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Abstract

In this dissertation we begin with a brief introduction to quantum optics concentrating on

the topics of the noise of quantum optical states, quantum estimation theory, quantum in-

terferometry and the atom-field interaction. This background is necessary for understanding

the discussions in later chapters. In particular, quantum interferometry, which is optical

interferometry when the light source is a quantum mechanical state, plays a central role

in this dissertation. In Chapter 2 we discuss the phase estimation sensitivity of quantum

metrology when photon loss is present. In Chapter 3 we extend the discussion to include

the phase fluctuation of the system caused by the environment. We model our metrological

system with the Mach-Zehnder interferometer (MZI) and use a light field in the symmetric

number-path entangled state as the source. In both chapters we use the parity operator as the

detection scheme and show that it is optimal under pure dephasing. In Chapter 4 we discuss

the application of quantum optical states in remote sensing and propose a new scheme for a

quantum radar. Again, our scheme consists of a MZI and a coherent light source. It is shown

that using only coherent states of light and quantum homodyne detection, super-resolving

ranging and angle determination are achievable. Chapter 5 is devoted to the generation of

a super-resolving single-photon number-path entangled state which may serve as a proof-of-

principle prototype for quantum lithography. The repeated implementation of MZIs is shown

to be able to remove photons coherently from both modes of a symmetric number-path en-

tangled state with arbitrarily high photon number. Lastly, in Chapter 6 we introduce the

phenomenon known as polarization self-rotation and discuss its potential in generating a

squeezed vacuum state, which has a huge impact in quantum interferometry.

v



Chapter 1
Introduction

Quantum optics is the study of radiation, mostly in the optical frequency regime, based on

the quantum mechanical theorem. It involves the generation, propagation and detection of

a light field and its interaction with atoms and molecules. Quantum mechanics was born

due to Planck’s assumption of simple harmonic oscillators with discrete energy level in the

wall of a black-body. Although Planck treated the radiation wave as a classical wave, the

idea of ‘quantized particle’ later inspired Einstein, in his effort to explain the photoelectric

effect, to introduce the concept of photons of the radiation field. The unification of the

wave- and particle-like aspect of light was achieved by Dirac who associated each mode of

the radiation field with a quantized simple harmonic oscillator [1, 2]. In this new theory

photons are interpreted as the excitations of normal modes of the electromagnetic field and

the old visualization of photons as ‘wave-packet’ are replaced with non-local oscillations

spread out the space. In the first part of this introduction, we present a brief introduction

to the quantization of radiation field.

1.1 Field Quantization and Quantum Noise

1.1.1 Field Quantization and States of Radiation Field

Classically speaking, the radiation fields in free space obey the Maxwell’s equations [3], which

are a set of partial differential equations read

∇ · E = 0,

∇ ·B = 0,

∇× E =− ∂B

∂t
,

∇×B = µ0ε0
∂E

∂t

,

1



where ε0 and µ0 are the free space permittivity and permeability, respectively, and µ0ε0 = c−2

where c is the speed of light. It leads to the wave equation

∇2E− 1

c2

∂2E

∂2t
= 0.

We start with exploiting the connection between electromagnetic (EM) field in a cavity and

the simple harmonic oscillators. Assuming an EM field polarized in the x direction and a

perfect empty one-dimensional cavity of length L, the electric field propagating in the z

direction can written as a summation over all possible normal modes with frequencies ωj as

E(z, t) =
∑

j

Ajqj(t) sin(kjz)x̂.

Here kj = ωj/c is the wave vector of jth mode and qj is the time-dependent amplitude.

Given the vanishing boundary conditions on both ends of the cavity we have kj = jπ/L,

with j = 1, 2, 3..., and

Aj =

(
2ω2

j

V ε0

)1/2

,

where V is the cavity volume. This leads to the associated magnetic fields being

B(z, t) =
1

c2

∑

j

Aj
q̇j(t)

kj
cos(kjz)ŷ,

and the total Hamiltonian being

H =
1

2

∫
dV

(
ε0E

2 +
1

µ0

B2

)

=
1

2

∑

j

(ω2
j q

2
j + p2

j),

where pj = q̇j. In analogy to the simple harmonic oscillator with unit mass, it is easy to

show qj and pj have the dimensions of position and momentum, respectively. By imposing

the commutation relation that [qi, pj] = i~δij, the canonical variables transfer into Hermitian

operators and the field is quantized.

2



It is useful to introduce the dimensionless non-hermitian field operators such that

aj =

√
1

2~ωj
(ωqj + ipj),

a†j =

√
1

2~ωj
(ωqj − ipj),

and [a†i , aj] = δi,j. The electric field and Hamiltonian then become

E =
E0

2

∑

j

(
aei(kz−ωt) + a†e−i(kz−ωt)

)
,

H =
∑

j

~ωj
(
a†jaj +

1

2

)
. (1.1)

We may now consider three very important kinds of state of the EM field, the photon

number or the Fock state, the coherent state, and the squeezed state. For simplicity, we

also assume these states are of single-mode. The Fock states |n〉 are the eigenstates of the

Hamiltonian H with eigenvalue n, where n is the number of photon contained in the field.

The photon number operator is given by N = a†a and

N |n〉 = n|n〉,

|n〉 =
1√
n!

(
a†
)n|0〉.

The set {|n〉} constitutes a complete orthonormal basis of the Hilbert space, namely,

〈m|n〉 = δmn,

∞∑

n=0

|n〉〈n| = 1.

Given that

a|n〉 =
√
n|n− 1〉,

a†|n〉 =
√
n+ 1|n〉,

a|0〉 = 0,

3



a and a† are known as the annihilation and creation operators, respectively, and |0〉 is the

vacuum state. It is also important to note that H|0〉 = 1/2~ω, which is the zero point energy

arising from vacuum fluctuations. Photon number states are highly non-classical and are

difficult to generate experimentally.

On the other hand, coherent states |α〉 closely resemble the output states of a coherent

laser. They are defined as the eigenstates of the annihilation operator are called coherent

states

a|α〉 = α|α〉.

In the number state basis we have

|α〉 = e−
|α|2

2

∑

n

αn√
n!
|n〉,

where the coefficients come from normalization of the coherent states. The average photon

number of a coherent state is n̄ = |α|2. Alternatively, the coherent states can be generated

by applying the displacement operator D(α) to the vacuum state, where

D(α) = exp(αa† − α∗a).

Finally we introduce the squeezed states defined as

|α, ξ〉 = D(α)S(ξ)|0〉,

S(ξ) = exp
(1

2
(ξ∗a2 − ξa†2)

)
,

where S(ξ) is the squeezing operator with ξ = reiθ and r is the squeezing parameter, θ is the

squeezing angle. Squeezed state are the eigenstates of the operator µa+ νa† with µ = cosh r

and ν = eiθ sinh r, such that

(µa+ νa†)|α, ξ〉 = (α cosh r + α∗eiθ sinh r)|α, ξ〉.

The average number of photon in a squeezed state is

〈S|a†a|S〉 = |α|2 + sinh2 r.

4



In the limit of r = 0 a squeezed state reduces to a coherent state. In the following subsection,

we discuss the noise feature of the coherent and squeezed states.

1.1.2 Quantum Noise

According to the Heisenberg Uncertainty Principle (HUP), two observables A and B of a

physical system cannot be simultaneously known to arbitrary high precision if they have

nonzero commutation relation. Namely,

∆A∆B ≥ 1

2
|〈[A,B]〉|,

where ∆O =
√
〈O2〉 − 〈O〉2 with O = A,B, is the uncertainty of the corresponding observ-

able. For the particular case of a particle, its position x and momentum p must obey the

relation such that

∆x∆p ≥ ~
2
.

It is then clear that a more accurate determination of the particle’s position must be com-

pensated with a less precise value of its momentum, and vice versa. Quantum radiation fields

have to obey HUP as well. One of the consequences of this is the quantum noise, i.e., the

ever-present quantum fluctuation of the EM field. To show this we introduce yet another set

of dimensionless Hermitian operators

X1j =
aj + a†j

2
,

X2j =
aj − a†j

2i

which describe a pair of quadratures of the electric field. Eq. (1.1) for a single-mode field

then reads

E = E0

(
X1 cos(kz − ωt) +X2 sin(kz − ωt)

)
.

It is clear that X1 and X2 are associated with field amplitudes oscillating out of phase by π/2.

Therefore, the expectation values of this pair of operators constitute a phase space picture
5



where the feature of states can be easily visualized. In addition, the X1 and X2 operators

are usually called the amplitude and phase quadrature operators, respectively. They have

the commutation relation [X1, X2] = i/2. This gives rise to the uncertainty relation

∆X1∆X2 ≥
1

4
.

For a coherent state |α〉, it is easy to see that

〈X1〉 =
1

2

(
α + α∗

)
,

〈X2〉 =
1

2i

(
α− α∗

)
,

and ∆X1 = ∆X2 = 1/2. Thus a coherent state can be pictured as an error circle of radius

1/2 centered (Re[α],Im[α]) in the phase space (see Figure 1.1.) If consider the time evolution

of the state of the radiation field, i.e., α = |α| exp(−iωt), the error circle will rotate clockwise

with frequency ω in the phase space. The connection between the phase space picture and

the time-dependent-amplitude picture of a field in coherent state is shown in Figure 1.2. It

is easy to see that the quantum uncertainties of an electric field in a coherent state do not

depend on the phase and that they are equal in the amplitude and phase quadratures. This

quantum noise is the well known shot-noise, which originates from the discrete nature of

photons. It is surprising that this noise exists even when α = 0. It is therefore called the

vacuum fluctuation and is one of the hallmarks of quantum optical theories.

X2

X1

(a)

φ

∆φ

1/2

1/2

X2

X1

(b)

1/2er

Y2

Y1

|α|2
φ

1/2e−r

θ/2

FIGURE 1.1: The phase representation of (a) a coherent state |α〉 with α = |α|eiφ and (b) a
squeezed version of it, namely, |α, ξ〉 = S(ξ)|α〉 with ξ = reiθ.
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X1 〈E(t)〉

tX2

FIGURE 1.2: The size of the error circle of a field in coherent state does not change while
revolving in the phase space. The expectation value of the electric field is the projection onto
an axis parallel with X1.

Next we consider a squeezed state |α, ξ〉 with ξ = reiθ. We first introduce the rotated

quadrature operators Y1, Y2 such that


Y1

Y2


 =




cos θ
2

sin θ
2

− sin θ
2

cos θ
2






X1

X2


 ,

or equivalently Y1 + iY2 = (X1 + iX2)e−iθ/2. It is straightforward to show that

〈Y1 + iY2〉 = αe−θ/2,

∆Y1 =
1

2
e−r,

∆Y2 =
1

2
er.

The phase space picture of such a squeezed state is shown in Figure 1.1. It should be noted

that the fluctuations are now both phase (θ) dependent and different in perpendicular quadra-

tures, which is quite different from the case of coherent states. Moreover, a time-dependent

visualization of squeezed states is shown in Figure 1.3.

1.2 Quantum Estimation via Optical Interferometry

An estimation theory is required when certain parameters of interest are not directly accessi-

ble by measurement, either because of unavoidable noise in the measuring process or due to

there being no appropriate observable. Both conditions are fulfilled in the particular case of

quantum phase measurement — there is no universally accepted quantum phase operator [4]

7



and ever-present noise! Throughout this dissertation, we consider quantum optical intefer-

ometry as our measurement scheme and try to extract phase information of the target out of

the signals. The target can be the position of a fast moving object or the phase shift caused

by some external field. In this section, we first introduce the basic idea of quantum opti-

cal inteferometry and the performance of several optical states in an interferometric setup,

then we present the Quantum Cramér-Rao Bound (QCRB) as a variant of the HUP. When

some detection scheme in quantum interferometry is able to saturate the QCRB, we usually

consider this scheme to be optimal. In Chapter 3, for example, we will show that the parity

detection is optimal even when phase fluctuation is present.

1.2.1 Quantum Optical Interferometry

A typical Mach-Zehnder interferometer (MZI) is shown in Figure 1.4. Typically passive

lossless four-port interferometers can be described using Schwinger notation [5]. First we

X1 〈E(t)〉

tX2

X1 〈E(t)〉

tX2

(a)

(b)

FIGURE 1.3: The phase space representation of a electric field in a squeezed state with (a)
initial squeezing in phase quadrature, and (b) initial squeezing in amplitude quadrature.
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ain

BS1 BS2

D

Mirror

Mirror

ϕ

bin

aout

bout

FIGURE 1.4: Schematic of a Mach-Zehnder interferometer. It includes two 50:50 beam split-
ters, two mirrors and a phase shifter ϕ, which mimics the unknown phase we want to measure.
a and b are the input modes of the MZI while c and d are the output modes. D represents
any measurement may be carried out at the output for information extraction.

introduce the angular momentum operators in terms of the two optical modes a and b on

one side of the beam splitter (BS)

J =




Jx

Jy

Jz




=
1

2




a†b+ b†a

−i(a†b− b†a)

a†a− b†b



,

and J0 = (a†a + b†b)/2, which obey [Ji, Jj] = iεijkJk and [J0, Ji] = 0 (i = x, y, z). Therefore

the common eigenstate of J0 and Jz is the two-mode Fock state

|j, µ〉z = |j + µ, j − µ〉a,b (1.2)

with eigenvalues j = 〈J0〉 and µ = 〈Jz〉. Note that the representative Hilbert space is spanned

by the complete orthonormal basis |j, µ〉 with µ ∈ [−j, j]. Next, it can be shown that the

operation of a BS is given by [6]

Jout = eiαJzeiβJyeiγJzJine
−iγJze−iβJye−iαJz ,

in the Heisenberg picture, and

|ψout〉 = e−iαJze−iβJye−iγJz |ψin〉
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in the Schrödinger picture. Here α, β, and γ are the Euler angles parameterizing SU(2) and

physically they are related to the transmission and reflectance coefficients. In parallel we may

write the BS operation in terms of the input modes ain, bin and the output modes aout, bout

as


aout

bout


 =



ei(α+γ)/2 cos β

2
e−i(α−γ)/2 sin β

2

−ei(α−γ)/2 sin β
2

e−i(α+γ)/2 cos β
2






ain

bin


 .

For example, in the angular momentum picture, a 50:50 BS causes a ±π/2 rotation of the J

vector around the x axis, i.e., e±iπJx/2Je∓iπJx/2; in the field operator language, this amounts

to


aout

bout


 =

1√
2




1 ∓i

∓i 1






ain

bin


 .

Similarly, the phase shift ϕ can be understood as a rotation of J by an angle ϕ or aout =

ain, bout = eiϕbin.

The effect of the entire MZI then becomes

U = eiπJx/2e−iϕJze−iπJx/2

= e−iϕJy , (1.3)

which is a ϕ rotation around y axis. Accordingly we have


aout

bout


 =




cos ϕ
2
− sin ϕ

2

sin ϕ
2

cos ϕ
2






ain

bin


 .

By assuming D = a†outaout − b†outbout = 2Jz,out, which is the detected intensity difference, we

may calculate the output signal as

〈Jz,out〉 = 〈ψin|Jz,out|ψin〉

= 〈ψin|U †JzU |ψin〉

= − sinϕ〈ψin|Jx|ψin〉+ cosϕ〈ψin|Jz|ψin〉
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and

〈J2
z,out〉 = 〈ψin|U †J2

zU |ψin〉

= sin2 ϕ〈ψin|J2
x |ψin〉 − sinϕ cosϕ〈ψin|JxJz + JzJx|ψin〉+ cos2 ϕ〈ψin|J2

z |ψin〉.

The minimum detectable phase shift then can be obtain by [7]

δϕ =
∆Jz,out

|∂〈Jz,out〉/∂ϕ|
. (1.4)

We now apply this formalism to coherent states. Consider the coherent input state |α, 0〉 =

|α〉a|0〉b. It is easy to show that

〈Jx〉 = 〈JxJz〉 = 〈JzJx〉 = 0,

〈Jz〉 = 1/2|α|2,

〈J2
x〉 = 1/4|α|2,

〈J2
z 〉 = 1/4|α|4.

Then

δϕ =
1√

n̄| sinϕ| ,

where n̄ = |α|2 is the average number of photon in the state. The 1/
√
n̄ dependence of

phase uncertainty is another manifestation of the shot-noise and is called the shot-noise

limit (SNL). This agrees with the HUP which demands that ∆ϕ∆N ≥ 1 and ∆N =
√
n̄

for a coherent state (see Figure 1.1.) SNL is the standard noise level that all noise levels are

compared against. Any state leading to a sensitivity level lower than the SNL is called super

sensitive.

1.2.2 Fisher Information and Cramér-Rao Bound

Classical Fisher Information (CFI) leads to the ultimate precision in estimating an known

parameter ϕ when a particular measurement X(x) is given (x is one realization of the X.)
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By assuming the information-carrying system is in a state ρϕ we have the likelihood function

[8, 9]

p(x|ϕ) = Tr[X(x)ρϕ]. (1.5)

From this probability distribution we can estimate the value of ϕ by using an estimator

function ϕest(x). The whole problem then reduces to finding the optimal estimator function

that minimizes the uncertainty in the estimation process, i.e., minimizes

(∆ϕ)2 =

∫
p(x|ϕ)(ϕest − ϕ)2dx.

We assume the estimator is unbiased such that

∫
(ϕest(x)− ϕ)p(x|ϕ)dx = 0.

Differentiating both sides of the equation with respect to ϕ gives

∫
(ϕest(x)− ϕ)p(x|ϕ)

(
∂ln p(x|ϕ)

∂ϕ

)
dx = 1,

where the 1 on the right hand side comes from the normalization of the probability density

function. Now the Cauchy-Schwarz inequality leads to

∫
(ϕest(x)− ϕ)2p(x|ϕ)dx

∫
p(x|ϕ)

(
∂ln p(x|ϕ)

∂ϕ

)2

dx ≥ 1.

By defining the classical Fisher information

F =

∫
p(x|ϕ)

(
∂ln p(x|ϕ)

∂ϕ

)2

dx

=

∫
1

p(x|ϕ)

(
∂p(x|ϕ)

∂ϕ

)2

dx, (1.6)

we reach

(∆ϕ)2 ≥ 1

F
,
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where
√

1/F is called the classical Cramér-Rao bound (CCRB). If ν independent measure-

ments are conducted, the central limit theorem enhances this precision to

(∆ϕ)2 ≥ 1

νF
.

It should be emphasized that the CCRB is the bound that applies to all unbiased estimators,

ϕest, for a fixed probability distribution p(x|ϕ) [10]. Recall in Eq. 1.5 that p(x|ϕ) depends

on the particular choice of measurement X (a POVM). Therefore, the next logical step is

to look for the ultimate limit that bounds all possible measurements. This generalization of

CCRB was first proposed by Braunstein and Caves in 1994 and was beautifully proved in

that same paper [10].

The new bound is called the quantum Cramér-Rao bound (QCRB) and is inversely pro-

portional to the quantum Fisher information (QFI), FQ [11, 10, 12], which is independent of

the measurement procedure. Recall that any detection scheme that saturates this bound is

considered to be optimal. To quantify the QFI of a state ρϕ, we first introduce the symmetric

logarithmic derivative, L, which is a self-adjoint operator satisfying the equation

∂ρϕ
∂ϕ

=
1

2
(Lρϕ + ρϕL). (1.7)

In the eigenbasis of ρϕ its elements satisfy

λi + λj
2
〈i|L|j〉 = 〈i|∂ρϕ

∂ϕ
|j〉,

for all i and j, where λi and |i〉 are the eigenvalue and the corresponding eigenvector of ρϕ.

For any Hermitian operator O and ρ′ϕ = ∂ρϕ/∂ϕ, we have [9]

Tr[Oρ′ϕ] = Re(Tr[ρϕOL]).
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By identifying that ∂p(x|ϕ)/∂ϕ = Tr[Xρ′ϕ], Eq. (1.6) becomes

F =

∫
(Tr[Xρ′ϕ])2

Tr[Xρϕ]
dx

=

∫
(Re(Tr[ρϕXL]))2

Tr[Xρϕ]
dx

≤
∫ |Tr[ρϕXL]|2

Tr[Xρϕ]
dx

=

∫ ∣∣∣∣Tr

[ √
ρϕX

Tr[Xρϕ]

√
XL
√
ρϕ

]∣∣∣∣
2

dx

≤
∫

Tr[XLρϕL]dx

= Tr[ρϕL
2]

= FQ,

where the second inequality is from the Schwarz inequality |Tr[A†B]|2 ≤ Tr[A†A]Tr[B†B]

with A =
√
ρϕX,B =

√
XL
√
ρϕ and the second last equality is a result of the normal con-

dition of the measurement operator
∫
X(x)dx = 1. Therefore the uncertainty of estimating

the unknown parameter, ϕ, is given by

(∆ϕ)2 ≥ 1

νF
≥ 1

νFQ
,

where 1/
√
FQ is the QCRB.

Finally we consider the estimation sensitivity of extracting the phase information from,

for example, a phase shifted pure state. For a MZI, it is equivalent to having a pure state |ψ〉

inside the interferometer right after the first BS. The generator of the phase shift is given

by exp(−iϕJz) as shown in Eq. (1.3). Denoting D as the measurement operator, we have

∂

∂ϕ
〈D〉 = −i

(
〈ψ|DJz|ψ〉 − 〈ψ|JzD|ψ〉

)
. (1.8)

Assuming 〈D〉 = 0 and 〈Jz〉 = 0, we then have ∆D2 = 〈ψ|DD|ψ〉 = ||ψD〉|2 and similarly

∆J2
z = ||ψJz〉|2. The Cauchy-Schwarz inequality then states that

∆D2∆J2
z ≥ |〈ψD|ψJz〉|2.
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By rewriting the r.h.s. of Eq. (1.8) in terms of |ψD〉 and |ψJz〉, it is easy to show that

∆D2∆J2
z ≥

1

4

∣∣∣∣
∂〈D〉
∂ϕ

∣∣∣∣
2

.

Given

δϕ2 =
∆D2

|∂〈D〉/∂ϕ|2 ,

we have

δϕ2 ≥ 1

4∆J2
z

. (1.9)

Since Jz represents the photon number difference between the two paths inside the MZI and

this difference cannot be larger than the total photon number N , Eq. (1.9) enforces a limit

on the phase uncertainty given by

δϕ2
HL =

1

N2
.

This is the so-called Heisenberg limit, which is a 1/
√
N enhancement over the SNL. We

therefore conclude that to beat the classical noise limit, one should employ optical states

with a large photon number difference inside the MZI. One extreme example is the N00N

state whose photon number difference is equal to the total photon number. Interestingly, the

famous scheme of mixing a squeezed vacuum with coherent light at the input [13] effectively

generates a combination of N00N states inside the interferometer [14].

1.3 The Atom-Field Interaction

Dirac’s quantum theory of radiation also marked the beginning of the quantum mechanical

treatment of the atom-field interaction. The coupling energy was originally introduced into

the total Hamiltonian as a perturbation term. Later, with the invention of high-intensity

and tunable laser light, strong near-resonant field-atom interactions became possible. The

Rabi model is a semi-classical model that correctly describes atom-field interactions when

the radiation field is treated classically, while the Jaynes-Cummings model applies to the
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cases where both atom and field are quantized. In this section we derive a general atom-

field interaction Hamiltonian under appropriate approximations. The application of this

Hamiltonian to both the Rabi and the JC models of a four-level atomic system will be

discussed in Chapter 6.

The system we study here is the interaction between a classical EM field and a simple

atom composed of an electron in the Coulomb field of a stationary nucleus suited at r0. The

field is characterized by the potentials A(r, t) and U(r, t), which includes both the Coulomb

field of the nucleus and the external field interacting with the atom. The total Hamiltonian

is given by

H =
1

2m
(p− qA(r, t))2 + qU(r, t).

In the Göppert-Mayer gauge [15], which is obtained from the Coulomb gauge by the gauge

transformation

χ(r, t) = −(r− r0) ·A⊥(r0, t),

we have

H =
1

2m
(p− qA′(r, t))2 + Vcoul(r) + q(r− r0) · ∂

∂t
A⊥(r0, t), (1.10)

where Vcoul(r) = qUcoul(r). Here the Göppert-Mayer potentials are

A′(r, t)) = A⊥(r, t))−A⊥(r0, t)), (1.11)

U ′(r, t)) = Ucoul(r)− (r− r0) · ∂
∂t

A⊥(r0, t).

Given E(r, t) = −∂/∂tA⊥(r, t) and dipole operator d = q(r− r0), Eq. (1.10) becomes

H =
1

2m
(p− qA′(r, t))2 + Vcoul(r)− d · E(r0, t). (1.12)

In the optical regime, the wavelength of the radiation field is much longer than the size of

the atom, therefore we may adopt the long-wavelength approximation A⊥(r, t) ≈ A⊥(r0, t).
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In this case Eq. (1.12) requires that A′(r, t)) = 0 and the final form of the Hamiltonian

becomes

H = H0 +H1, (1.13)

H0 =
p2

2m
+ Vcoul(r), (1.14)

H1 = − d · E(r0, t). (1.15)

This Hamiltonian is known as the electric dipole Hamiltonian, and it fully determines the

dynamics of the electron.
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Chapter 2
Quantum Metrology under Photon Loss

In this chapter we discuss the metrological properties of the symmetric number-path en-

tangled states and their performances under photon loss. We first introduce the maximally

number-path entangled state, i.e., the N00N state, followed by the discussion on the improved

version of it—the M&M′ state. It is shown that although N00N states of light is capable of

reaching the Heisenberg limit with certain detection schemes, they are very vulnerable un-

der photon loss. The M&M′ states are specifically designed to overcome this disadvantage of

N00N states and are robust against photon loss.

In this chapter we calculate both the visibility and sensitivity of the phase signal from

the interferometer with M&M′ being the input state. On one hand, the signal from parity

detection can be negative therefore the ordinary definition of visibility is not applicable.

We define a ‘relative visibility’ to solve this problem. A promising goal of this chapter is to

provide a strategy for choosing the symmetric number-path entangled state that optimizes

either visibility or sensitivity for a given loss.1

2.1 The N00N and M&M′ States

The application of quantum states of light has long been proposed to achieve greater reso-

lution, and sensitivity than what is possible classically [16, 13]. A maximally number-path

entangled state is a superposition of all photons in one path with none in the other, and vice

versa. These states are known as N00N states and defined as

|N :: 0〉a,b =
1√
2

(|N, 0〉a,b + |0, N〉a,b), (2.1)

1Part of this chapter previously appeared as Kebei Jiang, Chase J. Brignac, Yi Weng, Moochan B. Kim, Hwang Lee, and

Jonathan P. Dowling, Strategies for choosing path-entangled number states for optimal robust quantum-optical metrology in the
presence of loss, Phys. Rev. A, 86, 013826 (2012). It is reprinted by permission of the American Physical Society (APS). See

the permission letter in Appendix B.
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where a and b indicate the two paths of a two-mode interferometer. On one hand, it is

straightforward to see that a N00N state is a number-path entangled state, as a measurement

of photon number on one path will collapse that on the other path. Mathematically, it

cannot be written as a product state [17] and strongly violates some Bell-type inequalities

[18]. On the other hand, even though no standard measure of multipartite entanglement

is universally accepted, N00N states are usually defined to be maximally entangled for its

apparent resemblance to maximally entangled bipartite states. In addition, N00N states are

mathematically equivalent to the Greenberger-Horne-Zeilinger (GHZ) states, both of which

are the J = ±N/2 subspace of the N pseudo-spin Hilbert space. For this reason, we adopt the

Schwinger notation discussed in Sec. 1.2.1 in later calculations. Readers who are interested

in the equivalence between optical and atomic spectroscopy are referred to Ref. [19] and [20].

The N00N state enjoys a fine reputation in quantum metrology and lithography because

of its ability to generate multifold phase-dependent signals, which in turn leads to super-

resolution (always possible) and super-sensitivity (tricky with loss, see Ref. [21].) Super-

resolution and sensitivity refer to a better performance than those of a coherent state |α〉.

Here we present a brief comparison between these two kinds of states under a phase shift and

demonstrate the superiority of the N00N state in phase estimation. The unitary evolution

associated with a phase shifter is given by U(ϕ) ≡ exp(iϕn), with n being the photon number

operator. Assuming the phase shifter in suited on path b of the interferometer and it is easy

to show that

U(ϕ)

∣∣∣∣
α√
2
,
iα√

2

〉

a,b

=

∣∣∣∣
α√
2
,
iα exp(iϕ)√

2

〉

a,b

,

U(ϕ)|N :: 0〉 =
1√
2

(|N, 0〉a,b + exp(iNϕ)|0, N〉a,b), (2.2)

where |α/
√

2, iα/
√

2〉a,b is the state inside the interferometer given the input state is |α, 0〉a,b.

It is obvious that the N00N states evolves in phase N -times faster than the coherent state.

Consider a intensity-difference measurement of the MZI with coherent state input, we have
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the signal I(ϕ) = I0 cos(ϕ) [22], where I0 ∝ n̄ = |α|2 is the amplitude of the signal. On

the other hand, by using a proper detecting scheme for N00N state input, the signal varies

as I(ϕ) = I0 cos(Nϕ) and this is the origin of all the improvement mentioned before. Both

cases are shown in Figure 2.1, where same wavelength λ and amplitude (i.e. n̄ = N) are

assumed. The rapid oscillation of N00N state signal can be understood as if a ‘big’ single

classical photon (a Bose condensate of the ensemble of N photons) with effective de Broglie

wavelength λ/N is used [23]. As a result, the Rayleigh diffraction limit of λ is beaten by a

factor of N and hence super-resolution. In the case of no loss, the slope at the horizontal axis

crossing of the N00N state signal is N times steeper than that of the coherent state signal,

which gives rise to a
√
N enhancement in sensitivity—super-sensitivity.

However, N00N states tend to decohere easily when photons are lost from the system, which

will be shown in the following sections. This makes N00N states unusable in real life, where

loss is almost always present [24, 25, 26, 27, 28]. Therefore in 2008, Huver et al. proposed

a class of generalized Fock states where decoy photons are introduced to the N00N state in

both arms of a two-mode interferometer [29]. These are called M&M′ states and they are

0 π 2π

+I0

−I0

ϕ = kx

0 π 2π

+I0

−I0

ϕ = kx

ϕ = 2π
x = λ

ϕ = 2π/N
x = λ/N

∆ϕ = k∆x

∆I ∆I

∆ϕ = k∆x

(a) (b)

FIGURE 2.1: The comparison of the detection signals of MZI with its input as (a), a coherent
state and (b), a N00N state, both with wavelength λ. The N00N state signal oscillates N
times faster than the coherent state signal and its maximum slope is N times as steep,
where N = 3 in this case. Improvement of the N00N state over the coherent state leads to
super-resolution and super-sensitivity, respectively. One interpretation is that the ensemble
of N photons can be deemed as a Bose condensate with an effective de Broglie wavelength
of λ/N .

20



denoted as |m :: m′〉 and

|m :: m′〉a,b =
1√
2

(|m,m′〉a,b + |m′,m〉a,b). (2.3)

Here a and b are the two paths of the interferometer and again it is easy to show that

M&M′ states are entangled. Such states can be produced by post-selecting on the output of

a pair of optical parametric oscillators [30]. It was discovered that M&M′ states have better

metrological performance over N00N states in the presence of photon loss (see the heuristic

explanation at the end of Huver’s paper from 2008). In the following sections, we locate

the best performing m and m′ under certain fixed loss, where the photon number difference

(∆m = m−m′) between the two arms in the initial state is set to be N for easy comparison

between the N00N state and the M&M′ state (However, in the following calculation, we treat

the N00N state as a special case of the M&M′ state with m′ = 0 and only differentiate them

when comparison is necessary.)

2.2 Density Matrix

To calculate the density matrix we start with the classical MZI as shown in Figure 2.2,

where the source and the detector are represented by their respective boxes. Similar to the

approach in Ref. [26, 31, 32], the loss in the interferometer is modeled by adding fictitious

beam splitters. Notice that it will not change the density matrix of the field if the beam

splitter is placed before the phase shifter. However, the full density matrix of the field and

environment together will be different for different orders of the beam splitter and phase

shifter. By defining Uφ = einb′φ and UBS = exp
[
iπ
(
b′†vb′ + h.c.

)
/4
]
, it amounts to prove

that U †φU
†
BSρUBSUφ 6= U †BSU

†
φρUφUBS, which is obvious in a Bloch sphere picture. As a matter

of fact, the configuration of these two optical elements can be parametrized and optimized

for noisy quantum metrology. Readers may refer to Ref. [33] for more detail.

The wave function for the M&M′ input state at stage I is defined in Eq. 2.3 and without

loss of generality, we assume ∆m = m−m′ is positive. Then the phase shifter introduces a
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phase shift ϕ on arm b so that the state at stage II becomes (see Figure 2.2)

|Ψ〉II =
1√
2

(
eim

′ϕ|m,m′〉a′,b′ + eimϕ|m′,m〉a′,b′
)

(2.4)

= α|m,m′〉a′,b′ + β|m′,m〉a′,b′ ,

where α = eim
′ϕ/
√

2 and β = eimϕ/
√

2. We can see that because of the different number of

photons being phase-shifted on arm b, the two paths accumulated different phase shifts and

thus provide the possibility of interference upon detection.

The mode transformation caused by the beam splitter is given by [4]

a = t∗aa
′ + r∗av

′
a,

b = t∗bb
′ + r∗bv

′
b, (2.5)

where ti =
√
Ti exp(iϕi) and ri =

√
Ri exp(iψi) (i = a, b) are the complex transmission and

reflectance coefficients for modes a and b, and Ti+Ri = 1. By tracing out the vacuum modes

Source Detector

ϕ

a′ a

b′ b

vb
′

va
′

vb

va

I II III IV

FIGURE 2.2: Schematic diagram of a simplified Mach-Zehnder interferometer with the modes
a and b for the M&M′ states as the input. The original source and detector are ‘hidden’ in
the respective boxes. Two fictitious BS’ are introduced to mimic the loss of photon (or the
damping of the TMHO) into the environment. The upper beam passes through a phase-shifter
ϕ, and the acquired phase depends on the number of difference of photons ∆m = m −m′.
Transformed parity detection is used as the detection scheme at both of the two modes at
stage III inside the interferometer.
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on both paths, we have a density matrix ρab that corresponds to the output field as

ρab = Trva,vb [|Ψ〉III III〈Ψ|]

=
m∑

k=0

m′∑

k′=0

(
|α|2d1|k, k′〉a,b a,b〈k, k′|

+|β|2d2|k′, k〉a,b a,b〈k′, k|
)

+
m′∑

k=0

m′∑

k′=0

(αβ∗d3|∆m+ k, k′〉a,b a,b〈k,∆m+ k′|

+α∗βd4|k′,∆m+ k〉a,b a,b〈∆m+ k′, k|) , (2.6)

where coefficients di(i = 1, 2, 3, 4) are defined as

d1(k, k′) =

(
m

k

)(
m′

k′

)
|Ta|k|Ra|m−k|Tb|k

′ |Rb|m
′−k′ ,

d2(k, k′) =

(
m

k

)(
m′

k′

)
|Ta|k

′ |Ra|m
′−k′|Tb|k|Rb|m−k,

d3(k, k′) =

(
m

∆m+ k

) 1
2
(

m

∆m+ k′

) 1
2
(
m′

k

) 1
2
(
m′

k′

) 1
2

,

× T
1
2

(∆m+2k)
a Rm′−k

a T
1
2

(∆m+2k′)
b Rm′−k′

b

d4(k, k′) =

(
m

∆m+ k

) 1
2
(

m

∆m+ k′

) 1
2
(
m′

k

) 1
2
(
m′

k′

) 1
2

× T
1
2

(∆m+2k′)
a Rm′−k′

a T
1
2

(∆m+2k)

b Rm′−k
b . (2.7)

An equivalent way to describe the loss process is by using the Kraus operators and readers

may refer to Ref. [34, 35, 36] and references therein.

2.3 Parity Detection and Its Signal

In addition to state preparation, achieving super-resolution (rapidly oscillating fringes that

are commonly associated with beating the Rayleigh limit in the specific context of coherent,

interferometric, optical lithography[37, 38, 39, 40])2 and super-sensitivity (beating the shot-

2There are really two common uses of ‘Rayleigh limit’ in optics. There is most common, the minimum angular resolution of

an imaging system to distinguish two points, which is not what we mean here. Second most common, used in the optical coherent

lithography community, is the ability to write interference fringes at less than half the spacing of the imaging wavelength, which
is directly related to the ability to generate the effect of higher frequency oscillations from lower frequency light. That is the

use found in Ref. [40].
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noise limit [41]) usually requires detection schemes with particular properties. For example,

it is straightforward to show that the intensity-differencing signal of a N00N state input is

phase independent and not applicable for phase estimation [22]. Therefore in this chapter,

we use the parity operator, which is originally proposed by Bollinger et al. in the context of

trapped ions [42] and later adopted for optical interferometry by Gerry [43], as our detection

scheme. The parity operator is assigned a parity of +1 if the measured number of photon is

even and a parity of −1 if odd, and is shown to reach the Heisenberg-limited sensitivity when

combined with lossless N00N states [43, 44, 45]. It can be expressed as Π = exp(iπn) in the

number basis or Π = exp(iπ(J0 − Jz)) in Schwinger notation [6, 46, 47]. Readers who are

interested in more details about the parity operator and its application in quantum optical

metrology may refer to Ref. [22].

We start with Π = (−1)J0−Jz at stage IV and transform it back to stage III as Q. The

generator for the beam splitter transformation is Jx, and we have

Q = exp(−iπ
2
Jx)Π exp(i

π

2
Jx)

= exp(iπJ0) exp(iπJy). (2.8)

Following Ref. [47], the parity operator inside the interferometer in number basis becomes

Q =
Ntot∑

n=0

in
n∑

k=0

(−1)k|k, n− k〉〈n− k, k|, (2.9)

where the first summation is over all possible photon loss, and Ntot is the total number of

photons without loss. It is easy to check that Q2 = 1.

With both the density matrix and the parity operator obtained at stage III, it is straight-

forward to calculate the expectation value of the parity operator for an M&M′ state as

〈Q〉 = Tr(Qρ)

= K1 +K2 cos ∆mϕ, (2.10)
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where K1 and K2 are defined as

K1 =
m′∑

k=0

(d1(k, k) + d2(k, k))

=
(
Rm′
a R

m
b +Rm

a R
m′
b

)

× 2F1(−m,−m′; 1;
TaTb
RaRb

), (2.11)

K2 =
m′∑

k=0

(d3(k, k) + d4(k, k))

=Rm′
a R

m′
b Ta

∆m
2 Tb

∆m
2

(
m

∆m

)

× 2F1(−m′,−m′; 1 + ∆m;
TaTb
RaRb

). (2.12)

Here 2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
is the ordinary hypergeometric function [48]. The

Pochhammer symbol within are defined to be

(x)n =





1, if n = 0;

x(x+ 1) . . . (x+ n− 1), if n > 0,

which truncates the infinite summation in the hypergeometric function at n = m′. Note

Eqs. (2.10) and (2.12) reduce to the N00N state result if m = N and m′ = 0.

For later calculations and analysis in this chapter we use loss rates Li ≡ 1− Ti (i = a, b)

instead of the transmission rates Ti following traditional notation in metrology.

2.4 Visibility

We use the parity operator for detection and its expectation value can be negative in certain

regions of parameter space. To quantify the degree of measured phase information we need a

proper definition of visibility. From Eq. (2.12) we can see that K1 decreases and K2 increases

as the loss rate decreases. Hence, K1 and K2 have a range from 0 to 1 and so it is reasonable

to define the measured signal as

S =
K2

K1 +K2

(2.13)
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which is always positive. We can then define a visibility related to the highest phase infor-

mation degree (i.e. strongest signal) as

V (La, Lb) =
S(La, Lb)

S(0, 0)
(2.14)

with S(0, 0) being the signal without loss. This relative visibility has a value from 0 to 1.

2.4.1 Visibility for General Cases

In Figure 2.3, we plot visibility as a function of loss rate. We see that, for M&M′ states with

a large total number of photons, the visibility changes rapidly at high or low loss but slowly

at mild loss.

To clearly see the effect of photon number on visibility, we assume La = Lb = L and plot

visibility as a function of L for different states in Figure 2.4. We observe M&M′ states exhibit

a lower visibility than corresponding N00N states for loss rates lower than 50%, and exhibit

higher visibility for loss greater than 50%. Each row has a fixed photon number difference

and the total number of photons increases from left to right. We can see that with increasing

total number of photons, the distance between the M&M′ state and the N00N state curves

increases. Each column has fixed m′ and the photon number difference increases from top

to bottom. We can see that as the photon number difference increases, the distance between

the M&M′ state and the N00N state curves decreases.

Therefore, to obtain the best visibility, under photon loss less than 50%, N00N states

should be used with N as large as possible, i.e. the bottom row of the figure; for loss greater

than 50%, M&M′ states should be used with as many photons as possible while keeping

photon number difference to a minimum, i.e. the upper right corner of the figure.

Mathematically, the above results can be explained by expanding the visibility of any

M&M′ state around L = 1/2 as

V |L≈ 1
2

=
1

2
+

∆m2

m+m′
(L− 1

2
) +O[(L− 1

2
)2]. (2.15)
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Note that any N00N state is just the corresponding M&M′ state with m′ = 0, therefore it

gives the steepest slope around L = 1/2 in every case. Physically speaking, this result is

different from Ref. [29], where N00N states always have lower visibility than M&M′ states

under any loss. The reason for this discrepancy is that all off-diagonal terms of the density

matrix are included in Ref. [29] while here the parity operator collects only part of the

off-diagonal terms, making the amplitude of the resultant signal smaller.
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FIGURE 2.3: From left to right, top to bottom. Visibility for M&M′ states with ∆m = 1
(|1 :: 0〉 and |3 :: 2〉) and M&M′ states with ∆m = 4 (|4 :: 0〉 and |6 :: 2〉), as a function of
loss rates (dimensionless) in both arms of two-mode interferometer, La and Lb, respectively.
Contour lines represent the values of the visibility.
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2.4.2 Visibility for Extreme Cases

For situations with almost no loss, i.e. the loss rate L→ 0, the visibility function Eq. (2.14)

can be expanded as

V |L≈0 =

(
m

∆m

)
L∆m +O[L∆m+1], (2.16)

which explains the behaviors of visibility curves around L = 0 for different ∆m in Figure 2.4.

Similarly, visibility for very lossy situations can be easily expanded as

V |L≈1 = 1−
(
m

∆m

)
(1− L)∆m +O[(1− L)∆m+1] (2.17)

because of the symmetry of the system. Another example for symmetry is that for 50% loss

the visibilities are calculated to be exactly one half for all m and m′ value, which is the

consequence of Eq. (2.15).

2.5 Sensitivity

Another important quantity in quantum optical metrology is the precision, or sensitivity, of

the phase measurement. The Heisenberg limit for any M&M′ state under loss rate La and Lb

should be 1/Ñ while the corresponding shot-noise limit is 1/
√
Ñ where Ñ = (m+m′)(1−

La/2− Lb/2) is the effective number of transmitted photons. Therefore we usually compare

the performance of different states with the same total number of photons. However, in order

to keep the same resolving power we fix the photon number difference ∆m between two arms

of the two-mode interferometer in this section.

2.5.1 Sensitivity for General Loss

Sensitivity calculated from Eqs. (1.4), (2.10) and (2.12) can be expanded as

δϕ =





1
∆m

+ (m+m′)
∆m

csc(∆mϕ)L+O[L2],

if ∆m is even;

1
∆m

+ (m+m′)
∆m

sec(∆mϕ)L+O[L2],

if ∆m is odd.

(2.18)
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It is then trivial to show that at the limit of L→ 0, M&M′ states and corresponding N00N

states approach minimal phase sensitivity δϕmin = 1/∆m at optimal phase shifts

ϕop =





(2n−1)
2

π
∆m

, if ∆m is even;

n π
∆m

, if ∆m is odd, n = 1, 2, . . . .

(2.19)

For a M&M′ state or N00N state to be able to beat the shot-noise limit under parity

detection, we should have

∆m >
√
m+m′. (2.20)
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FIGURE 2.4: Visibility for M&M′ states (solid black curves) as a function of the dimensionless
loss rate L in both arms of the two-mode interferometer. Each row has a fixed photon number
difference and the total number of photons increases from left to right; each column has a
fixed m′ and photon number difference increases from top to bottom. The dashed red curves
represent the corresponding N00N states with N = ∆m.
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To meet the above criteria, here we choose ∆m = 6 and ϕ = π/(2∆m), assuming La = Lb for

practical purposes. In Figure 2.5 it can be seen that |6 :: 0〉 and |8 :: 2〉 give sub-shot-noise

performances for loss less than about 10%, and |6 :: 0〉 gives higher sensitivity than |8 :: 2〉

up to 25% loss; for loss greater than 25%, |6 :: 0〉 is outperformed by |8 :: 2〉 but both are

worse than shot-noise.

2.5.2 Sensitivity for Smaller Loss

Often we are more interested in low-loss regions where the sensitivity of M&M′ states and

N00N states are comparable to the shot-noise limit. Figure 2.6 shows that the sensitivity of

|6 :: 0〉 and |8 :: 2〉 are noticeably worse than the respective shot-noise limit under moderate

loss (35% in this case). Here |8 :: 2〉 turns out to be more robust than |6 :: 0〉 as predicted in

Ref. [29].

This robustness, however, does not apply to situations where the loss is even smaller. In

Figure 2.7 we show the sensitivity of |6 :: 0〉 and |8 :: 2〉 under 5% loss. Here both states

give higher sensitivity than the shot-noise limit and N00N is the best of all. In contrast, the

result in Ref. [29] shows that, with a certain detection operator, M&M′ states always give
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FIGURE 2.5: Sensitivity for M&M′ states as a function of the dimensionless loss rate L in both
arms of a two-mode interferometer. Solid black curve corresponds to |6 :: 0〉, dot-dashed red
curve to 1/

√
6(1− L), dashed black curve to |8 :: 2〉 and dotted red curve to 1/

√
10(1− L).

Parity detection using M&M′ states is worse than shot-noise under around 10% loss.
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FIGURE 2.6: Sensitivity of M&M′ states as a function of phase shift ϕ (measured in unit of
π) from a two-mode interferometer under 35% loss. Solid black curve corresponds to |6 :: 0〉,
dot-dashed red line to 1/

√
6× (1− 0.35), dashed black curve to |8 :: 2〉 and dotted red

line to 1/
√

10× (1− 0.35). While the sensitivity of M&M′ and N00N states are worse than
respective shot-noise limit, M&M′ is more robust as expected.
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FIGURE 2.7: Sensitivity of M&M′ states as a function of phase shift ϕ (measured in unit of
π) from a two-mode interferometer under 5% loss. Solid black curve corresponds to |6 :: 0〉,
dot-dashed red line to 1/

√
6× (1− 0.05), dashed black curve to |8 :: 2〉 and dotted red line

to 1/
√

10× (1− 0.05). While the sensitivity of M&M′ and N00N states are better than their
respective shot-noise limits, N00N is more robust, which is unexpected.
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better sensitivity than using N00N states and the shot-noise limit no matter how high the

loss. This discrepancy indicates that the parity operator is not the optimal detector that

always favors M&M′ states (see conclusion for more discussion.)

2.6 Conclusion

We calculate the visibility and sensitivity of a phase-carrying signal by using M&M′ states

with parity detection in a lossy environment. In our calculation, we take the photon number

difference between the two arms of the two-mode interferometer ∆m to be fixed to maintain

the desired resolving power. Since visibility is not well defined for signal using parity detec-

tion, we use a visibility which is measured against signal without loss. To have high visibility,

one should use N00N states with large N (when loss is low) and M&M′ states with large

m+m′ but small ∆m (when loss is high). Considering only sensitivity, our calculation shows

that N00N states with large N or M&M′ states with large ∆m under low loss are capable of

performing with sub-shot-noise limit precision.

It is worthwhile to mention two points. First, modeling loss with a single fictitious beam

splitter is sufficient for practical purposes. If one reverses the order of the phase shifter and the

beam splitter in Figure 2.2, the same density matrix will be obtained as proved in Ref. [35, 36].

This also means our model is equivalent to a continuous loss model. Second, Ref. [29] uses

a detection operator that is carefully chosen so that it sums up all off-diagonal terms of

the density matrix and provides sub-shot-noise sensitivity. Meanwhile the parity operator

collects some of the diagonal and off-diagonal terms. The inclusion of diagonal terms may

reduce the signal size and therefore visibility or sensitivity of phase information. However,

such an operator in Ref. [29] is yet to be produced in a lab setting. On contrary, a lot of

effort has been made to realize parity measurements. A straightforward parity measurement

relies on high precision photon number-resolving detection at single-photon level, which has

been demonstrated experimentally in near-infrared region [49]. Alternative parity detection

setups without number-resolving detectors have been proposed as well [50, 51].
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Chapter 3
Quantum Metrology under Phase Fluctuation

In the previous chapter we discussed the performances of symmetric number-path entangled

states, both the N00N state and the M&M′ state, under different photon losses. In real life

applications such as quantum radar, phase fluctuation due to different noise sources can

further aggravate the phase-sensitivity by adding significant noise to the phase ϕ to be esti-

mated or detected. For instance, when one considers propagation of the entangled states over

distances of kilometers, through say the atmosphere, then atmosphere turbulence becomes

an issue as it can cause uncontrollable noise in the phase. In this sense, phase-fluctuation

stands as the most detrimental for phase estimation, rendering the quantum metrological

advantage for achieving super-sensitivity and super-resolution useless. It is therefore neces-

sary to investigate the impacts of such random phase-fluctuations on the phase-sensitivity

of entangled states. We consider both the M&M′ and N00N states, and show how the phase-

sensitivity and visibility of the phase signal are affected by added phase-fluctuations caused

by turbulence noise.1

Here we first derive the master equation for a two-mode harmonic oscillator (TMHO)

under pure phase fluctuation and apply it to the M&M′ state in presence of the turbulence

noise. In particular, we study the parity detection [43] and calculate the lower bound of the

phase-fluctuated sensitivity. It is shown that the M&M′ state, which is more robust against

photon loss than the N00N state, performs equally well when subject to phase fluctuations.

At the end, we calculate the QCRB of our dephasing system, which gives the ultimate limit

1Sections 3.3 and 3.4 previously appeared as Bhaskar Roy Bardhan, Kebei Jiang, and Jonathan P. Dowling, Effects of
phase fluctuations on phase sensitivity and visibility of path-entangled photon Fock states, Phys. Rev. A, 88, 023857 (2013).
Permission of using it in this dissertation has been granted by the principal author.
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to the precision of the phase measurement, to show that the parity detection for both of the

states presents an optimal detection strategy in the sensitivity of phase estimation.

3.1 TMHO under Pure Dephasing

3.1.1 Derivation of a General Master Equation

Following Ref. [52, 53] , we adopt the System+Reservoir model to deal with the dephasing

of our TMHO. By TMHO, we can think of the two paths of a interferometer where each

path represents a possible mode of the electromagnetic field. For instance, a N00N state of

field would be deemed as ‘N excitations shared by a TMHO’. Throughout this derivation

we set ~ = 1. We have Table 3.1 for our mathematical model. Notice that in general the

system density matrix ρ(t) and reservoir density matrix Rt are not separable because of the

interaction between S and R. Instead we have ρ(t) = TrR(χ(t)).

First of all, to get rid of the rapid oscillating terms in the Hamiltonian, i.e., HS +HR, we

transform into Interaction picture by doing Õ(t) = ei(HS+HR)tO(t)e−i(HS+HR)t, where O(t) is

the operator in Schrödinger picture and Õ(t) is in the Interaction picture. We then follow

Heisenberg Equation of Motion and write down

˙̃χ(t) = −i
[
H̃SR(t), χ̃(t)

]
. (3.1)

This can be integrated formally as

χ̃(t) = χ(0)− i
∫ t

0

dt′
[
H̃SR(t′), χ̃(t′)

]
. (3.2)

Substituting for ˜χ(t) in Eq. (3.1) we have

˙̃χ(t) = −i
[
H̃SR(t), χ̃(0)

]
−
∫ t

0

dt′
[
H̃SR(t),

[
H̃SR(t′), χ̃(t′)

]]
. (3.3)

TABLE 3.1: The mathematical model of the TMHO system

System (S) reservoir (R) Composite (S⊗R)
Density Matrix ρ(t) = TrR(χ(t)) Rt χ(t)

Hamiltonian HS HR HS +HR +HSR
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Notice the t and t′ in the integral on the right hand side.

By tracing over the reservoir D.O.F. on both sides of Eq. (3.3) and assuming that the

interaction between the system and the reservoir starts at t = 0, i.e., they are not entangled

when t ≤ 0, we have therefore χ̃(0) = χ(0) = ρ̃(0)R̃0 = ρ(0)R0, which can be readily seen if

one takes t = 0 in the Interaction Transformation, and we are left with

˙̃ρ(t) = −iρ̃(0)TrR

{[
H̃SR(t), R̃0

]}
−
∫ t

0

dt′TrR

{[
H̃SR(t),

[
H̃SR(t′), χ̃(t′)

]]}
. (3.4)

If we further assume that the reservoir operators coupling to the system S have zero mean

in state R̃0 (whose physical meaning will be discussed later), then TrR

{[
H̃SR(t), R̃0

]}
= 0.

The E.O.M. of the density matrix of system S becomes

˙̃ρ(t) = −
∫ t

0

dt′TrR

{[
H̃SR(t),

[
H̃SR(t′), χ̃(t′)

]]}
. (3.5)

At this point, we need to introduce two major approximations:

• Born Approximation—HSR is small. We assume the interaction between the sys-

tem and reservoir is quite small, so that χ̃(t) should be very little deviated from the

separable state ρ̃(t)R̃t; moreover, since R is much bigger than S, it is reasonable to

assume R̃t ≈ R̃0 and then χ̃(t) = ρ̃(t)R̃0 +O(H̃SR), therefore Eq. (3.5) becomes

˙̃ρ(t) = −
∫ t

0

dt′TrR

{[
H̃SR(t),

[
H̃SR(t′), ρ̃(t′)R̃0

]]}
. (3.6)

From the commutator in Eq. (3.5), it is easy to see O(H̃SR) leads to terms higher than

second order in HSR which can be ignored.

• Markov Approximation—ρ(t) has no memory. Eq. (3.5) shows that the density

matrix of the system ρ(t) depends on all the history from the moment when it starts

interacting with the reservoir. However, the system S does not affect itself directly

but interacts with the reservoir R at t and the updated R later changes S again at

t + ∆t. In our case, since the R is much bigger than S, it will be changed very little
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by S and ‘forgets’ about this change way before (i.e., � ∆t) it interacts with S again.

As a result, the system S will have to ‘forget’ about the history as well.2 Therefore,

ρ̃(t′) ≈ ρ̃(t) and finally we have the general Master Equation as

˙̃ρ(t) = −
∫ t

0

dt′TrR

{[
H̃SR(t),

[
H̃SR(t′), ρ̃(t)R̃0

]]}
. (3.7)

To sum up, in Born-Approximation, we write the total state of the system and the reservoir

as a separable state; in Markov-Approximation, we separate the state of the system ρ̃(t) from

its history. Now we have a Integro-Differential equation of ρ̃(t) which can be solved.

3.1.2 TMHO under Pure Dephasing

Given Eq. (3.7) as the general Master Equation, we are now in the position to specify our

system. For a single frequency TMHO with mode a and b, we have HS = ω0(a†a + b†b) =

ω0(na + nb) and HR =
∑

j ωjr
†
jrj, where rj is the annihilation operator in reservoir mode j.

Now we need to write down the interaction Hamiltonian HSR carefully.

(a) In general, we associate si with operators in the system S and γj with operators in the

reservoir R, and assume

HSR =
∑

α=a,b

sαγα. (3.8)

It is easy to see that H̃SR =
∑

α s̃αγ̃α because of the commutation relations. To specify

the sα and γα in our case, we need more physics insight.

(b) For pure phase-fluctuation or dephasing (elastic collision), no energy is exchanged

between S and R so that there will be no a†r or ar† terms in HSR. Therefore we should

have

HSR =
∑

i,j

κai,ja
†ar†i rj +

∑

i,j

κbi,jb
†br†i rj (3.9)

2We may think of a two-level atom interacts with the vacuum. The vacuum has a full range spectrum and therefore (Fourier

Transform) has a correlation time t = 0, whose time scale is much smaller than the evolution time of the atom.
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where καi,j with α = a, b is the coupling strength between HO mode α with vacuum

mode i and j. By comparing Eqs. (3.8) and (3.9), we have

sa = a†a, sb = b†b; (3.10)

and γa =
∑

i,j

κai,jr
†
i rj, γb =

∑

i,j

κbi,jr
†
i rj. (3.11)

(c) It is easy to see s̃a,b = sa,b since [sa,b, HS] = [sa,b, HR] = 0. However,

γ̃α(t) = eiHRtγαe
−iHRt

=
∑

i,j

καi,j exp

(
i
∑

k

ωkr
†
krkt

)
r†i rj exp

(
−i
∑

k′

ωk′r
†
k′rk′t

)

=
∑

i,j

καi,j exp
(
iωir

†
i rit+ iωjr

†
jrjt
)
r†i rj exp

(
−iωir†i rit− iωjr†jrjt

)

=
∑

i,j

καi,jr
†
i rje

i(ωi−ωj)t; (3.12)

and H̃SR(t) =
∑

i,j

κai,ja
†ar†i rje

i(ωi−ωj)t +
∑

i,j

κbi,jb
†br†i rje

i(ωi−ωj)t. (3.13)

From Eqs. (3.7) and (3.9), we have

˙̃ρ(t) =−
∫ t

0

dt′TrR

{[ ∑

α′=a,b

sα′ γ̃α′(t),

[∑

α=a,b

sαγ̃α(t′), ρ̃(t)R̃0

]]}

=−
∫ t

0

dt′TrR

{∑

α,α′

[
sα′ γ̃α′(t),

[
sαγ̃α(t′), ρ̃(t)R̃0

]]}

=−
∑

α,α′

∫ t

0

dt′TrR

{
sα′ γ̃α′(t)sαγ̃α(t′)ρ̃(t)R̃0 − sα′ γ̃α′(t)ρ̃(t)R̃0sαγ̃α(t′)

− sαγ̃α(t′)ρ̃(t)R̃0sα′ γ̃α′(t) + ρ̃(t)R̃0sαγ̃α(t′)sα′ γ̃α′(t)

}
. (3.14)

Consider terms like TrR

{
γ̃α(t′)R̃0γ̃α′(t)

}
= TrR

{
γ̃α(t′)γ̃α′(t)R̃0

}
= 〈γ̃α(t′)γ̃α′(t)〉R̃0

. In

Ref. [52] and [54], it is assumed that 〈γ̃α(t′)γ̃α′(t)〉R̃0
= γαδα,α′δ(t − t′), where γα should

be understood as the phase-fluctuating rate of HO mode α, to reduce the number of terms

in the Master Equation. The δα,α′ assumption amounts to rewriting reservoir Hamiltonian
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as

HR = HRa +HRb

=
∑

i

ωai (r
a
i )
†rai +

∑

i

ωbi (r
b
i )
†rbi (3.15)

and Interaction Hamiltonian as

H̃SR(t) = H̃SRa(t) + H̃SRb(t)

=
∑

i,j

κai,ja
†a(rai )

†raj e
i(ωi−ωj)t +

∑

i,j

κbi,jb
†b(rbi )

†rbje
i(ωi−ωj)t, (3.16)

where καi,j is the interaction strength between HO mode α and reservoir mode rαi and rαj .

Physically, this is equivalent to assume that the part of reservoir interacting with HO mode a

is independent of the part interacting with HO mode b, and their correlation always vanishes.

We adopt this assumption here and Eq. (3.14) becomes

˙̃ρ(t) =−
∑

α,α′

∫ t

0

dt′ (sα′sαρ̃(t)− sα′ ρ̃(t)sα − sαρ̃(t)sα′ + ρ̃(t)sαsα′) γαδα,α′δ(t− t′)

=−
∑

α=a,b

γα (sαsαρ̃(t)− sαρ̃(t)sα − sαρ̃(t)sα + ρ̃(t)sαsα)

=
∑

α=a,b

γα ([sα, ρ̃(t)sα] + [sαρ̃(t), sα]) . (3.17)

Now by applying the inverse transformation ρ(t) = e−i(HS+HR)tρ̃(t)ei(HS+HR)t on both sides

of Eq. (3.17) and notice that [sα, HS +HR] = 0, we have

ρ̇(t) =
∑

α=a,b

γα ([sα, ρ(t)sα] + [sαρ(t), sα])

= γa ([na, ρ(t)na] + [naρ(t), na]) + γb ([nb, ρ(t)nb] + [nbρ(t), nb]) . (3.18)

which agrees with Eq. (2) in Ref. [54].

3.2 Application to M&M′ States under Phase Noise

3.2.1 Density Matrix

We start with the propagation of the M&M′ state through a simplified Mach-Zehnder inter-

ferometer as shown in Figure 3.1, where both photon loss and phase fluctuation are included
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and the details of source and detection are again represented by their respective boxes. The

input state at stage I is a M&M′ state defined as in Chap. 2. We then have a state at stage

II similar to the density matrix in Sec. 2.2, which now depends on the interaction time t

between the interferometer and the source of phase fluctuation. The corresponding density

matrix now has time-dependent coefficients di(t)(i = 1, 2, 3, 4), which are to be solved from

the Master Equation Eq. (3.18) and are subjected to the following initial conditions:

d1(k, k′, t = 0) =

(
m

k

)(
m′

k′

)
|Ta|k|Ra|m−k|Tb|k

′|Rb|m
′−k′ ,

d2(k, k′, t = 0) =

(
m

k

)(
m′

k′

)
|Ta|k

′|Ra|m
′−k′ |Tb|k|Rb|m−k,

d3(k, k′, t = 0) =

(
m

∆m+ k

) 1
2
(

m

∆m+ k′

) 1
2
(
m′

k

) 1
2
(
m′

k′

) 1
2

,

× T
1
2

(∆m+2k)
a Rm′−k

a T
1
2

(∆m+2k′)
b Rm′−k′

b

and

d4(k, k′, t = 0) =

(
m

∆m+ k

) 1
2
(

m

∆m+ k′

) 1
2
(
m′

k

) 1
2
(
m′

k′

) 1
2

× T
1
2

(∆m+2k′)
a Rm′−k′

a T
1
2

(∆m)+2k

b Rm′−k
b . (3.19)

Source Detector

ϕ

I

∆ϕ

II III

Π̂

a′ a

b′ b

v′b

v′a

vb

va

FIGURE 3.1: On top of Figure 2.2, a ‘cloud’ of noisy phase-fluctuation ∆ϕ is added to cause
the phase fluctuation or dephasing.
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Now we can calculate ρa,b(t) from Eq. (3.18), term by term, as,

[na, ρa,b(t)na] = naρa,b(t)na − ρa,b(t)n2
a

=
m∑

k=0

m′∑

k′=0

{
|α|2d1(t)k2|k, k′〉a,b a,b〈k, k′|+ |β|2d2(t)k′

2|k′, k〉a,b a,b〈k′, k|
}

+
m′∑

k=0

m′∑

k′=0

{
αβ∗d3(t)((∆m) + k)k|(∆m) + k, k′〉a,b a,b〈k, (∆m) + k′|

+ α∗βd4(t)k′((∆m) + k′)|k′, (∆m) + k〉a,b a,b〈(∆m) + k′, k|
}

−
m∑

k=0

m′∑

k′=0

{
|α|2d1(t)k2|k, k′〉a,b a,b〈k, k′|+ |β|2d2(t)k′

2|k′, k〉a,b a,b〈k′, k|
}

−
m′∑

k=0

m′∑

k′=0

{
αβ∗d3(t)k2|(∆m) + k, k′〉a,b a,b〈k, (∆m) + k′|

+ α∗βd4(t)((∆m) + k′)2|k′, (∆m) + k〉a,b a,b〈(∆m) + k′, k|
}

=
m′∑

k=0

m′∑

k′=0

{
αβ∗d3(t)k(∆m)|(∆m) + k, k′〉a,b a,b〈k, (∆m) + k′|

− α∗βd4(t)(∆m)((∆m) + k′)|k′, (∆m) + k〉a,b a,b〈(∆m) + k′, k|
}
,

and

[naρa,b(t), na] =
m′∑

k=0

m′∑

k′=0

{
− αβ∗d3(t)(∆m)((∆m) + k)|(∆m) + k, k′〉a,b a,b〈k, (∆m) + k′|

+ α∗βd4(t)k′(∆m)|k′, (∆m) + k〉a,b a,b〈(∆m) + k′, k|
}
,

[nb, ρa,b(t)nb] =
m′∑

k=0

m′∑

k′=0

{
− αβ∗d3(t)(∆m)((∆m) + k′)|(∆m) + k, k′〉a,b a,b〈k, (∆m) + k′|

+ α∗βd4(t)k(∆m)|k′, (∆m) + k〉a,b a,b〈(∆m) + k′, k|
}
,

[nbρa,b(t), nb] =
m′∑

k=0

m′∑

k′=0

{
αβ∗d3(t)k′(∆m)|(∆m) + k, k′〉a,b a,b〈k, (∆m) + k′|

− α∗βd4(t)(∆m)((∆m) + k)|k′, (∆m) + k〉a,b a,b〈(∆m) + k′, k|
}
.
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Therefore, we have the evolution of the density matrix ρ(t) as:

ρ̇(t) = −(∆m)2(γa + γb)×
m′∑

k,k′=0

{
αβ∗d3(t)|∆m+ k, k′〉a,b a,b〈k,∆m+ k′|+ α∗βd4(t)|k′,∆m+ k〉a,b a,b〈∆m+ k′, k|

}
.

and

ρ(t) =
m∑

k=0

m′∑

k′=0

{
|α|2d1(0)|k, k′〉a,b a,b〈k, k′|+ |β|2d2(0)|k′, k〉a,b a,b〈k′, k|

}

+
m′∑

k,k′=0

{
αβ∗d3(0)e−(∆m)2(γa+γb)t|∆m+ k, k′〉a,b a,b〈k,∆m+ k′|

+ α∗βd4(0)e−(∆m)2(γa+γb)t|k′,∆m+ k〉a,b a,b〈∆m+ k′, k|
}
.

This makes sense because we are dealing with pure dephasing and the diagonal terms of the

density matrix (population) should have no change. It is straightforward to see that

d1,2(t) = d1,2(0);

and d3,4(t) = e−(∆m)2γtd3,4(0), (3.20)

where γa = 0 and γb = γ are assumed in light of Figure 3.1.

3.2.2 Derivation of the Relation between ∆ϕ and γ

In our model we have the phase-fluctuations as ∆ϕ(t) and the off-diagonal terms in the den-

sity matrix ρ(t) is changed by a factor of exp(−(∆m)2γt). We therefore need to specify the

relation between the phase-fluctuation distribution and this factor, which is fairly straight-

forward. Similar to the Brownian motion conditions, there are two distinct time scales in our

derivation:

dt: The time scale that describes the fluctuation of the instantaneous force between the

system S and the reservoir R, which is on the order of collision time. One may think

of many water molecules collide with the ‘big’ pollen particle. In the Central Limit

Theorem, the sum effect of a lot of independent/random collisions (each of which are
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not necessarily Gaussian) amounts to a random process with a Gaussian probability

density. Therefore for each infinitesimal time dt, we will have a Wiener noise [55] whose

variance V = σ2 = dt. This sum considers a lot of random process at the same time

dt.

t: The time scale over which the system S evolves appreciably and t =
∫ t

0
dt. This can

be thought of as the jiggling of the direction/velocity of the pollen. This is the sum of

a lot of Wiener processes, one for each dt, which is also a Gaussian distribution, with

zero average and variance V = t.

By assuming a Wiener noise ∆ϕ(t) with zero average and a variance V [dW ] = κdt (κ is the

dephasing rate which can be measured) in our calculation, it is easy to show that

〈∆ϕ(t)〉 = 0, (3.21)

V [∆ϕ(t)] = κt, (3.22)

P (∆ϕ(t)) =
1√

2πκt
exp

(−(∆ϕ(t))2

2κt

)
, (3.23)

where P (∆ϕ(t)) is the Gaussian probability density function (PDF) of the phase-fluctuation

at time t. In the limit of small ∆ϕ, we have

exp(i(∆m)(∆ϕ(t))) ≈ 1 + i(∆m)∆ϕ(t)− 1

2
(∆m)2(∆ϕ(t))2, (3.24)

and therefore

〈exp(i(∆m)(∆ϕ)〉 =

∫ t

0

dt′ exp(i(∆m)(∆ϕ(t′)))P (∆ϕ(t′))

≈1− 1

2
(∆m)2〈(∆ϕ(t))2〉

=1− 1

2
(∆m)2κt (3.25)

where in the last line we have used the fact that 〈∆ϕ(t)〉 = 0. Now compare it with the

decay terms in the off-diagonal terms we have γ = κ/2.
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3.3 Visibility and Sensitivity

To focus on the effect of phase fluctuation, we first assume zero photon loss and the corre-

sponding density matrix at time t becomes

ρM&M′(t) = |α|2|m,m′〉〈m,m′|+ |β|2|m′,m〉〈m′,m|

+ α∗βe−(∆m)2γt|m,m′〉〈m′,m|

+ αβ∗e−(∆m)2γt|m′,m〉〈m,m′|. (3.26)

The similar equation for the N00N state can be obtained from Eq. (2.2) as

ρN00N(t) = |α|2|N, 0〉〈N, 0|+ |β|2|0, N〉〈0, N |

+ α∗βe−N
2γt|N, 0〉〈0, N |

+ αβ∗e−N
2γt|0, N〉〈N, 0|. (3.27)

We again adopt the parity operator Π at stage III inside the Mach-Zehnder interferometer [47]

and expand it in number basis as

Π = i(m+m′)
m∑

k=0

(−1)k|k, (m+m′)− k〉〈(m+m′)− k, k|. (3.28)

And it should be noticed that the parity operator inside the interferometer detects both

mode a and b of the field (see Figure 3.1). The expectation value of the parity for the M&M′

state is then calculated as

〈Π〉M&M′ =Tr (ΠρM&M′)

=(−1)(m+m′)e−(∆m)2γt cos(∆m(ϕ− π/2)). (3.29)

If we put a half-wave plate in front of the phase shifter, which amounts to replace ϕ by

ϕ+ π/2, the expectation value becomes,

〈Π〉M&M′ = (−1)(m+m′)e−(∆m)2γt cos(∆mϕ). (3.30)
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Similarly we can also obtain the expectation value of the parity operator for the N00N state

as

〈Π〉N00N = (−1)Ne−N
2γt cos(Nϕ). (3.31)

3.3.1 Visibility

Similar to Chap. 2, we use quantify the degree of measured phase information by defining

the phase-fluctuation-dependent relative visibility as

VM&M′ =
〈ΠM&M′〉max − 〈ΠM&M′〉min

〈ΠM&M′(γ = 0)〉max − 〈ΠM&M′(γ = 0)〉min

, (3.32)

where the numerator corresponds to the difference in the maximum and minimum parity

signal in presence of phase fluctuations, while the denominator corresponds to the one with

no dephasing, i.e. γ = 0. Visibility for the N00N state is similarly defined as

VN00N =
〈ΠN00N〉max − 〈ΠN00N〉min

〈ΠN00N(γ = 0)〉max − 〈ΠN00N(γ = 0)〉min

(3.33)

Using Eqs. (3.30) and (3.31), we then obtain the visibilities for the M&M′ state

VM&M′ = e−(∆m)2γt (3.34)

and for the N00N state

VN00N = e−N
2γt. (3.35)

We note that the visibility of the N00N state with the parity detection in Eq. (3.35) agrees

with the visibility in Ref. [54].

The visibility in Eqs. (3.34) and (3.35) depends on the value of the decay rate γ and N

(or ∆m = m−m′), and for a given value of γ, the visibility falls down faster as N increases.

Hence, N00N states (or M&M′ states) with large number of photons do not provide a way

to obtain better visibility in presence of dephasing. This is shown in Figure 3.2, where we

plotted the visibility for different N (or ∆m) with respect to the decay rate γ.
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3.3.2 Phase Sensitivity

We now calculate the phase sensitivity for both the M&M′ and N00N states using the expec-

tation values of the parity operator obtained above. Phase sensitivity δϕ is again calculated

by the linear error propagation method ∆Π/|∂〈Π〉/∂ϕ|, where ∆Π =
√
〈Π2〉 − 〈Π〉2. Given

〈Π2
M&M′〉 = 1 the phase-sensitivity with the parity detection for the M&M′ state is then

δϕM&M′ =

√
1− e−2(∆m)2γt cos2(∆mϕ)

(∆m)2e−2(∆m)2γt sin2(∆mϕ)
. (3.36)

For the N00N state the phase-sensitivity with the parity detection is similarly obtained as

δϕN00N =

√
1− e−2N2γt cos2Nϕ

N2e−2N2γt sin2Nϕ
. (3.37)

We note that in the limit of no dephasing (γ → 0), δϕM&M′ → 1/(∆m). For the N00N state,

γ → 0 case leads to δϕN00N → 1/N (Heisenberg limit for the NOON state). In Figure 3.3, we

plot the phase sensitivities δϕM&M′ and δϕN00N for the various dephasing rates γ choosing

∆m = N , so that the amount of phase information is the same for either state. For ∆m = N ,

Eqs. (3.36) and (3.37) show that the M&M′ and N00N states give rise to the same phase
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FIGURE 3.2: Visibility V of the M&M′ state for different ∆m = m−m′ (for different N in
case of N00N states with the same phase information) as a function of γ. The visibility V
is plotted for N (or ∆m) = 2 (solid blue curve), N (or ∆m) = 4 (dashed red curve), N (or
∆m) = 6 (dotted black curve) and N (or ∆m) = 8 (dot-dashed purple curve). We see that
the visibility drops faster for larger values of ∆m (or N).
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sensitivity. In particular, we show the phase sensitivity for the states |4 :: 0〉 and |5 :: 1〉 and

find that both the states perform equally well in the presence of phase fluctuations when

parity detection is used, although the former has been shown to outperform N00N states in

the presence of photon loss [29, 56].

The minimum phase sensitivities δϕmin can be obtained from Eqs. (3.36) and (3.37) for

ϕ = π/(2∆m), or ϕ = π/(2N) for the M&M′ or N00N states, respectively. For the |4 :: 0〉

and |5 :: 1〉 states, we plot the minimum phase sensitivity δϕmin in Figure 3.4 as a function

of γ and compare it with the SNL and HL for both the states. The HL for a general M&M′

state is 1/(m + m′) in terms of the total number of photons available and is equal to 1/N

for the N00N state. The SNL for these two states are given by 1/
√
m+m′ and 1/

√
N ,

respectively. In Figure 3.4, we see that the minimum phase sensitivity δϕmin hits the HL for
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FIGURE 3.3: Phase sensitivity δϕ of the M&M′ state |5 :: 1〉, or the N00N state |4 :: 0〉, having
the same phase information, as a function of phase shift ϕ from a two-mode interferometer for
different values of γ. γ = 0.1 (dashed blue curve), γ = 0.3 (dotted black curve) and γ = 0.5
(dot-ashed purple curve). The Heisenberg limit (1/N) and the shot-noise limit (1/

√
N) of

the phase sensitivity for the N00N state are shown by the solid red line and the dashed black
line, respectively, for comparison. Notice even though the curves for the N00N state and
M&M′ state overlap with each other, their respective HL and SNL are different, where total
number of photon is counted. Therefore when N = ∆m, the N00N state is always the better
choice under pure phase fluctuations.
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the N00N state for γ = 0 only, while it never reaches the HL for the M&M′ state. However,

δϕmin is below the SNL for both of the states for small values of γ, but increase in the phase

fluctuation leads to the phase sensitivity above the SNL, as shown in Figure 3.4.

3.3.3 Effects of Both Photon Loss and Phase Fluctuations

If consider both photon loss (modeled by two fictitious beam splitters with reflectance Ra

and Rb as shown in Figure 3.1) and phase fluctuations, we define the time-dependent parity

signal as

K1(t) =
m′∑

k=0

(d1(k, k, t) + d2(k, k, t)) ,

K2(t) =
m′∑

k=0

(d3(k, k, t) + d4(k, k, t)) . (3.38)

And recall the coefficients in Eq. (3.20), it is straightforward to see K1(t) = K1(0) and

K2(t) = K2(0)e−(∆m)2γt, where K1,2(0) are defined in Chap. 2. We now have the time-

dependent parity signal as

〈Π〉 = K1(t) + (−1)m+m′K2(t) cos((∆m)ϕ), (3.39)
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FIGURE 3.4: Minimum phase sensitivity δϕmin of the M&M′ state |5 :: 1〉 or the N00N state
|4 :: 0〉 as a function of γ. The shot-noise limit (SNL) and the Heisenberg limit (HL) of the
phase sensitivity for both the states are also shown for comparison.
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where the π/2 phase shift is applied. A relative visibility with respect to both loss and

phase-fluctuations can be defined as

VM&M′ =
〈ΠM&M′〉max − 〈ΠM&M′〉min

〈ΠM&M′(γ = 0, L = 0)〉max − 〈ΠM&M′(γ = 0, L = 0)〉min

,

= K2(0)e−∆m2γt (3.40)

where L stands for the loss in both paths (Ra and Rb). In the limit of L → 0, K2(0)

approaches one and the visibility reduces to the previous result. Notice the depahsing only

affects the off-diagonal terms of the density matrix while loss affects both diagonal and off-

diagonal terms. However, because of the linearity of the MZI, the effect from photon loss is

independent of that from phase-fluctuation, as expected.

This signal also gives rise to the phase-sensitivity for the parity detection for a M&M′

state under both photon-loss and phase-fluctuations as

δϕM&M′ =

√
1− {K1(t) + (−1)m+m′K2(t) cos(∆mϕ)}2

{∆mK2(t) sin(∆mϕ)}2 , (3.41)

where linear error propagation method is employed. Notice that when loss is negligible this

sensitivity recovers Eq. (3.36). All results in this section apply to N00N states with N = m

and m′ = 0.

3.3.4 Quantum Cramér-Rao Bound

In this last subsection, we calculate the Quantum Cramér-Rao Bound (QCRB) for both

the M&M′ and N00N states in presence of the phase fluctuations, and show that the parity

detection attains the QCRB for both of these states subject to the dephasing. A general

framework for estimating the ultimate precision limit in noisy metrology has been studied

by Escher et al. in Ref. [33], where they considered the system+reservoir as a big system

and treated the configuration of the MZI as an variational parameter whose optimal value

leads to the best precision.
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By evaluating ρϕ and ∂ρϕ/∂ϕ from Eq. (3.26), we obtain the quantum Fisher information

(see Sec. 1.2.2) for the M&M′ state

FM&M′ = (∆m)2e−2(∆m)2γt (3.42)

leading to the quantum Cramér-Rao bound

δϕQCRB,M&M′ ≥
1√
Fmm′

=
1

(∆m)e−(∆m)2γt
. (3.43)

For the N00N states, similar calculation yields

FN00N = N2e−2N2γt, (3.44)

and

δϕQCRB, N00N ≥
1√
FN00N

=
1

Ne−N2γt
. (3.45)

Eqs. (3.43) and (3.45) represent the lowest bound on the uncertainty of the phase measure-

ment for the M&M′ and N00N states, respectively.

For a detection scheme to be optimal, it has to saturate the quantum Cramér-Rao bound.

Eqs. (3.36) and (3.37) represent phase sensitivity for the M&M′ and N00N states respectively,

and these expressions can be shown to be identical to the quantum Cramér-Rao bounds in

Eqs. (3.43) and (3.45) for ϕ = π/(2∆m), or ϕ = π(2N) for the M&M′ or N00N states re-

spectively. Thus, parity detection saturates the quantum Cramér-Rao bounds and is optimal

for both the states in presence of the phase fluctuations.

3.4 Conclusion

In this chapter, we studied the effects of phase fluctuations on the phase sensitivity and

visibility of M&M′ and N00N states in an optical interferometric setup. Although M&M′

states are more robust than N00N states against photon loss, we showed that they do not

provide any better performance in presence of such phase fluctuations than their equivalent

N00N counterpart. We have used the parity detection technique for phase estimation and
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presented a brief study on the quantum Fisher information for both states. It is shown that

for both the states parity detection serves as the optimal detection strategy as it saturates

the quantum Cramér-Rao bound of the interferometric scheme.
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Chapter 4
Quantum Sensing and Quantum Radar

In this chapter we discuss the application of quantum optical states in the field of quantum

remote sensing, i.e., the design of a quantum radar. For remote sensing, atmospheric ab-

sorption and diffraction rapidly degrades any actively transmitted quantum states of light,

such as the N00N states discussed in Chap. 2, so that for this high-loss regime the optimal

strategy is to transmit the coherent state of light, which suffers no worse loss than the linear

Beer’s law (also known as Beer-Lambert law) for classical radar attenuation and provides

sensitivity at the shot-noise limit in the returned power. We show that coherent radar radia-

tion sources, coupled with a quantum homodyne detection scheme, provide both longitudinal

and angular super-resolution much below the Rayleigh diffraction limit, with sensitivity at

shot-noise in terms of the detected photon power. Our approach provides a template for the

development of a complete super-resolving quantum radar system with currently available

technology.

In Sec. 4.1 we briefly discuss previous efforts that motivated us to the current scheme of

quantum radar. In Sec. 4.2 we review the use of quantum parity detection to produce super-

resolving ranging measurements at the shot-noise limit. In Sec. 4.3 we discuss the quantum

homodyne detection scheme as an implementation of parity detection. In Sec. 4.4 we show

how to modify the technology to provide super-resolved angular determination. A conclusion

is presented in Sec. 4.5.1

1Part of this chapter previously appeared as Kebei Jiang, Hwang Lee, Christopher C. Gerry and Jonathan P. Dowling,

Super-resolving quantum radar: Coherent-state sources with homodyne detection suffice to beat the diffraction limit, J. Appl.
Phys, 114, 193102 (2013). It is reprinted by permission of the American institute of Physics (AIP). See the permission letter
in Appendix B.
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4.1 Previous Work

Ever since the work of our group (Quantum Science and Technology group in Louisiana State

University) on quantum lithography, it has been shown that entangled quantum states of

the electromagnetic field, such as the Schrödinger-cat-like N00N states, provide a resolving

power that is sub-Rayleigh diffraction limited (super-resolution) and a sensitivity that is

sub-shot-noise limited (super-sensitivity) [57, 58, 59, 16]. This realization of a quantum-

entanglement advantage leads to proposals to develop remote quantum sensors, quantum

lidar and quantum radar. In the particular case of quantum radar, such quantum states of

light are actively transmitted through the atmosphere, reflected off the target, and then upon

return provide sub-Rayleigh diffraction resolution in ranging [60]. We show two radar systems

based on either a Michelson (Figure 4.1) or a Mach-Zehnder (Figure 4.2) interferometer, the

former of which is typically deployed in coherent lidar and radar systems.

N00N states in remote sensing is deployed in an interferometric mode where half of the

N00N state is transmitted to the target and reflected back and later mixed with the other

half at the detector. We illustrate such a quantum-entangled radar system in Figure 4.1(a)

where the entangled photon source is attached to a Michelson interferometer in a monostatic

configuration.2 This kind of quantum-entangled radar scheme requires that one half of the

N00N state be retained at the radar station and stored in a low-loss delay line for a time

equal to the round trip time that the other half takes between the radar station and the

target. Implementing the correct delay time then requires approximate advanced knowledge

of the distance to the target. Such an quantum-entangled radar system could not be a stand

alone system, but would have to work with the simultaneous deployment of a conventional

radar at the same site.

2The term ‘monostatic’ means the source and the detector are at the same location as compared to ‘bistatic’ where they are
in different locations.
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A more severe problem with this entangled-photon approach to quantum radar, which is as

well mentioned in Chap. 2, is that the N00N states are very susceptible to the loss expected

from absorption and scattering in the atmosphere and also from diffraction (this implies

that not all of the N00N state would be detected upon return due to the finite size of the

detector aperture) [26, 61, 62]. Unavoidable loss would also be present in the delay line. Our

group provided a quantum theoretical interpretation of this ‘super-Beer’ loss behavior for

N00N states in terms of the quantum ‘which-path’ information available to the environment

upon photon loss [29, 63]. In that same paper we introduced the M&M′ states, which is

defined in Chap. 2, as a robust alternative of the N00N states. If m − m′ = N , then the

state remains N -fold super-resolving, and for low loss can still do better than shot-noise

in sensitivity. In such M&M′ states the m′ decoy photon keeps the complete ‘which-path’

Target

R

Θ

DL

EPS

D

D

PP

ϕ
R

Θ

ϕ

CRS
QHD

QHD

(a) (b)

Target

FIGURE 4.1: Here we compare two monostatic quantum radar systems in a Michelson config-
uration. The first (a) uses an entangled photon source (EPS) and photon number resolving
detectors, and the second (b) uses a coherent radar source (CRS) and quantum homodyne
detection (QHD). In both the range distance R and the altitudinal angle above the horizon
Θ are shown. For clarity the azimuthal angle Φ along the horizon is suppressed. The phase
shifter ϕ is the relative phase between the two arms, which carries the range information.
In (a) half of the entangled state from the EPS is reflected off the target and half is stored
in a delay line (DL). The photon-counting detectors (D) then sends their data to a post-
processor (PP). In (b) the EPS is replaced with a CRS, the DL is replaced with a mirror, and
the detection is carried out using two QHDs. Dotted red lines in (b) indicates the quantum
vacuum that enters in the unused port of the interferometer. The solid black rectangle is a
beam splitter and the striped rectangles are mirrors. The lines connecting the CRS to the
QHDs shows that the same radar source may be used as the local oscillator in the QHD.
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information from becoming available to the environment with just a single photon lost. The

ranging information is then better preserved.

Our group then set out to numerically search Hilbert space for quantum states of the elec-

tromagnetic field with best sensitivity under a specified loss [34]. The results there indicate

that for the low loss regime the N00N states are optimal, for intermediate loss the M&M′

states are optimal, but that at high loss only coherent states are optimal. Konrad Banaszek,

Ian Walmsley, and their collaborators, independently discovered this result about the same

time [35, 36]. Since coherent states are the natural output of a conventional lidar or radar

source, their conclusion was that switching from coherent to entangled states would not give

sub-shot-noise sensitivity in the high-loss regime, because it is known that coherent states by

themselves will always achieve at best shot-noise sensitivity in the return power [13]. That

is, super-sensitivity with entangled state transmission is impossible to achieve when total loss

exceeds about 6 dB. This means a entangled-photon radar is useless for most applications.

This conclusion motivated us to search for a scheme using coherent states for super-resolving

lidar and radar in the high-loss regime while maintaining shot-noise-limit sensitivity with

respect to the return power. That is to remove the fragile entanglement and still beat the

Rayleigh diffraction limit with coherent states alone.

First of such effort was made in 2007 when the group of Andrew White demonstrated

that coherent states could indeed provide super-resolution if a quantum detection scheme

was deployed [37]. In this scheme of Resch et al. they projected the return coherent state

onto a N00N-state basis to extract resolution for a particular N00N state component of the

two-mode coherent field in the interferometer by doing high-efficiency N -photon counting

[64]. By using this technique they demonstrated six-fold super resolution. However such a

scheme throws away most of the returning photons and is much worse than shot-noise in

sensitivity. Hence it is far from ideal in situations where only few photons are expected to

return from a distant target as is typical for long-range radar systems. In addition such a
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scheme would require photon number resolving detectors of high efficiency which are not yet

available at lidar and radar wavelengths.

In 2010 our group managed to find a coherent-state quantum detection scheme that was

both super-resolving and that operated at the shot-noise limit in sensitivity. We showed that

super-resolution (in longitudinal ranging) at the shot-noise limit with coherent states can be

achieved by using the quantum parity detection [64]. Hwang Lee and Yang Gao in our group

showed that parity detection provides a unifying measurement scheme in quantum metrology

as it provides sub-shot-noise sensitivity with respect to a wide range of quantum-entangled

states of the electromagnetic field [65].

One remaining practical drawback to our 2010 proposal, for super-resolving lidar and

radar ranging with coherent states alone, was that back then the way to implement the

quantum parity detection involved either the use of very strong Kerr nonlinearities [66] or

high-efficiency photon-number resolving detectors [64]. The Kerr approach requires high-

power in the return radar field, which is not usually the case. For long-wavelength radar

systems, due to diffraction, the source emits power in nearly a spherical wave and the ratio

of power transmitted to power received back scales as 1/R4, where R is the range distance

to the target and is typically tens to hundreds of kilometers. For example, if the target is 100

kilometers distant, then for a radar system that transmits a kilowatt in outgoing power, the

return power will only be about 400 fW. On the other hand, the photon-number resolved

detection approach is problematic in the infrared, the microwave and longer wavelength radar

regimes where photon-number detectors have extremely low efficiency [67].

The breakthrough that allows us to apply parity measurement to lidar and radar wave-

lengths came in 2010. In collaboration with Girish Agarwal, our group showed that parity

detection of the coherent state can be carried out with a simple quantum homodyne de-

tection scheme [51]. Homodyne detection mixes the return radar state in the system with

a local oscillator, which is a stable radar source of the same frequency as the transmitted
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beam and with a known and adjustable phase [68]. The point was to recognize that a parity

measurement of a single-mode electromagnetic field is equivalent to measuring the Wigner

function of the field at the origin in phase space [69, 70, 71, 72]. An additional advantage

of coherent-state quantum radar is that the delay line used in the entangled state protocol

is no long required. The delay line may be replaced with a stable radar local oscillator and

thus we do not need advance knowledge of the distance to the target. Therefore our proposed

quantum radar system operates as a stand-alone system. The homodyne technique has the

additional advantage that the local oscillator can boost the signal well above the thermal

noise floor of radar detectors. We still need high-efficiency detectors (which can be routinely

made with superconductor technology) but not the number resolving feature. With such a

scheme the presence or absence of even a single photon in the return field may be detected

[73].

In the 2010 paper, in collaboration with Jerome Luine at Northrop-Grumman, our group

compared parity measurement with a closely related ‘on-off’ photon detection scheme. In

a ‘on-off’ detection scheme the detector distinguishes between zero photons versus more

than zero photons in a single mode. The numerical simulation showed that such a scheme

provides super-resolution comparable to that of parity detection [64]. Recently the group of

Ulrik Andersen has proposed and implemented a homodyne version of the ‘on-off’ detection

scheme and has experimentally demonstrated super-resolution at the shot-noise limit with

coherent states and a quantum detection scheme [74]. Independently the group of Hagai

Eisenberg has also experimentally demonstrated super-resolution at the shot-noise limit using

only coherent light and homodyne-based parity detection [75]. These results, both carried

out with visible light, vindicate our approach and lead us to believe that the entire scheme

may now be scaled to the infrared, microwave and long-wavelength radar regimes.

Last but not the least, in all the schemes discussed above we have shown how to obtain

super-resolved ranging information, which is the distance to the target, R. To completely
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characterize the location of a distant target we need super-resolving altitudinal angle Θ (lo-

cation of the target above the horizon) and azimuthal angle Φ (location of the target along

the horizon. See Figure 4.1) as well. This angular information is of particular importance in

long-wavelength radar systems, where the target may be tens or hundreds of kilometers away

and the radar power is reflected back in a spherical wave. This means that the return radar

signal arrives at the detector essentially as a plane wave, which makes the determination of

the angular position of the target very difficult. The trick is to convert the angular informa-

tion into a phase shift and then use the same technique used to acquire super-resolved range

information to obtain super-resolved angular information. Together with ranging we then

have complete super-resolved angular location of the target embodied in the determination

of R, Θ and Φ.

4.2 Super-Resolved Ranging with Parity Detection

It is usually helpful to analyze the Michelson interferometer (MI) in Figure 4.1(b) as an

unfolded MZI shown in Figure 4.2. The performance of an MZI and the MI are identical.

The MZI corresponds to a bistatic radar system where the source and detector are at different

locations and the MI to a monostatic system where the source and detector are co-located.

The only physical difference is that the MZI has two separate beam splitters (BS) and the MI

has a single beam splitter that is utilized twice. As shown in Figure 4.2 the unknown phase

to be detected is denoted by ϕ and is given by ϕ = k`, where k is the wave number, λ is the

wavelength and ` is the path-length difference between the two arms of the interferometer

that lie between the two BS. In the MI configuration of Figure 4.1(b) the length of the lower

reference arm can be made to be zero and then ` = R is the range to the target we are trying

to estimate.

The output of the CRS is a coherent state |α〉 (see Sec. 1.1.1) with α =
√
n̄eiθ, where

√
n̄

and θ are the amplitude and phase of the field, respectively. Since we are only interested in

the phase difference accumulated upon propagation, we can assume θ = 0 and so α =
√
n̄
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is real. For a coherent state the measurement of the intensity will yield only n̄ photons on

average with quantum fluctuations about this mean on the order of ∆n =
√
n̄. Notice this is

related to the famous shot-noise limit we discussed in Chapter 1, which is the best sensitivity

one can get using classical sources. Only in the classical limit, when the intensity is very large,

is ∆n negligible compared to n̄. As we are particularly interested in the situation where very

few photons return to the detector, in that regime ∆n cannot be neglected compared to n̄

and the quantum theory of light must be used [4].

As shown in Figure 4.2 we emit a coherent state input mixed with vacuum at the first

BS that we write as |β〉inA |0〉inB . The output becomes |α cos(ϕ/2)〉out
A |α sin(ϕ/2)〉out

B [16]. Here

α = e−ΓR/2β is the attenuated coherent state at the detector, where Γ is the linear intensity

attenuation coefficient and R is the range. We also assume the lower path to be attenuation

free which is consistent with the monostatic configuration of the Michelson operation. We

will later implement parity measurement at output port B. We can compute the result by

noting that the expectation of the parity operator is proportional to the Wigner function of

ϕ

CRS QHD
Ain

M
Aout

QHDBin

M
Bout

BS BS

CRS

CRS

|β〉inA

|0〉inB

|ψ〉AB
|α cos(ϕ/2)〉outA

|α sin(ϕ/2)〉outB

FIGURE 4.2: Here for simplicity we show the monostatic Michelson interferometer in Fig-
ure 4.1(b) unfolded into an equivalent bistatic Mach-Zehnder configuration. The coherent
state from the CRS is incident in upper mode A and vacuum in lower mode B. After the
first beam splitter (BS) we have a two-mode coherent state. After the phase shifter ϕ, which
encodes the range R, this state becomes the two-mode coherent state with a relative phase
difference that is reflected by the mirrors (M). Finally after the final BS on the right, we
have the attenuated coherent state with the phase information and we implement the parity
operator measurement in both the upper mode A and the lower mode B via QHD. The same
CRS is also used to feed both QHDs to implement the balanced homodyne procedure. The
use of the same CRS is a common trick in quantum optical experiments, which ensures the
same frequency of the signal and the local oscillator.
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the output state evaluated at the origin in phase space,

〈Π〉 = 〈eiπn〉 =
π

2
W (0, 0), (4.1)

where n = b†b is the number operator and b is the mode operator for Bout [51]. The Wigner

function for a coherent state has a particularly simple form [4],

Wαϕ(γ, γ∗) =
2

π
exp(−2|γ − αϕ|2), (4.2)

where γ is a complex phase space coordinate and αϕ = α sin(ϕ/2) is the output coherent

state in mode Bout. The corresponding radar intensity in the mode is proportional to the

mean photon number, defined by n̄ϕ = |αϕ|2 = n̄ sin2(ϕ/2). Combining these two equations

we get,

〈αϕ|Π|αϕ〉 = exp
(
−2|αϕ|2

)
= exp

(
−2n̄ sin2(ϕ/2)

)
, (4.3)

which agrees with previous result [64]. This signal is plotted in Figure 4.3 as a solid curve

with the dashed curve being the signal from ordinary output intensity differencing (scaled

by n̄.) It is clear that the parity signal is super-resolving. As shown in Ref. [64] the width

of the parity central peak can be estimated by taking ϕ ≈ 0 so that Eq. (4.3) becomes a

Gaussian exp(−n̄ϕ2/2). Then we have δϕ = 1/
√
n̄, where n̄ is proportional to the return

power. Converting this to an uncertainty in range we get,

δRQ =
λ

2π
√
n̄
, (4.4)

where the classical Rayleigh resolution would instead be just δRC = λ therefore we are a

factor of 2π
√
n̄ below the Rayleigh limit. For n̄ = 100 average return photons the quantum

result is about 60 times smaller than the classical diffraction limit. Notice that by uncertainty

we mean the full width at half maximum of the parity signal in Figure 4.3, which is not the

same as the sensitivity of phase estimation. The similar scaling of our super-resolution and

the general shot-noise limit is merely a coincidence.

59



Since extraction of the parity signal will require some post-processing, one approach would

be to simply measure the output intensity n̄ϕ directly and plug the result into Eq. (4.3). This

approach is problematic for radar, in particular at low return photon numbers, since the best

result would be obtained with efficient, low-noise, photon-number counters that are difficult

to obtain at such long wavelengths. In addition the signal for few return photons will be well

below the thermal noise floor of most detector at these frequencies. Also, in addition the

quantum intensity fluctuations there will be classical fluctuations due to instabilities in the

radar source, turbulence in the atmosphere, and so forth. Therefore a intensity differencing is

usually done between output modes Aout and Bout to give a common mode noise cancellation

of these classical fluctuations. To obtain the optimal performance we should measure parity

at each output using balanced QHD to extract the Wigner function at the origin directly

and amplify the signal to well above the thermal noise floor. We will discuss this approach

in the next section.

4.3 Parity Implemented with Quantum Homodyne Detection

We propose to carry out balanced homodyne detection of the parity signal at each of the two

output ports of the interferometer. Such a detection scheme is shown in Figure 4.4. Quantum

−2π 0 2π

λ

ϕ

〈Π̂〉
1

−1

FIGURE 4.3: Here we show the signal of quantum parity detection (solid curve) against the
ordinary classical signal obtained by differencing the intensity of the two detectors and scaled
by the intensity (dashed curve). The parity curve is for a return power of n̄ = 100 giving a
ten-fold improvement in the fringe resolution compared to that of the classical curve where
the peak-to-peak spacing is at the diffraction limit of λ.
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homodyne detection (QHD) is actually inspired by classical microwave radar technology

called the balanced-mixer radiometer [76]. The balanced mixer is what we call here a 50:50

beam splitter. For this technique to work well in the microwave regime at the quantum level,

we also require that the detectors have a high quantum efficiency, which is routinely obtained

these days with superconducting technology [77]. We first work with the lower port Bout. The

signal output for Bout is mixed on a 50:50 beam splitter with a strong coherent state |δLO〉C
in mode C, which is called the local oscillator. The local oscillator may be taken from the

same coherent radar source (CRS) used to perform the ranging in the monostatic Michelson

configuration and it has a well define phase ϑLO so that
∣∣δLO

〉
C

=
∣∣|δLO| exp (iϑLO)

〉
C

. The

two outputs are then guided to the two detectors D and E where the intensity between them

is differenced. This intensity difference, as a function of the unknown ranging phase ϕ, is our

signal.

Using the standard beam splitter back-transformations

e→ 1/
√

2(b+ ic),

d→ 1/
√

2(c+ ib),

MZI Bout

C

|α sin(ϕ/2)〉B

CRS

∣∣|δLO| exp(iϑLO)
〉
C

E

D

FIGURE 4.4: Here we depict the quantum homodyne detection. The lower mode output B of
the Michelson interferometer (MI, unfolded and monostatic) or Mach-Zehnder interferometer
(MZI, folded and bistatic) from Figure 4.2 is fed into a 50:50 beam splitter. At the other input
port C to this beam splitter we insert a strong coherent state

∣∣δLO

〉
C

=
∣∣|δLO| exp (iϑLO)

〉
C

with a known phase ϑLO. After the beam splitter we carry out intensity differencing between
the two detectors (D, E). The data is then inverted to extract the parity measurement. The
same detection will be implemented on upper mode output A as well.
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the intensity difference operator at the two detectors M can be written as,

M = e†e− d†d

= i(b†c− c†b).

This allows us to compute the expectation of M in terms of the input states. From the states

shown in Figure 4.4 we have

YB(ϑLO, ϕ) = B

〈
αϕ
∣∣

C

〈
δLO

∣∣M
∣∣δLO

〉
C

∣∣αϕ
〉

B

= B

〈
αϕ
∣∣

C

〈
δLO

∣∣i
(
b†c− c†b

) ∣∣δLO

〉
C

∣∣αϕ
〉

B

= i
(
〈b†〉B〈c〉C − 〈c†〉C〈b〉B

)

= i
(
α∗ϕ |δLO|eiϑLO − αϕ |δLO|e−iϑLO

)

= − 2|αϕ||δLO| sin(ϑLO)

= − 2
√
n̄ϕ
√
n̄LO sin(ϑLO), (4.5)

where the fact α∗ϕ = αϕ is used and n̄ϕ = n̄ sin2(ϕ/2) as before. It is clear from Eq. (4.5)

that a balanced quantum homodyne detector is an amplifier since, in general, n̄LO � n̄. This

amplification provides a critical advantage in that the amplified signal can be made to be

well above the thermal electronic noise floor of radar detectors. Hence by using a quantum

balanced homodyne approach the detectors need not to be photon number resolving (diffi-

cult) but rather just highly efficient (easier) [73, 78]. In addition, the intensity differencing

in balance homodyne detection removes all technical noise and classical noise of the local

oscillator [73]. Finally, a well-known result in coherent LIDAR says that the signal-to-noise

of the output is limited by the shot-noise of the local oscillator that scales like
√
n̄LO [79].

On the other hand, from Eq. (4.5) we have

|αϕ| = −
YB(ϑLO, ϕ)

2
√
n̄LO sin(ϑLO)

. (4.6)
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This can be substituted into the general expressions Eqs. (4.1) and (4.2) and the parity

signal from mode Bout becomes

〈Π〉 =
π

2
W (0, 0) (4.7)

= exp (−2|αϕ|2). (4.8)

Setting the phase of the local oscillator to ϑLO = π/2 we have our reconstructed parity signal

as,

SB(ϕ) = B

〈
αϕ
∣∣Π
∣∣αϕ
〉

B (4.9)

= exp

(
−Y

2
B(π/2, ϕ)

2n̄LO

)
, (4.10)

where we emphasize that Y 2
B(π/2, ϕ) is the measured (normalized) intensity difference be-

tween detectors D and E. By combining Eq. (4.5) and (4.10) we recover the parity result in

Eq. (4.3). However by implementing balanced homodyne detection we have gained control

over signal-to-noise and removed the need for photon-number resolving radar detectors.

Since every photon is precious we should not ignore the upper exit port Aout in Figure 4.2.

Note that if we are working near the sweet spot of ϕ ≈ 0 most of the signal photons

will emerge at this port. By measuring ϕ we really mean that we are measuring the phase

difference between the phase in the target arm ϕT and that in the reference arm ϕR of the

interferometer. For simplicity we have set the phase of the reference arm to zero in which

case ϕ = ϕT is the phase difference. In actual operation we would put a tunable phase

shifter in the reference arm, with phase difference ϕ = ϕT−ϕR being the signal. In this way,

typically in a feed-back loop, as we gather information about ϕT in the data we can tune

the interferometer in real time to always maintain the ‘sweet spot’ condition ϕ ≈ 0. This

tuning also gives us information about the absolute phase difference. The problem is that

tuning the signal in the lower output port Bout to the sweet spot moves it to a phase point

where the signal in the upper port Aout is not super resolved. Luckily, from the tuning in
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the reference arm and the signal in the lower port we will have enough information about

the unknown range phase ϕ to do the following trick on the upper port. In the homodyne

measurement at Aout we take the phase of the local oscillator to be ϑLO ≈ ϕ/2 and notice

for port Aout the average photon number n̄ϕ = n̄ cos2(ϕ/2), in which case Eq. (4.5) becomes

YA(ϕ/2, ϕ) =
√
n̄LO

√
n̄ sin(ϕ).

This leads to the parity signal from the upper port as

SA(ϕ) = exp

(
−Y

2
A(ϕ/2, ϕ)

2n̄LO

)

= exp
(
−n̄ sin2(ϕ)/2

)

≈ exp(−n̄ϕ2/2), (4.11)

where the last term is taken near ϕ ≈ 0 and the range resolution is the same as that of

Eq. (4.4). The outputs signals of the two ports are then simply averaged to give the best

estimate of the range phase.

4.4 Super-Resolved Angle Determination

In the preceding section we described how to obtain super-resolved ranging information using

monostatic Michelson interferometer combined with quantum homodyne detection. Super-

resolved angle information is critical for complete target location as well. However this is

difficult to obtain at radar wavelengths since, as discussed in the Sec. 4.1, the return signal

arrives as a plane wave. We discuss here how to get such a signal for the altitudinal angle

Θ and azimuthal angle Φ. The critical point is to realize that a MZI can be mapped onto

a two-slit diffraction configuration and thus the desired unknown angle can be mapped into

an unknown phase. We can then use the same homodyne technique to measure that phase

and extract the angle. Consider in Figure 4.5 the return signal arriving at the detector as

a plane wave with a Poynting vector at an angle Θ with respect to the horizon. We again

treat the signal as a coherent state |α〉 where any phase accumulated on the journey to the

64



target and back is suppressed. Two resonant receiver cavities are placed a distance L apart

and connected to a BS and then we perform a QHD at each output as before. The coherent

state is split over the two receivers but the lower state acquires a relative phase shift φ = k`

due to the path difference ` = L sin(Θ). Here the wavenumber is k = 2π/λ. From this point

on the measurement of that phase shift is carried out precisely as before. The resolution of

the phase is again δφ = 1/
√
n̄ for φ ≈ 0 corresponding to Θ ≈ 0 that is a target close to the

horizon.

Since L is fixed and known this yields a super-resolved measurement of the altitudinal

angle with a resolution approximately equal to

δΘQ ≈
λ

L

1

2π
√
n̄
. (4.12)

This is a factor of 2π
√
n̄ smaller than the classical diffraction limit of δΘC = λ/L. For n̄ = 100

average return photons the quantum result is about 60 times smaller than the classical

QHD

QHD

|α sin(φ/2)〉A
|α cos(φ/2)〉B

| α√
2
〉A

| α√
2
exp(iφ)〉B

Θ

Bin

L

Θ

`

|α〉

Bout

Ain Aout

FIGURE 4.5: Here we indicate how to use QHD to extract the super-resolved altitudinal
angle Θ. Two resonant radar cavity detectors are placed a distance L apart and connected
via a 50:50 BS as shown. The incoming coherent signal |α〉 arrives as a plane wave and hence
the state at the lower cavity experiences a phase shift φ = k` due to the path difference
` = L sin(Θ). Here the wave number is k = 2π/λ. As before the two signals are mixed at the
BS and a QHD is performed at each output providing a super-resolved measurement of phase
with resolution δφ = 1/

√
n̄. Since L is fixed and known this yields a super-resolved measure-

ment of the altitudinal angle with a resolution approximately equal to δΘQ = λ/2π(L
√
n̄) for

a target close to the horizon. This is a factor of 2π
√
n̄ smaller than the classical diffraction

limit of δΘC = λ/L.
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diffraction limit. Rotating the detector system about its bilateral axis allows us to extract

the azimuthal phase Φ with the same resolution. These two angular measurements, when

combined with the range measurement, completely characterize the instantaneous location

of the target. Temporal differentiation of the signal then is performed to acquire the velocity

and acceleration.

4.5 Discussion and Conclusion

4.5.1 Discussion on Resolution and Sensitivity

Super-sensitivity (signal-to-noise) below the shot-noise limit is often discussed in the same

context of super-resolution (sub-Rayleigh) below the diffraction limit. The reason that these

two properties are closely related is that the slope of a super-resolving interference fringe in

part determines the sensitivity of the device [16]. Usually the sensitivity can be thought of

as the ‘fine-grained’ version of the resolution.

In the context of quantum imaging and metrology the question arises as to what is the

relevant figure of merit when designing a practical system, resolution or sensitivity? For ex-

ample in coherent quantum lithography, where the Rayleigh diffraction limit rules, the goal

is to place features as close together as possible. Therefore resolution is the only relevant

figure of merit and discussions of sensitivity never occur. However, in contrast, in the Laser

Interferometer Gravitational Wave Observatory (LIGO), they can measure relative arm dis-

placements on the order of an attometer while deploying laser radiation of a wavelength on

the order of a micron. That is they are doing 12 orders of magnitude better than the Rayleigh

diffraction limit. That community never discusses resolution and only concerns themselves

with sensitivity, which currently is at shot-noise for a large range of frequencies.

The LIGO interferometers can perform with such high sensitivity for three reasons. Firstly,

in LIGO the gravitational wave causes the arms of the interferometer to change very slowly.

Most of the time the gravitational wave is not present and so they can lock the interferometer.

Secondly they have a circulating laser power of 100 kW and therefore huge numbers of
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photons to work with, about n̄ ≈ 1020 per second in the interferometer. Thirdly they have

the luxury to integrate their data over periods of hours, days, and even weeks. In this

manner they beat down the noise until the minimal detectable arm displacement is given by

the quantum shot-noise expression ∆x = λ/(2π
√
n̄) , which gives the attometer precision.

A radar ranging system is different from LIGO in that radar operators do not have the

luxury to integrate their data over long periods of time. The target speeds of Mach 30 are

not uncommon for some applications. Hence the interference fringes are moving very rapidly.

There is no time to lock down the interferometer and integrate at these speeds. In addition

data integration times are measured in seconds, not hours or days. And finally the number

of photons arriving at the detector is very small so there is little data to integrate. The

strategy then for coherent lidar and radar is to track the narrowest feature can be found in

the interferogram and follow this to establish the range and angular position parameter R,

Θ and Φ, and then temporally differentiate these in real time to extract vector velocity and

acceleration. It is for these reasons that radar designers often only worry about diffraction

rather than sensitivity. It is in such a scenario that we propose the design of our super-

resolving quantum radar scheme.

4.5.2 Conclusion

What we have shown in this chapter is that, setting super-sensitivity aside as a goal, it is

possible to beat the Rayleigh resolution by an arbitrary amount with coherent state sources

and a homodyne implementation of a quantum parity detection scheme [64]. In the absence

of loss, it is well known that the protocol for producing maximal phase super-resolution is to

transmit an entangled state of the electromagnetic field, called a N00N state, in an interfero-

metric set up as shown in Figure 4.1(a) [80]. However, as discussed in Sec. 4.1, several groups

have shown that in the presence of high loss the optimal strategy is to transmit coherent

states to the target. We then reviewed in Sec. 4.2 that super-resolved ranging is attainable, in

Sec. 4.3 how to extract this with homodyne, and then we showed in Sec. 4.4 that altitudinal
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and azimuthal angular determination is also possible using a modified homodyne scheme.

Given that ordinary radar systems already transmit coherent states of the electromagnetic

field, and also given that homodyne detection is a standard radar detection technique (bal-

anced mixer radiometry) our entire proposed quantum radar system can be implemented

mostly with commercial-off-the-shelf components with minimal redesign of existing radar

systems.

In this chapter as well as in related works [64, 74, 75], we are using the term ‘super

resolution’ in a slightly different fashion than in previous works. In previous work on quantum

lithography, super resolution was used to mean many fringes per unit wavelength [57, 58].

This usage explicitly implied narrower fringes in that more fringes per wavelength necessarily

implies narrower ones. In this current chapter we restrict the usage to only the narrowing

of the fringes. It is clear from Figure 4.3 that the spacing between the fringes is still at

the classical wavelength. For coherent interferometric lithography, the increased number of

fringes per wavelength is critical to the capability of writing more features N -times closer

than is possible classically. However it is not so critical in radar ranging. For radar what is

important is that, once we have locked on to a particular fringe, we can tell if the fringe has

moved and if so by how much. That sets the resolution, particularly on a rapidly changing

range R. The one-dimensional Rayleigh criterion then holds — one can tell if the fringe

moves by one full width at half maximum. From Figure 4.3 we see that this distance is

classically δxC = λ but that in our quantum scheme proposed here it is δxq = λ/(2π
√
n̄),

which is approximately 60 times narrower than the classical result for a return power of 100

photons. It is interesting to note that, since our scheme is also shot-noise limited, that the

minimum sensitivity has the same scaling, namely, ∆xq = λ/(2π
√
n̄). However, as we have

argued above, in a situation where the target moves quickly, there is little time to integrate

data, and the return number of photons is small, that the resolution and not sensitivity is

the relevant metric of system performance. One of the most important points to notice for
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our proposed scheme is that we have mapped this 1/
√
n̄ scaling out of the sensitivity (where

it is useless for our application) and into the resolution (where it is critical).

In principle, for complete ranging, we need to have not only narrow fringes but in addition

the knowledge of which fringe we are on. Without the latter information we can specify R only

modulo a wavelength. This ‘which-fringe information can be obtained by using a standard

technique in radar ranging. We simply apply a narrow temporal chirp in the outgoing radar

beam and time its round trip to the target and back. That then gives us an absolute distance

measurement to supply the needed information as to what fringe we are locked on and hence

completely determines R. (In practical radar systems one must compensate for changes in

the atmospheric index of refraction as a function of distance, altitude, weather, time of day,

etc. Such models of the index are well developed and may be deployed here in our scheme

with little or no change.)

Finally, even though we have only considered the use of the ‘quantum radar system when

the return power is very small, our proposal is likely to be useful even at high return powers

— the quadrature noise measured in homodyne detection is independent of the excitation

of the coherent state. Moreover, in that high-power regime the entire quantum radar system

may described within the context of classical radar theory.

In summary, we have presented a quantum radar system with super-resolving ranging

and angular determination that is much below the classical Rayleigh diffraction limit. The

system will be particularly useful for the radar tracking of far distant and fast moving objects

in which little radar power returns to the detector. The system can be implemented using

mostly off-the-shelf technologies with only minor modifications to current radar systems.

69



Chapter 5
Quantum Lithography and SRSP state

Optical lithography is the process of generating patterns, usually very small, on target sur-

faces by using light sources. Classical lithography is fundamentally limited by the wavelength

of the light source. Quantum lithography goes around this limitation by taking advantage

of the quantum nature of the light sources. In this chapter, we discuss two protocols for

generating super-resolving single-photon (SRSP) number-path entangled states from general

maximally number-path entangled states, i.e., the N00N states. It is our purpose to show

that, contrary to popular belief, a field in a single-photon state can carry multifold phase

information. We also show that both protocols generate the desired state with different prob-

abilities depending on the type of detectors being used. Such SRSP number-path entangled

states preserve high resolving power but lack the requirement of a multiphoton absorbing

resist, which may serve as a proof-of-principle prototype for quantum lithography in the

future.1

5.1 Introduction

With the promising ability to beat the Rayleigh diffraction limit, quantum lithography has

drawn a great amount of attention ever since it was first proposed by Boto et al. [57]. The

original proposal and the experiment realizing quantum lithography [57, 58, 81] exploit the

path entanglement of an ensemble of N photons whose de Broglie wavelengths are effectively

N times smaller than that of a single photon. However, one of the difficulties of such a

scheme is that the arriving quantum-correlated photons are not always concentrated in the

same absorption spot [82]. Moreover, an N -photon absorption process requires a multiphoton

1Sections 5.3, 5.4 and 5.5 previously appeared as Wei Feng, Kebei Jiang, Michelle L.-J. Lollie, M. Suhail Zubairy, and
Jonathan P. Dowling, Super-resolving single-photon number-path-entangled state and its generation, Phys. Rev. A, 89, 043824

(2014). Permission of using it in this dissertation has been granted by the principal author.
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absorbing resist [83, 84], and a general trade-off relation between resolution enhancement in

quantum lithography and the multiphoton absorption rate has been proved [85]. Therefore,

instead of utilizing photon entanglement, several other approaches with non-quantum states

of light [86, 87, 88, 89, 90, 91, 92] have been developed, all of which require either a nonlinear

material or resonant field-atom interaction.

An N -photon maximally number-path entangled state, which is also known as the N00N

state, in a two-path interferometer with a ϕ phase shift in one path is defined, as in previous

chapters, as

|N :: 0〉Nϕ ≡ 1

2

(
|N, 0〉+ eiNϕ|0, N〉

)
. (5.1)

The super-resolving power of the N00N state comes from the N -fold relative phase between

|N, 0〉 and |0, N〉.

Generally, only maximally number-path entangled states with the exact form of Eq. (5.1),

i.e., with the number of photons equal to the multiplier of the phase, are considered in quan-

tum lithography and metrology. However, a super-resolving single-photon (SRSP) number-

path entangled state, which refers to a N00N state with a single photon number but original

super-resolving power, can be defined as

|1 :: 0〉Nϕ ≡ 1

2

(
|1, 0〉+ eiNϕ|0, 1〉

)
. (5.2)

Moreover, such a state does not require the aforementioned multiphoton absorbing resist.

Consequently, although far from being practical, we believe such a state may lead to a

rudimentary design of quantum lithography sources. For the sake of later calculation, we

also define a more general N00N state whose super-resolving power is different from its

photon number:

|N :: 0〉Mϕ ≡ 1

2

(
|N, 0〉+ eiMϕ|0, N〉

)
. (5.3)

The purpose of this chapter is to show how to produce states of Eq. (5.2) from states of

Eq. (5.1) by generating the sequence of states of Eq. (5.3), with only linear quantum optical
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elements applied. To do so, first we need to show how a high-photon-number N00N state

is generated. One of such constructive protocols is proposed by Kok et al. in 2002 [93], on

which the discussion in next section is based.

5.2 Generation of Maximally Number-Path Entangled States

The generation of low-photon-number N00N (N = 1 or 2) states, or low-N00N states, is

straightforward. A single-photon N00N state can be produced by injecting a single-photon

two-mode state, |1〉a|0〉b, into a 50:50 beam splitter (BS). A simple transformation shows the

output state to be proportional to |1〉a′|0〉b′ + |0〉a′ |1〉b′ .

Two-photon N00N state generation depends on the Hong-Ou-Mandel (HOM) effect [94]

where a |1〉a|1〉b enters a 50:50 BS. This effect was first proposed to demonstrate the quantum

interference between photons from different sources (as opposed to the famous quote, ‘photon

interferes only with itself’, by Dirac) and can be mathematically described as

|1〉a|1〉b BS−→ 1√
2

(|2〉a′|0〉b′ + |0〉a′|2〉b′) . (5.4)

The lack of cross term, |1〉a′ |1〉b′ , can be explained in Figure 5.1. The probability amplitudes

of the two possible ‘paths’ of transition |1〉a|1〉b BS−→ |1〉a′ |1〉b′ completely cancel each other,

i.e., destructively interfere with each other.

Unfortunately this cancellation does not generalize beyond N = 2 for there are not enough

free parameters available to suppress high-N cross terms. However, with the cost of more

complicated setup and lower generation efficiency, Kok et al. proposed a protocol of gener-

(a) (b) (c) (d)

FIGURE 5.1: Four possible outputs of a |1, 1〉 input. (c) represents a double transmission
with probability amplitude (i)(i) = −1; (d) represents a double reflection with probability
amplitude (−1)(−1) = 1. Both (c) and (d) lead to the same cross terms, therefore they
cancel each other completely.
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ating high-N00N states (N ≥ 3) from a |N,N〉, which is based on repeated implementation

of HOM effect. Other proposals on high-N00N state generation, all of which involve strong

Kerr nonlinearity or adding ancillary BS’s and detectors, are reviewed in Ref. [16]. More

recently, a ‘High-N00N’ state with N up to five has been generated in the lab [95].

The basic element of Kok’s protocol is shown in Figure 5.2, where two BS’s peel off photons

from incident beams a and b. The reflected modes are recombined at the 50:50 BS in the

middle and a coincidence detection is carried out on both of the output modes c′ and d′. If

one of the incident photons is from mode a and the other is from b, then from Eq. 5.4 we will

have a |2 :: 0〉c′,d′ as the output, where a coincidence will never be detected. On the other

hand, if both photons are from mode a or b, the inverse of Eq. 5.4 guarantees a coincidence

at the output. Therefore, by post-selecting on a two fold coincidence in the output modes

c′ and d′, and considering the tunable phase shift ϕ, the outgoing state in modes a′ and

b′ becomes |Na − 2, Nb〉 + e−2iϕ|Na, Nb − 2〉, given the incoming state in modes a and b is

|Na, Nb〉.

Kok et al. stated that an even photon-number |N :: 0〉 can be generated by stacking N/2 of

such basic elements, with a |N,N〉, which is much easier to produce than its corresponding

N00N state, as the incoming state of the first basic element. This scheme is shown in Fig-

a

b

c′

d′

a′

b′

d

c

ϕ

≡ ϕ

FIGURE 5.2: The basic element of Kok’s protocol of high-N00N state generation. Two pho-
tons are peeled off from incident beams a and b, which are later subjected to a coincident
detection at c′ and d′. The tunable phase shift ϕ are required to eliminate all cross terms in
the output states.
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ure 5.3. To prove this statement, we can write the action of each basic element as a2 + eiϕb2.

Then the statement under consideration is equivalent to

N/2∏

k=1

(a2 + eiϕkb2)|N,N〉 = |N :: 0〉. (5.5)

Therefore we require
∏N/2

k=1(a2+eiϕkb2) ∝
(
aN+bN

)
and the values of the phase shifts become

ϕk = 4πk/N.

The generation of odd photon-number high-N00N states can be accomplished in mostly the

same way with the introduction of a polarization BS. After applying a phase shift ϕ to the

out-coming state of Figure 5.3, we obtain a |N :: 0〉Nϕ defined in Eq. (5.1).

5.3 Which-Way Information and Quantum Eraser

In this section we discuss in detail the effect of the extra BS on a incoming N00N state. We

show that the acquisition of which-way information destroys the phase-resolving power of

the |N :: 0〉Nϕ. For pedagogical reasons, we start with |2 :: 0〉2ϕ as the input state before the

BS in Figure 5.4. Assuming the two BSs have the same transmittance t and reflectance r,

and from the standard quantum transformation [4]

a† = ta′
†

+ irc†, b† = tb′
†

+ ird†, (5.6)

|0〉

|N〉

|N〉

|0〉 |0〉

|0〉 |0〉 |0〉

ϕ1 ϕ2 ϕN
2

|N :: 0〉

FIGURE 5.3: The repeated use of the basic element defined in Figure 5.2 will transform a
|N,N〉 into a |N :: 0〉.
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it is straightforward to calculate the probabilities of transmitting all possible states to a′

and b′, and the result is shown in Table 5.1. Notice that because of the availability of the

which-way information of the incoming photon, the chance of transmitting |1 :: 0〉2ϕ is zero.

If an extra 50:50 BS is introduced as in Figure 5.5, the information regarding which path

(mode c′ or d′) the detected photons come from would be hidden from the environment.

Therefore photons are subtracted coherently from the original state (modes a and b) and the

relative phase is preserved in the transmitted state (modes a′ and b′). The detection proba-

bilities change accordingly and are shown in Table 5.2. Note that even though states such as

1/
√

2 (|1, 0〉a′,b′ − iei2ϕ|0, 1〉a′,b′) and 1/
√

2 (|1, 0〉a′,b′ + iei2ϕ|0, 1〉a′,b′) are single-photon states

a

b

a′

b′

{r : t}

va

vb

{r : t}
c

d

FIGURE 5.4: Two BS’s with the same reflectance ρ = r2 are employed to reduce the number
of the photons being transmitted. The existence of detectors c and d reveals the which-
way information of the reflected photons and the incoming N00N states in modes a and b
collapse into a separable state in mode a′ or b′. Therefore the relative phase is lost and the
phase-resolving power is destroyed.

TABLE 5.1: Probabilities without quantum eraser, as shown in Figure 5.4.

Detector state Transmitted state Probability

|0, 0〉d,c t2 (|2, 0〉a′,b′ + ei2ϕ|0, 2〉a′,b′) /
√

2 t4

|0, 1〉d,c itr|1, 0〉a′,b′ t2r2

|0, 2〉d,c −r2|0, 0〉a′,b′/
√

2 r4/2
|1, 0〉d,c ei2ϕitr|0, 1〉a′,b′ t2r2

|2, 0〉d,c −ei2ϕr2|0, 0〉a′,b′/
√

2 r4/2
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and preserve the twofold phase-resolving power, they are, in general, not valid output states

because of the extra i in the relative phase. However, we can apply certain phase shifts to

make such states usable, which is discussed in later sections. Moreover, quantum interfer-

ence is observed when all photons are reflected into the 50:50 BS and the corresponding

probabilities vary as a function of the phase shift ϕ, as would be expected from a lossless

Mach-Zehnder interferometer.

In conclusion, a ‘quantum eraser’ is necessary to generate a SRSP number-path entangled

state, and we refer to the setup shown in Figure 5.5 as a ‘unit’ since it is used repeatedly

a

b

c′

d′

a′

b′

{r : t}

va

vb

c

d

{r : t}

{50 : 50}

FIGURE 5.5: A single “unit”: Figure 5.4 plus an extra 50:50 BS which erases the which-
way information; the relative phase is preserved at the output. The dashed lines connecting
detectors c and d represents the fact that coincidence detection is only needed under certain
circumstances which will be specified in later sections. On the other hand, the 50:50 BS is
always necessary.

TABLE 5.2: Probabilities with quantum eraser, as shown in Figure 5.5.

Detector state Transmitted state Probability

|0, 0〉d,c t2 (|2, 0〉a′,b′ + ei2ϕ|0, 2〉a′,b′) /
√

2 t4

|0, 1〉d,c −tr (|1, 0〉a′,b′ − iei2ϕ|0, 1〉a′,b′) /
√

2 t2r2

|0, 2〉d,c r2(1− ei2ϕ)|0, 0〉a′,b′/2
√

2 r4 sin2 ϕ/2

|1, 0〉d,c itr (|1, 0〉a′,b′ + iei2ϕ|0, 1〉a′,b′) /
√

2 t2r2

|2, 0〉d,c −r2(1− ei2ϕ)|0, 0〉a′,b′/2
√

2 r4 sin2 ϕ/2
|1, 1〉d,c −ir2(1 + ei2ϕ)|0, 0〉a′,b′/2 r4 cos2 ϕ
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in the following calculation. In addition, with a general |N :: 0〉Mϕ as the input state, the

probability of detecting a |m,n〉d,c in a unit is shown to be

PMϕ
N (m,n, ρ)

= |d,c〈m,n|ψtotal〉|2

=

(
N

m+ n

)
(1− ρ)N−(m+n)ρm+n

(
m+ n

m

)(
1

2

)m+n

×
{

1 + δN,m+n cos

(
Mϕ+

(m− n)π

2

)}
. (5.7)

Here ρ = r2, 1 − ρ = t2, and |ψtotal〉 is the full output state in modes a′, b′, d, and c. In

the last line of the previous equation, the expression
(

N
m+n

)
(1− ρ)N−(m+n)ρm+n comes from

reflecting m+ n photons out of N photons from the {r, t} BS’s while
(
m+n
m

) (
1
2

)m+n
is from

the 50:50 BS. The δN,m+n × cos term reflects the quantum interference when none of the N

photons are transmitted.

5.4 Generation of |1 :: 0〉Nϕ without Number-Resolving Detectors

With ordinary photodetectors we are only able to tell whether or not any photon arrives at

the detector, but not how many of them. Consequently, how many photons are reflected in a

single unit is unknown. Therefore we introduce a stacking of units, implementing coincidence

detection in each one to enhance the probability of generating the correct state.

To see how the coincidence detection is beneficial, we consider the example where the input

of a unit is |3 :: 0〉3ϕ. We take into account two probabilities. With the first probability, it is

easy to see that there are ten possible detected states, and only when a |1, 1〉d,c is detected

do we generate the |1 :: 0〉3ϕa′,b′ . This is a direct result from the HOM effect [94, 96]. With

the second probability, if we perform coincidence detection and take the output states only

when both c and d click, the chance of |1, 1〉d,c being detected is much higher, since there are

only two other coincidence states: |2, 1〉d,c and |1, 2〉d,c. We call the former the “probability of

detecting some state” and the latter the “conditional probability of detecting some state”.

Both kinds of probabilities are discussed in the following calculations.
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5.4.1 Odd-Photon-Number Input State

For a general input state |No :: 0〉Noϕ with No ≡ Nl = 2l+1, l = 1, 2, 3, ..., we need l units to

generate the desired output |1 :: 0〉Noϕ, as shown in Figure 5.6. The procedure is as follows:

we propagate the input state from lth unit, which is at the leftmost, to the first unit, which

is to the immediate left of the output, and for each unit i we only pass on those cases where

a coincidence between d and c is detected (see Figure 5.5). This ensures that, in each unit,

at least two photons are subtracted from the input state while the multifold relative phase

eiNoϕ is intact. This is exactly what is needed to generate a SRSP number-path entangled

state from a general maximally number-path entangled state.

On the other hand, such a procedure has a low efficiency. The reason is that any state that

loses more than three photons in any unit will not be propagated to the output because it

has to lose one photon or none at all (i.e., no coincidence) in some other units to compensate

for excess photon loss. Therefore there are only two possible output states: (a) |1 :: 0〉, where

every unit subtracts two photons, i.e., |1, 1〉d,c is detected in each unit, and (b) |0 :: 0〉, where

one of the units subtracts three photons, i.e., |1, 2〉d,c or |2, 1〉d,c is detected, and all others

subtract two photons.

|No :: 0〉Noϕa,b

unit

l − 1

unit

1

unit

{r1}{rl−1}{rl}

|Nl−1 :: 0〉Noϕa,b |Nl−2 :: 0〉Noϕa,b |N1 :: 0〉Noϕa,b |1 :: 0〉Noϕa,b

l

FIGURE 5.6: A stacking of units to reduce a |No :: 0〉Noϕ, with No = 2l + 1 being an odd
number. Each rectangle represents the unit described in Figure 5.5. Notice we count from
the output for the ease of calculation. Unit i with a reflectance of ri is the ith last unit
before the output. It has a N00N state |Ni :: 0〉Noϕ as the input state. Note that although
the number of photons decreases from left to right, the relative phase is always Noϕ, which
is exactly what we need to generate a SRSP number-path entangled state.
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For scenario (a), the probability can be calculated as

PNo

all |1,1〉 =
l∏

k=1

PNoϕ
2k+1(1, 1, ρk)

=
l∏

k=1

1

2
k(2k + 1)(1− ρk)2k−1ρ2

k. (5.8)

For scenario (b), we first show that the probability of detecting |1, 2〉d,c in the ith unit while

|1, 1〉d,c is detected in all others is

PNo

ith |1,2〉 =





PNo

all |1,1〉
ρ1(1+sin(Noϕ))

4(1−ρ1)
, i = 1;

PNo

all |1,1〉
ρi(1+cos(Noϕ))

4(1−ρi)

i−1∏

k=1

1

1− ρk
, otherwise.

(5.9)

The sum of all possible units for which |1, 2〉d,c is detected becomes PNo

one |1,2〉 =
∑l

i=1 P
No

ith |1,2〉.

Similarly, we have that the probability of detecting |2, 1〉d,c in the ith unit while |1, 1〉d,c is

detected in all others is

PNo

ith |2,1〉 =





PNo

all |1,1〉
ρ1(1−sin(Noϕ))

4(1−ρ1)
, i = 1;

PNo

all |1,1〉
ρi(1+cos(Noϕ))

4(1−ρi)

i−1∏

k=1

1

1− ρk
, otherwise,

(5.10)

and PNo

one |2,1〉 =
∑l

i=1 P
No

ith |2,1〉. Now the conditional probability of transmitting |1 :: 0〉Noϕ

after unit 1, given the photon number of the input state is odd and coincidence detection is

employed in every unit, becomes

PNo
cond.

=
PNo

all |1,1〉

PNo

all |1,1〉 + PNo

one |1,2〉 + PNo

one |2,1〉

=
1

l∑

i=2

(1 + cos(Noϕ))ρi
2(1− ρi)

i−1∏

k=1

1

1− ρk
+

2− ρ1

2(1− ρ1)

. (5.11)

The probability of generating |1 :: 0〉No can be maximized by choosing an optimal re-

flectance ρk for the kth unit. Physically, it is easy to show from Eq. (5.8) that this probability
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maximizes when ρk = 2/(2k+ 1) (i.e., the most probable number of photons being reflected

in each unit is two) and

PNo

all |1,1〉|max =
l∏

k=1

2k

2k − 1

(
2k − 1

2k + 1

)2k

=
No!

No
No

(5.12)

≈
√

2πNoe
−No , (5.13)

where in the last line Sterling’s formula is used in the large No limit. 2 This probability

decreases exponentially with increasing No, as expected.

On the other hand, there is no optimal ρk ∈ [0, 1] that leads to a maximal conditional

probability; PNo
cond. in Eq. (5.11) is independent of PNo

all |1,1〉 and approaches unity when all ρk

are close to zero. However, we can set a critical conditional probability PNo
cond.|c and compute

the corresponding ρk. Assuming No = 7, ϕ = π/14, all ρk are equal to ρc, and we want a 50%

chance of transmitting a |1 :: 0〉7ϕ state whenever a coincidence is detected in unit 1, i.e.,

PNo
cond.|c = 0.5, then ρc can be calculated to be around 0.31; when PNo

cond.|c = 0.9, ρc ≈ 0.06.

However, this does not mean that we can obtain more outputs by decreasing the re-

flectance. In previous example, the probability of generating |1 :: 0〉 is PNo

all |1,1〉 = 0.2% when

ρ = 0.31 and almost zero when ρ = 0.06. Therefore a higher conditional probability (i.e.,

higher fidelity) comes with a lower probability (i.e., efficiency), and vice versa [93].

5.4.2 Even-Photon-Number Input State

For a general input state |Ne :: 0〉Neϕ with Ne = 2l, l = 1, 2, 3..., we need l units to generate

the desired output |1 :: 0〉Neϕ, as shown in Figure 5.6. The procedure is as follows: we

propagate the input state from lth unit, which is at the leftmost, to the second unit, which

is to the immediate left of the first unit, and for each unit i (i ∈ [2, l]) we only pass on

2In the general case, for each of the No photons there are 2l+ 1 possible ways of being reflected (there are two paths in each

of the l units and one accounts for the case where no reflection occurs), which explains the denominator in Eq. (5.12). On the

other hand, when only two photons are expected to be reflected in a unit with a input state |N :: 0〉, the number of possible
ways of such reflection is 2

(N
2

)
. Therefore the total number of possible reflections in this case is

∏l
k=1 2

(Nk
2

)
=
∏No
k=1

(k
1

)
= No!,

which is the numerator of Eq. (5.12).
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those cases where a coincidence between d and c (see Figure 5.5) is detected; in the first unit,

however, we do photodetection on both d and c but no coincidence counting. Whenever d (c)

clicks, we apply a −π/2 (π/2) phase shift on mode b′. This ensures that in each unit from

l to 2, at least two photons are subtracted from the input state while the multifold relative

phase eiNoϕ is intact.

Similar to the odd-number case, there are only two possible input states for unit 1: (a) |2 ::

0〉, where every unit from the second to the lth subtracts two photons, i.e., |1, 1〉d,c is detected

in each unit, and (b) |1 :: 0〉, where one of the other units subtracts three photons, i.e., |1, 2〉d,c
or |2, 1〉d,c is detected, and all others subtract two photons. Moreover, from Table 5.2, it is

easy to see that a single click in d corresponds to 1/
√

2(|1, 0〉a′,b′ + ieiNeϕ|0, 1〉a′,b′) being

transmitted, and a −π/2 phase shift on b′ turns it into |1 :: 0〉Neϕ. Similar logic applies to a

single click in c.

For scenario (a), the probability of having |2 :: 0〉Neϕ as the input of unit 1 is

PNe

all |1,1〉 =
l∏

k=2

PNeϕ
2k (1, 1, ρk)

=
l∏

k=2

1

2
k(2k − 1)(1− ρk)2(k−1)ρ2

k. (5.14)

The probability of detecting only one photon in unit 1 with this input state can be easily

read off from Table 5.2 as 2t21r
2
1 = 2(1− ρ1)ρ1. Therefore the probability of transmitting the

correct state at the output is

2PNe

all |1,1〉(1− ρ1)ρ1. (5.15)

For scenario (b), we first show that the probability that |1, 2〉d,c is detected in the ith unit

while |1, 1〉d,c is detected in all others is

PNe

ith |1,2〉 = PNe

all |1,1〉
ρi

2(1− ρi)
i−1∏

k=2

1

1− ρk
. (5.16)

The sum of all possible units for which |1, 2〉d,c is detected becomes PNe

one |1,2〉 =
∑l

i=2 P
Ne

ith |1,2〉.

Because of symmetry, we have PNe

ith |2,1〉 = PNe

ith |1,2〉 and PNe

one |2,1〉 = PNe

one |1,2〉.
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Now we are in the position to calculate the conditional probability of transmitting |1 ::

0〉Neϕ in the case of an even-photon-number input state, given a coincidence is detected in

unit 2 to unit l and either d or c (but not both) in unit 1 clicks:

PNe
cond. =

2PNe

all |1,1〉(1− ρ1)ρ1

PNe

all |1,1〉
{

2− ρ1

(
1 + cos2

(
Ne

2
ϕ
))}

ρ1 +
(
PNe

one |1,2〉 + PNe

one |2,1〉

)
ρ1

=
2(1− ρ1)

2− ρ1

(
1 + cos2

(
Ne

2
ϕ
))

+
l∑

i=2

ρi
1− ρi

i−1∏

k=2

1

1− ρk

. (5.17)

The {2− ρ1 [1 + cos2 (Neϕ/2)]} in the denominator represents the probability of getting one

click in unit 1 given its input is a |2 :: 0〉Neϕ state, while ρ1 represents that of an input state

of |1 :: 0〉Neϕ.

From Eqs. (5.14) and (5.15), the probability of generating |1 :: 0〉Neϕ can be maximized

by choosing an optimal reflectance ρk for the kth unit. Physically, it is easy to show that

PNe

all |1,1〉 maximizes when ρk = 1/k and

PNe

all |1,1〉|max =
l∏

k=2

2k − 1

2k

(
k − 1

k

)2(k−1)

= 2
Ne!

Ne
Ne

(5.18)

≈ 2
√

2πNee
−Ne , (5.19)

where in the last line Sterling’s formula is used in the large Ne limit. It is easy to show that

the expression 2(1−ρ1)ρ1 in Eq. (5.15) has a maximal value of 1/2 when ρ1 = 1/2. Therefore

the maximum probability of transmitting the correct state is Ne!/Ne
Ne , which agrees with

Eq. (5.12) and can be reached when the reflectance of the units are such that

ρk =





1/k, k ∈ [2, Ne/2];

1/2, k = 1.

(5.20)

On the other hand, there is no optimal ρk ∈ [0, 1] that leads to a maximal conditional

probability in Eq. (5.17). Just like in the case with the odd-photon-number input state, we
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may set a critical probability and require the corresponding ρk, and the reciprocal relation

between fidelity and efficiency stands as well.

5.5 Generation of |1 :: 0〉Nϕ with Number-Resolving Detectors

With number-resolving detectors implemented at d and c in Figure 5.5, we are able to tell

how many photons are reflected in a unit [97, 98]. Therefore it is much easier to generate a

|1 :: 0〉Nϕ state from a general |N :: 0〉Nϕ state: only a single unit is needed. The protocol is

as follows: assuming m and n photons are detected at d and c in a single unit with reflectance

ρ, we (a) propagate the state to the output only when m + n = N − 1, and (b) given (a) is

true, we apply a (n−m)π/2 phase shift on mode b′. This protocol can be easily derived.

A general input N00N state in Figure 5.5 is

|ψin〉 =
1√
2

(
|N, 0; 0, 0〉a,va;b,vb + eiNϕ|0, 0;N, 0〉a,va;b,vb

)
, (5.21)

where N can be either odd or even. The corresponding output state at a′, b′, c′, and d′ is

|ψout〉 =
N∑

k=0

(
N

k

)1/2

tk(ir)N−k
1√
2

(|k, 0;N − k, 0〉a′,b′;c′,d′ + eiNϕ|0, k; 0, N − k〉a′,b′;c′,d′).

(5.22)

Given we are only interested in transmitting one photon to the output, states in |ψout〉 with

k 6= 1 can be ignored and we are left with

|ψtarget〉 =

√
N√
2
t(ir)N−1

(
|1, 0〉a′,b′ ⊗ |N − 1, 0〉c′,d′ + eiNϕ|0, 1〉a′,b′ ⊗ |0, N − 1〉c′,d′

)
. (5.23)

Since |k, 0〉c′,d′ →
(

1√
2

)k k∑
m=0

(
k
m

) 1
2 in|m,n〉d,c and |0, k〉c′,d′ →

(
1√
2

)k k∑
m=0

(
k
m

) 1
2 im|m,n〉d,c, with

k = N − 1 Eq. (5.23) becomes

|ψtarget〉 =
√
Nt

(
ir√

2

)N−1 N−1∑

m=0

(
N − 1

m

) 1
2

in
( |1, 0〉a′,b′ + im−neiNϕ|0, 1〉a′,b′√

2

)
⊗ |m,n〉d,c.

(5.24)

The state in the last set of parentheses is a |1 :: 0〉Nϕ state with an extra phase of (m−n)π/2,

which can be corrected by applying an (n −m)π/2 phase shift on mode b′. This allows us
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to keep all transmitted states with such detected photon numbers m and n in modes d and

c so that m+ n = N − 1. In contrast, there are always faulty transmitted states when only

coincidence detection is available.

From Eqs. (5.22) and (5.23), the probability of transmitting the correct state with photon-

number-resolving detectors is

PN
resolving = |〈ψtarget|ψout〉|2 = N(1− ρ)ρN−1, (5.25)

where ρ = r2 as before. This probability maximizes at ρ = r2 = (N − 1)/N , with

PN
resolving|max =

(
N − 1

N

)N−1

(5.26)

≈e−1, (5.27)

where in the last line we take the limit of large N .

In Figure 5.7 we plot the probabilities for protocols with and without number-resolving

detectors. It is easy to see that with photon-number-resolving detectors, a SRSP number-path

entangled state is much more likely to be generated from a general N00N state. Moreover,

since we have complete control over the state being transmitted, the conditional probability

with photon number-resolving detectors is always 1.

5.6 Conclusion and Discussion

In this chapter, we have proposed two protocols for generating a SRSP number-path entan-

gled state |1 :: 0〉Nϕ from a general N -photon N00N state, either with or without photon-

number-resolving detectors. On one hand, both protocols require an extra 50:50 BS on top

of a general two-path interferometer to cloak the which-way information of the reflected pho-

tons to maintain the coherence of the transmitted states. On the other hand, the generation

of |1 :: 0〉Nϕ without photon-number-resolving detectors has to be realized in bN/2c steps,

whereas that with photon-number-resolving detectors can be done in one step since we have

full knowledge of the detected photon numbers. In addition, we have shown that both the
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probability (efficiency) and conditional probability (fidelity) of generation are higher when

photon-number-resolving detectors are involved. In the case with non-resolving detectors we

can achieve arbitrarily high fidelity, but at the cost of low efficiency.

One remaining issue is the effect of the imperfection of the detectors. Following the same

argument as in Ref. [93], we may ignore the deteriorated efficiency and dark counts because of

the short operation-time windows, and consider only the imperfect detection efficiency of the

detectors. First, we consider the case without photon-number-resolving detectors and assume

all detectors are the same. From previous footnote it is easy to see that the numerator of

Eq. (5.12) now becomes No!ηNo , where η is the detector efficiency and ηNo is the probability

that each of the No detectors clicks accurately. Thus this protocol performs exponentially

poorly when detector efficiency is not unity. With photon-number-resolving detectors, since

only two detectors (one unit) are involved, the effect of detector efficiency scales as η2, which

is independent of the number of input photon.
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FIGURE 5.7: The maximized probabilities of transmitting a |1 :: 0〉Nϕ state following dif-
ferent protocols (see Eqs. (5.12), (5.18) and (5.26)) are plotted as a function of the input
photon number. The squares represent the probabilities for a general input state such as in
Eq. (5.3) without photon-number-resolving detections, while the circles represent the prob-
abilities with photon-number-resolving detections. It is clear that with increasing the input
photon number, number-resolving detection maintains around 40% efficiency, while coinci-
dence detection drops to zero rapidly. This means that with the right kind of detector and
an efficient way of generating the N00N state, we can generate the SRSP state efficiently!
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We conclude this chapter with the remark that the SRSP number-path entangled state

proposed here is far from practical for quantum lithography at the current stage. It might,

however, inspire some new perspective for this field of research.
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Chapter 6
Squeezed Vacuum and Polarization SR

6.1 Introduction

As shown in Chap. 1, the noise in one of the two quadratures of a squeezed state can be

lower than the SNL. This directly leads to the application of squeezed states in quantum

interferometry. Caves first pointed out that the use of squeezed light source can improve the

sensitivity of an interferometer [13]. The Laser Interferometer Gravitational Wave Observa-

tory (LIGO), which aims to directly detect passing gravitational waves, will use a squeezed

light source to achieve extreme precision in its next generation. Although the LIGO is very

expensive and takes weeks to be aligned, it is basically nothing more than a huge optical

interferometer, whose sensitivity relies on the right choice of state for the light source. As

another example, light source in squeezed vacuum state could be used to design a new type

of optical magnetometer with noise level 3 dB lower than SNL [99]. While the surpassing

superconducting quantum interference device (SQUID) magnetometer is very expensive to

operate, the new design based on squeezing is very simple and costs no more than a milliwatt

pump laser. A detailed review of squeezed states may be found in Ref. [100].

Many schemes for generating squeezed states have been proposed ever since its discovery.

Yuen et al. first proposed that squeezed light could be produced by using four-wave mixing

(4WM) [101, 102]. Later Caves and Schumaker developed a two-photon formalism for a

squeezed state and suggested several nonlinear processes for its generation [103, 104]. In

this chapter, we focus on the phenomenon called polarization self-rotation (SR) and its

application in creating squeezed vacuum states. There are two major advantages of this

protocol. First, polarization SR is relatively simple to realize under modest experimental

conditions at room temperature. Second, squeezing via polarization SR can be generated at a

low frequency with a narrow bandwidth. For a more comprehensive summary of experimental
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efforts in generating squeezed state, especially on polarization SR, readers are referred to

the dissertation by Horrom [105].

When an elliptically polarized light field interacts with a nonlinear medium, it introduces

circular birefringence (polarization dependent refractive index) into the medium, which in

turn cause the polarization ellipse of the light field to rotate. This process is known as the

polarization SR and such nonlinear media are called the SR media. Various mechanisms

(such as Kerr nonlinearity or ac-Stark shift) are responsible for this effect dependent upon

the nonlinear media used. The nonlinear system studied in this chapter is the 87Rb atomic

vapor, in which self-rotation is induced by optical pumping and ac-Stark shift [106].

It has been demonstrated, both theoretically and experimentally, that when linearly polar-

ized light propagates through a SR medium, the light in the orthogonal polarization will be

in a squeezed vacuum state. However, such vacuum squeezing can be difficult to accomplish

in a generic Kerr medium when absorption is present. The atomic system, on the other hand,

is believed to be more efficient under resonant conditions, where a high degree of SR and

small degree of absorption is achievable [107].

In following sections, we first discuss the level structure of the 87Rb atoms and argue that

under certain parametric configurations it can be simplified as a four-level system. Then we

provide a simple calculation verifying polarization SR in such a four-level system when an

elliptically polarized light field is injected. Later we try to quantify the degree of squeezing

in the vacuum mode of the system when a linearly polarized light is used. We first consider

the work by Matsko et al. [107] where squeezing levels up to 8 dB in a SR atomic system is

first predicted. However, this work is based on an analogy to the classical solution and the

field is treated classically. Therefore, in the later section, we calculate the degree of vacuum

squeezing in the vacuum mode of a fully quantized light field interacting with the simplified

four-level system. Our simulation in Section 6.4.3 shows no vacuum squeezing. Finally, we
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consider the fluorescence power spectrum of the radiation field at the far-zone and show that

vacuum squeezing in some quadrature is achieved.

6.2 87Rb and 1/2→ 1/2 System (X-system)

Rubidium is an alkaline element with atomic number 37. It is relevant to various quantum

optics experiments because of its high reactivity. There is only one electron in the outermost

shell of 87Rb and the electron’s ground state is 52S1/2. In the n2S+1LJ notation, n is the

principal quantum umber, S is the value of spin angular momentum, L is the value of orbital

angular momentum and J is value of the total angular momentum of the outer electron. The

transitions between the ground state and the first two excited states, 52P1/2 and 52P3/2, of

the outer electron are called the D1 line (795 nm) and D2 line (780 nm) of 87Rb respectively.

The “D” originates from the fact that the latter two states form a fine-structure doublet (see

Figure 6.1). More detailed optical properties of 87Rb may be found in Ref. [108].

D1

52P1/2

52S1/2

818MHZ

6834MHZ

F = 2

F = 2

F = 1

F = 1

F = 0

F = 1

F = 2

F = 3

795 nm

D2

780 nm

52P3/2

FIGURE 6.1: 87Rb level diagram. The hyperfine levels are neglected in the following calcula-
tions. The D1 line transition is then equivalent to a Jg = 1/2 → Je = 1/2 system shown in
Figure 6.2. It turns out that the removal of the hyperfine structures leads to negative results
in generating squeezed vacuum states, as will be shown in later sections.
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Both the D1 and D2 lines are further split into hyperfine levels due to the coupling of

J with the total nuclear angular momentum I. The total atomic angular momentum F is

given by F = J + I and the hyperfine levels are labeled by their value F . In this chapter,

we consider only the D1 transition and restraint ourselves to the cases where the hyperfine

structure can be neglected [107, 109]. This can be realized by using either a high buffer

gas pressure (overwhelming collisional broadening, see for example Ref. [110]) or a very

intensive laser pump (overwhelming power broadening.)1 Consequently, the D1 line transition

becomes equivalent to a Jg = 1/2 → Je = 1/2 system and both ground/excited states

become degenerate. Then our system is effectively a four-level X-system shown in Figure 6.2.

Moreover, we find that with general real-life parameters, the absorption of the light field in

a X-system is very small and can be safely ignored. We therefore assume zero absorption

of the medium (see Figure 6.3b.) Finally, we want to point out that the neglect of the

hyperfine structure also ignores the Zeeman effect, which is responsible for the nonlinear

magneto-optical rotation (NMOR) effect [109, 105]. The NMOR effect is closely related to

polarization SR but it requires a non-zero external magnetic field. Throughout this chapter,

we always assume zero external magnetic field (this can be done with an external field shield

in laboratory) and degenerate ground/excited magnetic sublevels.

Strictly speaking, an open system configuration of X-system should be used to model the

atoms that are coming in and out of the interaction region with the radiation field. This rate

is denoted as γ and is the same for all levels, as shown in Figure 6.2. However, the excited

levels can decay much faster than the time of flight through the interaction region because

of radiation decay into states outside the X-system or the collision with other atoms. Thence

we have the total decay rate of the excited state as (γ0 + γ + γ′) where γ0 is the rate of

decaying to the ground states of the X-system. The rate of pumping fresh atoms into the

1According to the Rabi solution, the absorption line will have a broadened Lorentzian FWHM that depends on the intensity

of the injecting field. This broadening can not be obtained from perturbation treatment where the field must be weak. See
[111, 31].
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(a) Closed X-system (b) Open X-system

FIGURE 6.2: Schematic diagram for a Jg = 1/2 → Je = 1/2 (X-) system. The eigen-
frequencies of the four levels are ω1 = ω2 = ωe and ω3 = ω4 = ωg with ω0 = ωe − ωg.
σ̂+(σ̂−) is the left- (right-) circularly polarized component of the light field, whose frequency
is detuned by ∆ from resonance. In the (a) closed configuration, γ0 is the natural width of
the upper states; γ denotes the population exchange rate between the ground states; in the
(b) open configuration, the excited states decay at the rate of γ0 + γ + γ′ while the ground
states decay at the rate of γ and get repumped at rate of r. When γ′ � γ and γ′ = r,
the open configuration is equivalent to the closed one. See context for more detail. In such
symmetric configurations, no classical self-rotation will occur when linearly polarized field is
injected; however, quantum mechanical effect changes the statistics of the vacuum field on
the orthogonal polarization and results in squeezed vacuum state.

interaction region is denoted by r. It is shown in Ref. [112] that when r = γ′ � γ the open

system is equivalent to the closed system (see Figure 6.2), which we will use throughout this

chapter.

6.3 Self-Rotation of a Classical Elliptically Polarized Light

Before proceeding into the calculation, we will establish an intuitive explanation for the

polarization SR of elliptically polarized light field interacting with the X-system. The main

mechanism we consider here is optical pumping.2 Suppose that the atom is initially in an

equal superposition of ground states |3〉 and |4〉. It starts interacting with an elliptically polar-

ized light field (propagating along ẑ) which has a stronger σ̂+ component than σ̂−component.

2Another popular mechanism is the ac-Stark effect [4] where the difference in the intensities of the circularly polarized

components of the light field cause different energy shifts on different magnetic sublevels. The associated susceptibilities are
changed because of the steep dispersion as a function of detuning (see Figure 6.3a.) However, the ac-Stark effect is usually much

smaller than the optical pumping and therefore is ignored in this discussion [106].
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Accordingly this will lead to uneven Rabi frequencies between the |1〉 ↔ |3〉 and |2〉 ↔ |4〉

transitions. Consequently, more atomic population accumulates in ground state |3〉 than |4〉.

This population difference depends on the ellipticity of the light polarization.3 The popu-

lation difference between the two lower states gives rise to different real parts of the linear

susceptibility of σ̂± components of the light field, which in turn induces a phase shift between

the σ̂± components and results in the rotation of the polarization ellipse. We conclude this

explanation with a comparison between polarization SR and NMOR. In polarization SR, the

atomic system starts out in a symmetric configuration but the asymmetry of the elliptically

polarized light field destroys the isotropy of the atomic transitions. On the other hand, in

NMOR the atomic system is prepared with non-degenerate sublevels by applying an external

magnetic field.

The calculation in this section is structured as follows. First we decompose both the

elliptically polarized light field ~E(~r, t) and atomic dipole operator ~d(~r, t) = e~r into the eigen-

basis of angular momentum s, i.e., the left- and right-circular polarization states. From

there we derive the interaction Hamiltonian H1 = − ~E · ~d and drop several terms violating

energy conservation. Then we solve the Liouville equation in for the steady-state density

matrix of the X-system, which in turn gives rise to the average induced dipole per atom

〈~d〉 = Tr(ρ~d) and the susceptibility χ of the system. Finally we show that the different

susceptibilities between left- and right-circularly polarized components of the light field lead

to the polarization SR.

6.3.1 Circular Basis

As there is no unique definition of circular basis [113], we dedicate this subsection to explicitly

deriving the dipole moment operator in the circular basis in detail. We start the calculation

by writing the plane-wave electric field vector of the incoming light field, which is propagating

3The ellipticity ε ∈ (−π/4, π/4) is defined as the arctangent of the ratio between the minor and major axes of the polarization
ellipse of the incoming light field. It defines the “shape” of the ellipse and when ε = ±π/4 the field is circularly polarized while

when ε = 0 is linearly polarized. Here we assume the initial ellipticity ε(z)|z=0 is small.
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in ẑ and is elliptically polarized in x− y plane, as

~E(z, t) = Ex(z) cos(kz − ωt+ φ(z))x̂ + Ey(z) cos(kz − ωt)ŷ (6.1)

=
1

2

(
Ex(z)eiφ(z)x̂ + Ey(z)ŷ

)
ei(kz−ωt) + c.c., (6.2)

where Ex(z) and Ey(z) are the real positive amplitudes of the x- and y-polarized components

of the light field, ω is the light frequency, k = ω/c is the vacuum wave number, φ(z) is the

relative phase between the two components and c.c. stands for complex conjugate. The

value of Ex(0), Ey(0) and φ(0) can be determined from the initial ellipticity ε(0). Given the

wavelength of the light field is much longer than the size of the atom, we may safely drop the

position-dependence of the field. However, one should notice that this approximation does

not apply to φ(z), whose z-dependence is the reason for the polarization SR.

We define ~E(±) to be the positive and negative-frequency parts of ~E(t) and write them in

the left- and right-circular polarization bases as

~E(±) =
1

2

(
E

(±)
+ σ̂+ + E

(±)
− σ̂−

)
, (6.3)

where

E
(+)
+ = −Exe

iφ(z) − iEy√
2

= −E(−)∗
− ,

E
(+)
− =

Exe
iφ(z) + iEy√

2
= −E(−)∗

+ (6.4)

with the subscripts ± denote the left- and right-circular polarizations and

σ̂+ = − x̂ + iŷ√
2

,

σ̂− =
x̂− iŷ√

2
.

These circular bases are two of the three standard components of the spherical basis[114, 15].
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To derive the dipole moment in circular basis, we first write the position vector in the

circular basis as

~r = xx̂ + yŷ + zẑ (6.5)

= r (sin θ cosφx̂ + sin θ sinφŷ + cos θẑ) (6.6)

∝ r
(
Y1,−1σ̂

∗
− + Y1,1σ̂

∗
+ + Y1,0ẑ

)
, (6.7)

where Yl,m are the spherical harmonics. Combining Eqs. (6.3) and (6.7), we have

~r · ~E(+) ∝ r
(
E

(+)
+ Y1,1 + E

(+)
− Y1,−1

)
,

where σ̂∗± · σ̂± = 1 and σ̂± · σ̂± = 0. It is clear that the σ̂± components of the field induce a

∆m = ±1 transition of the electron respectively.

To precisely evaluate the magnitude of the dipole moment, we need the Wigner-Eckart

theorem [5]:

〈J mJ |erq|J ′ m′J〉 = 〈J ||er||J ′〉(−1)J
′−1+mJ

√
2J + 1



J ′ 1 J

m′J q −mJ


, (6.8)

where rq with q = ±1, 0 represents the three spherical components of ~r. The 3-j symbol

requires that mJ = mJ ′ + q, otherwise it equals to zero. As an example, we consider the

states |1〉 = |1/2 1/2〉 and |3〉 = |1/2 − 1/2〉 in the X-system. We then have

〈1|erq|3〉 = 〈1/2||er||1/2〉(−1)0
√

2




1/2 1 1/2

−1/2 q −1/2




= −〈1/2||er||1/2〉
√

2

3
δ1,q

= −µδ1,q,

with µ = 〈1/2||er||1/2〉
√

2/3 and the value of 〈1/2||er||1/2〉 can be found in Table 6.1.

Therefore 〈1|e~r|3〉 = 〈1|er1|3〉σ̂∗+ = −µσ̂∗+ which agrees with the middle term of Eq. (6.7).4

4An arbitrary 2D vector ~V can be expanded as a linear combination of ~V = σ̂∗+V+ + σ̂∗−V− with V± = σ̂± · ~V
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Similarly we have 〈2|e~r|4〉 = µσ̂∗−. The electric dipole operator then can be written as

~d = −µσ13σ̂
∗
+ + µσ31σ̂

∗
− + µσ24σ̂

∗
− − µσ42σ̂

∗
+, (6.9)

where σij = |i〉〈j| are the atomic transition operators and h.c. stands for hermitian conjugate.

Combining Eqs. (6.3) and (6.9) gives

~d · ~E(+) =
1

2

(
−µσ13E

(+)
+ + µσ31E

(+)
− + µσ24E

(+)
− − µσ42E

(+)
+

)
.

However, since σ31 and σ42 have the unperturbed time dependence e−iω0t, the two terms of

σ31E
(+)
− and σ42E

(+)
+ will oscillate in time as e−i(ω+ω0)t. In optics domain, these fast oscillating

terms can be averaged out and are usually dropped using the rotating-wave approximation

(RWA) [115].

6.3.2 Solving for the Atomic Density Matrix

By simplifying the negative-frequency part with the same argument, we can write the inter-

action Hamiltonian as

H1 =− ~d · ~E

=− 1

2

(
−µσ13E

(+)
+ e−iωt + µσ24E

(+)
− e−iωt + µσ31E

(−)
− eiωt − µσ42E

(−)
+ eiωt

)

=− 1

2

(
−µσ13E

(+)
+ e−iωt + µσ24E

(+)
− e−iωt − µσ31E

(+)∗
+ eiωt − µσ42E

(+)∗
− eiωt

)

=
1

2
~
(
σ13Ω+e

−iωt − σ24Ω−e
−iωt + h.c.

)
, (6.10)

using Eq. (6.4). Here Ω± = µE
(+)
± /~ are the Rabi frequencies associated with σ± transitions

respectively. The total Hamiltonian then becomes

H = H0 +H1

=
1

2
~ω0

(
σz13 + σz24

)
+

1

2
~
(
σ13Ω+e

−iωt − σ24Ω−e
−iωt + h.c.

)
, (6.11)

where σzij = |i〉〈i| − |j〉〈j| and the reference energy level is at (ωg + ω0/2). Plugging this

Hamiltonian into the Liouville equation gives

i~
dρ

dt
= [H, ρ] (6.12)
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we have

ρ̇11 = − i
2

(Ω+e
−iωtρ31 − h.c.)− γ0ρ11,

ρ̇22 = − i
2

(Ω−e
−iωtρ42 − h.c.)− γ0ρ22,

ρ̇33 =
i

2
(Ω+e

−iωtρ31 − h.c.)− γ(ρ33 − ρ44) +
γ0

2
(ρ11 + ρ22),

ρ̇44 =
i

2
(Ω−e

−iωtρ42 − h.c.)− γ(ρ44 − ρ33) +
γ0

2
(ρ11 + ρ22),

ρ̇13 = − i
2

Ω+e
−iωt(ρ33 − ρ11)− (γ +

γ0

2
+ iω0)ρ13,

ρ̇24 = − i
2

Ω−e
−iωt(ρ44 − ρ22)− (γ +

γ0

2
+ iω0)ρ24,

where the overhead dot stands for time derivative and ω0 = ωe−ωg is the resonant frequency

of the atom. Notice that here the decay terms γ0 and γ are introduced into the Liouville

equation phenomenologically. A more rigorous derivation using Liouville operator can be

found in Ref. [116].

To remove the rapidly-oscillating terms we can transform the density matrix into a rotating

frame such that

ρij =





xije
iωt, if i ∈ g, j ∈ e;

xije
−iωt, if i ∈ e, j ∈ g;

xij, if i, j ∈ e or i, j ∈ g,

(6.13)

where e = {1, 2} and g = {3, 4}. In terms of xij the Liouville equation becomes

ẋ11 = −γ0x11 −
i

2
(Ω+x31 − h.c.),

ẋ22 = −γ0x22 −
i

2
(Ω−x42 − h.c.),

ẋ33 = −γ(x33 − x44) +
γ0

2
(x11 + x22) +

i

2
(Ω+x31 − h.c.),

ẋ44 = −γ(x44 − x33) +
γ0

2
(x11 + x22) +

i

2
(Ω−x42 − h.c.),

ẋ13 = −Γ̃x13 −
i

2
Ω+(x33 − x11),

ẋ24 = −Γ̃x24 −
i

2
Ω−(x44 − x22),
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where Γ̃ = γ + γ0/2 + i∆ and ∆ = ω0 − ω. In order to obtain the steady state solution, we

require ∀ i, j ∈ e ∪ g : ẋij = 0 so that

x13 =
i

2Γ̃
Ω+(x11 − x33),

x24 =
i

2Γ̃
Ω−(x22 − x44). (6.14)

The first four equations of xij are linearly dependent, therefore using the normalization

condition of the atomic population we obtain

0 = −γ0x11 +
|Ω+|2

2
(x33 − x11)η,

0 = −γ0x22 +
|Ω−|2

2
(x44 − x22)η,

0 = −γ(x33 − x44) +
γ0

2
(x11 + x22)− |Ω+|2

2
(x33 − x11)η,

0 = −γ(x44 − x33) +
γ0

2
(x11 + x22)− |Ω−|

2

2
(x44 − x22)η,

1 = x11 + x22 + x33 + x44, (6.15)

where η = Re(Γ̃)/|Γ̃|2.

Now it is straightforward to calculate the average induced dipole per atom

〈~d〉 = Tr(ρ~d)

= µx13e
−iωtσ̂∗− − µx24e

−iωtσ̂∗+ + h.c. (6.16)

using the results from Eqs. (6.14) and (6.15). From ~P = ε0χ~E we can identify the positive-

frequency susceptibilities associated with different polarizations of the light field to be

χ(+)
σ+

(∆) = −N
ε0

µx13

E
(+)
+ /2

= −i N
~ε0

µ2

Γ̃
(x11 − x33),

χ(+)
σ− (∆) =

N

ε0

µx24

E
(+)
− /2

= −i N
~ε0

µ2

Γ̃
(x22 − x44). (6.17)
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Here N is the atomic density in the medium and ε0 is the free space permittivity. The real

and imaginary parts of χ
(+)
σ+ (∆) and χ

(+)
σ− (∆) and their differences are shown in Figure 6.3a

and Figure 6.3b respectively.

To describe the SR effect of the propagating field, one just needs to use the ~P calculated

above and solve the wave equation

(ω2

c2
+

d2

dz2

)
~E = −4π

c2

d2

dt2
~P (6.18)

for the ~E field as a function of propagation distance z. This has been done in Ref. [106, 109].

6.4 Vacuum Squeezing via Polarization SR in Atomic Vapor

In 2002, Matsko et al. [107] predicted that it should be possible to generate a squeezed

vacuum state of a light field using SR in an atomic system. They suggested that 8 dB

of squeezing should be achievable. Since then a number of efforts has been made, mostly

experimentally, to search the parametric space for the optimal generation of such squeezed

vacuum states. However, contradictory results are reported from different groups (successful

generation of a squeezed vacuum was reported in Ref. [117, 118, 119] while the authors
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FIGURE 6.3: The (a) real part (phase shift) and (b) imaginary part (absorption) of the sus-
ceptibilities are plotted as a function of the detuning ∆ of the X-system. The susceptibilities
associated with left- and right-circular polarization and their difference are labeled as χσ+ ,
χσ− and χσ+ − χσ− . Notice that (a) the largest SR occurs when the field is slightly off res-
onance and (b), given the same parameters, the magnitude of absorption is much smaller
than that of the phase shift, which justifies our exclusion of absorption in the X-system.
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of Ref. [120] argued that no squeezing should be seen because of the dominant resonance

fluorescence.) Most of the previous work is summarized in Ref. [121, 105].

In this section, we first present the prediction made by Matsko et al. and then calculate

the quadrature noise of the light field after interacting with the simplified X-system. No

vacuum squeezing is shown in our semi-classical or quantum mechanical simulations. This

negative result motivates us to calculate the power spectrum of the resonance fluorescence

of the far field, which will be discussed in the next section.

6.4.1 Prediction of Vacuum Squeezing via Polarization SR

Intuitively, generating vacuum squeezing via polarization SR may be understood as follows.

Assuming an elliptically polarized light field with a strong y-component and a weak x-

component interacts with an SR medium, the polarization rotation projects a portion of

the y-polarized field onto the x-component. As a result, the weak x-polarized field is either

amplified or attenuated depending on the relative phase between the two components. Matsko

et al. extended this analysis to the case where the x-component is in a vacuum state. They

argued that because of the vacuum fluctuation from quantum mechanics, the zero component

would still be able to interact with the strong component and sometimes be attenuated to

a state even less noisy than the vacuum, i.e., the squeezed vacuum. Another explanation of

vacuum squeezing via polarization SR is provided by Mikhailov et al. in [119], where the

generation scheme is understood to be a four-wave mixing process.

We again consider the classical electric field propagating in the ẑ direction (Eq. 6.2) as

~E(±)(z, t) =
Ex(z)

2
e±i(kz−ωt+φ(z))x̂ +

Ey(z)

2
e±i(kz−ωt)ŷ.

Readers should not confuse the superscript E(±) with the circular polarization subscript E±.

The ellipticity of the light field can be calculate from the Stokes parameters [122] as

ε =
1

2
arcsin

i(E
(−)
x E

(+)
y − E(−)

y E
(+)
x )

|Ex|2 + |Ey|2
. (6.19)
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Assuming that Ey(z)� Ex(z), i.e., ε(z)� 1, Eq. (6.19) becomes

ε(z) ≈ Ex(z)

Ey(z)
sin(φ(z)). (6.20)

Now consider an SR medium of length ` and assume that the ellipticity does not change

much, i.e., ε(0) = ε(`) = ε. In such a medium the polarization ellipse rotates by an angle

ϕ = gε(0)`. (6.21)

Here g with a dimension of inverse length is the SR parameter which, for a given medium,

depends only on the intensity and frequency of the incoming light field. Now the output field

at z = ` are associated with the input field by



E

(+)
x (`)

E
(+)
y (`)


 ≈




1 ϕ

−ϕ 1






Ex(0)eiφ(0)

Ey(0)


 e

i(k`−ωt), (6.22)

where the approximations cos(ϕ) ≈ 1 and sin(ϕ) ≈ ϕ, which are valid for small ϕ, are used.

Combining Eqs. (6.20), (6.21) and (6.22) gives

E(+)
x (`) ≈

(
Ex(0)eiφ(0) + g`ε(0)Ey(0)

)
ei(k`−ωt), (6.23)

which describes the evolution of the incoming light field classically.

Next we try to quantize the field and search for vacuum squeezing. In order to describe

the quantum vacuum squeezing, Matsko et al. rewrote the monochromatic electric field by

replacing the classical amplitudes with photon annihilation and creation operators

Êx =
E0

2

(
âxe

i(kz−ωt) + â†xe
−i(kz−ωt)) , (6.24)

where E0 has the dimension of an electric field and is proportional to the square-root of ω.

As the degree of squeezing depends upon the phase of the field, we need to separate the the

quadrature phase χ from the propagating terms (kz−ωt). Therefore, we write Eq. (6.24) as

Êx =
E0

2

(
âx(z)eiχ + â†x(z)e−iχ

)
. (6.25)
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Notice that the field operators are now functions of position, z, but independent of time,

t. This is because we now measure the phase of the field in respect to some local oscillator

which rotates in the phase space with the same frequency ω as the phase of the field.

In analogy with the classical expression, we can define an ellipticity operator ε̂ for a nearly

y-polarized light field as

ε̂(z) = E0
âx(z)− â†x(z)

2iEy(z)
, (6.26)

where the expectation value in a coherent state agrees with Eq. (6.20). The quantum me-

chanical version of Eq. (6.23) then becomes

Ê(+)
x (`) =

E0

2

{
âx(0) +

ig`

2

[
â†x(0)− âx(0)

]}
eiχ. (6.27)

The evolution of the annihilation operator in propagation distance can be identified as

âx(`) = âx(0) +
ig`

2

[
â†x(0)− âx(0)

]
. (6.28)

Inserting Eq. (6.28) into Eq. (6.24), we find that the phase-dependent field operator of the

x-polarized component becomes

Êx(χ, `) =
E0

2
âx(0)(eiχ − ig` cosχ) +

E0

2
â†x(0)(e−iχ + ig` cosχ). (6.29)

We can now calculate the vacuum fluctuations in the x-polarized field by assuming taht it

is in a vacuum state, so 〈Êx(χ, `)〉 = 0 and

〈∆Êx(χ, `)2〉 = 〈Êx(χ, `)2〉 − 〈Êx(χ, `)〉2

=
E2

0

4
(g2`2 cos2 χ− 2g` sinχ cosχ+ 1). (6.30)

It is apparent from Eq. (6.30) and Figure 6.4 that for a certain choice of the local oscillator

phase, χ, the quantum noise in the x-polarized field is lower than the shot-noise-limit.

We conclude this subsection with two remarks. (a) The evolution of the field operators

in Eq. (6.28) is not rigorously derived from solving the wave equation of the quantized
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field, but from an analogy with the classical expression. The accuracy of this result may

not be high. Therefore, we present our version of the quantum noise calculation of the

polarized component in vacuum state starting from the field-atom interaction Hamiltonian

in the following subsections; (b) Eq. (6.30) shows that for vacuum squeezing caused by SR,

not only does the degree of squeezing increase with a longer propagation length but the

squeezing angle changes as well. This can be visualized in Figure 6.5.

6.4.2 Derivation of the Interaction Hamiltonian of the X-system with
Quantized Fields.

In this subsection we start by quantizing the incident light field as

~E = E
(
a+σ̂+ + a−σ̂− + h.c.

)
, (6.31)

where E = (~ω/2ε0V )1/2 has the dimension of an electric field and V is the quantization

volume. Notice that the annihilation operators a±, which are associated with σ̂± respectively,

are time-independent because we start in the Schrdinger picture. Throughout this subsection,

~ is set to be one.

g{=1
g{=10

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Local Oscillator Phase Χ � Π

4<
D

E
x2

>
�E

02

FIGURE 6.4: Normalized quantum noise of the x-polarized field in a vacuum state (calculated
based on Eq. (6.29)) is plotted as a function of the local oscillator phase χ. The solid and
dotted curves represent the cases of g` = 10 and g` = 1 respectively. The dashed line denotes
the shot-noise limit. It is shown that with increasing propagation distance (assuming zero
absorption) a higher degree of squeezing is generated and the squeezing angle is shifted by
an angle ϑ. See Figure 6.5.
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Now we first write down the unperturbed atomic Hamiltonian

H0 =
ω0

2
(σz13 + σz24) + ω(a†+a+ + a†−a−). (6.32)

The last two terms on the r.h.s. account for the energy of the light field.

By combining Eqs. (6.9) and (6.31), the full quantum interaction Hamiltonian under elec-

tric dipole approximation becomes

H1 =− ~d · ~E

=
(
µσ13σ̂

∗
+ − µσ31σ̂

∗
− − µσ24σ̂

∗
− + µσ42σ̂

∗
+

)
· E
(
a+σ̂+ + a−σ̂− + a†+σ̂

∗
+ + a†−σ̂

∗
−
)

= − g
(
a+σ13 + a†+σ31 − a−σ24 − a†−σ42

)
+ g
(
a†−σ13 + a−σ31 − a†+σ31 − a+σ42

)
,

where g = −µE . The four terms in the last parenthesis of the last equation should be dropped

because of the violation of energy conservation [3]. For example, the term a†−σ13 corresponds

to the process where one σ̂− photon is emitted and the atom is raised from ground state

|3〉 to excited state |1〉; on the other hand, the term a+σ13 in thefirst parenthesis describe

the process where one σ̂+ photon is absorbed and the atom is raised from ground state |3〉

to excited state |1〉. The latter conserves the energy while the former results in the gain of

X2

X1

X2

X1

(a) (b)
Y2

Y1

∆X1(g`)

∆X2(g`) ∆Y2(g`)

∆Y1(g`)

ϑ(g`)

FIGURE 6.5: The phase space representation of the x-polarized component of the output light
field after interacting with an SR medium of effective length (a) g` = 1 and (b) g` = 10. The
level of squeezing is enhanced when the effective length of propagation is elongated. More
interestingly, the phase for maximum squeezing is rotated by an g`-dependent angle ϑ.
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ω + ω0 energy. Also as before, the dropping of these four terms amounts to applying the

RWA. Therefore we have

H1 = −g
(
a+σ13 + a†+σ31 − a−σ24 − a†−σ42

)
. (6.33)

Similar to Eq. (6.2) we have

a± =
∓ax + iay√

2
, (6.34)

from which we may transform H0 and H1 back into the x̂ and ŷ basis as

H0 =
ω0

2
(σz13 + σz24) + ω(a†xax + a†yay),

H1 =
g√
2

(
axσ13 + axσ24 + h.c.

)
+

g√
2

(
iayσ13 − iayσ24 + h.c.

)
(6.35)

Eq. (6.35) is the full Hamiltonian when both x- and y-polarized components of the incident

light field are considered quantum states of light. However, we usually work with lasers with

intensity on the order of 1 W, which corresponds to 1019 photon per second on average.

Therefore it is reasonable to reform the Hamiltonian so that the y-polarized component is

treated classically. To do this we first note that

〈αye−iωt|
(
igayσ13 − iga†yσ31

)
|αye−iωt〉

= − i〈αy|µEayσ13 − µEa†yσ31|αy〉

= − iµEαyσ13e
−iωt + iµEα∗yσ31e

iωt, (6.36)

where |αye−iωt〉 is a strong coherent state. Notice that the time-dependence is introduced by

the oscillating field and the operators are still time-independent. Recall that

µ = −〈1|er1|3〉

= 1/
√

2〈1|e(x+ iy)|3〉

= 1/
√

2(µx13 + iµy13)

=
√

2iµy13,
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where we used the fact that µx13 = iµy13 which can be shown from the angular integration

of spherical harmonics[113]. Therefore Eq. (6.36) becomes

√
2µy13Eαyσ13e

−iωt +
√

2µy31Eα∗yσ31e
iωt

=
√

2
(
Ωy13σ13e

−iωt + Ω∗y13σ31e
iωt
)
,

where µy13 = µ∗y31 and Ωy13 = µy13Eαy is the Rabi frequency of the |1〉 → |3〉 transtion

induced by the y-polarized field which is now classical. Therefore Eq. (6.35) becomes

H0 =
ω0

2
(σz13 + σz24) + ωa†xax,

H1 =
g√
2

(
axσ13 + axσ24 + h.c.

)
+
(
Ωy13σ13e

−iωt + Ωy24σ24e
−iωt + h.c.

)
.

Now we may transfer the total Hamiltonian into the some rotating frame to get rid of its

time-dependenc. First we rewrite H0 and H1 as

H̃0 =
ω

2
(σz13 + σz24) + ωa†xax,

H̃1 =
∆

2
(σz13 + σz24) +

g√
2

(
axσ13 + axσ24 + h.c.

)
+
(
Ωy13σ13e

−iωt + Ωy24σ24e
−iωt + h.c.

)

with ∆ = ω0 − ω. We then transfer H̃1 into its interaction picture as5

H̃I = eiH̃0tH̃0e
−iH̃0t.

Using the Baker-Hausdorf-Campell theorem, we have

eiωa
†
xaxtaxe

−iωa†xaxt = axe
−iωt,

eiωa
†
xaxta†xe

−iωa†xaxt = a†xe
iωt,

eiωσzegt/2σege
−iωσzegt/2 = σege

iωt,

eiωσzegt/2σgee
−iωσzegt/2 = σgee

−iωt,

where in the last two equantions eg = 13 or 24. These relations give rise to

H̃I =
∆

2
(σz13 + σz24) +

g√
2

(
axσ13 + axσ24 + h.c.

)
+
(
Ωy13σ13 + Ωy24σ24 + h.c.

)
. (6.37)

5The time dependent rotation in general is Ṽ = UV U† + i~∂U/∂t where U is the unitary rotational operator. Interaction

picture is just one particular case of the rotating frame where the i~∂U/∂t part is always canceled out.
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6.4.3 Simulation Results

From Eq. (6.37) we may numerically simulate the evolution of the state of the x-polarized

vacuum state. The equation we are trying to solve is the master equation in the Lindblad

form (Eq. (6.38)), which is the most general trace-preserving and completely positive form of

the non-unitarty evolution of the X-system term when interacting with the vacuum reservoir.

To obtain the density matrix of the system at any future time ρ(t), we have

ρ̇ = − i
~

[H̃I , ρ]− 1

2

6∑

i=1

hi(ρL
†
iLi + L†iLiρ− 2LiρL

†
i ), (6.38)

where Li is the operator for possible decay and hi is the corresponding constant. In our case

hi = γ0 if the decay is from the excited states to grond states and hi = γ if the decay is

between the two ground levels. Since we assume the incident field is polarized in y direction,

the x component of the field is then in a vacuum state. The rotated quadrature operator of

the x-polarized field can be defined as

X̂1 = âxe
−iχ + â†xe

iχ,

where χ is the quadrature angel ranging in [0, 2π]. The software we use is the Quantum

Toolbox in Python developed by J. R. Johansson and P. D. Nation [123, 124], which aims

for simulating the dynamics of the quantum systems.

Our simulation shows that only when g ≈ Ω ≥ 102γ0 does significant squeezing occur.

This is however, not compatible with our X-system model. On one hand, the value of g is

quite fixed because of the resonant condition ω ≈ ω0 and this value is much smaller than

γ0. On the other hand, if we reduce the strength of the incident beam to ≈ 10−4 mW/cm2

such that Ω ≈ g, the squeezing also disappears because we can no longer ignore the ground-

state hyperfine lines at such low intensity (the highest light intensity while still resolving

hyperfine structure is ≈ 104 mW/cm2.) The values of the parameters used in our simulation

are summarized in Table 6.1.
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The X-system is obviously an oversimplification of the real atoms. First of all, according

to Ref. [119], an uneven four-level configuration of the Zeeman sublevels is necessary to

avoid the trapping of atoms in one of the ground sublevels and this trapping prevents any

degree of squeezing from being generated. Moreover, when the power broadening caused

by the incident field is small, the ac-Stark effect and the Doppler broadening caused by

atom velocity distribution should be taken into account. Finally, the quantum fluctuations

of the atomic operators also affect the generation of squeezing. A more complete yet very

complicated numerical calculation considering all effects above can be found in Ref. [125].

Even though the X-system model does not provide us with overall squeezing, we may still use

it to calculate the power spectrum of the fluorescent radiation field and search for squeezing

at different frequencies.

TABLE 6.1: Simulation Parameters

Description Equals to Value Ref.

D1(52S1/2 −→ 52P1/2)
Transition Dipole
Matrix Element

d± 〈J = 1
2
||er±||J ′ = 1

2
〉 2.5× 10−29 C·m [108]

D1(52S1/2 −→ 52P1/2)
Frequency

ω0 NA 2π · 3.77× 1014 Hz [108]

Excited Levels
Homogeneous Width

γ0 NA 5.7× 106 Hz [108]

Cell Length ` NA 10 cm [107]

Beam Diameter D NA 100 µm [107]

Interaction Volume V D2`π/4 7.85 · 10−9 m3 [107]

Interaction Strength g g = µ
√

ω
~ε0V 7.7× 10−3

√
ω Hz [3]

Rabi Frequency Ωy Ωy = µEy/~ 2.0× 105Ey Hz [3]
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6.5 Fluorescence Power Spectrum of the Far Field

The resonance fluorescence originates from the scattering of the quasi-resonant incident

photon by the atom. The atom is excited by absorbing one of the photons and is later de-

excited by spontaneously emitting one. In contrast to stimulated emission where all emitted

photons have the same direction and polarization, photons from spontaneous emission can

be of any direction and polarization. The resonance fluorescence is of significant importance

in studying quantum systems having a closed transition.

We first develop the relation between the field operators in the far-zone (kr � 1) and

the atomic dipole operator at the atom. By assuming the atom is at the origin and the line

joining the atom to the observation point r is the z-axis, we set up a coordinate system such

that the field operator E(+)(r, t) in the far-zone of the X-system becomes (see Figure 6.6)

ω0µ

4
√

2πc2ε0r

{(
σ31(t− r

c
) + σ42(t− r

c
)
)
x̂+ i

(
σ31(t− r

c
)− σ42(t− r

c
)
)
ŷ

}
, (6.39)

where µ and ω0 are defined as before. By denoting

I0(r) =

(
ω0µ

4
√

2πc2ε0r

)2

we have the x-component of the field operator as

E(+)
x (r, t) =

√
I0

(
σ31(t− r

c
) + σ42(t− r

c
)
)
,

E(−)
x (r, t) =

√
I0

(
σ13(t− r

c
) + σ24(t− r

c
)
)
. (6.40)

A detailed derivation of Eq. (6.39) is shown in Appendix A.

6.5.1 Power Spectrum and Its Detection

The power spectrum S(ω) is defined in terms of the two-time correlation function of the

radiation field as

S(ω) =
1

2π
lim
T→∞

∫ T

0

dt

∫ T

0

dt′〈E(−)(t)E(+)(t′)〉e−iω(t−t′),
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FIGURE 6.6: The coordinate of the far-field calculation. The atom is at the origin O, r is the
observation point, d is the atomic dipole (assumed in x− y plane) and k is the wave-vector
of an arbitrary mode of the vacuum. See Appendix A for more detail.

where the expectation value is averaged over the state of the field. Under the stationary

assumption, the two-time correlation only depends on the time difference τ = t− t′ and the

previous equation becomes

S(ω) =
1

2π

∫ ∞

0

dτ
(
〈E(−)(τ)E(+)(0)〉e−iωτ + 〈E(−)(0)E(+)(τ)〉eiωτ

)

=
1

π
Re

∫ ∞

0

dτ〈E(−)(0)E(+)(τ)〉eiωτ . (6.41)

In the last equation the relation 〈E(−)(0)E(+)(τ)〉 = 〈E(−)(τ)E(+)(0)〉∗ is used.

The detection of power spectrum is actually quite straightforward. Following Section 10.D

of Ref. [3], we may consider a two-level atom interacting with linearly polarized light. We

assume initially the atom is in the ground state |b〉 and the field is in state |i〉. We also

require that ωα = ωa−ωb is adjustable, which can be achieved in the laboratory by applying

an external magnetic field. Then the interaction picture Hamiltonian in RWA can be written

as

V = −dabσabE(+)(t)eiωαt + h.c.
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The total state then evolves as

|ψ(t)〉 ≈
(

1− i

~

∫ t

0

dt′V(t′)

)
|b〉 ⊗ |i〉.

The probability of finding the atom at the excited state |a〉 can be found as

P (ωα, t) = 〈ψ(t)|a〉〈a|ψ(t)〉

∝
∫ t

0

dt′
∫ t

0

dt′′〈i|E(−)(t′′)E(+)(t′)|i〉e−iωα(t′′−t′)

∝ S(ωα).

Therefore it is easy to see that we may detect the full power spectrum of the resonant

fluorescence by tuning the energy separation of the detectors (atoms).

6.5.2 Calculation of the Two-Time Average from the Single-Time Average

It is obvious from the last subsection that to calculate the power spectrum of the radia-

tion field we need to obtain the two-time average term 〈E(−)
x (0)E

(+)
x (τ)〉. According to Eq.

(6.40), this is equivalent to calculating the two-time average of the atomic operators such as

〈σ13(0)σ31(τ)〉.

However, by solving the Lindblad equation one obtains the density matrix elements as

functions of time, which connects to only the single-time average of the atomic operators.6

To calculate the two-time average from the single-time average, one need to use the quantum

regression theorem. Here we derive the value of 〈σ13(0)σ31(τ)〉eiω0τ of the X-system as an

example.

First, we drop the g-dependent terms in H̃I in Eq. (6.37) and solve the Lindblad equation

(see Section 10.C of Ref. [3]) by flattening the density matrix ρ(τ) into a column R(τ). As

a result we have

Ṙ(t) = −MR(t) +B,

6The atomic operators are connected to the density matrix in such a way that 〈σij(t)〉 = ρji(t) exp(iω0t) in the interaction

picture.
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where B is the constant terms. A solution can be found as

R(t+ τ) =
∑

l

{
v̌l
[
R(t)−M−1B

]
vle
−λlτ}+M−1B,

where vl is the l-th eigenvector of M with v̌l as its transpose and λl as the associated

eigenvalue. Throughout this calculation, we assume t = 0 so the previous solution becomes

R(τ) =
∑

l

{
v̌l
[
R(0)−M−1B

]
vle
−λlτ}+M−1B,

so that each density matrix element ρij(τ) can be represented as a linear combination of

ρij(0). In particular, for ρ13(τ), we have

ρ13(τ) = 〈σ31(τ)〉eiω0τ

= C
(0)
13 (τ) + C

(1)
13 (τ)ρ11(0) + C

(2)
13 (τ)ρ13(0) + C

(3)
13 (τ)ρ31(0) + C

(4)
13 (τ)ρ33(0)

+ C
(5)
13 (τ)ρ22(0) + C

(6)
13 (τ)ρ24(0) + C

(7)
13 (τ)ρ42(0).

Next we notice that ρij(0) terms can be written as Tr[ρ(0)σji(0)] and the quantum regression

theorem states that 〈σ13(0)σ31(τ)〉eiω0τ can be calculated by simply replacing Tr[ρ(0)σji(0)]

with Tr[ρ(0)σ13(0)σji(0)] everywhere.7 Therefore we have

〈σ13(0)σ31(τ)〉eiω0τ

= C
(0)
13 (τ)Tr[ρ(0)σ13(0)] + C

(1)
13 (τ)Tr[ρ(0)σ13(0)σ11(0)] + C

(2)
13 (τ)Tr[ρ(0)σ13(0)σ31(0)]

+ C
(3)
13 (τ)Tr[ρ(0)σ13(0)σ13(0)] + C

(4)
13 (τ)Tr[ρ(0)σ13(0)σ33(0)] + C

(5)
13 (τ)Tr[ρ(0)σ13(0)σ22(0)]

+ C
(6)
13 (τ)Tr[ρ(0)σ13(0)σ42(0)] + C

(7)
13 (τ)Tr[ρ(0)σ13(0)σ24(0)]

= C
(0)
13 (τ)Tr[ρ(0)σ13(0)] + C

(2)
13 (τ)Tr[ρ(0)σ13(0)σ31(0)] + C

(4)
13 (τ)Tr[ρ(0)σ13(0)σ33(0)]

=
(
C

(0)
13 (τ) + C

(4)
13 (τ)

)
ρ31(0) + C

(2)
13 (τ)ρ11(0).

Finally, under the stationary condition, we argue that the initial density matrix elements

R(0) should be τ -independent so that their values can be obtained by setting τ → ∞ (so

7Order of σ matters.
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that exp(−λlτ) terms die out and only M−1B is left.) Thus the previous equation becomes

〈σ13(0)σ31(τ)〉eiω0τ =
(
C

(0)
13 (τ) + C

(4)
13 (τ)

)
M−1B[3] + C

(2)
13 (τ)M−1B[1],

where M−1B[i] refers to the i-th element of M−1B. Similarly, we have

〈σ13(0)σ42(τ)〉eiω0τ =
(
C

(0)
24 (τ) + C

(4)
24 (τ)

)
M−1B[3] + C

(2)
24 (τ)M−1B[1]

〈σ24(0)σ42(τ)〉eiω0τ = C
(0)
24 (τ)M−1B[7] + C

(6)
24 (τ)M−1B[5],

〈σ24(0)σ31(τ)〉eiω0τ = C
(0)
13 (τ)M−1B[7] + C

(6)
13 (τ)M−1B[5]. (6.42)

Recall that the two-time average of the x-field 〈E(−)
x (0)E

(+)
x (τ)〉 is

I0

{
〈σ13(0)σ31(τ)〉+ 〈σ13(0)σ42(τ)〉+ 〈σ24(0)σ42(τ)〉+ 〈σ24(0)σ31(τ)〉

}
,

and the power spectrum S(ω) follows easily.

6.5.3 Calculation of Squeezing in Fluorescence

To determine the degree of squeezing in the fluorescence [126] we need to introduce phase

dependence into the radiation field operator. We first define the x-component electric field

operator with phase χ as

Eχ(r, t) = E(+)(r, t)eiχ + E(−)(r, t)e−iχ,

where we have dropped the subscript x. In addition, we define 〈A,B〉 of operator A and B

such that

〈A,B〉 = 〈(A− 〈A〉)(B − 〈B〉)〉.

It is easy to see that the condition for squeezing in the radiation field is

〈: Eχ(r, t),Eχ(r, t) :〉 < 0,

where ‘::’ means that the operators are in normal order. This leads to a definition of the

normally-ordered squeezing power spectrum similar to Eq. (6.41)

: S(ω) : =
1

2π

∫ ∞

0

dτ
(
〈: Eχ(0), Eχ(τ) :〉eiωτ + 〈: Eχ(τ), Eχ(0) :〉e−iωτ

)
, (6.43)
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where the last equation comes from the stationary condition. For the first part of the inte-

grand of the previous equation, we have

〈: Eχ(0), Eχ(τ) :〉

= 〈E(+)(0), E(+)(τ)〉e2iχ + 〈E(−)(τ), E(+)(0)〉+ 〈E(−)(0), E(+)(τ)〉+ 〈E(−)(0), E(−)(τ)〉e−2iχ

= K1e
2iχ +K2 +K3 +K4e

−2iχ

where

K1 = 〈σ31(τ), σ31(0)〉+ 〈σ31(τ), σ42(0)〉+ 〈σ42(τ), σ31(0)〉+ 〈σ42(τ), σ42(0)〉,

K2 = 〈σ13(τ), σ31(0)〉+ 〈σ13(τ), σ42(0)〉+ 〈σ24(τ), σ31(0)〉+ 〈σ24(τ), σ42(0)〉,

K3 = 〈σ13(0), σ31(τ)〉+ 〈σ13(0), σ42(τ)〉+ 〈σ24(0), σ31(τ)〉+ 〈σ24(0), σ42(τ)〉,

K4 = 〈σ13(0), σ13(τ)〉+ 〈σ13(0), σ24(τ)〉+ 〈σ24(0), σ13(τ)〉+ 〈σ24(0), σ24(τ)〉. (6.44)

In addition, we can easily show that

〈σeg(τ), σge(0)〉 = 〈σeg(0), σge(τ)〉,

〈σge(τ), σge(0)〉 = 〈σeg(0), σeg(τ)〉,

where |e〉 and |g〉 are any excited and ground state, respectively. Therefore we have K1 =

K4, K2 = K3 and the first (also the second) integrand becomes

〈: Eχ(0), Eχ(τ) :〉 = 2 ∗K1 cos 2χ+ 2 ∗K2.

Eq. (6.43) then reads

: S(ω) :=
1

π

∫ ∞

0

dτ(K1 cos 2χ+K2)(eiωτ + e−iωτ ).

It is obvious that : S(ω) :=: S(−ω) :, which manifests the fact that frequencies from different

sides of the laser frequency are correlated [126]. The in-phase quadrature (χ = 0) squeezing

spectrum becomes

: Sin(ω) : =
1

π

∫ ∞

0

dτ(K1 +K2)(eiωτ + e−iωτ ),
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while the out-of-phase quadrature (χ = π/2) squeezing spectrum becomes

: Sout(ω) : =
1

π

∫ ∞

0

dτ(−K1 +K2)(eiωτ + e−iωτ ).

By combining Eqs. (6.42) and (6.44) and assuming resonant condition, we have

: Sin(ω,∆ = 0) : =
γ2

0Ω2 (2γ2
0 (ω2 + 3Ω2) + 8γ4

0 − ω2Ω2 + Ω4)

π (γ2
0 + ω2) (2γ2

0 + Ω2)
(
γ2

0 (5ω2 + 4Ω2) + 4γ4
0 + (ω2 − Ω2)2) , (6.45)

: Sout(ω,∆ = 0) : =
γ2

0Ω2 (2γ2
0 (Ω2 − ω2)− 8γ4

0 + 3ω2Ω2)

π (γ2
0 + ω2) (2γ2

0 + Ω2)
(
γ2

0 (5ω2 + 4Ω2) + 4γ4
0 + (ω2 − Ω2)2) , (6.46)

where Ω is the driving Rabi frequency and γ0 is the natural width of the excited states of

the X-system.

As shown in Figure 6.7a, when the driving field is strong (Ω = 10γ0) the side-band peaks

appear at ω =
√

Ω2 + ∆2 in both on- and off-resonance fluorescence spectra [127]. More-

over, the in-phase quadrature is squeezed under significant detuning from resonance. Our

simulation shows that the degree of squeezing increases with growing driving field, Ω, and

the optimal detuning is always ∆ = Ω. In contrast, when the driving field is weak as shown

in Figure 6.8b, the side-band peaks disappear and the out-of-phase quadrature is squeezed.

Integration over all ω of Eq. (6.46) leads to the total variance of the out-of-phase quadrature

and we can show that when Ω2/γ2
0 < 2 there is squeezing present in the total field.

We conclude this section with several remarks. (a) The physical mechanisms responsible for

the on- and off-resonance squeezing are different. When the incident light frequency ω is very

close to the resonance frequency ω0, most of the photons are absorbed through stimulated

absorption and some of them are spontaneously emitted with the same frequency. This

leads to the resonant fluorescence and it requires a large decay rate, γ0, (i.e., small Ω) for

squeezing to be seen. On the other hand, when the field is far-detuned (large ∆) a fraction

of the incident photons are elastically scattered from the atom without being absorbed.

The photons are diffracted in any direction because of the size of the atom is much smaller

than the field wavelength. (b) The far-field and local atomic relation derived in Appendix
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FIGURE 6.7: The squeezing power spectrum of the resonance fluorescence of a X-system
driven by a linear polarized field. Spectra of both in-phase (χ = 0) and out-of-phase
(χ = π/2) quadratures and their sum are shown. Here we choose the Rabi frequency
Ω = 10γ0, where γ0 is natrual width of the excited atomic states. (a) When ∆ = 0
both quadratures shows no squeezing since their spectra are positive; (b) When ∆ = 10γ0,
the in-phase quadrature is squeezed at ω = ±

√
Ω2 + ∆2 where a maximum squeezing of

: S(ω) := −0.065 (1.3 dB) is found. The resonance spectrum peaks at side-bands ±Ω under
strong driving field as expected (Mollow triplet) [127].

A connects the field modes to the atomic modes and is therefore independent of the state

of the driving field.8 Thus it applies to both mechanisms we just discussed. Also notice that

the polarization of the radiation field in the far-zone depends only on that of the atomic

dipole. (c) Our results agree with Ref. [126] in the low intensity regime and agrees with

Ref. [125], where a different method (Heisenberg-Langevin approach) is used, in the high

intensity regime.

6.6 Conclusion

In this chapter we have discussed the generation of vacuum squeezing via polarization self-

rotation of the incident linearly polarized light field. The SR system we used is the symmetric

four-level X-system reduced from the D1 line of 87Rb. We showed that elliptically polarized

classical light induces uneven interactions between different transitions and undergoes self-

rotation. This calculation is done by treating the incident field classically. Then we argue that

8Just like my advisor Prof. Jon Dowling always likes to say, “a mode is a mode is a mode!”
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FIGURE 6.8: Under the resonance condition ∆ = 0, (a) it can be shown from Eq. (6.46)
that when Ω2/γ2

0 ≤ 4 squeezing occurs in the out-of-phase quadrature spectrum; (b) by
integrating Eq. (6.46) over all ω we can show that when Ω2/γ2

0 < 2, there is squeezing
present in the out-of-phase quadrature of the total field. Also we can see that with weak
driving field, the scattering spectrum has no side-band peaks. Both (a) and (b) agree with
the two-level atom results in Ref. [126]

such self-rotation of linearly-polarized light field may lead to vacuum squeezing following the

analogy made by Matsko et al. Later we explicitly calculated the noise spectrum of the light

field originally in vacuum state and squeezing is found under extreme conditions. Finally,

we studied the fluorescence spectrum of the radiation field at the far-zone and discovered

squeezing under both low and high intensity conditions.

A series of experiments on the generation and application of the squeezed vacuum via

polarization SR have been conducted by Dr. Novikova’s research group in William and Mary

University. Readers interested in more experimental progress on this subject may find several

of their papers helpful [121, 119, 105].
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[74] Emanuele Distante, Miroslav Ježek, and Ulrik L. Andersen. Deterministic superreso-
lution with coherent states at the shot noise limit. Phys. Rev. Lett., 111:033603, Jul
2013.

[75] H. S. Eisenberg. (private communication, 2012).

[76] R. H. Dicke. The measurement of thermal radiation at microwave frequencies. Rev.
Sci. Instrum., 17:268–275, 1946.

[77] T. Stevenson, D. Benford, C. Bennett, N. Cao, D. Chuss, K. Denis, W. Hsieh, A. Kogut,
S. Moseley, J. Panek, G. Schneider, D. Travers, K. U-Yen, G. Voellmer, and E. Wol-
lack. Cosmic microwave background polarization detector with high efficiency, broad
bandwidth, and highly symmetric coupling to transition edge sensor bolometers. J.
Low Temp. Phys., 151:471–476, 2008.

[78] J. Zmuidzinas and P. L. Richards. Superconducting detectors and mixers for millimeter
and submillimeter astrophysics. Proc. IEEE, 92:1597, 2004.

[79] A. Belmonte. Statistical model for fading return signals in coherent lidars. Appl. Opt.,
49:67371748, 2010.

[80] Gabriel A. Durkin and Jonathan P. Dowling. Local and global distinguishability in
quantum interferometry. Phys. Rev. Lett., 99:070801, 2007.

[81] Milena D’Angelo, Maria V. Chekhova, and Yanhua Shih. Two-photon diffraction and
quantum lithography. Phys. Rev. Lett., 87:013602, 2001.

[82] Ole Steuernagel. On the concentration behaviour of entangled photons. J. Opt. B:
Quantum Semiclass. Opt., 6:S606, 2004.

[83] P. R. Hemmer, A. Muthukrishnan, M. O. Scully, and M. S. Zubairy. Quantum lithog-
raphy with classical light. Phys. Rev. Lett., 96:163603, 2006.

[84] Qingqing Sun, Philip R. Hemmer, and M. Suhail Zubairy. Quantum lithography with
classical light: Generation of arbitrary patterns. Phys. Rev. A, 75:065803, 2007.

[85] Mankei Tsang. Relationship between resolution enhancement and multiphoton absorp-
tion rate in quantum lithography. Phys. Rev. A, 75:043813, 2007.

[86] Kaige Wang and De-Zhong Cao. Subwavelength coincidence interference with classical
thermal light. Phys. Rev. A, 70:041801, 2004.

[87] S. J. Bentley and R. W. Boyd. Nonlinear optical lithography with ultra-high sub-
rayleigh resolution. Opt. Express, 12:5735, 2004.

[88] A. Pe’er, B. Dayan, M. Vucelja, Y. Silberberg, and A. Friesem. Quantum lithography
by coherent control of classical light pulses. Opt. Express, 12:6600, 2004.

[89] M. Kiffner, J. Evers, and M. S. Zubairy. Resonant interferometric lithography beyond
the diffraction limit. Phys. Rev. Lett., 100:073602, 2008.

122



[90] Zeyang Liao, M. Al-Amri, and M. Suhail Zubairy. Quantum lithography beyond the
diffraction limit via rabi oscillations. Phys. Rev. Lett., 105:183601, 2010.

[91] Alexey V. Gorshkov, Liang Jiang, Markus Greiner, Peter Zoller, and Mikhail D. Lukin.
Coherent quantum optical control with subwavelength resolution. Phys. Rev. Lett.,
100:093005, 2008.

[92] Wenchao Ge, P. R. Hemmer, and M. Suhail Zubairy. Quantum lithography with
classical light. Phys. Rev. A, 87:023818, 2013.

[93] Pieter Kok, Hwang Lee, and Jonathan P. Dowling. Creation of large-photon-number
path entanglement conditioned on photodetection. Phys. Rev. A, 65:052104, Apr 2002.

[94] C. K. Hong, Z. Y. Ou, and L. Mandel. Measurement of subpicosecond time intervals
between two photons by interference. Phys. Rev. Lett., 59:2044–2046, 1987.

[95] Itai Afek, Oron Ambar, and Yaron Silberberg. High-noon states by mixing quantum
and classical light. Science, 328:879, 2010.

[96] Hwang Lee, Pieter Kok, Nicolas J. Cerf, and Jonathan P. Dowling. Linear optics and
projective measurements alone suffice to create large-photon-number path entangle-
ment. Phys. Rev. A, 65:030101, 2002.

[97] J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue. Appl. Phys. Lett., 74:902, 1999.

[98] S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue. Appl. Phys. Lett., 74:1063, 1999.

[99] Travis Horrom, Robinjeet Singh, Jonathan P. Dowling, and Eugeniy E. Mikhailov.
Quantum-enhanced magnetometer with low-frequency squeezing. Phys. Rev. A,
86:023803, Aug 2012.

[100] D. F. Walls. Squeezed states of light. Nature, 1983.

[101] H. Yuen and J. H. Shapiro. Optical communication with two-photon coherent states
— part i: Quantum-state propagation and quantum-noise. IEEE Transactions on
Information Theory, 24:657, November 1978.

[102] H. Yuen and J. H. Shapiro. Generation and detection of two-photon coherent states
in degenerate four-wave mixing. Opt. Lett., 4:334, 1979.

[103] Carlton M. Caves and Bonny L. Schumaker. New formalism for two-photon quantum
optics. i. quadrature phases and squeezed states. Phys. Rev. A, 31:3068–3092, May
1985.

[104] Bonny L. Schumaker and Carlton M. Caves. New formalism for two-photon quantum
optics. ii. mathematical foundation and compact notation. Phys. Rev. A, 31:3093–3111,
May 1985.

123



[105] T. S. Horrom. Experimental Generation and Manipulation of Quantum Squeezed Vac-
uum via Polarization Self-Rotation in Rb Vapor. PhD thesis, College of William and
Mary, 2013.

[106] S. M. Rochester, D. S. Hsiung, D. Budker, R. Y. Chiao, D. F. Kimball, and V. V.
Yashchuk. Self-rotation of resonant elliptically polarized light in collision-free rubidium
vapor. Phys. Rev. A, 63:043814, Mar 2001.

[107] A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester.
Vacuum squeezing in atomic media via self-rotation. Phys. Rev. A, 66:043815, Oct
2002.

[108] Daniel A. Steck. Rubidium 87 D Line Data, 2001.

[109] Irina Borisovna Novikova. Nonlinear Magneto-Optic Effects in optically dense Rb va-
por. PhD thesis, Texas A&M University, 2003.

[110] W. V. Davis, A. L. Gaeta, and R. W. Boyd. Polarization-ellipse rotation by induced
gyrotropy in atomic vapors. Opt. Lett., 1992.

[111] M. III. Sargent, M. O. Scully, and W. E. Jr. Lamb. Laser Physics. Addison Wesley,
1974.

[112] H. Lee, Y. Rostovtsev, C. J. Bednar, and A. Javan. From laser-induced line narrowing
to electro-magnetically induced transparency: closed system analysis. Appl. Phys. B,
76:33, 2003.

[113] L. Allen and J. H. Eberly. Optical Resonance and Two-Level Atoms. Dover, 1987.

[114] C. J. Foot. Atomic Physics. Oxford University Press, 2005.

[115] D. A. Steck. Quantum and Atom Optics. available online at http://steck.us/teaching
(revision 0.8.3, 25 May 2012).

[116] S. Mukamel. Principles of Nonlinear Optical Spectroscopy. Oxford University Press,
1995.

[117] J. Ries, B. Brezger, and A. I. Lvovsky. Experimental vacuum squeezing in rubidium
vapor via self-rotation. Phys. Rev. A, 68:025801, Aug 2003.

[118] V. Josse, A. Dantan, L. Vernac, A. Bramati, M. Pinard, and E. Giacobino. Polarization
squeezing with cold atoms. Phys. Rev. Lett., 91:103601, Sep 2003.

[119] E. E. Mikhailov, A. Lezama, T. W. Noel, and I. Novikova. Vacuum squeezing via
polarization self-rotation and excess noise in hot rb vapors. Journal of Modern Optics,
56:18, 2009.

[120] M. T. L. Hsu, G. Hétet, A. Peng, C. C. Harb, H.-A. Bachor, M. T. Johnsson, J. J.
Hope, P. K. Lam, A. Dantan, J. Cviklinski, A. Bramati, and M. Pinard. Effect of
atomic noise on optical squeezing via polarization self-rotation in a thermal vapor cell.
Phys. Rev. A, 73:023806, Feb 2006.

124



[121] T. Horrom, A. Lezama, S. Balik, M. D. Havey, and E. E. Mikhailov. Quadrature
noise in light propagating through a cold 87rb atomic gas. Journal of Modern Optics,
58:1936, 2011.

[122] D. Goldstein. Polarized Light. Marcel Dekker, Inc., 2003.

[123] J.R. Johansson, P.D. Nation, and Franco Nori. Qutip: An open-source python frame-
work for the dynamics of open quantum systems. Computer Physics Communications,
183(8):1760 – 1772, 2012.

[124] J.R. Johansson, P.D. Nation, and Franco Nori. Qutip 2: A python framework for the
dynamics of open quantum systems. Computer Physics Communications, 184(4):1234
– 1240, 2013.

[125] A. Lezama, P. Valente, H. Failache, M. Martinelli, and P. Nussenzveig. Numerical in-
vestigation of the quantum fluctuations of optical fields transmitted through an atomic
medium. Phys. Rev. A, 77:013806, Jan 2008.

[126] M. J. Collett, D. F. Walls, and P. Zoller. Spectrum of squeezing in resonance fluores-
cence. Optics Communications, 52:145, 1984.

[127] B. R. Mollow. Power spectrum of light scattered by two-level systems. Phys. Rev.,
188:1969, 1969.

125



Appendix A. Far Field Operator

Follwoing Section 10.A of Ref. [3], we start with the interaction Hamiltonian of a two-level

atom with the radiation field

H =
ω0

2
σz +

∑

k,λ

ωka
†
k,λak,λ +

∑

k,λ

gk,λ
(
ak,λσ+e

ik·r0 + a†k,λσ−e
−ik·r0).

Here σ± are the atomic raising and lowering operators and ak,λ is the annihilation operator

associated with the radiation mode of wave-number k and polarization λ. Notice this Hamil-

tonian is written in the Schrdinger picture and RWA is applied. As before we set ~ = 1 and

the r = r0 comes from the dipole approximation. For simplicity, we assume the atom is at

the origin, i.e., r0 = 0 from now on. By introducing the slowly varying operators ãk,λ and

σ̃− such that

ak,λ(t) = ãk,λ(t)e
−iωkt,

σ−(t) = σ̃−(t)e−iω0t.

The time evolution of the field operators becomes

˙̃ak,λ(t) = −igk,λσ̃−(t)e−i(ω0−ωk)t,

which then can be formally integrated to yield

˙̃ak,λ(t) = ˙̃ak,λ(0)− igk,λe−i(ω0−ωk)t

∫ t

0

dt′σ̃−(t′)ei(ω0−ωk)(t−t′).

We will concentrate on the second term which contains the field-atom interaction.

Next we may write the positive frequency part of the radiation field as

E(+)(r, t) =
∑

k,λ

Ek ε̂k,λak,λ(t)eik·r,

where ε̂k,λ is the polarization unit vector of mode ak,λ and Ek = (ωk/2ε0V )1/2 as before.

Notice the field depends on r but not r0 anymore. On substituting for ak,λ(t) we obtain

E(+)(r, t) =
i

16π3ε0
e−iω0t

∫
d3k

∑

λ

ε̂k,λ[ε̂k,λ · d]ωke
ik·r
∫ t

0

dt′σ̃−(t′)ei(ω0−ωk)(t−t′),

126



z

y

x

k

r

O

ϕ

θ

d

where the sum is replaced by an integral as

∑

k

→ V

(2π)3

∫
d3k.

By using the relation between the polarization and wave-vector that9

∑

λ

ε̂k,λε̂k,λ = 1− kk

k2
,

we have the field operator as

E(+)(r, t) =
i

16π3ε0
e−iω0t

∫
dkdθdϕk2 sin θ

(
d− k(k · d)

k2

)
ωke

ik·r

×
∫ t

0

dt′σ̃−(t′)ei(ω0−ωk)(t−t′).

Now we assume the line joining the atom to the observation point to be the z- axis and

consider the case where d = dx̂, see Figiure above. With

k = k(x̂ sin θ cosϕ+ ŷ sin θ sinϕ+ ẑ cos θ),

9These are the dyadic product, or tensor product, of the two vectors.
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we may first calculate the ϕ-integration of the field operator. For the x-component

∫ 2π

0

dϕ

(
x̂ · d− (x̂ · k)(k · d)

k2

)

=

∫ 2π

0

dϕd

(
1− sin2 θ cos2 ϕ

)

= 2πd

(
1− 1

2
sin2 θ

)
;

and it is easy to see that y- and z- components both vanish.

Next we calculate the θ-integration. By denoting β = cos θ we have the x- component as

2πd

∫ π

0

dθ

(
1− 1

2
sin2 θ

)
sin θeik·r

= 2πd

∫ 1

−1

dβ

(
1− 1

2
(1− β2)

)
eikrβ

= 2πd

(
eikr − e−ikr

ikr
+O

(
r−2
))
.

By dropping the O(r−2) term in the far-zone region (kr � 1) we have, for an electric dipole

d = dx̂, the electric field operator becomes

E(+)(r, t) =
cdx̂

8π2ε0r
e−iω0t

∫ ∞

0

dk k2

(
eikr − e−ikr

)

×
∫ t

0

dt′σ̃−(t′)ei(ω0−ωk)(t−t′).

By rewriting ωk = ck and expanding the lower limit to −∞, the radial integral of last

equation reads

∫ ∞

−∞
dk k2

(
eikr − e−ikr

)
e−ick(t−t′)

= −2π

c3

(
∂

∂t′

)2{
δ

(
t′ − t+

r

c

)
− δ
(
t′ − t− r

c

)}
.
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This is because

∫ ∞

−∞
dk k2eikre−ick(t−t′)

= −
∫ ∞

−∞
dk

1

c2

(
∂

∂t′

)2

eikre−ick(t−t′)

= − 1

c3

(
∂

∂t′

)2 ∫ ∞

−∞
d(ck)ei(ck)(t′−t+r/c)

= − 1

c3

(
∂

∂t′

)2

δ

(
t′ − t+

r

c

)
.

Therefore the electric field operator now reads

E(+)(r, t) =
cdx̂

8π2ε0r

∫ t

0

dt′σ̃−(t′)e−iω0t′

×
(
−2π

c3

(
∂

∂t′

)2{
δ

(
t′ − t+

r

c

)
− δ
(
t′ − t− r

c

)})
.

Given that

∫ t

0

dt′
(
∂

∂t′

)2

δ

(
t′ − t+

r

c

)
σ̃−(t′)e−iω0t′

=

∫ t

0

dt′
(
∂

∂t′

)2(
σ̃−(t′)e−iω0t′

)
δ

(
t′ − t+

r

c

)

=

∫ t

0

dt′e−iω0t′
(
−ω2

0σ̃−(t′)− 2iω0
˙̃σ−(t′) + ¨̃σ−(t′)

)
δ

(
t′ − t+

r

c

)

= −ω2
0 e
−iω0(t−r/c)σ̃−(t− r/c),

where only the leading terms of σ̃−(t) is kept, we have

E(+)(r, t) =
ω0dx̂

4πc2ε0r

(
e−iω0(t−r/c)σ̃−(t− r/c)− e−iω0(t+r/c)σ̃−(t+ r/c)

)

=
ω0d

4πc2ε0r
σ−(t− r/c)x̂,

where the slowly varying transform is used and incoming wave part is dropped.

Similarly, for a dipole along y-axis, i.e., d = dŷ we have

E(+)(r, t) =
ω0d

4πc2ε0r
σ−(t− r/c)ŷ.
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Recall that the electric dipole operator of the X-system can be written as

~d = −µσ13σ̂
∗
+ + µσ31σ̂

∗
− + µσ24σ̂

∗
− − µσ42σ̂

∗
+

=
µ√
2

{(
σ13 + σ31 + σ24 + σ42

)
x̂− i

(
σ13 − σ31 − σ24 + σ42

)
ŷ

}
,

the field of operator in the far-zone of the X-system then becomes

E(+)(r, t) =
ω0µ

4
√

2πc2ε0r

×
{(

σ31(t− r

c
) + σ42(t− r

c
)
)
x̂+ i

(
σ31(t− r

c
)− σ42(t− r

c
)
)
ŷ

}
.
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Appendix B. Permission to Use Publications

The following are the copyright policies of the American Physical Society (APS) and Amer-

ican Institute of Physics (AIP) from

• https://journals.aps.org/copyrightFAQ.html

and

• http://www.aip.org/publishing/authors/copyright-reuse,

respectively. Here I am copying the corresponding text from the above websites which allows

me to use my published works in this dissertation.

‘Yes, the author has the right to use the article or a portion of the article in a thesis or

dissertation without requesting permission from APS, provided the bibliographic citation

and the APS copyright credit line are given on the appropriate pages.’

‘AIP permits authors to include their published articles in a thesis or dissertation. It is

understood that the thesis or dissertation may be published in print and/or electronic form

and offered for sale, as well as included in a university’s repository. Formal permission from

AIP is not needed. If the university requires written permission, however, we are happy to

supply it.’
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