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ABSTRACT 

 In this study, a proton pencil beam dose calculation algorithm was developed for a 

parallel, monoenergetic beam incident on a homogeneous water phantom.  Fermi-Eyges theory 

(Eyges 1948) was used to transport pencil beams, and the characteristic width of elastic scatter 

events was modeled using the differential Moliere scattering power (Gottschalk 2010).  The 

incorporation of this scattering power formalism allowed our model to account for multiple 

Coulomb scattering, single scattering, plural scattering, and rigorously accounted for material 

effects on scatter.  Nonelastic nuclear interactions were incorporated into an additional pencil 

beam model.  The attenuation of primary fluence due to nuclear events was accounted for using a 

weighted sum of primary and nuclear pencil beam components (Pedroni et al. 2005, Soukup et 

al. 2005).  Free parameters of the nuclear pencil beam model were determined by a non-linear 

least squares fit to narrow field Monte Carlo data.  Our dose calculation model was 

commissioned using central-axis depth dose data extracted from Monte Carlo simulations.  

Analytical corrections were incorporated to ensure that all input central-axis data satisfied side 

scatter equilibrium. 

 The dose calculation model was evaluated against Monte Carlo simulations of dose in a 

simplified beamline.  Proton beam energies of 50, 100, 150, 200, and 250 MeV and field sizes of 

4x4 cm
2
 and 10x10 cm

2
 were evaluated in three geometries: (1) flat phantom; (2) step phantoms 

(step heights of 1 and 4 cm); and (3) oblique phantom (rotation angle of 45°).  All geometries 

evaluated with Monte Carlo dose calculations yielded 100% of points passing distance-to-

agreement (DTA) ≤ 1 mm or Percent Dose Difference ≤ 3%.  At least 99% of points passed with 

a DTA ≤ 1 mm or Percent Dose Difference ≤ 2%.  The pencil beam dose calculation model 

provided excellent results when compared with Monte Carlo data. 
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CHAPTER 1. INTRODUCTION 

1.1 Background and Significance 

1.1.1 Fundamental Advantages of Proton Therapy 

Current clinical standards for use of external beam radiation in cancer treatment include 

photon and electron therapy.  The success of these methods is due, in part, to reliable technology 

that is easy to operate and useful in treating a wide variety of diseases.  However, the exponential 

attenuation of photon beams results in excess dose delivered to healthy tissue proximal and distal 

to the treatment site (see Figure 1.1).  Electron dose falloff results in minimal dose distal to the 

treatment site, but excessive multiple Coulomb scatter limit the applications of electrons to sites 

within 6 cm of the surface (Hogstrom 2003).  

 Protons offer significant benefits in radiation therapy because they travel in nearly 

straight lines (small amount of multiple Coulomb scatter), they have a narrow Bragg peak that 

Figure 1.1: Central-axis depth dose comparisons of a pristine (grey) and spread-out proton beam 

(solid black curve) to 10 MV x-rays (dashed black curve) (Koehler and Preston 1972).  Note the 

sharp distal dose falloff of the Bragg peak, and the insignificant dose beyond the proton range. 
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can be modulated to create peaks of arbitrary widths, and there is clinically insignificant dose 

beyond treatment sites (Wilson 1946).  These properties have led to the hypothesis that protons 

can provide increased local control of tumors while sparing normal tissue (Koehler and Preston 

1972).  As seen in Figure 1.1, a single field proton beam can achieve high, uniform doses with 

significant proximal (for a spread-out Bragg peak), but no excess distal dose, compared with a 

single field photon beam, which gives a non-uniform distribution over the tumor with both 

significant proximal and distal dose.  

The potential clinical benefits of protons proposed by Wilson (1946) encouraged the first 

clinical evaluations (Tobias et al. 1958).  Several studies produced results that confirmed the 

dose localization and normal tissue sparing advantages offered by protons over photons 

(Terasawa et al. 2009).  However, many of these studies were performed in research institutions 

with limited treatment options and were completed when proton therapy was in its infancy; thus, 

the results from these studies might represent a minimum on the potential advantages of protons 

over photons.  The positive results obtained in these early studies garnered further interest in the 

field of proton therapy and in 1990, one of the earliest hospital-based proton treatment centers 

opened at Loma Linda University Medical Center in California (Slater et al. 1991).  Currently, 

there are 37 proton treatment facilities in operation around the world (PTCOG 2012) with 22 

more planned over the next three years. 

1.1.2 Beam Broadening 

The spread-out Bragg peak shown for the proton beam in Figure 1.1 depicts a clinical, 

modulated proton beam.  The narrow “pristine” peaks that are characteristic of monoenergetic 

proton beams (Figure 1.1) are too narrow to treat most tumors uniformly so they must be spread 

out in depth and width.  There are two techniques for producing adequate clinical beams: passive 

scattering and active scanning. Most proton treatment facilities currently use passive scattering 
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techniques.  The passive scattering method typically uses a double scattering foil system.  The 

first foil in these designs is typically made of a high-Z material that spreads the beam laterally.  

This results in a forward-peaked beam whose lateral distribution is approximately Gaussian in 

shape.  The second foil used in these systems is typically a contoured scatterer made of high-Z 

and low-Z components; the high-Z component is used to scatter the central part of the beam to 

the periphery and the low-Z component is used to modulate the energy of protons while 

minimizing scatter.  The combination of the two scattering foils produces a laterally broad, 

uniform field. 

To spread the beam in depth using the passive scattering technique, a range modulator 

wheel (RMW) is typically used.  The RMW rotates various thicknesses of material into the beam 

as a function of time, producing beams with modified ranges and intensities.  After several such 

modified beams have been directed into the patient, the cumulative result is the spread-out Bragg 

peak (SOBP, see Figure 1.2).  Collimators are used in passive scattering systems to define the 

lateral extents of the treatment field.  Finally, the dose falloff of the proton beam (range) is 

modulated laterally using a range compensator, so as to conform to the distal edge of the 

planning target volume (PTV).  The range compensator is made of tissue-equivalent material 

(usually polymethyl methacrylate (PMMA)), and its thickness controls how much the SOBP 

shifts towards the patient surface.  Figure 1.3(a) shows a typical passive scattering system.  

As an alternative to passive scattering techniques, the active scanning method has been 

used in only a few clinics (Pedroni et al. 1995).  In this form of beam broadening, individual 

small beam spots are controlled under magnetic deflection (along two axes) with the ability to 

modulate the energy and fluence of each spot.  The typical method of active scanning is to first 

deliver dose to the spots at the distal edge of the PTV then proceed with scanning proximal spots 

until the entire volume has been treated by varying intensity and energy for each spot.  A typical 
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active scanning system, illustrated in Figure 1.3(b), does not require a range modulator, dual 

scattering foil system, collimator, or range compensator as does the passive scattering system. 

1.1.3  Basic Proton Interactions 

Protons undergo various physical interactions with atomic electrons and nuclei in a 

calculation medium.  Most of these interactions will be discussed in this section, but those 

interactions that are relevant to clinical dose calculations will be highlighted. 

As protons penetrate through a medium, they lose energy at the expense of excitation and 

ionization of electrons in the target atoms.  At therapeutic energies, radiation loss is negligible, 

so the energy loss per path length (stopping power) is given by 

 � = 4���������� ��ln � 2������(1 − ��) − �� − !"#�# $		(%�&	��'(), (1)  

Figure 1.2: Multiple narrow Bragg peaks of proton beams of differing fluence and energy can be 

optimally superimposed to form a spread-out Bragg peak (SOBP).  The solution above produced 

a flat SOBP of 10 cm that penetrates (90% depth) approximately 16 cm in water (Khan 2010). 
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where e is the charge of the incident proton, � is the speed of the proton (in units of c – the speed 

of light in vacuum), m is the electron mass, Z is the mean nuclear charge, N is the mean density, I 

is the mean excitation energy of the target atoms, and "# �⁄  is a shell correction that is only 

important at low proton velocities (ICRU 1998).  Stopping power is typically more useful when 

divided by the material density; when in this form, it is referred to as mass stopping power.   

(a) 

 

(b) 

 

Stopping power (and therefore, mass stopping power) exhibits a 1/E dependence (Figure 

1.4), and this energy dependence is the main factor that causes the formation of a Bragg peak.  

Statistical fluctuations due to the discrete energy loss events (energy straggling) cause 

monoenergetic protons to stop at different depths (Bohr 1948).  This effect, called range 

Figure 1.3: Beam broadening systems including (a) a passive scattering system, and (b) an active 

scanning system (Chu et al. 1993). 
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straggling, causes the narrow Bragg peak predicted by stopping theory to have increased width – 

even for initially monoenergetic beams (Gottschalk 2004).  Another effect that protons 

experience as they lose energy in a target material is scattering.  Because of the large mass of 

protons relative to electrons, the deflections that protons experience in electromagnetic 

interactions with electrons are negligible.  As protons interact with atomic nuclei, the Coulombic 

force tends to deflect protons away.  Single deflections with atomic nuclei still tend to be small, 

but as protons proceed through the medium, the cumulative effect of very many of these small 

events becomes significant.  The accumulated deflections are often given a statistical treatment, 

and because there are numerous small deflections, the central limit theorem is invoked; thus, the 

probability density describing these multiple Coulomb scatter (MCS) deflection angles is 

modeled by a Gaussian. 

In order to build an accurate model of MCS, an accurate account of single scatter events 

with the atomic nuclei must first be determined (Gottschalk 2004).  The probability of single 

scatter events is described by the Rutherford formula, which has +'� dependence, where χ refers 

Figure 1.4: Mass stopping power of protons in liquid water (from Berger et al. 2005). 
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to the single scattering angle.  Figure 1.5 shows the comparison between a Gaussian (�',-
) and 

the Rutherford dependence (+'�).  The Rutherford dependence falls off much more slowly than 

a Gaussian does.  However, it is also clear that at large angles the Gaussian predicts that multiple 

scattering is less than single scattering (Gottschalk 2004), which cannot be true and is a 

limitation of the Gaussian approximation of MCS.  Therefore, the true scatter distribution should 

approach +'� at large angles and remain Gaussian for small angles.  Moliere scatter theory (c.f. 

Bethe 1953) includes MCS and single scattering, as well as a correction term to account for an 

intermediate number of scatters (called plural scattering).  Moliere theory is considered to be the 

definitive scatter theory, and it has been shown to agree well with measurements (Gottschalk et 

al. 1993). 

 

Protons undergo nuclear interactions at a rate of about 1.2% g'(cm
2
 (Gottschalk 2004).  

There are three types of nuclear reactions recognized by ICRU report 63 (ICRU 2000): (1) 

elastic, (2) inelastic, and (3) nonelastic.  Elastic interactions with atomic nuclei have already 

been discussed (MCS, single, plural scattering) and inelastic interactions are a special case of 

nonelastic interactions.  Thus, nonelastic nuclear interactions will be the focus in this section.  

Figure 1.5: Comparison of Gaussian (red) and single scatter dependence (black). 
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This type of interaction is nonelastic in the sense that total kinetic energy is not conserved 

because various secondary particles are created that carry energy away from the original nucleus 

(Table 1.1).  The secondary particles created in nonelastic nuclear interactions include short-

range charged secondary particles (which acquire about 60% of the incident proton energy) and 

long-range neutral particles (which acquire about 40% of the incident proton energy) (Gottschalk 

2004).  The portion of incident proton energy carried off by neutral particles is essentially lost 

(i.e., deposited far away from the interaction point) (Gottschalk 2004).  This ‘lost energy’ 

phenomenon caused by the neutral products effectively removes energy from the Bragg peak 

(Gottschalk 2004).  Some of this lost energy gets redistributed in the target and some exits the 

target completely (Gottschalk 2004).  However, these neutral particles (including neutrons and 

photons) do not necessarily have a negligible effect on patient dose; the high relative biological 

effectiveness (RBE) of neutrons and the dose imparted by photons may add a background 

component of dose to the patient.  Figure 1.6 shows the redistribution of the Bragg peak due to 

the neutral particles carrying away some of the incident proton energy.  The short-range particles 

that are created in nonelastic nuclear events carry much lower energies than the incident proton, 

and they scatter out into a faint halo of secondary dose that surrounds the primary proton 

(Pedroni et al. 2005).  For this reason, the secondary dose effect is often called the “nuclear halo” 

(Pedroni et al. 2005, Soukup et al. 2005). 

1.1.4 Dose Calculation Methods 

In order for a linear accelerator to be effectively utilized, an interface between the 

accelerator hardware and the patient data must exist.  In clinics, this interface is referred to as a 

treatment planning system (TPS).  A TPS is a sophisticated computer software package that is 

used to evaluate dose delivered to a planning target volume (PTV) and normal tissues for one or 

more treatment setups.  By comparing the dose delivery for multiple treatment setups, a TPS 
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allows the end user to decide which setup is most appropriate for the patient anatomy and 

disease.  Most TPSs include the ability to import patient data (such as computerized tomography 

(CT) scans), select the beam arrangement around the patient, calculate dose, provide dose 

optimization algorithms to allow intensity modulation, allow one to set prescription dose as well 

as parameters relevant to intensity modulation treatments (e.g., uniformity of dose over tumor, 

dose constraints on healthy tissue and organs at risk), and to view and analyze results.  Figure 1.7 

shows a breakdown of the role of a TPS in implementing a new machine into a treatment clinic. 

Table 1.1: Secondary particles formed in nonelastic nuclear interactions.  The mean fraction of 

energy carried away by each particle is indicated for an incident proton energy of 150 MeV 

(Seltzer 1993).  Presumably, the remaining 16.5% of energy not accounted for is carried away by 

photons (Gottschalk 2004). 

Type 

Fraction of Initial Energy 

Carried by Secondary 

Particle 

Proton 0.57 

Deuteron 0.016 

Triton 0.002 /�0  0.002 

Alpha Particle 0.029 

Nucleus (recoil) 0.016 

Neutron 0.20 

The dose calculation model in a TPS must balance accuracy and computational speed.  

Dose calculation speed is critical for a clinical TPS because patient throughput can often become 

an issue.  However, the dose model must be sufficiently accurate to estimate the dose received by 

patients in radiation treatments.  As the field of radiation therapy advances and new technology 

is introduced, there will be an increasing demand for accuracy and speed in dose calculation 

models. 

Dose calculations involving little or no anatomical heterogeneities (e.g., uveal melanoma) 

have been accurately modeled using broad beam (ray-tracing) methods.  In a broad beam dose 

calculation, pre-calculated (or measured) dose distributions are scaled by the water equivalent 
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depth along the ray; because only heterogeneities encountered by the ray are considered, this 

scaling relationship is one-dimensional.  Broad beam dose calculations also execute in a very 

short amount of time relative to other methods because of this simplistic scaling technique.  

Koch et al. (2008) described a very accurate and very fast broad beam proton dose calculation 

model used to treat uveal melanoma. 

For dose calculations requiring high accuracy for heterogeneous (patient-like) mediums, 

Monte Carlo (MC) simulations are currently accepted to be the gold standard.  MC may have 

achieved this status because they simulate detailed interactions for numerous particle types and 

secondary particles, and the randomness of radiation is explicitly accounted for.  However, 

because MC simulations often involve keeping a detailed history of the physical interactions of 

particles and secondary particles, this method requires long simulation times and expansive 

computer processing capabilities.  The most time consuming MC methods are the original 

detailed history methods.  With detailed history MC simulations, the energy, direction, and 

position of a particle are simulated after each collision (Berger 1963).  Random sampling of 

Figure 1.6: Monte Carlo calculations of the Bragg peak with nuclear reactions turned off 

(dashed) and the actual Bragg peak (solid) (Berger 1993).  The x-axis displays depth normalized 

by the proton range for a 160 MeV beam (12 ≈ 17.7	cm	in	water). 
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single scattering probabilities is used to define subsequent collisions and the collection of the 

saved parameters from all collisions defines the trajectory of the particle (Berger 1963). 

 

Detailed history MC simulations have been largely replaced by condensed history MC 

codes (e.g., Monte Carlo N-Particle eXtended (MCNPX)), which were designed to address the 

significant speed limitation imposed by detailed history MC.  Condensed history MC codes 

sample particle trajectories over a series of step lengths (along the pathlength of the particle); the 

exact selection of the step lengths is determined by scatter theory (Berger 1963) and step lengths 

must be chosen such that a random walk is formed (Berger 1963).  The random walk effectively 

accounts for the collective effects of several collisions; this approximation is the factor that 

allows condensed history MC codes to reduce simulation times relative to detailed history MC 

simulations.  These methods have comparable accuracy to detailed history methods and 

decreased computation time, but they are still considered too slow for clinical dose calculations. 

Clinical 
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Figure 1.7: The role of a treatment planning system (TPS) in a clinic. 
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Track-repeating algorithms are another viable option for MC simulations, and they offer 

further improvement in computational speed.  One such algorithm by Yepes et al. (2008) showed 

that the dose calculation time for their track-repeating algorithm was improved by two orders of 

magnitude over a condensed history MC code.  Track-repeating MC algorithms use proton 

trajectories that are pre-simulated in water (including path length, angles, energy loss, energy 

deposited, and stopping power information for each step) and these trajectories are scaled to 

other materials, typically by a stopping power ratio of the medium of interest to water (Yepes et 

al. 2008).  Because the proton trajectories are pre-simulated, the calculation speed of track-

repeating algorithms is fast; however, a large number of trajectories are needed, and these 

methods are most useful when implemented in a graphical processing unit (GPU) environment 

(Yepes et al. 2010).  GPU simulations require sophisticated programming expertise and 

expansive computer resources.  For these reasons, track-repeating algorithms are currently not 

used in the clinical environment. 

There are presently no MC codes that achieve the simulation speed required for clinical 

dose calculations.  Furthermore, commissioning a beam requires exact and often tedious 

modeling of multiple beamline components which could be time-consuming and difficult.  As 

such, MC simulations are presently considered to be too time-intensive for routine clinical 

treatment planning.  However, MC methods are still used to develop and test analytical dose 

models used for routine patient treatments (Newhauser et al. 2007b, Koch et al. 2005). 

 As an alternative to MC and broad beam techniques, appropriate analytical solutions can 

achieve the necessary balance of accuracy and speed for proton dose calculations (Table 1.2).  

One such solution is referred to as a pencil beam algorithm (PBA).  In a typical PBA, a broad 

beam is divided into a grid of smaller pixels.  Each of these beam segments, called pencil beams, 

are then individually transported through the target material and the resulting dose distributions 
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from each pencil beam are then summed to produce the total dose.  PBAs are discussed in greater 

detail in the Chapter 2. 

Table 1.2: Descriptions of analytical and Monte Carlo methods used for proton dose calculations, 

along with indications of calculation speed and accuracy. 

ANALYTICAL METHODS 

Method Ray-Tracing Pencil Beam 

Description 

Water equivalent depth along 

one dimension is used to 

extract pre-determined dose in 

water. 

Divides broad beam into discrete pixels.  

Dose from each pencil beam is calculated 

and summed to produce the broad beam 

dose. 

Calculation 

Speed 
Very Fast Fast 

Accuracy 
Accurate 

(except for heterogeneities) 
Very Accurate 

MONTE CARLO METHODS 

Method 
Detailed History 

 (Type I) 

Condensed History 

 (Type II) 
Track-Repeating 

Description 

Simulates collisions 

of each particle one-

by-one.  All 

secondary particle 

collisions are 

simulated one-by-

one as well. 

Effect of many small 

collisions condensed into 

a single, large effect 

using a probability 

density derived from 

scatter theory. 

Uses pre-simulated proton 

trajectories in water and 

scales them to other 

materials.  This greatly 

reduces the number of 

collisions that are 

modeled in MC. 

Calculation 

Speed 
Very Slow Slow Fast 

Accuracy Very Accurate Very Accurate Very Accurate 

1.1.5 Application of Pencil Beam Theory to Protons 

 It is generally desirable for a PBA to use some form of measured data and manipulate 

that data according to the physics involved.  A dose calculation model typically increases in 

accuracy in accordance with the amount of physical phenomena modeled in the PBA.  Therefore, 

a PBA for protons would be most useful if a rigorous account of all the basic physical 

interactions discussed in section 1.1.3 were included in the dose calculation model.  In this 
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discussion, several scattering theories will be referenced; more details on these theories can be 

found in Appendix D. 

The earliest dose calculation models for protons implemented one-dimensional broad 

beam (ray-tracing) algorithms (see Table 1.2), which did not account for scatter and modeled 

only energy losses using measured dose data in water.  Experiments performed by Urie et al. 

(1986a) demonstrated that MCS from inhomogeneities reduced the Bragg peak dose 

significantly, compared with ray-tracing calculations, which would shift the unmodified Bragg 

peak measured in water to a different position in depth.  This data indicates that ray-tracing 

techniques are only suitable for simple inhomogeneities.  To accurately account for more 

complex inhomogeneous regions, MCS effects must be included in PBAs (Urie et al.1986a). 

A proton dose calculation paper by Petti (1991) included both a ray-tracing algorithm and 

a differential pencil beam (DPB) model that included MCS effects.  The results from both 

algorithms were compared, using a custom MC dose calculation method as the baseline data, to 

determine the additional accuracy achievable by incorporating MCS effects.  MCS was 

incorporated into the MC dose model, and pencil beams were determined from a MC dose 

distribution in water rather than explicitly using scatter theory to incorporate MCS effects into 

the pencil beams.  Material dependence was accounted for by using the cumulative electron 

density relative to water. 

 By incorporating MCS effects into the DPB model, Petti (1991) showed increased 

accuracy in: the shape of the lateral penumbra, location and magnitude of hot spots, estimates of 

the dose at a given point, and estimates of the uncertainty in the dose at a point due to patient 

motion over ray-tracing techniques.  The hot spots predicted by the DPB model occurred in 

generally the same locations as the MC model with magnitudes 2-3% lower than what was 

predicted by the MC model.  The ray-tracing model did not predict hot spots.  However, the dose 
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predicted by both the DPB and ray-tracing algorithm downstream from the inhomogeneity did 

not change as the inhomogeneity depth was altered, whereas the MC dose values changed by 

40% over the range of depths tested.  The DPB was subject to this limitation because only an 

integrated electron density was used in determining the dose.  Thus, for points proximal and 

distal to the inhomogeneity, the integration gave the same cumulative electron density regardless 

of the depth of the inhomogeneity; thus, hot and cold spots of dose caused by inhomogeneities 

were not appropriately altered with the inhomogeneity depth. 

Studies by Urie et al. (1986b) and Sisterson et al. (1989) showed that in addition to the 

degradation of the Bragg peak due to inhomogeneities, beam-modifying devices upstream of the 

patient can affect the lateral penumbra and the dose falloff beyond the proton range.  Hong et al. 

(1996) developed a PBA to account for these effects using a passive scattering system.  For beam 

elements upstream of the patient, the characteristic scattering angle was calculated using the 

Highland (1975) equation and the lateral projection of this scattering angle was taken as 

increases in source size or the radial spread at the point of interest, depending on the location of 

the beam element relative to the collimator.  The total root mean square (RMS) width (sigma) of 

the pencil beam was then taken to be the sum in quadrature of the source size projected by the 

collimator to the depth of interest, the sigma due to elements downstream of the collimator, and 

the patient sigma.  

The patient sigma was calculated from a lookup table pre-calculated by thick target 

Highland theory at the depth equal to the radiologic path length through the patient.  Radiologic 

path length was determined by an integral over the water equivalent density determined in the 

patient.  Hence, the Hong et al. (1996) PBA neglected the location of an inhomogeneity in 

calculating MCS effects, as did the Petti (1991) DPB model.  However, some improvements 

offered by this model included the use of measured central-axis depth dose profiles, which 
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inherently incorporated range straggling effects, and MCS was explicitly modeled using a 

Gaussian with a sigma given by contributions from the source, beam elements, and the patient.  

The Hong et al. (1996) PBA was shown to predict 20%-80% penumbra widths within 1 

mm of measurements for air gaps over the range of 5 cm to 20 cm.  Inhomogeneities were tested 

by using a water phantom with half of the beam covered by a Lucite block 5 cm thick and a 5.3 

cm gap between the Lucite block and the water tank.  MCS effects due to the Lucite block were 

appropriately modeled, as the hot and cold spots determined by the PBA had the same general 

shape; however, the magnitude of the hot spot on the unblocked side were underestimated by the 

PBA; Hong et al. (1996) attributed this to neglecting nonelastic nuclear interactions created in 

the Lucite block, which causes secondary protons to scatter out into the unblocked side of the 

water tank.  This effect was lowered with increasing depths due to the short ranges of secondary 

protons.  

In a paper by Russell et al. (1995), a method was described which incorporated both 

MCS and large-angle single scattering effects.  MCS effects were accounted for using Fermi-

Eyges theory (Eyges 1948) with scattering powers related to the Hanson et al. (1951) 

approximation of Moliere theory (c.f. Bethe 1953).  To include large-angle scattering effects, the 

water equivalent surface energy required to give the same shape of the Moliere distribution in 

water was found.  The water equivalent surface energy was used to interpolate previously stored 

Moliere distributions and the 1/e width of this distribution was rescaled to the RMS value found 

using Fermi-Eyges theory.  All results showed excellent agreement between experiment and 

calculation of radial spreads in water.  Because Fermi-Eyges theory was used and because the 

energy scaling technique relied on a depth-dependent calculation, the Russell et al. (1995) 

algorithm accounted for the scattering effects due to the location on an inhomogeneity.  

However, results were not shown for inhomogeneous phantoms. 
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 Another interesting topic introduced in the Russell et al. (1995) paper was range 

straggling correction.  While this inclusion of this correction reproduced the experimentally 

determined depth dose falloff near the proton range in water, its derivation was based on lateral 

scattering effects.  It has since been demonstrated that this approach is invalid and that range 

straggling is instead due to energy straggling (Berger 1993, c.f. Deasy 1998).  Hence, the best 

approach for including range straggling in a PBA is by incorporating measured central-axis data 

which already account for this effect (Deasy 1998).  In a later publication, Russell et al. (2000) 

developed a PBA that used measured central-axis data to account for range straggling caused by 

energy straggling.  However, the range straggling correction in Russell et al. (1995) was 

included in this publication as well.  In addition, the Russell et al. (2000) model did not include 

the single scattering correction provided in Russell et al. (1995).  In the same manner as Hong et 

al. (1996), the Russell et al. (2000) model accounted for the initial beam phase space.  The 20%-

80% penumbra width predicted by the Russell et al. (2000) PBA at 10 cm depth, over a range of 

air gaps from 0 to 16 cm were within 1 mm of measured data.  The prediction of hot and cold 

spots due to inhomogeneites and lateral dose falloff results were comparable with other PBAs 

previously mentioned. 

 Deasy (1998) introduced a PBA based on Hanson’s approximation of Moliere theory to 

include large-angle single scattering effects.  This formalism was implemented by forcing all the 

material dependent parameters in Moliere theory (e.g., atomic number, atomic mass, material 

density, fraction by weight of elements) to be functions of depth, which Deasy (1998) stated was 

valid since Moliere made no assumptions about the composition of the dose calculation medium.  

With these depth-dependent material parameters included, this model rigorously accounted for 

material dependence; this feature was novel because it represented a significant improvement 

over prior algorithms using convolution methods (Petti 1991, Russell 1995, 2000), which simply 
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scaled pre-calculated doses in water to the material of interest.  Thus, the explicit depth 

dependence of the material parameters allowed this PBA to account for the scattering effects due 

to the location of an inhomogeneity.  To account for range straggling effects and the attenuation 

of the primary proton fluence by nuclear interactions, Deasy (1998) multiplied the fluence 

distribution given in Hanson’s approximation by a MC central-axis depth dose curve measured 

in water.  The MC data was determined in water and scaled to the correct depth using cumulative 

electron density.  Full width at half maximum (FWHM) values near the end of the range 

predicted by the PBA were shown to be within 1% of predicted theoretical values for incident 

energies of 160 MeV and within 3% at 250 MeV (Deasy 1998).  However, the results were only 

demonstrated in a homogeneous water phantom. 

 Ciangaru et al. (2005) extended Deasy’s (1998) model for dose calculations in 

heterogeneous phantoms.  Several mixed material phantoms were tested using this PBA, 

including an air-bone interface in water, bone parallelepiped in water, bone slab in water, 

homogeneous bone phantom, and a homogeneous water phantom.  One feature highlighted in the 

Ciangaru et al. (2005) PBA was energy-dependent calculations of stopping power ratios
1
.  

Typically, PBAs will use energy-independent stopping power ratios to calculate the effective 

depth in a target material; however, Ciangaru et al. (2005) showed that this approximation was 

not valid for protons in high density materials (such as bone) at energies below 20 MeV. 

Therefore, assuming energy-independent stopping power ratios could affect the calculation of the 

clinically important Bragg peak region for phantoms containing high density heterogeneities.  

The Ciangaru et al. (2005) model was compared to several MC dose calculations, and the 

agreement in general was very good for inhomogeneities located in the first half of the proton 

                                                           
1
 Energy-dependent stopping power ratios were first investigated by Newhauser (2001) and later 

described in Newhauser et al. (2007a), as well as Zhang and Newhauser (2009). 
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range, but the agreement between PBA and MC results diminished for inhomogeneities located 

in the latter half of the proton range.  For most comparisons, the 20%-80% penumbras predicted 

by the PBA and MC were within 1 mm with the PBA predicting the smaller value, but for some 

comparisons, this discrepancy rose to as high as 2.5 mm.  The worst results were seen for lateral 

profiles taken through the center of a bone slab placed at the Bragg peak.  As in most PBAs, the 

distant lateral dose falloff tails for the PBA were smaller compared with the MC results; 

Ciangaru et al. (2005) attributed this effect to the Gaussian approximation introduced by using 

Hanson’s approximation of Moliere theory.  However, Moliere theory was included into the 

Deasy (1998) and Ciangaru et al. (2005) models to account for these large-angle tails.  Thus, it is 

not clear that this model is appropriate for inhomogeneous phantoms. 

 Two different analytical algorithms were introduced by Schaffner et al. (1999) for active 

scanning proton dose calculations.  One of these algorithms, a ray-casting model, included a 

formalism for modeling range straggling, which was empirically characterized by fits to 

probability distributions modeled using scatter theory over a span of depths and incident energies 

(Schaffner et al. 1999).  The ray-casting model inherently accounted for proton energy loss since 

it was based on pre-measured spot beam data in water, and the modeling of the degradation of 

the Bragg peak was also improved because of the inclusion of a range straggling model.  

However, this model was very limited as it did not account for MCS. 

 Another algorithm proposed by Schaffner et al. (1999) was a pencil beam model that was 

designed as a dose kernel convolution.  In this model, dose and fluence calculations were 

performed separately; hence, the name of this method was the fluence-dose calculation.  The 

beam fluence inherently modeled the spread of the beam due to phase space and air gap 

contributions, and the spread of the beam due to scatter in the patient was estimated using a dose 

kernel.  The dose kernel itself was determined using analytical functions that were fitted to MC 
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calculated depth dose curves (Schaffner 2007).  Because depth dose curves were obtained for 

both primary and secondary protons, the transverse kernel distribution was determined by a two-

Gaussian fit to the primary proton MCS and large-angle scatter events (one Gaussian for each).  

Once the dose kernel was modeled analytically, it was scaled to the water equivalent range 

(WER) to account for material effects; however, because the WER is an integral quantity, this 

model was not capable of accounting for scatter effects due to inhomogeneity location, as in the 

Petti (1991) model.  An optimization method was also used in this model to produce SOBP 

doses. 

 Most proton PBAs prior to 2005 incorporated the attenuation of primary protons due to 

nuclear interactions by using measured MC central-axis depth dose data.  According to Pedroni 

et al. (2005), neglecting the effects of nonelastic nuclear interactions on the pencil beam width 

could lead to predicted dose uncertainties of up to 10%, depending on the size of the target 

volume; therefore, nonelastic nuclear interactions have a non-negligible effect on the proton dose 

distribution (Pedroni et al. 2005, Soukup et al. 2005).  These factors were the motivation for 

incorporating a “nuclear halo” pencil beam into the Pedroni et al. (2005) dose calculation model.  

The Pedroni et al. (2005) model was the first PBA to incorporate the effects of beam attenuation 

and the nuclear halo caused by nonelastic nuclear interactions.  The model used two Gaussians to 

determine the fluence: one Gaussian was used to account for primary scatter (a modified version 

of the Highland equation was used) and the second Gaussian represented the nuclear halo.  The 

nuclear halo parameters were experimentally determined by scanning pencil beams in concentric 

square frames at varying distances from a small ion chamber.  The overall dose equation was 

taken as a weighted sum of these two Gaussians, multiplied by the measured integral dose to 

convert the fluence to dose.  The model was highly empirical, and many values were 

parameterized on the basis of the treatment machine at Paul Scherrer Institute (PSI, Switzerland); 
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however, excellent results with measurements made on their treatment machinery were observed.  

SOBP depth dose curves were predicted within 1% of measurements.  Comparison of dose 

calculations with a charge-coupled device (CCD) used to measure dose from an intensity 

modulated proton therapy (IMPT) treatment showed excellent agreement.  Accuracy of the 

model was with 1% to 2% (standard deviation) of ionization chamber measurements. 

The Pedroni et al. (2005) PBA accounted for MCS effects by using a modified version of 

Highland theory and transport was accomplished using Fermi-Eyges theory.  However, the 

Highland formula was only evaluated at the surface, and a scaling relation (Overas 1960) was 

used to find the scattering power at deeper depths.  This scaling relation depended on depth in 

the phantom, the proton range, and an empirically determined exponent which scaled the 

scattering power to the material at depth z.  It is not clear that this scaling method is entirely 

appropriate for an inhomogeneous phantom. 

Soukup et al. (2005) developed a PBA which was very similar in form to the Pedroni et 

al. (2005) algorithm.  This PBA accounted for the nuclear halo and the beam attenuation of 

primary protons.  Stopping power ratios for materials encountered in the phantom were 

performed as energy-dependent calculations.  The Soukup et al. (2005) algorithm incorporated 

adaptive division of pencil beams to more accurately model heterogeneities.  Scattering effects 

were calculated using a user-selected scattering power given by the Rossi formula (Rossi and 

Griesen 1941), corrected Rossi, or Highland / Lynch formula (c.f. Gottschalk et al. 1993).  Beam 

transport was accomplished using Fermi-Eyges theory.  For homogeneous and slab phantoms in 

water, the agreement between the PBA and MC was 3% and 1 mm.  However for water 

phantoms with a bone-air interface occurring in the longitudinal center of the phantom, 49 

subspots of the pencil beam were necessary to produce adequate results (i.e., pencil beams in the 

area of the interface were each divided in 49 sub-pencil-beams).  More clinically relevant 
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inhomogeneous phantoms, including a head and neck and prostate IMPT, did not reach the 

accuracy of the MC simulations.  Soukup et al. (2005) has deferred the treatment of these 

inaccuracies for future publication. 

1.2 Motivation for Research 

From section 1.1.5, the most important effects to include in a PBA include MCS as 

calculated by scatter theory, the effects of nonelastic nuclear interactions on primary beam 

attenuation and the nuclear halo, experimentally determined central-axis depth dose data to 

account for energy loss and range straggling, and material- and energy- dependent calculations of 

energy loss.  Additionally, the dose calculation model should be able to account for the location 

of an inhomogeneity and provide a rigorous account on the influence of materials on scatter 

events.  Ideally, the dosimetric effects of large-angle single scattering and plural scattering 

should be included as well.  

Using a two pencil beam model, as in Pedroni et al. (2005) and Soukup et al. (2005), 

Fermi-Eyges theory is well suited to account for all of these effects since both pencil beams are 

modeled as Gaussians.  The inherent structure of Fermi-Eyges theory accounts for scatter effects 

due to the location of inhomogeneities.  However, an accurate scattering power is needed to 

account for MCS, large-angle single scattering, plural scattering, and an explicit account of 

material properties on scatter events.  

Gottschalk (2010) provided a comprehensive review of all available scattering power 

formulas for protons, and he introduced a new formula: the differential Moliere scattering power.  

By comparing all scattering power data, Gottschalk (2010) showed that the differential Moliere 

formula was the only method capable of producing results within 2% of measurements over a 

wide range of materials (including beryllium, aluminum, copper, and lead) at clinically relevant 

proton energies.  The differential Moliere method was derived directly from a bilinear fit to 
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Hanson’s approximation of Moliere theory in four materials and therefore includes MCS, single 

scattering, and plural scattering.  The material-dependence in the differential Moliere method is 

encapsulated in a ‘scattering length’ term, which rigorously accounts for material parameters.  

The purpose of the present work is to incorporate all of these effects into a PBA sufficient 

for clinical dose calculation.  Fermi-Eyges theory is chosen for this purpose because it retains a 

high degree of flexibility in transport calculations.  The differential Moliere scattering power is 

also implemented because it accounts for high-order scatter events and incorporates material 

dependence into these calculations.  A two pencil beam model is designed; one pencil beam is 

assigned to primary events and another is used for nonelastic nuclear events.  The undetermined 

parameters in the nonelastic nuclear model are parameterized on the basis of MC dose 

calculations.  Finally, central-axis depth-dose data from MC simulations is incorporated to 

determine energy loss and range straggling effects and stopping power ratios are evaluated as 

material- and energy- dependent calculations. 

1.3 Hypothesis and Specific Aims 

The hypothesis of this work was that a pencil beam dose calculation will predict the dose 

imparted to a homogeneous phantom by a parallel, monoenergetic proton beam with a uniform 

beam fluence under a variety of conditions* within 2% dose difference or 1 mm distance-to-

agreement (using a 1% dose threshold) compared with a Monte Carlo dose model subject to the 

same conditions. 

* The hypothesis is proposed for the following conditions: 

• Incident energies: 50, 100, 150, 200, 250 MeV; 

• Field sizes: 4x4 cm
2
, 10x10 cm

2
; 

• Beam angles: 0°, 45°; 
• Step discontinuity heights along surface: 0, 1, 4 cm (0°	only). 
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1.3.1 Specific Aim 1: Develop Dose Calculation Algorithm  

Develop a monoenergetic, parallel beam dose calculation algorithm to calculate dose in a 

homogeneous phantom.  The dose model will (1) consist of two pencil beams to account for 

primary and nonelastic nuclear events, (2) use Fermi-Eyges theory to transport pencil beams, (3) 

calculate scattering power using the differential Moliere formula, which includes material effects 

on scatter events, as well as MCS, single scatter, and plural scatter. 

1.3.2 Specific Aim 2: Configure and Commission Algorithm Using Monte Carlo 

Simulations   

Develop a Monte Carlo dose model in MCNPX to generate dose distributions that will 

serve as a source of commissioning data for the PBA.  These simulations will be used as an 

analog for physical measurements.  Analytical corrections to narrow field MC data will be 

applied to convert the data to infinitely broad beams. 

1.3.3 Specific Aim 3: Evaluate Dose Calculation Accuracy of Algorithm in Homogeneous 

Media  

Three distinct simulations (including flat phantoms, phantoms with a step discontinuity 

along the surface, and oblique beams) will be tested to evaluate the accuracy of the PBA dose 

predictions relative to the predictions of MC simulations.  All geometries will be evaluated by 

the distance-to-agreement and percent dose difference between the MC and PBA datasets.  These 

measures will be subsequently compared to the criteria proposed in the hypothesis (≤ 1 mm 

distance-to-agreement or ≤ 2% dose difference, using a 1% dose threshold).  The percentage of 

points passing these criteria will be used to indicate the agreement between MC and PBA results. 
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CHAPTER 2. METHODS 

2.1 Aim 1: Develop Dose Calculation Algorithm 

A pencil beam algorithm (PBA) was developed for calculating dose from a parallel, 

monoenergetic proton beam in a homogeneous water phantom.  The algorithm was designed to 

account for user-defined beam angles and step irregularities on the target surface.  Fermi-Eyges 

theory (Eyges 1948) was used to transport the proton beam, represented by two Gaussians.  

Elastic scatter events (including multiple Coulomb scattering (MCS), plural, and single 

scattering) were accounted for by using an analytical scattering power formula (Gottschalk 2010) 

to determine the characteristic width of the first Gaussian.  The second Gaussian was included to 

characterize nonelastic nuclear events, and the sigma of the distribution was parameterized using 

a non-linear least squares fit to narrow field Monte Carlo (MC) dose data.  The development of 

this algorithm is discussed in the sections that follow. 

To facilitate the discussion of the desired model, some basic elements of pencil beam 

theory are presented in section 2.1.1.  Since our model used pencil beam theory, all the equations 

in this section were inherently included in our work.  However, the defining features of our 

model are not presented until section 2.1.2.  The dose calculation model in section 2.1.2 

elucidates the two-Gaussian model used for proton beam transport, along with the methods used 

to determine the parameters in both Gaussians. 

Data required by the dose calculation model, excluding commissioning data, is specified 

in section 2.1.3.  The implementation of the model into a computer-readable format and the 

incorporation of input data into the model are discussed in section 2.1.4.  

2.1.1 Pencil Beam Theory 

The theory described in this section gives a brief overview of basic pencil beam theory in 

the context of proton dose calculations for the geometry used in the present model (as shown in 
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Figure 2.1(b)).  Dose calculations in the phantom are the focus of this section since our model 

did not account for any beam elements upstream of the phantom.  For a full discussion on pencil 

beam theory, the reader is encouraged to consult other sources (Hogstrom et al. 1981, Petti 1991, 

Hong et al. 1996, Deasy 1998, Schaffner et al. 1999, Schaffner 2008, Russell et al. 2000, 

Syzmanowski et al. 2002, Ciangaru et al. 2005, Pedroni et al. 2005). 

(a) 

 

(b) 

 
Figure 2.1: The modeling of (a) a broad beam by strip pencil beams is illustrated, along with (b) 

the three-dimensional geometric assumptions of our dose calculation phantom as illustrated for a 

step phantom (with a variable step height, /?@AB); all areas shaded in blue are water and those 

areas in dark grey are vacuum.  In (a), a pencil beam strip of width ∆C is shown centered at CD 
and it extends in the E direction from EFDG to EFHI.  The same pencil beam strip is shown in (b) 

(shaded in yellow), and it extends through the phantom with an arbitrary calculation point in the CJ plane denoted by an asterisk (*). 

The pencil beam method can be used to represent an incident broad beam as a collection 

of infinitesimally narrow pencil beams; hence, the total dose to an arbitrary point K(C, E, J) from 

a broad beam is equivalent to integration over pencil beam dose contributions to K(C, E, J).  

Following the algorithm outlined in Hogstrom et al. (1981), the total dose to K(C, E, J) is given 

by the following formula: 
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 L(C, E, J) = M �(CN, EN)	O(C − CN, E − EN, J)	OCN	OE′Q2RR(S) , (2)  

where �(CN, EN) is a weighting factor for the pencil beam located at (CN, EN), O(C − CN, E − EN, J) 

is the dose delivered to K(C, E, J) from the pencil beam located at (CN, EN), and �TUU(J) is used to 

indicate that the integration is performed over the collimator limits projected to depth J.  The 

pencil beam dose can be further separated into central-axis and off-axis terms: 

 O(C, E, J) = LAIB@V (0,0, J)W(C, E, J), (3)  

where C = E = 0 is the central-axis of the beam and LAIB@V (0,0, J) is the central-axis through 

experimentally determined dose, corrected to an infinitely broad field (such that side scatter 

equilibrium is satisfied).  The off-axis term can be assumed to be related to the probability 

density of a point beam as given by Fermi-Eyges theory (Eyges 1948) (see Appendix D): 

 W(C, E, J) = 12�	XY(J)Z� exp ]−	 C� + E�2XY(J)Z�	_, (4)  

where Y(J) is the root mean square (RMS) width of W(C, E, J).  Because Fermi-Eyges theory is 

used to derive W(C, E, J), the small-angle approximation is valid, which allows W(C, E, J) to be 

separable in both C and E: 

 W(C, E, J) = WI(C, J)	Ẁ (E, J) (5a)  

 WI(C, J) = 1√2�	Y(J) exp �−	 C�2XY(J)Z�  (5b)  

 Ẁ (E, J) = 1√2�	Y(J) exp �−	 E�2XY(J)Z� . (5c)  

The central-axis term only depends on the J-coordinate, so the separation of variables in 

equations (5a-c) allows a separation of variables for the pencil beam dose equation, given by 

 O(C, E, J) = OI(C, J)	O`(E, J). (6)  
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 In our model, dose is calculated only in the CJ plane; however, our model is derived from 

the standard dose equations detailed above.  Because the central-axis term in equation (3) is 

corrected to an infinitely broad field, side scatter equilibrium is assured.  Under conditions of 

side scatter equilibrium, the reciprocity relationship (ICRU 1984) can be invoked to relate the 

dose calculated on the CJ plane from a broad beam to the dose from a pencil beam, integrated 

over −∞ to ∞ along the E-axis.  Therefore, our model effectively assumes that our calculation 

phantom is a right cylinder, infinite in the J-direction with a planar cross section CJ (shown as a 

step phantom in Figure 2.1(b)).  An illustration of all the degrees of freedom included in our dose 

calculation model is provided in Figure 2.2.  By the reciprocity relationship, pencil beams must 

also extend infinitely in the E-direction (Figure 2.1(a), with EFDG and EFHI approaching infinity) 

and in this context they are more appropriately called strip beams. 

Rewriting equation (2) using strip beams that are ∆C wide, the dose to K(C, E, J) is given 

by the following relation: 

 L(C, E, J) = !c c �(CD, E)	O(C − CN, E − EN, J)	OCNOE′`def
`dgh

Igi∆I/�
Ig'∆I/�D , (7)  

where k is used to iterate over pencil beam strips.  Using the separability relation shown in 

equation (6) for the pencil beam dose and setting �(CD, E) = 1 for all pencil beams (since our 

model only accounts for beams with uniform incident fluence) gives the following relation: 

 

L(C, E, J) = �!c OI(C − CN, J)	OCNIgi∆I�
Ig'∆I�D $ 

	x		 ]c O`(E − EN, J)	OEN`def
`dgh _. 

(8)  
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(a) (b) 

  
Figure 2.2: (a) The geometry of our dose calculation model.  The incident beam is shown in grey 

shading at an oblique angle.  The terms l, /?@AB, and FS refer to the beam rotation angle, height 

of the step irregularity, and field size (all of which can be varied by the user), respectively.  The 

dose is to be computed at the point P(x,z).  (b) The incident beam is segmented into one-

dimensional pencil beams (strips), shown as black arrows in the grey shaded area.  The central-

axis of a pencil beam located at x’ is shown extending through the phantom by a red dotted line, 

which is x-x’ away from P(x,z) at depth z. 

Substituting equation (3) for the pencil beam doses in equation (8) reduces the dose delivered to 

K(C, E, J) to the following form: 

 

L(C, E, J) = LAIB@V (0,0, J) �!c 	WI(C − CN, J)OCNIgi∆I�
Ig'∆I�D $ 

																																					x	 ]c Ẁ (E − EN, J)	OE′`def
`dgh _. 

(9)  
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The solution to equation (9) was produced by substituting equations (5b) and (5c) into equation 

(9) and using the standard error function (denoted erf) relationship to a Gaussian, 

 	erf(J) = 2√�c expn−JN�o	OJ′S
p . (10)  

The final solution to equation (9), obtained as described above, is a simple analytical formula for 

dose computation in terms of differences of error functions, given by   

 

L(C, E, J) = LAIB@V (0,0, J)	 
x	 12 ]erf �EFHI − E√2	Y(J)  − erf �EFDG − E√2	Y(J)  _ 

																		x!12�erf qCD + ∆C2 − C√2	Y(J) r − erf qCD − ∆C2 − C√2	Y(J) r$ .D 	 
(11)  

The erf function in equation (11) is included as a routine in most standard computer 

programming languages, including MATLAB and C. 

Since pencil beams in our model extend infinitely far out in the E-direction, as required 

by the reciprocity relationship, equation (11) can be used to calculate dose in the CJ plane 

without regard to the E-dimension by allowing EFHI and EFDG in equation (11) to approach 

infinity.  With EFHI and EFDG growing infinitely large, the second term in equation (11) 

approaches unity, ultimately removing the E-dependence from the equation; thus, the dose 

delivered to K(C, J) (shown in Figure 2.2) for our model can be reduced to 

 

L(C, J) = LAIB@V (0, J)2  

x	!�erf qCD + ∆C2 − C√2	Y(J) r − erf qCD − ∆C2 − C√2	Y(J) r$D , (12)  

where Y is the RMS width of the off-axis term. 
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 Figure 2.2(a) illustrates all the degrees of freedom for the proposed model to illustrate the 

general design goal; namely, to calculate dose at an arbitrary point K(C, J) in the CJ plane given 

user-defined incident beam energy, field size, beam rotation angle, and phantom step height.  

Figure 2.2(b) illustrates how the pencil beam method can be used to achieve this design goal and 

equation (12) can be used to calculate dose to K(C, J). 
Materials encountered by pencil beams in Figure 2.2(b) are dependent on both the x and z 

coordinates in the target.  However, it has become customary in PBAs to use the central-axis 

semi-infinite slab approximation (Hogstrom et al. 1981).  In the central-axis semi-infinite slab 

approximation, materials encountered by the central-axis of each pencil beam are considered to 

be laterally homogeneous slabs along depth (Figure 2.3(b)); the use of Fermi-Eyges theory in 

deriving the off-axis term for pencil beams is therefore allowable since it only rigidly applies to 

semi-infinite slab geometry (see section D.1 in Appendix D). 

The remaining undetermined Y(J) in equation (12) is characterized by Fermi-Eyges 

theory.  In the Hogstrom et al. (1981) PBA, Y(J) was characterized by contributions from air 

(due to upstream beam elements) and contributions inside of the patient.  Because the 

contribution from air to Y(J) caused pencil beams to diverge to large sizes at the patient surface, 

small effects created by variations in the patient surface were being masked by the size of the 

pencil beams at the patient surface; Hogstrom et al. (1981) developed a unique solution to this 

problem, where a deconvolution between the contributions from air and the contributions inside 

the patient was performed.  The resulting two-step calculation from this deconvolution greatly 

improved modeling of pencil beam effects due to the patient surface (Hogstrom et al. 1981). 

Since our model assumes that all material upstream of the water phantom is vacuum 

(Figure 2.2), contributions to Y(J) from air do not need to be characterized; therefore, a 

deconvolution does not need to be performed for our model.  Applying Fermi-Eyges theory to 
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(a) (b) 

 

 

 

 

 

 

 

Figure 2.3: The phantom in Figure 2.2 is shown (a) with a single pencil beam located at x’ with 

the central-axis of the pencil beam indicated by a red dotted line.  (b) The material dependence 

for the pencil beam in (a) under the central-axis semi-infinite slab approximation is shown. 

characterize the Y(J) based on interactions in the phantom, we obtain 

 Y(J) = st�(J), (13)  

where t� is the second scattering moment in Fermi-Eyges theory; t� characterizes increases in 

beam width due to scatter events inside the patient.  All three scattering moments in Fermi-Eyges 

theory can be calculated using the formula 

 t#(J) = 12c (J − J′)# 	u(v(JN))	OJ′S
p , w = 1,2,3, (14)  

where j refers to the jth moment of the theory, and u(v(JN))	is the linear angular scattering 

power evaluated at energy v(JN).  There are several scattering power formulas available for 
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protons (Gottschalk 2010), and the formalism used for the present model is presented in section 

2.1.2. 

A constant of proportionality could have been included in equation (12), as in Koch et al. 

(2008), and after proper characterization it could have been used for absolute dose calculations.  

However, since our PBA was used only to determine relative dose, this parameter was 

unnecessary.  

2.1.2 Dose Model 

In the present work, pencil beams were modeled by two components, which could be 

thought of as two pencil beams in the same location: one to account for the effects on the beam 

width due to elastic “primary” scatter and one due to nonelastic “nuclear halo” events.  In this 

work, we define “primary” scatter as elastic deflections experienced by the original protons in 

the incident beam (MCS, single scattering, and plural scattering) and the “nuclear halo” as those 

scatter events experienced by interaction products due to nonelastic nuclear interactions (Pedroni 

et al. 2005). 

We calculated total dose using 

 L(C, J) = Ly(C, J) + Lz(C, J), (15)  

where Ly(C, J) is the dose due to primary protons, and Lz(C, J) is the dose due to nonelastic 

nuclear interactions.  In the two sections that follow, the calculation of the primary and nuclear 

halo dose components will be discussed. 

Four equations will be derived in the following two sections: (1) the primary and nuclear 

halo component of the total dose (i.e., the Ly(C, J) and the Lz(C, J) in equation (15)); and (2) 

the primary and nuclear halo component of dose due to a single pencil beam.  The latter of these 

requirements are needed to characterize free parameters in the nuclear halo pencil beam model.  
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Parameters describing the primary pencil beam model are determined by incorporating an 

analytical scattering power formula. 

2.1.2.1 Primary Dose Model 

The probability density of a primary point beam in our model was characterized by a 

Gaussian and Fermi-Eyges theory (Eyges 1948) was used to transport the pencil beam through 

the phantom.  Thus, the form of equation (5b) was used to produce 

 WB(C, J) = 1√2�	Yy(J) exp � −C�2	Yy�(J) , (16)  

where Yy(J) is the RMS width of the probability density of the primary point beam.  The process 

in section 2.1.1 for determining total dose to K(C, J) on the CJ plane (equation (12)) was 

followed to derive the primary component of the total dose from equation (16), giving 

 Ly(C, J) = LAIB@V (0, J)2 n1 − {z(J)o 

x	!�erf qCD + ∆C2 − C√2	Yy(J) r − erf qCD − ∆C2 − C√2	Yy(J) r$D , (17)  

where {z(J) is a weighting factor that is a free parameter of the model used to indicate the 

fraction of LAIB@V (0, J) due to nonelastic nuclear events; hence, the (1 − {z(J)) indicates the 

fraction of LAIB@V (0, J) due to primary scatter events.  

The remaining undetermined parameter Yy(J)	in equation (17) was (all other parameters, 

except for {z(J), were determined from input data, which will be described in section 2.1.4) 

calculated using Fermi-Eyges theory, as shown in equations (13) and (14).  To determine the 

linear angular scattering power required for Fermi-Eyges theory (equation (14)), the differential 

Moliere formula (Gottschalk 2010) was used.  This scattering power formalism was chosen 
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because it applies to any material, including mixtures and compounds, and it accounts for 

increases in beam width due to MCS, single scattering, and plural scattering (Gottschalk 2010).  

The differential Moliere scattering power is defined as 

 u|}(v(J)) = W|}(~�, (~�)p) �v?~��� 1�?, (18)  

where (~�)p is the initial momentum-velocity term, ~� is the momentum-velocity term at depth 

z, W|} is a correction factor, v? is a constant value (15 MeV), and �? is the scattering length 

(Gottschalk 2010).  The momentum-velocity terms have the standard kinematic relation to the 

proton beam energy (see equation (56) in Appendix D.2).  Figure 2.4 shows a plot of this 

scattering power versus energy for three different materials.  Note that for energies near the 

incident beam energy (300 MeV was used as the incident energy in these plots) there is a small 

buildup effect.  This effect shows that the differential Moliere calculation incorporates a single 

scattering correction (Gottschalk 2010). 

Without W|} in equation (18), the scattering power would only account for increases in 

beam width due to MCS (Gottschalk 2010).  Thus, W|}	allowed the primary dose model to 

account for higher-order scatter events (single and plural scattering) in addition to MCS.  This 

correction factor was calculated (following Gottschalk) using  

 W|} = 0.5244 + 0.1975	 log(p(1 − (~�/(~�)2)�)
+ 0.232	 log(p(~�)
− 0.0098	 log(p(~�) log(p(1 − (~�/(~�)2)�). 

(19)  

To evaluate the energy-dependence in equations (18) and (19), the proton energy was 

calculated at each depth J# using the continuous slowing down approximation (CSDA), giving 

the energy at depth J# as 
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 vn�#o = vn�#'(o − �−Ov		OJ �vn�#'(o�� ∆�, (20)  

where the term in braces is the linear stopping power, and vn�#'(o is the proton energy before 

the integration step ∆� = �# − �#'(.  The material-dependence of the differential Moliere 

scattering power was incorporated in a term referred to as the scattering length, which was 

calculated (following Gottschalk) by 

 1��? = �	��	1A� 	��� n2	 logn33219	(��)'(/0o − 1o, (21)  

where �� is Avogadro’s number, 1A is the classical electron radius, � is the fine structure 

constant (1/137), and �, �, and	� refer to the mass density, atomic number and atomic mass of a 

particular element, respectively (Gottschalk 2010).  In compounds and mixtures, the scattering 

length equation obeys a Bragg rule, 

Figure 2.4: Scattering power vs. energy for three materials: water (black), compact bone (red), 

and air (blue). 
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1��? = !�D 	� 1��?�DD , (22)  

where �D refers to the fraction by mass of the ith element in the compound or mixture 

(Gottschalk 2010).  Equations (21) and (22) were evaluated for water in our model.  

2.1.2.2 Nuclear Halo Dose Model 

As discussed in section 1.1.3, the reduction of primary fluence by nonelastic nuclear 

events induces short-range interaction products that determine the width of the “nuclear halo” 

(Pedroni et al. 2005, Soukup et al. 2005); therefore, the nuclear halo fluence is dependent on the 

primary fluence.  In our model, we accounted for this effect by first assuming that the probability 

density for a point beam to undergo a nonelastic nuclear interaction was given by 

 ~z��(C, J) = 1√2�	Yz��(J) exp � −C�2	Yz��� (J) , (23)  

where Yz��(J) describes the RMS width of this distribution.  The convolution of ~z��(C, J) and 

WB(C, J) produced the final result for the nuclear halo fluence in equation (24d), using Fourier 

analysis as detailed in equations (24a-c).   

 Wz(C, J) = Wy(C, J) ⊗ ~z�Q(C, J) (24a)  

 ℱ�Wz(C, J)� = ℱ�Wy(C, J)�	ℱ�~z��(C, J)� (24b)  

 Wz(C, J) = ℱ'(�expX−2����(Yy�(J) + Yz��� (J))Z� (24c)  

 Wz(C, J) = 1√2�	Yz(J) exp � −C�2	Yz�(J) , (24d)  

where  

 Yz(J) = �Yy�(J) + Yz��� (J). (25)  
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The nuclear halo component of the total dose was found by using the procedure in section 2.1.1, 

giving 

 

 

Lz(C, J) = LAIB@V (0, J)2 {z(J) 

						x!�erf q CD + ∆C2 − Cs2	XYy�(J) + Yz��� (J)Zr − erf q CD − ∆C2 − Cs2	XYy�(J) + Yz��� (J)Zr$D . (26)  

Total dose was determined by substituting equations (17) and (26) into equation (15).  The 

remaining undetermined parameters in the total dose equation include {z(J) and Yz��(J).  No 

standard theory has been proposed to account for these values, so we fit our total dose to input 

data.  However, equations (17) and (26) require a summation over pencil beams, which could 

introduce time-consuming and unnecessary complexities in the fitting procedure.  Instead, we fit 

the total dose due to a single pencil beam with MC data using a field size narrow enough to be 

considered equal to the width of a pencil beam (i.e., �� = ΔC).  The nuclear halo component of 

the dose due to a single pencil beam centered at CD = 0 was determined from equation (26) as 

 

Lzy�(C, J) = LAIB@V (0, J)2 	{z(J) 

x	 �erf q C + ∆C2s2	XYy�(J) + Yz��� (J)Z	r − erf q C − ∆C2s2	XYy�(J) + Yz��� (J)Z			r$. (27)  

The primary component of the dose due to a single pencil beam centered at CD = 0 was 

determined from equation (17) as 

Lyy�(C, J) = LAIB@V (0, J)2 (1 − {z(J)) �erf q C + ∆C2√2	Yy(J)r − erf q C − ∆C2√2	Yy(J)r$. (28)  

Thus, the total dose due to a single pencil beam is given by equations (15), (27) and (28): 
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 Ly�(C, J) = Lyy�(C, J) + Lzy�(C, J). (29)  

The fitting procedure was accomplished by using the numerical Levenberg-Marquardt 

method (Madsen 2004) to fit equation (29) with input narrow field dose data.  As mentioned 

previously, the input dose data was required to have a field size equivalent to the pencil beam 

width (�� = ∆C) and was required to be determined in water.  The fitting procedure was 

accomplished by finding the parameters {z(J)	and Yz��(J) that minimize the objective 

function 

 

! �Ly�nC� , J#o − LAIB@y� nC�, J#o��, WT1	J# = (w − 0.5)ΔJ,�def
���dgh

Δz = 	1��	(0.25��	 �t1	¡1t¢¢	~�t�),
w = 1,2,3,… , � − 2,� − 1,� 

(30)  

where LAIB@y� (C, J) refers to the input narrow field dose data (experimentally determined), �FDG is 

the pixel index of the minimum x-coordinate in the input data, �FHI is the pixel index of the 

maximum x-coordinate in the input data, and � is the number of pixels in the z-direction in the 

input narrow field data. 

The lsqnonlin MATLAB routine was used to implement the Levenberg-Marquardt fit of 

the model function (equation (29)) to the experimentally determined data.  The initial guesses for 

the lsqnonlin routine were set to unity for all depths.  At some depths, the model would not 

converge to a local minimum but still produced results that matched well.  In practice, it was 

found necessary to manually manipulate the fit data by small amounts in areas that would not 

converge (figures showing the actual fit data are in Chapter 3). 
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2.1.3 Model Input Data 

2.1.3.1  User Input 

 In the initialization of the PBA, several parameters were requested from the user to 

determine the setup of the dose calculation, including: (1) the nominal beam energy at the water 

surface (only energies of 50, 100, 150, 200, and 250 MeV were allowed); (2) the field size on the 

water surface (only field sizes of 4x4 cm� or 10x10 cm� were allowed); (3) the beam rotation 

angle (only angles 0¤	and	45¤ were allowed), defined as the angle formed between the beam 

axis and the positive z-axis (see Figure 2.2); (4) the height of the step irregularity on the phantom 

surface (only step heights of 0, 1, and 4 cm were allowed, and were only used for 0¤ beam 

rotation); (5) the pencil beam width; and (6) the simulation step size, defined as the sampling 

increment in depth. 

2.1.3.2 Materials and Elements 

 A material and element database was created, along with custom material editing and 

material property extraction routines in MATLAB.  For each material that was desired to be 

included in the PBA, a corresponding PSTAR (Berger et al. 2005) stopping power and range 

versus energy table was required.  In addition, all desired materials required material definition 

tables and element definitions.  The material definition table was implemented in the form of an 

input text file, with the following properties specified for each material: (1) material name; (2) 

material density; (3) number of elements in material; (4) elemental composition of material (e.g., 

H2O); (5) atomic number of each element in material; (6) atomic mass of each element in 

material; and (7) density of each element in material.  The material database was designed to 

match the material parameters specified in the PSTAR material composition database (Berger et 

al. 2005).  
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 Individual element parameters were also required, and placed in a separate input text file 

(so that, for instance, the atomic number of hydrogen could be quickly located rather than 

searching through the material database).  This element input text file contained: (1) the element 

symbol; (1) the atomic number; (2) the atomic mass; and (3) the standard density.  

The stopping power as a function of energy was accounted for by using the PSTAR (Berger 

et al. 2005) database.  A separate PSTAR table was included for each material defined in the 

PBA material database.  These tables were interpolated, using the cubic spline method in 

MATLAB, to a resolution of 0.5 MeV steps with a minimum energy of 0.5 MeV and a maximum 

energy of 300 MeV, which covers the energy range of interest.  The format of the PSTAR text 

files included three columns: (1) energy, (2) stopping power, and (3) CSDA range.  Figure 2.5 

shows the stopping power versus energy for three different materials, extracted from the PSTAR 

text files. 

 
Figure 2.5: Stopping power vs. energy for three materials: water (black), compact bone (red), and 

air (blue). 
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2.1.4 Algorithm Design 

The dose calculation model described in section 2.1.2 was coded in MATLAB version 

R2011a (7.12.0.635) and was optimized for speed using the C language editor in Microsoft 

Visual Studio 2010.  The final version of the code was compiled using GCC 4 on Macintosh OS 

X and Linux operating systems.  The GNU scientific library (GSL) was implemented into the C 

version of the code to provide equivalents for some matrix operations present in the original 

MATLAB code.  Flowcharts showing the overall design of the algorithm are provided in 

Appendix A. 

Dose calculations were performed in the frame of the beam (e.g., the geometry shown in 

Figure 2.6(a) represents the geometry in Figure 2.2 converted to the frame of the beam).  The 

dose calculation points in the beam frame, hereafter referred to as the dose grid, were spaced 

apart laterally (∆C in Figure 2.6(a)) by the pencil beam width and in depth (∆J in Figure 2.6(a)) 

by the simulation step size.  The lateral dose grid coordinate limits were set to the field size with 

a 2 cm margin on either side of the field.  The coordinates along the z-axis began at ∆Z 2¦  and 

ended 2 cm beyond the proton range in water (calculated using § = 2.2C10'0vp(.¨¨, where v2 

was the incident proton energy at the phantom surface).  Coordinates of the dose grid were 

required to be multiples of ∆X 2¦  in the x-direction and ∆Z 2¦  in the z-direction.  These constraints 

ensured that our calculation points were grid-centered.  The phantom was designed as a closed 

contour on the dose grid and was modified according to user input parameters (an example step 

phantom at an oblique angle is shown in Figure 2.6(a)).  The dose was calculated using the dose 

grid in the beam frame (Figure 2.6(a)), and the final dose distribution was transformed back to 

the phantom frame using a rotation matrix after the dose calculation ended (Figure 2.6(b)).  
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(a) (b) 

 

 

Figure 2.6: Geometry for the ray-trace and dose calculation procedure, illustrated for the 

phantom shown in Figure 2.2.  See text for detailed description.  (a) The ray-trace and dose 

calculation are performed in the beam frame, and (b) a coordinate rotation is applied to transform 

the dose calculation back to the phantom frame. 

However, before the dose calculation was executed, the primary sigma and the effective 

depth (to be defined in this section) were determined for each pencil beam.  These values were 

determined using a ray-trace along the central-axis of each pencil beam from the minimum z-

coordinate to the maximum z-coordinate in the dose grid.  In this section, the symbols i and j are 

used to indicate the pixels encountered in the ray-trace, referring to dose grid coordinates along 

the x-axis and z-axis, respectively; in this notation, it is implicit that pixels along the x-axis (from 

left to right) were numbered k = 1,2,3, … , �ª − 2,�ª − 1, �ª, and pixels along the z-axis (from 
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top to bottom) were numbered w = 1,2,3, … , �« − 2,�« − 1,�«, where �ª indicates the number 

of pixels in the x-direction and �« is the number of pixels in the z-direction.  

As rays traversed the dose grid, the material composition of the patient was determined 

by whether or not the ray was within the contour at each pixel (i.e., ray points within the contour 

were assigned to water while points outside of the contour were assigned to vacuum).  A routine 

was coded in MATLAB to determine whether or not points were within the contour by counting 

the number of times each ray crossed a line segment forming the phantom contour.  For points 

along each ray where the number of intersections were odd, those points were designated as 

inside the contour.  For an even number of intersections, those points were considered to be 

outside of the contour.  Because the central-axis semi-infinite slab approximation was used for 

pencil beams (Hogstrom et al. 1981), the step size of the dose grid directly set the sampling 

resolution of the materials in the phantom for each pencil beam (see Figure 2.3). 

The calculation of the primary beam sigma Yy(J) required the integration in equation 

(14), which was calculated in our algorithm using a recursion relation (Hogstrom 1987): 

 (Yy�)D,# = t�D,# (31)  

 

where 

 t�D,# = t�D,#'( + 2∆J	t(D,#'( + (∆J)�tpD,#'( + (∆J)06 	u|}nvD,#o 
(32a)  

 t(D,# = t(D,#'( + ∆J	tpD,#'( +	(∆J)�4 	u|}nvD,#o 
(32b)  

 tpD,# = tpD,#'( + ∆J2 	u|}nvD,#o, (32c)  

t�D,( = t(D,( = tpD,( = 0,	and ∆J = J# − J#'(. 
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The proton energy was determined using stopping power data provided by the PSTAR 

data tables (Berger et al. 2005).  Thus, the proton energy at depth J# was given by the continuous 

slowing down approximation (CSDA) as 

 vD,# = vD,#'( − −OvOJ nvD,#'(o®FH@g,¯ ∆J, (33)  

where °'|±|S nvD,#'(o²FH@g,¯ is the stopping power determined from PSTAR lookup tables for the 

energy vD,#'( and for material �t³D,#.  We required the initial energy vD,(	to be equal to the user-

input incident beam energy v2; setting the constraints vD,p = v2 and °'|±|S nvD,po² = 0 in equation 

(33) satisfy this condition. 

Since our model was designed for calculating dose in homogeneous water phantoms, it 

was desirable to calculate the depth accumulated in only those pixels assigned to water.  In 

inhomogeneous phantoms, the effective depth (Hogstrom et al. 1981) is typically used to 

calculate the water equivalent depth (i.e., the depth that would be required in a water phantom to 

give the same energy found at depth in the inhomogeneous phantom).  However, because our 

model only uses vacuum and water, the effective depth calculation in our phantoms gives the 

same result as the cumulative depth in water (there are no energy losses in vacuum because the 

stopping power in vacuum is zero).  We calculated the effective depth in the following manner, 

 �A´´D,# = �A´´D,#'( + µ¶
·°−OvOJ nvD,#'(o²FH@g,¯°−OvOJ nvD,#'(o²¸H@A¹º»

¼∆J, (34)  

where the term in braces is the stopping power ratio in material �t³D,# encountered in the ray-

trace to water, and we required that �A´´D,p = 0.  The effective depth was used to select the 

appropriate depth in an input central-axis depth dose curve in water (i.e., all equations using 
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LAIB@V (0, J) were replaced by LAIB@V n0, �A´´D,# o).  The stopping power ratio in �A´´D,#
 was evaluated 

as an energy-dependent calculation (i.e., to calculate the effective depth at pixel (i, j), the 

stopping power ratio was determined for the energy at pixel (i, j)). 

To decrease computation time, only those points within 4Yz (recall that Yz	includes 

contributions from the primary and the nuclear halo RMS width) of the pencil beam axis were 

computed.  Often, a smaller pencil beam modeling width is used to decrease simulation times 

(e.g., 3Yz would account for about 99.75% of the pencil beam distribution), but since our model 

produced simulation times less than 15 seconds for most configurations using 4Yz (the longest 

simulation time was 40 seconds), this was not considered to have a significant impact on the 

simulation speed.  

Since 4-sigma of a Gaussian distribution amounts to accounting for about 99.9999% of 

the Gaussian, it was necessary to normalize each pencil beam by multiplying it by 1.0001.  

However, the primary pencil beam was also modeled out to 4Yz (which was much greater than 

4Yy), so more than 99.9999% of the primary Gaussian was modeled.  The normalization factor 

for the primary Gaussian was therefore dependent on both Yz�� and Yy.  The derivation of this 

normalization factor is provided in Appendix B.  

The lowest energy in the PSTAR input stopping power data files was 0.5 MeV, which 

was taken to be the cutoff energy for the present PBA.  For energies below 0.5 MeV in the ray-

trace, the scattering power evaluated at 0.5 MeV was used.  For the calculation of the primary 

beam sigma in the ray-trace, any depth that exceeded that of the primary proton range was 

assigned the beam sigma calculated at the proton range.  Finally, a maximum allowable energy 

was needed for evaluating equation (19), because for ~� = (~�)p,	the logarithmic terms cause 
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W|} to diverge.  We found that setting vFHI = 0.95	v2	, where v2 refers to the incident energy, 

was sufficient to ensure convergence of the differential Moliere calculation. 

2.2 Aim 2: Configure and Commission Algorithm Using Monte Carlo Simulations 

2.2.1 Commissioning Data 

 The dose calculation model was commissioned using simulated dose distributions from a 

MC model of a simplified proton therapy beamline.  This process has been demonstrated before 

by Newhauser et al. (2007b) and Koch et al. (2005).  Monte Carlo N-Particle eXtended 

(MCNPX) version 2.7a was used to produce the required input distributions for the PBA.  From 

this data, the central-axis percent depth dose (PDD) was extracted and this provided the required 

LAIB@V (0, J) used in sections 2.1.1 and 2.1.2.  These simulations were produced for five energies 

(50, 100, 150, 200, and 250 MeV), and two field sizes (4x4 cm� and 10x10 cm�).  The central-

axis MC data is shown for 4x4 cm
2
 and 10x10 cm

2
 fields in Figure 2.7.  

        (a)        (b) 

  
Figure 2.7: Monte Carlo central-axis data for (a) 4x4 cm

2
 fields and (b) 10x10 cm

2
 fields at 

energies of 50, 100, 150, 200, and 250 MeV.  The decreased peak values in (b) compared to the 

values in (a) are due to the data being normalized to the tally volume and the increased tally size 

along the x-axis for 10x10 cm
2
 simulations (-15 to 15 cm) relative to 4x4 cm

2
 simulations (-6 to 

6 cm).  Since all simulations used a y-tally from -5 to 5 cm, the ratio of peak heights in (b) to (a) 

is given by the ratio of the tally width (x-direction) in (b) to the tally width (x-direction) in (a) 

(i.e., 12/30 = 0.4). 
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2.2.2 Configuration Procedure 

Proton dose distributions were simulated using a flat water phantom with a 

monoenergetic beam directed perpendicular to the surface of the phantom for five energies (50, 

100, 150, 200, and 250 MeV) and two field sizes (4x4, and 10x10 cm�).  A type 3 mesh tally 

(energy deposited per particle, per volume) was used to score the particles in the simulations.  

The pixel size was 1 mm in width and was initially 1 mm in depth, changing to 0.25 mm near the 

Bragg peak.  The physics card in these simulations was set to the default options, and only 

protons were tracked.   

Since only CJ plane data was required for commissioning our model, the reciprocity 

relationship (ICRU 1984) was used by setting a large tally in the y-direction.  This design 

effectively captured more particles and improved statistics.  The large tally technique is listed in 

the MCNPX manual (MCNPX 2005) as one of the standard variance reduction methods.  In 

order to achieve statistical uncertainties better than 1% at the 1% of dose maximum level, Table 

2.1 shows the number of histories needed for all incident beam energies in flat and oblique 

simulations; simulations using step irregularities required twice the number of histories shown in 

Table 2.1 to achieve the same level of statistical uncertainty. 

The output files that were produced by the MC simulations had data organized into four 

columns: (1) the x-coordinates of each point in the MC dose matrix, (2) the z-coordinates of each 

point in the MC dose matrix, (3) the energy deposited in the voxel surrounding each point in the 

matrix, and (4) the uncertainty in the deposited energy at each point.  A script was written in 

MATLAB to read in this data and convert the x-coordinates to a vector that contained unique x-

values in ascending order (and the same was performed for the z-coordinates).  The same script 

converted the column corresponding to the deposited energy into a matrix with each element in 

the new matrix corresponding to the energy deposited in that pixel.  Since it was known that the 



49 
 

central column (or the average of the two central columns for distributions with an even number 

of columns) of the deposited energy matrix would contain the dosimetric center of the dose 

matrix, the input central-axis curve was assigned to be the central column through this matrix (or 

the average of the central two columns). 

Table 2.1: Number of histories used in commissioning data for all incident beam energies. 

Incident Beam Energy 

(MeV) 

Number of 

Histories (x10½) 

50 100 

100 150 

150 200 

200 250 

250 500 

It is imperative to require that the central-axis depth dose data satisfies side scatter 

equilibrium.  This requirement arises from the fact that the model in section 2.1.2 directly 

determined particle fluence and relied on an external determination of energy loss (LAIB@V (0, J)) 

to convert fluence to dose.  If the input depth dose data does not satisfy side scatter equilibrium, 

then scatter (already accounted for using particle fluence) becomes a measurable effect.  Thus, 

we avoided modeling particle scatter twice by requiring the central-axis depth dose data satisfy 

side scatter equilibrium.  

The central-axis depth dose data was extracted from flat phantom MC simulations for 

field sizes of 4x4 cm�	and 10x10 cm�; however, the required input data for the dose calculation 

model, LAIB@V (0, J), needed to be determined from an infinitely broad field.  Hogstrom et al. 

(1981) developed an analytical method to convert beams of any field size to an infinitely broad 

beam.  However, these corrections are based on the amount of scatter that has occurred.  Since 
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our dose model implements dose components from primary and nuclear halo events, we used 

two analytical corrections (one for the primary dose, another for the nuclear halo dose).  Thus, 

the primary dose equations (equations (17) and (28)) in section 2.1 with (1 − {z(J))LAIB@V (0, J) 

should be substituted in the following manner, 

 
(1 − {z(J))	LAIB@V (0, J) = (1 − {z(J)) L}�¾¿ (0, J)

erf � ��2√2	Yy̧  , (35)  

where L}�¾¿ (0, J) refers to the MC central-axis depth dose commissioning data, and Yy̧  refers to 

the primary beam sigma in a homogeneous water phantom (which is required since the MC data 

was calculated in a homogeneous phantom).  Nuclear halo dose equations (equations (26) and 

(27)) in section 2.1 with {z(J)LAIB@V (0, J)	should be substituted in the following manner, 

 
{z(J)	LAIB@V (0, J) = {z(J) L}�¾¿ (0, J)

erf � ��2s2X(Yy̧ )� + Yz��� Z		 
. 

(36)  

To provide the input dose data LAIB@y� (C, J) in equation (30), narrow field MC dose 

distributions (1x1 mm� field size) were generated with MCNPX using a constant pixel size of 

0.1 mm in the lateral direction and an initial pixel size of 1 mm in depth, changing to 0.25 mm 

near the proton range.  Also, the lateral extent of the grid ranged from -5 to 5 cm so that the off-

axis distribution due to nuclear halo events could be characterized over large distances.  Pencil 

beam dose distributions were produced for five energies (50, 100, 150, 200, and 250 MeV). 

2.3 Aim 3: Evaluate Dose Calculation Accuracy of Algorithm in Homogeneous Media 

2.3.1 Evaluation Geometries 

To evaluate the accuracy of the PBA, we compared PBA results with MC simulations in 

three geometries relevant to patient calculations (shown in Table 2.2).  To gauge the ability of 

the PBA dose calculation to account for small and large field sizes, beams with field sizes of 4x4 
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cm
2  

and 10x10 cm
2  

were calculated for energies of 50, 100, 150, 200, and 250 MeV in a flat 

water phantom.  The ability of the PBA to accurately determine dose in phantoms with irregular 

surfaces was evaluated using a phantom with a variable step height; step heights of 1 and 4 cm 

were tested.  Finally, to understand the effects of beam obliquity, a rotated beam at 45 degrees 

was simulated by the PBA as well.  

Table 2.2: Geometries used in evaluation of dose calculation accuracy. 

Geometry Description Values Purpose 

Flat  

Phantom 

Normally incident 

beam on flat phantom. 
N/A 

To test PBAs ability to 

predict dose for 

small/large field sizes. 

Stepped 

Phantom 

The surface on one 

half of the phantom is 

deeper than the other 

half. 

1, 4 cm 

To test PBAs ability to 

account for varying 

surface contours. 

Oblique 

Phantom 

Beam is delivered to a 

flat phantom at an 

oblique angle. 

45 degrees 

To test PBAs ability to 

predict dose from an 

oblique beam. 

 For all three of these geometries, dose calculations were produced by the PBA using a 

resolution of 1 mm by 1 mm in the dose calculation grid and pencil beams that were 1 mm wide 

(except for the 50 MeV simulations, which used a resolution of 0.25 mm by 0.25 mm in the dose 

calculation grid and pencil beams that were 0.25 mm wide – the 0.25 mm resolution was need in 

the 50 MeV case to reproduce the Bragg peak).  

 Because the MC data was taken at a much finer resolution that the PBA data (the step 

size reaches 0.25 mm near the Bragg peak in MC data), it was necessary to resample the MC 

distribution to be the same size and same resolution as the PBA dose grid.  This resampling was 

performed by using the two-dimensional interpolation routine interp2 provided by MATLAB.  
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2.3.2 Calculation of DTA and Percent Dose Difference 

The distance-to-agreement (DTA) routine that was written for this project was based on 

an existing DTA program written by Mancuso (2011).  This routine required the calculated PBA 

dose matrix, the MC dose matrix, the size of each pixel (required to be constant in the x-direction 

and the z-direction for both the MC and the PBA dose matrices), and the search radius as input 

parameters.  Both the PBA and the MC dose matrices were required to have the same size and 

the same resolution.  For MC dose matrices that did not satisfy this requirement, resizing and 

interpolation was performed.  The PBA dose matrix was normalized to the maximum dose in a 

PBA-calculated flat phantom and the MC dose matrix was normalized to the maximum dose in a 

MC-calculated flat phantom.  Most relative dose calculation methods use central-axis maximum 

normalization, but we chose to normalize our data to the maximum dose in a flat phantom 

because our commissioning data was only provided for flat phantom simulations. 

The DTA routine iterated over all points in the MC matrix, and for each point P in the 

MC matrix, the same point P in the PBA dose matrix was located (Figure 2.8(a, and b)).  A 

search area was formed by a rectangle in the PBA matrix whose edges were within a 1 cm search 

radius from P (Figure 2.8(b)).  Given this search area, the contourc function in MATLAB was 

used to contour within the area for the dose value L (Figure 2.8(a)) in the MC matrix (Figure 

2.8(c)).  Once the coordinates of this contour were found, the DTA was calculated as the smallest 

distance between P and the contour as follows: (1) the closest point on the contour to P was 

found (the blue point in Figure 2.8(d)); (2) two adjacent points (A and C in Figure 2.8(e)) on 

either side of the closest point (B in Figure 2.8(e)) were chosen to form two line segments; (3) 

the line segment �¡ÀÀÀÀ was compared to P by testing (� − ¡)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÂ⨀(K − �)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÂ and (¡ − �)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÂ⨀(K − ¡)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÂ 
(Figure 2.8(f)) and the line segment ¡"ÀÀÀÀ was compared to P by testing (¡ − ")ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÂ⨀(K − ¡)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÂ and 
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(" − ¡)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÂ⨀(K − ")ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÂ, where ⨀ indicates the operation of the dot product (Figure 2.8(g)); (4) if 

both dot products listed in step 3 for a given line segment are greater than or equal to  zero, P is 

considered to be outside of the line segment and the DTA is calculated as the distance between 

the closest point and P (Figure 2.8(f)); otherwise, P is considered inside the line segment and the 

DTA is given by the perpendicular distance from the line segment to P (Figure 2.8(h)) using the 

outer product (equation (37)); (5) the smallest distance of all DTAs calculated in step 4 was used 

as the final DTA.  For multiple contours at the dose value L, the smallest DTA from all contours 

was taken to be the final DTA. 

Denoting an arbitrary line segment that P is considered to be inside of by ¡"ÀÀÀÀ (as shown 

in Figure 2.8(g)), the distance to agreement was calculated using 

 Lu� = (" − ¡)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÂÄ⨀(K − ")ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÂ
Å(" − ¡)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÂÄÅ , (37)  

where	(" − ¡)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÂ is a vector used to indicate the line segment ¡"ÀÀÀÀ,	(K − ")ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÂ is the vector from P to 

C,  (" − ¡)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÂÄ is the perpendicular vector to the line segment ¡"ÀÀÀÀ,	and Å(" − ¡)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÂÄÅ is the 

magnitude of vector (" − ¡)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÂÄ.  

Percent dose difference was calculated by taking the difference in the MC and the PBA 

results and dividing by the reference maximum in a flat phantom.  The composite analysis used 

to evaluate the agreement between pencil beam and MC predictions was DTA ≤ 1mm or percent 

dose difference ≤ 2% of maximum dose.  The metric used to indicate the agreement between the 

two distributions in the composite analysis was the percentage of points that satisfy these criteria.  

To avoid erroneous indications of passing pixel percentages, a dose threshold of 1% of the 

maximum dose was used. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 2.8: Step-by-step illustration of DTA calculation: (a) The MC dose matrix with a point P 

indicated with a relative dose value of 20%.  (b) The same point is located in the PBA dose 

matrix and all points within the search radius r form a square of size (2r)x(2r).  (c) The search 

area is shown closeup, along with the 20% contour.  The small dots indicate the coordinates that 

make up the closed contour.  (d) The distance from each contour coordinate to the point P are 

shown in red, with the closest point shown in blue.  (e) Two adjacent points (green and purple) to 

the closest point are shown.  (f) To calculate DTA, first the line segment �¡ÀÀÀÀ is considered, and it 

is clear that P is outside of �¡ÀÀÀÀ; thus, the DTA for this segment is the distance between P and B.  

(g) The line segment ¡"ÀÀÀÀ is considered.  Since P is inside the line segment, the DTA is calculated 

as the perpendicular distance from ¡"ÀÀÀÀ to P by (h) finding the perpendicular cross-product 

between ¡"ÀÀÀÀ and P and normalizing that result by the magnitude of ¡"ÀÀÀÀÄ(equation (37)). 
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(e) 

 

(f) 

 
 

(g) 

 

 

(h) 

 
Figure 2.8 (continued) 
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CHAPTER 3. RESULTS 

3.1 Nuclear Halo Parameterization Results 

 The Levenberg-Marquardt (LM) fits to the Monte Carlo (MC) pencil beam (1x1 mm
2
 

field size) data are compared to the MC data in Figure 3.1 below.  This figure shows that the LM 

fit performed much better at deeper depths, where the MC data is more appropriately described 

by two Gaussians.  

 (a) 

 
Figure 3.1: 1x1 mm

2 
Monte Carlo data (solid) compared with nonlinear least squares Levenberg-

Marquardt fit to the Monte Carlo data (dashed) with incident energies of (a) 50 MeV, (b) 100 

MeV, (c) 150 MeV, (d) 200 MeV, and (e) 250 MeV.  Isodose values are 100, 90, 70, 60, 50, 40, 

30, 20, 10, 5, 3, 2, 0.05, and 0.01%. 
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(b)          (c) 

 
Figure 3.1 (continued) 
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 (d)           (e) 

 
Figure 3.1 (continued)
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The nuclear weighting factor and the nuclear sigma extracted from the LM fits are shown 

in Figure 3.2.  Central-axis profiles through the MC and LM data are shown in Figure 3.3.  

Representative lateral profiles for a typical fit are shown in Figure 3.4 (remaining profiles in 

Appendix C).  Figure 3.4 shows better agreement between the LM fit and MC data at deeper 

depths.  Despite poor fitting at shallow depths, the nuclear halo model is an improvement over 

calculations limited to primary scatter and was considered sufficient for the current PBA. 

(a) (b) 

 
Figure 3.2: Parameters extracted from Levenberg-Marquardt fit to Monte Carlo data with 1x1 

mm
2
 field size.  For energies of 50, 100, 150, 200, and 250 MeV, plots are shown of (a) nuclear 

amplitude vs. depth, and (b) nuclear sigma vs. depth. 

 
Figure 3.3: Central-axis data of Monte Carlo (MC) simulations (solid) and Levenberg-Marquardt 

(LM) fit (dashed).  Differences between the MC and LM data cannot be seen in the figure as all 

are < 0.1	cm. 
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      (a) 

 

      (b) 

 
       (c) 

 

       (d) 

 
      (e) 

 

      (f) 

 
Figure 3.4: Representative lateral profiles through 150 MeV Monte Carlo data (solid) and the 

Levenberg-Marquardt fit to Monte Carlo data (dashed) at depths of (a) 0 cm, (b) 5 cm, (c) 10 cm, 

(d) 13 cm, (e) 15 cm, and (f) 15.5 cm. 



61 
 

3.2 Dose Calculation Results 

In the following sections, isodose comparisons, lateral profiles, and central-axis profiles 

of the flat, step, and oblique phantom simulations are presented for MC and PBA data.  Both 4x4 

cm
2 

and 10x10 cm
2
 field data are shown at incident energies of 50, 100, 150, 200, and 250 MeV.   

In Figure 3.5, isodose comparisons of the PBA and MC data are shown for beams of all 

energies with a 4x4 cm
2
 field size, perpendicularly incident on a flat water phantom.  Figure 3.6 

shows the PBA and MC comparisons for this same set of energies with a 10x10 cm
2
 field on a 

flat water phantom.  Water phantoms with a 1 cm step for all five energies are shown in Figures 

3.9 (4x4 cm
2
 field) and 3.10 (10x10 cm

2
 field).  The step height is increased to 4 cm in Figures 

3.11 (4x4 cm
2
 field) and 3.12 (10x10 cm

2
 field).  Finally, results for a water phantom with a 

surface tilted 45 degrees relative to the direction of the beam are shown in Figures 3.17 (4x4 cm
2
 

field) and 3.18 (10x10 cm
2
 field).  In general, agreement was excellent for all distributions 

tested, with greater than 99% of points passing the composite criteria (DTA ≤ 1mm or percent 

dose difference ≤ 2%). All geometries passed DTA ≤ 1mm or percent dose difference ≤ 3% 

with 100% pass rate.  In the following figures, areas in red indicate points that exceeded 

agreement criteria.  Detailed discussions of all geometries are now provided. 

3.2.1 Flat Phantom 

The results for the 4x4 cm�flat phantom comparisons between the PBA and MC 

distributions showed excellent agreement (Figure 3.5).  Most of these comparisons yielded 100% 

of points passing our composite criteria (DTA ≤ 1mm or dose difference ≤ 2%).  The 150 MeV 

data (Figure 3.5(c)) shows small areas of failure (red pixels near 3% isodose around 15.3 cm 

depth); however, because the pass rate was greater than 99.95% and all pass rates were rounded 

to 1 decimal point, this simulation was considered to have a 100% pass rate. 
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      (a) 

 
      (b) 

 
Figure 3.5: Comparisons of isodose lines from the pencil beam algorithm (solid) and Monte 

Carlo (dashed) calculations for a 4x4 cm
2 

field, flat water phantom at incident energies of (a) 50 

MeV, (b) 100 MeV, (c) 150 MeV, (d) 200 MeV, and (e) 250 MeV.  Isodose values are 100, 90, 

70, 60, 50, 40, 30, 20, 10, 5, and 3%.  Red areas in the figure, if present, indicate points that did 

not satisfy DTA ≤ 1mm or percent dose difference ≤ 2%. 
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        (c)            (d)         (e) 

   
Figure 3.5 (continued) 
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The 10x10 cm�flat phantom results also showed excellent agreement (Figure 3.6).  Most 

comparisons yielded 100% of points passing our composite criteria (DTA ≤ 1mm or dose difference 

≤ 2%). The 250 MeV comparison was the only one in the flat phantom simulations that gave less 

than 100% of passing points (pass rate was 99.9%); failures occurred in the low dose region (~3% 

isodose line in the lateral penumbra) over a depth range of 11 to 16 cm.  These failures were 

attributed to the modeling limitations of the Gaussians used in our scatter models. 

     (a) 

 
     (b) 

 
Figure 3.6: Comparisons of isodose lines from the pencil beam algorithm (solid) and Monte Carlo 

(dashed) calculations for a 10x10 cm
2
 field, flat water phantom at incident energies of (a) 50 MeV, 

(b) 100 MeV, (c) 150 MeV, (d) 200 MeV, and (e) 250 MeV.  Isodose values are 100, 90, 70, 60, 50, 

40, 30, 20, 10, 5, and 3%.  Red areas in the figure, if present, indicate points that did not satisfy DTA ≤ 1mm or percent dose difference ≤ 2%. 
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           (c)         (d) 

  
Figure 3.6 (continued) 
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         (e) 

 
Figure 3.6 (continued) 

As discussed in section 1.1.3, Gaussians falloff too rapidly to model the true behavior of 

large-angle scattering at large distances.  Also, the two-Gaussian fit used in our model is too 

narrow to account for all secondary products from nonelastic nuclear events (see section 3.1).  

However, most PBAs implement Gaussian-derived pencil beams and the failures seen in this 

section are well known.  To further examine these failures, lateral profiles at the depth of 

maximum dose and at 80% of the maximum dose depth are taken at energies of 100 and 200 

MeV in Figure 3.7.  Lateral profiles for the remaining energies (50, 150, and 250 MeV) are 

shown in Appendix C.   
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         (a) 

 

         (b) 

 
 

          (c) 

 

 

         (d) 

 
Figure 3.7: Lateral profiles through flat phantom simulations from the pencil beam algorithm 

(solid) and Monte Carlo data (dashed).  All profiles were symmetric about the central-axis; the 

thin vertical line in (a)-(d) indicates that the profiles shown on the left half of the line are taken 

through 4x4 cm
2
 simulations and the profiles on the right half of the line are taken through 10x10 

cm
2
 simulations.  Profiles are shown for incident energy of 100 MeV at depths of: (a) 80% of the 

maximum dose, and (b) maximum dose, and for incident energy of 200 MeV at depths of: (c) 

80% of the maximum dose, and (d) maximum dose. 

 

In Figure 3.7, the departure of our model from the MC data is evident in that our 20%-

80% penumbra is not as broad as the 20%-80% penumbra in the MC data.  This effect can be 

seen to increase with increasing energy and field size, and with decreasing proximal depth to the 

Bragg peak; these relationships explain why the 250 MeV, 10x10 cm� simulation has the worst 

pass rate of the flat phantom simulations. Despite the limitations imposed by the Gaussians used 
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in our model, excellent agreement was achieved for both 4x4 cm
2
 and 10x10 cm

2
 flat phantoms 

both laterally and in depth; therefore, the PBA accurately accounts for field size dependence in 

calculating dose. 

Central-axis profiles are shown for the flat phantoms at 100 and 200 MeV in Figure 3.8.  

Central-axis profiles for the remaining energies (50, 150, and 250 MeV) are in Appendix C.   

        (a) 

 

        (b) 

 
 

        (c) 

 

         (d) 

Figure 3.8: Central-axis profiles through flat phantom simulations from the pencil beam 

algorithm (solid) and Monte Carlo data (dashed).  Profiles are shown for (a) 100 MeV, 4x4 cm
2
, 

(b) 100 MeV, 10x10 cm
2
, (c) 200 MeV, 4x4 cm

2
, and (d) 200 MeV, 10x10 cm

2
 simulations.  

Differences between Monte Carlo and pencil beam algorithm data cannot be seen as all are ≤0.1cm. 
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3.2.2 Step Phantoms 

 The results of the composite analysis on water phantoms with a 1 cm step discontinuity 

also showed excellent agreement.  As in the flat phantom analyses, nearly 100% of all points 

tested in these phantoms passed our composite criteria (DTA ≤ 1mm or Dose Difference ≤ 2%).  

The two areas that failed our criteria were: (1) in the low-dose penumbra areas (~3% isodose 

level) near the end of range (as for the flat surface phantom), and (2) at the surface of the 

phantom on the “stepped” side (i.e., the positive side of the central-axis, where the source-to-

surface distance (SSD) is largest).  These failures are evident in both 4x4 cm
2
 (Figure 3.9) and 

10x10 cm
2 

(Figure 3.10) simulations.   

(a) 

 
Figure 3.9: Comparisons of isodose lines from the pencil beam algorithm (solid) and Monte 

Carlo (dashed) calculations for a 4x4 cm
2
 field, water phantom with a 1 cm step discontinuity at 

incident energies of (a) 50 MeV, (b) 100 MeV, (c) 150 MeV, (d) 200 MeV, and (e) 250 MeV.  

Isodose values are 100, 90, 70, 60, 50, 40, 30, 20, 10, 5, and 3%.  Red areas in the figure, if 

present, indicate points that did not satisfy DTA ≤ 1mm or percent dose difference ≤ 2%. 
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(b)     (c)   (d)          (e) 

 
Figure 3.9 (continued) 
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The step heights tested in this work (1 and 4 cm) are beyond what is typically 

encountered in clinical situations and the sharp transition along the step is also not usually seen 

in clinical situations.  Thus, the results from these evaluations represent conservatively high 

estimates of what accuracy might be clinically achievable.  The high percentage of passing 

points (and corresponding small volume failing) for all step evaluations suggests that the PBA 

accurately accounts for surface irregularities.   

Figure 3.10 shows the 10x10 cm� results for the simulations with a 1 cm step along the 

surface of a water phantom. Results were similar to the 4x4 cm� simulations and failures 

occurred in essentially the same areas. It is interesting to note that failures for the 250 MeV 

simulations (Figure 3.10(e)) occur in the same areas discussed for the 250 MeV, 10x10 cm� flat 

phantom simulations; however, the failure in Figure 3.10(e) is oriented towards the positive side 

of the central-axis because of the central-axis semi-infinite slab approximation used in the PBA. 

When the step height of the phantom was increased to 4 cm, the percentage of passing 

points decreased slightly, from nearly 100% for the 1 cm step results to values ranging from 

99.2% to 100% for the 4 cm step results (although most 4 cm step results had values of 99.8%, 

99.9% or 100%).  The same failures described for the 1 cm step phantom were observed for 

these simulations, with additional failures directly under (e.g., Figure 3.11(b) and 3.12(b)) or 

adjacent to the step transition (e.g., Figure 3.11(a) and 3.12(a)). These additional failures were 

observed because scatter contributions from the flat side of the phantom to the stepped side of 

the phantom were not adequately modeled by the PBA, believed a direct result of the central-axis 

approximation applied to pencil beams. 

The lowest pass rate for the step phantoms occurred for the 50 MeV, 10x10 cm
2
 results 

(99.2% pass rate).  It is clear from Figures 3.11(a) and 3.12(a) (these have been enlarged to  
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     (a) 

 
      (b) 

 
Figure 3.10: Comparisons of isodose lines from the pencil beam algorithm (solid) and Monte 

Carlo (dashed) calculations for a 10x10 cm
2
 field, water phantom with a 1 cm step discontinuity 

at incident energies of (a) 50 MeV, (b) 100 MeV, (c) 150 MeV, (d) 200 MeV, and (e) 250 MeV.  

Isodose values are 100, 90, 70, 60, 50, 40, 30, 20, 10, 5, and 3%.  Red areas in the figure, if 

present, indicate points that did not satisfy DTA ≤ 1mm or percent dose difference ≤ 2%.
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(c)    (d)       (e) 

 
Figure 3.10 (continued)
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emphasize failures) that scatter contributions predicted by MC are underestimated by the PBA 

due to the central-axis approximation of pencil beams (red area near x = 0.2 cm).  Further, 

because a 50 MeV beam has such a short range (~2.2 cm in water), the number of pixels within 

the 1% isodose line (recall our 1% dose threshold) are fewer than for other energies; thus, even a 

small number of failing pixels will be amplified by the small number of total pixels.   

(a) 

 
Figure 3.11: Comparisons of isodose lines from the pencil beam algorithm (solid) and Monte 

Carlo (dashed) calculations for a 4x4 cm
2
 field, water phantom with a 4 cm step discontinuity at 

incident energies of (a) 50 MeV, (b) 100 MeV, (c) 150 MeV, (d) 200 MeV, and (e) 250 MeV.  

Isodose values are 100, 90, 70, 60, 50, 40, 30, 20, 10, 5, and 3%.  Red areas in the figure, if 

present, indicate points that did not satisfy DTA ≤ 1mm or percent dose difference ≤ 2%.
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(b)      (c)        (d)               (e) 

 
Figure 3.11 (continued)
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        (a) 

 
Figure 3.12: Comparisons of isodose lines from the pencil beam algorithm (solid) and Monte Carlo (dashed) calculations for a 10x10 

cm
2
 field, water phantom with a 4 cm step discontinuity at incident energies of (a) 50 MeV, (b) 100 MeV, (c) 150 MeV, (d) 200 MeV, 

and (e) 250 MeV.  Isodose values are 100, 90, 70, 60, 50, 40, 30, 20, 10, 5, and 3%.  Red areas in the figure, if present, indicate points 

that did not satisfy DTA ≤ 1mm or percent dose difference ≤ 2%. 
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(b)                  (c) 

 
Figure 3.12 (continued) 
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         (d) 

 

        (e) 

 
Figure 3.12 (continued) 

Lateral profiles through step phantom data at 4.2 cm and 7.2 cm depth were compared for 

100 MeV and 200 MeV beams.  These depths were chosen because they correspond to 3.2 cm 

below phantoms with 1 cm and 4 cm step heights, and the 4.2 cm depth is directly below a 4 cm 

step height.  These lateral profile comparisons were performed for both 4x4 cm� and 10x10	cm� 

fields.   

The 100 MeV data is shown for 4x4 cm� fields in Figure 3.13 and for 10x10 cm� fields 

in Figure 3.14 while the 200 MeV data is shown for 4x4 cm� fields in Figure 3.15 and for 10x10 

cm� fields in Figure 3.16.  In all four of these figures, the lateral profiles were normalized to the 
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MC maximum in the lateral profile.  Interface dose effects (i.e., the hot and cold spots evident 

near the central-axis) were predicted well by all of these comparisons – except for the profiles 

taken at 4.2 cm depth for the 200 MeV, 4 cm step profile (from Figures 3.11(d) and 3.12(d), it is 

evident that these profiles were taken through areas that did not pass our DTA ≤	1mm or dose 

difference ≤ 2% criteria. 

        (a) 

 

         (b) 

 
         (c) 

 

         (d) 

 
Figure 3.13: Lateral profiles for a 100 MeV beam with a 4x4 cm� field size at depths of 4.2 cm 

(a,c) and 7.2 cm (b,d).  In (a) and (b), the step height was 1 cm, and in (c) and (d), the step height 

was 4 cm.  

It can be seen in these profiles that interface effects were modeled appropriately with 

increasing depth from the step irregularity.  The PBA and MC data agreed well for depths of 4.2 

and 7.2 cm.  In general, this agreement worsened with 4 cm step height comparisons relative to 
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those with 1 cm height; however, for both the 1 cm and the 4 cm step height comparisons, the 

agreement improved with increasing depth from the step irregularity.  All of these effects are 

consistent with the limitations imposed by the central-axis approximation of pencil beams. 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 3.14: Lateral profiles for a 100 MeV beam with a 10x10 cm� field size at depths of 4.2 

cm (a,c) and 7.2 cm (b,d).  In (a) and (b), the step height was 1 cm, and in (c) and (d), the step 

height was 4 cm.  

Comparing Figure 3.13 to Figure 3.14 and Figure 3.15 to Figure 3.16, it is evident that 

there is little field size dependence on the effects seen in these lateral profiles.  It is apparent 

from many of these profiles that hot and cold spots of dose are created in the center of the field 

(at the vacuum-water interface).  The central-axis approximation applied to pencil beams 

immediately in the vicinity of this interface is the major cause of these perturbations, so it is not 
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surprising that an increase in field size (with a corresponding increase in pencil beams) has little 

influence on interface effects. 

  (a) 

 

(b) 

 
 

(c) 

 

(d) 

Figure 3.15: Lateral profiles for a 200 MeV beam with a 4x4 cm� field size at depths of 4.2 cm 

(a,c) and 7.2 cm (b,d).  In (a) and (b), the step height was 1 cm, and in (c) and (d), the step height 

was 4 cm. 

3.2.3 Oblique Phantom 

 For the comparisons using phantoms with oblique surfaces tilted relative to the beam (45 

degrees), agreement was again very good.  The 50 MeV, 4x4 cm
2
 field size simulation showed 

the lowest percentage of passing points with a 99% pass rate (Figure 3.17(a)).  Upon closer 

inspection, it can be seen that these failures only occur on the first row of pixels, an artifact of 

R
el
a
ti
v
e 
D
o
se
 (
%
) 

R
el
a
ti
v
e 
D
o
se
 (
%
) 

R
el
a
ti
v
e 
D
o
se
 (
%
) 

R
el
a
ti
v
e 
D
o
se
 (
%
) 



82 
 

finite pencil beam width.  Also, the lower pass rate for this simulation can again be attributed to 

the distribution having fewer pixels than the other distributions.  In a larger phantom, there 

would be more pixels and a failing top row of pixels would not markedly influence the total 

percentage of passing points.  The 4x4 cm
2 

data is shown in Figure 3.17. 

         (a) 

 

         (b) 

 
 

         (c) 

 

         (d) 

 
Figure 3.16: Lateral profiles for a 200 MeV beam with a 10x10 cm� field size at depths of 4.2 

cm (a,c) and 7.2 cm (b,d).  In (a) and (b), the step height was 1 cm, and in (c) and (d), the step 

height was 4 cm.  

 

The failures that are seen in the high energy simulations occur in low dose regions 

beyond the penumbra, or in the high dose region near the Bragg peak.  For the latter of these 

failures, there is a tendency for them to occur on the negative side of the central-axis (largest
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               (a)  (b) 

 
Figure 3.17: Comparisons of isodose lines from the pencil beam algorithm (solid) and Monte Carlo (dashed) calculations for a 4x4 cm

2
 

field, water phantom with a surface tilted 45 degrees to the direction of the beam for incident energies of (a) 50 MeV, (b) 100 MeV, (c) 

150 MeV, (d) 200 MeV, and (e) 250 MeV.  Isodose values are 100, 90, 70, 60, 50, 40, 30, 20, 10, 5, and 3%.  Red areas in the figure, if 

present, indicate points that did not satisfy DTA ≤ 1mm or percent dose difference ≤ 2%
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  (c)               (d)                    (e)  

 
Figure 3.17 (continued) 
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source-to-surface distance (SSD)).  These failures increase with increasing field size, and are 

most noticeable in the 10x10 cm
2
 simulations (Figure 3.18).  This effect is due to the loss of side-

scatter equilibrium, which will be explained in further detail in the following paragraph.  

         (a) 

 
Figure 3.18: Comparisons of isodose lines from the pencil beam algorithm (solid) and Monte 

Carlo (dashed) calculations for a 10x10 cm
2
 field, water phantom with a surface tilted 45 degrees 

to the direction of the beam for incident energies of (a) 50 MeV, (b) 100 MeV, (c) 150 MeV, (d) 

200 MeV, and (e) 250 MeV.  Isodose values are 100, 90, 70, 60, 50, 40, 30, 20, 10, 5, and 3%.  

Red areas in the figure, if present, indicate points that did not satisfy DTA ≤ 1mm or percent 

dose difference ≤ 2%. 



86 
 

(b)         (c) 

 
Figure 3.18 (continued) 
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        (d) 

 

           (e) 

 

Figure 3.18 (continued) 

 

In oblique geometry, lateral scatter for adjacent pencil beams begins at slightly different 

depths because the phantom surface is tilted relative to the beam (recall that material above the 

phantom is vacuum); the differing phantom entrance depths cause adjacent pencil beams to have 

slightly displaced Bragg peaks.  Because narrow pristine Bragg peaks are used for depth dose 

curves in our model (see Figure 2.7) and because Bragg peaks from adjacent pencil beams are 
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displaced, lateral scatter out of the central-axis from one pencil beam is not replaced by lateral 

scatter in from an adjacent pencil beam; these factors cause loss of side scatter equilibrium.  

Lateral profiles at the Bragg peak and central-axis depth dose comparisons between PBA 

and MC data were examined for 100 and 200 MeV beams with field sizes of 4x4 cm� and 10x10 

cm� to study the limitations imposed by the loss of side scatter equilibrium in our oblique 

simulations. The central-axis profiles are shown in Figure 3.19. 

       (a) 

 

       (b) 

 
 

        (c) 

 

 

       (d) 

 
Figure 3.19: Central-axis profiles through the Bragg peak (in the beam frame) for the pencil 

beam algorithm (solid) and Monte Carlo calculations (dashed) in oblique phantoms at incident 

beam energies of 100 MeV (a,b) and 200 MeV (c,d).  Simulations are shown with field sizes of 

4x4 cm� (a,c) and 10x10 cm� (b,d). 
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To extract lateral profiles at the Bragg peak for the oblique simulations, (Figures 3.20 and 

3.21), a coordinate rotation was applied to the data shown in Figures 3.17 and 3.18 so that the 

data was transformed to the frame of the beam.  Lateral profiles at the Bragg peak are shown for 

100 MeV (Figure 3.20) and 200 MeV (Figure 3.21). 

    (a) 

 

       (b) 

 
 

 (c) 

 

 

       (d) 

 

Figure 3.20: Oblique incidence simulations for 100 MeV beams for 4x4 cm� (a,b) and 10x10 cm� fields (c,d).  Monte Carlo data is illustrated in the frame of the beam in (a, c) because this 

geometry was required to obtain lateral profiles through the Bragg peak in (b, d).  The lateral 

profiles are shown for the pencil beam algorithm (PBA) (solid) and Monte Carlo (MC) (dashed) 

data.  Rippling near the maximum dose area of the PBA appears because a coordinate rotation 

had to be applied to the PBA data in Figures 3.17(b) and 3.18(b). 

 

 Failures oriented towards the negative side of the central-axis (largest SSD), as discussed 

for Figures 3.17 and 3.18, are more evident in Figure 3.21 than 3.20; this relationship is 
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consistent with Figures 3.17 and 3.18 in that the loss of side scatter equilibrium is worsened for 

increasing incident beam energy and field size.  In Figure 3.21(b) and (d), the MC data can be 

seen to drop below the values in the PBA data on the negative side of the central-axis and this 

effect is more noticeable for the 200 MeV 10x10 cm� field size (Figure 3.21(d)) over the 4x4 

cm� field size (Figure 3.21(b)) simulation.   

  (a) 

 

   (b) 

 
 

  (c) 

 

 

   (d) 

 
Figure 3.21: Oblique incidence simulations for 200 MeV beams for 4x4 cm� (a,b) and 10x10 cm� fields (c,d).  Monte Carlo data is illustrated in the frame of the beam in (a, c) because this 

geometry was required to obtain lateral profiles through the Bragg peak in (b, d).  The lateral 

profiles are shown for the pencil beam algorithm (PBA) (solid) and Monte Carlo (MC) (dashed) 

data.  Rippling near the maximum dose area of the PBA appears because a coordinate rotation 

had to be applied to the PBA data in Figures 3.17(d) and 3.18(d). 
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3.3 Summary of Results 

 The percentages of passing points from all PBA simulations compared to MC data are 

presented in Table 3.1; as discussed in section 2.3.2, these percentages indicate DTA ≤ 1mm or 

dose difference ≤ 2% between the PBA and MC data.  In general, the percentage of passing 

points decreases with increasing complexity of the dose calculation phantom, and with 

increasing incident energy.  It is also apparent from Table 3.1 that failures in the oblique 

simulations worsen with increasing field size.  As explained in section 3.2.3, the loss of side 

scatter equilibrium between adjacent pencil beams near the Bragg peak depth creates failures 

which worsen for pencil beams on the negative side of the central-axis (largest SSD); with an 

increasing field size, this effect is exacerbated because there are more pencil beams present that 

are not at side scatter equilibrium. 

Table 3.1: Percentage of passing points for all simulations. 

Field 

Size 
 4x4 cm

2
  10x10 cm

2
 

Energy 

(MeV) 

 
Flat 

 
Step Height 

(cm) 
 Tilt (deg)  

Flat 
 

Step Height 

(cm) 
 Tilt (deg) 

  1  4  45   1  4  45 

50  100  100  99.4  99.0  100  100  99.2  100 

100  100  100  99.9  100  100  100  100  100 

150  100  100  100  99.7  100  100  100  99.5 

200  100  99.9  99.9  99.9  100  100  99.9  99.4 

250  100  100  100  100  99.9  99.9  99.8  99.2 

Some results in Table 3.1 may show a 100% pass rate with a corresponding figure that 

indicates red areas of failure; this occurred for some simulations because the pass rate was 

rounded to a single decimal place. 

Neglecting the 50 MeV data (which was argued to have artificially low passing 

percentages in previous sections) and the oblique simulations for a 10x10 cm� field size, all 
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simulations pass with at least 99.7% of passing points; considering all data, the lowest pass rate 

was 99%.  However, 25 of the 40 simulations performed for our dose model demonstrated 100% 

agreement with MC data.  
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CHAPTER 4.  DISCUSSION AND CONCLUSIONS 

4.1 Study Summary 

 We developed a proton pencil beam algorithm (PBA) which incorporates dose from 

primary protons and secondary protons created in nonelastic nuclear interactions.  The beam 

width was estimated in the model by assuming Gaussian distributions for each pencil beam and 

we calculated the root mean square (RMS) value from Fermi-Eyges theory.  The differential 

Moliere method introduced by Gottschalk (2010) was used to determine scattering power in the 

Fermi-Eyges calculations.  The Fermi-Eyges equations were discretized by using recursion 

relations introduced by Hogstrom (1987).  The sigmas needed for the nuclear pencil beams were 

obtained by a nonlinear least squares fit to Monte Carlo (MC) data (1x1 mm
2
 field size) using the 

Levenberg-Marquardt method. 

 Central-axis data from MC simulations were used to commission the PBA, and analytical 

corrections were needed to force the central-axis dose predicted by the PBA to be equal to the 

input MC central-axis dose.  Stopping power data was determined using PSTAR data and a ray-

trace over the calculation grid to estimate the energy at each grid point (using the continuous 

slowing down approximation (CSDA)).  Several material parameters were needed to include the 

desired materials into the PBA. 

 The accuracy of the PBA results was evaluated by comparing the distance-to-agreement 

(DTA) and the dose difference between the PBA and the MC values.  To evaluate the versatility 

of the PBA, we ran simulations with perpendicularly incident beams and oblique beams, and we 

used flat and stepped phantom surfaces.  Both the PBA and the MC distributions were 

normalized to the maximum dose in a flat water phantom (i.e., the PBA was normalized to the 

maximum dose in a flat water phantom simulation by the PBA and the MC was normalized to 

the maximum dose in a flat water phantom simulation by MC), and assigned the value of 100%.  



94 
 

The agreement between the PBA and MC results were considered passing for DTA ≤ 1 mm or 

percent dose difference ≤ 2%.  To evaluate the overall agreement between the PBA and MC 

results, we used the percentage of points that pass these criteria.  To avoid erroneously high 

percent agreement results, we did not test points outside of 1% of the maximum dose in the MC 

distributions.  In all the simulations that we performed, we found that 99% or greater of all the 

tested points pass these criteria.  Therefore, we feel that our results show that the PBA is 

adequate for dose calculation. 

4.2 Comparison with Literature 

 When compared with data from Ciangaru et al. (2005), our PBA showed improved 

∆(20%-80%) penumbral widths (calculated as the difference between the PBA 20%-80% 

penumbral width and the MC 20%-80% penumbral width).  These metrics were calculated for all 

three energies tested in the Ciangaru et al. (2005) model; results are shown in Figure 4.1 (only 

shown for the negative side of the central-axis since the profiles were symmetric) and presented 

in Table 4.1.  In Figure 4.1, MC data from the Ciangaru et al. (2005) model is not shown since it 

was close to the data used in this work.  The Ciangaru et al. (2005) model accounted for multiple 

Coulomb scatter, single scatter, and plural scatter but did not model nonelastic nuclear effects; 

we believe that the addition of our nonelastic nuclear model allowed improved results. 

Table 4.1: ∆(20%-80%) penumbral width comparisons between our model and previous 

literature (Ciangaru et al. 2005). 

Energy (MeV) 

∆20%-80%  

Penumbral Widths (mm) 

This work 
Ciangaru et al. 

(2005) 

158.5 0.27 1.5 

188.4 0.28 1.0 

214.5 0.22 2.5 
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       (a)          (b) 

  

         (c) 

 
Figure 4.1: Comparison of ∆(20%-80%) penumbral widths between our model (black curve) and 

the Ciangaru et al. (2005) model (red curve) when compared to Monte Carlo data (black circles).  

Data is shown at incident energies of (a) 158.5, (b) 188.5, and (c) 214.5 MeV. 
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4.3 Recommendations for Algorithm Improvements 

 From section 3.1, it is clear that using two Gaussians to fit narrow field MC (1x1 mm
2
 

field size) data is not adequate to completely describe the distant falloff tails in the MC 

simulations, especially for shallow depths.  However, for the simulations in this work, it seems 

that even though the nuclear halo is not modeled well at shallow depths, this effect is minimized 

over several pencil beams because a homogeneous water phantom was used.  For mixed material 

simulations in the future, we will need to produce an improved nuclear model.  In the next phase 

of this study, we intend to develop a first principles nuclear halo model that should more 

accurately account for the physics involved in nonelastic nuclear events.  

 Hanson’s approximation, as used with the differential Moliere scattering power in our 

algorithm, seems to account for the majority of the primary dose in our simulations – out to 

about the 4% of maximum isodose level.  It is clear from the lateral profiles shown in the results 

section that the falloff edges of the distribution in the PBA are sharper than that in the MC 

distributions.  We attribute this to the limitations of Hanson’s approximation of Moliere theory 

and the two-Gaussian fit to narrow field MC data.  It is well known that Hanson’s 

approximation, as a Gaussian, accounts for most of the Moliere distribution but at some point the 

Moliere distribution will falloff more gradually (the Hanson distribution is a best fit to Moliere 

theory out to the 1/e width – see Appendix section D.2).  Over several summed pencil beams, the 

limitations of the Gaussians used in pencil beam modeling will cause the dose falloff tails of 

broad field data to disagree.  Figure 4.2 gives a graphical comparison of Hanson and Moliere 

theory. 

4.4 Future Dose Calculation Studies 

 Research is underway in our clinic to directly simulate the nuclear halo distribution for a 

pencil beam from Monte Carlo N-Particle eXtended (MCNPX).  In these studies, the nuclear 
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halo is being quantified at further lateral distances than was used in this work (-10 to 10 cm 

lateral to the central-axis).  Additional modeling of the nuclear halo distribution will likely result 

in better quantification of the effects associated with the nuclear halo and overall better fits to 

MC data.  Once we have obtained the fully quantified nuclear halo distribution, we intend to 

develop a first principles halo model and compare it with the distributions produced by MCNPX. 

(a) 

 

(b) 

 
Figure 4.2: Comparison of Hanson and Moliere theory: (a) on a linear scale; (b) on a semi-

logarithmic scale.  Hanson’s approximation begins to differ from the Moliere distribution at 

2.5Y.  These plots are shown at an energy of 160 MeV, but the relation between Hanson and 

Moliere theory is retained for other beam energies (Gottschalk 2011). 

To extend our dose calculation model to more clinically relevant simulations, specific 

beam phase space parameters will need to be accounted for and benchmarked in patient-like 

inhomogeneous phantoms.  Future models of this PBA should incorporate the necessary degrees 

of freedom to calculate dose from the increasingly abundant advanced accelerator technologies.  

Beam optimization, such as the use of spread-out Bragg peaks (SOBP) or more complicated 

active scanning optimization routines, is a logical step in extending the clinical relevance of the 

present PBA.  One advantage of using beam optimization in our PBA is that the side scatter 
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equilibrium problems created at the Bragg peak depth (because of the pristine Bragg peaks used 

in our model) in our oblique simulations would likely disappear.  The increased high dose area in 

an optimized beam would be expected to achieve side scatter equilibrium in these oblique 

simulations because the slight displacement of the center of the peaks would be small in 

comparison to the width of the high dose area. 

Another consideration that will need to be incorporated in our model when it is extended 

to include beam phase space calculations is the air gap effects that cause pencil beams to poorly 

account for effects at the phantom surface.  As mentioned in section 2.1.1, Hogstrom et al. 

(1981) solved this problem by using a deconvolution method.  Such deconvolution methods will 

need to be implemented into our future PBA as well.  The deconvolution method effectively 

redefines pencil beams at the surface of the phantom (or patient).  The success of a single pencil 

beam redefinition on patient surface effects motivated the development of the pencil beam 

redefinition algorithm (PBRA) (Shiu and Hogstrom 1991) to improve limitations imposed by the 

central-axis semi-infinite slab approximation used for pencil beams.  In the future, we plan to 

extend our PBA to a PBRA, using a methodology similar to Shiu and Hogstrom (1991).  Even 

though protons travel in nearly straight lines until near the Bragg peak, we feel that redefinition 

will help in general patient simulations and will likely improve some limitations imposed in our 

PBA by the central-axis semi-infinite slab approximation; specifically, the failures in the step 

phantoms due to the central-axis approximation of pencil beams would be improved with a 

PBRA.  

As a last improvement to our model, we will use a constant of proportionality in the dose 

equations of our future model and characterize it so that our model will determine directly 

absolute dose rather than relative dose, as calculated in the present PBA.  Our future absolute 

dose calculation algorithm will follow the methodology of Koch et al. (2008).   
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APPENDIX A.  FLOWCHARTS SHOWING PENCIL BEAM ALGORITHM 

 
Figure A.1: Flowchart for the phantom design. 
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Figure A.2: Flowchart for the ray-trace. 
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Figure A.3: Flowchart for the dose calculation. 



107 
 

APPENDIX B. DERIVATION OF PENCIL BEAM NORMALIZATION FACTORS 

Given that the nuclear halo parameters were determined from a fit that incorporated the 

primary distribution, it would not be adequate to model the primary pencil beam out to 4Yy and 

the nuclear halo pencil beam out to 4sYy� + Yz� .  Because the primary distribution is necessarily 

narrower than the halo distribution (it was fitted as such), then it will always be true that the 4-

sigma width of the primary distribution (blue broken lines in Figure B.1) will be less than the 4-

sigma width of the nuclear halo distribution (red broken lines in Figure B.1).  Thus, it is 

necessary to model both distributions out to 4-sigma of the nuclear halo distribution.  However, 

that implies that the width of the primary distribution that will be modeled will vary with depth 

(it will be dependent on the ratio of the primary sigma to the nuclear halo sigma and the 4-sigma 

width of the nuclear halo distribution).  In this appendix, we will derive the equations necessary 

to describe the modeling width of the primary sigma and the resulting normalization equation. 

 
Figure B.1: Comparison of primary (solid black curve) and halo (broken black curve) pencil 

beam limits.  The 4-sigma limits of the halo distribution are shown as red broken lines and the 4-

sigma limits of the primary distribution are shown as blue broken lines.  
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 To find the fluence for a primary pencil beam centered at x = 0 for an arbitrary off-axis 

location of x = A	Yy , we use 

 WB(�	Yy , J) = 1√2�	Yy exp −��Yy�2	Yy� � = 1√2�	Yy exp −��2 �. (38)  

Likewise, the fluence for a nuclear halo pencil beam centered at x = 0 for an arbitrary off-axis 

location of x = ¡sYy� + Yz�, we use 

 

Wz ¡�Yy� + Yz� , J� = 1s2�(Yy� + Yz�) exp −¡�(Yy� + Yz�)2	(Yy� + Yz�) �
= 1s2�(Yy� + Yz�) exp −¡�2 �. 

(39)  

To find A, we simply recognize that the x-value that corresponds to B-sigma of the nuclear halo 

distribution must be equal to A-sigma of the primary distribution, 

 � = sYy� + Yz�Yy ¡ = ¡È1 + �YzYy�� . (40)  

To derive the normalization factor for a given pencil beam distribution modeled out to Q-sigma, 

we begin by applying the standard normal coordinate, 

 � = CY (41)  

and  

 OC = Y	OJ. (42)  

Then, to find the fluence out to Q-sigma, integration over the fluence from –Q to Q is performed 

over the standard normal distribution 

 W(−É < � < É) = 1√2�c exp−JN�2 � 	OJNÊ
'Ê . (43)  

 



109 
 

Letting  

 E = J′√2	, (44)  

we have 

 OJN = √2	OE. (45)  

Then, the fluence equation becomes 

 

W(−É < � < É) = 1√2�c exp −E�2 � 	OEÊ/√�
'Ê/√� 				

= 1√� Ëc exp(−E�) 	OEÊ/√�
p − c exp(−E�) 	OE'Ê/√�

p Ì 
= 12 erf � É√2� + erf � É√2�® 

= erf � É√2�. 

(46)  

To obtain a normalization factor, 

 �T1� = 1W(−É < � < É) = erf � É√2�®
'(. (47)  

Then, the normalization factor for 4-sigma over the nuclear halo distribution gives 

 �T1�z = erf � 4√2�®
'( = 1.0001. (48)  

Substituting equation (40) for the Q term in equation (47) with ¡ = 4 gives the normalization 

factor for the primary pencil beam as 

 �T1�y =
ÍÎ
ÎÏerf

Ð
Ñ4�1 + ÒYzYyÓ�

√2 Ô
Õ
Ö×
×Ø
'(

. (49)  
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APPENDIX C. ADDITIONAL PROFILES 

C.1 Nuclear Halo Fit Depth Dose Components 

     (a) 

 

            (b) 

 
    (c) 

 

      (d) 

 
       (e) 

 
Figure C.1: Central-axis depth dose components from Levenberg-Marquardt (LM) fits to Monte 

Carlo (MC) data with a 1x1 mm� field size at energies of (a) 50, (b) 100, (c) 150, (d) 200, and 

(e) 250 MeV. Components shown include primary (blue) and halo (red) components of LM fit, 

the total LM fit (solid black), and MC data (black dashed). 
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C.2 Nuclear Halo Fit Lateral Profiles 

         (a)           (b) 

          (c)           (d) 

         (e)          (f) 

Figure C.2: Lateral profiles through 50 MeV Monte Carlo data (solid) and Levenberg-Marquardt 

fit data (dashed) at depths of (a) 0 cm, (b) 0.5 cm, (c) 1 cm, (d) 1.5 cm, (e) 2 cm, (f) 2.24 cm. 
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        (a) 

 

         (b) 

 
        (c) 

 

        (d) 

 
        (e) 

 

        (f) 

 
Figure C.3: Lateral profiles through 100 MeV Monte Carlo data (solid) and Levenberg-

Marquardt fit data (dashed) at depths of (a) 0 cm, (b) 2 cm, (c) 5 cm, (d) 7 cm, (e) 7.5 cm, (f) 

7.74 cm. 
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        (a)          (b) 

        (c) 

 

        (d) 

 
       (e) 

 

        (f) 

 
Figure C.4: Lateral profiles through 200 MeV Monte Carlo data (solid) and Levenberg-

Marquardt fit data (dashed) at depths of (a) 0 cm, (b) 7 cm, (c) 15 cm, (d) 22 cm, (e) 25 cm, (f) 

26 cm. 
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        (a) 

 

        (b) 

 
        (c) 

 

        (d) 

 
        (e) 

 

        (f) 

 
Figure C.5: Lateral profiles through 250 MeV Monte Carlo data (solid) and Levenberg-

Marquardt fit data (dashed) at depths of (a) 0 cm, (b) 10 cm, (c) 20 cm, (d) 30 cm, (e) 36 cm, (f) 

37 cm.
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C.3 Central-Axis Data 

       (a) 

 

        (b) 

 

       (c) 

 

        (d) 

 
Figure C.6: Central-axis data for a 50 MeV beam with: (a) 4x4 cm

2
 field size incident on a flat phantom; (b) 10x10 cm

2
 field size incident 

on a flat phantom; (c) 4x4 cm
2
 field size incident on a 45 degree oblique phantom; (d) 10x10 cm

2
 field size incident on a 45 degree oblique 

phantom.  PBA (solid) and MC (dashed) data are shown.  
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       (a) 

 

            (b) 

 
      (c) 

 

           (d) 

 
Figure C.7: Central-axis data for a 150 MeV beam with: (a) 4x4 cm

2
 field size incident on a flat phantom; (b) 10x10 cm

2
 field size incident 

on a flat phantom; (c) 4x4 cm
2
 field size incident on a 45 degree oblique phantom; (d) 10x10 cm

2
 field size incident on a 45 degree oblique 

phantom.  PBA (solid) and MC (dashed) data are shown. 
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       (a) 

 

         (b) 

 
      (c) 

 

         (d) 

 
Figure C.8: Central-axis data for a 250 MeV beam with: (a) 4x4 cm

2
 field size incident on a flat phantom; (b) 10x10 cm

2
 field size incident 

on a flat phantom; (c) 4x4 cm
2
 field size incident on a 45 degree oblique phantom; (d) 10x10 cm

2
 field size incident on a 45 degree oblique 

phantom.  PBA (solid) and MC (dashed) data are shown. 
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C.4 Lateral Profile Data 

          (a) 

 

          (b) 

 
Figure C.9: Lateral profiles through flat phantom simulations from the pencil beam algorithm 

(solid) and Monte Carlo data (dashed) at 50 MeV.  All profiles were symmetric about the 

central-axis; the thin vertical line in (a) and (b) indicates that the profiles shown on the left half 

of the line are taken through 4x4 cm
2
 simulations and the profiles on the right half of the line are 

taken through 10x10 cm
2
 simulations.  Profiles are shown at depths of: (a) 80% of the maximum 

dose, and (b) maximum dose.  

 

 

         (a) 

 

          (b) 

 
Figure C.10: Lateral profiles through flat phantom simulations from the pencil beam algorithm 

(solid) and Monte Carlo data (dashed) at 150 MeV.  All profiles were symmetric about the 

central-axis; the thin vertical line in (a) and (b) indicates that the profiles shown on the left half 

of the line are taken through 4x4 cm
2
 simulations and the profiles on the right half of the line are 

taken through 10x10 cm
2
 simulations.  Profiles are shown at depths of: (a) 80% of the maximum 

dose, and (b) maximum dose.
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        (a) 

 

        (b) 

 
Figure C.11: Lateral profiles through flat phantom simulations from the pencil beam algorithm (solid) and Monte Carlo data (dashed) at 

250 MeV.  All profiles were symmetric about the central-axis; the thin vertical line in (a) and (b) indicates that the profiles shown on the 

left half of the line are taken through 4x4 cm
2
 simulations and the profiles on the right half of the line are taken through 10x10 cm

2
 

simulations.  Profiles are shown at depths of: (a) 80% of the maximum dose, and (b) maximum dose. 

 

    (a)       (b)    (c)  (d) 

    
Figure C.12: Lateral profiles through the Bragg peak of a 50 MeV beam in a 45 degree oblique phantom with a field size of: (b) 4x4 cm

2
, 

and (d) 10x10 cm
2
.  The dose distributions used to extract the lateral profiles are shown in (a,c). 
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 (a)    (b)   (c)    (d) 

    
Figure C.13: Lateral profiles through the Bragg peak of a 150 MeV beam in a 45 degree oblique phantom with a field size of: (b) 4x4 cm

2
, 

and (d) 10x10 cm
2
.  The dose distributions used to extract the lateral profiles are shown in (a,c). 

 

 

  (a)    (b)   (c)     (d) 

    
Figure C.14: Lateral profiles through the Bragg peak of a 250 MeV beam in a 45 degree oblique phantom with a field size of: (b) 4x4 cm

2
, 

and (d) 10x10 cm
2
.  The dose distributions used to extract the lateral profiles are shown in (a,c). 
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APPENDIX D. SCATTER THEORY 

The discussion on scatter theory that follows is limited in scope to Fermi-Eyges transport 

theory (Eyges 1948), Moliere/Hanson scatter theory (c.f. Bethe 1953, Hanson et al. 1951), and 

the Highland equation (Highland 1975).  The reader is referred to these original publications for 

further details on these theories.  Further, this section will highlight the equations that are 

important for this study while qualitatively presenting their significance.  In the following 

discussion, χ is used to notate angles occurring from single scattering events and θ is used to 

notate angles due to multiple scatter events. 

D.1 Fermi-Eyges Transport Theory 

This theory was derived for multiple Coulomb scattering and therefore uses a single 

Gaussian for beam transport.  However, the incorporation of a ‘scattering power’ term allows 

this theory to account for higher order scatter events; that is, the complexity of the scatter events 

are dictated by the scattering power and the Fermi-Eyges theory is used to transport these 

parameters.  Fermi-Eyges theory is characterized by the determination of three scattering 

moments, which are related to the root mean square (RMS) angle of an angular distribution, a 

covariance term, and the RMS lateral spread of an angular distribution.  All three of these 

moments can be calculated using equation (14) for j = 1,2,3.  In these equations, the differential 

increase in RMS angle over an infinitesimally small depth, T(E(z)), is the scattering power of a 

given material and z indicates the depth at which the scatter is to be quantified.  In general, the 

scattering power is a term that depends on both the beam energy at a given depth and the 

material in which the scattering occurs.  Gottschalk (2010) has provided a comprehensive review 

of analytical scattering power formulas, some of which incorporate a single scattering correction 

factor for use with the formalism present in Fermi-Eyges theory.  In this sense, these authors 

have derived parameters that account for both the central small-angle Gaussian distribution and 



122 
 

the slowly decaying single scattering tails to be adopted into the single Gaussian formulation of 

Fermi-Eyges theory. 

Physically, t2 is the square of the RMS of the Gaussian angular distribution of protons, 

t( is a position-angle correlation term, and t� is the square of the RMS of the Gaussian spatial 

distribution.  From these three moments the virtual source-to-surface distance (SSD) (i.e., the 

point along the beam axis where all beam rays project back to) can be derived for a diverging 

beam as the quotient of the second moment to the first moment (equation (50)).  The mean angle 

of a pencil beam can be determined from the Fermi-Eyges moments and the off-axis position X 

by equation (51).  The spread about the mean angle can also be calculated from the Fermi-Eyges 

moments by equation (52).  Further, Fermi-Eyges theory inherently accounts for the effect of 

every inhomogeneity and the specific location of each inhomogeneity because the integration in 

equation (14) sums the scatter effects for all integration steps z’ and characterizes the effect that 

has on depth z; that is, the inclusion of the (z-z’) term in an integral over dz’ inherently includes 

these effects.  

 ��LÙD¹ = t�t( (50)  

 lIÀÀÀ = �t(t��� 
(51)  

 YÚÛ� = t2 − t(�t� 
(52)  

Fermi-Eyges theory was derived for stacked semi-infinite slab geometry (as shown in Figure 

2.3(b)).  In this respect, Fermi-Eyges theory does not provide a result directly useful for patient 

inhomogeneities.  However, if the incident beam is divided into a grid of smaller pencil beams, 

then the semi-infinite slab approximation more reliably models the surrounding material.  Thus, 

Fermi-Eyges theory has become popular for PBAs. 
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D.2 Moliere / Hanson Scatter Theory 

Moliere (c.f. Bethe 1953) proposed a scatter theory that has been shown to agree with 

measured data (Gottschalk et al. 1993).  In Moliere theory, three terms are used to describe the 

scattered distribution of a beam of particles: (1) a small-angle multiple Coulomb scattering 

(MCS) Gaussian term, (2) a large-angle single scattering term, and (3) a correction term to 

account for an intermediate number of scatters (called plural scattering).  The derivation of the 

Moliere theory of angular deflections (c.f. Bethe 1953) begins at the same starting point as the 

derivation of the Fermi-Eyges transport theory: the transport diffusion equation.  However, rather 

than using the central-limit theorem to produce a Gaussian distribution as in Fermi-Eyges theory, 

the Moliere theory instead explicitly gives a method to calculate the limits beyond MCS events.  

One term, called the characteristic single scattering angle +Q (equation (53)), accounts for 

collisions that occur very close to the nucleus (which causes a large scattering angle) because the 

nucleus is a distributed charge (not a point charge as in the Rutherford derivation).  Another term 

in the Moliere theory, called the screening angle +H (equation (54)), accounts for collisions that 

occur far away from the nucleus (with a small scattering angle) because the nucleus is screened 

by electrons.  Using the Fermi-Thomas model of the atom (related to equation 55) and the Fano 

(1954) correction for scattering from atomic electrons (equation (65)), the Moliere equations for 

a thin target (i.e., little or no energy loss occurs in the target) are presented below. 

 +Q,ÜÝDG� = 4���(�ħ�)� ��� �	J(~�)� (53)  

 +H,ÜÝDG� = 4���(�ħ�)�ß (54)  

 ß = �	�A��0.8853�� �1.13 + 3.76	 ��	�� �� ��/0
(~�)�  

(55)  
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In the above equations, z is the calculation depth, ��	stands for Avogadro’s number, � is the fine 

structure constant (1/137), Z is the atomic number and A is the atomic mass of the target 

material, � is the density of the material,	�A�� is the electron rest mass, ħ is Planck’s constant 

divided by 2π, c is the speed of light in vacuum, and pv, pc, and β are kinematic factors related to 

the energy of the beam (equations (56)-(58)).  The kinematic factors are related to the beam 

energy by 

 ~� = v� − (�B��)�v  (56)  

 �� = v� − (�B��)�v�  (57)  

 (~�)� = v� − (�B��)� (58)  

where E stands for the total energy (kinetic plus rest mass) and �B��	is the proton rest mass.  

The physical interpretation of +Q is that on average a particle will undergo only one 

scatter event that is greater than the angle +Q throughout the entire target (Gottschalk et al. 1993).  

The physical interpretation of +H is that it is a cutoff angle for distant collisions (from the 

nucleus) for which there is a departure from the Rutherford law (which falls off as +'�) 

(Gottschalk et al. 1993).  Equation (55) is an approximation introduced by Moliere for the 

electronic screening based on the Fermi-Thomas model of the atom. 

 Equations (53)-(58) give a library of functions to determine the final +Q,ÜÝDG�  and +H,ÜÝDG� .  

From there, Moliere proposed a term that is the natural logarithm of the effective number of 

collisions in the target (equation (59)) (Gottschalk et al. 1993).  This number can then be used to 

find the reduced target thickness, B (equation (60)) (Gottschalk et al. 1993).  The characteristic 

multiple scattering angle l}, can then be found by equation (61).  The iterative numerical 
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solution of B (equation (60)) can be avoided for clinical energies (3-300 MeV) by applying 

Scott’s (1963) (equation (62)). 

 à = ln  +Q�1.167	+H�� (59)  

 ¡ − ln¡ = à (60)  

 l} = +Q√¡ (61)  

 ¡ = 1.153 + 2.583	 log(p +Q�+H�� (62)  

In equations (59)-(62), we have represented +Q and +H without the thin to illustrate that these 

equations apply for any characteristic angle and any screening angle. 

To adapt equations (53)-(55) to a thick target calculation (i.e., in a semi-infinite slab 

geometry), energy loss and material dependency must be taken into account.  These factors are 

presented in the original Moliere theory (c.f. Bethe 1953).  Thus, the thick target characteristic 

single scattering angle is given by equation (63) and the thick target electronic screening angle is 

given by equation (64).  In the calculation of the thick target electronic screening angle (equation 

(64)), the Moliere theory must be corrected for scattering from atomic electrons using Fano’s 

(1954) correction factor (equation (65)).  While Fano’s original correction was only valid for a 

thin target, Scott (1963) extended Fano’s correction factor for thick targets (equation (65)). 

 +Q,ÜÝDQ�� = 4���(�ħ�)� c �(JN)	!�#(JN) �#�(JN)�#(JN) � 1~�(JN)�� OJ′#
S

p  (63)  

 

ln�+H,ÜÝDQ�� � = 4���(�ħ�)�+Q,ÜÝDQ�� 	c �(JN)	!�#(JN) �#�(JN)�#(JN)	#
S

p  

							C	 � 1~�(JN)�� �ln ß#(JN) − �#(JN)�#(JN) 	OJ′ 
(64)  
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 �#(JN) = ln Ë1130	�#'
�0(JN)  �(JN)1 − ��(JN)�

�Ì − á# − 12��(JN) (65)  

In equations (63)-(65), explicit depth dependence is included in several terms and a summation 

over elements of a given compound or mixture is also included (note that, for instance, �# refers 

to the atomic mass of the jth element in the target compound).  ß#(JN) is computed according to 

equation (55) by substituting Z with �#(JN)	and replacing pc with ~�(JN)	and β with �(JN).  The 

fluence for the Moliere distribution is then given by 

 W(â)	Oâ = â	Oâ �W(p)(â) + W(()(â)¡ + W(�)(â)¡�   (66)  

where  

 W(G)(â) = 1 !c äp(âE)	E	exp	−E�4 �E�4 	ln E�4 �G OEV
p  (67)  

and 

 â = ll} . (68)  

The function äp	in equation (67) denotes a Bessel function.  The first term in equation (66) is a 

standard Gaussian and the remaining two terms are corrections to account for large-angle 

scattering and plural scattering. 

To find l} 	for the thick angle equations, we would again apply equations (59)-(61) using 

the thick target single-scattering angles in equations (63) and (64).  However, this characteristic 

scattering angle must be used in the three-term fluence equation (equation (67)) presented by 

Moliere (c.f. Bethe 1953) and cannot be used in a Gaussian (because it was not derived to fit the 

form of a Gaussian).  In order to take advantage of the Moliere calculation for single Gaussian 

transport, the Hanson et al. (1951) approximation is applied.  The RMS width of the Hanson 

distribution is taken to be the width at which the total Moliere fluence falls to 1/� (here, e refers 
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to the natural number 2.7182…) of its maximum value; hence, the Hanson approximation 

provides a fitted Gaussian to the Moliere fluence distribution with a RMS width that is 

equivalent to the 1/�	width of the Moliere distribution.  Hanson’s approximation, for the 

purposes of clinical dose calculation, sufficiently accounts for all three of the scatter terms 

included in the Moliere theory.  Thus, the Hanson distribution will give an excellent description 

for the primary fluence of a pencil beam.  Hanson’s approximation is said to be within 2% of 

measurements (whereas Moliere theory is definitive) (Gottschalk et al. 1993).   

The width of the Hanson angular distribution lå is related to the Moliere characteristic 

multiple scattering angle	l} by  

 lå = l}s1 − 1.2/¡ (69)  

where the square root term is a factor to convert the width of the Moliere angular distribution to 

1/�	of its maximum value.  The fluence for the Hanson distribution is given by 

 W(l)	Ol = 12�	lå �C~ �−l�2	lå . (70)  

D.3 Highland Equation 

Some have regarded the task of performing a full Moliere calculation to be too 

complicated for practical implementation.  To address this issue, Highland (1975) provided a 

simple parameterization of Hanson’s approximation of Moliere theory which depends solely on 

radiation length in materials, which are contained in standard lookup tables for several materials.  

The thin target Highland equation is given by 

 låæ,ÜÝDG = 14.1~� È�J�2 1 + 19 log(p ��J�2�®, (71)  

where �2 is the radiation length of the target.  Gottschalk et al. (1993) extended this formula to 

thick targets by allowing z to become infinitesimally small and added contributions from låæ,ÜÝDG 
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in quadrature, allowing the pv in the denominator to vary with depth.  Thus, the Highland thick 

target formula is 

 låæ,ÜÝDQ� = 14.1 �1 + 19 log(p �J@2@�2 �Èc � 1~�(JN)�� �(JN)�T(JN) OJ′S
p  (72)  

where the bracketed term in equation (71) has been taken out of the integral to serve as a 

correction on the entire target thickness (Gottschalk et al.1993).  Highland theory is said to be 

within 5% of measurements (Highland (1975)). 
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