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Abstract

We present a numerical method for the study of double white dwarf (DWD) binary systems
at the onset of super-Eddington mass transfer. We incorporate the physics of ideal inviscid
hydrodynamical flow, Newtonian self-gravity, and radiation transport on a three-dimensional
uniformly rotating cylindrical Eulerian grid. Our new method conserves total energy to a higher
degree of accuracy than recent smoothed particle hydrodynamics methods and our previous
Eulerian grid based method. We present the results of verification tests and we simulate the first
20+ orbits of a binary system of mass ratio q = 0.7 at the onset of dynamically unstable direct
impact mass transfer. Although the mass transfer rate exceeds the critical Eddington limit by
many orders of magnitude, it appears to have very little effect on the accretion flow. We also
model over 20 orbits of a DWD of mass ratio q = 0.4. In these simulations, the accretion stream
detaches from the accretor after 4 orbits and an asymmetric accretion torus forms. We submit
these DWD models as the first self-consistent three dimensional simulations of mass transferring
DWDs incorporating radiation transport.
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When I heard the learn’d astronomer;
When the proofs, the figures, were ranged in columns before me;
When I was shown the charts and the diagrams, to add, divide, and measure them;
When I, sitting, heard the astronomer, where he lectured with much applause in the

lecture-room,
How soon, unaccountable, I became tired and sick;
Till rising and gliding out, I wander’d off by myself,
In the mystical moist night-air, and from time to time,
Look’d up in perfect silence at the stars.

– Walt Whitman

1. Introduction

A white dwarf is the end stage of evolution for the overwhelming majority of stars. Although
there are only a few thousand observationally confirmed white dwarfs in our own galaxy (McCook
& Sion (1999), Kleinman et al. (2004)), theoretical evidence indicates there could be as many
as a few billion (Napiwotzki (2009)). When a main sequence star nears the end of its supply of
hydrogen fuel, if it is massive enough, temperatures and pressures rise high enough in the core to
fuse helium into carbon and oxygen. Helium fusion produces more energy per unit time, and the
star swells up under this increased luminosity, becoming a red giant. Because the star is many
orders of magnitude larger, it is no longer bound as tightly by gravitation, and stellar winds can
drive mass away from the system. When the helium supply is exhausted, if the star is massive
enough, carbon and oxygen fuse into heavier elements. The process can continue, with fusion
of progressively heavier elements, up until iron. The fusion of iron is endothermic and a star
cannot derive any net additional energy from its fusion. When a star more massive than about
9M� exhausts its supply of fuel, there is no longer sufficient thermal pressure to support the
core against gravitational collapse, and a Supernova Type II results (Poelarends et al. (2008)).
Most stars, however, never reach this violent end. They continue to lose mass via stellar wind,
and in many cases, by interaction with a companion star. Eventually only the dense central
core remains. This stellar remnant is a white dwarf. It no longer produces nuclear energy and
cools by black body radiation over many billions of years. It is supported against gravity by
electron degeneracy pressure. Depending on the mass of its progenitor main sequence star, the
white dwarf is composed of elements lighter than iron, with the more massive main sequence
stars leading to white dwarfs composed of heavier elements.

Binary star systems, consisting of two stars orbiting about their mutual center of mass,
are quite common. Approximately half of the stars in the solar neighborhood are known to be
binary systems, and approximately one-fifth of the stellar population consists of three or more
gravitationally bound stars (Abt (1983), Tokovinin (1997)). The components of binary star
systems are most likely formed at the same time out of the same cloud of gas (for a review of
binary star formation see Tohline (2002)). A double white dwarf (DWD) is a binary system
composed of two white dwarf stars. Although direct observation confirms the existence of only a
few dozen DWDs in our galaxy (e.g. Marsh et al. (1995), Morales-Rueda et al. (2005), Nelemans
et al. (2005), Parsons et al. (2011)), theoretical evidence suggests there are approximately 3×108

DWDs in the Galaxy, with birth rates of 5× 10−2/yr (Nelemans et al. (2001c)). Many of these
observed DWDs are in close orbits, with orbital separations on the order of a solar radius and
orbital periods on the order of a few hours. Two DWDs, SDSS 1436 and SDSS 1053, have periods
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of about an hour and separations less than 0.5R� (Mullally et al. (2009)).
Because the progenitor main sequence stars of DWDs are too large to fit in such a close orbit,

there must be a mechanism for driving binary main sequence stars closer to one another as they
evolve into white dwarfs. The consensus theory, reviewed by Postnov & Yungelson (2006), holds
that main sequence progenitor stars are pushed closer to one another by “common envelope
evolution”. When one of the components evolves into a red giant, it can become larger than
the orbit of the binary. Its dense core and its main sequence companion then share a common
envelope of gas. The frictional force of the envelope against the binary components drives them
closer together over time, converting the orbital energy of the binary into thermal energy in the
common envelope. This thermal energy drives mass loss from the envelope, and eventually the
envelope is ejected, leaving only the white dwarf remnant of the red giant and its main sequence
companion. When the main sequence companion evolves to become a red giant, the process can
be repeated, driving the components even closer together. The end result is a compact binary
with an orbital separation orders of magnitude smaller than the progenitor main sequence binary.

Einstein’s theory of general relativity predicts that a time varying quadrupole mass moment
will produce gravitational radiation. This is analogous to the electromagnetic radiation produced
by accelerating charged particles. Gravitational radiation is very weak and to date it has not been
detected. Detectors such as the Laser Interferometer Gravitational-Wave Observatory (LIGO)
and the Laser Interferometer Space Antenna (LISA) are designed to detect gravitational radiation
from space. Close DWDs are in tight enough orbits that their time varying quadrupole moments
can produce significant gravitational radiation. This gravitational radiation forms a low frequency
background noise limiting the sensitivity of detectors such as LISA (Hils et al. (1990), Nelemans
et al. (2001b), Farmer & Phinney (2002)). It also carries energy and angular momentum away
from the DWD, driving the components closer together over time. If driven close enough, one
of the white dwarfs can tidally strip mass off its companion, resulting in mass transfer. If the
mass transfer causes the star’s mass to exceed the Chandrasekhar mass limit, electron degeneracy
pressure is no longer sufficient to support the white dwarf against gravity, and runaway nuclear
detonation and a Supernovae Type Ia is a possible result (Webbink (1984), Iben & Tutukov
(1984), Livio & Riess (2003), Di Stefano (2010)). It is also possible such a system could avoid
nuclear detonation and collapse to form a more compact object (Nomoto & Iben (1985), Saio &
Nomoto (1985), Mochkovitch & Livio (1990)). Less massive DWDs may merge to form hydrogen
poor objects such as R Coronae Borealis variable stars, extreme helium stars, or sub-dwarf B
and sub-dwarf O stars (Webbink (1984), Saio & Jeffery (2000), Han et al. (2002), Clayton et al.
(2007)). Systems which survive the initial onset of mass transfer likely become AM Canum
Vanaticorum (AM CVn) systems (Paczyński (1967), Faulkner et al. (1972), Nelemans et al.
(2001a).

When a DWD system undergoes mass transfer, matter falls from one star, the “donor,” to
its companion, the “accretor.” When it strikes the accretor’s surface, the in-falling material is
shocked and thermal energy is produced. Some of this thermal energy is converted into radiative
luminosity. This radiative luminosity has the potential to affect the accretion flow by exerting
a pressure force on the in-falling material. For a spherically accreting object, we refer to the
radiative luminosity strong enough to counteract the local force of gravity as the “Eddington
luminosity.” When this limit is exceeded in spherical accretion—that is, when the accretion is
“super Eddington”—the rate of accretion is restricted to that which is required to produce the
Eddington luminosity. Determining the effect of exceeding this limit in non-spherical accretion
flows is a non-trivial matter. In spherical accretion, radiation is required to pass through, and
hence interact with, the entire length of the accretion flow in order to escape the system. This
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is not true for non-spherical flows and the manner in which radiation affects the flow depends
heavily on the particular geometry of the system. Radiation may still significantly interact
with the accretion flow, as in the spherical case, or it may be able to escape with very little
interaction. Although some progress has been made by analytic means in the study of DWDs
experiencing super-Eddington mass transfer (e.g. Han & Webbink (1999), Gokhale et al. (2007)),
to realistically model such a system demands three-dimensional numerical simulation.

In recent years there have been many advances in the three-dimensional numerical modeling
of mass transferring DWDs. The two dominant paradigms for this purpose are the smoothed
particle hydrodynamics (SPH) codes (e.g. Benz et al. (1990), Rasio & Shapiro (1995)) and the
Eulerian grid based codes (e.g. Motl et al. (2002), D’Souza et al. (2006), Motl et al. (2007)).
In both cases, the laws of fluid hydrodynamics and Newtonian gravity are applied in a three-
dimensional space. Some of the more recent SPH codes also employ detailed equations of state
and/or nuclear reaction networks (e.g. Segretain et al. (1997), Guerrero et al. (2004), Yoon
et al. (2007), Dan et al. (2009)), and recently our group has produced an Eulerian code that
incorporates a cold white dwarf equation of state (Even (2010)). None of the aforementioned
codes simulate radiative transport. The goal of the research described in this dissertation is to
model DWDs undergoing mass transfer at super-Eddington rates using a numerical method that
includes the physics of radiation transport and interaction between radiation and matter.

In §2 we describe the basic analytic framework used to describe DWD accretion flows. Our
code models radiation transport using the flux-limited diffusion (FLD) approximation, and in §3
we discuss this approximation. In §4 we develop the full set of partial differential equations that
our computer code models. In §5 we describe the numerical method itself, and in §6 we present
results of verification tests used to test the code. Finally, in §7 and §8, we discuss the results of
two sets of simulations of DWDs at the onset of mass transfer produced using our new code.
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2. Analytic Framework

The most basic analytic description of a binary system consists of two point masses bound
to one another by Newtonian gravity in a coplanar circular orbit. The model is further developed
by approximating the binary components as spherical polytropes. Although realistic modeling
requires numerical simulation, it is possible to make several broad statements regarding the
evolution of DWDs undergoing mass transfer using analytic methods. We can also determine
some of the limiting behavior of DWDs undergoing super-Eddington accretion based on the
analytic description of classical super-Eddington accretion.

2.1. Roche Lobe Geometry

In an inertial frame, the gravitational potential, Φ, of a point mass binary in a coplanar
circular orbit will vary with time as the stars move through their orbits. It is therefore more con-
venient to express the equations of motion in a frame rotating with the binary orbital frequency,
Ω, and along the same axis as the binary. The “Roche potential”, depicted in Figure 2.1, is the
appropriate potential in the co-rotating frame. It is given by the expression

ΦRoche (r) = − GM1

|r− r1|
− GM2

|r− r2|
− 1

2
|Ω× r|2, (2-1)

where r is the position vector, M1 and M2 are the masses of the two stars, r1 and r2 are their
respective coordinate locations, and G is Newton’s gravitational constant. This potential is time-
invariant as long as the point masses remain in the same orbit. The first term on the right hand
side (RHS) is the gravitational potential of the first star, the second term is the gravitational
potential of the second star, and the third term is the centrifugal potential due to the rotating
frame of reference. The orbital frequency is constant in space and time and is given by Kepler’s
third law,

Ω =

√
G (M1 +M2)

|a|3
ẑ, (2-2)

where a := r1 − r2 is the constant orbital separation vector and ẑ is the unit vector in the
direction perpendicular to the orbital plane.

For a particle moving along a ballistic trajectory, the time-invariant binding energy is

εrot := ΦRoche +
1

2
u2

rot, (2-3)

where urot is the magnitude of the particle velocity in the rotating frame. The particle’s momen-
tum is governed by

d

dt
urot := −∇ΦRoche − 2urot ×Ω, (2-4)

where urot is the velocity vector in the rotating frame. The first term on the RHS is the force
generated by the Roche potential. The second term is the Coriolis force. Because the Coriolis
force is always perpendicular to the particle velocity, it does not contribute to the binding energy.

The mass ratio is defined as

q :=
M2

M1

. (2-5)

Figure 2.1 shows contours of the Roche potential for a binary of mass ratio q = 0.4. The three
saddle points, referred to as L1, L2, and L3, and the two maxima, referred to as L4 and L5,
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Fig. 2.1.— Contours of the Roche potential for a binary of mass ratio q = 0.4. L1, L2, and L3
are saddle points. L4 and L5 are local maxima. C1 and C2 are local minima and correspond to
the location of the center of mass of each star. The Roche potential at the outermost contour is
the same as the Roche potential at L1.

are called the “Langrangian points”. The L1 point is the “inner Lagrangian point.” The “Roche
lobe” of each star is defined as the area around the star in which the force generated by the
Roche potential, −∇ΦRoche, points towards the star. In order for a ballistic particle within a
star’s Roche lobe to escape the from the Roche lobe, its total energy must satisfy εrot > ΦL1,
where ΦL1 is the Roche potential at the L1 point.
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2.2. Roche Lobe Overflow

Under the assumption that the stars are spherically symmetric, the Roche potential is correct
for all points outside the stars’ boundaries. We can approximate a spherical star using the
polytropic equation of state,

Ppoly := Kρ1+ 1
n , (2-6)

where Ppoly is the pressure, K is the polytropic constant, ρ is the mass per unit volume, and n
is the polytropic index. Equation (2-6) and the equation of hydrostatic balance,

∇Ppoly +∇ΦRoch = 0, (2-7)

leads to
d

dr

[
(n+ 1)Kρ

1
n + Φ

]
= 0, (2-8)

where r is the distance from the center of the polytrope. Stellar models of this kind obey the
mass-radius relationship

R ∝M
1−n
3−n , (2-9)

where R is radius of the polytrope and M is its mass (Padmanabhan (2000)). Chandrasekhar
(1939) shows that using equation (2-8) with n = 3

2
is a good approximation for low mass white

dwarfs. For this n, R ∝M− 1
3 and mass varies inversely with radius.

When one star is larger than its Roche lobe, matter falls under gravity from the L1 point
towards its companion star. This is known as Roche lobe overflow (RLOF). Although the Roche
lobe is not spherical, we may construct a rough model by treating the donor star as a polytrope
with a radius equal to the “effective radius” of the Roche lobe. The effective radius of the Roche
Lobe is the radius of the sphere which has the same volume as the Roche lobe. Kopal (1959)
gives an approximation for the radius of a Roche lobe filling n = 3

2
polytrope,

R2

a
≈ 2

3
3
4

(
M1

M1 +M2

) 1
3

, (2-10)

where M2 is the mass of the donor, M1 is the mass of the accretor, R2 is the radius of the donor,
and a is the orbital separation.

The in-falling matter stream possesses the specific angular momentum of matter at the L1
point and hence the stream will not flow in a straight line between donor and accretor. If the
radius of the accretor is not large enough, the in-falling matter will miss the accretor on its first
pass and instead orbit the accretor. As matter from the donor accumulates around the accretor,
a disc is formed. The “circularization radius,”

Rcirc

a
:= (1 + q) (0.500− 0.227 log q)4 , (2-11)

(see Frank et al. (2002)), is approximately the smallest distance the in-falling matter will pass by
the accretor. Assuming both stars have the same polytropic constant, K, and using equations
(2-9), (2-10), and (2-11), we can derive the relation

2

3
3
4

(
q2

1 + q

) 1
3

= (1 + q) (0.5− 0.227 log q)4 . (2-12)
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This equation has a single real root at q ≈ 0.35. Under this simplified analytic approach,
the accretion stream directly impacts the accretor if q & 0.35. If the accretor cannot absorb
the accreted mass quickly enough, however, a torus of material builds up along the accretor’s
equator. This torus can deflect the accretion stream, causing it to detach from the surface of the
accretor. Guillochon et al. (2010) found this to occur in a three-dimensional SPH simulation of
a DWD with q = 0.5. The q = 0.4 runs described in §8 also exhibit this effect.

The dynamical time of a star with radius R and mass M , as given by Binney & Tremaine
(1987), is

td :=

√
R3

4GM
. (2-13)

This is the time required for a point mass to drop from the surface of a sphere of uniform density
to its center under gravity. Disturbances from equilibrium propagate over the star approximately
on this time scale. Using equations (2-2), (2-10), and (2-13), we can derive a relationship for
the ratio of the orbital period to the dynamical time scale of a Roche lobe filling donor with
polytropic index n = 3

2
,

tp
td
≈ 20

√
1 + q−1. (2-14)

At a minimum, therefore, there are 20 dynamical timescales per orbit. As discussed in §6.7,
this means a numerical simulation must be able to accurately evolve over many hundreds of
dynamical time scales for models that evolve for dozens of orbits.

2.3. Stability of Mass Transfer

For an n = 3
2

polytrope, as the donor loses mass to the accretor, the donor becomes larger
due to its inverse mass-radius relationship. The Roche geometry will also change. If the size of
the donor Roche lobe relative to the donor grows smaller with time, the donor reaches deeper
contact and the mass transfer rate increases. Conversely, if it grows larger with time, the mass
transfer rate will decrease. In the former case, if the Roche lobe continues to shrink, the mass
transfer is unstable. In the latter case, the mass transfer is stable and can continue for long
periods.

The orbital momentum of the binary, given by equation (4.13) of Frank et al. (2002), is

Jorb := M1M2

√
Ga

M1 +M2

. (2-15)

Using equations (2-9), (2-10), and (2-15), we can derive the relation

Ṁ2

M2

:=
J̇orb/Jorb

2
3
− qβ − 1

3
q
q+1

(1− β)
, (2-16)

where β is defined such that
Ṁ1 := −βṀ2. (2-17)

If the mass transfer is driven by gravitational radiation, Jorb will be negative. Since mass transfer
from M2 to M1 implies Ṁ2 < 0, the denominator of equation (2-16) must be positive and,
therefore, the condition

qβ +
1

3

q

q + 1
(1− β) <

2

3
, (2-18)
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must be satisfied for stable mass transfer. The highest value of q which satisfies equation (2-
18) is referred to as the critical mass ratio, qcrit. For conservative mass transfer, where β = 1,
equation (2-18) reduces to q < 2

3
and qcrit = 2

3
. Note that this analysis assumes that the binary is

synchronously rotating. The mass transfered from donor to accretor carries angular momentum
with it and spins up the accretor. As discussed by Marsh et al. (2004) and Gokhale et al. (2007),
if the tidal interaction between donor and accretor is not sufficiently efficient at returning angular
momentum to the orbit, for conservative mass transfer, qcrit, can in fact be lower than 2

3
. This

value is therefore only an upper-bound, qcrit ≤ 2
3
. When β < 1,

qcrit =

√
4β2 − 4β + 25 + 1− 2β

6β
. (2-19)

For β ≥ 0, the critical mass ratio, qcrit, increases with a decrease in β. Therefore, under the
assumption that mass lost from the system does not significantly interact with the binary as it
escapes, mass loss has a stabilizing effect on the mass transfer.

2.4. The Eddington Limit

At the onset of DWD mass transfer, the accretion luminosity very likely will exceed the
classical Eddington luminosity limit (Webbink (1984), Iben (1988)). This luminosity is

LEdd =
4πcGM1mp

σT
, (2-20)

(see Frank et al. (2002)) where σT is the Thomson cross section for electron scattering, mp is
the mass of a proton, and c is the speed of light. For spherically symmetric accretion onto a
spherical body, the Eddington luminosity is the luminosity which is sufficient to balance the
force of gravity. Because both the radiative luminosity and the force of gravity drop as r−2 under
spherical symmetry, LEdd is constant in space.

The rate at which energy is lost from the donor by mass transfer is accretion luminosity

Lacc := −Ṁ2 (ΦL1 − Φ∗) , (2-21)

where ΦL1 and Φ∗ are the Roche potentials at the L1 point and the surface of the accretor,
respectively. When the mass transfer rate onto the accretor exceeds the critical value,

Ṁcrit =
4πcGM1

σT (ΦL1 − Φ∗)
, (2-22)

the accretion luminosity exceeds the Eddington luminosity. The force of radiation then exceeds
the force of gravity, and mass can be driven away. If we assume that the mass lost from the
system is driven from the surface of the accretor to infinity with just enough energy to escape,
the energy loss rate due to mass loss is

Lloss := (1− β)Ṁ2Φ∗. (2-23)

Energy conservation requires Lacc = LEdd +Lloss. Using this fact and equations (2-21) and (2-23),
we arrive at equation (21) from Han & Webbink (1999),

−Ṁ2 (ΦL1 − Φ∗) = (1− β) Ṁ2Φ∗ + LEdd. (2-24)
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Note that when the accretion is highly super-Eddington and Lacc � LEdd, β ≈ ΦL1/Φ∗.
For a realistic interacting DWD the accretion flow is far from spherical and the radiation

from accretion may be able to escape the flow before significantly interacting with it. In this case
the rate of accretion onto the accretor exceeds −βṀ2. The simplistic assumption that all mass
lost from the system is driven from the surface of the accretor to infinity is also unrealistic. Lost
mass may have energy in excess of what is required for escape to infinity. Conversely, a significant
fraction of the mass removed from the accretion flow by radiative forces may not have enough
energy to escape the system and remain in a common envelope. The frictional forces present
in the common envelope serve to drive the binary closer together. To account for the effects of
radiative transport in the complex geometry of DWD accretion, potentially in the presence of
a common envelope, requires numerical simulations that can couple radiation to hydrodynamic
flows.
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3. Approximations to the Equation of Radiation Transport

The derivation of the equation of radiative transfer is similar to the derivation of the equa-
tions for fluid dynamics in that the radiation is assumed to approximate a continuum for the
spatial scales involved. That is, it is assumed that the fluid is made up of a sufficient density
of particles that it is possible to form a volume large enough to contain enough particles that
statistical deviations are insignificant, but at the same time, small enough that the mathematics
of continuous variables can be applied. Such a volume is a referred to as a “fluid element”. In
the fluid approximation for matter, it is assumed that for any given fluid element the momentum
of the particles in the element consists of a component which is stochastic in its distribution
(i.e. the pressure) plus a component consisting of a momentum in only one direction (i.e. the
bulk momentum). This assumption is reasonable because with a sufficient number of particles
per fluid element, any non-thermal momentum distribution, other than the bulk motion of the
fluid element, will quickly thermalize. The particles in a photon gas, however, do not react with
one another, and therefore any arbitrary distribution of momenta is possible for a given fluid
element. Much of the following is found in reference works on radiation hydrodynamics such as
Castor (2004) and Mihalas & Mihalas (1984).

3.1. The Radiative Transport Equation

The radiative intensity, Iν = Iν(x,ω, ν, t), is defined as the energy flow per unit time per
unit frequency per unit surface angle in a direction defined by the unit vector ω, at a frequency ν,
position in space x, and time t. The integrated flow rate out of a fluid element contained by the
surface S enclosing a volume is

∫
S
cωIν ·da, where da is the differential area vector perpendicular

to the surface S. Using Green’s theorem this may be rewritten as
∫
V
∇ · cωIνdV . The total

time rate of change of Iν for a fluid element will include the flow of radiation through the surface
of the element as well as any sources or sinks of radiation within the element. The equation of
radiative transfer can thus be written as

1

c

∂

∂t
Iν + ω · ∇Iν = jν − kνIν , (3-1)

where jν and kν are the emissivity and absorption coefficient. Note that the direction vector, ω,
can go inside or outside of the ∇, since ω does not depend on x. The opacity, kν , is in units of
cross section per unit volume.

Unlike the four-dimensional fluid equations, the equation for radiative transfer is seven-
dimensional. Like the fluid equations, there are three spatial dimensions, x, and one temporal
dimension, t. There are an additional three dimensions in the momentum vector, hνω/c, where
h is Planck’s constant. This vector can be thought of as consisting of two directional components
and one photon frequency component.

The moments of the radiative intensity are defined as integrals over all angles of the intensity
multiplied by a power of the angular direction vector ω. The first three moments are the radiation
energy density

Eν =
1

c

∫
Ω

IνdΩ, (3-2)

the radiative flux

Fν =

∫
Ω

IνωdΩ, (3-3)
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and the radiative stress tensor

Pν =
1

c

∫
Ω

IνωωdΩ. (3-4)

Note that the bold faced terms are vectors with the exception of Pν , which is a is a 2nd rank
tensor. Higher order moments can be similarly defined. The 0th moment has one independent
component, the 1st has three independent components, the 2nd has five, and the nth moment has
2n+ 1 independent components.

Equation (3-1) can be similarly integrated. The 0th and 1st moment equations are

∂

∂t
Eν +∇ · Fν =

∫
Ω

(jν − kνIν)dΩ, (3-5)

1

c

∂

∂t
Fν + c∇ ·Pν =

∫
Ω

(jν − kνIν)ωdΩ. (3-6)

In general, jν and kν are functions of ω. By choosing the proper frame of reference, however, it
is possible to make jν and kν independent of ω. For this special case we can use equations (3-2)
and (3-3) to write equations (3-5) and (3-6) as

∂

∂t
Eν +∇ · Fν = 4πjν − ckνEν , (3-7)

1

c

∂

∂t
Fν + c∇ ·Pν = −kνFν . (3-8)

Note that since jν is not a function of ω in this case, for odd multiples of ω, jν integrates to zero.
Higher moment equations can be derived, but the set cannot be closed without an infinite

number of moment equations. This is because the nth moment equation contains terms with the
n+ 1th moment. If the set can be closed by making approximating assumptions about one of the
moments, it is possible to derive a set of equations which do not depend on ω. This eliminates
the two dimensions contained in ω, reducing the single seven-dimensional equation (3-1) to a set
of five-dimensional moment equations.

3.2. Interaction Between Radiation and Gas

The conventional names “emissivity coefficient” for jν and “absorption coefficient” for kν
are misnomers as each may represent a combination of sources and sinks. More accurately, jν
represents all sources and sinks that do no depend on Iν , and kνIν represents sources and sinks
that depend linearly on Iν . Thermal emission does not depend on Iν and therefore appears in
jν . The rate of stimulated emission in a given direction, ω, however, depends on the amount
of radiative intensity available in that direction. Stimulated emission, therefore, is actually
accounted for in the absorption coefficient, kν . Thomson scattering is treated as an absorption
and immediate re-emission of a photon. Since the absorption rate in this case is proportional to
Iν , absorption due to scattering appears in kν . The immediate re-emission is treated as isotropic
in the rest frame of the fluid, and therefore this opposing effect is accounted for in jν .

A simplifying assumption is that of local thermodynamic equilibrium (LTE). Under LTE,
the distribution of emitted photons in a fluid element follows Planck’s law. This assumption
usually holds for optically thick media but can fail in regions where the gas is diffuse. If thermal
emission is the only source of emissivity in jν , this allows the emissivity to be written as

jν = kνBν , (3-9)
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where Bν is the frequency dependent Planck function. Scattering may be added as a second
term, σsEν , where σs is the scattering cross section.

The radiation field couples to the gas through exchange of energy and momentum. To
conserve energy and momentum, the source terms that appear on the RHS of the 0th and 1st

moment equations for the radiative intensity must appear as opposing terms on the RHS of the
0th and 1st moment equations for the gas. As in Castor (2004), we define the four-vector (g0,g)
as the integral of terms on the RHS of equations (3-5) and (3-6),

g0 =

∫ ν

0

∫
Ω

(jν − kνIν)dΩdν, (3-10)

g =
1

c

∫ ν

0

∫
Ω

(jν − kνIν)ndΩdν. (3-11)

For the special case where jν and kν are not functions of ω, these terms are

g0 = 4πj − cκEER, (3-12)

g = −χ
c
F, (3-13)

where ER, j, and F are the respective integrals over frequency of Eν , jν , and Fν . The quantities
κE and χ are the energy mean and flux mean opacities, defined respectively as

κE :=
1

ER

∫ ∞
0

kνEνdν, (3-14)

χ :=
1

|F|

∫ ∞
0

kν |Fν |dν. (3-15)

To conserve energy and momentum, we subtract g0 and g from the RHS of the gas fluid energy
and momentum equations, respectively (see equations (4-2) and (4-3)).

3.3. Approximations to the Transport Equation

Deterministic integration of seven-dimensional problems of any useful size is outside the
capability of even the most powerful computers. Therefore, in order to solve equation (3-1)
numerically, sacrifices must be made. There are three standard approaches to this problem:

1. Use non-deterministic methods. Using Monte-Carlo techniques it is possible to solve the full
seven-dimensional problem (e.g. Wolf et al. (1999), Nayakshin et al. (2009)). Although in
principle these techniques solve the full equation, stochastic noise can be a limiting factor.

2. Reduce the number of spatial and/or directional dimensions by choosing problems with
symmetry. For example, the VULCAN/2D code (Livne et al. (2004), Hubeny & Burrows
(2007), Ott et al. (2008)), treats the gas as axi-symmetric, reducing the problem to six-
dimensions.

3. Eliminate the directional terms entirely by using the moment equations (e.g. equations
(3-7) and (3-8), closing them by making assumptions about the highest order moment
used. Most codes that use this method evolve either the first moment equation or the first
and second moment equations. The HERACLES code of González et al. (2007) use the
latter approach. The Zeus-MP2 code of Hayes et al. (2006), the FLASH code of Fryxell
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et al. (2000), as well as the code described in this paper, uses the former approach. This
approach, known as the FLD approximation, is rooted in the diffusion approximation for
radiation transport.

The diffusion approximation rests on the assumption that the mean free path of a photon is
small compared to the spatial scale of the problem. That is, 1/kν < l, where l is the length scale
of the problem. This assumption holds true for many astrophysical phenomena, for example, in
the interiors of stars. Rearranging equation (3-1), we obtain

Iν =
jν
kν
− 1

kν

1

c

∂

∂t
Iν −

1

kν
ω · ∇Iν . (3-16)

A 0th order approximation for Iν is jν/kν . Substituting this into the above equation yields a 1st

order approximation,

Iν =

(
jν
kν
− 1

kν

1

c

∂

∂t

jν
kν

)
−
(

1

kν
ω · ∇ jν

kν

)
. (3-17)

For even moments, the second term on the RHS vanishes under integration of all angles and the
first term vanishes for odd moments. The first three moments are

Eν = 4π
jν
kν
− 4π

kν

1

c

∂

∂t

jν
kν
, (3-18)

Fν = − 1

kν
∇ jν
kν
, (3-19)

Pν =
4π

3

jν
kν

I− 4π

3kν

1

c

∂

∂t

jν
kν

I, (3-20)

where I is the identity 2nd rank tensor. The tensor Pν can be expressed in terms of Eν using
equation (3-18) to get

Pν =
1

3
EνI. (3-21)

Substituting this into equation (3-8) we obtain,

∂

∂t
Fν +

1

3
c2∇Eν = −cχFν . (3-22)

Equation (3-22) with equation (3-7) form a closed set. This is known as the Eddington approx-
imation. Under the assumption that the second term on the left hand side (LHS) of equation
(3-22) and the RHS are much larger than the first term on the LHS, equation (3-22) becomes

Fν = − c

3χ
∇Eν . (3-23)

This is the diffusion approximation. Since Fν can now be expressed without time derivatives, we
only need to evolve equation (3-5) in time.

Numerically integrating the diffusion approximation for radiation with the normal gas fluid
equations has two problems. First, jν and kν are in general functions of ω, but the diffusion
approximation requires jν and kν be independent of ω. Secondly, the diffusion approximation
allows for arbitrarily high propagation speeds, which is of course, unphysical.

Many radiative processes, such as absorption and thermal emission, can be accounted for
with absorption and emission coefficients that are independent of ω, so long as they are expressed
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in the rest frame of the fluid. If the momentum distribution of particles from a source is isotropic
in the rest frame, it is shifted towards the source’s direction of travel in the frame moving with the
source. We can make jν and kν independent of ω with the appropriate coordinate transformation.
This reduces the dimensionality of the radiative transfer equation to five: three spatial, one time,
and one frequency dimension. Integrating the equations over ν further reduces the problem’s
complexity to four dimensions. In the “co-moving” frame approach, jν , kν , Iν , and the moments
of Iν are taken in the frame co-moving with the fluid. This is the approach we implement in
our new code. Another possible method is the “mixed frame approach”, in which jν and kν are
taken in the co-moving frame but Iν and its moments are taken in the lab frame (Krumholz et al.
(2007)).

To transform to the co-moving frame, we perform a Lorentz transformation on the variables
ν, ω, Iν , jν , and kν . The following are taken from Castor (2004):

Iν = (
ν

νo
)3Iνo; (3-24)

jν = (
ν

νo
)2jνo; (3-25)

kν = (
νo
ν

)kνo; (3-26)

ν = νo(1 + ωo ·
u

c
); (3-27)

ω =
u
c

+ ωo

(1 + ωo · uc )
. (3-28)

The “o” subscripts refer to the co-moving frame. The velocity u refers to the velocity of the
co-moving frame. This is the same as the velocity of the fluid. The last two equations are not
exact but are accurate to O(u

c
). There is nothing to be gained from retaining terms higher than

O(u
c
) because the gas fluid equations we are using are non-relativistic and hence only accurate

to O(u
c
) themselves.

Substituting equations (3-24) through (3-28) into equation (3-1), integrating equation (3-1)
over ωo, and then integrating over the frequency, ν, leads to the gray field moment equations for
ER and F in the co-moving frame. These are

∂

∂t
ER +∇ · (ERu) +∇ · F +∇u : P +

2a

c2
· F = 4πj − cκEER, (3-29)

∂

∂t
F +∇ · (Fu) + c2∇ ·P + a ·P + aER +∇u · F = −cχF, (3-30)

where a is defined as ∂u
∂t

(Castor (2004)).

3.4. Flux-Limited Diffusion

By substituting the frequency integrated versions of equations (3-23) and (3-21) into equation
(3-29) we have a single four-dimensional equation for the radiation energy density. The problem
is that the diffusion approximation allows for unphysical propagation speeds. The radiative flux,
F, is the total amount of energy flowing through a unit of area per unit time. In the diffusion
approximation, at a given point in space, all the radiative energy is traveling in the same direction.
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The speed of propagation of this energy must satisfy F = uEE, where uE is the propagation
velocity of the radiation energy. Using this fact, and rearranging equation (3-23), we get

uE = − c

3χER
∇ER =

1

3
cΘnE, (3-31)

where nE := −∇ER/ |∇ER| is the direction of propagation for the radiation. The quantity Θ is
defined as

Θ :=
|∇ER|
χER

. (3-32)

Note that if Θ > 3 the energy propagates at super-luminal speeds. Not only is this physically
implausible, but it can lead to numerical problems as well, as the maximum stable time step size
depends in part on the maximum speed of propagation for the radiation.

To get around this problem, Levermore & Pomraning (1981) developed the concept of the
radiative “flux-limiter”. The resulting equations are the FLD approximation. The idea is to
modify equation (3-23) so that it goes to the limit of F = cEnE when Θ gets very large. Defining
ΛE as the flux limiter, we can rewrite equation (3-23) as

F = −
(
cΛE

χ

)
∇ER. (3-33)

The flux limiter, ΛE, is chosen as a function of Θ that satisfies limΘ→0 ΛE = 1/3 and limΘ→∞ ΛE =
1/Θ. There are an infinite number of possibilities for ΛE. Two very simple forms are ΛE =
1/max(3,Θ) or ΛE = 1/(3 + Θ). In Levermore & Pomraning (1981), a flux limiter is derived
directly from the radiative transfer equation itself, under the assumption that the normalized
intensity, ψν = Iν/(cEν), is a slowly varying function in space and time. That is,

∂

∂t
ψν + ω · ∇ψν := 0. (3-34)

The result, equation (22) from Levermore & Pomraning (1981), is

ΛE =
1

Θ

[
coth (Θ)− 1

Θ

]
. (3-35)

A rational approximation to this function is

ΛE =
2 + Θ

6 + 3Θ + Θ2
. (3-36)

We see both limiters provide the proper limiting behaviors, specifically,

lim
Θ→0

F = − c

3χ
∇Eν , (3-37)

lim
Θ→∞

F = cERnE. (3-38)

Equations (3-37) and (3-23) are identical, as they should be; and equation (3-38) corresponds to
the case of unidirectional free-streaming radiation, that is, I(x, t,ω) = cERδ(|ω − nE|), where δ
is the Dirac delta function. Integrating this last expression over all angles for the 2nd moment
yields

P = ERnEnE. (3-39)
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Thus to accommodate the free-streaming limit, we must also modify equation (3-21). The solution
employed in our new code is the same as in Hayes et al. (2006) and others. This is

P =
1

2
(1− f)IER +

1

2
(3f − 1)nEnEER, (3-40)

where f = ΛE + (ΛEΘ)2. This definition for the so called Eddington tensor satisfies equation
(3-21) in the diffusive limit and equation (3-39) in the free- streaming limit.

Since we are only interested in the regime where u/c << 1, the 2a · F/c2 term may be
dropped from equation (3-29) to further simplify the problem. Also assuming LTE by using
equation (3-9), equation (3-29) becomes

∂

∂t
ER +∇ · (ERu) +∇ · F +∇u : P = 4πκpBp − cκEER. (3-41)

The quantity, Bp, is the Planck function integrated over frequency,

Bp :=
σ

π
T 4, (3-42)

where T is the temperature of the gas, σ is the Stefan-Boltzmann constant, and the Planck mean
opacity, κp, is

κp =
1

Bp

∫ ∞
0

kνBpdν. (3-43)

We use equation (3-41) instead of equation (3-29) to represent the gray field moment equation
for ER in the new code.

The FLD approximation has at least two problems in the free-streaming limit. The first
is that it allows for only unidirectional radiation flows. For example, two colliding streams of
radiation traveling in different directions will produce a combined stream traveling between the
two directions, whereas in the real world the two streams would simply pass right through one
another and continue along their original paths. The second problem is that, since the direction
of flow is defined by the gradient of the energy distribution, it is not possible to form realistic
shadows. As soon as a shadow forms, radiation diffuses into the shadow from its edge. The major
advantage that the FLD approximation has over the ordinary diffusion approximation is that the
escape of radiation from optically thick media is more accurately handled. At the surface of a
star, for instance, radiation can flow outwards from the boundary at arbitrarily high speeds in
the diffusion approximation. In the FLD approximation, the propagation speed of radiation from
that boundary, relative to the fluid, is limited to the speed of light.
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4. The Model Equation Set1

As with our previous codes, our new code models the DWD system as a self-gravitating invis-
cid fluid, governed by the equations of Newtonian gravity coupled to the classical hydrodynamic
equations for density, momentum, and gas energy transport. Our earliest codes assumed adia-
batic flow and hence did not properly account for the conversion of kinetic energy into thermal
energy at shock fronts (i.e. Motl et al. (2002)). This code, as well as another of our recent codes
(Even (2010)), properly accounts for entropy generation at shock fronts. This is crucial for the
proper modeling of super-Eddington accretion flows, as the generation of heat at the accretion
stream’s point of impact on the accretor is responsible for the conversion of accretion luminosity
into radiative luminosity. Here we model the gas temperature and pressure based on the ideal gas
equation of state. The most important additions to the new code are radiation energy transport
and the coupling of radiation energy to the momentum and gas energy. These physical processes
are the bare minimum required to simulate super-Eddington accretion. They can account for:
(1) the conversion of kinetic energy into thermal energy and thermal energy into radiation energy
at the accretion stream’s point of impact; (2) the transport of radiation energy through space;
and (3) the interaction of the resulting radiation energy flux on the momentum of the accretion
stream. At the time of this writing, we are unaware of of any three-dimensional simulations of
DWD mass transfer which simulate an entire DWD self-consistently and incorporate radiation
transport for the entire model. Guillochon et al. (2010) combined an SPH code and the FLASH
(Fryxell et al. (2000)) code to simulate DWD mass transfer. The FLASH code models radiative
transport, as well as nuclear physics, however, it was used to model only the accretion stream and
accretor. The boundary conditions for the FLASH code portion of the simulation were set based
on the results of an SPH simulation of the complete binary. Potter (2009) suggested that the
DJEHUTY code (Bazán et al. (2003)), which incorporates radiation transport, could be modified
to simulate the common envelope phase of DWD mass transfer, however, we have be unable to
find any evidence in the literature that the DJEHUTY code has since been modified and used
for this purpose.

4.1. Governing Equations

Fundamentally we adopt the same basic set of dynamical governing equations as presented
by Hayes et al. (2006) but with the magnetic field set to zero. Specifically, by taking the Eulerian
form of equations (1) through (4) in Hayes et al. (2006), adding rotational terms and removing
contributions from the magnetic field, our adopted governing equations are:

∂

∂t
ρ+∇ · ρu = 0; (4-1)

∂

∂t
ρu +∇ · (ρuu + pI) = −ρ∇Φ +

χ

c
F− 2Ω× ρu− ρΩ× (Ω× r) ; (4-2)

∂

∂t
e+∇ · eu + p∇ · u = −4πκpBp + cκEER; (4-3)

∂

∂t
ER +∇ · ERu +∇ · F + P : ∇u = 4πκpBp − cκEER. (4-4)

1A substantial portion of this section and its subsections have been reproduced from Marcello & Tohline
(2011) with the permission of the AAS (see Appendix D).
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The fluid velocity, u, is defined in the rotating frame. The internal gas energy density is e. The
gravitational potential, Φ, is determined from Poisson’s equation,

∇2Φ = 4πGρ, (4-5)

where G is the gravitational constant. The gas pressure, p, is given by,

p = (γ − 1) e, (4-6)

where γ is the ratio of specific heats. We compute T by using equation (4-6) and the ideal gas
equation,

p =
R
µ
ρT, (4-7)

where µ is the mean molecular weight and R is the gas constant. We determine Bp using T in
equation (3-42).

The radiative flux, F, is given by the FLD approximation of equation (3-33). The flux mean
opacity, χ, energy mean opacity, κE, and Planck mean opacity, κp, are formally given by equations
(3-15), (3-14), and (3-43), respectively. In Appendix A we describe how we treat the opacities in
the code. We use equation (3-35) for the flux limiter, ΛE. The symmetric radiative stress tensor,
P, is given by equation (3-40). The propagation speed of the radiation energy density under
this simple diffusion approximation is not bounded by the speed of light. However, the use of the
flux limiter, ΛE, ensures that this propagation speed never exceeds |u|+ c. Although physically
we expect that the propagation speed never exceeds c, the elimination of higher order terms in
the FLD approximation can, in principle, result in super-luminal radiation transport. At shock
discontinuities, kinetic energy is converted into internal gas energy so updating e via equation
(4-3) will produce lower internal energies than physically expected. For this reason we generally
prefer to update e by first evolving the total gas energy density,

EG := e+
1

2
ρu2, (4-8)

then subtracting 1
2
ρu2 from EG to obtain e. Note that EG is defined in the rotating frame.

The equation governing the time-evolution of EG is obtained by dotting u into equation (4-2),
realizing that,

u ·
(
∂

∂t
ρu +∇ · ρuu

)
=

1

2

(
∂

∂t
ρu2 +∇ · ρu2u

)
, (4-9)

and adding it to equation (4-3). Specifically, we obtain

∂

∂t
EG +∇ · (EG + p) u = −ρu · ∇Φ + u · χ

c
F− 4πκpBp + cκEER − ρu · Ω× (Ω× r) . (4-10)

Equations (4-10) and (4-3) should both correctly describe the time-evolution of e in regions of
space where u is continuous but, in the vicinity of shocks, only equation (4-10) provides the
correct description. Hence, we replace equation (4-3) with equation (4-10) in our principal set of
governing equations. However, due to the numerical issues described below in connection with
equation (5-25), we adopt a dual energy formalism (Bryan et al. (1995)) and evolve equation
(4-3) independently.
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4.2. Momentum and Energy Conservation

It is useful to examine equation (4-2) to understand how each term might contribute to mo-
mentum conservation globally. Integrating equation (4-2) over all space, and using the divergence
theorem, ∫

V

∇ · v dV =

∫
S

v · da (4-11)

one can show that, when the density and pressure go to zero at large distances from the coordinate
origin, the sum of momentum over all space is not altered by the term ∇ · (ρuu + pI). Using
equation (4-5) and following Shu (1992), we can rewrite the gravitational term as,

ρ∇Φ =
∇2Φ

4πG
∇Φ =

1

4πG
∇ ·
(

gg − 1

2
|g|2 I

)
, (4-12)

where the gravitational acceleration is g := −∇Φ. Since equation (4-12) is zero when ρ = 0,
momentum will be conserved within any volume containing all the mass of an isolated system.
Using equation (3-33), we rewrite the radiative force term as

χ

c
F = −ΛE∇ER = −∇ · ΛEERI + ER∇ΛE. (4-13)

In the diffusion limit, Θ → 0, ΛE → 1
3
, and ∇ΛE → 0, therefore the radiation term conserves

momentum within any volume in the diffusion limit. Outside of this limit the gas exchanges net
momentum with the radiation field. Because we do not evolve the radiative flux F separately, it
is not possible for our method to account for this exchange in a manner which generally conserves
momentum. Finally, defining the symmetric stress-energy tensor,

T := ρuu + gg +

(
p+ ΛEER −

1

2
g2

)
I, (4-14)

we can rewrite equation (4-2) as,

∂

∂t
ρu +∇ ·T = ER∇ΛE − ρΩ× (2u + (Ω× r)) . (4-15)

Written in this form, all the “source” terms, that is, all the terms that have been grouped together
on the right hand side (RHS), will contribute to net changes in the sum of momentum over all
space. Terms on the LHS are in conservative form.

Motl et al. (2002) have argued that a more accurate dynamical treatment will result from
the adoption of an entropy tracer. By defining the entropy tracer,

τ := e
1
γ , (4-16)

in place of the internal energy density, the p∇ · u term no longer appears as a source. In terms
of τ equation (4-3) becomes,

∂

∂t
τ +∇ · τu =

1

γτ γ−1
(−4πκpBp + cκEER) . (4-17)

As in equation (4-15), we have written equation (4-17) in a form that places the non-conservative
source terms on the RHS. The term that appears in this case accounts for the exchange of entropy
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with the radiation field. As discussed above in the context of equation (4-10), however, in the
vicinity of shocks entropy is produced and equation (4-17) does not hold. Hence, through a dual
energy formalism (see the discussion associated with equation (5-25)), we will rely on equation
(4-10) instead of equation (4-17) in the presence of shocks.

It is worthwhile to ask what expression for the energy density will serve better than EG
to describe total energy conservation when integrated over the volume of our simulated system.
Using equation (4-1), the gravitational term on the RHS of equation (4-10) can be written as

ρu ·∇Φ = ∇·ρΦu−Φ∇·ρu = ∇·ρΦu+Φ
∂

∂t
ρ =

∂

∂t

1

2
ρΦ+∇·ρΦu+

1

2
Φ
∂

∂t
ρ− 1

2
ρ
∂

∂t
Φ. (4-18)

Also, using equation (4-1) and the definition,

Φrot := −1

2
|Ω× r|2, (4-19)

we can rewrite the centrifugal term as,

ρu ·Ω× (Ω× r) = −ρu ·∇1

2
|Ω× r|2 = ∇·ρΦrotu−Φrot∇·ρu =

∂

∂t
ρΦrot +∇·Φrotρu. (4-20)

Defining,

Econ := EG +
1

2
ρΦ + ρΦrot, (4-21)

equation (4-10) can be written as

∂

∂t
Econ +∇ ·

(
Econ + p+

1

2
ρΦ

)
u +

1

2
Φ
∂

∂t
ρ− 1

2
ρ
∂

∂t
Φ = u · χ

c
F− 4πκpBp + cκEER. (4-22)

Note that Econ represents a sum of kinetic, internal, and potential gas energies. Using equation
(4-5) and Green’s theorem, we see that the integral over all space of the last two terms on the
LHS of equation (4-22) gives,∫

V

(
1

2
Φ
∂

∂t
ρ− 1

2
ρ
∂

∂t
Φ

)
d3r =

1

8πG

∫
V

(
Φ∇2 ∂

∂t
Φ−

(
∂

∂t
Φ

)
∇2Φ

)
d3r =

1

8πG

∫
S

(
Φ∇ ∂

∂t
Φ−

(
∂

∂t
Φ

)
∇Φ

)
· da. (4-23)

This quantity will go to zero at large distances from the origin for a finite mass distribution. As
in equations (4-15) and (4-17), we have written equation (4-22) with conservative terms on the
LHS and non-conservative source terms on the RHS. It should therefore be clear that, within
the radiation diffusion limit, Econ is a conserved quantity. Note that the contribution to Econ

from the gravitational potential is 1
2
ρΦ (instead of ρΦ) due to the self interactive nature of the

gravitational field (see equation (2-19) in Binney & Tremaine (1987)).
Equation (4-10) can also be written as

∂

∂t
Eloc +∇ · (Eloc + p) u = ρ

∂

∂t
Φ + u · χ

c
F− 4πκpBp + cκEER, (4-24)

where we have defined
Eloc := EG + ρΦ + ρΦrot. (4-25)
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For a non-self gravitating fluid, with Φ fixed in time, and absent the radiation terms, Eloc will be
a globally conserved quantity. We may consider equation (4-24) to consist of three parts: (1) the
LHS, describing the hydrodynamic flow of a “locally conserved” energy, Eloc; (2) a contribution to
this energy from the first term on the RHS, ρ ∂

∂t
Φ, which is due to the global effect of a time varying

gravitational potential; and (3) a non-conservative contribution from the remaining terms on the
RHS, due to the interaction with the radiation field. We describe Eloc as “locally conserved”
because it includes the kinetic, internal, and potential energy that is physically carried by the
local flow of the fluid. The difference between Econ and Eloc, −1

2
ρΦ, is carried by the global flow

of energy between non-adjacent fluid elements due to Newtonian gravity.
Defining the total energy density as

Etot := Econ + ER, (4-26)

we can write the sum of equations (4-10) and (4-4) as

∂

∂t
Etot +∇·

[(
Etot + p+

1

2
ρΦ

)
u + P · u

]
+

1

2
Φ
∂

∂t
ρ− 1

2
ρ
∂

∂t
Φ = u · (∇ ·P− ΛE∇ER) . (4-27)

Again, we have placed non-conservative source terms on the RHS and conservative terms on the
LHS. Physically, we should expect the quantity Etot to be globally conserved, as it is the volume
integral over all space of all energy densities: kinetic energy; internal heat energy; gravitational
potential energy; rotational potential energy; and radiation energy densities. In the diffusion
limit the terms on the RHS will cancel one another, resulting in conservation of Etot. Outside of
the diffusion limit the same is not generally true. This is due to the fact that equation (4-4) is a
zeroth order approximation to the relativistic radiative transport equation. However, since the
overwhelming majority of the energy contained in our models will be in the diffusion limit, we
do not expect this will have a significant effect.

In a cylindrical coordinate system rotating about the z axis with constant frequency Ω the
components of equation (4-15) are:

∂

∂t
sR +∇ ·TR = ER

∂

∂R
ΛE +

Tφφ
R

+ 2ρΩuφ + ρRΩ2; (4-28)

∂

∂t
sφ +∇ ·Tφ = ER

1

R

∂

∂φ
ΛE −

TRφ
R
− 2ρΩuR; (4-29)

∂

∂t
sz +∇ ·Tz = ER

∂

∂z
ΛE; (4-30)

where sR := ρuR, sφ := ρuφ, and sz := ρuz. The vertical angular momentum density, sz, is
conserved in the radiation diffusion limit. The second terms on the RHS of equations (4-28) and
(4-29) are coordinate curvature terms that result from applying the divergence operator to T.
By using the inertial frame z-angular momentum density,

lz = Rρuφ + ρR2Ω2, (4-31)

both the coordinate curvature and Coriolis terms in equation (4-29) can be eliminated. The new
equation is

∂

∂t
lz +∇ ·RTφ = ER

∂

∂φ
ΛE. (4-32)

Therefore, in the diffusion limit, lz is also a conserved quantity. A similar transformation cannot
be performed on equation (4-28). This is because radial momentum is not physically conserved.
By choosing a curvilinear coordinate system, we are limited to choosing, at most, two conserved
generalized momentum components.
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4.3. Reformulated Governing Equations

The binary systems we wish to study will begin their evolution in a state of near equilib-
rium and, for a significant part of their evolution, we expect them to remain in a state of near
equilibrium. With the exception of a few computational zones near their surfaces, each star
will begin evolution in the radiation diffusion limit. To accurately evolve such a system requires
that quantities which are conserved analytically are also conserved numerically. In particular, we
require the conservation of ρ and, in the diffusion limit, the conservation of sR, lz, sz, and Etot.
For adiabatic flow in which the radiation and gas temperatures are the same, we also require
local conservation of τ . Above we have manipulated equations (4-2), (4-10), (4-4), and (4-3) to
illustrate these conserved quantities. Now we develop the same equations, as well as equation
(4-1), in a form suitable for adaptation to the numerical method described in §5.

Applying the cylindrical divergence operator in equation (4-28), the radial momentum equa-
tion is

∂

∂t
sR +

1

R

∂

∂R
R (sRuR + p) +

∂

∂R
p+

1

R

∂

∂φ
sRuφ +

∂

∂z
sRuz + ΛE

∂

∂R
ER =

− ρ ∂

∂R
Φ + ρRΩ2 + 2ρuφΩ +

ρu2
φ

R
+
p

R
. (4-33)

The second, third, and fourth terms on the RHS come from the last three terms on the RHS of
equation (4-28). The pressure term on the LHS can be written 1

R
∂
∂R
Rp = ∂

∂R
p + p

R
, resulting in

a p
R

on both sides of the equation. Though these terms will analytically cancel one another, as
noted by Call et al. (2010), there is no guarantee they will numerically cancel. Because the LHS
of our equations will be handled by an explicit advection scheme, and the RHS will be treated by
other methods, we remove the p

R
term on both sides of the equation. Using equation (4-31), we

can write the centrifugal, Coriolis, and remaining coordinate curvature terms as a single term,
l2z
ρR3 . These changes to equation (4-33) are reflected in equation (4-35).

For our total gas energy equation we will follow equation (4-24) and apply the advection
scheme to the quantity Eloc. This is the quantity that is physically transported by advection.
As we will show below, treating the gas energy equation in this manner results in numerical
conservation of Etot in the diffusion limit.

The full set of equations, in a form suitable for adaptation to our numerical method, is:

∂

∂t
ρ+

1

R

∂

∂R
RρuR +

1

R

∂

∂φ
ρuφ +

∂

∂z
ρuz = 0 (4-34)

∂

∂t
sR +

1

R

∂

∂R
RsRuR +

1

R

∂

∂φ
sRuφ +

∂

∂z
sRuz +

∂

∂R
p+ ΛE

∂

∂R
ER = −ρ ∂

∂R
Φ +

l2z
ρR3

; (4-35)

∂

∂t
lz +

1

R

∂

∂R
RlzuR +

1

R

∂

∂φ
(lzuφ +Rp) +

∂

∂z
lzuz + ΛE

∂

∂φ
ER = −ρ ∂

∂φ
Φ; (4-36)

∂

∂t
sz +

1

R

∂

∂R
RszuR +

1

R

∂

∂φ
szuφ +

∂

∂z
(szuz + p) + ΛE

∂

∂z
ER = −ρ ∂

∂z
Φ; (4-37)

∂

∂t
Eloc − ρ

∂

∂t
Φ +

1

R

∂

∂R
R(Eloc + p)uR +

1

R

∂

∂φ
(Eloc + p)uφ +

∂

∂z
(Eloc + p)uz + ΛE (u · ∇)ER =

− 4πκpBp + cκEER; (4-38)
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∂

∂t
ER +

1

R

∂

∂R
RERuR +

1

R

∂

∂φ
ERuφ +

∂

∂z
ERuz +∇u : P = 4πκpBp − cκEER −∇ · F; (4-39)

∂

∂t
τ +

1

R

∂

∂R
RτuR +

1

R

∂

∂φ
τuφ +

∂

∂z
τuz = −4πκpBp

γτ γ−1
+
cκEER
γτ γ−1

. (4-40)

On the LHS we have placed terms which are handled by the explicit advection scheme. The
gravity terms on the RHS of equations (4-35), (4-36), and (4-37) are computed with a first-order
explicit differencing scheme, as is the last term of equation (4-35). The remaining, radiation
related terms on the RHS of equations (4-38), (4-39), and (4-40) are evolved in a separate
implicit step.
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5. Numerical Method1

Our method is designed to evolve six independent variables in time on a cylindrical mesh
rotating with constant and uniform angular frequency Ω about the coordinate axis: the mass
density, ρ, the inertial frame z-angular momentum density, lz, the radial momentum density, sR,
the vertical momentum density, sz, the gas energy density, EG, and the radiation energy density,
ER. The Newtonian gravitational potential, Φ, is solved at each time (sub) step. We evolve a
single auxiliary variable, the entropy tracer, τ .

5.1. Explicit Advection Scheme

We begin our discussion of the explicit advection scheme by applying it to equations (4-34)
through (4-40) in the limit that G = 0, Ω = 0, κE = 0, κp = 0, and ΛE = 0. This has the effect
of removing gravitational, rotational, and all radiation terms except the advection of ER. We
will denote the time derivatives of the evolution variables in this limit by prefacing them with
lim
fluid

.

lim
fluid

∂

∂t
ρ+

1

R

∂

∂R
RρuR +

1

R

∂

∂φ
ρuφ +

∂

∂z
ρuz = 0; (5-1)

lim
fluid

∂

∂t
sR +

1

R

∂

∂R
RsRuR +

∂

∂R
p+

1

R

∂

∂φ
sRuφ +

∂

∂z
sRuz =

l2z
ρR3

; (5-2)

lim
fluid

∂

∂t
lz +

1

R

∂

∂R
RlzuR +

1

R

∂

∂φ
(lzuφ +Rp) +

∂

∂z
lzuz = 0; (5-3)

lim
fluid

∂

∂t
sz +

1

R

∂

∂R
RszuR +

1

R

∂

∂φ
szuφ +

∂

∂z
(szuz + p) = 0; (5-4)

lim
fluid

∂

∂t
EG +

1

R

∂

∂R
R (EG + p)uR +

1

R

∂

∂φ
(EG + p)uφ +

∂

∂z
(EG + p)uzR = 0; (5-5)

lim
fluid

∂

∂t
ER +

1

R

∂

∂R
RERuR +

1

R

∂

∂φ
ERuφ +

∂

∂z
ERuz = 0; (5-6)

lim
fluid

∂

∂t
τ +

1

R

∂

∂R
RτuR +

1

R

∂

∂φ
τuφ +

∂

∂z
τuz = 0. (5-7)

Note that lim
fluid
Eloc = lim

fluid
EG.

The Kurganov-Tadmor (K-T) method (Kurganov & Tadmor (2000)), is a high resolution
Godunov type central advection scheme that can be used to solve three-dimensional hyperbolic
sets of first-order differential equations of the form

∂

∂t
V +

3∑
i=1

∂

∂xi
H [V ] = 0, (5-8)

where V = {V0...VN} is a set of N conserved quantities and H [V ] = {H0 [V ] ...HN [V ]} a set
of N fluxes dependent only on V . For the solution to be stable, the matrix ∂H/∂V must be
hyperbolic. Like previous advection schemes such as the Lax-Friedrichs (Lax (1954), Friedrichs

1A substantial portion of this section and its subsections have been reproduced from Marcello & Tohline
(2011) with the permission of the AAS (see Appendix D).
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(1954)) and the Nessyahu-Tadmor schemes (Nessyahu & Tadmor (1990)), the K-T method does
not require the use of (approximate) Riemann solvers. It is thus computationally more efficient
than Riemann solver based methods. Unlike previous central schemes, the K-T method does not
suffer from excessive spatial averaging of the solution, or “smearing”. The K-T method can also
be stated in a semi-discrete form, with discretized space and continuous time, allowing it to be
coupled to a number of suitable time integration schemes.

One way to discretize the one-dimensional form of equation (5-8) is

V n+1
i = V n

i −
∆t

2∆x

[
H
(
V n
i+1

)
−H

(
V n
i−1

)]
. (5-9)

The problem is that equation (5-9) is numerically unstable. Any error present in the solution
will continue to become larger and larger with each time step. The Lax-Friedrichs method solves
this problem by substituting V n

i = 1
2

(
V n
i+1 + V n

i−1

)
to get

V n+1
i =

1

2

(
V n
i+1 + V n

i+1

)
− λ

2

[
H
(
V n
i+1

)
−H

(
V n
i−1

)]
, (5-10)

where λ ≡ ∆t/∆x. The resulting discretization is stable so long as the Courant - Friedrichs
- Lewy condition is satisfied Courant et al. (1967). That is, viλ < 1 for all i, where vi is the
maximum possible signal speed at the cell i.

The problem with the Lax-Friedrichs scheme is that it is highly dissipative. The profile of
discontinuities in the advected variables, such as fluid shocks, quickly becomes smeared. The
reason for this can be seen by transforming the discrete equation (5-10) back into an equation of
continuous functions. Subtracting V in from both sides of equation (5-10), dividing through by
∆t, and taking the limit as ∆x and ∆t goes to zero yields

∂

∂t
V (x, t) +

∂

∂x
H [V (x, t)] = να

∂2

∂x2
V (x, t) , (5-11)

where να = (∆x)2/(2∆t). The LHS of equation (5-11) is identical to the LHS of equation (5-
8), but we see that a non-zero source term now appears on the RHS. να has units of kinematic
viscosity so the term on RHS behaves as a viscosity. This unphysical viscosity term is what causes
the Lax-Friedrich approach to be stable, but it also causes it to be extremely dissipative. The
magnitude of this viscosity depends on grid spacing and time step size. Note that lim∆x→0 να = 0
and lim∆t→0 να =∞.

The K-T method solves the problem of excess unphysical dissipation by use of what amounts
to a variable να. In regions of either high maximum signal speeds or discontinuities, such as
shocks, να is higher. In regions that are smooth and which have lower maximum signal speeds,
να is lower. The derivation of the K-T method is described in detail in Kurganov & Tadmor
(2000). Its semi-discrete form is

d

dt
Vi (t) = − 1

2∆x

[(
H
(
V +
i+ 1

2

(t)
)

+H
(
V −
i+ 1

2

(t)
))
−
(
H
(
V +
i− 1

2

(t)
)

+H
(
V −
i− 1

2

(t)
))]

+
1

2∆x

[
aj+ 1

2
(t)
(
V +
i+ 1

2

(t)− V −
i+ 1

2

(t)
)
− aj− 1

2
(t)
(
V +
i− 1

2

(t)− V −
i− 1

2

(t)
)]
. (5-12)

This is identical to equation (4.2) from Kurganov & Tadmor (2000). The quantity aj+ 1
2

is the

maximum signal speed through the j + 1
2

th
cell. The quantities V +

i+ 1
2

and V −
i+ 1

2

the reconstructed
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values of V to the right and left of the cell face, respectively. To 1st order, V +
i+ 1

2

= Vi+1, V −
i+ 1

2

= Vi,

V +
i− 1

2

= Vi, V
−
i− 1

2

= Vi−1. Substituting into equation (5-12) and discretizing to 1st order in time,

we obtain

V n+1
i = V n

i −
λ

2

[
H
(
V n
i+1

)
−H

(
V n
i+1

)]
+
λ

2

[
ai+ 1

2
(V n

j+1 − V n
j )− ai− 1

2
(V n

j − V n
j−1)

]
. (5-13)

As pointed out by Kurganov & Tadmor (2000), this is equivalent to Rusanov’s method (van Leer
(1977)). Like equation (5-10), equation (5-13) can be transformed back into a continuous form.
The result is

∂

∂t
V (x, t) +

∂

∂x
H (V (x, t)) = να

∂

∂x

[
a (x, t)

λ

∂

∂x
u (x, t)

]
By setting a = λ, we recover equation (5-11). Thus the 1st order Kurganov - Tadmor scheme
reduces to the Lax-Friedrichs scheme when the signal speed is spatially constant and equal to λ.

Due to the use of cylindrical coordinates, equations (5-1) through (5-7) do not quite follow
the form of equation (5-8). Instead these equations are of the general form

lim
fluid

∂

∂t
V +

1

R

∂

∂R
RHR [V ] +

∂

∂R
G [V ] +

1

R

∂

∂φ
Hφ [V ] +

∂

∂z
Hz [V ] = S [R, V ] , (5-14)

where S [R, V ] refers to coordinate curvature terms that result from the application of the cylin-
drical divergence operator. For our particular set of equations,

V =



ρ
sR
lz
sz
EG
ER
τ


, G =



0
p
0
0
0
0
0


, S =



0
l2z
ρR3

0
0
0
0
0


,

HR =



ρuR
sRuR
lzuR
szuR

(EG + p)uR
ERuR
τuR


, Hφ =



ρuφ
sRuφ

lzuφ +Rp
szuφ

(EG + p)uφ
ERuφ
τuφ


, and Hz =



ρuz
sRuz
lzuz

szuz + p
(EG + p)uz

ERuz
τuz


. (5-15)

Application of the central-upwind method of Kurganov & Petrova (2001) to a two-
dimensional curvilinear coordinate system is discussed in Illenseer & Duschl (2009). The K-T
method differs from that of Kurganov & Petrova (2001) in that the latter is genuinely multi-
dimensional: it requires reconstruction of the evolved variables at cell vertices (edges) as well at
cell edges (faces). The multidimensional K-T method is simply the sum of the one-dimensional
K-T method applied to each dimension. We choose the simpler method because it requires re-
construction only at six cell faces per cell, as opposed to six faces and and twelve edges, and
is thus computationally simpler and more efficient. The key disadvantage is that the multi-
dimensional K-T method at most delivers second-order spatial accuracy, regardless of the order
of the one-dimensional reconstruction.
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In order to express the K-T method in a more compact form, we define the discrete divergence
operator

D {H [V ]}jkl :=

1

2Rj∆

(
Rj+ 1

2

(
HR

[
V +
j+ 1

2
kl

]
+HR

[
V −
j+ 1

2
kl

])
−Rj+ 1

2

(
HR

[
V +
j− 1

2
kl

]
+HR

[
V −
j− 1

2
kl

]))
+

1

2Rj∆

(
Hφ
[
V +
jk+ 1

2
l

]
+Hφ

[
V −
jk+ 1

2
l

]
−Hφ

[
V +
jk− 1

2
l

]
−Hφ

[
V −
jk− 1

2
l

])
+

1

2∆

(
Hz
[
V +
jkl+ 1

2

]
+Hz

[
V −
jkl+ 1

2

]
−Hz

[
V +
jkl− 1

2

]
−Hz

[
V −
jkl− 1

2

])
(5-16)

and the discrete viscosity operator

V {V }jkl :=

1

2Rj∆

{
Rj+ 1

2
aj+ 1

2
kl

(
V +
j+ 1

2
kl
− V −

j+ 1
2
kl

)
−Rj− 1

2
aj− 1

2
kl

(
V +
j− 1

2
kl
− V −

j− 1
2
kl

)}
+

1

2Rj∆

{
ajk+ 1

2
l

(
V +
jk+ 1

2
l
− V −

jk+ 1
2
l

)
− ajk− 1

2
l

(
V +
jk− 1

2
l
− V −

jk− 1
2
l

)}
+

1

2∆

{
ajkl+ 1

2

(
V +
jkl+ 1

2

− V −
jkl+ 1

2

)
− ajkl− 1

2

(
V +
jkl− 1

2

− V −
jkl− 1

2

)}
. (5-17)

The quantity ∆ is the uniform spacing between grid zones. For our particular implementation,
this spacing is the same for each dimension. It is trivial to modify the above expressions for a
grid where the spacing is different for each dimension. The quantities V ±

j± 1
2
kl

, V ±
jk± 1

2
l
, and V ±

jkl± 1
2

are the reconstructed values of V at the faces located at j± 1
2
kl, jk± 1

2
l, and jkl± 1

2
, respectively.

The superscript indicates whether the value is on the left (-) or right (+) side of the face. A value
for V at each side of the cell face is required to account for discontinuities in the solution. Both
of the above operators reduce to surface integrals when they are summed over a grid volume.
Therefore when there is no net flow through such a surface, V is numerically conserved. The
signal speeds are defined as

aj± 1
2
kl := max

{
λmax

{
∂HR

∂V

∣∣∣
V=V +

j± 1
2 kl

}
, λmax

{
∂HR

∂V

∣∣∣
V=V +

j± 1
2 kl

}}
, (5-18)

ajk± 1
2
k := max

{
λmax

{
∂Hφ

∂V

∣∣∣
V=V +

jk± 1
2 k

}
, λmax

{
∂Hφ

∂V

∣∣∣
V=V +

jk± 1
2 k

}}
(5-19)

and

ajkl± 1
2

:= max

{
λmax

{
∂Hz

∂V

∣∣∣
V=V +

jkl± 1
2

}
, λmax

{
∂Hz

∂V

∣∣∣
V=V +

jkl± 1
2

}}
, (5-20)

where λmax {A} is the spectral radius operator. For equations (5-1) through (5-7),

λmax

{
∂Gn

∂V

}
= |un|+

√
γp

ρ
, (5-21)

where un refers to one of the vector components of u. Note that for brevity we omit the depen-
dence on signal speeds in writing V {V }jkl. To ensure numerical stability when using an explicit
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time integrator, the Courant-Friedrichs-Lewy condition (CFL) (Courant et al. (1967)) must be
satisfied for the chosen time step. For the K-T method in cylindrical coordinates, this condition
is

∆t ≤ 1

2
min
all jkl

{
∆

aj± 1
2
kl

,
R∆

ajk± 1
2
l

,
∆

ajkl± 1
2

}
(5-22)

We also define the non conservative radial component of the discrete gradient,

GR {G [V ]}jkl :=
1

2∆

(
G
[
V +
j+ 1

2
kl

]
+G

[
V −
j+ 1

2
kl

]
−G

[
V +
j− 1

2
kl

]
−G

[
V −
j− 1

2
kl

])
. (5-23)

The semi-discrete form of the K-T method in three-dimensional cylindrical coordinates can
now be written as

lim
fluid

d

dt
Vjkl + D {H [V ]}jkl + GR {G [V ]}jkl − Sjkl = V {V }jkl . (5-24)

Note that here, and for the remainder of this paper, d
dt

does not refer to the Lagrangian time
derivative, ∂

∂t
+u ·∇, but instead refers to the total time rate of change of the value of a grid cell.

The LHS of equation (5-24) contains the numerical representation of the physical flux components
and coordinate curvature terms. The terms on the RHS are, in effect, artificial viscosity terms.
These unphysical terms are required for numerical stability. The magnitude of the viscosity grows
larger with increasing maximum signal speed as well as with increasing difference between the
values of V at left and right sides of cell faces. When the values of V are identical on both sides
of a cell face, the viscosity term at that face becomes zero.

We use the one-dimensional piecewise parabolic (PPM) reconstruction of Colella & Wood-
ward (1984) to compute the cell face values V ±

j± 1
2
kl

, V ±
jk± 1

2
l
, and V ±

jkl± 1
2

. Although the reconstruc-

tion is third order in one dimension, because we do not use a genuinely multidimensional method,
the reconstruction reduces to second-order accuracy. However, we still retain another advantage
of using a high order reconstruction: in sufficiently smooth regions, left and right face values will
be exactly equal to one another, completely eliminating the artificial viscosity. In Figure 5.1 we
compare the PPM reconstruction to the ubiquitous minmod linear reconstruction. For PPM, the
left and right face values differ only at the two extrema and at the discontinuity, whereas the
minmod reconstruction has unequal face values at numerous locations. Rather than applying
the reconstruction to the conserved variables, as in Kurganov & Tadmor (2000), we apply the
reconstruction to the variables ρ, sR

ρ
, sz
ρ

, lz
ρ

, τ
ρ
, EG

ρ
, and ER

ρ
, and then transform these quantities

back to the conserved variables. Reconstructing face values in this manner has two advantages:
(1) the velocity values obtained at cell faces transform correctly under a Galilean transforma-
tion and (2) the magnitude of the sound speed and velocity at cell faces will not exceed their
respective values at cell centers.

As mentioned above, we evolve the entropy tracer, τ , independently of EG. When the
internal energy is a small fraction of EG, the expression

e =

(
EG −

1

2
ρu2

)
(5-25)

can suffer from numerical difficulties. If the minuend and subtrahend of a difference are nearly
equal, the result can lose significant numerical precision when determined by a computer. To
account for this, we use the dual energy formalism of Bryan et al. (1995). The pressure is
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Fig. 5.1.— Comparison of minmod to PPM reconstruction schemes. The PPM reconstruction
has unequal face values (resulting in artificial viscosity) only at the faces of the two extrema (the
fourth and ninth cells from the left) and at the face of the discontinuity (between the sixth and
seventh cells from the left). The minmod reconstruction has unequal face values at numerous
other locations and the difference in face values is larger than PPM for all faces.

computed according to

p =

{
(γ − 1)

(
EG − 1

2
ρu2
)

if
(
EG − 1

2
ρu2
)
> ε1EG

(γ − 1) τ γ else
, (5-26)

where 0 < ε1 � 1. Additionally, at the end of each computational time step, the entropy tracer
is updated according to

τ →

{ (
EG − 1

2
ρu2
) 1
γ if

(
EG − 1

2
ρu2
)
> ε2EG

τ else
, (5-27)

where 0 < ε1 < ε2 � 1. For the simulations discussed in this paper we use ε1 = 0.001 and
ε2 = 0.1.
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5.2. Extension to Gravity

We now extend the K-T method in cylindrical coordinates to include a potential formed by
Newtonian gravitation and/or rotation. We take equations (4-34) through (4-40) in the limit
that κE = 0, κp = 0, and ΛE = 0. We refer to this limit by prefacing time derivatives with lim

grav
.

lim
grav

∂

∂t
ρ+

1

R

∂

∂R
RρuR +

1

R

∂

∂φ
ρuφ +

∂

∂z
ρuz = 0; (5-28)

lim
grav

∂

∂t
sR +

1

R

∂

∂R
RsRuR +

∂

∂R
p+

1

R

∂

∂φ
sRuφ +

∂

∂z
sRuz = −ρ ∂

∂R
Φ +

l2z
ρR3

; (5-29)

lim
grav

∂

∂t
lz +

1

R

∂

∂R
RlzuR +

1

R

∂

∂φ
(lzuφ +Rp) +

∂

∂z
lzuz = −ρ ∂

∂φ
Φ; (5-30)

lim
grav

∂

∂t
sz +

1

R

∂

∂R
RszuR +

1

R

∂

∂φ
szuφ +

∂

∂z
(szuz + p) = −ρ ∂

∂z
Φ; (5-31)

lim
grav

∂

∂t
Eloc − ρ

∂

∂t
Φ +

1

R

∂

∂R
R (Eloc + p)uR +

1

R

∂

∂φ
(Eloc + p)uφ +

∂

∂z
(Eloc + p)uz = 0; (5-32)

lim
grav

∂

∂t
ER +

1

R

∂

∂R
RERuR +

1

R

∂

∂φ
ERuφ +

∂

∂z
ERuz = 0; (5-33)

lim
grav

∂

∂t
τ +

1

R

∂

∂R
RτuR +

1

R

∂

∂φ
τuφ +

∂

∂z
τuz = 0. (5-34)

To solve equation (4-5) for the gravitational potential, Φ, we solve the discrete equation

Rj+ 1
2
Φj+1kl +Rj− 1

2
Φj−1kl + Φjk+1l + Φjk−1l+

RjΦjkl+1 +RjΦjkl−1 − (4Rj + 2) Φjkl = 4πGRj∆
2ρ, (5-35)

using a conjugate gradient solver for the interior (Hestenes (1952)). The boundary cell values for
Φ are computed using the solver of Cohl & Tohline (1999).

Equation (5-32) differs from equation (5-5) only in the addition of an extra time derivative
term, ρ ∂

∂t
Φ, and the use of Eloc in place of EG. The semi-discrete form of this equation is

lim
grav

d

dt
Eloc,jkl − ρjkl

d

dt
Φjkl +D {(Eloc + p) u}jkl = V {Eloc}jkl . (5-36)

Because time is continuous in the semi-discrete form, we may use equation (4-25) to rewrite
equation (5-36) as

lim
grav

d

dt
EG,jkl +D {(Eloc + p) u}jkl − [Φeff ]jkl

d

dt
ρjkl = V {Eloc}jkl . (5-37)

where Φeff := Φ + Φrot is the “effective potential”. Note that the term d
dt
ρjkl is obtained by

applying equation (5-24) to equation (5-28). The quantity Econ will be nearly globally conserved
under application of equation (5-37). To prove this, we rewrite equation (5-36) as

lim
grav

d

dt
Econ,jkl +

1

2

(
ρjkl

d

dt
Φjkl − Φjkl

d

dt
ρjkl

)
+D {(Eloc + p) u}jkl = V {Eloc}jkl . (5-38)
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The discrete divergence and viscosity operators are conservative. Using equation (5-35), we can
rewrite the sum over volume of the middle term on the LHS,∑

jkl

1

2

(
ρjkl

d

dt
Φjkl − Φjkl

d

dt
ρjkl

)
Rj∆

3 =
∆

8πG

∑
jkl

{(
Rj+ 1

2
Φ̇j+1kl +Rj− 1

2
Φ̇j−1kl+

Φ̇jk+1l + Φ̇jk−1l −Rj

(
Φ̇jkl+1 + Φ̇jkl−1

)
− (4Rj + 2) Φ̇jkl

)
Φjkl −[

Rj− 1
2
Φj−1kl +Rj+ 1

2
Φj+1kl + Φjk−1l + Φjk+1l +

Rj (Φjkl−1 + Φjkl+1)− (4Rj + 2) Φjkl] Φ̇jkl

}
, (5-39)

where Φ̇jkl := d
dt

Φjkl. Expression (5-39) sums to zero for interior grid points, depending only on

the values of Φjkl and Φ̇jkl along a two-cell-wide boundary at the surface of the computational
grid. To be physically correct, these terms must also sum to zero (so long as there is no mass
leaving the grid), however, this is not numerically guaranteed. The extent to which equation (5-
35) is numerically satisfied will also affect conservation. As shown below, these non-conservative
effects are minimized when the center of mass of the system is coincident with the center of the
coordinate system.

The application of the viscosity operator, V {V }jkl, to the mass density, ρ, for any cell in
which left and right face values are unequal (non-smooth regions), results in the flow of mass from
cells of higher density to cells of lower density. In the absence of a potential, this will not alter
energy conservation. When a potential force is applied, however, this non-physical movement of
mass will violate energy conservation unless it is properly accounted for. To illustrate this effect,
consider the one-dimensional PPM reconstruction of an equilibrium n = 3

2
polytrope in Figure

(5.2). Even with the PPM reconstruction, there are discontinuities in the reconstruction of ρ at
the faces of the center cell and at the outer cells. Application of the the K-T method will therefore
cause mass to move up the gravitational potential, from the center cell to the surrounding cells
and from the cells just below the surface cells of the star to the surface cells. If not properly
accounted for, this added potential energy comes at no cost to either the kinetic energy or the
internal gas energy of the fluid and Econ will not be conserved. For models of gravitationally
bound objects in near equilibrium, this effect will accumulate over time, and the object can
become gravitationally unbound and dissipate. Equation (5-37) accounts for this spontaneous
potential energy generation by removing it from the total gas energy. Because we do not alter how
the kinetic energy is calculated, the difference is effectively removed from the internal energy.
Matter which moves up (down) a potential by application of the viscosity operator will lose
(gain) internal energy. This presents a problem for a zero temperature fluid. With no internal
energy to lose, application of equation (5-37) will result in values for EG which yield negative
internal energies under application of equation (5-25). Regions with non-positive pressure have
nothing to prevent them from collapsing due to their own gravity, leading to numerically unstable
conditions. We avoid this issue by using the dual energy formalism, which guarantees a positive
pressure so long as τ is positive.

There are two applications of the viscosity operator resulting from the potential energy in
equation (5-37). The d

dt
ρjkl term contains V {ρ}jkl. It is this term that cancels the spontaneous

gains or losses in potential energy. The second source is the contribution from the potential
energy to V {Eloc}jkl. This term causes the correction in energy due to d

dt
ρjkl to flow with the

fluid. Without it, this correction would be applied to the cell the fluid is flowing out of instead
of to the cell into which it is flowing. We refer to these extra viscosity terms in the energy
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Fig. 5.2.— PPM reconstruction of a polytrope. In this one-dimensional PPM reconstruction
of the mass density of an n = 3

2
polytrope, there are discontinuities in the reconstruction at

the center and near the surface. Artificial viscosity will be applied to the cells next to these
discontinuities. As a result, mass will move from the center cell to the two cells next to it, and
from the second (eighth) cell to the first (ninth) cell.

equation as the “E*” correction. Appendix B outlines two additional methods of treating the
energy equation. These methods are compared to the “E*” correction in some of the verification
problems presented below.

Equations (5-29), (5-30), and (5-31) differ from equations (5-2), (5-3), and (5-4) in that they
each contain a gravitational term on the RHS. We require that lz and sz be nearly conserved,
therefore the numerical form of these terms for equations (5-30) and (5-31) must be numerically
conservative. This can be accomplished using second-order differencing for ∇Φ and the cell-
centered values of ρ. The resulting equations for lz and sz are, respectively,

lim
grav

d

dt
lz +D

{
lz + u + pφ̂

}
jkl

+ ρjkl
1

2∆
(Φjk+1l − Φjk−1l) = V {lz}jkl (5-40)

and

lim
grav

d

dt
sz +D {szu + pẑ}jkl + ρjkl

1

2∆
(Φjkl−1 − Φjkl−1) = V {sz}jkl . (5-41)

Just as with the total energy equation, by using equation (5-35) to remove ρjkl from the grav-
itational terms, it is possible to show that equations (5-40) and (5-41) nearly conserve angular
and vertical momentum over the interior of the computational grid. There is a similar non-
conservative effect from the limited precision of the Poisson solver and numerical boundary
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conditions. Using the same second-order differencing, the radial momentum equation is

lim
grav

d

dt
sR +D {sRu}jkl + GR {p}jkl + ρjkl

1

2∆
(Φj+1kl − Φj−1kl)−

l2z,jkl
ρjklR3

j

= V {sR}jkl . (5-42)

Without the addition of gravity, the one-dimensional Kurganov-Tadmor method will satisfy
the maximum principle. Positive scalars at t = 0 remain positive throughout the evolution.
With multiple dimensions, it is also possible to satisfy the maximum principle by using a small
enough time-step (see §5 of Kurganov & Tadmor (2000)). The addition of gravity complicates
matters, however, and we have not found a general method to guarantee that positive scalars
remain positive without using overly small time-steps. There are four evolved quantities which
are physically expected to be positive: the mass density, ρ; the entropy tracer, τ ; the radiation
energy density, ER; and the total gas energy density, EG. We adopt “floor” values for the first
three of these quantities. At the beginning of each time sub-step and for each grid cell, ρ, τ , and
ER are all set to the maximum of themselves or a predefined floor value. The total gas energy,
EG, is not altered. When it is negative, the dual energy formalism will use τ to determine the
internal energy. The floor values we use are simulation dependent. Gravity also has the potential
to complicate the CFL requirement. For our particular purposes, we have found this to only
be a problem during the initial stages of the evolution. Our simulations generally begin with
zero or near-zero velocities. If the time-step is limited to only the CFL time-step limit, velocities
(especially in low density regions) can grow very large within the first time-step, leading to
immediate numerical instability. For our evolutions with gravity, we begin the evolution with a
time-step size that has empirically been shown to not lead to immediate instability. Then we
gradually increase the time-step size over the next several hundred time-steps, until it is equal
to the maximum imposed by the CFL condition.

5.3. Radiation Transport - Explicit Step

In a manner similar to Krumholz et al. (2007), we take equations (4-34) through (4-40) and
split them into explicit and implicit parts,

∂

∂t
V + qexplicit = qimplicit, (5-43)

where

qexplicit =



1
R

∂
∂R
RρuR + 1

R
∂
∂φ
ρuφ + ∂

∂z
ρuz

1
R

∂
∂R
RsRuR + ∂

∂R
p+ 1

R
∂
∂φ
sRuφ + ∂

∂z
sRuz + ΛE

∂
∂R
ER + ρ ∂

∂R
Φ− l2z

ρR3

1
R

∂
∂R
RlzuR + 1

R
∂
∂φ

(lzuφ +Rp) + ∂
∂z
lzuz + ΛE

∂
∂φ
ER + ρ ∂

∂φ
Φ

1
R

∂
∂R
RszuR + 1

R
∂
∂φ
szuφ + ∂

∂z
(szuz + p) + ΛE

∂
∂z
ER + ρ ∂

∂z
Φ

1
R

∂
∂R
R (Eloc + p)uR + 1

R
∂
∂φ

(Eloc + p)uφ + ∂
∂z

(Eloc + p)uz + ΛE (u · ∇)ER − ρ ∂∂tΦ
1
R

∂
∂R
RERuR + 1

R
∂
∂φ
ERuφ + ∂

∂z
ERuz +∇u : P

1
R

∂
∂R
RτuR + 1

R
∂
∂φ
τuφ + ∂

∂z
τuz


, (5-44)
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and

qimplicit =



0
0
0
0

−4πκpBp + cκEER
−∇ · F + 4πκpBp − cκEER

1
γτγ−1 (−4πκpBp + cκEER)


. (5-45)

The expression qexplicit contains the terms in the lim
grav

case described in §5.2, as well as ΛE∇ER
terms in the momentum equations, the ΛEu · ∇ER term in the total gas energy equation, and
the P : ∇u term in the radiation energy equation. These terms are calculated using cell-centered
quantities, Vijk, and the first-order differences,

1

2

((
V −
j+ 1

2
kl

+ V +
j+ 1

2
jk

)
−
(
V −
j− 1

2
jk

+ V +
j− 1

2
kl

))
, (5-46)

for derivatives in the radial direction,

1

2

((
V −
jk+ 1

2
l
+ V +

jk+ 1
2
l

)
−
(
V −
jk− 1

2
l
+ V +

jk− 1
2
l

))
, (5-47)

for derivatives in the azimuthal direction, and

1

2

((
V −
jkl+ 1

2

+ V +
jkl+ 1

2

)
−
(
V −
jkl− 1

2

+ V +
jkl− 1

2

))
, (5-48)

for derivatives in the vertical direction. With radiation, the characteristic speeds are calculated
using

ai = |ui|+

√
γp+ (fii + 1) ΛEER

ρ
. (5-49)

The subscripts for a, u, and f refer to the ith vector and iith tensor component of those quantities.
This equation is exact in the diffusion limit, where fii → 1

3
and ΛE → 1

3
. In the free-streaming

limit, equation (5-49) is only an approximation. It was chosen so that as ΛE goes to zero, the
contribution of radiation to the sound speed also goes to zero.

To compute the explicit step, we solve equation (5-43) with qimplicit set to zero. The solution
is computed this way over all time sub-steps of the integration. The set of semi-discrete equations
is:

d

dt
ρ+D {ρu}jkl = V {ρ}jkl ; (5-50)

d

dt
sR +D {sRu}jkl + GR {p}jkl + ρjkl

1

2∆
(Φj+1kl − Φj+1kl) +

+ Λjkl
1

∆

(
ER,j+ 1

2
kl − ER,j− 1

2
kl

)
−

l2z,jkl
ρjklR3

j

= V {sR}jkl ; (5-51)

d

dt
lz +D

{
lzuu + pφ̂

}
jkl

+ ρjkl
1

2∆
(Φjk+1l − Φjk−1l) +

+ Λjkl
1

∆

(
ER,jk+ 1

2
l − ER,jk− 1

2
l

)
= V {lz}jkl ; (5-52)
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d

dt
sz +D {szuu + pẑ}jkl + ρjkl

1

2∆
(Φjkl+1 − Φjkl−1) +

+ Λjkl
1

∆

(
ER,jkl+ 1

2
− ER,jkl− 1

2

)
= V {sz}jkl ; (5-53)

d

dt
EG,jkl +D {(Eloc + p) u}jkl − Φeff,jkl

d

dt
ρjkl + uR,jklΛjkl

1

∆

(
ER,jkl+ 1

2
− ER,jlk− 1

2

)
+

uφ,jkl
R

Λjkl
1

∆

(
ER,jk+ 1

2
l − ER,jk− 1

2
l

)
+ uz,jklΛjkl

1

∆

(
ER,j+ 1

2
kl − ER,j− 1

2
kl

)
= V {Eloc}jkl ; (5-54)

d

dt
ER,jkl +D {ERu}jkl +

PRR,jkl
1

∆

(
uR,j+ 1

2
kl − uR,j− 1

2
kl

)
+ PRφ,jkl

1

∆

(
uφ,j+ 1

2
kl − uφ,j− 1

2
kl

)
+

PRz,jkl
1

∆

(
uz,j+ 1

2
kl − uz,j− 1

2
kl

)
+ PφR,jkl

1

∆

(
uR,jkl+ 1

2
− uR,jkl− 1

2

)
+

Pφφ,jkl
1

∆

(
uφ,jkl+ 1

2
− uφ,jkl− 1

2

)
+ Pφz,jkl

1

∆

(
uz,jkl+ 1

2
− uz,jkl− 1

2

)
+

PzR,jkl
1

∆

(
uR,jk+ 1

2
l − uR,jk− 1

2
l

)
+ Pzφ,jkl

1

∆

(
uφ,jk+ 1

2
l − uφ,jk− 1

2
l

)
+

Pzz,jkl
1

∆

(
uz,jk+ 1

2
l − uR,jk− 1

2
l

)
= V {ER}jkl ; (5-55)

d

dt
τ +D {τu}jkl = V {τ}jkl . (5-56)

The average of the left- and right-face quantities is Vj+ 1
2
kl := 1

2

(
V +
j+ 1

2
kl

+ V −
j+ 1

2
kl

)
. Equations

(5-50) through (5-56) are transformed into fully discrete form by using the third-order Runge
Kutta (RK) time integrator of Shu & Osher (1988). After the RK update is performed, the
evolution variables are in a state between the last, nth, and the next, n+ 1th, time-step. We refer
to this as the n+ ath time step.

5.4. Radiation - Implicit Update

We solve for the implicit terms by taking equation (5-43) with qexplicit set to zero. The
resulting equation set is

lim
imp

∂

∂t
EG = −4κpBp + cκEER, (5-57)

lim
imp

∂

∂t
ER +∇ · F = 4κpBp − cκEER, (5-58)

and

lim
imp

∂

∂t
τ =

1

γτ (γ−1)
(−4κpBp + cκEER) . (5-59)

The implicit step is computed as if there are no contributions from explicit terms over an entire
time-step. We have applied the prefix lim

imp
to indicate that we are referring only to the time

variance of these quantities due to the implicit terms. Since the fluid momentum does not
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change due to implicit terms, lim
imp

∂

∂t
EG = lim

imp

∂

∂t
e, and using e := τ γ, we can eliminate equation

(5-59) and solve only equations (5-59) and (5-57). We compute the solution to these equations
using a backward Euler time step and first-order spatial differencing. The fully discrete equations
are:

En+1
R,jkl − E

n+a
R,jkl −∆t

(
4κn+1

p,jklB
n+1
p,jkl − cκ

n+1
E,jklE

n+1
R,jkl − [∇ · F]n+1

jkl

)
= 0 (5-60)

and
En+1
G,jkl − E

n+a
G,jkl + ∆t

(
4κn+1

p,jklB
n+1
p,jkl − cκ

n+1
E,jklE

n+1
R,jkl

)
= 0, (5-61)

The term [∇ · F]n+1
jkl is defined as

[∇ · F]n+1
jkl :=

1
Ri∆2

[
Ri+ 1

2
Dn+a
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2
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2
jk

(
En+1
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2

(
En+1
R,ijk+1 − E
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ijk− 1
2
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En+1
R,ijk − E
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R,ijk−1
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, (5-62)

where

Dn+a
j± 1

2
kl

=
cΛn+a

E,j± 1
2
kl

χn+a
j± 1

2
kl

, (5-63)

Dn+a
jk± 1

2
l
=
cΛn+a

E,jk± 1
2
l

χn+a
jk± 1

2
l

, (5-64)

and

Dn+a
jkl± 1

2

=
cΛn+a

E,jkl± 1
2

χn+a
jkl± 1

2

. (5-65)

We compute the ΛE’s and χ’s using the cell averaged quantities and the first-order differences in
equations (5-46) through (5-48). As in Hayes et al. (2006), we obtain the numerical solution to the
nonlinear equations (5-60) and (5-61) with a linear iterative solver coupled to a Newton-Raphson
solver. Unlike Hayes et al. (2006), our method has fewer implicit terms to compute. Krumholz
et al. (2007) argue it is only necessary to implicitly compute the terms found in equations (5-
58) and (5-57). Explicit gas pressure terms also fit more easily into the framework of the K-T
method.

5.5. Implementation

Our method is implemented in FORTRAN-90 with the Message Passing Interface (MPI)
standard for execution on high performance computing clusters. We have relied heavily on
the Hyper Adaptive Mesh Refinement (AMR) Driver (HAD) of Liebling (2002), which we have
modified to suite our particular needs. At the time of this writing, we have not yet implemented
the AMR feature in our code.
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6. Verification Testing1

Here we present the results of tests that have been used to verify the accuracy of our
new code. We test the Poisson solver with a sphere of constant density. As a test of basic
hydrodynamics, we simulate a Sod shock tube. To test the radiation diffusion solver we use the
Marshak problem. We have also devised an analytic problem in the diffusion limit whereby an
initial sinusoidal radiation energy profile moving with the fluid at constant velocity decays due to
diffusion and absorption. To test the FLD solver in the free-streaming limit we evolve an initial
step function in radiation energy density. To verify that the radiation energy is properly coupled
to the fluid energy and momentum, we simulate two cases of a radiating wall shock and compare
the results to Zeus-MP2. Lastly, we investigate the degree to which our E* energy scheme is able
to preserve an equilibrium polytrope.

6.1. Newtonian Gravity

The Poisson solver was tested in cylindrical coordinates against the analytic solution of an
off-center sphere of constant density. The sphere is placed so that the origin of the coordinate
system is at its surface. We tested the solution on four meshes of different resolution: 24×48×24,
32 × 64 × 32, 48 × 96 × 48, and 64 × 128 × 64, where the first number is the number of radial
zones, the second the number of azimuthal zones, and the third the number of vertical zones.
The right panel of Figure 6.1 demonstrates the solver converges to 2nd order, as expected. The

Fig. 6.1.— Poisson solver test. Left: The relative error in Φ on the vertical plane coincident with
the sphere’s center of mass. Middle: The error in Φ on the equatorial plan at z = 0. Right: The
relative RMS error of Φ is plotted against the logarithm of size of ∆. The slope of the green line
is 1.933, so convergence is very close to 2nd order.

left two panels of Figure 6.1 show the relative error for the 64 × 128 × 64 case for two different
slices through the grid. This error does not exceed 4 × 10−4 and it is largest on the surface of
the sphere, where the gradient of the density is the steepest.

1Part of this section has been reproduced from Marcello & Tohline (2011) with the permission of the AAS
(see Appendix D).
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6.2. Sod Shock Tube1

The Sod shock tube problem is a Riemann problem which includes the three fundamental
hydrodynamic waves: shock waves, contact discontinuities, and rarefaction waves (Sod (1978)).
There are known analytic solutions to the problem, making it suitable as a test of basic hydro-
dynamics. The initial conditions are defined as

ρ =

{
1.0 z > 0

0.125 else
, (6-1)

EG =

{
2.5 z > 0
0.25 else

, (6-2)

and
u = 0. (6-3)

We set γ = 1.4 and turn off reflection along the z plane. The simulation was run with 34 radial,
34 azimuthal, and 144 vertical interior zones. Figure (6.2) depicts, from left to right and top
to bottom, the mass density, specific entropy, velocity, and pressure at time t = 4.001 for zones
along the vertical line occupying the 22nd radial and azimuthal locations. Comparing these results
with those of our previous code in Figure 5 of Motl et al. (2002), we see that the present method
represents the shock with greater accuracy. The width of the shock is narrower and there is an
entropy jump across the shock. The method of Motl et al. (2002) did not include an equation
for total gas energy and thus could not properly account for the shock jump conditions. The
numerical solutions in both codes disagree slightly at the tail end of the rarefaction wave. The
one way in which the present code is less accurate is at the contact discontinuity. The results of
our code at the shock also compare favorably with those of other codes, including the ZEUS-2D
code of Stone & Norman (1992) and most of the codes mentioned in Tasker et al. (2008). Other
codes, such as FLASH, however, resolve the contact discontinuity better.

6.3. Marshak Wave1

There are few problems involving radiative transport that admit analytic solutions. Certain
forms of the Marshak wave are an exception. In this problem, radiation is incident along the
boundary of a semi-infinite slab of uniform optical opacity. Initially the slab is at zero tempera-
ture. In the original problem, described by Marshak (1958), the radiation and fluid temperatures
were taken equal to one another throughout the evolution. Pomraning (1979) extended the
problem to allow the radiation and fluid temperatures to evolve separately and presented a semi-
analytic solution for the case where the speed of light is taken to be infinite. Su & Olson (1996)
developed a semi-analytic solution for the case with a finite speed of light. To make an analytic
solution possible, it is necessary to alter the heat capacity such that

e = c0T
4, (6-4)

where c0 is a constant. This linearizes the RHS of the radiation energy density equation and total
gas energy equation. The hydrodynamics part of our code is disabled for this test problem. We

1This subsection has been reproduced from Marcello & Tohline (2011) with the permission of the AAS (see
Appendix D).
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Fig. 6.2.— Sod’s shock tube. Our code’s results for the Sod shock tube are compared to analytic
results at t = 4.001. Top Left: Density. Top Right: Specific entropy. Bottom Left: Velocity.
Bottom Right: Pressure.

use a grid of 20 radial zones, 20 azimuthal zones, and 194 vertical interior zones. The Marshak
boundary condition identified by Su & Olson (1996),

ER (z = z0, t)−
2

3κ

∂

∂z
ER (z = z0, t) =

4

c
Fin, (6-5)

is imposed at all zones along the upper vertical boundary. The inflowing radiative flux, Fin, is
taken as 1. Outflow conditions are imposed at the lower vertical and outer radial boundaries.

In Figure 6.3 we compare our results to the semi-analytic results of Su & Olson (1996) in a
format similar to their Figure 3 (Hayes et al. (2006) also uses a similar format). Depicted are the
radiation and material energy densities at two sample times in the evolution. With the exception
of a slight disagreement at the inflow boundary point, our results are consistent with the analytic
results. Because the analytic solutions apply to a semi-infinite slab geometry, numerical results
are not expected to be accurate once the wave hits the grid’s outer boundary, and therefore the
run is terminated close to that point.

6.4. Free-Streaming Radiation

In this problem we simulate a free-streaming front of radiation. The hydrodynamics are
disabled, the radiation is decoupled from the gas equations, and the constant opacity is set such
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Fig. 6.3.— Marshak wave. Simulation for the Marshak wave is compared to analytic results.
The top curve in both plots is at t = 0.3 and the bottom curve is at t = 0.01. Left: The radiation
energy density versus vertical coordinate. Right: The internal gas energy density versus vertical
coordinate.

that radiation is firmly in the free-streaming limit. The initial condition for the radiation energy
profile is a step function

E =

{
10 if z > 0

1 else
. (6-6)

The simulation was run with several resolutions. The left panel of Figure 6.4 illustrates the results
for a mesh of 96× 96× 96 zones. Analytically, the waveform should propagate to the left at the
speed of light, without changing its shape, but because we are using a diffusion approximation,
the waveform quickly becomes smeared. As seen in the right panel of Figure 6.4, the results do
converge, but at a rate less than 1st order. The wavefront propagates at approximately c, but
otherwise the FLD approximation handles free-streaming radiation very crudely.

6.5. Dynamic Radiation Diffusion

If we remove the thermal source term from the radiation energy equation, in the diffusion
limit for a constant fluid velocity, we obtain[

∂

∂t
− 1

3

c

κ
∇2 + cκ

]
ER = 0, (6-7)

where we have set χ = κE = κ constant. Equation (6-7) is linear and has analytic solutions of
the form

ER ∝ eik−( c
3κ
k2+cκ)t, (6-8)

where k is the wave number. A initial sine wave profile will decay over the timescale tdecay :=(
c

3κ
k2 + cκ

)−1
. The decay is caused by two physical processes: diffusion, and absorption. The

former appears as the c
3κ
k2 term and the latter as the cκ term in equation (6-8). If the fluid is

moving at a constant velocity, the waveform moves with it.
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Fig. 6.4.— Free-streaming front of radiation. Left: Free-streaming front of radiation propagating
to the left. Radiation energy density in erg/cm3 is plotted against distance along the x-axis in
cm. The red curve is for t = 0.0 s, the green curve is for t = 1.67 s, the blue curve is for t = 3.33 s,
and the purple curve is for t = 5.0 s. Right: Convergence plot of free-streaming front of radiation
propagating to the left. The RMS error for the solution is averaged over the entire time period
of the run (1 s), and its logarithm is plotted against the logarithm of the cell size, ∆x.

The results of such a diffusion problem are depicted in depicted in Fig. 6.5. This run
was performed with a one-dimensional precursor to our new code with 256 zones and periodic
boundary conditions. The wavenumber, k, is chosen such that the time decay due to absorption
and diffusion are roughly equal. The flux limiter, ΛE, is fixed at 1

3
and the fluid propagates from

the left to the right at constant velocity. In this case the FLD approximation results are nearly
indistinguishable from the analytic solution. FLD performs well in the diffusion limit even with
a moving fluid and significant absorption.

6.6. Radiating Shock Waves1

Coupled radiation and hydrodynamics does not readily admit test problems with analytic
solutions. Nonetheless, the numerical results of different codes can be compared with one another
for consistency. A problem suitable for these purposes, described in Ensman (1994), is the
radiating shock wave. The problem in its one-dimensional form consists of a reflecting boundary
condition on one end of the computational domain and an inflow boundary condition at the
other. As the inflowing gas strikes the reflecting boundary, a shock wave is formed. In the purely
hydrodynamical case, this wave forms a step discontinuity in mass density, velocity, and energy
density. When radiation transport is present, the heat created at the shock front is radiated into
the incoming gas stream, preheating it. When the radiation preheating is intense enough to heat
the incoming material to the same temperature as the post-shock material, the shock is said to
be super-critical. When the temperature of the incoming stream is below the temperature of the
post-shock material, the shock is said to be sub-critical.

1This subsection has been reproduced from Marcello & Tohline (2011) with the permission of the AAS (see
Appendix D).
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Fig. 6.5.— Dynamic radiation diffusion. Time series of a dynamic diffusion problem on a 256
zone grid. Radiation energy density, in erg/cm3, is plotted against distance in cm. From left to
right and top to bottom the plots correspond to times t = 0.00, 2.07, 4.08, and 4.83 seconds. The
grid is periodic. The 1D waveform propagates from left to right due to advection and decreases
in amplitude due to diffusion and coupling to the gas.

Figure 6.6 compares the results obtained with our code with results from the ZeusMP2 code
of Hayes et al. (2006). Our computations were conducted using 10 radial, 26 azimuthal, and
256 vertical interior zones, with the in-falling gas injected at the upper vertical boundary. The
ZeusMP2 runs were performed using a one-dimensional 256 zone mesh. The displayed profiles
are averages of the plotted quantities over all radial and azimuthal zones for a given vertical
displacement. In the problem as posed by Ensman (1994), the lab frame is co-moving with the
in-falling gas and the reflecting boundary condition, acting as a piston, moves relative to the gas.
Our Figure 6.6 is plotted in this frame, with the profile curves moving to the right in time. The
left panels of Figure 6.6 are for the sub-critical case and the right panels for the super-critical
case. The radiation temperature is displayed in the upper panels and the gas temperature in the
lower panels. There is generally good agreement with ZeusMP2. The biggest disagreements are
at times t = 103 s and t = 1.3 × 104 s. In the former case, the difference is likely due to the
different ways in which the codes handle shocks, and in the latter, likely due to differences in the
outer z-boundary condition. The two codes also handle the gas pressure terms differently.
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Fig. 6.6.— Radiating shock wave. Our code’s results for the radiating shock wave are compared
to results generated using ZeusMP2. The profiles are shown in the frame which is at rest relative
to the inflowing gas. For the sub-critical shock (left), the times shown are t = 5.5 × 103 s,
t = 1.7 × 104 s, t = 1.7 × 104 s, t = 2.8 × 104 s, and t = 3.8 × 104 s. For the super-critical
shock (right), the times shown are t = 1.0 × 103 s, t = 4.0 × 103 s, t = 7.5 × 103 s, and
t = 1.3 × 104 s. Top Left: Radiation temperature profile for sub-critical shock. Top Right:
Radiation temperature profile for super-critical shock. Bottom Left: Gas temperature profile for
sub-critical shock. Bottom Right: Gas profile for super-critical shock.

6.7. Single Polytrope1

We have run a series of test simulations involving a single, spherically symmetric, polytropic
star with polytropic index n = 3

2
. The initial density is computed by solving the Lane-Emden

equation with a fourth-order Runge Kutta solver. The initial internal energy is then determined
from equation (4-7) and equation (2-6). We have run four simulations, without radiation trans-
port, at two resolutions. Each resolution is run with the E* energy correction and without it. The
center of mass of the polytrope is initially coincident with the coordinate origin. The center of
mass correction, described in Appendix C, was turned on for each run. The high (low) resolution
run was computed with 94 (44) radial, 128 (64) azimuthal, and 44 (20) vertical interior zones.
The polytrope has a radius of 33 (17) cells at high (low) resolution.

1A substantial portion of this subsection has been reproduced from Marcello & Tohline (2011) with the
permission of the AAS (see Appendix D).
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This initial configuration is placed in the cylindrical grid of our code and evolved for many
dynamical time scales to test how well the code preserves the star’s original structure. Figure 6.7
depicts the sum of Econ (top panels) over the grid and the maximum density (bottom panels) on
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Fig. 6.7.— Single Polytrope. Top Left: Relative change in total energy from initial value for
the high resolution run. Top Right: Relative change in total energy from initial value for the
low resolution run. Bottom Left: Maximum density normalized to its initial value for the high
resolution run. Bottom Right: Maximum density normalized to its initial value for the low
resolution run.
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the grid for the high (left panels) and low (right panels) resolution runs. The maximum density is
equivalent to the central density for these particular simulations. With the E* correction turned
on, the sum of Econ remains nearly constant. Without the E* correction it increases monotonically
with time. Similarly, the central density of the polytrope without the E* correction secularly
decreases over time, while the central density of the polytrope with the E* correction oscillates
for a few dozen dynamical timescales before it settles to a constant near its initial value.

The initial equilibrium numerical model with no internal velocity structure, as computed
with the Lane-Emden equation, is initially not in equilibrium when placed in our dynamical
solver. The model with the E* correction, when left to itself, is capable of forming a steady-state
configuration within a few dozen dynamical timescales. The resulting steady-state configuration
has the sawtooth radial momentum profile depicted by the solid curve in Figure 6.8. Despite the
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 0  5  10  15  20  25

ρ
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x
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Fig. 6.8.— Centered polytrope radial momentum profile. The radial momentum profiles for the
low resolution, centered polytrope with the E* correction (sold curve) and without it (dotted
curve) at t = 900 dynamical timescales. This is several hundred dynamical timescales after the
E* corrected polytrope settles into the depicted steady-state configuration.

non-zero velocities implied by this profile, the structure of the polytropic star is time-invariant.
The physical fluxes resulting from the reconstructed evolution variables are canceled by the
application of the viscosity operator in the K-T method. In the case without the E* correction,
depicted by the dotted curve, the momentum is directed outward from the center of the polytrope
for all but the inner two cells. The result is that the polytrope without the E* correction does
not reach equilibrium within the several hundred dynamical timescales over which we have run
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the simulation. If an equilibrium point is ever reached, the resulting evolution variable profiles
will likely look nothing like the initial model. In contrast, the structure of the polytrope with
the E* correction only deviates slightly from the initial conditions. Note that while the resulting
radial momentum profile is oscillatory for the E* correction, the reconstructed total (physical
plus viscous) fluxes at cell faces are not, as they sum to zero.

The binary simulations described below are evolved for over 20 orbital periods. From equa-
tion (2-14) we see that during this period both components will go through hundreds of dynamical
times. Although the grid sizes used in our binary evolutions are larger than that used for the
high resolution single polytrope runs, the binary components occupy only a slightly larger num-
ber of grid cells. Hence without the E* correction, they will tend to lose energy and dissipate on
approximately the same time-scale as the high resolution single polytropes presented here.

We have also run four simulations with the spherical polytrope placed off of the coordinate
center. Because we have chosen to evolve the radial, azimuthal, and vertical momenta instead of
three Cartesian momenta, we cannot expect that the x and y Cartesian momenta will be con-
served. Cartesian momenta are globally conserved for the centered polytrope due to symmetry.
The off-center polytropes do not have this symmetry, and as a result, they act as if they are
pushed by an outside force. As shown in the right panel of Figure 6.9, the polytrope is pushed
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Fig. 6.9.— Off-center polytrope. Left: Relative change in total energy. Middle: Relative change
in central density. Right: The x-location of the center of mass.

toward the coordinate center, passes it, and eventually changes directions, resulting in a roughly
sinusoidal pattern. A similar effect was noted by Motl (2001), except the direction of the net
force was away from the coordinate origin.

In Appendix C we detail a method we have used to correct for unphysical center of mass
motion. For the simulations detailed in this paper, we have applied the center of mass correction
to the above coordinate centered polytrope runs and to two of the off center runs. For the off-
center polytrope runs, this correction cancels out the net force pushing on the polytrope. As
seen in Figure 6.9, both the center of mass correction and the E* corrections result in better
conservation of total energy (left panel) and a more stable equilibrium configuration. Unlike
the coordinate centered runs, however, even with both corrections in use, there is a noticeable
increase in the total energy over many dynamical timescales.
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7. q = 0.7 Binary Simulations1

Here we present the results of two binary simulations. Both begin with the same initial
condition of a polytropic binary with mass ratio q = 0.7 with the less massive star filling its Roche
lobe. In one of the runs, we have disabled the radiation feature. We call this run “q = 0.7b”.
We refer to the run with the radiation feature enabled as “q = 0.7a”. We evolved each on a grid
with 159 radial, 256 azimuthal, and 49 vertical interior grid zones. We used reflective symmetry
about the equatorial plane, so the effective size in the vertical direction is 98 zones. The initial
equatorial plane mass density distribution and Roche configuration is shown in Figure 7.1. The
logarithmic color scale runs from 10−6 to 100 in code units and the contour lines are contours of
the effective potential.

7.1. Initial Conditions

The initial conditions were generated using a self-consistent field (SCF) technique similar to
that of Hachisu (1986). We have used this technique for several of our previous simulations (e.g.
New & Tohline (1997), Motl et al. (2002), D’Souza et al. (2006)), and recently we have extended
it to include a cold white dwarf equation of state (Even & Tohline (2009)). For the present
simulations we use the SCF technique with a polytropic equation of state. The polytropic index
is set to n = 3

2
. The SCF code generates an initial density configuration and a polytropic constant,

K, for each component, and determines the orbital period and separation. The parameters of
the SCF model used for these simulations are given in Table 7.1.

Given the density and polytropic constants, p in equation (4-6) is set equal to Ppoly in
equation (2-6), to obtain the initial internal energy density for the q = 0.7b run. The q = 0.7a
run requires that we also compute an initial value for the radiation energy density. For the
interiors of the stars, where the radiation diffusion approximation applies, the radiation and gas
temperatures are equal and the pressure due to radiation is isotropic. In this limit the radiation
pressure is

Prad =
1

3
ER =

4

3

σ

c
T 4. (7-1)

1This section and its subsections have been reproduced from Marcello & Tohline (2011) with the permission
of the AAS (see Appendix D).

Table 7.1: q = 0.7 Initial Parameters a

Donor Accretor
Mass 0.282 0.403
Effective Radius 0.887 0.840
Central Mass Density 0.608 1.000
Polytropic Constant (K) 0.236 0.257
Period 31.19
Separation 2.58
Grid Spacing π

128
≈ 0.0245

∗These values are in “code” units.
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Fig. 7.1.— Initial equatorial plane mass distribution for the q = 0.7a and q = 0.7b runs at t = 0.
The logarithmic color scale runs from 10−6 to 100 in code units. The black lines are contours of
effective potential for Φeff ≥ ΦL1.

We set the sum of the radiation and gas pressures equal to the polytropic pressure,

Ppoly = Kρ1+ 1
n =
R
µ
ρT +

4

3

σ

c
T 4, (7-2)

and numerically solve for T . Then, using equations (4-7) and (7-1), we set the initial values for
internal and radiation energy densities, respectively.

The results of our previous simulations without radiation and with a polytropic equation
of state had the benefit of scalability. They were evolved using equations which contain three
fundamental units of measure (length, time, and mass), but only one physical constant, Newton’s
gravitational constant. For a given value of that constant as represented in the code, one is free to
choose two out of three scaling constants for the length, mass, and time. With the introduction
of radiation transport to the simulation, there are now four independent physical constants in
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the equation set: (1) the speed of light, (2) the Stefan-Boltzmann constant, (3) the gas constant,
and (4) Newton’s gravitational constant. Setting these constants fixes the ratio of code units
to physical units for length, time, mass, and temperature to only one possible value for each.
Therefore the simulation results correspond to a unique physical system. In Table 7.2 we list
our choice of physical constants for the binary runs, in code units. Note that only G has to be
specified in the q = 0.7b run. For the q = 0.7a run, this choice of constants fixes the the ratio of
code units to cgs units. These are shown in Table 7.3. The binary presented here has a period
of 1685 s and components with masses 0.57M� and 0.40M� and respective radii 0.098R� and
0.104R�. Physically the radii are about ten times too large for fully degenerate white dwarfs
(there do exist, however, semi-degenerate helium stars with radii of the same order). The main
purpose of these two simulations was to test the method described above rather than to simulate
a particular realistic system.

We must also be careful in our choice of γ. If the entropy gradient is opposite the pressure
gradient, convective instability results. To avoid instability without radiation, setting γ ≥ 1 + 1

n

is sufficient. Since γ = 5
3

for a monatomic ideal gas, and 1+ 1
n

= 5
3

for an n = 3
2

polytrope, usually
we would set γ = 5

3
. This results in an isentropic entropy profile. The addition of radiation,

however, changes the entropy profile. Since the temperature is now set by equation (7-2) instead
of equation (4-7), the entropy profile runs with the pressure gradient. One way to get the entropy
gradient to point in the right direction is to set γ to a higher value. Chandrasekhar (1939) gives
an equation for determining the minimum γ needed (Chapter IV equation (42)). This equation
depends only on the ratio of central gas pressure to the central total pressure,

βrad :=
RT

µKρ1+ 1
n

. (7-3)

Our choice of the values of c and R
µ

for a given polytropic constant and density determine the
value of βrad. For the q = 0.7a run, βrad is approximately 0.9996 at the center of the donor and
0.9936 at the center of the accretor. We set γ = 1.671 for the q = 0.7a and q = 0.7b runs. By
Chandrasekhar (1939), for the q = 0.7a run, donor stability requires γ ≥ 1.667 and accretor
stability requires γ ≥ 1.713. Our accretor should therefore show a convective instability, but we
have found that none develops on the timescale of the simulation. The region of the accretor
which should theoretically be unstable is at the center of the accretor and occupies less than
2% of its total volume. It is possible that since the accretor is just barely over the convective
stability limit in this region, numerical viscosity is sufficient to prevent instability. Although this
change in γ is not required to keep the q = 0.7b model stable against convection, we include it
for consistency with the q = 0.7a model.

Outside of the two stars we simply set the internal gas and radiation energy densities to
their floor values. For the present simulations, theses values are 1.49× 10−23 and 1.174× 10−24,

Table 7.2: q = 0.7 Physical Constants in Code Units

Newton’s gravitational constant (G) 1.00× 100 l3code/mcode/t
2
code

speed of light (c) 1.98× 102 l3code/tcode

gas constant (R
µ

) a 4.40× 10−1 l2code/t
2
code/Kcode

Stefan-Boltzmann constant (σ) 2.18× 100 mcode/t
3
code/K

4
code

aThe gas constant only appears in the equations divided by the mean molecular weight.
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respectively, in code units. They were chosen such that the radiation coupling terms (i.e. the
RHS of equation (4-3) will sum to zero.

7.2. Quality of Results

The q = 0.7a and q = 0.7b runs were evolved for approximately 23 and 25 orbits, respectively.
The relative change in the total angular momentum (left panel), mass (middle panel), and energy
(right panel) are plotted in Figure 7.2. The runs were terminated because the center of mass
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Fig. 7.2.— Total angular momentum, mass, and energy for the q = 0.7a (solid curve) and
q = 0.7b (dotted curve) runs. Left: The relative change in the total z-angular momentum on the
grid from its initial value. Middle: The negative of relative change in the total mass on the grid
from its initial value. Right: The negative of relative change in the total energy on the grid from
its initial value.

moved off the coordinate origin by several grid zones (see left most panel in Figure 7.3). D’Souza
et al. (2006) used a center of mass correction. We did not use such a correction for the q = 0.7a
and q = 0.7b runs. There is significant epicyclic variation evident in many of the Figures towards
the end of each run, and we believe this is primarily due to the wandering center of mass. Our
chosen grid size also turned out to be too small. The expanded atmospheres of the stars were
beginning to come into contact with the upper vertical boundary shortly before terminating each
run. This is the reason for the accelerated rate of mass loss seen in the middle panel of Figure
7.4. Since the q = 0.7a and q = 0.7b runs we have added a correction to the present code (see
Appendix C). This correction is used in some of the single polytrope runs described in §6.7 and

Table 7.3: q = 0.7 Real Units per Code Unit

lcode 8.18× 109 cm
mcode 2.81× 1033 g
tcode 5.40× 101 s
Kcode 1.62× 108 ◦K
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Fig. 7.3.— Center of mass location and maximum densities for the q = 0.7a (solid curve) and
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10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

5 10 15 20 25

M
C

E
 /
 M

d
o
n

t / p

q=0.7a
q=0.7b

10
-7

10
-6

10
-5

10
-4

5 10 15 20 25

1
-|

∆
 M

a
c
c
 /
 ∆

 M
d
o
n
|

t / p

q=0.7a
q=0.7b

Fig. 7.4.— Common envelope mass and fraction of mass lost for the q = 0.7a (solid curve) and
q = 0.7b (dotted curve) runs. Left: The orbit averaged mass of the common envelope, normalized
to the mass of the donor. Right: The running total of the fraction of mass lost from the donor
that is not captured by the accretor.

in the q = 0.4 runs of §8.
As seen in Figure 7.2, relative mass loss through the grid boundaries of the same order as

the relative changes in total angular momentum and energy does not begin until just after the
15th period. We may therefore assume that most all of the changes in angular momentum and
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total energy at early times are due to error in the numerical scheme. During this period of the
evolution, the total z-angular momentum is conserved to within a relative error of approximately
1.7 × 10−6 per orbit. This is a marked improvement over our previous code, which conserves
angular momentum to within an error of about 1 × 10−4 per orbit (Motl et al. (2002)), and it
is on par with recent SPH codes (Yoon et al. (2007), Guerrero et al. (2004)). Because of the
E* scheme, our code is able to conserve total energy to even better accuracy. Over the first 15
orbits, total energy is conserved to within a relative error of about 8 × 10−7 per orbit for the
q = 0.7b run and 4×10−6 per orbit for the q = 0.7a run. Although we should expect the q = 0.7a
run to lose total energy by radiation leaving the grid, as will be shown below the amount of
radiative luminosity is not enough to account for the higher error in the q = 0.7a run relative
to the q = 0.7b. Each of the runs conserve total energy better than the SPH codes mentioned
above.

For the purposes of producing the figures, we have defined the “common envelope” to be
any point on the grid for which Φeff + 1

2
u2 < ΦL2, where ΦL2 is the effective potential at the

stationary point opposite the donor from the accretor. If its gravitational binding energy is below
this threshold, a grid cell belongs to either the accretor or donor depending on which of the two
exerts more gravitational acceleration at that point.

Four still frames from the 5th, 10th, 15th, 20th orbit for both runs are shown in Figures 7.5
through 7.7. Figures 7.5 and 7.7 show density with a logarithmic color scale, in code units,

Fig. 7.5.— High density range equatorial slices for q = 0.7 runs. These are density plots of a
slice through the equatorial plane for the q = 0.7 runs. The top row is the q = 0.7a run and
the bottom row the q = 0.7b run. From left to right, the columns correspond to t = 5 orbits, 10
orbits, 15 orbits, and 20 orbits. The color density scale runs from 10−6 to 1 in code units.

running from 10−6 to 100. To highlight the low density regions, the logarithmic density scale in
Figure 7.6 runs from 10−12 to 10−6. Figures 7.5 and 7.6 depict slices through the equatorial plane,
while Figure 7.7 is a slice through the plane perpendicular to the equatorial plane and coincident
with the center of mass of both stars. The q = 0.7a run in Figure 7.6 also contains contour lines.
For this plot, we have defined regions of super-Eddington accretion to be any region for which
the condition

−frad · fgrav ≤ fgrav · fgrav, (7-4)
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Fig. 7.6.— Low density range equatorial slices for q = 0.7 runs. These are density plots of a slice
through the equatorial plane, with the scale altered to highlight low density regions. The top
row is the q = 0.7a run and the bottom row the q = 0.7b run. From left to right, the columns
correspond to t = 5 orbits, 10 orbits, 15 orbits, and 20 orbits. The color density scale runs from
10−12 to 10−6 in code units. For the q = 0.7a run we have also plotted black contours around
regions in which the flow is super-Eddington. The white contours are regions where the radiation
is ten times or more super-Eddington. The definition of these contours is provided in the last
paragraph of §7.2

.

is satisfied. Here, frad := −ΛE∇ER and fgrav := −ρ∇Φ are the forces of radiation and gravity,
respectively. This condition is satisfied inside the black contours. Inside the white contours, the
force of radiation is ten times more than what is needed to satisfy equation (7-4). Figure 7.8 is
a close-up of the 15th orbit for the q = 0.4a run in Figure 7.6.

7.3. Discussion

Immediately after the evolution begins, the donor in both runs overflows its Roche lobe.
Although the initial configuration is in equilibrium according to the algebraic system of equations
used by the SCF code, it is slightly out of equilibrium once placed in the hydrodynamics code.
As seen in the upper left panel of Figure 7.9, mass transfer proceeds at a steadily increasing
rate until about the 15th orbit. At this point the transfer rate begins to grow suddenly. It is
generally expected that runaway mass transfer will occur for binaries of this mass ratio. The
mass within the common envelope is relatively very small, and hence the rate of increase of the
accretor’s mass is nearly the same as the rate of decrease of the donor’s. In the upper middle
and upper right panel, we see that the Roche lobe effective radius and orbital separation shrink
throughout the evolution, consistent with dynamically unstable mass transfer. We define the
Roche lobe effective radius as the radius of the sphere with the same volume as the Roche lobe.
As more mass is removed from the donor and piled onto the accretor, the central density of
the donor decreases while increasing for the accretor (see the middle and right panels of Figure
7.3, respectively). As seen in the bottom left panel of Figure 7.9, initially the donor’s spin
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Fig. 7.7.— Density for the q = 0.7 runs in the vertical slice perpendicular to the equatorial
plane and coinciding with the line running from one star’s center of mass to the other’s. The
left column is the q = 0.7a run and the right column the q = 0.7b run. From top to bottom, the
rows correspond to t = 5 orbits, 10 orbits, 15 orbits, and 20 orbits. The color density scale runs
from 10−6 to 1 in code units. Note that we use symmetry across the equatorial plane in these
simulations, so there is only a “top” half of the grid.

angular momentum increases very slightly, but after a few orbits it decreases monotonically for
the remainder of the evolution. The accretor’s spin angular momentum increases throughout the
evolution (see bottom middle panel of Figure 7.9). There are a variety of forces in play here:
the transport of angular momentum from the donor to accretor by advection; the gravitational
tidal interaction between donor and accretor; and the torque created by the accretion stream
impacting the accretor off-center.

The stationary point in Φeff which lies between the two stars is the L1 point. As seen in
the left panel of Figure 7.10, almost all of the common envelope has roughly the same specific
kinetic energy as the difference in effective potential between the L1 point and the surface of the
accretor, independent of time. This is consistent with physical expectations, as in order for a piece
of the fluid to reach a potential high enough to escape into the common envelope, it must have
sufficient kinetic energy. In the middle panel, we see that initially the specific radiation energy
exceeds specific internal energy in the common envelope for the q = 0.7a run. This is reversed
as the envelope cools by radiative transport and as a higher rate of mass transfer produces more
internal gas energy. In the right panel, we show the inertial frame specific gravitational binding
energy of the envelope in units of ΦL1. The envelope remains above the energy of the L1 point
throughout the evolution, yet very little of the mass on the grid is above zero binding energy.
However, as seen in the right panel of Figure 7.11, relative to the q = 0.7b run, far more grid
material is gravitationally unbound in the q = 0.7a run. After approximately the 6th orbit, none
of the material in the q = 0.7b run is unbound, while a fraction (albeit tiny) of the material in
the q = 0.7a run is unbound throughout the simulation.

The accretion luminosity of both runs is shown in the left panel of Figure 7.11. For the
q = 0.7a run, the radiation luminosity that escapes through the grid boundaries is also shown.
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Fig. 7.8.— Close up of low density plot for q = 0.7a at 15 orbits. This figure is seen from the
upper row of Figure 7.6, third from the left.

These luminosities are normalized to the nominal Eddington luminosity for spherical accretion.
The accretion luminosity of both runs exceeds the radiative luminosity of the q = 0.7a run by
many orders of magnitude. The radiative luminosity itself is roughly on the order of LEdd. This
is consistent with the prediction by Han & Webbink (1999) that most of the radiation in a highly
super-Eddington mass transfer will be swept up by the accretion flow, leaving approximately the
Eddington luminosity to escape. Between the q = 0.7a and q = 0.7b runs, however, we see very
little substantial differences between the state of the donor and accretor. The mass transfer rates
and central densities begin to diverge from one another at about the 11th orbit, and the transfer
rate of the q = 0.7a run is less than the q = 0.7b run. Although this is consistent with super-
Eddington accretion, other evidence suggests that the force of radiation cannot be the cause of
these differences. As seen in Figure 7.6, very little of the matter is actually in a region of space
where the force of radiation is sufficient to cancel the force of gravity. The lowest density depicted
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Fig. 7.9.— Mass transfer rate, Roche lobe radius, orbital separation, and angular momenta of
the q = 0.7a (solid curve) and q = 0.7b (dotted curve) runs. Top Left: The orbit averaged rate of
mass transfer from the donor, normalized to donor masses per orbital period. Top Middle: The
orbit averaged effective Roche lobe radius of the donor, in units of the initial orbital separation.
Top Right: The orbit averaged orbital separation normalized to its initial value; Bottom Left:
The spin angular momentum of the donor, in units of initial total angular momentum. Bottom
Middle: The spin angular momentum of the accretor, in units of initial total angular momentum.
Bottom Right: The orbit averaged orbital angular momentum, in units of initial total angular
momentum.

in Figure 7.6, represented by the color purple, is on the order of the lowest optically thick density.
As the run progresses the grid fills with optically thick material, and the radiation field is mostly
in the diffusion limit. Since the flow is dominated by advection, the radiation produced where the
stream impacts the accretor simply moves with the flow of the material, rather than escaping the
material and exerting a force on the stream further up. If anything, it would appear the presence
of radiation reduces the flow of material into the common envelope. In the color figures of the
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Fig. 7.10.— Common envelope specific energies of the q = 0.7 runs. Left: The top two curves
are the orbit averaged specific kinetic energies. For the q = 0.7b run (dotted curve), the bottom
curve is the orbit averaged specific internal energy. For q = 0.7a run (solid curve), the bottom
curve is the sum of the orbit averaged specific internal and specific radiation energies. All are
plotted in units of ΦL1−Φacc. Middle: The orbit averaged specific radiation energy (solid curve)
and the orbit averaged specific internal energy (dotted curve) for the q = 0.7a run, in units
of ΦL1 − Φacc. Right: The orbit averaged specific gravitational binding energy of the common
envelope, in units of ΦL1, taken in the inertial frame for the q = 0.7a (solid curve) and q = 0.7b
(dotted curve) runs.

evolution (Figures 7.5, 7.6, and 7.7), the envelope seems to be less extended for the q = 0.7a run.
Because the envelope begins to flow off the grid, however, we cannot make any firm conclusions
about its evolution past the first few orbits using these simulations.
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Fig. 7.11.— Accretion luminosity, radiative luminosity, and above zero-binding energy mass
fraction for the q = 0.7a (solid curve) and q = 0.7b (dotted curve) runs. Left: The top two curves
are the orbit averaged accretion luminosities, in units of Eddington luminosity, for the q = 0.7a
(solid curve) and q = 0.7b (dotted curve) runs. The bottom curve is the radiative luminosity for
the q = 0.7a run. Right: The orbit averaged fraction of mass on the grid with a gravitational
binding energy above zero for the q = 0.7a (solid curve) and q = 0.7b (dotted curve) runs.
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8. q = 0.4 Binary Simulations

Here we present the results of three binary simulations. All three begin with the same initial
condition of a polytropic binary with mass ratio q = 0.4, with the less massive star filling its
Roche lobe. In the run referred to as q = 0.4a, the radiation feature is enabled. As in §7, we
also ran the simulation with the radiation feature disabled, and call it q = 0.4b. We also evolve a
third run, named q = 0.4c. In this run the gas pressure is determined using a polytropic equation
of state, much like some of the single polytrope runs in §6.7 and as described in Appendix B. We
evolved all three q = 0.4 runs on a grid with 180 radial, 256 azimuthal, and 54 vertical interior
grid zones. We used reflective symmetry about the equatorial plane, so the effective size in the
vertical direction is 108 zones. The grid is larger than that used for the q = 0.7 runs. The
initial equatorial plane mass density distribution and Roche configuration is shown in Figure
8.1. The logarithmic color scale runs from 10−6 to 100 in code units and the contour lines are

Fig. 8.1.— Equatorial plane mass distribution for the q = 0.4 runs at t = 0. The logarithmic
color scale runs from 10−6 to 100 in code units. The black lines are contours of effective potential
for Φeff ≥ ΦL1.
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contours of the effective potential. Comparing Figure 7.1 with Figure 8.1, we see that the donor
is comparatively larger than the accretor and the donor’s center of mass appears further from
the coordinate origin, necessitating the use of a larger grid.

We are motivated, in part, to simulate a binary of lower mass ratio because a lower mass
ratio binary of polytropes with equal polytropic constants places the surface of the accretor in
a deeper effective potential. The accreting matter samples a larger range of the potential and
therefore has higher kinetic energy when it strikes the accretor. This produces more internal
energy and radiation energy. The q = 0.4 mass ratio is also interesting because the question of
whether mass transfer is stable for this mass ratio is unsettled. Motl et al. (2007) were able to
run a q = 0.4 polytropic model for over 40 orbits, and the mass transfer appeared to be stable
when the run terminated. D’Souza et al. (2006) obtained similar results for a q = 0.5 model.
Although earlier SPH simulations suggest DWD systems of this mass ratio fall prey to dynamical,
and in some cases, secular instability, and merge within a few orbital periods (Rasio & Shapiro
(1995)), recently an SPH model of a q = 0.5 DWD took over 60 orbital periods to merge (Dan
et al. (2009)). We avoid a lower mass ratio than q = 0.4 because, as discussed in §2.2, we do not
expect direct impact accretion for a binary of polytropes with equal polytropic constants and
q < 0.35.

Note that unlike the q = 0.7 runs in §7, the center of mass correction, described in Appendix
C, is used in the q = 0.4 runs.

8.1. Initial Conditions

For the q = 0.4 runs we use a different method to obtain the initial conditions. This method
allows us to obtain a binary where both polytropes have the same polytropic constant, K. In a
manner similar to Rasio & Shapiro (1994), we use the dynamical evolution code itself to generate
the initial equilibrium configuration. The method begins by placing two spherical equilibrium
polytropes on the grid, each with the same K. The spherical polytropes are obtained by high
resolution numerical integration of the Lane-Emden equation (Chandrasekhar (1939)). Their
locations on the grid and the initial orbital frequency are determined assuming a point mass
Roche geometry. A small frictional force is added to the RHS of the momentum equation. This
force is proportional to the fluid velocity, and hence acts to damp any oscillations that develop.
The stars are then evolved dynamically, held in place at their initial locations in the manner
described in Appendix C. Over a few orbital periods, provided the donor does not overflow its
Roche lobe, an equilibrium configuration develops. The polytropes, especially the donor, initially
distort rapidly and then slowly settle into a quiet configuration. Once a detached configuration
is obtained, the orbital separation and frequencies are adjusted to bring the polytropes closer
together and the process is repeated, until the donor is just barely touching the L1 point. Figure
8.1 depicts the q = 0.4 initial model we obtained using this method. The initial parameters are
given in Table 8.1. As discussed in §7.1, we are free to choose four physical constants. The values
used for the q = 0.4 runs are shown in Table 8.2. The choice of these constants fixes the ratio
of code units to real units shown in Table 8.3. The q = 0.4 initial conditions correspond to a
physical system with a period of 313 s and components with masses 0.87M� and 0.35M� and
respective radii 0.022R� and 0.031R�. This model is closer to a real DWD than the q = 0.7
model.

Unlike in the q = 0.7 run, we evolve the q = 0.4 simulations with γ := 1 + 1
n
. We are able

to avoid convective instability in the q = 0.a run by determining the gas temperature, used in
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Table 8.1: q = 0.4 Initial Parameters ∗

Donor Accretor
Mass 5.73× 10−2 1.43× 10−1

Effective Radius 0.823 0.598
Central Mass Density 0.147 0.983
Polytropic Constant (K) 0.131 0.131
Period 66.52
Separation 2.825
Grid Spacing π

128
≈ 0.0245

∗These values are in “code” units.

Table 8.2: q = 0.4 Physical Constants in Code Units

Newton’s gravitational constant (G) 1.00× 100 l3code/mcode/t
2
code

speed of light (c) 5.4× 101 l3code/tcode

gas constant (R
µ

) 2.68× 10−1 l2code/t
2
code/Kcode

Stefan-Boltzmann constant (σ) 4.71× 10−1 mcode/t
3
code/K

4
code

Table 8.3: q = 0.4 Real Units per Code Unit

lcode 2.61× 109 cm
mcode 1.20× 1034 g
tcode 4.70× 100 s
Kcode 9.92× 108 ◦K
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equation (3-42), with

(γ − 1) e :=
R
µ
ρT>ad +Kρ1+ 1

n , (8-1)

instead of using equations (4-7) and (4-6). The quantity T>ad can be thought of as the tempera-
ture due to internal energy density above that of the original adiabat. When T>ad is zero, Bp is
also zero and hence there is no cooling. Therefore, physically we expect T>ad to never drop below
zero, but due to numerical error it can drop just below zero. To work around this, we set the
gas temperature in equation (3-42) equal to the greater of T>ad or zero. The limiting behavior of
the gas temperature obtained in this manner is more realistic than for the q = 0.7 runs. At low
enough internal energy densities, the temperature is zero and the gas obeys a polytropic equation
of state with n = 3

2
, approximating a non-relativistic cold white dwarf equation of state. At high

internal energy densities, the gas temperature asymptotically approaches that obtained from an
ideal gas equation of state. Because the K used in equation (8-1) is the same as used in the
initial conditions, the evolution begins with the polytropes at zero temperature. Note that using
this method to obtain the gas temperature for the q = 0.7 runs would be more complicated, as
the initial state of each polytrope is determined with different polytropic constants.

We also abandon the use of the approximation to free-free electron scattering outlined in
Appendix A. In the q = 0.7 runs this component of the opacity turned out to be insignificant.
Instead we set all the opacities to the electron scattering cross section, κE = κP = χ = σT .

8.2. Quality of Results

The q = 0.4 runs were evolved for approximately 20 orbits each. The relative change in the
total angular momentum (left panel), mass (middle panel), and energy (right panel) are plotted
in Figure 8.2. The total error in z-angular momentum is an order of magnitude greater than
the mass loss throughout the evolution for all q = 0.4 runs. Thus it is reasonable to assume the
loss in angular momentum is mostly due to error. This relative error is on the order of 10−3

per orbit, and therefore angular momentum is not conserved as well as in the q = 0.7 runs (see
Figure 8.2 and §7.2). We believe this difference is because the q = 0.4 DWD binary has a more
lopsided mass distribution. As discussed in §5.2, the degree to which the code conserves angular
momentum is partially due to how well equation (5-35) is satisfied. At just past the 11th orbit,
we decreased the allowed error tolerance for the Poisson solver (that is, the Poisson solver was
set to run for more iterations). The bend evident in the curves for the q = 0.4a and q = 0.4b runs
(hereafter referred to collectively as the q = 0.4ab runs), coincides with this. Also as discussed
§5.2 with regards to equation (5-39), there is an error associated with the grid boundary itself
and this error is higher when there is less symmetry in the density distribution. For similar
reasons, the q = 0.4ab runs, which conserve energy to approximately one part in 10−5 per orbit,
do not conserve energy as well as the q = 0.7 runs. In the plot of total energy, there is also
a bend in the curves for the q = 0.4ab runs at the same time the Poisson solver was adjusted.
The larger error in the q = 0.7c run is a result of the polytropic equation of state used in that
run. With this equation of state, the model is not expected to conserve total energy. The rate of
mass loss through the grid is approximately 10−5 per orbit, an order of magnitude higher than
for the q = 0.7 runs. This is expected due to the higher rate of energy generation from accretion.
The q = 0.4ab runs show nearly identical mass loss, indicating the mass loss is not driven by
radiation.

For the purposes of producing the figures, we have defined the “common envelope” to be
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Fig. 8.2.— Total angular momentum, mass, and energy for the q = 0.4a (red curve), q = 0.4b
(green curve), and q = 0.4c (blue curve) runs. Left: The relative change in the total z-angular
momentum on the grid from its initial value. Middle: The negative of relative change in the total
mass on the grid from its initial value. Right: The negative of relative change in the total energy
on the grid from its initial value.

any point on the grid for which Φeff + 1
2
u2 < ΦL1. If the fluid’s gravitational binding energy is

below this threshold, a grid cell belongs to either the accretor or donor depending on which of
the two exerts more gravitational acceleration at that point. Note that this is not quite the same
method described in §7.2. Strictly speaking, the common envelope should be defined relative to
the L1 potential, as any ballistic particle above this potential can travel between both stars. Due
to the wandering center of mass in the q = 0.7 simulations, however, it was found that using L1
to define the envelope boundary resulted in extremely high epicyclic variations in many of the
Figures shown in §7, so we used L2 instead.

In the left panel of Figure 8.3 we show the radial location of center of mass of the system
in units of grid cell widths. Because of the center of mass correction (see Appendix C), the
center of mass wanders off at less than 2 × 10−5 grid cell widths per orbit. In the middle and
right panels are the maximum densities of the donor and accretor, respectively. The maximum
densities in the q = 0.4c run are noticeably different than the q = 0.4ab runs. We attribute this
to the simplistic equation of state used in the q = 0.4c run.

8.3. Discussion

Four still frames from the 5th, 10th, 15th, 20th orbit for all three runs are shown in Figures
8.4 through 8.6. Figures 8.4 and 8.6 show density with a logarithmic color scale, in code units,
running from 10−6 to 100. To highlight the low density regions, the logarithmic density scale in
Figure 8.5 runs from 10−12 to 10−6. Figures 8.4 and 8.5 depict slices through the equatorial plane,
while Figure 8.6 is a slice through the plane perpendicular to the equatorial plane and coincident
with the centers of mass of both stars. The q = 0.4a run in Figure 8.5 also contains black and
white contour lines. For this plot, we have defined regions of super-Eddington accretion in a
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Fig. 8.3.— Center of mass location and maximum densities for the q = 0.4a (red curve), q = 0.4b
(green curve), and q = 0.4c (blue curve) runs. Left: The orbit averaged radial location of the
center of mass of the entire grid. Middle: The orbit averaged maximum density of the donor,
normalized to its initial value. Right: The orbit averaged maximum density of the accretor,
normalized to its initial value.

manner identical to that used in Figure 7.6 and described in §7.2. Figure 8.7 is a close-up of
the 10th orbit for the q = 0.4a run in Figure 8.5. In these Figures we see that, much like in the
q = 0.7 runs, an optically thick common envelope fills the grid of the q = 0.4ab runs within a few
orbital periods. Since the q = 0.4c run does not incorporate shock heating, the accreted material
remains bound to the accretor.

As with the q = 0.7 runs in §7, the q = 0.4 donors experience RLOF very soon after their
evolutions begin. Unlike the q = 0.7 runs, the mass transfer rate does not experience a sudden
increase after the initial onset of mass transfer. In the top left panel of Figure 8.8 we plot
the mass transfer rate. Although it is increasing for the duration of the evolution, after the
5th orbit the rate of increase slows down. The transfer rate for the q = 0.4c run is far lower
because of its equation of state. This is because a small amount of heat generation present in
the q = 0.4ab runs’ outer layers is enough to place the donor into slightly deeper contact. The
orbital separation (top right panel) levels off for the q = 0.4ab runs at about the 10th orbit.
The q = 0.4c run appears to be heading that direction, just more slowly. Because the q = 0.4c
run’s mass transfer rate is lower, it tends to take longer for the negative feedbacks responsible
for dynamically stable mass transfer to kick in. The effective radius of the donor’s Roche lobe
(top middle panel) also appears to be leveling off near the end of the runs for q = 0.4ab and
again, heading that direction more slowly for q = 0.4c. In the bottom panels we see that the
spin angular momentum of the donor (left) and accretor (middle) are increasing at the expense
of the orbital angular momentum (right) throughout the evolution. The orbital separation can
level off, despite the continuous drop in orbital angular momentum, because of the mass transfer.

In the left panel of Figure 8.9 we show the accretion luminosity for all three q = 0.4 runs
and the radiative luminosity for the q = 0.4a run, in units of Eddington luminosity. As with the
q = 0.7 runs in §7, the radiative luminosity is only a tiny fraction of the accretion luminosity.
The radiation is trapped by the optically thick accretion flow. In the right panel we plot the
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Fig. 8.4.— High density plots of a slice through the equatorial plane for the q = 0.4 runs. From
left to right we show the q = 0.4a, q = 0.4b, and q = 0.4c runs at (from top to bottom) t = 5,
10, 15, and 20 orbits. The color density scale runs from 10−6 to 1 in code units.

fraction of unbound matter on the grid. Much like the q = 0.7 runs, this fraction is very tiny,
but noticeably larger for the q = 0.7a run.

The most striking difference between the q = 0.4 and q = 0.7 runs is the formation of a torus
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Fig. 8.5.— Low density equatorial slices for q = 0.4 runs. We show the q = 0.4a, q = 0.4b,
and q = 0.4c runs (left to right) at t = 5, 10, 15, and 20 orbits (top to bottom) . The color
density scale runs from 10−12 to 10−6 in code units. For q = 0.4a we have plotted black and
white contours around regions in which the flow is super-Eddington as in Figure 7.6.

like structure around the accretor for the q = 0.4ab runs. A binary of n = 3
2

polytropes with equal
polytropic constants yields direct impact accretion for particles on ballistic trajectories and, in
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Fig. 8.6.— Density for the q = 0.4 runs in the vertical slice perpendicular to the equatorial plane
and coinciding with the line running from one star’s center of mass to the other’s . The top left
panel is the q = 0.4a run, the top right panel the q = 0.4b run, and the bottom panel is the
q = 0.4c run. From top to bottom, the rows correspond to t = 5 orbits, 10 orbits, 15 orbits, and
20 orbits. The color density scale runs from 10−6 to 1 in code units. Note that we use symmetry
across the equatorial plane in these simulations, so there is only a “top” half of the grid.

fact, all three q = 0.4 runs begin mass transfer with direct impact accretion. The q = 0.4ab
runs account for shock heating and thus the accreted matter is heated. Rather than mostly
settling down onto the accretor as in the q = 0.4c run, it remains in an extended atmosphere,
stretching from the surface of the accretor to nearly the edge of the accretor’s Roche lobe. This
extended atmosphere exerts a pressure on the in-falling material and, just after the 4th orbit of
the q = 0.4ab runs, the accretion stream detaches from the surface of the accretor. A torus like

67



Fig. 8.7.— A close up of the q = 0.4a low density plot at 10 orbits. This figure is seen in the
second row from the top of Figure 8.5 in the left column.

structure forms around the equator of the accretor, consisting of mostly donor material. In Figure
8.10 we show the specific entropy profile for the q = 0.4a run in the equatorial plane at four times
in the evolution. When the accretion stream impacts the surface directly, it is able to insert its
lower entropy material onto the surface of the accretor, underneath any shocked material in an
extended atmosphere. Once the accretion stream detaches, it piles its lower entropy material
onto the higher entropy shocked torus material. This low entropy material sinks to the surface
of the accretor and accumulates there. Looking below the accretor and just to the right, in the
upper left panel of Figure 8.11, we see the telltale shape of a Kelvin-Helmholtz instability. There
are also knots in the mass density profile of the torus, as seen in the right hand panels of Figure
8.11. This behavior is not unlike what Guillochon et al. (2010) found in a simulation of a similar
binary.

For diagnostic purposes we have defined the torus to include any supersonic regions within
the accretor’s Roche lobe. The accretion torus is not symmetric with respect to the accretor’s
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Fig. 8.8.— Mass transfer rate, Roche lobe radius, orbital separation, and angular momenta of
the q = 0.4a (red curve), q = 0.4b (green curve), and q = 0.4c (blue curve) runs. Top Left:
The orbit averaged rate of mass transfer from the donor, normalized to donor masses per orbital
period. Top Middle: The orbit averaged effective Roche lobe radius of the donor, in units of the
initial orbital separation. Top Right: The orbit averaged orbital separation normalized to its
initial value; Bottom Left: The orbit averaged spin angular momentum of the donor, in units of
initial total angular momentum. Bottom Middle: The orbit averaged spin angular momentum
of the accretor, in units of initial total angular momentum. Bottom Right: The orbital angular
momentum, in units of initial total angular momentum.

center of mass. In the middle and bottom panels of Figure 8.12 we plot the mass of the accretion
torus (top panel) and the quantities

Mtor (xtor − xacc) , (8-2)

Mtor (ytor − yacc) , (8-3)

where Mtor is the mass of the torus, (xtor, ytor) are the center of mass coordinates of the torus,
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Fig. 8.9.— Accretion luminosity, radiative luminosity, and above zero-binding energy mass frac-
tion for the q = 0.4a (red curve), q = 0.4b (green curve), and q = 0.4c (blue curve) runs. Left:
The top three curves are the orbit averaged accretion luminosities, in units of Eddington lumi-
nosity, for the q = 0.4a (red curve), q = 0.4b (green curve), and q = 0.4c (blue curve) runs. The
bottom curve is the radiative luminosity for the q = 0.4a run. Right: The orbit averaged fraction
of mass on the grid with a gravitational binding energy above zero for the q = 0.4a (red curve),
q = 0.4b (green curve), and q = 0.4c (blue curve) runs.

and xacc and yacc are the respective x and y locations of the accretor’s center of mass. The torus
asymmetry seems to pass through three modes during each of the q = 0.4ab runs. Each run pass
through the modes at different times. The first mode is the packet of sinusoidal waves that grows
and then diminishes in amplitude, ending at approximately t = 10 and t = 12.5 orbits for the
q = 0.4a and q = 0.4b runs, respectively. The period of lower amplitude irregular oscillations
that follows is the second mode. The third mode begins at about t = 14 and t = 17 orbits for
the q = 0.4a and q = 0.4b runs, respectively, when the irregular oscillations grow in amplitude.
The q = 0.4a run enters each mode earlier, the amplitude of its oscillations are smaller, and the
difference in the modes is not as pronounced. In Figure 8.13, we plot the short time power spectra
of the middle panel in Figure 8.12 using a Gaussian window with a variance of one orbit. In the
first mode, the center of mass of the torus orbits the accretor with a frequency of approximately
3.8 and 4.4 times the orbital period for the q = 0.4a and q = 0.4b runs, respectively. In the
second mode, the center of mass of the torus orbits the accretor with low amplitude and with
two frequencies. The lower frequency, at about 3.4 times the orbital frequency, is nearly shared
by each run, while the higher frequency, at 4.3 and 4.7 times the orbital frequency for the q = 0.4a
and q = 0.4b runs, respectively, is not. The shared frequency in the second mode grows, forming
the dominant frequency of the third mode just to the left and right of 3.75 times the orbital
period for the q = 0.4a and q = 0.4b runs, respectively. The q = 0.4b run has an additional
significant epicyclic frequency at 5 times the orbital period. These torus oscillations appear to
be the most significant difference between runs simulated with radiation transport (q = 0.4a)
and without it (q = 0.4b).
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Fig. 8.10.— Specific entropy profile in the equatorial plane for the q = 0.4a runs at four times in
evolution. From left to right and top to bottom, we show profiles at t = 5, 10, 12, and 19 orbits.
The view is a close up of the accretor. The logarithmic entropy scale runs from 1 to 10 in code
units, and the logarithmic density scale from 10−4 to 10−1 in code units. The black contour lines
in each plot are contours of density. From the center of the accretor outward, these contour lines
correspond to 10−2, 10−4, and 10−6. The single white contour delineates the Roche lobe. Note
that the lower left panel in this Figure is the same as the upper left panel in Figure 8.11.
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Fig. 8.11.— Specific gas entropy and mass density plots revealing Kelvin-Helmholtz instability
in q = 0.4a and q = 0.4b runs. Depicted is an equatorial slice of the specific gas entropy (left
column) and mass density (right column) for the q = 0.4a (top row) and q = 0.4b (bottom row)
runs at t = 12 orbits. The view is a close up of the accretor. The logarithmic entropy scale runs
from 1 to 10 in code units, and the logarithmic density scale from 10−4 to 10−1 in code units.
The black contour lines in each plot are contours of density. From the center of the accretor
outward, these contour lines correspond to 10−2, 10−4, and 10−6 in code units. The single white
contour delineates the Roche lobe. Note that the lower left panel in this Figure is the same as
the lower left left panel in Figure 8.10
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Fig. 8.12.— Accretion tori for q = 0.4a (red curve) and q = 0.4b (green curve) runs. Top: The
mass of the accretion torus, normalized to the initial mass of the accretor. Middle: The quantity
Mtor (xtor − xacc). Bottom The quantity Mtor (ytor − yacc).
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Fig. 8.13.— Accretion tori short time power spectra for q = 0.4a (red curve) and q = 0.4b (green
curve) runs. We plot the short time power spectrum of Mtor (xtor − xacc) at (top) 7.5 and 10
orbits, (middle) 12 and 14.5 orbits, (bottom) 17 and 19 orbits for the q = 0.4a and q = 0.4b
runs, respectively. The discrete time short term Fourier transform (discrete time STFT) was
computed using a Gaussian window with a variance of 1 orbit. The y range is the same scale in
each plot. The x axis is the frequency, in the inertial frame, in units of orbital frequency.
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9. Conclusions

In this dissertation we have presented a method for the study of super-Eddington accretion
flows in interacting DWDs undergoing the initial phase of mass transfer. This method includes
several improvements over our previous Eulerian code, among which are: (1) the FLD approxi-
mation to the radiative transport equation (§5.3 and §5.4), (2) shock heating by means of a dual
energy formalism (§4.1 and §5.1), (3) the incorporation of gravitational and rotational potential
terms into the K-T scheme (§5.2), (4) the advection of inertial frame angular momentum instead
of lab frame angular momentum, and (5) the use of a higher order reconstruction scheme, elim-
inating unnecessary numerical viscosity. As discussed in §7.2 and as demonstrated in §6.7, §7,
and §8, our new code conserves total energy better than SPH codes and our previous code and
conserves total angular momentum as well as SPH codes and better than our previous code.

In §7 we have shown results from two runs modeling a DWD of mass ratio q = 0.7 using our
new code, one with the radiation feature enabled (q = 0.7a), and one with it disabled (q = 0.7b).
The differences between the two models are minor. The radiation energy in the q = 0.7a run is
swept up with the accretion stream, trapped by the optically thick common envelope. Although
some mass is lost off the boundary of the computational grid, very little of the mass on the
grid ever exceeds zero gravitational binding energy for either run. The common envelope in the
q = 0.7a run, able to cool by radiation transport, has a lower specific internal gas energy than the
common envelope of the q = 0.4b binary and the rate of mass loss from the donor and accretor
into the common envelope is lower for the q = 0.4a run.

We also simulated a DWD of mass ratio q = 0.4 (§8). Like the q = 0.7 runs, we ran one
version with radiation (q = 0.4a) and one without it (q = 0.4b). Additionally, we evolved a
q = 0.4c run that uses a polytropic equation of state in place of a gas energy equation. The
evolution of all three runs begins with direct impact onto the accretor, but in the case of the
q = 0.4ab runs, the accretion stream detaches from the accretor just after the 4th orbit. The
shock heated material in the accretion torus pushes the accretion stream away from the accretor.
As discussed in §8.3, the stream instead feeds into the edge of the torus. This torus is not present
in the q = 0.4c run because there is no shock heating and the accreted material, remaining cold,
is absorbed by the accretor. The torus center of mass does not coincide with the accretor’s center
of mass. The motion of the torus center of mass goes through three modes of oscillation during
the run. The q = 0.4a run goes through these modes quicker and with lower amplitude than the
q = 0.4b run.

In both the q = 0.4 and q = 0.7 runs an optically thick common envelope grows to fill the
grid. The geometry of this envelope is crucial. If it is roughly spherical, radiation produced by
accretion passes through the entire envelope before leaving the system. If the geometry departs
from spherical, radiation can escape more easily. In a disc configuration, for example, radiation
produced by accretion along the inner edge of the disc can escape through the upper and lower
surfaces of the disc before reaching any of the outer disc. To model the common envelope,
the accretion stream, the DWD components, and any accretion structure that forms outside
of the accretor, within the limits of present day and near future computers, will require AMR
techniques.

The implementation of radiation transport into astrophysical fluid models is nothing new.
To our knowledge, however, results of a three-dimensional self-consistent simulation of a DWD
at the onset of mass transfer have never been presented. Guillochon et al. (2010) simulated a
DWD using an SPH code and used the results to set the boundary conditions for a model of the
accretor and accretion stream in the FLASH code. The FLASH code implements FLD radiation
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transport, however, the SPH code used to simulate the entire binary did not. The simulations
described in §7 and §8 model the entire DWD with radiation hydrodynamics, and we submit that
these models are the first of their kind. Although the accuracy of the FLD method is limited
outside of the diffusion approximation, it is suitable as a first exploration of super-Eddington
accretion in DWDs.
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Guerrero, J., Garćıa-Berro, E., & Isern, J. 2004, Astronomy and Astrophysics, 413, 257

Guillochon, J., Dan, M., Ramirez-Ruiz, E., & Rosswog, S. 2010, The Astrophysical Journal
Letters, 709, L64

Hachisu, I. 1986, Astrophysical Journal Supplement, 62, 461

Han, Z., Podsiadlowski, P., Maxted, P. F. L., Marsh, T. R., & Ivanova, N. 2002, Monthly Notices
of the Royal Astronomical Society, 336, 449

Han, Z., & Webbink, R. F. 1999, Astronomy and Astrophysics, 349, L17

Hayes, J. C., Norman, M. L., Fiedler, R. A., Bordner, J. O., Li, P. S., Clark, S. E., ud-Doula,
A., & Mac Low, M. 2006, Astrophysical Journal Supplement, 165, 188

Hestenes, M. R. 1952, Research Journal of the National Bureau of Standards, 49, 409

Hils, D., Bender, P. L., & Webbink, R. F. 1990, Astrophysical Journal, 360, 75

Hubeny, I., & Burrows, A. 2007, Astrophysical Journal, 659, 1458

Iben, Jr., I. 1988, Astrophysical Journal, 324, 355

Iben, Jr., I., & Tutukov, A. V. 1984, Astrophysical Journal Supplement, 54, 335

Illenseer, T. F., & Duschl, W. J. 2009, Computer Physics Communications, 180, 2283

Kleinman, S. J., et al. 2004, Astrophysical Journal, 607, 426

Kopal, Z. 1959, Close binary systems (The International Astrophysics Series, London: Chapman
and Hall)

Krumholz, M. R., Klein, R. I., McKee, C. F., & Bolstad, J. 2007, Astrophysical Journal, 667,
626

Kurganov, A., & Petrova, G. 2001, Numerische Mathematik, 88, 683

Kurganov, A., & Tadmor, E. 2000, Journal of Computational Physics, 160, 241

Lax, P. D. 1954, Communications in Pure and Applied Mathematics, 7, 159

Levermore, C. D., & Pomraning, G. C. 1981, Astrophysical Journal, 248, 321

Liebling, S. L. 2002, Physical Review D, 66, 041703

Livio, M., & Riess, A. G. 2003, Astrophysical Journal Letters, 594, L93

Livne, E., Burrows, A., Walder, R., Lichtenstadt, I., & Thompson, T. A. 2004, Astrophysical
Journal, 609, 277

78



Marcello, D. C., & Tohline, J. E. 2011, submitted for publication in The Astrophysical Journal
Supplement

Marsh, T. R., Dhillon, V. S., & Duck, S. R. 1995, Monthly Notices of the Royal Astronomical
Society, 275, 828

Marsh, T. R., Nelemans, G., & Steeghs, D. 2004, Monthly Notices of the Royal Astronomical
Society, 350, 113

Marshak, R. E. 1958, Physics of Fluids, 1, 24

McCook, G. P., & Sion, E. M. 1999, Astrophysical Journal Supplement, 121, 1

Mihalas, D., & Mihalas, B. W. 1984, Foundations of Radiation Hydrodynamics (New York,
Oxford University Press)

Mochkovitch, R., & Livio, M. 1990, Astronomy and Astrophysics, 236, 378

Morales-Rueda, L., Marsh, T. R., Maxted, P. F. L., Nelemans, G., Karl, C., Napiwotzki, R., &
Moran, C. K. J. 2005, Monthly Notices of the Royal Astronomical Society, 359, 648

Motl, P. M. 2001, PhD thesis, Louisiana State University and Agricultural & Mechanical College

Motl, P. M., Frank, J., Tohline, J. E., & DSouza, M. C. R. 2007, Astrophysical Journal, 670,
1314

Motl, P. M., Tohline, J. E., & Frank, J. 2002, Astrophysical Journal Supplement, 138, 121

Mullally, F., Badenes, C., Thompson, S. E., & Lupton, R. 2009, Astrophysical Journal Letters,
707, L51

Napiwotzki, R. 2009, Journal of Physics Conference Series, 172, 012004

Nayakshin, S., Cha, S.-H., & Hobbs, A. 2009, Monthly Notices of the Royal Astronomical Society,
397, 1314

Nelemans, G., Portegies Zwart, S. F., Verbunt, F., & Yungelson, L. R. 2001a, Astronomy and
Astrophysics, 368, 939

Nelemans, G., Yungelson, L. R., & Portegies Zwart, S. F. 2001b, Astronomy and Astrophysics,
375, 890

Nelemans, G., Yungelson, L. R., Portegies Zwart, S. F., & Verbunt, F. 2001c, Astronomy and
Astrophysics, 365, 491

Nelemans, G., et al. 2005, Astronomy and Astrophysics, 440, 1087

Nessyahu, H., & Tadmor, E. 1990, Journal of Computational Physics, 87, 408

New, K. C. B., & Tohline, J. E. 1997, Astrophysical Journal, 490, 311

Nomoto, K., & Iben, Jr., I. 1985, Astrophysical Journal, 297, 531

Ott, C. D., Burrows, A., Dessart, L., & Livne, E. 2008, Astrophysical Journal, 685, 1069

79
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Appendix A: Opacities

The three opacities in our equation set, χ, κP , and κE, represent the frequency integrated
opacity weighted by the frequency dependent radiative flux, Fν , the frequency dependent Planck
function, Bν , and the frequency dependent radiative energy density, ER,ν , respectively. Their
definitions are given by equations (3-15), (3-14), and (3-43), respectively. Physically, κP and
κE should contain absorption terms only, while χ includes absorption as well as scattering. If
the opacity is frequency dependent we have to make assumptions about the spectrum in order
to integrate the opacity over frequency. In the diffusion limit we may assume a blackbody
spectrum. When the radiation is free-streaming, however, this assumption does not generally
hold. Additionally, when Thompson scattering and free-free absorption terms are both present in
χ, we cannot obtain an analytic expression even in the diffusion limit. Due to these limitations,
we adopt a simplistic expression for the opacities. For the q = 0.7a run, we have set

χ := σTρ+ aff,sρ
2T−3.5, (9-1)

and
κE := κP := aff,aρ

2T−3.5, (9-2)

where
σT := 8.4× 1012

(
l2code/mcode

)
, (9-3)

aff,s := 2.12× 1011
(
l5codeK

3.5
code/m

2
code

)
, (9-4)

and
aff,s := 6.50× 1012

(
l5codeK

3.5
code/m

2
code

)
. (9-5)

In practice, for the q = 0.7a run, we find that the first term of equation (9-1) (the scattering
term) is generally several orders of magnitude higher than the second term. We therefore adopt
a simpler relation for the q = 0.4 runs, κE = κP = χ = σT .
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Appendix B: Three Different Gas Energy Schemes

We refer to the gas energy scheme of equation (5-37) as the E* scheme. An alternative
scheme for the total gas energy is

d

dt
EG,jkl +D {(EG + p) u}jkl = V {EG}jkl −

sR,jkl
2∆

(Φeff,j+1kl − Φeff,j−1kl)

−
lz,jkl − ρjklR2

jΩ

2Rj∆
(Φeff,jk+1l − Φeff,jk−1l)−

sz,jkl
2∆

(Φeff,jkl+1 − Φeff,jkl−1) . (9-6)

Equation (9-6) is obtained by applying equation (5-24) to the total gas energy and adding first-
order discrete derivatives to the RHS to account for the gravitational term. As shown above in
§6.7, application of equation (9-6) to stellar models results in an ever increasing total system
energy. Over many dynamical timescales, the polytrope will dissipate.

Another way to handle the gas energy is to not evolve EG or τ at all. Instead we obtain the
pressure using the polytropic relation of equation (2-6) and setting γ := 1 + 1

n
. As shown in §6.7,

the resulting model does not appear to lose energy indefinitely.
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Appendix C: Center of Mass Correction

The center of mass correction applied to some of the simulations in §6.7 is formulated
according to

aCOM := −ω2 (XCOM −X0,COM)− 2ω
d

dt
XCOM, (9-7)

where aCOM is the spatially constant acceleration used to correct for center of mass motion,
XCOM is the current center of mass of the system, X0,COM is the center of mass at t = 0, and
ω is a suitably chosen constant. In the polytrope simulations discussed in §6.7, ω := 1, which
is close to the inverse of the dynamical timescale. Equation (9-7) is the equation for a critically
damped harmonic oscillator. We chose this as our correction because we would like to counteract
any displacements from the original center of mass without overshooting. At each time step,
the center of mass of the system is computed. The velocity of the center of mass d

dt
XCOM is

determined using XCOM from the current and previous time step. The term

ρjkl (aCOM,x cosφk − aCOM,y sinφk) (9-8)

is added to the RHS of radial momentum equation (5-51). The term

ρjklRj (aCOM,x sinφk + aCOM,y cosφk) (9-9)

is added to the RHS of the angular momentum equation (5-52). The total gas energy equation
(5-54) is modified by adding

ρjklujkl · aCOM (9-10)

to its RHS.
Note we do not use this correction in the q = 0.7 runs (§7). It is used, however, for the

q = 0.4 runs (§8).
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Appendix D: Letter of Permission

Figure D.1 shows the copyright agreement from the American Astronomical Society (AAS).
The agreement allows the author to reproduce parts of their article wherever they wish. All or
substantial parts of §4 and its subsections, §5 and its subsections, §6, §6.2, §6.3, §6.6, §6.7, and
§7 and its subsections are reproduced from Marcello & Tohline (2011).

Fig. D.1.— The copyright agreement pertaining to the use of parts of Marcello & Tohline
(2011). This agreement may be found at ‘http://iopscience.iop.org/0004-637X/page/Copyright
and permissions’
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