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Abstract 

Purpose/Objectives: A drawback of tandem and ovoid (T&O) ICBT is exposure of the posterior bladder 

and anterior rectal walls to relatively high isodoses. To mitigate this effect, intra-ovoid shielding may be 

used to reduce dose to these OARs.  However, metal artifacts present in images acquired via kVCT make 

anatomy segmentation and catheter localization difficult for the purpose of 3D treatment planning.  We 

present a method that combines MVCT-based imaging and applicator modeling to increase the quality 

of 3D treatment plans for shielded T&O ICBT. 

Materials/Methods:  Using Oncentra’s TPS, 9 participants from multiple institutions performed organ 

segmentation and catheter reconstruction for KVCT and MVCT data sets acquired of a water phantom 

containing bladder and rectum surrogates and various HDR T&O applicators: Nucletron’s CT/MR 

compatible (CTMR), Nucletron’s shielded Fletcher Williamson (FW) and (3) Varian’s shielded Fletcher-

Suit-Delclos style (FSD). The dimensions of OAR structures were determined using in-air kVCT and 

physical measurements.  By comparing the 3D volumes and centroid-to-perimeter (C2P) measurements 

of individual OAR contours, segmentation accuracy was assessed in regions exhibiting artifact under 

kVCT (1cm superior and inferior to shielding). Comparing the TPS-defined coordinate of the most distal 

dwell position to that of the true position (determined using radiographs of a fiducial affixed to the 

applicators), assessed catheter reconstruction accuracy. For Nucletron devices, this metric was also 

quantified using an applicator-model for localization. 

Results:   The percentage of points for C2P measurements that differ (greater than 2mm) from the true 

contour extents decreased under MVCT for the shielded T&Os (78.4 vs. 71.3%), while the converse is 

observed for the CTMR. Similarly, the volume of the OAR surrogates follows the same trend. This is 

attributed to the lack of metal artifacts as well as the decrease in the contrast of low Z materials 

observed when utilizing MVCT.  Catheter reconstruction accuracy improved by 26% under MVCT for 
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shielded T&Os, was invariant for the CTMR and within 2.29mm of the true position using applicator 

modeling.  

Conclusions:  The quality of MVCT 3D ICBT treatment plans of shielded T&O is comparable to MVCT 

CTMR treatment plans.  Further improvements were observed when using an applicator model for 

catheter reconstruction.  
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Chapter 1  Introduction 

1.1 Brachytherapy for the Treatment of Cervical Cancer 

It is estimated that in 2012 in the United States 12,200 women will be diagnosed with cervical 

cancer of which 4,210 will result in death (National Cancer Institute, 2011). For early or non-bulky 

disease (typically FIGO stages IB-IVA), the current standard of care is a combination of external beam 

radiotherapy (EBRT) and intracavitary brachytherapy (ICBT). EBRT is administered first to sterilize 

regional and local pelvic disease as well as decrease the volume of the primary tumor. ICBT is then used 

to boost dose delivered to the diseased area with minimal dose to surrounding normal tissue 

(Viswanathan, et al., 2007). High-dose rate (HDR) brachytherapy (i.e. >12 Gy/hr) is a common form of 

ICBT for the treatment of cervical cancer and has a typical fractionation scheme of 5.5-7 Gy per fraction 

for 4-5 fractions (Viswanathan, et al., 2011). Through the combination of these two radiotherapy 

delivery methods, local control of cervical cancer for a large patient population has been achieved 

(Saibishkumar, et al., 2005). 

Brachytherapy is ideally suited for the treatment of cervical cancer for several reasons. 

Radiation is emitted from brachytherapy sources isotropically, falling off inversely with the square of the 

distance. This makes it possible to deliver therapeutic doses to diseased tissue while minimizing dose to 

surrounding normal tissues. Additionally, while localization of the vagina and uterus is of concern when 

utilizing EBRT, placing the source in vivo aids in accurate dose delivery to the desired tissues 

(Viswanathan, et al., 2007). A distinct disadvantage of ICBT is the inevitable dose delivered to the 

bladder and rectum. As such, the delivery of therapeutic levels of radiation via ICBT is often limited by 

these two organs. Common complications due to overdosing of the bladder and rectum include 

proctitis, fistulas, cystitis and bladder and rectal ulceration (Kapp, et al., 1997). 
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1.2 Administration of Intracavitary Brachytherapy via Tandem and Ovoid Applicators 

A variety of applicators have been developed to administer ICBT. One of the most common 

applicators utilized in the administration of ICBT is the tandem and ovoid (T&O) applicator (see Figure 

1-1). 

 
Figure 1-1: Nucletron’s CT/MR compatible applicator. This is the current, clinical tandem and ovoid 
applicator used at Mary Bird Perkins Cancer Center in Baton Rouge, LA where this study was performed. 

The tandem is a hollow stainless steel or plastic rod that extends through the cervix into the 

uterus. To accommodate variations in patient anatomy, tandems are available in multiple angles of 

anteversion. In addition, the applicator has two catheter tubes that are positioned laterally to the 

tandem. These channels are capped with ovoids, plastic oval ellipsoids that are seated in the vaginal 

fornices. The purpose of the ovoids is to broaden the dose distribution into the paracervical regions, 

while the tandem delivers dose to the cervical, endometrial and uterine tissues (Bentel, 1996). 

1.3 Shielded Ovoids for the Tandem and Ovoid Applicator 

Ovoids containing shields at their posterior and anterior ends may be used to mitigate dose to 

the bladder and rectum, minimizing the aforementioned late sequelae (see Figure 1.2). Intra-ovoid 

shields are commonly constructed of tungsten, titanium or stainless steel. The implementation of intra-

ovoid shielding has been demonstrated to substantially reduce dose to the bladder and rectum when 

compared to equivalent treatments delivered utilizing unshielded ovoids (Yorke, et al., 1987) 
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(Williamson, 1990) (Verellen, et al., 1994) (Williamson, et al., 2002). Of the shielded applicators 

developed, tungsten shielded ovoids have proven most effective, reducing dose to the bladder and 

rectum by up to 48% compared to equivalent treatments delivered using unshielded ovoids (Williamson, 

1990). 

 
Figure 1-2: Nucletron's shielded Fletcher-Williamson applicator. (A) External image showing the anterior 
bladder shields. (B) Ovoid tube with ovoid cap removed showing the bladder (anterior) and rectum 
(posterior) shields. 

1.3.1 Shielded Ovoid-Induced Image Artifact 

The main disadvantage associated with shielded ovoids is the introduction of image obscuring 

metal artifacts in treatment planning CT data sets. High Z shields scatter significant portions of the 

imaging beam. The inability of CT filtered backprojection algorithms to compensate for these 

heterogeneities is manifest in severe, anatomy-obscuring metal artifact, which in turn limits the ability 

of physicians and physicists to accurately locate source dwell positions and contour the organs at risk 

(OAR) within the treatment planning system (TPS). A comparison of CT scans obtained of a Varian 

unshielded CT/MR compatible applicator and a Nucletron shielded Fletcher (tungsten shields) applicator 

can be seen in Figure 1-3 (A) and (B), respectively. Extensive metal artifact is observed in the case of the 

tungsten shielded applicator, severely limiting accurate OAR segmentation and applicator localization. 

For this reason, many clinics choose to use CT/MR-compatible applicators for ICBT. 

A B 

Bladder Shield 

Rectum Shield 
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Figure 1-3: A transverse pelvic CT scan of typical patient anatomy with (A) an unshielded, CT/MR 
Fletcher applicators and (B) a tungsten shielded Fletcher applicator. For the CT/MR compatible 
applicator, minimal metal artifact can be seen from the source position markers within the ovoids when 
compared with the metal artifact present in the CT slice of the shielded Fletcher applicator. (Roeske, et 
al., 2003) 

1.3.2 Image Artifact Reduction Methods 

Attempts to reduce the presence of high Z metal artifact in CT image sets have met with limited 

success. Multiple methods of CT artifact reduction are considered in this section.  

Roeske et al. explored the use of CT projection-interpolation algorithms to mitigate metal 

artifacts due to the Fletcher-Suit applicator (2003). Linear or higher order CT projection-interpolation 

algorithms have previously proven effective in reducing metal artifact due to high Z objects with minimal 

structural integrity (surgical clips, dental fillings, etc.) yielding near artifact-free CT data sets  (Glover & 

Pelc, 1981) (Hsieh, 1998) (Kalendar, et al., 1987). These same methods were applied for phantom and 

patient CT data sets obtained of the stainless steel, unshielded Fletcher-Suit applicator. While this 

technique offered the benefits of ease of use and short computational time, results met with limited 

success (see Figure 1-4). Clinical implementation of this technique remains limited to smaller, high Z 

objects as it has not yet yielded sufficient metal artifact reduction to warrant clinical implementation.  

A                                                                            B 
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Figure 1-4: CT scan showing the top of the ovoids, tandem and contrast in the Foley catheter (A) before 
and (B) after CT projection-interpolation algorithm artifact reduction (Roeske, et al., 2003). 

 
Another approach to reduce CT artifact is iterative statistical CT image-reconstruction which 

more accurately model CT detector response and the physical process of signal acquisition (Williamson, 

et al., 2002). This method is capable of yielding nearly artifact-free CT imaging of soft tissues near high Z 

metal objects (see Figure 1-5). This method is limited however in that it relies on an accurate a priori 

model of the metal object, including its pose (position and orientation), shape and a well-defined 

attenuation map. The inability to correctly determine 3D applicator pose has limited the iterative 

statistical CT image-reconstruction approach (Williamson, et al., 2002) (Yazdia, et al., 2005). Attempts 

have been made to improve these methods using generalized iterative forward projection matching 

(gIFPM) reliant on three 2D x-ray projections. It was reported that pose localization errors were less than 

1.5 mm and 2o for orientation angles (Pokhrel, et al., 2011). This method of mitigating metal artifact is 

not yet clinically availably nor have its capabilities been proven for CT acquisition of shielded ovoids. 

 
Figure 1-5: A transverse pelvic CT slice through a patient’s hip prostheses (A) before and (B) after metal 
artifact reduction (Yazdia, et al., 2005). 

 

A                                    B   
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Several attempts have been made to develop clinically viable, CT-compatible shielded ICBT T&O 

applicators. The first of these, the “Weeks” applicator, utilized tungsten-shielded source carriers that are 

loaded post-CT acquisition (Weeks & Montana, 1997). This applicator was based off the shielded 

Fletcher-Suit-Delclos applicator with mini-colpostats (both systems are shown in Figure 1-6 and Figure 

1-7). The affixed Fletcher shields were replaced with manually loaded tungsten shields that are inserted 

in conjunction with 137Cs source loading (see Figure 1-7(left)) (Weeks & Montana, 1997). The main 

disadvantage of the Weeks applicator, preventing clinical implementation, is the inability for remote 

afterloading resulting in increased exposure to clinical staff for low dose rate (LDR) procedures and no 

possible treatment for HDR or pulsed-dose-rate (PDR) applications.  

 
Figure 1-6: Side-by-side comparison of the second generation Weeks ovoids (left) and the Fletcher-Suit-
Delclos ovoids (right) showing their similarity. The second generation Weeks ovoids were composed of 
Aluminum. The change from plastic ovoid tubing to aluminum improved the rigidity of the applicator 
(Weeks & Montana, 1997). 



 

7 
 

 

 
Figure 1-7: Schematic of the Weeks ovoids with the catheter tube (top), a lateral view of the post-CT 
added shielded source carrier (middle) and an anterior view of the post-CT added shielded source carrier 
(bottom). (Weeks & Montana, 1997) 

A prototype CT/MR compatible Fletcher Williamson applicator with moveable interovoid shields 

(the Anatomically Adaptive Applicator or A3) has also been developed in an attempt to reduce metal 

artifact in CT data sets (see Figure 1-8). It has been shown that this applicator yields artifact-free images 

of patient anatomy with metal artifact limited to a region contained within the ovoid (see Figure 1-9 ) 

(Price, et al., 2009). A step-and-shoot method of CT acquisition is used to acquire artifact-free CT 

images. MR compatibility is achieved through the use of carefully selected MR-compliant materials. 

Although several centers are initiating clinical trials utilizing the A3 applicator, it is not available for 

clinical use at this time. 

 
Figure 1-8: Price’s CT/MR compatible shielded A3 applicator. The external appearance of the applicator 
(A) and interovoid shields (B). (Price, 2008) 

A                                                                                 B 



 

8 
 

 

 
Figure 1-9: Comparison of reconstructed axial CT slices through the bladders shields of the shielded 
Fletcher-Suit-Delclos applicator (A), the shielded Fletcher Williamson applicator (B) and Price’s A3 

applicator (C) 

1.4 Megavoltage Computed Tomography for Planning Shielded Ovoid ICBT 

Treatments 

Alternatively, the use of megavoltage CT (MVCT) may pose a viable solution for artifact-free 

imaging of shielded tandem and ovoid applicators. An MVCT imaging beam is more penetrating than a 

Kilovoltage CT (kVCT) beam; as energy increases, linear attenuation decreases with relatively more 

radiation arriving at the CT detector panels. For example, at 60 keV (typical kVCT scan mean energy), the 

linear attenuation coefficient () of tungsten is 71 cm-1 whereas at 3.5 MV (average energy of 0.75 

MeV),  is equal to 1.71 cm-1, a decrease by a factor of 40. An increase in energy also results in an 

increase in penetration through CT detectors yielding a decrease in image contrast and resolution. 

However, it has been demonstrated that helical tomotherapy yields CT data sets acceptable for patient 

alignment and delineation of many soft tissue structures (Meeks, et al., 2005). Also, multiple studies 

have demonstrated that MVCT data sets continue to display sufficient contrast to facilitate critical 

structure segmentation even when high Z objects, such as hip prosthesis, spinal stabilization rods and 

dental appliances are present (see Figure 1-10) (Hansen, et al., 2006), (Aubin, 2006), (Yank, et al., 2010), 

(Korol, et al., 2010). One study has explored the feasibility to utilizing MVCT for the treatment planning 

A                                                            B                                                             C 
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of a shielded Fletcher-Suit-Delclos applicator, concluding that MVCT images for clinical LDR 

gynecological brachytherapy are acceptable for 3D, MVCT-based dose planning (Wagner, et al., 2009). 

 
Figure 1-10: CT scans of a cervical ICBT T&O patient with hip prostheses with (A) a MVCT scanner and (B) 

a kVCT scanner. It is noted that in image (A), MV energy, the scan quality was sufficient for physician 

organ segmentation of the rectum (R), small bowl/sigmoid colon (SB) and the bladder (B). (Korol, et al., 

2010)  

MVCT imaging of patients containing metallic objects often results in negligible metal artifacts 

when compared to equivalent scans acquired via kVCT. It is not yet known if MVCT scans of a patient 

containing shielded HDR tandem and ovoid applicators are of sufficient quality to allow 3D treatment 

planning of a gynecologic ICBT treatment, to localize source dwell positions and to segment OARs 

(bladder, rectum and sigmoid colon). The purpose of this work is to investigate the use of MVCT imaging 

to acquire artifact-free or nearly-artifact-free imaging data sets of a shielded applicator in a patient-

surrogate phantom for ICBT organ segmentation and catheter reconstruction.  

1.5 Hypothesis and Specific Aims 

Metrics1 quantifying the accuracy of (a) organ segmentation and (b) intracavitary brachytherapy 

catheter reconstruction will agree within ±2 mm/±15 cc and ±2 mm, respectively, of known values for 

                                                           
1
Organ segmentation two- and three-dimensional metrics: centroid-to-perimeter (CTP) measures (2D) as well as 

volume comparisons (3D). The three-dimensional dwell position metric is a comparison of the distal-most origin of 
catheter reconstruction relative to applicator reference markers. The two-dimensional organ segmentation metric 
was chosen to be 2mm as this was within 1mm of the systematic error. The three-dimensional organ segmentation 
metric was chosen to be 15cc, a volume representing 5%-12% of surrogate organ structure volumes. For three-

A                                                                               
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image sets acquired via mega-voltage computed tomography (MVCT) for shielded tandem and ovoid 

(T&O) brachytherapy applicators imaged in a water phantom containing surrogate organ structures. 

1.5.1 Aim 1. Water Phantom Development and Image Acquisition 

First, a water phantom containing structures acting as surrogates for patient rectums and 

bladders will be constructed. Second, kVCT and MVCT image sets will be acquired for three (3) HDR 

T&O-type ICBT applicators: a Nucletron unshielded, CT/MR compatible Fletcher applicator, a Nucletron 

shielded Fletcher-Williamson applicator and a Varian shielded Fletcher-Suit-Delclos-style applicator. 

1.5.2 Aim 2. Organ Segmentation and Catheter Reconstruction 

Medical physicists and physicians from multiple institutions will segment the bladder and 

rectum on both kVCT and MVCT data sets for all applicator types and perform catheter reconstruction 

for kVCT and MVCT image sets. In the case of the Nucletron applicators, an additional catheter 

reconstruction will be performed with the assistance of the Oncentra Brachy applicator modeling TPS 

plugin. 

1.5.3 Aim 3. Determination of Organ Segmentation and Catheter Reconstruction Accuracy 

The quality of the resulting treatment plans will be evaluated based on the accuracy of the 

participant organ segmentation and catheter reconstruction. Organ segmentation accuracy will be 

determined via two-dimensional centroid-to-perimeter (CTP) measurements and three-dimensional 

volume comparison. CTP values will be compared with bladder and rectum structure scans in air to 

obtain values which will be designated as CTP-diff. Overall structure volumes will be compared with 

volumes measured via water displacement to obtain values designated as VOL-diff. Catheter 

reconstruction accuracy will be determined for each applicator tube by comparing the location of the 

distal-most, participant-defined dwell positions relative to applicator reference markers, with control 

values measured via radiograph; this measure will be referred to as MD-diff. 

                                                                                                                                                                                           
dimensional dwell position metric, 2mm was chosen because this is outside the specifications of the mechanical 
accuracy of the afterloader (+/-1mm). 
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Chapter 2  Methods and Materials 

2.1 Aim 1: Water Phantom Development and Image Acquisition 

To achieve the aims of this study, a water phantom was constructed to provide participants with 

image sets containing surrogate bladder and rectum structures as well as clinically viable applicator 

positioning relative to these structures. The water phantom consisted of a water tank, structure 

immobilization devices, bladder and rectum surrogates, and various T&O applicators.  

2.1.1 Tandem and Ovoid Applicators 

The imaging properties of three different HDR T&O applicators were investigated in this study: 

the Nucletron CT/MR compatible Fletcher applicator (CTMR), the Nucletron shielded Fletcher-

Williamson applicator (FW) and the Varian shielded Fletcher-Suit-Delclos-style applicator (FSDs) (see 

Figure 2-1). 

 
Figure 2-1: HDR T&O applicators used in this study. (A) Nucletron's CT/MR compatible applicator. (B) 
Nucletron's Fletcher-Williamson applicator. (C) Varian's Fletcher-Suit-Delclos-style applicator. 

The CTMR applicator is the current, clinical applicator used at Mary Bird Perkins Cancer Center 

(MBPCC) in Baton Rouge, LA where this study was conducted. It is composed of special composite, low Z 

plastics which mitigate artifact in CT and MR images, facilitating 3D ICBT treatment planning and dose 

analysis. 

The FW applicator catheters are constructed of stainless steel and the ovoids consist of 

polysulfone caps surrounding Densimet-17 (tungsten alloy, Z=74, ρ = 17g/cm3) bladder and rectal shields 

A B C 
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(Horton, et al., 2005). The bladder and rectum shields are 2.0 and 2.1 mm thick, respectively, and are 

welded to the applicator tubes in an orientation that optimizes shielding to the posterior bladder and 

anterior rectal walls for ideal insertions (see Figure 2-2). For ideal insertions, these shields yield a dose 

reduction in the bladder and rectum greater than 40% for ideal anatomy positioning relative to the 

ovoid shields. 

 

 

Figure 2-2: (A) The exterior of the FW ovoid (rectal shield not visible) and (B) a schematic of the interior 
of the FW ovoid, mainly the bladder and rectum shields. (Price, 2008) 

The Varian Fletcher-Suit-Delclos-style applicator catheters and inter-colpostatic shields are 

constructed of stainless steel (ρ  8 g/cm3, Z27 (exact composition proprietary)) and the ovoid caps are 

acetal (Naydenov & Ryzhikov, 2005). The manufacturer reports that the stainless steel shields are 

capable of reducing dose in the bladder and rectum by up to 20% (Varian Medical Systems, 2009). While 

this is less than half the dose reduction achieved with FW ovoid shields, the intent is to provide an 

applicator capable of shielding the bladder and rectum while yielding CT data sets with sufficient 

visibility to facilitate organ segmentation and catheter reconstruction. 

For all applicators investigated, a tandem tube angle of 30 degrees and an ovoid diameter of 25 

mm were chosen because all applicator sets include components of these specifications and these sizes 

FW rectum shields 

FW bladder shields 

A                                                      B 
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are commonly utilized clinically. Clinical source position markers were used for investigations of the 

CTMR applicators (see Figure 2-3). Source position markers are made of a thin metal strand with larger 

metallic markers placed periodically along the strand. These markers are used clinically in patient CT 

scans to represent actual source paths during treatment and to aid physicists and physicians in 

accurately choosing dwell positions within the TPS. Source position markers were not used for the 

Nucletron Fletcher-Williamson or the Varian Fletcher-Suit Delclos-style applicators because image 

artifacts inhibit visualization of source position markers. Clinical treatment planning for shielded 

applicators typically involves localizing the catheter tube tip end, measuring a fixed distance (which is 

institution dependent) inferior to the tip end and placing the source in the middle of the catheter tube. 

 
Figure 2-3: CTMR applicator source position markers. (A) Metallic markers along wire strand (a single 
marker pointed out by black arrow) representing various source positions within the catheter. (B) 
Sagittal CT slice showing the source position markers (white marks) and planned TPS dwell positions (red 
dots along green reconstructed catheter). 

For each applicator catheter tube (the tandem and both ovoids), applicator reference markers 

were attached to facilitate Aim 3 of the study (see Figure 2.4). These markers were 1.2 mm in length 

A                                                                          B 
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and 1 mm in diameter and made of stainless steel. To determine the correct applicator reference 

marker size, various sizes were imaged on kVCT and MVCT scanners until the markers were visually 

present for both kV and MV image sets with default window (=500) and level (=1) settings while 

minimizing metal artifact. For the ovoid catheters, applicator reference markers were placed directly 

behind the ovoids. In the case of the shielded ovoids, a 5 mm wooden spacer was placed between the 

ovoid tube and the marker so as to limit artifact interference from the stainless steel tubes. For the 

tandem tubes, the markers were placed 3 cm inferior from the tip. Again, a wooden spacer (1 mm thick) 

was utilized for tandem tubes from the shielded applicators. 

 
Figure 2-4: Attachment of fiducial markers to the tandem and ovoids for (A) the CT/MR compatible 
applicator (markers attached with duct tape), (B) the Fletcher-Williamson applicator and (C) the 
Fletcher-Suit-Delclos-style applicator. The spacers can be seen on both the FW and FSDs applicators 
moving the markers outside of the regions containing image obscuring artifact. Arrows designate ovoid 
catheter markers with wooden spacers.  

2.1.2 Water Phantom Constituents: Bladder and Rectum Surrogate Structures 

Surrogate anatomic structures were developed with realistic size (diameter and volume), shape 

and positioning relative to the T&O applicator. Multiple patient CT scans were gleaned from the MBPCC 

database and analyzed to develop the general geometry typical of OARs (bladder, rectum and sigmoid 

colon) encountered clinically. 

2.1.2.1 Development of Bladder and Rectum Surrogate Structures 

First-generation surrogate patient rectums and bladders were composed of iodinated 

contrast/saline filled latex material deformed into irregular shapes using duct tape (see Figure 2.5). 

These structures could be filled to known volumes facilitating the comparison between actual and TPS-

A                                                            B                                                               C 
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generated volumes. To secure the structures within the phantom water tank, the rectum structures 

were attached via duct tape and the bladder was mounted on a rod suspended superior to the 

assembled applicator and surrogate rectum. The lack of rigidity of these structures proved problematic 

as motion of water within the tank during scanning induced surrogate structure motion, hindering the 

acquisition of reproducible image sets. Further details regarding the development of the first generation 

phantom are included in Appendix A. 

 
Figure 2-5:  Initial attempts at constructing surrogate patient bladder (A) and rectum (B) 

2.1.2.2 Aquaplast Bladder and Rectum Surrogates 

A rigid substitute with a physical density similar to bladder and rectal tissue was needed to 

overcome the problem of surrogate structure motion. Aquaplast was chosen for two main reasons: 

rigidity at room temperature and a physical density (ρ=1.08 g/cm3) (RPD, 2011) similar to bladder and 

rectal tissues (1.04 g/cm3) (Awschalom, 1983). Typically, aquaplast is used as surface bolus in the clinic 

for areas of irregular surfaces due to its (a) malleability and (b) rigidity at room temperature. Bladder 

and rectum surrogate structures were made by molding heated aquaplast around the first generation 

structures described in Section 2.1.2.1 (see Figure 2-6 and Figure 2-7).  

The process of molding the aquaplast resulted in variations of wall thickness, typical of 

variations seen in patient anatomy. The minimum wall thickness was about 0.5 mm. A re-sealable cap 

was fitted to each structure to allow for partial filling with water and air to mimic expected organ 

content. Four rectums and two bladders were constructed. A pseudo urethra was added to the bladder 

A                                                                                       B            
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in order to secure the bladder structure to the water tank via a mounted rod and thereby prevent 

motion of the bladder structure during CT scans. For each structure, laser/ovoid alignment markings 

were placed on the structure to ensure a reproducible setup for 3D image acquisition (see Figure 2-8).  

 
Figure 2-6: Second-generation aquaplast rectum surrogate structures. (A) Test surrogate rectum, (B) 
surrogate rectum-1, (C) surrogate rectum-2 and (D) surrogate rectum-3. 

 
Figure 2-7: Second-generation aquaplast bladder surrogate structures. (A) Test surrogate bladder and 
(B) surrogate bladder used for all image sets containing a T&O applicator. 

 
Figure 2-8: Laser/ovoid alignment markings added to the bladder and rectum surrogate structure. (A) 
The applicator in the water phantom aligned to the bladder and rectum surrogate structures (bladder 
and rectum ovoid alignment markings outlined in red), (B) Bladder ovoid marking and (C) Rectum ovoid 
markings (outlined in red) with green marks for shielded applicators and black for the CTMR applicator. 

A                                                  B                                               C                                    D 

A                                                                                         B             
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One bladder and one rectum were used solely as “pre-test” structures to validate the ability of 

participants to use the Oncentra TPS organ segmentation tools. The three remaining rectum surrogate 

structures and bladder, combined with the three different applicators, yielded nine different image sets 

for organ segmentation and catheter reconstruction for each imaging modality.  

The physical volume of each structure was measured via water displacement to facilitate 

volume comparisons between measured and segmented volumes. Volumes were measured via 

displacing a structure in a large, water-filled beaker and, upon removing the structure, re-filling the 

beaker to the same water level using a graduated cylinder with +/-0.4 ml accuracy (see Figure 2-9). The 

measured values are included in Table 2-1. The volumes of the test rectum and bladder structures are 

189 ±0.8 ml and 300 ±1 ml respectively. The measured volumes of rectum-1, rectum-2, rectum-3, and 

the main phantom bladder are 160 ±0.8 ml, 125 ±0.7 ml, 184 ±0.8 ml and 265 ±1 ml, respectively. 

 
Figure 2-9:  Organ surrogate volume measurements via water displacement. (A) Submersion of 
surrogate rectum structure, water level is recorded from a ruler. (B) Water is added using the graduate 
cylinder to the same level displaced by the surrogate rectum structure. 
Table 2-1: Bladder and rectum surrogate structure control volumes determined via water displacement.  

Bladder and Rectum Surrogate Structure Measured Volumes 
Test Structures   Main Structures     

Bladder Rectum Bladder Rectum-1 Rectum-2 Rectum-3 

300 ±1 ml 189 ±0.8 ml 265 ±1 ml 160 ±0.8 ml 125 ±0.7 ml 184 ±0.8 ml 

2.1.2.3 Bladder and Rectum Surrogate Structure Fiducial Markers 

To facilitate the 2D organ segmentation stated in aim 3, fiducial markers were added to all 

surrogate bladder and rectum structures except for the test set. Fiducial markers facilitate the 

A                                                                 
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determination of an axial cross section of each surrogate organ capable of being localized for kV and MV 

image sets. Three sets of three fiducial markers were embedded in each rectal structure wall: (1) 

superior to the ovoid region, (2) directly posterior to the ovoids (same axial CT slice) and (3) inferior to 

the ovoids. Similarly, for the bladder, there were also three sets of three fiducial markers embedded into 

each bladder structure wall: (1) to the left lateral of the ovoids, (2) directly anterior to the ovoids and (3) 

to the right lateral of the ovoids.  

Fiducial markers capable of being visually present on both kV and MV image sets without 

introducing metal artifact into kVCT data sets were needed. Clinical fiducial markers used with kVCT 

were nearly indiscernible on MV image sets. A variety of high Z objects with various sizes were tested 

(different paper clips and pushpins mainly) and it was determined that suitable fiducial markers could be 

obtained by cutting a typical pushpin (diameter =1 mm) into 1.25 mm lengths. To improve their 

visibility on MVCT scans, a second marker was placed superior to previously attached markers. The end 

product yielded sufficient visibility on both kVCT and MVCT data sets (see Figure 2-10). 

 
Figure 2-10: Examples of the surrogate structure fiducial markers. (A) Fiducial markers attached to the 
outer surface of the bladder surrogate structure (encircled in red). The blue line represents the plane 
from which images (B) and (C) were acquired. KVCT (B) and MVCT (C) scans in the ECS view of the 
bladder for the sets of markers depicted by the blue line in (A). 

A                                                            B                                                            C 
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It was assured that one set of fiducial markers for each structure lay within the artifact region. 

The artifact region is defined as the region of slices containing metal artifact due to ovoid shielding (see 

Figure 2-11). The fiducial markers were placed on each rectum such that one set of markers would be 

located in the artifact region.  

 
Figure 2-11: Sagittal kVCT slice of the FW applicator demonstrating the “artifact region” of each 
applicator. 

2.1.3 Phantom Alignment 

Reproducible phantom alignment was critical for accurate comparisons of kVCT and MVCT 

image sets for each bladder/rectum arrangement. The process for phantom alignment was: 

1. First, the water tank was aligned with the CT coordinate system. To accomplish this, the 

water tank was squared with the CT patient table using a rigid table attachment utilized for 

patient immobilization. Two slabs of SolidWater® (Gammex RMI, Middleton, WI) were then 

placed within the phantom water tank and immobilized in the right superior corner using 

plastic spacers (see Figure 2-12). Using markings on the SolidWater®, the phantom was 

aligned laterally with the overhead CT lasers (see Figure 2-12). Water was then filled to 

markings on the tank that placed the water level 2cm above the anterior portion of the 

phantom bladder.  
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Figure 2-12: Overhead view of the Solidwater®/CT laser alignment. A black, plastic spacer (in red box) 
was used to immobilize the SolidWater® within the water tank.  

2. Next, the rectum was immobilized atop the solid water using rubber bands and aligned 

laterally with the overhead CT lasers (see Figure 2-13). Alignment in the superior/ inferior 

direction was accomplished in the following step. 

 
Figure 2-13: Surrogate rectum structure alignment. The structure was attached to the Solidwater® using 
rubber bands and then aligned laterally with the overhead CT lasers. 
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3. One of the three T&O applicators investigated was then attached to the clinical applicator 

mount and aligned with the rectum via the ovoid alignment marks in the posterior ovoid 

caps touching the rectum (see Figure 2-15). The tandem tube was aligned with the overhead 

CT lasers (see Figure 2-14). This alignment procedure also facilitated the superior/inferior 

rectum alignment within the water tank, being based off of the T&O applicator positioning 

within the water tank. 

 
Figure 2-14: Overhead view of T&O applicator alignment with surrogate rectum structure. The T&O 
applicator was aligned with the overhead CT laser.  

4. The bladder was then immobilized in the water tank via a rod and mount, and aligned via 

ovoid alignment markings that resulted in the anterior portion of the ovoid caps touching 

the bladder (see Figure 2-8and Figure 2-15). The anterior side of the bladder was 

simultaneously aligned with the overhead CT lasers (see Figure 2-16).  
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Figure 2-15: Ovoid contact with the bladder and rectum ovoid alignment markings. 

 
Figure 2-16: Surrogate bladder structure alignment with the overhead CT lasers. Note: a difference in 
the internal and external overhead CT lasers is seen in this figure. To avoid problems with alignment 
mismatch between the internal and external CT lasers, all parts of the phantom were aligned to the 
internal CT lasers. 

A lateral view of the completed phantom can be seen in Figure 2-17. It is worth noting that the 

relative spatial locations of the bladder, rectum and applicator are not typically this close in patients. 

However, this setup resembles a “worst case scenario” encountered clinically when poor or lack of 

vaginal packing provides insufficient bladder and rectal wall displacement. It also aids in achieving a 

reproducible setup via ovoid/structure alignment markings. The setup also should result in the largest 

adverse effects to the results of organ segmentation and catheter reconstruction due to metal artifacts. 
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Figure 2-17: Water phantom assembled for scanning on the TomoTherapy Hi-Art II MVCT scanner. This 
image also shows the bladder attachment arm and the applicator mount. 

2.1.4 Image Acquisition: kVCT versus MVCT 

kVCT image sets were acquired using a GE Lightspeed RT 16 CT scanner (General Electric 

Medical Systems, Fairfield, CT). The MBPCC gynecological ICBT HDR treatment imaging protocol was 

followed. The MVCT image sets acquired using the TomoTherapy Hi-Art II MVCT scanner (TomoTherapy, 

Madison, WI) with parameters set as close to the kVCT parameters as allowed by the Hi-Art system 

other than energy. The imaging parameters used in this study are tabulated in Table 2-2. 

Table 2-2: Imaging parameters for both the kV and MV imaging modalities used in this study. 

Kilovoltage CT Megavoltage CT 

(GE Lightspeed 16RT) (TomoTherapy Hi-Art) 

kVp 120 E(MV) 3.5 

Slice Thickness (mm) 1.25 Slice Thickness (mm) 2 (minimum) 

SFOV (cm) 50 SFOV (cm) 40 

Pixel Size (mm2) 
0.976 x 
0.976 

Pixel Size (mm2) 0.76 x 0.76 

Voxel Size (mm3) 1.19 Voxel Size (mm3) 1.16 

Image Size 512 x 512 Image Size 512 x 512 
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2.2 Aim 2. Participant Organ Segmentation and Catheter Reconstruction  

2.2.1 Physicist and Physician Participation 

Seven physicists and two physicians from multiple institutions participated in this study. 

Institutions included MBPCC (Baton Rouge, LA), the University of Texas MD Anderson Cancer Center 

(Houston, TX), the University of Texas Medical Branch at Galveston (Galveston, TX), and the University of 

North Carolina School of Medicine (Chapel Hill, NC). Each participant was proficient with the Oncentra 

Brachy TPS for planning cervical ICBT T&O treatments. A variety of questions were asked of the 

participants to ascertain their skill with organ segmentation and catheter reconstruction. As shown in 

Table 2-3, there were no specific qualifications for participating in the study other than (a) working 

currently as a clinical medical physicist/physician and (b) familiarity with the Oncentra Brachy TPS. 

Experience as a medical physicist/physician ranged from 1-17 years (this does not indicate an equivalent 

number of years of experience with ICBT). It was not clinical practice for all participants to segment the 

bladder and rectum structures; some clinics rely on dose calculations using the ICRU 38-defined bladder 

and rectum points. Regarding experience with planning of patient cases with shielded T&O applicators, 

“infrequent” refers to any time period longer than three months between shielded T&O insertion plans. 

Each participant was provided with seven image sets, including one pre-test image set, which 

was the same for all participants. The primary purpose of the pre-test image set was to confirm the 

familiarity of the participant to perform organ segmentation using Oncentra Brachy’s TPS. All resulting 

reconstructed volumes were within ±17.5cc of known volumes. The remaining six image sets were 

comprised of kV and MV image sets for each applicator with various combinations of rectum structures 

with the bladder structure. Image set assignments were made randomly to prevent participant bias 

towards a given modality or method of segmentation/catheter reconstruction. The image set 

assignments are shown in Table 2-4. 
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Table 2-3: Participant experience prior to participation in the study.  

Participant Experience         

  Physicist 1 Physicist 2 Physicist 3 Physicist 4 Physicist 5 Physicist 6 Physicist 7 Physician 1 Physician 2 

Years in Clinic? 17 4 12 9 3 8 8.5 2 2 

Board Certified? (Y/N) yes yes yes yes no, 1&2 yes yes no no 

# of ICBT Insertions 
Planned (6 months) 

4 10 24 5 1 1 2 5 10 

Clinical Practice to 
Segment 
Bladder/Rectum? 

no yes yes yes yes yes yes yes yes 

Experience Planning 
Shielded T&O Insertions? 

yes no yes no no yes yes yes yes 

If so, with what 
frequency? 

infrequent N/A infrequent N/A N/A infrequent infrequent infrequent infrequent 
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Table 2-4: Participant image set assignment. Every third participant has the same image sets however each participant’s image sets were 
individually randomized to help eliminate bias towards certain applicators or imaging modalities. 

Physicist 1 Physicist 2 Physicist 3 Physicist 4 Physicist 5 Physicist 6 Physicist 7 Physician 1 Physician 2 

Test Test Test Test Test Test Test Test Test  

CTMR kV 2 FSDs kV 1 FSDs kV 2 FSDs MV 1 CTMR MV 3 FW kV 1 FSDs MV 1 CTMR kV 1 CTMR MV 1 

CTMR MV 3 CTMR kV 2 FW kV 1 CTMR MV 2 FW kV 3 FW MV 2 FW kV 2 FSDs kV 3 FW MV 2 

FW MV 1 FSDs MV 2 FW MV 2 CTMR kV 1 FSDs MV 2 FSDs MV 3 FW MV 3 FW kV 2 FW kV 1 

FSDs MV 2 FW MV 1 FSDs MV 3 FSDs kV 3 CTMR kV 2 FSDs kV 2 FSDs kV 3 FSDs MV 1 CTMR kV 3 

FSDs kV 1 CTMR MV 3 CTMR MV 1 FW kV 2 FSDs kV 1 CTMR kV 3 CTMR kV 1 FW MV 3 FSDs MV 3 

FW kV 3 FW kV 3 CTMR kV 3 FW MV 3 FW MV 1 CTMR MV 1 CTMR MV 2 CTMR MV 2 FSDs kV 2 
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2.2.2 Participant Instructions 

Participants were provided with detailed instructions serving four main purposes: 1) provide 

each participant with a general overview of the study and their role therein, 2) give basic TPS setup 

guidelines (Lanczos Window smoothing, region of interest (ROI) voxel size, etc.), 3) provide clarification 

regarding organ segmentation and catheter reconstruction for phantom structures (how to contour the 

bladder with the attachment arm present in multiple slices) and 4) give detailed DICOM export 

instructions. A copy of the instruction is included in Appendix B. 

2.2.3 Organ Segmentation 

Participants were asked to perform organ segmentation for both the bladder and rectum 

surrogate structures in each of the seven image sets assigned. Instructions were provided regarding 

caveats due to phantom construction such as the surrogate structure mounting hardware as well as the 

extents to which the surrogate structures should be segmented. Participants were instructed to use 

their best judgment to contour as if fiducial markers were not present.  

2.2.4 Catheter Reconstruction 

Following clinical protocol, the participant performed catheter reconstruction on the six image 

sets containing a T&O applicator. For the CTMR compatible applicator, participants choose source dwell 

positions utilizing source position markers for guidance, as these markers are used clinically to simulate 

the location of the source dwell positions during treatment.  

For the shielded applicators, participants were instructed to define the distal-most source dwell 

position 7 mm inferior to the applicator tube tip. This method is used due to the inability to visualize 

source position markers on CT data sets acquired of shielded T&O applicators. As mentioned previously 

(see Section 1.3.1), the stainless steel catheter tubes and tungsten/stainless steel ovoid shields 

introduce image obscuring artifact into CT data sets, preventing the physicists or physicians from 

visualizing source position markers. 
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2.2.5 Catheter Reconstruction with Nucletron’s Applicator Modeling 

Catheter reconstruction was performed by the investigator utilizing Nucletron’s Applicator 

Modeling plugin (AMp) for both of the Nucletron applicators: the CTMR and the FW. The AMp utilizes a 

3D digital reconstruction of an applicator, with correct dimensions and shape, to aid in catheter 

reconstruction for cases where applicator localization cannot otherwise be determined (see Figure 

2-18).  

 
Figure 2-18: Visual example of AMp catheter reconstruction in the presence of CT metal artifact in (A) 
kVCT and (B) MVCT data sets. 

The AMp digital model position and orientation can be adjusted via rigid translation and rotation 

as well as non-rigid deformation (see Figure 2-19). However, in this study only rigid transformations 

were utilized. Twelve treatment plans were generated using the AMp—six for the CTMR applicator and 

six for the FW applicator which included a plan for each bladder/rectum combination. 

The accuracy of the AMp was determined by comparing the distance between the applicator 

reference marker and the AMp-defined distal-most dwell position with the same measure obtained via 

radiograph—the control measures (discussed in further detail in Section 2.3.2).  

A                                                                                 B 
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Figure 2-19: Application of the Applicator Modeling plugin (AMp). (A) Catheter manipulation of the 
tandem tube as it is being manipulated while the ovoid tubes remain in place. (B) Manipulation of the 
entire applicator. All tubes are being rotated around a central pivot point (red circle is pivot point). (C) A 
completed model in place within the water phantom (yellow is the bladder structure and green is the 
rectum structure). 

2.3 Aim 3. Organ Segmentation and Catheter Reconstruction Analysis 

2.3.1 Organ Segmentation Comparison: Two- and Three-dimensional Methods 

Two-dimensional CTP measurements and three-dimensional volume comparisons were used to 

quantify the accuracy of organ segmentation. The methods discussed in the following sections were 

derived from methodologies presented in the literature and have been shown to be reliable for 

assessing and quantifying the quality of organ segmentation (Jameson, et al., 2010). 

2.3.1.1 Two-dimensional CTP Analysis 

The following procedure was followed for two-dimensional analysis of the organ segmentation 

accuracy: 

1. The centroid was found for each set of fiducial markers on each rectum and bladder structure 

(three sets of three markers per structure). For rectum structures, this produced one centroid 

point superior to the artifact region, one within the artifact region and one inferior to the 

artifact region. For the bladder structure, due to the plane within which measurements were 

made (coronal, sagittal or extra coordinate system (ECS)), all slices used for measurement had at 

least one measure for which artifact could be an influencing factor.  

A                                                     B                                                              C 
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The process for finding the centroid is as follows: 

a. Using the ECS within Oncentra, a reconstructed CT slice was dervied in which all three 

fiducial markers of a given set were visible (see Section 2.1.2.3). This was accomplished 

by centering the ECS coordinate system on a fiducial marker (see Figure 2-20 A) and 

then manipulating the other two planes until the axes were visually centered through 

each of the other two markers in all three planes. (see Figure 2-20 B). 

b. With all three markers present in the derived slice, Oncentra Brachy’s “distance” tool 

was used to construct lines between each fiducial marker creating a triangle. The 

geometric center or centroid was then found by marking the intersection of the 

triangles medians, which are the lines joining each vertex (fiducial marker) with the 

midpoint of the opposite side (see Figure 2-20 C). 

 
Figure 2-20: Method for determining the centroid of each set of fiducial markers. (A) Find a CT slice with 
one of the markers and center the ECS coordinate system in that point. (B) Manipulate the ECS 
coordinate system until the centers of all points are visible in the same slice. (C) Draw the medians of 
the triangle. The point where the three medians intersect is the centroid. 

c. Using the “point” tool, a point was placed at the intersection of the medians, which is, 

by definition, the centroid of the three fiducial markers. 

d. The process was repeated for each set of three fiducial markers (three sets of three 

markers on each bladder and rectum structure) in each image set. 

2. To perform distance measurements, the “Distance and Angle” tool was used. The Distance 

and Angle tool reports the lengths of two lines with a common endpoint and calculates the 

A                                                                    B                                                                 C 
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angle between those two lines (see Figure 2-21). To use the “Distance and Angle” tool, a line 

is extended to a point (in this case the centroid), the point is selected by clicking the mouse 

and then another line may be extended from that point. The “Distance and Angle” tool then 

displays the length of each line, the angle between the two lines and the total length of both 

lines. Clinical testing of the beta version of the Distance and Angle tool by Dr. Michael Price 

at MD Anderson Cancer Center showed the tool to have an accuracy of ±0.5 mm (Price, 

2007). 

 
Figure 2-21: Example of use of Oncentra’s “Distance and Angle” tool on an axial CT slice of a surrogate 
rectum structure. 
 

a. First, a slice was found containing the centroid (see Figure 2-22). For all rectum 

structures, all but one centroid was found in the axial slice. The other slice was found in 

the ECS coordinate system. For the bladder structure, the right lateral point was found 

in the coronal plane, the midpoint was found in the sagittal plane, and the left lateral 

point was found in the ECS view. The ECS view was only utilized when the three 

standard views failed to provide consistent images. (see Figure 2-23). When utilizing 



 

32 
 

the ECS, prior to each measurement, the coordinate system was squared with the 

water tank to minimize errors in using a non-rigid coordinate system. 

 
Figure 2-22: Axial CT slice of a surrogate rectum containing the centroid. This is an example of the slices 
used for two-dimensional CTP distances discussed in this section. 

 
Figure 2-23: Comparison of CTP distance measurements for the surrogate bladder structure in (A) the 
coronal view and (B) the ECS view. Zoom settings were the same for each image. 
 

b. In a slice containing the centroid, a horizontal line was drawn from the left 

extending to the centroid and then another line was extended from the centroid 

back out to the participant-defined segmentation perimeter. Distances were 

recorded for angles of 0, 40, 80, 120, 160, 200, 240, 280 and 320 degrees as shown 

A                                                                                                            B 
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in Figure 2-24 A and B. Measurements were recorded and compared to control 

values obtained via from scans of the surrogates in air. The differences were called 

CTP-diff. Phantom scans in air, rather than in water, were used to determine control 

values because of the sharp air/aquaplast border (see Figure 2-24) 

 
Figure 2-24: Images showing the method for making 2D organ segmentation measurements for (A) the 
phantom scans in air and (B) the participant-defined organ segmentation. The small box seen in (A) 
shows how the “distance and angle” tool reports angle. The window and level values for both images 
are 500 and 1, respectively. 

For two-dimensional CTP analysis, the systematic error was dependent upon the ROI pixel size 

of 2.0 x 2.0 mm2 defined within the TPS. Because the pixel size was larger than the kV and MV pixels, the 

uncertainty for such measurements is independent of imaging modality. For any point chosen within 

Oncentra, whether OAR contours or prescription points, the TPS treats those points as if they were 

placed in the center of the corresponding ROI. This yields a maximum deviance from the true value of ½ 

the diagonal of the pixel or in the case of a 2.0 x 2.0 mm2 pixel size, ±1.4 mm. This difference must be 

accounted for both at the centroid and at the perimeter. Incorporating the uncertainty of the “Distance 

and Angle” tool (±0.5 mm) results in an overall systematic uncertainty of±2.0 mm. Because both the 

control values and measured values were determined within the TPS, the systematic uncertainty is the 

same for both. 

A                                                             B 
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2.3.1.2 Three-dimensional Reconstructed Volume Analysis 

The accuracy of participant organ segmentation was also quantified by the difference between 

the control and TPS-reconstructed volumes (VOL-diff) (see Figure 2-25). The control volumes were 

determined by displacement (see 2.1.2.1). Within the treatment planning system, each participant 

segmented the bladder and rectum for each image set following the participant instructions (see Section 

2.2.2) as well as clinical practice. Upon completing the organ segmentation, the TPS displays the volume 

(in cc) of the reconstructed volume which was used for comparison against the control volumes. 

 

Figure 2-25: (A) Rectum surrogate structure control volume and (B) participant-TPS generated rectum 
surrogate structure based on participant segmentation 

The supposed manufacturer-reported systematic uncertainty of the treatment planning system 

is ±1 voxel for segmented OARs. This appeared questionable due to the variations in structure volumes 

(125 ml-265 ml) and the dependence of structure volume on the voxels it contains (if ½ or more of a 

voxel is within a contour line, the voxel is counted towards the entire structure volume). A method was 

devised to determine the expected variation between control volumes (determined via water 

displacement) and TPS reconstructed volumes. Utilizing the Oncentra “Magic Wand” tool which 

generates OAR contours based on pixel value rather than user approximation, the bladder and rectum 

structures were segmented on the kVCT phantom scans in air (with a high-contrast aquaplast/air 

border). The uncertainty in measurements was then determined by comparing the volumes of the 

phantom scans in air with the actual structure volumes, yielding a difference which we used as the 

A                                                                                         B 
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systematic uncertainty. Each structure volume was measured three times for both control volumes and 

air volumes. The results of these measurements can be seen in Table 2-5. 

Table 2-5: Comparison of control volumes determined via phantom scans in air as well as via water 
displacement. These results were used to determine the systematic uncertainty of the treatment 
planning system. 

VOL-diff Comparisons: Systematic Error Analysis –Phantom Scan in Air vs. 
Control Volumes 

    Volume (cc) Difference   

Bladder air 245.8 ± 0.2 Absolute 17.7 

  control 263.5 ± 2.7 Percent 7% 

Rectum 1 air 139.3 ± 0.5 Absolute 21.0 

  control 160.3 ± 0.5 Percent 14% 

Rectum 2 air 109.2 ± 0.2 Absolute 16.1 

  control 125.3 ± 0.5 Percent 14% 

Rectum 3 air 154.7 ± 0.4 Absolute 29.6 

  control 184.3 ± 0.5 Percent 17% 

 
Within Table 2-5, a marked difference between the bladder and rectum structures percent 

difference is observed. The rectum structures had a mean percent difference of 15% whereas the 

bladder percent difference was only 7%. It is proposed by the investigator that this is due to the 

difference in the overall segmented perimeters for axial slices of the bladder and rectum structures. 

Whereas the rectum structures had a smaller diameter (2-5cm) and extended over a larger range of 

slices (100-121 slices), the bladder had a larger volume for a smaller range of slices (volume of 263 cc for 

only 60 slices). To illustrate the effect this could have an example is given. For any given slice, you can 

have two structures with the same area—one similar to a square (bladder) and one similar to a 

rectangle (rectum). The square-like shape will have a smaller perimeter than the rectangular-shaped 

object, meaning it has fewer pixels around its border, resulting in less overall systematic error 

represented in the rectangular-shaped object (bladder). It seems this would explain the reason for a 7% 

difference between the air and control volumes for the bladder structure when the rectum structures 
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averaged a 15% difference. Due to these differences, it is proposed that the systematic uncertainty for 

each individual structure should be reported and a mean value not be taken. 

2.3.2 Three Dimensional Catheter Reconstruction Analysis 

Each participant in this study performed catheter reconstruction for the six image sets 

containing T&O applicators. For the CTMR applicator, dwell positions were based off source dwell 

position markers, which represent actual source dwell locations. For the shielded FW and FSDs 

applicators, the participants were instructed to define the distal-most source dwell position 7 mm 

inferior to the applicator tube tip. This method is used due to the applicator tubes being constructed of 

stainless steel which inhibits source position marker visualization, most notably in regions of strong 

artifacts caused by the ovoid shields.  

To determine the accuracy of catheter reconstruction, a distance measurement from the distal-

most dwell position to the applicator reference marker—marker-to-dwell difference or MD-diff, was 

used for comparison. Control values were obtained by radiographing each applicator ovoid and tandem 

tube separately and measuring the distance between the center of the distal-most, procedurally-defined 

dwell position and the closest point of the applicator reference marker (see Figure 2-26). Distances were 

measured 10 times with IP65 SPi digital calipers with reported ±0.02 mm accuracy. Measured values are 

reported in Table 2-6.  

Table 2-6: Distances from the distal dwell position to applicator fiducial markers for the respective 
applicators. 

Distal Dwell-to-Applicator 
Reference Marker Distance CTMR FW FSDs 

Tandem (mm) 23.03±0.20 23.57±0.23 23.70±0.17 

Right Ovoid (mm) 23.47±0.18 21.66±0.25 25.11±0.23 

Left Ovoid (mm) 20.71±0.19 21.88±0.17 24.44±0.18 
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To perform distance measurements within the TPS, x, y and z coordinates for the distal dwell 

positions and applicator reference markers were utilized. To localize the applicator reference marker, a 

TPS point was placed in the general region of the marker. Then, utilizing axial, coronal and sagittal views, 

the point was moved to the part of the reference marker closest to the dwell position in each view (see 

Figure 2-26).  

The systematic uncertainty for the control measures was based off the uncertainty of the IP65 SPi 

calipers used (±0.02 mm) (see Figure 2-26(A)). To determine the uncertainty in TPS measured values, 

voxel size must be accounted for. As mentioned in Section 2.3.1.1, Oncentra’s TPS measurements are 

based off the center of pixels and voxels. For a comparison of 3D points, the furthest a point could differ 

and still be associated with a given voxel is half the diagonal from the center of the voxel, which is 0.9 

mm for kV and 1.1 mm for MV. This error must be accounted for in both the dwell position and the 

applicator reference marker point yielding a final systematic uncertainty of ±1.3 mm and ±1.6 mm for kV 

and MV imaging, respectively.  

 
Figure 2-26: Method of determining the accuracy of the participant-defined source dwell position. (A) 
Scan of the radiograph from which control distances were measured. (B) kVCT and (C) MVCT of the left 
ovoid for the FSDs applicator.  

A                                         B                                                             C 
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2.4 Statistical Tests 

A number of statistical tests were conducted to determine if the variables CTP-diff, VOL-diff, and 

MD-diff obtained from MV imaging differed significantly from the same variables obtained from kV 

imaging. A two-proportion t-test was used to determine if the percent of observations meeting the 

hypothesis criteria within MVCT data sets differed significantly from the percent of observations 

meeting the hypothesis criteria within kVCT data sets. A paired t-test was used to determine if mean 

values differed significantly between MV and kV imaging for two- and three-dimensional organ 

segmentation comparisons. An unpaired t-test was used to determine if participant-defined catheter 

reconstruction differed significantly between CTMR kVCT data sets and shielded applicator MVCT data 

sets. A paired, t-test was used to validate the Nucletron AMp (compared with results obtained following 

current, clinical procedure). 

Though no Gaussian curve fitting was performed for this data it was determined that results 

sufficiently represented a normal distribution and that the number of degrees of freedom would be 

sufficient to determine statistical significance. Results with a p-value less than 0.05 were determined to 

be statistically significant. Microsoft Excel was used for all statistical analysis. Inherent capabilities for 

comparing means were utilized for the student t-tests.  

Two-proportion t-test results were calculated as follows: 

1. The pooled sample proportion was calculated, 

  
         
     

 

where p is the pooled sample proportion, p1 is the proportion of points meeting the 

specified criteria from data set 1, p2 is the proportion of points meeting the specified 

criteria from data set 2, n1 is the sample size for data set 1 and n2 is the sample size for 

data set 2. 
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2. Next, the standard error (SE) was calculated using the pooled sample proportion and 

sample sizes:  

   √  (   )  [
 

  
 
 

  
] 

3. Utilizing the standard error and proportion results for data sets 1 and 2, a t-value was 

obtained which was used as input for a t-distribution table to obtain a probability or p-

value: 

  (      )    
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Chapter 3   Results and Discussion 

3.1 Aim 1: Water Phantom Development 

 
Figure 3-1: Completed water phantom setup for scanning on GE’s Lightspeed RT kVCT scanner. 

KV and MV image sets were acquired of all three T&O applicators in the water phantom shown 

in Figure 3-1. The CTMR kV and MV image sets exhibited no gross, anatomy-obscuring artifacts. 

Conversely, for the shielded FW and FSDs applicators, extensive metal artifacts were observed for all 

axial slices containing ovoid shields when imaged with kVCT. Qualitatively comparing shielded ovoid CT 

data sets, kV images acquired of the FW ovoids demonstrated much more severe artifacts compared to 

its FSDs ovoids. This was expected due to the composition of the ovoid shielding—FW Densimet-17 

shields (ρ = 17g/cm3) (Horton, et al., 2005) compared with the FSDs applicator stainless steel shields 

(ρ8g/cm3) (Elert, et al., 2004). 

The average image acquisition time for the kVCT scanner was 15-20 seconds whereas 

TomoTherapy’s MV scanner averaged 10 minutes per phantom scan. The kVCT scanner was capable of 

much shorter scan times due to its 16 slice detector array (giving a pitch of 11.25 mm/rotation vs. 2 

mm/rotation for MV) as well as faster gantry rotation (60 rpm for kV vs. 10 rpm for MV). Select slices for 
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each imaging modality for each applicator for a given bladder/rectum arrangement are shown in Figure 

3-4. The same slice was chosen for each transverse and sagittal slice showing the reproducibility of the 

phantom setup. The window and level values were 500 and 1, respectively. 

 
Figure 3-2: Corresponding axial and sagittal CT slices of kV and MV acquisitions for Nucletron’s 
unshielded CT/MR compatible Fletcher applicator. Images (A) and (C) are the transverse and sagittal 
slices, respectively, acquired via kV imaging. Images (B) and (D) are the transverse and sagittal slices, 
respectively, acquired via MV imaging. Also, using fiducial markers, the same slice was chosen for both 
kV and MV images for both transverse and sagittal slices. Window and level values were 500 and 1, 
respectively. 

A                                                                               B 

C                                                                                D 
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Figure 3-3: Corresponding axial and sagittal CT slices of kV and MV acquisitions for Varian stainless steel 
shielded Fletcher-Suit-Delclos-style applicator. Images (A) and (C) are the transverse and sagittal slices, 
respectively, acquired via kV imaging. Images (B) and (D) are the transverse and sagittal slices, 
respectively, acquired via MV imaging. Also, using fiducial markers, the same slice was chosen for both 
kV and MV images for both transverse and sagittal slices. Window and level values were 500 and 1, 
respectively. 
 

A                                                                            B 

C                                                                             D 
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Figure 3-4: Corresponding axial and sagittal CT slices of kV and MV acquisitions for Nucletron tungsten 
shielded Fletcher-Williamson applicator. Images (A) and (C) are the transverse and sagittal slices, 
respectively, acquired via kV imaging. Images (B) and (D) are the transverse and sagittal slices, 
respectively, acquired via MV imaging. Also, using fiducial markers, the same slice was chosen for both 
kV and MV images for both transverse and sagittal slices. Window and level values were 500 and 1, 
respectively. 
 

3.2 Aim 2: Participant Organ Segmentation and Catheter Reconstruction  

3.2.1 Physicist and Physician Organ Segmentation and Catheter Reconstruction 

The reported time required for physicists and physicians to complete organ segmentation and 

catheter reconstruction ranged from four to five hours. Participant-determined window and level values 

varied greatly for both kV and MV imaging modalities (see Table 3-1). The maximum and minimum 

A                                                                             B 
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window and level values suggest that window and level settings are not determined by imaging modality 

but by user preference. In the pre-test image set, bladder and rectum structures, the reconstructed pre-

test volumes were within ±17.5 cc of the control volumes for all participants verifying participant 

familiarity with Oncentra Brachy’s TPS (see Section 2.2.1). The accuracy of organ segmentation and 

catheter reconstruction is reported in Section 3.3. 

Table 3-1: Minimum and maximum window and level values reported for participant’s organ 
segmentation and catheter reconstruction. 

Reported Window and Level Values 
 kVCT MVCT 
 Minimum Maximum Minimum Maximum 

Window 172 2879 250 2000 

Level -6 1982 -51 489 

3.2.2 Investigator Catheter Reconstruction via Oncentra  Applicator Modeling Plugin 

Catheter reconstruction was performed for all image sets utilizing the Nucletron Oncentra 

Applicator Modeling plugin. The primary AMp tools utilized for catheter reconstruction were “Anchor 

Points” and “Catheter Manipulation.” The average time to perform catheter reconstruction was 4-5 

minutes. Results are presented in Section 3.3.3.1.  

3.3 Organ Segmentation and Catheter Reconstruction Results 

All participant results for organ segmentation and catheter reconstruction measurements are 

included in Appendix C. The following subsections present the analysis and discussion of organ 

segmentation and catheter reconstruction results. In the tables and figures, applicators are listed in 

order of increasing atomic number—CTMR (no shielding, Z6), FSDs (stainless steel shields, Z27), and 

FW (tungsten shields, Z74). 

3.3.1 Organ Segmentation: CTP Comparisons 

Two-dimensional organ segmentation accuracy was based on measurements from the centroid 

of a given CT slice to the participant-segmented perimeter (CTP) using the Oncentra “Distance and 
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Angle” tool. As the positioning of the surrogate bladder and rectum structures differed from one 

another as well as variations in physical characteristics (shape, wall thickness, etc.), results for bladder 

and rectum structures were analyzed separately. 

3.3.1.1 Results and Analysis for Bladder Segmentation  

For 2D organ segmentation analyses of the surrogate bladder, fewer CTP measurements met 

the ±2 mm criteria on MVCT data sets than on kVCT data sets. As reported in Table 3-2, kVCT data sets 

of the CTMR, FSDs and FW applicators resulted in 79%, 80% and 77% of points meeting the ±2 mm 

criteria, respectively; whereas on MVCT data sets, these percentages decreased to 65%, 65% and 67%, 

respectively. A two-proportion t-test determined that the percentage of CTPs meeting the 2 mm criteria 

in FSDs MVCT data sets was significantly less than the percentage of CTPs meeting the 2 mm criteria in 

CTMR kV data sets (65% vs. 79%, p=0.0004). The percentage of CTPs meeting the 2 mm criteria in FW 

MVCT data sets was significantly less than the percentage of CTPs meeting the 2 mm criteria in CTMR kV 

data sets (66% vs. 79%, p=0.001). 

Table 3-2: Surrogate bladder CTP-diff results by applicator and imaging modality. 

CTP-diff Results: Surrogate Bladder Structure  
    Number of CTPs that differ by: Percent of CTPs that differ by: 

    
[0-

2mm] 
[>2-

5mm] 
[>5-

10mm] [>10mm] 
[0-

2mm] 
[>2-

5mm] 
[>5-

10mm] [>10mm] 

CTMR kV 188 53 2 0 77.4% 21.8% 0.8% 0.0% 

  MV 158 78 7 0 65.0% 32.1% 2.9% 0.0% 

FSDs kV 196 45 2 0 80.7% 18.5% 0.8% 0.0% 

  MV 158 72 13 0 65.0% 29.6% 5.3% 0.0% 

FW kV 184 50 6 2 75.7% 20.6% 2.5% 0.8% 

  MV 161 72 9 1 66.3% 29.6% 3.7% 0.4% 

 
Table 3-3 summarizes the statistical characteristics of the CTP-diff results for the surrogate 

bladder structure for all six data sets. The mean CTP-diff for all samples sets was within the 2 mm 

criterion. As determined by a paired t-test, the mean CTP-diff for the FSDs MVCT was significantly 

greater than the mean CTP-diff for the CTMR kVCT (1.0 mm vs. 0.7 mm, p=0.005). The mean CTP-diff for 
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the FW MVCT was not significantly different than the mean CTP-diff for the CTMR kVCT (0.7 mm vs. 0.7 

mm, p=0.8). This suggests that surrogate bladder organ segmentation performed on MVCT data sets 

containing shielded FSDs and FW applicators is equivalent or slightly less accurate than organ 

segmentation perform on kVCT data sets of the unshielded CTMR applicator. This will be discussed 

further in subsection 3.3.1.4  

Table 3-3: Summary of surrogate bladder CTP-diff results by applicator and imaging modality. 

CTP-diff Results: Surrogate Bladder Structure 
*distances in mm 

 

n Mean σ 95% CI Range 

CTMR kV 243 0.7 1.7 0.5-0.9 12.7 

  MV 243 1.1 1.9 0.9-1.4 12.2 

FSDs kV 243 0.6 1.5 0.4-0.8 10.4 

  MV 243 1.0 2.2 0.7-1.3 13.7 

FW kV 243 0.6 2.4 0.3-0.8 25.6 

  MV 
243 0.8 2.3 0.4-1.0 15.6 

 

3.3.1.2 Results and Analysis for Rectum Segmentation 

For 2D organ segmentation analyses of the surrogate rectum, fewer CTP measurements met the 

±2mm criteria on MVCT data sets than on kVCT data sets. As reported in Table 3-4, kVCT data sets of the 

CTMR, FSDs and FW applicators resulted in 85%, 81% and 79% of points meeting the ±2 mm criteria, 

respectively; on MVCT data sets, these numbers decreased to 75%, 78% and 73%, respectively. A two-

proportion t-test determined that the percentage of CTPs meeting the 2 mm criteria in FSDs MVCT data 

sets was significantly less than the percentage of CTPs meeting the 2 mm criteria in CTMR kV data sets 

(85% vs. 78%, p=0.02). The percentage of CTPs meeting the 2 mm criteria in FW MVCT data sets was 

significantly less than the percentage of CTPs meeting the 2 mm criteria in CTMR kV data sets (85% vs. 

73%, p=0.0006).  
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Table 3-4: Surrogate rectum CTP-diff results by applicator and imaging modality. 

CTP-diff Results: Surrogate Rectum Structures  

    Number of points that differ by: Percent of points that differ by: 

    
[0-

2mm] 
[>2-

5mm] 
[>5-

10mm] 
[>10-

15mm] 
[0-

2mm] 
[>2-

5mm] 
[>5-

10mm] 
[>10-

15mm] 

CTMR kV 210 31 2 0 86.4% 12.8% 0.8% 0.0% 

  MV 183 49 8 3 75.3% 20.2% 3.3% 1.2% 

FSDs kV 193 41 8 1 79.4% 16.9% 3.3% 0.4% 

  MV 193 44 6 0 79.4% 18.1% 2.5% 0.0% 

FW kV 188 35 19 1 77.4% 14.4% 7.8% 0.4% 

  MV 181 60 2 0 74.5% 24.7% 0.8% 0.0% 

 

Table 3-5 summarizes the statistical characteristics of the CTP-diff results for the surrogate 

rectum structure for all six data sets. The mean CTP-diff for all samples sets was within the 2 mm 

criteria. As determined by the paired t-test the mean CTP-diff for the FSDs MVCT was significantly 

greater than the mean CTP-diff for the CTMR kVCT (1.2 mm vs. 0.7 mm, p=1.7E-09). The mean CTP-diff 

for the FW MVCT was significantly greater than the mean CTP-diff for the CTMR kVCT (1.0 mm vs. 0.7 

mm, p=0.02). This suggests that surrogate rectum organ segmentation performed on MVCT data sets 

acquired of the shielded FSDs and FW applicators is less accurate than organ segmentation perform on 

kVCT data sets of the unshielded CTMR applicator. This will be discussed further in subsection 3.3.1.4  

Table 3-5: Summary of surrogate rectum CTP-diff results by applicator and imaging modality. 

CTP-diff Results: Surrogate Rectum Structure  

 
 n Mean σ 95% CI Range 

CTMR kV 243 0.6 1.4 0.5-0.8 10.3 

  MV 243 1.3 2.1 1.0-1.6 15.4 

FSDs kV 243 0.5 2.0 0.3-0.8 16.9 

  MV 243 1.2 1.6 1.0-1.5 11.7 

FW kV 243 0.5 2.5 0.3-0.9 18.8 

  MV 243 1.0 1.5 0.8-1.2 9.9 

 

3.3.1.3 Results and Analyses for Bladder and Rectum Artifact Regions 

The results of the 2D organ segmentation analyses lean towards the conclusion that MVCT 

yields poorer quality and less-accurately segmented image sets than kVCT (see Section 1.4). These 
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results, however, were based off of CTP’s in all regions of segmenting, two-thirds of which was non-

artifact region. To more directly assess the influence of MVCT’s leser metal artifacts on segmentation 

performance, results were analyzed exclusively for the artifact region of the T&O applicators (Section 

2.1.2.3-artifact region definition). Results are separated by structure due to variations in surrogate 

structure construction and placement relative to T&O applicators. 

For 2D organ segmentation analyses of the surrogate bladder artifact regions, fewer CTP 

measurements met the ±2 mm criteria on MVCT data sets than on kVCT data sets. As reported in Table 

3-6, kVCT data sets of the CTMR, FSDs and FW applicators had 81%, 78% and 68% of CTPs meeting the 

±2 mm criteria, respectively; on MVCT data sets, these percentages decreased to 67%, 73% and 65%, 

respectively. A two-proportion t-test determined that the percentage of CTPs meeting the 2 mm criteria 

in FSDs MVCT data sets was significantly less than the percentage of CTPs meeting the 2 mm criteria in 

CTMR kV data sets (78% vs. 85%, p=0.2). The percentage of CTPs meeting the 2 mm criteria in FW MVCT 

data sets was significantly less than the percentage of CTPs meeting the 2 mm criteria in CTMR kV data 

sets (73% vs. 85%, p=0.02). 

Table 3-6: Surrogate bladder artifact region CTP-diff results by applicator and imaging modality. 

CTP-diff Results: Surrogate Bladder Artifact Region 

    Number of points that differ by: Percent of points that differ by: 

    
[0-

2mm] 
[>2-

5mm] 
[>5-

10mm] 
[>10-

15mm] 
[0-

2mm] 
[>2-

5mm] 
[>5-

10mm] 
[>10-

15mm] 

CTMR kV 51 12 0 0 81% 19% 0% 0% 

  MV 41 21 1 0 65% 33% 2% 0% 

FSDs kV 49 14 0 0 78% 22% 0% 0% 

  MV 47 16 0 0 75% 25% 0% 0% 

FW kV 42 17 4 0 67% 27% 6% 0% 

  MV 42 21 0 0 67% 33% 0% 0% 

Table 3-7 summarizes the statistical characteristics of the CTP-diff results for the surrogate 

bladder artifact region for all six data sets. The mean CTP-diff for all samples sets was within the ±2 mm 
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criteria. As determined by the paired t-test the mean CTP-diff for the FSDs MVCT was not significantly 

different than the mean CTP-diff for the CTMR kVCT (-0.1 mm vs. 0.2 mm, p=0.6). The mean CTP-diff for 

the FW MVCT was not significantly different than the mean CTP-diff for the CTMR kVCT (0.1 mm vs. 0.2 

mm, p=0.3). This suggests that surrogate bladder organ segmentation performed within the artifact 

region on MVCT data sets acquired of the shielded FSDs and FW applicators is as accurate as organ 

segmentation performed on kVCT data sets of the unshielded CTMR applicator. This will be discussed 

further in subsection 3.3.1.4  

Table 3-7: Summary of surrogate bladder artifact region CTP-diff results by applicator and imaging 
modality. 

CTP-diff Results: Surrogate Bladder Artifact Region  
*distances in mm 

 
 n Mean σ 95% CI Range 

CTMR kV 63 0.2 1.6 -0.2-0.6 8.6 

  MV 63 0.9 1.8 0.3-1.2 10.2 

FSDs kV 63 -0.2 1.7 -0.5-0.3 7.5 

  MV 63 0.2 1.9 -0.4-0.5 9.2 

FW kV 63 -0.8 2.4 -1.3- -0.1 12.2 

  MV 63 0.1 2.2 -0.7-0.4 8.6 

 

For 2D organ segmentation analyses of the surrogate rectum artifact regions, fewer CTP 

measurements met the ±2 mm criteria on MVCT data sets than on kVCT data sets for the CTMR 

applicator, while an increase was observed for the FSDs and FW applicators. As reported in Table 3-6, 

kVCT data sets of the CTMR, FSDs and FW applicators resulted in 77%, 60% and 58% of points meeting 

the ±2 mm criteria, respectively; whereas on MVCT data sets 65%, 73% and 73% met the ±2 mm criteria, 

respectively. A two-proportion t-test determined that the percentage of CTPs meeting the ±2 mm 

criteria in FSDs MVCT data sets was not significantly different than the percentage of CTPs meeting the 2 

mm criteria in CTMR kV data sets (73% vs. 77%, p=0.3). The percentage of CTPs meeting the 2 mm 

criteria in FW MVCT data sets was also not significantly different than the percentage of CTPs meeting 

the 2 mm criteria in CTMR kV data sets (73% vs. 77%, p=0.3). 
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Table 3-8: Surrogate rectum artifact region CTP-diff results by applicator and imaging modality. 

CTP-diff Results: Surrogate Rectum Artifact Region  

    Number of points that differ by: Percent of points that differ by: 

    
[0-

2mm] 
[>2-

5mm] 
[>5-

10mm] 
[>10-

15mm] 
[0-

2mm] 
[>2-

5mm] 
[>5-

10mm] 
[>10-

15mm] 

CTMR kV 65 14 2 0 80% 17% 2% 0% 

  MV 53 17 8 3 65% 21% 10% 4% 

FSDs kV 47 27 6 1 58% 33% 7% 1% 

  MV 60 15 6 0 74% 19% 7% 0% 

FW kV 44 19 17 1 54% 23% 21% 1% 

  MV 60 20 1 0 74% 25% 1% 0% 

 

Table 3-9 summarizes the statistical characteristics of the CTP-diff results for the surrogate 

rectum artifact region for all six data sets. The mean CTP-diff for all samples sets was within the ±2 mm 

criteria. As determined by the paired t-test the mean CTP-diff for the FSDs MVCT was not significantly 

different than the mean CTP-diff for the CTMR kVCT (0.1 mm vs. 0.2 mm, p=0.8). The mean CTP-diff for 

the FW MVCT was not significantly different than the mean CTP-diff for the CTMR kVCT (0.05 mm vs. 0.2 

mm, p=0.6). This suggests that surrogate rectum organ segmentation performed within the artifact 

region on MVCT data sets acquired of the shielded FSDs and FW applicators is as accurate as organ 

segmentation performed on kVCT data sets of the unshielded CTMR applicator. This will be discussed 

further in subsection 3.3.1.4 

Table 3-9: Summary of surrogate rectum artifact region CTP-diff results by applicator and imaging 
modality. 

CTP-diff Results: Surrogate Rectum Artifact Region  
*distances in mm 

 
 n Mean σ 95% CI Range 

CTMR kV 81 0.7 1.8 0.3-1.1 10.3 

  MV 81 1.8 3.0 1.2-2.5 15.4 

FSDs kV 81 0.6 3.1 -0.1-1.2 16.9 

  MV 81 1.5 2.3 1.0-2.0 11.3 

FW kV 81 0.3 3.9 -0.6-1.1 18.8 

  MV 81 1.2 1.7 0.8-1.5 8.0 
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When analyzing the CT artifact region, it was observed that, as distance increases within a CT 

slice from high Z objects, the metal artifact visually decreases (see Figure 3-5). To determine the impact, 

if any, this might have, the rectum artifact region was separated into two parts—the anterior region and 

posterior region. The anterior region contains CTP measurements for angles 0, 40, 80, 120, and 160 

degrees. The posterior region contains angles 200, 240, 280, and 320. Bladder results were not broken 

down by anterior and posterior results due to the bladder orientation relative to the artifact region, 

leading to few angles in each slice actually being found in the artifact region (see Figure 3-6). Rectum 

anterior and posterior artifact region results are found in Table 3-10. 

 

Figure 3-5: Axial CT slice of the FW shielded ovoids demonstrating the anterior and posterior artifact 
regions as well as the decrease in metal artifact with distance from the high Z objects.  

For 2D organ segmentation analyses of the surrogate rectum anterior artifact regions, fewer CTP 

measurements met the ±2 mm criteria on MVCT data sets than on kVCT data sets for the CTMR 

applicator, while more CTPs met the criteria for the FSDs and FW applicators. As reported in Table 3-10, 

kVCT data sets of the CTMR, FSDs and FW applicators resulted in 71%, 47% and 40% of points meeting 

the ±2 mm criteria, respectively; on MVCT data sets 64%, 73% and 73% met the ±2 mm criteria, 

respectively. A two-proportion t-test determined that the percentage of CTPs meeting the 2 mm criteria 

in FSDs MVCT data sets was not significantly different than the percentage of CTPs meeting the ±2 mm 
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criteria in CTMR kV data sets (73% vs. 71%, p=0.6). The percentage of CTPs meeting the ±2 mm criteria 

in FW MVCT data sets was also not significantly different than the percentage of CTPs meeting the ±2 

mm criteria in CTMR kV data sets (73% vs. 71%, p=0.6).  

 
Figure 3-6: Sagittal CT slice of the FW applicator demonstrating the location of the artifact region 
relative to measurements made within the sagittal slice. Note that only 2 of 9 CTP measures are 
included within the artifact region negating the values of an anterior/posterior-type artifact region 
analysis. 

Table 3-10: Surrogate rectum anterior and posterior artifact region CTP-diff results by applicator and 
imaging modality. 

CTP-diff Results: Surrogate Rectum Anterior & Posterior Artifact Region  

    Number of points that differ by: Percent of points that differ by: 

    
[0-

2mm] 
[>2-

5mm] 
[>5-

10mm] 
[>10-

15mm] 
[0-

2mm] 
[>2-

5mm] 
[>5-

10mm] 
[>10-

15mm] 

CTMR-kV 
  

ant. 33 11 1 0 73% 24% 2% 0% 

post. 32 3 1 0 89% 8% 3% 0% 

CTMR-MV 
  

ant. 29 8 6 2 64% 18% 13% 4% 

post. 24 9 2 1 67% 25% 6% 3% 

FSDs-kV 
  

ant. 20 19 5 1 44% 42% 11% 2% 

post. 27 8 1 0 75% 22% 3% 0% 

FSDs-MV 
  

ant. 33 7 5 0 73% 16% 11% 0% 

post. 27 8 1 0 75% 22% 3% 0% 

FW-kV 
  

ant. 16 15 14 0 36% 33% 31% 0% 

post. 28 4 3 1 78% 11% 8% 3% 

FW-MV 
  

ant. 34 11 0 0 76% 24% 0% 0% 

post. 26 9 1 0 72% 25% 3% 0% 
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 Table 3-11 summarizes the sample characteristics of the CTP measures for the surrogate rectum 

artifact region for all six data sets. The mean CTP-diff for all samples sets was within the ±2 mm criteria. 

As determined by the paired t-test the mean CTP-diff for the FSDs MVCT was significantly different than 

the mean CTP-diff for the CTMR kVCT (1.7 mm vs. 0.8 mm, p=0.02). The mean CTP-diff for the FW MVCT 

was not significantly different than the mean CTP-diff for the CTMR kVCT (1.2 mm vs. 0.8 mm, p=0.5). 

This suggests that surrogate rectum organ segmentation performed within the anterior artifact region 

on MVCT data sets acquired of the shielded FSDs and FW applicators is as accurate as organ 

segmentation performed on kVCT data sets of the unshielded CTMR applicator. This will be discussed 

further in subsection 3.3.1.4 

Table 3-11: Summary of surrogate rectum anterior artifact region CTP-diff results by applicator and 
imaging modality 

CTP-diff Results: Surrogate Rectum Anterior Artifact Region 
*distances in mm 

 
 n Mean σ 95% CI Range 

CTMR kV 45 0.8 1.9 0.2-1.3 10.2 

  MV 45 1.8 3.4 0.8-2.8 15.4 

FSDs kV 45 0.5 3.8 -0.6-1.6 16.9 

  MV 45 1.7 2.6 1.0-2.5 11.1 

FW kV 45 0.2 4.6 -1.1-1.6 18.1 

  MV 45 1.2 1.5 0.8-1.7 6.4 

 
For 2D organ segmentation analyses of the surrogate rectum posterior artifact regions fewer 

CTP measurements met the ±2 mm criteria on MVCT data sets than on kVCT data. As reported in Table 

3-10, kVCT data sets of the CTMR, FSDs and FW applicators resulted in 83%, 78% and 81% of points 

meeting the ±2 mm criteria, respectively; on MVCT data sets 67%, 72% and 72% met the ±2 mm criteria, 

respectively. A two-proportion t-test determined that the percentage of CTPs meeting the ±2 mm 

criteria in FSDs MVCT data sets was not significantly different than the percentage of CTPs meeting the 2 

mm criteria in CTMR kV data sets (72% vs. 83%, p=0.1). The percentage of CTPs meeting the 2 mm 

criteria in FW MVCT data sets was also not significantly different than the percentage of CTPs meeting 
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the 2 mm criteria in CTMR kV data sets (72% vs. 83%, p=0.1). This suggests that MVCT data sets of the 

shielded FSDs and FW applicators result in organ segmentation as accurate as kVCT data sets of the 

unshielded CTMR applicator in the posterior artifact region but may be trending towards significant 

differences. 

Table 3-12 summarizes the sample characteristics of the CTP measures for the surrogate rectum 

artifact region for all six data sets. The mean CTP-diff for all samples sets was within the ±2 mm criteria. 

As determined by the paired t-test the mean CTP-diff for the FSDs MVCT was not significantly different 

than the mean CTP-diff for the CTMR kVCT (1.3 mm vs. 0.7 mm, p=0.1). The mean CTP-diff for the FW 

MVCT was not significantly different than the mean CTP-diff for the CTMR kVCT (1.0 mm vs. 0.7 mm, 

p=0.9). This suggests that surrogate rectum organ segmentation performed within the posterior artifact 

region on MVCT data sets acquired of the shielded FSDs and FW applicators is as accurate as organ 

segmentation performed on kVCT data sets of the unshielded CTMR applicator. This will be discussed 

further in subsection 3.3.1.4 

Table 3-12: Summary of surrogate rectum posterior artifact region CTP-diff results by applicator and 
imaging modality 

CTP-diff Results: Surrogate Rectum Posterior Artifact Region 
*distances in mm 

 
 n Mean σ 95% CI Range 

CTMR kV 36 0.7 1.6 0.2-1.2 9.5 

  MV 36 1.9 2.6 1.0-2.8 12.8 

FSDs kV 36 0.6 1.8 0.1-1.2 8.6 

  MV 36 1.3 1.9 0.6-1.9 9.2 

FW kV 36 0.3 3.0 -0.7-1.3 16.7 

  MV 36 1.1 2.0 0.4-1.7 8.0 

 

3.3.1.4 CTP Results Discussion 

Data sets imaged with MVCT had higher mean CTP-diff values compared with the same sets 

imaged with kVCT. However, MVCT results within the artifact region for the shielded FSDs and FW 

applicators were consistently comparable to those achieved with the artifact-free CTMR compatible 
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applicator. All t-test results for the anterior rectal region indicate that there is no significant difference 

between CTMR kVCT organ segmentation and FW or FSDs MVCT organ segmentation in this region. This 

is valuable as the anterior rectal area is the region receiving the highest dose due to ICBT (inverse-

square falloff). The option to utilize shielded T&O ICBT applicators without sacrificing the ability to 

accurately segment the rectum is significant. Further studies could explore the ability of MVCT to 

mitigate metal artifact in the regions of the bladder closest to the ovoids.  

Also of significance is the fact that,  while the percentage of CTP-diffs meeting the ±2 mm 

hypothesis criteria decreased when utilizing MVCT (most cases), the percentage of CTP-diffs within ±2 

mm for the shielded applicators was consistently comparable to that of the CTMR MVCT data sets. 

Previous studies have concluded that TomoTherapy’s MVCT scanner is capable of yielding CT data sets 

with sufficient contrast and quality to facilitate segmentation of a number of soft tissues in the absence 

of metal artifact (Ruchala, et al., 1999) (Meeks, et al., 2005) (Korol, et al., 2010). Thus, in conjunction 

with the findings of these studies, the results of this study would indicate that MVCT data sets of the 

FSDs and FW applicators exhibit sufficient artifact reduction to facilitate patient organ segmentation 

when high Z objects are in close proximity (<20 mm). Clinical implementation of this methodology 

deserves further consideration. 

Though statistical testing indicated a significant difference between CTMR kVCT and FW MVCT 

CTP-diff results for the surrogate rectum structure, the mean values and standard deviations differed by 

only 0.3 mm and 0.1 mm, respectively.  These results are well within the mechanical uncertainty of the 

treatment delivery system (±1 mm). A means of determining the practical significance of results rather 

than statistical significance would yield different conclusions in some instances. 

3.3.2 Volume Comparison Results 

Three-dimensional organ segmentation analyses were based off a comparison of participants’ 

TPS reconstructed volume with the control volume measured via water displacement (VOL-diff). As the 
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positioning of the surrogate bladder and rectum structures differed from one another as well as 

variations in physical characteristics (shape, wall thickness, etc.), results for bladder and rectum 

structures are analyzed separately. Results for all image sets containing T&O applicators are contained 

in Table 3-13 through Table 3-16.   

3.3.2.1 Volume Comparison: Bladder Results 

The overall organ segmentation results for the bladder structure are found in Table 3-13. Among 

all three applicators, reconstructed volume accuracy decreased on MVCT data sets. A two-proportion t-

test determined that the percent of VOL-diff measures meeting the 15 cc criteria on FSDs MVCT data 

sets was significantly less than the percent of VOL-diff measures meeting the 15 cc criteria on CTMR 

kVCT data sets (22% vs78%, p=0.01). The percent of VOL-diff measures meeting the 15 cc criteria on FW 

MVCT data sets was trending towards significantly less than the percent of VOL-diff measures meeting 

the 15 cc criteria for CTMR kVCT data sets (44% vs. 78%,p=0.07).  

Table 3-13: Organ segmentation results for segmented volumes: absolute volume results for the bladder 
structure. 

VOL-diff Results: Reconstructed Bladder 
    Number that differ by: Percent that differ by: 

    [0-15cc] 
[>15-
20cc] 

[>20-
25cc] [>25cc] [0-15cc] 

[>15-
20cc] 

[>20-
25cc] [>25cc] 

CTMR kV 7 1 0 1 78% 11% 0% 11% 

  MV 3 1 1 4 33% 11% 11% 44% 

FSDs kV 6 2 1 0 67% 22% 11% 0% 

  MV 2 3 2 2 22% 33% 22% 22% 

FW kV 7 2 0 0 78% 22% 0% 0% 

  MV 3 2 3 1 33% 22% 33% 11% 

 

Table 3-14 presents the sample characteristics of the reconstructed surrogate bladder volume 

for all six data sets. Among all the data sets, the mean reconstructed volumes averaged from 8.1 cc to 

20.9 cc from the control surrogate bladder volume. A paired t-test found that mean values of VOL-diff 
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on FSDs MVCT data sets were not significantly more different from control volumes than mean values of 

VOL-diff on CTMR kVCT data sets (18.9 cc vs. 11.1 cc, p=0.002). Mean values of VOL-diff on FW MVCT 

data sets were significantly more different from control volumes than mean values of VOL-diff on CTMR 

kVCT data sets (17.0 cc vs. 11.1 cc, p=0.3). This suggests that participants were able to produce similar 

quality of organ segmentation for FW MVCT and CTMR kVCT data sets where the quality worsened for 

FSDs kVCT data sets. It was also observed the for all MVCT data sets, the 95% confidence interval and 

range both grew, indicating MVCT yields poorer results than kVCT. 

Table 3-14: Volume Comparison bladder results.  

VOL-diff Results: Reconstructed Bladder (*volumes in  cc) 

 
n Mean σ 95% CI Range 

CTMR  kV 9 11.0 9.4 4.5 - 17.5 33.9 

  MV 9 21.6 11.0 14.0 - 29.2 33.3 

FSDs kV 9 9.4 8.7 3.4 - 15.5 25.7 

  MV 9 19.7 13.3 10.5 - 28.9 42.5 

FW kV 9 8.3 6.2 4.0 - 12.6 18.9 

  MV 9 18.0 11.4 10.1 - 25.9 41.0 

 

3.3.2.2 Volume Comparison: Rectum Results 

Overall organ segmentation results for the rectum structures are shown in Table 3-15. The 

percent of VOL-diff measures meeting the 15 cc criteria was 89% for all applicators for both imaging 

modalities. This yields a p-value of 0.5 using a two-proportion t-test. Applying the same two-proportion 

t-test to a ±10 cc criteria shows that the percent of VOL-diff measures meeting the 10 cc criteria on FSDs 

MVCT are not significantly different than the percent of VOL-diff measures meeting the 10 cc criteria on 

CTMR kVCT (67% vs. 78%, p=0.3). The percent of VOL-diff measures meeting the 10 cc criteria on FW 

MVCT are not significantly different than the percent of VOL-diff measures meeting the 10 cc criteria on 

CTMR kVCT, however, they may be trending towards being significantly less accurate than CTMR kVCT 

VOL-diffs (56% vs. 78%, p=0.15).  

 



 

58 
 

Table 3-15: Organ segmentation results for segmented volumes: absolute volume results for rectum 
structures. 

VOL-diff Results: Reconstructed Rectums 
  Number that differ by: Percent that differ by: 

    [0-15cc] 

[>15-

20cc] 

[>20-

25cc] [>25cc] [0-15cc] 

[>15-

20cc] 

[>20-

25cc] [>25cc] 

CTMR kV 8 0 1 0 89% 0% 11% 0% 

  MV 8 0 1 0 89% 0% 11% 0% 

FSDs kV 7 2 0 0 78% 22% 0% 0% 

  MV 8 1 0 0 89% 11% 0% 0% 

FW kV 8 1 0 0 89% 11% 0% 0% 

  MV 8 0 1 0 89% 0% 11% 0% 

 
Table 3-16 summarizes the sample characteristics for all six sample groups for VOL-diff 

measurements. The average VOL-diff for all sample sets ranged from -6.8 cc to 18.9 cc. A paired t-test 

found that the mean VOL-diff on FSDs MVCT data sets were significantly less than the mean VOL-diff on 

CTMR kVCT data sets (-1.2 cc vs. -6.8 cc, p=0.003). The mean VOL-diff on FW MVCT data sets was not 

significantly different than the mean VOL-diff on CTMR kVCT data sets (-1.3 cc vs. -6.8 cc, p=0.2). 

Removal of an outlier from the FW MVCT data (VOL-diff=21.6 cc) changes the FW MVCT mean VOL-diff 

to -4.1 cc with p=0.3. This suggests that participants were able to segment the rectum structure on FW 

MVCT data sets with similar accuracy as that achieved for CTMR kVCT data sets. It was also observed 

that for the shielded FSDs and FW applicators, MVCT imaging improved the 95% confidence interval 

however the range of participant VOL-diffs increased. 

Table 3-16: Volume Comparison bladder results.  

VOL-diff Results: Reconstructed Rectum (*volumes in cc) 

 
n Mean σ 95% CI Range 

CTMR  kV 9 -6.8 9.0 -13 - -0.6 32.1 

  MV 9 -0.3 10.6 -7.7 - 7.0 35.0 

FSDs kV 9 -8.4 8.7 -14.4 - -2.4 27.6 

  MV 9 -1.9 9.0 -8.2 - 4.3 29.0 

FW kV 9 -8.7 5.8 -12.8 - -4.7 21.1 

  MV 9 -1.3 10.7 -8.7 - 6.2 33.1 
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3.3.2.3 Volume Comparison Discussion 

Overall, the MVCT data sets containing the FSDs and FW applicators lead toward opposing 

conclusions regarding shielded applicators. Although the FSDs applicator shields exhibit less artifact than 

the FW applicator, results indicated participants were actually able to generate more accurate surrogate 

structure organ segmentation for the MVCT data sets containing the FW applicator. The observations of 

this portion of the study are limited to less than ten degrees of freedom, meaning results possibly 

exceed the limitations of the statistical tests utilized in this study. It would be of benefit to repeat this 

volume comparison portion of the study with either a larger number of participants (>20) or more CT 

data sets on which participants could perform organ segmentation. 

In all but the CTMR kV surrogate bladder and rectum data sets, a greater percentage of VOL-

diffs fell within the 15 cc criteria for surrogate rectum segmentation than for surrogate bladder 

segmentation, regardless of imaging energy or type of applicator (c.f Table 3-17). In other words, the 

participant reconstructed rectum volumes were closer to control volumes than participant-

reconstructed bladder volumes, suggesting that the surrogate bladder was more difficult to segment 

than the surrogate rectum structures. This could be due to structure wall shape and thickness: bladder 

walls were thinner in which case they suffered from poorer MVCT imaging contrast. Although the 

bladder and rectum structures varied from one another, it is still worth analyzing, as typical patient 

anatomies vary, resulting in varying responses to different imaging modalities. 

Table 3-17: VOL-diff comparison of bladder and rectum 

VOL-diff Results: Bladder versus Rectum (*volumes in cc)   

    Mean 
 

Max 
 

Min ±15cc Criteria 

    Blad. Rec. Blad. Rec. Blad. Rec. Blad. Rec. 

CTMR  kV 11.3 9.7 32.4 23.9 1.5 1.1 77.8% 88.9% 

  MV 21.6 9.7 37.1 23.5 3.8 2.7 33.3% 88.9% 

FSDs kV 10.0 9.5 23.2 19.6 1.0 3.2 77.8% 77.8% 

  MV 19.7 5.7 44.8 18.4 2.3 0.1 33.3% 88.9% 

FW kV 8.3 10.1 19.7 18.1 0.8 3.0 66.7% 88.9% 

  MV 18.3 8.6 39.8 21.6 1.2 0.3 22.2% 88.9% 
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For all MVCT data sets, the surrogate rectum had smaller mean VOL-diffs and more VOL-diffs 

meeting the 15 cc criteria than the surrogate bladder structures (see Table 3-17). Rectum results suggest 

participants were able to segment this structure with more accuracy than the bladder structure on kVCT 

and MVCT data sets. These surrogate rectum results are consistent with other studies demonstrating 

the viability of TomoTherapy’s MV scanner for organ segmentation (Ruchala, et al., 1999) (Meeks, et al., 

2005). While previous studies have not incorporated shielded HDR tandem and ovoid applicators, they 

have utilized unshielded CT/MR compatible applicators for which MV scans yielded sufficient contrast to 

segment the bladder, rectum and small bowel (Korol, et al., 2010). Results by Wagner et al. also indicate 

that MVCT scans of the shielded Fletcher-Suit-Delclos applicator yield acceptable CT data sets for 3D, 

MVCT-based treatment planning. This suggests that the surrogate rectum structures more closely 

approximated an actual rectum than the surrogate bladder approximated an actual bladder. However, 

additional studies with larger sample sizes would be needed to draw these conclusions. 

Another indication of physical differences between surrogate bladder and rectum structures is 

whether a structure volume was over- or underestimated. The over- and underestimations were 

recorded for both the kV and MV energies (see Table 3-18). These results show for kV image sets that 

the participants tended to overestimate bladder structures (=89%) and to underestimate rectum 

structure (=89%). For MV image sets the majority of participants continued to overestimate the 

surrogate bladder volume (=93%) while the over- and underestimations were more evenly distributed 

for the surrogate rectum structure (41% and 59%). 

Table 3-18: Comparison of over-and underestimations between kV and MV imaging modalities for 
surrogate bladder and rectum structures. 

VOL-diff Results: Over- vs. Underestimation 
    Bladder % of Volumes Rectum % of Volumes 

kV Under 2 7.4% 24 88.9% 

 
Over 25 92.6% 3 11.1% 

MV Under 1 3.7% 16 59.3% 

 
Over 26 96.3% 11 40.7% 
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3.3.3 Catheter Reconstruction Results 

3.3.3.1 Investigator Catheter Reconstruction via Oncentra’s Applicator Modeling Plugin 

A part of this study was to validate the use of Nucletron’s AMp for catheter reconstruction. To 

accomplish this purpose the results of the AMp will be reported with and tested statistically against 

participant’s catheter reconstruction results in the following section. Basic analyses are included in this 

section. 

As shown in Table 3-19, all but three AMp-defined distal dwell positions yielded marker-to-dwell 

differences (MD-diffs) within the ±2 mm hypothesis criteria. The mean deviation from the control values 

for all applicators was 1.0 mm ± 0.7 mm with a maximum deviation of 2.3mm. Of the 36 AMp-defined 

dwell positions, 50% were within ±1 mm of the control values which is within the mechanical tolerance 

of the treatment delivery system (afterloader, applicators, etc.). Of the three points differing by more 

than 2mm from control values, 1 was on kVCT data sets and 2 were on MVCT data sets.  

Table 3-19: Applicator Modeling plugin results for Nucletron’s CT/MR compatible applicator and 
shielded Fletcher-Williamson applicator. Results in green, yellow and red indicate values that are less 
than 1.0 mm from the control values, less than or equal to 2.0 mm from the control value and greater 
than 2.0 mm from the control values, respectively. The “Rectum-#” label refers to the bladder/rectum 
arrangement utilized for the given CT data set. The uncertainty in kV and MV images are ±1.3 mm and 
±1.6 mm, respectively 

Applicator Modeling Plugin: Raw Results 

*distances in mm R. Ovoid L. Ovoid Tandem 

CTMR kV 

Rectum 1 1.1 -0.3 0.7 

Rectum 2 1.4 0.5 0.0 

Rectum 3 1.4 -0.7 -0.1 

CTMR MV 

Rectum 1 -0.1 -1.3 0.0 

Rectum 2 1.3 -0.4 -1.7 

Rectum 3 0.2 -1.6 0.3 

FW kV 

Rectum 1 1.3 0.1 -1.1 

Rectum 2 2.3 -1.0 -1.6 

Rectum 3 1.3 -0.6 -1.0 

FW MV 

Rectum 1 0.9 -2.2 -2.3 

Rectum 2 0.9 -1.2 0.1 

Rectum 3 1.9 -1.4 -1.5 
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3.3.3.2 Participant Catheter Reconstruction MD-diff Results 

As shown in Table 3-20, the percentage of MD-diffs that were within the 2 mm criteria for the 

CTMR, FSDs and FW applicator kVCT data sets were 96%, 85% and 52%, respectively. The percentage of 

MD-diffs that were within the 2 mm criteria for MVCT data sets were 93%, 96% and 93%. All CTMR-AMp 

kVCT and MVCT dwells were within the 2 mm criteria whereas the FW-AMp kVCT and MVCT data sets 

resulted in 78% and 83% of dwells being within the 2 mm criteria, respectively. A two-proportion t-test 

showed that the percentage of MD-diffs meeting the 2 mm criteria for FSDs MVCT data sets was not 

significantly different from the percentage of MD-diffs meeting the 2 mm criteria for CTMR kVCT data 

sets (96% vs. 96%, p=0.4). The percentage of MD-diffs meeting the 2 mm criteria for FW MVCT data sets 

was not significantly different from CTMR kVCT data sets (93% vs. 96%, p=0.3). This suggests that, for all 

distal dwell positions of the shielded FSDs and FW applicators, MVCT data sets provide sufficient 

visibility to accurately place distal source dwells within the TPS.  

Table 3-20: MD-diff results for all applicators for all catheter tubes combined. AMp MD-diff results were 
included as an alternate method of catheter reconstruction. 

MD-diff Results: All Catheter Tubes Combined  
    Number of points differing by: Percent of points differing by: 

    
[0-

2mm] 
[>2-

5mm] 
[>5-

10mm] 
[>10-

15mm] 
[0-

2mm] 
[>2-

5mm] 
[>5-

10mm] 
[>10-

15mm] 

CTMR kV 26 1 0 0 96% 4% 0% 0% 

  MV 26 1 0 0 96% 4% 0% 0% 

FSDs kV 23 4 0 0 85% 15% 0% 0% 

  MV 26 1 0 0 96% 4% 0% 0% 

FW kV 14 11 2 0 52% 41% 7% 0% 

  MV 25 2 0 0 93% 7% 0% 0% 

CTMR-
AMp 

kV 9 0 0 0 100% 0% 0% 0% 

MV 9 0 0 0 100% 0% 0% 0% 

FW-
AMp 

kV 8 1 0 0 89% 11% 0% 0% 

MV 7 2 0 0 78% 22% 0% 0% 

Table 3-21 summarizes the sample characteristics of the MD-diff measures for all catheters for 

all six data sets plus four AMp data sets. The mean MD-diff for all image sets was within the 2 mm 

criteria. As determined by an unpaired t-test, the mean MD-diff for the FSDs MVCT data sets was 
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significantly better than the mean MD-diff for the CTMR kVCT data sets (0.5 mm vs. 1.0 mm, p=0.05). 

The mean MD-diff for the FW MVCT was significantly better than the mean MD-diff for the CTMR kVCT 

(-0.3 mm vs. 1.0 mm, p=0.00003). For the CTMR kVCT and MVCT data sets, the mean AMp MD-diffs 

varied significantly for kV and insignificantly for MV from mean participant-generated MD-diffs (kV: 0.4 

mm vs. 1.0 mm, p=0.04; MV: -0.4 mm vs. 0.3 mm, p=0.07). For FW kVCT and MCT data sets, the mean 

AMp MD-diffs varied insignificantly from mean participant-generated MD-diffs (kV: 0.0 mm vs. -1.1 

mm,p=0.24; MV: -1.0 mm vs. -0.3 mm, p=0.6). 

Table 3-21: MD-diff results for all catheter tubes combined.  

MD-diff Results: All Catheter Tubes Combined  

*distances in mm n Mean σ 95% CI Range 

CTMR kV 27 0.9 0.6 0.7-1.2 2.9 

 
MV 27 0.2 0.9 -0.1-0.5 3.4 

FSDs kV 27 0.1 1.4 -0.4-0.7 5.6 

 
MV 27 0.3 1.0 -0.1-0.7 3.8 

FW kV 27 -0.5 2.7 -1.5- 0.5 9.8 

 
MV 27 -0.4 1.3 -0.9-0.1 5.9 

CTMR-AMp kV 9 0.4 0.8 -0.1-1.0 2.1 

 
MV 9 -0.4 1.0 -1-0.3 3 

FW-AMp kV 9 0.0 1.4 -1.0-0.9 3.9 

 
MV 9 -1.0 1.5 -2.0-0.5 4.2 

 

3.3.3.3 Ovoid Catheter Tubes 

As shown in Table 3-22, the percentage of MD-diffs that were within the 2 mm criteria for the 

CTMR, FSDs and FW applicator kVCT data sets were 94%, 83% and 28%, respectively. The percentage of 

MD-diffs that were within the 2 mm criteria for MVCT data sets were 89%, 94% and 94%. All CTMR-AMp 

kVCT and MVCT dwells were within the 2 mm criteria whereas the FW-AMp kVCT and MVCT data sets 

resulted in 83% of dwells being within the 2 mm criteria, respectively. A two-proportion t-test showed 

that the percentage of MD-diffs meeting the 2 mm criteria for FSDs MVCT data sets was not significantly 

different from the percentage of MD-diffs meeting the 2 mm criteria for CTMR kVCT data sets (94% vs. 



 

64 
 

94%, p=0.4). The percentage of MD-diffs meeting the 2 mm criteria for FW MVCT data sets was not 

significantly different from CTMR kVCT data sets (94% vs. 94%, p=0.3).  

Table 3-22: MD-diff results for all applicators for ovoid catheter tubes.  

MD-diff Results: Ovoid Catheter Tubes  
    Number of points differing by: Percent of points differing by: 

    
[0-

2mm] 
[>2-

5mm] 
[>5-

10mm] 
[>10-

15mm] 
[0-

2mm] 
[>2-

5mm] 
[>5-

10mm] 
[>10-

15mm] 

CTMR kV 17 1 0 0 94% 6% 0% 0% 

  MV 17 1 0 0 94% 6% 0% 0% 

FSDs kV 15 3 0 0 83% 17% 0% 0% 

  MV 17 1 0 0 94% 6% 0% 0% 

FW kV 5 11 2 0 28% 61% 11% 0% 

  MV 17 1 0 0 94% 6% 0% 0% 

CTMR-
AMp 

kV 6 0 0 0 100% 0% 0% 0% 

MV 6 0 0 0 100% 0% 0% 0% 

FW-
AMp 

kV 5 1 0 0 83% 17% 0% 0% 

MV 5 1 0 0 83% 17% 0% 0% 

 Table 3-23 summarizes the sample characteristics of the MD-diff measures for ovoid catheters 

for all six data sets plus four AMp data sets. The mean MD-diff for all sample sets was within the 2 mm 

criteria. As determined by an unpaired t-test, the mean MD-diff for the FSDs MVCT was not significantly 

better than the mean MD-diff for the CTMR kVCT (0.7 mm vs. 1.0 mm, p=0.3). The mean MD-diff for the 

FW MVCT was significantly better than the mean MD-diff for the CTMR kVCT (-0.3 mm vs. 1.0 mm, 

p=0.00003). For the CTMR kVCT and MVCT data sets, the mean AMp MD-diffs varied insignificantly from 

mean participant-generated MD-diffs (kV: 0.6 mm vs. 1.0 mm, p=0.2; MV: -0.3 mm vs. 0.4 mm, p=0.2). 

For FW kVCT and MCT data sets, the mean AMp MD-diffs varied insignificantly from mean participant-

generated MD-diffs (kV: -0.6 mm vs. -1.4 mm, p=0.1; MV: -0.3 mm vs. -0.3 mm, p=0.8). This suggests 

that, for distal ovoid dwell positions of the shielded FSDs and FW applicators, MVCT data sets provide 

sufficient visibility to accurately place distal source dwells within the TPS. 
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Table 3-23: MD-diff results for ovoid catheter tubes.  

MD-diff Results: Ovoid Catheter Tubes  

*distances in mm n Mean σ 95% CI Range 

CTMR kV 18 1.0 0.7 0.6-1.3 2.9 

 
MV 18 0.2 1.0 -0.3-0.6 3.4 

FSDs kV 18 0.3 1.3 -0.3-1.0 5.6 

 
MV 18 0.5 0.9 0.1-0.9 3.0 

FW kV 18 -0.6 3.1 -2.0 -0.9 9.8 

 
MV 18 -0.5 1.0 -1.0-0.0 3.9 

CTMR-AMp kV 6 0.6 0.9 -.2-1.3 2.1 

 
MV 6 -0.3 1.1 -1.2-0.6 3 

FW-AMp kV 6 0.6 1.3 -0.6-1.7 3.3 

 
MV 6 -0.2 1.6 -1.6-1.2 4.1 

 
3.3.3.4 Tandem Catheter Tubes 

As shown in Table 3-24, the percentages of MD-diffs that were within the 2 mm criteria for the 

CTMR, FSDs and FW applicator kVCT data sets were 100%, 78% and 100%, respectively. The percentage 

of MD-diffs that were within the 2 mm criteria for MVCT data sets were 100%, 100% and 89%. All AMp-

defined dwells were within the 2 mm criteria except for the FW MVCT which had 67% of dwells within 

the 2 mm criteria. A two-proportion t-test showed that the percentage of MD-diffs meeting the 2 mm 

criteria for FSDs MVCT data sets was not significantly different from the percentage of MD-diffs meeting 

the 2 mm criteria for CTMR kVCT data sets (94% vs. 94%, p=0.4). The percentage of MD-diffs meeting 

the 2 mm criteria for FW MVCT data sets was not significantly different from CTMR kVCT data sets (94% 

vs. 94%, p=0.3).  
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Table 3-24: MD-diff results for tandem catheter tubes. Applicator modeling plugin results were included 
as an alternate method of catheter reconstruction. 

Catheter Reconstruction Results: Tandem Catheter Tubes  
    Number of points differing by: Percent of points differing by: 

    
[0-

2mm] 
[>2-

5mm] 
[>5-

10mm] 
[>10-

15mm] 
[0-

2mm] 
[>2-

5mm] 
[>5-

10mm] 
[>10-

15mm] 

CTMR kV 9 0 0 0 100% 0% 0% 0% 

  MV 9 0 0 0 100% 0% 0% 0% 

FSDs kV 8 1 0 0 89% 11% 0% 0% 

  MV 9 0 0 0 100% 0% 0% 0% 

FW kV 9 0 0 0 100% 0% 0% 0% 

  MV 8 1 0 0 89% 11% 0% 0% 

CTMR-
AMp 

kV 3 0 0 0 100% 0% 0% 0% 

MV 3 0 0 0 100% 0% 0% 0% 

FW-
AMp 

kV 3 0 0 0 100% 0% 0% 0% 

MV 2 1 0 0 67% 33% 0% 0% 

 Table 3-25 summarizes the sample characteristics of the MD-diff measures for tandem catheters 

for all six data sets plus four AMp data sets. The mean MD-diff for all sample sets was within the 2 mm 

criteria. As determined by an unpaired t-test, the mean MD-diff for the FSDs MVCT was not significantly 

better than the mean MD-diff for the CTMR kVCT (0.1 mm vs. 0.9 mm, p=0.08). The mean MD-diff for 

the FW MVCT was not significantly different than the mean MD-diff for the CTMR kVCT (-0.2 mm vs. -0.9 

mm, p=0.1). No statistical tests were applied to AMp-defined tandem catheter dwells as the sample size 

was too small. This suggests that, for distal tandem dwell positions of the shielded FSDs and FW 

applicators, MVCT data sets provide sufficient visibility to accurately place distal source dwells within 

the TPS. 
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Table 3-25: MD-diff results for tandem catheter tubes. 

MD-diff Results: Tandem Catheter Tubes  

*distances in mm n Mean σ 95% CI Range 

CTMR kV 9 0.9 0.4 0.7-1.2 1.1 

 
MV 9 0.3 0.6 -0.1-0.7 2.0 

FSDs kV 9 -0.3 1.7 -1.4-0.9 4.5 

 
MV 9 0.1 1.3 0.8-1.0 3.4 

FW kV 9 -0.4 1.7 -1.5-0.8 4.4 

 
MV 9 -0.2 1.9 -1.5-1.1 5.9 

CTMR-AMp kV 3 0.2 0.9 -0.4-0.8 0.8 

 
MV 3 -0.5 1.1 -2.0-1.0 2 

FW-AMp kV 3 -1.2 1.3 -1.7- -0.8 0.6 

 
MV 3 -1.2 1.6 -2.9-0.5 2.4 

3.3.3.5 Catheter Reconstruction Results Discussion 

A summary of catheter reconstruction results is given in Table 3-26. For all MVCT data sets, 

participant-defined MD-diff results either remained the same as or improved upon kVCT results, with 

the exception of one outlier for the FW MVCT tandem distal dwell location (=-2.3). Utilization of CT/MR 

compatible applicators with kVCT imaging is current clinical practice at many institutions. This suggests 

that MVCT imaging of shielded applicators could possibly be implemented as clinical practice with no 

reduction in quality compared to CT/MR compatible applicators with kVCT.. 

Table 3-26: Summary of MD-diff results for all catheter tubes, tandem tubes and ovoid tubes. 

Summary of MD-diff Measures Meeting ±2 mm 
Criteria 
    All Tandem Ovoids 

CTMR kV 96% 100% 94% 

  MV 93% 100% 89% 

FSDs kV 85% 89% 83% 

  MV 96% 100% 94% 

FW kV 52% 100% 28% 

  MV 93% 89% 94% 

CTMR-AMp kV 100% 100% 100% 

  MV 100% 100% 100% 

FW-AMp kV 89% 100% 83% 

  MV 78% 67% 83% 
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Table 3-26 shows the advantage of MVCT when utilizing shielded T&O applicators. Both shielded 

T&O applicators saw an improvement in terms of the number of MD-diff measures within 2 mm. Most 

noticeable is the improvement within the ovoid region where 28% of MD-diff measures on kVCT were 

within 2 mm of the control, which improved to 94% of MD-diff measures on MVCT being within 2 mm, a 

change of +66%. 

Though no clinics are currently utilizing the AMp to facilitate catheter reconstruction for shielded 

applicators, these results indicate that further consideration should be given for clinical implementation 

of the AMp. It appears from these results that a combination of the AMp with MV imaging would allow 

for accurate catheter reconstruction of the distal dwell location. Limitations of these results include 

small sample sizes and only one participant performing organ segmentation. 
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Chapter 4  Conclusions 

4.1 Summary of Results 

This study demonstrated that MVCT is a feasible alternative for acquiring clinically viable CT data 

sets of shielded T&O-type applicators, specifically Nucletron’s tungsten-shielded Fletcher-Williamson 

applicator and Varian’s stainless steel-shielded Fletcher-Suit-Delclos-style applicator. Results indicate 

that MVCT data sets acquired of the shielded FSDs and FW T&O applicators consistently display 

sufficient image quality to allow for accurate organ segmentation. The ability to accurately segment 

OARs in the artifact region is critical for correct DVH analysis, providing the best opportunity for early 

and late sequelae prevention. Catheter reconstruction quality for MVCT data sets of the shielded FSDs 

and FW applicators was comparable to the catheter reconstruction performed for kVCT data sets of the 

unshielded, artifact-free CTMR applicator. Overall, TomoTherapy’s Hi Art II MVCT scanner yielded image 

sets displaying sufficient image quality to facilitate accurate and acceptable organ segmentation and 

catheter reconstruction. Utilization of Nucletron’s AMp yielded catheter reconstruction quality 

comparable to that achieved by participants for kVCT and MVCT data sets. 

4.2 Response to Hypothesis 

In response to the hypothesis, neither kVCT nor MVCT yielded image sets of sufficient quality for 

all physicists to meet the hypothesis metrics for the criterion used in this study. While the criterion may 

not be realistic for day-to-day clinical standards, they did provide a sufficient metric to compare kVCT 

imaging of the CTMR applicator with MVCT imaging of the FW and FSDs applicators. MVCT imaging of 

shielded FW and FSDs applicators was sufficiently comparably to the current, clinical standard that 

further consideration need be given to include MVCT as proper procedure for the imaging of cervical 

cancer patients treated using shielded tandem and ovoid applicators. 
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4.3 Future Work 

For both 2D and 3D organ segmentation methods, the bladder consistently had fewer CTP-diffs 

and reconstructed volumes meeting the hypothesis criteria. A new method of developing surrogate 

bladder structures should be explored to allow consistency of results throughout the experiment.. This 

could be done by first making a rigid structure around which the bladder could mold rather than around 

an inflated balloon which is prone to stretching the hot aquaplast. Another possible solution could be to 

purchase or develop a rigid pelvic phantom designed specifically for the T&O applicators being explored, 

possibly utilizing technology offered commercially. 

A number of parameters in this study, such as slice thickness, could be better controlled to 

mitigate errors arising from differences in kV and MV image acquisition. Though the SFOV would not 

physically change much, it could potentially reduce any bias towards either kVCT or MVCT imaging. Also, 

matched slice thicknesses would potentially reduce TPS volume reconstruction errors due to 

interpolating over larger volumes on MVCT data sets than kVCT data sets. 

Regarding catheter reconstruction, the method used in this study was only capable of validating 

the most distal dwell position of each applicator tube. Another strategy could be investigated, allowing 

for the accuracy of all dwell locations to be validated. A possible idea would be to rigidly attach two 

fiducial markers in line with each other and in the same sagittal plane as the catheter tube dwell 

positions. This would facilitate distance and angle measures between the fiducial markers and each of 

the catheter’s dwell locations. The clinical commissioning procedure would, in theory, work for 

determining control values for a study of this nature. 

The use of Nucletron’s AMp for catheter reconstruction in this study approached the accuracy of 

the participant-defined catheter reconstruction. This catheter reconstruction was solely performed by 

the investigator. To validate the AMp for clinical use, the next step should be to increase the sample size 

as well as the number of medical physicists participating in the study.  
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Appendix A: Surrogate Structures-Contrast Agent vs. Aquaplast 

The use of contrast agent was explored as an aid in organ segmentation for MVCT scans. ICRU 

report 38 specifies the use of a bladder Foley catheter filled with 7 ml of contrast to aid in the 

localization of ICRU-defined bladder point. The percentage of actual contrast to saline is up to individual 

clinics to decide what suits them best. At MBPCC, a 7% solution of Omnipaque 300 mgI/ml mixed with a 

normal saline is typically used. This was tested with the MVCT scanner and determined 

undistinguishable when compared with surrounding water for most center and width values. The 

amount of contrast was increased to 10%. Visual inspection of the 10% contrast scans yielded what were 

thought to be acceptable results however a comparison of contours generated from the kVCT and MVCT 

scans for the CTMR applicator (no artifact present) showed that the MVCT structure had a volume 15.1% 

smaller than that of the kVCT. It was concluded that 10% contrast also provided insufficient contrast. 

Higher contrast amounts were explored however it was observed that, as contrast levels increased, 

streaking artifacts were introduced into the kVCT scans due to the high effective atomic number of 

iodinated contrast (54). At a 50% contrast agent to saline mixture, the rectum structure contrast was 

acceptable on MVCT scans and also lacked streaking artifact making this a desirable setup if one is solely 

using MVCT. Due to the streaking artifact issues along with the bladder and rectum structure rigidity 

issues, an alternative was sought to deformed condoms filled with contrast agent and thus, aquaplast 

became the material of choice. It is still possible that clinically acceptable results may be achieved with 

the use of a high percentage contrast to saline mixture however accurate comparisons between kVCT 

and MVCT are not feasible due to streaking artifact. Meeks et al determined that MVCT provides 

sufficient contrast to contour the bladder and rectum therefore it would be feasible to conduct a future 

experiment using high percentages of contrast agent in a Foley balloon catheter for MVCT treatment 

planning scans. (Meeks, et al., 2005) 
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The use of air, a negative contrast agent, was also explored. A positive contrast agent has a 

higher attenuation coefficient than surround materials whereas a negative contrast agent as a lower 

attenuation coefficient than surrounding tissues. Iodinated contrast is an example of a positive contrast 

agent and air is an example of a negative contrast agent. Negative contrast agents can be used 

effectively on kVCT and MVCT scans. Korol et al. used air as a Foley catheter contrast agent for MVCT 

treatment planning scans of cervical cancer patients with bilateral hip prostheses treated with a Varian 

CT/MR compatible tandem and ovoid applicator. (Korol, et al., 2010)  Air is also commonly used in GI 

radiographs for procedures such as Barium-air enemas. Reconstruction algorithms can compensate for 

air heterogeneities resulting in no artifact from contrast agents. I observed that for both kVCT and 

MVCT, distinguishing between air and soft tissue is a trivial matter. Several drawbacks prevented the use 

of air. First, is that a Foley catheter is no longer used to calculate dose to the ICRU-defined bladder 

point; rather, dose is calculated to the hottest 2CC of bladder tissue using DVH analysis. Second, there 

are no current, clinical methods for filling the bladder and rectum organs with air so it is clinically 

irrelevant. Third, it has already been shown that MVCT scans provide sufficient contrast to delineate the 

bladder, rectum and sigmoid colon in the absence of metal artifact. (Meeks, et al., 2005) This means that 

if MVCT can reduce the shielded T&O applicator induced metal artifact, then there is the possibility that 

adequate contrast will be present in the CT scan to segment the bladder, rectum and sigmoid colon.  
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Appendix B: Participation Instructions 

Purpose of research: 
The purpose of this research is to compare the quality of organ segmentation and catheter 
reconstruction for HDR cervical brachytherapy administered using 3 different tandem and ovoid (T&O) 
applicators: Nucletron’s shielded CT/MR compatible, Nucletron’s shielded Fletcher-Williamson, and 
Varian’s shielded Fletcher-Suit-Delclos-style. The quality of plans will be determined by organ 
segmentation and catheter reconstruction accuracy. A water phantom, containing only a bladder 
surrogate, a rectum surrogate and HDR T&O applicator is used to facilitate these measurements. KVCT 
and MVCT imaging modalities have been used to acquire the image sets you will use for treatment 
planning.   

 
Participant’s Responsibility: 
For the 7 image sets, you are asked to segment the bladder and rectum structures in the pelvic water 
phantom. To minimize confusion there are only four constituents to the phantom: a bladder surrogate, a 
rectum surrogate, water and one of 3 HDR T&O applicators. The bladder is the anterior structure; the 
rectum is the posterior structure. You will see fiducial markers on the bladder and rectum surrogates. 
Any time these markers appear, do your best to ignore them.  
You are also asked to perform catheter reconstruction for the tandem and ovoids in image sets where 
an applicator is visible.  
Several guidelines are given for TPS setup, Organ Segmentation, and Catheter reconstruction. Please 
follow the specified guidelines. For all other TPS settings, follow your clinical protocol.  
*Please provide a copy of your clinical protocol for HDR cervical brachytherapy. 

Order of Events: 

1. For the image sets, follow the numerical order for organ segmentation and catheter 
reconstruction. DO NOT VIEW THE NEXT IMAGE SET UNTIL ORGAN SEGMENTATION AND 
CATHETER RECONSTRUCTION IS COMPLETE. Doing so could compromise the integrity of your 
results. 
 

2. While performing organ segmentation and catheter reconstruction, fill out the corresponding 
image set instructions/information sheet. 
 

3. Once completed, export the image sets with the plan and structure information. Please place 
the image sets in folders with the same number but add the label completed. For example, you 
receive a folder labeled: 1. When you are finished, you create a new folder labeled: 1-
completed. 
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Oncentra Masterplan Settings: 

1. Change Image Smoothing to Lanczos window: 
 
Tools menu  Options  General  Image Smoothing 
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2. Verify ROI voxel size is 2 mm 
 
ROI menu  Manage ROI Catalog…  ROI Catalog (choose ROI name i.e. Bladder)  
edit  deselect Automatic Voxel Size (if already selected)  Change voxel size to 2 mm 
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Organ Segmentation Instructions: 

 

 
1. This is an example of what you will see-yellow is the bladder, green is the rectum.  

 
a. Segment to the outer edge of the tissue wall 

 
b. Ignore fiducial markers. They lie directly on the surface of the structures so assume the 

tissue continues directly inside the markers. 
 

c. When image artifact is present, do the best guesswork you can.  
 

d. Record Window/Level presets or values that were used 
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Because you are contouring a phantom, you need to be aware of two things: 

1. The bladder immobilization arm can inhibit segmentation. In the image series below you can see 
where it begins to come off the bladder. Slice numbers will be given were this approximation 
should be made (see the instructions for each image set). Using your best approximation, follow 
the example in the images below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Unlike a true rectum, the surrogate rectums have defined start and end points. An example of a 
starting point is shown below. Please contour all parts of the rectum visible in each CT slice.  
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Catheter Reconstruction: 
If source position markers are visible, plan off those. Source position markers will not be visible for the 
shielded T&O applicators in which case you are expected to follow your current, clinical protocol for 
catheter reconstruction of shielded T&O applicators (e.g. at Mary Bird Perkins Cancer Center and MD 
Anderson, the first dwell position is chosen by placing the center of the source in the center of the tube 7 
mm from the ovoid tip) 
 
Within Oncentra, please use the following settings 
for catheter reconstruction: 

1. Under preferences, choose “No Sequencing” 
2. Under Catheters, choose 3 for the number of 

catheters 
3. Under Applicator Properties, choose: 

a. 5.0 mm source step 
b. Start at Tip End 

 
 
 
 
 
 
 
 
 
 
*Also, be aware when performing catheter 
reconstruction for the applicator(s) with source 
position markers visible that a fiducial marker has 
been placed on the tandem and it should not be 
confused with the source position markers for 
catheter reconstruction. See image below. 
 
 

 

Fiducial Marker 
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Export Instructions (for those at institutions other than Mary Bird Perkins): 
After performing organ segmentation and catheter reconstruction, you will need to export your plan 
information.  

1. Be sure to save the current plan (under File tab). 
 

2. Click the Export tab: 
 
 
 
 
 
 
 
 
 
 

3. This will then give you the option of what you want to export. At this point, you just need to 
choose the “RT Plan”. This will contain all the organ segmentation and catheter reconstruction 
information. 

 
 

4. Next, click export on the bottom of the window. 
 

5. Now, you will want to go to the location listed in the “Directory” spot above. In this case it is: 
D:\OTP_DATA\DICOM\ExportTemp\. From here, you can just copy all the files into a folder and 
label it in the style mentioned above (i.e. image set 1 is labeled 1-Completed).  
 

6. Lastly, organize all of your image sets, zip them (conserve space and save time), and upload 
them to the amazon cloud server.  
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Appendix C: Participant’s Raw Results 

The results for the participants of this study are reported in following subsections. An analysis 

and discussion of these results is given in Section 3.3.1. For all raw results, values highlighted in red 

differed by more than the hypothesized metric values. In the case of two-dimensional organ 

segmentation analysis, values highlighted in yellow signify values that met the hypothesis metric of ±2 

mm but differed by more than 1 mm from the control value. For catheter reconstruction accuracy, 

values highlighted in yellow signify value that met the hypothesis metric of ±2  mm however were 

outside the mechanical tolerance of the treatment delivery system (±1 mm).  
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Physicist 1  

Table C-1: Results from two-dimensional CTP organ segmentation measurements for surrogate rectum structures. Color coding for columns 
displaying differences from control values is as follows: No coloring signifies results within 1 mm of control values, yellow coloring signifies 
results differing from the control values by 1-2 mm, light red signifies results differing from control values by 2-5 mm and dark red signifies 
results differing from control values by more than 5 mm. Clear and yellow results met the hypothesis criteria of ±2 mm. The terms “sup”, “mid”, 
and “inf” refer to locations relative to the artifact region. Sup=superior, inf=inferior and mid=middle. 

CTP: Rectum Results                     

*distances in mm Measured values             Absolute difference from control values  

  angle: 0 40 80 120 160 200 240 280 320 0 40 80 120 160 200 240 280 320 

CTMR kV 2 sup 10.7 10.1 13.4 19.1 19.7 20.9 23.6 24 17.9 0.9 1 0.5 1.2 0.1 0.4 0.7 0.2 1.3 

 
mid 30.6 26.6 18.9 16.6 21.4 22.9 16.1 16.3 22.9 1.8 2.7 0.4 1.9 0.6 1.1 0.1 2 1.5 

 
inf 18.3 18.4 16.7 16.5 15.3 17.1 16.8 17.9 18.1 0 0.7 0.6 0.2 0.9 1.6 0.7 0.1 0.1 

CTMR MV 3 sup 13.6 13.1 12.8 14.1 19.3 25 26.9 19.6 16.2 0.8 1 0.4 0.3 0.5 0.6 2.2 1 0.5 

 
mid 13.1 21 24.3 16.3 17.4 17.5 17.6 14.8 12.5 0.4 0.2 0.7 4.8 6.8 2.1 0.8 1.3 0.1 

 
inf 16.6 16.1 16.5 17.4 20.6 20.5 19.9 21.2 20.3 0.8 1.1 0.4 0.7 0.2 1.1 1.4 0.4 0.8 

FW kV 3 sup 14.1 13 12.7 15 21.4 24.8 25.8 19.6 16.5 1.3 0.9 0.3 0.6 1.6 0.4 1.1 1 0.2 

 
mid 13.3 18.8 21.2 18.6 15.4 15.9 17.5 14.8 12.1 0.6 2.4 2.4 7.1 4.8 0.5 0.9 1.3 0.3 

 
inf 16.6 15.4 16.2 17.2 20.7 20.7 18.6 20.3 19.8 0.8 0.4 0.1 0.5 0.3 1.3 0.1 0.5 0.3 

FW MV 1 sup 18.2 13.8 14.5 15.8 23.2 17.6 15.1 13.3 18.2 2.3 0.2 1.3 0 3.3 1.5 0.6 2.3 1.7 

 
mid 11.5 16.9 23.9 17.9 16.4 16.8 19.3 18.9 15.1 4.3 2 0.1 1.7 2.1 2 0.9 3.5 5.4 

 
inf 23.5 13 14 19.1 14.3 14.1 19.3 23.2 26 3.2 1 1.6 1.9 1.2 1.5 0.5 1.1 0.3 

FSDs kV 1 sup 15.5 13.1 12.6 15.5 20.4 16.9 17.6 15.5 17.1 0.4 0.5 0.6 0.3 0.5 0.8 1.9 0.1 0.6 

 
mid 13.7 18.9 18.3 17.1 15.2 16.8 19.9 15.9 15.3 6.5 4 5.7 0.9 0.9 2 1.5 0.5 5.6 

 
inf 21.2 12.5 13.3 16.7 13.8 12.8 17.9 22.7 25.7 0.9 0.5 0.9 0.5 0.7 0.2 0.9 1.6 0 

FSDs MV 2 sup 11.5 10.7 14.6 19.1 21.2 21.8 23.4 24.1 16.3 1.7 1.6 1.7 1.2 1.6 0.5 0.5 0.3 0.3 

  mid 28.5 24.1 18.4 18.6 21.5 21.6 17.5 15.9 21.2 0.3 0.2 0.1 0.1 0.5 0.2 1.3 1.6 0.2 

  inf 17.4 19.4 16.5 16.5 15.5 17.8 18.1 19.2 18.2 0.9 0.3 0.4 0.2 1.1 2.3 2 1.4 0 
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Table C-2: Results from two-dimensional CTP organ segmentation measurements for surrogate bladder structures. Color coding for columns 
displaying differences from control values is as follows: No coloring signifies results within 1 mm of control values, yellow coloring signifies 
results differing from the control values by 1-2 mm, light red signifies results differing from control values by 2-5 mm and dark red signifies 
results differing from control values by more than 5 mm. Clear and yellow results met the hypothesis criteria of ±2 mm. The terms “rlat”, “mid” 
and “llat” refer to locations relative to the artifact region. Rlat=right lateral, llat= left lateral and mid=middle. 

CTP: Bladder Results                     

*distances in mm Measured values             Absolute difference from control values 

  angle: 0 40 80 120 160 200 240 280 320 0 40 80 120 160 200 240 280 320 

CTMR kV 2 rlat 15.2 17.9 19.1 20.6 19.1 18.2 24 21.7 15.8 0.9 0.6 0.5 4.4 3.1 1.3 0.3 0.8 0.4 

 
mid 29.2 32.6 37.2 28.2 24.9 24.8 26.7 32.1 33 1.8 2.8 1.5 0.4 0.3 0.3 0.9 0.9 0.8 

 
llat 16 13.8 14.6 18.5 19.3 18.4 18.6 15.5 15.4 0.4 0.1 1.3 0.6 1.2 2.3 2.8 0.1 1.7 

CTMR MV 3 rlat 16.4 19.5 19.9 19.7 19.4 21.2 25.9 22.3 15.1 2.1 1 0.3 3.5 3.4 4.3 1.6 0.2 0.3 

 
mid 31.9 35.3 38.4 27.9 25.1 24 28.7 32.4 35.6 4.5 5.5 0.3 0.7 0.1 0.5 1.1 0.6 1.8 

 
llat 17.1 13.7 13.6 18.3 20.3 19.1 19.1 18.1 15.7 0.7 0 0.3 0.4 2.2 3 3.3 2.5 2 

FW kV 3 rlat 14.8 18.4 17.7 17.9 17.9 20.5 24.1 19.8 15.5 0.5 0.1 1.9 1.7 1.9 3.6 0.2 2.7 0.1 

 
mid 28.3 32.1 38.9 28 25.4 24.1 26.2 31.8 35.3 0.9 2.3 0.2 0.6 0.2 0.4 1.4 1.2 1.5 

 
llat 16.8 14.3 14.6 18 18.5 17 17.7 17.1 15.1 0.4 0.6 1.3 0.1 0.4 0.9 1.9 1.5 1.4 

FW MV 1 rlat 17.3 17 19.7 20.5 19.7 17.6 21.4 21.1 17.1 3 1.5 0.1 4.3 3.7 0.7 2.9 1.4 1.7 

 
mid 28.1 32.2 39.6 30.1 26.9 25.1 26.7 31.1 36.5 0.7 2.4 0.9 1.5 1.7 0.6 0.9 1.9 2.7 

 
llat 16.1 14 14.7 14.9 18.4 19.4 18.3 14.1 14.8 0.3 0.3 1.4 3 0.3 3.3 2.5 1.5 1.1 

FSDs kV 1 rlat 16 19.6 20.1 19.3 16 18.6 21.9 21.7 15.5 1.7 1.1 0.5 3.1 0 1.7 2.4 0.8 0.1 

 
mid 29 32.6 38.5 29.2 24.9 22.3 27.1 32.5 33.9 1.6 2.8 0.2 0.6 0.3 2.2 0.5 0.5 0.1 

 
llat 16.4 14.5 13.7 18.1 18.4 17.4 17.2 15.5 15.4 0 0.8 0.4 0.2 0.3 1.3 1.4 0.1 1.7 

FSDs MV 2 rlat 17.3 17.3 20.6 20 19.4 18.1 22.4 21.7 15.7 3 1.2 1 3.8 3.4 1.2 1.9 0.8 0.3 

 
mid 28.9 31.9 39.2 28.8 24.5 22.3 28.7 27.8 33.6 1.5 2.1 0.5 0.2 0.7 2.2 1.1 5.2 0.2 

  llat 16.5 13.4 14.7 18.4 18 16.4 18.5 15.9 15.7 0.1 0.3 1.4 0.5 0.1 0.3 2.7 0.3 2 
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Table C-3: Results from three-dimensional reconstructed volume organ segmentation measurements. 
Color coding for columns displaying differences from control values is as follows:  no coloring means the 
volume recorded was within the predetermined systematic error, red means the volume recorded 
exceeded the systematic error. The systematic error for the bladder, rectum 1, rectum 2 and rectum 3 
was ±17.7cc, ±21.0cc, ±16.1cc and ±29.6cc, respectively. Values within 15cc of control values met the 
hypothesis criteria of ±15cc. 
 

 

 

 

 

 

 

 

 

 

 

Table C-4: Results from catheter reconstruction for the procedurally defined, distal-most dwell position. 
“Distance” refers to the distance between the distal-most catheter tube dwell position and the 
applicator reference marker. The difference between TPS generated values and control values is in the 

“” column. Color coding for the column displaying differences is as follows: no coloring signifies values 
within ±1 mm of control values, yellow signifies values between ±1-2 mm of control values (within 
hypothesis criteria of ±2 mm) and red signifies values differing by more than ±2 mm. 

Catheter reconstruction results         

    Dwell Coordinates Fiducial Marker Coordinates   

*distances in mm x y z x y z Distance 

CTMR kV 2 R. Ovoid -13.5 24.3 -90.4 -11.8 9.5 -73.6 22.5 1.0 

  L. Ovoid 12.7 23.3 -90.4 12.9 10.0 -77.2 18.7 2.0 

  Tandem -0.5 72.5 -71.2 1.1 51.0 -74.9 21.9 1.2 

CTMR MV 3 R. Ovoid -13.3 29.6 -96.8 -12.8 10.9 -81.2 24.4 0.9 

  L. Ovoid 12.6 29.6 -95.1 12.1 12.5 -82.0 21.5 0.8 

  Tandem -3.7 75.8 -72.2 -1.5 53.6 -77.1 22.8 0.2 

FSDs kV 1 R. Ovoid -17.6 26.0 -78.6 -14.7 5.1 -65.3 24.9 0.2 

  L. Ovoid 11.7 24.9 -79.5 11.1 6.1 -66.6 22.8 1.6 

  Tandem 0.0 85.3 -47.5 -1.7 64.9 -52.2 21.0 2.7 

FSDs MV 2 R. Ovoid -15.4 22.9 -101.9 -13.4 3.0 -86.9 25.0 0.1 

  L. Ovoid 13.4 23.6 -101.5 12.9 4.2 -87.1 24.2 0.3 

  Tandem 0.2 84.3 -73.6 -1.3 62.9 -78.4 22.0 1.7 

FW kV 3 R. Ovoid -9.4 30.1 -85.6 -12.2 9.4 -69.4 26.4 4.8 

  L. Ovoid 10.0 30.9 -84.9 13.7 10.2 -69.2 26.2 4.4 

  Tandem 1.2 88.9 -52.3 0.4 66.0 -56.0 23.2 0.4 

FW MV 1 R. Ovoid -13.9 21.0 -93.4 -12.9 2.3 -82.1 21.9 0.2 

  L. Ovoid 14.3 21.4 -94.5 12.8 1.7 -82.4 23.2 1.3 

  Tandem -0.4 74.0 -76.4 -1.0 49.3 -78.7 24.8 1.2 

Volume Comparison Results 
*volume in cc Bladder Difference Rectum Difference 

CTMR kV 2 271.4 24.4 124.3 1.1 

CTMR MV 3 290.5 43.5 172.9 11.4 

FSDs kV 1 271.2 24.2 153.1 7.3 

FSDs MV 2 278.6 31.6 123.2 2.2 

FW kV 3 273.2 26.2 166.3 18.1 

FW MV 1 283.8 36.8 160.6 0.3 
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Table C-5: Results from two-dimensional CTP organ segmentation measurements for surrogate rectum structures. Color coding for columns 
displaying differences from control values is as follows: No coloring signifies results within 1 mm of control values, yellow coloring signifies 
results differing from the control values by 1-2 mm, light red signifies results differing from control values by 2-5 mm and dark red signifies 
results differing from control values by more than 5 mm. Clear and yellow results met the hypothesis criteria of ±2 mm. The terms “sup”, “mid”, 
and “inf” refer to locations relative to the artifact region. Sup=superior, inf=inferior and mid=middle. 

CTP: Rectum Results                     

*distances in mm Measured values             Absolute difference from control values  

  angle: 0 40 80 120 160 200 240 280 320 0 40 80 120 160 200 240 280 320 

CTMR kV 2 sup 9.5 9.1 12.1 17.3 20.5 22.3 22.6 23.4 15.6 0.3 0 0.8 0.6 0.9 1 0.3 0.4 1 

 
mid 30.1 24.4 16.9 16 20.4 20.4 14.5 14.7 20.7 1.3 0.5 1.6 2.5 1.6 1.4 1.7 0.4 0.7 

 
inf 18.6 19.5 16.7 16.2 16.7 17.5 17.5 18.5 17.1 0.3 0.4 0.6 0.5 2.3 2 1.4 0.7 1.1 

CTMR MV 3 sup 13.6 13.6 13.4 15 20.5 26.1 27.4 20.3 18.6 0.8 1.5 1 0.6 0.7 1.7 2.7 1.7 1.9 

 
mid 10.6 21 23.8 13.7 16.1 18.1 19.1 18.1 14.8 2.1 0.2 0.2 2.2 5.5 2.7 0.7 2 2.4 

 
inf 16.7 16.5 17.7 18.9 21.8 20.2 20.7 20.5 19.1 0.9 1.5 1.6 2.2 1.4 0.8 2.2 0.3 0.4 

FW kV 3 sup 14.1 12.9 13.1 15 20.6 26.2 25.3 19.9 15.9 1.3 0.8 0.7 0.6 0.8 1.8 0.6 1.3 0.8 

 
mid 12.6 17.6 24.8 18.1 14.4 12.8 13.9 16.1 12.3 0.1 3.6 1.2 6.6 3.8 2.6 4.5 0 0.1 

 
inf 16.9 15.5 16.7 18 21.5 20.7 19.6 21.7 21 1.1 0.5 0.6 1.3 1.1 1.3 1.1 0.9 1.5 

FW MV 1 sup 15.3 15.8 15.1 16.7 19.7 18.2 15 13.1 17.5 0.6 2.2 1.9 0.9 0.2 2.1 0.7 2.5 1 

 
mid 10.9 14.2 23.5 17.3 16.2 17.3 19.9 18.8 14.1 3.7 0.7 0.5 1.1 1.9 2.5 1.5 3.4 4.4 

 
inf 22.2 13.4 13.3 19.8 13.8 14 18.2 21.5 23.6 1.9 1.4 0.9 2.6 0.7 1.4 0.6 2.8 2.1 

FSDs kV 1 sup 14.9 13.4 14 15.8 22.1 18.5 10.9 9.6 13.8 1 0.2 0.8 0 2.2 2.4 4.8 6 2.7 

 
mid 11 17.8 22 17.8 15.1 16.3 21.4 15.4 12.1 3.8 2.9 2 1.6 0.8 1.5 3 0 2.4 

 
inf 21.2 13.2 13.7 17.9 13.3 13.7 19 22.2 26.5 0.9 1.2 1.3 0.7 0.2 1.1 0.2 2.1 0.8 

FSDs MV 2 sup 9.6 9.2 13.4 16.8 20.5 20.7 23.2 23.9 16.2 0.2 0.1 0.5 1.1 0.9 0.6 0.3 0.1 0.4 

  mid 30 23.5 20.1 20.2 21.1 23.4 15.3 14.1 20.5 1.2 0.4 1.6 1.7 0.9 1.6 0.9 0.2 0.9 

  inf 18.8 18.3 15.4 15.8 16.6 18.8 19.1 18.6 19.1 0.5 0.8 0.7 0.9 2.2 3.3 3 0.8 0.9 
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Table C-6: Results from two-dimensional CTP organ segmentation measurements for surrogate bladder structures. Color coding for columns 
displaying differences from control values is as follows: No coloring signifies results within 1 mm of control values, yellow coloring signifies 
results differing from the control values by 1-2 mm, light red signifies results differing from control values by 2-5 mm and dark red signifies 
results differing from control values by more than 5 mm. Clear and yellow results met the hypothesis criteria of ±2 mm. The terms “rlat”, “mid” 
and “llat” refer to locations relative to the artifact region. Rlat=right lateral, llat= left lateral and mid=middle. 

 

 

CTP: Bladder Results                     

*distances in mm Measured values             Absolute difference from control values 

  angle: 0 40 80 120 160 200 240 280 320 0 40 80 120 160 200 240 280 320 

CTMR kV 2 rlat 14.5 17.1 18.7 20.1 19.3 18.9 22.7 20.3 14.7 0.2 1.4 0.9 3.9 3.3 2 1.6 2.2 0.7 

 
mid 29.5 32.1 37.4 28.3 24.6 23.8 26.3 31.7 33.6 2.1 2.3 1.3 0.3 0.6 0.7 1.3 1.3 0.2 

 
llat 16.8 15.2 13.6 19.7 19.6 18.7 18.9 16.4 14.5 0.4 1.5 0.3 1.8 1.5 2.6 3.1 0.8 0.8 

CTMR MV 3 rlat 16.3 17 16.7 19.5 21.4 20.2 23.1 23.7 15.1 2 1.5 2.9 3.3 5.4 3.3 1.2 1.2 0.3 

 
mid 33.2 34.2 38.8 28.6 24.8 22.4 28.2 30.9 34.8 5.8 4.4 0.1 0 0.4 2.1 0.6 2.1 1 

 
llat 16.8 13.4 13.6 18.2 19.8 18.9 17.9 17.6 17.3 0.4 0.3 0.3 0.3 1.7 2.8 2.1 2 3.6 

FW kV 3 rlat 14.4 18.2 18.8 19.4 17.7 22.8 17.7 17.1 15.5 0.1 0.3 0.8 3.2 1.7 5.9 6.6 5.4 0.1 

 
mid 30 33.3 37.8 28.1 24.6 22.1 26.3 33 30.6 2.6 3.5 0.9 0.5 0.6 2.4 1.3 0 3.2 

 
llat 17.2 14.1 14.3 19.6 18.5 16.8 17.5 16.7 17.1 0.8 0.4 1 1.7 0.4 0.7 1.7 1.1 3.4 

FW MV 1 rlat 16 16.3 20.9 21 19.5 27.4 24.5 19.1 14.5 1.7 2.2 1.3 4.8 3.5 10.5 0.2 3.4 0.9 

 
mid 30.6 33.7 38 28.3 24.6 22.6 28.4 29.1 33.5 3.2 3.9 0.7 0.3 0.6 1.9 0.8 3.9 0.3 

 
llat 16.8 15.5 15.3 19.7 19.6 18.2 18.6 16.2 14.7 0.4 1.8 2 1.8 1.5 2.1 2.8 0.6 1 

FSDs kV 1 rlat 15.2 19 19.4 18.2 18.2 20.9 22.9 21 16.2 0.9 0.5 0.2 2 2.2 4 1.4 1.5 0.8 

 
mid 30 32.2 38.6 28.2 24.1 23.1 27 32 35 2.6 2.4 0.1 0.4 1.1 1.4 0.6 1 1.2 

 
llat 16.6 14 13.7 19.2 18.3 17.7 17.8 16.2 15 0.2 0.3 0.4 1.3 0.2 1.6 2 0.6 1.3 

FSDs MV 2 rlat 14.3 18 17.7 19.8 18.8 20.2 23.6 21.2 16.5 0 0.5 1.9 3.6 2.8 3.3 0.7 1.3 1.1 

 
mid 31.4 35.4 39.4 29.9 26 22.2 27.5 32.6 33.1 4 5.6 0.7 1.3 0.8 2.3 0.1 0.4 0.7 

 
llat 16.6 14.1 15.6 17.6 17.5 17.5 18.9 16.2 19.3 0.2 0.4 2.3 0.3 0.6 1.4 3.1 0.6 5.6 
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Table C-7: Results from three-dimensional reconstructed volume organ segmentation measurements. 
Color coding for columns displaying differences from control values is as follows:  no coloring means the 
volume recorded was within the predetermined systematic error, red means the volume recorded 
exceeded the systematic error. The systematic error for the bladder, rectum 1, rectum 2 and rectum 3 
was ±17.7cc, ±21.0cc, ±16.1cc and ±29.6cc, respectively. Values within 15cc of control values met the 
hypothesis criteria of ±15cc. 

Volume Comparison Results 
*volume in cc Bladder Difference Rectum Difference 

CTMR kV 2 273.2 26.2 116.2 9.1 

CTMR MV 3 290.5 43.5 176.7 7.7 

FSDs kV 1 278.4 31.4 152.3 8.1 

FSDs MV 2 283.7 36.7 125.2 0.1 

FW kV 3 268.6 21.6 170.6 13.8 

FW MV 1 281.6 34.6 153.9 6.5 

 

Table C-8: Results from catheter reconstruction for the procedurally defined, distal-most dwell position. 
“Distance” refers to the distance between the distal-most catheter tube dwell position and the 
applicator reference marker. The difference between TPS generated values and control values is in the 

“” column. Color coding for the column displaying differences is as follows: no coloring signifies values 
within ±1 mm of control values, yellow signifies values between ±1-2 mm of control values (within 
hypothesis criteria of ±2 mm) and red signifies values differing by more than ±2 mm. 

Catheter reconstruction results       

    Dwell Coordinates Fiducial Marker Coordinates   
*distances in mm x y z x y z Distance 

CTMR kV 2 R. Ovoid -13.8 23.8 -90.3 -11.8 9.5 -73.6 22.1 1.4 

 
L. Ovoid 13.0 22.9 -92.0 12.9 10.0 -77.2 19.6 1.1 

 
Tandem -0.4 71.6 -70.9 1.1 51.0 -74.9 21.0 2.0 

CTMR MV 3 R. Ovoid -13.7 29.6 -96.3 -12.8 10.9 -81.2 24.1 0.6 

 
L. Ovoid 13.3 28.1 -95.4 12.1 12.5 -82.0 20.6 0.1 

 
Tandem -3.9 76.2 -72.2 -1.5 53.6 -77.1 23.2 0.2 

FSDs kV 1 R. Ovoid -14.6 27.1 -82.6 -14.7 5.1 -65.3 28.0 2.9 

 
L. Ovoid 7.7 26.6 -82.8 11.1 6.1 -66.6 26.3 1.9 

 
Tandem -0.1 87.5 -46.4 -1.7 64.9 -52.2 23.4 0.3 

FSDs MV 2 R. Ovoid -13.6 22.5 -102.5 -13.4 3.0 -86.9 25.0 0.1 

 
L. Ovoid 12.4 22.8 -101.7 12.9 4.2 -87.1 23.7 0.8 

 
Tandem -0.3 86.5 -72.9 -1.3 62.9 -78.4 24.3 0.6 

FW kV 3 R. Ovoid -10.9 25.5 -86.9 -12.2 9.4 -69.4 23.8 2.2 

 
L. Ovoid 16.3 32.2 -85.7 13.7 10.2 -69.2 27.6 5.7 

 
Tandem 1.3 89.4 -51.4 0.4 66.0 -56.0 23.9 0.3 

FW MV 1 R. Ovoid -13.6 19.8 -96.3 -12.9 2.3 -82.1 22.5 0.9 

 
L. Ovoid 13.2 21.1 -97.2 12.8 1.7 -82.4 24.4 2.5 

  Tandem 0.1 73.0 -76.7 -1.0 49.3 -78.7 23.8 0.2 
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Table C-9: Results from two-dimensional CTP organ segmentation measurements for surrogate rectum structures. Color coding for columns 
displaying differences from control values is as follows: No coloring signifies results within 1 mm of control values, yellow coloring signifies 
results differing from the control values by 1-2 mm, light red signifies results differing from control values by 2-5 mm and dark red signifies 
results differing from control values by more than 5 mm. Clear and yellow results met the hypothesis criteria of ±2 mm. The terms “sup”, “mid”, 
and “inf” refer to locations relative to the artifact region. Sup=superior, inf=inferior and mid=middle. 

CTP: Rectum Results                     

*distances in mm Measured values             Absolute difference from control values        

  angle: 0 40 80 120 160 200 240 280 320 0 40 80 120 160 200 240 280 320 

CTMR kV 2 sup 12.3 11.5 14.6 19.2 20.6 22.7 24.9 25.2 19.7 2.5 2.4 1.7 1.3 1 1.4 2 1.4 3.1 

  mid 31.9 25.3 18.4 16.9 21.1 22.7 16.8 16.7 23.2 3.1 1.4 0.1 1.6 0.9 0.9 0.6 2.4 1.8 

  inf 18.2 19.3 18 15.3 16.7 17.2 19.7 20.1 20.3 0.1 0.2 1.9 1.4 2.3 1.7 3.6 2.3 2.1 

CTMR MV 3 sup 15 13.6 13.8 16 21.6 26.3 27.8 20.9 19.6 2.2 1.5 1.4 1.6 1.8 1.9 3.1 2.3 2.9 

  mid 16.1 21.5 24.2 24 18.9 18.6 21.3 17.9 14.4 3.4 0.3 0.6 12.5 8.3 3.2 2.9 1.8 2 

  inf 17.1 15.3 16.8 18.7 22.1 22.7 20.3 23.7 20.5 1.3 0.3 0.7 2 1.7 3.3 1.8 2.9 1 

FW kV 3 sup 15.8 13.9 15.2 21.6 26.3 26.4 27 20.8 18.5 3 1.8 2.8 7.2 6.5 2 2.3 2.2 1.8 

  mid 14.9 19.5 20.3 14.5 17.1 14.8 19.9 15.8 13.1 2.2 1.7 3.3 3 6.5 0.6 1.5 0.3 0.7 

  inf 17.5 15.4 17.3 17.8 22.6 22.1 20.3 22.5 21.3 1.7 0.4 1.2 1.1 2.2 2.7 1.8 1.7 1.8 

FW MV 1 sup 18.1 15.3 15.6 18.9 22.5 18.3 18.1 16.4 20.4 2.2 1.7 2.4 3.1 2.6 2.2 2.4 0.8 3.9 

  mid 11.4 19.8 23.6 18.1 17.4 19 21.8 19.8 13.1 4.2 4.9 0.4 1.9 3.1 4.2 3.4 4.4 3.4 

  inf 27.4 14.7 14.8 20.4 15.2 16.2 20.8 23.6 27.1 7.1 2.7 2.4 3.2 2.1 3.6 2 0.7 1.4 

FSDs kV 1 sup 16.6 14.2 15 16.3 20 21.6 17.9 16.6 18.4 0.7 0.6 1.8 0.5 0.1 5.5 2.2 1 1.9 

  mid 9.8 17.9 24 16.1 16 16.2 20.9 18.9 11.9 2.6 3 0 0.1 1.7 1.4 2.5 3.5 2.2 

  inf 23 13.5 15.2 19.3 13.9 14.4 19.7 23.6 25.9 2.7 1.5 2.8 2.1 0.8 1.8 0.9 0.7 0.2 

FSDs MV 2 sup 11.6 10 14.5 20.5 22.8 24 24.8 25.1 17.8 1.8 0.9 1.6 2.6 3.2 2.7 1.9 1.3 1.2 

  mid 30.2 23.7 17.9 18 20.8 23.4 17.5 18.2 24 1.4 0.2 0.6 0.5 1.2 1.6 1.3 3.9 2.6 

  inf 17.7 19.4 15.8 17.3 17.3 19 19.3 20.3 18.9 0.6 0.3 0.3 0.6 2.9 3.5 3.2 2.5 0.7 
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Table C-10: Results from two-dimensional CTP organ segmentation measurements for surrogate bladder structures. Color coding for columns 
displaying differences from control values is as follows: No coloring signifies results within 1 mm of control values, yellow coloring signifies 
results differing from the control values by 1-2 mm, light red signifies results differing from control values by 2-5 mm and dark red signifies 
results differing from control values by more than 5 mm. Clear and yellow results met the hypothesis criteria of ±2 mm. The terms “rlat”, “mid” 
and “llat” refer to locations relative to the artifact region. Rlat=right lateral, llat= left lateral and mid=middle. 

CTP: Bladder Results                     

*distances in mm Measured values             Absolute difference from control values        

  angle: 0 40 80 120 160 200 240 280 320 0 40 80 120 160 200 240 280 320 

CTMR kV 2 rlat 15.4 20.3 19.9 20.7 20.1 19.3 26.9 22.9 15.5 1.1 1.8 0.3 4.5 4.1 2.4 2.6 0.4 0.1 

 
mid 29.2 33 37.8 29.1 25.5 26.6 27 31.6 34.4 1.8 3.2 0.9 0.5 0.3 2.1 0.6 1.4 0.6 

 
llat 16.3 16.3 20.3 20.1 18.4 18.7 18.5 17.5 17 0.1 2.6 7 2.2 0.3 2.6 2.7 1.9 3.3 

CTMR MV 3 rlat 14.3 19.3 20.6 18.7 20.5 20.8 23.4 22.9 14.4 0 0.8 1 2.5 4.5 3.9 0.9 0.4 1 

 
mid 30.2 32.6 38.6 29.9 24.2 24 28.9 32 34.8 2.8 2.8 0.1 1.3 1 0.5 1.3 1 1 

 
llat 18.9 15.7 14.6 21.7 20.5 18 19.5 17.8 15.6 2.5 2 1.3 3.8 2.4 1.9 3.7 2.2 1.9 

FW kV 3 rlat 16.1 18.7 19.7 19.9 17.9 32 22.1 21.1 15.6 1.8 0.2 0.1 3.7 1.9 15.1 2.2 1.4 0.2 

 
mid 28.1 32.7 39.3 28.5 24.5 24 26.9 32.6 34.7 0.7 2.9 0.6 0.1 0.7 0.5 0.7 0.4 0.9 

 
llat 17.7 15.6 15.1 20 19.4 18.3 17.3 16.9 17.3 1.3 1.9 1.8 2.1 1.3 2.2 1.5 1.3 3.6 

FW MV 1 rlat 17.3 19.6 20.6 21.9 20.2 19.2 21.3 21.8 15.5 3 1.1 1 5.7 4.2 2.3 3 0.7 0.1 

 
mid 30.3 33.6 42 31.8 24.3 23.3 28.4 33.6 34.6 2.9 3.8 3.3 3.2 0.9 1.2 0.8 0.6 0.8 

 
llat 16.6 14.2 15.7 18.4 19.7 19.4 19.3 17.6 17.1 0.2 0.5 2.4 0.5 1.6 3.3 3.5 2 3.4 

FSDs kV 1 rlat 16.5 20.1 19.6 19.5 18.1 20.1 24.9 21.9 16 2.2 1.6 0 3.3 2.1 3.2 0.6 0.6 0.6 

 
mid 29.4 33.2 38.4 28.9 24.3 23.2 27.8 33.1 34.5 2 3.4 0.3 0.3 0.9 1.3 0.2 0.1 0.7 

 
llat 17.6 15 16.3 19.8 19.3 18.1 17.6 17.2 16.4 1.2 1.3 3 1.9 1.2 2 1.8 1.6 2.7 

FSDs MV 2 rlat 15.8 19.8 20.8 21.3 21.4 21.8 23.7 23.5 14.8 1.5 1.3 1.2 5.1 5.4 4.9 0.6 1 0.6 

 
mid 29.2 35.1 41.5 30.1 25.4 22.3 28.5 33.2 34.4 1.8 5.3 2.8 1.5 0.2 2.2 0.9 0.2 0.6 

  llat 17.3 15.2 16.5 20 19.7 19 19.5 18 17.1 0.9 1.5 3.2 2.1 1.6 2.9 3.7 2.4 3.4 
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Table C-11: Results from three-dimensional reconstructed volume organ segmentation measurements. 
Color coding for columns displaying differences from control values is as follows:  no coloring means the 
volume recorded was within the predetermined systematic error, red means the volume recorded 
exceeded the systematic error. The systematic error for the bladder, rectum 1, rectum 2 and rectum 3 
was ±17.7cc, ±21.0cc, ±16.1cc and ±29.6cc, respectively. Values within 15cc of control values met the 
hypothesis criteria of ±15cc. 

Volume Comparison Results 
*volume in cc Bladder Difference Rectum Difference 

CTMR kV 2 295.9 48.9 133.5 8.2 

CTMR MV 3 297.8 50.8 192.2 7.9 

FSDs kV 1 286.7 39.7 168.3 8.0 

FSDs MV 2 308.3 61.3 135.9 10.6 

FW kV 3 283.2 36.2 187.3 3.0 

FW MV 1 303.3 56.3 181.9 21.6 

 

Table C-12: Results from catheter reconstruction for the procedurally defined, distal-most dwell 
position. “Distance” refers to the distance between the distal-most catheter tube dwell position and the 
applicator reference marker. The difference between TPS generated values and control values is in the 

“” column. Color coding for the column displaying differences is as follows: no coloring signifies values 
within ±1 mm of control values, yellow signifies values between ±1-2 mm of control values (within 
hypothesis criteria of ±2 mm) and red signifies values differing by more than ±2 mm. 

Catheter reconstruction results         

    Dwell Coordinates   Fiducial Marker Coordinates   

*distances in mm x y z x y z Distance 

CTMR kV 2 R. Ovoid -12.8 24.1 -90.6 -11.8 9.5 -73.6 22.4 1.0 

 
L. Ovoid 13.1 23.4 -92.0 12.9 10.0 -77.2 20.0 0.7 

 
Tandem -0.2 72.4 -71.1 1.1 51.0 -74.9 21.8 1.3 

CTMR MV 3 R. Ovoid -13.5 28.3 -96.6 -12.8 10.9 -81.2 23.2 0.2 

 
L. Ovoid 12.8 27.9 -95.7 12.1 12.5 -82.0 20.6 0.1 

 
Tandem -4.1 75.4 -71.9 -1.5 53.6 -77.1 22.6 0.5 

FSDs kV 1 R. Ovoid -17.3 25.5 -79.9 -14.7 5.1 -65.3 25.2 0.1 

 
L. Ovoid 11.9 24.9 -80.3 11.1 6.1 -66.6 23.3 1.2 

 
Tandem 0.3 87.3 -46.5 -1.7 64.9 -52.2 23.2 0.5 

FSDs MV 2 R. Ovoid -15.8 21.9 -101.1 -13.4 3.0 -86.9 23.8 1.3 

 
L. Ovoid 14.1 22.3 -100.4 12.9 4.2 -87.1 22.5 1.9 

 
Tandem -0.3 84.7 -73.3 -1.3 62.9 -78.4 22.4 1.3 

FW kV 3 R. Ovoid -13.0 27.1 -78.1 -12.2 9.4 -69.4 19.7 1.9 

 
L. Ovoid 16.1 27.2 -79.0 13.7 10.2 -69.2 19.8 2.1 

 
Tandem 0.9 89.1 -51.4 0.4 66.0 -56.0 23.6 0.0 

FW MV 1 R. Ovoid -13.5 19.0 -93.3 -12.9 2.3 -82.1 20.1 1.5 

 
L. Ovoid 14.9 19.6 -95.4 12.8 1.7 -82.4 22.2 0.3 

 
Tandem -0.2 76.8 -75.3 -1.0 49.3 -78.7 27.7 4.2 
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Table C-13: Results from two-dimensional CTP organ segmentation measurements for surrogate rectum structures. Color coding for columns 
displaying differences from control values is as follows: No coloring signifies results within 1 mm of control values, yellow coloring signifies 
results differing from the control values by 1-2 mm, light red signifies results differing from control values by 2-5 mm and dark red signifies 
results differing from control values by more than 5 mm. Clear and yellow results met the hypothesis criteria of ±2 mm. The terms “sup”, “mid”, 
and “inf” refer to locations relative to the artifact region. Sup=superior, inf=inferior and mid=middle. 

CTP: Rectum Results                     

*distances in mm Measured values             Absolute difference from control values        

  angle: 0 40 80 120 160 200 240 280 320 0 40 80 120 160 200 240 280 320 

FW kV 2 rlat 10.7 10.1 13.4 19.1 19.7 20.9 23.6 24 17.9 0.9 1 0.5 1.2 0.1 0.4 0.7 0.2 1.3 

 
mid 30.6 26.6 18.9 16.6 21.4 22.9 16.1 16.3 22.9 1.8 2.7 0.4 1.9 0.6 1.1 0.1 2 1.5 

 
llat 18.3 18.4 16.7 16.5 15.3 17.1 16.8 17.9 18.1 0 0.7 0.6 0.2 0.9 1.6 0.7 0.1 0.1 

FW MV 3 rlat 13.6 13.1 12.8 14.1 19.3 25 26.9 19.6 16.2 0.8 1 0.4 0.3 0.5 0.6 2.2 1 0.5 

 
mid 13.1 21 24.3 16.3 17.4 17.5 17.6 14.8 12.5 0.4 0.2 0.7 4.8 6.8 2.1 0.8 1.3 0.1 

 
llat 16.6 16.1 16.5 17.4 20.6 20.5 19.9 21.2 20.3 0.8 1.1 0.4 0.7 0.2 1.1 1.4 0.4 0.8 

FSDs kV 3 rlat 14.1 13 12.7 15 21.4 24.8 25.8 19.6 16.5 1.3 0.9 0.3 0.6 1.6 0.4 1.1 1 0.2 

 
mid 13.3 18.8 21.2 18.6 15.4 15.9 17.5 14.8 12.1 0.6 2.4 2.4 7.1 4.8 0.5 0.9 1.3 0.3 

 
llat 16.6 15.4 16.2 17.2 20.7 20.7 18.6 20.3 19.8 0.8 0.4 0.1 0.5 0.3 1.3 0.1 0.5 0.3 

FSDs MV 1 rlat 18.2 13.8 14.5 15.8 23.2 17.6 15.1 13.3 18.2 2.3 0.2 1.3 0 3.3 1.5 0.6 2.3 1.7 

 
mid 11.5 16.9 23.9 17.9 16.4 16.8 19.3 18.9 15.1 4.3 2 0.1 1.7 2.1 2 0.9 3.5 5.4 

 
llat 23.5 13 14 19.1 14.3 14.1 19.3 23.2 26 3.2 1 1.6 1.9 1.2 1.5 0.5 1.1 0.3 

CTMR kV 1 rlat 15.5 13.1 12.6 15.5 20.4 16.9 17.6 15.5 17.1 0.4 0.5 0.6 0.3 0.5 0.8 1.9 0.1 0.6 

 
mid 13.7 18.9 18.3 17.1 15.2 16.8 19.9 15.9 15.3 6.5 4 5.7 0.9 0.9 2 1.5 0.5 5.6 

 
llat 21.2 12.5 13.3 16.7 13.8 12.8 17.9 22.7 25.7 0.9 0.5 0.9 0.5 0.7 0.2 0.9 1.6 0 

CTMR MV 2 rlat 11.5 10.7 14.6 19.1 21.2 21.8 23.4 24.1 16.3 1.7 1.6 1.7 1.2 1.6 0.5 0.5 0.3 0.3 

 
mid 28.5 24.1 18.4 18.6 21.5 21.6 17.5 15.9 21.2 0.3 0.2 0.1 0.1 0.5 0.2 1.3 1.6 0.2 

  llat 17.4 19.4 16.5 16.5 15.5 17.8 18.1 19.2 18.2 0.9 0.3 0.4 0.2 1.1 2.3 2 1.4 0 
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Table C-14: Results from two-dimensional CTP organ segmentation measurements for surrogate bladder structures. Color coding for columns 
displaying differences from control values is as follows: No coloring signifies results within 1 mm of control values, yellow coloring signifies 
results differing from the control values by 1-2 mm, light red signifies results differing from control values by 2-5 mm and dark red signifies 
results differing from control values by more than 5 mm. Clear and yellow results met the hypothesis criteria of ±2 mm. The terms “rlat”, “mid” 
and “llat” refer to locations relative to the artifact region. Rlat=right lateral, llat= left lateral and mid=middle. 

CTP: Bladder Results                     

*distances in mm Measured values             Absolute difference from control values       

  angle: 0 40 80 120 160 200 240 280 320 0 40 80 120 160 200 240 280 320 

FW kV 2 rlat 15.2 17.9 19.1 20.6 19.1 18.2 24 21.7 15.8 0.9 0.6 0.5 4.4 3.1 1.3 0.3 0.8 0.4 

 
mid 29.2 32.6 37.2 28.2 24.9 24.8 26.7 32.1 33 1.8 2.8 1.5 0.4 0.3 0.3 0.9 0.9 0.8 

 
llat 16 13.8 14.6 18.5 19.3 18.4 18.6 15.5 15.4 0.4 0.1 1.3 0.6 1.2 2.3 2.8 0.1 1.7 

FW MV 3 rlat 16.4 19.5 19.9 19.7 19.4 21.2 25.9 22.3 15.1 2.1 1 0.3 3.5 3.4 4.3 1.6 0.2 0.3 

 
mid 31.9 35.3 38.4 27.9 25.1 24 28.7 32.4 35.6 4.5 5.5 0.3 0.7 0.1 0.5 1.1 0.6 1.8 

 
llat 17.1 13.7 13.6 18.3 20.3 19.1 19.1 18.1 15.7 0.7 0 0.3 0.4 2.2 3 3.3 2.5 2 

FSDs kV 3 rlat 14.8 18.4 17.7 17.9 17.9 20.5 24.1 19.8 15.5 0.5 0.1 1.9 1.7 1.9 3.6 0.2 2.7 0.1 

 
mid 28.3 32.1 38.9 28 25.4 24.1 26.2 31.8 35.3 0.9 2.3 0.2 0.6 0.2 0.4 1.4 1.2 1.5 

 
llat 16.8 14.3 14.6 18 18.5 17 17.7 17.1 15.1 0.4 0.6 1.3 0.1 0.4 0.9 1.9 1.5 1.4 

FSDs MV 1 rlat 17.3 17 19.7 20.5 19.7 17.6 21.4 21.1 17.1 3 1.5 0.1 4.3 3.7 0.7 2.9 1.4 1.7 

 
mid 28.1 32.2 39.6 30.1 26.9 25.1 26.7 31.1 36.5 0.7 2.4 0.9 1.5 1.7 0.6 0.9 1.9 2.7 

 
llat 16.1 14 14.7 14.9 18.4 19.4 18.3 14.1 14.8 0.3 0.3 1.4 3 0.3 3.3 2.5 1.5 1.1 

CTMR kV 1 rlat 16 19.6 20.1 19.3 16 18.6 21.9 21.7 15.5 1.7 1.1 0.5 3.1 0 1.7 2.4 0.8 0.1 

 
mid 29 32.6 38.5 29.2 24.9 22.3 27.1 32.5 33.9 1.6 2.8 0.2 0.6 0.3 2.2 0.5 0.5 0.1 

 
llat 16.4 14.5 13.7 18.1 18.4 17.4 17.2 15.5 15.4 0 0.8 0.4 0.2 0.3 1.3 1.4 0.1 1.7 

CTMR MV 2 rlat 17.3 17.3 20.6 20 19.4 18.1 22.4 21.7 15.7 3 1.2 1 3.8 3.4 1.2 1.9 0.8 0.3 

 
mid 28.9 31.9 39.2 28.8 24.5 22.3 28.7 27.8 33.6 1.5 2.1 0.5 0.2 0.7 2.2 1.1 5.2 0.2 

 
llat 16.5 13.4 14.7 18.4 18 16.4 18.5 15.9 15.7 0.1 0.3 1.4 0.5 0.1 0.3 2.7 0.3 2 
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Table C-15: Results from three-dimensional reconstructed volume organ segmentation measurements. 
Color coding for columns displaying differences from control values is as follows:  no coloring means the 
volume recorded was within the predetermined systematic error, red means the volume recorded 
exceeded the systematic error. The systematic error for the bladder, rectum 1, rectum 2 and rectum 3 
was ±17.7cc, ±21.0cc, ±16.1cc and ±29.6cc, respectively. Values within 15cc of control values met the 
hypothesis criteria of ±15cc. 

Volume Comparison Results 
*volume in cc Bladder Difference Rectum Difference 

CTMR kV 1 271.4 24.4 124.3 1.1 

CTMR MV 2 290.5 43.5 172.9 11.4 

FSDs kV 3 271.2 24.2 153.1 7.3 

FSDs MV 1 278.6 31.6 123.2 2.2 

FW kV 2 273.2 26.2 166.3 18.1 

FW MV 3 283.8 36.8 160.6 0.3 

 

Table C-16: Results from catheter reconstruction for the procedurally defined, distal-most dwell 
position. “Distance” refers to the distance between the distal-most catheter tube dwell position and the 
applicator reference marker. The difference between TPS generated values and control values is in the 

“” column. Color coding for the column displaying differences is as follows: no coloring signifies values 
within ±1 mm of control values, yellow signifies values between ±1-2 mm of control values (within 
hypothesis criteria of ±2 mm) and red signifies values differing by more than ±2 mm. 

Catheter reconstruction results         

    Dwell Coordinates   Fiducial Marker Coordinates   

*distances in mm x y z x y z Distance 

CTMR kV 1 R. Ovoid -13.5 24.3 -90.4 -11.8 9.5 -73.6 22.5 1.0 

  L. Ovoid 12.7 23.3 -90.4 12.9 10.0 -77.2 18.7 2.0 

  Tandem -0.5 72.5 -71.2 1.1 51.0 -74.9 21.9 1.2 

CTMR MV 2 R. Ovoid -13.3 29.6 -96.8 -12.8 10.9 -81.2 24.4 0.9 

  L. Ovoid 12.6 29.6 -95.1 12.1 12.5 -82.0 21.5 0.8 

  Tandem -3.7 75.8 -72.2 -1.5 53.6 -77.1 22.8 0.2 

FSDs kV 3 R. Ovoid -17.6 26.0 -78.6 -14.7 5.1 -65.3 24.9 0.2 

  L. Ovoid 11.7 24.9 -79.5 11.1 6.1 -66.6 22.8 1.6 

  Tandem 0.0 85.3 -47.5 -1.7 64.9 -52.2 21.0 2.7 

FSDs MV 1 R. Ovoid -15.4 22.9 -101.9 -13.4 3.0 -86.9 25.0 0.1 

  L. Ovoid 13.4 23.6 -101.5 12.9 4.2 -87.1 24.2 0.3 

  Tandem 0.2 84.3 -73.6 -1.3 62.9 -78.4 22.0 1.7 

FW kV 2 R. Ovoid -9.4 30.1 -85.6 -12.2 9.4 -69.4 26.4 4.8 

  L. Ovoid 10.0 30.9 -84.9 13.7 10.2 -69.2 26.2 4.4 

  Tandem 1.2 88.9 -52.3 0.4 66.0 -56.0 23.2 0.4 

FW MV 3 R. Ovoid -13.9 21.0 -93.4 -12.9 2.3 -82.1 21.9 0.2 

  L. Ovoid 14.3 21.4 -94.5 12.8 1.7 -82.4 23.2 1.3 

  Tandem -0.4 74.0 -76.4 -1.0 49.3 -78.7 24.8 1.2 
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Table C-17: Results from two-dimensional CTP organ segmentation measurements for surrogate rectum structures. Color coding for columns 
displaying differences from control values is as follows: No coloring signifies results within 1 mm of control values, yellow coloring signifies 
results differing from the control values by 1-2 mm, light red signifies results differing from control values by 2-5 mm and dark red signifies 
results differing from control values by more than 5 mm. Clear and yellow results met the hypothesis criteria of ±2 mm. The terms “sup”, “mid”, 
and “inf” refer to locations relative to the artifact region. Sup=superior, inf=inferior and mid=middle. 

CTP: Rectum Results                     

*distances in mm Measured values             Absolute difference from control values       

 
angle: 0 40 80 120 160 200 240 280 320 0 40 80 120 160 200 240 280 320 

FW kV 2 rlat 10.6 9.9 12.5 18.7 20.1 21.9 23.9 23.8 15.8 0.8 0.8 0.4 0.8 0.5 0.6 1 0 0.8 

 
mid 26.8 23 20.2 21.2 23.4 20.8 15.1 13.6 21.4 2 0.9 1.7 2.7 1.4 1 1.1 0.7 0 

 
llat 17.8 18 16.2 16.4 16.7 16 18.3 17.2 17.2 0.5 1.1 0.1 0.3 2.3 0.5 2.2 0.6 1 

FW MV 3 rlat 12.3 10.8 11.9 14.3 19.9 24.5 25 17.1 16.5 0.5 1.3 0.5 0.1 0.1 0.1 0.3 1.5 0.2 

 
mid 11.2 21.8 25.9 13.4 13.8 15.8 18.5 16 11.2 1.5 0.6 2.3 1.9 3.2 0.4 0.1 0.1 1.2 

 
llat 16.3 14.3 16.2 18 20.8 21.9 21.8 21 20 0.5 0.7 0.1 1.3 0.4 2.5 3.3 0.2 0.5 

FSDs kV 3 rlat 12.9 11.3 11.7 13.2 20.8 24.7 26.5 19 17.9 0.1 0.8 0.7 1.2 1 0.3 1.8 0.4 1.2 

 
mid 14 21.1 24.8 20.8 15.5 15.2 18.6 14.7 13 1.3 0.1 1.2 9.3 4.9 0.2 0.2 1.4 0.6 

 
llat 16 15.5 16.1 17.9 21.1 20.9 20.2 21.8 20.2 0.2 0.5 0 1.2 0.7 1.5 1.7 1 0.7 

FSDs MV 1 rlat 16.1 13.8 14.7 17.6 22.1 18.5 18.1 16.1 19.2 0.2 0.2 1.5 1.8 2.2 2.4 2.4 0.5 2.7 

 
mid 15.7 22 23.7 17.5 15.6 16.8 18.2 18.4 17.5 8.5 7.1 0.3 1.3 1.3 2 0.2 3 7.8 

 
llat 21.8 14.3 15.4 18 14.3 14.7 20.5 23.6 26.4 1.5 2.3 3 0.8 1.2 2.1 1.7 0.7 0.7 

CTMR kV 1 rlat 16.9 13.6 12.6 16.2 20.7 18.3 18 16.8 16.1 1 0 0.6 0.4 0.8 2.2 2.3 1.2 0.4 

 
mid 14.9 18.3 23.1 16.8 16.3 15.6 20.9 14.9 17.5 7.7 3.4 0.9 0.6 2 0.8 2.5 0.5 7.8 

 
llat 20.4 12.4 12.8 17.5 13.4 14.1 18.6 22.5 24.3 0.1 0.4 0.4 0.3 0.3 1.5 0.2 1.8 1.4 

CTMR MV 2 rlat 11 9.3 12.5 19.1 21.7 22.6 24.6 24.6 17.7 1.2 0.2 0.4 1.2 2.1 1.3 1.7 0.8 1.1 

 
mid 29.5 24.5 16.5 17.5 23.4 22.4 16.9 15.7 22.6 0.7 0.6 2 1 1.4 0.6 0.7 1.4 1.2 

  llat 18.4 18.4 15.8 17.1 15.4 16.7 18.5 17 16.9 0.1 0.7 0.3 0.4 1 1.2 2.4 0.8 1.3 
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Table C-18: Results from two-dimensional CTP organ segmentation measurements for surrogate bladder structures. Color coding for columns 
displaying differences from control values is as follows: No coloring signifies results within 1 mm of control values, yellow coloring signifies 
results differing from the control values by 1-2 mm, light red signifies results differing from control values by 2-5 mm and dark red signifies 
results differing from control values by more than 5 mm. Clear and yellow results met the hypothesis criteria of ±2 mm. The terms “rlat”, “mid” 
and “llat” refer to locations relative to the artifact region. Rlat=right lateral, llat= left lateral and mid=middle. 

CTP: Bladder Results                     

*distances in mm Measured values             Absolute difference from control values       

  angle: 0 40 80 120 160 200 240 280 320 0 40 80 120 160 200 240 280 320 

FW kV 2 rlat 15.4 19.6 19.9 19.5 18.7 17.6 25.1 18.2 15.5 1.1 1.1 0.3 3.3 2.7 0.7 0.8 4.3 0.1 

 
mid 28.8 31.1 37.9 28.7 24.9 23.2 28.9 33.9 33.3 1.4 1.3 0.8 0.1 0.3 1.3 1.3 0.9 0.5 

 
llat 16.9 14 13.6 17.8 19.3 17.4 18.2 14.6 14.2 0.5 0.3 0.3 0.1 1.2 1.3 2.4 1 0.5 

FW MV 3 rlat 14.8 17.4 19.1 16.1 18.7 22.3 20.2 21.5 15.9 0.5 1.1 0.5 0.1 2.7 5.4 4.1 1 0.5 

 
mid 29.2 31.9 38.4 29.6 23.7 21.3 27.6 33.6 32 1.8 2.1 0.3 1 1.5 3.2 0 0.6 1.8 

 
llat 16.5 13.1 13.1 17.8 18.6 17 18.3 16.4 14 0.1 0.6 0.2 0.1 0.5 0.9 2.5 0.8 0.3 

FSDs kV 3 rlat 14.4 17.3 19.4 18.7 18.8 17.3 23.4 20.4 16.4 0.1 1.2 0.2 2.5 2.8 0.4 0.9 2.1 1 

 
mid 28.9 31.3 38.4 28.5 23.6 22.2 28.1 34.6 32.9 1.5 1.5 0.3 0.1 1.6 2.3 0.5 1.6 0.9 

 
llat 16.5 13.6 13.8 17.6 18.4 16.7 15.1 16.1 15 0.1 0.1 0.5 0.3 0.3 0.6 0.7 0.5 1.3 

FSDs MV 1 rlat 14.7 19.3 18.1 20.3 20.1 20.9 20.8 20.2 17.4 0.4 0.8 1.5 4.1 4.1 4 3.5 2.3 2 

 
mid 29.6 34.1 40 28.2 25.1 25.3 27.2 31 32.9 2.2 4.3 1.3 0.4 0.1 0.8 0.4 2 0.9 

 
llat 16.9 15.1 14.6 18.3 17.6 16.7 17.7 17.1 17.2 0.5 1.4 1.3 0.4 0.5 0.6 1.9 1.5 3.5 

CTMR kV 1 rlat 14.5 18.4 19.3 20.3 16.5 19.2 24.1 21.6 15.2 0.2 0.1 0.3 4.1 0.5 2.3 0.2 0.9 0.2 

 
mid 29.2 31.6 36.9 27.7 24.4 24.2 26.9 33 34.4 1.8 1.8 1.8 0.9 0.8 0.3 0.7 0 0.6 

 
llat 17.2 15.3 14.6 19.1 17.8 15.8 17.2 16.3 15.3 0.8 1.6 1.3 1.2 0.3 0.3 1.4 0.7 1.6 

CTMR MV 2 rlat 16.4 19.6 17.9 19.9 21.9 16.8 23.3 22.1 17 2.1 1.1 1.7 3.7 5.9 0.1 1 0.4 1.6 

 
mid 30 33.2 39.4 30.5 26 25.4 28.5 33.6 34.5 2.6 3.4 0.7 1.9 0.8 0.9 0.9 0.6 0.7 

  llat 15.6 14.9 12.6 17.7 17.4 16.2 18.7 20.6 16.7 0.8 1.2 0.7 0.2 0.7 0.1 2.9 5 3 
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Table C-19: Results from three-dimensional reconstructed volume organ segmentation measurements. 
Color coding for columns displaying differences from control values is as follows:  no coloring means the 
volume recorded was within the predetermined systematic error, red means the volume recorded 
exceeded the systematic error. The systematic error for the bladder, rectum 1, rectum 2 and rectum 3 
was ±17.7cc, ±21.0cc, ±16.1cc and ±29.6cc, respectively. Values within 15cc of control values met the 
hypothesis criteria of ±15cc. 

Volume Comparison Results 
*volume in cc Bladder Difference Rectum Difference 

CTMR kV 1 272.3 25.3 157.6 2.7 

CTMR MV 2 280.7 33.7 123.2 2.1 

FSDs kV 3 264.5 17.5 170.5 13.8 

FSDs MV 1 279.8 32.8 165.5 5.2 

FW kV 2 270.2 23.2 117.8 7.5 

FW MV 3 276.4 29.4 173.9 10.4 

 

Table C-20: Results from catheter reconstruction for the procedurally defined, distal-most dwell 
position. “Distance” refers to the distance between the distal-most catheter tube dwell position and the 
applicator reference marker. The difference between TPS generated values and control values is in the 

“” column. Color coding for the column displaying differences is as follows: no coloring signifies values 
within ±1 mm of control values, yellow signifies values between ±1-2 mm of control values (within 
hypothesis criteria of ±2 mm) and red signifies values differing by more than ±2 mm. 

Catheter reconstruction results         

    Dwell Coordinates   Fiducial Marker Coordinates   

*distances in mm x y z x y z Distance 

CTMR kV 1 R. Ovoid -11.4 24.5 -84.1 -10.4 8.7 -68.5 22.2 1.2 

 
L. Ovoid 14.4 24.5 -84.7 15.0 9.8 -69.8 20.9 0.2 

 
Tandem -0.4 71.7 -61.0 1.6 50.3 -65.9 22.0 1.0 

CTMR MV 2 R. Ovoid -12.9 24.7 -101.6 -12.3 9.9 -86.5 21.2 2.3 

 
L. Ovoid 12.8 24.3 -102.2 13.1 10.9 -88.8 19.0 1.8 

 
Tandem -1.5 73.0 -82.0 0.5 50.5 -84.9 22.8 0.3 

FSDs kV 3 R. Ovoid -13.5 31.7 -79.6 -11.7 11.7 -66.0 24.3 0.9 

 
L. Ovoid 15.3 31.4 -79.6 13.0 12.0 -66.2 23.7 0.8 

 
Tandem 0.1 93.0 -52.7 0.2 69.9 -58.5 23.8 0.1 

FSDs MV 1 R. Ovoid -16.7 23.2 -91.9 -12.6 4.2 -78.7 23.5 1.6 

 
L. Ovoid 13.2 23.7 -93.2 12.3 5.0 -79.4 23.3 1.2 

 
Tandem 1.9 86.9 -65.6 0.5 64.3 -70.6 23.2 0.5 

FW kV 2 R. Ovoid -11.0 30.2 -94.3 -14.0 10.2 -76.9 26.7 5.0 

 
L. Ovoid 8.6 29.2 -92.4 11.6 10.2 -76.8 24.8 2.9 

 
Tandem -1.4 79.3 -68.2 -2.2 56.3 -71.7 23.3 0.3 

FW MV 3 R. Ovoid -14.8 33.2 -94.8 -13.4 15.0 -83.0 21.7 0.1 

 
L. Ovoid 14.7 33.6 -93.9 12.2 14.8 -82.8 22.0 0.1 

 
Tandem -1.0 93.6 -63.6 -1.4 69.9 -68.6 24.2 0.7 
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Table C-21: Results from two-dimensional CTP organ segmentation measurements for surrogate rectum structures. Color coding for columns 
displaying differences from control values is as follows: No coloring signifies results within 1 mm of control values, yellow coloring signifies 
results differing from the control values by 1-2 mm, light red signifies results differing from control values by 2-5 mm and dark red signifies 
results differing from control values by more than 5 mm. Clear and yellow results met the hypothesis criteria of ±2 mm. The terms “sup”, “mid”, 
and “inf” refer to locations relative to the artifact region. Sup=superior, inf=inferior and mid=middle. 

CTP: Rectum Results                     

*distances in mm Measured values             Absolute difference from control values  

  angle: 0 40 80 120 160 200 240 280 320 0 40 80 120 160 200 240 280 320 

FW kV 2 rlat 11.2 10.4 14.5 18.5 20.2 21.2 22.7 23.8 17.1 1.4 1.3 1.6 0.6 0.6 0.1 0.2 0 0.5 

 
mid 29.8 18.1 11.4 11.2 16.3 19.6 16.2 15.8 23.4 1 5.8 7.1 7.3 5.7 2.2 0 1.5 2 

 
llat 19.1 20 17.2 15.8 14.7 17 17.4 16.9 19.9 0.8 0.9 1.1 0.9 0.3 1.5 1.3 0.9 1.7 

FW MV 3 rlat 13.9 12.6 11.9 14.1 20.4 24 26.3 18.4 15.2 1.1 0.5 0.5 0.3 0.6 0.4 1.6 0.2 1.5 

 
mid 13.1 20.9 24.5 13.8 11.4 13.7 17.6 16.5 13.6 0.4 0.3 0.9 2.3 0.8 1.7 0.8 0.4 1.2 

 
llat 17.2 15.8 15.8 17.1 20.8 20 18.6 22.9 19.8 1.4 0.8 0.3 0.4 0.4 0.6 0.1 2.1 0.3 

FSDs kV 3 rlat 13.9 11.6 12.6 13.1 19.3 24 26 19.2 17.6 1.1 0.5 0.2 1.3 0.5 0.4 1.3 0.6 0.9 

 
mid 15.1 19.7 19 14.3 11.9 12.4 18 16.5 13.8 2.4 1.5 4.6 2.8 1.3 3 0.4 0.4 1.4 

 
llat 16.6 15.7 16.2 17.1 19.2 20.6 20 21.8 20.8 0.8 0.7 0.1 0.4 1.2 1.2 1.5 1 1.3 

FSDs MV 1 rlat 16.1 14.9 14 16.2 21.6 18.2 18.4 17.1 17 0.2 1.3 0.8 0.4 1.7 2.1 2.7 1.5 0.5 

 
mid 9.7 19 23.8 17.4 15.1 16.9 17.8 16 10.9 2.5 4.1 0.2 1.2 0.8 2.1 0.6 0.6 1.2 

 
llat 22.7 13.9 15 19 14.5 14 20 23.3 26.4 2.4 1.9 2.6 1.8 1.4 1.4 1.2 1 0.7 

CTMR kV 1 rlat 16.3 12.9 14.7 16.8 20.5 17.6 18 17.3 17.9 0.4 0.7 1.5 1 0.6 1.5 2.3 1.7 1.4 

 
mid 10 17.2 23.3 15.5 15.2 15.5 18.6 17.9 10.5 2.8 2.3 0.7 0.7 0.9 0.7 0.2 2.5 0.8 

 
llat 20.6 12.6 12.9 19 12.8 14.4 18.9 22.2 24.3 0.3 0.6 0.5 1.8 0.3 1.8 0.1 2.1 1.4 

CTMR MV 
2 rlat 10.9 10.9 14.6 18.7 20.4 21.3 23 23 17.2 1.1 1.8 1.7 0.8 0.8 0 0.1 0.8 0.6 

 
mid 27.3 24.4 15.6 16 22.4 25.4 17.3 14.4 22.6 1.5 0.5 2.9 2.5 0.4 3.6 1.1 0.1 1.2 

  llat 18.4 16.9 16.3 17.3 15.3 14.9 17.2 15.2 16.7 0.1 2.2 0.2 0.6 0.9 0.6 1.1 2.6 1.5 

 



 

100 
 

Table C-22: Results from two-dimensional CTP organ segmentation measurements for surrogate bladder structures. Color coding for columns 
displaying differences from control values is as follows: No coloring signifies results within 1 mm of control values, yellow coloring signifies 
results differing from the control values by 1-2 mm, light red signifies results differing from control values by 2-5 mm and dark red signifies 
results differing from control values by more than 5 mm. Clear and yellow results met the hypothesis criteria of ±2 mm. The terms “rlat”, “mid” 
and “llat” refer to locations relative to the artifact region. Rlat=right lateral, llat= left lateral and mid=middle. 

CTP: Bladder Results                     

*distances in mm Measured values             Absolute difference from control values       

  angle: 0 40 80 120 160 200 240 280 320 0 40 80 120 160 200 240 280 320 

FW kV 2 rlat 14.7 19.7 20.3 19.2 18.2 20 25.2 19.7 15.4 0.4 1.2 0.7 3 2.2 3.1 0.9 2.8 0 

  mid 27.5 33.3 28.2 29.3 24.7 23.5 27 33.9 33 0.1 3.5 10.5 0.7 0.5 1 0.6 0.9 0.8 

  llat 16.9 14.6 13.7 18.6 19.8 17.7 17.7 17.9 15.9 0.5 0.9 0.4 0.7 1.7 1.6 1.9 2.3 2.2 

FW MV 3 rlat 15.1 17.5 20.1 19.4 21.2 21.3 23.7 21.4 16.1 0.8 1 0.5 3.2 5.2 4.4 0.6 1.1 0.7 

  mid 30 33.4 40 28.4 24.3 21.6 27.5 28.7 35.7 2.6 3.6 1.3 0.2 0.9 2.9 0.1 4.3 1.9 

  llat 19.4 15.7 14.2 16.7 19.9 15.4 18.1 17.8 15.3 3 2 0.9 1.2 1.8 0.7 2.3 2.2 1.6 

FSDs kV 3 rlat 15.2 18.8 20.3 18.4 17.8 19.4 23 21.8 15.8 0.9 0.3 0.7 2.2 1.8 2.5 1.3 0.7 0.4 

  mid 29.5 31.3 38.2 29.4 24.8 24.3 26.6 34 36.5 2.1 1.5 0.5 0.8 0.4 0.2 1 1 2.7 

  llat 17.8 14.2 13.1 18.2 19.6 17.5 17.8 16.8 15.8 1.4 0.5 0.2 0.3 1.5 1.4 2 1.2 2.1 

FSDs MV 1 rlat 14.8 19.3 20.1 20.7 18.6 21.4 26.1 23.1 16 0.5 0.8 0.5 4.5 2.6 4.5 1.8 0.6 0.6 

  mid 29.3 33.7 38.1 31.2 25.9 23.2 27.3 29 34.4 1.9 3.9 0.6 2.6 0.7 1.3 0.3 4 0.6 

  llat 16.4 16.3 15.4 19.5 20.4 17 17.8 16.8 18.5 0 2.6 2.1 1.6 2.3 0.9 2 1.2 4.8 

CTMR kV 1 rlat 14.6 17.3 19.1 19.7 20.1 20.4 22.6 21.5 15.2 0.3 1.2 0.5 3.5 4.1 3.5 1.7 1 0.2 

  mid 28.5 32.1 37.2 28.5 24.2 25.3 27.3 32.8 35.5 1.1 2.3 1.5 0.1 1 0.8 0.3 0.2 1.7 

  llat 16.3 14.3 14.5 17.7 18.7 16.5 17.1 16.8 16.6 0.1 0.6 1.2 0.2 0.6 0.4 1.3 1.2 2.9 

CTMR MV 2 rlat 17.4 18.9 19.6 18.5 18.4 21.3 23.9 22.4 18.8 3.1 0.4 0 2.3 2.4 4.4 0.4 0.1 3.4 

  mid 27.3 32.4 37.3 31.3 23.2 21.5 28.7 27.6 36.2 0.1 2.6 1.4 2.7 2 3 1.1 5.4 2.4 

  llat 17.1 15.2 14.3 18 19 16.3 18 18.4 14.8 0.7 1.5 1 0.1 0.9 0.2 2.2 2.8 1.1 
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Table C-23: Results from three-dimensional reconstructed volume organ segmentation measurements. 
Color coding for columns displaying differences from control values is as follows:  no coloring means the 
volume recorded was within the predetermined systematic error, red means the volume recorded 
exceeded the systematic error. The systematic error for the bladder, rectum 1, rectum 2 and rectum 3 
was ±17.7cc, ±21.0cc, ±16.1cc and ±29.6cc, respectively. Values within 15cc of control values met the 
hypothesis criteria of ±15cc. 

Volume Comparison Results 
*volume in cc Bladder Difference Rectum Difference 

CTMR kV 1 274.9 27.9 151.9 8.4 

CTMR MV 2 276.4 29.4 120.3 5.0 

FSDs kV 3 279.5 32.5 164.7 19.6 

FSDs MV 1 282.3 35.3 161.3 1.0 

FW kV 2 279.4 32.4 118.6 6.7 

FW MV 3 282.4 35.4 172.8 11.5 

 

Table C-24: Results from catheter reconstruction for the procedurally defined, distal-most dwell 
position. “Distance” refers to the distance between the distal-most catheter tube dwell position and the 
applicator reference marker. The difference between TPS generated values and control values is in the 

“” column. Color coding for the column displaying differences is as follows: no coloring signifies values 
within ±1 mm of control values, yellow signifies values between ±1-2 mm of control values (within 
hypothesis criteria of ±2 mm) and red signifies values differing by more than ±2 mm. 

Catheter reconstruction results         

    Dwell Coordinates   Fiducial Marker Coordinates   

*distances in mm x y z x y z Distance 

CTMR kV 1 R. Ovoid -10.2 23.9 -84.4 -10.4 8.7 -68.5 22.0 1.5 

 
L. Ovoid 13.8 23.5 -84.8 15.0 9.8 -69.8 20.4 0.4 

 
Tandem 1.7 71.7 -60.8 1.6 50.3 -65.9 22.0 1.0 

CTMR MV 2 R. Ovoid -12.6 24.6 -102.9 -12.3 9.9 -86.5 22.0 1.4 

 
L. Ovoid 13.7 24.6 -103.0 13.1 10.9 -88.8 19.7 1.0 

 
Tandem -1.1 73.7 -80.8 0.5 50.5 -84.9 23.6 0.6 

FSDs kV 3 R. Ovoid -13.8 36.0 -79.0 -11.7 11.7 -66.0 27.6 2.5 

 
L. Ovoid 15.1 36.0 -78.7 13.0 12.0 -66.2 27.1 2.7 

 
Tandem 0.2 94.6 -51.5 0.2 69.9 -58.5 25.7 2.0 

FSDs MV 1 R. Ovoid -15.7 28.0 -88.9 -12.6 4.2 -78.7 26.1 1.0 

 
L. Ovoid 13.6 28.4 -89.2 12.3 5.0 -79.4 25.4 1.0 

 
Tandem 1.3 87.5 -65.2 0.5 64.3 -70.6 23.8 0.1 

FW kV 2 R. Ovoid -15.3 30.6 -89.2 -14.0 10.2 -76.9 23.9 2.2 

 
L. Ovoid 14.0 29.0 -90.1 11.6 10.2 -76.8 23.2 1.3 

 
Tandem -0.6 80.2 -68.3 -2.2 56.3 -71.7 24.2 0.6 

FW MV 3 R. Ovoid -14.5 34.2 -88.1 -13.4 15.0 -83.0 19.9 1.8 

 
L. Ovoid 15.4 34.7 -87.2 12.2 14.8 -82.8 20.6 1.2 

  Tandem -1.4 93.9 -63.9 -1.4 69.9 -68.6 24.5 0.9 
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Table C-25: Results from two-dimensional CTP organ segmentation measurements for surrogate rectum structures. Color coding for columns 
displaying differences from control values is as follows: No coloring signifies results within 1 mm of control values, yellow coloring signifies 
results differing from the control values by 1-2 mm, light red signifies results differing from control values by 2-5 mm and dark red signifies 
results differing from control values by more than 5 mm. Clear and yellow results met the hypothesis criteria of ±2 mm. The terms “sup”, “mid”, 
and “inf” refer to locations relative to the artifact region. Sup=superior, inf=inferior and mid=middle. 

CTP: Rectum Results                     

*distances in mm Measured values             Absolute difference from control values       

  angle: 0 40 80 120 160 200 240 280 320 0 40 80 120 160 200 240 280 320 

FSDs kV 2 sup 9.9 9.6 13.3 19.1 20.2 21.3 22.7 23.6 15.3 0.1 0.5 0.4 1.2 0.6 0 0.2 0.2 1.3 

 
mid 24.8 17.8 15 16.8 21.1 21.5 15.6 14.2 20.6 4 6.1 3.5 1.7 0.9 0.3 0.6 0.1 0.8 

 
inf 18.1 18.7 17.4 17.4 16.7 16.7 16.7 17.7 18.2 0.2 0.4 1.3 0.7 2.3 1.2 0.6 0.1 0 

FSDs MV 3 sup 12.8 13.2 13.1 14.7 19.4 24.2 25.5 19.3 14.9 0 1.1 0.7 0.3 0.4 0.2 0.8 0.7 1.8 

 
mid 13.1 20.7 24.8 13.3 16 17.7 17.2 14.7 13.5 0.4 0.5 1.2 1.8 5.4 2.3 1.2 1.4 1.1 

 
inf 16.1 16.6 17.4 17.8 20.6 17.8 17.2 21 19.1 0.3 1.6 1.3 1.1 0.2 1.6 1.3 0.2 0.4 

CTMR kV 3 sup 12.5 11.7 11.7 13.2 19 24.7 25.5 18.5 15.6 0.3 0.4 0.7 1.2 0.8 0.3 0.8 0.1 1.1 

 
mid 12 20.6 23.1 12.2 12.7 14.9 17.5 16 12 0.7 0.6 0.5 0.7 2.1 0.5 0.9 0.1 0.4 

 
inf 15.5 14.9 16.4 17.2 21.3 20.2 18.7 21.3 18.5 0.3 0.1 0.3 0.5 0.9 0.8 0.2 0.5 1 

CTMR MV 1 sup 16.6 15.5 15.3 17.6 19.5 17.4 17.4 16.8 16.9 0.7 1.9 2.1 1.8 0.4 1.3 1.7 1.2 0.4 

 
mid 14.2 19.8 23.7 15.7 14.4 14.6 20.4 17.9 15.1 7 4.9 0.3 0.5 0.1 0.2 2 2.5 5.4 

 
inf 22.4 14.5 14.3 19.1 11.9 14.1 17.8 21.4 25.8 2.1 2.5 1.9 1.9 1.2 1.5 1 2.9 0.1 

FW kV 1 sup 16.1 13.1 13.6 16.6 20.7 16.3 12.2 14.5 16.5 0.2 0.5 0.4 0.8 0.8 0.2 3.5 1.1 0 

 
mid 15.4 21.2 21.7 14.7 14.3 15 18.4 16.6 14.8 8.2 6.3 2.3 1.5 0 0.2 0 1.2 5.1 

 
inf 20 11.9 12.7 17.2 13.1 13.9 18.2 22.4 25.2 0.3 0.1 0.3 0 0 1.3 0.6 1.9 0.5 

FW MV 2 sup 11.4 11.9 15.1 19 21.4 22.7 24.1 24.8 16.5 1.6 2.8 2.2 1.1 1.8 1.4 1.2 1 0.1 

  mid 29 24.2 18.2 18.9 24.4 20.6 13.6 13.3 20.1 0.2 0.3 0.3 0.4 2.4 1.2 2.6 1 1.3 

  inf 17.3 18.6 16.6 16.9 16.5 16.7 17.5 17.5 16.8 1 0.5 0.5 0.2 2.1 1.2 1.4 0.3 1.4 
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Table C-26: Results from two-dimensional CTP organ segmentation measurements for surrogate bladder structures. Color coding for columns 
displaying differences from control values is as follows: No coloring signifies results within 1 mm of control values, yellow coloring signifies 
results differing from the control values by 1-2 mm, light red signifies results differing from control values by 2-5 mm and dark red signifies 
results differing from control values by more than 5 mm. Clear and yellow results met the hypothesis criteria of ±2 mm. The terms “rlat”, “mid” 
and “llat” refer to locations relative to the artifact region. Rlat=right lateral, llat= left lateral and mid=middle. 

CTP: Bladder Results                     

*distances in mm Measured values             Absolute difference from control values       

  angle: 0 40 80 120 160 200 240 280 320 0 40 80 120 160 200 240 280 320 

FSDs kV 2 rlat 14.3 16.2 19.2 17.7 16.3 19.3 20.5 19 15.1 0 2.3 0.4 1.5 0.3 2.4 3.8 3.5 0.3 

 
mid 26.8 34.8 37.1 29 24.1 23.2 26.7 34.8 33.7 0.6 5 1.6 0.4 1.1 1.3 0.9 1.8 0.1 

 
llat 17.3 13.9 13.4 18.8 17.9 16.6 17.4 16.4 15.4 0.9 0.2 0.1 0.9 0.2 0.5 1.6 0.8 1.7 

FSDs MV 3 rlat 15.3 18.1 21.6 18.3 16.1 18.6 22.6 21.3 15.2 1 0.4 2 2.1 0.1 1.7 1.7 1.2 0.2 

 
mid 27.4 31.4 40 28.4 23.2 19.5 27.2 29.7 34.9 0 1.6 1.3 0.2 2 5 0.4 3.3 1.1 

 
llat 17.2 13.8 13.2 18.5 19.2 17.3 16.7 16.5 16.3 0.8 0.1 0.1 0.6 1.1 1.2 0.9 0.9 2.6 

CTMR kV 3 rlat 15.2 17.6 19.3 16.7 16.1 18.1 21.7 22.1 15.3 0.9 0.9 0.3 0.5 0.1 1.2 2.6 0.4 0.1 

 
mid 28.8 31.8 37.5 27.1 24.9 25.1 26.7 32.4 32.9 1.4 2 1.2 1.5 0.3 0.6 0.9 0.6 0.9 

 
llat 15.8 13.6 12.9 18.4 19.1 17.7 17.3 14.7 15 0.6 0.1 0.4 0.5 1 1.6 1.5 0.9 1.3 

CTMR MV 1 rlat 15.4 17.5 19.3 19.2 15.2 18 23.8 22 15.8 1.1 1 0.3 3 0.8 1.1 0.5 0.5 0.4 

 
mid 30.6 34.1 38.3 29.7 23.9 24.9 27.9 32.1 34.7 3.2 4.3 0.4 1.1 1.3 0.4 0.3 0.9 0.9 

 
llat 15.3 12.9 14.1 17.7 20.9 19.5 19.4 16.2 15.4 1.1 0.8 0.8 0.2 2.8 3.4 3.6 0.6 1.7 

FW kV 1 rlat 15.5 18.8 19.8 17.5 16.8 18.3 19.4 18.7 14.6 1.2 0.3 0.2 1.3 0.8 1.4 4.9 3.8 0.8 

 
mid 29 32.6 38.7 28.7 24 21.9 26.3 31.9 31.4 1.6 2.8 0 0.1 1.2 2.6 1.3 1.1 2.4 

 
llat 17 14.9 14.4 18.1 17.8 16 17.4 17 15.8 0.6 1.2 1.1 0.2 0.3 0.1 1.6 1.4 2.1 

FW MV 2 rlat 13.7 14.7 17.2 15.8 16.2 16.9 21 21.2 15.4 0.6 3.8 2.4 0.4 0.2 0 3.3 1.3 0 

 
mid 27.3 34 39 28.3 22.4 21.2 26.5 32.1 33.7 0.1 4.2 0.3 0.3 2.8 3.3 1.1 0.9 0.1 

  llat 16.1 12.9 12.7 17.6 18.6 18 17.4 18.2 15.6 0.3 0.8 0.6 0.3 0.5 1.9 1.6 2.6 1.9 
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Table C-27: Results from three-dimensional reconstructed volume organ segmentation measurements. 
Color coding for columns displaying differences from control values is as follows:  no coloring means the 
volume recorded was within the predetermined systematic error, red means the volume recorded 
exceeded the systematic error. The systematic error for the bladder, rectum 1, rectum 2 and rectum 3 
was ±17.7cc, ±21.0cc, ±16.1cc and ±29.6cc, respectively. Values within 15cc of control values met the 
hypothesis criteria of ±15cc. 

Volume Comparison Results 
*volume in cc Bladder Difference Rectum Difference 

CTMR kV 3 262.0 15.0 160.4 23.9 

CTMR MV 1 275.2 28.2 163.0 2.7 

FSDs kV 2 261.0 14.0 114.2 11.1 

FSDs MV 3 267.2 20.2 165.9 18.4 

FW kV 1 265.0 18.0 149.7 10.6 

FW MV 2 262.3 15.3 121.5 3.8 

 

Table C-28: Results from catheter reconstruction for the procedurally defined, distal-most dwell 
position. “Distance” refers to the distance between the distal-most catheter tube dwell position and the 
applicator reference marker. The difference between TPS generated values and control values is in the 

“” column. Color coding for the column displaying differences is as follows: no coloring signifies values 
within ±1 mm of control values, yellow signifies values between ±1-2 mm of control values (within 
hypothesis criteria of ±2 mm) and red signifies values differing by more than ±2 mm. 

Catheter reconstruction results         

    Dwell Coordinates   Fiducial Marker Coordinates   

*distances in mm x y z x y z Distance 

CTMR kV 3 R. Ovoid -11.0 23.1 -83.1 -11.4 8.7 -67.8 21.0 2.5 

 
L. Ovoid 14.6 23.6 -82.8 14.0 9.8 -68.2 20.1 0.6 

 
Tandem -1.3 71.5 -60.3 0.9 49.9 -65.0 22.2 0.8 

CTMR MV 1 R. Ovoid -14.8 26.9 -93.9 -13.3 11.7 -78.5 21.7 1.8 

 
L. Ovoid 11.8 26.6 -96.6 12.0 12.9 -81.5 20.4 0.3 

 
Tandem -2.4 76.3 -74.6 -0.5 53.7 -78.5 23.0 0.0 

FSDs kV 2 R. Ovoid -16.7 27.9 -89.1 -13.3 9.9 -72.8 24.5 0.6 

 
L. Ovoid 12.9 29.1 -87.7 11.1 10.4 -73.0 23.9 0.6 

 
Tandem -0.3 92.2 -58.7 -1.1 70.3 -62.6 22.3 1.4 

FSDs MV 3 R. Ovoid -16.4 31.3 -92.0 -14.2 12.5 -79.4 22.7 2.4 

 
L. Ovoid 13.2 31.7 -91.1 11.1 12.8 -78.9 22.6 1.8 

 
Tandem -4.0 92.9 -64.4 -3.7 70.1 -70.1 23.5 0.2 

FW kV 1 R. Ovoid -14.0 23.0 -78.5 -13.1 5.6 -68.8 19.9 3.8 

 
L. Ovoid 12.5 23.0 -76.3 12.4 5.3 -69.7 18.9 3.0 

 
Tandem 0.1 75.3 -62.0 -0.5 52.2 -64.7 23.3 0.3 

FW MV 2 R. Ovoid -15.9 22.7 -101.2 -13.6 4.7 -88.6 22.1 0.4 

  L. Ovoid 14.0 22.6 -102.4 11.6 5.4 -89.9 21.4 0.5 

  Tandem -1.3 75.4 -85.4 -1.6 52.8 -86.7 22.6 0.9 
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Table C-29: Results from two-dimensional CTP organ segmentation measurements for surrogate rectum structures. Color coding for columns 
displaying differences from control values is as follows: No coloring signifies results within 1 mm of control values, yellow coloring signifies 
results differing from the control values by 1-2 mm, light red signifies results differing from control values by 2-5 mm and dark red signifies 
results differing from control values by more than 5 mm. Clear and yellow results met the hypothesis criteria of ±2 mm. The terms “sup”, “mid”, 
and “inf” refer to locations relative to the artifact region. Sup=superior, inf=inferior and mid=middle. 

CTP: Rectum Results                     

*distances in mm Measured values             Absolute difference from control values       

  angle: 0 40 80 120 160 200 240 280 320 0 40 80 120 160 200 240 280 320 

FSDs kV 2 sup 11.2 9.9 12.9 17.9 20.5 21.8 24.6 23.4 15.5 1.4 0.8 0 0 0.9 0.5 1.7 0.4 1.1 

 
mid 24.6 19.4 14.3 15.6 17.6 19.2 15.3 15.5 20.9 4.2 4.5 4.2 2.9 4.4 2.6 0.9 1.2 0.5 

 
inf 18.2 20 14.4 16.8 16.2 15.3 17.3 18 19.2 0.1 0.9 1.7 0.1 1.8 0.2 1.2 0.2 1 

FSDs MV 3 sup 14.6 13.8 13.2 15.7 20.2 25.1 27.8 20.2 17 1.8 1.7 0.8 1.3 0.4 0.7 3.1 1.6 0.3 

 
mid 14.1 21.7 24.6 21.4 19.5 20 18.3 17 13.3 1.4 0.5 1 9.9 8.9 4.6 0.1 0.9 0.9 

 
inf 18.7 15.4 17.2 18.7 21.2 20.3 20.2 21.4 20.3 2.9 0.4 1.1 2 0.8 0.9 1.7 0.6 0.8 

CTMR kV 3 sup 12.9 11.7 12 13.9 20.9 25.2 26.7 20 16.7 0.1 0.4 0.4 0.5 1.1 0.8 2 1.4 0 

 
mid 11.9 20.9 24.4 14.7 12.5 15.6 19.3 16.1 13.3 0.8 0.3 0.8 3.2 1.9 0.2 0.9 0 0.9 

 
inf 16.2 15.5 17.3 17.9 21.2 20.6 20.2 19.9 18.7 0.4 0.5 1.2 1.2 0.8 1.2 1.7 0.9 0.8 

CTMR MV 1 sup 18.2 15.5 16 18.5 21 20.7 18.9 17.5 18.2 2.3 1.9 2.8 2.7 1.1 4.6 3.2 1.9 1.7 

 
mid 17.3 22.2 24.1 17.3 14.6 14.6 19.7 20.3 21.2 10.1 7.3 0.1 1.1 0.3 0.2 1.3 4.9 11.5 

 
inf 24.3 16.2 15.9 19.6 15 14.4 20.1 22.5 29 4 4.2 3.5 2.4 1.9 1.8 1.3 1.8 3.3 

FW kV 1 sup 15.8 13.9 12.4 16.7 20.9 16.4 12.8 12 15.2 0.1 0.3 0.8 0.9 1 0.3 2.9 3.6 1.3 

 
mid 16.6 21.5 15.8 13.9 13.5 14.3 18.8 15 18.2 9.4 6.6 8.2 2.3 0.8 0.5 0.4 0.4 8.5 

 
inf 21.4 12.3 12.6 16.7 13 13.4 18.5 23.9 26.3 1.1 0.3 0.2 0.5 0.1 0.8 0.3 0.4 0.6 

FW MV 2 sup 12.3 11.3 15.3 20 22 22 24.2 25.7 18.6 2.5 2.2 2.4 2.1 2.4 0.7 1.3 1.9 2 

 
mid 28.7 24.4 20.2 19.5 21.8 20.9 16.3 15.7 20.9 0.1 0.5 1.7 1 0.2 0.9 0.1 1.4 0.5 

  inf 19.1 19.3 18.8 18.1 16.5 18.5 17.7 18.1 18.7 0.8 0.2 2.7 1.4 2.1 3 1.6 0.3 0.5 
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Table C-30: Results from two-dimensional CTP organ segmentation measurements for surrogate bladder structures. Color coding for columns 
displaying differences from control values is as follows: No coloring signifies results within 1 mm of control values, yellow coloring signifies 
results differing from the control values by 1-2 mm, light red signifies results differing from control values by 2-5 mm and dark red signifies 
results differing from control values by more than 5 mm. Clear and yellow results met the hypothesis criteria of ±2 mm. The terms “rlat”, “mid” 
and “llat” refer to locations relative to the artifact region. Rlat=right lateral, llat= left lateral and mid=middle. 

CTP: Bladder Results                     

*distances in mm Measured values             Absolute difference from control values       

  angle: 0 40 80 120 160 200 240 280 320 0 40 80 120 160 200 240 280 320 

FSDs kV 2 rlat 15.9 18.8 20.4 20.4 20.1 20 22.8 21.4 15.4 1.6 0.3 0.8 4.2 4.1 3.1 1.5 1.1 0 

 
mid 28.3 32.1 37.1 28.8 25.4 23.8 28.1 35.5 32.9 0.9 2.3 1.6 0.2 0.2 0.7 0.5 2.5 0.9 

 
llat 17.7 14.4 13.8 17.5 18.4 17 17.7 18.1 15.4 1.3 0.7 0.5 0.4 0.3 0.9 1.9 2.5 1.7 

FSDs MV 3 rlat 15 19.6 22.7 21.7 23.7 20.7 27.3 23.2 16.3 0.7 1.1 3.1 5.5 7.7 3.8 3 0.7 0.9 

 
mid 29.7 23.8 40.7 33.4 25.6 23.2 27.3 31.7 34 2.3 6 2 4.8 0.4 1.3 0.3 1.3 0.2 

 
llat 17.9 16.2 14.4 17.6 18.5 18.1 19.7 21.1 19.1 1.5 2.5 1.1 0.3 0.4 2 3.9 5.5 5.4 

CTMR kV 3 rlat 16.7 18.6 19.7 20 18.3 20.3 21.6 22.9 16 2.4 0.1 0.1 3.8 2.3 3.4 2.7 0.4 0.6 

 
mid 29.4 32.3 37.9 28.1 24.1 23.7 27.7 34 34.2 2 2.5 0.8 0.5 1.1 0.8 0.1 1 0.4 

 
llat 17.8 14.4 17.4 14 13.2 19.8 19.5 17.4 18.2 1.4 0.7 4.1 3.9 4.9 3.7 3.7 1.8 4.5 

CTMR MV 1 rlat 17.3 18.4 21.9 23 20.6 18.1 23.4 23.2 15.8 3 0.1 2.3 6.8 4.6 1.2 0.9 0.7 0.4 

 
mid 28.5 33.6 39.6 29.8 24 22.5 28.2 34.8 34.1 1.1 3.8 0.9 1.2 1.2 2 0.6 1.8 0.3 

 
llat 16.6 13.9 13.3 19.4 20.3 18.3 20.4 17.4 16.3 0.2 0.2 0 1.5 2.2 2.2 4.6 1.8 2.6 

FW kV 1 rlat 16.3 19.3 19.8 20.6 19.4 18 22.6 21 15.5 2 0.8 0.2 4.4 3.4 1.1 1.7 1.5 0.1 

 
mid 28.7 32.7 38.4 29.1 24.1 23.7 27.2 31.9 25 1.3 2.9 0.3 0.5 1.1 0.8 0.4 1.1 8.8 

 
llat 17.5 14.5 13.2 16.6 17.2 16.5 17.5 17.4 16.2 1.1 0.8 0.1 1.3 0.9 0.4 1.7 1.8 2.5 

FW MV 2 rlat 15.3 18.5 20.9 22.2 24 20 21.5 21.7 16.7 1 0 1.3 6 8 3.1 2.8 0.8 1.3 

  mid 26.2 32.6 39 29.6 24.8 22.6 27.6 27.9 32.3 1.2 2.8 0.3 1 0.4 1.9 0 5.1 1.5 

  llat 17 12.6 13.7 18.4 22 18.8 20 16.1 17.9 0.6 1.1 0.4 0.5 3.9 2.7 4.2 0.5 4.2 

 



 

107 
 

Table C-31: Results from three-dimensional reconstructed volume organ segmentation measurements. 
Color coding for columns displaying differences from control values is as follows:  no coloring means the 
volume recorded was within the predetermined systematic error, red means the volume recorded 
exceeded the systematic error. The systematic error for the bladder, rectum 1, rectum 2 and rectum 3 
was ±17.7cc, ±21.0cc, ±16.1cc and ±29.6cc, respectively. Values within 15cc of control values met the 
hypothesis criteria of ±15cc. 

Volume Comparison Results 
*volume in cc Bladder Difference Rectum Difference 

CTMR kV 3 280.2 33.2 176.9 7.4 

CTMR MV 1 300.6 53.6 183.9 23.5 

FSDs kV 2 280.5 33.5 122.1 3.2 

FSDs MV 3 296.4 49.4 186.2 1.9 

FW kV 1 264.3 17.3 151.9 8.5 

FW MV 2 287.1 40.1 133.5 8.1 

 

Table C-32: Results from catheter reconstruction for the procedurally defined, distal-most dwell 
position. “Distance” refers to the distance between the distal-most catheter tube dwell position and the 
applicator reference marker. The difference between TPS generated values and control values is in the 

“” column. Color coding for the column displaying differences is as follows: no coloring signifies values 
within ±1 mm of control values, yellow signifies values between ±1-2 mm of control values (within 
hypothesis criteria of ±2 mm) and red signifies values differing by more than ±2 mm. 

Catheter reconstruction results         

    Dwell Coordinates   Fiducial Marker Coordinates   

*distances in mm x y z x y z Distance 

CTMR kV 3 R. Ovoid -11.2 24.4 -84.0 -11.4 8.7 -67.8 22.6 0.9 

 
L. Ovoid 14.6 24.1 -82.9 14.0 9.8 -68.2 20.5 0.2 

 
Tandem -1.4 72.0 -60.5 0.9 49.9 -65.0 22.7 0.4 

CTMR MV 1 R. Ovoid -14.8 29.0 -95.8 -13.3 11.7 -78.5 24.5 1.0 

 
L. Ovoid 11.5 28.0 -96.4 12.0 12.9 -81.5 21.2 0.5 

 
Tandem -2.5 76.9 -75.1 -0.5 53.7 -78.5 23.5 0.5 

FSDs kV 2 R. Ovoid -16.2 29.1 -90.8 -13.3 9.9 -72.8 26.5 1.4 

 
L. Ovoid 12.8 29.3 -88.3 11.1 10.4 -73.0 24.4 0.1 

 
Tandem 0.1 93.3 -58.3 -1.1 70.3 -62.6 23.4 0.3 

FSDs MV 3 R. Ovoid -16.6 33.4 -93.2 -14.2 12.5 -79.4 25.2 0.0 

 
L. Ovoid 13.3 34.3 -91.6 11.1 12.8 -78.9 25.1 0.6 

 
Tandem -3.5 93.2 -63.9 -3.7 70.1 -70.1 23.9 0.2 

FW kV 1 R. Ovoid -14.0 24.2 -80.3 -13.1 5.6 -68.8 21.9 0.2 

 
L. Ovoid 13.3 24.2 -82.3 12.4 5.3 -69.7 22.7 0.9 

 
Tandem 0.7 75.2 -62.2 -0.5 52.2 -64.7 23.2 0.4 

FW MV 2 R. Ovoid -14.4 22.9 -101.5 -13.6 4.7 -88.6 22.3 0.7 

  L. Ovoid 14.9 21.5 -102.1 11.6 5.4 -89.9 20.5 1.4 

  Tandem -0.6 75.6 -85.2 -1.6 52.8 -86.7 22.9 0.7 
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Table C-33: Results from two-dimensional CTP organ segmentation measurements for surrogate rectum structures. Color coding for columns 
displaying differences from control values is as follows: No coloring signifies results within 1 mm of control values, yellow coloring signifies 
results differing from the control values by 1-2 mm, light red signifies results differing from control values by 2-5 mm and dark red signifies 
results differing from control values by more than 5 mm. Clear and yellow results met the hypothesis criteria of ±2 mm. The terms “sup”, “mid”, 
and “inf” refer to locations relative to the artifact region. Sup=superior, inf=inferior and mid=middle. 

CTP: Rectum Results                     

*distances in mm Measured values             Absolute difference from control values       

  angle: 0 40 80 120 160 200 240 280 320 0 40 80 120 160 200 240 280 320 

FSDs kV 2 sup 10.7 10.1 13.4 19.1 19.7 20.9 23.6 24 17.9 0.9 1 0.5 1.2 0.1 0.4 0.7 0.2 1.3 

 
mid 30.6 26.6 18.9 16.6 21.4 22.9 16.1 16.3 22.9 1.8 2.7 0.4 1.9 0.6 1.1 0.1 2 1.5 

 
inf 18.3 18.4 16.7 16.5 15.3 17.1 16.8 17.9 18.1 0 0.7 0.6 0.2 0.9 1.6 0.7 0.1 0.1 

FSDs MV 3 sup 13.6 13.1 12.8 14.1 19.3 25 26.9 19.6 16.2 0.8 1 0.4 0.3 0.5 0.6 2.2 1 0.5 

 
mid 13.1 21 24.3 16.3 17.4 17.5 17.6 14.8 12.5 0.4 0.2 0.7 4.8 6.8 2.1 0.8 1.3 0.1 

 
inf 16.6 16.1 16.5 17.4 20.6 20.5 19.9 21.2 20.3 0.8 1.1 0.4 0.7 0.2 1.1 1.4 0.4 0.8 

CTMR kV 3 sup 14.1 13 12.7 15 21.4 24.8 25.8 19.6 16.5 1.3 0.9 0.3 0.6 1.6 0.4 1.1 1 0.2 

 
mid 13.3 18.8 21.2 18.6 15.4 15.9 17.5 14.8 12.1 0.6 2.4 2.4 7.1 4.8 0.5 0.9 1.3 0.3 

 
inf 16.6 15.4 16.2 17.2 20.7 20.7 18.6 20.3 19.8 0.8 0.4 0.1 0.5 0.3 1.3 0.1 0.5 0.3 

CTMR MV 1 sup 18.2 13.8 14.5 15.8 23.2 17.6 15.1 13.3 18.2 2.3 0.2 1.3 0 3.3 1.5 0.6 2.3 1.7 

 
mid 11.5 16.9 23.9 17.9 16.4 16.8 19.3 18.9 15.1 4.3 2 0.1 1.7 2.1 2 0.9 3.5 5.4 

 
inf 23.5 13 14 19.1 14.3 14.1 19.3 23.2 26 3.2 1 1.6 1.9 1.2 1.5 0.5 1.1 0.3 

FW kV 1 sup 15.5 13.1 12.6 15.5 20.4 16.9 17.6 15.5 17.1 0.4 0.5 0.6 0.3 0.5 0.8 1.9 0.1 0.6 

 
mid 13.7 18.9 18.3 17.1 15.2 16.8 19.9 15.9 15.3 6.5 4 5.7 0.9 0.9 2 1.5 0.5 5.6 

 
inf 21.2 12.5 13.3 16.7 13.8 12.8 17.9 22.7 25.7 0.9 0.5 0.9 0.5 0.7 0.2 0.9 1.6 0 

FW MV 2 sup 11.5 10.7 14.6 19.1 21.2 21.8 23.4 24.1 16.3 1.7 1.6 1.7 1.2 1.6 0.5 0.5 0.3 0.3 

 
mid 28.5 24.1 18.4 18.6 21.5 21.6 17.5 15.9 21.2 0.3 0.2 0.1 0.1 0.5 0.2 1.3 1.6 0.2 

  inf 17.4 19.4 16.5 16.5 15.5 17.8 18.1 19.2 18.2 0.9 0.3 0.4 0.2 1.1 2.3 2 1.4 0 
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Table C-34: Results from two-dimensional CTP organ segmentation measurements for surrogate bladder structures. Color coding for columns 
displaying differences from control values is as follows: no coloring signifies results within 1 mm of control values, yellow coloring signifies 
results differing from the control values by 1-2 mm, light red signifies results differing from control values by 2-5 mm and dark red signifies 
results differing from control values by more than 5 mm. Clear and yellow results met the hypothesis criteria of ±2 mm. The terms “rlat”, “mid” 
and “llat” refer to locations relative to the artifact region. Rlat=right lateral, llat= left lateral and mid=middle. 

CTP: Bladder Results                     

*distances in mm Measured values             Absolute difference from control values       

  angle: 0 40 80 120 160 200 240 280 320 0 40 80 120 160 200 240 280 320 

FSDs kV 2 rlat 15.2 17.9 19.1 20.6 19.1 18.2 24 21.7 15.8 0.9 0.6 0.5 4.4 3.1 1.3 0.3 0.8 0.4 

 
mid 29.2 32.6 37.2 28.2 24.9 24.8 26.7 32.1 33 1.8 2.8 1.5 0.4 0.3 0.3 0.9 0.9 0.8 

 
llat 16 13.8 14.6 18.5 19.3 18.4 18.6 15.5 15.4 0.4 0.1 1.3 0.6 1.2 2.3 2.8 0.1 1.7 

FSDs MV 3 rlat 16.4 19.5 19.9 19.7 19.4 21.2 25.9 22.3 15.1 2.1 1 0.3 3.5 3.4 4.3 1.6 0.2 0.3 

 
mid 31.9 35.3 38.4 27.9 25.1 24 28.7 32.4 35.6 4.5 5.5 0.3 0.7 0.1 0.5 1.1 0.6 1.8 

 
llat 17.1 13.7 13.6 18.3 20.3 19.1 19.1 18.1 15.7 0.7 0 0.3 0.4 2.2 3 3.3 2.5 2 

CTMR kV 3 rlat 14.8 18.4 17.7 17.9 17.9 20.5 24.1 19.8 15.5 0.5 0.1 1.9 1.7 1.9 3.6 0.2 2.7 0.1 

 
mid 28.3 32.1 38.9 28 25.4 24.1 26.2 31.8 35.3 0.9 2.3 0.2 0.6 0.2 0.4 1.4 1.2 1.5 

 
llat 16.8 14.3 14.6 18 18.5 17 17.7 17.1 15.1 0.4 0.6 1.3 0.1 0.4 0.9 1.9 1.5 1.4 

CTMR MV 1 rlat 17.3 17 19.7 20.5 19.7 17.6 21.4 21.1 17.1 3 1.5 0.1 4.3 3.7 0.7 2.9 1.4 1.7 

 
mid 28.1 32.2 39.6 30.1 26.9 25.1 26.7 31.1 36.5 0.7 2.4 0.9 1.5 1.7 0.6 0.9 1.9 2.7 

 
llat 16.1 14 14.7 14.9 18.4 19.4 18.3 14.1 14.8 0.3 0.3 1.4 3 0.3 3.3 2.5 1.5 1.1 

FW kV 1 rlat 16 19.6 20.1 19.3 16 18.6 21.9 21.7 15.5 1.7 1.1 0.5 3.1 0 1.7 2.4 0.8 0.1 

 
mid 29 32.6 38.5 29.2 24.9 22.3 27.1 32.5 33.9 1.6 2.8 0.2 0.6 0.3 2.2 0.5 0.5 0.1 

 
llat 16.4 14.5 13.7 18.1 18.4 17.4 17.2 15.5 15.4 0 0.8 0.4 0.2 0.3 1.3 1.4 0.1 1.7 

FW MV 2 rlat 17.3 17.3 20.6 20 19.4 18.1 22.4 21.7 15.7 3 1.2 1 3.8 3.4 1.2 1.9 0.8 0.3 

  mid 28.9 31.9 39.2 28.8 24.5 22.3 28.7 27.8 33.6 1.5 2.1 0.5 0.2 0.7 2.2 1.1 5.2 0.2 

  llat 16.5 13.4 14.7 18.4 18 16.4 18.5 15.9 15.7 0.1 0.3 1.4 0.5 0.1 0.3 2.7 0.3 2 
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Table C-35: Results from three-dimensional reconstructed volume organ segmentation measurements. 
Color coding for columns displaying differences from control values is as follows:  no coloring means the 
volume recorded was within the predetermined systematic error, red means the volume recorded 
exceeded the systematic error. The systematic error for the bladder, rectum 1, rectum 2 and rectum 3 
was ±17.7cc, ±21.0cc, ±16.1cc and ±29.6cc, respectively. Values within 15cc of control values met the 
hypothesis criteria of ±15cc. 

Volume Comparison Results 
*volume in cc Bladder Difference Rectum Difference 

CTMR kV 3 262.0 15.0 160.4 23.9 

CTMR MV 1 275.2 28.2 163.0 2.7 

FSDs kV 2 261.0 14.0 114.2 11.1 

FSDs MV 3 267.2 20.2 165.9 18.4 

FW kV 1 265.0 18.0 149.7 10.6 

FW MV 2 262.3 15.3 121.5 3.8 

 

Table C-36: Results from catheter reconstruction for the procedurally defined, distal-most dwell 
position. “Distance” refers to the distance between the distal-most catheter tube dwell position and the 
applicator reference marker. The difference between TPS generated values and control values is in the 

“” column. Color coding for the column displaying differences is as follows: no coloring signifies values 
within ±1 mm of control values, yellow signifies values between ±1-2 mm of control values (within 
hypothesis criteria of ±2 mm) and red signifies values differing by more than ±2 mm. 

Catheter reconstruction results         

    Dwell Coordinates Fiducial Marker Coordinates   

*distances in mm x y z x y z Distance 

CTMR kV 3 R. Ovoid -11.0 23.1 -83.1 -11.4 8.7 -67.8 21.0 2.5 

 
L. Ovoid 14.6 23.6 -82.8 14.0 9.8 -68.2 20.1 0.6 

 
Tandem -1.3 71.5 -60.3 0.9 49.9 -65.0 22.2 0.8 

CTMR MV 1 R. Ovoid -14.8 26.9 -93.9 -13.3 11.7 -78.5 21.7 1.8 

 
L. Ovoid 11.8 26.6 -96.6 12.0 12.9 -81.5 20.4 0.3 

 
Tandem -2.4 76.3 -74.6 -0.5 53.7 -78.5 23.0 0.0 

FSDs kV 2 R. Ovoid -16.7 27.9 -89.1 -13.3 9.9 -72.8 24.5 0.6 

 
L. Ovoid 12.9 29.1 -87.7 11.1 10.4 -73.0 23.9 0.6 

 
Tandem -0.3 92.2 -58.7 -1.1 70.3 -62.6 22.3 1.4 

FSDs MV 3 R. Ovoid -16.4 31.3 -92.0 -14.2 12.5 -79.4 22.7 2.4 

 
L. Ovoid 13.2 31.7 -91.1 11.1 12.8 -78.9 22.6 1.8 

 
Tandem -4.0 92.9 -64.4 -3.7 70.1 -70.1 23.5 0.2 

FW kV 1 R. Ovoid -14.0 23.0 -78.5 -13.1 5.6 -68.8 19.9 3.8 

 
L. Ovoid 12.5 23.0 -76.3 12.4 5.3 -69.7 18.9 3.0 

 
Tandem 0.1 75.3 -62.0 -0.5 52.2 -64.7 23.3 0.3 

FW MV 2 R. Ovoid -15.9 22.7 -101.2 -13.6 4.7 -88.6 22.1 0.4 

  L. Ovoid 14.0 22.6 -102.4 11.6 5.4 -89.9 21.4 0.5 

  Tandem -1.3 75.4 -85.4 -1.6 52.8 -86.7 22.6 0.9 
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