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ABSTRACT

Ultracold atoms have emerged as an indispensable se ing to study quantum

many-body systems. Recent experimental and theoretical work has explored the

curious phases and novel properties of Bose-Einstein Condensate with optical lat-

tices, and Bose-Einstein Condensate with light-induced artificial spin-orbit cou-

pling. In this thesis, we report our research on these two types of boson systems.

In the first topic, in contrast with calculations of bosons in optical la ices that

focus on the tight-binding regime, we note that the single-particle states of bosons

in a periodic potential generally satisfy the Mathieu equation, and have developed

a formalism for studying bosons in an optical la ice using the Mathieu equation.

Moreover, based on this formalism, we have proposed a self-consistent scheme for

describing interacting bosons in an optical la ice using Hartree Fock approxima-

tion. We apply this scheme to quantify the effects of inter-atomic interactions on the

properties of bosons in an optical la ice, as exhibited in the comparison between

observables of non-interacting and interacting systems, such as the superfluid tran-

sition temperature and momentum distribution as probed in time-of-flight expan-

sion.

In the second topic, the phases of a Bose-Einstein condensate with light-induced

spin-orbit coupling are studied within the mean-field approximation. We obtain

the phase diagram at fixed chemical potential and at fixed density for bosons with

spin-orbit coupling, finding a regime of phase separation and a regime in which

the bosons condensed into a mixed phase. We determine how this phase diagram

evolves as a function of the atom interaction parameters and as a function of the

strength of light-atom coupling. The mixed phase is found to be stable for suffi-

ciently small light-atom coupling. Specifically, we show that the structure of the

x



phase diagram at fixed chemical potential suggests an unusual density dependence

for the mixed phase in a harmonic trapping potential, in which the density of one

spin increases with increasing radius, suggesting a unique experimental signature

of this state. The collective Bogoliubov sound mode is shown to also provide a

signature of the mixed phase, vanishing as the boundary to the regime of phase

separation is approached.

Together, in these two topics we address the need to enhance the understand-

ing of the unconventional physical properties of Bose-Einstein Condensate in a

controlled electromagnetic environment (optical la ices, Raman lasers, etc.), and

provide predictions for possible experimental findings.
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CHAPTER 1
INTRODUCTION

Physics is the science to comprehend the physical world at all scales. At the

atomic level, ultracold atoms is a unique field which is both intrinsicly interesting

by itself and extensively applicable for simulating various quantum systems. It is

an essential tool to understand condensed ma er systems, a vital path to realize

quantum computation, a pioneering index in the search for new materials, and a

beneficial alternative to achieve systems of extreme conditions that are otherwise

difficult to be realized.

What is really special about cold atoms is their highly controllable environment.

An array of parametric conditions can be carefully tuned for single particles, few

body systems and in particular many body systems, in the last of which the atoms

exhibit macroscopic quantum phenomena in many-body phases.

The field has seen rapid advance in the recent two decades. After the first re-

alization of Bose-Einstein Condensation, with the integration of optical, magnetic

or electronic setups, ultracold atoms have been used to study systems bearing fun-

damentally distinct symmetries and to explore novel phases that were never dis-

covered before. Translational symmetry breaking optical la ices bring in spatial

periodicity, mimicking conventional condensed ma er systems. The coupling to

artificial abelian and non-abelian gauge fields expands the space of Hamiltonian

for cold atoms and enable them to show behaviors that were usually reserved for

systems of higher energy. My thesis research focuses on the phases of bosons that

are coupled to artificial gauge fields and in optical la ices, spiced up with inter-

atomic interactions which can greatly change the overall picture. This first chapter

serves as a general introduction.
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1.1 A Brief History of Ultracold Bosons

We begin by recalling the development of cold bosons in a historic perspective.

In 1924-1925, Bose [1] and Einstein [2, 3] predicted that bosons form a condensate

at an extremely low temperature, laying the cornerstone of this field. In this new

phase called Bose-Einstein Condensate (BEC), bosons collectively occupy the low-

est state and share the same wavefunction. Since then scientists have been actively

looking for BEC in possible candidates. As laser cooling techniques developed, the

∼100 nanokelvin (nK) range and below finally became accessible during the late

20th century [4], when the pursuit for BEC finally succeeded in dilute gases of al-

kali atoms in 1995 (rubidium-87 [5], lithium-7 [6], sodium-23 [7]). Carl Wieman,

Eric Cornell and Wolfgang Ke erle shared the 2001 Nobel Prize for their contri-

bution to the experimental discovery of BEC. A false color image of the velocity

distribution of BEC is shown in Fig. 1 − 1.

Figure 1-1: Velocity distribution of atomic cloud at 400, 200, 50 nK (from left to
right). BEC appears in the la er two. Blue and white shading indicates higher
density. NIST/JILA/CU-Boulder image [8]

Since the realization of BEC, it has been used to study a wide variety of prob-

lems by experimentalists. The interference of two overlapping condensates [11]

2



explicitly indicates the ma er-wave nature of BECs. The phase transition from su-

perfluid to Mo insulator [9, 10] investigates how a zero-temperature system in a

deep la ice would behave at the strong interacting limit. With the introduction of

disorder through rugged optical la ices, cold atoms can be a vivid ma er-wave

example of Anderson localization [15]. The Josephson effect experiment for cold

atoms [14] establishes an analog to superconductor. The quantized vortex in a ro-

tating BEC [12, 13] effectively creates an artificial vector potential in superfluids.

One could easily recognize the phenomenal potential of BEC-related experiments

in this incomplete list.

A recent focus in cold atoms is the coupling with artificially engineered gauge

fields. Since 2009, NIST reported the realization of artificially created electromag-

netic fields, including uniform gauge field [31], magnetic field [32], electric field [33]

and the first success of artificially engineered spin-orbit coupling(SOC) [34]. The

presence of SOC in cold atoms opens the door for studying novel physical behavior

in condensed ma er systems such as spin-Hall effect [40, 41, 42, 55, 56], for search-

ing topological insulators [39, 43] and for finding new spintronic materials [44, 45].

The engineering of artificial gauge fields have helped cold atoms enter a larger set

of Hamiltonians such as an effective Dirac Hamiltonian which leads to Zi erbe-

wegung [46, 47] and the Harper Hamiltonian which produces Hofstadter's bu er-

fly [54]. The connections between cold atoms and other fundamental fields are still

strongly growing.

1.2 Structure of This Thesis

The main text of this dissertation consists of seven chapters, including this in-

troductory chapter. The next six chapters are organized as the following.

We begin from introducing existing non-interacting and interacting theories for

BEC as foundations for our study. In Chapter 2, the natural starting point is to

3



show how BEC arises from the simplest non-interacting system. After that we dis-

cuss a few theoretical tools to deal with interacting systems applicable for different

temperature and interaction regimes. Our main focus is on mean-field theory, in-

cluding Gross-Pitaevskii Equation, Bogoliubov Approximation and Hartree Fock

Approximation. Strong correlation theory such as the Bose-Hubbard Model is also

introduced. Besides systems that only have a single type of interaction, we also

treat an interacting boson system of two species at the end of this chapter.

Then, we proceed to the theory of bosons in an optical la ice in Chapter 3.

We start from the the non-interacting theory for bosons in a periodic la ice poten-

tial, including the system's eigenvalue equation - the Mathieu Equation, which our

work on the thermodynamic properties, BEC phase transition and the momentum

distribution is based on. We apply our understanding of the exact single-particle

eigenstates of bosons in an optical la ice to calculate the density profile after time-

of-flight free expansion. An preliminary discussion of the interacting effects on

bosons in an optical la ice is at the end of this chapter.

Chapter 4 carries on the study on interacting bosons in an optical la ice. We

propose a self-consistent scheme utilizing the Hartree-Fock Approximation, essen-

tially treating interaction as an additional periodic potential. Using this scheme,

we make predictions for experimental observables such as the superfluid transi-

tion temperature, condensate fraction and the boson momentum distribution, thus

quantitatively delineate how a boson system in an optical la ice is influenced by

inter-atomic interactions.

Beginning at Chapter 5, we switch gears and work on cold atoms with artificial

gauge fields. In this chapter, we introduce the current experimental setups for engi-

neering artificial spin-orbit coupling for bosons by NIST, and derive the spin-orbit

Hamiltonian to reveal the spin-orbit coupling structure in the Hamiltonian.

4



Chapter 6 elaborates on the phases of spin-orbit coupled bosons with an empha-

sis on the miscible BEC phase which originates from a mix of the two spin states.

We first demonstrate the interesting band structure of double local minima im-

plied by the spin-orbit Hamiltonian. Based on the band structure, we construct a

low energy effective Hamiltonian, which we then examine in detail for the phase

transition from the separated phases into the miscible phase and produce two inter-

connected phase diagrams at fixed density and fixed chemical potential ensembles.

Using the phase diagram, we obtain the density distribution for spin-orbit bosons

in a harmonic trap. Crucially, we discover an non-trivial density dependence for

one spin species in the trap which could serve as an experimental signature for the

BEC-mixed state. Last but not the least, the collective modes are also studied as a

possible signature for the miscible state in this chapter.

The last chapter, Chapter 7 concludes the thesis research by reiterating the mo-

tives and providing a summary of the topics in previous chapters, and places our

research in the context of a larger picture. We will also try to connect to possible

extensions of our research in this chapter.
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CHAPTER 2
NON-INTERACTING AND INTERACTING BEC

Bose-Einstein Condensate (BEC) are a group of bosons that collectively share

the same wave function when temperature drops below the critical point. In its

pristine form, a BEC of non-interacting bosons isolated from any external fields is

just a purely statistical phenomenon and has been standard textbook materials for

decades. However, in real life there are always inter-atomic interactions present.

Interaction between particles is a problem central to physics, and more than of-

ten it can be an intricate one. Interaction brings in rich phases and properties to

a given system, but also poses great challenges for physicists. Different schemes

are developed to tackle interaction under approximations appropriate to the given

system. In this chapter, we will introduce the basics of non-interacting BEC, and

review several mechanisms to treat interacting systems which will be used in later

chapters.

2.1 Thermodynamics of Non-Interacting BEC

To start, it is essential to know why a simple BEC is possible. Bosons obey Bose-

Einstein statistics. The total number of bosons is a sum over all states of the Bose

distribution function evaluated for the energy of that state:

N = ∑
i

nB(εi − µ) = ∑
i

1
eβ(εi−µ) − 1

, (2.1)

where nB is the Bose distribution, β = 1/kBT, kB is the Bol mann constant, T

is temperature, µ is the chemical potential and εi is the energy of the i-th state.

We also denote the state with the lowest energy ε0 as the ground state, which is
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ε0 = 0 for free gas. When temperature goes down, if the volume and the total

particle number are fixed, the negative valued µ increases. When µ reaches ε0, Bose-

Einstein condensation occurs and the temperature is called the critical temperature

Tc. Therefore, Tc can be solved from Eq. 2.1 by se ing µ = ε0. Below Tc, µ stays at

ε0 and the system possesses a BEC.

For free bosons, the single particle energy εk = h̄2k2/2m with h̄k the boson

momentum and h̄ the Planck constant. After converting summation to integral,

Eq. 2.1 gives the particle number

N = ζ(
3
2
)

V
[λ(Tc)]3

, (2.2)

where λ is the thermal de Broglie wavelength λ(T) =
√

2πh̄2/mkBT, and V is

the volume. The Riemann zeta function ζ(3
2) ≈ 2.6124. We can also write Eq. 2.2

equivalently as

Tc = (
N/V

ζ(3/2)
)

2
3

2πh̄2

mkB
≈ 3.3125

h̄2

mkB
(

N
V
)

2
3 . (2.3)

The number density N/V is proportional to T3/2
c . The critical condition can also

be stated as λ being comparable to the average separation between atoms [23].

When T is below Tc, some particles enter the ground state, and are missed from

the integral. The right hand side of Eq. 2.1 is now only the excited atoms, which is

less than the total number of atoms. The difference

N0 = N − ∑
i ̸=0

1
eβ(εi−µ) − 1

(2.4)

is the number of atoms at the ground state, i.e. in the condensate. The condition

for BEC can be defined as when the condensate occupies a macroscopic fraction of
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all atoms. Specifically, for free bosons, the number of atoms in the condensate is

N0 = N − 2.612
V

[λ(T)]3
(T ≤ Tc). (2.5)

In the real world interaction exists among atoms. When the distance between

atoms are much greater than the sca ering length, or expressed as na3 ∼ 0 (n is

the number density, a is the sca ering length), the system can be approximated as

non-interacting, and the above model applies.

2.2 Interacting Systems

Interaction is ubiquitous. In a system of multiple atoms, the number of inter-

acting pairs grow as a factorial function of the number of atoms, and the complex-

ity quickly becomes impossible to directly handle. Therefore physicists developed

many-body theory to understand the collective behavior of atoms, which is the

framework of all the following approximations.

The full Hamiltonian of the system is

H =
∫

d3x Ψ̂†(x)[− h̄2∇2

2m
+ Vext(x)]Ψ̂(x)

+
1
2

∫
d3x d3x′ Ψ̂†(x)Ψ̂†(x′)V(x′ − x)Ψ̂(x′)Ψ̂(x),

(2.6)

where Ψ̂(x) and Ψ̂†(x) are the field operator, m is the atomic mass, Vext is an external

potential such as a la ice or a trap. For dilute atomic gases, the average separation

between atoms is large, we can assume the two-body interaction V(x′ − x) only

exists on contact,

V(x′ − x) = g δ(x′ − x), (2.7)

where

g =
4πash̄2

m
, (2.8)
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and as is the s-wave sca ering length. Then the Hamiltonian becomes

H =
∫

d3x Ψ̂†(x)[− h̄2∇2

2m
+ Vext(x)]Ψ̂(x) +

g
2

∫
d3x Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x). (2.9)

It is usually very difficult to calculate many body systems using the full Hamil-

tonian Eq. 2.9. To save a tremendous amount of work, people found various ap-

proximations to simplify the problem. Which approximation to apply depends on

whether the system is at zero temperature or finite temperature, and whether the

interaction is strong or weak comparing to the kinetic energy. At low temperature

and relatively weak interaction, the mean field theory is used to obtain sensible

results about the physical system.

2.3 Interacting Systems: Mean Field Theory

2.3.1 Gross-Pitaevskii Equation

The basic idea of the mean field approach, proposed by Bogoliubov in 1947, is to

explicitly separate the contribution from the condensate and the contribution from

excited atoms in the field operator [21]

Ψ̂(x, t) = Φ(x, t) + Ψ̂′(x, t), (2.10)

where Φ(x, t) is defined as the expectation value of the field operator

Φ(x, t) ≡
⟨
Ψ̂(x, t)

⟩
, (2.11)

which corresponds to the condensate, and Ψ̂′(x, t) corresponds to the excited atoms.

We can think in terms of limiting cases. The two limiting cases are when T > Tc

and when T = 0. Above the critical temperature, no condensate exists, the gas is

9



all thermal, we have Ψ̂(x, t) = Ψ̂′(x, t). At zero temperature, all atoms are at the

ground state, so Ψ̂(x, t) = Φ(x, t). For the la er case, the Schrödinger Equation

becomes

[− h̄2∇2

2m
+ Vext(x) + g |Φ(x, t)|2]Φ(x, t) = ih̄

∂

∂t
Φ(x, t), (2.12)

known as the Gross-Pitaevskii equation. This equation is the starting point for

many mean-field calculations for T ∼ 0 systems.

We can immediately get some understanding from Eq. 2.12. The density of

atoms is

n(x, t) = |Φ(x, t)|2 . (2.13)

Since the kinetic term − h̄2∇2Φ
2m is proportional to ∇2√n, the kinetic energy is more

significant near the boundary. In a large system where the density distribution

across the condensate does not vary drastically, it is acceptable to ignore the kinetic

term. Then Eq. 2.12 yields for µ > Vext (assuming no time dependence)

n(x) =
E − Vext(x)

g
=

µ − Vext(x)
g

, (2.14)

where E is the energy of the ground state. In the last step, E is replaced by the

chemical potential µ because at ground state they equal, as stated in Sec. 2.1. When

µ < Vext, n = 0. This is called Thomas-Fermi approximation [21] or Local Density

Approximation (LDA). LDA was first applied to cold bosons by [57]. We will make

use of LDA in later chapters.

Thedifference of the Gross-Pitaevskii Equation from the non-interacting Schrödinger

Equation is the additional non-linear interaction term which presents the mean in-

teraction from all particles. The interaction is characterized by the interaction pa-

rameter g which can be positive or negative, depending on the sign of the s-wave

sca ering length as.
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2.3.2 Bogoliubov Approximation

The Gross-Pitaevskii Equation is a zero-temperature theory. For systems at very

low temperature, most of the atoms are expected to remain in the condensate, only

a small fraction enter into excited states. The Bogoliubov Approximation applies

to such low temperature systems[23].

Consider the grand canonical Hamiltonian

K̂ = Ĥ − µN̂, (2.15)

where Ĥ is expressed in Eq. 2.6. In Bogoliubov approximation, the field opera-

tors is taken as the condensate part plus a small perturbation which represents the

excited states.

Ψ̂(r, t) = Ψ̂0(r, t) + Ψ̂1(r, t). (2.16)

The field operators can be expanded in single particle states in the momentum

space,

Ψ̂(r, t) =
1√
V

∑
k

âk(t)eik·r, (2.17)

where an arbitrary time-dependent operator Ô(r, t) is given by the Heisenberg pic-

ture

Ô(r, t) = eK̂t/h̄Ô(r)e−K̂t/h̄, (2.18)

note that the t here is in fact the imaginary time i t. Assume the condensate is

uniform and constant, Ψ0 is independent of r and t, we have

Ψ0 =
√

n0, (2.19)
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where n0 is the condensate density. Because â0 and â†
0 has the following commuta-

tion relationship,

[â0, â†
0] = 1 ≪ N0, (2.20)

where N0 is the total number of atoms in the condensate, we can approximate â0

and â†
0 as

√
N0. Therefore the field operators are

Ψ̂(r, t) = â0/
√

V + Ψ̂1(r, t); (2.21)

Ψ̂†(r, t) = â†
0/

√
V + Ψ̂†

1(r, t). (2.22)

This procedure is known as Bogoliubov prescription. The above substitutions be-

come exact at the thermodynamic limit. The averaged condensedphase is, of course,

non-zero, while the excited phase has a vanishing average.

⟨Ψ0(r, t)⟩ ̸= 0; (2.23)

⟨Ψ1(r, t)⟩ = 0. (2.24)

With this approximation we can begin simplifying the system's Hamiltonian.

From Equations 2.6 and 2.15, the grand canonical Hamiltonian K̂ is

K̂ =
∫

d3rΨ†(r)[− h̄2

2m
∇2 −µ]Ψ(r)+

1
2

∫
d3r

∫
d3r′ Ψ†(r)Ψ†(r′)V(r− r′)Ψ(r′)Ψ(r).

(2.25)

With details relegated in Appendix. A, for the non-condensate part of K̂ we arrive

at

K̂ + µN0 − E0 = ∑
k

Â†
kĥk Âk, (2.26)
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where the matrix operator is

Âk =

 âk

â†
−k

 (2.27)

and ĥk is

1
2

 Ek − µ + n0V(0) + n0V(k) n0V(k)

n0V(k) Ek − µ + n0V(0) + n0V(k)

 . (2.28)

Here V(k) and V(0) are Fourier transformed interaction, as defined in Appendix. A.

From Hugenhol -Pines theorem[23], the lowest order of chemical potential is

µ = n0V(0). (2.29)

2.3.3 Hartree Fock Approximation

Another mean field approach, which does not exclusively limited to a certain

range of temperature, is the Hartree Fock Approximation. This approximation as-

sumes a dependence of the system's self energy on the atomic density.

Consider a translationally invariant system (or at least having discrete transla-

tional invariance, such as in a periodic potential). The Dyson's Equation is

G(r, r′; τ, τ′)

=G0(r, r′; τ, τ′) +
∫

d3r1d3r2dτ1dτ2 G0(r, r1
′; τ, τ1)Σ(r1, r2; τ1, τ2)G(r2, r′; τ2, τ′),

(2.30)

where G and G0 are the Green's functions of spatial coordinates r, r′ and imaginary

time τ, τ′ respectively for the entire system and for the bare system (defined in Ap-

pendix. B), and Σ is the self energy characterizing the contribution from interaction.

13



On the other hand, we have

G(r, r′, τ, τ′) = −
⟨

TτΨ(r, τ)Ψ†(r′, τ′)Tτe−
∫ β

0 dτH1(τ)
⟩

, (2.31)

where H1 is expressed in the second term of Eq. 2.9. To derive the Hartree-Fock

term, we expand to the first order (denoting x = (r, τ), and similarly for x′ and x1),

G(x, x′) = −
⟨

TτΨ(x)Ψ†(x′)[1 − g
2

∫
dx1 Ψ†(x1)Ψ†(x1)Ψ(x1)Ψ(x1)]

⟩
, (2.32)

where the coupling constant g = 4πh̄2as/m has been defined in Sec. 2.2. In the

above Green's function, there are two ways for Ψ(x) to contract with the two Ψ†(x1)

factors, and there are two ways for Ψ†(x′) to contract with the two Ψ(x1) factors.

Therefore, with G0(x, x′) = −
⟨

TτΨ(x)Ψ†(x′)
⟩
, we have

G(x, x′) = G0(x, x′)− 2g
∫

dx1 G0(x, x1)G0(x1, x1)G0(x1, x′). (2.33)

Comparing Eq. 2.33 with Eq. 2.30, we obtain

Σ(x1, x2) = −2gG0(x1, x1)δ(x1 − x2). (2.34)

Since G0(x1, x1) = −n(x1), the boson density, we come to

Σ(x, x′) = 2gn(x)δ(x − x′), (2.35)

namely, the Hartree-Fock Approximation.

In the Matsubara space, the Hartree-Fock Approximation is equivalently writ-

ten as

Σ(r, r′; iΩm) = 2gn(r)δ(r − r′). (2.36)
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From Appendix. B, Σ(r, r′; iΩm) can be expanded in orthonormal basis

Σ(r, r′; iΩm) = ∑
nn′

∑
k

ψnk(r)ψ∗
n′k(r

′)Σnn′(k; iΩm). (2.37)

Using Eqs. 2.36 and 2.37, we have

∫
d3rdr′3ψ∗

n1k0
(r)ψn2k0(r

′)2gn(r)δ(r − r′)

= ∑
nn′

∑
k

∫
d3rdr′3ψ∗

n1k0
(r)ψn2k0(r

′)ψnk(r)ψ∗
n′k(r

′)Σnn′(k; iΩm).
(2.38)

(Note that Σ(r, r′; iΩm) is in the dimension of energy density, while Σnn′(k; iΩm) is

in the dimension of energy.) Then, we use orthogonal relationship to obtain

Σn1n2(k; iΩm) = 2g
∫

d3rψ∗
n1k(r)ψn2k(r)n(r). (2.39)

In Appendix. B we have proved

G(k; iΩm) =
1

G−1
0 (k; iΩm)− Σ(k; iΩm)

. (2.40)

Specially, for low temperature, we can make the single-band approximation to fo-

cus only on the lowest band

G(k; iΩm) ≈G00(k; iΩm)

=
1

iΩm − ε0k − Σ00(k; iΩm)
,

(2.41)

where the self energy for the lowest band is

Σ00(k; iΩm) = 2g
∫

V
d3r|ψ0k(r)|2n(r). (2.42)
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With the above discussion on the Hartree Fock approximated self energy, we

can examine the total energy of the lowest band to see what role interaction effects

play. The dispersions of the kinetic energy and the self energy of the lowest band

can be expanded as:

E00(k) =ε0k + Σ00(k)

=ε0k |k=0 +∇kε0k |k=0 ·k +
1
2 ∑

i,j

∂2ε0k

∂ki∂k j
|k=0 kik j + ...

+ Σ00(k) |k=0 +∇kΣ00(k) |k=0 ·k +
1
2 ∑

i,j

∂2Σ00(k)
∂ki∂k j

|k=0 kik j + ...

(2.43)

Where i, j = x, y, z. First we look at the zeroth order. The zeroth order of the kinetic

energy vanishes

ε0k =
h̄2k2

2m
|k=0= 0. (2.44)

For the first order, assuming k = 0 is a minimum for both ε0k and Σ00(k), both first

order terms vanish. When neglecting higher orders in the expansion, we have

E00(k) ≈
1
2 ∑

i,j

∂2ε0k

∂ki∂k j
|k=0 kik j + Σ00(k) |k=0 +

1
2 ∑

i,j

∂2Σ00(k)
∂ki∂k j

|k=0 kik j. (2.45)

Define effective masses

1
mBANDij

=
1
h̄2

∂2ε0k

∂ki∂k j
|k=0, (2.46a)

1
mINTij

=
1
h̄2

∂2Σ00(k)
∂ki∂k j

|k=0, (2.46b)

1
m∗

ij
=

1
h̄2

∂2E00(k)
∂ki∂k j

|k=0, (2.46c)
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then

∑
i,j

h̄2

2m∗
ij

kik j ≈ E00(k) ≈ ∑
i,j

h̄2

2mBANDij
kik j + Σ00(k) |k=0 +∑

i,j

h̄2

2mINTij
kik j. (2.47)

Assuming an isotropic system, the above equation can be simplified as

k2

2m∗ =
k2

2mBAND
+

k2

2mINT
+

Σ00(k = 0)
h̄2 , (2.48)

where k is near 0.

Note that for the Taylor expansion Eq. 2.43 to be valid, the dispersion and the

self energy must be smooth, limiting the applicable range to the band bo om away

from band gaps.

However, as argued by Ref. [58], the critical temperature of a BEC can not be

shifted within the Hartree Fock Approximation. The reason is as follows: at the

BEC transition, G−1(k = 0; iΩm = 0) = 0, therefore Σ(0, 0) = 0, or rather, since

the system is at the bo om of the band, Σ(0, 0) = µ. The contribution from Hartree

Fock interaction term 2gn0 can be simply absorbed into the chemical potential,

namely redefining
h̄2

2mζ2 = −(µ − 2gn0), (2.49)

where ζ describes the mean field correlation length. In the mean field approxima-

tion, ζ becomes infinite at Tc, nullifying the contribution from 2gn0.

2.4 Interacting Systems: Bose-Hubbard Model

Mean field approximations usually don't work well when interaction becomes

quite prominent. For cold atoms, a commonly studied type of strong interacting

systems is such systems in period potentials, which we discuss in this section. The
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reason to introduce periodic potentials is to mimic the crystalline la ice in elec-

tronic materials.. The mostly used periodic potential is optical la ices created by

interfering lasers, which will be formally introduced in the next chapter.

As the interaction is tuned stronger and with deep la ice, atoms become more

localized in the la ice sites. The single-site Wannier functions are the natural basis

for the strong interacting limit. We can express the full Hamiltonian 2.6 by ex-

panding the field operators in the Wannier basis Ψ̂(r) = ∑i,R wi(r − R)b̂i(R) (refer

to Appendix. C), where wi(r) is the Wannier function of the particle near la ice

site i and R is a la ice vector. Writing all the integrals over Wannier functions as

prefactors, we obtain the Bose-Hubbard model [22]

H = −J ∑
<i,j>

(b̂†
i b̂j + h.c.) +

1
2

U ∑
i

n̂i(n̂i − 1)− µn̂i, (2.50)

where J stands for the tunneling of atoms between sites, U is the on-site repulsion

parameter, µ is the chemical potential. b̂i and b̂†
i are bosonic field operators, n̂i =

b̂†
i b̂i is the bosonic number operator. The angle brackets in ⟨i, j⟩ mean only nearest

neighbors are included in the summation. Under the tight binding approximation,

U and J can be expressed in forms that depends on the optical la ice depth V0 [18]

U(V0, as) =

√
8
π

kol as Ere(
V0

Ere
)

3
4 ; (2.51)

J(V0) =
4√
π

Ere(
V0

Ere
)

3
4 exp[−2

√
V0

Ere
]. (2.52)

Consider the J = 0 limit, the on-site energy is

E(n) = −µn +
1
2

U n(n − 1), (2.53)
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where n is the on-site particle number. This value is minimized at

n = 1 + µ/U, (2.54)

rounded off to the nearest integer. When J is non-zero but still small (U ≫ J),

the tunneling term can be treated perturbatively, and can not overcome the energy

cost to increase or decrease n by 1. Therefore there is a region for every n in the

µ − J plane in which the number of particles per site is fixed [22]. This phase is

called Mo insulator. Fig. 2 − 1 shows the phase diagram of the superfluid-Mo

insulator phase transition on the µ − J plane.

Mo insulator was first confirmed experimentally in 2002 [9]. By tuning the op-

tical la ice depth V0, experimentalists can adjust the ratio J/U to enter the Mo

region. Fig. 2 − 2 shows the absorption image of the ma er wave interference. It

was reported that at large la ice depth (large interaction), a complete lost of coher-

ence was observed, suggesting the system has entered the Mo phase.

.. 0.05 0.1 0.15 0.2
J�U0

1

2

3
Μ�U

.

MI n=1

.

MI n=2

.

MI n=3

.

Superfluid

Figure 2-1: Superfluid transits into Mo insulator (MI) phase at strong interaction.
Here µ is the chemical potential, J is the tunneling parameter, U is the repulsive
interaction. The Mo region is in the shape of lobes, in each lobe only a certain
integer number of atoms are allowed per site.

Our research goal, however, is to find a formalism that studies interacting sys-

tems using less approximation than the Bose-Hubbard model. Since Bose-Hubbard

model only applies for the large interaction, deep la ice regime, effects from weak
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Figure 2-2: The absorption images of rubidium-87 atoms after time-of-flight expan-
sion. The optical la ice depths V0 for these images are: a, 0 Ere; b, 3 Ere; c, 7 Ere;
d, 10Ere; e, 13Ere; f, 14Ere; g, 16Ere; h, 20Ere. Ere is the recoil energy. The authors
report a trend into incoherence after V0 = 13Ere, and a complete lost of coherence
after 22Ere. This suggests a transition from superfluid into the Mo insulator phase.
Images are taken from Ref. [9].

and medium range interactions may be explained well within mean field criteria.

Therefore we choose studying Mathieu Equation, the natural and immediate de-

scription for the eigenstates of cold atoms in an optical la ice. Such efforts will be

elaborated in Chapter 3.

2.5 Interacting Spinor BEC

In previous sections, there was only one inter-atomic interaction among the

same species. In this section, we study interacting spinor BEC systems, in which

we need to consider multiple types of interactions between different species.

We choose spin-1 Rubidium, a common choice in atomic experiments, as the

subject of our study. The atom-atom interaction is described in the following inter-

action Hamiltonian[59]

Hint =
1
2

∫
d3r [c0 : ψa

†ψaψa′
†ψa′ : +c2 : ψa

†Fabψb · ψa′
†Fa′b′ψb′ :], (2.55)
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where a and b are indices summing over m = −1, 0, 1, c0 and c2 are interaction

parameters, and the Hamiltonian is in normal ordering, indicated by the semi-

colons. Here we only discuss a two state subspace, essentially equivalent to the

spin-1
2 space, projected from this spin-1 space. When projected into m = −1, 0

states, we have for the first term in Eq. 2.55,

ψa′
†ψa′ = ψ1

†ψ1 + ψ0
†ψ0 + ψ−1

†ψ−1 = Ψ↑
†Ψ↑ + Ψ↓

†Ψ↓ = n↑ + n↓, (2.56)

where m = −1, 0 states have been relabeled as |↓⟩ and |↑⟩, respectively, and ψ1
†ψ1

is simply dropped. In experiments, this can be done using a magnetic field by

uplifting the energy of m = 1 from the other two states so much that it becomes

almost irrelevant. So the first term in Eq. 2.55 becomes

Hint|c0 =
c0

2

∫
d3r : (n↑ + n↓)

2 : . (2.57)

For the second term of Eq. 2.55, we first consider in the 3-state space

ψa
†Fabψb

=


ψ1

†

ψ0
†

ψ−1
†


T

[
êx√

2


0 1 0

1 0 1

0 1 0

+
êy√

2


0 −i 0

i 0 i

0 i 0

+
êz√

2


1 0 0

0 0 0

0 0 −1

]


ψ1

ψ0

ψ−1

 ,

(2.58)

which, after projection into the m = −1, 0 subspace, becomes

ψa
†Fabψb|projected =

êx√
2
(Ψ↓

†Ψ↑ + Ψ↑
†Ψ↓) +

êy√
2
(Ψ↓

†Ψ↑ − Ψ↑
†Ψ↓)− êzΨ↓

†Ψ↓.

(2.59)
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Therefore, the second term of Eq. 2.55 can be simplified as

Hint|c2 =
c2

2

∫
d3r : (2n↑n↓ + n↓

2) : . (2.60)

And finally, with both terms calculated, the total interaction Hamiltonian is

Hint =
1
2

∫
d3r [c0(n↑ + n↓)

2 + c2(2n↑n↓ + n↓
2)]. (2.61)

We estimate the interaction parameters c0 and c2 to see which term is dominant

in realistic spin-1 87Rb atomic systems. The parameters c0 and c2 are related to the

sca ering lengths aF (with F = 0, 2 being the total spin) via [60].

c0 =
4πh̄2

M
1
3
(a0 + 2a2); (2.62)

c2 =
4πh̄2

M
1
3
(a2 − a0), (2.63)

where M is the atomic mass of 87Rb. The values of a0 and a2 are very close. Theo-

retical values quoted by [60] are

a0 = 101.78 aB; (2.64)

a2 = 100.40 aB, (2.65)

which gives

a2 − a0 = −1.38 aB, (2.66)

and their experimental measurement is

a2 − a0 = −1.07 aB, (2.67)
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where aB = 5.29177 × 10−11m is the Bohr radius, making c0 about two orders of

magnitude larger than c2, with an opposite sign. This means in the interaction

Hamiltonian Eq. 2.55, the first term provides repulsion, while the second term pro-

vides a raction. Moreover, if the number of the two species are not far off, the

repulsive force is going to be overwhelmingly dominant. This estimation is atom-

specific, the situation will be different if the spinor BEC is made by another kind of

atom.

The discussion in this section illustrates the interaction effects in a spinor BEC

system, which is potentially much richer than that in a single species BEC, since the

competition of more than one interactions can bring in new phases and new ma er.

In Chapter 6, we will study interacting Spin-Orbit Coupled bosonic systems based

on our discussion in this section.
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CHAPTER 3
BOSONS IN AN OPTICAL LATTICE

The introduction of a periodic optical la ice potential into a system of cold

bosons has a clear motivation: such a periodic potential mimics the crystalline lat-

tice potential seen by electrons in a solid. Thus, although bosonic atoms do not

exhibit the Pauli principle like electrons (a fundamental distinction), bosons in a

periodic optical la ice can still exhibit many-body phases similar to those of elec-

trons in a crystal.

Optical la ices can bring many changes to the properties of bosons: transition

temperatures, condensation fractions, density variations, and they also contribute

to the emergence of new phases. Experimental interests on the phase transitions

in an optical la ice environment have been strong. Previous experiments include

Refs. [9, 24, 25, 26]. As introduced in the preceding chapter, in a la ice, strongly-

interacting bosons in a superfluid can enter the Mo insulator phase . In Ref. [26],

Tro ky et al. measured the superfluid to normal phase transitions in the regime

near the Mo phase, and found that the superfluid critical temperature is sup-

pressed near the Mo regime.

In this chapter, we will discuss bosons in an optical la ice for several cases. We

start from introducing the concept of the optical la ice. In the next section we dis-

cuss the solution for non-interacting bosons in an optical la ice based on Mathieu

functions, and calculate the superfluid transition temperature of bosons in an op-

tical la ice as a function of optical la ice depth. Then we investigate the signature

of the phase transition in terms of the density of the cloud after it is released from

the trap. Finally we talk about the effects of the inter-atomic interaction on this

system. We are most interested in understanding to what extent the higher bands
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contribute in phase transition, and how significantly (or not significantly) interac-

tion alters the transition conditions. In this chapter and Chapter 4, we will make

frequent comparison with the experimental results in Ref. [26].

3.1 Optical La ice

To rationalize the use of the optical la ice, one may think about a typical con-

densed ma er system, in which charge carriers like electrons move in a periodic

Coulomb potential created by nuclei. To obtain behaviors as rich, we need a similar

se ing for neutral atoms. An optical la ice produces an artificial periodic potential

for cold atoms by using the interference of light.

The optical la ice is made by a set of standing waves, usually formed by in-

terference between two counter-propagating laser beams on each dimension (See

Fig. 3 − 1) [17],

E(r) = E0[ei(kol ·r−ωt) + h.c.]− E0[ei(kol ·r+ωt) + h.c.] = 4E0 sin (kol · r) sin ωt, (3.1)

where ω is the frequency of the field, kol is the wave vector of the field. Since the

centers-of-mass of atoms are on a much slower time scale comparing with the laser

frequency ω, the atoms can be considered as in a time-averaged field. This field

exerts on the atoms the dipole force [18],

F ∝ ∇(|E(r)|2), (3.2)

therefore on each dimension the single wave creates a potential

V(x) = V0 sin2(kolx), (3.3)
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where V0 is the la ice depth. In 3-D the optical la ice potential is

V(r) = V0[sin2(kolx) + sin2(koly) + sin2(kolz)], (3.4)

where we assumed isotropy of the optical la ice. The micro-wells in the standing

wave are called sites, in which atoms tend to situate themselves. In practice an

extra magnetic trap is sometimes utilized to confine the atomic gas. Note that we

do not take this external trapping potential into consideration in this and the next

chapters. Instead, we consider a gas in a square-well potential.

Figure 3-1: Standing wave is created from interference of two counter-propagating
laser beams on each dimension, producing an optical la ice. A 3-D optical la ice
is shown here. Graph is taken from Ref. [17].

3.2 Superfluid Transition of Bosons in an Optical La ice

Now we can extend the calculation for the critical condition in Sec. 2.1 for the

case when an optical la ice is involved. We aim to find the distinctive thermody-

namics and critical behavior for bosons when an optical la ice is present.

Previously we focused on the critical temperature Tc. The la ice depth V0 affects

the phase of atoms, therefore we can define the critical la ice depth V0c when the

atoms cross the phase boundary as the la ice depth is continuously tuned larger.

The BEC transition is similar to the no la ice case, but now we need the energy
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eigenvalues of the bosons in a periodic potential. Once we know the energy eigen-

values, Tc or V0c is given by the number equation Eq. 2.1 by le ing µ = 0. After

that, we can again make use of Eq. 2.1 to find the N0 and the µ curves, if the filling

f = N/Ns (the number of atoms per site), where Ns is the number of sites, is given.

Consider a group of bosons that are placed within a finite volume whose size is

L on each dimension, and an isotropic optical la ice potential is imposed.

V = V0(cos2 kolx + cos2 koly + cos2 kolz −
3
2
), (3.5)

where V0 is the la ice depth, and

kol =
2π

λ
, (3.6)

where λ is the wavelength of the laser used to construct the optical la ice. The 3/2

constant substracted in Eq. 3.5 ensures the Fourier transform of the la ice V(k =

0) = 0. Since each period contains two sites, the number of sites

Ns =

(
2L
λ

)d
=

(
L kol

π

)d
, (3.7)

where d is the dimension. The Schrödinger Equation for bosons in this 3D optical

la ice is

(− h̄2

2m
∇2 + V)Φ = EΦ, (3.8)

where E is the total energy, Φ is the wave function and ∇ = ∂
∂x x̂ + ∂

∂y ŷ + ∂
∂z ẑ. To

solve the 3D Schrödinger Equation Eq. 3.8, it is sufficient to start with the corre-

sponding 1D case.
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1D solution Under 1D, the optical la ice potential is

V = V0(cos2 kolx − 1
2
). (3.9)

Schrödinger equation converts to the well-known Mathieu Equation after some al-

gebra:
d2ϕ

du2 + (a − 2q cos 2u)ϕ = 0, (3.10)

where ϕ is the 1D wave function, a is the eigenvalue

a =
ε

Ere
, (3.11)

q is the normalized la ice depth

q =
V0

4Ere
, (3.12)

and ε is the energy on this axis. Both a and q are dimensionless. The spatial variable

(on x axis), also dimensionless, is ux = kolx, and the recoil energy is defined as

Ere = h̄2k2
ol/2m, which is used to scale all quantities that have an energy dimension.

Mathieu Equation (Eq. 3.10) has the following solution:

y = C1 ce(a, q, u) + C2 se(a, q, u), (3.13)

where C1 and C2 are constants, ce(a, q, u) is the Mathieu even function, which is

even symmetric (analogous to cosine). se(a, q, u) is the Mathieu odd function (anal-

ogous to sine).

The system's dispersion, obtained as the eigenvalue of the Mathieu Equation,

can be expressed in terms of the Mathieu Characteristic Function, ak(q) for the even
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Mathieu function, and bk(q) for the odd Mathieu function, where k is the quasi-

momentum, with details given in Appendix D. Fig. 3 − 2 compares the Charac-

teristic Function when V0/4Ere = 0, 0.5, 1. We see that the ground state energy

at k = 0 becomes lower for larger la ice amplitude, indicating that the bosons are

able to arrange themselves to lower the energy at large la ice depth.

V0�4Ere=0

V0�4Ere=0.5

V0�4Ere=1

-2 -1 1 2
k

1

2

3

4

5

6

E�Ere

Figure 3-2: Mathieu Characteristic Function for the even Mathieu function gives the
dispersion E(k). Here V0/4Ere = 1, 0.5, 0. The ground state energy (the bo om of
the curves) is lowered as the optical la ice potential V0 increases. The Characteristic
Function is reduced to a parabola when V0 = 0.

Also in Fig. 3− 2, the curvature of the Characteristic Function changes with q as

well. For example, the curves at k = 0 open up more with increasing q. We define

effective mass m∗ = h̄2/(∂2E/∂2k) to describe the curvature of dispersions, larger

effective masses indicate smaller curvature. Here the effective mass is

m∗(q) =
h̄2

∂2ε/∂2k
=

h̄2

Ere ∂2aν/∂2k
=

kol
2

Ere

h̄2

∂2aν/∂2ν
=

2
∂2aν(q)/∂2ν

m. (3.14)

Fig 3 − 3 shows the effective mass increases with la ice depth. In particular,

when q = 0 the effective mass starts at 1m, agreeing with that of a parabola. This

follows from that the effect of increasing optical la ice depth is to induce spatial
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variations of the local boson density. Since the bosons are trapped in the local lat-

tice potential minima, making it harder for them to move. This is represented,

physically, by an increased effective mass.

1 2 3 4
q

5

10

15

m*�m

Figure 3-3: The effective mass (in units of the real atomic mass) increases with la ice
depth, describing the dispersion when optical la ice is present.

Now we are able to treat the BEC transition when optical la ices are present.

Using the solution to the 1D Mathieu Equation, we obtain the single particle solu-

tion

Φ =
d

∏
i=1

ϕ(ai, q, ui), (3.15)

which is a product of the 1-D Mathieu equation solutions in each dimension. The

total energy is

E =
d

∑
i=1

εi =
d

∑
i=1

aiEre. (3.16)

When En is given by the Mathieu Characteristic functions, the number equation

Eq. 2.1 becomes

N = ∑
ν1,...,νd

1
exp[βEre(aν1 + ... + aνd − µ/Ere)]− 1

=Ns

∫
dν1...dνd

1
exp[βEre(aν1 + ... + aνd − µ/Ere)]− 1

,
(3.17)

where in the last step the continuum limit is applied. We can solve for the super-

fluid transition temperature Tc from Eq. 3.17.
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Because the particle numbers are always positive, it is required that

µ/Ere ≤ ∑
ν1..νi..νd

aνi = d a0(q), (3.18)

where we have replaced the eigenvalues a with Characteristic Function aν(q), and

a0(q) refers to the Characteristic Function's minimum at ν = 0. aν(q) and bν(q) are

equivalent at non-integer ν's, but aν(q) is well defined at ν = 0, which makes it a

be er choice than bν(q).

Since no BEC would be formed in lower dimensions (the integral are divergent,

as our calculations show), we will work in 3D only. The system becomes critical

when µ reaches its maximum, i.e. the bo om of the bands. So Eq. 3.17 becomes

f =
∫ Λ

ϵ
dν1dν2dν3

1
exp[Ere(aν1(q) + aν2(q) + aν3(q)− 3a0(q))/kBTc]− 1

, (3.19)

where f = N/Ns is the filling for atoms not in the condensate, which at the critical

point equals the total filling, and Λ and ϵ are respectively the upper and lower

limits for the integral. To ensure our choices of these limits don't affect the results,

we did a precision test, included as Appendix. F.

Next, we will numerically solve Eq. 3.19 to obtain results for the transition tem-

perature for varying optical la ice depth q = V0/4Ere.

3.3 BEC Transition Results

3.3.1 Unit Filling f = 1

First we analyze the phase transition when the atom filling f is set at 1. As we

discussed above, we can solve the number equation Eq. 3.19 to obtain the critical

temperature Tc if the filling is given. Using the parameter ranges from the precision

tests, we obtain the following results.
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Fig. 3 − 4 shows the change of Tc as a function of the optical la ice depth q,

the decreasing trend is due to that deeper la ice weakens the coherence of BEC.

The critical temperature at q = 0 (the y-intercept) agrees with Eq. 2.3, the original

Einstein's result with no optical la ice.

0 1 2 3 4
q

0.1

0.2

0.3

0.4

0.5

0.6

0.7

kBTc�Ere

Figure 3-4: The BEC transition temperature decreases with deeper optical la ice,
as solved from Eq. 3.19. The plot assumes unit filling. Here ϵ = 0.00001, Λ=5,
MaxRecursion is automatically set. (See Precision Control in Appendix F).

3.3.2 Multiple Filling f > 1

In the following calculation, we still work in the reversed way: assume a critical

temperature first, then calculate the filling Eq. 3.19. This is because finding Tc as a

root from a numerical integral is computationally challenging.

Now we relax the unit filling requirement and explore larger filling regimes.

We examine the relationship between the filling (or density) and the critical tem-

perature (i.e. f vs. Tc) under different q values.

Fig. 3 − 5 shows for deeper la ice it requires a lower critical temperature for

the same filling (consistent with Fig. 3 − 4); and for the same temperature, deeper

la ices lead to larger filling. The q = 0 curve agrees with Einstein's n ∝ Tc
3/2 result

for free boson gas.
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Figure 3-5: This figure shows the trend of the filling f with the critical temperature
Tc under different la ice depths. From right to left: q = 0, q = 1, q = 2, q = 3,
q = 4, where q = V0/4Ere. Here we integrate between ϵ = 0.000001, Λ = 5, using
MaxRecursion=4. We can see for a deeper la ice, it requires a lower critical temper-
ature for the same filling (consistent with Fig. 3− 4); and for the same temperature,
deeper la ices lead to larger filling.

3.3.3 In Comparison: Mathieu Approach and Approximating with Effective
Mass

In Fig. 3 − 5 we calculated the density's trend with the critical temperature di-

rectly from the number equation (by using Mathieu function), using brutal numeri-

cal force. The Einstein's simple theoretical relationship between the particle density

and the critical temperature, Eq. 2.2, is derived with the bare system dispersion, in

which the particle is described by its bare mass. When optical la ice is present, we

know that the dispersion is altered with the bare mass substituted by an effective

mass, namely, m∗/m = 2(∂2aν/∂2ν)−1, from Eq. 3.14. So if the effective mass ap-

proximation holds, then the N − Tc relationship N = 2.612 V/[λ(Tc)]3 (Eq. 2.2) will

stay untouched, with the de Broglie wavelength now includes the effective mass

λ(T) =

√
2πh̄2

m∗kBT
. (3.20)

Therefore we can plot (1) the densities (or fillings) from numerical integrals in

Eq. 3.19 and (2) the densities predicted by Eq. 2.2 with effective masses together, as

shown in Fig. 3 − 6.
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Figure 3-6: We show here the density's (or the filling's) relationship with the crit-
ical temperature: the fillings numerically calculated from integrating the number
equation are shown in dark blue solid lines, while the fillings from Einstein's theory
result N ∝ T3/2

c with the original particle mass substituted by the effective mass are
shown in red (for q = 0) and green (from right to left: q = 1, 2, 3, 4) dashed lines.
One can see that the overlaid Mathieu and effective mass results agree be er at
small filling and low critical temperature, but become very different at large filling
and high critical temperature.

We can clearly see in Fig. 3 − 6 that, the number equation numerical result and

the effective mass theoretical result agree be er at small Tc and small fillings, but

differ a lot at large Tc and large fillings. To look into this we replot with denser sam-

pling rate at the small filling range, as shown in Fig. 3− 7 and Fig. 3− 8. The effec-

tive mass theoretical result (dashed line in green) agrees with the number equation

numerical result very well at very small filling (Region 1), then becomes lower (Re-

gion 2), crosses with the la er (Region 3), and finally departs from the la er (Region

4).

Comparing the agreement of the two curves provides us insight on which mod-

els hold in certain regions. In Region 1, at small filling the dispersion is very similar

to parabola, and the effective mass approximation is valid. In Region 2, there are

corrections to the effective mass approximation, resulting in Tc1 < Tc2 for the same

filling, where Tc1 is the numerical result from the number equation (more realistic),
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Figure 3-7: At intermediate Tc and fillings (around f=1), the effective mass theoret-
ical result (dashed line in green) is slightly lower than the number equation nu-
merical result (solid line in blue with data points marked as dots), until it crosses
with the la er. Here the optical la ice depth q = 1, ϵ = 0.000001, Λ = 5,
MaxRecursion=4.

and Tc2 is from the simple effective mass approximation. In Region 3, the two re-

sults begin to show significant deviation, indicating higher bands now start to play

a role. And in Region 4, the single band approximation completely fails.

The trend can be explained by in Fig. 3 − 9 and Fig. 3 − 10. The Mathieu Char-

acteristic Function and the free atom dispersion (parabola) agree be er in small

quasi-momentum ν values. As ν becomes larger, there are more states in the Math-

ieu dispersion than the free gas dispersion, allowing larger fillings, which corre-

sponds to Region 2. But the jump at integer ν values reduces the possibility of

atoms filling the second band, at which point the f -Tc curve is suppressed and

eventually crosses with the free particle dispersion in Region 3. As ν further in-

creases the Mathieu Characteristic Function outgrows the free particle dispersion

significantly, and thus the f -Tc curve is further suppressed.

3.3.4 Effect of Higher Bands

To further investigate the condensation thermodynamics when higher bands

are included (indicated by Λ), we plot the density-Tc relationships when a certain

number of bands are included in Fig. 3 − 11 and Fig. 3 − 12.
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Figure 3-8: At very small critical temperatures and fillings, the effective mass theo-
retical result (dashed line in green) agrees well with the number equation numerical
result (solid line in blue with data points marked as dots), then becomes slightly
lower than the la er. Here the optical la ice depth q = 1, ϵ = 0.000001, Λ = 5,
MaxRecursion=4.

How we obtain the two figures is the same as we did for Fig. 3 − 5 through

Fig. 3 − 8. For an assumed critical temperature, we calculate the corresponding

filling. We can see in both plots that as we get into the large filling / high critical

temperature regime, more bands need to be included. For example, at unit filling,

single band approximation is sufficient because including more bands does not

make a difference in Fig. 3 − 11. But at f = 5, there is already a visible difference

between including only the first band and including two bands, and a deviation

between Λ = 2 and Λ = 3 is also in the making. The spli ing between density-

temperature curves is verified up to f = 70, and there is no reason to believe this

trend would stop.

This trend shows that at large filling bosons occupy higher bands when they

condensate, therefore we must take higher bands into consideration when studying

large filling non-interacting and interacting systems.

3.4 Free Expansion

After calculating the phase transition of bosons in an optical la ice, we aim

at theoretical prediction for the nature of the condensate. The superfluid state of
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Figure 3-9: The Mathieu Characteristic Function resembles free particle dispersion
(parabola, shown in dashed line) in the low energy regimes, and the BEC ther-
modynamics can be well described by the Einstein result with a straightforward
effective mass approximation. As the quasi-momentum ν grows, Mathieu Char-
acteristic Function deviates from a parabola, and corrections have to be made. At
ν = 1, Mathieu Characteristic Function has a jump, at which point the single band
approximation fails.

bosons is usually shown in experiments by absorption imaging of the freely ex-

panded cloud. In this process, the trapping potential is abruptly turned off, the

atomic gas undergoes a period of time-of-flight free expansion. The absorption

image provides information about the density profile, which is related to the initial

momentum distribution. Atoms that are initially of the same state will gather to-

gether in the real space, therefore density peaks in the image indicate Bose-Einstein

1 2 3 4 5
Ν

5

10

15

20

25
Ε�Ere, aΝ

Parabola

Mathieu

Figure 3-10: Despite agreement in lower bands (indicated by small quasi-
momentum ν), the Mathieu Characteristic Function is overwhelmingly larger than
the free particle dispersion for higher energy and larger bands.
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Figure 3-11: This graph shows how the calculated density increases with the critical
temperature when different number of bands are included, examining the stability
of the particle number integral against inclusion of higher bands. The calculated
density-critical temperature dependence including the first band, the first 2 bands,
3 bands and 4 bands are shown here. As the filling and the critical temperature
both increase, there are spli ing between the lines, indicating part of the particles
are already in the higher band, thus it is necessary to include that band. Here the
la ice depth q = V0/4Ere = 1.

condensate. In this section we show in a concise manner how to calculate the den-

sity profile after free expansion. Detailed steps of the derivation are provided in

Appendix G.

Assume the trapping potential is turned off at t = 0. The time dependent den-

sity

n(r, t) = TrρH(t)n̂(r) = TrρH(t)Φ̂†(r)Φ̂(r), (3.21)

where Φ̂(r) and Φ̂†(r) are field operators, ρH is the density matrix for the time

dependent Hamiltonian which is wri en as

H(t) = H0 + Θ(−t)Htrap, (3.22)

where

Θ(t) =

 0, (t ≤ 0);

1, (t > 0).
(3.23)
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Figure 3-12: This graph shows how the calculated density increases with the crit-
ical temperature when different number of bands are included, at the large filing,
higher critical temperature regime. Similarly with Eq. 3-11, the spli ing between
lines continues, indicating the higher the filling is, the more bands we need to con-
sider. Here the la ice depth q = V0/4Ere = 1.

The Hamiltonian is entirely time invariant before t = 0, we can denote H(t < 0) ≡

H∞. The density after the trap potential is turned off is obtained by

n(r, t > 0) = TrρH∞ n̂(r, t), (3.24)

where n̂(r, t) ≡ eitH0n(r)e−itH0 . ρH∞ ≡ ρH(t < 0) is the initial density matrix at

t = 0. The field operators Φ̂(r) can be expanded in the eigenstates of H0 or in the

eigenstates of H∞, and the former of which are just plane waves. Therefore we

can obtain the density matrix ρH∞ by equating the two expansions, and plug into

Eq. 3.24 to solve for the density n(r, t > 0). The result is

n(r, t) = ∑
i

∑
k

| eitEk−ik·rϕ̃i(k) |2 nB(εi − µ), (3.25)

where ϕ̃i(k) is the Fourier transform of the eigenfunction of H∞ to the momentum

space. If we translationally move in the momentum space from k to k + mr
t , where
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k ≪ mr
t , Eq. 3.25 becomes

n(r, t) ≈ c ∑
i
|ϕ̃i(rm/t)|2 nB(εi − µ). (3.26)

We note that, up to an overall prefactor c, the right side of Eq. 3.26 is the momentum

distribution n(k) of the initial trapped gas, measured at momentum k0 = mr/t.

Thus, the density profile of the expanded cloud allows experimentalists to probe

the momentum distribution of the trapped cloud. Detailed steps of the derivation

to obtain Eq. 3.26 are provided in Appendix G.

3.5 Non-Interacting Density Profile after Free Expansion Results

The preceding derivation apply to bosons in an arbitrary trapping potential

with arbitrary interactions (we assume they do not interact during the free expan-

sion). We now want to apply these formulae to the case of non-interacting bosons

in a periodic optical la ice potential. To calculate the density n, we need to know

the Fourier transformed eigenfunctions of H∞. If the trapping potential is rela-

tively flat, we can neglect the trapping potential, the Hamiltonian is reduced to the

Mathieu Hamiltonian, so ϕi(r) are just Mathieu Functions.

Furthermore, we still need a proper boundary conditions before working on

real world problems, since actual experiments take place in finite systems, which

affect the shapes of their wave functions. To understand the effect of finiteness on

the system, we discuss two kinds of boundary conditions here: vanishing bound-

ary (hard wall) and periodic boundary. The former assumes a box shaped potential

well with a flat bo om, while the la er is a theoretical model in which the bound-

ary on one end is made to connect with the other end. Detailed discussion is in

Appendix E. Here we give only the results. The 1-D Fourier transformed wave
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function for the vanishing boundary condition is

ϕ(ν, q, k) =


2
L

∫ L/2
−L/2 dx cos(kx)ce(aν, q, kolx) ν = 2n

Ns
;

2
L

∫ L/2
−L/2 dx sin(kx)se(bν, q, kolx) ν = 2n+1

Ns
.

(3.27)

The 1-D Fourier transformed wave function for the periodic boundary condition is

ϕ(n, q, k) = ∑
m

c2n/Ns
2m (q)δ(

2n
Ns

+ 2m,− k
kol

), (3.28)

where m and n here are integers respectively indicating the momenta at the la ice

scale and the quasi-momenta, and the coefficient

c2n/Ns
2m (q) =

1
L

∫ L/2

−L/2
dx e−(2n/Ns+2m)kol xme(2n/Ns, q, kolx), (3.29)

when n ̸= 0, and

c0
2m(q) =

√
2

L

∫ L/2

−L/2
dx e−2mkol xce(a0, q, kolx), (3.30)

when n = 0. The function me in the integrand is a complex function defined from

Mathieu functions

me(ν, q, u) = ce(aν, q, u) + i sgn(ν)se(bν, q, u), (3.31)

where sgn is the sign function. In both cases, the 3-D wave function is just the

product of the wave functions in each dimension.

For the free expansion density at a certain timestamp, we rewrite Eq. G.25 with-

out the t dependence:

n(k) = N0|Φ0(k)|2 + ∑
i ̸=0

|Φi(k)|2nB(ϵi − µ), (3.32)
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where Φ(k) is the Fourier transformed Mathieu wave function.

Fig. 3 − 13 is the density profile images of experiments and simulation from

the Bloch group (Ref. [26]), where bright spots are density peaks indicating super-

fluidity. The critical temperature Tc is 26.5nK. The la ice depth V0 = 8Ere. With

Eq. 3.32, we are able to verify with the experimental data. Our calculation result

is shown in Fig. 3 − 14, where we use the same Tc and V0 as in Ref. [26]. We as-

sume a hard wall boundary of Ns = 10 on each dimension, where Ns is the number

of sites, and the boundary condition is captured by the wave functions Φi(k), as

given by Eq. E.4. Superfluidity only appears below Tc, meaning Tc is the onset for

superfluidity, which is in consistency with Fig. 3 − 13.

Figure 3-13: The absorption images of the freely expanded atomic cloud that are
released from the trap and the optical la ice, taken from Ref. [26], are shown here.
The upper panel shows the images from experiments, the lower panel shows im-
ages from Quantum Monte Carlo simulation. Temperatures of each case are la-
beled, the critical temperature Tc = 26.5nK, the la ice depth V0 = 8Ere, where
Ere is the recoil energy. Sharp spots indicate superfluidity. It can be seen that the
density peaks disappear above the critical temperature Tc.

In Fig. 3 − 13 and in Fig. 3 − 14 one can see density peaks on the sides around

the main peak in the center. These side peaks represent the phase coherent nature

of the BEC in a periodic potential: In the expanded cloud bosons from neighbor-

ing wells are phase coherent, thus creating an interference pa ern in the density

distribution after expansion.

Next, we use our theory of freely expanded boson gases to reveal the nature of

the side peaks and provide a powerful picture to demonstrate how multiple peaks
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(a) T = 10nK (b) T = 18.3nK (c) critical Tc = 26.5nK

(d) T = 31.8nK (e) T = 48.5nK

Figure 3-14: The density profiles of the atomic gas after free expansion are cal-
culated using the momentum distributions in the initial cloud with the vanishing
boundary condition. Temperatures of each case are indicated, the critical temper-
ature Tc = 26.5nK, the la ice depth V0 = 8Ere, where Ere is the recoil energy. We
use a hard wall boundary of Ns = 10 on each dimension. Sharp spots are density
peaks from the superfluid state. One can see the density becomes diffuse above Tc.
These calculations agree with the experiment and simulation results in Fig. 3 − 13.

come about in the context of many states, while also being able to quantitatively

describe the finite size effect. We choose the periodic boundary condition. Using

Eq. G.25 and Eq. E.17, the density profile is

nm(k) ≈N0 |C[m, 0, q]|2 δ(2m,− k
kol

)

+ δ2
V(k + 2kol

n
Ns

+ 2kolm)

∣∣∣∣C[m,− k
2kol

− m, q]
∣∣∣∣2 nB(ϵ(k, m)− µ),

(3.33)

n(k) = ∑
m

nm(k), (3.34)
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where m, n, k are m, n labels and the wave vector in 3-D, respectively. C[m, n, q]

is the 3-D product of the 1-D Fourier transform coefficient c2n/Ns
2m (q). It becomes

clear that, the total density is the summation of many components, each of these

components contains the ground state density (superfluid) and the excited states

density (non-superfluid). Each component contributes mainly to one certain Bril-

louin zone, which is the reason why we see the grid of density peaks in Fig. 3 − 13

and in Fig. 3 − 14. Note that the δ-functions in the non-superfluid terms are re-

placed by δV , which is the smeared delta function to describe the width of every

peak due to the finite size of the system. If the system were infinite, each peak

would have a zero width (corresponding to the original δ-functions), which is not

achievable in practice. To correctly reflect all the effects of the finite size, we define

these smeared δV functions as

δV(k + 2kol
n
Ns

+ 2kolm)

=
8
V ∏

i=x,y,z

sin(L(ki + 2kol
ni
Ns

+ 2kolmi)/2)

ki + 2kol
ni
Ns

+ 2kolmi
.

(3.35)

Three 1-D graphs, Fig. 3 − 15, 3 − 16, 3 − 17 further explain the different roles

of each state and each component in the total density. Here we use a system size

of Ns = 10 (the number of sites), la ice depth V0 = 10Ere, critical temperature

kBTc = 0.105Ere, and unit filling. Fig. 3 − 15 shows the total density profile. Each

peak comes from a component like the m = 0 component in Fig. 3 − 16. A single

peak as in Fig. 3 − 16 contains both superfluid and non-superfluid. Also, a single

state still contains multiple components, as shown by Fig. 3 − 17 in which the

ground state ν = 0 contains side peaks besides the central peak. The three graphs

are plo ed with the same arbitrary temperature well below Tc. The finite widths

in these plots are brought by the smeared δV function.
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Figure 3-15: This graph shows the 1D total density profile after free expansion with
periodic boundary condition. The temperature is below the critical temperature Tc.
The total density contains multiple peaks, each peak comes from one component
in the summation in Eq. 3.34. Here we use the system size Ns = 10, la ice depth
V0 = 10Ere, critical temperature kBTc = 0.105Ere, and unit filling. Finite size effect
has been taken into account with the smeared δV function.

Sometimes it may be more convenient to work in Bloch or Wannier bases. To

calculate the density of the freely expanded cloud, one only has to expand the field

operator into the needed basis, and work through similar steps. Eqs. 3.36 and 3.37

are equations for the densities calculated with Bloch and Wannier bases respec-

tively. The former sums over band indices and momenta, while the la er sums

over band indices and la ice sites.

n̂(r, t) = (
m

2πh̄2t
)3 ∑

nq
∑
n′q′

ϕ̃∗
nq(

mr
t
)ϕ̃n′q′(

mr
t
)c†

nqcn′q′ ; (3.36)

n̂(r, t) = (
m

2πh̄2t
)3 ∑

nR
∑
n′R′

ei mr
t ·R−i mr

t ·R′
w̃∗

n(
mr
t
)w̃n′(

mr
t
)b†

n(R)bn′(R′). (3.37)

Here ϕ̃ and w̃ are respectively Fourier transformed Bloch functions and Fourier

transformed Wannier functions. cnq and bn(R) are the annihilation operators of

their respective basis. Appendix C provides details about these two orthonormal

bases.
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Figure 3-16: This graph shows the 1D free expansion density profile of the m = 0
component. Periodic boundary condition is used. The temperature is below the
critical temperature Tc. Each component contributes to one peak as the m = 0 com-
ponent does in this graph. Each peak still contains superfluid and non-superfluid
parts, the former takes up a significant portion when the temperature is below Tc.
Here we use the system size Ns = 10, la ice depth V0 = 10Ere, critical temperature
kBTc = 0.105Ere, and unit filling. Finite size effect has been taken into account with
the smeared δV function.

3.6 Interacting Bosons in Optical La ice: Hartree Fock Approximation

Previously we have introduced Hartree Fock Approximation in Sec. 2.3.3. In

this Section, we apply Hartree Fock approximation to interacting bosons in an op-

tical la ice. We also assume only the lowest band is included (Single Band Approx-

imation).

From Eq. 2.42, the self energy for the lowest band is

Σ00(k; iΩm) = 2g
∫

V
d3r|ψ0k(r)|2n(r), (3.38)

where g = 4πh̄2as/m, where as is the s-wave sca ering length. The integral is the

same for all unit cells, so we can downsize the integral to over a single unit cell. By

using the Mathieu wave function, we come to

Σ00(k; iΩm)

Ere
=

4mgV
h̄2kol

2υ

∫
υ̃

d3u|ψ0k(u)|2n(u), (3.39)
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Figure 3-17: The 1D free expansion density of the ground state with periodic
boundary condition. Because each component contains part of superfluid, the
ground state density is seen in multiple peaks, containing multiple m components.
The temperature is well below the critical temperature Tc, almost all the density is
from the superfluid, the peak values are similar as compared to Fig. 3 − 15. Here
we use the system size Ns = 10, la ice depth V0 = 10Ere, critical temperature
kBTc = 0.105Ere, and unit filling. Finite size effect has been taken into account with
the smeared δV function.

where ψ is the Mathieu function, u = kolr is the dimensionless spatial variable

(assuming an isotropic system), and the integral is over a unit cell υ̃ in for u space.

The u la ice spacing in 1D is π, so υ̃ is a box of π on each side.

Assuming zero temperature, all particles are in the ground state

n(r) = n0(r) = N | ψ0,k=0(r) |2 (3.40)

where N is the total particle number. Combing the above two equations, we are

able to calculate the self energy Σ00.

We can judge the extent of the interaction effects under the current approxima-

tion by inserting the self energy into Eq. 2.48

k2

2m∗ =
k2

2mBAND
+

k2

2mINT
+

Σ00(k = 0)
h̄2 (3.41)
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where k is near 0, then compare the effective masses that respectively character-

ize the band dispersion and the interaction. Fig. 3 − 18 compares the band effec-

tive mBAND mass and the total effective mass m∗, which are almost identical. This

means under current approximations, interaction effect is not discernible. Here we

use the sca ering length as = 5.31nm, the optical la ice wavelength λol = 844nm,

and the system size is Ns = 10.

total: m*

band: mBAND

2 4 6 8 10 12
V0�Ere

2

4

6

8

10

m*

m
,
mBAND

m

Figure 3-18: This graph compares the calculated band effective and the total ef-
fective masses, the former characterizing the band dispersion, the la er charac-
terizing the combined effect from the band and the interaction. Since the two ef-
fective masses are almost identical, interaction effect is not discernible in this ef-
fective mass approach within the single band Hartree-Fock approximation. Here
as = 5.31nm, λol = 844nm, the system size is Ns = 10.
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CHAPTER 4
INTERACTING BOSONS IN AN OPTICAL LATTICE:
HARTREE FOCK SELF-CONSISTENT SCHEME

Previously in Chapter 2, we introduced the methods to treat interacting boson

systems. Specifically, we have shown that interaction effects vanish identically,

within the Hartree Fock approximation, for bosons in a uniform potential. In Chap-

ter 3, we introduced optical la ices and showed how they alter the thermodynamic

and dispersion properties of bosons. For bosons in a periodic optical la ice, we

found that the simplest Hartree Fock approximation gives an extremely small cor-

rection to the transition temperature for the superfluid. In this chapter, we study

the interaction effects for bosons in an optical la ice using the Hartree Fock self-

consistent approach.

We will see that, for bosons in an optical la ice, interaction effects within a self-

consistent Hartree-Fock approximation can significantly modify physical observ-

ables. Our self-consistent Hartree-Fock approximation is motivated by first noting

that, bosons in a periodic cosine-shaped potential will have a local density that

is also periodic. Approximately, this density is given by a constant piece plus a

spatially-modulated cosine-shaped piece. Because the boson interactions are pro-

portional to the local density, the spatially-modulated piece acts self-consistently

like an additional potential for the bosons. Since the boson interactions are repul-

sive, this means that bosons in a periodic optical la ice with a given optical la ice

depth will effectively "see" a lower la ice depth.

In this chapter, we first derive the underlying equations for our self-consistent

Hartree-Fock scheme, then proceed to deploy this scheme to make predictions for
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experimental observables such as the superfluid transition temperature, conden-

sate fraction, and at last we calculate the real boson density and the boson momen-

tum distribution of this interacting system.

4.1 Model

S -C A

We start by noting that, in a boson system with an optical la ice V(r) = V0v(r),

where

v(r) = cos2 kx + cos2 ky + cos2 kz − 3
2

, (4.1)

if the la ice amplitude V0 is small, then the modulus squared of the Mathieu func-

tions asymptotically resembles a constant plus a cosine shape. This follows from

the expansion of Mathieu functions for small q (Ref. [16]), where q = V0/4Ere with

Ere being the recoil energy

me(ν, q, u) = eiνu − q
4
(

1
ν + 1

ei(ν+2)u − 1
ν − 1

ei(ν−2)u)

+
q2

32

[ 1
(ν + 1)(ν + 2)

ei(ν+4)u +
1

(ν − 1)(ν − 2)
ei(ν−4)u − 2(ν2 + 1)

(ν2 − 1)2 eiνu
]
+ ...

(4.2)

where me(ν, q, u) = ce(aν, q, u) + i sgn(ν)se(bν, q, u), as defined in Appendix E.

This formula implies that if la ice depths q are sufficiently small, the only terms

that will contribute are the first line of Eq. 4.2. Otherwise, the local density does

not have the constant plus cosine form. Nonetheless, we proceed by assuming this

form holds, and capture it by

n(r) ≈ f
a3 [1 − cv(r)], (4.3)
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where f is the filling, a is the la ice spacing, and c is an unknown constant to be

determined by our self-consistent scheme discussed below. This approximation

ensures
∫

d3r n(r) = N, since the integral of the spatially dependent term over the

unit cell vanishes (
∫

cell d3r v(r) = 0)u. Because |v(r)| < 3/2, for the density n(r) to

be positive we need −2/3 < c < 2/3. We also expect the boson density to reach

maxima at the minima of the la ice, which further implies c > 0.

Within the Hartree Fock Approximation, the boson self energy can be expressed

as an effective single particle Hamiltonian HHF = 2gn(r) (Section 2.3.3), where the

coupling constant g = 4πh̄2as/m. Therefore the Schrödinger Equation becomes

[− h̄2∇2

2m
+ (V0 −

2g f c
a3 )v(r)]ψk(r) = Ekψk(r), (4.4)

which is once again Mathieu Equation. The eigenvalues Ek = εk − 2g f
a3 , where εk

is the real boson energy. The physical density for non-condensate at temperature

T ≥ Tc is simply

n(r) = ∑
k

nB(Ek − µ +
2g f
a3 ) |ψk(r)|2 , (4.5)

where nB is the Bose function.

Comparing with the Mathieu Equation in Chapter 3, Eq. 4.4 describes bosons

in an optical la ice that has an effective la ice depth q̄

q̄ =
1

4Ere
[V0 −

2g f c
a3 ] = q − g f c

2a3Ere
, (4.6)

which can be rearranged as

q̄ = q − 4
π

as

a
f c, (4.7)

suggesting the interaction effect can be seen as canceling part of the optical la ice

(q̄ < q). In the last equation we used Ere =
h̄2π2

2ma2 .
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Our next task is to use the thermodynamic equations of motion to determine

the unknown parameter c that characterizes the effective optical la ice depth for

superfluid bosons in optical la ices.

T T

In this section, we continue using this Hartree Fock scheme to study the impli-

cation of interaction effects for the system's thermodynamic properties. According

to our ansa , the assumed density n(r) should agree with the calculated density

from Eq. 4.5. For systems at the critical temperature, this is

n(r) = ∑
k

nB(Ek − E0) |ψk(r)|2 =
f

a3 [1 − cv(r)], (4.8)

where E0 is the ground state. Note that 2g f /a3 has been absorbed. Eq. 4.8 does not

hold exactly for non-small q, but we proceed by assuming it approximately holds

in an average sense. Consider the spatial average of Eq. 4.8 over the unit cell

1
V

∫
cell

d3r ∑
n

nB(En − E0)

∣∣∣∣me(
2nx

Ns
, q̄, kx)

∣∣∣∣2 ∣∣∣∣me(
2ny

Ns
, q̄, ky)

∣∣∣∣2 ∣∣∣∣me(
2nz

Ns
, q̄, kz)

∣∣∣∣2 = f ,

(4.9)

where v(r) vanished from spatial averaging. Converting the summation ∑n into in-

tegral
∫

d3n, and substituting with the Mathieu quasi-momentum label νi = ni/Ns,

where i = x, y, z, the above equation becomes

Ns
3

V

∫
d3ν nB(Eν −E0)

∫
cell

d3r |me(2νx, q̄, kx)|2
∣∣me(2νy, q̄, ky)

∣∣2 |me(2νz, q̄, kz)|2 = f .

(4.10)

Now we consider normalization conditions of the Mathieu function to simplify the

integral. The orthonormality of the Mathieu function necessitates

∫ π

0
du |me(2νx, q̄, u)|2 = π, (4.11)
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where the dimensionless spatial variable u = kolx. Through rescaling the integra-

tion variable we have, ∫ a

0
dx |me(2νx, q̄, kx)|2 = a, (4.12)

where we used k = π/a = 2π/λol = kol. Therefore, with Ns
3/V = a−3, the

integral in Eq. 4.10 is reduced to

∫
d3ν nB(Eν − E0) = f , (4.13)

which ensures Eq. 4.8 holds, on average, in each unit cell. Next, we demand that

Eq. 4.8 holds for the leading non-uniformity of the local density in each unit cell.

To do this, we multiply both sides of Eq. 4.8 by v(r) and integrate over unit cell,

obtaining a second self-consistent condition:

∫
cell

d3r n(r)v(r) =
∫

cell
d3r

f
a3 [1 − cv(r)]v(r) = −3

8
c f . (4.14)

On the other hand, with the explicit expression of n(r) formed from the Mathieu

functions

∫
cell

d3r n(r)v(r)

=
Ns

3

V

∫
d3ν nB(Eν − E0)

∫
cell

d3r v(r) |me(2νx, q̄, kx)|2
∣∣me(2νy, q̄, ky)

∣∣2 |me(2νz, q̄, kz)|2 .

(4.15)

We observe that the integration variables x, y, z can be separated

∫
cell

d3r v(r) |me(2νx, q̄, kx)|2
∣∣me(2νy, q̄, ky)

∣∣2 |me(2νz, q̄, kz)|2

=a2[
∫ a

0
dx v(x) |me(2νx, q̄, kx)|2 +

∫ a

0
dy v(y)

∣∣me(2νy, q̄, ky)
∣∣2 + ∫ a

0
dz v(z) |me(2νz, q̄, kz)|2]

=a3[I(νx, q̄) + I(νy, q̄) + I(νz, q̄)],

(4.16)
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where v(ri) = cos2 kri − 1
2 , ri = x, y, z, and

I(νi, q̄) =
∫ 1

0
dli |me(2νi, q̄, πli)|2 (cos2 πli −

1
2
), (4.17)

and li =
ri
a , νi = νx, νy, νz. Combing the above steps, we get

− 3
8

c f =
∫

d3ν nB(Eν − E0)[I(νx, q̄) + I(νy, q̄) + I(νz, q̄)]. (4.18)

From Eq. 4.18 and Eq.4.7, the effective la ice depth q̄ can be solved. Because the

filling is known from the number equation Eq. 4.13, the parameter c can also be ob-

tained right away. From these results, the interaction effect on the system's density

profile is described.

Next, we describe how the same scheme would work for the non-superfluid

phase above Tc and in the superfluid phase below Tc.

A T T

The effective la ice depth q̄ and the parameter c are temperature dependent,

following from the fact that interaction effects depend on the density distribution

which is temperature dependent. When the system is above Tc, the chemical po-

tential is no longer pinned at the bo om of the band. Integrating Eq. 4.5 over the

entire space, we have ∫
d3ν nB(Eν − µ +

2g f
a3 ) = f , (4.19)

where all particles in the system are thermal. Note that 2g f /a3 can be wri en as
16
π

as
a f Ere. We can obtain the filling f from Eq. 4.13 for the critical temperature, then

solve for the chemical potential µ for T > Tc from the above number equation.
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With the filling f and the chemical potential µ known, we will also be able to

find c through

− 3
8

c f =
∫

d3ν nB(Eν − µ +
16
π

as

a
f Ere)[I(νx, q̄) + I(νy, q̄) + I(νz, q̄)], (4.20)

which paves the way for us to describe the spatial and thermodynamical properties

of this interacting system.

B T T

When the system is below Tc, some of the bosons are in the condensate, therefore

the density formulae need to be modified,

n(r) = N0 |ψ0(r)|2 + ∑
k ̸=0

nB(Ek − µ +
16
π

as

a
f Ere) |ψk(r)|2 , (4.21)

where N0 is the number of condensed particles. From Appendix. E, the ground

state Mathieu function is defined as

ψ0(r) = (
2
L
)3/2ce(a0, q̄, kolx)ce(a0, q̄, koly)ce(a0, q̄, kolz). (4.22)

Integrating Eq. 4.21 over the whole space, we have

f =
N0

Ns
+

∫
d3ν nB(Eν − E0), (4.23)

where Ns is the number of la ice sites. Similarly, Eq. 4.18 becomes

− 3
8

c f = N0

∫
cell

d3r |ψ0(r)|2 v(r)+
∫

d3ν nB(Eν −E0)[I(νx, q̄)+ I(νy, q̄)+ I(νz, q̄)].

(4.24)
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Using the definition of ψ0(r), we can rewrite the first term as

∫
cell

d3r |ψ0(r)|2 v(r) =
3a3

V
· 2

∫ 1

0
dl |ce(a0, q̄, kolx)|2 (cos2 πl − 1

2
)

≡ 3a3

V
I0(q̄),

(4.25)

where in the second line we have defined I0(q̄). We therefore finally arrive at

− 3
8

c f = 3
N0

Ns
I0(q̄) +

∫
d3ν nB(Eν − E0)[I(νx, q̄) + I(νy, q̄) + I(νz, q̄)], (4.26)

from which, combining with Eqs. 4.7 and 4.23, we are able to solve for q̄ and c for

the interacting system below Tc.

4.2 Results

In the previous section we explained the Hartree Fock self-consistent approach

for interacting bosons in optical la ices. We essentially approximated the inter-

atom interaction as an effective periodic potential that partially offsets the optical

la ice. To see how effective this theory is in describing interaction, we test on a few

systems of both unit and large fillings to compute their phase transition tempera-

tures, condensate fractions, and the density profiles after free expansion. We will

also use some of our results to compare with the experimental data from Ref. [26].

It should be noted that, since our method is based on the expansion Eq. 4.2 for small

la ice amplitude q, it is likely that our method is not able to capture the interaction

effects at large q, tiny T limit, such as the suppression of the superfluid transition

temperature near the Mo phase.

We did our calculation on a system of 87Rb atoms, and the recoil energy equals

1.334×10−11eV, using the same condition in Ref. [26]. The strength of interaction

is directly related to the s-wave sca ering length as, which can be tuned in a wide

56



range in experiments since as is very sensitive to magnetic field as a result of Fes-

hbach resonance [29]. We use two as here. To compare with experimental data in

Ref. [26], we use the same sca ering length as1 = 5.31nm for part of our calcula-

tion. To show the effectiveness of our theory at the large interaction limit, we apply

as2 = 42.2nm, equaling 1/10 of the la ice spacing (assuming λol =844nm lasers for

the optical la ice), to other parts of our calculation. We also anticipate smaller in-

teraction effects for few condensate and small filling, and large interaction effect

for large condensation fraction and large filling.

To compute the transition temperature and the condensate fraction, in our cal-

culation we tabulated data in the original la ice depth q, effective la ice depth q̄,

filling f , temperature T and condensate fraction n0 = N0/N for q = 0.5 − 6.1Ere,

q̄ = 0.5 − 5.5Ere, f = 0.02 − 145, T = 0.05 − 1Ere/kB, n0 = 0 − 1. For as2, the tabu-

lated data extend to q = 0.5 − 10.3Ere, while other parameter ranges are the same.

The data of physical observables are then obtained from interpolation and plo ed

in Figs. 4 − 1, 4 − 2, 4 − 3, 4 − 4, 4 − 5.

4.2.1 Transition Temperature

The effect of two-body interactions on the superfluid transition temperature has

been a theoretical pursuit for decades. Contradicting theories have been presented,

including both positive Tc shift and negative Tc shift claims [19]. In the following

we will see within our density and interaction regime the transition temperature is

increased by interaction, a trend agreeing with most of recent works (see Table. I

of Ref. [19] that lists 11 recent analytical and numerical results, also Ref. [28]. These

work suggest the increase of Tc is proportional to (na3
s )

γ, where n is the number

density and γ ≈ 1
3 ).

The physical scenario of this Tc increase can be explained as follows. For the

cloud not to collapse, the interaction has to be repulsive, which pushes away the
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atoms from each other, expanding the atomic cloud. As a result, bosons are more

evenly distributed throughout the system, thus it is more likely for them to ex-

change with their neighbors in an suitable distance. This is advantageous for the

transition into superfluid to occur, which means higher transition temperatures.

This density homogenization effect is reflected in our self consistent scheme as the

partial offset of the optical la ice by interaction. With a lower effective la ice po-

tential, there is not as much spatial variation in the BEC. Even we only look at the

non-interacting Tc vs. q curve, the critical temperature corresponding to a non-

interacting system with la ice depth q̄ is higher on the curve than in a system with

la ice depth q. Therefore it should be no surprise to see the critical temperature

raised by interaction. This density homogenization effect of interaction will specif-

ically illustrated later.

We first examine the superfluid transition temperature at unit filling, as = as1.

Fig. 4 − 1 shows the calculated critical temperature Tc decreasing with increasing

optical la ice, as expected. At unit filling, there is only one atom per site on average,

and interaction is weak. We can see from this figure that there is no discernible

difference between the non-interacting Tc and the interacting Tc. Also included is

the experimental data from Ref. [26] (indicated as "Tro ky et al."), which is still

largely consistent with our calculation, except at T → 0 and large q. This indicates

that at unit filling, phase transitions of interacting systems occurring far away from

the Mo regime may still be approximately described by non-interacting theories.

When adding more particles into the system, interaction effects are stronger,

the transition temperature shows deviation from the non-interacting case, as seen

in Fig. 4 − 2, where the filling f = 5. In Fig. 4 − 3, filling f = 5, we increase the

sca ering length to as = as2 to display the effect of a stronger interaction. Compar-

ing Fig. 4 − 1, Fig. 4 − 2 and Fig. 4 − 3, we see that interaction indeed increases the

superfluid transition temperature.

58



æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

à

à

à

à

à

à

à

à
à

à
à

ì

ìì
ìììì

æ Non-Interacting

à Interacting

ì Trotzky et al.

0.5 1.0 1.5 2.0 2.5 3.0
q

0.1

0.2

0.3

0.4

0.5

0.6
kBTc�Ere

Figure 4-1: We show in this plot the trend of the transition temperature Tc with
the optical la ice depth q = V0/4Ere, displaying our non-interacting calculation,
interacting calculation and experimental data from Ref. [26] (indicated as "Tro ky
et al."). When the system is at unit filling and as = as1 (∼1.3% of the la ice spacing),
the transition temperatures for non-interacting gas and interacting-gas are is almost
identical due to the weakness of interaction. Our calculation is consistent with the
experiment except at the low temperature, very deep la ice regime.

4.2.2 Condensate Fraction

Now we turn to the temperature regimes below Tc, and calculate how the in-

crease of temperature or la ice potential amplitude depletes the condensate. In

the unit filling case Fig. 4 − 4, we show the condensate fraction N0/N decreasing

with increasing q, suggesting the interaction effect for the condensate fraction is

already noticeable even at unit filling. In Fig. 4− 5, f = 5, we show the condensate

fraction decreasing with increasing temperature. A significant difference caused

by interaction is observable in this graph. Here, as = as1 in both figures.

Note that the condensation fractions for the non-interacting gas and interacting

gas are most separated away at intermediate T or q values between 0 and the critical

values. This follows from that interaction effects are strongest when the local den-

sity deviates far from uniformity. For relatively low temperatures or la ice depths

(comparing with Tc or qc), many bosons are in the condensate wave function and

exhibit a local non-uniform density. As T → Tc or q → qc, the bosons occupy many
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Figure 4-2: In this graph, we show the trend of the transition temperature Tc with
varying la ice depth q = V0/4Ere. When the system is at filling f = 5 and as =
as1(∼1.3% of the la ice spacing), the high filling enhances interaction, which causes
the discernible difference between the transition temperatures for non-interacting
gas and interacting-gas, comparing with Fig. 4 − 1.

levels and the non-uniformity is "washed out". The lack of spatial variation is also

the reason for the minimal interaction effects exhibited at q → 0. However, con-

densation fractions of interacting and non-interacting gases coinciding T = 0 has

a different reason: all bosons in the gas must condense to the ground state at zero

temperature (N0/N = 1).

4.2.3 Boson Density

Using our scheme to obtain the wave functions of interacting bosons (expressed

in Mathieu functions), we are able to plot the boson densities in the real space and

delineate interaction effects by comparing densities of interacting bosons and non-

interacting bosons.

We show our results in Figs. 4-6, 4-7 and 4-8. Here we examine a system at the

transition temperature Tc = 59.56nK, filling f = 2.83, optical la ice depth V0 =

8Ere, laser wavelength λol = 844nm, sca ering length as = as2 = 42.2nm. Fig. 4-6

and Fig. 4-7 show the boson density as a function of the spatial variable x in a unit

cell, for cuts at the center y = π/2, z = π/2, and near the edge y = π/8, z = π/8,
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Figure 4-3: In this graph, the main plot shows the transition temperatures of
non-interacting gas and interacting gas as a function of the optical la ice depth
q = V0/4Ere. We see the difference of the two temperatures is bigger at interme-
diate values of la ice depth. The inset panel shows a zoom-in version at regimes
comparable with Fig. 4 − 2, showing a bigger difference between the interacting
and non-interacting Tc due to the larger interaction. Here the filling f = 5 and
as = as2(1/10 of the la ice spacing).

respectively. At the center, the density of interacting bosons is significantly lower

than the density of non-interacting bosons, whereas the two densities are reversed

near the edge of a unit cell. This means, due to interaction effects the density is

suppressed where it is high, and raised where it is low, thus evening out the density

of the whole system.

Fig. 4-8 shows the contour plot of boson densities for a slice at z = π/3 in

the unit cell. Fig. 4 − 8a and Fig. 4 − 8b are interacting and non-interacting boson

densities, respectively. Fig. 4 − 8c is the difference between the non-interacting

density and the interacting density. In Fig. 4 − 8c, we take the difference of the

non-interacting and interacting densities. The dashed circle in Fig. 4− 8c indicates

the zero contour, where the non-interacting and interacting densities equal. Inside

the zero contour, the density of non-interacting bosons is larger, whereas outside

the zero contour, the density of interacting bosons is larger. These contour plots

are equivalent to Figs. 4-6 and 4-7, and also confirms that interaction does make a

more uniform boson gas.
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Figure 4-4: In this graph, we show the condensation fraction N0/N for both inter-
acting and non-interacting gases, as a function of the la ice depth q = V0/4Ere.
The condensate fraction decreases with increasing la ice depth q, approaching the
critical point. We also observe that the condensation fraction for the interacting gas
is larger than that of he non-interacting gas. Here the system is at unit filling and
a = as1(∼1.3% of the la ice spacing).

4.2.4 Density Profile after Free Expansion

By integrating our theory into the free expansion calculation in Chap.3, we are

able to obtain the density profiles after free expansion through momentum distri-

bution for interacting systems. Note that we are not considering interaction during

the expansion.

Fig. 4 − 9 shows our calculation for the same unit filling system in Ref. [26], at

the same temperatures: 10nK, 18.3nK, 26.5nK, 31.8nK and 48.5nK, in which 26.5nK

is the critical temperature according to the reference. We still use the hard wall

boundary condition. Comparing with Fig. 3 − 14, there is not a visually recogniz-

able difference that can be observed from these expanded density profiles, although

there is indeed a quantitatively subsistent difference caused by interaction effects,

which results in a smaller effective q̄ (indicated in the caption of Fig. 4 − 9) and

increases the chemical potential.
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Figure 4-5: Here we plot the condensation for both non-interacting and interacting
gases, as a function of the critical temperature, over the temperature range from
T = 0 to Tc (where the fraction becomes zero). The condensate fraction N0/N
decreases with increasing temperature, as expected. With interaction, the system
contains more condensate at a given temperature. We also note that the larger
filling has clearly enhanced the interaction effect. Here f = 5 and a = as1(∼1.3%
of the la ice spacing).

To illustrate this difference, it is be er to switch to 1D density profile in the mo-

mentum distribution, as displayed in Fig. 4− 10. We still use the hard wall bound-

ary condition. After separately normalizing the densities to the maximum density,

we see that interacting bosons exhibit lower side peaks, as shown in Fig. 4 − 10a,

when comparing with the non-interacting boson densiy in Fig. 4 − 10b. In the ex-

panded density, the side peaks are signs of different momentum states, so the sup-

pressing of side peaks in the expanded density of interacting bosons implies a more

uniform cloud, which corroborates with the above results of the real boson density.
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Figure 4-6: This plot shows the boson density as a function of the spatial variable x
in a unit cell at y = π/2, z = π/2. The density is suppressed by interaction at the
center of a unit cell. Here T = Tc = 59.56nK, f = 2.83, V0 = 8Ere, as = 10% la ice
spacing.
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Figure 4-7: This plot shows the boson density as a function of the spatial variable
x in a unit cell at y = π/8, z = π/8. The density is raised by interaction near the
edge of a unit cell. Here T = Tc = 59.56nK, f = 2.83, V0 = 8Ere, as = 10% la ice
spacing.
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Figure 4-8: The contours of the boson densities are shown here for a slice at z = π/3
in the unit cell. Fig. 4− 8a and Fig. 4− 8b are interacting and non-interacting boson
densities, respectively. Fig. 4 − 8c is the difference between the non-interacting
density and the interacting density. The dashed line is the zero contour, indicating
the locations where the non-interacting and interacting densities equal. Here T =
Tc = 59.56nK, f = 2.83, V0 = 8Ere, as = 10% la ice spacing.
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(a) T = 10nK, q̄ = 1.9360 (b) T = 18.3nK, q̄ = 1.9635 (c) critical Tc = 26.5nK, q̄ =
1.9968

(d) T = 31.8nK, q̄ = 1.9971 (e) T = 48.5nK, q̄ = 1.9974

Figure 4-9: Here we display the the density profile of interacting bosons based
on the momentum distribution after free expansion, using the Hartree-Fock self-
consistent method, at the cut kolz = 1. The sampled temperatures are the same as
in Ref. [26] and in Fig. 3-14 for comparison. We also give the calculated effective
la ice depth q̄ here, which describes the periodic potential the bosons "see" when
considering interacting effects, for an imposed la ice depth of q = V0/4Ere = 2.
The sharp bright spots indicate BEC. While the density profiles show the expected
trend from sharp to diffuse as the temperature increases, the distributions are ac-
tually slightly more uniform in the interacting case, as compared to Fig. 3-14. Here
the filling f = 1.046, as = as1(∼1.3% of the la ice spacing).
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Figure 4-10: The density profile after free expansion for a cut at ky = kz = 0.
Densities in two graphs are separately scaled to 0 to 1.The upper panel Eq. 4-10a
shows the side peaks are suppressed, comparing with the lowered panel Eq. 4-10b.
Here T < Tc = 40.75nK, f = 2.83, V0 = 8Ere, as = 10% la ice spacing.
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CHAPTER 5
SETUPFORBOSONSWITHSPIN-ORBITCOUPLING

In previous chapters, we have mainly discussed the phase transitions of non-

interacting and interacting BEC's in optical la ices. Beginning from this chapter,

we study the phases and dynamics of bosons with light-induced artificial spin-orbit

coupling (SOC). SOC in electronic materials is a relativistic effect, in which an elec-

tron moving in a potential gradient effectively "sees" an effective magnetic field. To

mimic this in a cold-atom experiment, the Spielman group at NIST has developed

methods of using light to artificially create an effective spin orbit coupling potential

for trapped cold atomic gases [34].

In this chapter, we first review the experimental setup utilized in the Spielman

group experiment for achieving artificial SOC for bosons and, more generally, for

creating artificial gauge fields. Then we derive the effective boson Hamiltonian for

the SOC. In Chapter 6, we analyze the band structure of this Hamiltonian, examine

its implications for the phases that arise in interacting bosons with SOC, and discuss

experimental signatures that could help identify the featured phases.

5.1 Background

Spin-orbit coupling for bosons is interesting for two distinct reasons. Firstly, we

can closely mimic, in cold atom experiments, electronic systems in which spin-orbit

coupling plays a central role. Secondly, since SOC modifies the low energy disper-

sion, it can tremendously amplify the effect of inter-atomic interactions, Therefore,

with SOC, interaction effects can be important even the interaction itself is small

[30].

68



The pioneering experiment of bosons with light-induced SOC was conducted

by the Spielman group at NIST on a 87Rb Bose-Einstein condensate (BEC) [34], in

which dressed atomic spin states with emergent SOC are engineered via coupling

to Raman lasers. This experimental knob further expands the space of Hamiltoni-

ans for cold atom systems to realize, and opens the possibility of simulating solid-

state systems in which SOC plays a role, including the spin Hall effect [41], Majo-

rana fermions [64], and topological insulating phenomena [39, 43]. The Spielman

group has made earlier achievements that paved their way to this breakthrough,

such as artificial gauge fields [31] and artificial magnetic fields [32] for cold atoms.

Theoretical interest in bosons with SOC has been strong for many years, al-

thoughmany early papers focused on the case of Rashba-type spin-orbit coupling [38,

62, 65, 66, 67, 68, 69], a type of SOC seen in electronic materials that can be described

in the form p̂xσy − p̂yσx, where p̂x, p̂y are respectively the momentum operators on

x̂ and ŷ dimensions, and σx and σy are Pauli matrices acting in the space of dressed

spins. However, The NIST Raman setup instead realizes SOC only along one di-

rection, i.e., the SOC Hamiltonian is of the form ĤSOC ∝ σz p̂x. Subsequent ex-

periments have observed dipole oscillations of bosons with artificial SOC [49] and

studied their phases at finite temperature [70], have realized light-induced SOC for

cold fermionic gases [52, 53], and have employed a similar setup to observe Zi er-

bewegung of bosons described by an effective Dirac Hamiltonian [46, 47]

Using 87Rb atoms, Ref. [34] starts in the spin space of three hyperfine states

|F, mF⟩ with F = 1 and m = 1, 0, −1, then transforms two of the three states

|↑⟩ = |1, 0⟩ and |↓⟩ = |1,−1⟩ into dressed spin states |↑′⟩ and |↓′⟩. A key observa-

tion of Ref. [34] was the phase transition from a mixed BEC phase, with condensates

of both |↓′⟩ and |↑′⟩, into a regime of phase separation, with spatially separated |↓′⟩

and |↑′⟩ condensates. Theoretically this mixed phase is predicted to exhibit "stripe

69



order" in the form of density modulations along the x axis, due to the system con-

densing in a superposition of states with different momenta [35, 71, 72], although

such density modulations may be difficult to observe. Our aim is to determine the

extent of such density modulations (to see if they can possibly be observed experi-

mentally) and to find other experimental consequences of the mixed BEC phase.

5.2 Raman Scheme

We start by noting that the total Hamiltonian of a system wri en in matrices is

H = H0 +H1 − µ̂N̂, (5.1)

acting on Ψ = (ψ1, ψ0, ψ−1)
T, of which the three components correspond with m =

1, m = 0, m = −1 states, respectively. H0 =
∫

d3r Ψ†H0Ψ is the bare Hamiltonian,

H1 is the interaction Hamiltonian, µ̂ and N̂ are chemical potentials and particle

numbers of the species, wri en as vectors.

The interaction Hamiltonian for a two-species spinor BEC has been obtained in

Sec. 2.5 as

H1 =
1
2

∫
d3r [c0(n↑ + n↓)

2 + c2(2n↑n↓ + n↓
2)], (5.2)

where nσ are the densities of the two species, with σ =↑, ↓, and c0 and c2 are inter-

action parameters. In the following, we focus on obtaining the expression for the

non-interacting part H0 through the Raman scheme, starting from the full three

component spin space.

Two Raman lasers of frequencies ωL and ωL + ∆ωL, propagating along x̂ + ŷ

and ŷ− x̂, as shown in Fig. 5− 2, couple the hyperfine states of F = 1 of 87Rb atoms.

The level diagram of these hyperfine states is shown in Fig. 5 − 1, where ϵ is the

quadratic Zeeman shift, and δ is the Raman detuning. These states |mF, kx⟩ differ

in internal angular momentum (mF) by h̄, and in linear momentum (h̄kx) by 2h̄kr,
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Figure 5-1: In the NIST scheme to create artificial SOC, the three hyperfine states of
87Rb are used. Laser field couples the |F = 1, m = −1⟩ state with |F = 1, m = 0⟩,
and |F = 1, m = 0⟩ with |F = 1, m = 1⟩. ωZ is the Zeeman effect, ϵ is the quadratic
Zeeman shift, and δ is the Raman detuning. Image from Ref. [32].

where h̄kr = h/λ is the single photon recoil momentum, with λ being the laser

wavelength.

The bare Hamiltonian consists of the kinetic term, the Zeeman term and the

Raman term. The Raman Hamiltonian HR is [34]

HR =
ΩR√

2
Fz[ei(2kLx+∆ωL t) + h.c.], (5.3)

where ΩR is the Rabi Frequency (details about Rabi Oscillation is in Appendix H),

Fz is one of the three Pauli matrixes, together with Fx and Fy

Fx =
1√
2


0 −i 0

i 0 −i

0 i 0

 , Fy =


1 0 0

0 0 0

0 0 −1

 , Fz =
1√
2


0 1 0

1 0 1

0 1 0

 . (5.4)

Because the magnetic field is at ŷ direction, we have rotated the reference frame so

that Fy is diagonal.
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Figure 5-2: This graph schematically shows the setup geometry used in the experi-
ment of inducing spin-orbit coupling for bosons. Two Raman lasers intersect with
a right angle on the x − y plane with a frequency difference of ∆ωL. There is a
spatial gradient contained in the external magnetic field. Image from Ref. [32].

With the above Raman Hamiltonian, we make a unitary transformation

V =


ei∆ωL t 0 0

0 1 0

0 0 e−i∆ωL t

 = ei∆ωL tFy , (5.5)

which gives,

V†FzV =
1√
2


0 e−i∆ωL t 0

ei∆ωL t 0 e−i∆ωL t

0 ei∆ωL t 0

 . (5.6)

Thus,

ei∆ωL tV†FzV ≈ 1√
2


0 1 0

0 0 1

0 0 0

 =
1
2

F+ ; (5.7)

e−i∆ωL tV†FzV ≈ 1√
2


0 0 0

1 0 0

0 1 0

 =
1
2

F− , (5.8)
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where we have discarded the terms with e±2i∆ωL t by virtue of the Rotating Wave

Approximation. Now the transformed Raman Hamiltonian is

V†HRV =
1
2

ΩR(Fz cos 2kLx − Fx sin 2kLx). (5.9)

Also, we have

iV† d
dt

V = i
d
dt

− ∆ωLFy. (5.10)

The single particle Hamiltonian is HK = p2

2m F0, where F0 is the 3 by 3 identity

matrix, plus the Zeeman effect, yielding the following Hamiltonian

HK + HZ =


p2

2m − ωZ + ωq 0 0

0 p2

2m 0

0 0 p2

2m + ωZ

 , (5.11)

where ωz and ωq represent the Zeeman shift and the quadratic Zeeman shift, re-

spectively.

With the above equations, the full effective Hamiltonian is

He f f =


p2

2m + ωq + δ 0 0

0 p2

2m 0

0 0 p2

2m − δ

+
1
2

ΩR(Fz cos 2kLx − Fx sin 2kLx), (5.12)

where δ = ∆ωL − ωZ. Since Ref. [34] works in a spin-1
2 subspace, we project the

Hamiltonian into the bo om right 2 by 2 matrix, i.e. the m = 0 and m = −1

subspace (denoted as H0)

H0 =
p2

2m
σ0 +

δ

2
σz +

Ω
2
(σx cos 2kLx − σy sin 2kLx), (5.13)
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where we have added an overall constant δ/2. Ω = ΩR/
√

2 characterizes the Ra-

man coupling, and σx, σy, σz are the usual 2 by 2 Pauli Matrix. The bare Hamiltonian

in its matrix form is:

H0 =

 p̂2

2m + δ
2

1
2 Ωe2ikLx

1
2 Ωe−2ikLx p̂2

2m − δ
2

 , (5.14)

for the spin-1
2 subspace wave functions

Ψ(r) =

 Ψ↑(r)

Ψ↓(r)

 . (5.15)

In the Hamiltonian Eq. 5.14, we see that all atomic kinetic energy and Zeeman

effect enter the diagonal terms, while the off-diagonal terms capture the Raman

coupling of the spin-↑ and spin-↓ states.

The spin-orbit coupling form of the Hamiltonian emerges once we make a uni-

tary rotation. We define the unitary rotation matrix as

Û = eikL xσz =

 eikLx 0

0 e−ikLx

 = eikL·r σz . (5.16)

Let

Ψ̃(r) = Û†Ψ(r), (5.17)

and call the transformed eigenfunctions Ψ̃ the rotated basis or the dressed states

(with respect to the 'original basis' before rotation). Since

Û†H0Û =

 p̂2

2m + h̄kL p̂x
m + h̄2kL

2

2m + δ
2

1
2 Ω

1
2 Ω p̂2

2m − h̄kL p̂x
m + h̄2kL

2

2m − δ
2

 , (5.18)
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the bare Hamiltonian can be rewri en as

H0 =
∫

d3r Ψ̃†(
p̂2

2m
σ0 + 2h̄α p̂xσz +

δ

2
σz +

Ω
2

σx)Ψ̃, (5.19)

where the second term represents spin-orbit coupling. A constant h̄2kL
2/2m has

been dropped in the above Hamiltonian. Here α = kL/2m and h̄2kL
2/2m ≡ EL is

defined as the recoil energy. This Hamiltonian is the starting point in Ref. [34] after

a rotation of axes x̂ → ẑ, ẑ → ŷ, ŷ → x̂.

Meanwhile, let's look at the transformed wave function in the momentum space:

Ψ̃(p) =
∫

d3r e−ip·rΨ̃(r) =
∫

d3r e−ip·rU†

 Ψ↑(r)

Ψ↓(r)


=

∫
d3r

 e−ip·r−ikLxΨ↑(r)

e−ip·r+ikLxΨ↓(r)

 =

 Ψ↑(p + kLx)

Ψ↓(p − kLx)


(5.20)

where standard Fourier transform is applied. This means the corresponding wave-

function in the momentum space is shifted or "boosted" by ±kL, depending on the

spin, by the same transformation.

In the next chapter, we will construct an effective low-energy theory for both

the bare and interacting parts of the Hamiltonian in the space of the dress states,

and apply the effective theory to investigate the phases transitions in bosons with

spin-orbit coupling.
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CHAPTER 6
PHASES INBOSONSWITHSPIN-ORBITCOUPLING

In the previous chapter, we briefly introduced the experimental and theoretical

aspects of bosons with spin-orbit coupling. In this chapter, we study the Hamilto-

nian realized in Ref. [34] in detail, with the aim of discerning experimental signa-

tures of the mixed-BEC state. In this phase, the system condenses into a superposi-

tion of two plane wave states. This phase, which should exhibit real-space density

modulations (due to interference of these two plane waves), is stable for sufficiently

small light-atom coupling. We then invoke the local density approximation to ar-

gue that, generally, the phase diagram at fixed chemical potential implies an un-

usual density dependence of the trapped mixed-BEC phase. Finally, we calculate

the frequency of Bogoliubov sound modes for the mixed BEC phase, showing that

this vanishes as the phase transition out of the mixed phase is approached (as a

function of light-atom coupling. Most of the results in this chapter has been pub-

lished in Ref. [61].

6.1 Model

6.1.1 Band Structure of the Bare Hamiltonian

In this section, we analyze the band structure of the bare Hamiltonian Eq. 5.19 to

construct a low-energy effective Hamiltonian. We begin by writing the bare Hamil-

tonian equivalently as,

Ĥr(p, δ) =
1

2m
(p2 + k2

L) +
1
2

δσz +
1
2

Ωσx +
1
m

kLσz p̂x, (6.1)

This chapter was adapted from Q.-Q. Lü and Daniel E. Sheehy, Phys. Rev. A 88, 043645 (2013).

76



with the final term being the effective light-induced spin-orbit coupling ĤSOC =

1
m kLσz p̂x. In Eq. 6.1 and below, we choose units such that h̄ = 1.

It is straightforward to obtain the eigenvalues of Ĥr(p, δ) (which are also the

eigenvalues of Eq. 5.14):

ε±(p) =
p2 + k2

L
2m

±

√
Ω2 + δ2

4
+

k2
L p2

x

m2 +
δkL px

m
, (6.2)

plo ed in Fig. 6-1 for the case of δ = 0 (solid curves) and δ > 0 (dashed curves).

For each of the two cases, there are one upper band and one lower band, the la er

of which interests us the most, since it possesses the double-well shape shown in

Fig. 6 − 1 (for sufficiently small Ω and δ). At the δ = 0 limit, the lower band has

two degenerate ground states

ε−(±p0) = − Ω2

16EL
≈ 0, (6.3)

at

± p0 = ±kL

√
1 − Ω2

16EL
2 ≈ ±kL, (6.4)

where both approximated results assume the limit Ω ≪ EL. When δ ̸= 0, by

solving dε−(p)
dp = 0 we find the minima of the lower band at

pr,ℓ ≃ ±kL

√
1 − Ω̂2 + kLδ̂

Ω̂2

1 − Ω̂2
, (6.5)

where the dimensionless coupling Ω̂ ≡ Ω/4EL, and the dimensionless Zeeman

energy difference δ̂ = δ/4EL, with the recoil energy EL ≡ k2
L/2m. Note that pr,ℓ

are not symmetric about p = 0 for non-zero δ. The energies of the local minima are

ε−(pr/ℓ) = EL
(
Ω̂2 ± 2δ̂), (6.6)
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with the − (+) corresponding to the right (left) minima.

-3 -2 -1 1 2 3

-1.5

0

1

−p0 p0

δ < 0δ = 0

px/h̄kL

ε±/EL

Figure 6-1: This plot shows the eigenvalues ε±(p), at py = pz = 0 and as a func-
tion of px. The solid lines are the case of δ = 0, while the dashed lines show the
experimentally-relevant case of δ < 0. The left and right minima are the ↑′ and ↓′
dressed states. In the absence of interactions, the system will condense into the left
minimum (the ↑′ dressed state).

In the absence of interactions, for δ = 0, this system would have two degenerate

ground states at the minima of the double well shown in Fig. 6 − 1.

Our aim is to determine the phase diagram of this system as a function of the

tunable parameters of this system, which are the energy difference δ and the light-

atom coupling Ω. In the next section we begin this task by analyzing the low energy

states of Hr occuring near the minima of Fig. 6 − 1.

6.1.2 Low-Energy Effective Hamiltonian

Following Lin et al [32], we proceed to construct a low-energy Hamiltonian fo-

cusing on states near these two minima. The dressed spin states operators are con-

structed from the original states operators as: ψ↑′(p) ≡ ψ−(p + pℓ) and ψ↓′(p) ≡

ψ−(p + pr). Here, ψσ(p) (σ =↑′, ↓′) is an annihilation operator for a dressed spin
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state. With the details relegated to the Appendix I, we find the approximate form

of the single-particle Hamiltonian:

H0 = ∑
p

∑
σ=↑′,↓′

(εσ(p)− µσ

)
ψ†

σ(p)ψσ(p), (6.7)

where we included a chemical potential µ that couples to the density and defined

µ↑′ = µ − 1
2 δ and µ↓′ = µ + 1

2 δ. The effective dispersion is

ε(p) =
1

2m∗ p2
x +

1
2m

(p2
y + p2

z), (6.8)

equal to the bare dispersion in the y and z directions, and reflecting the curvature

of the minima of ε−(p), that satisfies (m∗)−1 = m−1(1− Ω̂2), in the x direction. As

discussed in Appendix I, Eq. 6.7 is valid at sufficiently small atom-light coupling

and Zeeman energy difference, i.e., Ω̂ ≪ 1 and δ̂ ≪ 1.

Having obtained an approximate form for the effective single-particle Hamil-

tonian, we perform a similar analysis on the interaction Hamiltonian. From Chap-

ter 2.5, the interaction Hamiltonian for a BEC with two species of bosons is

Hint =
1
2

∫
d3r [c0(n↑ + n↓)

2 + c2(2n↑n↓ + n↓
2)]

=
1
2

∫
d3r

[
(c0 + c2)n2

↓ + c0n2
↑ + 2(c0 + c2)n↑n↓

]
,

(6.9)

where c0 and c2 are interaction parameters, nσ = Ψ†
σΨσ with σ =↑, ↓ and normal

ordering is implied. The single particle Hamiltonian Eq. 6.7 possesses an exact de-

generacy, at δ = 0, among the ↑′ and ↓′ states; however the interaction Hamiltonian

does not possess this symmetry.

With details in Appendix. I, by approximating the low energy expansion of the

original wave function and inserting into Eq. 6.9, the interaction Hamiltonian for
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the dressed spins is obtained as:

H1 =
1
2

∫
d3r

[
g↑′↑′ |ψ↑′(r)|4 + g↓′↓′ |ψ↓′(r)|4 + 2g↑′↓′ |ψ↑′(r)|2|ψ↓′(r)|2

]
, (6.10)

where ψσ(r) is the corresponding field operator, the Fourier transform of ψσ(p).

The interaction parameters are [34]:

g↑′↑′ = c0, (6.11)

g↓′↓′ = c0 + c2, (6.12)

g↑′↓′ = c0 + c2 +
c′↑↓
2

(6.13)

with the couplings c0 = 4π(a0 + 2a2)/3m and c2 = 4π(a2 − a0)/3m [60]. In the

regimes of this experiment, c′↑↓ = 2c0Ω̂2 > 0. We have noted in Sec. 2.5 that for 87Rb

the sca ering lengths a2 and a0 are almost equal. Ref. [60] quoted the theoretical

results a0 = 101.78aB, a2 = 100.40aB (implying a2 − a0 = −1.38aB) and experimen-

tally measured the difference as a2 − a0 = −1.07aB (implying a2 = 100.71aB), with

aB = 5.29177 × 10−11m the Bohr radius. Plugging the theoretical values of a0 and

a2, we obtain the theoretical value of c0

c0

h
= 7.80 × 10−12Hz cm3, (6.14)

and the theoretical value of c2

c2

h
= −3.55 × 10−14Hz cm3. (6.15)

Both theoretical values are consistent with the values quoted by Ref. [34] (c0/h =

7.79 × 10−12Hz cm3 and c2/h = −3.61 × 10−14Hz cm3.). It is possible that other
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works use interaction parameters c0 and c2 based on experimental values of a0 and

a2, but again the two groups of values are still close to each other.

From the above calculation, we see in the experimental regimes of Ref. [34], we

have c0 > 0, c2 < 0, and |c2| ≪ c0. Therefore the ↑ bosons having a larger in-

traspecies repulsion than the ↓ bosons. This imbalance has important implications

for the allowed phases in the boson gas.

6.2 Phase Diagram

In the present section, we derive the phase diagram for the two species, using

the mean-field approximation. Our full system Hamiltonian is H = H0 + H1,

with H0 given in Eq. 6.7 and H1 given in Eq. 6.10. We assume spatially uniform

expectation values ⟨ψσ⟩ and analyze the expectation values of the Hamiltonian.

There are two equivalent approaches to describe a system: fixing the particle

number (or fixed density since the volume does not change) or fixing the chemical

potential. Next, we derive the phase diagrams of each ensemble, then discuss the

connections between the two diagrams and their implications.

In this section, we do not limit ourselves in the specific regimes of interaction

parameters in the Spielman experiment [34]. Instead, we assume a wider range of

interaction parameters c′↑↓/c0 and c2/c0, both could be positive or negative, so that

the phase transitions can occur in the full parameter space. Then we look into the

experimental range for discussion.

6.2.1 Fixed Density Phase Diagram

In this part, we derive the phase diagram when the particle numbers N↑′ and

N↓′ are independently fixed. In a boson gas of two species, there are two possible
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phases: a mix of the two states (Phase Mixed, indicated by PM below), and a sep-

aration between the two states (Phase Separated, indicated by PS). We analyze the

expectation value of H1 by assuming each of the two cases.

In the mixed phase, each species occupies the entire volume V, so the expecta-

tion of the densities
⟨
n↑′

⟩
= N↑′/V and

⟨
n↓′

⟩
= N↓′/V. The expectation value of

the interaction Hamiltonian becomes

⟨H1⟩PM =
1

2V
[(c0 +

c2

2
)N2 +

c2

2
(N↓′

2 − N↑′
2) + (c2 + c′↑↓)N↑′N↓′ ]

=
1

2V
[(c0 + c2)N↓′

2 + c0N↑′
2 + 2(c0 +

c′↑↓
2

+ c2)N↑′N↓′ ],
(6.16)

where N = N↑′ + N↓′ is the total particle number.

Meanwhile, when the phases are separated, each species occupies their own

space, respectively V↑′ and V↓′ . The expectation value of the interaction Hamilto-

nian is

⟨H1⟩PS =
1
2
[(c0 +

c2

2
)(V↑′

N↑′
2

V2
↑′

+ V↓′
N↓′

2

V2
↓′

) +
c2

2
(V↓′

N↓′
2

V2
↓′

− V↑′
N↑′

2

V2
↑′

)]

=
c0

2
N↑′

2

V↑′
+

c0 + c2

2
N↓′

2

V↓′
,

(6.17)

where the total volume V = V↑′ + V↓′ . The expectation values of cross terms pro-

portional to n↑′n↓′ vanish because the two species occupy separate volumes. We

don't know what V↑′ and V↓′ are, but because they are not independent, we can

choose one of them as the independent variable and minimize ⟨H1⟩PS with respect

to it. Thus we obtain the stationary condition

− 1
2

c0
N↑′

2

V↑′
2 +

1
2
(c0 + c2)

N↓′
2

(V − V↑′)2 = 0, (6.18)
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from which we solve for V↑′ . Therefore, the minimum ⟨H1⟩PS is

⟨H1⟩PS =
1

2V
[(c0 + c2)N↓′

2 + c0N↑′
2 + 2

√
c0(c0 + c2)N↑′N↓′ ]. (6.19)

For the system to be in the phase mixed state, it is required that

⟨H1⟩PM < ⟨H1⟩PS , (6.20)

which is √
c0(c0 + c2) > c0 + c2 +

c′↑↓
2

. (6.21)

This agrees with Ref. [34].

The phase diagram showing the phase mixed and phase separated states is

shown in Fig. 6 − 2. The blue curve is the phase boundary described in Eq. 6.21.

The other root of the condition Eq. 6.20, is
√

c0(c0 + c2) < −c0 − c2 −
c′↑↓
2 , plo ed

as the red line in Fig. 6 − 2. It is the boundary between the phase mixed and an

unstable region, which will be explained below.

6.2.2 Fixed Chemical Potential Phase Diagram

We now analyze the phase separation condition at fixed chemical potential. We

keep the chemical potentials µ↑′ and µ↓′ (related with the chemical potential µ when

the two species are balanced, i.e. δ = 0, by µ↑′ = µ− δ
2 and µ↓′ = µ+ δ

2) unchanged,

and find the minimizing condition for the grand free energy. After obtaining the

phase boundary, we then discuss the phase diagram for different values of chemical

potentials.
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Figure 6-2: Phase diagram for bosons with SOC at fixed density (fixed particle num-
ber), showing the phases of the bosons as a function of interaction parameters c2/c0
and c′↑↓/c0. The blue curve is the phase boundary between the phase mixed and the
phase separated, as described in Eq. 6.21, the red curve is the boundary between
the phase mixed and an unstable region (explained below).

S P

The grand free energy is F =
∫

d3r F, where

F = −µ↑′
∣∣ψ↑′

∣∣2 − µ↓′
∣∣ψ↓′

∣∣2 + H1, (6.22)

where the kinetic energy in the low-energy effective Hamiltonian Eq. 6.7 has been

omi ed due to the assumption of the wave functions' spatial uniformity, and the

interaction term is

H1 =
c0

2
|ψ↑′ |4 +

c0 + c2

2
|ψ↓′ |4 + (c0 + c2 +

c′↑↓
2
)|ψ↑′ |2|ψ↓′ |2. (6.23)

From Euler-Lagrange equation, we minimize the grand potential with respect to

the two species ∂F
∂ψ↑′

= 0 and ∂F
∂ψ↓′

= 0. Besides the trivial solution ψ↑′ = 0, ψ↓′ = 0,
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we obtain

µ↑′ = c0|ψ↑′ |2 + (c0 + c2 +
c′↑↓
2
)|ψ↓′ |2, (6.24a)

µ↓′ = (c0 + c2)|ψ↓′ |2 + (c0 + c2 +
c′↑↓
2
)|ψ↑′ |2, (6.24b)

from which we solved three distinct solutions. Together with the trivial noncon-

densed solution, the four solutions are

1. ψ↑′ = 0, ψ↓′ = 0 (6.25a)

2. ψ↑′ = 0,
∣∣ψ↓′

∣∣2 =
µ↓′

c0 + c2
(6.25b)

3.
∣∣ψ↑′

∣∣2 =
µ↑′

c0
, ψ↓′ = 0 (6.25c)

4.
∣∣ψ↑′

∣∣2 =
(c0 + c2)µ↑′ − (c0 + c2 +

c′↑↓
2 )µ↓′

(c0 + c2)c0 − (c0 + c2 +
c′↑↓
2 )2

,

∣∣ψ↓′
∣∣2 =

c0µ↓′ − (c0 + c2 +
c′↑↓
2 )µ↑′

(c0 + c2)c0 − (c0 + c2 +
c′↑↓
2 )2

. (6.25d)

The corresponding minimized grand free energies are

F1 = 0 (6.26a)
F2

V
= −1

2
µ↓′

2

c0 + c2
(6.26b)

F3

V
= −1

2
µ↑′

2

c0
(6.26c)

F4

V
= −

1
2(c0 + c2)µ↑′

2 − (c0 + c2 +
c′↑↓
2 )µ↑′µ↓′ +

c0
2 µ↓′

2

(c0 + c2)c0 − (c0 + c2 +
c′↑↓
2 )2

. (6.26d)

Two of these solutions refer to the case in which only one of ψ↓′ or ψ↑′ is condensed.

We call these two solutions BEC ↓′ and BEC ↑′ phases, respectively (or simply, ↓′

and ↑′), referring to the condensed species. The last solution is the mixed phase,
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in which both species are condensed. Wri en in the matrix form, the mixed phase

solution is (defining nσ = |ψσ|2 for the mean-field densities of the two species)

n↑′

n↓′

 =
1
D

 c0 + c2 −c0 − c2 −
c′↑↓
2

−c0 − c2 −
c′↑↓
2 c0


µ↑′

µ↓′

 , (6.27)

where we defined the denominator

D = (c0 + c2)c0 − (c0 + c2 +
c′↑↓
2
)2, (6.28)

which, in the fixed number ensemble, determines the phase separation boundary

which is D = 0 (as discussed below).

S

The stable state of the four solutions in Eq. 6.25 is decided by the lowest of the

free energies in Eq. 6.26. Since c0 > 0, F1 cannot be the minimum anywhere due

to the fact that the ↑′ solution always has lower energy (the chemical potentials

being positive do not allow the trivial solution to occur either). Now we discuss

the remaining three solutions.

Since the free energies depend on the values of chemical potentials µσ′ , we have

to discuss different chemical potential values to determine the phases of the system,

hence giving a complete phase diagram. But without going into specific discussion,

we can first identify the stable regime of the mixed phase by utilizing an analysis

of the Hessian Matrix.

A stable mixedphase necessitates that the determinant of the Hessian H(ψi, ψj) =

∂2F
∂ψi∂ψj

is positive, and that ∂2F
∂ψ2

↑′
> 0 or ∂2F

∂ψ2
↓′
> 0. Since
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∂2F
∂ψ2

↑′
= 2

∂F
∂n↑′

+ (2ψ↑′)
2 ∂2F

∂n2
↑′

, (6.29)

∂2F
∂ψ2

↓′
= 2

∂F
∂n↓′

+ (2ψ↓′)
2 ∂2F

∂n2
↓′

, (6.30)

∂2F
∂ψ↑′∂ψ↓′

= 4ψ↓′ψ↑′
∂2F

∂n↑′∂n↓′
. (6.31)

When F is minized, ∂F
∂n↑′

= ∂F
∂n↓′

= 0. We have the following proportional relation-

ship for Hessians at the stationary points

∂2F
∂ψ2

↑′

∂2F
∂ψ2

↓′
− (

∂2F
∂ψ↑′∂ψ↓′

)2 = 16n↑′n↓′ [
∂2F
∂n2

↑′

∂2F
∂n2

↑′
− (

∂2F
∂n↑′∂n↓′

)2]. (6.32)

Therefore the stability requirement is equivalent to evaluating all the derivatives

with respect to n↑′ and n↓′ . The determinant of the Hessian matrix

detH(n↑′ , n↓′) =
∂2F
∂n2

↑′

∂2F
∂n2

↑′
− (

∂2F
∂n↑′∂n↓′

)2 = c0(c0 + c2)− (c0 + c2 +
c′↑↓

2

2
)2 > 0.

(6.33)

The conditions ∂2F
∂n2

↑′
> 0 and ∂2F

∂n2
↓′

imply c0 > 0 and c0 + c2 > 0. Together with

c0(c0 + c2)− (c0 + c2 +
c′↑↓

2

2 )2 > 0, the boundaries for the region in which the mixed

phase is stable are set.

When outside the mixed phase, however, the above analysis does not hold,

since one of ψσ′ is zero. Therefore, any place in the parameter space of c2/c0 and

c′↑↓, we need to compare the grand free energies for the three solutions F2, F3, and

F4 to find the stable phase, which is, without further ado, discussed in the follow-

ing. Note that we assume positive chemical potentials unless otherwise noted. The

case of negative chemical potential is individually discussed towards the end of the

analysis.
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P D : µ↓′₌µ↑′

Now we determine the stable phase for the case of equal chemical potential and

derive the phase diagram. When se ing µ↓′ and µ↑′ equal, by equating F2, F3 and

F4, the phase boundary is determined as

c2 = 0, c′↑↓ = 0, c′↑↓ = −2c2 (6.34)

F2

F3

F4

-1.0 -0.5 0.5 1.0
c2�c0

-2.0

-1.5

-1.0

-0.5

0.5

c0F�Μ2V

Figure 6-3: In this graph we compare the three free energy solutions F2, F3, F4, which
correspond to the ↓′, the ↑′ and the phase mixed states, respectively. We plot the
solutions against varying c2 when c′↑↓ = −0.5c0. The stable phase of the system is
determined by the lowest grand potential, unless under that solution the density
becomes unphysically negative (as occurred in some intervals in this graph, see
analysis in the main text). Here we work in the fixed chemical potential ensemble
and assume µ↑′ = µ↓′ = µ.

Fig. 6− 3 compares the three free energy solutions F2, F3, F4 with varying c2 and

c′↑↓ = −0.5c0. We see that: for the case c′↑↓ < 0, when c2 < −c′↑↓/2, F4 is smallest,

the mixed phase is the stable state; when c2 > −c′↑↓/2, F3 is smallest, ↑′ is the stable

phase. Note that in the region of c2 immediately larger than −c′↑↓/2, although F4

appears to be the lowest state, the density of the atoms becomes negative beyond

this point, indicating that the mixed state is unstable here and the true boundary is

at c2 = −c′↑↓/2.
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From Eq. 6.25, the boson densities of the two species for equal chemical potential

are: for the ↓′ region, ψ↑′ = 0,
∣∣ψ↓′

∣∣2 = µ
c0+c2

; for the ↑′ region,
∣∣ψ↑′

∣∣2 = µ
c0

, ψ↓′ = 0;

for the phase mixed region,

∣∣ψ↑′
∣∣2 =

− c′↑↓
2 µ

(c0 + c2)c0 − (c0 + c2 +
c′↑↓
2 )2

,
∣∣ψ↓′

∣∣2 =
−(

c′↑↓
2 + c2)µ

(c0 + c2)c0 − (c0 + c2 +
c′↑↓
2 )2

.

Fig. 6 − 4 shows the change of densities when c2 is gradually tuned larger and c′↑↓

is kept unvaried at −0.5c0.
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¯
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-1.0 -0.5 0.5 1.0
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Figure 6-4: This graph shows at fixed chemical potentials µ↑′ = µ↓′ = µ, the den-
sities of the two dressed spin state species n↑′ and n↓′ change when c2 is varied
and c↑↓′ is kept at−0.5c0. When both densities are non-zero, the system is in the
mixed-BEC state.

Similarly, for the case c′↑↓ > 0, when c2 < 0, F2 is smallest, ↑′ is the stable

state; when c2 > 0, F3 is smallest, ↑′ is the stable phase. The false minimum of F4

still needs to be taken into account. Fig. 6 − 5 shows the trend of densities with

varying c2 when c′↑↓ is at 0.25c0. We see, for this case, there is no mixed-BEC state.

An entirely analogous analysis can be done for the stable state when c2 is kept

unchanged and c↑↓′ varies too.

Combining all the above discussion, we are able to determine the stable phase in

the entire phase diagram for fixed chemical potential. Fig. 6− 6 shows the diagram
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Figure 6-5: This graph shows at fixed chemical potentials µ↑′ = µ↓′ = µ, the densi-
ties of the two dressed spin state species n↑′ and n↓′ change when c2 is varied and
c↑↓′ is at 0.25c0.

when µ↑′ = µ↓′ . The phase diagrams Fig. 6− 2 and Fig. 6− 6 are interconnected in

such a way that the contour in Fig. 6 − 2 is where F4 blows up in Fig. 6 − 6.

Consider a system right in the center of the fixed µ phase diagram Fig. 6 − 6 at

c2 = 0, c′↑↓ = 0. F2, F3 and F4 are equal at this point, meaning a system that transits

from phase mixed to phase separated with both ↑′ and ↓′ species present has to

pass through this point since this is the only condition with which these states can

co-exist. Therefore, this center point has to fall on the phase boundary curve in the

fixed particle number diagram Fig. 6 − 2.

According to Eq. 6.25d, the spin-↑′ and the spin-↓′ densities diverge when the

denominator vanishes, along the phase boundary in Fig. 6 − 2. The divergence

along the upper blue curve at µ↑′ = µ↑′ > 0 represents the phase transition into the

mixed, meanwhile the divergence along the lower red curve marks the transition

into the unstable regime, as proved by the analysis of the Hessian matrix. We also

include that section of the phase boundary into the phase diagram Fig. 6 − 2.

Next, we discuss the phase diagram for the general case µ↓′ ̸= µ↑′ .
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Figure 6-6: This graph shows the phase diagram at fixed chemical potential µ↑′ =
µ↓′ . The diagram is divided in the space of interaction parameters c2/c0 and c↑↓′/c0,
among the ↑′ state, the ↓′ state and the phase mixed state.

P D : µ↓′ ̸= µ↑′

The phase diagrams when the chemical potentials are unequal are obtained sim-

ilarly. We again equate any two of the three grand free energy values F2, F3 and F4,

and obtain the following phase boundaries:

c2 =
µ↓′

2 − µ↑′
2

µ↑′2
c0 (6.35)

c0µ↓′ = (c0 + c2 +
c′↑↓
2
)µ↑′ (6.36)

(c0 + c2)µ↑′ = (c0 + c2 +
c′↑↓
2
)µ↓′ . (6.37)

Note that the last two boundaries also follow that the the numerators for the den-

sities vanishes in Eq. 6.25d, i.e. one of the two spin states' density becomes zero,

eliminating the phase mixed state. The above three boundary lines intersect at the

point

c2 =
µ↓′

2 − µ↑′
2

µ↑′2
c0,

c′↑↓
2

=
µ↓′µ↑′ − µ↓′

2

µ↑′2
c0, (6.38)
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which always satisfy

c0(c0 + c2) = (c0 + c2 +
c′↑↓
2
)2, (6.39)

or D = 0, suggesting the intersection is always on the phase boundary for the fixed

particle number phase diagram. This can be explained by the following argument:

the mixed phase at fixed particle numbers N↓′ and N↑′ (or fixed N↑ and N↓) can

be regarded as having resulted from a system at fixed µ↑′ and µ↓′ with the chemi-

cal potentials adjusted to satisfy the fixed-number requirement. Starting from the

mixed phase, as c′↑↓ is adjusted upwards, µ↑′ and µ↓′ will adjust to maintain the im-

posed values of N↓′ and N↑′ . However, beyond the boundary D = 0, it is no longer

possible for the chemical potentials to adjust to a ain a stable mixed phase, and the

system phase separates into uniform BEC ↑′ and BEC ↓′ to satisfy the fixed-number

constraint.

The stable regimes for spin-↑′ state, spin-↓′ state and the phase mixed state can

be determined simply by comparing with the equal chemical potential phase dia-

gram Fig. 6 − 6. Thus we have Fig. 6 − 7, showing the combined phase diagram of

fixed chemical potential (indicated by solid lines) and fixed particle number (indi-

cated by colored regions) when µ↓′ = 0.4µ↑′ , 0.6µ↑′ , 0.8µ↑′ , 1.0µ↑′ and 1.2µ↑′ .

Based on the above discussion, we see the fixed particle number phase diagram

and the fixed chemical potential diagram are indeed equivalent, meaning every

point on one diagram has its counterpart on the other diagram. As the µ↓′/µ↑′

ratio is varied, the fixed chemical potential phase boundary lines sweep the entire

PM region in the fixed particle number phase diagram.

Finally, we discuss the phase digram in the context of existing experiments,

focusing on the current parameter regimes c0 > 0, c2 < 0, c′↑↓ = 2c0Ω̂2 > 0. Ac-

cording to our phase diagrams, in this parameter range for the case of µ↑′ = µ↓′ ,

the mixed phase is never stable, and the system always exhibits the ↓′ phase. This
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Figure 6-7: This phase diagram combines the diagrams for fixed density
(phase regimes indicated by colors) and for fixed chemical potential (phase
boundaries indicated by solid lines) at fixed chemical potentials µ↓′ =
0.4µ↑′ , 0.6µ↑′ , 0.8µ↑′ , 1.0µ↑′ , 1.2µ↑′(from left to right). The yellow colored region rep-
resents the phase separated for fixed density, the cyan colored region indicates the
phase mixed for fixed density. For each set of the boundary lines for fixed chemi-
cal potential that divides the c2/c0 - c′↑↓ plane, the upper left is for the ↓′ phase, the
upper right is for the ↑′ phase, while in the bo om region is the mixed-BEC. The
intercepts of the phase boundaries for fixed chemical potential are located right at
the phase boundary for fixed density.

can be traced to the fact that, as noted above, the interaction Hamiltonian is intrin-

sically ``imbalanced'', favoring the ↓′ state, indicating a nonzero chemical potential

imbalance δ < 0, or µ↓′ < µ↑′ is needed to a ain the mixed phase.

The phase diagram for the experimental parameter range is replo ed in Fig. 6−

8, where the vertical axis is now showing Ω̂2. The solid lines in Fig. 6-8 show the

ground-state phase diagram in the fixed chemical potential ensemble, at µ↓′/µ↑′ =

0.73, showing regimes of ↓′ superfluid (upper-left, green), ↑′ superfluid (upper

right, blue) and mixed superfluid (bo om center, red) phases. Thus, for c2/c0 < 0
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and sufficiently large in magnitude, the mixed phase is stable in a triangular re-

gion of the phase diagram, exhibiting continuous phase transitions, with increas-

ing normalized light-atom coupling Ω̂, to the ↓′ superfluid (for large |c2|/c0, to the

left in the phase diagram) and to the ↑′ superfluid (for small |c2|/c0, to the right in

the phase diagram). The same structure of the phase diagram holds for any ratio

µ↓′/µ↑′ , with the three curves that separate the phases moving as a function of the

chemical potential ratio µ↓′/µ↑′ ; the two sets of dashed lines in Fig. 6-8 indicate the

locations of these boundaries for µ↓′/µ↑′ = 0.37 and µ↓′/µ↑′ = 0.93.

-1 -0.8 -0.6 -0.4 -0.2 0
0.

0.1

0.2

0.3

c2�c0

W
` 2

↓′ ↑′

mixed

µ↓′

µ↑′
= 0.37 0.73 0.93

Figure 6-8: This diagram shows the phases for the experimentally relevant regime.
The solid lines show the phase diagram, at fixed µ↓′/µ↑′ = 0.73, separating regions
of BEC ↓′ (upper left, green), BEC ↑′ (upper right, blue), and a mixed BEC of both
species (lower triangle, red). The two sets of dashed lines show the phase diagram
at two additional values of µ↓′/µ↑′ , showing the evolution of the phase diagram
at fixed chemical potential. For experiments at fixed particle number, the relevant
phase boundary is the do ed line: Below this do ed line, the mixed BEC is stable,
while above this do ed line the system will phase separate into regions of uniform
↑′ superfluid and uniform ↓′ superfluid.

P D : T U R

Previous discussions are all based on the assumption that both µσ′ are positive.

But this is not absolutely necessary. Positive chemical potentials are indeed re-

quired for the case µ↑′ = µ↓′ for fixed chemical potential, following from that the
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densities can not be negative (Eq. 6.35). However, for unequal chemical potentials

µ↑′ ̸= µ↓′ , positive densities do not impose both chemical potentials to be positive

(Eq. 6.25). One of the two chemical potentials can be allowed to have negative val-

ues. The phases boundaries are still determined by the vanishing of the densities.

We obtain the boundaries as

(c0 + c2)µ↑′ = (c0 + c2 +
c′↑↓
2
)µ↓′ (6.40)

c0µ↓′ = (c0 + c2 +
c′↑↓
2
)µ↑′ . (6.41)

To ensure the two sides of the above equations to have the same sign, we need

c0 + c2 +
c′↑↓
2 < 0.

These phase boundary lines, together with the phase boundary lines when both

chemical potentials are positive, are shown in Fig. 6 − 9. The two sets of phase

boundary lines are divided by c0 + c2 +
c′↑↓
2 = 0 (which is also the phase bound-

ary line when the ratio µ↓′/µ↑′ = 0), indicated by the red line. By allowing one

chemical potential to be negative, the unstable regime becomes accessible to our

approach.

6.3 Trapped Bosons with SOC

In the preceding section, we determined the phase diagram for a uniform boson

gas with artificial light-induced SOC , showing how it can be used to obtain the

boundary to the regime of phase separation both in the fixed density ensemble

and in the fixed number ensemble. In the present section, we turn to the density

distribution of the two boson species in a parabolic (harmonic) trap, making use of

the fixed µ↑′ and µ↓′ results of Section 6.2.2.

95



Figure 6-9: Phase boundaries for fixed chemical potentials when one chemical
potential is negative, shown on the background of fixed density phase diagram.
Above the red line (c0 + c2 +

c′↑↓
2 = 0), the phase boundary lines are for the equal

chemical potential case µ↓′/µ↑′ = 1. For the phase boundary lines below the red
line, one chemical potential is negative, the ratios are µ↓′/µ↑′ = −0.19,−0.32.

6.3.1 Model with Local Density Approximation

We consider an anisotropic trapping geometry,

Vtrap(r) =
1
2

m(Ωz
2z2 + Ωs

2s2), (6.42)

where s2 = x2 + y2. Below, we'll make the choice Ωz > Ωs for the trapping fre-

quencies, such that an oblate ``pancake'' cloud shape is expected.

Our analysis of the density distributions in the presence of the trap uses the

local density approximation (LDA). Within the LDA, the densities |ψ↑′ |2 and |ψ↓′ |2

are given by the uniform-case results Eq. 6.27 but with µσ′ → µσ′ − Vtrap(r) (where

now µσ′ is the chemical potential at the trap center, r = 0). In the phase mixed state,
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the densities can be wri en as:

∣∣ψ↑′
∣∣2 =

µ̃↑′

g̃↑′
− 1

g̃↑′
(

m
2

Ωz
2z2 +

m
2

Ωs
2s2), (6.43a)

∣∣ψ↓′
∣∣2 =

µ̃↓′

g̃↓′
− 1

g̃↓′
(

m
2

Ωz
2z2 +

m
2

Ωs
2s2), (6.43b)

where we defined effective interaction parameters g̃↑′ = −2D/c′↑↓ and g̃↓′ =

−2D/(2c2 + c′↑↓), with D defined in Eq. 6.28, and the effective chemical potentials

µ̃↑′ =
(c0 + c2 +

c′↑↓
2 )µ↓′ − (c0 + c2)µ↑′

c0Ω̂2
, (6.44a)

µ̃↓′ =
(c0 + c2 +

c′↑↓
2 )µ↑′ − c0µ↓′

c2 + c0Ω̂2
, (6.44b)

Similarly, for the phase separated states, after substitutions µσ′ → µσ′ − Vtrap(r)

we obtain densities

∣∣ψ↑′
∣∣2 =

µ↑′ − Vtrap

c0
=

µ↑′

c0
− 1

c0
(

m
2

Ωs
2s2 +

m
2

Ωz
2z2), (6.45a)∣∣ψ↓′

∣∣2 =
µ↓′ − Vtrap

c0 + c2
=

µ↓′

c0 + c2
− 1

c0 + c2
(

m
2

Ωs
2s2 +

m
2

Ωz
2z2). (6.45b)

An overall constraint is that the densities have to be positive at the spatial center

r = 0. This is already intrinsically satisfied in the above expressions. If the center

is phase separated, from Eq. 6.45a and 6.45b, µ↓′ ≥ 0 and µ↑′ ≥ 0 ensure the central

density to be positive. If the center is in the phase mixed state, the positive density

requires
µ̃↑′
g̃↑′

> 0 and
µ̃↓′
g̃↓′

> 0, which are also satisfied through:

µ̃↑′

g̃↑′
=

−(c0 + c2 +
c′↑↓
2 )µ↓′ + (c0 + c2)µ↑′

(c0 + c2)c0 − (c0 + c2 +
c′↑↓
2 )2

> 0, (6.46)

µ̃↓′

g̃↓′
=

c0µ↓′ − (c0 + c2 +
c′↑↓
2 )µ↑′

(c0 + c2)c0 − (c0 + c2 +
c′↑↓
2 )2

> 0, (6.47)
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considering the aforementioned conditions for the phase mixed state. The ratios

µ̃σ/g̃σ > 0 for both ↑′ and ↓′ being positive guarantee the densities in Eq. 6.43 are

positive, even the individual values of µ̃σ′ and g̃σ′ may not be positive.

Given the values of c2 and c′↑↓ of a system, the system will fall in one of the

following regions of the phase diagram, as divided by regimes of these interaction

parameters:

1. Region I: D > 0, c′↑↓/c0 > 0. µ↑′ > 0, µ↓′ > 0, µ↑′/µ↓′ > 1.

2. Region II: D > 0, c2 +
c′↑↓
2 > 0. µ↑′ > 0, µ↓′ > 0, µ↑′/µ↓′ < 1.

3. Region III: D > 0, c′↑↓/c0 < 0, c2 +
c′↑↓
2 < 0, c0 + c2 +

c′↑↓
2 > 0. µ↑′ > 0, µ↓′ > 0,

µ↑′/µ↓′ < 1, = 1 or > 1.

4. Region IV: D < 0. µ↑′ = 0 or µ↓′ = 0.

5. Region V: D > 0, c0 + c2 +
c′↑↓
2 < 0. µ↑′ < 0 or µ↓′ < 0.

The regions are schematically indicated in the phase diagram in Fig. 6− 10. We are

not including the unstable region that was discussed previously.

To solve for the density dependences, the procedure for each region is similar.

Here we only discuss Region III and Region I.

6.3.2 Results

We present here our discussion about Region III and Region I, which exhibit

contrasting spatial distributions. From the center going outward (i.e. with increas-

ing radius), for Region III, both dressed spin states have decreasing density, just

as expected in a Thomas-Fermi density profile. However, in Region I, one dressed

spin state shows increasing density with increasing radius in the mixed BEC phase.

Note that Region I is the regime that describes the physical properties of current

experiments, which we will investigate in detail.
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Figure 6-10: The five cases for a trapped BEC with SOC depending on the interac-
tion parameters c2/c0 and c′↑↓, marked on the fixed density phase diagram. Region
I is the experimentally relevant case. Density distributions and phase makeups are
different in each region.

R III

In this region, the first conclusions that we can arrive at are: from c′↑↓ < 0,

g̃↑′ > 0. From c2 + c′↑↓/2 < 0, g̃↓′ > 0. These ensure µ̃↑′ > 0 and µ̃↓′ > 0 due

to Eqs. 6.46 and 6.47. Following from the signs of these parameters, both ↑′ and ↓′

bosons achieve maximum density in the center. For the phase mixed state, defining

the characteristic radii

R̃z↑′ ≡

√
2µ̃↑′

mΩz
2 , R̃s↑′ ≡

√
2µ̃↑′

mΩs
2 ,

R̃z↓′ ≡

√
2µ̃↓′

mΩz
2 , R̃s↓′ ≡

√
2µ̃↓′

mΩs
2 ,

(6.48)
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then the densities Eq. 6.43 can be wri en as

∣∣ψ↑′
∣∣2 =

µ̃↑′

g̃↑′
(1 − z2

R̃2
z↑′

− s2

R̃2
s↑′

), (6.49a)

∣∣ψ↓′
∣∣2 =

µ̃↓′

g̃↓′
(1 − z2

R̃2
z↓′

− s2

R̃2
s↓′

), (6.49b)

in which bosons of each spin state exist in an ellipsoid with the elliptic radii given by

the characteristic radii defined above. The radii of different spin states are generally

not equal, thus the volume of the phase mixed state is defined by the space in which

the ↑′ ellipsoid and the ↓′ ellipsoid overlap. Because R̃z↓′/R̃s↓′ = R̃z↑′/R̃s↑′ , the

smaller volume is entirely encapsulated in the larger volume, meaning there is no

partial overlapping. The clouds are schematically indicated in Fig. 6 − 11.

..

mixed

.
↑′ or ↓′

Figure 6-11: A schematic 2D projection showing the phases in the cloud in Region
III (D > 0, c′↑↓/c0 < 0, c2 +

c′↑↓
2 < 0, c0 + c2 +

c′↑↓
2 > 0). The inner volume is occupied

by the mixed phase, and the outer shell is the ↑′ phase or ↓′ phase.

However, outside the phase mixed volume, only one spin state exist, and the

above length scales using phase mixed density formulas are not valid. To correct

this, we define similar length scales for the phase separated regime,

Rz↑′ ≡

√
2µ↑′

mΩz
2 , Rs↑′ ≡

√
2µ↑′

mΩs
2 ,

Rz↓′ ≡

√
2µ↓′

mΩz
2 , Rs↓′ ≡

√
2µ↓′

mΩs
2 ,

(6.50)
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utilizing the density formulas for the phase separated state Eq. 6.45, which now

can be wri en as

|ψσ′ |2 =
µσ′

cσ′
(1 − z2

Rzσ′2
− s2

Rsσ′2
), (6.51)

where σ′ =↑′, ↓′, and c↑′ = c0, c↓′ = c0 + c2. From the above analysis, we see the

boson gas in the trap exhibits a shell structure, where the inner core is phase mixed,

and the outer shell is phase separated. The volumes of the PM core and the PS shell

are given by

PM : 0 < |z| < Rz0, 0 < |s| < Rs0;

PS : Rz0 < |z| < Rz1, Rs0 < |s| < Rs1,
(6.52)

where Rz0 ≡ min[R̃z↓′ , R̃z↑′ ], Rs0 ≡ min[R̃s↓′ , R̃s↑′ ], and Rz1 ≡ Rz↓′ or Rz↑′ , Rs1 ≡

Rs↓′ or Rs↑′ , depending on which species occupies the outer shell.

R I

In this region, c′↑↓ = 2c0Ω̂2 > 0, so g̃↑′ < 0, while g̃↓′ > 0. Since the ratio

g̃↓′/µ̃↑′ needs to be positive, we have µ̃↑′ < 0. This brings important implications

for systems in this regime. The phase mixed state densities can be wri en as

∣∣ψ↑′
∣∣2 =

µ̃↑′
g̃↑′

(1 + z2

R̃2
z↑′

+ s2

R̃2
s↑′
), (6.53a)∣∣ψ↓′

∣∣2 =
µ̃↓′
g̃↓′

(1 − z2

R̃2
z↓′

− s2

R̃2
s↓′
). (6.53b)

The radii R̃sσ and R̃zσ which determine the spatial variation of the densities in the

plane of the "pancake" shaped cloud and perpendicular to it, respectively, are given

by

R̃z↑′ =

√
−2µ̃↑′

mΩz
2 , R̃s↑′ =

√
−2µ̃↑′

mΩs
2 , (6.54)

R̃z↓′ =

√
2µ̃↓′

mΩz
2 , R̃s↓′ =

√
2µ̃↓′

mΩs
2 . (6.55)
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Although Eqs. 6.53 are similar to the usual LDA form for the density variation of a

trapped BEC, one unusual feature stands out: While
∣∣ψ↓′

∣∣2 decreases with increas-

ing radius, the ↑′ density increases with increasing radius. Therefore the ↓′ always

occupies a smaller volume than ↑′. The volume for the phase mixed VPM is deter-

mined by the vanishing of
∣∣ψ↓′

∣∣2. Beyond the volume,
∣∣ψ↓′

∣∣2 → 0, and the system

is locally in a BEC of the spins-↑′. The clouds are schematically represented by

Fig. 6 − 12.

..

mixed

.
↑′ only

Figure 6-12: A schematic 2D projection graph showing the phases in the cloud in
Region I (D > 0, c′↑↓/c0 > 0). The inner volume is occupied by the mixed phase,
and the outer shell is always the ↑′ phase. This parameter region is experimentally
relevant.

The characteristic radii for the phase separated outer shell are the same as de-

fined in Eq. 6.50, and the shell structure of the boson gas is described by

PM: |z| < R̃z↓′ , |s| < R̃s↓′

PS: R̃z↓′ < |z| < Rz↑′ , R̃s↓′ < |s| < Rs↑′
(6.56)

Now we make use of the above result about the shell structure of the boson gas

of two spin states, and calculate the density profiles.
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The actual bosondensities
∣∣Ψ↑

∣∣2 and
∣∣Ψ↓

∣∣2 are related to the dressed state bosons∣∣ψ↑′
∣∣2 and

∣∣ψ↓′
∣∣2 via

|Ψ↑(r)|2 = |ψ↑′(r)−
1
2

Ω̂e2ikLxψ↓′(r)|2, (6.57)

|Ψ↓(r)|2 = |ψ↓′(r)−
1
2

Ω̂e−2ikLxψ↑′(r)|2, (6.58)

which follow from Eq. I.18 in the limit of small Ω̂ and δ̂. In Eqs. 6.57 and 6.58,

we take ψ↑′(r) to be real and positive ψ↓′(r). The relative phase between these

condensates, yielding the minus signs in these expressions, follows by assuming

the system will minimize the interaction energy density (and therefore |Ψ↑(r)|2

and |Ψ↓(r)|2) at the trap center.

Note that, since Ω̂ ≪ 1 to stabilize the mixed phase, the density of nσ(r) is

approximately equal to the corresponding primed density plus an O(Ω̂) term (the

cross term upon expanding the modulus squared), leading to a cos 2kLx spatial

modulation (or, the stripe order [62]).

Therefore, the original boson numbers can be obtained from integrating over

the total space, which includes the PM regime and the PS regime,

N↑ =
∫

VPM
dr3 |ψ↑′(r)− 1

2 Ω̂e2ikLxψ↓′(r)|2 +
∫

VPS↑′
dr3

∣∣ψ↑′(r)
∣∣2 (6.59a)

N↓ =
∫

VPM
dr3 |ψ↓′(r)− 1

2 Ω̂e−2ikLxψ↑′(r)|2 + Ω̂2

4
2 ∫

VPS↑′
dr3

∣∣ψ↑′(r)
∣∣2 , (6.59b)

in which

∫
VPM

dr3
∣∣ψ↑′(r)

∣∣2 =
8
√

2πµ̃3/2
↓′

m3/2
1

Ωs
2Ωz

(
µ̃↑′
3g̃↑′

− µ̃↓′
5g̃↑′

), (6.60)∫
VPM

dr3
∣∣ψ↓′(r)

∣∣2 = 16
√

2π
15

1
Ωs

2Ωz

µ̃5/2
↓′

g̃↓′m3/2 , (6.61)∫
VPS↑′

dr3
∣∣ψ↑′(r)

∣∣2 = 16
√

2π
15

µ↑′
5/2

c0m3/2
1

Ωs
2Ωz

−
8
√

2πµ̃3/2
↓′

m3/2
1

Ωs
2Ωz

(
µ↑′
3c0

− µ̃↓′
5c0

). (6.62)
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From Eq. 6.59 we can solve for µ↑′ and µ↓′ , and insert the chemical potentials

back into to Eq. 6.43 to obtain the density profiles of the two species.

..

-10 -5 0 5 10
0

0.4

0.8

1.2

xHΜmL

at
om

N
o.
H1

020
m
-

3 L

.

|↓⟩

.

|↑⟩

Figure 6-13: The plot shows the densities of spin-↑ atoms and spin-↓ atoms at y =
z = 0 as a function of the spatial coordinate x. A central core of mixed BEC and an
outer shell of ↑′ BEC are shown in the density profile. The ↑ atom density exhibits
a non-monotonic trend in the mixed region, while the ↓ atom density decreases in
the expected Thomas-Fermi dependence.

In Fig. 6-13 (1D), Fig. 6-14 and Fig .6-15 (2D), we show the calculated bosons den-

sities
∣∣Ψ↑

∣∣2 and
∣∣Ψ↓

∣∣2. The unusual density dependence of ↑ bosons in the phase

mixed central core is shown, together with the density decrease with increasing

radius in the usual Thomas-Fermi fashion for the ↓ bosons in the phase mixed cen-

tral core and ↑ bosons in the outer shell. The graph also exhibits a small oscillatory

variation in the phase mixed region, expected as the 'stripe order'.

In Fig. 6-16 (1D) and Fig. 6-17 (2D), we plot the contrasting profiles of the total

density n↑ + n↓ and magnetization n↑ − n↓. It is worth noting that tn the total den-

sity the stripes become more prominent from contribution of both species, while in

the magnetization the oscillation is cancelled.

In these figures of density distribution, we chose parameters identical with those

of Ref. [34]: Trapping frequencies Ωs = 2π × 50 Hz, Ωz = 2π × 140 Hz, interac-

tion parameters c0 = h × 7.79 × 10−12 Hz cm3, c2 = −h × 3.61 × 10−14 Hz cm3, the

wavevector kL =
√

2π/1000nm, and we used the spin-orbit coupling parameter
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Ω̂ = 0.15. The chemical potentials µ↓′ = 1469Hz and µ↑′ = 1472Hz were chosen to

achieve a total particle number N = 180, 000 and reflect an effective Zeeman field

|δ| = |µ↑′ − µ↓′ | = 3Hz (values that are also consistent with Ref. [34]).

Figure 6-14: This plot shows a top view of the spin-↑ density at z = 0, showing
this species is densest around the center of the cloud (the maximum is not exactly
at the center due to the oscillation), and decreases to zero density at the edge. The
density scale is atom number in 1020m−3.

Next we present a physical picture of the density profile results. In addition to

the oscillatory spatial variation of the local densities of the two bosons species, the

spin-↑ density is seen to exhibit a local maximum near the point where |Ψ↓(r)|2 →

0. As mentioned above, this is because Eq. 6.53a applies in the mixed phase, im-

plying an increasing density of spins-↑ with increasing radius in the mixed region.

The sequence of phases, within the LDA, in fact follows directly from the structure

of the fixed-µ phase diagram. To see this, we note that, as seen in Fig. 6-8, the "tri-

angle" of stable mixed phase moves to the left with decreasing µ↓′/µ↓′ , with the ↓′

condensate always occuring to the left of this triangle and the ↑′ condensate always
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Figure 6-15: This plot shows a top view of the spin-↑ density at z = 0, showing the
density reaches a local minimum at the center of the cloud, then increases to max-
imum before drops to zero at the edge. This non-monotonous spatial dependence
can be an experimental signature for the mixed-BEC state in bosons with spin-orbit
coupling. The density scale is atom number in 1020m−3.

occuring to the right. Within the LDA, then, the quantity to consider is the spatially-

varying effective chemical potential ratio γ(r) ≡ [µ↓′ − Vtrap(r)]/[µ↑′ − Vtrap(r)],

which decreases with increasing r (when µ↓′ < µ↑′ , which is required for stabil-

ity of the mixed phase). If the mixed phase is stable in the center, then this implies

that, at r = 0, the system parameters must put it in the triangle of mixed BEC phase

of Fig. 6-8. Increasing radius will decrease γ(r), moving the triangle of mixed BEC

phase to the left, leaving the system locally in the ↑′ phase at the edge. Another log-

ical possibility, in which the ↓′ phase is stable in the center, followed by the mixed

phase at intermediate radii, followed by the ↑′ phase at large radii, turns out to be

difficult to achieve using experimentally-realistic parameters.

The outer shell of ↑′ condensate is described by the standard local density ap-

proximation for a single-species BEC, with
∣∣ψ↑′(r)

∣∣2 = (µ↑′ − Vtrap(r))/c0. As we
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Figure 6-16: We show here a 1D plot of the total density n↑ + n↓ and magnetiza-
tion n↑ − n↓ in the x direction, at y = 0, z = 0. The oscillation ("stripe" order) is
enhanced in the total density by the two spin states, but is offset in the magnetiza-
tion.

have already mentioned, the existence of the outer shell of ↑′ BEC is generally ex-

pected, since the mixed phase is stabilized by interactions. At large radii, where the

atom densities are small, interactions can be neglected, and the system condenses

into the lowest state, i.e., the left minimum of Fig. 6-1, which is the ↑′ phase. There-

fore, we generally expect the outer shell of ↑′ condensate. With decreasing radius,

coming in from the outside of the cloud, interaction effects eventually favor the

population of the right minimum of Fig. 6-1, so that the system locally enters the

mixed phase.

To understand the behavior of the densities in the central mixed BEC region,

we transform the interaction Hamiltonian Eq. (6.10) to the basis of magnetization

(M = n↑′ − n↓′) and total density (n = n↑′ + n↓′) :

H1 =
1
2

∫
d3r

[(
c0 +

1
2

c0Ω̂2 +
3
4

c2
)
n2(r)−

(1
4

c2 +
1
2

c0Ω̂2)M2(r)− 1
2

c2M(r)n(r)
]
.

(6.63)
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Figure 6-17: This plot shows a top view of the total density n↑ + n↓ and magneti-
zation n↑ − n↓. The density scale is atom number in 1020m−3.

Recall that c0 ≫ |c2| and Ω̂2 ≪ 1. This implies that, in the first term, the overall

density is controlled by c0 > 0, so that n(r) should exhibit the standard parabolic

Thomas-Fermi profile in a trap. The magnetization M(r), however, does not di-

rectly couple to the trap potential, but exhibits a spatial variation since the last term

couples M(r) and n(r). Since c2 < 0, this term favors having small (or negative)

M(r) in region of large n(r) (i.e., at the trap center), leading to the central dip in the

magnetization shown in the right lower panel of Fig. 6-13.

6.4 Sound Mode

In the preceding section, we showed that the mixed BEC phase of bosons with

SOC exhibits an unusual density profile for the two species in a harmonic trapping

potential. Now we turn to another signature of the mixed BEC phase, which is the

Bogoliubov sound velocity, focusing on the case of a uniform condensate. We work

in the experimental regime requiring c2 > 0 and c′↑↓ = 2c0Ω̂2 > 0 in this section.
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Using the effective Hamiltonian for the ↑′ and ↓′ states, consisting of Eq. 6.7 and

Eq. 6.10), we have the time-dependent Gross-Pitaevskii equations (recall h̄ = 1):

(i∂t−ε(p) + µ↑′)ψ↑′ = c0|ψ↑′ |2ψ↑′ + c̄|ψ↓′ |2ψ↑′ (6.64)

(i∂t−ε(p) + µ↓′)ψ↓′ =(c0 + c2)|ψ↓′ |2ψ↓′ + c̄|ψ↑′ |2ψ↓′ ,

where we defined c̄ ≡ c0(1+ Ω̂2)+ c2. Here, ε(p) is the effective dispersion Eq. 6.8),

and p = −i∇ is the momentum operator.

The next step is to consider small time-dependent fluctuations ϕσ(r, t) around

the equilibrium mixed phase solution, writing ψσ(r, t) = ψσ + ϕσ(r, t), where ψσ

is the homogeneous mixed-phase solution satisfying Eq. 6.24, that we'll take to be

real below. We can further express the fluctuation part as

ϕσ = uσ(r)e−iωt + v∗σ(r)e
iωt. (6.65)

Plugging this into the time-dependent GP equations, keeping only linear terms in

the fluctuations, and eliminating the chemical potentials using Eq. 6.24, we obtain

P



u↑′(r)

v↑′(r)

u↓′(r)

v↓′(r)


= ω



u↑′(r)

v↑′(r)

u↓′(r)

v↓′(r)


, (6.66)
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where the matrix P

P =



ε(p) + c0ψ2
↑′ c0ψ2

↑′ c̄ψ↑′ψ↓′ c̄ψ↑′ψ↓′

−c0ψ2
↑′ −ε(p)− c0ψ2

↑′ −c̄ψ↑′ψ↓′ −c̄ψ↑′ψ↓′

c̄ψ↑′ψ↓′ c̄ψ↑′ψ↓′ ε(p) + (c0 + c2)ψ
2
↓′ (c0 + c2)ψ

2
↓′

−c̄ψ↑′ψ↓′ −c̄ψ↑′ψ↓′ −(c0 + c2)ψ
2
↓′ −ε(p)− (c0 + c2)ψ

2
↓′


,

(6.67)

describing the collective Bogoliubov modes in the mixed BEC phase. The four

eigenfrequencies ω(k) are straightforwardly found, after assuming plane wave so-

lutions uσ(r) = uσeik·r and vσ(r) = vσeik·r. They are ±ωα with α = ± and

ω± =

√
ε(p)2 + ε(p)(A ±

√
A2 − 4Dn↑′n↓′), (6.68)

where we defined

A = c2n↓′ + c0(n↑′ + n↓′), (6.69)

where D is the denominator defined in Eq. 6.28 that also determines the phase

boundary at fixed densities, with stability of the mixed-BEC requiring D > 0.

Although both of ω±(p) are linearly dispersing at low p, representing Bogoli-

ubov sound modes for BEC with spin-orbit coupling, we now focus on ω−(p)

which has interesting behavior as a function of the light-atom coupling. We first

note that, due to the anisotropy of ε(p), the corresponding sound velocity is smaller

for modes propagating along the light-induced SOC direction (i.e. the x̂ axis) than

for modes propagating perpendicular to it. Explicitly, we find vx = v⊥
√

1 − Ω̂2,

so that vx = v⊥ for Ω̂ = 0 (in the limit of no light-atom coupling). To obtain v⊥,

110



0.001 0.002 0.003 W
` 2

0.02

0.04

0.06

0.08

v�mm s-1

0.001502 0.001508

0.0487

0.0489

W
` 2

v�
m

m
s-

1

Figure 6-18: The main plot shows the Bogoliubov sound velocity in the mixed BEC
phase, as a function of normalized light-atom coupling, which vanishes at the tran-
sition to the regime of phase separation. At this scale, it is not possible to discern the
difference between vx and v⊥ (for sound modes along the SOC direction and per-
pendicular to it, respectively), although the inset, a zoom-in to these curves, shows
the slight difference. In this inset, the dashed curve is v⊥, and the solid curve is vx.

we choose p along the ŷ or ẑ direction. Then, v⊥ = dω−
dp |p→0 with

v⊥ =
1√
2m

√
A −

√
A2 − 4Dn↑′n↓′ . (6.70)

For a spin-orbit coupled BEC in the mixed phase with fixed densities n↑′ and n↓′ (or

fixed n↑ and n↓), Eq. 6.70 describes a collective superfluid sound mode. From the

form of this equation, it is clear that D > 0 is required and that v⊥ → 0 for D → 0,

with increasing light-atom coupling Ω̂, as the system approaches the regime of

phase separation.

In Fig. 6-18, we illustrate this for the case of a mixed BEC state with n↑ =

0.6 × 1020/m3 and n↓ = 1.3 × 1020/m3 (with c0 and c2 the same as in the preceding

section). Note that the smallness of c2 for 87Rb implies that the mixed BEC phase

is only stable for very small values of Ω̂, further implying that, in practice, v⊥ and

vx are nearly identical for realistic parameters. Thus, at this scale, the main plot

could be either v⊥ or vx. Although the difference between these two velocities is
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likely not observable, their vanishing as the phase boundary is approached would

provide a distinct signature of the mixed-BEC phase.

6.5 Concluding Remarks

In this chapter, we have deployed the mean-field approximation to study a 87Rb

BEC with light-induced artificial SOC following the original setup of the Spielman

group at NIST [34]. Although previous theoretical works often make simplifying

assumptions when studying this system, such as focusing on the balanced case

(i.e., Zeeman energy difference δ = 0) or neglecting the spin-dependence of the

interactions, we find that accounting for these effects leads to novel insight into the

behavior of BEC's with artificial SOC.

In particular, we have analyzed the mean-field phase diagram as a function of δ

(which is equivalent to a chemical potential difference for the two dressed states),

the Raman coupling strength Ω, and interaction parameters. We argued that the

evolution of this phase diagram as a function of chemical potentials implies (within

the local density approximation) an unusual density dependence in a harmonic

trap, with the dressed spin-↑ (m = 0) bosons showing a density maximum with

increasing radius, where the dressed spin-↓ (m = −1) density vanishes. We also

predict that the mixed-BEC phase of bosons with artificial SOC should exhibit a

Bogolibov sound mode, the velocity of which vanishes as the regime of phase sep-

aration is approached.
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CHAPTER 7
CONCLUSION

Ultracold atoms have provided physicists a remarkable new se ing to observe

new quantum many-body phenomena. Its high controllability makes more param-

eter ranges accessible and more Hamiltonians realistic. This thesis work is about

the novel phases and unconventional properties of ultracold atomic many-body

Bose-Einstein Condensate systems.

In previous chapters, we mainly studied the phase transitions and the density

dependence in non-interacting and interacting BEC in an optical la ice (Chapters

2, 3 and 4), and for BEC with light-induced spin-orbit coupling (Chapters 5 and 6).

For each topic, we introduced its background and related experiments, explained

its theoretical model, applied the model to a few systems and tried to capture the

physical implications through calculating physical observables that can be com-

pared with or verified by experiments.

The first half of this thesis aims at developing a natural formalism for bosons in

optical la ices, looking for physics beyond the tight-binding Bose Hubbard Model.

We started from the single-particle states for atoms in a periodic potential by solv-

ing the Mathieu equation, and thereby developed an effective self-consistent the-

ory describing interacting bosons based on Hartree Fock approximation. In these

chapters, we examined the relationship between observables such as the transi-

tion temperature, condensate fraction and the density profile after time-of-flight

free expansion, and parameters such as the optical la ice depth and the interaction

strength.
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In the second half of this thesis, we investigate the interesting physics brought

by the artificial spin-orbit coupling implemented on interacting bosons, which cre-

ates a two-species interacting system that possesses a unique band structure. We

studied the experimental setup by the Spielman group [34] in detail, concentrat-

ing on the mixed BEC phase formed by superposition of the two spin states. Our

research on this miscible phase within mean-field approximation predicts an un-

usual density profile by implication of the phase diagrams that can be explained by

the intrinsic imbalanced interaction of the two spin states. We also find the collec-

tive sound modes to be a signature of the mixed BEC phase that is worth probing

experimentally.

Throughout our research, we strive to approach our problems in a very essential

way. Our Mathieu equation formalism is directly based on the pristine Schröindger

Equation, providing a method to to explore physics in regimes where the Hubbard

model breaks down. Our study on bosons with light-induced spin-orbit coupling

also starts from the band structure and the low-energy eigenstates, then builds up

an effective theory to determine the stable states. As we try to extract the rich

physics entailed from elegant theoretical models, we also make efforts at the same

time to grasp current experiments. This course to address our research goals has

been proved useful so far.

The thesis research is a small part of the ongoing effort of the atomic physics

and condensed ma er physics communities to understand the interplay between

interaction, optical la ices and gauge fields. Bosons in optical la ices and bosons

with strong interactions are fields that have been extensively studied. The com-

petition between localization and de-localization for interacting bosons in optical

la ices is a fruitful topic that has brought many insights for traditional condensed

ma er systems. However, as we have shown in this thesis, there still can be new
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ways to describe the physical properties of such systems. Also, bosons with arti-

ficial gauge fields have a racted both experimental and theoretical a entions re-

cently. Several kinds of synthetic gauge fields, including electric fields, magnetic

fields and spin-orbit coupling have been proposed and/or realized. We anticipate

a larger combination among interaction, optical la ices and gauge fields within

various parameter regimes will bring more exotic phases and give rise to more in-

triguing behaviors of the system near phase transitions or critical points.

There are several possible extensions to our work. For example, it would be

interesting to study bosons in optical la ices with gauge fields, as realized by the

Ke erle Group [54] and the Bloch group [63] recently. Another possible addition is

the response of the interacting bosons to a dynamical modulation of the optical lat-

tices. It is also worth noting that spin-orbit coupling plays an important role in the

transport mechanism of topological insulators, which is a peculiar state of ma er

that conducts at the surface while insulates in the bulk [39]. Although topological

insulators have been realized in other materials, cold atoms is still a possible candi-

date and we hope our understanding of the light induced spin-orbit coupling will

be proved helpful in finding the cold atom equivalent of topological insulators.
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APPENDIX A
BOGOLIUBOV HAMILTONIAN

In this Appendix, we include the clipped details in Section. 2.3.2 in deriving the

approximated Hamiltonian.

The grand canonical Hamiltonian is

K̂ =
∫

d3rΨ†(r)[− h̄2

2m
∇2 − µ]Ψ(r)+

1
2

∫
d3r

∫
d3r′ Ψ†(r)Ψ†(r′)v(r− r′)Ψ(r′)Ψ(r),

(A.1)

Use the Bogliubov prescription Equations 2.21 and 2.22, and the following deduc-

tions,
1
V

∫
d3r a†

0(−
h̄2

2m
∇2 − µ)a0 = −µN0; (A.2)

1√
V

∫
d3r a†

0(−
h̄2

2m
∇2 − µ)Ψ̂1(r) =

1
V

∫
d3r a†

0(−
h̄2

2m
∇2 − µ) ∑

k ̸=0
âkeik·r = 0;

(A.3)∫
d3r Ψ̂†

1(r)(−
h̄2

2m
∇2 − µ)Ψ̂1(r)

=
1
V ∑

k,k′ ̸=0

∫
d3r â†

ke−ik·r(− h̄2

2m
∇2 − µ)âk′eik′·r

= ∑
k,k′ ̸=0

δk,k′(Ek′ − µ)â†
k âk′ = ∑

k ̸=0
(Ek − µ)â†

k âk;

(A.4)

1
2

∫
d3r

∫
d3r′

â†
0√
V

â†
0√
V

v(r − r′)
â0√
V

â0√
V

=
1
2

n0
2V

∫
dx ∑

q
e−iq·xv(q) ≈ 1

2
n0

2Vv(q = 0);
(A.5)

1
2

∫
dr

∫
dr′

â†
0√
V

â†
0√
V

v(r − r′)
â0√
V

Ψ̂1(r) = 0; (A.6)
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1
2

∫
dr

∫
dr′

â†
0√
V

â†
0√
V

v(r − r′)Ψ̂1(r′)Ψ̂1(r)

=
1
2

â†
0√
V

â†
0√
V

∫
dr

∫
dr′ ∑

q
e−iq·(r−r′)v(q)Ψ̂1(r′)Ψ̂1(r)

=
1
2

N0 ∑
q

v(q)Ψ̂1(q)Ψ̂1(−q)

=
1
2

n0 ∑
q

v(q)âq â−q;

(A.7)

1
2

∫
dr

∫
dr′Ψ̂†

1(r)
â†

0√
V

v(r − r′)Ψ̂1(r′)
â0√
V

+
1
2

∫
dr

∫
dr′

â†
0√
V

Ψ̂†
1(r

′)v(r − r′)
â0√
V

Ψ̂1(r)

=n0

∫
dr

∫
dr′Ψ̂†

1(r)v(r − r′)Ψ̂1(r′)

=N0 ∑
q

v(q)Ψ̂†
1(q)Ψ̂1(q)

=n0 ∑
q

v(q)â†
q âq;

(A.8)

1
2

∫
dr

∫
dr′Ψ̂†

1(r)
â†

0√
V

v(r − r′)Ψ̂1(r)
â0√
V

+
1
2

∫
dr

∫
dr′

â†
0√
V

Ψ̂†
1(r

′)v(r − r′)
â0√
V

Ψ̂1(r′)

=n0

∫
dr

∫
dr′Ψ̂†

1(r)v(r − r′)Ψ̂1(r)

=n0

∫
dr

∫
dr′ ∑

k,k′ ̸=0
∑
q

e−ik·re(r−r′)·qeik′·r â†
kv(q)âk′

=n0 ∑
k,k′ ̸=0

∑
q

δq,0v(q)δk,q+k′ â†
k âk′

=n0 ∑
k ̸=0

v(0)â†
k âk,

(A.9)

we can obtain the final result of the grand canonical Hamiltonian K̂:

K̂ = −µN0 + ∑
k ̸=0

(Ek − µ)â†
k âk + E0 +

7

∑
j=1

V̂j = K̂0 +
7

∑
j=1

V̂j, (A.10)
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where

E0 =
1
2

n0
2Vv(0); (A.11)

V̂1 =
1
2

n0 ∑
q

v(q)âq â−q; (A.12)

V̂2 =
1
2

n0 ∑
q

v(q)â†
q â†

−q; (A.13)

V̂3 = n0 ∑
q

v(q)â†
q âq; (A.14)

V̂4 = n0 ∑
k ̸=0

v(0)â†
k âk; (A.15)

V̂5 =

√
n0√
V

∑
k ̸=0,q

v(q)â†
k+q âk âq; (A.16)

V̂6 =

√
n0√
V

∑
k ̸=0,q

v(q)â†
k â†

q âk+q; (A.17)

V̂7 =
1

2V ∑
k,k′ ̸=0,q

v(q)â†
k+q â†

k′−q âk′ âk, (A.18)

where the Fourier transformed interaction

v(q) ≡
∫

dxeiq·xv(x). (A.19)

For an extreme case in which only exists excited particles, i.e. thermal gas, only V̂7

is left.

Normally, in the regime where the Bogoliubov Approximation applies, since

the excited particles are few compared to the dominant majority of particles in the

condensate, we can neglect V̂5 ,V̂6 ,V̂7.
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APPENDIX B
GREEN'S FUNCTION

In this Appendix, we introduce the use of Green's function in a translationally

invariant or discrete translationally invariant (e.g. la ice) interacting boson system.

The Green's function is defined as a function of spatial coordinates r, r′ and

imaginary time τ, τ′:

G(r, τ; r′, τ′) = −
⟨

TτΦ(r, τ)Φ†(r′, τ′)
⟩

, (B.1)

where Tτ is the time ordering operator, meaning that the field operators following

it are to be ordered in the way that their time arguments increase from right to left.

By virtue of the translational invariance for imaginary time, we can set τ′ = 0:

G(r, r′; τ, 0) = −
⟨

TτΨ(r, τ)Ψ†(r′, 0)
⟩

. (B.2)

We begin by noting that the Dyson's Equation Eq. 2.30 can be transformed into

the Matsubara space,

G(r, r′; iΩm) = G0(r, r′; iΩm)+
∫

d3r1d3r2 G0(r, r1; iΩm)Σ(r1, r2; iΩm)G(r2, r′; iΩm).

(B.3)

Since the boson field operators can be expanded in orthonormal basis

Ψ(r, τ) = ∑
nk

ψnk(r)bnk(τ), (B.4)
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the Green's function becomes

G(r, r′; τ, 0) = −∑
nn′

∑
kk′

ψnk(r)ψ∗
n′k′(r′)⟨Tτbnk(τ)b†

n′k′(0)⟩. (B.5)

The Green's function after a replacement of R, where R is any vector in a transla-

tionally invariant system or the periodic vector in a discrete translationally invari-

ant system, is

G(r + R, r′ + R; τ, 0) = −∑
nn′

∑
kk′

eik·Rψnk(r)e−ik′·Rψ∗
n′k′(r′)⟨Tτbnk(τ)b†

n′k′(0)⟩.

(B.6)

For such systems, we have

G(r + R, r′ + R; τ, 0) = G(r, r′; τ, 0), (B.7)

which means Eq. B.5 and Eq. B.6 should be equivalent. Therefore k = k′, which is

also self-evident as momentum conservation. This condition forces the averaging

bracket to contain a δ-function,

⟨Tτbnk(τ)b†
n′,k′(0)⟩ ∝ δ(k, k′)Gnn′(k, τ), (B.8)

which tells us the Green's function B.5 is diagonal about k. Expanding B.5 formally,

G(r, r′; τ, 0) = ∑
nn′

∑
k

ψnk(r)ψ∗
n′k(r

′)Gnn′(k, τ), (B.9)

which can be, of course, transformed again into Matsubara space,

G(r, r′; iΩm) = ∑
nn′

∑
k

ψnk(r)ψ∗
n′k(r

′)Gnn′(k; iΩm). (B.10)
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Assuming G0(r, r′; τ, 0),Σ(r, r′; τ, 0) both have the same symmetry as in Eq. B.7,

they should also be diagonal in k. So in Matsubara space we have

G0(r, r′; iΩm) = ∑
nn′

∑
k

ψnk(r)ψ∗
n′k(r

′)G0nn′(k; iΩm), (B.11)

and

Σ(r, r′; iΩm) = ∑
nn′

∑
k

ψnk(r)ψ∗
n′k(r

′)Σnn′(k; iΩm). (B.12)

Plug in the above three equations into the Dyson Equation Eq. B.3, and use the

following orthogonal relationship [27]

∫
drψ∗

nk(r)ψn′k′(r) = δnn′δ(k, k′), (B.13)

we obtain

Gnn′(k; iΩm) = G0nn′(k; iΩm) + ∑
n1n2

G0nn1
(k; iΩm)Σn1n2(k; iΩm)Gn2n′(k; iΩm),

(B.14)

which can be rewri en in matrix forms in n, n′ space, with the second term natu-

rally becoming matrix multiplication

G(k; iΩm) = G0(k; iΩm) + G0(k; iΩm)Σ(k; iΩm)G(k; iΩm), (B.15)

or, more compactly,

G(k; iΩm) =
1

G−1
0 (k; iΩm)− Σ(k; iΩm)

. (B.16)
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If temperature is low, effects from higher bands can be neglected, we can make

the single-band approximation focusing on the lowest band only,

G(k; iΩm) ≈ G00(k; iΩm)

=
1

G0
−1
00 (k; iΩm)− Σ00(k; iΩm)

=
1

iΩm − ε0k − Σ00(k; iΩm)
,

(B.17)

where the subscripts 00 refer to n = n′ = 0.

126



APPENDIX C
BLOCH FUNCTION ANDWANNIER FUNCTION

This appendix introduces two important complete bases: Bloch Function and

Wannier Function.

C.1 Bloch Function

The Bloch states of single particle wavefunctions in a periodic system are:

ψnk(r) = eik·runk(r), (C.1)

where n is the band index and k is the momentum within the first Brillouin Zone.

unk(r) is periodic in r. Therefore Bloch functions satisfy the following relationship:

ψnk(r + R) = eik·Rψnk(r), (C.2)

where R is a la ice vector. Bloch functions can also be wri en in the following form

ψnk(r) = ∑
G

ϕn(k − G)ei(k−G)·r, (C.3)

where G is a reciprocal la ice vector, and ϕn(k) is the momentum Bloch function.
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{ψnk} is a complete set, because of the following orthonormality relations [27]:

∑
nk

ψ∗
nk(r)ψnk(r′) = δ(r − r′); (C.4)∫

dr ψ∗
nk(r)ψn′k′(r) = δnn′δ(k, k′); (C.5)

∑
n

ϕ∗
n(k − G)ϕn(k − G′) = δGG′ ; (C.6)

∑
n

ϕ∗
n(k − G)ϕn′(k − G) = δnn′ , (C.7)

where

δ(k, k′) =


δkk′ if k discrete;

(2π)3

V
δ(k − k′) if k continuous,

(C.8)

where V is volume. So we can expand any function Φ(r) using Bloch functions:

Φ(r) =
1√
V

∑
nk

cnkψnk(r). (C.9)

C.2 Wannier Function

Expand the Bloch function in Fourier Series, we come to Wannier functions

ψnk(r) = ∑
R

wnR(r)eik·R, (C.10)

so the Wannier functions can be expressed as

wnR(r) =
1
υk

∫
υk

d3kψnk(r)e−ik·R, (C.11)

υk is the volume of one Brillouin zone,

υk =
(2π)3

υ
. (C.12)
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Consider the periodicity of the Bloch function

ψnk(r + R) = ψnk(r)eik·R, (C.13)

We have

wnR(r) =
1
υk

∫
υk

d3kψnk(r)e−ik·R =
1
υk

∫
υk

d3kψnk(r − R), (C.14)

which is only dependent on r − R. Therefore we can rewrite the Wannier functions

in a form that only depends on r:

wn(r) ≡ wnR(r + R) =
1
υk

∫
υk

d3kψnk(r). (C.15)

And, ψnk(r), in return, can be wri en as

ψnk(r) = ∑
R

wn(r − R)eik·R. (C.16)

The orthonormal relationship of Wannier functions can be immediately derived

from that of the Bloch functions,

∫
d3rw∗

n(r − R)wm(r − R′) = δnmδRR′ ; (C.17)

∑
Rn

w∗
n(r

′ − R)wn(r − R) = δ(r − r′). (C.18)

Then the Wannier functions can be used as the basis to expand any function

Φ(r) = ∑
nR

wn(r − R)bn(R). (C.19)
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Compare with Eq. C.9 and C.10, we get the relationship between cnq and bn(R).

bn(R) =
1√
V

∑
q

cnqeiq·R; (C.20)

cnq =
1√
V

∑
R

bn(R)e−iq·R. (C.21)

Plug Eq. C.19 into the non-interacting Hamiltonian

H0 =
∫

V
d3r ∑

n1R1

∑
n2R2

b†
n1
(R1)w∗

n(r1 − R1)(ĥ − µ)bn2(R2)wn(r2 − R2), (C.22)

where ĥ includes the kinetic term and external potentials. Now

ĥwn(r2 −R2) =
1
υk

∫
υk

d3kϵnkψnk(r2 −R2) =
1
υk

∫
υk

d3kϵn2k ∑
R′

wn2(r2 −R2 −R′)eik·R′
,

(C.23)

where ϵnk is the eigenvalue of Bloch function.
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APPENDIX D
MATHIEU EQUATION

This Appendix introduces the mathematical details of the Mathieu Equation.

The Mathieu Equation (Eq. 3.10) has the following solution:

y = C1 ce(a, q, u) + C2 se(a, q, u), (D.1)

where C1 and C2 are constants, ce(a, q, u) is the Mathieu even function, which is

even symmetric (analogous to cosine). se(a, q, u) is the Mathieu odd function (anal-

ogous to sine). Fig. D− 1 shows the even Mathieu Function ce(a, q, u)when a = 0.2,

q = 0.5. The shape of this function is high frequency oscillation enveloped in low

frequency cosine-shaped bands. When q = 0, the function is reduced to a pure

cosine wave, shown in Fig. D − 2. The same can be said for the odd Mathieu func-

tion se(a = 0.2, q = 0.5, u) and se(a = 0.2, q = 0, u), as shown in Fig. D − 3 and

Fig. D − 4.

-60 -40 -20 20 40 60
u

-1.0

-0.5

0.5

1.0

ce

Figure D-1: The even Mathieu Function ce(a, q, u) when a = 0.2, q = 0.5.
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Figure D-2: The even Mathieu Function ce(a, q, u) becomes cosine function when
a = 0.2, q = 0.
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1.0
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Figure D-3: The odd Mathieu Function se(a, q, u) when a = 0.2, q = 0.5.

C F

Mathieu functions are real when the parameter a is from Mathieu Characteristic

Functions, which depend on ν (ν physically means quasi-momentum in the optical

la ice problem) and q. Characteristic Functions for even Mathieu functions ce are

denoted as aν(q), and Characteristic Functions for odd Mathieu functions se are

denoted as bν(q).

Characteristic functions have discontinuity (or band gap in the physics lan-

guage of dispersion) at integer ν values. Fig. D − 5 shows the Characteristic Func-

tion aν(q) when q = 1, indicating that the function is even symmetric about ν.

Fig. D − 6 compares aν(q) when q = 0, 0.5, 1. The physical interpretation is that the
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Figure D-4: The odd Mathieu Function se(a, q, u) becomes sine function when a =
0.2, q = 0.

ground state energy (at ν = 0) is lowered as the optical la ice potential q becomes

larger. This trend of the minima of aν(q) is explicitly described in Fig. D − 7. In

fact, aν(q) is also even symmetric about q, as shown in Fig. D − 8 and Fig. D − 9.

-3 -2 -1 1 2 3
Ν

2

4

6

8

aΝHq=1L

Figure D-5: Mathieu Characteristic Function aν(q) for the even Mathieu function
when q = 1. The function has an even symmetry about ν. Here q = V0/4Ere indi-
cates the la ice depth, ν is essentially the quasi-momentum, and a(ν, q) measures
the energy. For particles in a periodic potential, this diagram represents energy
bands in the extended-zone scheme.

Characteristic Functions aν(q) and bν(q) are equal except at integer ν's (ν = n).

Shown in Fig. D − 10, at these discontinuous spots, bn(q) equals an(q) at q = 0 and

asymptotically approaches an−1(q) at q = ∞. The former is because at q = 0 the

Characteristic Function becomes a continuous parabola, and the la er is due to that
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Figure D-6: Mathieu Characteristic Function aν(q) for the even Mathieu function
when q = 1, 0.5, 0. The physical interpretation is that the ground state energy is
lowered as the optical la ice potential q becomes larger. The Characteristic Func-
tion aν(q) is reduced to parabola when q = 0.

2 4 6 8
q

-10

-8

-6

-4

-2

aΝ=0HqL

Figure D-7: The minima of the Mathieu Characteristic Function aν(q) are at ν = 0.
This graph shows its value at the minima as a function of q.

the bands are more and more fla ened when q increases. If q can take negative val-

ues, a2n(q) and a2n+1(q), b2n+1(q) and b2n+2(q) are respective pairs that approach

with each other at q = −∞, due to the non-symmetry of a2n+1(q) and b2n+1(q). It

is also worth noting that bν(q) is undefined at ν = 0.

Besides these integer ν's, aν(q) = bν(q) and the even symmetries of aν(q) applies

to bν(q).

We observe that the parameter ν in Characteristic Functions is the number of

periods in the Mathieu Functions in the interval [0, 2π]. In Fig. D − 11, the even

Mathieu Functions ce(a, q = 1, u) are plo ed as a function of u, where a's are from
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aΝ=1.2HqL

aΝ=1HqL

aΝ=0.8HqL

Figure D-8: The Mathieu Characteristic Function aν(q) when ν = 0.8, 1.2, both
of which are even symmetric about q. Note that the Characteristic Functions are
discontinuous at integer ν, so the ν = 1 curve shown here has asymptotic behavior
at large optical la ice depth..
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aΝHq=1.5L+1

aΝHq=-1.5L

Figure D-9: The Mathieu Characteristic Functions aν(q) for q = −1.5 and q = 1.5
are identical. Here to visually differentiate the two curves we lift the former curve
by 1 everywhere.

aν=1.5(q = 1) and aν=2.5(q = 1). One can see there are respectively 1.5 and 2.5

periods for these two curves between 0 and 2π.

When a is not from Characteristic Functions, Mathieu Functions are complex in

value. Fig. D − 12 shows that Mathieu Functions are complex for a large part of

the parametric space.
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Figure D-10: The Characteristic Functions are discontinuous at integer ν's, the only
spots when the even Characteristic Function aν(q) and the odd Characteristic Func-
tion bν(q) show differences. In fact, bn(q) equals an(q) at q = 0, and asymptotically
approaches an−1(q) at q = ∞. Also shown here, when q takes negative values,
a2n and a2n+1, b2n+1 and b2n+2 are asymptotic pairs at q = −∞, due to the non-
symmetry of a2n+1 and b2n+1.
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Figure D-11: The even Mathieu Functions ce(a, q, u) as a function of u when a is
from aν=1.5(q) and aν=2.5(q). One can see ν equals the number of periods in [0, 2π]
in ce(a, q, u). Here q = 1.
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Figure D-12: Mathieu Functions can be complex valued in large ranges when a is
not from Characteristic Functions. Here we plot the ratio of the real part of the
even Mathieu function ce(a, q, u) to its modulus, as a function of continuous a. The
curve take real values When the ratio hits 1.
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APPENDIX E
BOUNDARYCONDITIONSANDFINITESIZEEFFECT

Actual experiments take place in finite systems, before we step into calculations

for such systems we need to choose proper boundary conditions. We discuss two

kinds of boundary conditions here: vanishing boundary (hard wall) and periodic

boundary. The former assumes a box shaped potential well with a flat bo om,

while the la er is a theoretical model in which the boundary on one end is made

to connect with the other end.

E.1 Vanishing Boundary Condition

For vanishing boundaries, the 1-D wavefunction is divided into even and odd

states

ϕ(ν, q, x) =


√

2
Lce(aν, q, kolx) ν = 2n+1

Ns
;√

2
Lse(bν, q, kolx) ν = 2n

Ns
,

(E.1)

which makes analogue to the particle-in-a-box problem. Fig. E − 1 shows the first

four bands (when Ns is naively taken as 1 for simplicity), and they make perfect

analog to particle-in-a-box wave functions.

The Fourier transform of the wavefunction is

ϕ(ν, q, k) =

√
2
L

∫ L/2

−L/2
dxeikxϕ(ν, q, x)

=


2
L

∫ L/2
−L/2 dx cos(kx)ce(aν, q, kolx) ν = 2n

Ns
;

2
L

∫ L/2
−L/2 dx sin(kx)se(bν, q, kolx) ν = 2n+1

Ns
.

(E.2)
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Figure E-1: The wave functions of bosons in a periodic potential can be solved
from the Mathieu Equation. The eigenfunctions of the Mathieu Equation are the
even ce states and the odd se states. In analogy to the particle-in-a-box problem, the
nodes of the wave functions increase as the label of the state grows. ν is the quasi-
momentum, u = kolx is a dimensionless spacial variable. The first four Mathieu
wave functions when L = 2 and Ns = 1 are shown here.

The wavefunctions in the real and momentum spaces are related by

ϕ(ν, q, x) =

√
2
L ∑

k=mπ/L
eikxϕ(ν, q, k), (E.3)

where m is an integer. The 3D Fourier transformed wavefunction

Φ(ν, q, k) = ϕ(ν1, q, k1)ϕ(ν2, q, k2)ϕ(ν3, q, k3), (E.4)

where ν, k stand for vectors (ν1, ν2, ν3) and (k1, k2, k3), respectively.

E.2 Periodic Boundary Condition

For periodic boundary conditions, wedefine a complexMathieu function, which

makes analogue to Euler's formula.

me(ν, q, u) = ce(aν, q, u) + i sgn(ν)se(bν, q, u), (E.5)
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where ce and se are respectively even and odd Mathieu functions, aν and bν are their

Characteristic Functions. The 1-d periodic boundary condition wave function is

ϕ(n, q, x) =


√

1
L me(2n/Ns, q, kolx) if n ̸= 0;√
2
L ce(a0, q, kolx) if n = 0.

(E.6)

This definition is explained as follows. When n ̸= 0, from Bloch theorem

me(ν, q, u + 2mπ) = e2iπmνme(ν, q, u), (E.7)

where m is an integer. To satisfy e2iπmν = 1, we need

ν = n/m, (E.8)

where n is also an integer. Now we require that the original box can be translation-

ally repeated as the smallest period,

me(ν, q, u + Nsπ) = me(ν, q, u), (E.9)

this means the smallest m is

m = Ns/2, (E.10)

then

ν = 2n/Ns, (E.11)

which proves the n ̸= 0 wave function in Eq. E.6. Because now the wave function

contains both real and imaginary parts, the normalizing factor is
√

1/L.

However, when n = 0, the odd Mathieu function se(bν, q, u) is not defined in

literature. It is natural to let se(b0, q, u) = 0. With only ce(a0, q, u) in ϕ0(x), the

normalizing factor must be
√

2
L .
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The reason to add a sign function to se(bν, q, u) is to ensure its odd parity for

both ν and u.

sgn(ν)se(bν, q,−u) = −sgn(ν)se(bν, q, u) = sgn(−ν)se(b−ν, q, u), (E.12)

meanwhile the even symmetry of ce(aν, q, u) does not need modification.

We can expand the Mathieu functions in Fourier series (n ̸= 0)

me(2n/Ns, q, kolx) =
∞

∑
m=−∞

c2n/Ns
2m (q)ei(2n/Ns+2m)kol x. (E.13)

Fourier transform to obtain c2n/Ns
2m coefficients,

c2n/Ns
2m (q) =

1
L

∫ L/2

−L/2
dxe−i(2n/Ns+2m)kol xme(2n/Ns, q, kolx). (E.14)

When n = 0, the coefficient is just

c0
2m(q) =

√
2

L

∫ L/2

−L/2
dxe−2imkol xce(a0, q, kolx). (E.15)

The 3-d coefficient is

C[m, n, q] = c2n1/Ns
2m1

(q)c2n2/Ns
2m2

(q)c2n3/Ns
2m3

(q), (E.16)

where n and m are 3-D vectors n = (n1, n2, n3), m = (m1, m2, m3). The Fourier

transformed wavefunction is

Φ(n, q, k)

=
1
V

∫
d3xeik·x ∑

m
C[m, n, q]ei(2n/Ns+2m)kol ·x

=∑
m

C[m, n, q]δ(2
n
Ns

+ 2m,− k
kol

),

(E.17)
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where the wave vector k = (k1, k2, k3). The following orthogonality relation is

applied to obtain the Kronecker Delta function.

1
L

∫ L

0
dxeimxe−inx = δ(m, n), (E.18)

where m, n are integers. When n = 0, the ground state wavefunction can also be

treated similarly

Φ(0, q, k) = ∑
m

C[m, 0, q]δ(2m,− k
kol

). (E.19)

Now we have to deal with the finite size effect in the periodic boundary condi-

tion. By using Eq. E.18 it is assumed k = skol where s is an integer. This is not true

in real experiments. If k is continuous, we generally don't get Kronecker delta, but

a broadened smeared delta function.

1
L

∫ L/2

−L/2
dxeix(k1+2kol

n1
Ns +2kolm1) =

2
L

sin( L
2 (k1 + 2kol

n1
Ns

+ 2kolm1))

k1 + 2kol
n1
Ns

+ 2kolm1
. (E.20)

This smeared delta gives a finite width to all the peaks in the density distribution.

When k1 + 2kol
n1
Ns

+ 2kolm1 = 0 or L → 0, the above factor becomes 1, giving a

Kronecker delta. When k1 + 2kol
n1
Ns

+ 2kolm1 ̸= 0, let L → ∞, the factor becomes

zero, eliminating width of any peaks. This shows the peaks have no width in a

truly infinite system.

The 3-d smeared delta function is defined as

δV(k + 2kol
n
Ns

+ 2kolm)

=
8
V ∏

i=x,y,z

sin(L(ki + 2kol
ni
Ns

+ 2kolmi)/2)

ki + 2kol
ni
Ns

+ 2kolmi
.

(E.21)
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APPENDIX F
PRECISION TEST

To do a numerical calculation, we need to set cutoffs for the upper and lower

limits of the numerical integral in Eq. 3.19. The purpose of this Appendix is to

verify that our numerical results are independent of this choice.

Ideally Λ = ∞ and ϵ = 0, but it's unrealistic to numerically integrate to infinity

and at ν1 = ν2 = ν3 = 0 singularity occurs. Therefore in actual calculation we need

to use cutoffs. Also, the integral is on positive ν only, not on [−Λ, Λ], since in both

vanishing and periodic boundary conditions ν are ratios of positive integers.

In Eq. 3.19, the integral on the right hand side of the equation is a function of q

and Tc, denoted as I(q, Tc). Therefore for given q and f , we can solve for Tc numer-

ically. Or we can assume critical temperatures Tc and see how the filling f changes.

Alternatively, Eq. 3.19 can be calculated in the spherical coordinate. Our calcu-

lation shows integrations using Cartesian coordinate and the spherical coordinate

give the same result, as expected. One advantage of the spherical coordinate is

that the singularity of the integrand at ϵ = 0 can be avoided by the inclusion of

the Jacobian of dν3. But at the same time, it is less straightforward in the spherical

coordinate to use integer values for Λ, which essentially is the Brillouin Zone we

are integrating over. Due to the lacking of a clear physical picture, we still stick to

Cartesian coordinate.

Physically, Λ indicates the number of bands in the dispersion that are included

in the integral. Characteristic Functions increase with ν, so the contribution to

I(q, Tc) from large ν can be neglected. For a certain combination of f and Tc, We

need to know what Λ is sufficient.
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Another technical subtlety is choosing the lower cutoff for the integral to avoid

singularity. The major contribution to the integral comes from when νi are small,

therefore the lower limit ϵ should be carefully chosen to ensure adequate precision

but not to consume undesirably long runtime.

In addition, allowing Mathematica to automatically set the number of recursions

for numerical integrals would usually exceed reasonable time frame, we can only

afford such luxury for a few individual calculations but not for across-the-board. So

we have used MaxRecursion option inMathematica to limit the number of recursions

for iteration, which should also be tested.

To summarize, we have to check if the choice of these three parameters are suffi-

cient to ensure precision: the upper cutoff Λ, the lower cutoff ϵ, and the number of

recursion. We will run the same calculation for multiple times with one parameter

of the three varying, and see if the result changes. For each case we test for both a

deep la ice of high q, and a no la ice extreme of zero q. Note that since we don't

have the real value as a reference, it is a precision test, we cannot do an accuracy

test .

Testing Λ We first look at the upper cutoff Λ. As we include more bands (i.e. in-

crease the upper cutoff), the integral approaches the total filling of the uncondensed

cloud. We assume a temperature in the vicinity of the critical temperature, and ob-

serve how fast the integral I stablizes with inclusion of more bands. Fig. F − 1

shows the filling as a function of Λ for q = 0, ϵ = 0.0001, and the number of recur-

sion is automatically set. One can see the curve goes into a platform after Λ = 3.

Similar plot for q = 4 is shown in Fig. F − 2, where ϵ = 0.0001, and the number

of recursion is also automatically set. Note the small scale of the horizontal axis.

The curve is stable from the beginning, indicating that for a system with deeper

Accuracy refers to how far the result is from the true value, while precision describes the range
of results in multiple runs, i.e. how reproducible the result is.
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la ice atoms tend to occupy over lower bands than a system with shallow la ice.

Therefore, including the first 4 to 5 bands is probably more than enough for fillings

that are not much larger than 1.
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Figure F-1: In the numerical integral, the atom filling is stablized when the first 3
bands are included for q = 0, ϵ = 0.0001, and the number of recursion is automat-
ically set. The critical temperature kBTc/Ere = 1.48.
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Figure F-2: In the numerical integral, the atom filling only fluctuates in very narrow
range for q = 4, indicating atoms occupying only the lowest band. Here ϵ = 0.0001,
the number of recursion is automatically set. The critical temperature kBTc/Ere =
33.7.

Testing ϵ Next we test for an acceptable value of the lower cutoff ϵ, since inte-

grating from 0 would bring singularity when the integral is done in Cartesian co-

ordinate. The contribution from near the band bo om is the largest, so we need to

carefully examine the effect of choosing finite ϵ.
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We again assume a critical temperature, and look at the filling increasing with

including more bands. This time, we plot the fillings calculated with different ϵ

in the same graph, so that we can see how the integral converges to a certain limit

when ϵ approaches 0.
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Figure F-3: The integrated value of the atom filling is larger when the lower cutoff ϵ
takes a smaller value, but the increment falls under 1/1000 when ϵ goes down from
10−5 to 10−6, showing a converging trend. Here the optical la ice depth q = 0. The
number of recursion is automatically set. The critical temperature kBTc/Ere = 1.48.
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Figure F-4: The integrated value of the atom filling is larger when the lower cutoff ϵ
takes a smaller value, but the increment falls under 1/1000 when ϵ goes down from
10−5 to 10−6, showing a converging trend. Here the optical la ice depth q = 4. The
number of recursion is automatically set. The critical temperature kBTc/Ere = 33.7.

Fig. F − 3 shows at q = 0 the calculated filling is stablized within 1/1000 when

ϵ goes below 10−5. A similar trend for q = 4 is shown in Fig. F − 4. From the point

of numerical precision, this is enough.
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Testing the number of recursion MaxRecursion is an artificially set parameter in

Mathematica. The more recursions allowed in numerical integrals, the more accu-

rate results they would yield. If the number of recursion is good enough, increasing

it would not change the integral result.

We again assume a critical temperature that makes the calculated filling close

to 1, and do the same integral for different MaxRecursion. Both Fig. F − 5 and

Fig. F − 5 show a saturating trend when there are more than 2 recursions. To be

on the safe side, we usually set MaxRecursion to be 4 or 5 in this project.
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Figure F-5: This plot shows the calculated fillings at different number of recursions
when the optical la ice depth q = 0. MaxRecursion is an artificially set parameter
in Mathematica. When it is larger than 2, filling shows a saturating trend.
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Figure F-6: This plot shows the calculated fillings at different number of recursions
when the optical la ice depth q = 4. MaxRecursion is an artificially set parameter
in Mathematica. When it is larger than 2, filling shows a saturating trend.
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APPENDIX G
FREE EXPANSION

After the trapping potential is turned off, a Bose gas will undergo free expan-

sion. Assume the potential is turned off at t = 0. The time dependent density

n(r, t) = TrρH(t)n̂(r) = TrρH(t)Φ̂†(r)Φ̂(r), (G.1)

where the field operators Φ†(r) and Φ(r) obey the commutation rule

[Φ̂(r), Φ̂†(r′)] = δ(r − r′), (G.2)

and ρH is the density matrix for the time dependent Hamiltonian

H(t) = H + Θ(−t)Htrap, (G.3)

where

Θ(t) =

 0, (t ≤ 0);

1, (t > 0).
(G.4)

We have

∂tρH(t) = −i[H(t), ρH(t)]. (G.5)

Integration gives

ρH(t) = ρH(−∞)− i
∫ t

−∞
dt′[H(t′), ρH(t′)]. (G.6)
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The Hamiltonian H is entirely time invariant during t < 0. Let H(t < 0) ≡ H∞

and ρH(t < 0) ≡ ρH∞ . Then

[H(t), ρH(t)] = 0 (t < 0). (G.7)

For t < 0, the density is

n(t < 0) ≡ n∞ = TrρH∞ Φ̂†(r)Φ̂(r). (G.8)

For t > 0, to obtain the density, we first consider

ρH(t) = ρH∞ − i
∫ t

0
dt′[H(t′), ρH(t′)]. (G.9)

Because

ρH(t) = ∑
n

tn

n!
∂nρH(t′)

∂t′n
|t′=0

= ρH(0) +
∞

∑
n=1

tn

n!
(−i)[H(t′),

∂n−1ρH(t′)
∂t′n−1 ]|t′=0

= ρH∞ − it[H, ρH∞ ] + (−i)2
∞

∑
n=2

tn

n!
[H(t′), [H(t′),

∂n−2ρH(t′)
∂t′n−2 ]]|t′=0

= ρH∞ − it[H, ρH∞ ] + (−i)2 t2

2!
[H, [H, ρH∞ ]] + (−i)3 t3

3!
[H, [H, [H, ρH∞ ]]] + ...

(G.10)

According to Hadamard Lemma of Baker-Campbell-Hausdorff formula, the above

summation is

ρH(t) = e−itHρH∞ eitH, (G.11)
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as expected. So for t > 0, let n̂(r, t) ≡ eitHn(r)e−itH,

n(r, t) = Tr e−itHρH∞ eitHΦ̂†(r)Φ̂(r) = Tr e−itHρH∞ n̂(r, t)eitH = TrρH∞ n̂(r, t).

(G.12)

where the cyclic permutation TrABC = TrBCA is used. The above result is again

as expected.

Now, for non-interacting bosons we rewrite H as H0, therefore the Hamiltonian

is H∞ = H0 + Htrap when t < 0, and H0 when t > 0. The wave functions of H0 are

single particle plane waves. we can expand the field operators in terms of the H0

eigenstates.

Φ̂(r) =
1√
V

∑
k

eik·r âk, (G.13)

where the dimensionless operators âk satisfy

[âk, â†
k′ ] = δk,k′ . (G.14)

Therefore

n̂(r, t) =
1
V ∑

k,k′
eit(Ek−Ek′ )e−i(k−k′)·r â†

k âk′ . (G.15)

We can also expand it in the bases of H∞

Φ̂(r) = ∑
α

ϕα(r)ĉα, (G.16)

where ϕα(r) are the eigenfunctions before the trap is turned off, and the dimen-

sionless operators cα satisfy

[ĉα, ĉ†
α′ ] = δα,α′ . (G.17)
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Therefore we can equate these two expansions

Φ̂(r) =
1√
V

∑
k

eik·r âk = ∑
α

ϕα(r)ĉα. (G.18)

A Fourier Transform can solve âk

∫
d3re−ik′·r ∑

α

ϕα(r)ĉα = ∑
k

1√
V
(2π)3 âkδ(k − k′), (G.19)

or

âk =
√

V ∑
α

ϕα(k)ĉα, (G.20)

where k′ has been rewri en as k, and ϕα(k) is the Fourier transform of the eigen-

function of H∞ in the momentum space. In an equilibrium system, the probability

of the state |i⟩ of energy Ei is e−βEi /Z. The density matrix is

ρH∞ =
1
Z ∑

i
e−βEi |i⟩ ⟨i| = e−βH∞

Z
. (G.21)

So the density

n(r, t) = TrρH∞ n̂(r, t)

= Tr[
e−βH∞

Tre−βH∞

1
V ∑

k,k′
eit(Ek−Ek′ )e−i(k−k′)·r â†

k âk′ ]

= ∑
k,k′

eit(Ek−Ek′ )e−i(k−k′)·r ∑
α0

⟨α0|
e−βH∞

Tre−βH∞ ∑
α,α′

ϕ∗
α(k)ĉ

†
αϕα′(k

′)ĉα′ |α0⟩

= ∑
α0

∑
k

| eitEk−ik·r |2| ϕα0(k) |2
⟨α0| e−βH∞ ĉ†

α0
ĉα0 |α0⟩

Tr e−βH∞
.

(G.22)

Because
Tr e−βH∞ ĉ†

α0
ĉα0

Tr e−βH∞
= ⟨ĉ†

α0
ĉα0⟩, (G.23)
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the density is expressed as

n(r, t) = ∑
α0

∑
k

∣∣∣eitEk−ik·rϕα0(k)
∣∣∣2 nB(εα0 − µ). (G.24)

If we translationally move in the momentum space from k to k +mr/t, where k ≪

mr/t, Eq. G.24 becomes

n(r, t) ≈ c ∑
α0

| ϕα0(k = rm/t) |2 nB(εα0 − µ), (G.25)

where c is an overall constant prefactor. The above equation is the starting point

for us to calculate the density after the free expansion.

Sometimes it may be more convenient to work in Bloch or Wannier bases. To

calculate the density of the freely expanded cloud, one only has to expand the field

operator into the needed basis, and work through similar steps.

Free expansion in Wannier basis The expanded density can be obtained in Wan-

nier basis similarly as in the non-interacting eigenfunction basis. We still have the

expansion G.13, and the density operator can still be expressed as Eq. G.15.

n̂(r, t) =
1
V ∑

k,k′
eit(Ek−Ek′ )e−i(k−k′)·ra†

kak′ . (G.26)

Now expand Φ(r) in Wannier basis as in Eq. C.19, we have

Φ(r) =
1√
V

∑
k

eik·rak = ∑
nR

wn(r − R)bn(R), (G.27)

where bn(R) is the Wannier annihilation operator. We again use Fourier Transform

to obtain ak,

ak =
1√
V

∑
nR

e−ik·Rw̃n(k)bn(R), (G.28)
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where w̃n(k) is the Fourier transformed wannier function

w̃n(k) =
∫

d3re−ik·rwn(r). (G.29)

Plug ak into the density, we get

n̂(r, t) =
1

V2 ∑
k,k′

∑
nR

∑
n′R′

eit(Ek−Ek′ )e−i(k−k′)·reik·R−ik′·R′
w̃∗

n(k)w̃n′(k′)b†
n(R)bn′(R′).

(G.30)

Shift k to k + mr/t, we get

n̂(r, t) =
1

V2 ∑
k,k′

∑
nR

∑
n′R′

eit(Ek−Ek′ )ei(k+mr
t )·R−i(k′+mr

t )·R′)w̃∗
n(k+

mr
t
)w̃n′(k′+

mr
t
)b†

n(R)bn′(R′).

(G.31)

For the expanded cloud, assume k ≪ mr/t, then

n̂(r, t)

=
1

V2 ∑
nR

∑
n′R′

| ∑
k

eitEk |2 ei mr
t ·R−i mr

t ·R′
w̃∗

n(
mr
t
)w̃n′(

mr
t
)b†

n(R)bn′(R′)

= (
m

2πh̄2t
)3 ∑

nR
∑
n′R′

ei mr
t ·R−i mr

t ·R′
w̃∗

n(
mr
t
)w̃n′(

mr
t
)b†

n(R)bn′(R′),

(G.32)

which is a summation over band indices and la ice sites. In the last step the follow-

ing sum has been used (λ is an introduced real part which is let to be 0 eventually)

∑
k

e−itEk

=
V

(2π)3

∫
d3ke−ith̄2k2/2m

=
V

2π2 (
2m
t
)3/2

∫ ∞

0
k2dke−ih̄2k2−λk2

=
V

2π2 (
2m
t
)3/2

√
π

4(ih̄2 + λ)3/2

≈ V
2π2 (

2m
t
)3/2

√
π

4i3/2h̄3 .

(G.33)
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Free expansion in Bloch basis Using the same method, Φ(r) can be expanded in

two bases:

Φ(r) =
1√
V

∑
k

eik·rak =
1√
V

∑
nq

cnqψnq(r), (G.34)

where cnq is the Bloch annihilation operator, q is in the first Brillouin zone. ak is

obtained from Fourier Transform

ak =
1√
V

∑
nq

ψ̃nq(k)cnq, (G.35)

where the Fourier transformed Bloch function

ψ̃nq(k) =
1√
V

∫
d3re−ik·rψnq(r). (G.36)

Plug into the density, and then shift k to k + mr/t, where we also assume k ≪

mr/t, we get

n̂(r, t) = (
m

2πh̄2t
)3 ∑

nq
∑
n′q′

ψ̃∗
nq(

mr
t
)ψ̃n′q′(

mr
t
)c†

nqcn′q′ , (G.37)

which is a summation over band indices and momenta.
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APPENDIX H
RABI OSCILLATION

Consider a two level system of an atom in an electromagnetic field. Atoms at the

ground state can absorb photons and be excited, atoms at the excited state can emit

photons while being de-exited. If the emission of a photon is due to the effect of an-

other photon passing by, the emission is called stimulated emission (otherwise it is

spontaneous emission). If there is a constant source of photons, the atoms can enter

into a cycle of absorbing and emi ing photons through stimulated emission. Such

a cycle is called the Rabi cycle, its frequency is the Rabi frequency. Here we will

mathematically describe this process in a semi-classical approach (Rabi Model).

The total Hamiltonian of the system consists of three parts, the atomic Hamilto-

nian, the field's Hamiltonian, and the Hamiltonian for the interaction between the

atom and the field:

H = Hatom + H f ield + Hatom− f ield. (H.1)

Denote the excited state as |e⟩, the ground state as |g⟩. The Hamiltonian is wri en

as

Hatom = h̄ωe |e⟩ ⟨e|+ h̄ωg |g⟩ ⟨g| . (H.2)

Let the ground state at zero energy, then

Hatom = h̄ω0 |e⟩ ⟨e| , (H.3)

where ωe has been rewri en as ω0, the transition frequency. The classic field is

E = E0 e−iωLt + E∗
0 eiωLt, (H.4)
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where ωL is the photon frequency of the field. The free field Hamiltonian in the

classical picture can be neglected:

H f ield = 0. (H.5)

The atom has an electric dipole moment D coupling with the field, which enables

the transition between states. If the system stays in the same state, it retains the

shape of the electric cloud, so the diagonal elements in D, dgg, dee are zero. The

total dipole moment can be wri en as

D = deg |e⟩ ⟨g|+ d∗
eg |g⟩ ⟨e| , (H.6)

where we have used the Hermitian relationship dge = d∗
eg. The dipole moment can

also be equivalently wri en as

D = (degσ̂+ + d∗
egσ̂−)/2, (H.7)

where σ̂± are the ladder operators

σ̂+ = σ1 − iσ2 =

 0 0

2 0

 ; (H.8)

σ̂− = σ1 + iσ2 =

 0 2

0 0

 , (H.9)

where σ1 and σ2 are Pauli matrices. Note that the definition of σ± is a bit different

from usual. Then the atom-field interaction Hamiltonian is

Hatom− f ield = −(deg |e⟩ ⟨g|+ d∗
eg |g⟩ ⟨e|) · (E0 e−iωLt + E∗

0 eiωLt). (H.10)
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We can write

deg · E0 ≡ h̄Ω; (H.11)

deg · E∗
0 ≡ h̄Ω̃. (H.12)

So the total Hamiltonian wri en in the matrix form is

H = h̄

 0 −Ω̃∗e−iωLt − Ω∗eiωLt

−Ωe−iωLt − Ω̃eiωLt ω0

 . (H.13)

The Hamiltonian in the interaction picture is

HI = eiHatomtHe−iHatomt

= h̄

 0 −Ω̃∗e−i(ωL+ω0)t − Ω∗ei(ωL−ω0)t

−Ωe−i(ωL−ω0)t − Ω̃ei(ωL+ω0)t ω0

 .

(H.14)

The electric fields of ωL +ω0 frequency are 2ω0 away from resonance. These rapidly

oscillating terms will soon average to zero, therefore we can neglect them. This ap-

proximation is called the rotating wave approximation. Now if we write ωL − ω0

as ∆ ("detuning"), then

HI = h̄

 0 −Ω∗ei∆t

−Ωe−i∆t ω0

 . (H.15)

Therefore the Schrödinger equation in this picture is

HΨ̃ = ih̄
dΨ̃
dt

, (H.16)
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where

H = − h̄
2
(Ω∗ei∆tσ− + Ωe−i∆tσ+), (H.17)

and Ψ̃ is transformed from Ψ

Ψ̃ = eiHatomtΨ. (H.18)

The solution is

Ψ = c1 |g⟩+ c2 |e⟩ , (H.19)

where

c1 = exp[− i∆t
2

](−∆ − ΩR

2ΩR
exp[

i
2

ΩRt] +
∆ + ΩR

2ΩR
exp[− i

2
ΩRt]); (H.20)

c2 = exp[− i
2
(ω0 + ωL)t](−

Ω
ΩR

exp[
i
2

ΩRt] +
Ω

ΩR
exp[− i

2
ΩRt]), (H.21)

where

ΩR =

√
4 |Ω|2 + ∆2 (H.22)

is defined as the Rabi frequency. c1 and c2 are already normalized. The probability

of the atom at the excited state is

P(|e⟩) = |c2|2 = 4
∣∣∣∣ Ω
ΩR

∣∣∣∣2 sin2 ΩRt
2

, (H.23)

which proves that ΩR is the frequency at which the atom oscillates.
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APPENDIX I
EFFECTIVE LOW-ENERGY HAMILTONIAN

In this appendix we derive the low energy effective Hamiltonian for a 87Rb BEC

with spin-orbit coupling, focusing on states near the minima of ε−(p) (occuring at

±p0 ≈ kL for δ → 0). Our analysis closely follows Ref. [34].

E B H

In Chapter 6, we have the original bare Hamiltonian

H0 =

 p̂2

2m + δ
2

1
2 Ωe2ikLx

1
2 Ωe−2ikLx p̂2

2m − δ
2

 , (I.1)

and the rotated bare Hamiltonian,

Ĥr(p, δ) =
1

2m
(p2 + k2

L) +
1
2

δσz +
1
2

Ωσx +
1
m

kLσz p̂x, (I.2)

The original and rotated Hamiltonians are connected by a unitary transformation

Ĥr = Û†H0Û where the unitary operator U = eikL·r σz , with σz being the Pauli

matrix.

We start by noting the eigenstates of the rotated Hamiltonian Ĥr:

ψ̂p+ =
1

N (px, δ)

 −1

f (px, δ)

 , (I.3)

ψ̂p− =
1

N (px, δ)

 f (px, δ)

1

 , (I.4)
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corresponding to the eigenvalues Eq. 6.2. Here, we defined

f (px, δ) =
δ + 2kL px

m −
√

Ω2 + δ2 +
4k2

L p2
x

m2 + 4kLδpx
m

Ω
, (I.5)

and the normalization factor N (px, δ) =
√

1 + f (px, δ)2.

Denote f0(p) = f (p, δ = 0), it can be verified that for small δ

f (px, δ) ≃ f0(px)−
f0(px)√

Ω2 +
4k2

L p2
x

m2

δ. (I.6)

In addition, we have the following relationship

f (pr, δ) f (pℓ, δ) ≃ (δ̂ − 1 + Ω̂2)2

(−1 + Ω̂2)2
(I.7)

and

(1 + f (pr, δ)2)(1 + f (pℓ, δ)2) ≃ 64EL
2

Ω2 − 512EL
3δ

16EL
2Ω2 − Ω4

=
4

Ω̂2
− 8

Ω̂2 − Ω̂4
δ̂. (I.8)

Specifically, when δ = 0, f0(p0) f0(−p0) = 1 and [1 + f0(p0)
2][1 + f0(−p0)

2] =

4/Ω̂2.

Next, we turn the momentum space eigenfunctions into real space, i.e. eip·rψ̂p±,

then transform back into the original basis by applying the same unitary operator

U to obtain the eigenfunction of H0: Ψ̂pα(r) = Ûψ̂pαeip·r (where Û = eikL·r σz) and

finally express the original field Ψ(r) in terms of operators ψα(p) with momentum

p in band α = ±:

Ψ(r) = ∑
p,α=±

Ψ̂pα(r)ψα(p). (I.9)
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At low energies, it is sufficient to restrict a ention to the lower (−) band and

focus on p close to the right (pr) and left (pℓ) minima of ε−(p, δ):

Ψ(r) = ∑
p<Λ,a=r,ℓ

Ψ̂p+pa−(r)ψ−(p + pa), (I.10)

= ∑
p<Λ

[
Ψ̂p+pr−(r)ψ↓′(p) + Ψp+pℓ−(r)ψ↑′(p)

]
,

where in the second line we introduced the notation ψ↓′(p) = ψ−(p + pr) and

ψ↑′(p) = ψ−(p + pℓ) for the states near pr and pℓ; the notation ↓′ and ↑′ follows

since, for vanishing light-atom coupling Ω → 0, the states near the right (left) min-

imum map onto the ↓ (↑) band of Eq. I.1.

Plugging this into the single-particle Hamiltonian H0, and using the orthonor-

mality of the eigenfunctions of Eq. I.1, we obtain

H0 = ∑
p<Λ,σ=↑′,↓′

εσ(p)ψ†
σ(p)ψσ(p), (I.11)

where the dispersion εσ(p) is given by ε↑′(p) = ε−(p + pℓ) and ε↓′(p) = ε−(p +

pr).

Eq. I.11 can be simplified further by noting that, as shown below and in agree-

ment with the expermental findings of Ref. [34], the mixed phase is only stable for a

small range of δ values, so that this parameter can be taken to be small. To leading

order in small δ/4EL, the minima of ε−(p) occur at

pr,ℓ ≃ ±kL

√
1 − Ω̂2 + kLδ̂

Ω̂2

1 − Ω̂2
, (I.12)

with the + (−) corresponding to the right (left) minimum. Here, we defined Ω̂ =

Ω/4EL and δ̂ = δ/4EL. Since stability of the mixed phase also requires Ω̂ ≪ 1

as well as δ̂ ≪ 1, it is clear that the final term in this expression can be neglected
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compared to the first term, implying that the locations of the minima of ε−(p) are

close to px = ±kL

√
1 − Ω̂2. Inserting these values into ε−(p), and again neglecting

terms of order Ω̂2δ̂, we find the energies of the local minima to be:

ε−(pr/ℓ) = EL
(
Ω̂2 ± 2δ̂), (I.13)

with the− (+) corresponding to the right (left) minima. The preceding calculations

show that, for sufficiently small values of δ, the effect of nonzero δ is simply to apply

a chemical potential difference, lowering the ↓′ state energy for δ > 0 and the ↑′

state energy for δ < 0. Expanding the disperions ε−(p) to leading order p near

these minima, we finally arrive at (including a chemical potential µ that couples to

the density and defining µ↑′ = µ − 1
2 δ and µ↓′ = µ + 1

2 δ):

H0 = ∑
σ=↑′,↓′

∫
d3r

(
ε(p)− µσ)ψ

†
σ(r)ψσ(r), (I.14)

where µ↑′ = µ − 1
2 δ and µ↓′ = µ + 1

2 δ, with µ the chemical potential. In Eq. I.14

we also dropped an overall constant, the first term of Eq. I.13. Here, the effective

dispersion is

ε(p) =
1

2m∗ p2
x +

1
2m

(p2
y + p2

z) (I.15)

with a different effective mass m∗ in the x direction, reflecting the curvature of the

minima of ε−(p), that satisfies (m∗)−1 = m−1(1 − Ω̂2).

E I H

After obtaining the effective bare Hamiltonian, we now turn to the interaction

Hamiltonian. From Chapter 2.5, the interaction Hamiltonian for a BEC with two
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species of bosons is

Hint =
1
2

∫
d3r [c0(n↑ + n↓)

2 + c2(2n↑n↓ + n↓
2)]

=
1
2

∫
d3r [(c0 +

c2

2
)(n↑ + n↓)

2 +
c2

2
(n↓

2 − n↑
2) + c2n↑n↓]

=
1
2

∫
d3r

[
(c0 + c2)n2

↓ + c0n2
↑ + 2(c0 + c2)n↑n↓

]
,

(I.16)

where c0 and c2 are interaction parameters, densities of the original spin species

nσ = Ψ†
σΨσ with σ =↑, ↓ and normal ordering is implied.

To obtain the effective interactions among the dressed bosons, we need to use

Eq. I.10 in Eq. I.16. For Eq. I.10, we need the eigenfunctions near the minima at pr

and pℓ. Defining the Fourier transform ψσ(r) = ∑p eip·rψσ(p) (essentially taking

the cutoff parameter Λ → ∞), we write Eq. I.10 as

Ψ(r) = ∑
p<Λ

[
Ψ̂p+pr−(r)ψ↓′(p) + Ψp+pℓ−(r)ψ↑′(p)

]
,

= ∑
p<Λ

[
Ûψ̂p+pr−ei(p+pr)·rψ↓′(p) + Ûψ̂p+pℓ−ei(p+pℓ)·rψ↑′(p)

]
≃ Ûψ̂pr−eipr·rψ↓′(r) + Ûψ̂pℓ−eipℓ·rψ↑′(r).

(I.17)

After approximating the functions f (p + pr, δ) ≃ f (pr, δ) (and similarly for f (p +

pℓ, δ)), we obtain

Ψ(r) ≃ 1
N (pr, δ)

 f (pr, δ)e2ikLx

1

 ψ↓′(r) +
1

N (pℓ, δ)

 f (pℓ, δ)

e−2ikLx

 ψ↑′(r). (I.18)

We then insert Eq. I.18 into Eq. I.16. Again focusing on the limit of small Ω̂, we

keep terms up to order c0Ω̂2 (discarding terms with rapidly-varying exponential

factors) and take the limit Ω̂ → 0 in the terms proportional to c2 (since |c2| ≪ c0).

Just as what we found for H0, the corrections due to δ̂ are also subdominant here,
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leading to the final interaction Hamiltonian

H1 =
1
2

∫
d3r

[
(c0 + c2)|ψ↓′(r)|4 + c0|ψ↑′(r)|4 + 2

[
c0(1+ Ω̂2)+ c2

]
|ψ↑′(r)|2|ψ↓′(r)|2

]
,

(I.19)

where normal ordering is implied. This is the effective interaction Hamiltonian for

dressed states. Comparing with Eq. I.16, Eq. I.19 has an extra term proportional to

Ω̂2. More generally, this term can be characterized by a parameter c′↑↓, so that

H1 =
1
2

∫
d3r

[
(c0 + c2)|ψ↓′(r)|4 + c0|ψ↑′(r)|4 + 2

(
c0 + c2 +

c′↑↓
2

)
|ψ↑′(r)|2|ψ↓′(r)|2

]
.

(I.20)

Thus, we see that, in agreement with Ref. [34], the leading impact of SOC on the
87Rb interactions is to renormalize the interatomic interactions.
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