGRT) treatment process. The IGRT capabilities of the on-board imaging 

systems for megavoltage (MV) planar imaging and kilovoltage cone beam computed 

tomography (kVCBCT) were both evaluated. The accuracy of the on-board imaging systems will 

impact the size of planning treatment margins. 

Method and Materials:  A CIRS radiosurgery head phantom with a Gafchromic EBT2 film 

dosimetry block insert was used to measure the dose distributions in the three orthogonal planes.  

A coplanar, isocentric, seven-field treatment plan was created for a cylindrical target volume 

located at the center of the film cube.  The phantom was manually positioned on the treatment 

couch, either correctly aligned to the room lasers or with intentional misalignments of ±5 mm in 

three directions of couch motion.  Prior to treatment, one of the IGRT modalities was utilized to 

identify misalignment; the calculated realignment values were used to shift the phantom prior to 

treatment delivery. After treatment, the delivered dose distributions were analyzed and compared 

to the calculated planar dose distributions.  Two metrics were analyzed from the film: positional 

alignment error of the 70% isodose line and comparison of spatial shifts of the 80% dose points. 

Positional alignment error quantified displacement between the midpoints of the measured and 

calculated dose profiles; shifts at the 80% dose points indicated distortions in the profiles. 

Results and Conclusions:  Investigation of the accuracy of the couch motion revealed a 

systematic 1 mm error at fixed locations along the longitudinal axis.  Using a non-invasive 

immobilization device and on-board image guidance, setup margins on the Elekta Infinity should 

be set to 2 mm using kVCBCT and 3 mm using MV planar imaging.  To use the Elekta Infinity 
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for high precision deliveries with minimal planning target volumes would require tighter 

tolerances in couch motion; a couch with rotational as well as translational motion seems 

advisable.  For high precision deliveries, image guidance using kVCBCT is recommended over 

MV planar image guidance.  
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CHAPTER 1.   INTRODUCTION 

1.1 International Committee on Radiation Units and Measurements 

The International Committee on Radiation Units and Measurements (ICRU) provides 

guidelines and recommendations on a variety of topics relevant to working with radiation.  ICRU 

Reports 50 and 62 provide specific information for guiding radiation treatments.  These 

recommendations suggest various volume definitions for use in planning radiation treatments.  It 

is important that clear, well-defined, and unambiguous concepts and parameters are used for 

reporting purposes to ensure a common language between different cancer centers around the 

world.  ICRU Report 62 provides recommendations on the volumes and absorbed doses that are 

important in prescribing, recording, and reporting photon beam therapy.    

Figure 1.1 illustrates the volume definitions defined by ICRU 62.  The primary volume 

that is first created during treatment planning is the gross tumor volume (GTV).  The GTV is 

defined as the gross palpable or visible/demonstrable extent and location of the malignant growth 

(Wambersie and Landberg, 1999).  The GTV is the physical manifestation of what can be seen 

via computed tomography (CT), magnetic resonance imaging (MRI) and angiography. 

Surrounding the GTV, the ICRU defined the clinical target volume (CTV).  The CTV 

contains the GTV as well as any subclinical microscopic malignant disease, which needs to be 

eliminated (Wambersie and Landberg, 1999).  The subclinical involvement margin may contain 

tissue adjacent to the GTV that is believed to contain undetected microscopic cancer cells.  The 

CTV may also encompass any lymph nodes in the region about the GTV.   

The internal target volume (ITV) contains the CTV and includes a margin to account for 

physiological patient movements that cannot be accommodated or eliminated during treatment.  

The margin used for creating an ITV is known as the internal margin.  The internal margins  
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Figure 1.1:  Target volume definitions defined by ICRU 62 (from Wambersie and 

Landberg, 1999).  The areas in red (GTV) and orange (CTV) represent the 
cancerous volume that requires treatment.  To treat 100% of these areas, one 
creates internal margins (dark grey) and setup margins (blue) in the healthy 
adjacent tissue.  Setting internal and setup margins consequently requires 
irradiating healthy adjacent tissue.  
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compensate for expected physiologic movements and variations in size, shape, and position of 

the CTV during therapy.  These physiologic motions can occur when the CTV position changes 

on a day-to-day basis and is mainly associated with organs that are part of or adjacent to the 

respiratory or digestive system.  Changes in the patient’s condition, such as weight gain or loss, 

can also affect the relative position of the CTV. 

The volume that surrounds the ITV is the planning target volume (PTV).  The PTV is an 

expansion from the ITV that is necessary to account for external treatment inaccuracies 

(Wambersie and Landberg, 1999).  The margin used to create a PTV is known as the setup 

margin, and it considers the net effect of all variations and inaccuracies to ensure that the 

prescribed dose is actually absorbed throughout the ITV.  The setup margin accounts for any 

uncertainties related to patient positioning, for mechanical uncertainties of the equipment, and 

for dosimetric uncertainties.   

1.2 Image Guided Radiation Therapy 

Image guided radiation therapy (IGRT) procedures use imaging technology to identify 

and correct errors arising from inter- and intra-fractional variations in patient setup and anatomy.  

IGRT is used to verify the location, shapes, and volumes of treatment targets, organs at risk, and 

surrounding normal tissues.  IGRT can be used at various stages of the radiation therapy process 

including patient data acquisition, treatment planning, treatment simulation, patient setup, and 

target localization.  Modern treatment techniques such as 3D conformal radiotherapy (3D-CRT) 

and intensity modulated radiotherapy (IMRT) conform the dose distribution to complex PTV 

shapes. Consequently, the accuracy requirements of PTV localization and its dosimetric 

coverage during treatment become increasingly demanding.  These requirements have propelled 

advances in the area of dynamic targeting of PTVs and visualization of surrounding anatomy 
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before and during treatments (Letourneau et al., 2007; Letourneau et al., 2009; Rowbottom and 

Jaffray, 2004; Webster et al., 2009).  

Until recently this past decade, image guidance typically was achieved using 

megavoltage (MV) x-ray portal films, but now is typically achieved using both MV and 

kilovoltage (kV) x-ray imaging systems.  IGRT modalities can be divided into two groups: 

planar image-based and CT-based.  The imaging systems can be physically separate from the 

linac or can be mounted directly on the gantry; the latter are known as on-board imagers (OBIs). 

1.2.1 Planar Image-Based IGRT 

Two types of planar imaging systems are available for use with modern linacs: (a) a kV 

x-ray imager consisting of a conventional x-ray tube(s) with an opposing flat-panel detector(s) 

and (b) an MV imager consisting of a flat-panel detector and the linac’s MV x-ray source. The 

flat panel detectors in these systems are frequently called electronic imaging devices (EIDs).  

Since kV x-rays attenuate in matter more than MV x-rays, kV imaging provides higher contrast 

than MV imaging.  The MV and kV imagers can either be gantry-mounted (e.g. Varian Trilogy, 

Elekta Synergy, and Siemens ONCOR) or positioned independent of the gantry (e.g. BrainLab 

Novalis ExacTrac system).  Prior to treatment, planar images are acquired and compared to 

digitally reconstructed radiographs (DRR) generated from the planning CT scan by the treatment 

planning system.  From this comparison, misalignment of the patient’s anatomy parallel to the 

image plane is identified; however, misalignment perpendicular to the image plane cannot be 

identified from a single image. Using images from two or more perspectives (e.g. orthogonal), 

misalignments can be identified in 3D and the patient’s position is shifted in 3D to match the 

planned setup. Another drawback of planar images is the superposition of anatomy in the 

projection images, potentially obscuring shifts of the anatomy of interest. 
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1.2.2 CT-Based IGRT 

CT provides tomographic 3D image data, without the confounding superposition of 

anatomy found with planar images. CT images also typically provide better spatial resolution. 

An in-room CT scanner makes it feasible to obtain CT images directly prior to each treatment; 

the CT scanner and the linac typically share a common patient bed so that the patient does not 

move between imaging and treatment.  As with planar imaging systems, the CT system can be 

stand-alone or mounted on the linac gantry. Examples of gantry-mounted CT-based IGRT 

systems include cone-beam MVCT (Siemens), cone-beam kVCT (Varian Trilogy, Elekta 

Infinity, Siemens ARTISTE) and serial fan beam MVCT (Tomotherapy).  An example of a 

stand-alone CT is CT Vision which has a CT on rails (Siemens).  

Previously mentioned, some linacs are able to acquire kilovoltage cone-beam computed 

tomographies (kVCBCT).  KVCBCT utilizes the same flat panel imagers that are used to acquire 

kV planar images.  As the gantry rotates, planar projection images from multiple directions are 

acquired by the flat panel detector.  Three-dimensional volumetric images are reconstructed from 

these multiple radiographs, which utilizes a filtered back-projection algorithm. Due to the 

geometry of kVCBCT imaging, the radiation beam in kVCBCT is conical in shape (Figure 1.2) 

with a beam size limited by the size of the EID; as a consequence, some peripheral anatomy 

might not be present in the field for all gantry angles.  This makes kVCBCT typically adequate 

for head and neck regions but inadequate for the pelvis or other regions that are larger than the x-

ray beam (Khan, 2010) 

The quality of cone-beam CT reconstructed images can suffer from poor contrast, mis-

registration, and artifacts.  These problems arise from gravity-induced flex in the support arms of 

the x-ray tube and detector, sagging and slipping of the accelerator gantry during rotation, and 

the combined effects of beam hardening and x-ray scatter.  Center of rotation corrections on the 
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order of 2 mm are required to compensate for gravity-induced flex of the support arm and gantry 

(Jaffray et al., 2002).  Beam hardening and x-ray scatter cause inaccurate CT numbers, contrast 

reduction, and cupping artifacts.  These effects are minimized by algorithmic corrections in the 

reconstruction software.  Scatter can be reduced by using antiscatter grids (Khan, 2010). 

With proper corrections, it is possible to obtain cone-beam images with good contrast and 

sub-millimeter spatial resolution.  The typical resolution employed in the clinical implementation 

of kVCBCT is about 1 mm voxel size at isocenter.  Because kV x-rays are used, the images show 

reasonably good soft-tissue contrast, which is helpful in delineating the gross tumor volume 

(GTV).   Due to the relatively low energy range of the photons, a single kVCBCT scan 

contributes approximately 1.5 cGy to the center of the patient (Khan, 2010). 

 
Figure 1.2:  Sketch of the process of Cone Beam Computed Tomography (Simon and 

Sauerwein, 2000).  A conical beam from an x-ray source penetrates the object.  The 
transmitted radiation is measured by the flat panel detector.  The x-ray source and 
flat panel detector are simultaneously rotated around the object to measure a set of 
projections.  The 3D structure of the object is reconstructed from the projections.   
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1.3 Elekta Infinity  

The Elekta Infinity system is equipped with both a kV x-ray imager and a MV imager 

(Elekta, 2006), as shown in Figure 1.3.  These OBIs allow the user to know the location of the 

patient anatomy in space in relation to the linac isocenter. Both systems use flat panel image 

detectors; the MV imager uses the linac’s MV x-ray beam while the kV imager uses a gantry-

mounted kV x-ray tube. 

 
Figure 1.3:  Photograph of the Elekta Infinity system with (a) the MV x-ray beam source 

(linac head), (b) the kV x-ray source, (c) the MV flat panel detector, and (d) the kV 
flat panel detector. 

The EIDs on the Elekta Infinity each consists of a matrix of 256x256 solid state 

amorphous silicon photodiodes.  Both flat panels are 425 x 425 mm2 but only have an active 
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imaging region of 409.6 x 409.6 mm2.  Radiation absorbed by the detector induces a charge that 

is integrated over the image acquisition time.  The photodiode matrix is connected to readout 

electronics that measure the accumulated charge from each diode.  Because the signal in each 

photodiode is proportional to the energy deposited by the radiation, the signal can be represented 

as pixel gray scale values to generate an image. 

Although kV planar images have better contrast than MV planar images from the EIDs, 

neither has sufficiently good quality to visualize soft-tissue targets in their entirety.  However, 

the OBIs are useful in determining the planned target position in relation to bony landmarks 

and/or radio-opaque markers (fiducials) implanted in the target tissues.  In addition, the kV 

imager on the Elekta Infinity can be used in both radiographic and fluoroscopic modes to check 

patient setup before each treatment or to track the movement of fiducial markers due to 

respiratory motion.  The MV imager can provide portal verification before each treatment as well 

as on-line monitoring of target position during treatment delivery. 

The kV OBI of the Elekta Infinity is also capable of cone-beam CT (kVCBCT).  The kV 

OBI is mounted at 90 degrees with respect to the central axis of the linear accelerator beam and 

shares the same isocenter as the linac as the gantry rotates. The kV OBI system can be retracted 

after use so as not to interfere with treatment delivery. Image acquisition with the kV OBI as the 

gantry rotates provides the CT image data.  By using a small field of view setting to acquire 

kVCBCT, one can obtain a field size of 276.7 x 276.7 mm2 with a pixel resolution of 1.08 mm. 

1.3.1 Daily QA of the IG Systems on the Elekta Infinity 

At Mary Bird Perkins Cancer Center, radiation therapists are responsible for the daily 

warm-up and accelerator quality assurance, including the coincidence of the MV planar imaging 
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and kVCBCT systems.  The IG systems on the Elekta Infinity are monitored using a Penta-Guide 

cube phantom (Quasar, London, ON), shown in Figure 1.4. 

This phantom is marked with crosshairs that are aligned with the room lasers.  Next, the 

linac is set up to perform a kVCBCT on the Penta-Guide cube phantom.  Once the kVCBCT has 

been acquired, auto image registration using Grey-value is used to register the kVCBCT of the 

cube with its original CT (Figure 1.5)   

 
Figure 1.4:  Image of the Penta-Guide phantom placed on the Elekta Infinity treatment 

couch.  The phantom is initially setup to the crosshairs that are offset from the 
center of the cube. 

The position error should be 1.0 ± 2.0 mm in the lateral, -1.4 ± 2.0 mm in the 

longitudinal, and -1.2 ± 2.0 mm in the vertical directions.  The 2 mm uncertainties are a result of 

the inherent accuracy of positioning the treatment couch.  The phantom’s misalignment is then 

corrected for using the automated couch adjustments.  The kVCBCT is repeated to determine 
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any residual error.  The residual error for all three axes should be ≤ 1 mm.  The results are 

indicated in the Morning Warm-Up Log Book.   

Without moving the phantom, the gantry is set to 0 degrees, and a MV port film is 

acquired with the aid of a graticule (Figure 1.6).  In this image of the phantom projection, each 

sphere should be in the center of its corresponding ring.  Also, the central axis BB on the port 

film graticule should be in the center of the central axis sphere.  This process is repeated using a 

gantry position of 270 degrees.  The results are indicated in the Morning Warm-Up Log Book. 

 
Figure 1.5:  Screen capture of the registration tool in the Elekta Infinity software.  The 

translations required to correct for the misalignment in the cube were obtained by 
moving the planning CT (purple) to overlap the kVCBCT data (green).   
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Figure 1.6:  (Left) Screen capture of the AP MV planar image of the Penta-Guide phantom.  

(Right) Screen capture of the Right-Lateral MV planar image of the Penta-Guide 
phantom.  Each sphere should be in the center of its corresponding ring.  

1.3.2 Patient Setup on the Elekta Infinity 

When a patient is initially setup on the Elekta treatment couch, the therapists align him or 

her with a combination of the room lasers and crosshairs that are drawn onto the patient after his 

or her initial CT.  The use of immobilization devices like the Aquaplast mask and Vac-Lock bags 

(CIVCO Medical Solutions, Orange City, IA) aid in reproducing the patient setup process.  Once 

set up with the room lasers, one of the IG procedures is implemented – usually kVCBCT.  

Depending on the location of the treatment target, one of the automatic kVCBCT registration 

algorithms is implemented – either bony registration or grey-value registration.  During bony 

registration, the program uses an algorithm to match the bony anatomy of the kVCBCT with the 

patient’s original CT.  During gray-value registration, the program uses an algorithm to match 

various regions of similarly-shaded tissue of both images.  Once the automatic registration is 

completed, the therapists will review the match, making small adjustments if needed.  Once the 
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shifts have been accepted, the therapists can remotely move the treatment couch from outside of 

the vault in order to properly align the patient.  As long as the patient remains immobilized, the 

radiation treatment plan is finally delivered.  Conventional patient setup and treatments typically 

take about ten minutes to implement. 

1.4 Motivation for Research 

Ideally, one would only want to treat the GTV as well as any subclinical involvement 

located in the CTV.  However, due to uncertainties with the positioning of the patient and 

inaccuracies of the treatment system, one needs to define ITVs and PTVs to guarantee full 

coverage of the CTV.  This requires irradiating adjacent healthy tissue, with the amount 

determined by the size of the ITV and PTV margins; however, implementing IGRT can reduce 

the size of the internal margin and setup margin, lessening the irradiation of surrounding healthy 

tissue.  Variability in daily patient setup is reduced by using a thermoplastic immobilization 

mask, which is custom fit to each patient.  Using image guidance, inter- and intra-fraction error 

may be reduced even further, decreasing the required size of the PTV and reducing the volume 

of healthy tissue irradiated. 

Margin reduction provides benefits to the patient; however, target positioning and dose 

delivery must be evaluated for the treatment system being used to confirm the level of accuracy 

that can be obtained.  Similar work was completed by Murphy and Cox in verifying the 

positional and dose localization accuracy of the Cyberknife using IGRT (Murphy and Cox, 

1996).  Their results showed that the Cyberknife system achieved the same level of targeting 

precision as conventional frame-based radiosurgery. 
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1.5 Hypothesis and Specific Aims 

This study focused on quantifying the accuracy and precision of both target positioning 

and dose delivery for an intracranial target delivered with the Elekta Infinity system using a non-

invasive immobilization device.  Quantifying the positional and dose accuracy of the entire 

IGRT system will aid in determining the minimum size of setup margins needed for intracranial 

treatments.  The hypothesis of this project was that intracranial treatment delivery using the 

IGRT features of the Elekta Infinity system at Mary Bird Perkins Cancer Center will result in a 

positional accuracy within ±1mm.  Two aims were completed to test this hypothesis: 

Aim 1: Evaluate the positioning accuracy and precision from the Elekta Infinity imaging 

guidance modalities using a geometric and anthropomorphic phantom. 

Sub-Aim 1a:  Evaluate kVCBCT positional accuracy and precision. 

Sub-Aim 1b:  Evaluate MV planar imaging positional accuracy and precision. 

Aim 2: Evaluate the dose localization accuracy and precision from the Elekta Infinity imaging 

guidance modalities using an anthropomorphic phantom. 

Sub-Aim 2a:  Evaluate the kVCBCT dose localization accuracy and precision. 

Sub-Aim 2b:  Evaluate the MV planar imaging dose localization accuracy and precision 
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CHAPTER 2.   METHODS AND MATERIALS 

To assess the delivery accuracy of the Elekta Infinity, a treatment plan was developed 

and delivered multiple times to a phantom. The phantom was intentionally misaligned along the 

three major orthogonal anatomical axes, and image guidance was used to identify and correct the 

misalignment prior to each delivery using the same procedure used in the MBPCC clinic. 

Positional and delivery accuracy was assessed by comparing the planned dose to the delivered 

dose measured using film. The following sections, which describe the experimental setup, the 

measurement process, and comparison of the delivered dose distributions to the planned 

distribution, are similar to those used in a previous study of a different imaging system and linac 

at MBPCC (Vinci, 2007; Vinci et al., 2008).  

2.1 Phantom and Treatment Planning 

A treatment plan was developed for irradiation of an intracranial target in a head 

phantom. The treatment plan used intensity modulated delivery techniques to deliver the desired 

dose distribution.  The phantom and the treatment planning process are detailed here. 

2.1.1 Anthropomorphic Head Phantom 

To acquire the most useful data, the phantom required specific characteristics.  The 

phantom needed to be anthropomorphic with realistic internal structure to mimic the complex 

anatomy of the human head.  The ability to accurately position and reposition the phantom on the 

treatment couch was essential. The capability to measure dose in the three orthogonal anatomical 

planes (transaxial, sagittal and coronal), if not in 3D, was necessary.   

The CIRS® (Computerized Imaging Reference Systems; Norfolk, VA) Model 605 

radiosurgery head phantom (Figure 2.1) provided the appropriate features for this work.  This 
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anthropomorphic head phantom allows for 3D dose verification in a large cranial volume.  It is 

fabricated from tissue-equivalent materials that mimic brain, bone, spinal cord, vertebral disks, 

and soft tissue.  The linear attenuation coefficients of the tissues are reportedly within 1% of 

actual x-ray attenuation coefficients from 50 keV to 25 MeV (CIRS, 2010). A soft-tissue 

equivalent plastic cube fits inside a cavity in the brain. This segmented block holds pieces of 

film; by inserting the block in different orientations within the cavity, the plane of the film could 

be oriented in the transverse, sagittal and coronal planes. 

 
Figure 2.1: (Left) CIRS Model 605 Radiosurgery head phantom.  (Right) 6.35x6.35x6.35 

cm3 plastic block to hold up to 2 pieces of x-ray film; Figure 2.13 illustrates the 
placement of the film within the block. 

2.1.2 Phantom CT Scans 

CT imaging data of the phantom was required for treatment planning. The CT images of 

the head phantom were acquired using a GE Lightspeed CT Scanner (General Electric 

Healthcare, Waukesha, WI).  Phantom setup for CT followed the procedure established by Vinci 

et al. and used by Batte et al. (Batte, 2010; Vinci et al., 2008).  Prior to imaging, an S-frame 

system (Med-Tec, Orange City, IA) with a Model-F head rest was fastened onto the CT couch.  

The phantom was positioned on the head rest with the transaxial film plane parallel to the CT 
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imaging plane; achieving proper alignment required scanning the phantom multiple times and 

adjusting the phantom position until the transaxial film plane was contained within a single CT 

slice.   Position adjustment was facilitated by wedging two Styrofoam boards between the couch 

and superior edge of the S-frame to tilt the phantom, as well as by shifting the S-frame on the CT 

couch.  Once the phantom was properly aligned, it was immobilized with a thermoplastic mask.  

Spherical radiopaque markers were then placed on the anterior and lateral surfaces of the 

thermoplastic mask at the three laser crosshairs.  The superior edge of the S-frame was marked 

on the Styrofoam boards to facilitate reproducible positioning on the treatment couch (Batte, 

2010).  The bottom portion of the S-frame was weighted with three slabs of plastic water (5 cm 

thickness each) to ensure that it did not shift during scanning.  The resulting setup is seen in 

Figure 2.2. 

 
Figure 2.2:  Head-phantom setup on the CT couch.  In order to get the axial film plane 

parallel to the CT imaging plane, the head-phantom needed to be tilted upwards 
using the Styrofoam boards.  Radiopaque BB’s were placed at the laser crosshairs 
so setup could be mimicked on the treatment couch. 
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The treatment planning CT was acquired using the established clinical protocol for 

stereotactic radiosurgery (Table 2.1) at Mary Bird Perkins Cancer Center (MBPCC).  However, 

for this study, the field of view was changed from 30 cm to 36 cm to fully encompass the head 

phantom and the large headrest.  The treatment planning CT was acquired with the film plane in 

the transaxial anatomic plane. 

Table 2.1:  CT scanning parameters for the SRS clinical protocol at MBPCC. 
Parameter Value 

Slice thickness 1.25 mm 
Matrix size 512 x 512 
mA 380 
Field of view (FOV) 30 cm 
kVp 140 

 

2.1.3 Treatment Plan Design 

The treatment planning CT was transferred to the Pinnacle3 Treatment Planning System 

(Philips Healthcare, Andover, MA).  A PTV was drawn to represent a centrally located cranial 

lesion. An approximate 2 cm diameter x 2 cm long cylindrical PTV was contoured and centered 

within the film block, with the long axis in the superior-inferior direction.  Additional regions of 

interest were contoured to represent normal anatomy; the chosen regions were recommended for 

this plan by a MBPCC dosimetrist. The dose constraints for regions pictured in Figure 2.3 are 

summarized in Table 2.2. The “Normal tissue” structure was specified as dose-limiting structures 

in the plan to prevent overexposure of adjacent healthy tissue. 

Prior to planning the treatment, the isocenter of the phantom CT was determined by 

demarcating the intersection point on the CT slice where the spherical radiopaque markers 

(defined by the CT lasers) were visible.  The treatment isocenter was established in the treatment 

plan at the center of the cylindrical PTV.  A seven-field IMRT plan was constructed with beams 

approximately equally spaced (every 51°) and focused on the treatment isocenter (Figure 2.4).  
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To minimize irradiating critical structures and creating hot and cold spots, the beams were set up 

with equal angular spacing around the phantom, starting with a true anterior beam (0°, 51°, 102°, 

154°, 205°, 257°, 308°).   

Table 2.2:  Dose Constraints for treatment planning structures identified on the CT images. 
Structure Color (in Figure 2.3) Dose Constraints  

(cGy) 
Weight  

(%) 
Objective 

Value 
PTV Red Dmax = 6038 

Dmin = 5992 
DVHmax = 6000  

(to 50% Volume) 
DVHmin = 6000  

(to 100% Volume) 

60 
15 
50 
75 

0.0000 
0.0002 
0.0015 
0.0000 

Spinal cord Yellow Dmax = 450 5 0.0000 
Eyes Light Blue (right) and  

Pink (left) 
Dmax = 450 1 0.0000 

Lenses Dark Blue (right) and  
Purple (left) 

Dmax = 100 1 0.0000 

Optic nerves Green (right) and  
Orange (left) 

Dmax = 500 1 0.0000 

Optic chiasm Green Dmax = 500 1 0.0000 
Brain stem Dark Yellow Dmax = 500 1 0.0000 
Normal tissue -  DVHmax = 3000  

(to 50%Volume) 
25 0.0000 

 

Dose prescription for the PTV was 300 cGy per fraction for 20 fractions.  Dose 

constraints, shown in Table 2.2, were set for the remaining regions of interest to avoid 

overexposing these structures.  This prescription was chosen to represent a typical fraction dose 

for multiple deliveries of the planned treatment. The fraction dose of 300 cGy was chosen to 

result in an optical density near the center of the dose range of Gafchromic EBT2 film (see 

section 2.2).  For each beam arrangement, the field size was set to a 4 x 4 cm2 shape, and the 

multi-leaf collimators (MLC) were set to 0° having the leaves travel along the superior-inferior 

axis.  The MLC positions for each beam were optimized by inverse planning in order to cover 

the whole target with 94% isodose, having put 100% equal to 300 cGy, the prescribed dose at the 
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isocenter.  Inverse planning also allows the optimization algorithm to determine the best method 

of accurately irradiating the PTV to the prescribed dose while minimizing to irradiate the 

surrounding critical structures.  The method of creating the treatment plan deviated from Coscia 

et al. and Vinci et al. who implemented forward planning techniques (Coscia et al., 2009; Vinci, 

2007).  The weighting values and objective values for this treatment plan are shown in Table 2.2.  

The inverse plan was optimized with Direct Machine Parameter Optimization.  The parameters 

used for MLC configuration and positioning are shown in Table 2.3.  Once optimized, the 

treatment plan was reviewed and approved by a MBPCC dosimetrist.  The isodose plots of the 

final treatment plan are shown in Figure 2.5, 2.6, and 2.7.  

Table 2.3:  Optimization parameters implemented for the treatment plan 
Maximum Segment Value for Treatment 35 
Minimum Segment Area 2 cm2 
Minimum Segment MU 2 
Leaf/Field Edge Overlap 2 cm 

 

2.1.4 Planar Dose Export 

The 2D dose planes corresponding to the three film planes in the phantom were exported 

from the treatment plan’s 3D dose matrix using the export feature available in Pinnacle3.  To use 

this feature, one first selected the desired anatomic plane.  Next, the field size and dose grid 

resolution were selected. Because the isocenter of the treatment plan was placed at the center of 

the film cube, a 6x6 cm2 planar export grid was centered over isocenter; the dose grid resolution 

was 0.1 mm, slightly less than the 0.178 mm scanning resolution of the Vidar film scanner 

resolution (see section 2.4).  Three planar dose files were exported from the treatment plan – one 

in each of the transaxial, coronal, and sagittal planes. 
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Figure 2.3:  (Top) Transaxial (Left), sagittal (Middle), and coronal (Right) planes showing 

the regions of interest for treatment planning.  (Bottom) DRR of the head phantom 
from a left-anterior oblique perspective showing all regions of interest. The 
structures and corresponding colors are identified in Table 2.2. 
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Figure 2.4:  Transaxial view of the 7-beam isocentric treatment plan for the cylindrical 

PTV. The PTV appears as a red circle in this image plane. 

 
Figure 2.5:  Isodose plot of the treatment plan in the axial orientation.  The PTV is 

highlighted in red. 
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Figure 2.6:  Isodose plot of the treatment plan in the coronal orientation.  The PTV is 

highlighted in red. 

 
Figure 2.7:  Isodose plot of the treatment plan in the sagittal orientation.  The PTV is 

highlighted in red. 
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2.2 Film Dosimetry 

To assess positional accuracy, a dosimeter capable of measuring 2D planar dose 

distributions inside of the phantom was needed.  Film was selected for this project because it 

acquires a planar dose distribution from which one-dimensional dose profiles can be extracted.  

The small fields and steep dose gradients used to treat brain lesions required a dosimeter with 

high spatial resolution, which could also be achieved with film.  Radiochromic film was selected 

over radiographic film because its relative insensitivity to room lights simplified the cutting of 

film pieces and assembling the film block inside the anthropomorphic head phantom.  The 

suitability of radiochromic film has been reported previously for measurements in cone beam 

CT-based stereotactic radiosurgery (Jin et al., 2009). 

ISP Gafchromic EBT2 film (International Specialty Products, Wayne, NJ) was used for 

this study because its extended dose range (1 cGy – 1000 cGy) matches well to realistic 

treatment dose fractions for conventional radiotherapy procedures (200 – 300 cGy).  Gafchromic 

EBT2 film is near tissue equivalent and provides at least 100 µm spatial resolution. As noted, its 

insensitivity to indoor light expedites phantom preparation.  Finally, Gafchromic EBT2  film is 

self-developing, avoiding the need for wet chemical processing (ISP, 2009b). 

The film layer of EBT2 Gafchromic film consists of a polyester overlaminate, an adhesive 

layer, the topcoat, the active layer, and a polyester substrate (Figure 2.8).  The film is 

asymmetrical in its cross section; it is 80 µm from one surface and 175 µm from the other.  

Because the center of the active layer is not in the center of the film (±50 µm), film orientation 

during exposure and readout can affect results.  The manufacturer marks EBT2 film with a slit to 

provide orientation. Holding a film in landscape orientation with the slit at the right side of the 

top edge of the film indicates that the side facing the user is the side with the 50 µm polyester 

laminate (Figure 2.9). 



 

    24 
 

 
Figure 2.8:  Illustration of the asymmetrical layering of Gafchromic EBT2 film (ISP, 

2009b). 

 

 
Figure 2.9:  (Left) Gafchromic EBT2 film shown in the landscape orientation.  (Right) 

Enlarged view of upper right corner (red box) showing the slit which distinguishes 
which side of the film to use. 

2.2.1 Film Preparation 

Accurate film dosimetry can be problematic due to variation in film response between 

different batches of film, time between exposure and processing, and processing conditions (Pai 

et al., 2007; Niroomand-Rad et al., 1998).  For this work, all films came from the same batch; 



 

    25 
 

calibration and test film measurements were made for each measurement session and all films 

were read out at the same time. 

The response of Gafchromic EBT2 film in scanning is dependent on whether the film is 

scanned in portrait or landscape orientation (ISP, 2009a). The variations in response are from 

anisotropic light scattering.  The active component in Gafchromic EBT2 film is in the form of 

needle-like particles approximately 1-2 μm in diameter and 15 – 25 μm in length (ISP, 2009b). 

The particles tend to align with the long axes parallel to the coating direction, thus scattering 

light differently in the two orthogonal directions (ISP, 2009b). Therefore, film orientation must 

be maintained throughout the readout process.  

To prepare the film for use in the phantom, a single sheet of 8” x 10” Gafchromic EBT2 

film was cut into 3 strips (≈ 6.3 cm x 25.4 cm) using a paper cutter (Figure 2.10).  Each strip was 

then cut into smaller pieces (≈ 6.3 cm x 6.3 cm) using the paper cutter. Each film piece was 

marked in the upper right hand corner to maintain the same orientation for all films during 

exposure and scanning.  The accuracy of cutting the film only required that its edge did not 

protrude from the film block and that four holes at the fiducial rod locations described below 

could be drilled.  

Once the film pieces were cut, each piece was prepared for use in the CIRS® 

radiosurgery head phantom using a custom aluminum film cutting template developed by Vinci 

et al. (Vinci et al., 2008) and also used by Batte et al. (Batte, 2010) (Figure 2.11).  Each film was 

individually loaded into the template and compressed and secured using two screws.  Holes were 

drilled in the film using a drill and the template’s machined holes as a guide.  The holes in the 

film corresponded to the placement of the four fiducial rods that bolt together the pieces of the 
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phantom’s film block.  All film squares were placed in the cutting template in the same 

orientation for consistency. 

 
Figure 2.10:  Photo of the film cutter used to make 6.3 x 6.3 cm2 film pieces.  The top right 

corner was marked to maintain consistent film orientation. 

 
Figure 2.11:  Holes were punched in the film so it could be placed in the film block. (Left) 

Film was placed in the film template, top removed.  (Center) Once the top was 
attached, a drill was used to make four holes in the film. (Right) Resulting film, 
ready to be placed in the film block. 
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2.2.2 Film Calibration 

Film calibration followed the guidelines from the TG-55 protocol on radiochromic film, 

as well as the Gafchromic EBT2 Technical Brief (ISP, 2009a; Niroomand-Rad et al., 1998).  

Various monitor unit (MU) values of radiation from a 6 MV photon beam with a 10 cm x 10 cm 

field size were delivered individually to twelve un-irradiated film squares using the Elekta 

Infinity.  Each film square was placed in plastic water (Computerized Imaging Reference 

Systems, Inc., Norfolk, VA) at 100 cm source-to-axis distance (SAD) at a depth of 10 cm with 5 

cm backscatter.  Each film square was prescribed a percentage of the maximum dose of the 

treatment plan (10%, 20%, 30%… 110%, 120%); a thirteenth film square provided an 

unirradiated background dose point. 

The absolute dose output (in cGy/MU) was determined with a Model TN30006 PTW 

Farmer Chamber (Freiburg, Germany) using the MBPCC protocol for monthly beam output 

checks.  Output was measured for the 6 MV photon beam with a 10 cm x 10 cm field size at 100 

cm SAD using the Elekta Infinity.  The chamber was placed at a 10 cm depth in plastic water 

with 5 cm backscatter.  The chamber received 100 MU of radiation, and the reading was 

recorded from the Keithley M614 electrometer (Keithley Instruments, Inc.; Cleveland, OH; 

Serial #: 350953).  The measurement was repeated three times to determine an average reading.  

Using the TG-51 formalism to determine the photon dose, the daily output (cGy/MU) for 6MV 

photons was recorded (Almond et al., 1999). Absolute dose output was measured at the same 

time as film calibration. 

Each calibration film was scanned with a Vidar DosimetryPRO Advantage(RED) 16-bit 

film digitizer (Herndon, VA) and RIT113 (Radiological Imaging Technology Inc., Colorado 

Springs, CO) film dosimetry software (v5.2).  The calibration films were scanned with the same 

geometry as the films used to measure delivered dose (see section 2.4).  A region of interest 
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(ROI) was designated at the center of each film, including the un-irradiated background film. 

From the ROI of each film square, the scanner signal value was acquired.  The scanner signal 

value was converted to optical density values (OD) using the formula: 

   (1) 

where I is the scanner signal value for a specific film, and I0 is the background scanner signal 

value. 

A third order polynomial was fit to the OD data, generating a film calibration curve.  The 

calibration curve was used to convert scanner signal values to dose on the films used to measure 

delivered dose.  A new set of irradiated calibration films and calibration curve were created for 

each day’s measurements. Scanned films were saved as a RIT image file (file extension *.rv4).  

A typical calibration curve is plotted in Figure 2.12. 

2.3 Phantom Irradiation 

2.3.1 Initial Phantom Setup 

Prior to each film irradiation, a piece of unexposed Gafchromic EBT2 film was placed 

inside the film block.  The film was placed with its orientation mark to the right of the 

orientation arrow on the outside of the film block (Figure 2.13).  The film block was then 

inserted into the phantom head cap.  Figure 2.14 illustrates the three possible orientations of the 

film block, and thus the film itself, relative to the phantom anatomy for each of the measurement 

planes. 

Once the film block was inserted in the head phantom, the phantom was reassembled and 

taped along its seam to ensure the pieces did not separate.  The phantom was set up on the Elekta 

treatment couch using the same positioning and immobilization system used for CT scanning.  

The phantom was positioned such that the radiopaque markers on the lateral and anterior aspects 
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Figure 2.12:  (Top) Plot of acquired scanner values with respect to dose for each calibration 

film.  (Bottom) Plot of the calibration curve used on films that measured delivered 
dose.  The calibration plot used 13 separate pieces of Gafchromic film. 

of the immobilization mask coincided with the in-room setup lasers.  For typical patient setup for 

intracranial treatments, the patient is placed on the S-frame, which is attached to the couch via an 
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Exact Bar (Medical Intelligence, Schwabmünchen, Germany).  To mimic CT setup of the head 

phantom, the S-frame was tilted upwards with Styrofoam boards, negating the ability to use the 

Exact Bar.  In lieu of the Exact Bar, the bottom portion of the S-frame was weighted with three 

slabs of plastic water (5 cm thickness each) to ensure that it did not shift during scanning or 

treatment. 

 
Figure 2.13:  Film inserted into the film block.  The arrow on the outside of the block 

indicates the film block orientation.  The black mark on the top right of the film 
indicates the film orientation; the mark was always placed to the right of the 
orientation arrow.  Each film was marked with a code in the bottom left corner to 
record its irradiation conditions. 

Once the phantom was positioned on the treatment couch, an initial kVCBCT scan was 

acquired.  The kVCBCT was automatically registered, using the soft tissue (gray scale) 

technique available in the Elekta linac control software.  This initial kVCBCT checked for any 

rotational shift of the head phantom; because the Elekta couch cannot correct for rotational 

misalignments, any rotational errors were manually corrected.  This kVCBCT also verified the 
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alignment of the phantom to the machine isocenter, which was then taken as the nominal 

(unshifted) position of the phantom.  Once the phantom was set up to the machine isocenter, 

rulers were taped onto the couch in the 3 anatomic directions to mark the couch positions 

separately from the Elekta Infinity’s digital position readout (Figure 2.15). 

 
Figure 2.14:  The three film cube orientations relative to the phantom anatomy. Shown are 

the orientations for the transaxial (Left), coronal (Middle), and sagittal (Right) 
anatomic planes. 

 
Figure 2.15:  Photo of the head phantom in place for irradiation on the Elekta Infinity.  

Three rulers (green arrows) were used along with the room alignment lasers to set 
the intentional misalignments of the phantom. 
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2.3.2 Sample Space 

To determine the ability of IGRT to identify and correct for misalignments, a series of 

intentional offsets were applied to the position of the phantom on the treatment couch ± 5 mm in 

the lateral, longitudinal, and vertical directions by manually moving the couch.  Shifts were 

measured with the lasers and rulers, independent from the digital position readout on the Elekta 

gantry controls.  

Delivered doses were measured in each of the three anatomic planes for nine 

measurement points: the nominal position with no offset and eight offset points that formed the 

vertices of a cube about the nominal position, illustrated in Figure 2.16.  Table 2.4 lists the 

displacements of each point from the nominal position illustrated in Figure 2.16. 

Table 2.4:  Sample Space Points (distance from nominal position in mm). 

Point 
Lateral 

(Right - Left) 
Longitudinal 

(Inferior - Superior) 
Vertical 

(Anterior - Posterior) 

0 0 0 0 

1 5 5 -5 

2 5 -5 5 

3 5 -5 -5 

4 5 5 5 

5 -5 5 5 

6 -5 -5 -5 

7 -5 -5 5 

8 -5 5 -5 
 

2.3.3 Phantom Dose Delivery 

Prior to film irradiation, an image guidance procedure that mimicked that in the clinic 

was used to identify misalignment and determine the necessary correction shift. Both kVCBCT 

and MV planar imaging were evaluated for each session as separate modalities. 
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Figure 2.16:  Spatial relationship of the intentional misalignments defined by translations 

in the lateral (right-left), longitudinal (inferior-superior), and vertical (anterior-
posterior) directions (from Vinci, 2004).  Offset coordinates are listed in Table 2.4.  

2.3.3.1 kVCBCT Verification 

Once the appropriate phantom position offset was applied, a kVCBCT was acquired with 

the “S20 Head and Neck” protocol.  This protocol acquires a cone-beam with a small FOV with 

a 1.03 mm pixel resolution, kV tube potential of 100 kV, and current of 10 mA.  Mimicking real 

patient setup, the kVCBCT was registered to the planning CT using automatic gray-value 

registration.  The resulting translations required to shift the phantom to the correct location were 

determined from the registration of the two data sets.  The registration was visually evaluated 

using a dual-color dual-image system (Figure 2.17) where the purple image represented the 

initial CT and the green image represented the kVCBCT.  Almost every automatic gray-value 

registration produced a quality match between the kVCBCT and the CT; it was very rare that an 

additional slight manual correction was required.     
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Figure 2.17:  Screen capture of the registration tool in the Elekta Infinity software. The 

translations required to correct for misalignment were obtained by moving the 
planning CT (purple) to overlap the kVCBCT data (green). 

These suggested translation values were noted and applied; the Elekta Infinity software 

automatically translated the couch by the specified amounts.  Subsequently, the treatment plan 

was delivered to the phantom.  After treatment the film was removed, stored in a light-proof 

container (recommended to protect from fluorescent light), and allowed to self-develop for 24 

hours.  This procedure was repeated with the film block in each of the three orientations for each 

of the nine sample space points.   
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2.3.3.2 MV Planar Imaging Verification 

To correct for misalignment of the head phantom using MV port films, two DRRs were 

generated from the planning CT by Pinnacle3.  The DRRs for the Anterior and Right-Lateral 

projections were used for comparison to the MV port films acquired by the MV EID of the 

Elekta Infinity. 

With the phantom in position on the treatment couch, an open-air graticule was attached 

to the linac head.  The graticule projected 1 cm demarcations, measured at isocenter, in the 

horizontal and vertical image directions onto the resulting MV images.  Next, an Anterior view 

and a Right-Lateral view were acquired with the 6 MV beam using an open 20x20 cm2 field size 

and 5 monitor unit prescription.  A MBPCC radiation oncologist viewed the setup images with 

the 1 cm marks, compared them to the DRRs for each orientation, and determined the values for 

proper alignment.  The Anterior view provided corrections for Inferior-Superior and Left-Right 

misalignments (Figure 2.18) while the Right-Lateral view provided the correction for Anterior-

Posterior misalignment (Figure 2.19), as well as an additional measurement of Inferior-Superior 

misalignment.  The oncologist determined the correct realignment shifts for all MV images that 

were analyzed.  Shifts using MV planar imaging can only be implemented by entering the 

treatment room and using the couch digital readout to manually move the treatment couch into 

its proper position. 

2.4 Data Analysis 

2.4.1 Film Digitization 

A template developed by Vinci et al. (2008) was used to hold the film pieces for scanning 

(Figure 2.20).  The template consisted of a 14” x 17” blank piece of developed unexposed Kodak 

(Rochester, NY) EDR2 film in which the film pieces could be inserted.  The films were digitized  



 

    36 
 

 
Figure 2.18:  (Left) Screen capture of the Anterior DRR acquired from the Pinnacle3 

treatment plan; the tick marks on the horizontal and vertical axes represent 1 cm 
intervals in the plane of isocenter. (Right) Screen capture of the corresponding MV 
port film.  The white dots denote 1 cm intervals in the plane of isocenter. 

 
Figure 2.19:  (Left) Screen capture of the Right-Lateral DRR acquired from the Pinnacle3 

treatment plan; the tick marks on the horizontal and vertical axes represent 1 cm 
intervals in the plane of isocenter. (Right) Screen capture of the corresponding MV 
port film.  The white dots denote 1 cm intervals in the plane of isocenter. 

with a resolution of 0.178 mm using a Vidar DosimetryPRO Advantage(RED) 16-bit film 

scanner (Herndon, VA), which utilizes a red-spectrum light.  The intensity of the light 

transmitted through the film was measured as a 16-bit A/D value from a linear array of CCD 
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detector elements.  All films were scanned against the left edge of the film scanner due to non-

uniformities in scanner response across the scanning bed (Batte, 2010; Vinci, 2007). 

Once the film was scanned, RIT113 (Radiological Imaging Technology Inc., Colorado 

Springs, CO) film dosimetry software (v5.2) was used for all data analysis.  Each film piece was 

scanned with a region of interest (ROI) that enclosed the entire film square.  The scanned image 

of each film was saved as a unique file with an embedded calibration file. 

 
Figure 2.20:  Photo of the Vidar DosimetryPRO Advantage(RED) film digitizer and the 

scanning template used to hold the film squares. Three film pieces (yellow squares) 
are in place on the template. 
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2.4.2 Registration of Film and Planar Doses 

To register the measured dose distributions with the Pinnacle3 calculated planar dose 

distributions, a registration template was created in RIT with the coordinates for the fiducial 

rods.  The center of each fiducial rod was identified in the planning CT for the slice that 

contained the film plane. Using the measurement tools in Pinnacle3 and the planning CT with the 

film plane in the axial direction, the cursor was manually placed over the center of each rod to 

determine the coordinates of the centers of the four fiducial rods with respect to the treatment 

isocenter (Figure 2.21).  It was assumed that because isocenter was set to the center of the film 

cube, the same coordinates applied to the coronal and sagittal orientations.  This varied from 

Vinci et al. who acquired CT scans in the three orientations of the film block.  The template 

recorded the coordinates of the fiducial rods in terms of isocenter.   

Once the registration template was applied to the exported planar dose data, a region 

surrounding a hole (corresponding to a fiducial rod) on each digitized film image was selected 

(Figure 2.22).  In a magnified view, the cursor was manually positioned at the center of the hole 

and this coordinate was recorded. After repeating for the remaining three holes, the film image 

was registered to the planar dose grid using RIT’s point-based rigid body registration tool. 

2.4.3 Analysis Metrics 

Film cross-profiles along the three orthogonal major axes (vertical axis and two 

horizontal axes) through the treatment isocenter were used to compare the planned and delivered 

dose distributions.  For each 1-D film profile, five sample lines were acquired - one that went 

through the treatment isocenter along with four sample lines that traveled adjacent to the 

isocenter.  From these five profile lines, the average pixel value was determined for each spatial 

coordinate, and the third order calibration curve was applied to convert the pixel values into 
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dose.  The delivered dose profiles were then normalized to 300 cGy along the central centimeter 

of measurements.  For all cases, absolute dose was analyzed.  The analysis metrics evaluate both 

the position and shape of the measured distribution compared to the calculated distribution 

(Batte, 2010; Vinci, 2007).     

 
Figure 2.21:  Enlarged transaxial view of the planning CT in the film plane.  Measurement 

tools in Pinnacle3 were used to determine the coordinates of the centers of the 
fiducial rods (white circles) with respect to isocenter (the center of the red PTV). 
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Figure 2.22:  Screenshot of the RIT software displaying a scanned film (Right) and the 

corresponding Pinnacle calculated planar dose distribution (Left).  The yellow box 
highlighted enlarged views of a hole that was used to determine the center of the 
hole. 

The positional alignment error (Δc) was defined as the displacement between the 

midpoints of the calculated and measured profiles at the 70% dose level: 

Δc = ½ (X70%,Film + + X70%,Film -) – ½ (X70%,TPS + + X70%,TPS -) (2) 

where X70% refers to the position of the 70% dose point. Subscripts (+) and (-) refer to the slopes 

of the profile, respectively while moving across the profile from negative to positive.  Because 

the 100% dose refers to an absolute dose of 300 cGy, the 70% dose corresponds to an absolute 

dose of 210 cGy.  The 70% dose level was selected because it is close to the location of the 

steepest dose gradient. The Δc metric is a measure of the alignment error in a particular 
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measurement.  Positive values of Δc indicated that the measured profile was shifted to the left, 

posterior, or inferior direction of the measured profile from the treatment plan.  Negative values 

of Δc indicated that the measured profile was shifted to the right, anterior, or superior direction 

of the measured profile from the treatment plan. The standard deviation of Δc is a measure of the 

reproducibility of alignment to the planning CT using kVCBCT image guidance (Batte, 2010). 

Shifts in the 80% dose points (Δ80) represented the asymmetric deviations in the 80% 

isodose lines within the profiles.  The 80% dose point shifts were defined as: 

Δ80Anterior = 80%TPS, A – 80%Film, A  (3) 

Δ80Posterior = 80%Film, P – 80%TPS, P  (4) 

Δ80Right = 80%TPS, R – 80%Film, R  (5) 

Δ80Left = 80%Film, L – 80%TPS, L  (6) 

Δ80Superior = 80%TPS, S – 80%Film, S  (7) 

Δ80Inferior = 80%Film, I – 80%TPS, I  (8) 

The subscripts A, P, S, I, L, and R denote the anterior, posterior, superior, inferior, left, 

and right sides of the profile, respectively.  Because the 100% dose refers to an absolute dose of 

300 cGy, the 80% dose corresponds to an absolute dose of 240 cGy.  The subscripts Film and 

TPS denote whether the reported 80% value was obtained from the film profile or planning 

system profile, respectively.  Positive values of Δ80 indicated that the position of the measured 

80% isodose point fell outside the calculated (planned) 80% isodose line.  Conversely, negative 

values of Δ80 indicated that the measured 80% isodose point was inside the calculated (planned) 

80% isodose line.  Figure 2.23 illustrates the measurement directions that were obtained from 

each film orientation. Figure 2.24 shows the various film metrics that can be analyzed from each 

film. 
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Figure 2.23:  This graph shows the overlay of two profiles to illustrate the definitions of 

positional alignment error (Δc) and 80% dose shifts (Δ80). 

2.4.4 Uncertainty in Analysis Metrics 

The procedure to calculate uncertainty in the analysis metrics was derived from Vinci et 

al. (2008) and Batte (2010).  To determine the uncertainty in the manual IGRT realignment 

process, the head phantom was first aligned to its isocenter.  Next, the kVCBCT image guidance 

procedure was applied.  The required shifts to re-align the phantom in each principle direction 

were determined.  The process was repeated ten times without moving the phantom.  Because 

identical distributions were being registered, all of the metrics should ideally have means and 

standard deviations of zero.  Deviations from zero indicated the inherent error in the manual 

registration of the phantom with the planning CT data. 

To determine the uncertainty introduced by the use of the RIT film analysis software, the 

same film was registered ten times to its corresponding calculated planar dose distribution.  From 

this repeated registration, the analysis metrics were determined.  This procedure was completed  
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Figure 2.24:  Illustration of the film metrics that can be analyzed from films acquired in the 

axial (Top), coronal (Middle), and sagittal (Bottom) planes. 
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for a film in each of the three principal planes.  The standard deviations and standard errors of 

the metrics were calculated, representing the minimum uncertainty achievable in the analysis 

process. 

2.4.5 Assessing Statistical Quality of Analysis Metrics 

Ideally, each analyzed metric should have a mean value of zero.  Student’s T-Test was 

used to determine how well the measured values agreed with the expected value: 

 
| |

 (8) 

where t is the number of standard deviations by which the measured value differs from the 

expected value, xmeasured is the mean of the several measurements used to determine a metric, 

xexpected is the expected value (0), and SE is the standard error of xmeasured. If the t-value for a 

specific measurement is less than 1.96 SE (95% confidence), then the measurement should 

usually be judged as within agreement with the expected value.  If the discrepancy is greater than 

2.5 SE, then the measurements are usually judged as not in agreement with the expected value.  

For this work, t-values less than 1.9 SE were interpreted as insignificantly different than the 

expected value, t-values greater than 2.6 SE were considered significantly different than the 

expected value, and measurements with t-values in the range of 1.9 – 2.6 SE were inconclusive. 
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CHAPTER 3.   RESULTS AND DISCUSSION 

3.1 Uncertainty in Analysis Metrics 

Table 3.1 shows the results of implementing kVCBCT and repeatedly registering the 

phantom to its planning CT ten consecutive times.  Ideally, all of the translation values for 

realignment would be 0.00 mm, since the isocenter of the linac, as determined by use of the room 

lasers, was set to match that of the phantom. The mean values did not match the expected mean 

of 0.00 mm.  This error likely was due to a mismatch between the linac isocenter and the 

isocenter as marked by the room lasers.  Perfect coincidence would place the patient isocenter 

(based on alignment with the room lasers) at the linac isocenter.  According to standard protocol 

set from the Task Group #142 report on quality assurance of medical accelerators, during linac 

maintenance, the laser isocenter is set as the best estimate of the center point of a virtual sphere 

created by the central ray of the radiation beam delivered under varying table and gantry angles 

(Klein et al., 2009).  The finite size of this sphere results from mechanical variability of the linac, 

due to gantry sag, gantry wobble, and table or collimator rotational wobble (sometimes referred 

to as “walkout”).  Over time, lasers that are mounted on the walls of a vault may drift out of 

alignment.  The combination of drift and mechanical inaccuracies means the lasers may not 

intersect at the true center of the sphere.  Consequently, patient setup may exhibit a small amount 

of positional error with respect to the delivered radiation, even when the patient is carefully 

aligned to the room lasers. 

Table 3.1:  Mean, Standard Deviation, and Standard Error derived from repeating 
kVCBCT registration on phantom and initial CT 

 Mean and Standard Error (mm) [N=10] Standard Deviation (mm) 
x-Lateral 0.20  ± 0.27 0.85 
y-Longitudinal 0.34 ± 0.13 0.42 
z-Vertical -0.26 ± 0.02 0.07 
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Table 3.2 shows the results of registering a single film ten times to its corresponding 

calculated planar dose distribution and evaluating the analysis metrics as previously described.  

Ideally, the standard deviations (σ) of the repeated film-planar dose registrations should equal 

0.00 mm.  Each value in Table 3.2 had a standard deviation that is less than the film scanning 

resolution of 0.178 mm. These indicate that the manual registration technique and extraction of 

the analysis metrics was limited by the pixel resolution of the film. 

Table 3.2:  Results from registering the same film ten times with its corresponding 
calculated planar dose.  Standard Errors (N=10) are in parentheses. All 
measurements are in mm. 

Axial Film:  0A1 Coronal Film:  1C2 Sagittal Film:  7S1 
σΔc L-R  = 0.04     (0.01) σΔc L-R  = 0.05    (0.02) σΔc A-P  = 0.07     (0.02) 
σΔ80 R   = 0.02     (0.01) σΔ80 L    = 0.07    (0.02) σΔ80 P   = 0.08     (0.03) 
σΔ80 L   = 0.06     (0.02) σΔ80 R   = 0.05    (0.02) σΔ80 A   = 0.09     (0.03) 
σΔc A-P  = 0.04     (0.01) σΔc I-S   = 0.04    (0.01) σΔc I-S   = 0.06     (0.02) 
σΔ80 A   = 0.05     (0.02) σΔ80 I    = 0.05    (0.01) σΔ80 I    = 0.07     (0.02) 
σΔ80 P   = 0.04     (0.01) σΔ80 S   = 0.06    (0.02) σΔ80 S   = 0.07     (0.02) 

 

3.2 Results of Phantom Irradiations 

The phantom irradiation occurred over six sessions.  The first three sessions irradiated the 

film with the aid of kVCBCT image guidance, and the last three sessions used MV planar image 

guidance prior to irradiation.  Each session irradiated multiple orientation-specific films at the 

nine locations described in Table 2.4 in Section 2.3.2.  For three orientations, this resulted in 

acquiring 27 films during each session and a total of 81 films for each image guidance modality.  

Figures 3.1, 3.2, and 3.3 show the images of the exposed films overlaid with their respective 

planar dose profile, along with their overlaid isodose plots.  The figures collected in Appendix A 

provide one-dimensional profiles acquired for each film orientation, each of the nine sample 

space points, and for both image guidance modalities. 
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Figure 3.1:  (Left) Overlay of an exposed film in the axial orientation with its 

corresponding planar dose profile.  (Right) 1-D horizontal and vertical axial 
profiles. 

 
Figure 3.2:  (Left) Overlay of an exposed film in the coronal orientation with its 

corresponding planar dose profile.  (Right) 1-D horizontal and vertical coronal 
profiles. 
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Figure 3.3:  (Left) Overlay of an exposed film in the sagittal orientation with its 

corresponding planar dose profile.  (Right) 1-D horizontal and vertical sagittal 
profiles. 

3.2.1 kVCBCT Results 

Table 3.3 summarizes the kVCBCT results for the c and 80 analysis metrics; the 

means, standard deviations (σ), ranges, and standard errors (SE) are all in millimeters. (Tables 

A.1, A.2, and A.3 provide all of the measurement results.)  The meanings of positive and 

negative values of Δc and Δ80 were described in Section 2.4.3. 

Table 3.3:  Summary of c and 80 analysis metrics for kVCBCT image guidance. 
Direction Mean ± SE [N=54] (mm) Range (mm) σ (mm) t-value 

c 
Right-Left -0.17 ± 0.09 -1.90 to 1.42 0.67 1.9 

Anterior-Posterior 0.05 ± 0.13 -1.63 to 1.63 0.96 0.4 
Superior-Inferior 1.27 ± 0.16 -1.80 to 4.05 1.21 7.7 

80 
Right 0.13 ± 0.08 -1.04 to 2.23 0.61 1.6 
Left 0.43 ± 0.12 -1.98 to 2.37 0.91 3.4 

Anterior 1.20 ± 0.08 0.08 to 2.31 0.56 15.6 
Posterior -0.69 ± 0.10 -2.37 to 1.01 0.74 6.9 
Inferior -1.02 ± 0.17 -3.63 to 2.08 1.25 6.0 
Superior 2.13 ± 0.16 -0.88 to 5.06 1.19 13.2 
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Figure 3.4 plots the mean positional alignment errors Δc, with error bars representing ± 

one standard deviation. The results of Student’s t-test showed that the Δc metrics consistently 

agreed with the planned dose distribution in the Right – Left and the Anterior – Posterior 

directions (t = 1.9 and 0.4 respectively); the mean Δc values were also close to zero for these 

directions.   

The Inferior-Superior direction exhibited significantly less agreement between the 

measured and planned dose distributions (mean = 1.27 mm, t = 7.7).  Subsequently, it was 

observed that the couch did not rigidly lock in its set position during intentional misalignment – 

the couch had a slight give to it in the longitudinal direction.  When the couch was manually set 

to its misalignment position, the couch would slightly shake along its longitudinal axis.  An 

attempt was made to quantitatively assess the table motion (See Section 3.3) 

 
Figure 3.4:  Plot of positional alignment errors when using kVCBCT image guidance.  The 

data points are the mean values, and the error bars represent ± 1 standard 
deviation. 
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Some of the observed error in any direction can be attributed to the phantom not being 

able to be perfectly aligned for every setup.  The radiopaque BB’s on the aquaplast mask provide 

a close approximation to where the head phantom should be positioned, but they cannot provide 

sub-millimeter accuracy.  The head phantom is also capable of making small rotational shifts 

inside the aquaplast mask every time it is placed back on the treatment couch.  Reasonable effort 

was made to reduce the magnitude of the angular displacements to within ±1°.  The current 

treatment couch is not capable of correcting for angular misalignments.   

Figure 3.5 displays the mean and standard deviation for the displacement of the measured 

80% dose point and the calculated 80% dose point for each direction.  Similar to the positional 

alignment error data, the Δ80 values in the Right direction produced statistically acceptable 

agreement (t = 1.6).   

 
Figure 3.5:  Plot of the 80 results using kVCBCT image guidance.  The data points are the 

mean values, and the error bars represent ± 1 standard deviation. 
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As with c, the large magnitudes for 80 occurred along the Inferior and Superior 

directions (t = 6.0 and 13.2 respectively).  Previously stated, this variation may have stemmed 

from two sources.  There could potentially be a rotational offset due to constantly repeating the 

entire process of removing the head phantom from its treatment position in order to replace the 

film.  Another source of uncertainty may be caused by the slack in the couch along the 

longitudinal axis. 

3.2.2 MV Planar Imaging Results 

Table 3.4 summarizes the MV planar results for the c and 80 analysis metrics; the 

means, standard deviations (σ), ranges, and standard errors (SE) are all in millimeters.  The 

meanings of positive and negative values of Δc and Δ80 were described in Section 2.4.3.   

Table 3.4:  Summary of c and 80 analysis metrics for MV planar image guidance. 
Direction Mean ± SE [N=18] (mm) Range (mm)  (mm) t-value 

c 
Right-Left -0.10 ± 0.15 -1.62 to 1.17 0.62 0.7 

Anterior-Posterior 0.03 ± 0.25 -1.46 to 1.62 1.08 0.1 
Superior-Inferior 1.75 ± 0.22 -0.02 to 3.42 0.95 7.8 

80 
Right 0.11 ± 0.16 -1.36 to 0.85 0.67 0.7 
Left 0.69 ± 0.11 -0.35 to 1.68 0.48 6.0 

Anterior 1.47 ± 0.11 0.74 to 2.20 0.46 13.5 
Posterior -0.93 ± 0.10 -1.39 to -0.16 0.41 9.7 
Inferior -1.54 ± 0.22 -3.14 to 0.09 0.93 7.0 
Superior 2.56 ± 0.23 -0.76 to 4.29 0.98 11.1 

 

Figure 3.6 plots the mean positional alignment errors Δc, with error bars representing 

standard deviation. The results of Student’s t-test showed that the Δc metrics consistently agreed 

with the planned dose distribution in the Right – Left and the Anterior – Posterior directions (t = 

0.7 and 0.1 respectively); the mean Δc values were also close to zero for these directions. 



 

    52 
 

 
Figure 3.6:  Mean positional alignment error values using MV planar image guidance.  The 

data points shown are the mean values, and the error bars show a range of ± 1 
standard deviation. 

The Inferior-Superior direction exhibited significantly less agreement between the 

measured and planned dose distributions (mean = 1.75 mm, t = 7.8).  It was observed that the 

couch did not rigidly lock in its set position during intentional misalignment – the couch had a 

slight give to it in the longitudinal direction.  When the couch was manually set to its 

misalignment position, the couch would slightly shake along its longitudinal axis.  An attempt 

was made to quantitatively assess the table motion (See Section 3.3) 

Some of the observed error in any direction can be attributed to the phantom not being 

able to be perfectly aligned for every setup.  The radiopaque BB’s on the aquaplast mask provide 

a close approximation to where the head phantom should be positioned, but they cannot provide 

sub-millimeter accuracy.  The head phantom is also capable of making small rotational shifts 

inside the aquaplast mask every time it is placed back on the treatment couch.  Reasonable effort 



 

    53 
 

was made to reduce the magnitude of the angular displacements to within ±1°.  The current 

treatment couch is not capable of correcting for angular misalignments.   

Image guidance using MV port films required using a graticule which contains 

radiopaque markers that are spaced 1 cm apart at isocenter.  The graticules appeared to be useful 

for correcting centimeter-scale misalignments, but the large radiopaque markers made it difficult 

to make adjustments on the millimeter scale.  MV port films are also limited in their ability to 

identify rotational misalignments. 

Figure 3.7 displays the mean and standard deviation for the displacement of the measured 

80% dose point and the calculated 80% dose point for each direction.  All Δ80 metrics produced 

very large t-values which indicated unacceptable and potentially systematic errors.  Previously 

stated, this variation may have stemmed from two sources.  There could potentially be a 

 
Figure 3.7:  Total 80% Dose Shift values using MV planar image guidance.  The data 

points shown are the mean values, and the error bars show a range of ± 1 standard 
deviation. 
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rotational offset due to constantly repeating the entire process of removing the head phantom 

from its treatment position in order to replace the film.  Another source of uncertainty may be 

caused by the slack in the couch along the longitudinal axis.   

The treatment process of the head phantom was modeled on conventional “real patient” 

setup.  Once the phantom was misaligned using the rulers, the MV port films were analyzed to 

determine the shift corrections.  Once determined, the corrections were manually applied using 

the digital readout on the linac gantry.  The digital couch readouts only offer millimeter-degree 

accuracy, even though the couch is capable of sub-millimeter movements.  Unfortunately, these 

small couch movements are not detected by the digital readout. 

3.3 Error in Couch Motion 

To further investigate the cause of the relatively high positional uncertainties (Δc) in the 

Superior-Inferior direction, the residual motion in the couch and the backlash in the couch were 

both investigated. 

3.3.1 Residual Shift in the kVCBCT 

The residual shift in the couch is defined as the additional translational distance (in each 

of the three anatomic directions) the kVCBCT recommends the couch needs to move in order to 

properly align a patient. To perform this test, the head phantom was aligned on the couch in the 

treatment position.  The radiopaque BB’s and room lasers were used to set up the phantom.  

From the nominal position, a kVCBCT was acquired to determine any necessary shifts.  The 

phantom was aligned using the automated couch adjustments.  From this new position, a second 

cone-beam was run to determine if any residual misalignment was still present.  These secondary 

shifts are the residual shifts.  This process was repeated for the “Point 1” position (5 mm Left, 5 
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mm Out, and 5 mm Up from the nominal position).  The results of this test indicated the 

precision with which the couch can move to correct for misalignments. 

Table 3.5 shows the residual shifts starting from the nominal position (Point 0) and Point 

1 (left, out, up 5 mm).  Previously stated, the kVCBCT registration algorithm is capable of 

identifying sub-millimeter shifts, but the treatment couch is only capable of millimeter 

adjustments.  All of the acquired residual shifts were less than 1 mm.  If the recommended shifts 

rounded up to 0.1 cm, then the couch has the option to move 1 mm in that direction.  However, 1 

mm shifts are judged as acceptable and are not required to be executed.  This data shows that 

there are no significant residual shifts that the treatment couch needs to correct for. 

Table 3.5:  Data acquired from the residual shift tests 

 
What the Couch 

can Displace 

  

x-
Lateral 

(cm)

y-
Longitudinal 

(cm)

z-
Vertical 

(cm)  
x 

(cm) 
y 

(cm) 
z 

(cm)
 Primary Shifts (Point 0) -0.15 -0.18 -0.07  -0.2 -0.2 -0.1

           
 After Second kVCBCT;  

Residual Shifts -0.06 -0.05 0.04  -0.1 -0.1 0
           
           

Primary Shifts (Point 1) 0.51 0.52 -0.52  0.5 0.5 -0.5
           

 After Second kVCBCT; 
 Residual Shifts 0.05 0.07 0.08  0.1 0.1 0.1

 

3.3.2 Couch Backlash Tests 

In Section 3.2, the tendency of the couch to shake slightly along its longitudinal (Superior 

– Inferior) direction was noted.  While MBPCC checks for couch slack on a monthly basis, a 
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more detailed test is required to check if there are variations in the couch positions at certain 

absolute coordinates.   (Table A.4 provides the full measurement results.) 

For this test, a meter stick was aligned with the room lasers and taped onto the couch.  

Once taped to the couch, starting at one end of the meter stick, the couch was moved in 3 cm 

intervals in one direction all the way to the other end.  The couch position was verified by using 

the specific room lasers for that direction of motion.  At every 3 cm interval, the digital couch 

position readout was noted.  Once the room lasers reached one end of the meter stick, the same 

process was repeated in the reverse direction.  This was repeated for each of the three directions 

of couch motion.   

Table 3.6 shows the data acquired from moving the couch in 3 cm intervals.  It is noted 

that the lateral and vertical couch movements globally agree with the digital couch readouts of 

the absolute coordinates.  However, there appeared to be a systematic shift of the couch position 

along the longitudinal direction.  Observations showed a 1 mm discrepancy at certain absolute 

couch positions.  According to the full results, over 45 cm of longitudinal couch positioning 

acquired an error of 2 mm.  When the couch reversed direction, the same 1 mm discrepancies 

appeared around the same absolute coordinates of the couch.  In summary, a systematic position 

error of 1 mm occurred at fixed, repeatedly locations along the longitudinal direction of motion. 

This test was unable to determine if the systematic error is due to software or to hardware error. 

In addition, backlash in the couch motion was investigated to determine if there was any 

directional dependence in the reproducibility of couch motion.  This test had the same setup as 

the previous, only that the couch was moved in intervals of 5 cm forward and 3 cm backwards.  

(Table A.5 provides the full measurement results.) 
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Table 3.7 shows some of the values from the backlash test moving the couch in 5 cm 

forward and 3 cm backward intervals.  Like the previous backlash test, the lateral and vertical 

couch movements produced no systematic direction-dependent errors, although some random 

fluctuations at non-reproducible positions were observed.  For the longitudinal direction, 

systematic errors were again observed at the previously noted absolute coordinates as well as 

random variations in other locations.  In any case, movements in alternating directions resulted in 

the expected displacements.  Thus, the couch did not appear to exhibit position errors due to 

backlash.  The head phantom was repeatedly positioned around the same location on the table, 

which coincided with one of the positions that exhibited the 1 mm systematic motion error; this 

likely explains larger position inaccuracies that were observed in the superior-inferior direction. 

Note that this table location near one end of the couch is generally where one would expect 

patients to be setup for treatment.   

Table 3.6:  Portions of data acquired from the first couch backlash test (3 cm intervals).  
Values in red indicate a discrepancy between the physical displacement and digital 
readout. 

LONGITUDINAL  LATERAL  VERTICAL 
Ruler 
(cm) 

Digital 
(cm) 

Difference 
(cm) 

Digital 
(cm) 

Difference 
(cm) 

Digital 
(cm) 

Difference 
(cm) 

0 13.9 -22.4 17.1 
3 17.0 3.1 -19.4 3 14.1 3 
6 20.0 3 -16.5 2.9 11.1 3 
9 23.0 3 -13.4 3.1 8.1 3 

12 26.0 3 -10.5 2.9 5.1 3 
15 29.0 3 -7.5 3 2.1 3 
18 32.0 3 -4.4 3.1 -0.9 3 
21 35.0 3 -1.5 2.9 -4.0 3.1 
24 38.0 3 1.5 3 -6.9 2.9 
27 41.1 3.1 4.5 3 -9.9 3 
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Table 3.7:  Portions of data acquired from the second couch backlash test (5 cm forward; 3 
cm backward intervals).  Values in red indicate a discrepancy between the physical 
displacement and digital readout. 

LONGITUDINAL  LATERAL   VERTICAL 
Ruler 
(cm) 

Digital 
(cm) 

Difference 
(cm)  

Digital 
(cm) 

Difference 
(cm)   

Digital 
(cm) 

Difference 
(cm) 

35 55.0 5  9.5 5   14.1 5 
32 57.9 2.9  6.5 3   17.1 3 
37 52.9 5  11.5 5   12.1 5 
34 56.0 3.1  8.5 3   15.1 3 
39 50.9 5.1  13.5 5   10.1 5 
36 53.9 3  10.5 3   13.1 3 
41 48.8 5.1  15.5 5   8.1 5 
38 51.9 3.1  12.5 3   11.1 3 
43 46.9 5  17.4 4.9   6.1 5 
40 49.9 3  14.5 2.9   9.1 3 
45 44.9 5  19.5 5   4.2 4.9 
42 47.9 3  16.4 3.1   7.1 2.9 
47 42.9 5  21.4 5   2.1 5 
44 45.8 2.9  18.5 2.9   5.1 3 
49 40.9 4.9  23.5 5   0.1 5 
46 43.9 3  20.5 3   3.1 3 
51 38.8 5.1  25.4 4.9   -1.9 5 
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CHAPTER 4.   CONCLUSIONS 

4.1 Summary of Results 

Tables 3.3 and 3.4 provide the overall results of the metrics obtained from using 

kVCBCT image guidance and MV planar image guidance.  These values were determined by 

first creating intentional misalignments of 5 mm from the isocenter in a combination of the right 

– left, anterior – posterior, and inferior – superior directions.  Most of these errors occurred in the 

Inferior – Superior axis, believed largely due to slack in the couch along this axis as the table 

would slightly shake along its axis during misalignment.  The next step was to quantify the 

reason for the poor values.  Upon further study, the couch was observed to have a discrepancy 

between its physical longitudinal position (using the rulers) and its corresponding digital readout.  

The rulers were not used as a second check because in the clinic, adjustments are made 

according the Elekta couch readout scale.  Similar discrepancies have been determined in 

previous work (Ploquin et al., 2008).  The couch is also incapable of correcting for slight errors 

in unintentional rotational misalignments.  MV planar image was worse than kVCBCT at 

correcting for misalignment; in addition, MV planar imaging is not able to identify rotational 

misalignments. 

4.2 Evaluation of Hypothesis 

The purpose of this project was to quantify the accuracy and precision of the IGRT 

treatment process for the Elekta Infinity’s kV Cone-Beam CT and MV Planar imaging using a 

comprehensive phantom-based quality assurance procedure, with a goal of determining the 

minimum size of setup margin needed for treatment planning.  The hypothesis of this project was 

that treatment delivery using the IG features of the Elekta Infinity will result in a positional 

accuracy within ±1mm for a cranial PTV in an anthropomorphic head phantom.  This was not 



 

    60 
 

proven to be true, as many of the measured alignment and dose coverage metrics were greater 

than 1 mm. 

4.3 Clinical Recommendations 

When using the image guidance methods on the Elekta Infinity, intracranial PTVs should 

use setup margins of at least 2 mm around the ITV when using kVCBCT and at least 3 mm when 

MV planar imaging is used.  There are three recommendations that can be made to potentially 

reduce positional errors.   

The first recommendation is that therapists should consider positioning patients 

longitudinally between the locations where the systematic 1 mm positional errors occur.  The 

second recommendation is to request Elekta to provide a finer graticule for MV planar image 

guidance.  The large radiopaque markers on 1 cm spacing are not conducive in correcting for 

small millimeter scale misalignments. 

The kVCBCT potentially provides sub-millimeter correction shifts in the axial, lateral, 

and longitudinal directions.  However, the couch digital readout reports movements only in 1 

mm increments, which does not take the full advantage of kVCBCT.  Therefore, the third 

recommendation is replacing the digital readout with one that provides sub-millimeter display.  

A sub-recommendation is to install a couch that can provide rotational corrections.  Some 

research has already been completed in the area of using a hexapod couch (Meyer et al., 2007).   

4.4 Future Work 

The data obtained in the research was dependent on the phantom being properly 

positioned on the couch.  However, further research showed that there were certain longitudinal 

locations on the couch where there was a 1 mm disagreement between the physical positioning 

of the couch and the couch digital readout.  The current work was done with the phantom placed 
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on the table in the region where one would expect to treat patients with intracranial lesions.  A 

reevaluation of positional accuracy with the phantom could be made to confirm the capabilities 

of the Elekta Infinity if another location on the table was used.  However, in clinical practice 

positioning a patient on a different part of the table for intracranial treatments may be 

problematic if the table interferes with treatment delivery. 

Currently, this work only assessed IMRT treatment deliveries.  Because of the 

availability of volumetric modulated arc therapy (VMAT) on the Elekta Infinity, an assessment 

of positional accuracy with image guidance as it relates to VMAT delivery could be assessed.  
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APPENDIX.  GRAPHS AND TABLES 

The graphs and tables in this appendix collate all experimental data acquired during this 

project.  Figures A.1 through A.33 show measured, mean, and treatment planning profiles for all 

points in sample space when using kVCBCT image guidance. 

Tables A.1, A.2, and A.3 provide the results for all the treatments delivered with 

kVCBCT image guidance.  Positive values of Δc indicated that the measured profile was shifted 

to the left, posterior, or inferior direction with respect to the calculated profile from the treatment 

plan.  Positive values of Δ80 indicated that the measured 80% isodose line was outside the 

calculated (planned) 80% isodose line.  Conversely, negative values of Δ80 indicated that the 

measured 80% isodose line was inside the calculated (planned) 80% isodose line.  The means, 

standard deviations (σ) and the standard errors (SE) are all in millimeters. 

Figures A.34 through A.66 show measured, mean, and treatment planning profiles for all 

points in sample space when using kVCBCT image guidance. 

Tables A.4 and A.5 collate the couch movement measurements to assess the accuracy of 

couch motion. 
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Figure A.1:  Horizontal and vertical profiles for the axial image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
0. 
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Figure A.2:  Horizontal and vertical profiles for the axial image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
1. 
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Figure A.3:  Horizontal and vertical profiles for the axial image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
2. 
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Figure A.4:  Horizontal and vertical profiles for the axial image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
3. 
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Figure A.5:  Horizontal and vertical profiles for the axial image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
4. 
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Figure A.6:  Horizontal and vertical profiles for the axial image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
5. 
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Figure A.7:  Horizontal and vertical profiles for the axial image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
6. 
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Figure A.8:  Horizontal and vertical profiles for the axial image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
7. 
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Figure A.9:  Horizontal and vertical profiles for the axial image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
8. 
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Figure A.10:  (top) All horizontal profiles for the axial image plane resulting from 

kVCBCT image guidance.  (bottom) Comparison of the mean axial horizontal 
profile with the profile from the treatment plan. 



 

    75 
 

 

 
Figure A.11:  (top) All vertical profiles for the axial image plane resulting from kVCBCT 

image guidance.  (bottom) Comparison of the mean axial vertical profile with the 
profile from the treatment plan. 
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Figure A.12:  Horizontal and vertical profiles for the coronal image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
0. 
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Figure A.13:  Horizontal and vertical profiles for the coronal image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
1. 
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Figure A.14:  Horizontal and vertical profiles for the coronal image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
2. 
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Figure A.15:  Horizontal and vertical profiles for the coronal image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
3. 
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Figure A.16:  Horizontal and vertical profiles for the coronal image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
4. 
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Figure A.17:  Horizontal and vertical profiles for the coronal image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
5. 
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Figure A.18:  Horizontal and vertical profiles for the coronal image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
6. 
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Figure A.19:  Horizontal and vertical profiles for the coronal image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
7. 



 

    84 
 

 

 
Figure A.20:  Horizontal and vertical profiles for the coronal image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
8. 
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Figure A.21:  (top) All horizontal profiles for the coronal image plane resulting from 

kVCBCT image guidance.  (bottom) Comparison of the mean coronal horizontal 
profile with the profile from the treatment plan. 
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Figure A.22:  (top) All vertical profiles for the coronal image plane resulting from 

kVCBCT image guidance.  (bottom) Comparison of the mean coronal vertical 
profile with the profile from the treatment plan. 
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Figure A.23:  Horizontal and vertical profiles for the sagittal image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
0. 
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Figure A.24:  Horizontal and vertical profiles for the sagittal image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
1. 
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Figure A.25:  Horizontal and vertical profiles for the sagittal image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
2. 
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Figure A.26:  Horizontal and vertical profiles for the sagittal image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
3. 
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Figure A.27:  Horizontal and vertical profiles for the sagittal image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
4. 
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Figure A.28:  Horizontal and vertical profiles for the sagittal image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
5. 
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Figure A.29:  Horizontal and vertical profiles for the sagittal image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
6. 
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Figure A.30:  Horizontal and vertical profiles for the sagittal image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
7. 
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Figure A.31:  Horizontal and vertical profiles for the sagittal image plane resulting from 

kVCBCT image guidance when the phantom was initially positioned at sample point 
8. 
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Figure A.32:  (top) All horizontal profiles for the sagittal image plane resulting from 

kVCBCT image guidance.  (bottom) Comparison of the mean sagittal horizontal 
profile with the profile from the treatment plan. 
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Figure A.33:  (top) All vertical profiles for the sagittal image plane resulting from kVCBCT 

image guidance.  (bottom) Comparison of the mean sagittal vertical profile with the 
profile from the treatment plan. 
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Table A.1:  Metrics for measurements of axial-oriented film.  Means, standard deviations, and standard errors (N = 3) are all 
in mm. 

 
 

Point 
Offset 

Coordinates Δc R-L σ Δc R-L SE Δc R-L Δ80 R σ Δ80 R SE Δ80 R Δ80 L σ Δ80 L SE Δ80 L 

0 (0, 0, 0) 0.04 0.27 0.15 0.27 0.12 0.07 0.36 0.13 0.08 
1 (5, 5, -5) 0.01 0.55 0.32 0.32 0.46 0.27 0.26 0.59 0.34 
2 (5, -5, 5) 0.08 0.33 0.19 0.39 0.35 0.20 0.20 0.26 0.15 
3 (5, -5, -5) 0.42 0.28 0.16 0.04 0.34 0.20 0.49 0.47 0.27 
4  (5, 5, 5) 0.43 0.54 0.31 0.10 0.47 0.27 0.94 0.65 0.37 
5 (-5, 5, 5) -1.01 1.33 0.77 1.28 1.49 0.86 -1.09 1.00 0.57 
6  (-5, -5, -5) 0.57 0.19 0.11 -0.12 0.40 0.23 1.07 0.33 0.19 
7  (-5, -5, 5) -0.09 0.70 0.40 0.24 0.62 0.36 -0.23 0.81 0.47 
8 (-5, 5, -5) -0.16 0.81 0.47 0.28 0.67 0.39 -0.33 0.89 0.51 

 
 

Point 
Offset 

Coordinates Δc A-P σ  Δc A-P SE  Δc A-P Δ80 A σ Δ80 A SE Δ80 A Δ80 P σ Δ80 P SE Δ80 P 

0 (0, 0, 0) -1.09 0.49 0.28 1.43 0.70 0.41 -1.23 0.42 0.24 
1 (5, 5, -5) -0.30 0.67 0.39 0.78 0.81 0.47 -0.06 0.58 0.34 
2 (5, -5, 5) -0.66 0.51 0.29 1.06 0.43 0.25 -0.73 0.58 0.33 
3 (5, -5, -5) -0.85 0.67 0.39 1.36 0.55 0.31 -0.72 0.67 0.39 
4  (5, 5, 5) -0.73 0.47 0.27 2.07 0.39 0.23 -0.10 0.99 0.57 
5 (-5, 5, 5) -0.35 0.76 0.44 0.91 0.38 0.22 -0.39 1.10 0.63 
6  (-5, -5, -5) -0.61 0.50 0.29 1.31 0.23 0.13 -0.48 0.68 0.39 
7  (-5, -5, 5) -1.21 0.61 0.35 1.61 0.54 0.31 -1.18 0.86 0.50 
8 (-5, 5, -5) -0.65 0.62 0.36 1.02 0.83 0.48 -0.77 0.50 0.29 

  



 

    99 
 

Table A.2:  Metrics for measurements of coronal-oriented film.  Means, standard deviations, and standard errors (N = 3) are 
all in mm. 
 

Point 
Offset 

Coordinates Δc L-R σ Δc L-R SE Δc L-R Δ80 L σ Δ80 L SE Δ80 L Δ80 R σ Δ80 R SE Δ80 R 

0 (0, 0, 0) -0.51 0.13 0.07 0.63 0.14 0.08 -0.36 0.30 0.17 
1 (5, 5, -5) -0.57 0.46 0.26 1.05 0.51 0.29 -0.30 0.28 0.16 
2 (5, -5, 5) -0.52 0.15 0.09 1.06 0.42 0.25 0.00 0.08 0.05 
3 (5, -5, -5) -0.63 0.42 0.24 1.11 1.00 0.58 -0.24 0.09 0.05 
4  (5, 5, 5) -0.86 0.74 0.43 1.53 0.80 0.46 -0.17 0.76 0.44 
5 (-5, 5, 5) -0.14 0.61 0.35 0.29 1.47 0.85 0.02 0.29 0.17 
6  (-5, -5, -5) -0.25 0.44 0.26 0.68 1.29 0.75 -0.04 0.48 0.28 
7  (-5, -5, 5) 0.31 1.06 0.61 -0.29 1.04 0.60 0.59 0.94 0.54 
8 (-5, 5, -5) -0.23 0.58 0.33 -0.05 0.68 0.39 0.00 0.41 0.24 

 
 

Point 
Offset 

Coordinates Δc I-S σ  Δc I-S SE  Δc I-S Δ80 I σ Δ80 I SE Δ80 I Δ80 S σ Δ80 S SE Δ80 S 

0 (0, 0, 0) 1.28 0.48 0.28 -1.09 0.69 0.40 2.12 0.33 0.19 
1 (5, 5, -5) 1.59 0.52 0.30 -1.40 0.59 0.34 2.38 0.49 0.28 
2 (5, -5, 5) 1.51 0.34 0.20 -1.21 0.19 0.11 2.42 0.47 0.27 

3 (5, -5, -5) 1.62 1.25 0.72 -1.34 1.14 0.66 2.52 1.37 0.79 
4  (5, 5, 5) 2.29 0.83 0.48 -2.04 0.97 0.56 3.12 0.81 0.47 
5 (-5, 5, 5) 1.50 2.30 1.33 -1.29 2.36 1.36 2.36 2.22 1.28 
6  (-5, -5, -5) 0.88 2.56 1.48 -0.64 2.48 1.43 1.80 2.57 1.48 
7  (-5, -5, 5) 0.95 0.31 0.18 -0.65 0.38 0.22 1.83 0.24 0.14 
8 (-5, 5, -5) 0.65 0.39 0.22 -0.36 0.31 0.18 1.54 0.38 0.22 
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Table A.3:  Metrics for measurements of sagittal-oriented film.  Means, standard deviations, and standard errors (N = 3) are 
all in mm. 

 
 

Point 
Offset 

Coordinates Δc P-A σ Δc P-A SE Δc P-A Δ80 P σ Δ80 P SE Δ80 P Δ80 A σ Δ80 A SE Δ80 A 

0 (0, 0, 0) 0.79 0.18 0.11 -0.74 0.41 0.24 0.98 0.45 0.26 
1 (5, 5, -5) 1.25 0.48 0.28 -1.39 0.90 0.52 1.31 0.53 0.30 
2 (5, -5, 5) 0.80 0.84 0.48 -0.52 0.90 0.52 1.26 0.73 0.42 
3 (5, -5, -5) 0.91 0.66 0.38 -0.87 0.33 0.19 1.18 0.65 0.38 
4  (5, 5, 5) 1.28 0.49 0.28 -1.18 0.67 0.39 1.58 0.47 0.27 
5 (-5, 5, 5) 0.48 0.40 0.23 -0.21 0.91 0.52 0.84 0.31 0.18 
6  (-5, -5, -5) 0.43 0.52 0.30 -0.34 0.89 0.52 0.76 0.15 0.09 
7  (-5, -5, 5) 0.73 0.78 0.45 -0.76 0.82 0.47 0.88 0.47 0.27 
8 (-5, 5, -5) 0.73 0.79 0.45 -0.77 0.99 0.57 1.21 0.71 0.41 

 
 

Point 
Offset 

Coordinates Δc I-S σ  Δc I-S SE  Δc I-S Δ80 I σ Δ80 I SE Δ80 I Δ80 S σ Δ80 S SE Δ80 S 

0 (0, 0, 0) 1.04 0.10 0.06 -0.93 0.12 0.07 1.78 0.31 0.18 
1 (5, 5, -5) 0.31 1.64 0.95 -0.14 1.92 1.11 1.06 1.43 0.83 
2 (5, -5, 5) 1.55 0.09 0.05 -1.25 0.32 0.18 2.42 0.10 0.06 
3 (5, -5, -5) 1.00 0.41 0.24 -0.67 0.61 0.35 1.90 0.25 0.14 
4  (5, 5, 5) 1.68 1.68 0.97 -1.48 1.82 1.05 2.55 1.52 0.88 
5 (-5, 5, 5) 1.77 2.45 1.42 -1.40 2.61 1.51 2.80 2.30 1.33 
6  (-5, -5, -5) 1.59 2.24 1.29 -1.35 2.21 1.28 2.43 2.35 1.36 
7  (-5, -5, 5) 0.42 0.43 0.25 -0.13 0.54 0.31 1.32 0.38 0.22 
8 (-5, 5, -5) 1.13 0.47 0.27 -0.93 0.64 0.37 1.97 0.32 0.18 
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Figure A.34:  Horizontal and vertical profiles for the axial image plane resulting from MV 

planar image guidance when the phantom was initially positioned at sample point 0. 
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Figure A.35:  Horizontal and vertical profiles for the axial image plane resulting from MV 

planar image guidance when the phantom was initially positioned at sample point 1. 
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Figure A.36:  Horizontal and vertical profiles for the axial image plane resulting from MV 

planar image guidance when the phantom was initially positioned at sample point 2. 
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Figure A.37:  Horizontal and vertical profiles for the axial image plane resulting from MV 

planar image guidance when the phantom was initially positioned at sample point 3. 
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Figure A.38:  Horizontal and vertical profiles for the axial image plane resulting from MV 

planar image guidance when the phantom was initially positioned at sample point 4. 



 

    106 
 

 

 
Figure A.39:  Horizontal and vertical profiles for the axial image plane resulting from MV 

planar image guidance when the phantom was initially positioned at sample point 5. 



 

    107 
 

 

 
Figure A.40:  Horizontal and vertical profiles for the axial image plane resulting from MV 

planar image guidance when the phantom was initially positioned at sample point 6. 
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Figure A.41:  Horizontal and vertical profiles for the axial image plane resulting from MV 

planar image guidance when the phantom was initially positioned at sample point 7. 
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Figure A.42:  Horizontal and vertical profiles for the axial image plane resulting from MV 

planar image guidance when the phantom was initially positioned at sample point 8. 
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Figure A.43:  (top) All horizontal profiles for the axial image plane resulting from MV 

planar image guidance.  (bottom) Comparison of the mean axial horizontal profile 
with the profile from the treatment plan. 
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Figure A.44:  (top) All vertical profiles for the axial image plane resulting from MV planar 

image guidance.  (bottom) Comparison of the mean axial vertical profile with the 
profile from the treatment plan. 
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Figure A.45:  Horizontal and vertical profiles for the coronal image plane resulting from 

MV planar image guidance when the phantom was initially positioned at sample 
point 0. 
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Figure A.46:  Horizontal and vertical profiles for the coronal image plane resulting from 

MV planar image guidance when the phantom was initially positioned at sample 
point 1. 
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Figure A.47:  Horizontal and vertical profiles for the coronal image plane resulting from 

MV planar image guidance when the phantom was initially positioned at sample 
point 2. 
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Figure A.48:  Horizontal and vertical profiles for the coronal image plane resulting from 

MV planar image guidance when the phantom was initially positioned at sample 
point 3. 
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Figure A.49:  Horizontal and vertical profiles for the coronal image plane resulting from 

MV planar image guidance when the phantom was initially positioned at sample 
point 4. 
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Figure A.50:  Horizontal and vertical profiles for the coronal image plane resulting from 

MV planar image guidance when the phantom was initially positioned at sample 
point 5. 
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Figure A.51:  Horizontal and vertical profiles for the coronal image plane resulting from 

MV planar image guidance when the phantom was initially positioned at sample 
point 6. 
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Figure A.52:  Horizontal and vertical profiles for the coronal image plane resulting from 

MV planar image guidance when the phantom was initially positioned at sample 
point 7. 
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Figure A.53:  Horizontal and vertical profiles for the coronal image plane resulting from 

MV planar image guidance when the phantom was initially positioned at sample 
point 8. 
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Figure A.54:  (top) All horizontal profiles for the coronal image plane resulting from MV 

planar image guidance.  (bottom) Comparison of the mean coronal horizontal 
profile with the profile from the treatment plan. 
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Figure A.55:  (top) All vertical profiles for the coronal image plane resulting from MV 

planar image guidance.  (bottom) Comparison of the mean coronal vertical profile 
with the profile from the treatment plan. 



 

    123 
 

 

 
Figure A.56:  Horizontal and vertical profiles for the sagittal image plane resulting from 

MV planar image guidance when the phantom was initially positioned at sample 
point 0. 
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Figure A.57:  Horizontal and vertical profiles for the sagittal image plane resulting from 

MV planar image guidance when the phantom was initially positioned at sample 
point 1. 
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Figure A.58:  Horizontal and vertical profiles for the sagittal image plane resulting from 

MV planar image guidance when the phantom was initially positioned at sample 
point 2. 
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Figure A.59:  Horizontal and vertical profiles for the sagittal image plane resulting from 

MV planar image guidance when the phantom was initially positioned at sample 
point 3. 
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Figure A.60:  Horizontal and vertical profiles for the sagittal image plane resulting from 

MV planar image guidance when the phantom was initially positioned at sample 
point 4. 
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Figure A.61:  Horizontal and vertical profiles for the sagittal image plane resulting from 

MV planar image guidance when the phantom was initially positioned at sample 
point 5. 
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Figure A.62:  Horizontal and vertical profiles for the sagittal image plane resulting from 

MV planar image guidance when the phantom was initially positioned at sample 
point 6. 



 

    130 
 

 

 
Figure A.63  Horizontal and vertical profiles for the sagittal image plane resulting from 

MV planar image guidance when the phantom was initially positioned at sample 
point 7. 
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Figure A.64:  Horizontal and vertical profiles for the sagittal image plane resulting from 

MV planar image guidance when the phantom was initially positioned at sample 
point 8. 
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Figure A.65:  (top) All horizontal profiles for the sagittal image plane resulting from MV 

planar image guidance.  (bottom) Comparison of the mean sagittal horizontal 
profile with the profile from the treatment plan. 
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Figure A.66:  (top) All vertical profiles for the sagittal image plane resulting from MV 

planar image guidance.  (bottom) Comparison of the mean sagittal vertical profile 
with the profile from the treatment plan. 
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Table A.4:  Data acquired from the first couch backlash test (3 cm intervals).  Values in red 
indicate a discrepancy between the physical displacement and digital readout. 

LONGITUDINAL  LATERAL  VERTICAL 

Ruler (cm) 
Digital 
(cm) 

Difference 
(cm) 

Digital 
(cm) 

Difference 
(cm) 

Digital 
(cm) 

Difference 
(cm) 

0 13.9 -22.4 17.1 
3 17.0 3.1 -19.4 3 14.1 3 
6 20.0 3 -16.5 2.9 11.1 3 
9 23.0 3 -13.4 3.1 8.1 3 

12 26.0 3 -10.5 2.9 5.1 3 
15 29.0 3 -7.5 3 2.1 3 
18 32.0 3 -4.4 3.1 -0.9 3 
21 35.0 3 -1.5 2.9 -4.0 3.1 
24 38.0 3 1.5 3 -6.9 2.9 
27 41.1 3.1 4.5 3 -9.9 3 
30 44.1 3 7.5 3 -13.0 3.1 
33 47.1 3 10.5 3 -16.0 3 
36 50.1 3 13.5 3 -18.9 2.9 
39 53.1 3 16.5 3 -21.9 3 
42 56.1 3 19.5 3 -24.9 3 
45 59.1 3 22.5 3 -27.9 3 

Moving Reverse 
42 56.1 3 19.5 3 -24.9 3 
39 53.1 3 16.5 3 -21.9 3 
36 50.1 3 13.5 3 -19.0 2.9 
33 47.1 3 10.5 3 -16.0 3 
30 44.1 3 7.5 3 -13.0 3 
27 41.1 3 4.5 3 -10.0 3 
24 38.0 3.1 1.5 3 -6.9 3.1 
21 35.0 3 -1.5 3 -4.0 2.9 
18 32.0 3 -4.5 3 -1.0 3 
15 29.0 3 -7.5 3 2.0 3 
12 26.0 3 -10.5 3 5.1 3.1 
9 23.0 3 -13.4 2.9 8.0 2.9 
6 20.0 3 -16.5 3.1 11.0 3 
3 17.0 3 -19.4 2.9 14.0 3 
0 13.9 3.1 -22.4 3 17.1 3.1 
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Table A.5:  Data acquired from the second couch backlash test (5 cm forward; 3 cm 
backward intervals).  Values in red indicate a discrepancy between the physical 
displacement and digital readout. 

LONGITUDINAL  LATERAL   VERTICAL 
Ruler 
(cm) 

Digital 
(cm) 

Difference 
(cm)  

Digital 
(cm) 

Difference 
(cm)   

Digital 
(cm) 

Difference 
(cm) 

0 90.1 -  -25.4 -   49.2 - 
5 85.1 5  -20.5 4.9   44.1 5.1 
2 88.1 3  -23.5 3   47.1 3 
7 83.1 5  -18.5 5   42.1 5 
4 86.1 3  -21.5 3   45.1 3 
9 81.1 5  -16.5 5   40.1 5 
6 84.1 3  -19.5 3   43.1 3 

11 79.1 5  -14.5 5   38.1 5 
8 82.1 3  -17.5 3   41.1 3 

13 77.1 5  -12.5 5   36.1 5 
10 80.1 3  -15.5 3   39.1 3 
15 75.0 5.1  -10.5 5   34.1 5 
12 78.0 3  -13.5 3   37.1 3 
17 73.0 5  -8.5 5   32.2 4.9 
14 76.1 3.1  -11.5 3   35.1 2.9 
19 71.0 5.1  -6.5 5   30.1 5 
16 74.0 3  -9.5 3   33.1 3 
21 69.0 5  -4.5 5   28.1 5 
18 72.0 3  -7.5 3   31.1 3 
23 67.0 5  -2.5 5   26.1 5 
20 70.0 3  -5.5 3   29.1 3 
25 65.0 5  -0.5 5   24.1 5 
22 68.0 3  -3.5 3   27.1 3 
27 63.0 5  1.5 5   22.1 5 
24 65.9 2.9  -1.5 3   25.1 3 
29 60.9 5  3.5 5   20.1 5 
26 64.0 3.1  0.5 3   23.1 3 
31 59.0 5  5.5 5   18.1 5 
28 62.0 3  2.5 3   21.1 3 
33 57.0 5  7.5 5   16.1 5 
30 60.0 3  4.5 3   19.1 3 
35 55.0 5  9.5 5   14.1 5 
32 57.9 2.9  6.5 3   17.1 3 
37 52.9 5  11.5 5   12.1 5 
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34 56.0 3.1  8.5 3   15.1 3 
39 50.9 5.1  13.5 5   10.1 5 
36 53.9 3  10.5 3   13.1 3 
41 48.0 5.9  15.5 5   8.1 5 
38 51.9 3.9  12.5 3   11.1 3 
43 46.9 5  17.4 4.9   6.1 5 
40 49.9 3  14.5 2.9   9.1 3 
45 44.9 5  19.5 5   4.2 4.9 
42 47.9 3  16.4 3.1   7.1 2.9 
47 42.9 5  21.4 5   2.1 5 
44 45.8 2.9  18.5 2.9   5.1 3 
49 40.9 4.9  23.5 5   0.1 5 
46 43.9 3  20.5 3   3.1 3 
51 38.8 5.1  25.4 4.9   -1.9 5 
48 41.8 3  22.4 3   1.1 3 
53 36.9 4.9  - -   -3.9 5 
50 39.9 3  - -   -0.9 3 
55 34.8 5.1  - -   -5.9 5 
52 37.8 3  - -   -2.9 3 
57 32.8 5  - -   -7.9 5 
54 35.8 3  - -   -5.0 2.9 
59 30.8 5  - -   -9.9 4.9 
56 33.8 3  - -   -6.9 3 
61 28.8 5  - -   -11.9 5 
58 31.8 3  - -   -8.9 3 
63 26.8 5  - -   -13.9 5 
60 29.8 3  - -   -10.9 3 
65 24.8 5  - -   -15.9 5 
62 27.8 3  - -   -12.9 3 
67 22.8 5  - -   -17.9 5 
64 25.8 3  - -   -14.9 3 
69 20.8 5  - -   -19.9 5 
66 23.8 3  - -   -17.0 2.9 
71 18.8 5  - -   -21.9 4.9 
68 21.7 2.9  - -   -19.9 2 
73 16.8 4.9  - -   -23.9 4 
70 19.8 3  - -   -20.9 3 
75 14.7 5.1  - -   -26.0 5.1 
72 17.7 3  - -   -22.9 3.1 
77 12.7 5  - -   -27.9 5 
74 15.7 3  - -   -25.0 2.9 
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79 10.7 5  - -   -29.9 4.9 
76 13.7 3  - -   -27.0 2.9 
81 8.7 5  - -   -32.0 5 
78 11.7 3  - -   -29.0 3 
83 6.7 5  - -   -33.9 4.9 
80 9.7 3  - -   -31.0 2.9 
85 4.7 5  - -   -35.9 4.9 
82 7.7 3  - -   -33.0 2.9 
87 2.6 5.1  - -   -37.9 4.9 
84 5.7 3.1  - -   -35.0 2.9 
89 0.7 5  - -   -39.9 4.9 
86 3.7 3  - -   -37.0 2.9 
91 - -  - -   -41.9 4.9 
88 - -  - -   -39.0 2.9 
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