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ABSTRACT 

Purpose:  The purpose of this work was to test the feasibility of using a silicon on insulator 

microdosimeter, which mimics the size and shape of particular cells within the human 

body, to determine dose equivalent from a 239PuBe neutron source with uncertainty less 

than 10%.  

Methods:  A batch of microdosimeters were analyzed in terms of their physical surface 

conditions and basic diode characteristics such as leakage current as a function of bias 

voltage, to select those with the best performance.  A calibration protocol was developed 

utilizing an 241Am alpha particle source and a reference tail pulse generator.  Neutron 

spectra were acquired using two different converter layers placed atop the 

microdosimeter: a tissue-substitute converter made from high-density polyethylene, and 

a boron converter consisting of epoxy coated with boron powder.  To compare the 

experimental results, a Monte Carlo code was written to simulate the alpha particle and 

neutron irradiations.  Dose equivalent was determined using an average quality factor 

calculated for each spectrum on the basis of the ICRU definition (1986).           

Results: Using the tissue-substitute converter, the cell-shaped microdosimeters were 

able to determine dose equivalent with uncertainty less than 10%.  However, uncertainties 

were 13.5% when using the boron converter.   

Conclusion:  The cell-shaped silicon on insulator microdosimeters proved feasible for 

further research and development.  With higher quality silicon chips, this type of 

microdosimeter could become a simple, small, and lightweight device to determine dose 

equivalent in real-time and to provide improved radiation protection for radiotherapy 

patients and personnel who are occupationally exposed to radiation.             



1 

1 INTRODUCTION 

 

The field of microdosimetry consists of a conceptual framework and the 

corresponding experimental methods to analyze the microscopic distribution of energy 

deposition events in irradiated matter (ICRU, 1983).  The regions of interest in 

microdosimetry are quite small, comparable to that of biologic cells and subcellular 

structures, since radiation effects in tissue strongly depend upon interactions at the 

cellular level.  For such small regions, the primary dosimeter used has been the tissue-

equivalent proportional counter (TEPC).  Based upon Bragg-Gray cavity theory, the 

charge induced by radiation interactions within the counter’s gas-filled cavity is a good 

measure of the absorbed dose to the surrounding material (Farahmand, 2004).  However, 

TEPCs have some disadvantages including a relatively large physical size which limits 

spatial resolution and increases the chance of charge pile-up, and the addition of wall 

effects which will be discussed later. 

Another type of dosimeter is the silicon semiconductor.  These detectors offer 

much higher sensitivity, smaller physical size, and good mechanical stability (Rozenfeld, 

2011).  Silicon microdosimeters tend to suffer from poor definition of the sensitive volume 

from which charge is collected.  It is possible for charge to diffuse into the depletion region 

from areas surrounding the sensitive volume.  An improvement to this design is the silicon 

on insulator (SOI) microdosimeter.  Such a device consists of a silicon p-n junction 

situated above a layer of silicon dioxide which acts as an insulator and prevents the 

collection of charge from the area below the sensitive volume.  This allows the sensitive 

volume of the detector to be precisely defined.   
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 With SOI technology, a device can be constructed which consists of an array of 

well-defined sensitive volumes.  These sensitive volumes can be made to mimic the size 

and shape of actual cells.  Microdosimeters resembling particular cells within the human 

body will allow for the study of the importance of cell size and geometry, which has been 

shown to have an appreciable effect on energy deposition within cells, especially for low 

doses of radiation (Byrne et al., 2013).  Of particular interest are radiation sensitive cells.       

 

The quantities used in microdosimetry to describe energy transfer are different 

than those typically used in a clinical medical physics environment.  For this project, the 

most relevant quantities are energy imparted, 𝜀, and lineal energy, y. 

Energy imparted is a stochastic quantity measured in units of keV, which may be 

due to one or more energy deposition events within a volume. 

 𝜀 = ∑ 𝜀𝑖𝑖 .     (1.1) 

The energy deposited in the volume by a single interaction, 𝜀𝑖, is defined by (ICRU, 

1983): 

 𝜀𝑖 = 𝑇𝑖𝑛 - 𝑇𝑜𝑢𝑡 + 𝑄∆𝑚     (1.2) 

where 𝑇𝑖𝑛 is the energy of the incident ionizing particle (exclusive of rest mass), 𝑇𝑜𝑢𝑡 is 

the sum of the energies of all ionizing particles leaving the interaction (exclusive of rest 

mass), and 𝑄∆𝑚 represents the changes of the rest mass energy of the atom and all 

particles involved in the interaction. 
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A more useful quantity is lineal energy, which is also stochastic and is commonly 

specified in units of keV/ µm.  Lineal energy is found by 

 𝑦 =
𝜀𝑠

𝑙 ̅
     (1.3) 

where 𝜀𝑠 is the energy imparted to the volume by a single event and 𝑙 ̅is the mean chord 

length of that volume.  For a convex volume, subject to a uniform isotropic radiation field, 

the mean chord length 𝑙 ̅ can be found using Cauchy’s theorem (Kellerer, 1971a).  

 
𝑙 ̅ =

4𝑉

𝑆
 

(1.4) 

where V is the volume of the object, and S is the surface area.  In other volumes, 𝑙 ̅can 

be found from stochastic simulations of chord lengths in the volume. 

For presentation of microdosimetric data, there are a few different ways to plot the 

data.  The lineal energy frequency distribution, 𝑓(𝑦), is the probability density of y.  The 

dose distribution, 𝑑(𝑦), is the lineal energy distribution f(y) multiplied by y, and divided by 

�̅�𝐹.  

 𝑑(𝑦) =  
𝑦

�̅�𝐹
𝑓(𝑦)     (1.5) 

where �̅�𝐹 is the frequency-mean lineal energy, and represents the 1st moment of 𝑓(𝑦).  

 �̅�𝐹 =  ∫ 𝑦𝑓(𝑦) 𝑑𝑦
∞

0
.     (1.6) 

 The dose-mean lineal energy, �̅�𝐷, is a non-stochastic quantity and represents the 

second moment of 𝑓(𝑦) divided by the first moment of 𝑓(𝑦): 

 �̅�𝐷 =  ∫ 𝑦𝑑(𝑦)𝑑𝑦 =  
1

�̅�𝐹
∫ 𝑦2𝑓(𝑦)𝑑𝑦

∞

0

∞

0
.     (1.7) 
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The most common way to plot microdosimetric data is y•d(y) vs. Log10 y.  This 

format is advantageous because the area under the curve between any two values of 

lineal energy is proportional to the dose deposited by those events.   

 

 

The TEPC, or Rossi counter (Rossi & Rosenzweig, 1955), has some distinct 

advantages for microdosimetric measurements.  The walls of a TEPC may be constructed 

of tissue-substitute material and are filled with a tissue-substitute gas, usually methane 

or propane based, with an elemental composition very similar to human tissue 

(Farahmand, 2004).  An anode wire runs through the center of the cavity and the wall of 

the cavity acts as the cathode (Figure 1.1).  There is also typically a helical wire 

surrounding the central anode that serves to provide a more uniform electric field in the 

volume between the two wires.   

 

Figure 1.1: Mechanical schematic diagram and circuit diagram of Rossi counter 
(Newhauser, 1995). 
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The TEPC simulates a tissue volume much smaller than the physical size of its 

low pressure gas cavity.  When radiation interacts with the filling medium of the detector, 

excitations and ionizations result.  The high electric field between the central anode wire 

and the cathode wall (500-5000 V) enables secondary ionizations (charge multiplication 

in the gas cavity) to occur, proportional to the amount of primary ionizations (Farahmand, 

2004).  This property of gas multiplication allows the use of TEPCs in situations where 

the relatively few ion pairs created would not generate a sufficient signal with an ionization 

chamber, which operates at a much lower voltage (~300 V).   

A charged particle crossing  the volume of low-pressure tissue-substitute gas 

deposits the same amount of energy as the particle would if crossing a volume of tissue 

of microscopic diameter, if the following equation is satisfied: (Farahmand, 2004)   

 
(

1

𝜌

𝑑𝐸

𝑑𝑥
)

𝑡

𝜌𝑡∆𝑥𝑡 =  (
1

𝜌

𝑑𝐸

𝑑𝑥
)

𝑔

𝜌𝑔∆𝑥𝑔 
    (1.8) 

where (
1

𝜌

𝑑𝐸

𝑑𝑥
) is the mass stopping power, 𝜌 is the density, ∆𝑥 is the distance traveled 

across the volume, and the subscripts t and g represent tissue and gas, respectively.   

If the mass stopping powers of the gas and the tissue of interest are equivalent, 

then Equation 1.8 reduces to: 

 ∆𝑥𝑚 =
𝜌𝑔

𝜌𝑚
∆𝑥𝑔.     (1.9) 

 Thus, a TEPC can simulate a much smaller volume of unit density tissue.  As an 

example, a 2.5 cm diameter sphere filled with tissue substitute gas at a pressure of 2.27 

kPa will be equivalent to a 1 𝜇m diameter sphere of unit density material in terms of energy 

deposited in the two volumes.  Inherent in this conversion, however, is a scaling factor of 
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2.5 cm 1x10−4 cm ⁄ = 2.5𝑥104.  This very large difference in physical size is an important 

source of uncertainty in absorbed dose and lineal energy.   

Aside from the very large dimensional scaling factors necessary with TEPC 

measurements, there are some other clear drawbacks to this type of detector.  Even 

though both the walls of the chamber and the filling gas are essentially tissue-equivalent, 

the two substances still have some differences in compositions and densities with respect 

to actual human cells.  These discrepancies create distortions in the microdosimetric 

spectra that need to be taken into account.  These effects are generally described as “wall 

effects.”  The higher density of the chamber wall causes more particles to scatter and 

increases the production of secondary and tertiary particles, thus imparting more energy 

to the sensitive volume than would occur in a homogeneous medium (Kellerer, 1971b).  

It is important to note that wall effects do not occur if the detector is of uniform density 

and if the sensitive volume of the detector is the same size as the tissue volume it was 

simulating.  

The “delta ray effect” (Figure 1.2, a.) is when a charged particle enters the detector 

volume at the same time as one the delta rays it has created.  The “re-entry effect” (Figure 

1.2, b.) is when an electron passes through some portion of the detector volume but then 

re-enters the volume due to its circuitous path.  The “V-effect” (Figure 1.2, c.) is caused 

by a nonelastic nuclear reaction which creates multiple nuclear fragments simultaneously, 

and the traversal of the detector volume by two or more of these fragments.  The 

“scattering effect” (Figure 1.2, d.) is caused by an uncharged primary particle (e.g. photon 

or neutron) undergoing interactions which produce charged particles close enough 

together to enter the detector volume at the same time (ICRU, 1983).     
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There are some other disadvantages related to the large size of the low-pressure 

gas-filled TEPC.  This large physical size seriously limits the spatial resolution of the 

measurements, and also hinders simulating an array of cells.  Finally, in a high-intensity 

beam (i.e. a therapeutic beam) the TEPC suffers from sensitivity to pile-up effects due to 

the high fluence incident upon the large detection volume.                   

 

Figure 1.2: The four types of wall effects: (a) Delta Ray Effect (b) Re-Entry Effect (c) V-
Effect (d) Scattering Effect.  For each subset, the diagram on the left represents the 

experimental volume and the diagram on the right represents what would happen in a 
real, microscopic scenario.  Adapted from (ICRU, 1983).  

 

 Semiconductors have useful properties for radiation detection purposes when n-

type (doped with donor phosphorous atoms) and p-type (doped with acceptor boron 

atoms) materials are made to be in good thermodynamic contact with one another, 

allowing charge carriers to migrate across the junction (Knoll, 2000).  Migration produces 

the depletion region (named for its very low mobile carrier density) at this interface as well 

as an electric field. As a result, the system acts like a high-resistivity parallel plate 

ionization chamber (Bradley, 2001).  When ionizing radiation enters the depletion region 
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it will create electron-hole pairs which are then swept out of this region by the electric field 

(Knoll, 2000).  The motion of these charge carriers creates the detector signal.  Applying 

a reverse bias to the junction increases the size of the depletion region and improves 

charge collection.   

 While there are a number of materials that can be used to make semiconductor 

devices, one of the most common is silicon.  The mean energy required to generate an 

electron-hole pair in silicon is 3.62 eV (Bertolini & Coche, 1968), which is about a tenth of 

the energy required for ionization in typical fill-gases used in proportional counters (Knoll, 

2000).  This lends a theoretical advantage to silicon detectors in terms of energy 

resolution.  However, in practice, energy resolution is highly dependent on preamplifier 

noise levels (Bradley et al., 2001).     

The ability to have the sensitive volume (henceforth referred to as SV) of the 

detector closely mimic the dimensions of the cell of interest is an advantage for SOI 

detectors.  This virtually eliminates the wall effects inherent with a gas-filled TEPC in 

which the sensitive volume is thousands or tens of thousands times larger than the region 

of interest.  Another clear advantage of this small size is the ability to create a detector 

with an array of SVs, akin to a group of cells in tissue.           

 To define the depth of the SV, SOI detectors utilize an insulating layer of silicon 

dioxide underneath the junctions (blue layer in Figure 1.3); this ensures that no charge is 

collected from underneath the SV.  In addition to the insulating layer of SiO2 underneath 

the active area of the detector, each SV is surrounded by a “guard ring” structure.  The 

guard ring helps to reduce collection of charge from areas lateral to the sensitive volume 

or from adjacent SVs.  This guard ring (yellow n-type area surrounding the SV in Figure 
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1.3) can be left floating, or biased with the same potential as the core electrode 

(Rozenfeld, 2013).  Figure 1.4 shows the region within the silicon layer that would be the 

ideal SV; in reality the lower lateral edges of the SV near the SiO2 layer will likely be 

somewhat blurred.  

 

Figure 1.3: Top and side view of LSU SOI microdosimeter.  Ionizing radiation creates 
electron-hole pairs in the intrinsic silicon.  The electric field between the n- and p-type 

structures sweeps the electron-hole pairs out of the region, which generates a signal in 
the microdosimeter.  Note the guard ring structure (large n-type area surrounding the 
SV) and the SiO2 insulating layer (blue area in figure on the right).  (Adapted from B. 

Gila, personal communication, August 26, 2013) 

 

Figure 1.4: Top and side view of LSU SOI microdosimeter design showing outline of 
ideal SV region.  (Adapted from B. Gila, personal communication, August 26, 2013) 
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Silicon detectors do, however, possess some disadvantages compared to TEPCs.  

One issue is that silicon is not directly tissue-equivalent, in terms of radiation interactions 

and energy deposition.  To convert from absorbed dose in silicon to absorbed dose in 

tissue, a radiation species dependent absorbed dose conversion factor is required to 

account for range differences of ions in the materials.  However, it has been demonstrated 

that 0.63 is a reasonable approximation for a wide range of ion types and energies 

(Bradley, 2000). 

SOI detectors also tend to have noisier data compared to TEPCs.  TEPCs are 

capable of resolving single ionization events as low as 0.05 keV/µm, whereas silicon 

detectors typically have a minimum resolvable energy deposition of 0.4 keV/µm or more 

(Bradley et al., 2001).  Silicon detectors are susceptible to radiation damage effects that 

cumulate over time.  The two types of radiation damage are bulk and surface effects 

(Wunstorf, 1997).  The most basic bulk effect is the Frenkel defect which is when radiation 

interactions cause atoms of the semiconductor material to be displaced from their normal 

lattice locations (Knoll, 2000).  These additional vacancies can trap charge carriers which 

leads to degradation in charge collection efficiency and energy resolution.  Surface 

defects are mainly responsible for increased leakage current (Shiraishi, 1969) which also 

causes a loss of energy resolution.  The approximate cumulative particle fluence 

thresholds at which radiation damage becomes an important consideration are listed in 

Table 1.1. 
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Table 1.1: Approximate threshold fluences for radiation damage to silicon (Pospisil & 
Granja, 2009). 

Type of Radiation Fluence (particles/cm2) 

Thermal neutrons 1014 

Fast neutrons 1012 

p, α, t, ions 1011 

 

 

Previous SOI microdosimeters have used SVs of a size and shape similar to a 

generic human cell (Pisacane et al., 2011; Reinhard et al., 2005). In this work, we used 

SV sizes and shapes that mimicked specific human cells.  Each SOI microdosimeter had 

four separate sections, with each section consisting of an array of SVs of a unique size 

and shape.  Three of the arrays mimicked a specific type of cell, and the fourth replicated 

a design from the University of Wollongong (UOW), a collaborator on this project.  

Comparisons of detector response based on SV size and shape were facilitated by having 

all four SV designs on the same chip.  The four shapes chosen and their rationale are 

described in the following sections.      

 

There is a well-established link between ionizing radiation and the development of 

cataracts (Ainsbury et al., 2009; Otake & Schull, 1991).  Ionizing radiation has been 

particularly linked to the formation of posterior subcapsular cataracts (PSCs) (Robman & 

Taylor, 2005).  There are several distinct regions that make up the human lens (Figure 

1.5): the lens capsule to isolate the lens from the vasculature; a single anterior layer of 

epithelial cells; and the elongated lens fiber cells (Augusteyn, 2010; Blakely, 2012).  When 
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the actively dividing cells in the germinative region are damaged by radiation, they migrate 

to the posterior pole of the lens and can form a lens opacity (Evans et al., 1960). 

 

 

Figure 1.5: Detail of distinct regions of mature human lens.  Adapted from (Graw, 2003). 

 

Human lens epithelial cells are cuboidal or cylindrical in shape (Figure 1.6) and 

their size varies amongst individuals.  Brown and Bron (1987) reported that 97% of the 

cells they measured had diameters from 9 to 17 µm.  There is also a difference in size 

between cells grown in culture and cells in vivo.  Lens epithelial cells grown in culture 

have an average diameter of about 30 µm (Cooper et al., 1990; Stewart et al., 1988).  

Cells in vivo have an average diameter from 12 or 13 µm (Brown & Bron, 1987; Masters 
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et al., 1997; Stewart et al., 1988) to 15 µm (Yanoff et al., 2009). Thickness estimates for 

lens epithelial cells range from 5 µm (Records, 1979) to 10 µm (Yanoff et al., 2009).   

 

 

Figure 1.6: Scanning electron microscope micrograph of human lens epithelial cell 
layer.  Adapted from (Masters et al., 1997). 

 

 

Endothelial cells line all the blood vessels within the human body and form the 

interface between tissues and blood (Feng et al., 1999). Radiation damage to endothelial 

cells is a primary cause of secondary cardiac toxicities following radiation exposure 

(Baker et al., 2011; Yusuf et al., 2011).  It is difficult to model endothelial cells because 

they elongate in response to fluid shear stress from blood flow, as seen in Figure 1.7 
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(Malek & Izumo, 1996; Sumagin et al., 2008).  When endothelial cells are grown in culture 

they form a circular, randomly oriented cobblestone pattern (Malek & Izumo, 1996, Potter 

et al., 2012).  In vivo endothelial cells are fusiform, or spindle shaped, and aligned in the 

direction of flow (Malek & Izumo, 1996) as seen in Figure 1.8, with an elongation ratio of 

about 2:1 (Potter et al., 2012).  There is additional variability in cell size depending on 

location within the heart, and the size of the vessel in which the cell resides (Sumagin et 

al., 2008).   

 

 

Figure 1.7: Endothelial cells lining a blood vessel. The cells are elongated in the 
direction of blood flow and shear stress (Ohashi & Sato, 2005). 

 

There is not much quantitative information in the literature about the size of 

endothelial cells in the human heart.  Much of the research has been performed on non-
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human subjects such as rabbits and mice.  To find a representative measurement, cell 

dimensions were acquired from multiple sources and an average size was determined.  

ATCC (http://atcc.org), a biological resource center and cell-line provider, quoted an 

average diameter of 20.7 µm for endothelial cells from a human aorta, 18.0 µm diameter 

for bovine heart endothelial cells, and 16.9 µm diameter for a bovine pulmonary artery 

endothelial cell (personal communication, July 17, 2013).  Other sources showed a wide 

range of dimensions within the vasculature, ranging from 10 to 80 µm (McGeachie, 1998; 

Thiriet, 2007).  Iliac artery endothelial cells were found to have an average length of 25.8 

µm and an average width of 13.2 µm (Garipcan et al., 2011).  The cell thickness was 

measured as 2.2 µm for in vitro cells and 1.2 for in vivo cells (Ohashi & Sato, 2005). 

 

 

Figure 1.8: Schematic of endothelial cells’ morphological response to flow and shear 
stress (Malek & Izumo, 1996).  Endothelial cells in vitro maintain a circular, cobblestone 

pattern, whereas in vitro cells will elongate in the direction of blood flow. 
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Collaborating on the MIDN project is the Centre for Medical Radiation Physics at 

UOW in Australia.  To allow a direct comparison between LSU’s detector and UOW’s, the 

SVs in one of the arrays was identical to UOW’s design of a cylinder 14.9 µm in diameter.  

Comparing detector responses based on the same SV helped to ensure proper calibration 

and that no defects occurred during construction of the devices.   

 

The chips were manufactured at the Nanoscale Research Facility at the University 

of Florida.  The SV dimensions which were originally proposed had to be modified slightly 

to accommodate manufacturing constraints and a required amount of spacing, or pitch, 

between adjacent SVs.  Table 1.2 lists the final dimensions and Figure 1.9 shows a 

depiction of the final array designs. 

Table 1.2: Final SV dimensions. 

Array Design Shape Dimensions (µm) h (µm) 

Lens Epithelial 
Cell 

Cylinder Diameter: 12.6 10 

Heart 
Endothelial 
Cell in vitro 

Cylinder Diameter: 18.0 10 

Heart 
Endothelial 
Cell in vivo 

Ellipse Major Axis: 24  Minor Axis: 12 10 

UOW Design 
Cylinder Diameter: 14.6 10 
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Figure 1.9: Final sensitive volume designs.  Clockwise from upper left: Lens epithelial 
cell, heart endothelial cell in vitro, UOW cylinder, heart endothelial cell in vivo.  (B. Gila, 

personal communication, August 26, 2013) 
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Due to miscommunications during the manufacturing process, the pin-outs for the 

n+ core and the p+ ring were switched.  Instead of fabricating new chips, the decision 

was made to rewire the original chips.  Unfortunately, some wires had to be crossed 

above the chip surface to achieve the desired wiring scheme (Figure 1.10).  This is non-

ideal because the wires can potentially shield some of the sensitive volumes, and the 

possibility exists of the wires sagging and shorting out, which would make the array non-

functioning. 

 

 

Figure 1.10: Revised pin-out configuration.  Left: original wiring; Right: re-wired 
configuration. 

 

The qMIDN device contains readout electronics for four independent 

microdosimeter devices.  However, for this project, only one microdosimeter device was 

used at a time, and the output split to multiple gain settings to accommodate a wide range 

of lineal energy events.  The arrays on the chip are selected for readout by placement of 

a jumper across the various junctions, J1 through J5 (Figure 1.11); note that the chips 

used in this project have only four arrays and J3 was not used.  The junction J6 must be 
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bridged in order to acquire signal from the microdosimeter.  Junction J7 is bridged when 

a test-input from a reference tail pulse generator is to be used. 

 

Figure 1.11: Placement of jumpers to select arrays.  J1 selects the 12.5 µm cylinder 
array, J2 selects the 18 µm cylinder array, J3 not used, J4 selects the 14.5 µm cylinder 

array, J5 selects the 24 µm x 12 µm ellipse array (Ziegler, 2013). 

Charge collected from the microdosimeter was capacitively coupled to an Amptek 

A250f charge-sensitive preamplifier, which has a fixed gain of 20 dB, and converted the 

incoming charge into a voltage pulse.  This voltage pulse is then sent to an AD829 

amplifier for inversion and pulse-shaping.  The output of the amplifier is then sent to the 

qMorpho (Bridgeport Instruments, LLC, Austin, TX) device (Figure 1.12). 

 

Figure 1.12: Simplified circuit diagram of signal collection and shaping components. 

 

 The qMorpho contains four multichannel analyzers (MCA) for pulse height 

analysis.  The four MCAs are independent, though they share a common control and 
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command module.  The signal in each MCA was first sent through a differential output 

OP-amp, where the gain was set by varying the transimpedance value (selected via the 

qMIDN software).  The signal then encountered a waveform-digitizing analog-to-digital 

converter (ADC).  The next step is the signal processing field-programmable gate array 

(FPGA) which analyzes the digitized signal and produces data which is picked up by the 

command and control FPGA.  The experimental data was saved to a file on the attached 

laptop (connected via USB), which was read by the qMIDN software.  The overall setup 

can be seen in Figure 1.13.  

 Power was supplied to the qMIDN via two 9V batteries inside the box, or by an 

external DC power supply with the wires run into the box.  Use of the batteries has the 

advantage of fewer wires and flexibility in physical placement of the device, especially if 

the optional Wi-Fi capability is utilized.  Using the external power supply is advantageous 

when long acquisition times are required, as the batteries become depleted in a relatively 

short amount of time.   

 

Figure 1.13: Overall layout of qMIDN experimental setup: DC power supply, qMIDN 
device, and laptop with control software. 
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The purpose of this research is to test the feasibility of a SOI microdosimeter with 

SVs in the shape and size of human cells.  The idea has been proposed previously  

(Bradley et al., 2001; Pisacane et al., 2013), but to our knowledge no such devices have 

previously been built and characterized. 

Hypothesis: With a silicon on insulator microdosimeter, whose sensitive volume 

closely models the physical dimensions of human cells, dose equivalent from a 239PuBe 

neutron source can be determined with uncertainty less than 10%. 

 

Aim 1: Quantify the uncertainty in lineal energy introduced by the calibration procedure 

from 241Am alpha particle irradiation. 

 

Aim 2: Measure absorbed dose to silicon from moderated 239PuBe irradiation and 

quantify uncertainty in absorbed dose to silicon. 

 

Aim 3: Convert absorbed dose to silicon to absorbed dose to tissue and dose 

equivalent to tissue.  Quantify uncertainty in dose equivalent to tissue from moderated 

239PuBe irradiation. 
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2 METHODS AND MATERIALS 

 

 

For the purposes of characterizing the response of the detector to charged particle 

irradiation and to calibrate the device to lineal energy and absorbed dose, studies were 

conducted using 241Am sources, which decay by emission of alpha particles: 5.476 MeV 

(84.4%) and 5.433 MeV (13.6%).  Two sources were utilized: a 0.1 µCi NIST-traceable 

source (Source 1), and a 0.65 µCi source (Source 2).  Source 1 was the preferred source, 

owing to its NIST-traceability, but when it was unavailable for testing, Source 2 was 

utilized.  Since the energies of the alpha particles emitted by Source 2 were not known 

accurately a priori, spectra were acquired with both sources using previously calibrated 

detectors.  From this information, and the known energies of the alpha particles from 

Source 1, the energies of the alpha particles from Source 2 were determined.  This 

knowledge of the sources’ energy distribution was important to ensure proper calibration 

when using either source.   

Figure 2.1 shows the differences in the energy spectra between the two 241Am 

sources.  These spectra were acquired in a vacuum chamber using silicon strip detectors 

in Dr. Jeff Blackmon’s laboratory.  As can be seen, Source 1 emits essentially mono-

energetic alpha particles, whereas Source 2 has a much broader energy spectrum.  This 

information was used to determine the average energy of the emitted alpha particles and 

to verify the activity of the Source 2.  Note that the detectors used in this experiment were 

relatively thick (1 mm) so that all the alpha particles stopped and deposited all of their 

energy within the detector.  Thus, alpha particles of higher energy will register at a higher 



23 

channel numbers; as opposed to the situation where all of the alpha particles were 

“crossers,” and those possessing a higher energy would deposit less energy within the 

detector and would register at a lower channel number.   

 

Figure 2.1: Comparison of energy spectra from the two 241Am sources used in this work, 
in terms of counts versus channel number. Pink: Source 1, Black: Source 2.  Spectra 

were acquired under vacuum using thick silicon strip detectors.  

Bias voltage was supplied to the microdosimeters by connecting to the 6 V power 

supply for the circuit board.  An inline potentiometer allowed for the application of varying 

amounts of bias voltage, up to 6 V maximum.  As evidenced by the testing done by UOW 

with the same chips (Tran & Chartier, 2014), 6 V was sufficient to achieve full depletion 

of the sensitive volumes and to maximize charge collection efficiency. Acquiring spectra 

with increasing amounts of bias voltage shifted the position of alpha peak to higher 

channel numbers, since as the charge collection efficiency of the device improved (due 

to reduced recombination effects), the size of the pulses being recorded also increased.  
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This effect is demonstrated by Figure 2.2 and the corresponding peak position values 

shown in Table 2.1.    

 

Figure 2.2: Shift in alpha peak position based upon the amount of bias voltage applied. 

Table 2.1: Alpha peak channel numbers based on increasing amounts of bias voltage; 
18 µm cylinder array. 

Reverse Bias 
Voltage (V) 

Position of Peak 
(Channel #) 

0 107 

2 122 

3 125 

4 129 

6 130 

 

A  Matlab code was developed for this work to analyze the raw data from the multi-

channel analyzers and convert them into the microdosimetric format.  The code allows 
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for plotting the data in various forms: counts vs. channel number, counts vs. energy 

deposited, y•d(y) vs. y, etc.  To convert channel number to energy deposited, the code 

combines data from an alpha particle calibration with information from the pulse generator 

calibration (described in more detail later).  From a spectrum acquired with one of the 

241Am sources, the code extracts the position of the alpha particle peak by fitting a 

Gaussian curve to the peak region.  The fitting is done in two steps.  The first fit, which is 

performed over a user-selected region of the data, is used to find the centroid position 

and the sigma width parameter of the Gaussian curve.  The second fit is performed over 

a region defined by the centroid from the first fit, plus and minus one sigma.   

The amount of energy deposited in the SV represented by counts under the alpha 

peak is then calculated by the energy loss codes, taking into account the energy lost by 

the alpha particles while traveling through the air gap and SiO2 layer atop the device.  The 

energy deposition spectrum is then converted to lineal energy by dividing the energy 

deposited by the mean chord-length of the SV that was used.  For final plotting of the 

data, the code follows the International Commission on Radiation Units and 

Measurements (ICRU) Report 36 (1983) recommendations of binning the data for 

graphical presentation.      

 

To compare observed and expected count rates, the active diameter of the 241Am 

source was determined.  To assay the source, a collimator was constructed from a 3.2 

mm (1/8”) thick copper sheet with a 1.6 mm (1/16”) hole drilled through it.  This collimator 

was scanned over the surface of the source laterally and longitudinally in one millimeter 

steps, and the fluence measured at each position using a survey meter (Model 14C, 

Ludlum Measurements, Inc., Sweetwater, Texas) and a Ludlum Model 44-9 alpha, beta, 
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gamma “pancake” Geiger-Mueller detector.  This value will also be important for the chord 

length and energy deposition Monte Carlo simulations.   

Comparisons were made between the expected number of counts, based on the 

source activity and source-to-surface distance (SSD), and the observed number of 

counts, extracted from the experimental data.  The expected number of counts was found 

by using the equation for fluence rate at a distance d from a disc source of radius r and 

activity A, or 

                                                     �̇� =  
𝐴

4𝜋𝑟2 𝑙𝑛 (
𝑟2+𝑑2

𝑑2 ).                                                   (2.1) 

 Multiplying the fluence rate by size of the active area of the array gives the 

expected number of particles interacting with the detector per unit time.  Assuming 100% 

collection efficiency, this gives the expected count rate.  The observed number of counts 

will be determined from analyzing experimental spectra acquired with the 

microdosimeters. 

 

Since the alpha particle sources used were relatively large disc sources compared 

to the much smaller SVs (Figure 2.3), alpha particles traversed the SVs through many 

different chord lengths.  The chord length the particle traversed through the SV directly 

affected the amount of energy deposited in the SV and consequently the shape of the 

recorded spectrum.  It is therefore important to know and understand the shape of this 

chord length distribution.     
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Figure 2.3: Schematic representation of 241Am source atop the microdosimeter; side 
view. 

To this end, a Monte Carlo (MC) simulation code was written for this project to 

simulate the experimental setup and to find the chord length and energy deposition 

distributions for each of the four SVs.  The code was written in Matlab.  The user-specified 

source and detector geometry (source dimensions, source energy spectrum, SSD, SV 

dimensions) and the number of particle histories.  The simulation began by randomly 

selecting the alpha particle origin on the surface of the source.  From this origin, the three-

dimensional direction of the particle was randomly sampled (isotropic emission).  If the 

particle’s trajectory did not interact with any of the SVs, the history was ignored, but if the 

particle hit one of the SVs, the distance the particle traveled through the layers of air and 

SiO2, and the chord length through the SV were recorded.   

There are four categories of SV hits for “crosser” particles (Figure 2.4):  1. The 

particle enters through the top of the SV and exits through the bottom of the SV.  2. The 

particle enters through the top of the SV but exits through the side of the SV. 3. The 

particle enters through the side of the SV and exits through the bottom of the SV.  4. The 

particle enters through the side of the SV and exits through the other side of the SV.   
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Figure 2.4: The four categories of crosser type particle chord lengths. 

If the essentially monoenergetic Source 1 was being simulated, all the particles 

were assigned 5.486 MeV.  If Source 2 was used, an energy was randomly sampled from 

the source’s cumulative distribution function (CDF) (seen in Figure 2.5), which was 

calculated from the spectrum of alpha particle energies that the source emits due to self-

absorption.  The CDF, F(x), was generated such that a random number, ε, was sampled 

from a distribution, f(x), determined by the energy spectrum, or   

𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥
𝑥

−∞
.                           (2.2) 

 In practice, a random number, γ, between 0 and 1 was generated and then the 

following equation is solved for ε (Dunn & Shultis, 2011): 

𝛾 = 𝐹(𝜀).                           (2.3) 

Figure 2.6 shows the energy spectrum from Source 2 as measured experimentally, 

and as modeled in the MC simulations.   
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Figure 2.5: Cumulative distribution function calculated from Source 2 alpha particle 
energy spectrum. 

 

Figure 2.6: Energy spectrum of alpha particles emitted from Source 2 as measured and 
as modeled by simulation. 

Based on the energy of each particle and the recorded distances traversed through 

each material, the amount of energy lost in the each layer was calculated using NIST 

ASTAR (http://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html) stopping power and 
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range data.  This process was repeated for each subsequent history, and the results 

tabulated into an energy deposition spectrum.  The program additionally displayed the 

chord length distribution (total or broken down into crosser category), and y•d(y) 

spectrum.     

 

The calibration procedure was based on a standard pulse height calibration 

method, which relied on both an alpha particle calibration and a reference tail pulse 

generator (TPG) calibration.  First, the microdosimeter is irradiated with an 241Am source, 

of known energy, to acquire a pulse height distribution (Figure 2.7).  Then using the 

Gaussian fitting procedure described in Section 2.1.1, the channel number of the alpha 

peak is found.  From MC simulations of the calibration setup, it is known that the peak of 

the pulse height distribution represents alpha particles traveling predominantly through 

the 10 µm thickness of the SV; demonstrated by the sharp peak in the simulated chord 

length distribution seen in Figure 2.8. 

 

Figure 2.7: Pulse height distribution acquired with microdosimeter from 241Am source. 
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Figure 2.8: Simulated chord length distribution representative of the 241Am calibration 
setup. 

The expected energy deposition, 𝜀�̅�𝑒𝑓, is then calculated using ASTAR stopping 

power data: 

       𝜀�̅�𝑒𝑓 =  (
𝑑�̅�

𝜌𝑑𝑥
∆�̅�)                                                  (2.4) 

where 
𝑑�̅�

𝜌𝑑𝑥
 is the mass stopping power value for the mean energy of the alpha particle 

source, and ∆�̅� is the 10 µm thickness of the SV.  The expected lineal energy, �̅�𝑟𝑒𝑓, is 

then calculated by: 

�̅�𝑟𝑒𝑓 =
�̅�𝑟𝑒𝑓

𝑙 ̅
.                            (2.5) 

At this point, a channel to energy conversion has been determined for only one 

particular channel.  To extend the calibration to all possible channels the linearity of the 

detector response must be determined for the remaining channels.  To do this, the TPG 

is used to input a series of test signals of varying amplitudes into the device electronics.  
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The amplitude of the test pulse was increased until the peak falls into approximately the 

maximum channel number (900) at the lowest gain setting.  Using the bank of attenuator 

switches (2X, 5X, 10X, etc.), the amplitude of the pulse is then sequentially reduced and 

the new position of the peak noted for each attenuation setting.  Ideally, the reduction in 

peak position will exactly match the attenuation value used.  For example, using a 2X 

attenuator on a peak that resides in channel 900 should result in the peak now residing 

in channel 450.  This process is repeated for each of the gain settings to generate a plot 

of pulse height versus channel number.   

Following the same method as Newhauser (1995), a linear regression between the 

pulse height versus channel number data points is performed (Figure 2.9) to determine 

the slope, m, and y-intercept, b, such that a reference pulse height can be defined by the 

linear function: 

     𝑃𝑟𝑒𝑓 = 𝑚ℎ𝑟𝑒𝑓 + 𝑏.                                                    (2.6)  

where ℎ𝑟𝑒𝑓 is the channel of the alpha particle peak found from the Gaussian fitting 

procedure. 

Combining this integral linearity data with the alpha calibration data allows for 

defining a linear function for lineal energy in terms of channel number, h: 

       𝑦(ℎ) =  𝛼 + 𝛽ℎ                           (2.7) 

where 𝛼 and 𝛽 are defined as follows:  

𝛼 =
𝑦𝑟𝑒𝑓

𝑃𝑟𝑒𝑓
𝑏                                     (2.8) 

                                                                𝛽 =
𝑦𝑟𝑒𝑓

𝑃𝑟𝑒𝑓
𝑚.                                                (2.9) 
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For further explanation, a sample calibration worksheet can be found in the 

Appendix (Figure 6.2). 

 

Figure 2.9: Plot of pulse height versus channel number generated with the reference tail 
pulse generator.  Also shown are the results of the alpha calibration and the linear 

regression between the pulser calibration data points. 

In addition to the integral linearity of the device, the response of the device in terms 

of differential linearity was analyzed using the TPG’s built-in ramp generator function, 

which steadily increases the output of the pulse over a set period of time.  The ideal result 

of which would be a steady output across all channel numbers.  As seen in Figure 2.10, 

the device showed a linear response across the range of channels, aside from the noise 

peak evident in the lower channels.     
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Figure 2.10: Testing the differential linearity of the device electronics. 

 

 

Twenty individual microdosimeters, each mounted in a 20 pin dual in-line package 

(DIP), arrived from the University of Florida.  Four of these were sent to UOW for 

characterization and initial testing; leaving sixteen for use in this project.  The first step in 

identifying which of the microdosimeters were best suited for further testing was to acquire 

images of the chip surfaces to determine if any damage had been done during the 

manufacturing and/or rewiring process, or in initial handling and testing.  Microscopic 

images of each chip were taken and analyzed for evidence of surface defects or damaged 

wires.  This information was used to assess the overall mechanical condition of the 

surface of each chip. 
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The basic diode characteristics of the microdosimeters were characterized.  To 

this end, measurements of leakage current versus bias voltage were performed for each 

array.  A perfect diode would transmit zero current under reverse bias conditions and 

infinite current under forward bias conditions, though, in reality, some small amount of 

leakage current flows through reverse-biased diodes.  Figure 2.11 shows a representative 

curve typical of the relationship between bias voltage and leakage current for silicon 

semiconductor diodes.  An extremely well-functioning silicon microdosimeter will exhibit 

leakage current on the order of picoamps at a reverse bias voltage of 5 V (Hu, 2013; 

Ziebell et al., 2008). 

 

Figure 2.11: Typical silicon semiconductor diode curve (Hu, 2013). 

Leakage current measurements were performed with the LSU and UOW 

microdosimeters in a light-tight box to eliminate any current from ambient light.  Bias 

voltage was provided by an external DC power supply.  Adding a 1 MΩ resistor in series 
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with the SV core and measuring the voltage across the resistor (taking the 10 MΩ input 

impedance of the meter itself into account) with a Mastech (Precision Mastech 

Enterprises Corporation, Hong Kong) digital multimeter allowed for calculation of the 

leakage current.  Bias voltage was increased in 0.25 V steps and the leakage current 

calculated for each step, until the leakage current reached a value of 0.5 µA, which was 

chosen to keep down noise levels and to prevent any damage to the chips. 

For an abrupt p-n junction (Figure 2.12), the width of the depletion region, 𝑤𝑑, is 

highly dependent on the amount of reverse bias voltage being applied to the junction and 

the doping concentrations of the n- and p- type layers, according to Equation 2.10 (Jaeger 

& Blalock, 2008): 

𝑤𝑑 =  √
2𝜀𝑠

𝑞
(

1

𝑁𝐴
+  

1

𝑁𝐷
) (𝑉𝑖 + 𝑉𝑅)               (2.10) 

where 𝜀𝑠 is the dielectric permittivity of silicon, 𝑞 is the charge of an electron, 𝑁𝐴 and 𝑁𝐷 

are the acceptor and donor doping concentrations respectively, 𝑉𝑖 is the inherent potential 

of the junction, and 𝑉𝑅 is the applied reverse bias voltage.  The inherent potential of the 

junction due to the doping concentrations, 𝑉𝑖, can be found from (Neudeck, 1989): 

𝑉𝑖 =  
𝑘 𝑇

𝑞
𝑙𝑛 (

𝑁𝐴 𝑁𝐷

𝑛𝑖
2 )                    (2.11) 

where 𝑘 is Boltzmann’s constant, T is the temperature in Kelvin, and 𝑛𝑖 is the intrinsic 

carrier density. 
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Figure 2.12: Diagram showing (a.) p-n junction, (b.) charge distribution, and (c.) electric 
field distribution in the depletion region.  Adapted from (Ng, 2002). 

The microdosimeters used in this project were not of the abrupt p-n junction type, 

but were constructed of p-i-n junctions (Figure 2.13), which have a layer of intrinsic, or 

un-doped, silicon between the n and p layers.  These types of junctions are typically used 

when one wants to increase the width of the depletion region (Zeghbroeck, 2007).  For a 

p-i-n junction, the width of the depletion region is found from (Zeghbroeck, 2007): 

𝑤𝑑 = √𝑑2 +  
2 𝜀𝑠

𝑞

(𝑁𝐴+𝑁𝐷)

𝑁𝐴 𝑁𝐷
(𝑉𝑖 + 𝑉𝑅)                                           (2.12) 

where 𝑑 is the width of the intrinsic silicon region.  Since the doping concentrations used 

in the construction of the microdosimeters for this project were very high (p-type: 2 x 1020 

𝑖𝑜𝑛𝑠

𝑐𝑚3, n-type: 1 x 1019 
𝑖𝑜𝑛𝑠

𝑐𝑚3), the term on the right added very little to the 𝑑2 term, which 

dominated the width of the depletion region.    
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Figure 2.13: Diagram showing (a.) p-i-n junction, (b.) impurity profile, and (c.) electric 
field distribution.  Adapted from (Ng, 2002). 

 

Even when no radiation source is present, there is a certain amount of noise in the 

analog readout electronics, which produces a noise peak in the lower channels.  This 

peak obscures any radiation-induced counts that may occur in those channels below the 

noise peak and thus increases the lower detectability limit of the device.  The threshold 

level varied depending upon which chip was being used and the amount of bias voltage 

being applied.   

To determine the extent of the noise, spectra were acquired with no radiation 

source present, using a selection of chips (chosen based upon minimum leakage 

currents) over a long period of time (24 to 48 hours).  The chips that had the lowest 

leakage current and the lowest noise threshold were selected for further measurements.   
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Similar to the method described in Section 2.1.3, a MC code was written in Matlab 

to simulate the response of the device to neutron irradiation.  The detector parameters 

remain the same as in the alpha particle code, but the source parameters were modified.  

Since the vast majority of detected events will be due to recoil protons or alpha particles 

produced in the converter layers, the converter was simulated in the code as a volume-

source of particles.   

The simulation began by randomly selecting x, y, and z coordinates within the 

volume encompassed by the source.  Once the origin of the particle was defined, the 

particle’s three-dimensional direction was then randomly selected.  When simulating the 

boron converter, all alpha particles were assigned the same initial energy of 1.47 MeV 

(see Section 2.2.5.  To define the initial energy of a proton from the tissue-substitute 

converter, first a neutron energy was randomly selected from the CDF (Figure 2.14), 

which was calculated from the neutron energy spectrum of the 239PuBe source (Harvey, 

2008), seen in Figure 2.15.  This value represents the energy of a neutron emitted from 

the source which would have produced the recoil proton.  Since recoil protons are 

produced in elastic, approximately hard-sphere collisions, the energy of the proton will be 

uniformly distributed from 0 up to the initial energy of the neutron.  Thus, once the initial 

energy of the neutron is defined, the initial energy of the recoil proton is found by 

multiplying the neutron energy by a random number between 0 and 1.    
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Figure 2.14: Cumulative distribution function calculated from the 239PuBe neutron 
energy spectrum. 

 

Figure 2.15: Neutron energy spectrum of 239PuBe source 
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   Since the source is a volume and not simply a surface, there will be some self-

absorption within the source, depending on the initial position and direction of the protons.  

The path length that the proton traveled through the TE converter was found and the 

amount of energy lost along this path was calculated.  This energy was then subtracted 

from the proton’s initial energy, before it encountered the layer of air between the TE 

converter and the detector.  The amount of energy lost in the air and SiO2 layer atop the 

device were similarly calculated and subtracted from the proton energy before it 

encountered the silicon SV.  If at any of these steps, the energy of the proton fell below a 

minimum threshold (1 keV), then the energy deposited for that history was set to zero.  

Finally, the chord length the proton travels through the SV was recorded for each history.  

Post processing of the data then calculates the energy deposition spectrum and 

microdosimetric y•d(y) vs y spectrum.  Figure 2.16 provides a simplified illustration of the 

converter layer atop one SV, though in the actual simulation, all 1156 SVs were accounted 

for. 

 

Figure 2.16: Cartoon illustrating MC simulation of the converter layer modeled as a 
volume source of charged particles.   
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While solid-state detectors respond to charged-particle irradiation, they can also 

generate signal in response to uncharged particles, including neutrons.  However, the 

detection of these uncharged particles relies on the exploitation of nuclear reactions to 

generate charged particles as reaction products, which are subsequently detected 

(Pospisil & Granja, 2009).  To satisfy the conditions of Bragg-Gray cavity theory, it is best 

if all particles being detected are “crossers” which are generated in the medium 

surrounding the detector, and not “starters,” “stoppers,” or “insiders” generated within the 

silicon detector itself.  In this work, neutron irradiations were performed with a “converter” 

atop the device (Figure 2.17) to generate charged particles.  Ideally, the thickness of this 

converter should be greater than the range of the secondary charged particles generated 

by the incoming radiation, to ensure charged particle equilibrium.   

 

Figure 2.17: Schematic representation of converter layer atop device from side view. 

For one of the experiments using the neutron source, a tissue-substitute converter 

was used to generate recoil protons which are much more likely than an incident neutron 

to interact in the sensitive volume and generate a signal. The tissue-substitute converter 

was constructed from 0.1 mm thick high-density polyethylene (HDPE).  It has been shown 

that a bare SOI device can acquire microdosimetric spectra in a mixed gamma-neutron 
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radiation environment, and this information can be used to determine the relative 

contribution of silicon recoils and inelastic reaction products generated in the detector 

(Reinhard et al., 2005).  The three isotopes contained in natural silicon (and their 

abundance percentages) are 28Si (92.2%), 29Si (4.7%), and 30Si (3.1%) (Pospisil & Granja, 

2009).  The dominant processes by which neutrons can interact in the bare silicon layer 

are listed in Table 2.2. 

Table 2.2: Interaction processes of neutrons in silicon.  The rightmost column lists 
common energies of γ-rays or the threshold energy for slow and fast neutrons, 

respectively (Pospisil & Granja, 2009). 

Slow Neutrons 

Reaction Eγ or En (MeV) 

28,29,30Si(n,γ) ≈5-7 

28Si(n,n) - 

Fast Neutrons 

28Si(n,α)25Mg 2.8 

29Si(n,α)26Mg 0.04 

28Si(n,p)28Al 4.0 

29Si(n,p)29Al 3.0 

30Si(n,n’ γ) 1.8 

 

As an alternative experimental setup, an additional converter was created, which 

consisted of a layer of epoxy topped with a thin layer of boron powder deposited at the 

surface (Figure 2.18).  This boron converter was placed atop the device, in place of the 

tissue-substitute converter, to take advantage of the 10B-thermal neutron reaction, which 

produced a 1.47 MeV alpha particle, a 0.84 MeV 7Li ion, and a 0.48 MeV photon (Figure 

2.19).   
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Figure 2.18: Side view of boron converter.  (Not to scale) 

 

 

Figure 2.19: Illustration of 10B thermal neutron capture reaction and byproducts ("The 
Basics of Boron Neutron Capture Therapy," 2005).  

The 7Li ion is not energetic enough to penetrate the air and SiO2 layers above the 

SV, and the microdosimeter is not sensitive enough to detect the photon, but a proportion 

of the alpha particles (depending on their spatial origin within the boron layer and their 

direction of travel) will be able to reach the SVs and deposit some (crossers), or all 

(stoppers) of their energy within the detector.  
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Experimental data was collected from one microdosimeter with the output from the 

circuit board amplifier split and then further amplified using four separate amplifiers in the 

qMorpho, each applying a different amount of gain.  Analyzing the spectra using multiple 

gains allows for the detection of a wider range of lineal energy events.  Typical lineal 

energy ranges per gain are as follows: Gain 1: 60 to 6800 keV/µm, Gain 2: 50 to 1300 

keV/µm, Gain 3: 25 to 500 keV/µm, and Gain 4: 7 to 160 keV/µm.  After the spectra were 

acquired, they were combined using the in-house analysis code.  Using the channel to 

energy conversion equations from the calibration, each spectrum was calibrated in terms 

of lineal energy.  Subsequent data processing was performed using this combined 

spectrum.   

To find the amount of dose delivered to the silicon microdosimeter, the amount of 

energy deposited per mass was calculated with the following equation: 

𝐷𝑆𝑖  (𝐺𝑦) =
�̅�𝐹 (𝑘𝑒𝑉 𝜇𝑚⁄ ) • 𝑙 ̅(𝜇𝑚) • 𝑁

M (𝑘𝑔)
𝑘                                  (2.13) 

where �̅�𝐹 is the frequency-mean lineal energy, 𝑙  ̅is the mean chord length for the SV, N is 

the total number of energy deposition events, M is the total mass of the active area, and 

k is a units conversion factor (1.602𝑥10−16 𝐽

𝑘𝑒𝑉
). 

 

The following is a breakdown of the uncertainty calculations for frequency-mean 

lineal energy (�̅�𝐹), dose-mean lineal energy (�̅�𝐷), and absorbed dose to silicon (𝐷𝑆𝑖).  To 

calculate the uncertainty in �̅�𝐹, consider the way that it is calculated numerically: 

�̅�𝐹 = ∑ (𝑦𝑖 •
𝑐𝑜𝑢𝑛𝑡𝑠𝑖

∑ 𝑐𝑜𝑢𝑛𝑡𝑠
)

𝑛

𝑖
.                                  (2.14) 
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If we let Si equal the quantity (𝑦𝑖 •
𝑐𝑜𝑢𝑛𝑡𝑠𝑖

∑ 𝑐𝑜𝑢𝑛𝑡𝑠
), then the fractional uncertainty of Si is found 

from 

∆𝑆𝑖

𝑆𝑖
= √(

∆𝑐𝑜𝑢𝑛𝑡𝑠𝑖

𝑐𝑜𝑢𝑛𝑡𝑠𝑖
)

2

+ (
1

√𝑁
)

2

                                               (2.15) 

where 𝑐𝑜𝑢𝑛𝑡𝑠𝑖 is the number of counts per channel, and N is the total number of counts 

(the uncertainty in 𝑦 is withheld for now, due to correlation).  Then accounting for the 

summation of Si, 

∆𝑆𝑡𝑜𝑡 = √∑ (∆𝑆𝑖)2𝑛
𝑖                                                  (2.16) 

the fractional uncertainty in �̅�𝐹 is found by combining the uncertainty of 𝑆𝑡𝑜𝑡 and the 

uncertainty in y from the calibration procedure 

∆�̅�𝐹

�̅�𝐹
= √(

∆𝑆𝑡𝑜𝑡

𝑆𝑡𝑜𝑡
)

2

+ (
∆𝑦

𝑦
)

2

.                                           (2.17) 

The uncertainty in �̅�𝐷 is calculated in a similar fashion.  Starting again from the numerical 

formula: 

�̅�𝐷 = ∑ (
𝑦𝑖

2

�̅�𝐹
•

𝑐𝑜𝑢𝑛𝑡𝑠𝑖

∑ 𝑐𝑜𝑢𝑛𝑡𝑠
)𝑛

𝑖                                             (2.18) 

the fractional uncertainty in �̅�𝐷 is found from: 

∆�̅�𝐷

�̅�𝐷
= √(

∆𝑆𝑡𝑜𝑡

𝑆𝑡𝑜𝑡
)

2

+ 2 (
∆𝑦

𝑦
)

2

+ (
∆�̅�𝐹

�̅�𝐹
)

2

.                                    (2.19) 

The overall uncertainty in the absorbed dose equation can then be found from: 

∆𝐷𝑆𝑖

𝐷𝑆𝑖
= √(

∆�̅�𝐹

�̅�𝐹
)

2

+ (
1

√𝑁
)

2

.                                             (2.20) 
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To convert from absorbed dose to silicon, DSi, to absorbed dose to tissue, DT, a 

conversion factor is necessary to account for the differences in mass stopping powers 

between the two materials.  This is a corollary to using cavity theory to determine the 

dose in the wall of a gas-filled counter from the dose to the gas within the cavity; that is: 

       𝐷𝑤 = 𝐷𝑔𝑟𝑤,𝑔                                   (2.21) 

where Dw is the dose to the wall, Dg is the dose to the gas, and rw,g is the ratio of mass 

stopping powers for the wall and the gas: 

         𝑟𝑤,𝑔 =
�̅�𝑤

�̅�𝑔
.                                             (2.22) 

 In microdosimetry, a tissue-equivalent conversion factor of 0.63, as calculated by 

Bradley and Rosenfeld (1998), is often used.  This factor was calculated by considering 

the ratio of mass stopping powers for silicon and ICRU striated muscle for the ions present 

in boron neutron capture therapy.  Though Bradley and Rosenfeld note that this factor is 

weakly dependent on ion species and energy, Wroe and Rosenfeld (2007) demonstrate 

that using the value of 0.63 introduces errors of up to ± 15% for recoil protons over the 

energy range of 0.1 to 200 MeV. 

 In this work, the range of particle energies considered was much more narrow (0 

to ~12 MeV for the tissue-substitute case’s recoil protons and 0 to 1.47 MeV for the boron 

case’s alpha particles).  Instead of using the standard 0.63 value, unique absorbed dose 

conversion factors were calculated for each case, based on the energy spectra extracted 

from the MC simulations.    
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For each case, a fluence-weighted mass stopping power ratio for silicon and tissue 

was calculated: 

    𝑟𝑆𝑖,𝑇 =
∑ Ф(𝐸)(

𝑑𝐸

𝜌𝑑𝑥
)

𝑆𝑖

∑ Ф(𝐸)(
𝑑𝐸

𝜌𝑑𝑥
)

𝑇

                                   (2.23) 

where Ф(𝐸) is the normalized relative contribution of each energy bin to the overall 

particle fluence, and 
𝑑𝐸

𝜌𝑑𝑥
 is the mass stopping power for each energy bin.  Dose to tissue 

was then found from: 

                𝐷𝑇 =
𝐷𝑆𝑖

𝑟𝑆𝑖,𝑇
.                  (2.24) 

 

 To account for the differences in biological effects of different types of radiation, a 

quantity called dose equivalent is used.  This quantity is calculated by multiplying the 

absorbed dose in tissue by a quality factor, �̅�: 

  𝐻 = 𝐷𝑇 ∫ 𝑄(𝑦)𝑑(𝑦)𝑑𝑦 =  �̅�𝐷𝑇
∞

0
     (2.25) 

where 𝑄(𝑦) is calculated for each spectrum according to the definition provided by the 

ICRU, as a function of lineal energy (ICRU, 1986): 

        𝑄(𝑦) =
5510

𝑦
[1 − 𝑒−5𝑥10−5𝑦2 − 2𝑥10−7𝑦3

].                       (2.26) 

 Defining 𝑄 in terms of lineal energy is advantageous since it can then be measured 

with a microdosimeter, even in an unknown radiation field.  Figure 2.20 shows 𝑄(𝑦) on a 

log-log plot.     
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Figure 2.20: The quality factor, Q, as a function of lineal energy, as defined by ICRU 
Report 40 (1986). 

 

Since the quality factor, as defined by the ICRU, is a strict legal definition for 

radiation protection purposes, no uncertainty will be considered for the calculated �̅� 

values.  However, uncertainty for the absorbed dose conversion factor, 𝑟𝑆𝑖,𝑇, will be 

calculated by considering the difference of each value of the stopping power ratio (per 

energy bin) to the value of the fluence weighted ratio: 

∆𝑟𝑆𝑖,𝑇

𝑟𝑆𝑖,𝑇
=

|(
(

𝑑𝐸
𝜌𝑑𝑥

)
𝑆𝑖

(
𝑑𝐸

𝜌𝑑𝑥
)

𝑇

)−𝑟𝑆𝑖,𝑇|

𝑟𝑆𝑖,𝑇
.                                               (2.27) 

The largest difference, as calculated above, will be used for the uncertainty in 𝑟𝑆𝑖,𝑇. 
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3 RESULTS 

 

 

To properly compare observed versus expected count rates from Source 1, the 

activity profile across the source was measured.  The measured activity profile of Source 

1 (Figure 3.1) was equivalent in both the x and y directions.  The source activity was found 

to have a gradual falloff as the radial distance from the center increased.  Since the profile 

was equivalent in both x and y directions, the source activity profile was considered as a 

truncated cone in three-dimensional space.  The volume of this truncated cone (the purple 

section in Figure 3.2) was found by subtracting the volume of the small cone on top from 

the volume of the overall cone, using the equation for the volume of a right circular cone: 

𝑉 =  𝜋𝑟2 ℎ

3
                  (3.1) 

 

Figure 3.1: Measured activity profile across 241Am source. 
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Figure 3.2: Depiction of truncated cone source profile. 

The volume of the truncated cone was set equal to the volume of an equivalent 

cylinder, and the diameter of this cylinder was calculated from 

𝑑 =  2 ∗ √
𝑉

𝜋∗ℎ
.                            (3.2) 

The effective equivalent cylinder was found to have a diameter of 5.28 mm, which 

is close to the quoted 5 mm active diameter found on the source calibration certificate.  

This value was then used in the Monte Carlo simulations.  This process was not 

performed on Source 2 since its small active area was nearly the same size as the 

collimation hole. 

The experimental observed vs. expected count rate results, broken down by SV 

design, are seen in Figure 3.3.  The reported values were averaged from repeated 

measurements with three different microdosimeters, to account for chip to chip variations.  

The level of agreement varies, depending on array design.  However, all array designs 
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except the 12.6 µm cylinder representing the lens epithelial cell showed agreement with 

expected values within 10%.         

 

Figure 3.3: Observed versus expected count rates from alpha particle irradiation for 
each array design. 

 

The results of the alpha particle Monte Carlo simulations revealed a strong 

dependence on the diameter of the source and on the SSD.  The smaller the source 

diameter, and the further away the source, the more the source approximated a point-

source and the more the chord length distribution narrowed about the dimension 

representative of the detector thickness (Figure 3.4).  Energy deposition spectra for the 

18 µm cylinder array under alpha particle irradiation with two different SSDs are shown 

in Figure 3.5.  The majority of the events were from alpha particles traveling straight 

through the thickness of the detector.  Events on the left side of the peak represented 

alpha particles that traversed a chord length less than the height of the detector, while 

events to the right of the peak were from chord lengths greater than the height of the 
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detector.  Figure 3.6 shows the 3 mm SSD spectrum converted into the microdosimetric 

y•d(y) format.     

 

Figure 3.4: MC simulated chord length distribution for 18 µm cylinder under alpha 
particle irradiation, showing dependence on SSD. 

 

Figure 3.5: MC simulated energy deposition spectra for 18 µm cylinder under alpha 
particle irradiation, showing dependence on SSD. 
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Figure 3.6: MC simulation y•d(y) vs. y from alpha particle irradiation for the 18 µm 
cylinder with 3 mm SSD. 

 

Since the MC code used for this project was an in-house program and had not 

been previously benchmarked against other codes, comparisons were made with well-

established methods to test the accuracy of the model.  The same experimental setup 

was modeled in the in-house code and in the GEANT4 Monte Carlo code 

(http://www.geant4.org/geant4).  The simulated setup was a 239PuBe irradiation using the 

boron converter.  The results are plotted in Figure 3.7.  Spectra were normalized so that 

the total area under each of the curves was equal to one.     

 

 

 

http://www.geant4.org/geant4
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Figure 3.7: MC simulations with boron converter (alpha particles emitted solely from 
surface of converter). 

The in-house code was also compared with a derived analytical solution for the 

chord length distribution in the extreme case of an infinite slab of height h subjected to an 

external isotropic radiation source.  The analytical solution to the chord length distribution 

for this geometry was derived to be: 

𝑐(𝑙) = 0 for  𝑙 < ℎ                                     (3.3) 

 𝑐(𝑙) =
ℎ

𝑙2
 for       𝑙 ≥ ℎ.                 (3.4) 

The analytical and simulated results are plotted in Figure 3.8.  The fluctuations in 

events increases with chord length because of their decreasing frequency of occurrence, 

but the analytical and simulated results matched well.      
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Figure 3.8: MC simulation and analytical chord length distribution for infinite slab SV 
under isotropic radiation.     

 Finally, the in-house code was compared with results from the Transport of Ions in 

Matter (TRIM) Monte Carlo code (http://www.srim.org).  The simulation modeled the 

energy loss of 1.47 MeV alpha particles traveling through varying thicknesses of boron, 

to simulate alpha particles being generated by neutrons throughout the boron converter.  

Each alpha particle then traveled through 1 mm of air and 0.35 µm of SiO2 before 

encountering the SV.  The energy deposited in the SV was then tallied and converted to 

lineal energy.  Table 3.1 lists the results, which were in good agreement except for the 3 

µm thick boron case.  However, 3 µm was very close to the end of range for these alpha 

particles, which is where uncertainties in stopping powers are at their highest (ICRU, 

1993).  Otherwise, the fluctuation in percent difference was due to slight discrepancies 

between the stopping power data set used in the TRIM code and the ASTAR stopping 

power data set used in the in-house code.   

http://www.srim.org/
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Table 3.1: Comparison of energy deposition predicted by the in-house and TRIM MC 
codes. 

 
Energy Deposited in SV, 

keV/µm 
 

Thickness of 
boron layer, µm 

In-house code TRIM % Diff 

3 0.30 0.606 50.5% 

2.9 1.40 1.33 5.3% 

2.85 2.11 1.97 7.1% 

2.8 2.93 2.69 8.9% 

2.75 3.85 3.63 6.1% 

2.7 4.86 4.62 5.2% 

2.65 5.97 5.67 5.3% 

2.6 7.18 6.88 4.4% 

2.5 9.83 9.52 3.3% 

2 27.77 27.3 1.7% 

1.5 50.34 50.1 0.5% 

1 74.65 74.7 0.1% 

0.5 99.03 98.8 0.2% 

0 121.85 122.2 0.3% 

 

 

An example of an 241Am energy deposition spectrum acquired with the 18 µm 

cylinder array can be seen in Figure 3.9.  The overall shape of this distribution differed 

slightly from the Monte Carlo simulations seen in Section 3.1.2, but did agree well with a 
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spectrum previously acquired at UOW with a SOI detector of a similar size, seen in Figure 

3.10 (Hu, 2013). 

 

Figure 3.9: 241Am spectrum acquired with the array of 18 µm cylinders in air and with a 
floating guard ring. 

 

Figure 3.10: 241Am spectrum acquired with a 10 µm thick SOI detector under vacuum 
conditions, with a grounded guard ring.  Adapted from (Hu, 2013). 
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 Figure 3.11 plots the microdosimetric y•d(y) vs. y spectrum, as acquired with the 

18 µm cylinder SV array.  Extrapolation was used for data points below the noise cutoff 

(Schrewe et al., 1989).  The peak centroid was found by the Gaussian fitting procedure 

described in Section 2.2.4.  Also shown in the figure are the calculated proton and alpha 

edge values, to demonstrate the energy regimes of the different particles.     

 

Figure 3.11: Measured microdosimetric alpha particle spectrum acquired with the 18 µm 
cylinder SV array using Source 2. 

 

 

When the experimental and the MC data were overlaid, the positions of the alpha 

particle peaks matched well.  The main differences were in the width of the peak, and the 

peak-to-tail ratio on the left hand side.  The broader experimental peak, compared to the 

matching MC simulation with 3 mm SSD, was likely due to fluctuations in the sensitivity 

of the 1156 SVs in the array.  That is, due to manufacturing variations, each SV exhibited 

a slightly different response to the same amount of deposited energy.  The increase in 

low energy noise seen on the left side of the peak was likely a result of the guard ring 
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structure being left “floating” and not biased, which resulted in charge-sharing between 

SVs across the device and an increase in the amount of low-energy depositions (Tran & 

Chartier, 2014; Hu, 2013).   

Additional simulations were run, with the SSD shortened to 1 mm, to test if the 

peak-to-tail ratio discrepancy was due to experimental errors in estimating the SSD, or if 

the discrepancy was due to geometrical errors in the MC code.  The results of varying the 

SSD in the MC simulations are seen in Figure 3.12.  Each spectra was normalized to its 

peak height.  When a 1 mm SSD was simulated, the peak positions still matched well, 

and low-energy events registering on the left side of the peak (from chord-lengths shorter 

than the SV thickness) were in better agreement with the experimental data.  However, 

the higher-energy tail on the right side of the peak (from chord-lengths longer than the SV 

thickness) extended farther.  This longer energy tail was to be expected, since a shorter 

SSD allowed the alpha particles to enter the SV at larger angles - resulting in longer 

chord-lengths being traversed by the alpha particles and subsequently higher energy 

deposition events. 

In the y•d(y) distributions seen in Figure 3.13, the trends were the same as in the 

energy deposition spectra.  The positions of the peaks matched well for all three curves, 

but the peak to tail ratios differed, with the experimental data showing a higher proportion 

of low-energy events than either of the MC simulations.  The 1 mm SSD simulation again 

showed a higher proportion of high-energy events. 
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Figure 3.12: Energy deposition spectra for Experimental data, MC simulation with 3 mm 
SSD, and MC simulation with 1 mm SSD. 

 

 

Figure 3.13: y•d(y) vs y spectra for Experimental data, MC simulation with 3 mm SSD, 
and MC simulation with 1 mm SSD. 
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To investigate the impact of variations in the sensitivity of SVs in an array, the 

geometric chord length for each particle history was lengthened or shortened by a 

normally distributed amount, with the standard deviation equal to ± 5% or ± 10%.  As seen 

in Figure 3.14, the alpha particle simulations were very sensitive to the chord length 

variations.  As the maximum amount of variation was increased, the corresponding 

simulated peak became increasingly wider, as expected.  Increasing the variation brought 

the width of the simulated peak into better agreement with the experimental peak.  Neither 

of the modified simulations produced total agreement in the overall shapes of the spectra, 

with a higher proportion of low-energy events consistently seen in the experimental peak.  

Experimentally, it makes sense that the alpha particle response would be very sensitive 

to chord length variations, since the emission of alpha particles from the source was fairly 

directional and the detector response varied depending upon the angle of incidence of 

the alpha particles.           

 

Figure 3.14: Effect of varying the chord lengths in the alpha particle simulations, in 
terms of energy deposition. 
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Also investigated was how varying the chord lengths in the simulations would affect 

the y•d(y) distributions.  It was found that the y•d(y) spectra were slightly less sensitive to 

the variations, though the spectra still became increasingly wider as the maximum amount 

of variation was increased (Figure 3.15).  As was the case with the energy deposition 

spectra, even though modifying the chord lengths brought the width of the peaks into 

better agreement, neither of the modified y•d(y) spectra matched the experimental 

spectra in the low lineal energy region.         

 

Figure 3.15: Effect of varying the chord lengths in the alpha particle simulations, in 
terms of y•d(y). 

 

 The main sources of uncertainty involved in the calibration to lineal energy are: 

stopping power value uncertainty, sensitive volume manufacturing tolerances, and 

fluctuations in the channel of the alpha peak.  The measurement of the energy of the 

alpha particles emitted from the two sources used, as described in Section 2.1.1, is 

estimated to have an uncertainty of 2% due to calibration fluctuations.  Adding or 
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subtracting this 2% from the calculated mean source energies results in a 2.5% 

discrepancy when looking up ASTAR stopping power values.  The silicon wafer used in 

the construction of the microdosimeters was specified as having a thickness of 10 ± 0.5 

µm.  This 5% uncertainty is likely conservative, but was included in the uncertainty 

analysis.  Analyzing repeated alpha calibration measurements revealed that the channel 

number of the acquired alpha particle spectra fluctuated by ± 2%.  Propagating these 

uncertainties, as well as the uncertainties of the α and β calibration coefficients, in 

quadrature resulted in a total calibration uncertainty of 6.1% (Table 3.2). 

Table 3.2: Experimental calibration uncertainty values. 

Uncertainty Value 

Stopping Power Values 2.5% 

SV thickness 5.0% 

Reference Channel 2.0% 

 

Total 6.1% 

 

 

 

Microscopic images of each chip were analyzed to assess their physical surface 

conditions.  A wide range of chip surface conditions were observed under the microscope, 

with some of the chips showing rather extensive scratches, while others were relatively 

free of surface damage (Figure 3.16).  The source of the damage is not clear; it may have 

occurred during the original manufacturing process, during shipping, during the re-wiring 

process, or was just due to their being handled and used in the lab.  Regardless of the 
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origin of the damage, this information about the physical conditions of each chip was 

taken into account when selecting chips to be used for experimentation.   

 

Figure 3.16: Representative chip surface images showing range of surface conditions 
(scratches, dents, etc.). 

 

In addition to the chips created for this project, several chips were acquired from 

UOW for comparison.  Figure 3.17 shows representative leakage current versus bias 

voltage plots for both sets of chips.  Variations between array designs were expected, 

due to size and shape differences, but chip to chip variations for the same array design 

were also observed.  We attributed these to manufacturing variations, surface defects, 

and other factors.  There are a few trends apparent in the data.  Overall, for a given 

amount of reverse bias voltage, the LSU chips exhibited much higher leakage current 

than the UOW chips.  This was likely due to differences in the underlying silicon wafers.  
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The manufacturing specifications for the LSU chips called for the use of a high-resistivity 

silicon wafer with resistance of 10 kΩ•cm, which would be equivalent to that used in the 

manufacturing of the UOW chips.  However, the specified wafer could not be sourced 

within the short timeline of the supporting grant, and a lower-resistivity silicon wafer with 

resistance of 1 kΩ•cm was substituted.  The lower resistance wafer apparently resulted 

in more leakage current at all bias voltages considered.     

 

Figure 3.17: Representative plots of leakage current measurements with a. LSU chips 
and b. UOW chips. 

 Also evident in the LSU chips were leakage-current patterns from one array design 

to another.  The arrays on the UOW chip were all populated with the same SV design, 

which led to consistent leakage current values for each array.  Whereas the LSU chips, 

with different SV designs, showed much more variability between arrays.  The average 

leakage current values are listed in Table 3.3 (the full table of values can be found in 

Table 6.1 in the Appendix).  The array with the smallest SV, the 12.6 µm cylindrical SV 

that represented the lens epithelial cell, tolerated the highest bias voltage.   

The general trend with the cylindrical SVs is that a smaller SV can be biased to a 

higher voltage before exceeding the 0.5 µA leakage current threshold.  However, the 
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elliptical SV, which represented the heart endothelial cell in vivo, reached the leakage 

current threshold at a lower bias voltage than all the other SVs even though its area was 

smaller than the 18 µm cylindrical SV.  This may be due to the basic shape of the elliptical 

SV.  The elliptical structure was designed so that the spacing between the n and p rings 

was uniform, but charge may still tend to collect at the points of the ellipse farthest from 

the center (B. Gila, personal communication, Mar. 21, 2014).  Also, the footprint of the 

elliptical SV was relatively large and did not leave much room for error in terms of spacing 

of the n-type and p-type structures.  Thus, a small shift in the relative position of the n-

type and p-type structures might have a much larger effect with the elliptical SV as 

compared to the cylindrical SVs. 

Table 3.3: Bias voltages per array design to reach 0.5 µA leakage current threshold.  
Measurements were performed on multiple chips and the results averaged to determine 

the “Average Max. Bias Voltage” for each array.     

Array Design 
12.6 µm 
cylinder 

14.6 µm 
cylinder 

18 µm 
cylinder 

24 µm x 12 µm 
ellipse 

2D Area of one 
SV (µm2) 

124.7 167.4 254.5 226.2 

Average Max. 
Bias Voltage (V) 

3.4 2.5 1.8 1.1 

 

 

After initial testing, it was discovered that the RC time constants on the circuit board 

for the AD 829 buffer amplifier were mismatched and did not provide significant shaping 

of the pulse from the A250f preamplifier.  The time constant, 𝜏, is defined as: 

        𝜏 = 𝑅𝐶                                                           (3.5) 

with R being the resistance in ohms, and C the capacitance in farads.  To correct this, 

capacitors C2 and C12 (Figure 6.1 in Appendix) were changed from 4.7pF and 0.1 µF, 
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respectively, to 1 nF.  This change allowed for matched RC time constants of ~1µs and 

provided the desired amount of pulse shaping. 

Another modification was the creation of a “splitter” (Figure 3.18) so that the signal 

output from one SV array could be split into multiple amplifiers, each applying a different 

amount of gain.  This was necessary for the neutron measurements, where the dynamic 

range of lineal energy events typically spans three to four decades. 

 

Figure 3.18: Splitter to separate microdosimeter output into multiple independent linear 
amplifiers to enable simultaneous acquisition of events spanning three to four decades 

of lineal energy. 

  The original design of the circuit board did not reverse bias the SVs.  To 

accommodate this, 10 MΩ resistors were added in series with the SV n-type cores, and 

these were then connected to the output of a potentiometer which allowed for the 

application of bias voltage from ~0.2 V to 6 V.        

During initial testing, random fluctuations in the signal from the device led to the 

discovery of a damaged data wire connection from the qMorpho to the USB cable 

connecting the computer to the microdosimeter.  There were also grounding issues, since 

the GND connection in the USB cable between the MCA and the computer was not being 
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utilized.  A new USB connector was fashioned, providing a secure connection for the data 

wires and the GND wire.  Also, the USB shield wire surrounding the data wires was 

connected to the aluminum box containing the microdosimeter.  

 

The external AC to DC power adapter of the laptop computer was found to 

contribute a large amount to the low-energy noise peak seen in the pulse height spectra.  

Unplugging the power supply and running the computer solely on the internal battery 

reduced the number of noise counts by up to one order of magnitude, depending on which 

gain setting was being used.  Operating the system in this fashion was useful for short-

term acquisitions, such as with the alpha particle sources.  However, long-term 

acquisitions, such as with the neutron source, required the external power supply, as the 

internal battery power was exhausted within two to three hours.  

 

Four of the microdosimeters were sent to UOW for characterization and initial 

testing.  The diode characteristics of the microdosimeters were analyzed with current-

voltage (I-V) and capacitance-voltage (C-V) techniques.  The I-V technique quantified the 

amount of leakage current that flowed through each array by applying a reverse bias 

voltage to the SVs and measuring the current (Model 237, Keithley Instruments, Inc., 

Cleveland, Ohio).  The bias voltage was increased until the leakage current reached a 

threshold of 0.5 µA to prevent damage to the junctions.  The C-V test quantified the 

capacitance values of each array and was performed in a similar manner using a 

capacitance meter (Model 7200, Boonton Electronics, Parsippany, New Jersey). The full 

results of both techniques can be found in the Appendix. 
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 The results of UOW’s I-V and C-V tests demonstrated overall poor performance 

from the chips in terms of their basic diode characteristics.  As can be seen in Table 3.4, 

the leakage current threshold value of 0.5 µA was reached at less than 2 V on twelve out 

of sixteen total arrays.  Two of the arrays were found to be inoperable, and another two 

arrays had acceptable, but still high, leakage current of 170 nA at 10 V.  The C-V 

measurements were fairly similar across the chips, with typical capacitance values of 10-

20 pF seen over the range of operating voltages.   

Table 3.4: Table of limiting bias voltages for each LSU chip based on I-V measurements 
performed at UOW (Tran & Chartier, 2014). 

Chip Device Array 
Limiting Voltage 

(V) 
Chip Device Array 

Limiting Voltage 
(V) 

LSU1 1 Odd 2 LSU2 1 Odd 4.5 

1 Even 2 1 Even 1.5 

2 Odd 7.5 2 Odd 5 

2 Even 7 2 Even 6.5 

3 Odd 7 3 Odd 6 

3 Even 6.5 3 Even 6.5 

4 Odd 4 4 Odd 3 

4 Even 4 4 Even 2.5 

LSU6 1 Odd 6 LSU7 1 Odd 2 

1 Even 8 1 Even 3 

2 Odd 10 2 Odd - 

2 Even 10 2 Even - 

3 Odd 4 3 Odd 1 

3 Even 4.5 3 Even 0.5 

4 Odd 0.5 4 Odd 0.5 

4 Even 0.5 4 Even 0.5 
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The researchers at UOW also noted a range of surface damage visible on the 

devices, as seen in Figure 3.19.  The surfaces of the chips showed significant damage 

from scratches, dents, and solder splatter.  This surface damage may have contributed 

to the poor diode performance of the chips. 

 

Figure 3.19: Image showing surface conditions observed on the four LSU chips sent to 
UOW for testing (Tran & Chartier, 2014). 

 Based upon these tests, the “LSU 6” chip was chosen for further testing with alpha 

spectroscopy using bias voltages of 0 V, 4 V, 6 V, and 8 V.  It was found that the number 

of observed counts was very low, and that there was a large amount of low energy noise 

between the electronics noise peak and the alpha peak.  Figure 3.20 shows an alpha 

particle spectrum acquired with the heart endothelial cell in vitro SV using 6 V of bias 

voltage; “odd” and “even” refer to the numbered rows of SVs. 
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Figure 3.20: 241Am spectrum acquired at UOW with the 18 µm cylindrical array on “LSU 
6” with a bias voltage of 6 V (Tran & Chartier, 2014). 

 

The calculation of lineal energy in the MC simulations contained two main sources 

of uncertainty.  The first is the underlying uncertainty in the stopping power data used to 

determine energy deposition.  The second is the uncertainty in the SV thickness due to 

the manufacturing tolerances (the same as affected the experimental calibration).  

Stopping power uncertainties for the protons in the tissue-substitute case were estimated 

at 2.0% (ICRU, 1993).  The stopping power uncertainties for the alpha particles in the 

boron case are higher, at 5%, due to the much lower energies possessed by the alpha 

particles when they enter the SV (<1 MeV), and the subsequent rise in uncertainty for this 

low-energy region (ICRU, 1993).  Total uncertainty for MC simulation of lineal energy is 

calculated to be 5.4% for the tissue-substitute case, and 7.1% for the boron case (Table 

3.5).  
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Table 3.5: Uncertainties inherent in Monte Carlo calculations of lineal energy for the 
tissue-substitute and boron converters. 

Uncertainty Value 

 Tissue-Substitute Boron 

Stopping Power Values 2.0% 5.0% 

SV Thickness 5.0% 5.0% 

 

Total 5.4% 7.1% 

 

 

The uncertainties in the calculation of absorbed dose to silicon are chiefly 

governed by uncertainty in the frequency-mean lineal energy for each spectrum, and the 

total number of energy deposition events.  The uncertainty in frequency-mean lineal 

energy was found by propagating uncertainties in the values of lineal energy and in the 

probability density of lineal energy, f(y) (Section 2.2.6).  Due to the relatively low number 

of counts seen experimentally, the uncertainty from the total number of energy deposition 

events affected the experimental spectra much more than the MC simulations.   

The total uncertainties in absorbed dose to silicon (Table 3.6) are calculated to be 

6.7% and 5.4% for the tissue-substitute experimental and MC spectra, respectively.  For 

the boron case, the total uncertainties are calculated to be 7.3% and 7.1% for the 

experimental and MC spectra, respectively.    
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Table 3.6: Uncertainties in absorbed dose to silicon for the tissue-substitute and boron 
converters (experimental as well as simulated). 

Uncertainty Value 

 
Tissue-Substitute Boron 

EXP MC EXP MC 

�̅�𝐹 6.5% 5.4% 6.9% 7.1% 

Number of Events 1.7% 0.4% 2.5% 0.3% 

 

Total 6.7% 5.4% 7.3% 7.1% 

 

 

Initial attempts at acquiring a neutron spectrum from the 239PuBe source were 

hampered by a very low observed count rate, owing to the relatively low activity of the 

source (2 Ci) and the very small active area of the microdosimeters.  To increase the 

neutron fluence across the device, subsequent attempts involved surrounding the source 

and the detector with jugs of water (Figure 3.21) to moderate some of the neutrons and 

to increase neutron albedo towards the device.     

With the modified experimental setup, the count rate was still insufficient.  As an 

additional measure to overcome this, calibrated spectra from multiple experiments were 

combined to improve the counting statistics.  Even with these techniques in place, the 

count rate was still too low for all but the heart endothelial cell shaped SV.  So this SV 

array was the only one used for all further neutron experiments.   
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Figure 3.21: Experimental setup for increasing the number of detected events when 
using the 239PuBe neutron source.  Detector and source are in middle layer surrounded 

by ring of water jugs. 

Figure 3.22 shows a comparison of the combined experimental spectra (total 

acquisition time of 83.3 hours) and the corresponding MC simulations.  Extrapolation was 

used for points at low lineal energies due to the electronics noise threshold.  The 

displayed experimental spectrum excludes a few single-count events which appeared at 

higher lineal energies, above the proton edge.  These were excluded in order to make a 

direct comparison with the MC simulation, which only considers recoil protons, not heavier 

reaction products, such as alpha particles.  Generally good agreement is seen between 

the two spectra, though the experimental peak shows a slightly higher proportion of lower 

lineal energy events.  Table 3.7 reports results of the two spectra on the basis of 

frequency-mean lineal energy, dose-mean lineal energy, and absorbed dose to silicon.  

The percent difference reported for y̅F fell slightly outside of the combined experimental 

and MC uncertainties, however the percent differences for �̅�𝐷 and DSi  were within the 

combined uncertainties. 
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Figure 3.22: Comparison of simulation and experimental data acquired from 239PuBe 
irradiations using the tissue-substitute converter. 

Table 3.7: Values for y̅F, y̅D, and DSi  for 239PuBe irradiations using the tissue-substitute 
converter. 

 
�̅�𝐹 

(keV/µm) Uncert. 
�̅�𝐷  

(keV/µm) Uncert. 
DSi  

(mGy) Uncert. 

EXP 22.1 ± 1.4 6.5% 38.1 ± 2.7 7.0% 16.9 ± 1.1 6.7% 

MC 24.3 ± 1.3 5.4% 39.1 ± 2.2 5.5% 18.5 ± 1.0 5.4% 

% Diff. 9.1%  2.6%  8.6%  

 

Microdosimetric spectra acquired with the boron converter also had a low count 

rate, so spectra from multiple experiments (total time of 95.5 hours) were combined to 

produce the microdosimetric spectrum seen in Figure 3.23.  The 239PuBe source 

predominantly emits fast neutrons (defined as having an energy greater than 10 keV), but 

the surrounding layer of water served to moderate and “thermalize” some of the emitted 

neutrons, so that they could interact with the boron atoms.   
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The results from the MC simulation of the boron converter are also plotted for 

comparison.  The two spectra show reasonable agreement in overall shape, though the 

experimental spectrum again shows a slightly higher proportion of lower lineal energy 

events.  Table 3.8 reports results of the two spectra on the basis of frequency-mean lineal 

energy, dose-mean lineal energy, and absorbed dose to silicon.  All of the percent 

differences reported were within the combined uncertainties. 

 

Figure 3.23: Comparison of simulation and experimental data acquired with 239PuBe 
neutron source with boron converter atop the microdosimeter. 

Table 3.8: Values for y̅F, y̅D, and DSi  for 239PuBe irradiations using the boron converter. 

 
�̅�𝐹 

(keV/µm) 
Uncert. 

�̅�𝐷  
(keV/µm) 

Uncert. 
DSi  

(mGy) 
Uncert. 

EXP 30.7 ± 2.1 6.9% 53.3 ± 4.0 7.5% 11.4 ± 0.8 7.3% 

MC 29.5 ± 2.1 7.1% 51.3 ± 3.6 7.1% 11.0 ± 0.8 7.1% 

% Diff. 4.1%  3.9%  3.6% 
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Extrapolation was used to extend the experimental data sets down to low lineal 

energies - that is, below the typical lower detectability limit of 7.3 keV/µm.  However, the 

effect of the noise threshold was still assessed to judge the relative importance of these 

low lineal energy events to the overall spectrum.  Overlaying the cumulative dose 

information obtained from the Monte Carlo simulations of the neutron irradiations and the 

experimental noise threshold gave the fraction of absorbed dose that was missed due to 

the lower detectability limit.  As shown in Figure 3.24, this fraction was found to be 0.026, 

or 2.6%, of the total dose.  

 

Figure 3.24: Effect of noise threshold in terms of fraction of cumulative absorbed dose 
for neutron irradiations using the tissue-substitute converter. 
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 As with the alpha particle simulations (Section 3.1.5), the effect of varying the 

chord lengths through the SV was also investigated for the neutron experiments.  This 

was achieved by modifying the chord length for each particle history by a normally 

distributed amount.  Figure 3.25 shows the results of the modified tissue-equivalent y•d(y) 

spectra.  The results show that the y•d(y) spectra were fairly insensitive to mean chord 

length variations, with the spectra still matching well up to a variation of ± 25%.  Table 3.9 

shows how the modified spectra compare to the unmodified spectrum in terms of �̅�𝐷, �̅�𝐹, 

and DSi.        

 

Figure 3.25: Effect of varying the chord lengths in the neutron simulations with the 
tissue-substitute converter. 
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Table 3.9: Values for y̅D, y̅F, and DSi for the modified tissue-substitute converter 
simulations. 

 
�̅�𝐹  

(keV/µm) 
�̅�𝐷  

(keV/µm) 
DSi   

(mGy) 

MC ± 0 % 24.3 ± 1.3 39.1 ± 2.2 18.5 ± 1.0 

MC ± 5 % 24.3 ± 1.3 39.2 ± 2.2 18.5 ± 1.0 

%Diff 0.0% 0.3% 0.0% 

MC ± 10 % 24.3 ± 1.3 39.1 ± 2.2 18.5 ± 1.0 

%Diff 0.0% 0.0% 0.0% 

MC ± 25 % 24.2 ± 1.3 39.5 ± 2.2 18.4 ± 1.0 

%Diff 0.4% 1.0% 0.5% 

 

The effect of a non-uniform response from each of the sensitive volumes was also 

investigated for the boron converter experiment.  This was accomplished by modifying 

the simulated chord lengths for each particle history in the same manner as was used for 

the other setups.  Figure 3.26 shows the results of the modified y•d(y) spectra when using 

the boron converter.  The modified boron y•d(y) spectra were more sensitive to the chord 

length variations than the modified tissue-substitute spectra.  However, they were much 

less sensitive than the modified alpha particle spectra.  The left hand side of the simulated 

and experimental peaks were in better agreement with the modified chord lengths, but 

agreement on the right hand side did not improve.  Table 3.10 shows the results in terms 

of �̅�𝐷, �̅�𝐹, and DSi.     
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Figure 3.26: Effect of varying the chord lengths for the neutron simulations with the 
Boron converter. 

Table 3.10: Values for y̅D, y̅F, and DSi for the modified boron converter simulations. 

 
�̅�𝐹  

(keV/µm) 
�̅�𝐷  

(keV/µm) 
DSi   

(mGy) 

MC ± 0 % 29.5 ± 1.5 51.3 ± 2.6 11.5 ± 0.6 

MC ± 5 % 31.4 ± 2.2 52.5 ± 3.7 11.7 ± 0.8 

%Diff 6.4% 2.3% 1.7% 

MC ± 10 % 31.4 ± 2.2 52.8 ± 3.7  11.7 ± 0.8 

%Diff 6.4% 2.9% 1.7% 

MC ± 25 % 31.3 ± 2.2 53.0 ± 3.8 11.6 ± 0.8 

%Diff 6.1% 3.3% 0.9% 
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An absorbed dose conversion factor, rSi,T, was calculated independently for the 

tissue-substitute and the boron converter cases, using the particle energy spectra 

extracted from the MC simulations.  The “slowing-down” energy spectra were used, which 

represents the energies of the particles after traversing any intervening materials (the 

converter itself, air gap, and SiO2 layer atop the microdosimeter), but before entering the 

SV.  Even over the narrow range of energies in each spectrum, the mass stopping power 

values for each material varied by a large amount, as seen in Figure 3.27 for the alpha 

particles emitted from the boron converter.      

 

Figure 3.27: Mass stopping power values for silicon and ICRU muscle per energy bin for 
the alpha particles emitted from the boron converter.  Note that this is the “slowing-

down” spectrum of energies – taking into account energy loss in the materials upstream 
of the SVs.   
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 To determine an absorbed dose conversion factor representative of the majority of 

the particles in each spectra, a reduced spectrum of particle energies was considered, 

which represented the mean of the spectrum, plus or minus one sigma (Figure 3.28).  

Only stopping power values from within this reduced spectrum were considered when 

calculating the absorbed dose conversion factor.  The uncertainty in rSi,T was calculated 

as the maximum deviation (within the reduced spectrum) from the fluence-weighted ratio. 

Table 3.11 lists the energy, mass stopping power, and ratio values for the full and reduced 

spectra in the boron converter case; the same process was repeated for the protons in 

the tissue-substitute case.  The calculated values of rSi,T  for the tissue-substitute and 

boron cases are reported in Table 3.12, along with the corresponding uncertainty values.     

 

 

Figure 3.28: Variation of silicon-to-tissue stopping power ratio with respect to alpha 
particle energy.   
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Table 3.11: Stopping power values of alpha particles in ICRU Muscle and Silicon.  The 
particle energies considered represents the slowing-down spectrum of alpha particles 

from the boron converter, before entering the SVs of the microdosimeter.  Yellow 
shading represents the “reduced spectrum,” as shown in Figure 3.28.  

 Silicon 
ICRU Muscle, 

Striated 
  

Kinetic Energy, 
(MeV) 

Mass 
Stopping 

Power  
(MeV cm2/g) 

Mass 
Stopping 

Power  
(MeV cm2/g) 

Stopping 
Power Ratio 
(S/ρ)Si/(S/ρ)T 

%Diff from rSi,T 

0.01 245 428.5 0.57 18.6% 

0.03 440.2 650.5 0.68 2.9% 

0.05 586.8 815.5 0.72 2.9% 

0.07 717.6 961.9 0.75 7.1% 

0.08 829.2 1089 0.76 8.6% 

0.10 920.2 1197 0.77 10.0% 

0.12 1003 1299 0.77 10.0% 

0.14 1069 1388 0.77 10.0% 

0.16 1129 1474 0.77 10.0% 

0.18 1180 1552 0.76 8.6% 

0.20 1221 1621 0.75 7.1% 

0.21 1258 1688 0.75 7.1% 

0.23 1287 1747 0.74 5.7% 

0.25 1314 1805 0.73 4.3% 

0.27 1336 1858 0.72 2.9% 

0.29 1353 1904 0.71 1.4% 

0.31 1369 1949 0.70 0.0% 

0.33 1381 1989 0.69 1.4% 

0.34 1392 2027 0.69 1.4% 

0.36 1400 2062 0.68 2.9% 

0.38 1407 2093 0.67 4.3% 

0.40 1412 2122 0.67 4.3% 

0.42 1416 2147 0.66 5.7% 

0.44 1418 2172 0.65 7.1% 

0.46 1420 2194 0.65 7.1% 

0.47 1421 2212 0.64 8.6% 

0.49 1421 2230 0.64 8.6% 

0.51 1420 2244 0.63 10.0% 

0.53 1418 2258 0.63 10.0% 

0.55 1416 2270 0.62 11.4% 

0.57 1414 2279 0.62 11.4% 

0.59 1411 2288 0.62 11.4% 
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(Table 3.11 continued) 

 Silicon 
ICRU Muscle, 

Striated 
  

Kinetic Energy, 
(MeV) 

Mass Stopping 
Power  

(MeV cm2/g) 

Mass Stopping 
Power  

(MeV cm2/g) 

Stopping 
Power Ratio 
(S/ρ)Si/(S/ρ)T 

%Diff from rSi,T 

0.60 1408 2294 0.61 12.9% 

0.62 1404 2300 0.61 12.9% 

0.64 1400 2304 0.61 12.9% 

0.66 1396 2307 0.61 12.9% 

0.68 1391 2309 0.60 14.3% 

0.70 1387 2310 0.60 14.3% 

0.72 1382 2310 0.60 14.3% 

0.74 1377 2309 0.60 14.3% 

0.75 1372 2307 0.59 15.7% 

0.77 1366 2304 0.59 15.7% 

0.79 1361 2301 0.59 15.7% 

0.81 1355 2297 0.59 15.7% 

0.83 1350 2292 0.59 15.7% 

0.85 1344 2286 0.59 15.7% 

0.87 1338 2280 0.59 15.7% 

0.88 1333 2274 0.59 15.7% 

0.90 1327 2267 0.59 15.7% 

0.92 1321 2259 0.58 17.1% 

 

Table 3.12: Absorbed dose conversion factor values for tissue-substitute and boron 
cases, with uncertainties.   

 𝑟𝑆𝑖,𝑇 Uncert. 

Tissue-Substitute EXP 0.71 ± 0.03 4.2% 

Tissue-Substitute MC 

Boron EXP 0.70 ± 0.08 11.4% 

Boron MC 

 

 Applying the absorbed dose conversion factors from Table 3.12 to the values of 

absorbed dose to silicon reported in Section 3.2.8 gives the calculated values of absorbed 
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dose to tissue reported in Table 3.13 (tissue-substitute case) and Table 3.14 (boron 

case).  The percent differences for both cases were within the combined uncertainties.  

The reported uncertainties were calculated by propagating the uncertainties in absorbed 

dose to silicon and the uncertainties in the absorbed dose conversion factor.   

Table 3.13: Experimental and simulated absorbed dose to tissue values for the tissue-
substitute case. 

 DT (mGy) Uncert. 

TE EXP 24.5 ± 1.9 7.9% 

TE MC 26.8 ± 1.8 6.9% 

% Diff 8.6%  

 

Table 3.14: Experimental and simulated absorbed dose to tissue values for the boron 
case. 

 DT (mGy) Uncert. 

Boron EXP 18.1 ± 2.2 13.5% 

Boron MC 17.5 ± 2.2 13.4% 

%Diff 3.4%  

 

 

The average quality factor value for each spectrum, �̅�, was calculated using the 

equation defined by the ICRU (1986).  The values of the average quality factor for each 

experimental and simulated case are reported in Table 3.15.  Conversion from absorbed 

dose to tissue to dose equivalent was then accomplished by multiplying each value of 

absorbed dose to tissue by the corresponding average quality factor value.  The 

calculated values of dose equivalent are reported in Table 3.16 (tissue-substitute case) 
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and Table 3.17 (boron case).  The reported dose equivalent values for each case were 

within the uncertainties.  Note that the reported uncertainties are the same as for the 

respective absorbed dose to tissue values, since no additional uncertainties in the quality 

factor were considered. 

Table 3.15: Values of �̅�, as calculated from the experimental and simulated spectra. 

 �̅� 

Tissue-Substitute EXP 11.4 

Tissue-Substitute MC 11.7 

Boron EXP 15.8 

Boron MC 15.4 

 

Table 3.16: Experimental and simulated dose equivalent values for the tissue-substitute 
case. 

 H (mSv) Uncert. 

Tissue-Substitute EXP 279.3 ± 23.2 7.9% 

Tissue-Substitute MC 313.6 ± 21.6 6.9% 

% Diff 10.9%  

 

Table 3.17: Experimental and simulated dose equivalent values for the boron case. 

 H (mSv) Uncert. 

Boron EXP 286.0 ± 38.6 13.5% 

Boron MC 269.5 ± 36.1 13.4% 

% Diff 6.1%  
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4 DISCUSSION 

 

This study tested the feasibility of using silicon on insulator microdosimeters which 

mimic the size and shape of particular cells within the human body.  The microdosimeters 

were first analyzed in terms of their physical surface conditions and basic diode 

characteristics, to select the best candidates for further measurements.  Using the 

microdosimeters, spectra were acquired with two 241Am alpha particle sources and a 

239PuBe neutron source.  The neutron source experiments were performed with two 

different converter layers placed atop the microdosimeter: a tissue-substitute converter 

made from high-density polyethylene, and a boron converter made from epoxy and a thin 

layer of boron powder.  For each of the two converters, measurements were made of 

lineal energy and absorbed dose to silicon.  Absorbed dose to silicon was then converter 

to absorbed dose to tissue using an absorbed dose conversion factor - calculated based 

on the ratio of stopping power values for silicon and tissue.  Dose equivalent was then 

determined, using an average quality factor calculated for each spectrum on the basis of 

the ICRU definition (1986).  The uncertainties at each step were quantified to determine 

if the overall uncertainty in dose equivalent would be less than 10%, as hypothesized. 

The experimental data was also compared with Monte Carlo simulation data, using 

an in-house code.  To test the accuracy of the in-house code, it was compared with 

GEANT4 simulations, data from the TRIM code, and results derived analytically for an 

infinite slab geometry.  Generally good agreement was seen between the experimental 

and simulated data.  However, the experimental data consistently displayed a higher 

proportion of low lineal energy events compared to the simulations.    
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With the tissue-substitute converter placed atop the cell-shaped 

microdosimeters, dose equivalent was determined with 7.9% uncertainty, which 

supported the hypothesis.  However, with the boron converter, the hypothesis was not 

supported, with dose equivalent determined with 13.5% uncertainty.  These uncertainty 

values are comparable to a typical TEPC uncertainty, which varies from ~6% 

(Burmeister et al., 2001) up to 10-15% (Autischer et al., 2005; Tarzia & Rashidifard, 

2013).     

 

There were some compromises made in the manufacturing of the silicon 

microdosimeters used in this project, due to the tight time constraints of the supporting 

grant.  These compromises were: 1. Use of a silicon wafer with lower than specified 

resistivity – leading to elevated levels of leakage current across the microdosimeters, and  

2. Re-wiring of the chips in the package – leading to obstruction of some of the SVs and 

increasing the potential of shorting out an array and creating a non-functioning 

microdosimeter.  Correcting these issues in the next generation of cell-shaped 

microdosimeters should significantly improve their performance.  Further testing should 

also be performed to better understand the charge collection characteristics of the unique 

SV shapes.   

Another limiting factor was the very small active area of each array.  Since each 

array was constructed with a different SV design, signal was only collected from one array 

at a time.  This limited the observed count rate and required long acquisition times to 

generate a sufficient amount of signal when using the neutron source.  These acquisition 

times (3-4 days) are impractical for anything except laboratory testing.  To improve the 
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count rate of the device, all four arrays on the chip could be made with the same SV 

design, thus increasing by a factor of four the active area usable at any particular time.   

The layout of the circuit board, upon which the microdosimeter was mounted, is 

another area that can be improved.  Use of more solid connectors, surface-mounted 

devices, and better shielding for data connections will improve overall circuit design and 

reduce the amount of noise in the electronics.   

 

This study was only performed with isotopic alpha particle and neutron source 

irradiations, neither of which are very relevant for clinical applications.  Use of a reference 

neutron source at a standards laboratory would provide an absolute dose measurement 

against which the experimental measurements could be better compared.  The small 

active area of the device, and subsequently low observed count rate, limited the type of 

experiments that could be performed – excluding for instance, use of the microdosimeters 

at depth within a phantom.  The relatively large overall size of the prototype device was 

also a factor limiting the choice of experimental setups.   

 

Once future generations of the microdosimeters have been produced, which 

possess the improvements previously mentioned, further testing should be done using a 

clinical proton beam or with a selection of heavy charged particles (C, Fe, He, etc.) to test 

the microdosimeters with a range of ion species.  With a more intense beam and a smaller 

device, measurements could then be performed within an anthropomorphic phantom.  

Placement of the cell-shaped microdosimeter at the location within the phantom where 

those cells would physically reside would allow for measuring cell-specific doses for 

particular radiotherapy treatment setups.  This type of detector has the advantages of 
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being small, lightweight, and simple to produce.  It is also less complicated to set up and 

maintain than a tissue-equivalent proportional counter.  The end goal for this device is a 

dosimeter that provides better radiation monitoring for patients and staff.       

 

This study tested the feasibility of silicon on insulator microdosimeters which were 

constructed with sensitive volumes that mimic the size and shape of cells within the 

human body.  As a proof of concept, we have demonstrated that this device is capable 

(depending on the type of converter layer used) of determining dose equivalent with 

overall uncertainties less than 10% when irradiated with a 239PuBe neutron source.  The 

experimental data also agreed well with results from Monte Carlo simulations.   

Low source activity and a small active area on the microdosimeter led to rather low 

observed count rates during measurements, requiring very long acquisition times to 

generate sufficient signal from the device.  Higher than expected levels of leakage current 

across the silicon chips and noise in the signal processing electronics led to a lower 

detectability limit of approximately 7 keV/µm, which is much higher than the 0.4 keV/µm 

previously demonstrated using silicon microdosimeters (Bradley et al., 2001).  There was 

also evidence of charge sharing across the device, which inflated the number of low 

energy deposition events in the recorded spectra.  Overall, the microdosimeter was found 

to be feasible for further testing, though some specific improvements have been identified 

(discussed in Section 4.3) that should expand both its usefulness and robustness.        
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6 APPENDIX 

 

 

Figure 6.1: Electronics schematic - modified for application of bias voltage.  Adapted 
from original schematic (Quentin Dolecek, personal communication, October 28, 2013).
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Figure 6.2: Sample calibration worksheet.
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Table 6.1: Reverse bias voltages before 0.5 µA leakage current limit was reached. 

Chip # Array 
# 

Limiting 
Voltage (V) 

Chip # Array 
# 

Limiting 
Voltage (V) 

LSU 3 1 1.9 LSU 4 1 3.0 

2 1.4 2 0.5 

4 0.6 4 1.7 

5 0.5 5 1.4 

LSU 5 1 5.2 LSU 8 1 1.0 

2 1.8 2 0.7 

4 1.1 4 0.8 

5 2.8 5 1.0 

LSU 9 1 1.4 LSU 10 1 2.9 

2 1.3 2 0.9 

4 1.2 4 0.9 

5 1.8 5 1.4 

LSU 11 1 2.7 LSU 12 1 3.4 

2 0.6 2 1.8 

4 1.2 4 0.6 

5 3.1 5 3.5 

LSU 13 1 4.3 LSU 14 1 2 

2 2.2 2 2.2 

4 1 4 0.5 

5 2.2 5 2.8 

LSU 15 1 2 LSU 16 1 4.7 

2 2.2 2 5.0 

4 0.8 4 1.1 

5 2.7 5 4.3 

No Array 2 1 8.3 No Array 4 1 0.7 

2 3.4 2 0.5 

4 1.2 4 0.5 

5 0.7 5 2.7 

OG 1 1 6.7 OG 2 1 4.0 

2 3.8 2 1.5 

4 3.3 4 0.7 

5 6.1 5 2.5 
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Figure 6.3: LSU I-V plots for chips LSU 3, LSU 4, LSU 5, and LSU 8 (note: LSU 1, LSU 
2, LSU 6, and LSU 7 were sent to UOW for testing). 

 

Figure 6.4: LSU I-V plots for chips “LSU 9”, “LSU 10”, “LSU 11”, and “LSU 12”. 
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Figure 6.5: LSU I-V plots for chips “LSU 13”, “LSU 14”, “LSU 15”, and “LSU 16”. 

 

Figure 6.6: LSU I-V plots for chips “No Array 2”, “No Array 4”, “OG 1”, and “OG 2”. 
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Figure 6.7: LSU I-V plots for UOW chips “5MD-S10”, “14MD-S10”, “15MD-S10”, “N6MD-
S10”, and “N7MD-S10”. 
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Figure 6.8: Surface images of “LSU 3”, “LSU 4”, “LSU 5”, and “LSU 8”. 

 

Figure 6.9: Surface images of “LSU 9”, “LSU 10”, “LSU 11”, and “LSU 12”. 
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Figure 6.10: Surface images of “LSU 13”, “LSU 14”, “LSU 15”, and “LSU 16”. 

 

Figure 6.11: Surface images of “No Array 2”, “No Array 4”, “OG 1”, and “OG 2”. 
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Figure 6.12: “LSU 1” I-V plots from UOW. 

 

Figure 6.13: “LSU 2” I-V plots from UOW. 
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Figure 6.14: “LSU 6” I-V plots from UOW. 

 

Figure 6.15: “LSU 7” I-V plots from UOW. 
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Figure 6.16: “LSU 1” C-V plots from UOW. 

 

Figure 6.17: “LSU 2” C-V plots from UOW. 
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Figure 6.18: “LSU 6” C-V plots from UOW. 

 

Figure 6.19: “LSU 11” C-V plots from UOW. 
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